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Preface

Data acquisition is a process of sampling real-world phenomena to collect data that 
can be manipulated by a computer and software. Data acquisition systems include 
sensors that convert physical parameters to an electrical signal and utilize computer 
network technologies for data transfers. Recent advances in biomedical data acqui-
sition systems have led to innovative applications in medical diagnosis, healthcare, 
and assisted living. The emerging solutions enable the non-invasive and continu-
ous acquisition of valuable biomedical data. Moreover, the collected data can be 
exchanged using networked systems and analyzed in real time at remote locations.  

This book provides insight into the recent advances and applications of biomedical 
data acquisition technology. It consists of six chapters, each focusing on a specific 
innovative application.

Chapter 1 concisely reviews several solutions that utilize network-connected sen-
sors for patient activity recognition and monitoring of physiological parameters in 
healthcare. The considered technological solutions include smart sensors, wireless 
body sensor networks, and visual sensor networks. The chapter discusses the opera-
tion of these networked systems to demonstrate their advantages from the perspec-
tive of biomedical data acquisition for representative application examples.  

Chapter 2 is devoted to ambient assisted-living systems that can support people in 
their daily routines by using different types of sensors, mobile devices, computers, 
communication networks, and software applications. The authors present a data 
analysis framework that monitors complex patient situations in real time using a 
web application and a set of sensors. The implemented sensors measure heart rate 
and breathing rate, analyze gait, and determine the temperature, humidity, and 
volatile organic compounds of air in the room. Moreover, the proposed system 
controls an active prosthetic foot to adapt it to the floor covering automatically. The 
chapter demonstrates that the components of the ambient assisted-living system 
can communicate with low latency via a heterogeneous network that integrates 
WiFi, Bluetooth, Gigabit LAN, and 4G+ communication.

Chapter 3 considers acoustic sensor applications for monitoring the joints of the 
human body. The authors review the use of acoustic emission measurements and 
vibroarthrography in osteoarthritis diagnosis. These methods’ main advantages 
include the possibility of non-invasive and radiation-free monitoring of variations 
in joint structure and evaluation of osteoarthritis progression. It is suggested that 
the acoustic approach could be competitive to state-of-the-art radiographic and 
magnetic resonance imaging techniques.

Chapter 4 presents a method for controlling advanced prosthetic devices, with the 
use of an aneural–machine interface. In this method, the introduced data acquisi-
tion system translates the human brain’s neural activity into control commands for 
prostheses. Specifically, functional near-infrared spectroscopy was used to acquire 
data that enable the generation of the control commands for a three degrees-of-
freedom prosthetic arm. The experimental results show that popular classification 
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algorithms (artificial neural network and linear discriminant analysis) can be used 
to predict various arm motions based on the functional near-infrared spectros-
copy signals. It is demonstrated that this approach enables the design of improved 
prostheses for amputees.

Chapter 5 proposes a method to extract informative parameters from the electrocar-
diogram signal for diagnosing the state of the cardiovascular system. The authors 
use flicker-noise spectroscopy to analyze correlation relationships in sequences of 
electrocardiogram irregularities. On this basis, they obtain signal parameters for 
the normal state of the cardiovascular system and several arrhythmias (ventricular 
tachycardia, atrial fibrillation, atrial arrhythmia). It is shown that the extracted 
parameters are useful as input data of an artificial neural network that recognizes 
pathologies of the cardiovascular system.

Chapter 6 includes an overview of the embedded systems that can be applied for 
data acquisition in telemedicine, epidemic surveillance, and patient monitoring. 
The author characterizes popular software and hardware solutions that establish a 
platform for developing embedded systems. It is also suggested that the embedded 
systems could contribute to increasing the safety of healthcare workers and patients 
during the pandemic.

Bartłomiej Płaczek
Institute of Computer Science,

University of Silesia,
Sosnowiec, Poland
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Chapter 1

Introductory Chapter: Data 
Acquisition
Bartłomiej Płaczek

1. Introduction

New biomedical technologies can support faster development of disease 
treatments, prevention, and diagnostic procedures. They are expected to make 
significant contributions to the quality of life, improve patient healthcare, and 
reduce the related costs. Advancement of data acquisition techniques is a key 
prerequisite for the development in biomedical engineering. Recent advances in 
data acquisition systems, sensor design, and sensor networks allow collection of 
large volumes of detailed biomedical data. For instance, body area networks with 
wireless sensors can be used to non-invasively and continuously monitor several 
physiological parameters and recognize human activities [1]. Other examples 
are visual sensor networks for supervision of patients during rehabilitation and 
Internet of Things (IoT) systems with medical devices connected to the internet 
that can collect valuable data, enable detailed analysis of symptoms and facilitate 
remote healthcare. Valuable biomedical data can be also acquired using image 
processing methods for micrographs analysis [2]. This book intends to provide 
the reader with an insight into the current state-of-the-art in biomedical data 
acquisition and focuses on the most important developments in this highly 
important area.

Few examples of the aforementioned data acquisition techniques are discussed 
in the introductory chapter. In particular, this chapter concisely reviews the selected 
approaches that utilize network-connected sensors.

2. Wireless body sensor networks

Different types of sensors can be connected by a wireless body area network 
(WBAN) in order to monitor various body functions. Usually, the sensors in 
WBANs are placed on the body. Another approach is to implant small sensors inside 
the human body. Such approach reduces the impact of WBAN on normal activities 
of the monitored person. Operations performed by the WBAN sensors include 
collecting data readings of physical body parameters as well as preprocessing and 
transmitting the data. The preprocessing operations can be implemented to aggre-
gate, compress or denoise raw sensor readings. A wireless communication is used 
to transmit the preprocessed data from sensors to a remote destination for further 
processing or storing. The general concept of WBAN operation is illustrated in 
Figure 1.

The WBAN platforms enable development of ubiquitous medical records in the 
cloud and on-line healthcare services with disease-alert systems. This  technology 
can contribute to early diagnosis and personalized treatment of patients. It allows the 

XIV
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patients to be continuously monitored in all locations. In case of health  emergency, 
an alert can be immediately generated to inform the medical staff that urgent 
 intervention is necessary. The data collected by WBANs can also be used to localize 
person [3] and analyze movement of the body and recognize human activities. On 
this basis it is possible to develop systems that provide care and security for elderly 
persons. Moreover, the WBANs found applications in sports for performance moni-
toring of training activities, rehabilitation, disability assistance, and human–machine 
 interfaces [4].

3. Smart sensors

The above-discussed wireless sensor networks are usually built up with sensors 
that have the ability to sense physical parameters, perform basic processing tasks 
and transmit the collected data. More sophisticated solutions are equipped with 
smart sensors that have extended data processing capabilities. The smart sensors 
are capable of performing advanced data processing in order to make decisions and 
recognize relevant events [5]. This kind of sensors may use embedded machine 
learning algorithms to learn from collected data and to autonomously make assess-
ments or predictions. In case of smart sensors, the data are processed locally. The 
sensor transmits results of information processing instead of the collected data. 
This approach leads to reduced data traffic, lower power consumption and latency, 
as well as to enhanced data privacy.

An example of smart sensor is the solution discussed in [6] which uses a 
modified support-vector machine classifier for arrhythmia detection based on 
electrocardiogram signals and for seizure detection based on electroencephalogram 
signals. It was shown that the above-mentioned detection tasks can be performed 
by low power wearable sensors in real time.

Another wearable smart sensor was proposed in [7] to detect and categorize 
cardiac arrhythmias from electrocardiogram readings. A convolutional-recurrent 
neural network was used in this solution. The neural network was adapted to 
perform the detection and classification tasks on embedded low-power processors 
with a small memory footprint.

Figure 1. 
Wireless body area network (white circles depicts sensors, arrows correspond to data transfers).
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4. Visual sensor networks

A special type of smart sensors are visual sensors, i.e., camera nodes equipped 
with embedded processor, and wireless communication module. The smart visual 
sensors have a number of potential applications, from security and patient monitor-
ing to rehabilitation. For instance, in [8] a visual sensor was introduced for baby 
behavior monitoring in healthcare centers. This sensor detects abnormal motion of 
a baby and sends alerts to a user.

Visual sensors can be connected in visual sensor network (VSN). The camera 
nodes in VSN process image data locally, extract useful information, and exchange 
the information with other nodes. Using multiple camera nodes in the VSN pro-
vides different views of a monitored object, which improves the reliability of the 
 recognized events [9].

In [10] a wireless VSN was proposed for supervision of patient rehabilitation. 
Results reported in the literature confirms that the VSN concept enables a low 
cost, light-weight and easy to use monitoring applications that meets tracking and 
localization needs of rehabilitation centers. An interesting example is the VSN, 
which was used to collect data for robot automation in rehabilitation of young 
children [11].

© 2020 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 
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Real-Time Capable Sensor Data
Analysis-Framework for
Intelligent Assistance Systems
Ulrich H.P. Fischer, Sabrina Hoppstock, Peter Kußmann and
Isabell Steuding

Abstract

In the industrialized countries, the very old part of the population has been
growing rapidly for many years. In the next few years in particular, the age cohort
over 65 will increase significantly. This goes hand in hand with illnesses and other
physical and cognitive limitations. In order to enable these people to remain in their
own homes for as long as possible despite physical and cognitive restrictions, tech-
nologies are being used to create ambient assisted living applications. However,
most of these systems are neither medically verified nor are latencies short enough,
for example, to avoid falls. In order to overcome these problems, a promising
approach is to use the new 5G network technology. Combined with a suitable sensor
data analysis frame work, the fast care project showed that a real-time situation
picture of the patient in the form of an Avatar could be generated. The sensor
structure records the heart rate, the breathing rate, analyzes the gait and measures
the temperature, the VOC content of the room air, and its humidity. An emergency
button has also been integrated. In a laboratory demonstrator, it was shown that the
infrastructure realizes a real-time visualization of the sensor data over a heteroge-
neous network.

Keywords: ambient assisted living technologies, eHealth, eCare, tele-care,
real-time networks, vital data acquisition, fast project

1. Introduction

Assistance systems in Ambient Assisted Living and in medical care have to
recognize relevant situations, that require fast assistive intervention. Former
projects in this field like tecla [1–3] or PAUL [4] have been focused on the applica-
tion of the new AAL-technologies in AAL test beds to get information about the
acceptance level [5, 6] of the technologies and the different new applications for
the patients. Additionally, business models [7, 8] have been drafted to realize a
successful AAL business area in future.

The clinical established measurement technology for diagnostic, monitoring and
risk stratification does not translate directly to the outpatient area (ambulant or
domestically environment). The key challenge is, that many relevant situations are
only noticeable, when various sensor modalities are merged – such as for
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Real-Time Capable Sensor Data
Analysis-Framework for
Intelligent Assistance Systems
Ulrich H.P. Fischer, Sabrina Hoppstock, Peter Kußmann and
Isabell Steuding

Abstract

In the industrialized countries, the very old part of the population has been
growing rapidly for many years. In the next few years in particular, the age cohort
over 65 will increase significantly. This goes hand in hand with illnesses and other
physical and cognitive limitations. In order to enable these people to remain in their
own homes for as long as possible despite physical and cognitive restrictions, tech-
nologies are being used to create ambient assisted living applications. However,
most of these systems are neither medically verified nor are latencies short enough,
for example, to avoid falls. In order to overcome these problems, a promising
approach is to use the new 5G network technology. Combined with a suitable sensor
data analysis frame work, the fast care project showed that a real-time situation
picture of the patient in the form of an Avatar could be generated. The sensor
structure records the heart rate, the breathing rate, analyzes the gait and measures
the temperature, the VOC content of the room air, and its humidity. An emergency
button has also been integrated. In a laboratory demonstrator, it was shown that the
infrastructure realizes a real-time visualization of the sensor data over a heteroge-
neous network.

Keywords: ambient assisted living technologies, eHealth, eCare, tele-care,
real-time networks, vital data acquisition, fast project

1. Introduction

Assistance systems in Ambient Assisted Living and in medical care have to
recognize relevant situations, that require fast assistive intervention. Former
projects in this field like tecla [1–3] or PAUL [4] have been focused on the applica-
tion of the new AAL-technologies in AAL test beds to get information about the
acceptance level [5, 6] of the technologies and the different new applications for
the patients. Additionally, business models [7, 8] have been drafted to realize a
successful AAL business area in future.

The clinical established measurement technology for diagnostic, monitoring and
risk stratification does not translate directly to the outpatient area (ambulant or
domestically environment). The key challenge is, that many relevant situations are
only noticeable, when various sensor modalities are merged – such as for
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discrimination between pathological, emotional [9] or stress induced increase of the
heart rate [10]. This is only possible by the use of the combination of multiple
different sensors [11]. The same applies to the analysis of joint kinematics of every-
day activities, which requires more and inertial sensors with higher accuracy.

The next generation of radio networks (5G) [12] shows the possibility of intro-
ducing new possibilities of real-time communication in all areas of life with very
low latency and high data rates. One speaks of a so-called tactile Internet. People
come into contact with their surroundings through their senses, which involve
several different reaction times. Here, muscular, audio-visual and tactile response
times are of particular importance. The typical muscular response time is around
1 second, that of the hearing at 100 ms, while the visual response time is in the
range of 10 ms [13].

In the case of active control of an object, such as a car or a machine, the
information must first be recorded while a reaction must be carried out at the same
time. The well-known use of a touch screen requires that you move your finger in a
controlled manner across the screen. It is therefore necessary that the touch screen
can achieve a response time of less than 1 ms in order not to produce any noticeable
delay in the visual impression. In the case of an active prothesis, which was applied
in this study, the response time must be below 10 ms to achieve a practical applica-
tion basis for its use in daily life. Therefore, fast sensor data-frameworks are needed
to analyze the conditions of real-time identification and subsequently provide a
medical valid corresponding assistance [12, 14].

The aim of the fast care project was to develop a real-time sensor data analysis
framework [9] for intelligent assistance systems in the area of Ambient Assisted
Living (AAL), eHealth, mHealth, tele-rehabilitation and tele-care. It provides a
medically valid, integrated real-time situation picture based on a distributed, ad hoc
networking, everyday use and energy-efficient sensor infrastructure with a latency
of less than several ms. The integrated situation picture that includes physiological,
cognitive, kinematic information of the patient is generated by the intelligent fusion
of sensor data [15, 16]. It can serve as a basis both for the rapid detection of risks
and dangerous situations as well as for everyday use medical assistance systems
that autonomously intervene in real time [17, 18] and allows active telemedical
feedback [10].

In this chapter of the book, after an introduction, the technical goals and imple-
mentation options of a fast sensor network with real-time data analysis are
presented followed without contact by the structure of the overall system. In the
Section 2, the details of the technological concept such as data fusion and telemetry
are presented. All relevant interfaces for real-time applications are discussed in
detail. In the following section, the hardware, sensors/actuators and the specific
installation of the demonstrator in laboratory operation are discussed. In the fol-
lowing part, details of the individual sensor systems and the corresponding visual-
ization of the sensor data presented by an Avatar are distinguished. In the Section 3,
the acceptance test for the use of the sensor components of the demonstration are
analyzed and discussed. Finally, a summary with a view of upcoming developments
will be given at the end.

2. Technical goals and solutions

2.1 System setup

The basis of a medical valid - integrated real-time picture of the situation is an ad
hoc interconnected sensor infrastructure. Its latency period should be very fast to
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fulfill the boundaries of a haptive working network. Here, physiological, cognitive
and kinematic information of a patient are captured with the help of intelligent
sensor data fusion. These data can be combined to provide an integrated picture of
the patient’s physical and mental situation. In this way, it should be ensured that the
framework can be used for applications, in which feedback has to be embedded
synchronically. This can be realized in visual, auditive, tactile or proprioceptive
string of perception, such as in the field of support of motor function and kinemat-
ics for the rehabilitation and for active prosthetics and orthotics.

Figure 1 shows an overview of the system concept of the project approach for an
integrated sensor infrastructure in the home of an elderly person. It consists of GPS
data, air pressure and temperature data, vital parameters, cameras, optical sensors
and so-called inertial sensors (IMU) together.

These sensor data are summarized in real-time and buffered in a database
system. From this database, an integrated real-time situation analysis is generated
that touches on three areas of human life: firstly, the kinematic data such as locali-
zation, movement and posture. The second area is the cognitive sub-area with
awareness, emotionality and mental clarity. The third subsection deals with the
physiological data in which cardiovascular metabolic and neurological data can be
recorded and analyzed.

This entirety of the data in the home of the living person can be evaluated
integratively and can accordingly provide a precise analysis of his health. In this
project, apart from the emotional and neurological aspects, all the addressed areas
were recorded and evaluated. After evaluating the situation analysis, actuators are
implemented for rehabilitation, in a special case of an active prosthesis of the foot,
which can adjust different heel heights, automatic adaptation to different floor
conditions or rapid walking. Furthermore, the client should be provided with a real-
time display of his vital parameters as a so-called Smart Home Assistant, which can
give a helpful health support to the client.

For a real-time application, it is necessary that the latency times between sensor
detection and actuator actuation are less than several Milliseconds. This ensures a
so-called haptic functionality of the system and can be achieved with the help of
new radio technologies and fast network technologies such as FTTH and the fifth

Figure 1.
Integrated system concept.

7

Real-Time Capable Sensor Data Analysis-Framework for Intelligent Assistance Systems
DOI: http://dx.doi.org/10.5772/intechopen.93735



discrimination between pathological, emotional [9] or stress induced increase of the
heart rate [10]. This is only possible by the use of the combination of multiple
different sensors [11]. The same applies to the analysis of joint kinematics of every-
day activities, which requires more and inertial sensors with higher accuracy.

The next generation of radio networks (5G) [12] shows the possibility of intro-
ducing new possibilities of real-time communication in all areas of life with very
low latency and high data rates. One speaks of a so-called tactile Internet. People
come into contact with their surroundings through their senses, which involve
several different reaction times. Here, muscular, audio-visual and tactile response
times are of particular importance. The typical muscular response time is around
1 second, that of the hearing at 100 ms, while the visual response time is in the
range of 10 ms [13].

In the case of active control of an object, such as a car or a machine, the
information must first be recorded while a reaction must be carried out at the same
time. The well-known use of a touch screen requires that you move your finger in a
controlled manner across the screen. It is therefore necessary that the touch screen
can achieve a response time of less than 1 ms in order not to produce any noticeable
delay in the visual impression. In the case of an active prothesis, which was applied
in this study, the response time must be below 10 ms to achieve a practical applica-
tion basis for its use in daily life. Therefore, fast sensor data-frameworks are needed
to analyze the conditions of real-time identification and subsequently provide a
medical valid corresponding assistance [12, 14].

The aim of the fast care project was to develop a real-time sensor data analysis
framework [9] for intelligent assistance systems in the area of Ambient Assisted
Living (AAL), eHealth, mHealth, tele-rehabilitation and tele-care. It provides a
medically valid, integrated real-time situation picture based on a distributed, ad hoc
networking, everyday use and energy-efficient sensor infrastructure with a latency
of less than several ms. The integrated situation picture that includes physiological,
cognitive, kinematic information of the patient is generated by the intelligent fusion
of sensor data [15, 16]. It can serve as a basis both for the rapid detection of risks
and dangerous situations as well as for everyday use medical assistance systems
that autonomously intervene in real time [17, 18] and allows active telemedical
feedback [10].

In this chapter of the book, after an introduction, the technical goals and imple-
mentation options of a fast sensor network with real-time data analysis are
presented followed without contact by the structure of the overall system. In the
Section 2, the details of the technological concept such as data fusion and telemetry
are presented. All relevant interfaces for real-time applications are discussed in
detail. In the following section, the hardware, sensors/actuators and the specific
installation of the demonstrator in laboratory operation are discussed. In the fol-
lowing part, details of the individual sensor systems and the corresponding visual-
ization of the sensor data presented by an Avatar are distinguished. In the Section 3,
the acceptance test for the use of the sensor components of the demonstration are
analyzed and discussed. Finally, a summary with a view of upcoming developments
will be given at the end.

2. Technical goals and solutions

2.1 System setup

The basis of a medical valid - integrated real-time picture of the situation is an ad
hoc interconnected sensor infrastructure. Its latency period should be very fast to

6

Data Acquisition - Recent Advances and Applications in Biomedical Engineering

fulfill the boundaries of a haptive working network. Here, physiological, cognitive
and kinematic information of a patient are captured with the help of intelligent
sensor data fusion. These data can be combined to provide an integrated picture of
the patient’s physical and mental situation. In this way, it should be ensured that the
framework can be used for applications, in which feedback has to be embedded
synchronically. This can be realized in visual, auditive, tactile or proprioceptive
string of perception, such as in the field of support of motor function and kinemat-
ics for the rehabilitation and for active prosthetics and orthotics.

Figure 1 shows an overview of the system concept of the project approach for an
integrated sensor infrastructure in the home of an elderly person. It consists of GPS
data, air pressure and temperature data, vital parameters, cameras, optical sensors
and so-called inertial sensors (IMU) together.

These sensor data are summarized in real-time and buffered in a database
system. From this database, an integrated real-time situation analysis is generated
that touches on three areas of human life: firstly, the kinematic data such as locali-
zation, movement and posture. The second area is the cognitive sub-area with
awareness, emotionality and mental clarity. The third subsection deals with the
physiological data in which cardiovascular metabolic and neurological data can be
recorded and analyzed.

This entirety of the data in the home of the living person can be evaluated
integratively and can accordingly provide a precise analysis of his health. In this
project, apart from the emotional and neurological aspects, all the addressed areas
were recorded and evaluated. After evaluating the situation analysis, actuators are
implemented for rehabilitation, in a special case of an active prosthesis of the foot,
which can adjust different heel heights, automatic adaptation to different floor
conditions or rapid walking. Furthermore, the client should be provided with a real-
time display of his vital parameters as a so-called Smart Home Assistant, which can
give a helpful health support to the client.

For a real-time application, it is necessary that the latency times between sensor
detection and actuator actuation are less than several Milliseconds. This ensures a
so-called haptic functionality of the system and can be achieved with the help of
new radio technologies and fast network technologies such as FTTH and the fifth

Figure 1.
Integrated system concept.

7

Real-Time Capable Sensor Data Analysis-Framework for Intelligent Assistance Systems
DOI: http://dx.doi.org/10.5772/intechopen.93735



generation of mobile radio networks (5G). To ensure private data security, all data
is stored and evaluated in a so-called home server which is situated in the client’s
apartment. Further intervention options are possible by a secure cloud connection
to medical services or the system administrators for possible updates of the sensor
and actuator components.

The challenge of a distributed, real-time medical sensor technology and signal
processing is to be processed by means of sensor-based data processing and sensor
hubs, optical sensors, hardware system optimization, the development of distrib-
uted systems as well as by interface network sensors. The focus of the project was
on the intelligent fusion of sensor and actuator data as well as the evaluation and
delivery in real-time. In order to meet this objective, the following developments
took place in the Ambient Assisted Living (AAL)-Lab of the Harz University of
Applied Sciences in Wernigerode (Figure 2).

• Analysis of requirements

• Data acquisition

• Data analysis

• Data fusion

• Acceptance analysis

• Situation detection and assistance in real-time

The objective of a distributed, real-time medical sensor technology and signal
processing is to get an evaluation of the patient’s situation from the available data in
real-time. The main application focuses in the area of the application of orthopedic
devices. For example, the optimization process of the leg prosthesis` damping
members and active foot positioning points shall be executed online. Currently,
these parameters are performed offline and hand-made by orthopedic technicians
with variable quality. This often leads to suboptimal adapted orthopedic devices;
whose functionality and efficacy are correspondingly limited and therefore to an

Figure 2.
Application of fast care real-time sensor system.
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unsatisfactory rehabilitation outcome. This system approach of the sensor integra-
tion into an active foot prothesis is called a real-time active prosthetics/orthotics -
time controller. Another project section describes the online execution of the
estimation of cognitive condition, the motion analysis for rehabilitation and
cardiopulmonary performance.

2.2 Technological concept

Based on the project goals, the technical and content requirements of the tech-
nological topics to be worked on were specified, categorized and summarized by the
individual partners. The basic requirements are listed in the following areas:

1.Hardware/sensors,

2.Network,

3.Data analysis,

4.Actuators/intervention/feedback

The system diagram of the research approach of the fast care framework is
shown in the Figure 3. The fast care framework is the technical basis for the
realization of the fast care project, which implements the fusion of heterogeneous
sensors via heterogeneous networks. The basic idea of the fast care framework is to
derive a condition from the past and the current states of the sensory data using
different newly developed sensor applications, including the following areas and
interfaces (see Figure 3). From the network topological representation, a break-
down of the used network interfaces was made, specified by the project partners.
Based on this, a suitable communication protocol was selected regarding the indi-
vidual implementations. Communication via MQTT forms the basis of the used
communication between the sensor-applications and the real-time controller
depicted in Figure 3. In the left side of the figure, the sensor-applications are
situated, consisting of a Kinect system for motion data, inertial motion units (IMU)
for the detection of movements of body and objects in a fixed sequence for the
analysis of a workout in a kitchen, motion sensors/actuators in an active intelligent
prothesis, a camera based heart rate and breathe sensor, and finally a special sensor
of volatile organic components in the room air. Prothesis, body and objects sensors
are connected via smartphone and Bluetooth low energy. While the smartphone
transfers the data to the real-time controller.

In total, the seven sensor components are listed there on the left. The active
prosthesis, the heart rate measurement, the respiratory rate measurement, the
detection of VOC components in the breathing air, the detection of movement in
the room and the measurement of room temperature and humidity, as well as the
use of the emergency button, uses the corresponding network structure according
to the blocks shown in the sketch.

After the individual implementations of the interfaces a suitable software com-
munication server was selected. The MQTT protocol [19] was implemented using a
real-time capable Linux variant. Suitable hardware was procured by the project
partner of the Harz University of Applied Sciences, a suitable operating system was
installed and the MQTT software server “mosquitto” [20] was installed and config-
ured. The definition of topics (message channels) and the specification of the data
formats were necessary for smooth communication of the individual partner
realizations “in-itself” and “with each other.” A detailed description of the
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communication formats between the sensors built by the partners and the MQTT
server can be found in the final design plan of the fast care project [21].

At the beginning of the project, the communication protocols that should be
used between the individual project partners for data exchange have been discussed
and clearly defined (see Table 1). The interfaces for the network used in the project
are essentially the Bluetooth LE transmission, the Wi-Fi transmission and the wired
transmission via Ethernet 802.3. Furthermore, wireless transmission via LTE or 4G
plus was used by several partners. This resulted in a very broad transmission
application scenario. An overview of the transmission technology of the sensor
infrastructure to the real-time controller and the forwarding to the real-time
visualization is depicted in Figure 4.

Figure 3.
Network topology.
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N. Description Partner Technology

S1 Communication
interface between
IMU’s (Object)
and a smartphone

URO
BST

HSH IMU (Object) Smartphone

S2 Communication
interface between
IMUs (body) and
a smartphone

URO
BST
OvGu

HSH IMU (Body) Smartphone

S3 Communication
interface between
a prosthesis and a
smartphone

OBO HSH Prothesis Smartphone

S4 Communication
interface between
the camera-based
vital sensors and
the real-time
controller

TUD HSH Camera based Vital parameter sensors Real-time controller

S5 Communication
interface between
the Kinect system
and the real-time
controller

OvGU HSH Kinect-System Real-time controller

S6 Communication
interface between
the VCO air
sensor and the
real-time
controller

HO HSH VOC air sensor Real-time controller

S7 Communication
interface between
the smartphone
and the real-time
controller

HSH HSH Smartphone Real-time controller

S8 Communication
system between
the smartphone
and the cloud
system

HSH EXE
HO

Communication system Cloud-System

4G + 4G +

S9 Communication
system between
the real-time
controller and the
cloud system

HSH URO
HO

Real-time controller Cloud-System

WAN WAN

S10 Communication
system between
the cloud system
and the end
device

URO
HO

EXE
OBO
OvGu

Cloud-System Terminal

WAN WAN

S11 Communication
system between
the Kinect system
and the end
device

OvGu OvGu Kinect-System Terminal

WAN WAN

S12 Communication
system between
the prosthesis and
the real-time
controller

OBO HSH/
OBO

Prothesis Real-time controller

Table 1.
Overview of network interface parts used in fast care.
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After the data has been transferred to the real-time controller, the data is avail-
able in the form of JSON objects that were stored on the Linux system of the server.
At the same time, an integrative situation analysis of the sensor data is carried out
and the corresponding information is transferred to the real-time visualization via
the public network to a cloud server, which generates a website with the corre-
spondingly evaluated real-time data in the form of an Avatar.

2.3 Hardware, sensors, actors

In this part all of the hardware components which have been developed in the
project are described. On the one hand, this includes sensors with the task of
capturing a physical measured variable like motion, VOC gas, heart rate, etc. Fur-
thermore, sensor modules have been developed with implemented combined sen-
sors which form a functional unit with actuators e.g. the electronically controllable
lower leg prosthesis. For a better overview of the components used by the individ-
ual partners, a matrix of the use of all partners and their network interfaces was
created. (See Table 2).

Figure 4.
Network infrastructure [22].
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In the following subsections all of the used hardware and all sensors/actors are
collected and described.

2.3.1 AAL lab installation

Rapid and intelligent sensors and actuators, an improvement of motion pattern
recognition and intelligent algorithms for real-time network integration in three
demonstrators of the AAL-Lab serve as solution approaches. Within the fast care
project, a real-time network integration with demonstrators is to be carried out at
the AAL-Lab of the Harz University. The various partial results of the project
partners have been collected and integrated in the AAL-Lab. The integration at the
AAL-Lab will be performed with the focus on user friendliness and the interaction
with him by means of a show flat. Figure 5 illustrates the realized structure of the
AAL-Lab with various elements for monitoring and evaluation of the measured vital
data. The lab includes the following parts: Sensors on the walls: Pulse, Blood pres-
sure, breathing frequency, Motion/position, VOC breath analysis, e-rehabilitation
workout and the real-time controller PC.

In Figure 6 you can see the laboratory, including a sofa, several armchairs, a bed
and all the sensor components that were attached to the room, as shown in the
Figure 5. The room has been deliberately designed like an old room to create a
pleasant atmosphere for the examinations. After the technology was installed, the
acceptance tests were carried out in this environment.

2.3.2 E-rehabilitation system

The Kinect sensor used by the Otto von Guericke University in fast care is a
physical device with depth sensor technology, integrated color camera, infrared
transmitter and microphone array that detects the position and movement of people
and voices. Table 2 shows the data of the KINECT depth sensor, while Figure 7
shows the workout scene. The application is to make a therapeutically workout with
the patient and give him in real-time information and helpful feedback to move him

Figure 5.
AAL lab of the Harz university; sketch of installations; (a) sensors on the walls: Pulse, blood pressure, breathing
frequency, skin resistance, motion/position, VOC breath analysis, (b) E-rehabilitation, (c) real-time controller.
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After the data has been transferred to the real-time controller, the data is avail-
able in the form of JSON objects that were stored on the Linux system of the server.
At the same time, an integrative situation analysis of the sensor data is carried out
and the corresponding information is transferred to the real-time visualization via
the public network to a cloud server, which generates a website with the corre-
spondingly evaluated real-time data in the form of an Avatar.

2.3 Hardware, sensors, actors

In this part all of the hardware components which have been developed in the
project are described. On the one hand, this includes sensors with the task of
capturing a physical measured variable like motion, VOC gas, heart rate, etc. Fur-
thermore, sensor modules have been developed with implemented combined sen-
sors which form a functional unit with actuators e.g. the electronically controllable
lower leg prosthesis. For a better overview of the components used by the individ-
ual partners, a matrix of the use of all partners and their network interfaces was
created. (See Table 2).

Figure 4.
Network infrastructure [22].
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in the right way. Additionally, a gait analysis [23, 24] can be performed by the use
of IMUs positioned at the feet, shown in Figure 7. More detailed information can be
found by Stoutz et al. in [25] (Table 3).

2.3.3 Inertial measurement unit (IMU)

The IMU used by the project partners “Otto Bock HealthCare GmbH”, “Otto von
Guericke University” and “University of Rostock” describes an initial measuring
unit. It is a self-contained measuring system that continuously records, analyzes,
and, if necessary, pre-processes defined physical parameters (e.g. movement,
acceleration, pressure, etc.) and forwards them to downstream communication and
network protocols (see Figure 8). A distinction is made between two application
modes. On the one hand, the IMUs on an object e.g. be installed in a kitchen
appliance [26], which describes the use of “IMU on object” and provides measure-
ment data for further analysis. Another area of application is the use of an IMU
through suitable holders on the body of a person, which in turn describes the use of
the “initial sensor on body” and also provides measurement data for further analysis
[27, 28]. The project partner “Bosch Sensortec GmbH” [29, 30] developed and
produces the IMU’s used in the fast care project [31].

2.3.4 Camera-based vital parameter sensor

The camera-based vital sensors [32, 33] used by the project partner of the
“Technical University Dresden” [34–36] are based on one or more camera
systems with an associated, spectrally controllable lighting system and generate a
spatial image of the surroundings as a database for further evaluations. Camera-
based photoplethysmography (cbPPG) remotely detects the volume pulse of
cardiac ejection in the peripheral circulation. The system does measure the heart
rate, the breath rate with a camera system contactless in real time. More detailed
information’s are described in the work of the Technical University of Dresden,
Institute of Biomedical Technologies of Zaunseder et al. [37, 38]. The camera-based
system records the change in the movement of the surface of the face in a fast data
recording (see Figure 9).

The exposure with an LED light source with a special spectral range is necessary
to obtain a particularly good contrast. The raw image data are sent directly to a
controller and evaluated there. The evaluated data (heart rate, respiratory rate) are
transferred directly as a JSON object to the real-time controller via Ethernet cabling
at 1 Gb/s and stored there in the MQTT server. The representation of the respiratory
rate and the heart rate is then realized in real time in the Avatar (see Sensor Data
Visualization 2.4).

Figure 6.
Photograph of AAL lab.
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Figure 7.
Setup of the gait measurements for e-rehabilitation of Otto von Guericke university; above left: IMU application
at the feet; above right: Therapeutic movements with avatar; lower middle: Presentation of gait analysis
measurement.

Feature Description

Depth sensor
512 � 424, 30 Hz
FOV: 70 � 60
One-Modus: 0.5–4.5 m

Optimized 3D visualization, detection of smaller objects in
particular and stable body tracking

1080p-Color Camera
30 Hz (15 Hz in poor lighting conditions)

Camera with 1080p resolution

Neue aktive Infrarot-Funktionen
512 � 424, 30 Hz

IR functions for lighting independent observations

Multi-Array-Microphone Four microphones etc. to find the sound source and the
direction of the audio wave

Interfaces Kinect AUX (USB)

Kinect2 AUX (USB)

Table 3.
Data of the used KINECT sensor system for e-rehabilitation.
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2.3.5 VOC air sensor

As part of the BMBF-funded “fast care” project, HarzOptics GmbH [39] has
developed components for a distributed sensor network for the spectroscopic
analysis of air. The sensor system analyzes the air in a room by measuring the
optical spectral content of volatile organic components (VOC) [39–42]. Special
absorptions of VOC gases are analyzed, which indicate the beginning of clinical
pictures. In addition to assessing the quality of indoor air for AAL applications, this
system is also to be used for the detection of VOC in breathing gas. Since the
presence of certain VOCs in exhaled air enables conclusions to be drawn about

Figure 8.
Structure of the inertial measurement unit network.

Figure 9.
Camera-based vital sensors, 1 measurement unit, 2: Camera and lighting system 1, 3: Central display of real-
time measurement 4: Measurement system 1 while application, 5: Measurement system 2 in while application,
6: Camera and lighting system 2.
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diseases such as lung cancer or metabolic disorders, the integration of a non-
invasive permanent gas analysis in real-time medical care is becoming possible, also
in view of increasing bandwidths and decreasing latency times [39].

The air sensor is part of a more complex system, the basic mode of operation of
which can be seen in Figure 10. Data recorded by a sensor (e.g. CO2 concentration)
are transferred as (voltage) values to an Arduino board, which converts the values
into volume concentrations, converts the data generated from it into an
MQTT-compliant format and transmits it to a real-time server. The data is
displayed using a special real time Avatar sketch which is presented in chapter 4.10
in more detail. If limits are exceeded, a warning or recommendation is issued (e.g.
“Please open window and ventilate” or “Please consult a doctor”). In addition to the
data from this sensor, the MQTT server also receives data from other sensors that
have been developed by other project partners. These are also visualized in the
Avatar figure.

After the spectrum could not be recorded using an optical spectrometer due to a
lack of sensitivity, an alternative setup with laser sources was implemented. The
wavelengths used here correspond to the previously determined absorptions of the
relevant substances and are recorded by a broadband optical sensor. If the sub-
stances sought are present in the air, the light from the laser source is attenuated in
accordance with the concentration, which reduces the voltage values at the sensor
output and the volume concentration can be determined. The temperature
sensitivity of the sensor and amplifier is still causing problems.

2.3.6 Active prothesis

Under the catchphrase “active prosthesis”, “Otto Bock HealthCare GmbH”

summarizes its IMUs worn on the body, an associated analysis and evaluation unit
and the control of an active prosthetic foot. The aim is to map an automatic
adjustment of an active prosthetic foot using a long-term measurement of a gait
analysis based on the foot, knee and joint angle. The realization of the complete
measurement system is described in more details by Albrecht-Laatsch in [43]. The
current status quo for the adaptation of prostheses is that clients rarely come to
adapt their prostheses for rehabilitation and check-ups. Therefore, the prosthesis is
usually only adapted for one type of gait. In addition, developers rarely speak to
users, so that little everyday problems flow into development.

The goal of the development the active prothesis in the fast care project was to
get a better picture of the real prosthesis usage, as well as to make it easier and faster

Figure 10.
VOC sensor setup.
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to adapt to the real needs of the user. This was achieved with a remote connection of
the active prosthetic foot used for remote diagnosis and automatic adaptation to the
conditions of use.

Implementation was achieved with the help of motion sensors (IMU), the mea-
sured values of which were used both locally and remotely. This eliminates the need
for a regular visit to the gait laboratory and the long-term recording takes place in a
relaxed environment. In addition, incorrect movement patterns can be recognized
and corrected early. The adaptation takes place automatically and can be initiated
from a “remote” location. With the active prosthetic foot, the heel height and the
active aisle support could be automatically adjusted by the software. This reduces
fatigue, as the engine pushes the legs off. The support is regulated depending on the
speed. For experts in the laboratory, the gait diagram is displayed remotely in real
time, and further parameters of the prosthesis can be remotely adjusted by the
experts in fine tuning mode. The test of the automatic adaptation of the was
performed in the laboratory which is depicted in the working scene of Figure 11.

2.3.7 Bluetooth beacons

The University of Rostock uses “bulky BLE Beacons” to locate its IMUs in the
room [27, 28]. These beacons are distributed in a fixed position in the room and
allow the IMU’s to make statements about movements in the space of people and
their acceleration via a field strength measurement. The sensors provide informa-
tion about using a kitchen task assessment dataset. This dataset contains normal
behavior as well as erroneous behavior due to dementia, recorded with wearable
sensors as well as with sensors attached to objects. The scene of the application of
the kitchen task workout is depicted Figure 12.

In this workout, a test client prepares a pudding meal that is clearly defined in a
few simple steps. The process goes through the compilation of the ingredients, the
cooking itself to completion and decanting the pudding into several cups. All sub-
processes are analyzed in detail and provided with appropriate help if the wrong
ingredients are used or the wrong wooden spoon, while all objects in the environ-
ment which the person is working, are connected with IMU sensors.

The kitchen task is created by a semantic annotation scheme. This scheme gives
information about the observed motions and the errors while performing the
workout. The data format splits in sensor and video data. The video data are
collected by several cameras while the sensor data are collecting parallel to the video
several accelerations from the IMU sensors fixed at the body worn sensors and

Figure 11.
Active prothesis motion sensor with feedback for gait optimization.
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additional from the used objects. The complete data roll consists of several normal
and false runs. To get information about the false runs, the clients realized errors in
the workout. The data consists of action data as well as the object being manipulated
and the client that is working with it. More information about the sensor application
to analyze the erroneous behavior from Hein et al. can be found in [44].

2.3.8 Emergency button and temperature/humidity sensors

As an additional sensor system, the Exelonix company implemented an NbIoT
sensor as a push button, which transmits its sensor data in JSON format to the real-
time server via the public network via the existing 4G + radio network (see
Figure 13). The emergency is displayed in real time on the visualization server. In
the real case, this could then be transmitted to the 24/7 service of a nursing service.

Figure 12.
Motion analysis of a cooking process with IMUs with inference method at university Rostock.

Figure 13.
Sensor modules of Exelonix, left: IoT emergency button via 4G+; right: IoT temperature, air pressure and
motion sensor via 4G+.

19

Real-Time Capable Sensor Data Analysis-Framework for Intelligent Assistance Systems
DOI: http://dx.doi.org/10.5772/intechopen.93735



to adapt to the real needs of the user. This was achieved with a remote connection of
the active prosthetic foot used for remote diagnosis and automatic adaptation to the
conditions of use.

Implementation was achieved with the help of motion sensors (IMU), the mea-
sured values of which were used both locally and remotely. This eliminates the need
for a regular visit to the gait laboratory and the long-term recording takes place in a
relaxed environment. In addition, incorrect movement patterns can be recognized
and corrected early. The adaptation takes place automatically and can be initiated
from a “remote” location. With the active prosthetic foot, the heel height and the
active aisle support could be automatically adjusted by the software. This reduces
fatigue, as the engine pushes the legs off. The support is regulated depending on the
speed. For experts in the laboratory, the gait diagram is displayed remotely in real
time, and further parameters of the prosthesis can be remotely adjusted by the
experts in fine tuning mode. The test of the automatic adaptation of the was
performed in the laboratory which is depicted in the working scene of Figure 11.

2.3.7 Bluetooth beacons

The University of Rostock uses “bulky BLE Beacons” to locate its IMUs in the
room [27, 28]. These beacons are distributed in a fixed position in the room and
allow the IMU’s to make statements about movements in the space of people and
their acceleration via a field strength measurement. The sensors provide informa-
tion about using a kitchen task assessment dataset. This dataset contains normal
behavior as well as erroneous behavior due to dementia, recorded with wearable
sensors as well as with sensors attached to objects. The scene of the application of
the kitchen task workout is depicted Figure 12.

In this workout, a test client prepares a pudding meal that is clearly defined in a
few simple steps. The process goes through the compilation of the ingredients, the
cooking itself to completion and decanting the pudding into several cups. All sub-
processes are analyzed in detail and provided with appropriate help if the wrong
ingredients are used or the wrong wooden spoon, while all objects in the environ-
ment which the person is working, are connected with IMU sensors.

The kitchen task is created by a semantic annotation scheme. This scheme gives
information about the observed motions and the errors while performing the
workout. The data format splits in sensor and video data. The video data are
collected by several cameras while the sensor data are collecting parallel to the video
several accelerations from the IMU sensors fixed at the body worn sensors and

Figure 11.
Active prothesis motion sensor with feedback for gait optimization.

18

Data Acquisition - Recent Advances and Applications in Biomedical Engineering

additional from the used objects. The complete data roll consists of several normal
and false runs. To get information about the false runs, the clients realized errors in
the workout. The data consists of action data as well as the object being manipulated
and the client that is working with it. More information about the sensor application
to analyze the erroneous behavior from Hein et al. can be found in [44].

2.3.8 Emergency button and temperature/humidity sensors

As an additional sensor system, the Exelonix company implemented an NbIoT
sensor as a push button, which transmits its sensor data in JSON format to the real-
time server via the public network via the existing 4G + radio network (see
Figure 13). The emergency is displayed in real time on the visualization server. In
the real case, this could then be transmitted to the 24/7 service of a nursing service.

Figure 12.
Motion analysis of a cooking process with IMUs with inference method at university Rostock.

Figure 13.
Sensor modules of Exelonix, left: IoT emergency button via 4G+; right: IoT temperature, air pressure and
motion sensor via 4G+.

19

Real-Time Capable Sensor Data Analysis-Framework for Intelligent Assistance Systems
DOI: http://dx.doi.org/10.5772/intechopen.93735



A second sensor that also works via NbIoT transmission is a motion-sensitive
sensor. This has been installed to register movements in the room and additionally
to transmit the room temperature and air pressure to the real-time server via the
public radio network. In this case, too, the data is transmitted in JSON format.
Further information on the exact key data of the sensors can be found in the
publications by Stege et al. [45–48].

2.3.9 Real-time controller

Within the fast care project, the Harz University of Applied Sciences developed
a real-time platform for the sensor data fusion of the partial realizations of the
partners. For this purpose, a Linux-based application server was configured based
on a communication protocol (MQTT) selected for the project. This “real-time
controller”, on which all information converges, forms the central “sensor data
fusion”. The device includes a rack mounted server PC with Intel I7 topology and a
memory of 16 GByte 1600 MHz DDR3 which is depicted in Figure 14. The LINUX
version is “Red Hat Enterprise Linux Server release 7.7 (Maipo)”. The network
interfaces are two 1 GB IEEE 802.3 and a “Realtek Semiconductor Co., Ltd.
RTL8192EE PCIe Wireless Network Adapter”. More detailed information can be
found in [21] the so called final design plan of the fast care project.

2.4 Sensor data visualization

The project partners agreed to the technical implementation of the data fusion
on the planned real-time server and the development of a user interface. After the
data collection of all partners, these data are evaluated centrally on the real-time
controller. The user should receive feedback about the obtained information. This
feedback is based on the visualization of the situation analysis. The main view of the

Figure 14.
Real-time controller with MQTT server.
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real-time visualization is shown in Figure 15. With its end customer platform,
Exelonix GmbH forms the technological basis for the visualization in the fast care
project. All sensor data collected in the MQTT server of the Harz University of
Applied Sciences are evaluated using the Axel Onyx and Customer Platform, and all
sensor data collected in the MQTT server of the Harz University are collected using
the end customer platform from Exelonix. The sensor data were evaluated and
visualized in a web page to which only the project partners had access. The trans-
formation and preparation of the “technical information and data packets” received
on the “real-time controller” was realized into a form that can be interpreted by
those in need of care, relatives and experts. Among other things, time courses and
histories are added.

The visualization is shown in Figure 15. An Avatar appears on the left, in which
both, the heart rate and the breathing rate are shown optically in a movement of the
heart and chest. On the right side of the picture there is a heart with the heart rate
and with a lung that the respiratory rate. Furthermore, the data of the Exelonix
sensor as well as the emergency button status, the room temperature and the room
humidity are shown. An indication of the condition of the indoor air is shown
directly below these displays, in this case the icon of a green cloud shows that the
indoor air is in good condition.

Additional sensor data is depicted on the Avatar sketch. In the hip, knee and
ankle area of the legs, the information about the energetic states of the batteries of
the IMUs for recording the posture and knee angle is shown. The measured knee
angle from the leg with the prosthesis is shown online in the graphic on the right,
where the knee angle is shown in degrees over time while walking.

The measurement of the gait parameters of the patient, which is also recorded
by the IMUs on the hips, knees and ankles (see Section 2.3.3), can be seen online to
the right of the two icons on the gait width and lifting height of the foot. This allows
the gait to be assessed and improved in situ for rehabilitation purposes.

In addition to this main page of the real-time display, a sub-page has been
created for each application of the partners, in which the details of the individual

Figure 15.
Real-time visualization of the measured sensor data.

21

Real-Time Capable Sensor Data Analysis-Framework for Intelligent Assistance Systems
DOI: http://dx.doi.org/10.5772/intechopen.93735



A second sensor that also works via NbIoT transmission is a motion-sensitive
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The project partners agreed to the technical implementation of the data fusion
on the planned real-time server and the development of a user interface. After the
data collection of all partners, these data are evaluated centrally on the real-time
controller. The user should receive feedback about the obtained information. This
feedback is based on the visualization of the situation analysis. The main view of the

Figure 14.
Real-time controller with MQTT server.
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sensor elements and their operation are compressed. The details of the real-time
visualization of the partners can be seen especially in the final design plan, which
can be found in the publication of Kußmann et al. [21].

3. User acceptance studies

In addition to the technical development activities, an analysis of acceptance was
executed at the AAL-Lab of the Harz University. As a result of the project, fast care
wants to develop feasible products and create the medical fundamentals for an
interaction (feedback) in real time.

The project partners agreed to the technical implementation of the data fusion
on the planned real-time server and the development of a user interface. This is
done in addition to the workload of the integration of all technical components and
the planed example application. After the data collection of all partners, these data
are evaluated centrally on the real-time controller. The user should receive feedback
about the obtained information. This feedback is based on the visualization of the
situation analysis.

In the analysis of acceptance of the system, a small sample of a total of 20
subjects from different age groups was interviewed. The following figure shows the
distribution by gender and age (Figure 16). Although this study is not representa-
tive, it gives a first insight into the valuation of the developed technology.

During the survey, the subjects had to assess both the individual systems of the
project partners and the overall system. The survey results of the entire system were
very positive. 60% of the respondents stated, that they would like to use the
technology privately, 70% of the respondents would like to have access to the
technology, 35% would be willing to buy the presented technology and 95% see a
great benefit for themselves and for others in the tested technology (see Figure 17).

In another part of the test, the sample’s affinity for technology was queried. On
average, the confidence “in your own skills”when dealing with new technology was
rated with 3.33 out of 5 points, the willingness to use new and unknown technology
with 4 out of 5 points and the degree of technical overload with only 2.13 out of 5
Points. As a result, the test subjects showed a great willingness to use new technol-
ogies and did not feel overwhelmed with the used technology (see Figure 18).

Figure 16.
Age and gender distribution of the testing persons.
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Figure 19 illustrates, that the subsystem of the project partner Otto Bock was
rated positively by the test subjects. The success of the measurement was rated on
average with 4.35 out of 5 points, the success of the calibration with 3.97 out of 5
points and the intelligibility of the display with 3.27 out of 5 points. The women
rated the manageability of the system with 4.08 out of 5 points slightly better than
the men with 3.44 out of 5 points.

The gait analysis of the project partner of the Otto von Guericke University was
rated as very positive by the subjects with 4.27 out of 5 points. The technology used
by the OvGU Kinect system with 3.9 out of 5 points. The more the test subjects were
overwhelmed with the technology, the more negative the system was rated (see
Figure 20).

Figure 17.
Use of the presented technologies.

Figure 18.
Technical affinity of the test persons.
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Analyzing the system of the TU Dresden, the success of the measurement was
rated 4.05 out of 5 points and the comprehensibility of the instructions with 4.05
out of 5 points. The comprehensibility of the instructions was more incomprehen-
sible for the test subjects when they were overwhelmed by the technology. The
intelligibility of the display and the results was rated with 3.58 out of 5 points
(see Figure 20).

4. Conclusions

In the project fast care, a real-time capable sensor data analysis-framework in
the fields of ambient assisted living was developed. The project realized a medical
valid integrated real-time picture of the patient’s situation by using several
interconnected sensor-actor infrastructures with a latency period of less than 10 ms.

Figure 19.
Evaluation of the application of the active prothetic foot.

Figure 20.
Evaluation of the applications of the demonstrators of OvGU and TU Dresden.
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The implemented sensor structure records the heart rate, the breathing rate, the
VOC content of the room air, analyzes the gait for rehabilitation and measures
the temperature and humidity in the room. An emergency button has also been
integrated.

An active prosthetic foot was used as a special application of the sensor-actor
System. Its running parameters can be measured online, and the prosthesis can
automatically adapt to the floor covering and the running demands via the network.
This means that users have an intelligent active prosthesis at their disposal to help
them cope with everyday life more easily.

It was shown that even with a heterogeneous network consisting of the compo-
nents WiFi, Bluetooth LE, Gigabit LAN and 4G+, real-time operation was possible
for the use of the AAL components. Even the display of the measured data, which
was transferred to a website via the cloud, only showed latencies of an additional
few milliseconds. This made it possible to create a real-time image in the form of an
Avatar for all vital parameters and the automatic setting of the active prosthetic
foot, which enables the client to notice his physical condition in situ.

In addition to the technical development activities, an analysis of acceptance was
executed at the demonstrator in the AAL-laboratory. The survey results of the
entire system were very positive. 60% of the respondents stated, that they would
like to use the technology privately, 70% of the respondents would like to have
access to the technology, 35% would be willing to buy the presented technology and
95% see a great benefit for themselves and for others in the tested technology.

Unfortunately, some slow network technologies such as Bluetooth LE had to be
used to carry out the project. It is to be expected, that with the full expansion of the
networks to the fifth generation (5G), there will still be a significant leap in trans-
mission speed and transmission quality. It is therefore to be expected that eHealth
applications in the home area can be implemented in real time in the near future.
After the data fusion, further processing with the help of the artificial intelligence
will bring further benefits to the client for the prevention of his physical and mental
health.
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Chapter 3

Acoustic Monitoring of Joint 
Health
Lucy Spain and David Cheneler

Abstract

The joints of the human body, especially the knees, are continually exposed 
to varying loads as a person goes about their day. These loads may contribute to 
damage to tissues including cartilage and the development of degenerative medical 
conditions such as osteoarthritis (OA). The most commonly used method cur-
rently for classifying the severity of knee OA is the Kellgren and Lawrence system, 
whereby a grade (a KL score) from 0 to 4 is determined based on the radiographic 
evidence. However, radiography cannot directly depict cartilage damage, and there 
is low inter-observer precision with this method. As such, there has been a signifi-
cant activity to find non-invasive and radiation-free methods to quantify OA, in 
order to facilitate the diagnosis and the appropriate course of medical action and to 
validate the development of therapies in a research or clinical setting. A number of 
different teams have noted that variation in knee joint sounds during different load-
ing conditions may be indicative of structural changes within the knee potentially 
linked to OA. Here we will review the use of acoustic methods, such as acoustic 
Emission (AE) and vibroarthrography (VAG), developed for the monitoring of 
knee OA, with a focus on the issues surrounding data collection and analysis.

Keywords: ultrasound, acoustic emission, vibroarthrography, osteoarthritis,  
knee joint

1. Introduction

1.1 Synovial joints and osteoarthritis

The free moving joints within the body are known as synovial joints and have 
the primary purpose of allowing forces applied to the skeleton to be transmitted as 
smooth, low-friction movements. The joint capsule, working alongside the muscles, 
tendons and ligaments stabilises the joint, whilst articular (or hyaline) cartilage 
covering the end of the bones in combination with synovial fluid within the joint 
space provides the environment for smooth, well-lubricated movements [1, 2]. In 
addition, some joints also contain fibrocartilaginous discs between the two bones 
to support the other joint components and dissipate the forces experienced by the 
joint, for instance, intervertebral discs in the spine, or the meniscus within the knee.

Osteoarthritis affects all of the structures within the joint and is defined as 
a condition causing pain within the joint, loss of function and decreased qual-
ity of life for patients [3]. The disease results in the degradation of cartilage and 
subsequent sclerosis and lesions in the now exposed subchondral bone, along 
with inflammation in the joint [4]. Tears within cartilaginous structures and new 
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Data Acquisition - Recent Advances and Applications in Biomedical Engineering

32

interactions between cartilage and bone, along with bone and bone, make for less 
smooth movements, pain, stiffness and reduction in joint function.

1.2 Epidemiology and impact

The most common joints affected by osteoarthritis include those of the knee, 
hip and hands with osteoarthritis of the knee the most commonly occurring form, 
affecting over 18% of the population in England [5].

With such a large proportion of the population affected, musculoskeletal 
conditions including osteoarthritis have considerable impact both medically and 
economically. Clinically, the pain and loss of function associated with osteoarthritis 
result in a lower quality of life reported by patients, who require a large number of 
GP visits and hospital admissions [6–8].

The underlying pathophysiology of osteoarthritis is unclear, with genetics, age, 
gender, obesity and previous injury all contributing to varying degrees in disease 
development and progression. The heterogeneous nature of the disease makes 
targeted treatment of cause and prevention of progression a challenge, with cur-
rent best practice centring on patient education and lifestyle changes surrounding 
exercise, use of analgesics and anti-inflammatories to manage pain and inflamma-
tion and finally joint replacement at the severe end of the spectrum of disease [9]. 
However, this approach, with the exception of exercise targeting weight loss and 
strength, does not address an underlying cause or prevent progression of disease, an 
aspiration of future interventions for the disease.

Ranking the sixth most common cause of disability globally in 2010 [10], muscu-
loskeletal conditions, including osteoarthritis, impact not only the healthcare system 
and patients but also their families [11]. Patients and their carers are at greater risk 
of being out of employment [12], with only 63% of those with a musculoskeletal 
condition in employment compared to 82% in those without a health condition [13].

With a predicted increase in the ageing population and an increase in obesity 
[14–16], the burden on health services and economic impact in terms of lost work 
time and disability is of growing concern. There is a real need for means of non-
invasive early detection of osteoarthritis, sensitive means of monitoring progres-
sion and development of efficacious treatments to prevent and improve symptoms 
in order to improve quality of life and reduce the numbers progressing to severe 
disease and requiring joint replacement.

2. Standard methods of detection

Osteoarthritis is a condition affecting a multitude of tissues within a joint, 
and as such, approaches which give information to the clinician on bone, muscle, 
cartilaginous tissue and the microenvironment within a joint are required to give a 
full picture of the condition of a joint. Imaging is currently the main diagnostic tool 
used to assess osteoarthritis. Dependent upon the form of imaging used, a variety of 
tissues can be examined as markers of disease state and progression.

In clinical practice, a combination of clinical presentation and X-radiography 
(X-ray) is used to diagnose osteoarthritis. When a patient presents as over 45 years 
of age, with typical symptoms of osteoarthritis including pain within the joint dur-
ing activity and minimal stiffness within the joint in the morning lasting no more 
than 30 min, then X-ray is not indicated for diagnosis [9, 17].

However, X-ray is useful when differential diagnosis is possible, and in certain 
scenarios, magnetic resonance imaging is used to give additional information on 
damage to tissues within the joint and inform treatment options.
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2.1 X-radiography

X-ray works upon the principle of differential absorbance of radiation by 
 different tissues, with dense tissues such as the bone absorbing a large proportion 
of the radiation compared to soft tissues such as the muscle and connective tissue.

As a result, the bone appears bright white on images and can be studied for 
changes in morphology, whereas soft tissues show less differentiation and are not 
easily examined.

The current gold standard in the diagnosis of osteoarthritis from radiographic 
images involves the scoring of X-ray images using the Kellgren-Lawrence (KL) 
scale. The Kellgren-Lawrence is a five-point scale which categorises disease severity 
based upon the assessment of bony changes, appearances of osteophytes and joint 
space narrowing within the joint [18]. The description of the radiographic findings 
at different KL grades can be seen in Table 1.

The KL scale was first described in 1957 in response to an identified need to 
standardise the definition of changes within an osteoarthritic joint in order to 
improve inter-rater reliability when reporting the disease [18]. Thorough analysis of 
the performance of the scale at joints throughout the body revealed that whilst cor-
relation between the defined changes and osteoarthritis were observed at all joints 
bars the wrist, the greatest inter-rater agreement was found within the knee joint. 
Intra-rater repeatability followed a similar trend with slightly better agreement 
between readings. This has subsequently been reflected in the most common use of 
the scale in the assessment of the knee joint.

More recent comparison of radiographic scoring systems has established that 
for the knee joint, the KL scale has stood the test of time, with no subsequently 
developed grading systems outperforming the inter-rater repeatability of this 
scale [19]. However, whilst the limit of inter and intra-observer reliability in 
assessing radiographic osteoarthritis may have been reached (correlation coef-
ficients around 0.8), it is acknowledged that a more diverse manner of assessment 
of osteoarthritis may be warranted to improve sensitivity when assessing disease 
progression and specificity for aspects of the homogeneous pathophysiology 
underlying the disease.

In terms of sensitivity, KL scoring of radiographs does not perform well in 
the detection of early disease or in the monitoring of disease progression, where 
large time periods are required to observe a change in category during which time 
symptomatic progression may have occurred [20].

Alone, radiographic assessment using the Kellgren-Lawrence scale allows direct 
assessment of bony changes such as osteophyte formation, however, relies on indi-
rect measures of joint space narrowing to assess cartilaginous change. The surrogate 
marker of joint space narrowing in place of direct measurement of cartilage, whilst 

Grade Description of radiographic findings

0 No evidence of radiographic osteoarthritis

1 Doubtful narrowing of the joint space and possible osteophytic lipping

2 Definite osteophytes and possible narrowing of the joint space

3 Moderate multiple osteophytes, definite narrowing of the joint space, small pseudocystic areas 
with sclerotic walls and possible deformity of bone contour

4 Large osteophytes, marked narrowing of joint space, sever sclerosis and definite deformity of 
bone contour

Table 1. 
Kellgren-Lawrence scale description of radiographic findings.



Data Acquisition - Recent Advances and Applications in Biomedical Engineering

32

interactions between cartilage and bone, along with bone and bone, make for less 
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affecting over 18% of the population in England [5].
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2.1 X-radiography
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assessment of bony changes such as osteophyte formation, however, relies on indi-
rect measures of joint space narrowing to assess cartilaginous change. The surrogate 
marker of joint space narrowing in place of direct measurement of cartilage, whilst 
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important in the sensitivity of Kellgren-Lawrence scale to disease severity, does not 
perform well when compared with changes observed arthroscopically [19, 21].

This may go some way to explaining the disparity in patient symptom reporting in 
the form of self-reported osteoarthritis, clinically diagnosed osteoarthritis and disease 
severity suggested using the Kellgren-Lawrence scale [22]. In addition to indirect car-
tilage measurements, the Kellgren-Lawrence score is based solely on the femorotibial 
joint. As osteoarthritis can also affect the patellofemoral joint, this could account for 
further disparity between symptoms and radiographic severity of disease [20].

2.2 Magnetic resonance imaging

In contrast to X-radiography, magnetic resonance imaging (MRI) can directly 
image a number of tissues, including the cartilage, bone and fluids such as that 
found in the synovium. Several approaches have been taken to the assessment of 
joints with suspected osteoarthritis using MRI.

A number of joint-specific semi-quantitative scoring systems have been 
developed using features considered important in osteoarthritis disease manifesta-
tion, including bone marrow lesions, meniscal scores and scores of cartilage loss. 
For the knee, the scoring systems developed include the whole-organ MRI score 
(WORMS), the knee osteoarthritis scoring system (KOSS), the Boston-Leeds OA 
knee scoring (BLOKS) and the MRI osteoarthritis knee score (MOAKS), which 
brings together the strengths of the WORMS and BLOKS systems whilst standardis-
ing the definitions used [23].

Quantitative analysis of specific tissues has also been used to measure thickness, 
area and volume of cartilage, bone area and area of the bone that is denuded, as 
well as combining the two to assess cartilage thickness over areas of denuded bone. 
Whilst concentrating on a smaller region of the joint, this approach removes some 
of the subjectivity associated with the semi-quantitative scores detailed above, both 
for MRI and X-ray scoring [23–26].

The benefits of MRI for use both clinically and within research are a trade-off 
between increased sensitivity and specificity and protocols which are realistic for 
application in a given setting. Semi-quantitative MRI protocols can be performed 
using clinical MRI equipment, however, have the same caveats of KL scoring of 
X-rays in terms of inter and intra-rater reliability.

Quantitative measures of the cartilage and bone remove some of the subjec-
tive elements of semi-quantitative assessment. The changes of cartilage and bone 
measurements can be exceedingly small in magnitude, allowing assessment of much 
smaller anatomical change over shorter timeframes than those observed using 
X-ray. Making such small measurements presents its own challenges and is time-
consuming, whilst producing such small measurements of change that relationship 
to clinical outcomes can be weak [27]. However, being direct in nature, quantitative 
measures have shown promise in improving association of imaging techniques with 
disease symptoms and progression compared with KL scoring of X-rays. Denuded 
bone area has been shown to correlate with concurrent and incident knee pain [28], 
whilst changes in cartilage thickness have been linked to the likelihood of disease 
progression to the point of needing knee joint replacement surgery [29, 30].

In addition to semi-quantitative and quantitative measurements, the use of 
contrast and powerful MRI imaging protocols extend the means to assess tissue, 
enabling assessment of components of the ultrastructure of articular cartilage and 
the meniscus along with the synovial fluid via compositional and diffusion MRI, 
respectively. This makes MRI a potentially powerful tool in assessing the impact 
of osteoarthritis on the entirety of a joint, as well as in identifying factors driving 
disease and predicting disease progression.
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High-resolution MRI protocols and high doses of contrast prove most useful in 
research aimed at understanding of the mechanisms of osteoarthritis and assess-
ment of disease progression or slowing with intervention. However, these are 
time-consuming protocols and contrast doses can far outstrip recommended doses 
accepted in clinical practice [31].

The added power of MRI in the assessment of osteoarthritis is most likely to 
remain predominantly within the research field at this point in time, as access to 
advanced equipment, lack of uniform protocols and the time-consuming nature of 
post-processing that is required limits use clinically.

2.3 Other biomarkers of osteoarthritis

Whilst X-Ray and MRI are the two primary forms of imaging used to assess 
osteoarthritic joints, both computer tomography (CT) and ultrasound have also 
been employed for this purpose, generally in a research setting, where MRI is 
proving to provide greatest accuracy [32]. For CT, the use is limited due to CT scans 
delivering a high radiation dose without delivering significantly greater sensitivity 
to disease progression than X-ray or MRI.

Whilst ultrasound allows direct imaging of the cartilage which is not obtained 
during X-ray, interpretation and observations made can vary between operators, 
especially at joints further from the surface of the skin. This is least marked in 
superficial joints, and assessment of inflammation and effusion has drawn parallels 
with disease severity and progression [33–35]. Therefore, ultrasound may be most 
useful in adding measures associated with inflammation when assessing joints of 
the hand rather than the knee and hip which are much deeper joints.

Finally, biochemical markers associated with inflammation and degradation 
of the bone and cartilage are under investigation as additional biomarkers for 
osteoarthritis. This presents its own challenges as whilst these markers may well 
be sensitive to change in internal environment, their specificity to osteoarthritis 
and location of degeneration are proving more of obstacle, with generally weak 
associations seen between biochemical biomarkers of disease and measures of 
use in assessing disease severity and progression [36, 37]. That said, there is some 
evidence that markers may be able to offer additional strength in assessing osteoar-
thritis severity and response to treatments with further research [38].

2.4 Current challenges in diagnosis and treatment

Individually the current means to diagnose and assess progression of osteo-
arthritis are limited by one or more factors, namely, subjectivity of measures 
including high inter- and intra-rater repeatability in semi-quantitative imaging, low 
sensitivity for change in disease state or low specificity for disease tissue or location.

This presents challenges when making informed clinical decisions, investigating 
new interventions and determining the effects of preventative measures on disease 
progression. The low sensitivity of current biomarkers also limits the application of 
stratified medicine in the approach to new treatments, an area that is of particular 
interest given the marked clinical and biological heterogeneity of this condition [39].

As the disease is driven by multiple pathogenic factors, it may be that a combina-
tion of multiple diagnostic measures is required to develop a sensitive biomarker for 
osteoarthritis. This concept is currently demonstrated through the development of 
computational risk factor tools based on a range of self-reported osteoarthritis risk fac-
tors, aimed at patient education and pre-emptive lifestyle intervention [40–42]. More 
recently, the tool for osteoarthritis risk prediction has proven inclusion of MRI mea-
sures in combination with KL scored radiographs provides a more powerful predictive 
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tool for predicting disease progression [43]. Furthering this approach using other 
potential biomarkers for osteoarthritis, including imaging and biochemical markers of 
cartilage and bone change, may allow even greater sensitivity and specificity.

With this in mind, research has progressed in innovative approaches to develop 
biosensors that address aspects of osteoarthritis that are currently unmeasured. To 
date, all biomarkers for the disease consider circulating biochemicals or images of 
the knee in a static state. As the symptoms of osteoarthritis relate directly to move-
ments of the joint, a novel approach to assessing changes in interactions between 
tissues during joint movement is being investigated using acoustics within the joint.

3. Acoustic medical technologies for joint health

Due to its non-invasive nature, the use of sound or vibration has found many 
medical applications associated with the musculoskeletal system.

For instance, as discussed above, ultrasound imaging, or ultrasonography (US), 
can be a useful tool in rheumatology. It is increasingly used to image and evaluate 
the inflammatory aspects of rheumatic diseases as an assessment tool for tendons 
and soft tissue [44, 45]. It has been applied to osteoarthritis specifically, having been 
shown to be a sensitive tool for the evaluation of synovitis (joint inflammation) and 
joint effusion (the flow of blood and other fluids in joints), through direct imaging 
and the use of Doppler signal analysis, a form of flow velocimetry [44–48]. Whilst 
US can be used for imaging musculoskeletal changes in osteoarthritis, such as 
changes in cartilage thickness, it is limited. It has been noted that US may be limited 
in assessing cartilage in larger weight-bearing joints [49] because of the inherent 
inability of ultrasound to pass through denser bony structures and therefore pen-
etrate to the deeper portions of the joint [50]. The central portion of thick joints can-
not be visualised with US [51], but US can detect osteophytosis (bone spurs forming 
around joints) at greater rates than conventional radiography. Being non-ionising 
and able to image soft tissues, US is a good alternative to radiographic imaging. 
Magnetic resonance imaging (MRI) offers excellent tissue contrast and anatomical 
resolution compared to US [49]. MRI can detect changes in the volumes of cartilage, 
whereas US is only capable of quantifying changes in thicknesses. Therefore, whilst 
MRI is more expensive, US is primarily only used as an alternative for anatomical 
imaging when there is hardware present within the patient, i.e. implants and some 
older cardiac defibrillators and pacemakers, which precludes the use of MRI [52].

As well as for imaging, ultrasound can be utilised directly as a treatment for 
OA [53, 54]. The management of OA involves the relief of pain and the mainte-
nance or improvement of joint function. The American College of Rheumatology 
(ACR) and the European League Against Rheumatism (EULAR) recommend a 
combination of pharmacological and nonpharmacological treatments [55]. Various 
nonpharmacological treatments, including exercise, physical therapy, hot packs and 
therapeutic ultrasound (TU) etc., exist with varying evidence of efficacy. In TU, 
mechanical energy in the form of pulsed or continuous high-frequency vibrations 
is applied directly to the joint [56]. This is reputed to reduce oedema or cysts [57], 
as well as reduce inflammation, relieve pain and accelerate tissue repair; however, 
results of clinical studies are conflicting [55, 56]. The applied ultrasonic vibrations 
cause atomic oscillations in the tissue; the amplitude of which depends on the 
intensity or power of the applied beam. When applied continuously, this can result 
in thermal effects in the tissue, which are reduced when the beam is pulsed [56]. 
When the ultrasonic beam has high intensity, the atoms in the attenuating medium 
no longer oscillate around their equilibrium position but have a net motion along 
the axis of the beam [53]. This can result in damage or micro-machining due to the 
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ultrasound-induced forces, allowing TU to be used as a surgical tool [53]. High-
intensity TU can also result in the movement of particles and fluid within the tissue. 
This phenomenon has been used to drive pharmaceuticals, such as non-steroidal 
anti-inflammatory drugs (NSAIDs) and corticosteroids, into the tissue [58, 59], 
facilitating local delivery.

3.1 Acoustic detection

Spontaneous emission of acoustic waves and other vibrations has been recorded 
during the flexion and extension of joints, as well as the fracture and wear of bones 
and implants [60, 61]. Studies have shown that these vibrations are affected by mus-
culoskeletal disorders in joints, making vibration monitoring a useful diagnostic 
tool [62]. However, joints are highly complex heterogeneous structures over a wide 
range of length scales. Parameters like wave velocity, dispersion and attenuation 
all affect how waves travel through tissues, making interpretation of the waveform 
complicated. The following techniques have been developed to resolve this issue:

3.1.1 Phonoarthrography

The earliest studies on the monitoring of the spontaneous emission of acoustic 
waves were based on the use of stethoscopes to amplify audible sounds generated 
within joints [63, 64]. Early joint auscultation in this manner was initially a manual 
process and was inherently subjective. Still, these studies showed that whilst there 
are ‘normal joint sounds’, the sound produced is affected by different kinds of injury 
and arthritis [65]. That said, this method is not yet used in primary care and has only 
received modest attention in the literature since its first appearance in 1902 [63, 66].

Later studies attempted to reduce the subjectivity of this method by recording 
the sounds using microphones in conjunction with joint measurement technolo-
gies such as goniometers and video tracking [67]. Several of these studies note that 
pathological signals have major frequency components at low frequencies, that is, 
below 1000 Hz [64, 68]. The sensitivity range of the microphones used is usually 
in the range 50 Hz to 15 kHz; however, it has been suggested that standard acoustic 
recording microphones are not appropriate for the monitoring of joint signals, 
being too sensitive to background noise, with vibration transducers, or contact 
sensors, and accelerometers being preferred [61, 69]. Studies such as that by Chu 
et al. employed a differential microphone pair for noise cancellation and bandpass 
filters to minimise low-frequency movement artefacts and high-frequency trans-
ducer noise to mitigate this issue [61]. Conversely, other studies [70] suggest that 
as microphones are able to detect higher frequencies and no direct contact with the 
body is required, the combination of signals from both microphones and acceler-
ometers might perform better than anyone signal alone.

Data analysis in early studies generally only used traditional stationary spectrum 
estimation methods using oscilloscopes or narrow-band spectrum analysers, with 
key measures being the frequency, wavelength, wave number and amplitude [64]. 
However, it is clear that the signals are nonstationary in nature, especially as different 
signals are generated at different joint positions [69]. As a result of this observation,  
more sophisticated spectral analysis methods were developed. One method is 
short-time Fourier analysis on segmented data where it is assumed that the data is 
stationary within each segment. This allows trends in the frequency component of 
the signal to be correlated with joint angle. The determination of the segments 
introduces subjectivity into the analysis. Therefore, techniques to track the nonsta-
tionarities in the signal, such as adaptive segmentation, linear prediction and autore-
gressive moving averages (ARMA), have been incorporated into the analysis [69].
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range of length scales. Parameters like wave velocity, dispersion and attenuation 
all affect how waves travel through tissues, making interpretation of the waveform 
complicated. The following techniques have been developed to resolve this issue:
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The earliest studies on the monitoring of the spontaneous emission of acoustic 
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within joints [63, 64]. Early joint auscultation in this manner was initially a manual 
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are ‘normal joint sounds’, the sound produced is affected by different kinds of injury 
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gies such as goniometers and video tracking [67]. Several of these studies note that 
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sensors, and accelerometers being preferred [61, 69]. Studies such as that by Chu 
et al. employed a differential microphone pair for noise cancellation and bandpass 
filters to minimise low-frequency movement artefacts and high-frequency trans-
ducer noise to mitigate this issue [61]. Conversely, other studies [70] suggest that 
as microphones are able to detect higher frequencies and no direct contact with the 
body is required, the combination of signals from both microphones and acceler-
ometers might perform better than anyone signal alone.

Data analysis in early studies generally only used traditional stationary spectrum 
estimation methods using oscilloscopes or narrow-band spectrum analysers, with 
key measures being the frequency, wavelength, wave number and amplitude [64]. 
However, it is clear that the signals are nonstationary in nature, especially as different 
signals are generated at different joint positions [69]. As a result of this observation,  
more sophisticated spectral analysis methods were developed. One method is 
short-time Fourier analysis on segmented data where it is assumed that the data is 
stationary within each segment. This allows trends in the frequency component of 
the signal to be correlated with joint angle. The determination of the segments 
introduces subjectivity into the analysis. Therefore, techniques to track the nonsta-
tionarities in the signal, such as adaptive segmentation, linear prediction and autore-
gressive moving averages (ARMA), have been incorporated into the analysis [69].
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3.1.2 Vibroarthrography (VAG)

Whilst phonoarthrography is based on the sound produced during the flexion 
or extension of joints, in VAG all vibrations produced during movement are con-
sidered [62]. Consequently, it is more common for a single accelerometer to be used 
as the sensor rather than a microphone [71]. It is also very common for signals in 
a frequency range below 1000 Hz to be of primary focus [72], with sampling rates 
of the order 1–4 kHz. A key advantage of the low sampling rate is that it allows for 
wireless data acquisition and processing using simple microcontrollers or single-
board computers [73, 74]. That said, it has been suggested [71, 75] that single 
signal processing may be limited and multi-channel recordings may lead to better 
discrimination of the severity and location of joint injury or disorder. In many cases 
noise mitigation is achieved through prefiltering (commonly using a bandpass filter 
from 10 Hz to 1 kHz) and amplification prior to digitization at a specified sampling 
rate [76, 77]. The digital signal may go through additional filtering, such as that 
conducted by Andersen et al. [78] who used a Kaiser-windowed finite impulse 
response (FIR) bandpass filter.

There are other rationales for using multiple sensors during VAG as it has been 
observed that VAG may pick up vibrations not necessarily just due to the joint 
directly or to external interference [79]. For instance, the 10 Hz signal generated 
by the rectus femoris muscle which activates during the extension of the leg could 
interfere with the VAG signal recorded from the skin surface over the patella [80]. 
As this signal may vary in a similar fashion to the VAG signal, simple bandpass 
filtering may not be sufficient. It may be necessary to record the vibromyogram at 
the rectus femoris at the same time as the VAG signal and use adaptive filtering and 
noise cancellation techniques to isolate the VAG signal [79].

Therefore, the VAG signal is inherently nonstationary and potentially multicom-
ponent in nature. The nature of the VAG signal means that it is not easily analysed 
using common signal processing techniques. This coupled with the difficulty in 
ascertaining the biological origin of the source of the signal is the main barrier to its 
use as a common diagnostic tool. As a result, much of the recent research activity 
has been focussed on feature extraction and statistical pattern classification [60]. 
Adaptive segmentation using least-square, linear prediction and autoregression 
algorithms is common [81, 82]. A host of statistical measures has been considered 
to characterise the VAG signal, including the form factors, skewness, kurtosis and 
entropy [71, 76]. It has also been shown that time-frequency distribution (TFD) 
[81, 83] and wavelet decomposition [84] are potentially powerful techniques for 
analysis and may negate the need for segmentation [83] but may be susceptible to 
noise [85]. These advancements have mostly been driven by developments in digital 
signal processing technologies that sped up analysis time as well as nonstationary 
signal analysis techniques developed for other biological signals like EEGs [84].

Using these techniques, spectral features such as frequency, energy and their 
respective spreads can be classified and linked to joint position, loading and 
pathology. The commonly used classifiers are neural network-based classifiers 
and support vector machines (SVM), as well as logistic regression and rule-based 
techniques [62, 71]. These neural networks and SVMs are supervised learning 
algorithms which search for a number of independent training data patterns taken 
from signals measured from participants with known pathologies to characterise 
new signals. These classification algorithms are increasingly dependable and can 
perform well with a limited amount of data. A number of different variants of 
these algorithms and classifiers have been investigated [60, 62]. Wu et al. [73] used 
an SVM based on the entropy and envelope amplitude features and achieved an 
overall accuracy of 83.56%. Nalband et al. [86] utilised an a priori algorithm with 

39

Acoustic Monitoring of Joint Health
DOI: http://dx.doi.org/10.5772/intechopen.92868

a least-square SVM classifier and claim accuracy of 94.31% with a false discovery 
rate of 0.0892. Kręcisz [87] achieved accuracies of >90% using a logistic regression-
based method. In each of these cases, the VAG signals were collected during knee 
flexion/extension motion using an accelerometer secured to the participants patella.

3.1.3 Acoustic emission (AE)

AE for biomedical applications is derived from non-destructive techniques 
developed for detecting damage in engineering materials, such as metals and com-
posites [88]. AE occurs when materials locally under stress emit energy in the form 
of transient elastic waves. This allows for the monitoring of microcrack initiation 
and propagation in the bones and joints [89]—essential parts of bone remodelling 
[90], and wear [91, 92]. Other characteristic sounds in joints, such as the burst-
ing of gas bubbles in synovial joints during movement, can also be detected using 
AE [93]. AE frequencies are usually in the ultrasonic range and so detection often 
involves the use of ultrasonic sensors.

A number of researchers have proposed AE sensor-based joint monitoring 
systems using piezoelectric films, electret or MEMS-based microphones.

Toreyin et al. [94, 95] used an off-the-shelf low-noise MEMS microphone in 
conjunction with gyroscope and accelerometer pairs in order to monitor sounds 
generated during various complex motions. The microphone used had a sensitivity 
range of 100 Hz to 10 kHz, and the researchers suggested that the MEMS-based 
microphone had a similar performance to an electret microphone [94]. The acoustic 
data were sampled at 100 kHz, and the inertial data (monitoring joint angle and limb 
movement) at 1 kHz, with the data being collected by a field programmable gate 
array (FPGA)-based real-time processor. It was noted that air microphones do not 
exhibit signal losses due to motion artefacts, but they are sensitive to ambient noise.

Teague et al. [96] compared a piezoelectric film-based contact microphone 
to two air microphones: one electret and one MEMS-based. The air microphones 
were used with a 15 Hz high-pass filter and a second-order low-pass filter with a 
cut-off frequency of 21 kHz and sampled at 44.1 kHz using an acoustic recorder. 
The piezoelectric microphone was used with a 100 Hz high-pass filter followed by 
a fourth order low-pass filter with a 10 kHz cut-off frequency. It was sampled at 
50 kHz using custom circuits. The 100 Hz high-pass filter was chosen to attenuate 
the motion artefact noise. It was noted that the electret and MEMS microphones 
performed similarly in detecting joint sounds, although the electret sensor was 
significantly more expensive. They were both sensitive to ambient and interface 
noise, including rubbing of the tape securing the sensors. It was noted that the air 
microphones did not need to be in contact with the skin. Experiments with sensors 
positioned 5 cm off the skin captured similar acoustic signals, albeit with lower 
amplitude. The piezoelectric sensor was more sensitive to interface noise but less 
sensitive to background noise. Importantly, the contact microphone did not pick 
up higher frequency vibrations as distinctly as the air microphones which provided 
higher quality recordings as indicated by higher SNIRs.

Jeong et al. [97] used a low-noise electret microphone with a frequency range of 
50 Hz to 20 kHz recorded by an audio recorder at a rate of 44.1 kHz. Signals were digi-
tally filtered using a finite impulse response bandpass filter with a bandwidth from 1 
to 15 kHz to prioritise short duration joint sounds whilst supressing interface noise.

Feng and Chen [98] developed a piezoelectric sensor comprised of a lead zir-
conium titanate (PZT) film deposited on titanium cantilever arrays as an acoustic 
sensing layer. This sensor uses a 1-mm-tall SU8 cylindrical probe on each cantilever 
to be in direct contact with the skin of the participant and transmit vibrations to 
the sensor. A thermoresponsive poly(N-isopropylacrylamide) (PNIPA) film was 
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3.1.2 Vibroarthrography (VAG)

Whilst phonoarthrography is based on the sound produced during the flexion 
or extension of joints, in VAG all vibrations produced during movement are con-
sidered [62]. Consequently, it is more common for a single accelerometer to be used 
as the sensor rather than a microphone [71]. It is also very common for signals in 
a frequency range below 1000 Hz to be of primary focus [72], with sampling rates 
of the order 1–4 kHz. A key advantage of the low sampling rate is that it allows for 
wireless data acquisition and processing using simple microcontrollers or single-
board computers [73, 74]. That said, it has been suggested [71, 75] that single 
signal processing may be limited and multi-channel recordings may lead to better 
discrimination of the severity and location of joint injury or disorder. In many cases 
noise mitigation is achieved through prefiltering (commonly using a bandpass filter 
from 10 Hz to 1 kHz) and amplification prior to digitization at a specified sampling 
rate [76, 77]. The digital signal may go through additional filtering, such as that 
conducted by Andersen et al. [78] who used a Kaiser-windowed finite impulse 
response (FIR) bandpass filter.

There are other rationales for using multiple sensors during VAG as it has been 
observed that VAG may pick up vibrations not necessarily just due to the joint 
directly or to external interference [79]. For instance, the 10 Hz signal generated 
by the rectus femoris muscle which activates during the extension of the leg could 
interfere with the VAG signal recorded from the skin surface over the patella [80]. 
As this signal may vary in a similar fashion to the VAG signal, simple bandpass 
filtering may not be sufficient. It may be necessary to record the vibromyogram at 
the rectus femoris at the same time as the VAG signal and use adaptive filtering and 
noise cancellation techniques to isolate the VAG signal [79].

Therefore, the VAG signal is inherently nonstationary and potentially multicom-
ponent in nature. The nature of the VAG signal means that it is not easily analysed 
using common signal processing techniques. This coupled with the difficulty in 
ascertaining the biological origin of the source of the signal is the main barrier to its 
use as a common diagnostic tool. As a result, much of the recent research activity 
has been focussed on feature extraction and statistical pattern classification [60]. 
Adaptive segmentation using least-square, linear prediction and autoregression 
algorithms is common [81, 82]. A host of statistical measures has been considered 
to characterise the VAG signal, including the form factors, skewness, kurtosis and 
entropy [71, 76]. It has also been shown that time-frequency distribution (TFD) 
[81, 83] and wavelet decomposition [84] are potentially powerful techniques for 
analysis and may negate the need for segmentation [83] but may be susceptible to 
noise [85]. These advancements have mostly been driven by developments in digital 
signal processing technologies that sped up analysis time as well as nonstationary 
signal analysis techniques developed for other biological signals like EEGs [84].

Using these techniques, spectral features such as frequency, energy and their 
respective spreads can be classified and linked to joint position, loading and 
pathology. The commonly used classifiers are neural network-based classifiers 
and support vector machines (SVM), as well as logistic regression and rule-based 
techniques [62, 71]. These neural networks and SVMs are supervised learning 
algorithms which search for a number of independent training data patterns taken 
from signals measured from participants with known pathologies to characterise 
new signals. These classification algorithms are increasingly dependable and can 
perform well with a limited amount of data. A number of different variants of 
these algorithms and classifiers have been investigated [60, 62]. Wu et al. [73] used 
an SVM based on the entropy and envelope amplitude features and achieved an 
overall accuracy of 83.56%. Nalband et al. [86] utilised an a priori algorithm with 
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a least-square SVM classifier and claim accuracy of 94.31% with a false discovery 
rate of 0.0892. Kręcisz [87] achieved accuracies of >90% using a logistic regression-
based method. In each of these cases, the VAG signals were collected during knee 
flexion/extension motion using an accelerometer secured to the participants patella.

3.1.3 Acoustic emission (AE)

AE for biomedical applications is derived from non-destructive techniques 
developed for detecting damage in engineering materials, such as metals and com-
posites [88]. AE occurs when materials locally under stress emit energy in the form 
of transient elastic waves. This allows for the monitoring of microcrack initiation 
and propagation in the bones and joints [89]—essential parts of bone remodelling 
[90], and wear [91, 92]. Other characteristic sounds in joints, such as the burst-
ing of gas bubbles in synovial joints during movement, can also be detected using 
AE [93]. AE frequencies are usually in the ultrasonic range and so detection often 
involves the use of ultrasonic sensors.

A number of researchers have proposed AE sensor-based joint monitoring 
systems using piezoelectric films, electret or MEMS-based microphones.

Toreyin et al. [94, 95] used an off-the-shelf low-noise MEMS microphone in 
conjunction with gyroscope and accelerometer pairs in order to monitor sounds 
generated during various complex motions. The microphone used had a sensitivity 
range of 100 Hz to 10 kHz, and the researchers suggested that the MEMS-based 
microphone had a similar performance to an electret microphone [94]. The acoustic 
data were sampled at 100 kHz, and the inertial data (monitoring joint angle and limb 
movement) at 1 kHz, with the data being collected by a field programmable gate 
array (FPGA)-based real-time processor. It was noted that air microphones do not 
exhibit signal losses due to motion artefacts, but they are sensitive to ambient noise.

Teague et al. [96] compared a piezoelectric film-based contact microphone 
to two air microphones: one electret and one MEMS-based. The air microphones 
were used with a 15 Hz high-pass filter and a second-order low-pass filter with a 
cut-off frequency of 21 kHz and sampled at 44.1 kHz using an acoustic recorder. 
The piezoelectric microphone was used with a 100 Hz high-pass filter followed by 
a fourth order low-pass filter with a 10 kHz cut-off frequency. It was sampled at 
50 kHz using custom circuits. The 100 Hz high-pass filter was chosen to attenuate 
the motion artefact noise. It was noted that the electret and MEMS microphones 
performed similarly in detecting joint sounds, although the electret sensor was 
significantly more expensive. They were both sensitive to ambient and interface 
noise, including rubbing of the tape securing the sensors. It was noted that the air 
microphones did not need to be in contact with the skin. Experiments with sensors 
positioned 5 cm off the skin captured similar acoustic signals, albeit with lower 
amplitude. The piezoelectric sensor was more sensitive to interface noise but less 
sensitive to background noise. Importantly, the contact microphone did not pick 
up higher frequency vibrations as distinctly as the air microphones which provided 
higher quality recordings as indicated by higher SNIRs.

Jeong et al. [97] used a low-noise electret microphone with a frequency range of 
50 Hz to 20 kHz recorded by an audio recorder at a rate of 44.1 kHz. Signals were digi-
tally filtered using a finite impulse response bandpass filter with a bandwidth from 1 
to 15 kHz to prioritise short duration joint sounds whilst supressing interface noise.

Feng and Chen [98] developed a piezoelectric sensor comprised of a lead zir-
conium titanate (PZT) film deposited on titanium cantilever arrays as an acoustic 
sensing layer. This sensor uses a 1-mm-tall SU8 cylindrical probe on each cantilever 
to be in direct contact with the skin of the participant and transmit vibrations to 
the sensor. A thermoresponsive poly(N-isopropylacrylamide) (PNIPA) film was 
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integrated into the sensor to apply a force to the cantilever and hence improve con-
tact between the probe and the skin when a current is applied across it. The sensor 
achieved a frequency range of up to 100 kHz, with at least one strong resonant peak 
at 390 Hz. A sampling rate of 2 MHz was used with a 1 kHz high-pass digital filter 
to remove low-frequency noise signals. Testing of the sensor on a butchered porcine 
leg during repeated joint flexure cycles revealed the presence of well-defined peaks 
located between 30 and 40 kHz, 60 and 70 kHz and 70 and 80 kHz. Similar trends to 
that observed with commercial AE sensors (the same used in the studies by Mascaro 
et al. in the JAAS system described later [99]) were noted during overuse of the joint.

Choi et al. [93] developed the bone joint acoustic sensor (BJAS). This has a 
pin-type probe on a disk-shaped piezoceramic supported by a damped metal plate. 
The structure is in a metal case with the probe in direct contact with the skin. The 
system used in conjunction with IMUs seems to have a frequency range of 100 Hz to 
25 kHz and is sampled at 50 kHz.

Shark and Goodacre developed the joint acoustic analysis system (JAAS) [99, 100].  
This system uses commercial piezoelectric contact ultrasonic acoustic sensors 
(with high sensitivity in the range 50–200 kHz but monitored over 20–400 kHz at 
a 1–5 MSPS sampling rate) [100] and electro-goniometers to provide joint angle-
based AE during knee joint movement (see Figure 1). These commercial AE sensors 
use relatively thick piezoelectric bulk blocks for AE sensing and are housed in metal 
shells. The housing is fixed to the skin with surgical tape to maintain a rigid contact. 
The AE data acquisition operates in a non-continuous recording mode to minimise 
data volume. When the AE PCI data acquisition board is triggered by a signal 
value above a pre-set threshold, a ‘hit’ is recorded corresponding to an acoustic 
event. Each AE hit is recorded with a set of characteristic waveform features 
(i.e. dominant frequency, maximum amplitude and duration), and in addition the 
full waveforms were also stored, digitalized at a 1 MHz sampling frequency over a 
maximum duration of 15 ms [99]. The number of hits during each joint motion was 
used to determine a correlation with OA severity defined by KL scores determined 
using MRI data. It was noted that the frequency response of the acoustic sensor 
data is characterised by two peaks with a high probability of occurrence during 

Figure 1. 
Output from the joint acoustic analysis system (JAAS). Recording is made as the participant performs five 
sit-stand-sit movements. A: Acoustic ‘hits’ from a single knee recorded using a piezoelectric contact ultrasonic 
acoustic sensors. Each square indicates one acoustic emission captured by the system. For each ‘hit’ a waveform 
is also captured [D] from which waveform characteristics are calculated by the software. Alongside the acoustic 
emissions, joint angle [B] and weight through the leg [C] are also recorded.
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knee measurements using a sit-stand-sit protocol, one in the low-frequency range 
(20–50 kHz) and the other one around 150 kHz. The latter frequency is mainly due 
to a peak of sensitivity of the sensor used [99].

4. Conclusion

Using radiographic techniques to monitor variations in joint structure and 
morphology is the classic method of quantifying OA. However, this technique is 
ionising, often requires multiple measurements as only the plane perpendicular to 
the radiation is observed and cannot monitor soft tissue directly. MRI can measure 
the thickness and volume of cartilage, but there are limitations with respect to time 
and cost. Ultrasound can monitor joint effusion and the thickness of cartilage, 
but it is not possible for ultrasound to penetrate thick bone tissue and observe the 
whole joint. There is the additional issue of subjectivity and the large difference in 
reproducibility based on the skill of those analysing the image. The use of invasive 
cameras in arthroscopy and joint endoscopy necessitate recovery after diagnosis. 
These techniques also do not facilitate measurements using dynamic movements. 
The use of acoustic sensors has the potential to quantify and classify joint pathology 
whilst removing the subjectivity of classic imaging techniques. Despite progress in 
detecting differences between type and severity of joint disorders, questions remain 
about the true origin and form of acoustic signals generated by joint structural 
changes. Thus, a significant part of the challenge linked to acoustic signal analysis 
resides in the retrieval of pertinent parameters from irrelevant information in a 
robust and statistically significant way [78].

As yet, whilst several protocols, sensor types and data analysis techniques have 
been developed, to date there is no consensus on the most adequate way to record and 
process vibration data [60]. The methodological aspects of acoustic assessments, such 
as sensor placement and outcomes measures have not been thoroughly investigated 
allowing doubt in the technique to remain. For instance, for knee investigations, many 
studies [73, 81, 101] favour what may be called an open kinematic chain configura-
tion [102] whereby participants sit in a chair and lift their legs in a repetitive fashion, 
perhaps with weights attached. This has the advantage of being able to vary the load 
on the joint and allow for the inclusion of participants with advanced degenerative 
conditions or injuries affecting the limitation of the range of motion in the joint. A 
common alternative protocol involves repeated sit-stand-sit movements [103–105], 
creating a closed kinematic chain. This latter configuration perhaps has the advantage 
of forming a more natural loading of the knee joint. It potentially has the consequence 
of being inconsistent over time, as people can have the tendency of adjusting their 
movement to compensate for restricted or painful movement, thus changing the 
distribution of forces and moments acting on the knee [106]. Data comparing the 
protocols is limited, and there is no strong evidence for favouring one protocol over 
the other or indeed over alternatives, such as squatting [94, 102]. Given the protocol 
affects the loading of the joint and the frequency response of the vibration data gener-
ated, it also affects the potential consistency of the statistics derived therefrom and 
their subsequent interpretation for diagnostic and prognostic purposes. This suggests 
the necessity of a standard protocol if such techniques are to be used for monitoring 
the development of OA in an individual over time for clinical or research purposes.

Similarly, it is unclear what sort of vibrations and which frequency range is 
the most pertinent range to measure. In phonoarthrography acoustic waves in the 
audible range are of most interest. In VAG, focus is on low-frequency (<1000 Hz) 
vibrations, the cause and nature of which is more general. In AE, acoustic sig-
nals are of primary focus, albeit generally of a higher frequency than that used 
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integrated into the sensor to apply a force to the cantilever and hence improve con-
tact between the probe and the skin when a current is applied across it. The sensor 
achieved a frequency range of up to 100 kHz, with at least one strong resonant peak 
at 390 Hz. A sampling rate of 2 MHz was used with a 1 kHz high-pass digital filter 
to remove low-frequency noise signals. Testing of the sensor on a butchered porcine 
leg during repeated joint flexure cycles revealed the presence of well-defined peaks 
located between 30 and 40 kHz, 60 and 70 kHz and 70 and 80 kHz. Similar trends to 
that observed with commercial AE sensors (the same used in the studies by Mascaro 
et al. in the JAAS system described later [99]) were noted during overuse of the joint.

Choi et al. [93] developed the bone joint acoustic sensor (BJAS). This has a 
pin-type probe on a disk-shaped piezoceramic supported by a damped metal plate. 
The structure is in a metal case with the probe in direct contact with the skin. The 
system used in conjunction with IMUs seems to have a frequency range of 100 Hz to 
25 kHz and is sampled at 50 kHz.

Shark and Goodacre developed the joint acoustic analysis system (JAAS) [99, 100].  
This system uses commercial piezoelectric contact ultrasonic acoustic sensors 
(with high sensitivity in the range 50–200 kHz but monitored over 20–400 kHz at 
a 1–5 MSPS sampling rate) [100] and electro-goniometers to provide joint angle-
based AE during knee joint movement (see Figure 1). These commercial AE sensors 
use relatively thick piezoelectric bulk blocks for AE sensing and are housed in metal 
shells. The housing is fixed to the skin with surgical tape to maintain a rigid contact. 
The AE data acquisition operates in a non-continuous recording mode to minimise 
data volume. When the AE PCI data acquisition board is triggered by a signal 
value above a pre-set threshold, a ‘hit’ is recorded corresponding to an acoustic 
event. Each AE hit is recorded with a set of characteristic waveform features 
(i.e. dominant frequency, maximum amplitude and duration), and in addition the 
full waveforms were also stored, digitalized at a 1 MHz sampling frequency over a 
maximum duration of 15 ms [99]. The number of hits during each joint motion was 
used to determine a correlation with OA severity defined by KL scores determined 
using MRI data. It was noted that the frequency response of the acoustic sensor 
data is characterised by two peaks with a high probability of occurrence during 

Figure 1. 
Output from the joint acoustic analysis system (JAAS). Recording is made as the participant performs five 
sit-stand-sit movements. A: Acoustic ‘hits’ from a single knee recorded using a piezoelectric contact ultrasonic 
acoustic sensors. Each square indicates one acoustic emission captured by the system. For each ‘hit’ a waveform 
is also captured [D] from which waveform characteristics are calculated by the software. Alongside the acoustic 
emissions, joint angle [B] and weight through the leg [C] are also recorded.
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knee measurements using a sit-stand-sit protocol, one in the low-frequency range 
(20–50 kHz) and the other one around 150 kHz. The latter frequency is mainly due 
to a peak of sensitivity of the sensor used [99].

4. Conclusion

Using radiographic techniques to monitor variations in joint structure and 
morphology is the classic method of quantifying OA. However, this technique is 
ionising, often requires multiple measurements as only the plane perpendicular to 
the radiation is observed and cannot monitor soft tissue directly. MRI can measure 
the thickness and volume of cartilage, but there are limitations with respect to time 
and cost. Ultrasound can monitor joint effusion and the thickness of cartilage, 
but it is not possible for ultrasound to penetrate thick bone tissue and observe the 
whole joint. There is the additional issue of subjectivity and the large difference in 
reproducibility based on the skill of those analysing the image. The use of invasive 
cameras in arthroscopy and joint endoscopy necessitate recovery after diagnosis. 
These techniques also do not facilitate measurements using dynamic movements. 
The use of acoustic sensors has the potential to quantify and classify joint pathology 
whilst removing the subjectivity of classic imaging techniques. Despite progress in 
detecting differences between type and severity of joint disorders, questions remain 
about the true origin and form of acoustic signals generated by joint structural 
changes. Thus, a significant part of the challenge linked to acoustic signal analysis 
resides in the retrieval of pertinent parameters from irrelevant information in a 
robust and statistically significant way [78].

As yet, whilst several protocols, sensor types and data analysis techniques have 
been developed, to date there is no consensus on the most adequate way to record and 
process vibration data [60]. The methodological aspects of acoustic assessments, such 
as sensor placement and outcomes measures have not been thoroughly investigated 
allowing doubt in the technique to remain. For instance, for knee investigations, many 
studies [73, 81, 101] favour what may be called an open kinematic chain configura-
tion [102] whereby participants sit in a chair and lift their legs in a repetitive fashion, 
perhaps with weights attached. This has the advantage of being able to vary the load 
on the joint and allow for the inclusion of participants with advanced degenerative 
conditions or injuries affecting the limitation of the range of motion in the joint. A 
common alternative protocol involves repeated sit-stand-sit movements [103–105], 
creating a closed kinematic chain. This latter configuration perhaps has the advantage 
of forming a more natural loading of the knee joint. It potentially has the consequence 
of being inconsistent over time, as people can have the tendency of adjusting their 
movement to compensate for restricted or painful movement, thus changing the 
distribution of forces and moments acting on the knee [106]. Data comparing the 
protocols is limited, and there is no strong evidence for favouring one protocol over 
the other or indeed over alternatives, such as squatting [94, 102]. Given the protocol 
affects the loading of the joint and the frequency response of the vibration data gener-
ated, it also affects the potential consistency of the statistics derived therefrom and 
their subsequent interpretation for diagnostic and prognostic purposes. This suggests 
the necessity of a standard protocol if such techniques are to be used for monitoring 
the development of OA in an individual over time for clinical or research purposes.

Similarly, it is unclear what sort of vibrations and which frequency range is 
the most pertinent range to measure. In phonoarthrography acoustic waves in the 
audible range are of most interest. In VAG, focus is on low-frequency (<1000 Hz) 
vibrations, the cause and nature of which is more general. In AE, acoustic sig-
nals are of primary focus, albeit generally of a higher frequency than that used 
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in phonoarthrography. Whilst there is a significant amount of overlap between 
the techniques, there are important data that can be missed if one technique is 
favoured. There is little evidence to suggest that one technique is inherently better 
than the other, simply due to the lack of comparative studies. The lack of common-
ality in technique makes meta-analysis difficult. One limitation that is preventing 
the direct comparison is the lack of technologies that allow high-quality acoustic 
data to be collected at high sampling rates (>5 MSPS) for significant time periods 
as such sensors will inherently generate vast amounts of data requiring significant 
processing. Multiple sensors covering the different frequency ranges of interest 
are likely to be the way forward, but this strategy will have the disadvantage of 
comparing signals recorded at different sites, making the analysis more difficult. 
In any case, further study relating the acoustic signal back to the biomechanics of 
joint pathology may provide a stronger scientific basis to the causation of the signal, 
instead of relying on correlations. This will reduce the subjectivity of the analysis 
and facilitate diagnosis and prognosis, allowing this technique to become a power-
ful clinical tool.
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Control of a Prosthetic Arm Using 
fNIRS, a Neural-Machine Interface
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Abstract

Development in the field of bio-mechatronics has provided diverse ways to 
mimic and improve the function of human limbs. Without an elbow joint, the hand 
remains stiff because all the muscles tension passes through this joint. Advanced 
myoelectric prosthetic devices are limited due to the lack of appropriate signal 
sources on residual amputee muscles and insufficient real-time control. Neural-
machine interfaces (NMI) are representing a recent approach to develop effective 
applications. In this research study, an NMI is designed that presents real-time sig-
nal processing for command generation. The human brain hemodynamic responses 
are, therefore, translated into control commands for people suffering from trans-
humeral amputation. A novel and first of its kind scheme is proposed which utilizes 
functional near-infrared spectroscopy (fNIRS) to generate the control commands 
for a three-degree-of-freedom (DOF) prosthetic arm. The time window for fNIRS 
signals was set to 1 second. The average accuracy was found to be 82% which is a 
state-of-the-art result for such a technique. The accuracy ranged from 65 to 85% 
subject-wise. The data were trained and tested on both artificial neural network 
(ANN) and linear discriminant analysis (LDA). Eight out of 10 motions were cor-
rectly predicted in real time by both classifiers.

Keywords: functional near-infrared spectroscopy (fNIRS), real-time signal 
processing, upper-limb prosthesis, transhumeral amputees, artificial neural 
network, linear discriminant analysis

1. Introduction

Amputation is taken from the Latin terminology “amputare” meaning to cut out. 
It is a removal of a limb due to medical reasons such as diseases and accidents. After 
this, an artificial device (prosthetics) is provided to fulfill all the desired needs. A 
prosthesis is an artificial device that replaces a missing body part that may be lost 
due to any traumatic accidents or medical reasons.

In the nineteenth century, hooks and wooden limbs were used as a replacement 
to fulfill the supporting needs to overcome support as well as the psychological 
effects experienced during the time. Prosthetic arm is a biomedical device consist-
ing of links and joints in an open or closed system, which is also a combination of 
electronics. Thus, there is a need for a specified prosthetic which would help in 
fulfilling the requirements of the patient.
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fulfilling the requirements of the patient.
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Prosthetics also come under different categories concerning the patient’s 
demand and desirable need. Table 1 lists the type of amputation and their respec-
tive prosthesis type.

Controlling a prosthetic arm could be done in several ways. Some of them are by 
using Invasive Methods, which reflects a process in which an instrument is intro-
duced in the human body. In such a process, electrodes are implanted inside the 
body, which would receive and implement the process. The other referred to as the 
non-invasive method. A non-invasion process does not introduce instruments into 
the body but uses the surface information to get its details and the desired output 
that is to be determined.

In the previous studies, various strategies have been practiced to monitor muscle 
activations all through activities, as reported by Lobo Prat et al. [1] To carry out a 
valuation of muscular contraction, sonomyography (SMG), mechanomyography 
(MMG) [2, 3], miokinemetric (MK), and electric impedance estimations are classi-
cally applied. Though muscular intentions and/or contraction are often determined 
using electromyography (EMG) and near-infrared spectroscopy (NIRS) [4], it 
allows continuous monitoring of the muscle during motor actions or rehabilitative 
movements. Further practices, such as ultrasonography [5] and lactate sampling, 
offer only a representation of the muscular status at the moment of the study, and 
not an effective trace in time.

Optical brain imaging is a frequently applied methodology in human-machine 
interaction technically acknowledged as functional near-infrared spectroscopy 
(fNIRS). It allows them to monitor the quantification of the relative changes in 
concentration of oxygenated and deoxygenated hemoglobin in tissue blood based 
on artificial diffuse spectroscopy. Functional neuroimaging suggests a non-invasive 
method of indirect as well as direct monitoring of brain activity. The hardware 
involved is portable hence making it easy to carry out experiments in any environ-
ment. fNIRS is a non-invasive brain imaging method including the quantification 
of chromophore concentration determined from the measurement of near-infrared 
(NIR) light attenuation or time-based changes [6]. It exploits the optical window in 
which the fundamental elements found in the human body typically cause no hin-
drance to infrared light of small wavelength range that is 700–900 nm. In addition 
to that, oxygenated hemoglobin (Hb) and deoxygenated-hemoglobin (deoxy-Hb) 
are strong absorbers of light which are the key components to translate the brain 
response [7]. The peculiarity in the absorption bands of deoxy-Hb and oxy-Hb 
permit the estimation of near changes in hemoglobin concentration by methods 
of estimating light attenuation at a couple of known wavelengths [8]. The reason 
behind choosing more than one wavelength is to take care of the isosbestic point 
that occurs at around 810 nm. At this value of light wavelength both the absorbing 
coefficients are indistinguishable [9].

Via the improved Beer-Lambert law [10], relative concentration is evaluated 
concerning the entire length covered by the light photon [11, 12]. Now, for an 

Types of amputation Types of prosthesis

Shoulder disarticulation From shoulder below the elbow

Transhumeral Above elbow

Transradial Below elbow

Transcarpal Below elbow

Table 1. 
Types of upper-limb amputation and respective prosthesis type.
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incident ray of light an emitter and to detect that reflected light, a detector is posi-
tioned. The distance between them is also defined. Hence, a state of brain hemody-
namic is captured. The raw light concentrations that are further transformed into 
hemodynamic responses by the implementation of renowned Beer-Lambert Law 
and further utilized for feature extraction and classification. The extracted light 
intensity patterns can be viewed in Figure 1.

Several research institutions have undertaken the design and construction of 
robotic arms. These structures diverge depending upon the proposed utilization of 
the human hand. Diverse knowledge of actuation approaches has been considered 
and implemented. Earlier design approaches have focused on the mechanical 
problems of the construction and operation of the prosthetic devices. Most of these 
hardware devices are controlled via methods that are not natural, such as using 
the contraction of muscles of the opposite arm. This research attempts to lay the 
foundation for a scheme that can offer functionality similar to the human arm, with 
an intuitive technique of control.

A search carried out using Web of Science engine, to review work done in this 
area along with the gap identification, revealed no work done so far in this field 
of study.

2. Materials and methods

The human arm is capable of performing seven basic motions associated with 
joints in the human arm. To account for transhumeral amputation, three of the 
main arm motions are considered i.e. one elbow and two motions affiliated with 
the wrist joint. These motions comprise wrist extension (WE), elbow flexion (EF), 
wrist supination (WS), wrist flexion (WF), elbow extension (EE), and wrist prona-
tion (WP).

This section elaborates on the data acquisition of the defined motions. These 
motions were captured using The NIRsport manufactured by NIRx Technologies. 
It is an accessible, segmental, and robust functional near-infrared spectroscopy 
(fNIRS) machine that measures hemodynamic responses generated by neuro-
activation of the inside brain via oxy-, deoxy-, and total hemoglobin variations in 
the cerebral cortex.

The updated version, NIRsport-2 proposes a host prepared to implement 
advancements and units to meet the requirements of wide-ranging cognitive 

Figure 1. 
Raw fNIRS light intensity.
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neuroscience applications. The major advantage of this device is that it is designed 
to work in a rugged environment and also this device is portable. This feature aids in 
the development of a wearable and portable system.

2.1 Sample

A total of 15 healthy subjects were engaged who were reported to be right-
hand dominant males having a mean age of 30 with a standard deviation of 4. 
Righthanders had been pursued to confine any dissimilarities in the hemodynamic 
responses because of the hemispheric domination difference [13]. All participants 
were chosen wisely as no one of the selected subjects had engaged in any prior study 
associated with brain signal acquisition experiments. None was accounted for to 
have a past filled with any mental, neurological, or visual affliction. Every one of 
them had an ordinary vision, and all signed and agreed to a composed consent after 
being briefed in detail regarding the test procedure. Three amputee subjects also 
participated in the study. Their demographics are given in Table 2.

Trials employing fNIRS were permitted by the Air University Human Research 
Ethics Committee (HREC). These research experiments were held regarding ethical 
standards dictated by the world medical association in the recent declaration of 
Helsinki [14].

The generic methodology can be seen in Figure 2.

2.2 fNIRS data acquisition

2.2.1 Preparation

The specially designed fNIRS headset i.e. Easycap by NIRx technologies  
follows the international standard of source-detector separations i.e. 3 cm [15–24]. 
After the subject wears the cap, the optodes are calibrated. The result of this calibra-
tion can be analyzed as in Figure 3. The faulty setting is shown in Figure 3(b). 
The boxes represent optodes. The color bar indicates if the optodes are in contact 
with the scalp or not and hence the colors are assigned. The white color depicts no 
connection between scalp and optodes. The red color indicated that the connection 
between the scalp and optode is critical, i.e. it needs to be adjusted. Sometimes 
hair comes as a hindrance and just by plugging the optode again in the cap would 
help establish a better connection. If the issue is not resolved by then, a clinical 
gel (EASYCAP Supervisc, high-viscosity electrolyte-gel) is used to make sure no 
hair absorbed the light. The gel is rated healthy and is safe to use with optodes. The 
yellow color indicates that the connection is acceptable. The signals can be acquired. 
In this scenario, the machine conditions are calibrated by the machine itself. The 
machine adds a gain factor to the optodes where the connection is acceptable and it 

Patient ID A1 A2 A3

Gender Male Male Male

Age 23 32 42

Amputated side Right Left Right

Residual length (cm) 14 18 10

Time of amputation (months) 7 24 145

Table 2. 
Demographic characteristics of amputed subjects.
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is saved in conditions file which is used in signal processing later. The green color 
shows that the optodes are perfectly placed on the head surface and an excellent 
connection is established for data acquisition. It can be analyzed in Figure 3(a).

2.2.2 Acquisition

When the optodes are aligned, signal acquisition is started. The test strategy was 
segmented into training and testing. The subjects were asked to complete six tasks 
that were identified by fNIRS.

A comfortable chair was set up roughly 100 cm away from the subjects so that 
the motion cues are visible to them while the screen backlight does not interfere 
with the optical sensors [25–38]. This environment was set up for signal extraction. 
The Easycap was prepared in advance to minimize the time consumption during the 
optode placement process. Yet some of the detectors/sources had to be optimized 
during the calibration process by fixing hair via gel. The session commenced with 
an undeveloped span of 30 seconds to create a reference point. Later the screen 
indicated the participants to perform one of six definite tasks the training was 

Figure 2. 
Generic methodology.

Figure 3. 
Visual representation of optode settings. The perfect setting is illustrated in (a) meanwhile the faulty optode 
settings are shown in (b). The color bar on the right side represents the signal quality class.
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standards dictated by the world medical association in the recent declaration of 
Helsinki [14].

The generic methodology can be seen in Figure 2.

2.2 fNIRS data acquisition

2.2.1 Preparation

The specially designed fNIRS headset i.e. Easycap by NIRx technologies  
follows the international standard of source-detector separations i.e. 3 cm [15–24]. 
After the subject wears the cap, the optodes are calibrated. The result of this calibra-
tion can be analyzed as in Figure 3. The faulty setting is shown in Figure 3(b). 
The boxes represent optodes. The color bar indicates if the optodes are in contact 
with the scalp or not and hence the colors are assigned. The white color depicts no 
connection between scalp and optodes. The red color indicated that the connection 
between the scalp and optode is critical, i.e. it needs to be adjusted. Sometimes 
hair comes as a hindrance and just by plugging the optode again in the cap would 
help establish a better connection. If the issue is not resolved by then, a clinical 
gel (EASYCAP Supervisc, high-viscosity electrolyte-gel) is used to make sure no 
hair absorbed the light. The gel is rated healthy and is safe to use with optodes. The 
yellow color indicates that the connection is acceptable. The signals can be acquired. 
In this scenario, the machine conditions are calibrated by the machine itself. The 
machine adds a gain factor to the optodes where the connection is acceptable and it 

Patient ID A1 A2 A3

Gender Male Male Male

Age 23 32 42

Amputated side Right Left Right

Residual length (cm) 14 18 10

Time of amputation (months) 7 24 145

Table 2. 
Demographic characteristics of amputed subjects.
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is saved in conditions file which is used in signal processing later. The green color 
shows that the optodes are perfectly placed on the head surface and an excellent 
connection is established for data acquisition. It can be analyzed in Figure 3(a).

2.2.2 Acquisition

When the optodes are aligned, signal acquisition is started. The test strategy was 
segmented into training and testing. The subjects were asked to complete six tasks 
that were identified by fNIRS.

A comfortable chair was set up roughly 100 cm away from the subjects so that 
the motion cues are visible to them while the screen backlight does not interfere 
with the optical sensors [25–38]. This environment was set up for signal extraction. 
The Easycap was prepared in advance to minimize the time consumption during the 
optode placement process. Yet some of the detectors/sources had to be optimized 
during the calibration process by fixing hair via gel. The session commenced with 
an undeveloped span of 30 seconds to create a reference point. Later the screen 
indicated the participants to perform one of six definite tasks the training was 

Figure 2. 
Generic methodology.

Figure 3. 
Visual representation of optode settings. The perfect setting is illustrated in (a) meanwhile the faulty optode 
settings are shown in (b). The color bar on the right side represents the signal quality class.
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additionally divided into two parts. In the first part, all the tasks were recorded 
sequentially, i.e. the sequence of the tasks was pre-defined. In the second stage, the 
subjects were demanded to perform similar motions but with random intentions. 
All these six tasks were logged by fNIRS. Each task comprised of 10-second trials 
separated by a 20-second rest session. Particulars about the experimental model are 
given below in Figure 4.

The acquired data was then processed and is briefly illustrated in the coming 
section.

3. Data analysis

3.1 Pre-processing

This section explores and explains the signal processing which includes signal 
pre-processing, optode selection criteria, statistical feature computation, and the 
signal classification method to generate a control command for the control of a 
3-DOF prosthetic arm designed for transhumeral amputees.

Functional near-infrared spectroscopy is the raw light intensity values recorded 
during a change in oxygenation and de-oxygenation of the blood in the human 
brain. With the help of dual-tip optodes, this concentration is recorded with two 
different wavelengths i.e. 760 and 850 nm. In the nirsLAB environment, the data 
is further processed. nirsLAB is the signal processing software that comes with the 
machine. nirsLAB is fully aware of the specifications and conditions applied during 
signal acquisition, hence the best choice for signal processing. The unwanted data is 
truncated along with unusual spikes or discontinuities that occurred during acqui-
sition. It is then filtered to compute the hemodynamic states. These hemodynamic 
states are now utilized to extract the features.

As soon as the light intensities are acquired, they are fed to nirsLAB where first 
the time of stimulus is defined which in our case is 10 seconds as per the designed 
experimental paradigm. The data is further marked according to the conditions i.e. 
motion and rest.

Figure 5 represents the raw fNIRS data of both wavelengths i.e. 760 and 850 nm. 
It is evident that the amplitude for both data sets is different as the concentra-
tion of hemodynamic response is varying from healthy to the amputated subject. 
This is because of the absence of an arm. As the brain generates these signals, the 
unwanted responses die due to the absence of neuron carrier in the brain. The 
connection of arm and brain is cut because there is nothing present at the receiving 
end. Further, the discontinuities are removed along with the spikes if there exists 
any. The data is then fed for filtration. nirsLAB provides the commonly practiced 
filters for fNIRS data. Band-pass filter was implemented to smooth the acquired 
light intensities. The filtered and raw data at both the wavelengths are illustrated 
below in Figure 6.

Figure 4. 
Experimental model for signal acquisition.
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nirsLAB makes use of firls and filtfilt MATLAB® commands to filter the data. 
firls returns the parameters of a linear-phase filter, while filtfilt applies the filter 
parameters into the data. The latter is set to work as finite impulse response (FIR). 
The roll-off defines the width of the transition frequency band, i.e. how steep the 
transition between frequencies which are cut and frequencies which are passed for 
each of the upper and lower limits of frequency. The width of the transition band is 
calculated as Eqs. (1) and (2):

 
−

= +Upper limit 1
2

Roll off
 (1)

 
−

= −Lower limit 1
2

Roll off
 (2)

This noise-free and minimum artifact data are then used to find the hemody-
namic states by using the modified Beer-Lambert Law [10, 39–41].

This light intensity raw data is then used to compute the hemodynamic response 
of the brain. The hemodynamic changes computed offline in nirsLAB are based on 
the modified Beer-Lambert law for scattering media, as mentioned above. While 
in nirsLAB the operator can modify all input parameters of the Beer-Lambert law 

Figure 5. 
The first chunk of fNIRS data according to the defined experimental paradigm is illustrated. The initial and 
final rest is truncated. (a) fNIRS signals of healthy subjects and (b) fNIRS signals acquired from amputee 
subject.
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machine. nirsLAB is fully aware of the specifications and conditions applied during 
signal acquisition, hence the best choice for signal processing. The unwanted data is 
truncated along with unusual spikes or discontinuities that occurred during acqui-
sition. It is then filtered to compute the hemodynamic states. These hemodynamic 
states are now utilized to extract the features.

As soon as the light intensities are acquired, they are fed to nirsLAB where first 
the time of stimulus is defined which in our case is 10 seconds as per the designed 
experimental paradigm. The data is further marked according to the conditions i.e. 
motion and rest.

Figure 5 represents the raw fNIRS data of both wavelengths i.e. 760 and 850 nm. 
It is evident that the amplitude for both data sets is different as the concentra-
tion of hemodynamic response is varying from healthy to the amputated subject. 
This is because of the absence of an arm. As the brain generates these signals, the 
unwanted responses die due to the absence of neuron carrier in the brain. The 
connection of arm and brain is cut because there is nothing present at the receiving 
end. Further, the discontinuities are removed along with the spikes if there exists 
any. The data is then fed for filtration. nirsLAB provides the commonly practiced 
filters for fNIRS data. Band-pass filter was implemented to smooth the acquired 
light intensities. The filtered and raw data at both the wavelengths are illustrated 
below in Figure 6.

Figure 4. 
Experimental model for signal acquisition.
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nirsLAB makes use of firls and filtfilt MATLAB® commands to filter the data. 
firls returns the parameters of a linear-phase filter, while filtfilt applies the filter 
parameters into the data. The latter is set to work as finite impulse response (FIR). 
The roll-off defines the width of the transition frequency band, i.e. how steep the 
transition between frequencies which are cut and frequencies which are passed for 
each of the upper and lower limits of frequency. The width of the transition band is 
calculated as Eqs. (1) and (2):
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This noise-free and minimum artifact data are then used to find the hemody-
namic states by using the modified Beer-Lambert Law [10, 39–41].

This light intensity raw data is then used to compute the hemodynamic response 
of the brain. The hemodynamic changes computed offline in nirsLAB are based on 
the modified Beer-Lambert law for scattering media, as mentioned above. While 
in nirsLAB the operator can modify all input parameters of the Beer-Lambert law 
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The first chunk of fNIRS data according to the defined experimental paradigm is illustrated. The initial and 
final rest is truncated. (a) fNIRS signals of healthy subjects and (b) fNIRS signals acquired from amputee 
subject.
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(absorption coefficients and inter-optode distance), in NIRStar®, these are fixed, 
as they are calculated real-time. More precisely, the values for real-time ΔHbO and 
ΔHb computation are as follows:

Absorption coefficients are 3.843707 and 1.4865865 for 760 nm, deoxy and oxy, 
respectively, and for 850 nm, 1.798643 and 2.526391 deoxy and oxy, respectively.

The default inter-optode distance is set to 3.0 cm and the absorption coefficient 
unit is millimole per liter per centimeter (1/cm)/(mmol/L).

Figure 6. 
(a) The filtered data for both wavelengths after filtering can be seen in this illustration. Band-pass filter has 
range of 0.01–0.2 Hz. The roll-off was set to 15 as a default value. (b) The same signal is smoothed and as it 
is a large time-series, (c) a chunk of signal for a closer look is illustrated which is for the first 5 seconds of the 
activity during the task.
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Mathematically, it is defined as Eq. (3)

 ( ) ( ) ( ) ( )A  . c. d.DPF  g∆ λ = ∆ λ +λε λ  (3)

where the variables can be defined as A: light reduction, or ∆A(λ): changes in 
light reduction at a given wavelength (λ); ε(λ): loss of the chromophore at a certain 
wavelength (λ); ∆c: changes observed in the chromophore absorption; d: distance 
between source and detector; DPF(λ): differential path length factor (DPF) for a 
certain wavelength (λ); g(λ): the scattering of the light wave at a certain wavelength 
(λ), where g is annulled since it is presumed to be insignificant when only light 
attenuation (as in continuous-wave NIRS) is considered [20, 36, 42–47].

The differential path length factor (DPF) is a dimensionless modification factor 
that takes care of the increase in the optical path length that is produced by the scat-
tering of light in organic tissue. The product of DPF and source-detector separation 
evaluates the “true” path length that the light has traveled inside the biological 
tissue cell [37, 38, 48, 49]. For NIRx technologies, this value is set constant for 
wavelengths 7.25/6.38 for 760/850 nm respectively.

3.2 Feature extraction

The mathematical representation of statistical features extracted during the 
study is given as follows.

Signal mean (SM) was computed as Eq. (4)

 
=
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N
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N
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where N denotes the length of the data points within a segment and Xi repre-
sents the signal values.

Signal peak (SP) is defined by the change in signals amplitude among two 
adjacent segments which surpass a predefined threshold to reduce noise. It is given 
by Eq. (5)

 ( )+
=

= −∑
N

i i 1
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where N represents the samples while Xi and Xi+1 represent the successive 
peaks in the signal. These features are extracted and fed to the classifier to predict 
the motion.

4. Classification process

The statistical features extracted from the data sample are then fed to the classifier. 
Classifying methods are employed to predict the motion intention. To comprehensively 
evaluate the performance of features, the two widely used classifiers in pattern recog-
nition were implemented, namely, linear discriminant analysis (LDA) and artificial 
neural network (ANN). A generic yet comprehensive process is illustrated in Figure 7.
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between source and detector; DPF(λ): differential path length factor (DPF) for a 
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(λ), where g is annulled since it is presumed to be insignificant when only light 
attenuation (as in continuous-wave NIRS) is considered [20, 36, 42–47].

The differential path length factor (DPF) is a dimensionless modification factor 
that takes care of the increase in the optical path length that is produced by the scat-
tering of light in organic tissue. The product of DPF and source-detector separation 
evaluates the “true” path length that the light has traveled inside the biological 
tissue cell [37, 38, 48, 49]. For NIRx technologies, this value is set constant for 
wavelengths 7.25/6.38 for 760/850 nm respectively.

3.2 Feature extraction

The mathematical representation of statistical features extracted during the 
study is given as follows.

Signal mean (SM) was computed as Eq. (4)
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where N denotes the length of the data points within a segment and Xi repre-
sents the signal values.

Signal peak (SP) is defined by the change in signals amplitude among two 
adjacent segments which surpass a predefined threshold to reduce noise. It is given 
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where N represents the samples while Xi and Xi+1 represent the successive 
peaks in the signal. These features are extracted and fed to the classifier to predict 
the motion.

4. Classification process

The statistical features extracted from the data sample are then fed to the classifier. 
Classifying methods are employed to predict the motion intention. To comprehensively 
evaluate the performance of features, the two widely used classifiers in pattern recog-
nition were implemented, namely, linear discriminant analysis (LDA) and artificial 
neural network (ANN). A generic yet comprehensive process is illustrated in Figure 7.
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4.1 Linear discriminant analysis

Fisher’s discriminant analysis or linear discriminant analysis is a method used 
to dimensionally contract samples of two or more classes to separate them, linearly. 
This classification method projects all the samples on an imaginary line which is use-
ful for data classification. To cater for the word linear, it suggests that the classifier 
will dimension the given samples to represent the class information. It characterizes 
the resulting combinations to reduce the number of arbitrary samples by tracing a set 
of values in a distinct form. It anticipates the sample information so that each class is 
isolated without any problem. It decreases intraclass variance and increases the inter-
class mean. By doing this, unlike data samples become segmented from each other 
and their set point shrinks together so that they cannot be mixed with other classes.

LDA is commonly used for pattern classification in offline and online systems. 
This technique projects all the data points on a line in such a way that each data sample 
that corresponds to a class is separated effectively. It decreases the intra-class variance 
and increases the inter-class mean. By doing this, different classes become separated 
from each other, and their data points get closer together so that they cannot be mixed 
with other classes. LDA works by maximizing the Fisher’s criterion given in Eq. (6)

 ( ) =
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v S v
J v

v S v
 (6)

Between classes scatter matrix S_B is defined as in Eq. (7)
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where ni represents several samples that belong to class i, the class scatter matrix 
Sw is defined as in Eq. (8)
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Figure 7. 
A generic classification process.
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A generalized eigenvector problem can be represented as Eq. (9)

 B wS v = S vλ  (9)

The optimal v is the eigenvector corresponding to the largest eigenvalue can be 
written represented as in Eq. (10) provided that Sw is nonsingular.

 ( )1
W iS µ µv −= −  (10)

The classifier results were validated using the cross-validation scheme. The 
number of folds/layers was set to 10. It means that the entire data was mixed ran-
domly into 10 groups, out of which nine took part to train the classifier while one 
remains untouched for testing purposes. This process was repeated 10 times until all 
groups were tested against each other.

As an initial measure, the attributes of the dataset which need to be classified 
or dimensionally contracted will lead to the choice of applying this method as a 
classifier or a dimensionality reduction algorithm to play out any desired task. The 
primary thought of Fisher’s analysis is fundamentally to isolate sample classes lin-
early moving them to an alternate feature-space. In this way, if the considered data 
set is linearly distinguishable, just using the algorithm as a classifier will yield better 
results. In any case, if the dataset is not truly distinct the classifier will attempt to 
sort out this dataset in another space. Yet despite every measure, the classes sample 
data may overlap due to the non-linear characteristic present in the sampled dataset. 
For this situation, there emerges a need to utilize another grouping model to man-
age nonlinearities governing the dataset. Hence, a neural network that comprise of 
hidden layers is also implemented. As for the neural network, raw data is used as 
input rather than featured data. This will give a broader idea of how to predict any 
output based on the input that have non-linear characteristic.

4.2 Artificial neural network (ANN)

ANN utilizes multiple neuron layers to map data from one distribution to 
another for better and optimized classification. A technique called backpropaga-
tion helps ANN to learn the relationship between input and output class label. The 
neural network toolbox provided by MATLAB® was utilized to train the classifier. 
First, network topology and an activation function were defined and then weights 
were randomized. The model uses all training data to approximate the error of the 
predicted output as compared to the actual output. Then it uses the error to adjust 
the weights so that it could be minimized for the next training data and this process 
was repeated until the error was minimized. For this network we employed Relu as 
the activation function; the weights were initialized using the Xavier distribution, 
the network utilized the Adam optimizer function for gradient descent. We used 
60% of data for training, and 20% for testing and validation each. A confusion 
matrix was generated afterward, which had a class number corresponding to each 
arm motion. The number of hidden layers was specified i.e. 10, and system training 
was initiated. Ten neurons were present in each of the intermediate hidden layer. 
The number of neurons in output or last layer was set to be 6, which is equal to the 
number of elements in the target vector.

After classifying the information, their real-time testing was performed to 
ensure the behavior of both classifying techniques. But bear in mind that both of 
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ANN utilizes multiple neuron layers to map data from one distribution to 
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these classifiers have different parameters and methodologies. They are not com-
pared with each other here but they are implemented to grasp a comprehensive idea 
of how these different brain hemodynamic intentions can be evaluated. LDA and 
ANN were both applied separately and the outcomes are discussed in next section.

5. Results and discussions

In research, the neural-machine interfaces can have a control foundation of 
either a single modality or via hybrid activity. This present study dwells on captur-
ing hemodynamic responses from the human brain and generating the control com-
mand that can be translated to activate a prosthetic arm for transhumeral amputees. 
The results found by this particular research are discussed as follows.

These hemodynamic states are mapped using nirsLAB in Figure 8. The color bar 
represents the concentration of oxygenation.

5.1 Channel selection

The changes in oxygenated hemoglobin ΔHbO for all 20 channels and six activi-
ties of subject 6 are demonstrated in Figure 9. All of the optodes were not capturing 
the true concentration changes while brain activity was performed by the subject. 
Nevertheless, it was observed that similar channels were active when identical 
motions were executed while signal acquisition.

The channel outputs in Figure 8 serve to highlight the need for choosing good 
channels for recognizing true brain activities. According to our channel choice 
standard, signal averaging was used. It is understandable by human brain studies 
that when the right side of the human body is in motion, the left hemisphere of 

Figure 8. 
The color bar represents the concentration of oxygenation. Brain activity is shown in (a) the illustration 
represents condition 1 i.e. motion. It can be seen that the motor region is “hot” when compared to the color 
bar. It depicts motion state whereas the (b) shows that the brain is undergoing significantly low or minimal 
hemodynamic changes hence the “cool” values depicting the condition 2 i.e. rest. The red and yellow dots seen in 
the motor cortex region are representations of optodes and they were positioned according to the international 
system.
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the human brain is activated. As in our case, the subjects were asked to move their 
right hand, it is obvious that the hemodynamic patterns occurring in the right 
hemisphere are merely noise. It can be seen in Figure 8 that all the channels of 
right hemisphere i.e. channels 1–10 do not show significant activity and later they 
were discarded while classification. The left side of the motor cortex was however 
active and the channels from 11 to 20 were used to extract the statistical features 
which took part in the classification. Features were computed spatially which 
allowed the overall brain activity on the left side of the motor cortex region of the 
human brain.

Window sizing of diverse spans has been utilized in several studies for the 
detection of fNIRS features [50, 51]. It is intended to minimize the window size 
to generate a fast response for real-time applications. So, the time spans of 0–0.5, 
0–1, and 0–2 second windows were selected. These split seconds were employed for 
investigation of hemodynamic features to secure the best window size that will aid 
in decreased calculation time.

5.2 Classification accuracy

The stated performance outcomes were statistically evaluated based on the 
number of correctly predicted samples while the activity was completed during the 
period of 0–10 seconds. These actions were assessed by MATLAB® implementing 
the 10-fold cross-validation course. Student’s t-test was performed to establish the 
statistical significance of the obtained results. The confidence interval was set to 
95% (p < 0.05). The quantitative comparison between healthy subjects and ampu-
tees was not possible due to a limited number of amputees. The computed p-value 
was 0.0337 considering a 95% confidence interval. The classification accuracies of 
the subjects are shown in Figure 10.

A confusion matrix is illustrated in Table 3 where it is evident that the wrist 
pronation and supination cause the most confusion. From time to time the subject 
executes the actions and sometimes put a break to them. In so doing the muscle 
intention power descend below the threshold and is not detected, and subsequently 
tagged as uncounted or undetected.

In common practices, in addition to muscular fatigue, mental fatigue could 
likewise show up. This would affect the unwavering quality of the fNIRS signal. 
Frequent use of nicotine substances involving tea or coffee and weak eyesight are 

Figure 9. 
Optode-wise hemodynamic status visualization.
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these classifiers have different parameters and methodologies. They are not com-
pared with each other here but they are implemented to grasp a comprehensive idea 
of how these different brain hemodynamic intentions can be evaluated. LDA and 
ANN were both applied separately and the outcomes are discussed in next section.

5. Results and discussions
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represents the concentration of oxygenation.
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standard, signal averaging was used. It is understandable by human brain studies 
that when the right side of the human body is in motion, the left hemisphere of 

Figure 8. 
The color bar represents the concentration of oxygenation. Brain activity is shown in (a) the illustration 
represents condition 1 i.e. motion. It can be seen that the motor region is “hot” when compared to the color 
bar. It depicts motion state whereas the (b) shows that the brain is undergoing significantly low or minimal 
hemodynamic changes hence the “cool” values depicting the condition 2 i.e. rest. The red and yellow dots seen in 
the motor cortex region are representations of optodes and they were positioned according to the international 
system.
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accounted for in such reliability. The motion prediction accuracy of an individual 
can be changed under the influence of such conditions.

5.3 Control command generation

After the results from the classifier are returned, they are translated into a con-
trol command. The motions are assigned abbreviations identical as used in Section 
2. They are listed here as in Table 4.

While testing, the machine responds as the variables illustrated in Table 4 that 
are assigned to each class motion. The controllers further single-out one definitive 
motion which can be analyzed while testing the data.

These control commands can be further translated to motor action via a control-
ler such as Arduino, Raspberry Pi, Odroid, etc. as the program routine is written in 
a language supported by all these controllers. A three degree of freedom device can 
be actuated using this neural-machine interface scheme.

To eliminate the channel selection part, manufacturers are working on bundled 
optodes. Using these bundled optodes will not only eliminate the channel selection 

Output class 1 2 3 4 5 6

Target class

1 5010
100.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

2 0
0.0%

4978
99.3%

12
0.3%

0
0.0%

0
0.0%

0
0.0%

3 0
0.0%

0
0.0%

3648
73%

720
14.4%

0
0.0%

0
0.0%

4 0
0.0%

20
0.4%

630
12.6%

3617
72.1%

0
0.0%

0
0.0%

5 0
0.0%

0
0.0%

0
0.0%

0
0.0%

5001
99.8%

0
0.0%

6 0
0.0%

0
0.0%

0
0.0%

23
0.5%

9
0.2%

4978
99.3%

Table 3. 
Confusion matrix of motion prediction.

Figure 10. 
A representation of subject-wise accuracies. Healthy subjects are presented as S1–S15 whereas amputees are 
labeled A1–A3. All concerning classifying technique as LDA and ANN.
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complications but it will also help in physical attributes as the whole head will not 
be covered. It will be easy to wear the head cap because of a smaller number of 
optodes and wires going around.

Also, using a different feature set may aid in the increase in accuracy. Rather 
than extracting three or four features, only one optimal feature can be evaluated. 
Hybridization of bio-signals can be done using advanced probability models 
or neural networks can be trained and implemented to hybridize different 
modalities.

6. Conclusion

fNIRS signals were acquired using the NIRSport machine developed by NIRx 
technology. These signals were recorded for six motions i.e. elbow extension (EE), 
elbow flexion (EF), wrist supination (WS), wrist pronation (WP), wrist extension 
(WE) and wrist flexion (WF) and were further analyzed. Mean and peak feature 
was extracted from the hemodynamic response of the brain. Also, minimum 
values were extracted for channel selection. The hemodynamic responses acquired 
from the brain were trained and tested by two widely used classifiers in pattern 
recognition i.e. LDA and ANN. The highest value of accuracy for an individual 
subject was recorded at 85% which is not yet achieved with six control commands 
employed by fNIRS. Both the classifiers were also active for real-time analysis. As 
a result of such high value of training accuracy, 8 out of 10 motions were cor-
rectly predicted in real-time setting. Possible extension of this work could be to 
hybridize these fNIRS signals together with another signal modality to not only 
increase the accuracy but also the number of control commands. Arm movement 
pattern for different age groups can be further explored. The number of amputed 
subjects could be increased to acquire data which will aid in better understanding 
of hemodynamic behavior of human brain and how it can be used to predict the 
arm motions.
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Chapter 5

Flicker-Noise Spectroscopy
Method in the Problem of
Diagnosing the State of the
Cardiovascular System
Abdullayev Namiq Tahir and Ahmadova Khadija Ramiz

Abstract

In the field of research of the cardiovascular system, mainly analysis methods
that are strictly mathematically applicable to stationary signals are distinguished;
however, nonstationary signals prevail in medical practice, the statistical properties
of which vary with time. Often they consist of short-term high-frequency compo-
nents, followed by long-term low-frequency components. Given this nature of
bioelectric potentials, and in particular electrocardiographic signals, the most suit-
able for their analysis may be the nonlinear dynamics method with the calculation
of quantitative characteristics of chaos. This possibility is presented by the flicker-
noise spectroscopy method, which takes into account the intermittency effect in a
complex dynamic system when sections of chaotic bursts and jumps alternate with
relatively long sections of a laminar nature. The analysis of signals of such a
dynamic nature is usually based on the use of flicker-noise spectroscopy.

Keywords: flicker-noise spectroscopy, electrocardiographic signals, analysis,
intermittency, diagnostics

1. Introduction

The flicker-noise spectroscopy method is proposed as a general phenomenolog-
ical (non-model) approach to the analysis of chaotic signals of different nature.
The essence of flicker-noise spectroscopy is to give informational significance to the
correlation relationships that are realized in sequences of signal irregularities—
bursts, jumps, and kinks of derivatives of various orders—as carriers of information
about changes occurring at each spatiotemporal level of the hierarchical organiza-
tion of the dynamic system under study. The autocorrelation function ψ τð Þ is used
as a basic image for extracting information from complex signals in the flicker-noise
spectroscopy method [1, 2].

To classify information, this function is not analyzed but some of its transfor-
mations (“projections”), such as power spectrum S fð Þ, where f is the signal fre-
quency, and the difference moment (“transition structure function”) Φ 2ð Þ τð Þ of the
second order. The information extracted from the analysis of dependencies S fð Þ
and Φ 2ð Þ τð Þ, built on the basis of time series V tð Þ, has the meaning of correlation
times or parameters, characterizing the loss of correlation relationships (“mem-
ory”) for the irregularities under consideration such as bursts and jumps.
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Moreover, only irregularities of the type of jumps of dynamic variable V tð Þ
contribute to the formation of dependence Φ 2ð Þ τð Þ, and jumps and bursts (out-
bursts) of chaotic series V tð Þ contribute to the formation of S fð Þ.

The solution to the problem of predicting the evolution of a complex system and,
above all, the search for precursors (precursors) of catastrophic changes in it is associ-
ated with themost dramatic changes in dependencies S fð Þ andΦ 2ð Þ τð Þ p ¼ 2, 3, …ð Þ
calculated on the basis of high-frequency and low-frequency componentsV tð Þ.

2. Splitting an electrocardiographic signal into low-frequency and
high-frequency components

The behavior of the electrocardiographic signal, reflecting the functional state
of the cardiovascular system, is quite complicated and has the character of
randomness.

The most general form of evolution in dynamic variable V tið Þ for the ith space–
time level of the electrocardiographic signal is presented in the form of intermittency,
when not all intervals on the time axis are informationally equivalent. Such dynamics
of the electrocardiogram (ECG) is characterized (Figure 1) by relativelyweak changes
in the variable over relatively long time intervals—“laminar phases”with characteris-
tic durations ofTi and sudden interruptions of such evolution by abrupt changes in the
value of the dynamic variable in the short intervals of duration τi τi <Tið Þ.

Each such abrupt change in the values of a dynamic variable then ends up with
values in the subsequent “laminar” section. The magnitude and duration of such
jumps, surges, and “laminar” sections are specific for each of the cardiovascular
systems, causing a certain contribution to the corresponding power spectrum.

In this case, the studied signal V tð Þ is conveniently represented as the sum of the
two terms: the singular term VS tð Þ, which is formed only by bursts of the dynamic
variable, and the regular term VR tð Þ ¼ V tð Þ � VS tð Þ, which is formed after
subtracting bursts from the presented signal and determined by the jumps of the
dynamic variable and “laminar phases.”

The analysis of the electrocardiogram shows that it corresponds to the described
dynamics, when bursts in the form of QRS complexes alternate with rather small
jumps in the form of P and T teeth and extended phases in the form of an isoline.

The information contained in S fð Þ and Φ 2ð Þ τð Þ is different, so in order to
determine the adequate parameters of the structure under study, it is necessary to
analyze the dependencies log S fð Þ ¼ F log fð Þ and log Φ 2ð Þ τð Þ ¼ F log τð Þ.

Let V tð Þ denotes the dynamic variable, characterizing the ECG signal. We apply
the proposed method of splitting the dynamic signal into low-frequency VR tð Þ and

Figure 1.
The dynamics of the electrocardiogram.

72

Data Acquisition - Recent Advances and Applications in Biomedical Engineering

high-frequency VS tð Þ components. This method is built by analogy (Figure 2) with
the solution of the diffusion equation and is based on the following “relaxation”
procedure:

1.Set the value V1, … ,VN of signal V with a step of discreteness Δt.

2.Calculate Vh i ¼ 1
N

Pn
k¼1V kð Þ and put V Rð Þ ≔V kð Þ � Vh i, k ¼ 1, … ,N.

3.We calculate

ψ mτð Þ ¼ 1
N �mτ

XN�mτ

k¼1

V kð ÞV kþmτð Þ,mτ ¼ τ=Δt½ � (1)

where Φ 2ð Þ τð Þ ¼ 2 ψ 0ð Þ � ψ τð Þ½ �, σ2 ¼ ψ 0ð Þ, τ ¼ mτ � Δt

mτ ¼ 0, 1, … ,M� 1,M∈N (2)

4.We plot Φ 2ð Þ τð Þ in bilogarithmic coordinates.

The asymptotic representation for Φ 2ð Þ τð Þ is

Φ 2ð Þ τð Þ ¼ τ2H1 , if τ< <T1

2σ2, if τ> >T1:

(
(3)

5.We take for T1 the value τ, at which logΦ 2ð Þ τð Þ begins to stabilize to a constant
equal to log 2σ2ð Þ.

6.Choose a sequence of small τkf g k ¼ 1, … , k0 k0 ≈ 20ð Þ, τk < <T1, and
construct a regression y ¼ axþ b b ¼ 0ð Þ; y ¼ lnΦ 2ð Þ τð Þ, x ¼ ln τ, a ¼ 2H1.

According to the least squares method (LSM) estimate â, we calculate the
estimate H1 ¼ â=2.

7.We calculate

Figure 2.
Typical curve for function Φ 2ð Þ τð Þ, characterizing a chaotic signal V tð Þ without a resonant component.
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D ¼ σ2

Γ2 1þH ∗
1

� � � T ∗
1

(4)

To calculate Γ xð Þ for x ¼ 1þH1, put n ¼ 103and represent Γ xð Þ in the form

Γ xð Þ ¼ Γ xþ 1ð Þ
x

¼ Γ xþ 2ð Þ
x xþ 1ð Þ ¼ ⋯ ¼ Γ xþ nð Þ

x xþ 1ð Þ � xþ ntð Þ : (5)

The value Γ zð Þ (we have z ¼ xþ n) is calculated by the formula

Γ zð Þ ¼ exp z� 1
2

� �
ln z� zþ 1

2
ln 2π

� �
(6)

with an error of order z�1 ≈ 10�3 n≈ 103 z ¼ xþ n.

8. Denote by Δt and Δτ the steps of discreteness in t and τ, and

ω ¼ D � Δτ= Δtð Þ2 (7)

choose Δτ so that ω< 1=2.

9. Put M≔N� 1, and construct an iterative procedure according to j ¼ 0, 1, … , ,
according to which the value Vjþ1

k at the jth step is calculated through the value

Vj
k according to the formula

Vjþ1
k ¼ ωVj

kþ1 þ ωVj
k‐1 þ 1� 2ωð ÞVj

k (8)

at j ¼ 0 we set Vj
k ¼ V kð Þ; at k ¼ 1 and k ¼ M, the values of Vjþ1

k are calculated
by the formulas

Vjþ1
1 ¼ 1� 2ωð ÞVj

1 þ 2ωVj
2, Vjþ1

M ¼ 1� 2ωð ÞVj
M þ 2ωVj

M�1: (9)

The procedure stops at step j ¼ j0, in which.

Vj0þ1
k � Vj0

k

���
���< ε, for Vk ¼ 1, … ,M, k ¼ 1, 2, … , N,

where ε is the given number (e.g., ε ¼ 10‐mþ1, where 10‐mis the error in
setting the initial values Vk).

10. The values Vj0
k determine the low-frequency component VR tð Þ. Then V tð Þ �

VR tð Þ ¼ VS tð Þ is the high-frequency component of the signal V tð Þ.

The described signal smoothing procedure is focused on minimizing the “high-
frequency” information in the “low-frequency” part VR tð Þ of the signal and vice
versa, minimizing the “low-frequency” information in the “high-frequency” part
VS tð Þ of the signal. This conclusion follows from the diffusion nature of the partial
differential equation used

∂V
∂τ

¼ ∂
2V
∂t2

, (10)

represented as a difference equation
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Vjþ1
k � Vj

k

Δτ
¼ Vj

kþ1 þ Vj
k‐1 � 2Vj

k

Δtð Þ2 , (11)

corresponding to the simplest difference scheme for numerically solving
Eq. (10). From (11) we obtain

Vjþ1
k ¼ Vj

k þ
Δτ
Δtð Þ2 Vj

kþ1 þ Vj
k‐1 � 2Vj

k

� �
:

In notation ω ¼ Δτ= Δtð Þ2, the last equation is written in the form (8). From the
theory of stability of difference schemes, it is known that this difference scheme
will be absolutely stable at ω< 1=2.

Such a relaxation procedure realizes the maximum rate of entropy generation
and uses the relationship of entropy and Fisher information, which is a quantitative
measure of the heterogeneity of the distribution density of the analyzed data array.

3. Parameterization of the singular component of the ECG signal

The procedure for parameterizing the singular part of the signal consists of the
following sequence of steps [3]:

1. Let V tð Þ be represented as a sum

V tð Þ ¼ VR tð Þ þ VS tð Þ:
2.Let tk ¼ kΔt k ¼ 1, … ,Nð Þ, t0 ¼ 0, tN ¼ T points of task V tð Þ by 0,T½ � with a
certain step of discreteness Δt;N ¼ T=Δt½ �.
We calculate the average value:

V tð Þh i ¼ 1
N

XN

k¼1

V tkð Þ (12)

In what follows, we will assume that V tð Þh i ¼ 0, i.e., signal V tð Þ, is stationary.

3. For stationary signalV tð Þ, the power spectrum S fð Þ (Fourier transform of the
autocorrelation function ψ τð Þ) coincideswith Sc fð Þ (cosine Fourier transform of
ψ τð Þ).
We set M from condition 4

3 ≤M≤N (in practice, take M close to N). We
assume that M is an even number. For a time delay of mτ ¼ 0, 1, … ,M� 1,
we calculate the autocorrelator:

ψ mτð Þ ¼ 1
N �mτ

XN�mτ

k¼1

V kð ÞV kþmτð Þ (13)

4. Let f ¼ q=M
Δt .

We calculate the power spectrum S fð Þ ¼ Sc fð Þ
Sc fð Þ ¼ 1

Δt
Sc qð Þ

Sc qð Þ ¼ ψ 0ð Þ þ ψ
M
2

� �
�1ð Þq þ 2

X
M
2
� 1

m¼1

ψ mð Þ cos 2πqm
M

� �
,

q ¼ 0, 1, … ,M� 1ð Þ

(14)
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k � Vj

k

Δτ
¼ Vj

kþ1 þ Vj
k‐1 � 2Vj

k

Δtð Þ2 , (11)

corresponding to the simplest difference scheme for numerically solving
Eq. (10). From (11) we obtain

Vjþ1
k ¼ Vj

k þ
Δτ
Δtð Þ2 Vj

kþ1 þ Vj
k‐1 � 2Vj

k

� �
:
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5. We will construct the image S fð Þ (or S fð Þj j, if in some frequencies S fð Þ<0)
in a bilogarithmic scale (Figure 3).

From Figure 3 we find the frequency f ¼ f 0, starting from which S fð Þ
ceases to stabilize around a certain constant S 0ð Þ.

6. Let f ∗ , f
∗h i

be the frequency interval in the region of the graph S fð Þ
(or S fð Þj j), preceding the first strong peak of the power spectrum S fð Þ,
corresponding to “irregularity-burst.” We assume that S fð Þ increases at
f ∈ f ∗ , f

∗h i
and S ∗

s 0ð Þ—a certain number from interval S f ∗ð Þ, S f
∗� �h i

.

7. We calculate the autocorrelator ψS,R τð Þ according to the formula.

ψS,R τð Þ ¼ 1
N �mτ

XN�mτ

k¼1

VS kð ÞVS kþmτð Þ þ VR kð ÞVS kþmτð Þ þ VS kð ÞVR kþmτð Þ½ �,

mτ ¼ 0, 1, … ,M� 1ð Þ
(15)

8. We calculate the singular component SS fð Þ of spectrum S fð Þ by the formula

SS fð Þ ¼ 1
Δt

SS qð Þ

SS qð Þ ¼ ψS,R 0ð Þ þ ψS,R
M
2

� �
�1ð Þq þ 2

X
M
2
� 1

m¼1

ψS,R mð Þ cos 2πqm
M

� �

q ¼ 0, 1, … ,M� 1ð Þ

(16)

9. For parameterization SS fð Þ, we approximate this function by an interpolation
expression:

ŜS fð Þ≈ SS 0ð Þ
1þ 2πfT0

� �n0 (17)

Parameter T0 by formula (17) will be determined by Algorithm 1, assuming
that the “experimental” spectrum SS fð Þ is calculated by formula (16).

Algorithm 1.

Figure 3.
Typical curve for function S fð Þ, characterizing a chaotic signal V tð Þ without a resonant component.
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9.1. Using the spectrum graph (Figure 3), we introduce the constants
f ∗
0 , f

∗ , f
∗
, S ∗

S 0ð Þ, as well as the threshold value RSS ∗ ¼ 1010.
9.2. We set SS 0ð Þ ¼ S ∗

S 0ð Þ and evaluate the parameters T0, n0.
Build a regression

y ¼ axþ b,

where

y ¼ ln
Ss 0ð Þ
Ss fð Þ � 1
����

����, x ¼ ln 2πf , a ¼ n0, b ¼ n0 lnT0,

and estimate the coefficients a and b using the least squares method (least
squares) for sample ym, xm

� �
with ym and xm, corresponding to frequencies

f m ¼ m
M�Δt m ¼ 0, 1, … ,M� 1ð Þ.

We calculate the residual sum of squares

RSS 1ð Þ ¼
XM�1

m¼0

ym � âxm þ b̂
� �h i2

,

where â and b̂ LSM are the estimations of parameters a and b.

If RSS 1ð Þ <RSS ∗ , then RSS ∗ ≔RSS 1ð Þ, n̂0 ¼ n ∗
0 , T

∗
0 ¼ T̂0, where n̂0 ¼ â, T̂0 ¼

exp b̂=â
n o

.

9.3. We set n0 ¼ n ∗
0 , SS 0ð Þ ¼ S ∗

S 0ð Þand evaluate T0.
Build a regression

y ¼ axþ b b ¼ 0ð Þ,

where

y ¼ Ss 0ð Þ
Ss fð Þ � 1
����

����
1=n0

, x ¼ 2πf , a ¼ T0:

We calculate RSS 2ð Þ ¼ PM�1

m¼0
ym � âxm
� �2.

If RSS 2ð Þ <RSS ∗ , then RSS ∗ ≔RSS 2ð Þ and T ∗
0 ¼ T̂0, where T̂0 ¼ â.

9.4. We set T0 ¼ T ∗
0 , n0 ¼ n ∗

0 and evaluate SS 0ð Þ.
Build a regression

y ¼ axþ b b ¼ 0ð Þ,

where

y ¼ Ss fð Þ, x ¼ 1
1þ 2πf T0ð Þn0

, a ¼ SS 0ð Þ

We calculate RSS 3ð Þ ¼ PM�1

m¼0
ym � âxm
� �2.

If RSS 3ð Þ <RSS ∗ , then RSS ∗ ≔RSS 3ð Þ, SS 0ð Þ ¼ ŜS 0ð Þ, where ŜS 0ð Þ ¼ â.
9.5. We set SS 0ð Þ ¼ S ∗

S 0ð Þ, T0 ¼ T ∗
0 and evaluate n0.
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Build a regression

y ¼ axþ b b ¼ 0ð Þ,

where

y ¼ ln
Ss 0ð Þ
Ss fð Þ � 1
����

����, x ¼ ln 2πfT0ð Þ, a ¼ n0:

We calculate RSS 4ð Þ ¼ PM�1

m¼0
ym � âxm
� �2.

If RSS 4ð Þ <RSS ∗ , then n ∗
0 ¼ n̂0, where n̂0 ¼ â.

As a result of Algorithm 1, we obtain the three parameters SS 0ð Þ ¼ S ∗
S 0ð Þ,

n0 ¼ n ∗
0 , T0 ¼ T ∗

0 , characterizing the interpolation expression (17) for the singular
component of the spectrum SS fð Þ.

4. Informative diagnostic parameters of the singular component
of the ECG signal

During a computational experiment, electrocardiographic signals with a normal
state of the cardiovascular system and pathological signals (“tachycardia,”
“arrhythmia,” and “atrial fibrillation”) were analyzed. We used data from the
public site www.PhysioNet.org for the II standard lead. The ECG removal parame-
ters (type of lead, sampling frequency, time, number of samples, and signal ampli-
tude) are included in the sample. The sampling rate for various samples varies from
125 to 1000 Hz. The values of the presented samples, taking into account the sign
discharge, correspond to the use of a 12-bit ADC.

In Figures 4–6, the graphs of the spectral power of the ECG signal for the norm,
the singular component of this signal, and the estimation of the singular component
of this signal are presented.

In Figures 7–9, as an example, similar relationships for an ECG signal with a
range of “atrial arrhythmia” are presented.

Figure 4.
Graphs of the spectral power of the ECG signal for the norm.
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Figure 5.
Graphs of the singular component of this signal.

Figure 6.
Graphs of the estimation of the singular component of this signal.

Figure 7.
Graphs of the spectral power of the ECG signal for the “atrial arrhythmia.”
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Figure 7.
Graphs of the spectral power of the ECG signal for the “atrial arrhythmia.”
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For all the considered states of the cardiovascular system, the same dependen-
cies were obtained, and based on the obtained dependencies, informative parame-
ters of the singular component of the ECG signals were calculated (Table 1).

The high specificity of S fð Þ patterns obtained in the study of the cardiovascular
system in the norm with the indicated pathologies can be used to diagnose diseases.
Dependence S fð Þ built on the basis of different ECGs and the corresponding
informative parameters obtained by them differ from each other, which gives

Figure 9.
Graphs of the estimation of the singular component of the “atrial arrhythmia.”

Figure 8.
Graphs of the singular component of the “atrial arrhythmia.”

ECG signal n0 T0 Ss(0)

Norm 0.3414 0.0042 437.8090

Atrial fibrillation 0.3836 0.0036 334.3640

Ventricular tachycardia 0.4123 0.0032 197.3580

Atrial arrhythmia 0.4013 0.0059 43.7105

Table 1.
Informative parameters of the singular component of ECG signals.
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reason to consider these dependencies as patterns characterizing the condition of
the patient under study. The obtained informative parameters can be considered as
distinguishing features for the differential diagnosis of cardiovascular diseases (e.g.,
using artificial neural networks).

This approach shows the possibility of flicker-noise spectroscopy as a method
that allows you to establish significant differences in the original, visually not very
different, ECG signals.

5. Parameterization of the regular part of the ECG signal and
determination of informative diagnostic parameters

The determination of the parameters of a chaotic signal given on a limited
interval T is set on the basis of the flicker-noise spectroscopy method, taking into
account the contributions of the “resonant components” to the autocorrelation
function [4].

Ψ τð Þ ¼ V tð Þ,V tþ τð Þh i, (18)

and, therefore, to cosine conversion

Sc fð Þ ¼
ðT=2

�T=2

Ψ τð Þ cos 2πf τð Þdτ (19)

and second-order difference moment

Φ 2ð Þ τð Þ ¼ V tð Þ � V tþ τð j2�� E
:

D
(20)

Here V tð Þ is a stationary signal V tð Þh i ¼ 0ð Þ, and �h i is a symbol of the average
value.

The developed method of signal parametrization is based on the fact that the
introduced “irregularities-bursts” and “irregularities-jumps” contribute to various
spectral regions of dependence S fð Þ.

In fact, the first step in the parameterization of irregularities was to isolate the
“burst” (singular), most “high-frequency” (the so-called “flicker-noise tail”) com-
ponent of the signal irregularities in the spectral dependence S fð Þ.

Based on the remaining (after subtracting the “burst” contribution) spectral
dependence, we can now determine the structure functionΦ 2ð Þ τð Þ, which contains the
contributions from the “jump” and “resonance” components that slowly change
against its background. The next steps are to parameterize the “higher frequency” (of
those remaining) “hopping” (regular) component using the least squares method.

It must be borne in mind that when solving the signal parametrization problem
under consideration, problems arise due to the limited averaging interval T. For this
reason, in particular, it is the “experimental” dependenceV(t) constructed on the basis
of observed signal S(f) that may turn out to be negative in some frequency intervals.
Therefore along with four in such cases, S(f) is introduced into consideration.

The procedure for parameterizing the regular part of the signal is presented
below in the form of the following sequence of operations:

1. From the extreme spectrum S(f), we subtract the singular component Ss(f)
calculated by the interpolation formula (we denote the result by SrR(f))
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SrR fð Þ ¼ S fð Þ � Ss fð Þ (21)

The resulting difference characterizes the contribution of the “resonant”
components Sr fð Þ and the “irregularities-jumps” SR fð Þ to the general
dependence S fð Þ. If it turns out that SrR fð Þ<0 in some frequency intervals,
we assume SrR fð Þ≔ SrR fð Þj j.

2. Take the inverse cosine Fourier transform of SrR fð Þ

ψ rR τð Þ ¼ 2
ðfmax

0

S fð Þ cos 2πfτð Þdf, τ≤ τ ∗ ¼ T=4ð Þ (22)

fmax ¼ 1
4Δt

, τ ¼ k � Δτ k ¼ 1, … , k0ð Þ,Δτ ¼ T=4
k0

, k0 ¼ 500:

Put a ¼ 0, b ¼ fmax, h ¼ fmax=n, n ¼ 100, SrR fð Þ � cos 2πf τð Þ ¼ g f , τð Þ and
apply the trapezoid formula:

ðb

a

g f , τð Þdf ¼ h
g a, τð Þ

2
þ g aþ h, τð Þ þ g aþ 2h, τð Þ þ … þ g b� h, τð Þ þ g b, τð Þ

2

� �

3. We calculate

Φ 2ð Þ
rR τð Þ ¼ 2 ψ rR 0ð Þ � ψ rR τð Þ½ �, τ ¼ k � Δτ k ¼ 1, … , k0ð Þ.

4. Put ~Φ 2ð Þ
r τð Þ ¼ ~Φ 2ð Þ

rR τð Þ.
5. We denote

~Φ 2ð Þ
τð Þ ¼ Φ 2ð Þ

r τð Þ þΦ 2ð Þ
R τð Þ: (23)

where Φ 2ð Þ
R τð Þ is given by the interpolation formula:

Φ 2ð Þ
R τð Þ ¼

2σ21 �
1

Γ2 H1 þ 1ð Þ
τ

T1

� �2H1

, τ< <T1,

2σ21 1� Γ�1 H1ð Þ τ
T1

� �H1�1
exp � τ

T1

� �� �2

8>>><
>>>:

(24)

6. Compare the experimental structural function Φ 2ð Þ τð Þ, determined by the
formula

Φ 2ð Þ τð Þ ¼ 2 ψ 0ð Þ � ψ τð Þ½ �, (25)

where

ψ mτð Þ ¼ 1
N �mτ

XN�mτ

k¼1

V kð ÞV kþmτð Þ

mτ ¼ τ=Δt½ �
(26)

with function Φ 2ð Þ τð Þ determined by formula (20) using the least squares
method.
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• We set RSS ∗ ¼ 1010, T1 ¼ T ∗
1

• A preliminary estimate T ∗
1 of parameter T1 can be obtained using the

asymptotic representation of structure function Φ 2ð Þ τð Þ (Figure 10).

The value Φ 2ð Þ τð Þ is taken as T ∗
1 for small delays, at which Φ 2ð Þ τð Þ≈ 2σ2 takes the

maximum value Φ 2ð Þ τð Þ≈ 2σ2.
We estimate parameters σ1,H1 at τ< <T1.
Build a regression

y ¼ axþ b,

where

y ¼ ln Φ 2ð Þ τð Þ �Φ 2ð Þ
r

n o
, x ¼ ln

τ

τ1

� �
, a ¼ 2H1, b ¼ 2 ln

σ1
Γ2 H1 þ 1ð Þ :

LSM-estimates â and b̂ are obtained on the basis of sequence τkf g, k ¼ 1, … , k1ð Þ
close to τ ¼ 0, using representation (21) for Φ̂ 2ð Þ

τð Þ.
We calculate

RSS 1ð Þ ¼
Xk1
k¼1

yk � âxk þ bð Þ� �2,

• where yk and xk correspond to delays τk.

• If RSS 1ð Þ ≥RSS ∗ , then go to Section 6.5.

• Otherwise, set RSS ∗ ≔RSS 1ð Þ, σ ∗
1 ¼ σ̂1, and H ∗

1 ¼ Ĥ1, where Ĥ1 ¼ â
2 and

σ̂1 ¼ Γ2 Ĥ1 þ 1
� �

exp b̂=2
n o

.

Figure 10.
Graph of function Φ 2ð Þ τð Þ in bilogarithmic coordinates.
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• Given σ1 ¼ σ ∗
1 , we estimate H1,T1 at τ< <T1

• Build a regression

y ¼ axþ b b 6¼ 0ð Þ,

• where a ¼ 2H1, b ¼ � lnΓ2 H1 þ 1ð Þ � 2H1 lnT1, y ¼ ln Φ 2ð Þ τð Þ�Φ 2ð Þ
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• where y ¼ Φ 2ð Þ τð Þ �Φ 2ð Þ
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â=2

p
.
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1 ¼ σ̂1.

• 6.5. Suppose RSS ∗ , σ ∗
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∗
1 , T

∗
1 .

• As a result of the proposed algorithm,we obtain the three parameters σ1 ¼ σ ∗
1 ,

H1 ¼ H ∗
1 , andT1 ¼ T ∗

1 , characterizing the interpolationexpression (21) forΦ
2ð Þ
R τð Þ.

6. Informative diagnostic parameters of the regular component
of the ECG signal

Using the above algorithm, we obtained the graphs of functions Φ 2ð Þ τð Þ in
bilogarithmic coordinates for the normal state of the cardiovascular system and a
number of “catastrophic” arrhythmias (ventricular tachycardia, atrial fibrillation,
atrial arrhythmia). An example is given of such a dependence for the state of the
cardiovascular system—“ventricular tachycardia” (Figure 11) and atrial arrhythmia

Figure 11.
Dependence logΦ(2)(τ) for ventricular tachycardia.

85

Flicker-Noise Spectroscopy Method in the Problem of Diagnosing the State of the Cardiovascular…
DOI: http://dx.doi.org/10.5772/intechopen.92264



• where y ¼ Φ 2ð Þ τð Þ �Φ 2ð Þ
r , x ¼ 1� Γ�1 H1ð Þ τ

T1

� �H1�1
exp � τ

T1

n o� �2
, a ¼ 2σ1.

• We calculate the least squares method (LSM) estimation by sequence τkf g,
τk ¼ T � k k ¼ 1, … , k1ð Þ.

• We calculate σ̂1 ¼
ffiffiffiffiffiffiffiffi
â=2

p
.

• We calculate RSS 4ð Þ ¼ Pk1
k¼1

yk � âxk
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(Figure 12). When conducting a computational experiment, we used the experi-
mental data from the publicly available website www.PhysioNet.org.

For the considered conditions of the cardiovascular system, on the basis of the
obtained dependencies, the informative parameters of the regular component of the
ECG signals were calculated (Table 2).

Thus, for the considered functional conditions of the cardiovascular system,
three informative parameters n0,T0, Ss(0) for the singular component of the ECG
signal and three informative diagnostic parameters σ1, H1,T1 for the regular com-
ponent of the ECG signal were obtained by flicker-noise spectroscopy.

A complex of six diagnostic parameters can be used to diagnose catastrophic
conditions of the cardiovascular system (e.g., using an artificial neural network,
where these parameters are considered as input data).

7. Fluctuation dynamics of electrocardiograms and the choice
of sampling frequency of the studied signals

In the general case, when analyzing a complex chaotic signal measured at a
certain sampling frequency fd, a set of the indicated parameters is determined that
characterizes the correlation interconnections in the sequences of irregularities-
jumps and irregularities-bursts characteristic of a given signal determined with a
sampling frequency of fd. Thus, one of the main factors allowing to realize the
allocation of the contribution of irregularities to the analyzed real signals is the

No. ECG signal σ1 H1 T1

1 Norm 0.55 11.133 15.080

2 Atrial fibrillation 0.435 11.388 0.0640

3 Ventricular tachycardia 0.51 10.913 0.6840

4 Atrial arrhythmia 0.208 11.298 11.560

Table 2.
Informative parameters of the regular component.

Figure 12.
Dependence logΦ(2)(τ) for atrial rhythm.
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variation of the used frequencies fd. If the analyzed time series is obtained at a
sufficiently high sampling frequency fd, then the analysis of dependencies Φ 2ð Þ τð Þ
and S(f), calculated on the basis of time series obtained from the initial time series
with a decreasing sampling frequency, allows us to estimate the measure of “stabil-
ity” of parameters σ1,T1 and H1 (for Φ 2ð Þ τð Þ) and the measure of variability of
parameters Ss 0ð Þ,T0 and n0 (for S(f)).

The high specificity of dependencies Φ 2ð Þ τð Þ and S(f) obtained by analyzing the
state of complex systems can be used to diagnose diseases, as well as a combination
of these parameters for their classification. We analyzed the four types of ECG
signals—normal and cardiac “catastrophic” arrhythmias that directly threatened the
patient’s life, ventricular tachycardia, atrial fibrillation, and atrial arrhythmia. To
identify the characteristics of the analyzed signals, it is necessary to evaluate the
entire set of digitized data of V(t) electrocardiograms for the indicated states of the
cardiovascular system. When conducting the computational experiment, the
experimental data from the public site www.PhysioNet.org were used.

The signals were taken from the II standard lead for �60 s with a sampling
frequency of fd = 500 Hs and containingN = 29,859 values. Thus, a time series of ECG
signals was obtained at a sufficiently high sampling frequency of fd, since it can be
used to obtain a set of new time series at sampling frequencies of less than fd times.

The results of the corresponding analysis for the indicated functional conditions
of the cardiovascular system at a sampling frequency of ECG signals fd = 500 Hs are
shown in Table 3.

No. ECG signal Singular component Regular component

Ss(0) T0 n0 σ1 H1 T1

1 Norm 437.80 0.0042 0.3414 0.55 11.133 15.080

2 Ventricular tachycardia 197.358 0.0032 0.4123 0.51 10.913 0.6840

3 Atrial fibrillation 334.364 0.0036 0.3836 0.435 11.388 0.0640

4 Atrial Arrhythmia 43.7105 0.0059 0.4013 0.208 11.298 11.560

Table 3.
Informative diagnostic parameters for various functional conditions of the cardiovascular system.

fd, Hs N Singular component Regular component 4S 0ð Þ
N

Ss(0) T0 n0 σ1 H1 T1

500 29.859 437.80 0.0042 0.3414 0.55 11.133 15.080 0.05

250 14.930 403.72 0.0028 0.4187 0.5044 10.845 1.38 0.08

Table 4.
Norm.

fd, Hs N Singular component Regular component 4S 0ð Þ
N

Ss(0) T0 n σ1 H1 T1

500 29.859 197.358 0.0032 0.4123 0.5180 10.913 0.6840 0.026

250 14.930 175.80 0.0034 0.3446 0.517 15.200 0.340 0.10

Table 5.
Ventricular tachycardia.
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We will carry out a comparative analysis of informative parameters for the two
states of the cardiovascular system: normal (Table 4) and ventricular tachycardia
(Table 5) for sampling frequencies fd = 500 Hs and fd = 250 Hs.

From the obtained tables, it follows that with increasing sampling frequency fd,
the high-frequency contribution to the power spectrum S(f) increases due to the
inclusion of “bursts” in the analyzed signal corresponding to the increased frequency
fd. In this case, changes in dependence Φ 2ð Þ τð Þ also occur at small τ, which are caused
by the contribution of local changes in the values of the “laminar” signal sections.
Therefore, with an increase of fd, parameters T0 and n0, characterizing the high-
frequency region of dependence S(f), and parameters H1 and T1, characterizing the
dependence of Φ 2ð Þ τð Þ for small τ, change. The value of parameter σ1 and the nature
of spectral dependence S(f) change to a much lesser extent. Small variations in the
standard deviation parameter σ1 indicate a smaller dependence of function Φ 2ð Þ τð Þ on
fd. At the same time, the signal analysis in flicker-noise spectroscopy reveals the
dynamics of changes in parameters H1 and T1 at small τ, as well as parameters T0

andn0, characterizing dependence S(f) in the high-frequency region. Since depen-
dence S(f) is determined by the number ofM terms in a discrete expression for S(f),
it is convenient to use normalized expressions obtained by multiplying S(f) by a
factor of 1=M ¼ 4=N when changing the sampling frequencies. With this normaliza-
tion, functional differences in dependence S(f), due to the use of signals measured at
different sampling frequencies, are detected more explicitly.

Thus, when analyzing a complex chaotic signal during flicker-noise spectros-
copy, a set of parameters is determined that characterize the correlation relation-
ships in the sequences of irregularity-jumps and irregularity-bursts characteristic of
this signal, determined with a sampling frequency of fd. The analysis of dependen-
cies Φ 2ð Þ τð Þ and S(f), calculated on the basis of time series with decreasing sampling
frequency, allows you to evaluate the measure of “stability” of parameters σ1,T1,
and H1, determined on the basis of Φ 2ð Þ τð Þ, and the measure of variability of the
parameters Ss(0),T0, and n0, concerning dependence S(f).

8. The use of neural network technology in flicker-noise spectroscopy
of an electrocardiogram

Based on a computational experiment, dependencies were obtained for the nor-
mal state of the cardiovascular system and a number of “catastrophic” arrhythmias
(ventricular tachycardia, atrial fibrillation, atrial arrhythmia). We used the experi-
mental data from the public website www.PhysioNet.org.

As a result of analyzing the power spectrum S(f), informative parameters were
obtained for the singular component of the ECG signal: T0, determining some
characteristic time within which the measured dynamic variable is interconnected
V tið Þ; n0, dimensionless parameter that effectively determines how this relationship
is lost as frequencies decrease to 1=2πT0; and s 0ð Þ, contribution to the power
spectrum S(f), determined by the most high-frequency singular component [5].

The parameterization of the regular component of the ECG signal is carried out
using expression Φ 2ð Þ τð Þ with parameters T1, τ1, and H1. In this case, parameter T1
determines the characteristic time at which the values of the dynamic variables
V tið Þ do not correlate. To obtain reliable values of variance σ21, it is necessary to
calculate it at time intervals exceeding T1. In this case, parameter H1 shows by what
law the relationship between the quantities V tið Þmeasured at different time instants
is lost—the Hurst exponent.
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Thus, when analyzing a complex chaotic signal, which is an ECG signal, we
consider a set of six parameters, characterizing the correlation relationships in the
sequences of irregularities—“jumps” and irregularities—“bursts” inherent in this
signal.

9. The choice of artificial neural network and its characteristics

The obtained values of the parameters of the singular and regular component of
the ECG signals can be used for differential diagnosis of the functional state of the
cardiovascular system using artificial neural networks, where these parameters are
considered as input data.

For the computational experiment, a perceptron three-layer network with direct
connections was chosen (Figure 13).

To train the neural network, the backpropagation algorithm was used. The
training time was about 240 s, the maximum network error was about 0.05, and the
degree of training was about 0.01.

To recognize the pathologies of the cardiovascular system, a modular version of
the structure of the construction of neural network blocks can be used (Figure 14).

The structure includes several parallel neural network modules, built on the
basis of the structure of a multilayer perceptron. The advantage of this structure is
the concentration of resources of each module on the recognition of only one
pathology, which helps to reduce the likelihood of an error in the wrong conclusion
for the whole system. In addition, the functionality of an artificial neural network is
expanded by increasing the number of neural network modules to recognize new
pathologies without retraining the entire system.

The main factor that allows one to distinguish the contribution of irregularities
to the analyzed electrocardiographic signals is the variation of the used sampling
frequencies fd of the real signal. An analysis of the dependencies of the power
spectrum and the second-order difference moment calculated on the basis of time
series with a varying sampling frequency makes it possible to evaluate the measure
of “stability” for the regular component and between the “variability” of its infor-
mative parameters for the singular component. In this case, parameter fd can be
used as an additional input parameter of an artificial neural network for recognition
of the state of the cardiovascular system.

The presentation of electrocardiographic signals in the form of successive irreg-
ularities allows the use of flicker-noise spectroscopy in the analysis of such signals.
The chaotic signal represented by the time series during flicker-noise spectroscopy
allows one to parameterize these signals and determine informative diagnostic

Figure 13.
The structural diagram of the proposed artificial neural network.
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parameters, characterizing the functional state of the cardiovascular system. The set
of informative parameters, as well as the sampling frequency of the signal, which
determines the dynamics of changes in these parameters, allows the classification of
heart diseases using a neural network.
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Chapter 6

Biomedical Applications with 
Using Embedded Systems
Gulcicek Dere

Abstract

Besides the use of embedded systems in the field of electrical and electronics 
engineering, industrial, telecommunication, military, and many other commercial 
applications, and the other applications in the field of medical and biomedical are 
becoming increasingly common. Embedded system applications are increasing 
not only with designs on devices or with clothing, factories, medical and military 
equipments, portable devices, but also with applications such as ‘mobile worlds’ 
and ‘e-worlds’, Artificial Intelligence and IoT (Internet of things) with the possibil-
ity to make all kinds of software on them. In recent years, with the rise of infec-
tious diseases such as the Covid 19 virus, there is a growing need for telemedicine 
applications such as diagnosis, prognosis and patient management. Embedded 
system technologies have occupied an important area in biomedical technology. 
Especially, to develop tools for the purposes of increasing the safety of healthcare 
workers in the event of epidemic infectious diseases in processes such as pandemics. 
For this purpose, monitoring of patients discharged from hospitals at home or non-
intensive care beds during quarantine, or isolated in their homes, outpatient, and 
mildly ill, remotely, instantly, safely and quickly, are becoming increasingly impor-
tant. In this section, we will give an overview of the embedded system structure and 
applications.

Keywords: biomedical applications, embedded systems, programmable device, 
biomedical hardware and software, medical devices

1. Introduction

Embedded systems are defined as customized hardware with an operating 
system and processor, designed to perform a specific operation alone. Systems 
consisting of a combination of software and hardware designed to enable a system 
consisting of mechanical and electronic components to work for a specific purpose 
through a microprocessor or microcontroller.

Embedded Systems usually do not interact directly with the end user. They work 
reactively and in real time with limited resources for a single purpose, and they can 
perform highly critical tasks from time to time in their usage areas.

Errors that may occur here can result in huge loss of property and lives. From 
this point of view, it is very important that these systems are “reliable” and “tolerant 
of errors”.

Created by embedding software (hardware design for fpga) on a microcon-
troller, microprocessor, dsp (digital signal processor) or fpga (field programmable 
gate array); It is an electronic (or electromechanical) system that generally contains 
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modules such as memory, input and output modules, sensors, physical output. 
It is an event that should not be confused with the dedicated system. Embedded 
systems that are generally smaller size and operate with smaller processor powers. 
Besides, the dedicated system is a system chosen to do a single work. For example, 
the library’s web server and database server can be kept on separate machines, and 
if the task of these machines is to host only the web server, or only to provide the 
database, this is called a dedicated system. There is no size, processor or capacity 
constraint dedicated systems [1].

Is a programmable device, a combination of development hardware &software; 
that forms a component of an electrical device [2]. Medical applications of embed-
ded systems are preferred because they are real-time and very fast. Embedded 
systems are computer systems and we need to know and control all the details and 
features of this computer system. An embedded system is a combination of both 
hardware and software, consisting of a microprocessor, memory for storing data 
and programs, converters microcontroller or digital signal processors (DSP), sen-
sors, actuators and other interfaces [3].

2. Biomedical application of embedded systems

Embedded System Programming Tools can be listed as follows;

• Integrated Development Environments (IDE)

• Compiler

• Debug Devices and Software (Debugger)

• Emulators

• Testing Software and Devices

• Support Software

Embedded System Programming differs from other programming systems due 
to some features. Embedded software should use minimum program memory. 
Embedded software should not run slower than the system requires. It should be 
easy to interfere with embedded software and have high readability [4–12].

The most popular Embedded system medical applications are Imaging Devices. 
Although the working principles differ from each other, the common feature of 
imaging units such as MR, CT, PET (positron emission Tomography), US is that 
they are an embedded system.

Another example of medical applications of embedded systems is defibrilla-
tors. Defibrillators, a machine used to monitor a patient’s heartbeat for an irregular 
pattern, and usually return the heartbeat to a normal pattern when an abnormal 
heartbeat is detected, are a useful example of biomedical applications of embedded 
systems.

Digital Flow sensors that monitor a patient’s respiratory system, Blood pressure 
device and glucose test set, which is effective in detecting systolic and diastolic 
pressure of the human body, Fetal heart monitoring machine used during preg-
nancy, childbirth and childbirth to monitor the pulse of babies, device designs 
that allow users to monitor values such as heart rate, blood pressure, glucoses is an 
example of embedded systems.
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It would not be wrong to say that there are computers in all devices. All into 
“embedded” computers there.

Small devices with embedded systems such as Raspberry pi, Ardunio can collect 
patient data and provide data processing with overwritten software, with the 
reduction in size and increase in processing power.

Similar small devices with embedded systems can make control decisions that 
can help provide better treatments and medications to patients.

Small designs with microcontrollers, sensors, motor drivers, sensors are also 
increasing. It provides practical and inexpensive solutions applied in case of any 
urgent need.

For example, studies such as ‘the camera application that monitors social 
distance’ has led us to better understand the importance of “social distance” that 
should exist between people, as it is transmitted by contact such as Covid19 and 
other infectious diseases. The progress, which has improved with vaccination 
studies all over the world, has now brought the quarantine process to an end and the 
return to social life. However, if the social distance is not maintained for infectious 
diseases, which are added every year, unfortunately, there will always be the risk of 
suffering from such diseases. Therefore, it is very important that we can maintain 
social distance in areas with high human density. For the solution of the problem, 
the first products used where practical solutions based on embedded system solu-
tions such as smart phone application applications and smart wristband have been 
found practically.

Another solution to this problem is a software solutions via platform such as 
web API. But the disadvantage of these is their high cost. Thanks to the program 
overwritten using solutions such as NVIDIA, integrating the low-cost Intelligent 
Artificial Intelligence, Computer the existing cameras of the workplaces and pro-
viding real-time monitoring of social distance is another embedded system solution 
of the problem. Since it will be a product that can be mounted on existing cameras, 
there is no extra product expense other than the purchased kit.

Embedded system solutions offer fast, cheap and easily accessible solutions in 
other areas (Figure 1).

2.1 Embedded systems hardware

Embedded systems have already exceeded the limits of their name. Nowadays 
everything from smartphones to smart TVs, set top boxes to washing machines is 
actually an embedded system. They no longer have to perform certain tasks, they 
can do many tasks at the same time.

They are electronic systems designed to perform a certain function, micropro-
cessors are used for the central processing unit in systems with low processing load 
(fire alarm, etc.), while in systems we call hard-real time (systems that will result in 
the transition from life to death at the smallest delay), micro-processors are used for 

Figure 1. 
NVIDIA Jetson solutions [8].
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the central processing unit. Systems used for reading sensors such as temperature, 
humidity, gas, flow, ultrasonic. B, etc. are also embedded systems. This world can 
be stepped into with affordable and easy-to-use embedded systems (Arduino) for 
hobbyists.

Embedded systems are systems that host low power processors within high 
frequency processors, have an operating system or direct, real-time management 
infrastructure within their related processes, and provide control of sensors and 
trainers. Although the volume of transactions generally remains lower than com-
puter systems, it has started to close this gap in the development of today’s technol-
ogy and industry 4.0 studies. Embedded system design takes up a lot of space at 
the point of performing operations-based activities such as rationalizing robotic 
systems, artificial intelligence and machine learning.

Survey studies have shown that the most important software/hardware tools 
are, respectively; Oscilloscope, Debugger, Compiler/assembler, IDE, Logic ana-
lyzer, JTAG/BDM, Software libraries, Linux tools, ICE, Configuration Management 
tools, Static Analysis tools, Software drivers etc. It is necessary to know very well 
about digital electronics hardware. The devices studied have been created with 
logic gates and every subject of digital electronics, every basic circuit is located on 
microcontrollers and digital devices. Since the devices used are not simple devices, 
it is not possible to understand them with half information.

Embedded systems are computer systems and it is necessary to know and control 
all the details and features of this computer system. We see that many of them are 
indexed to a hardware and describe embedded systems through that hardware.

Hardware components are basically as follows;

• MCU (MicroController Unit), FPGA, ASIC etc.

• General purpose input–output units (GPIO)

• Communication units

• System-specific components

Microcontrollers, one of the basic parts of embedded systems, can be defined 
as a single chip computer. They contain a microprocessor, memory, digital inputs-
outputs and other peripherals (timer, interrupt, ADC etc.). Some of well known 
microcontrollers are; RX Family, RL78, 78 K, H8 Family, V850, RH850, STM8, 
STM32, RA, Synergy, RE R8C.

Advanced embedded systems as it may seem there is no need for an analog 
electronic information. Basic and practical electronic knowledge can be sufficient.

The software parts are basically collected under 3 main headings; Real time 
operating system (RTOS), Third party software libraries and Software applications.

A table about the boards used in the design of the embedded system, included in 
the survey conducted by the Aspencore group in 2017, is below (Table 1).

There are indispensable Measuring Instruments for embedded system 
laboratories in both Biomedical and other fields. These are for example; Digital 
Oscilloscope, Function Generator, Tabletop Digital Multimeter, Power Supply, 
Computer, Projector etc. Depending on the design work and studied, needed help 
tools and measuring instruments varies. For example, while working with Arduino, 
which is a simplified framework designed for artists and designers who are not very 
interested in electronics and computer science, the measuring instruments needed 
and those working with sensors may differ (Figure 2).
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The main factor in Arduino spreading this much is the software part. The 
Integrated Development Environment (IDE) required to develop software on 
Arduino can be downloaded free from the website. It can be developed easily with 
the development environment that can run on Windows, Mac and Linux platforms.

Development Board Started With (Write-in Answers Only) N = 356 Percent

ST Microelectronics 38 10.7%

TI (LaunchPad = 5) 38 10.7%

Xilinx 29 8.1%

NXP 26 7.3%

Microchip 21 5.9%

Arduino 20 5.6%

Rasberry Pi 15 4.2%

BeagleBoard Bone Black 12 3.4%

Atmel 10 2.8%

Freescale (NXP) 10 2.8%

Cypress kits 6 1.7%

Renasas 6 1.7%

Altera Stratix V DSP Kit 5 1.4%

Avnet 5 1.4%

Intel Edison 5 1.4%

Silicon Labs 4 1.1%

Digi 3 0.8%

ESP32 3 0.8%

MSP430 – TI 3 0.8%

Nordic/nRF52-DK 3 0.8%

Table 1. 
Answers to the question of “Did you start your current embedded design with a development board?” in 
Aspencore 2017 survey [13].

Figure 2. 
Arduino Uno SMD R3 [14].
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The Arduino IDE is based on a programming language called Processing and a 
project called Wiring. In the development environment, which is very easy to use, 
you can easily compile Arduino programs (called sketch) and upload them to your 
card. A language similar to C ++ is used as the programming language. Thanks to 
the existing libraries, many operations and communication between peripherals 
can be performed easily. One of the Arduino’s most powerful features is that it has 
an extensible library system. Thus, libraries written for new peripherals can be 
easily integrated.

One of the most beautiful features of the Arduino is that new hardware features 
can be added with additional cards called “shield”. Thanks to these additional cards 
that are compatible with the Arduino board, it is possible to realize many different 
projects. Examples of these attachments are modules such as Bluetooth, wifi, motor 
driver, LCD screen.

Sensors, which are another hardware in embedded systems, are designed that 
can serve many different purposes with the developing technology. These are 
advanced technology embedded sensor systems such as MEMS/NEMS and opti-
cal technologies to be used in Internet applications of objects, Sensors resistant 
to extreme conditions, Sensors with innovative features (according to which high 
sensitivity and resolution, cost effective, reliable (robust), Self-calibrating; resis-
tant to errors, losses, deterioration), Intelligent sensor technologies that can be used 
in the production process, Packaged, long-lasting, directly connected to the cloud, 
capable of running multiple applications, expandable, easily configurable sensors 
and components.

2.2 Embedded systems software

Electronics about to have a lot of information, even to design eye fabulous 
indoor circuit cards unless you know the computer science genius, will not be a nice 
software in embedded systems. In fact, the software is now being used for other 
circuits in embedded system control software. Applications such as image process-
ing, web server, user interface, operating system are now also written for embedded 
systems.

While working on embedded systems will need to use a high percentage of the 
C language. Although languages such as Java and C ++ are used in some different 
areas, and the Assembly is used in applications of hardware that require perfor-
mance or that do not have a C compiler, generally no language other than C is used. 
The results of the embedded systems market research conducted by the Aspencore 
group in 2017, the survey conducted with companies and engineers working in the 
field of embedded systems showed that the most used languages (Figure 3);

The C language is the most preferred because it has both medium and high-level 
features, increases efficiency by producing less code, is quite common in embedded 
software libraries, is very well-known, is a compiler for almost all microcontrollers, 
and access to resources is high.

The most used operating systems in embedded systems are; Embedded Linux, 
FreeRTOS, In-house/custom, Android, Debian (Linux), Ubuntu, Microsoft 
(Windows Embedded 7 / Standard), Texas Instruments RTOS, Texas Instruments 
(DSP/BIOS), Micrium (uC/OS-III), Microsoft (Windows 7 Compact or earlier…), 
and also Integrity, OSE, SCIOPTA, seL4, Pharos, FreeRTOS, QNX.

Embedded system development is also changing rapidly. While working with 
microcontrollers with small-sized resources in the past, it is possible to talk about 
products that reach very high speeds today. Nowadays, subjects such as internet 
protocols and encryption algorithms appear as new study areas. Naturally, it is 
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becoming a necessity to use ready-made modules on the platforms we work with. As 
programming becomes increasingly complex, we now need platforms that support 
us. The structure known as Internet of Things (IOT) has modules called “gateways” 
that will connect other modules and devices to the network.

With the development of new generation communication infrastructure and 
standards, it is ensured that high value added, user-friendly service, analysis, 
monitoring, decision-making and control applications are developed by developing 
equipment that can work with new generation protocol structures and also adapt to 
standard protocols.

At the same time, these IOT structures have implemented and comply with the 
standards required to develop manageable, controllable and secure system architec-
tures, to communicate safely with the sensor, to have a high level of service in order 
not to cause a disruption in production, to support local and foreign standards, 
to work openly with different platforms when necessary, to have programming 
intermediates for different applications, to have a scalable and traceable structure, 
to perform system health monitoring of end units and platform components when 
necessary must be able to work in all kinds of environments and operating systems 
(mobile, etc.).

Another attractive point in embedded system software is coding. The minimum 
area, minimum time, writing is the most appropriate considering the principle of 
maximum benefit. It is the most appropriate to write with the principle of mini-
mum space, minimum time and maximum benefit.

2.3 Medical device design

Medical device technology, one of the most practical field of embedded hard-
ware and software technology. In addition to the previously mentioned medical 
imaging systems, Biomedical power units, Clinical and Biotechnological Analyzers, 
Portable Diagnostic Systems, Mobile Patient Monitoring Systems, Nurse Call 

Figure 3. 
Answers to the question of “My current embedded project is programmed mostly in” in Aspencore 2017 survey [13].
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Systems, Patient Queue Systems and their designs are also made with embedded 
system applications.

Apart from academic studies, there is also a large business area in the biomedical 
field. These medical embedded systems, embedded computing or customer needs 
for projects should be ready for SBC (Single Board Computer) use. They offer high 
performance and low cost effective solutions to entrepreneurs, medical staff and 
patients in the medical sector. Low-power and high-performance portable embed-
ded systems offer many diagnostic functions, save time, aim to reduce overall 
diagnostic costs.

There is another card that is frequently used in electronic, robotic and biomedi-
cal designs like Arduino, it is Raspberry Pi. Arduino does not have an operating 
system. It can only run programs compiled for the Arduino platform, which means 
programs, mostly written in C ++. Raspberry Pi usually runs an operating system 
that is Linux. In other words, it can be called a mini computer with this feature. 
The Raspberry Pi is the smallest computer. They look quite similar at first glance. 
Pins, connectors, screw holes etc. In fact, both cards are very, very different from 
each other. The fact that the ram and microprocessors are much larger makes the 
Raspberry pi stand out in terms of software. It is an alternative portable computer 
especially image processing applications in biomedical studies (Figure 4).

Medical devices that can perform image processing and many other opera-
tions are developed especially with software such as opencv simplecv. For 
example, working on an image taken with a medical modality is also possible 
with embedded system solutions. You can perform the software you make on a 
normal computer on image processing with an embedded system tool such as 
raspberry pi, arduino, nvidia or a more advanced mini computer or cards. For 
example, you can perform image processing such as edge detection over the 
image, thanks to the related software you wrote on the Raspberry pi and a moni-
tor connected to it [16–19].

2.4 Embedded systems restrictions

When coding on an embedded system, it is necessary to pay attention to the 
detail between optimization and readability of the code. If there is enough memory, 
a readable code may be preferred instead of optimization. Many certification 
processes are required for the newly developed product (IEC 62304, EN 50128, 
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EN 50657, ISO 26262, IEC 61508 etc.). IEC 62304 is an important international 
standard, especially for medical devices. But a simple PCBs certificate cost can 
thousands of dollars [16–19].

To calibrate an analog sensor, it is necessary to communicate with the software 
via SPI and I2C. If such a digital sensor is not controlled by software, the operation 
is not successful. The problems that cause problems in the process of embedded 
system design are listed as follows; Debugging tools, Schedule, engineering team 
skill level, firmware itself, microprocessor, programming tools, interfaces, other 
hardware.

Restrictions are basically;

• Cost

• Processing power

• Memory

• Power consumption

Additionally, hardware vulnerability situations such as Meltdown and Specter, 
caused by a hardware deficit in processors, are also a problem for embedded system 
solutions.

3. Conclusions

Current and developing features show that embedded system applications will 
increasingly continue to be used in biomedical applications, as in all areas of use.

Expectation from embedded system application in biomedical systems as in 
others; industrial endpoint devices with various sensors on them are fault-tolerant 
and self-calibrated systems that aim to be able to influence the outside world and 
generate meaningful data, have a process capability when necessary, have a logical 
and virtual sensor approach. It is inevitable that the number of companies design-
ing embedded systems will increase and the market will grow. New and better 
versions of the design cards are expected to be launched. The increase in software 
libraries and the low cost of embedded systems in health care will cause them to be 
preferred more because of their portability. It is also predicted that artificial intel-
ligence applications in health will continue to increase with systems integrated with 
embedded systems and new software.

Any other expectations;

• Monitoring of vital health parameters (sleep, epilepsy, heart, etc.), recording, 
wireless transfer and digital transfer (phone, tablet, computer, etc.)

• Wearable devices; Flexible electronic devices capable of energy harvesting and 
storage, technologies that can send data to the cloud and receive commands, 
and can be worn compatible with the Internet of Things

• Sensors and devices that increase portability

• Protective personal-real-time in vivo measurement systems

• Having e-health software that can run on common platforms
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• Tele-radiology, tele-rehabilitation

• Systems for the development of preventive and preventive health services and 
personalized medical monitoring systems

• Computer-cloud interfaces

• Biosignal acquisition and processing

• Virtual reality systems and 3D training and treatment simulators

• Network based devices

• ICT Based Innovative Medical Devices

Apart from these, it is not difficult to predict that new designs will be made in 
line with the needs that have not yet come to mind.

The applications of embedded systems, which are generally tried to be explained 
in more basic lines, make them more preferable due to the increasing need arising 
and their practical and low cost. Embedded system applications where real-time 
solutions, ANN, CNN, Machine Learning, Deep Learning, Federated Learning, 
NLP applications and more are used together or separately will increase in diversity.

© 2021 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 
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