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Preface

Data science, data visualisation, and digital twins are trending in many disciplines. 
Appropriate data visualisation and analytics, enabled by data science, are required 
for informed decision-making in a variety of sectors. If expertise in advanced data 
analytics techniques are available, advanced data analytics approaches such as 
Artificial Intelligence (AI) and real-time, web-based, and interactive visualisations 
are used.

Advanced data visualisation methods, such as 3D, 4D, and so on, as well as 
dashboards, are great tools for better communication with stakeholders, better 
understanding and modelling of the current situation, forecasting future trends, 
and digital twinning of buildings, urban neighbourhoods, infrastructure, and 
cities in smart cities and built environments.

Professionals, academics, managers, planners, and policymakers have discovered 
that improved analytical methods of data science, such as machine/deep learning 
or AI, promise to provide superior insights from data, allowing them to make more 
educated decisions. In organisations, web-based systems that visualise such insights 
allow rich interactions among team members, clients, project managers, and 
stakeholders.

This book highlights established and advanced data science and visualisation 
technologies, given the benefits of data science, visualisation, and digital twinning. 
This book is divided into three sections based on the overall themes of the chapters.

Section 1 addresses web and dashboard-based visualisations. In the first chapter 
of this section, Scanostics features are implemented in JavaScript to illustrate their 
usability in 2D, 3D, and higher dimensions on the Web. In this chapter, Pham and 
Dang begin by describing the mathematical definitions of these Scanostics features, 
then provide installation instructions and implementation scripts for using these 
features on multivariate data via their GitHub page. In the second chapter in this 
section, Alpalhao, Castro Neto, and Motta discuss the benefits of developing 
dashboards for better decision-making in smart cities and show off their developed 
dashboard for monitoring spatiotemporal mobility patterns and indicators during 
the COVID pandemic.

Section 2 deals with 3D modelling of trees using point cloud data and digital twinning 
in the mining industry. In their chapter, Egi and Eyceyurt offer a system that uses 
machine learning algorithms to reconstruct topography from point cloud data and 
utilizes 3D tree modelling in such an environment for mobile communications. They 
also highlight the usability of their sensor fusion technology in smart city applications. 
In the final chapter of this section, Kalinowski, Dlugosz, and Kaminski suggest a 
digital twin of a mining shaft and hoisting system utilising BIM models for project 
management process improvement.

Section 3 demonstrates better flood modelling as well as the predicted future 
growth of visual data science. In their chapter, Hale, Long, Gude, and Corns present 
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IV

a way for exploiting open data and deploying deep learning algorithms in a GIS 
framework to anticipate flood inundation profiles for planners to employ. In the 
final chapter, Schmidt outlines the successful application of data visualisation 
algorithms in various data science workflows, compares data science libraries for 
various applications, and draws conclusions on the potential directions for future 
developments of advanced data visualisations.

Dr. Sara Shirowzhan
University of New South Wales,

School of Built Environment,
Sydney, Australia
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Chapter 1

JavaScript Implementation of
Scagnostics and Its Applications
Vung Pham and Tommy Dang

Abstract

Scagnostics is a set of features that characterizes the 2D distributions in the
underlying data. Various real-world applications have been using Scagnostics visual
features to detect unusual bivariate data correlations. Concomitantly, many appli-
cations are required to be implemented on web platforms due to their accessibility
and convenience. Therefore, this chapter discusses a recent JavaScript implementa-
tion of Scagnostics, an extension to higher dimensional data, and its applications in
detecting abnormalities in bivariate and multivariate time series data. Its imple-
mentation in JavaScript supports the tremendous demand for visual features in the
web environment. Likewise, its higher dimensional implementations allow gener-
ating Scagnostics features for the rapidly growing multivariate data. Finally, con-
ventional ScagnosticsJS computations involve time-consuming algorithms, and they
are sensitive to slight changes in the underlying data. Therefore, this chapter also
discusses a recent attempt to tackle these issues using machine learning to estimate
the Scagnostics scores.

Keywords: Scagnostics, 3D Scagnostics, nD Scagnostics, JavaScript, Visual Features
for Scatterplots, Data Correlation, High dimensional Data Analysis

1. Introduction

Visualizations on the web platform are getting popular because they are likely
to be viewed on various devices without making any complicated software setup.
A critical aspect of data visualization is detecting and highlighting the visual fea-
tures in the underlying data. Regarding visual features, Scagnostics [1] is a popular
set of features that allows characterizing the distribution of the underlying data.
Though its two-dimensional (2D) version is prevalent, three-dimensional (3D) and
higher-dimensional (nD) Scagnostics uses are limited.

There are several reasons for this limitation. First the 2D version of Scagnostics
implementations were limited in programming languages like R [2], Python [3], and
Java [4]. Furthermore, there was only one attempt at implementing Scagnostics in 3D
space [5], and it is also supported in Java only. These programming languages
encumber the uses of these visual features for the web, which is gaining popularity
due to its convenience of use. Moreover, the lack of nD version nukes their uses for
multivariate data in many application domains. Examples of such areas are those that
often require multivariate data for better reliability and statistically sound analysis.

This chapter discusses a recent work called ScagnosticsJS [6]. It is a Scagnostics
library implemented in JavaScript to support visualizing data features on the web.
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Furthermore, it is the first officially published library that extends the Scagnostics
features into 3D and nD. This chapter also discusses the uses of 2D and nD versions
of ScagnosticsJS in detecting abnormalities in bivariate as well as multivariate time
series data, namely Outliagnostics [7] and MTSAD [8], respectively. Finally, con-
ventional Scagnostics computations involve algorithms that are time-consuming
and sensitive to slight changes in the underlying data. Thus, this chapter’s last
section outlines an attempt to tackle these issues using machine learning, called
ScagCNN [9]. Its main idea is to train and use the learned machine learning model
to predict the Scagnostics scores instead of executing the conventional algorithms.

2. 2D Scagnostics

In 2005, Wilkinson [1] proposed and implemented a set of the graph-theoretic
summaries of two-dimensional scattered point data, called Scagnostics. Since then,
Scagnostics has been used in various application domains, such as high-dimensional
time series analysis [8], clustering of scatter plots [4], and abnormality detection
[7], to name but a few. This section summarizes the nine Scagnostics measures and
their visual characteristics. We also refer interested readers to the original paper [1]
for further details. These scores are broadly categorized into density, shape, and
association measures.

There are five Scagnostics measures that are computed using density geometric
features, namely: outlying, skewed, sparse, clumpy, and striated. They are character-
ized by the distribution of the edge lengths of the minimum spanning tree (MST)
built on the 2D scatter points. Next, there are three Scagnostics measures that
represent the shape geometric feature of scattered point data, namely convex,
skinny, and stringy. Besides the MST, the shape measures also leverage the alpha (A)
and convex (H) hulls built on top of the scattered points. Lastly, the association
measure represents the symmetric measure of association between the two vari-
ables involved. The only one Scagnostics score in this category is monotonic score.
Scagnostics uses the squared Spearman correlation coefficient of the 2D data to
compute this score. We refer interested readers to the original work [10] regarding
the formal definitions and how to compute these 2D Scagnostics scores.

There are several Scagnostics implementations in different programming lan-
guages such as R [2], Python [3], and Java [4]. These implementations are for 2D
Scagnostics, and there is only one attempt to implement Scagnostics in application
to 3D data [5]. ScagnosticsJS [6] is the first officially published Scagnostics imple-
mentation in JavaScript. It also extends the 2D Scagnostics measures for 3D and
higher dimensional (nD) data points. The remained sections of this chapter discuss
ScagnosticsJS implementations, its extensions, and its applications.

3. ScagnosticsJS: 2D, 3D, and nD Scagnostics for the web

This section describes the 2D, 3D, and nD Scagnostics implementation called
ScagnosticsJS [6]. It is a library for Scagnostics in JavaScript, which is gaining
popularity for visualization for the web [11]. Besides 2D Scagnostics, it is also the first
officially published extensions of Scagnostics to 3D and nD. Figure 1 shows the nine
Scagnostics measures and their exemplar plots in 2D (a), 3D (b), and nD (c). The
heatmaps next to these plots show the corresponding Scagnostics scores computed
using ScagnosticsJS. Notably, ScagnosticsJS gives high scores (the highlighted, black
bordered cells at the diagonals of the heatmaps) for the Scagnostics types that the
scatterplots were generated to flag.
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3.1 Binning

The Scagnostics computation starts with the binning process. This step reduces the
computation expense when handling a large number of data points and allows more
stable Scagnostics computations. Rectangular binning is a simple and popular binning
method in data science in general. However, hexagon and leader binning algorithms are
two commonly usedmethods for Scagnostics computation. Though both algorithms are
similar in terms of time complexity, leader binning has its advantage of preserving the
underlying data’s original shape. Contrariwise, hexagon binning does not work well
with Box Plot Rule [7] because the distance between neighboring hexagons is always
the same due to the binning shape and their consecutive arrangement.

Figure 2 depicts the difference between leader binning (d) and its rectangular
(b) and hexagon (c) counterparts on the same original data (a). Each leader’s size

Figure 1.
Scagnostics measures and their exemplar plots in 2D (a), 3D (b), and nD (c). The heatmaps show corresponding
Scagnostics scores computed using ScagnosticsJS. Highlighted, black-bordered cells at the diagonals indicate that
ScagnosticsJS flags high Scagnostics scores for their corresponding typical Scagnostics plots.

Figure 2.
Original data (a) and binning methods: Rectangular binning (b), hexagon binning (c), and leader binning (d).
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indicates its coverage, while its intensity highlights the number of points that fall
into that bin. Each binning algorithm has its pros and cons depending on the data
and the analysis task, so ScagnosticsJS provides the flexibility to choose either
hexagon or leader binning in its 2D version. It is hard to find an appropriate shape
for the hexagon in nD, but a hyper-sphere is an appropriate representation in nD
equivalent to a circle in 2D. Therefore, ScagnosticsJS uses leader binning for its nD
implementation.

3.2 ScagnosticsJS 2D implementation

The 2D ScagnosticsJS implementation includes several intermediate computa-
tion stages as depicted in Figure 3. They include 1) normalization, 2) binning, 3)
generating triangulation, 4) computing MST, 5) finding degree 1 and 2 vertices, and
6) finding convex and concave hulls. Since 2D Scagnostics implementation is pop-
ular, we refer interested readers to these original papers [1, 6] for further details
regarding these stages’ implementations.

3.3 ScagnosticsJS 3D implementation

Our 3D implementation of Scagnostics in ScagnosticsJS bases mainly on how
corresponding geometries transferred from 2D space into 3D space. The concept of
the MST is exactly the same as that in 3D using Euclidean distance. Obviously, the
outlying, skewed, stringy, and clumpy measures use the distribution of the lengths of
the MST’s edges. Thus, their 3D implementations can be naturally adapted from 2D.
Additionally, monotonic score in 3D is the partial correlations of the three variables:

cmonotonic ¼ max ρ2X,Y∣Z, ρ
2
X,Z∣Y , ρ

2
Y,Z∣X

h i
.

Striated patterns in 2D involve parallel and smooth (e.g., spiral) lines [1]. The
equivalent striated patterns in 3D involves all of these 2D patterns plus the parallel
planes. So, the striated score is revised to account the angle between adjacent planes
(p) formed by every three consecutive edges (e1, e, and e2) of the MST. Different
from [5], we need to consider ∣ cos θ∣ >0:75 instead of cos θ< � 0:75 as the 2D
version. Therefore, the 3D striated score is now computed as:

cstriated ¼ 1
∣V∣

X
v∈V ≥ 2ð Þ

I j cos θp e,e1ð Þp e,e2ð Þj >0:75
� �

(1)

where V ≥ 2ð Þ ⊆V are vertices of degree ≥ 2. The cos θp e,e1ð Þp e,e2ð Þ is calculated as
the dot product of the unit normal vectors of the two planes p e, e1ð Þ and p e, e2ð Þ.
These unit normal vectors are, in turn, computed using the cross products of the
vectors made of source and target nodes of e and e1 for the first plane and e and e2
for the second plane.

Figure 4 shows the synthesized samples generated to justify the use of
∣ cos θ∣ >0:75 instead of cos θ< � 0:75. Specifically, these samples include two

Figure 3.
Main algorithms used in 2D Scagnostics computation: 1) normalization, 2) binning, 3) triangulation, 4) MST
(with a red outlier), 5) vertices with degree 1 (orange) and 2 (blue), and 6) convex and concave hulls.
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parallel planes, four parallel lines, and two smooth lines (the last two cases). The
striated scores for the first two cases are relatively similar and are reasonable.
However, in the third case, using cos θ<� 0:75 threshold leads to striated score of 0
versus 1 when using ∣ cos θ∣>0:75 threshold. As of the striated pattern definition,
this score of a smooth line should be 1. We also tested the proposed change to other
types of smooth lines to ensure that this formula is generalized to measure the
smooth lines’ striated visual feature. The last case is another example of such many
smooth lines that we had tested on.

The 2D c onvex and skinny scores leverage the perimeters and areas of the convex
and concave hulls built on top of the underlying data. In 3D, the 2D lines are
equivalent to planes, and the α radius for the circle used to calculate the 2D alpha
hull is that for the sphere in 3D used to calculate the 3D alpha hull. Therefore, 3D
version convex and skinny scores use the equivalent surface areas and volumes of
these shapes in 3D, instead of perimeters and areas as in 2D. These scores are
formally defined as:

cconvex ¼ volume Að Þ=volume Hð Þ (2)

cskinny ¼ 1�
ffiffiffiffiffiffiffiffi
36π6

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
volume Að Þ3

p
=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
surfacearea Að Þ

q
(3)

where H and A are the convex and alpha hulls in 3D space, respectively. Also,
the constant

ffiffiffiffiffiffiffiffi
36π6

p
is to assure that a sphere has cskinny ¼ 0.

The area of a 3D hull is the sum of areas of all triangles of that hull. These
triangles are the faces of the hull as the result of the hull computation. Also,
ScagnosticsJS uses the algorithms from Robert Nürnberg [12] to efficiently compute
the volume of a 3D hull. Algorithm 1 summarizes the steps for computing the
volume of a 3D hull from its faces. It is worth noting that this algorithm works for
both convex and concave hulls.

Algorithm 1 Compute the volume of 3D hull from its set of faces.

1: procedure COMPUTEVOLUME facesð Þ.
2: initialization: n = number of faces, volume ¼ 0, i ¼ 0.
3: while i< n do:
4: trianglei ¼ faces i½ �
5: vectori ¼ one vertex of trianglei.
6: n̂ ¼ normal vector of trianglei.
7: volume ¼ volume þ dot product of vectori and n̂
8: i ¼ iþ 1
9: return volume.

Figure 4.
Comparing striated scores using cos θ< � 0:75 vs. ∣ cos θ∣ >0:75 thresholds for two parallel planes, four
parallel lines, a smooth line, and another smooth line to test the generality of the proposed formula.
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Lastly, we defer the discussion regarding the computation of sparse score to the
next section. The reason is that this measurement deserves further discussions and
is generalized from 2D to 3D and naturally to nD versions.

3.4 ScagnosticsJS nD implementation

Like the 3D implementation, the nD version depends on how geometries in 2D
and 3D spaces are translated into nD. Specifically, regarding building the MST in nD
space, besides Euclidean distance, one should also consider using other metrics such
as Manhattan distance metric (L1 norm) or Lk norm where k is a fraction. Asides
from the distance metric consideration, the MST computation remains the same, so
do the computations of the outlying, skewed, sparse, clumpy, and stringy scores. Also,
ScagnosticsJS uses maximum partial monotonicity among all pairs of variables as
the monotonic score in nD.

With values normalized to the range [0, 1] as described in the 2D implementation
section, in nD space, the maximum distance between any two points could get up to
n1=k, where n is the number of dimensions, and k is the value for the distance metric
Lk used. For instance, in case of Euclidean distance (k ¼ 2), this distance is

ffiffiffi
n

p
. This

case is an extreme one because, at most, there is only one edge length with such value.
However, the fact is that the higher the number of dimensions, the higher the
possibility that the MST edges get longer than 1. Therefore, using q90 of the MST edge
length distributions as the sparse score does not generalize to 3D or nD versions.

Figure 5 shows 6D, 10D, and 16D sets of data points synthetically generated to
illustrate this circumstance. If we use the q90 as a sparse measure, the three plots
have sparse scores as 1.76, 2.16, and 2.80, respectively. There are two issues with
these scores. First, they are out of the Scagnostics score range (0 to 1). Second, the
three synthesized plots are visually similar, and they only differ in numbers of
dimensions. In other words, the higher sparse scores of the higher dimensional plots
are due to the higher number of dimensions they have, not due to their intrinsic
visual features. Therefore, ScagnosticsJS proposes the sparse score as:

csparse ¼ q90=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� n
3

� �s
(4)

where n is the number of dimensions, and we use the floor operation (⌊⌋)
because MST always selects the lower distances first. The numerator 2 is due to the
pairwise distance between points. The denominator 3 is the requirement that we
would like to have at least 3 MST edges with lengths greater than or equal to the q90.
Also, this is compatible with the cases n ¼ 2 in 2D implementation. This correction

Figure 5.
Synthesized 6D, 10D, and 16D plots with high sparse scores: 1.76, 2.16, and 2.80 if we use the q90 measure,
though they are visually similar. Radar chart, in this case, is one of many ways to represent multivariate data,
and line colors represent different classes.

8

Data Science, Data Visualization, and Digital Twins



factor normalizes the sparse scores for the scatter plots in Figure 5 into approxi-
mately 0.88 (0.880, 0.882, and 0.885, respectively) in these three cases.

Currently, ScagnosticsJS does not implement the nD convex and skinny scores
due to their limited utility [13]. Furthermore, these scores depend on the convex/
alpha hull in nD space, and the computations of these shapes pose performance
constraints. Specifically, even with an approximation approach such as one from

[14], the complexity of hull calculation is still O N2m3=2 log m
ϵ0

� �
, where m is close to

the number of vertices of approximation and ϵ0 is the maximum error. The time
complexity makes it impractical to incorporate these scores in the current nD
version.

Similarly, current ScagnosticsJS version does not provide the implementation for
striated score in nD space. There are several reasons for this. First, calculating this
score involves computing the angle between every two consecutive MST edges or
two planes formed by every three consecutive MST edges in 2D and 3D cases,
respectively. This calculation further involves the cross-product of two vectors.
This cross-product does not exist in the space with dimensions higher than three. In
other words, there are infinitely many unit vectors orthogonal to any given two.
The second reason is also about utility. Specifically, lines and planes can be found in
higher-dimensional space, but there is not often much reason to use them [15].

Interested readers can refer to the Github page of ScagnosticsJS, at https://idata
visualizationlab.github.io/ScagnosticsJS, to explore and learn how to use this library
in readers’ application domains. The next section describes two typical recent
applications of this library to demonstrate the uses of 2D and nD Scagnostics to
extract visual features for visualizations on the web platform.

4. Applications of ScagnosticsJS

JavaScript implementation of Scagnostics facilitates the use of these measures on
the web. This section describes two recent works called Outliagnostics [7] and
MTSAD [8] as the typical applications of 2D and nD ScagnosticsJS, respectively.

4.1 Visualizing temporal discrepancies in outlying signatures of data entries

Outliagnostics [7] is a recent, typical application of 2D ScagnosticsJS. It is an
application of this library to analyzing 2D temporal data concentrating on detecting
data entries that are significant in contributing to the outlying score of a scatterplot.
Its prototype also supports interactive explorations of abnormalities in large time
series. It uses ScagnosticsJS to calculate how much a data point adds to the outlying
score of the underlying scatter points as a whole at every time point. In some cases,
outliers can be detectable using one-dimensional data. However, in many other
cases, they are only detectable in multidimensional space. Therefore, instead
of using conventional approaches such as Box Plot Rule to find outliers in
one-dimensional data, ScagnosticsJS allows determining the outliers using
two-dimensional data points.

Figure 6 demonstrates the use cases of 2D outlying detection where these out-
liers in any marginal projections are indiscernible. Figure 6(a) is the scatterplot of
international debt data (debt vs. population) in 2017: Each data point is a country in
the example scatterplot. One can rely on the debt axis alone to determine that
Pakistan and China are outliers, or the population axis alone to discern China and
India as outliers. There are similar cases in Figure 6(b) for the New York stock
exchange in January 2011 (price vs. volume), such as BAC, AAPL, GOOG. However,
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it is relatively hard to tell if NFLX is outlying using either one of the axes in this
scatterplot. Similarly, it is even harder to tell if Iraq, El Salvador, or Iran in Figure 6(c)
using either Female axis orMale axis alone in this Life expectancy in 1982 scatterplot.
However, they are visually outliers if both axes are taken into account.

While analyzing the outlying impact of data points to the overall scatterplot
outlying score, besides the outliers, Outliagnostics also considers “inlying” data
points. Specifically, it defines an “inlier” as an observation that lies in the interior of
statistical distribution, and its absence makes the detection of other outliers easier
or possible. For instance, A and B are two data entries in a distribution. A is an inlier
if removing A makes B an outlier. Outliagnostics’s approach to identifying the
outlying contribution of an individual data point to its overall dataset is to compute
the difference of the outlying scores while having and not having that particular
data point in the underlying dataset. This method is called the leave-one-out
approach.

This leave-one-out approach allows estimating the outlying contributions of
individual data points to the overall scatterplot as a whole. This approach is com-
putationally intensive. However, Outliagnostics leverages binning and parallel
computing to achieve a near-linear computation complexity concerning the size of a
dataset. Specifically, the leave-one-out approach is “selective” because it only leaves
out singleton bins. The reason is removing an observation from a dense bin will not
impact the Scagnostics outlying scores.

Figure 7 shows the main components of Outliagnostics. On the left (a) is a
control panel that shows color legends and allows users to set various display
properties such as ordering fields or searching for items, in case needed. The top bar
(b) represents the time series going from left to right. Right below that time series
bar is the set of thumbnails (c) for the 2D data represented as scatterplots over time.
These scatterplots’ backgrounds represent their outlying scores (red background
means higher outlying score while the blue one indicates low outlying score).

The thumbnails below the tag clouds (d) visualize the five data entries with the
highest contributions on the overall outlying score (increasing or reducing). The
text colors in these tag clouds designate the inlying (green) or outlying (purple)
contributions of the corresponding entries. Also, Outliagnostics provides a custom-
ized box-plots view (e), which gives an overview of the outlying and inlying
information of the scatterplots at individual time steps. A stream graph overlayed
on top of these box-plots shows how these outlying/inlying values evolve.

Finally, Outliagnostics also provides a visualization section called instance pro-
files, as shown in Figure 7(f). This section allows users to investigate how outlying/
inlying values evolve at the individual instance level. Specifically, each item has a
base-line representing the outlying score of the overall scatterplot. Suppose at a time

Figure 6.
Examples of two-dimensional outliers that might not be detectable in individual dimensions: (a) international
debt, (b) New York stock exchange, and (c) life expectancy data from the World Bank [7].
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point the instance contributes more to the inlying/outlying score. In that case, there
are green streams above this base-line or purple streams below it to represent the
changes of the outlying scores when leaving the current data item out, correspond-
ingly. The streams’ heights denote the inlying/outlying difference when this specific
instance is present or absent from the scatterplot. The use of stream graphs for these
scores allows the users to observe how the outlying scores evolve for a particular
instance.

Figure 8 depicts a use-case of Outliagnostics applies to the World Life Expec-
tancy dataset retrieved from UIC repository [16]. This dataset is the life expectancy
(male vs. female) from 263 countries worldwide in 56 years. The time-series box-
plots and the outlying/inlying streams highlight the 1970s, early 1990s, and late
1990s - early 2000s as three periods with high outlying scores. The time series
shows Cambodia, Rwanda, and Sierra Leone as the three profiles that are ranked on
top of the list with thicker outlying streams. In other words, they contribute more to
the overall outlying scores over these time periods, correspondingly. Clicking on the
thumbnails scatter plots at each of the periods shows their detailed views in boxes
(a), (b), and (c), respectively. Moreover, users can mouse-over these three coun-
tries in these detailed views to inspect the male and female life expectancy for these
countries. Specifically, Combodia had as low as 27 (male) and 21 (female) in 1975.
These numbers are 30 and 26 for Rwanda in 1992. Similarly, They were 38 and 36
for Sierra Leone in 1998. These low values were caused by the 1978–1991

Figure 7.
Outliagnostics visualization components: (a) control panel, (b) lensing area, (c) scatterplot series, (d) top
countries clouds, (e) customized outlying boxplots, and (f) outlying profiles [7].

Figure 8.
Outliagnostics highlights Cambodia, Rwanda, and Sierra Leone as outliers in the 1970s (a), early 1990s (b),
and late 1990s - early 2000s (c), respectively.
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Cambodian Civil War, the 1990–1994 Rwanda Civil War, and the 1991–2002 Sierra
Leone Civil War, respectively.

Finally, source codes, video demo, and web prototypes of Outliagnostics are avail-
able from this project’s Github page at https://outliagnostics.github.io/index.html.

4.2 Multivariate time series abnormality detection and visualization

Several outlying items are not detectable using a lower number of dimensions,
but they are in higher dimensional space, as discussed in Section 4.1. Therefore, this
section describes another recent application of the nD version of ScagnosticsJS [6]
that applies to detecting abnormalities within a multivariate time series using a
web-based application, called MTSAD [8]. This application is a natural extension of
Outliagnostics to the nD data. Specifically, Outliagnostics claims that several out-
liers are not detectable using an individual variable, but they are evident when both
variables of the bivariate data are taken into account. Similarly, one may see the
same argument for 3D and nD space.

Figure 9 shows the main interface of MTSAD that monitors nine critical vari-
ables in a high-performance computing center [17]. Similar to Outliagnostics,
MTSAD also contains a time-line, plot preview thumbnails over time, the custom-
ized box-plots depicting how overall outlying/inlying scores evolve, the item profile
sections, and a control panel with interactive options to support exploration during
the abnormality detection process. The same leave-one-out strategy, as described in
Section 4.1, is used to calculate the outlying contribution of an individual data
instance to the overall outlying score of the whole set (i.e., of all involving data
items) at a specific time step.

There are two main differences between Outliagnostics and MTSAD. First, the
former uses 2D ScagnosticsJS while the latter utilizes the nD version to calculate the
outlying scores for individual data-plot at each time step. The second difference is
that MTSAD leverages small-multiples (radar-charts) to show the multivariate time
series instead of showing scatterplot for 2D data points as in Outliagnostics. Each
small-multiple visualizes the monitoring variables at a time step. Each radar-chart
might potentially need to render a large number of data entries (467 computation
nodes in this case). This large number of paths indicates a high rendering time and
produces visually cluttering issues. Concomitantly, a higher level of data and visu-
alization abstractions (such as grouping and visualizing a group of data instead of
individual data points) gives a better overview of the data and faster rendering time
[18]. Therefore, this application only displays individual inlying (green paths) and
outlying (red paths) entries, detected by the nD version of ScagnosticsJS with the
leave-one-out approach. It then uses k-means algorithm [19] to aggregate other

Figure 9.
MTSAD primary visualization components for a multivariate time series dataset from a high performance
computing center: 1) a time-line, 2) radar-chart small-multiples, 3) overall outlying box-plots, 4) the data-
entry profile, and 5) a control panel to assist the abnormality exploration interactively [8].
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non-inlying/non-outlying computing nodes into clusters and visualizes them as
gray bands to reduce rendering time. This approach highlights outlying/inlying
observations in the underlying data, which assists the detection of abnormality.

Figure 10 shows a snapshot of MTSAD applies to monitoring nine essential
variables from a high-performance computing center. The monitoring period is
from 2:00 PM until 4:25 PM on March 21, 2019 (in 30 time-steps with five minutes
each). Figure 10(a) shows a detailed view of these monitoring CPU-health-related
metrics at 2:20 PM. Notably, some nodes were heated, and two of them were
outlying because they have high values for temperature metrics. Also, some other
nodes detected the heat increment and increased their fan speeds. Since then, these
two metrics raised rapidly.

As depicted in Figure 10(b), By 3:50 PM, our visualization highlighted that the
recorded values for these two variables were high for many computation nodes.
Finally, our monitoring system could not receive data from the computation nodes
at around 4:25 PM. MTSAD detected and reported this suspicious behavior to the
high-performance computing center’s administrators. They acknowledged the mat-
ter and clarified that the cooling system’s fault operations (chilled water system)
caused the issue. The monitoring system did not receive any signal by 4:25 PM
because the system administrators performed an emergency shutdown to circum-
vent any further harm to the computation facility.

Furthermore, this use-case also suggests that outliers and inliers are equally
important in our abnormality detection approach. As shown in Figure 10(b), the
Box-Plot rule cannot detect outlying data entries at the 3:20 PM time step. Notably,
at this time, compute-1-25 and compute-7-55 were at their extreme values (one had
very low and another very high values for the tracking CPU-health metrics). The
masking effect hides the outlying characteristics of these two instances. Specifically,
leaving one of the two nodes out, the remained data points will have a high
Scagnostics outlying score. That said, inliers allow us to detect potential outliers.
Consequently, identifying the inlying measurements permits us to tackle the
masking effect.

Finally, the source codes and web prototype of MTSAD application are available
at https://idatavisualizationlab.github.io/V/MultiOutliers.

Figure 10.
MTSAD visualizations applied to monitoring essential variables at a high performance computing center. From
2:00 PM until 4:25 PM on march 21, 2019. There was a chill water issue during this period. At 2:20 PM (a),
the computation nodes’ temperatures increased, and a few nodes sensed the heats and pumped their fan speeds
(panel a). At 3:50 PM (b), other computation nodes also increased their fan speeds after sensing the heats [8].
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5. Estimating visual characteristics of 2D scatterplots via CNN

Computing individual Scagnostics scores for individual scatterplot is reasonably
fast (in terms of milliseconds) [6]. However, it is still relatively slow for applica-
tions that need to do the Scagnostics computations extensively such as
Outliagnostics [7] and MTSAD [8] for their real-time monitoring purposes. For
these scenarios, the Scagnostics computation is still considered as having computa-
tionally expensive algorithms. Moreover, these algorithms are sensitive to the slight
changes in the underlying data distribution within the scatterplot [9]. Concomi-
tantly, with its recent advancements, Convolutional Neural Network (CNN) is
gaining traction and has several state-of-the-art results in computer vision tasks.
Therefore, ScagCNN [9] proposes to use CNN models to estimate the Scagnostics
scores (prediction model) and classify set of scatterplots to typical Scagnostics types
(classification model). ScagCNN aims to improve the Scagnostics computation time
and reduce the sensitivity to the small shifts in the distribution of the underlying
data. This section describes the architecture of ScagCNN, the configurations of its
prediction and classification CNN models, and their accuracy.

5.1 ScagCNN architecture

Figure 11 depicts ScagCNN’s schematic overview. Specifically, it uses real-world
and synthesized data to train, validate, and test the CNN prediction and classifica-
tion models. Using real-life datasets allows our solution to work in practice. In
comparison, the synthesized one provides the ScagCNN with ground-truth labels
while training classification models to detect typical Scagnostics types (the nine
measures). In other words, these artificially generated plots have labels required to
train the ScagCNN classification model. Also, ScagCNN uses ScagnosticsJS library
[6] to compute the Scagnostics scores for these training, validating, and testing
datasets.

The scatterplot data is converted into binary images and used as inputs for
ScagCNN. Specifically, it also normalizes every variable’s values into a unit range
(i.e., [0, 1]). The normalized data then undergoes the binning step with 40� 40
binning resolution (as suggested by the original Scagnostics paper). There are
several reasons for doing this. First, normalizing and binning are the two data pre-
processing steps done in the conventional approach. Please refer to Section 3 for
why these steps are essential. Moreover, CNN models often require their inputs to
have the same shape. Therefore, ScagCNN sets the binning resolution to 40� 40, as
mentioned in the original Scagnostics’s paper. Notably, Scagnostics’s computation
algorithms do not take the number of data points within an individual bin into
account (it is a bin if there is at least a point that falls within it and not otherwise,
careless of the number of points inside each bin). Therefore, it’s natural to view the

Figure 11.
ScagCNN [8] main stages: 1) data processing 2) binning, 3) building CNN prediction and classification
models, 4) using the learned models to give results.
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binned data as binary images when using them as inputs for the classification/
prediction models.

ScagCNN models include a prediction model and a classification model. The
former estimates the Scagnostics scores, while the latter classifies the underlying set
of data points into a type that corresponds to one of the nine Scagnostics measure-
ments. Both models use binary images, resulting from applying a binning method to
the original data points as their inputs. The use of the synthesized dataset is neces-
sary because it has the Scagnostics type as the ground-truth labels to train the
classification model. The labels are the result of the generation process of this
artificial dataset. Specifically, each generated set of data points is designed to have a
high value for a specific Scagnostics measurement and is assigned to the
corresponding Scagnostics type. Contrariwise, ScagCNN prediction model can
leverage both real-world and synthesized data for its training, validation, and test-
ing stages.

Artificial neural networks have high predictive power thanks to their freedom to
learn abstract, salient features from the underlying data. This predictive power
comes at the cost of explainability. In other words, the learned features are too
abstract that humans cannot interpret their meanings. The lack of interpretability
circumvents us from deploying our learned models into real-life since we cannot
assure our models actually learn from appropriate features or merely memorize the
underlying data’s trivial characteristics. Consequently, there is a need to make them
transparent [20]. ScagCNN accommodates the need for interpretability by offering
users a web page. This web page visualizes the intermediate results of the algo-
rithms involved in the Scagnostics computation. It also visualizes the features that
the CNN models extracted in their various convolutional layers. These two tasks
allow the users to debug and interpret the accuracy of the ScagCNN models. Spe-
cifically, the former will enable us to see if there is a bug in each of the underlying
Scagnostics algorithms. Simultaneously, the latter allows the users to check if the
extracted features are relevant or trivial. After having a thorough knowledge of
these models’ result generation process, users can make an educated decision
regarding their accuracy.

5.2 ScagCNN prediction and classification models

Training an efficient CNN model involves experimenting with various architec-
tures and tuning many hyperparameters. It is impossible to exhaustively search
through many possible combinations of these configurations and hyperparameters
to build a good CNN model. Consequently, a common approach in practice is to
investigate and tune the existing CNN models appropriate for our specific domain
(computer vision in this case). They are AlexNet [21], GoogleNet [22], and VGG-16
[23], to name but a few. These state-of-the-art models give excellent results in
various computer vision tasks. However, in VGG-16, Visual Geometry Group
(VGG) [24] provides an invaluable, reusable basic block for building CNN models
following its standard [25], called a VGG block. Specifically, designers can stack one
or more such blocks while building CNN models for their problem at hand. This
block with guided architecture and hyperparameters helps reduce the number of
possibilities that we need to search on while building our models.

Even using VGG as the building block, there are still many possibilities to
experiment. Therefore, our approach starts with one VGG block and then stacks
more VGG blocks and tests if more blocks result in improved validation accuracy.
Suppose the training accuracy gets significantly higher than the validation one. In
that case, we will start exploring techniques for overcoming overfitting, such as
dropout, early-stopping, and weight regularization, and batch normalization. Once
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the overfitting issue is solved, we can continue stacking more VGG blocks and
check if going deeper helps increase the performance. Finally, in this specific case,
experiments show that dropout and early stopping help tackling overfitting issues
while batch normalization and weight regularization do not. Table 1 summarizes
the experimented number of VGG blocks and overfitting techniques used while
training ScagCNN models. Going from left to right means stacking more VGG
blocks, and “Y/N” means the corresponding layer is used or not correspondingly.

Configuration 1 is the simplest one, which uses a single VGG block and results in
a testing MSE of 0.0155. Configuration 2 adds one VGG block, which helps to
reduce the MSE to 0.0136. Similarly, configuration 3 adds another VGG block.
However, it does more harm than good due to overfitting. Therefore, after every
VGG block and the fully connected layer (FC1), a dropout layer is used to tackle the
overfitting issue. The training histories show that the overfitting is not devastating.
Thus, we used 0.1 as the dropout rate. There are also attempts to then train with 1,
2, and 3 VGG blocks combined with dropouts in configurations 4, 5, and 6, respec-
tively. Notably, having dropouts helps to improve the performance (validation
MSEs reduce significantly). However, adding more than two VGG blocks reduces
the model’s performance. Lastly, training neural networks with batches of data may
help reduce training time and improve generalization. ScagCNN achieves the for-
mer advantage via parallelization. The latter is due to the weight updates for batches
use the average of their gradients generated on a group of data items instead of a
single one (in stochastic case). Configurations 1 to 6 use a batch size of 64, and
configurations 8, 9, and 10 are experiments with batch-size set to ‘None.’

Finally, ScagCNN uses configuration number 8 in Table 1. This configuration
has two VGG blocks (VGG1 and VGG2), two fully connected layers (FC1 and FC2),
and three dropout layers. There is one dropout layer after every layer except for the
output layer (FC2). Both VGG1 and VGG2 have a convolution layer with 32 and 64
filters of size (3� 3), respectively. Each of the VGG blocks also has a max-pooling
layer with a pool size of (2� 2) to reduce the size of the feature map generated by
every VGG block. FC1 and FC2 have 128 and nine hidden units, respectively. The
128 hidden units of FC1 is to increase the non-linearity, thus improves the model’s
predictive power. The nine hidden units in FC2 correspond to the nine Scagnostics
measurements. Notably, though not depicted in the table, all the convolutional fully
connected layers are followed by a ReLU [26] activation function. The classification
model also follows configuration 8 in Table 1. Because this architecture can extract

No. VGG1 DO1 VGG2 DO2 VGG3 DO3 FC1 DO4 FC2 Batch MSEa

1 Y N N N N N Y N Y 64 0.0156

2 Y N Y N N N Y N Y 64 0.0136

3 Y N Y N Y N Y N Y 64 0.0145

4 Y Y N N N N Y Y Y 64 0.0121

5 Y Y Y Y N N Y Y Y 64 0.0122

6 Y Y Y Y Y Y Y Y Y 64 0.0127

7 Y Y N N N N Y Y Y None 0.0120

8b Y Y Y Y N N Y Y Y None 0.0108

9 Y Y Y Y Y Y Y Y Y None 0.0114
aMean Squared Error.
bSelected configuration.

Table 1.
Experimented CNN settings and their MSEs on the test dataset.
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salient features useful for the Scagnostics score predictions and then it should also
be appropriate for the Scagnostics classification task. However, for the classification
task, we replace the activation function of the output layer (FC2) to softmax [26]
instead of ReLU.

5.3 ScagCNN prediction and classification results

Table 2 summarizes the prediction results using the learned model to predict the
Scagnostics scores on the testing dataset. “MSE” (mean-squared-error) and “MAE”
(mean-absolute-error) are the two metrics that we use to measure the performance
of the prediction model. Notably, the Scagnostics measurements have MAE less
than or equal to 0.1, except clumpy. Scagnostics clumpy calculation depends on two
edges in the runt statistics (one from the considering edge and another from the
shorter sub-tree). Thus, this score is not robust to small changes in the underlying
data [9].

Similarly, Figure 12 depicts the sampled classification accuracy on synthesized
and real datasets in panels (a) and (b), respectively. There are ground-truth labels
for the synthesized dataset. Thus, it’s straightforward to perform the accuracy
evaluation on this set, and the accuracy is 98%. The high accuracy score may due to
the generation bias of the synthetic data. Specifically, we generate the scatter plots
of a type in such a way that it will flag high values for its corresponding Scagnostics
measurement. Contrariwise, we do not have the ground-truth labels on the real
dataset. Thus, we first sampled 100 scatterplots from the real-life test set,
performed the classification on these plots, and asked two Scagnostics experts to
evaluate the predictions’ accuracy. The qualitative evaluation revealed that, out of
100 predicted labels, nine of them are incorrect. Notably, eight of them are related

Outlying Skew Clumpy Sparse Striated Convex Skinny Stringy Monotonic

MSE 0.008 0.006 0.025 0.001 0.008 0.018 0.011 0.005 0.007

MAE 0.065 0.064 0.129 0.026 0.068 0.100 0.085 0.057 0.063

Table 2.
Mean Squared Error (MSE) and Mean Absolute Error (MAE) for 9 Scagnostics scores using conventional
Scagnostics algorithms vs. ScagCNN predictions.

Figure 12.
Classification results for randomly selected scatterplots from synthesized and real datasets. Panel (a) depicts the
classification results on the synthesized test set. The title is in the form of ground-truth/predicted labels. Panel
(b) shows the predicted labels for the real-life test data [9].
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to the clumpy measurement. A large number of wrongly classified plots for clumpy
scores suggest that we did not generate this kind of data properly, or the clumpy
score is too sensitive [9].

5.4 ScagCNN run-time evaluation

There are two main advantages of using ScagCNN compared to the conventional
Scagnostics algorithms. The first is that thanks to CNN’s spatial invariant property,
ScagCNN is robust to small changes in the underlying data. We refer interested
readers to the original paper [9] for detailed analysis concerning Scagnostics’s sen-
sitivity and ScagCNN’s robustness concerning small variants in the underlying data.
This section discusses the second advantage of ScagCNN’s. It reduces prediction
time in case we need to predict the scores in batches.

Table 3 summarizes the time performance on the test dataset with 589
scatterplots from the real-life datasets. The testing device is an iMac with 3 GHz
6-Core Intel Core i5, macOS Catalina Version 10.15.3, 8 GB of RAM. However, one
may access the project’s Github page to perform the runtime evaluation on his/her
device. Notably, ScagCNN model has enormously reduced the computational time
(20.019 ms vs. 1.630 ms). Furthermore, the conventional Scagnostics computation
time depends on the number of bins resulting from the binning process. Thus, the
conventional approach has a large standard deviation regarding the computation
times.

In contrast, all inputs into ScagCNN are images of the same size, so the compu-
tation times are relatively more stable. However, it takes time to load the ScagCNN
model and perform the first prediction. This initialization time is due to the WebGL
shader compilation needed for the model [26]. Therefore, we should always use
ScagCNN in batch to gain time performance. Further investigations reveal that
ScagCNN prediction model achieves better performance by leveraging parallelisms
(multi-cores) and using more memory space [7].

Finally, ScagCNN provides a web prototype for readers to evaluate the predic-
tion results qualitatively. The source codes and result visualizations are available on
the project’s web page: https://idatavisualizationlab.github.io/V/ScagCNN.

6. Conclusions

This chapter introduces a recent Scagnostics implementation called
ScagnosticsJS. Its implementation in JavaScript fosters the use of visual features on
the web platform. Also, its extensions of Scagnostics to 3D and nD versions promote
visual features that characterize the rapidly growing multivariate data. This chapter

Task Time (ms)

Average scagnostics time per plot 20.019

Scagnostics time per plot standard deviation 20.354

Average model loading time 86.032

Average time for initial prediction 25.226

Average time per plot, using model 1.630

Time per plot standard deviation, using model 0.819

Table 3.
Machine learning model vs. Scagnostics algorithm runtime evaluation, evaluated on 589 scatterplots [7].
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also describes Outliagnostics as an attempt to demonstrate the use of ScagnosticsJS
2D version on the web. This application uses a leave-one-out strategy and
Scagnostics outlying score to detect individual data entry’s outlying contribution to
the overall set of points over time. Likewise, MTSAD is another application to
illustrate the use of ScagnosticsJS nD version in finding the abnormalities in multi-
variate time series data. Finally, this chapter discusses a recent attempt to use
convolutional neural networks to predict Scagnostics scores and classify scatterplots
into their typical Scagnostics types. Its main purposes are to tackle the issues that
the conventional Scagnostics algorithms involve time-consuming algorithms, and
they are also sensitive to slight changes in the underlying data.
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Chapter 2

Visualizing the Impact of  
COVID-19 in the Mobility 
Dynamics - A Dashboard 
Framework for Decision Support 
in Smart Cities
Nuno Alpalhão, Miguel de Castro Neto and Marcel Motta

Abstract

Being mobility one of the biggest challenge’s cities face today, the COVID-19 
pandemic reinforced this challenge and caused a deep structural change in the 
mobility of the multilayered dynamic framework of Smart Cities. The need to 
supply decision support systems to city authorities is higher than ever. Planning and 
managing mobility in Smart Cities has become more challenging, as the amount of 
information available and the pressure to enforce sustainable and secure policies 
increases, stakeholders require faster and more targeted actions. Dashboards are 
powerful tools that can be used in this context to provide, in an understandable 
manner, multidimensional information otherwise unavailable in classically static 
visualizations, as these tools offer a reliable foundation for decision support sys-
tems. This chapter goes through the required visualization techniques used to pro-
duce meaningful dashboards, to both showcase spatial and temporal trends in the 
context of mobility in Smart Cities following the COVID-19 pandemic. A general 
framework for analyzing mobility patterns is suggested by gathering methods and 
techniques recently developed in the literature.

Keywords: Smart Cities, mobility, COVID-19, decision support, dashboard,  
spatial and temporal trends

1. Introduction

The exponential growth and availability of data has opened the possibility of 
visualizing a city and all its layers in a previously unavailable smart way. We define 
the Smart Cities framework as an urban provider of several services clustered into 
different nonexclusive layers in a unified way [1], such clusters can be characterized 
as Mobility, Environment, Government, Economy, People and Living [2]. This digi-
tal transformation process cities face today is leading to a new reality where urban 
space is taking advantage of information and communication technologies and data 
science to answer present and future challenges, namely, to become more efficient 
in services and infrastructures management in order to deliver quality of life to the 
people who live, work or visit the city [3]. When developing a framework to support 
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decisions in any of these layers one must always consider the amount of information 
available and its purpose. In this context it is natural to introduce a dashboard as a 
visualization tailored to give support to smart city agents, from managers to policy 
makers, in order to both understand and act on these complex matters [4] in a read-
ily available manner and arranged on a single screen [5].

The global pandemic scenario caused by the Covid-19 pathogen raised many 
questions in terms of measuring and understanding its impact in multiple fronts 
(e.g. healthcare, economy, tourism). Addressing these questions became a critical 
task in tailoring and evaluating strategies to tackle the pandemic and minimize 
its effects, especially in the context of the Smart Cities. Naturally, a massive 
influx of dashboards started being developed, published and shared all over the 
internet by institutional agents, academia and industry. More often than not, 
these dashboards seem to lack well-defined guidelines in terms of their design 
choices and/or attempt to represent information in ways that are either unclear 
or dubious [6]. This diagnosis is one of the main drivers for writing this chapter 
and, hopefully, should provide an adequate reference guide for designing simple 
and insightful dashboards.

In this chapter we will provide a step-by-step dashboard design prototype 
applying structural guidelines [7] on how to deliver such an essential tool within 
the scope of mobility and the impact it suffered due to the Covid-19 pandemic 
in the city of Lisbon in Portugal. We will provide a broadening of the concepts 
required and encourage the reader to apply this methodology in any case within the 
framework of decision support in Smart Cities.

The proposed solution relies on a Javascript backend engine executed with 
Python programming language [8], in line with the state of the art. In comparison 
with other implementations, our dashboard improves the understanding of the 
impact of the Covid-19 pandemic by synthesizing visualization concepts and 
techniques gathered in the literature. This way, it is introduced a novel approach to 
better visualize mobility patterns in the context of Smart Cities.

2. State of the art

As defined in the literature, a dashboard is “a visual display of data used to 
monitor conditions and/or facilitate understanding”. While there is not a clear 
definition in terms of its format, dashboards usually “combine different elements 
(e.g., charts, text, legends, filters, etc.) into a cohesive and coordinated whole that 
allows people to see and understand their data” [7].

In the field of mobility, it was identified a set of relevant dashboards that 
attempt to highlight trends and patterns by using clear visualizations and metrics, 
as shown in Figures 1 and 2:

Since the Covid-19 outbreak, Google started to release periodic reports [9] 
highlighting mobility changes at the city level, by using a category breakdown 
(e.g. Retail & recreation, Grocery & pharmacy, parks). While this report could 
arguably be described as a dashboard, it conveys information using data visu-
alization tools and techniques to provide understanding over a certain event. In 
a simplistic manner, it defines a ratio metric to highlight the change in mobility 
caused by the policies and measures to tackle the Covid-19 outbreak. Additionally, 
it uses a line chart to analyze fluctuations over the previous weeks. Google also 
ensures the statistical significance of the information displayed by removing cities 
and categories which are not relevant or cannot be properly subject to analysis. On 
the other hand, the limited scope and lack of interactivity of this report could be 
pointed out as shortcomings and could be improved.
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In Figure 2, an interactive dashboard is proposed by C2SMART [10] to 
visualize daily traffic conditions and report changes in commuting patterns in 
the city of New York since the Covid-19 outbreak. This dashboard consists of 
combining several data sources (i.e. taxi, subway, traffic jams and collisions) 
and techniques to provide a complete picture of the impact of the pandemic on 
transportation systems as it unfolds. Given the nature of data, we are once again 
presented with elements that can better display the spatial–temporal distribu-
tion of mobility: (a) a map visual displays the traffic flow for the main roads 
in the city; (b) a heatmap visual shows the year-over-year (YoY%) difference 
ratio in traffic volume; (c) a line-bar chart showing absolute and YoY% subway 
ridership data; (d) a line chart showing hourly travel times for a selected road; 
and (e) a bar chart showing the weekly reported crashes between 2019 and 
2020. The depth of this dashboard poses as a great example for the usage of data 
visualization for analyzing the effects of Covid-19 in mobility. Nonetheless, it 
might present some challenges in terms of complexity when using the several 
available filters and interpreting the information in an adequate manner.

Figure 1. 
Google’s COVID-19 community mobility reports.

Figure 2. 
C2SMART COVID-19 data dashboard.
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3. Mobility in the urban context

Mobility in the Smart City context is defined as the essence of contemporary 
cities, in other words it defines the interactions of all moving parts in the urban 
context with multiple and distinct information sources ranging from traffic 
sensors to telecommunications data. A concept such as this one can be used in the 
definition and planning of multiple services in the urban area, such as a major 
factor in a smart and sustainable urban planning, an economic proxy for socio-
economic characterization a feature in implementing and monitoring security in 
cities and so on [11].

As we have mentioned in the beginning of this chapter, mobility is only one 
of the multiple layers in the framework of Smart Cities, from which new insights 
can be reached with the simultaneous use of other sources of information either 
explaining or being explained by it. That is, understanding mobility alongside other 
determinant factors, in the context for Smart Cities, allows to answer a variety of 
questions about how cities and their inhabitants interact, at a certain point in time 
and space. Intuitively, the answer is always dependent on the intent of the visualiza-
tion itself, but good practices are transversal to all problems [12].

For the dashboard built later in this chapter we will represent mobility by 
encoding traffic data in the form of geometric objects to map and describe com-
muting events happening throughout the city of Lisbon between 2019 and 2020, 
for the months of September and October. Additionally, we will also be using 
telecommunications data in the same spatial and temporal range in the form of 
Origin Destination (OD) matrices [13] to understand and quantify how many 
people move between census tracts of the city. Due to the sensitive nature of the 
communications information, all the data related to the OD matrices used to feed 
the visualizations was artificially generated from the original source. As we will see 
in the sections bellow, the usage of these two data sources will allow us to visualize 
mobility patterns across the day before and after Covid-19.

4. Covid-19 impact scenario

As it is known the Covid-19 has been a prevalent pandemic that significantly 
changed the way people conduct their lives [14, 15], especially when it comes to 
mobility, as lock down and isolation measures restricted commuting and traveling to 
an unprecedented extent. With such a significant transformation it is natural that the 
need for governments to reinforce well-informed policies is higher than ever, with 
the ambition of moving to data-driven public policy making, especially in the urban 
areas where the incidence is more pronounced. From our definition of mobility, it 
comes naturally that a study on the impact of this pandemic is not only desirable 
but a necessity in the context of Smart Cities, particularly now that we begin to have 
sufficient historical data for the period of this pandemic. However, presenting and 
exploring data to effectively turn it into valuable information requires some consid-
erations, such as: the definition of the observed event, the toolset and structure used 
in the report, the scope of the report, the target audience, and its main objectives.

Below we will start to define all the structural requirements along with a set of 
good practices for a successful and impactful dashboard.

4.1 Problem definition

In order to adjust city wide services and policies, such as public transport, 
security, traffic management and infrastructure development, city planners require 
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not only the latest information regarding the current state of mobility but also how 
historically it changed in regard to the impact of the Covid-19 pandemic or, in other 
words, what is the new “normal” mobility patterns in the city of Lisbon?

We are expected to define and visualize the current context of the city’s mobility 
as well as to be able to differentiate the impacts caused by the Covid-19 pandemic.

4.2 Visualization requirements

First and foremost, it is essential to outline a storytelling narrative behind your 
visualization to provide the proper context to the data, to highlight its relevant 
characteristics and, ultimately, to deliver insights.

Creating a visualization that can express the state of mobility at a given point 
in time, is the main objective, but having the city as a single entity is not enough to 
fully understand the dynamics of smaller partitions, such as neighborhoods and 
main roads. We identify three main requirements for a desirable dashboard: (a) a 
zoom in and out approach needs to be available to the user; (b) a clear temporal 
trend comparison is a must to understand the impact and the ways to administer the 
changes caused in the population’s mobility; and (c) measures to understand if the 
current state of mobility is expected and if not, where it is deviating from the norm.

4.3 Scope

Will it be possible to use this dashboard for a different purpose, for example: can 
it be used to aid police officers in choosing patrol routes? By adding information 
would we lose on the main problem? These are the questions you should be making 
even before you start thinking visually, since they will surely affect the outcome and 
longevity of the dashboard itself.

4.4 Target audience

To whom the dashboard is aimed for should deeply impact its design, as you 
should not expect the end user to have the same degree of expertise in a subject 
as you do.

Given the importance of Smart Cities for policy makers and institutional agents, 
the main target of the proposed dashboard should be stakeholders whose responsi-
bility is to tailor and gauge the conditions of the city’s infrastructures, services and 
facilities made available to its inhabitants, to improve the management of resources, 
namely public transport, and to promote well-being. But taking into consideration 
the possible scope option mentioned in the section above, what if the dashboard 
was intended to police officers as well? Given that their line of work requires 
specific and fine-grained information to recognize which specific streets might 
need more attention, new layers of information would be needed to provide such an 
understanding.

5. A dashboard

5.1 Prerequisites

Before we can begin, we need to fully understand how we want to represent 
our problem set and the sources available for this purpose. For a descriptive visu-
alization to successfully work it is required to operate under some well-founded 
assumptions.
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For the problem at hand, we have available traffic jams, telecommunications 
OD matrices and geolocated layers such as metro stations, bus stops and road 
infrastructure. But how can we use them to represent such a broad term such as 
mobility? It is in this part of the chapter that we will start warning the reader that 
a single correct answer does not exist, different interpretations of the definition of 
the problem will naturally lead to different solutions, nevertheless, a substantiated 
approach that is able to effectively solve the problem is always of great value.

It is known that traffic jams are mainly caused by two intrinsically distinct 
factors [16]: (a) Daily commuting, a problem caused by a recurrent overload of 
the road system (mostly during week days) in both the home to work commuting 
(typically during the morning) and again in the analogous work to home commut-
ing (typically during the afternoon), a problem most cities still struggle to solve; 
(b) A random event, road accidents or city wide events such as a sports match, can 
cause sporadic traffic jams. While the second point can bring some great insights 
on how to manage mobility given an external factor or event, it is the first point the 
allows us to consistently take a snapshot of the daily dynamics of mobility in a city, 
in order to characterize such a diverse structure as a city, recurrent events are always 
desirable.

With such a mindset we can consistently describe a factor of the city’s mobility 
ecosystem on a daily or even weekly basis. To broaden our understanding of the 
mobility dynamics, using the OD matrices data, given a traffic jam, we can identify 
from which census tracts of the city people came from and went to.

Given the real time state of traffic, one cannot accurately identify the cause of a 
traffic jam, but if, for the same location, there is an occurrence of traffic jam in the 
morning and in the afternoon, and as it is known, commuting is recurrent, so with 
a daily, weekly, or even monthly overlay, we can start to visualize the typology of 
these jams and their implications.

5.2 Current state of mobility

The term current can be misleading, as the current state of mobility in the city is 
not solely described by the real-time state of traffic jams but by its past state as well. 
In the assumptions made, the recurrence of daily traffic jams can be identified as 
an overload or bottleneck on the road system caused by the commuting of people, 
nevertheless, to give the ability to the user to characterize and visualize a traffic 
jam, as commuting related or not, an encoding of the whole day needs to be present 
as well.

As one can see in Figure 3, the user has access to the daily state and degree, with a 
clean color encoding, green for home to work commutes and red for work to home, of 
traffic jams in the city and is simultaneously able to understand the extent of recur-
rence of these events. For a given temporal window (in the image set as “Daily”), an 
algorithm identifies and defines immediately, with a given degree of confidence, each 
commute as the reoccurrence of a traffic jam in the morning and afternoon in the 
same location, by analyzing the consistency of origin and destination census tracts 
between the morning and afternoon throughout the day or week, implicitly it already 
characterizes the mobility dynamics of a city by defining commuting of people as a 
daily occurrence through the same location, causing traffic jams. This visualization 
allows the user, in a very clear and succinct way, to spatially understand how mobility 
is being conducted, and the degree of severity of the overload in the road system. 
Allowing zoom in and out operations to clearly see the direction in which mobility is 
and historically where it has been going. Additionally, by choosing a concrete period 
and temporal aggregation on the top menu, the user can click the submit button to 
change the map, treemap and bar chart visualizations as desired.



29

Visualizing the Impact of COVID-19 in the Mobility Dynamics - A Dashboard Framework…
DOI: http://dx.doi.org/10.5772/intechopen.96295

By itself, the map is not enough to give an understanding of numerically how 
many people commute. How do we compare different commutes that are spatially 
separated? In the following visualizations we will focus on each commute as a bi-
daily occurrence of a traffic jam on the same location and its origin and destination 
census tracts, as identified by our algorithm.

To understand the dimension and difference between different commutes, 
using the OD matrices we can calculate the total number of people that commuted 
from their homes to their work (HtW) and from work to their homes (WtH) for 
each traffic jam, under the assumption that it is caused by commuting. Naturally to 
guarantee, with a given degree of confidence, an average of the moving window for 
each type of commuted related jam can be made.

Having this information for the current state of mobility for that temporal 
window, a visualization can be created to compare different commutes and allow 
the user to understand the numeric difference of each unique commute and have a 
clear notion of the current state by comparing them.

It seemed appropriate to choose a treemap visualization [18] as shown in 
Figure 4, to allow the user not only to understand the number of people commut-
ing but also to visualize the relative difference between them. In order to prevent 
an overcrowding in the visualization we chose to show only the top five commutes 
in terms of absolute number of commuters. Intuitively for this problem other 
types of visualizations could also have achieved the same level of effectiveness as 
a treemap visualization. For example, a pie chart could relay a better comparison 
within unique commutes but would not be so successful in displaying the compari-
son between distinct commutes. Although different choices could be made here, 
one should always prioritize on how the user should comprehend the data.

Now that a comparison of the number of commuting people between home and 
work has been made, given its spatial distribution, there is still the need to better 
understand how the difference in the number of people between the home and 

Figure 4. 
Treemap visualization.

Figure 3. 
Dashboard prototype [17].
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work commutes affect mobility. Intuitively, most people might commute to work 
daily in the same hour, participating in the same jam, but one cannot expect all of 
them to behave similarly, sharing again the same schedule when going back home. 
This translates in a consistent numeric difference that can be used to both charac-
terize and differentiate different commutes.

Above in Figure 5, we have created a bar chart to visualize and compare such 
difference, each bar represents the relative difference of the number of people that 
commuted from home to work (HtW) by the number of people that commuted 
from work to home (WtH) for each commute, centered on the zero axis. In other 
words, the percentage delta of people that participated in a traffic jam in the morn-
ing for their morning commute and also participated in a traffic jam, in the same 
location in the afternoon. Again, to prevent overcrowding of the chart, only the 
top five highest and lowest ratios were shown. This visualization allows the user to 
understand how the main commutes in the city are differentiated spatially but also 
temporally from the morning to the afternoon, providing a new dimension in the 
comprehension of the city’s dynamics.

5.3 Spatial–temporal data

The previous visualizations provide an understanding of the current state 
of mobility in a city given a temporal window by visualizing where and how 

Figure 5. 
Bar chart visualization.

Figure 6. 
Line chart visualization.



31

Visualizing the Impact of COVID-19 in the Mobility Dynamics - A Dashboard Framework…
DOI: http://dx.doi.org/10.5772/intechopen.96295

commutes are made. Nevertheless, to fully convey the natural change of how 
people commute throughout each yearly cycle, we need to analyze each individual 
jam location.

As we can see in Figure 6, by clicking in any specific point of the map, the 
user can access the full historical values of the amount of people that commuted 
in that location through the whole year and also, the average weekly hours in 
which the commute related jam occurred, this allows the user to grasp the exist-
ing seasonal trends to better discern the fundamental differences between the 
morning and afternoon commutes. By following the color encoding used in the 
map, using the greens for home to work transitions and reds for work to home, 
we create a cohesion in the dashboard that provides an ease of recognition for 
the user.

5.4 Measuring Covid-19 impact

To study the impact of such a prolonged event we first need to frame it tempo-
rally, as it is known the Covid-19 pandemic started spreading worldwide approxi-
mately in the month of February of 2020 and to the day it is still active. Naturally, a 
comparison to a period where the pandemic was not active is required, nevertheless 
due to seasonal trends the comparison needs to come from homologous months 
from different years.

As we can see in Figure 7, by using dotted lines, we can add the previous year’s 
“Covid-19 free” information in the same line chart, where we can perfectly distin-
guish and compare the possible impact in mobility in terms of absolute values and 
hourly occurrence. The intention in the use of dotted lines in this visualization is 
to covey the attention of the user immediately, but also to set the previous year as a 
sort of target or something to be perceived as a goal, reflecting a hope in trying to 
achieve a “normal” mobility again.

Figure 7. 
Visualization to offer a year-by-year comparison.
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6. Conclusion

In light of the Covid-19 outbreak and to support a data-driven urban manage-
ment strategy, the need for data analytics tools is in the forefront of policymaking. 
In practice, this approach proves to be an interesting path for presenting and 
exploring shifts in mobility patterns, while being robust enough for answering 
transversal questions regarding the cities and its dynamics with the ambition of 
supporting data-driven policy making in pandemic situations.

This chapter presented and discussed dashboard solutions designed to analyze 
the impact of Covid-19 in mobility and proposed a framework for data visualization 
in the context of the Smart Cities using dashboard techniques and following a set of 
clear goals and good practices to reach them. Moreover, a dashboard prototype was 
proposed for visualizing changes and shifts in the local dynamics given historical 
data obtained before and after the pandemic outbreak in 2020.

Our findings seem to fit the current literature, as one can see, in Figure 4 the use 
of a treemap visualization can be highly scalable while providing an efficient use of 
space in the dashboard itself [18], defining the problem, scope and target audience 
is essential prior to the development of any visualization [7, 12] and understanding 
Smart Cities as multilayered entities is indispensable in order to provide any kind of 
meaningful insights [1, 3], especially when dealing with mobility [11, 16].

Furthermore, the visual components proposed attempt to look at mobility data 
from multiple perspectives, in line with previous works; for instance, time can 
be visualized as a continuous dimension in a line chart to represent a historical 
series, or it could also be visualized as an ordinal variable in a bar chart to represent 
distributions across days of the week [7]. The proposed components should also 
allow to compare different points in time and space [7], in order to identify seasonal 
trends and/or spatial concentration, which could be achieved by line charts, maps 
and treemaps. The ideas herein discussed and the proposed guidelines are a small 
contribution to consolidate the application of dashboards in the field of the Smart 
Cities and, hopefully, this chapter could be used as inspiration for authors and 
contributors for further development in this field of study.

© 2021 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 
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Chapter 3

3D Point Cloud-Based Tree
Canopy Visualization for
a Smart Deployment of Mobile
Communication Systems
Yunus Egi and Engin Eyceyurt

Abstract

Mobile communication is one of the most important parameters of smart cities
in terms of maintaining connectivity and interaction between humans and smart
systems. However, In the deployment process of Mobile Communication Systems
(MCS), Radio Frequency (RF) engineers use location depended empirical Signal
Strength Path Loss (SSPL) models ending up with poor signal strength and slow
data connection. This is due to the fact that empirical propagation models usually
are restrained by the environment and do not implement state of the art technolo-
gies, including Unmanned Aerial Vehicles (UAV), Light Detection and Ranging
(LiDAR), Image Processing, and Machine Learning to increase efficiency. Terrains
involving buildings, hills, trees, mountains, and human-made structures are con-
sidered irregular terrains by telecommunication engineers. Irregular terrains, spe-
cifically trees, significantly affect MCS’s efficiency because of their complex pattern
resulting in erroneous signal fading via multi-path reflection and absorption.
Therefore, a virtual 3D environment is required to extract the required 3D terrain
pattern and elevation data from the environment. Once this data is processed in the
machine learning algorithm, an adaptive propagation model can be formed and can
significantly improve SSPL prediction accuracy for MCS. This chapter presents 3D
point cloud visualization via sensor fusion and 2D image color classification tech-
niques, which lead to a novel propagation model for the smart deployment of MCS.
The proposed system’s main contribution is to develop an intelligent environment
that eliminates limitations and minimizes related signal fading prediction errors. In
addition, having better connectivity and efficiency will resolve the communication
problem of smart cities. The chapter also provides a case study that significantly
outperforms other empirical models with an accuracy of 95.4%.

Keywords: point cloud, image processing, direct geo-referencing,
machine learning, radio networks, signal strength path loss

1. Introduction

In recent years, the number of the mobile subscriber has reached 5.11 billion
worldwide with a 2% increase [1]. This is due to the fact that available technologies
such as LTE and 5G are in use in smart cities to communicate and share the data
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through video conferencing, online shopping, working from home, smart transpor-
tation and etc. In addition, Covid-19 lockdowns cause 70% increase in internet
usage and 12% increase in streaming [2]. Accessibility of higher throughput trans-
fers in uplink and downlink led to accelerating the digitization process of new
technological advancements including Internet of Things (IoT), cloud computing,
big data analysis, and machine learning [3]. The digitization process is crucial in
terms of creating smart cities. As the usage of LTE and 5G technologies increases in
smart cities, the low-cost broadcast systems designed for different terrains become
more critical. Lands containing mountains, hills, vegetation, and human-made
structures are considered irregular terrains in telecommunication due to their com-
plex structure and surface pattern. However, vegetation has more impact on wire-
less communication since leaves and branches cause faster absorption of signal
strength through multi-path reflection [4, 5]. Empirical propagation models such as
Free space, Log-Normal (LN), and Cost-231 Hata models are limited by the envi-
ronment selection which may lead to inaccurate results in SSPL predictions [6, 7]. In
order to avoid faulty results, it is essential to take into account both the elevation
and the terrain shapes in SSPL calculations. For instance, in Figure 1, ignoring the
tree canopies falling into the Fresnel zone between the transmitter and the receiver
affects the performance of the transmitted signal and causes false path loss estima-
tion as the main signal has interference from the tree canopy. It is not possible to
physically distinguish between vegetation and the rest of the surrounding environ-
ment in practical applications. When equipped with a geo-referenced satellite image
and a corresponding geo-referenced 3D point cloud, it becomes possible to create
virtual twin environment and extract the features of the environment to predict
SSPL as seen in Figure 2. In airborne LiDAR, Geographical Mobile Mapping System
(Geo-MMS), the GPS and IMU provide the exact location and orientation of air-
borne LiDAR [8]. The LIDAR sends laser pulses to objects on the earth and collects
the reflected pulses from the environment. The distances are found by calculating
the time delay (μ) between the transmitted and received laser pulses [9]. The
obtained geo-referenced data points form a 3D point cloud that will give the sur-
face’s property, such as the height and width of the obstacles. However, since these
features will not be sufficient to classify trees from the environment, 2D satellite
imagery will be used. The 2D satellite image has a colorful and classifiable character.
We can use this feature to extract trees from the 3D image by classifying them. This
process is illustrated in Figure 3.

Figure 1.
Illustration of non line-of-sight (NLOS) propagation.

38

Data Science, Data Visualization, and Digital Twins



Machine learning determines the learning patterns and builds a general decision
algorithm by training some portion of data and is one of the most important
parameters of smart cities. In this research, Artificial Neural Network (ANN) which
is one of the most widely used machine learning algorithms will be used to build an
adaptive SSPL model by using features obtained from 3D virtual environment.
ANN consists of an input layer, hidden layer, and output layer [10]. A simplified
illustration of an ANN is represented in Figure 4. A simple ANN with only one
hidden unit is shown in Figure 4. In the input layer, the data (x1, x2, ::, xn) and
randomly initiated weights (θ1, θ2, ::, θn) are multiplied and transmitted to the
hidden layer, also known as the activation layer. In the hidden layer, a bias unit is
added to the sum of the processed data, and the result goes through an activation
function. A non-linear sigmoid function is usually used as an activation function
and assigns 1 or 0 based on a threshold. In the next step, a gradient descent
algorithm is used to adjust the connection weights between neurons. Gradient
descent calculates errors between predicted and real values and finds the neuron

Figure 2.
Obtaining 3D point cloud using airborne LiDAR.

Figure 3.
3D Point cloud vegetation classification process.
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weights that minimize the error by iteratively taking the gradients. This section will
include an example using ANN with multiple hidden layers to estimate the SSPL of
tree canopies. In this study, a powerful SSPL model has been created by using
LiDAR and machine learning to solve MCS’s aforementioned problems. The pro-
posed model, having a combination of ANN and 3D point cloud, applies to large-
and small-scale applications.

2. Related work

Many comprehensive studies have been conducted onWireless Sensor Networks
due to the continuous growth of mobile communication in smart cities. The studies
mostly focus on power consumption and system accuracy [11]. In each study,
different environments were tested over various aspects with image classification.
However, image classification usage is not limited to a specific area but can be seen
in almost all areas of studies. Juheon et al. performed an extensive study on the
classification of individual tree species with LiDAR and deep learning [12]. Simi-
larly, Torabzadeh et al. also studied tree species classification in forests with a
combination of spectroscopy and airborne LiDAR [13] while Hartling et al. focused
on urban tree species recognition and classification [14]. Image classification is a
complex technique that finds space in many research areas. Image processing plays
a crucial role in path loss analysis. In his study, Thrane aims to find the impact of
buildings and multi-path propagation path loss of predefined signals [15]. He col-
lects the signal attenuation measurements between the transmitter and receiver
located in many different positions. After a 2D satellite image of the measurement
area is obtained via Google Maps and rotated versions of images are prepared, the
path loss effects of buildings are estimated with image classification and deep
learning techniques. He states that 1 dB to 4.7 dB improvement factor in path loss
prediction with his path loss model compared to empirical models. Likewise, the
research conducted by Ahmadien et al. demonstrates a path loss model with K-
mean clustering, deep learning techniques, and 3D images that converted from 2D
satellite images via various simulation software [16]. Although 2D images are
insufficient to create 3D images in many cases, he proposed a simulation-based path
loss model in his study with limited parameters. Gracchi et al. uses a 3D point cloud
taken by LiDAR to optimize WSN installation. High-resolution 3D point cloud data
is analyzed to find a clear line of sight. She has validated her simulated 3D version of

Figure 4.
Simple Presentation of a Perceptron.
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the model with the LiDAR-based 3D point cloud visualization [17]. The next section
will provide 3D image segmentation using geo-referenced satellite images.

3. Visualization of Trees Using Image Classification and 3D point Cloud

3.1 Direct geo-referencing and multi-sensor fusion

Direct geo-referencing is a highly efficient and accurate technique used to
determine the location and direction of a Geo-MMS. Measurements of external
orientation parameters such as altitude, orientation angles, and distances are used in
geo-referencing. A cameraless illustration of the Geo-MMS system is shown in
Figure 5.

Downward directed LiDAR under the plane takes rotational scans while IMU
and GPS take separate measurements. The direct geo-referencing of a ground vec-
tor on the surface is computed by Eq. (1) [18].

X
!a

k ¼ X
!a

b þ Ra
b Rb

LR
L
k x
!L
k þ Δx!

L
b

h i
; (1)

Where: X
!a

k: The ground vector (ath frame), Ra
L and Rb

L: Rotation matrix and

boresight rotation, RL
k θ, ηð Þ: The LiDAR mirror rotation, x!

L
k and Δx!

L
b : Slant range of

the LiDAR and boresight-shifts. The RL
k θ, ηð Þ is the function of the angle (θ)

between ground and target. The angle (η) between ground and laser’s X direction is
calculated as follows.

RL
k θ, ηð Þ ¼

cos θ � sin θ sin η � sin θcosη
0 cos η � sin η

sin θ � cos θ sin η cos θ sin η

2
64

3
75 (2)

Kalman filter supported Inertial Navigation System (INS) geo-locates the data
received by LiDAR and IMU by GPS data. A sequential adjustment is required since

Figure 5.
Obtaining 3D point cloud using airborne LiDAR.
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each sensor operates in different frequencies. After synchronization is ensured and
direct geo-referencing is complete, geo-referenced IMU and LiDAR data points are
combined to visualize a 3D point cloud. An example of a 3D point cloud that belongs
to the Lane County Mental Health service neighborhood located in Oregon is illus-
trated in Figure 6 [19]. The LiDAR used in this example is operating at 70 kHz
scanning speed and 1 cm resolution. The data is interpolated to fill the unmeasured
spots and minimize the measurement error via Natural Neighbor Interpolation
(NNI) [20]. It is also seen that the LiDAR data is geo-referenced in the x and y
direction as longitude and latitude, respectively.

The corresponding 2D satellite image is also required for 2D/3D image fusion.
The Google Map is utilized to extract the required geo-referenced 2D satellite image
as represented in Figure 7.

3.2 Color classification for visualization of trees

Image classification is implemented to visualize necessary and informative
properties using various methods through image processing. In this section, we
apply a color-based classification using density and LAB color space. The images in
RGB format are converted into LAB images since they are not suitable for digital
manipulation. The three channels of LAB color space L, a, and b must be evaluated
separately. After this process, with the help of Eq. (3), the intended color on the
image will be picked to create a binary mask that will provide the average color of
each channel falling on the selected mask on the image [21].

μ ¼ 1
m� n

X
m, nð ÞPmask m, nð Þ

� �
� Onesm�n (3)

Find :μmaskL, μmaska, μmaskb
Relevant masks such as mumask, mumaska and mumaskb will be computed for

each channel. The next step is to find the difference (Δ) between the masks and the
channel as indicated in Eq.(4).

ΔLM�N ¼ L� μmaskL

,ΔLM�N ¼ a� μmaska

,ΔLM�N ¼ b� μmaskb

(4)

Figure 6.
2D satellite image of Florida Tech neighborhood.
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Since the masks alone represent only the drawn area, calculating the Euclidean
distance for all three channels with the formula ΔEM�N will reveal the color values
closest to the masked part of the image as seen in Eq. (5).

ΔEM�N ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔLð Þ2 þ Δað Þ2 þ Δbð Þ2

q
(5)

To obtain an efficient classification, the color estimation (ΔEM) should fall in the
95% Confidence Interval (CI). This is essential since sharp color gradations within
the area without tolerance can cause some areas to disappear. Thus, 95% CI should
be applied to results by adding 3σ as seen in Eq.(6).

CI ¼ μ ΔEmaskedð Þ þ 3σ ΔEMaskedð Þ (6)

Next, CI is applied to the ΔE to test ΔE< ¼ CI values. If the condition is correct,
logic one is assigned to this value. If not, logic 0 is assigned. The logical image
containing zeros and ones is represented in Figure 8a. After implementing the
logical image to the original image, the classified trees are obtained on a 2D satellite
image. The classified image is demonstrated in Figure 8b. Since we aim to classify
trees on the 3D point cloud, we can use that classified image to filter out undesired
parts of the 3D point cloud other than trees, see Figure 8c. The results are shown in
Figure 9.

Figure 7.
2D satellite image of Lane County Mental Health service.
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4. Empirical models and proposed smart deployment technique

The signal’s strength weakens when the signal encounters obstacles and loses
energy due to multi-path reflection and absorption. The sum of the power loss and
the signal path is called the signal strength path loss, which is decisive when
deploying MCS. Therefore, many researchers have created path loss models such as
Free-Space, Log-Normal, and Cost231-Hata models. Since each model emerges from
experiments at a specific location, it has unique approaches specific to that location.
In this research, we want to create a model supported by artificial intelligence and
can fit in any location by getting out of location-oriented models that can be
considered a disadvantage. All models, including the model to be obtained, were
compared with each other. This model has been validated using the Mean Absolute
Percent Error (MAPE).

4.1 Free-Space Path Loss Model

The free space path loss (FSPL) model determines the attenuation between the
transmitter and the receiver in an unobstructed path. This phenomenon is indicated
by the Friis transmission formula, as indicated in Eq.(7) [22].

Figure 8.
3D Filtering process of tree canopies.

Figure 9.
Obtained extracted vegetation and trees from the environment.
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FSPL ¼ 10 log
Pt

Pr

� �
¼ 10 log

4πdð Þ2
λ2GtGr

 !
(7)

Where: λ: Wavelength, Gt: Gain of the transmitting antenna, Gr: Gain of the
receiving antenna, d: Separation between transmitter and receiver.

4.2 Log-Normal Shadowing Path Loss Model

Log-normal shadowing (LNS) is the extended version of the Friis formula,
which includes obstacles to the free space. It is a frequently used model for long-
range propagation [23]. Because of the shadowing effect, the LNS model comprises
Additive white Gaussian Noise (AWGN) represented as Xσ [24]. The LNS model is
demonstrated in Eq. (8).

PLLNS dB½ � ¼ PL d0ð Þ þ 10η log
d
d0

� �
þ Xσ (8)

Where: PL d0ð Þ: The path loss at d0, η: Path loss exponent, Xσ : N 0, σð Þ Normal
distribution with zero mean. LNS model has the following environments and Path
loss exponents, as shown in Table 1.

4.3 Cost231-Hata model

Cost 231-Hata model is an SSPL model that takes the Okumura Hata model to a
more diverse frequency range (1500–2000 MHz). This model can be used mainly
for urban, suburbans, and open areas. The Cost 231-Hata model is indicated in
Eq. (9) [25].

PLC�231 dB½ � ¼ 46:3þ 33:9 log fð Þ � 13:82 log hBð Þ
�a hR, fð Þ þ 44:9� 6:55 log hBð Þð Þ log dð Þ þ C

(9)

Where a hR, fð Þ ¼ 1:1 log fð Þ � 0:7ð ÞhR � 1:56 log fð Þ � 0:8ð Þ

C ¼ 0dBfor Suburban areas
3dBfor Urban areas

�

4.4 Proposed smart MCS deployment Technique

To design an intelligent broadcasting model for the deployment of MCS, the
impact of vegetation must carefully be defined in the LOS direction. Towards LOS,
the signal will be attenuated by transmission across vegetation due to reflections
and absorption. Therefore, trees are measured as a highly complex obstruction in
the environment from a telecommunication perspective. This phenomenon is
expressed in Figure 10.

Environment Path Loss Exponent (η)

Free Space 2

Urban area(Shadowed) 3–5

Inside building(LOS) 1.6–1.8

Table 1.
Predefined Path loss exponent (η) for different environments.
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This model is based on signal loss occurring on tree canopies (PLtree) through
scattering and absorption. In addition, considering Pa and Ps as the tree loss factor
PLtree, the corresponding signal strength loss is calculated as follows [26].

SSPLtree ¼ FSPLþ PLtree (10)

In the literature, analysis of tree SSPL is a challenging ongoing research question.
Even though the research numbers are going up, there are still a few consistent
results due to the complex structure of the surveying area. This section extracts the
features by means of image color classification and uses those features to reveal the
required tree canopy path loss and add its effect to the FSPL through the ML
algorithm. Since absorption and scattering are positively associated with the tree
canopy’s height and width, our algorithm will use these properties and estimate the
required signal strength path losses.

4.4.1 Experiment and Model Presentation of Tree Canopy Path loss: case study

In this section, a experiment conducted by Egi et al. [18]. will be evaluated.
From his study, the necessary training data were collected using a 40 m Mini
Handheld Digital Laser Range Finder, LG G5 mobile phone. The application used
for this experiment is a network activity application called Network Cell Info (by
Wilysis). The phone is fixed in the LOS direction of the transmitter. To calculate
PLtree, the data is taken from the front and back sides of the tree canopy and
subtracted from each other. This difference corresponds to the PLtree caused by the
scattering and absorption. This procedure is replicated in various places for differ-
ent sizes of tree canopies. Since the data obtained are raw, feature normalization is
applied to cause the gradient descent to converge faster. Mathematically explained,
normalization is to subtract each feature’s mean value from each item of the
corresponding feature and scale the feature according to its standard deviation.
Normalized data are used as input in our proposed model, as seen in Figure 11.

In this part, x1 heightð Þ and x2 widthð Þ are normalized and fed to the ANN. As the
data pass through the perceptrons, they are multiplied by randomly initialized
coefficients, called weights, θl

� �
. At each layer, bias units (+1) are added to the data,

which contribute to ANN’s outcome by modifying the activation functions [27]. The
parameters x1, x2 and, +1 with 200 elements are the input layers. The second layer is

Figure 10.
Illustration of tree canopy path loss system.
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the hidden layer consisting of 30 hidden units. The third layer is the output layer,
which makes decisions based on the height and width taken from trees.

4.4.2 Calculating Cost Function Using Forward-propagation

In ANN, the data travels from the input layer to the output layer to make
predictions. Since the propagation is only one direction towards forward, it is called
forward-propagation. The data are exposed to weights and non-linear sigmoid
functions throughout propagation to add non-linearity into the estimation model. A
regularization parameter can also be used to increase the prediction accuracy [27].
After the prediction through forward-propagation, the cost is computed to measure
the performance of the ANN model. The cost is calculated by cost the function
which determines the error between real and predicted values. The cost function
may differ based on the purpose of ANN. In this chapter, we use the logistic
regression cost function, as seen in Eq. (11).

J θð Þ ¼ 1
m

Xm
i¼1

XK¼3

k¼1

�y ið Þ
k log PLtree x ið Þ

� �� �
k

� �
� 1� y ið Þ

k

� �
log 1� PLtree xð Þ ið Þ

� �
k

� �h i
þ

λ

2m

X30
j¼1

X2

k¼1

θ 1ð Þ
j,k

� �2
þ
X3
j¼1

X30

k¼1

θ 1ð Þ
j,k

� �2" #

(11)

where: PLtree x ið Þ� �
is the last activation function, K and m are the number

possible outcomes and number of labels respectively, y is the observed outcome, θ‘s
are the weights and λ is regularization parameter. The regulation parameter, λ, is

Figure 11.
Proposed ANN presentation.
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used to prevent over-fitting [26]. Random initial weights are required to break the
symmetry and to utilize each hidden unit. Initial weights should be given in the
�εinit, εinit½ � range to keep the parameters small and increase the learning efficiency.
The formula for the required εinit is given in Eq. (12).

εinit ¼
ffiffiffi
6

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lin þ Lout

p (12)

Where: Lin and Lout are number of units in adjacent layers. After forward-
propagation process with λ ¼ 0:01, the cost, J, is found as 2.052.

4.4.3 Back-propagation

Unlike forward-propagation, the back propagation propagates backward from
the output layer to the input layer. While doing that, back-propagation computes
gradients (g0 zð Þl) in every step towards backward. Gradient reveals δ j

� �
changes in

hidden layers. The subscript J indicates the number of iterations and changes
regularly with each iteration in the back-propagation algorithm. This process is used
for the optimization of the cost function. The sigmoid gradient is defined as follows:

sigmoid zð Þ ¼ g zð Þ ¼ 1
1þ e�z (13)

g0 zð Þ ¼ d
dz

g zð Þ ¼ g zð Þ 1� g zð Þð Þ (14)

In the model, deltað Þ errors given in Eq. (15) cause deviation and must be
calculated in every layer [26].

δ 3ð Þ
j ¼ α 3ð Þ

j � yi ! Output layer

δ 2ð Þ
j ¼ θ2

� �T
δ 3ð Þ: ∗ g0 z2

� �! Hidden

Δl ¼ Δl þ δ lþ1ð Þ α lð Þ
� �T

! Adding

(15)

The outcome of Δl is an unreqularized gradient of the ANN cost function, which
should be divided by m (total number of samples). During the process, it updates
the θ value for all j’s simultaneously. After training the data with a hundred forward
and back-propagation, the cost was reduced from 2.052 to 0.636, resulting in an
accuracy of 94.5% in signal strength estimation. Since the predicted accuracy is
reached with our ANN algorithm, we apply our algorithm in the direction of LOS to
the detected trees. Tree canopies are detected through the Local Maximum Method
(LMM) and median filter processes.

4.4.4 Implementation of Local Maximum Method for detection of tree canopies

In order to determine the required parameter, the local maximums in the 3D
point cloud must be calculated with some hypothetical constraints such as using
3� 3 Median Filter, setting tree heights, width and peak to peak distance greater or
equal to 1.6 m, 2 m, and 2 m, respectively. This will maximize the accuracy of the
model by avoiding many deceptive local maxima. Local maxima are calculated
using the following Eq. (16).
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if f x, yð Þ> f xnn, ynn
� �

(16)

Where: f x, yð Þ is a pixel of an image, f xnn, ynn
� �

are the neighborhood pixels of
the f(x,y). By completing the training of the ANN, LOS SSPLtreeð formula is obtained
for LOS direction:

LOS SSPLtree dB½ �ð Þ ¼ FSPL dB½ � þ
Xntree
j¼0

P
!
Ltree j h j,w j

� �� �
(17)

Where: P
!
Ltree j : Predicted tree path loss, h j: Height of the detected tree canopy,

w j: Width of the detected tree canopy.

4.4.5 Model Validation with MAPE

Mean Absolute Percent Error (MAPE) is a statistical method to measure the
prediction accuracy of models. MAPE determines the differences between real and
theoretical values. Later it divides this difference by the real values. Next, the
absolute values of the results are averaged and represented as a percentage. MAPE is
determined by Eq. (18) [28].

LOS MAPE %½ �ð Þ ¼ 100%
n

Xn
i¼1

Models� PLreal

PLreal

����
���� (18)

5. Analysis and results of a case study

This study is based on a comparison of four models, including PLtree. The 3D
environment obtained by airborne LiDAR belongs to the Florida Institute of Tech-
nology neighborhood. Since the data has some faulty values, the natural neighbor
interpolation is performed on the raw 3D point cloud. To create a colorful 3D image,
the geo-referenced 2D satellite image is imported via Google API and merged with
the 3D point cloud. Later, the tree canopies are located by the local maxima method
on a 2D image. This 2D classified image helped us extract and locate trees on the 3D
point cloud. The process of extracting tree canopies from the 3D point cloud is
shown in Figure 12.

While the detected trees are marked with red �, the labeled transmitter and
receiver belonging to MCS are marked with yellow + signs. Using the LMM tech-
nique and limitations, the height and width of five trees were plotted. The proposed
ANN algorithm will be used to estimate the required PLtree value for each tree
canopy detected in the LOS direction, where the characteristics of the environment
such as height and width are obtained. The properties of five trees, such as distance,
width, height, and PLtree are shown in Table 2. It is seen from Table 2, there is a
correlation between tree size and estimated PLtree. This is because the complex
structure of the tree canopies causes more reflection and absorption in proportion to
the tree’s size. The detected features from the environment are used as input data
for the ANN model, and compared with the other empirical models with the same
parameters. The results are listed in Table 3. It is seen that the energy demand of
LNPL and Cost231 models increased with the distance exponentially, but they could
not provide the required signal power considering the real values. This is because
traditional propagation models assume that terrains have the same characteristics
when it comes to terrain pattern. For this reason, they deviate significantly in terms
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of SSPL and RSL estimations. The performance of SSPLtree is also shown in
Figure 13. According to Figure 13, All models have a strong relationship in terms of
distance and SSPL. However, unlike other models, the tree SPPL is discerning itself
by showing a peak anytime propagation encounter a tree in the LOS direction. To
see whether the model is performed well or not, RSL measurement should be
compared with real values. In this case study, RSL values are taken through trans-
mitter and receiver facing each other with an operating frequency of 2110 MHz.
The devices have effective radiated power of -1 dB. All empirical models and SSPL
tree predicts the RSL results operating with these parameters. The results are

Figure 12.
3D Filtering process of tree canopies.
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presented in Figure 14. The RSL values are significant in terms of maintaining the
communication between transmitter and receiver. That is why it is essential to keep
the predicted values as close as the real values. In Figure 14, it is indicated that the
red line, which is tree RSL (RSLtree), has a similar track with the black line, which is
measurement RSL(mRSL). This proves that the ANN aided model has over-
performed among all empirical models. MAPE results also validate these results.
From Table 4, RSLtree have a minimum deviation of 4.26% in terms of MAPE
percentage while others result stayed in between 6.29% to 16.9%.

Distance mð Þ ntree Height mð Þ Width mð Þ PLtree dB½ �
17 1 11.4 13.05 3 dB

52 2 10.45 12.15 3 dB

98 3 8.8 3.31 1 dB

144 4 9.2 10.5 3 dB

214 5 9.9 3.15 1 dB

Table 2.
Detected features and obtained PLtree.

Distance mð Þ ntree SSPLtree dB½ � FSPL dB½ � LNPL dB½ � Cost231 dB½ �
17 1 49.4 46.41 48.14 30.04

52 2 60.93 54.93 58.26 45.05

98 3 67.1 60.1 64.4 54.14

144 4 73.3 63.32 68.22 59.81

214 5 77.7 66.7 72.24 65.72

Table 3.
Comparison of Tree Canopy Path loss with empirical models.

Figure 13.
Comparison of 4 Models with respect to distance.
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AI aided RSL tree model with the a deviation of 4.26% has a significant
improvement compared to other empirical models since all the micro-variations
contribute to the estimates. In addition, unpredictability of tree variations [29] was
overcome using artificial intelligence. The proposed model result was also
outperformed compare to A. Alsayyari et al. case study with MAPE results of %
34.37 and %19.80 [30].

6. Conclusions

This chapter demonstrated the fusion of state of art technologies that can
potentially contribute to developing an intelligent environment for smarter cities.
Sensor fusion, UAV, satellite image, and image classification have integrated for the
purpose of creating a 3D virtual environment for a realistic data platform. The
obtained information is crucial in terms of the evaluation of the planned projects for
futuristic cities. In our case, we have assessed the effect of trees upon smart
deployment of MCS using 3D point cloud, which is basically the 3D virtual presen-
tation of the city, to maintain connectivity and efficiency. Since tree canopies are
considered irregular terrains and their complex structure highly affect the effi-
ciency of SSPL due to multi-path reflection, we extracted tree canopies by using 2D
color classified satellite image as a filter. By means of extracted 3D point cloud

Figure 14.
RSL Comparison of Models and Measured values with respect to distance.

ntree RSLtree RSLfs RSLln RSLCost231

MAPE% 5 4.26 10.16 6.29 16.9

Table 4.
The MAPE performance of the models.
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information of tree canopies, the features (height and width) are obtained for the
purpose of training the ANN. The data and results that are taken from Egi et al.’s
case study are a good demonstration of the model application. The analysis shows
that the created smart model can significantly affect the MCS’ propagation since it
adds all micro-variations and utilizes tree features for adjustment of RSL. The
MAPE results for all models are obtained as 4.26%, 10.16%, 6.29%, and 16.9% error
for PLtree, FSPL model, log-normal model, and the Cost 231-Hata model, respec-
tively. It should also be pointed out that the ANN model did not consider the effect
of the buildings. This effect may be added to the model in future applications. The
primary contribution of this chapter is to create a colorful 3D virtual environment
and make more precise feature extraction possible. This technique may also shape
the future of smart cities by using digitized information for city planning, commu-
nication planning, and infrastructure planning. It should be noted that the proposed
model is only applicable to outdoor applications since the 3D virtual environment
only provides outdoor information. This limitation can be also removed if the
LiDAR scanning is performed indoors and combined with the outdoor data.
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Chapter 4

Digital Twin of the Mining 
Shaft and Hoisting System as 
an Opportunity to Improve the 
Management Processes of Shaft 
Infrastructure Diagnostics and 
Monitoring
Piotr Kalinowski, Oskar Długosz and Paweł Kamiński

Abstract

The following chapter presents a concept of a virtual model of a mine shaft 
equipped with a hoisting system for the purpose of improving the processes of 
diagnostics management of shaft infrastructure and its monitoring. The chapter 
presents a proposal of improvement of broadly known processes such as: diagnos-
tics and monitoring of shaft infrastructure using digital models of 3D structures, 
the BIM and Digital Twin idea. Implementation of such systems in the operating 
mine working was presented together with expected results of monitoring. As the 
presented solution is currently only a concept, development of such system in real 
application is necessary to asses real benefits of application of Digital Twin system.

Keywords: mine shaft, data visualization, digital twin, digital model,  
mine shaft hoisting system, diagnostics, monitoring

1. Introduction

Mine shafts along with hoisting systems are ones of the most important parts 
of underground mines’ technological chain. Their correct work is crucial for mine 
economy and safety of miners and all of the mine’s infrastructure. Mine shafts, 
especially those equipped with hoists, are necessary for the transport of materials, 
staff, and excavated material. Mine shafts are the only way of rescue from the mine 
workings. They are also needed for a proper work of mine ventilation system [1].

Mine shafts infrastructure is under constant influence of destructive forces, both 
geological and anthropogenic origin, which are caused by number of factors, such 
as local deposit’s tectonics (geological structure), rock mass movements caused by 
pressure effecting from deposit exploitation, atmospheric conditions, groundwater 
acting on the shaft lining etc. Law and safety regulations ensure that condition of 
shaft lining and infrastructure is controlled to provide proper levels of safety and 
efficiency of the shaft. Reliable periodic inventory and tests are made to prevent 
shaft lining and equipment from destruction. To ensure shaft’s safety, despite 
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Figure 2. 
Fracture of hoist’s shaft [8].

conducted tests, competent analysis of collected data and quick decision making are 
needed. It is sometimes necessary to take actions, such as cessation of shaft’s opera-
tion, repair of shaft equipment elements, which are costly, but necessary to prevent 
further shaft destruction and to ensure safety of the mine, environment and, most 
important of all, people’s lives and health [2].

Incorrect or unreliable monitoring of shaft infrastructure and data analysis or 
negligence in those processes can lead to tragic consequences. Proof of how impor-
tant is proper mine shaft control and monitoring, is an incident, which took place 
on September 4th 2008 in “Szczygłowice” colliery, part of “Kompania Węglowa 
S.A.”, located in Knurów, Silesian voivodeship, Poland. As the result of this incident, 
shaft top building of shaft V, main ventilators station, former hoist building, head 
frame and elements of electricity infrastructure were destroyed [3, 4].

Shaft lining’s instability caused sinkhole with radius about 30 metres. Around the 
sinkhole a danger zone with radius about 100 metres were created. The incident caused 
abnormalities of functioning of ventilation system both “Szczygłowice” colliery and 
adjacent “Knurów” mine. In the effect of this, concentration of gases in workings 
exceeded limits, which was a reason of evacuation of 433 employees of “Szczygłowice” 
and 92 workers of “Knurów” mine (509 people total). There were no fatalities [5].

Photos below (Figure 1) presents sinkhole and remains of the shaft V.
Despite of the rapid character of buildings collapse and sinkhole propagation, 

the incident was foreseeable. Tests conducted in the shaft V remains showed faults 
of the shaft lining, which led to the incident. However, incidents which are impos-
sible or almost impossible to foreseen also happen in mines. For example, in R-II 
shaft of “Rudna” copper mine, part of KGHM Polska Miedź S.A., shaft of the hoist-
ing machine was partially broken in 2011. It resulted in temporal suspension of the 
mining shaft operation, which brought huge financial loss for the whole company, 
because hoisting system operating in R-II shaft was one of the most important ele-
ments of technological chain not only of the “Rudna” main, but also for the whole 
KGHM [7].

Photos below (Figure 2) presents fracture of the hoist’s shaft.

Figure 1. 
Sinkhole and remains of shaft V, Szczygłowice coaliery [6].
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Many different incidents happened in the long history of mining One of their 
numerous reasons is lack of proper mine shafts control, caused either because of the 
lack of possibilities of conducting one or negligence in monitoring.

2. Control and revision of shaft infrastructure

As it was said before, technical condition of mine shafts’ lining and equipment 
is a foundation for safe underground mine operation. Figure 3 presents influence 
of the main workings technical condition on safety of the whole underground mine 
and its vicinity.

As it was indicated in the introduction, application of Digital Twin system will 
improve the safety of the whole underground mine. Mine shafts are crucial for 
maintaining proper mine ventilation and providing transport of people, materials 
and excavated material. In case of danger, they are the way of staff evacuation, 
which is essential for people’s safety.

It is obvious that condition of particular shaft elements, like hoisting machine, 
shaft lining or shaft members is reflected in the safety of mine shaft operation. 
Inappropriate operation of some of these elements can lead to a stoppage of shaft 
operation, which affects mine’s economic performance. In extreme situations, 
such as those presented in introduction, economic performance of the mine is in a 
serious danger, because of high cost of claiming the settlement. What is even more 

Figure 3. 
Influence of technical condition of shaft infrastructure on underground mine’s safety.
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important, such situations can cause serious threat for staff of the mine, as well as 
for bystanders, as mine shafts are sometimes located in the urbanized area.

Instability of shaft’s lining can be caused by:

• static load and change in conditions of cooperation of lining and rock mass,

• groundwater flow through the lining,

• deformational load of rock mass,

• dynamic rock tremors,

• utility factors and technological defects,

• aging of lining’s material.

Shaft lining damage can lead to serious failures or even disastrous consequences, 
such as those described in the introduction.

Effects of the shafts’ failures can be as follows:

• hazard for employees’ lives or health,

• malfunction of ventilation system,

• water, methane or fire hazard,

• shaft failure causing impossibility of its operation,

• damage of buildings located on the surface,

• necessity of temporary suspension of mine operation [1].

According to Polish law regulations mine shafts and their hoisting systems are 
considered main (literally called “basic”) elements of underground mine. Hoisting 
system with its whole equipment has to be maintained and controlled in a very strict 
manner, presented in regulations. Use of malfunctioning or broken hoisting system 
is strictly forbidden by the law [9].

Particular regulations require specific periods of time between specialized 
inventories of numerous shaft elements by different responsible people. These 
people are in particular different mine supervisors as well as appraisers.

2.1 Disadvantages of currently used systems

Mine shaft is an underground mine’s bottleneck, which efficiency is in a 
relationship with mine’s economic performance. Thus, it is desired to take all of 
the actions to prevent interference of the shaft elements control with its regular 
operation, as well as its temporal suspensions caused by potential failures or not 
scheduled maintenance works.

Methods of shaft monitoring are also considered not enough effective nor 
precise. To solve this problem, idea was presented to, utilizing modern technologies, 
visualize mine shaft data using specialized measuring methods and software. This 
way of data collecting, presenting and analysis can have positive impact on mine 
shaft levels of safety and effectiveness, by reducing time of non-operative work 
time of the hoisting system [10, 11].
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3. Data visualization – the idea of digital twin of the mine shaft

During analysis of current state of art of mining, automatic and information 
technology, idea of mine shaft’s digital twin construction was born. Mine shaft equip-
ment, with numerous monitoring devices, which data can be collected, analyzed and 
processed in real life, can effect in more reliable and accurate forecasts of failures or 
stoppages of shaft operation. The key factor of this idea’s success is integrity of applied 
solution. To provide full and complex data, it is needed to cover different elements of 
shaft elements monitoring. The most important of them is visual examination (using 
video cameras). The other aspects to analyze are power consumption, temperature of 
particular hoisting system elements, season, head frame deflection, etc. [12, 13].

The main problem to be solved is to state relationships between many, seemingly 
unrelated, factors. Future goal is to make the digital twin independent structure 
with decision making mechanism, to decide about the parameters of needed main-
tenance works or necessary stoppages. To achieve this goal, it is essential to spend 
time to “teach” the machine how to make appropriate and safe decisions, compliant 
with law regulations and experience of mine management and engineers. Having 
knowledge and experience, the machine should analyze collected data and their 
influence on other factors, as well as compare their quantities with limit values [14].

4. Devices for data visualization

4.1 Digital engineering solutions

Technologies developed by DES are engineering tools utilizing artificial intel-
ligence for ACE market (architecture, construction and engineering) and asset 
management. DES’ solutions are also present on NDT market (non-destructive 
testing), as well as BIM and EAM.

Software developed by Digital Engineering Solution utilizes pictures and files 
taken by drone, phone or camera. Advanced algorithms provide image processing, 
which allows to observe changes on monitored objects, such as size and location of 
fracture (Figure 4), elements displacement, deflection etc. Collected data can be 
stored and evaluated to assess risk and reliability of analyzed solutions [15].

Characteristic features of DES solution are:

• utilizing smartphones as measurement devices,

• processing of photos and videos for infrastructure monitoring and damage 
detection (using artificial intelligence),

Figure 4. 
Example of DES measurement application [15].
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• drafting 3D BIM models from photos (taken with smartphone or any other 
device, such as intrinsically-safe camera ATUT), as well as their updating with 
current test data (to assist in decision making process).

Use of DES platform allows to decrease time needed for monitoring process 
initiation from days to minutes. DES innovative solution is an answer for global 
need for low-cost monitoring systems. In terms of pandemic crisis and quick 
technological advance it is a real issue [15].

4.2 ATUT, intrinsically-safe system

Specific environment of the monitored object force usage of devices with par-
ticular features and complying certain safety standards. Such solutions, which meet 
mining industry safety standards are produced by Polish company PPHU ATUT sp. 
z o.o., so they can be used to extend potential of digital twin.

AT VIDEO system is used to obtain video footage from hard-to-reach places, 
as well as from areas which are particularly dangerous, in which attendance of 
people should be restricted. ATUT system support multiple video cameras at the 
same time and data transmission of digital image in mine workings and on the 
surface, using fiber-optic Ethernet network. Such solution enables reduction of 
fibers number.

ATUT, intrinsically-safe video system consists of:

• AT-NODE/G – node of redundant fiber-optic backbone,

• PZW-1/ATViso-2 – surface visualization unit using ATVisio-2 software,

• ISE-1 – intrinsically-safe Ethernet network switch,

• KM-2 – media converter,

• DZW-1 – underground fireproof computer,

• IKA-1 – intrinsically-safe video camera.

IKA-1 video camera is a standard system element. This camera is equipped with 
automatic aperture control, regulating light intensity. In case of extremely-low 
illumination the camera sets itself in the black and white mode. Recorded image is 
transferred by fiber-optic network or coaxial cable with tele-technical twisted pair. 
If utilization of fiber-optic installation is impossible, fiber-optic video converter 
might be used [16].

Diagram of the system’s idea is shown in Figure 5.
There are also other solutions utilizing data visualization available on the 

market, such as:

• ATUT-RFID – system that allows assessment of type and mass of materials 
transported with the hoist influence on correctness of hoisting system work,

• AT-Location – system used to localize mine workers both in underground 
workings and on the surface (as well as during transportation in man shaft). 
Data is collected in near-real-time and saved [17].
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4.3 3D scanning

In the last few years one can see rapid development of laser scanning technology. 
Numerous researches and tests are carried out on its use for inventories. Skala 3D 
company introduced mobile system for automatic mine shafts geometry measure-
ment, which provides full and precisely mapped model of the object. It is based 
on data collected by laser scanners and inertial unit. Use of GPS is impossible for 
measurements carried out with the system, because tests are conducted under-
ground. Thus, trajectory of scanners’ motion is determined by geometrical data, 
accelerometers and gyroscopes of inertia unit. System is also equipped with set of 
vibroisolators, to prevent influence of platform’s vibrations during its movement in 
the shaft [18, 19].

The whole system presented above is a fully calibrated measurement unit, which 
can provide spatial data from measurements of analyzed shaft in relatively short 
time. Accuracy of measurement is about 2–3 mm in one measurement plane. The 
system is considered accurate enough for in situ tests in mine shafts [19].

4.4 GPS measurements

In specialized literature one can find multiple examples of use of GPS mea-
surements undertaken for civil engineering and also for mining engineering. 
One of them is its use for Polish coal mine LW Bogdanka, where in year 2012, 
system of head frames tops displacements monitoring, applied by Department of 
Geomechanics, Civil Engineering and Geotechnics of AGH UST in Krakow. Final 
effects were satisfactory. Broad range of GPS use possibilities as well as positive 
research experience indicates that this technology might be very useful for similar 
purposes [20]. Figure 6 presents head frames of Bogdanka’s shafts with GPS 
 antennas mounted on their tops.

4.5 Other devices

To provide full control of mine shaft infrastructure numerous other devices 
can be used. Examples of such devices are thermal imaging cameras installed on 
different elements of shafts or hoisting systems to monitor temperature of breaks, 

Figure 5. 
Idea of AT-VIDEO system application in an underground mine [16].
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hoist shaft, etc. Such applications might be useful for control of hoisting system 
performance. Thermal cameras systems for mine shaft’s applications must be intrin-
sically safe and have wide measuring range, to provide safe work during all phases 
of shaft’s operation, including its sinking (with utilization of rock mass freezing).

4.6 Geotechnical monitoring of rock mass and mine shaft lining

Proper shaft lining monitoring is crucial to provide safe shaft operation. It is 
required by Polish law on every phase of shaft existence – its sinking, operation and 
liquidation. Tests cover several parameters of shaft elements and equipment, such as:

• condition of shaft lining, defined by observations, destructive and non-
destructive tests,

• shaft’s lining integrity,

• lining’s stability,

• correctness of shaft members installation,

• shaft elements’ state of wear [21].

Shaft lining monitoring can be carried out by:

• Vibrating Wire Stressmeter GEOKON,

• NATM Shotcrete Stress Cell Geokon,

• Concrete Stressmeter Geokon,

• Smartec SOFO Standard Deformation Sensor,

• NSM/ENSM system by Elexon Mining.

One of the most important factors of proper mine shaft’s monitoring is 
arrangement of measurement devices. Such theoretical devices arrangement is 
shown in Figure 7.

4.7 Idea of monitoring system

Complex graph of idea of monitoring system is presented in Figure 8.

Figure 6. 
Head frame of S1.2 shaft, LW Bogdanka coaliery.
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Figure 7. 
Example of devices’ arrangement for mine shaft monitoring.
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4.8 Management of diagnostics

To provide effective operation of a shaft and its infrastructure, proper plan-
ning of all suspensions, maintenance works, revisions, controls and inventories is 
needed. Digital twin of mine shaft might be useful for that purpose. However, to 
ensure complete diagnostics management it is worth employing models and appli-
cations used in civil engineering. Their utilization in mine shaft monitoring should 
significantly improve safety and economic performance of the mine. Application 
proposed for diagnostics management of the shaft infrastructure as well as the 
whole mine are presented below.

BIM (Building Information Modeling) – is a process supported by various tools, 
technologies and contracts involving the generation and management of physical 
and functional characteristics of places. Parametrical data is gathered to provide 
information about analyzed infrastructure. BIM is a tool for generating building 
data, its designing and management during operation. BIM’s characteristic feature 
is easy access to data, so all stakeholders can have access to the same complete infor-
mation. Parametric data record ensures possibility of computer modeling of build-
ing (basing on tables, calculations, data analysis, etc.). Use of BIM goes beyond 
the planning and design phase of project, extending throughout the building life 
cycle. The supporting processes of building lifecycle management includes cost 
management, construction management, project management, facility operation 
and application in green building. The most popular BIM software are programs 
Autodesk Revit and Graphisoft Archicad.

BIM models are visually attractive but not automatically updated, so they do 
not contain current data about state of the infrastructure or its damages. Thus, it is 
recommended to extend BIM models using other technologies. Digital data of BIM 
model is often supported using additional applications. Some of these applications 
are presented below.

4.9 Mobile applications in civil engineering

Doxcel utilizes software based on artificial intelligence for image analysis to give 
real-life information about timeliness of scheduled operations, budget implementa-
tion or even quality of work at construction site.

Building System Planning is a solution based on automation of civil engineering 
project planning. One of its elements is GenMEP, software used for automation of 

Figure 8. 
Idea shaft lining and hoist monitoring system.
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mechanics, electric and hydraulic installation design, in terms of BIM. For example, 
GenMEP can automatically and autonomously design different installations for 
building of which its 3D model was previously made. Purpose of use of such soft-
ware is to prevent colliding several installation elements in one place.

Autodesk BIM 360 DOSC is an application for management of documents on 
construction site, which is also adapted for teamwork. There are also similar soft-
ware solutions available on market, e.g., PLANGRID and PROCORE. Usually they 
provide photo documentation management, but without advanced image analysis. 
Their most important features are reporting, time and budget management. They 
also support management of contacts, meetings, deliveries, etc. There are also other 
applications for individual clients, such as mobiDOM, which consist of schedule, 
organizer, contact database, etc.).

Digital Engineering Solutions in cooperation with Przedsiębiorstwo Budowy 
Szybów S.A. (Shaft Sinking Company, part of JSW Group) developed an application 

Figure 9. 
Model of mine shaft and hoisting system made with DES’s application.

Figure 10. 
Graphs of shaft elements’ data and relationships between them.

Figure 11. 
Table of shaft element’s data.
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prototype for digital twin development. The concept and real-life application pos-
sibilities are currently an objective of further development. Picture above (Figure 9) 
presents an example of a model made with this application.

Presented application enables user to present data in graphical form, as well as show 
relationships between them. Figure 10 presents graphs and relationships of brake 
temperature and rope condition (on the left side) and break temperature and tower 
displacements (on the right-hand side). In the Figure 11 table made with DES’s app and 
presenting data listed above is shown. Orange and red color indicates dangerous states.

5. Discussion

Table 1 below presents simplified SWOT analysis of proposed solution of Digital 
Twin. Obvious advantages of such system are improvement of safety in the mine 
workings in which monitoring is to be used. Improvement of economic perfor-
mance of the mine is possible only if investment costs and spending on training or 
hiring qualified staff are not too high. However, it is very hard to assess real saving 
achieved by application of Digital Twin. It might be real issue, because saving in 
case of situations similar to those presented in introduction might be huge, but in 
other cases they can be as well unnoticeable.

Idea of Digital Twinning is a pioneering solution in Polish mining industry. The 
coal-based industry suffers from underinvestment, which leads to a situation in 
which the whole industry is out-of-date. As the CO2 emission allowances’ prices are 
constantly raising, it might be hard to introduce such system in a dying industry. A 
chance for development of Digital Twin system is an industry of raw materials, such 
as copper etc., because demand for such resource is constantly growing.

6. Conclusion

In the chapter, idea of comprehensive monitoring system of mine shaft infra-
structure, as well as tools supporting diagnostics management were introduced. 
Presented solution utilizes modern technologies, including BIM and Industrial 
Internet of Things. Main goal of digital twin of mine shaft is reduction of unsched-
uled suspensions of shaft operations and improvement of its safety, by constant 
shaft elements monitoring with analysis of gathered data. Mutual influence of 

Strengths Weaknesses

• improvement of the safety in the mine shaft and its 
vicinity,

• improvement of mine’s economic performance,

• increase of the automation level of the mine

• high investment cost,

• demand for qualified staff,

• problematic installation in operating shaft

Opportunities Threats

• possibility of detailed analysis of gathered data,

• possibility of conducting research basing on archived 
data,

• possible development of the system, covering other 
mine objects or different branches of industry,

• potential financial profit

• a conflict with some regulations (necessity of 
adjustment of law regulations),

• necessity of employment or training highly 
qualified staff

Table 1. 
Simplified SWOT analysis of digital twinning.
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different shaft elements and their impact on reliability of its operation can be also 
done basing on data collected during control process. In long time period it might 
reduce costs of shaft maintenance.

Theoretical model of mine shaft monitoring was prepared according to existing 
Polish law. Goal of this venture is to prepare comprehensive visualization of mine 
shaft and its equipment, to provide virtual analysis of its behavior. Monitoring system 
should be able to learn how to react for different events occurring in shaft elements, 
using systems such as ABB Ability™ or similar (SYSTEM PI) and proper monitor-
ing unit. Decisions made by software might be displayed on responsible person’s 
computer screen. Systems such as DES consists of digitization both underground 
and surface infrastructure. In future it can provide assessment of mining damage, 
using scanning, modeling, EAM integration and, as an effect, introduction of BIM 
and EAM mechanisms. Such solutions might help reducing amount of money spent 
by mining companies to handle mining damage, which is real issue, because in 2018 
only JSW Spent 92 million zł (approximately 25 million USD) for this. Presented idea 
is a only a theoretical solution, so it’s real life applications needs further analysis to 
determine amount of measuring devices, their location and performance in hard con-
ditions of mine shaft. Digital model of mine shaft and hoisting system has a positive 
impact on economical effectiveness of mine and shaft itself, as well as safety of mine 
staff and infrastructure. On the side of disadvantages there are high investment cost, 
long time of system introduction and its “learning” and reliability of applied devices 
and systems. However, in long time perspective costs presented above are much lower 
than losses resulting from unscheduled suspensions of shaft operation. Improvement 
of people’s safety is also very important result of digital twin application.

© 2021 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 



70

Data Science, Data Visualization, and Digital Twins

[1] Czaja P.; Kamiński P. Wybrane 
zagadnienia technik i technologii drążenia 
szybów. Kraków: Szkoła Eksploatacji 
Podziemnej, 2016.

[2] M. Szade M.; Szot A. Techniczne 
metody kontroli podstawowych obiektów 
zakładu górniczego. Prace Naukowe Gig 
Górnictwo i Środowisko. 2006, 3.

[3] Wyższy Urząd Górniczy wug.
gov.pl. [Online] 09 2008. [cited: 18 
05 2020.] http://www.wug.gov.pl/
bhp/04_09_2008.

[4] Wyższy Urząd Górniczy. wug.
gov.pl. [Online] 09 2008. [cited: 
18 05 2020.] http://www.wug.gov.
pl/o_nas/wiadomosci_wug/Katastrofa-
budowlana-w-KWK-Szczyglowice/
idn:137.

[5] Baca-Pogorzelska Karolina. 
Rzeczpospolita. rp.pl. [Online] 31 
03 2009. [cited: 18 05 2020.] https://
www.rp.pl/artykul/284531-Zawalenie-
szybu-w-Szczyglowicach-to-wina-
czlowieka-.html

[6] nettg.pl. [Online] 26 02 2010. [cited: 
18 05 2020.] https://nettg.pl/news/14148/
sep-2010-dlaczego-runal-szyb-piaty-.

[7] Wyższy Urząd Górniczy Decyzja 
Urzędu Górniczego do Badań Kontrolnych 
Urządzeń Energomechanicznych. L. dz. 
UGB/0232/0001/11/01520/Sz.,

[8] Kowal L. Instytut Techniki Górniczej  
KOMAG. Maszyny Górnicze. 2013, 2

[9] Rozporządzenie Ministra Energii 
z dnia 23 listopada 2016 r. w sprawie 
szczegółowych wymagań dotyczących 
prowadzenia ruchu podziemnych 
zakładów górniczych

[10] Jabłoński M Jaśkowski W. Przegląd 
technik inwentaryzacji rury szybowej. 
Budownictwo i Architektura. 2016, 15(3).

[11] Kaleta H Założenia systemu 
monitorowania szybów górniczych w 
świetle wybranych uszkodzeń obudowy 
szybów. Systemy Wspomagania W 
Inżynierii Produkcji. 2017, 6.

[12] Battista N. Cheal, R. Harvey, C 
Monitoring the axial displacement of a 
high-rise building under construction using 
embedded distributed fibre optic sensors. 
Kechavarzi. 2017.

[13] Matthew N. O. Sadiku, Adebowale E. 
Shadare, Sarhan M. Musa Information 
Engineering, International Journal of 
Engineering Research, Volume No.6, 
Issue No.11, pp: 448-449 , Oct. 2017

[14] Matthew N.O. Sdiku, Adebowale E.  
Shadre, Sarhan M. Musa, Cajetan M.  
Akujuobi Data Visualization, 
International Journal of Engineering 
Research and Advanced Technology, 
Volume. 02 Issue.12, December-2016

[15] Bednarski G. Demonstracja 
wykorzystania mobilnej aplikacji 
pomiarowej w Asset Management 2020

[16] PPHU ATUT Sp. z o.o. AT - VIDEO 
Advertising materials of PPHU ATUT Sp. 
z o.o. Mysłowice 2019.

[17] PPHU ATUT Sp. z o.o. SMC-1/
KWP-1 Advertising materials of PPHU 
ATUT Sp. z o.o. Mysłowice, 2019.

[18] Adamek A.; Skala 3D Mobilna 
platforma górnicza (MPG) - nowatorskim 
rozwiązaniem w polskich kopalniach. 
Archiwum Fotogrametrii, Kartografii i 
Teledetekcji. 2015, 27

[19] Preuss R. Automatyzacja procesu 
przetwarzania danych obrazowych. 
Archiwum Fotogrametrii, Kartografii i 
Teledetekcji. 2014, 26.

[20] Tajduś A.; Stewarski E.; 
Kamiński P. Monitoring satelitarny GPS 
mikroprzestrzeni szczytów wież szybowych 

References



71

Digital Twin of the Mining Shaft and Hoisting System as an Opportunity to Improve…
DOI: http://dx.doi.org/10.5772/intechopen.96193

w kopalni LW,,Bogdanka". Kraków: 
Akademia Górniczo-Hutnicza, 2012.

[21] Calikowski B. Bielceka.R. 
Odkształcenia, naprężenia, przemieszczenia 
i temperatury w obudowie szybu zmierzone 
aparaturą tensometryczną typu, SZAT-1″. 
Zjednoczenie Budownictwa Kopalń 
Rud. 1960.





73

Section 3

Machine Learning and  
Future of Data Science





75

Chapter 5

Using Trend Extraction and 
Spatial Trends to Improve Flood 
Modeling and Control
Jacob Hale, Suzanna Long, Vinayaka Gude and Steven Corns

Abstract

Effective management of flood events depends on a thorough understanding 
of regional geospatial characteristics, yet data visualization is rarely effectively 
integrated into the planning tools used by decision makers. This chapter considers 
publicly available data sets and data visualization techniques that can be adapted 
for use by all community planners and decision makers. A long short-term memory 
(LSTM) network is created to develop a univariate time series value for river stage 
prediction that improves the temporal resolution and accuracy of forecasts. This 
prediction is then tied to a corresponding spatial flood inundation profile in a 
geographic information system (GIS) setting. The intersection of flood profile and 
affected road segments can be easily visualized and extracted. Traffic decision mak-
ers can use these findings to proactively deploy re-routing measures and warnings 
to motorists to decrease travel-miles and risks such as loss of property or life.

Keywords: trend extraction, spatial and temporal trends, images

1. Introduction

Floods are the most frequently occurring natural disaster. A flood event occurs 
when stream flows exceed the natural or artificial confines at any point along a 
stream [1]. This is often due to heavy rainfall, ocean waves coming on shore, rapid 
snow melting, or failure of manmade structures such as dams or levees [2]. From 
1998–2017, flood events affected more than two billion people globally [3]. Disasters 
of this frequency and magnitude are typified by extreme costs to governments. In 
2019, historic flooding across Missouri, Arkansas, and the Mississippi River basin 
resulted in an estimated cost of 20 billion dollars [4]. These estimates typically 
do not reflect indirect costs such as added travel-miles and the subsequent loss of 
time. Further, floods are among the deadliest natural disasters. From 2010–2020, 
floods resulted in the fatalities of 1089 people in the United States [5]. A majority of 
these deaths were comprised of motorists. Therefore, urban planners such as traffic 
decision makers are tasked with proactively deploying resources that minimize 
motorist risk exposure. At present, traffic decision makers rely on static flash flood 
inundation profiles related to discrete rainfall events. These profiles are often created 
through multiagency cooperation efforts such as [6]. Some studies have begun to 
generate dynamic flood inundation data visualizations based on these profiles [7]. 
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Additionally, integrated approaches that use machine learning and geographic 
information systems (GIS) to track changes in critical infrastructure over time are 
emerging as powerful decision support tools [8]. However, there is limited use of 
state-of-the-art time series prediction models to generate dynamic data visualiza-
tions in a GIS setting for improved flood management. This book chapter explores 
the integration of publicly available data and machine learning models to address 
this gap in the literature.

Precise determination of when and where to deploy re-routing measures is a 
complex task. One approach that improves planning effectiveness is to integrate 
time series characteristics of river behavior and corresponding spatial flood profile. 
In this chapter, a univariate time series prediction of river stage is conducted that 
improves the temporal resolution and accuracy of publicly available forecasts. This 
prediction is then tied to a corresponding spatial flood inundation profile in a GIS 
setting. The resulting geospatial deep learning model provides a data visualiza-
tion tool that traffic decision makers can use to proactively manage road closures 
in the event that a flood is likely to occur. The first section provides an overview 
of relevant river behavior that causes flooding. State-of-the-art trend extraction 
and prediction techniques are then presented and tied to geospatial use cases. The 
methodology section presents the data used, time series prediction model selected, 
and geoprocessing procedures required for data visualization using GIS software. 
Next, an illustrative example is provided for a frequently flooded intersection 
in Missouri. A discussion section is provided that positions the findings in the 
context of improving traffic management in the event of a flood. Lastly, a conclu-
sion is given that summarizes the key findings and outlines model limitations and 
future work.

2. A geospatial deep learning approach

Two key characteristics of streams that relate to flood events are stream stage 
and streamflow. Stream stage refers to height (ft) of the stream and streamflow 
corresponds to discharge (ft3/s) or alternatively, volumetric flowrate. Typically, 
governmental organization such as the United States Geological Survey maintain 
a network of sensors that monitor these characteristics over time for various 
stream segments. The National Weather Service classifies flood categories into 
four groups based on stream stage: Action Stage, Flood Stage, Moderate flood 
Stage, and Major Flood Stage [9]. These values vary for a given segment of stream 
based on analysis of previous floods, local topography, and underlying geological 
properties.

Given that stage is monitored over time, the use of time series forecasting 
methods to predict stage values is appropriate. There are two modeling approaches 
that are useful in this context: statistical and computational intelligence. Statistical 
models use historical data to identify underlying patterns to predict future values 
[10]. Some commonly used techniques for flood forecasting include simple expo-
nential smoothing [11], autoregressive moving average [12], and autoregressive 
integrated moving average [13]. However, one shortcoming of these approaches is 
lack of scalability as the quantity and complexity of data increases [14]. An alterna-
tive approach that addresses these issues is computational intelligence. A key feature 
of computational intelligence approaches is the capacity to manage complexity 
and non-linearity without needing to understand underlying processes [15]. In 
summary, statistical methods rely on precise underlying relationships and exhibit 
decreased performance as the number of variables increases whereas computational 
intelligence approaches identify patterns using large amounts of training data to 
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establish a model capable of accurate predictions [16]. Some commonly used flood 
forecasting computational intelligence models include support vector machines 
[17], artificial neural networks [18], and deep learning [19]. Further, they have 
demonstrated superior performance when compared to conventional statistical 
modeling approaches for flood prediction studies. LSTM models have explicitly 
shown promising results in time series contexts. Therefore, LSTM models provide 
a state-of-the-art trend extraction and prediction technique regarding stream 
stage values.

Stream stage values are categorized based on resulting flood severity. The 
physical reality of these categories is the spatial extent of the flooding event often 
referred to as a flood inundation map [20]. These maps provide decision makers 
with a useful visual reference to determine what specifically has been affected by 
a flood event. An area of research, data visualization, and practical application 
that has not been fully investigated is the integration of computational intelligence 
stream stage predictions with geospatial flood inundation maps. The methodology 
provided in the following section addresses this gap.

3. Methodology

This section consists of three parts: LSTM prediction of stream stage, data 
required, and geoprocessing procedures. First, a brief overview of LSTM will be 
given. This will include explanatory figures and relevant mathematical formulas. 
Second, data required to conduct the LSTM prediction of stream stage will be 
procured. Flood inundation imagery and road network data will also be obtained. 
Lastly, data will be uploaded to a GIS software and processed for end use by traffic 
decision makers. An illustrative example is presented in the next section.

3.1 LSTM prediction of stream stage

Stream stage prediction is a time series forecasting procedure that is dependent 
on previous data to predict future values. As the quantity and quality of data 
continues to increase, more powerful computational approaches can be applied to 
prediction problems. The results of the literature review demonstrated that deep 
learning approaches, namely LSTM networks, are increasingly being applied to 
these problems.

Deep learning is an extension of the conventional neural network by adding 
additional layers and layer types. Figure 1 provides a visual comparison of the 
two approaches [21]. The simple neural network (left) consists of a single input 
layer, hidden layer, and output layer. Alternatively, the deep learning neural net-
work (right) has one input layer followed by three successive hidden layers that 
ultimately feed into a final output layer. This configuration has generated superior 
performance in capturing complex relationships.

Figure 1. 
Simple neural network vs. deep learning neural network.
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However, neither approach retains previous time step information. Recurrent 
neural networks (RNNs) were introduced to address this limitation. LSTM 
networks are the deep learning variant of RNNs. All figures and mathematical 
formulation are borrowed from [15]. The primary benefit of LSTM networks is the 
capacity to retain longer term information. This is accomplished by removing and 
adding information determined by a series of ‘gates’ and vector operations. Figure 2 
provides a visual representation of an LSTM cell. The first gate, illustrated in yellow, 
generates a value between 0 and 1 using the current input (xt) and output from 
the previous step (yt-1) that determines how much information is passed on (forget 
gate). A zero corresponds to no information transfer whereas a one represents a 
complete transfer.

The result of this procedure ( tf ) is presented mathematically in Eq. (1) as a 
sigmoid neural network layer where U (weights) and W (recurrent connections) 
are matrices.

 ( )1
f f

t t tf x U y W−= +σ  (1)

Next, a decision must be made regarding what information needs to be stored. 
This is accomplished by applying an additional sigmoid layer (red, it). New values 
are then added to the cell state ( tĈ ) by using a tanh layer (green). Eqs. (2) and (3) 
present these procedures mathematically.

 ( )1
i i

t t ti x U y W−= +σ  (2)

 ( )g g
t t tyC xU W−= + 1tˆ anh  (3)

The line at the top of the cell is known as the cell state ( tC ) and has interactions 
with all components. Information has the opportunity of being forgotten when the 
old state ( 1tC − ) is multiplied by the result of the first forget gate ( tf ). The product 
of the second (red) and third (green) gates are then added which results in new 
information being provided to the cell state and is represented by Eq. (4).

 t t t t tC f C Ci−= +1
ˆ  (4)

Figure 2. 
LSTM network cell.
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Lastly, the output layer of the LSTM cell determines the forecast for the current 
time step. A sigmoid layer (blue) and tanh layer are multiplied to generate an 
output ( ty ). This final step is represented by Eqs. (5) and (6).

 ( )0 0
1t t to x U y W−= +σ  (5)

 ( )tanht t ty C o= ×  (6)

The result of this computational procedure is a time series forecast of future 
values. However, a large amount of data must be gathered to use as a model input. 
This data is presented in the next section.

3.2 Data required

Historic stream stage height for the location further explained in Section 4 must 
first be gathered. 113,994 data points were procured that correspond to 15-minute 
intervals from May 19, 2016 (5 PM) – September 1, 2019 (4 PM). Stage height is 
herein referred to as ‘gauge height’ to account for the source of the data. This data is 
represented graphically in Figure 3 [22].

Using USGS’ flood inundation mapper (FIM), these gauge heights can be tied 
to a specific flood inundation profile [23]. The FIM is a publicly available tool that 
provides resulting flood inundation maps for one-foot gauge height increments in 
image format (.tif). A sliding bar that accomplishes this is available on the online 
user interface and is presented in Figure 4.

Figure 3. 
Stream stage height for example locations.

Figure 4. 
FIM sliding gauge height tool.
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An example of a flash flood inundation profile being uploaded to a GIS software 
is provided in Figure 5. Purple lines correspond to road network data derived from 
the National Transportation Dataset [24]. Blue raster (grids of pixels) imagery 
denote the depth of water at discrete locations where darker blue reflects deeper 
water. Useful geoprocessing techniques that generate actionable decision support 
tools are presented in the next section.

3.3 Geoprocessing procedures

Traffic decisions makers are tasked with identifying flood affected road segments. 
In Figure 5, it can be observed that the flood inundation profile does overlap certain 
road segments. Relying on visual inspection alone is time consuming and prone to 
inaccuracies due to human error. A solution to this issue is the application of a set of 
straightforward geoprocessing tools that are built-in to most GIS softwares: conver-
sion and intersection.

Some tools do not allow raster and vector data layer interoperability. Therefore, 
it is necessary to convert one of the data layers to establish a consistent data type. 
One approach is to convert the raster layer into a vector layer using the conversion 
tool within ArcGIS. Figure 6 illustrates the result of this operation. The flood 
inundation profile has been converted into several points at 1-m increments. This 
spatial resolution can be modified by the user. The road network has been changed 
from its previous color to improve readability.

Once the raster layer has been converted into vector format, it is eligible for use 
as an input layer for the intersection tool. The intersection tool generates a point at 

Figure 5. 
Flood inundation profile example.

Figure 6. 
Raster layer conversion example.
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every location where there is an intersection between the input layers. In the next 
section, an illustrative example is provided to demonstrate the effectiveness of the 
methodology presented.

4. Illustrative example

Valley Park, Missouri is located at the intersection of I-44 and State Route 
141. This location is the setting for the example figures presented previously. The 
Meramec River winds through this area and has regularly flooded in recent years. In 
2017, the river exceeded its banks and caused significant damage to the surround-
ing area as seen in Figure 7. This location provides a suitable candidate to test the 
methodology presented given the extent of the flood event and data availability.

First, data is gathered from a nearby stream gauge. Figure 8 provides a geo-
graphical point of reference for the gauge denoted by a green square with respect to 
I-44 and State Route 141. The data presented in Figure 5 is then procured and used 
as an input for the LSTM network. Figure 9 presents the prediction results of the 
LSTM model superimposed on the actual data for May 19, 2016-September 1, 2019.

The actual data (blue) can be observed deviating from the prediction results 
for the training (orange) and testing (green) results of the LSTM network. A lack 
of discrepancy between the actual data and predictions demonstrates the model’s 
effectiveness. Further, it is useful to determine how the prediction compares with 
publicly available forecasts for the same location. USGS provides a forecast every six 
hours. Alternatively, the LSTM network provides 24 predictions in the same period. 
Figure 10 provides a comparison of the prediction provided by USGS and the LSTM 
model for September 1, 2019 (6 PM) – September 3, 2019 (6 AM).

The red line represents the original data. Gauge height is initially observed at 
just above six feet. From there, it trends in a downwardly direction until it reaches 

Figure 7. 
Meramec River flood in 2017 [25].

Figure 8. 
Gauge location [9].
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the end of the dataset at less than 3.5 feet. The green line corresponds to the USGS 
prediction. This prediction initially overshoots the original data before briefly cor-
recting and then diverging significantly from the observed trend. Lastly, the blue 
line represents the LSTM prediction. At first, this prediction captures the down-
ward trend missed by the USGS prediction. Ultimately, the prediction flattens out 
and diverges from the original observations but to a lesser extent when compared to 
the USGS prediction. Root Mean Squared Error (RMSE) values for each of the pre-
dictions are provided to further demonstrate the difference in model performance. 
The RMSE value of 0.453 reported by the LSTM model represents superior accuracy 
compared to the 1.065 value reported by the USGS prediction. Therefore, the LSTM 
model presented here improves on the accuracy of publicly available forecasts and 
can be used as an input for the flood inundation tool.

Valley Park has 43 flood inundation profiles available in one-foot increments 
from 11–54 feet. The highest stage value recorded at this location is 44.11 feet on 
December 31, 2015. Figure 11 provides the flood inundation profile for 45 feet to 
approximate this event. Note that 45 feet is used instead of 44. This is due to the 

Figure 10. 
USGS and LSTM prediction comparison.

Figure 11. 
Flood inundation profile for 45 ft. stage value for Valley Park, Missouri.

Figure 9. 
LSTM training and testing results.
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flood inundation profile incremental limitation and opting for a rounding approach 
that provides a more conservative risk assessment. The inundation profile is then 
converted to point format and intersected with the road network as illustrated by 
Figure 12.

5. Discussion

At present, urban planners such as traffic decision makers rely on static flood 
inundation maps and post hoc planning to reroute traffic in the event that a flood 
occurs. This approach puts motorists already in-transit at risk to rapidly changing 
road conditions. To address these risks, a field of research has emerged to provide 
decision makers with real-time decision-making tools. However, using time series 
prediction models that capture river characteristics and integrating them with flood 
inundation profiles has received limited attention. The methodology provided here 
addresses this gap.

Traffic decision makers can use the data visualization presented in Figure 12 as 
a powerful decision support tool. The flood affected road segments can be easily 
identified (orange) and rerouting measures can be promptly dispatched. With the 
improved temporal resolution and accuracy of the LSTM prediction of stage height, 
traffic decision makers can deploy resources proactively to avoid unnecessary risk 
to motorists and improve traffic flow. Concluding remarks, limitations, and future 
work are presented in the next section.

6. Conclusion

Flash floods are a frequent and devastating natural disaster. The impetus to 
manage these events belongs to local decision makers that work in a resource 
constrained environment. To improve their decision-making effectiveness, a frame-
work was presented that integrates machine learning and geospatial data to extract 
spatial and temporal trends using publicly available data. An illustrative example 
was provided to demonstrate the effectiveness of the framework provided. Valley 
Park, Missouri is located near the intersection I-44 and State Route 141. These roads 
represent major traffic throughputs and persistent flooding of the Meramec River 
has jeopardized the safety of motorists and the flow of commercial goods. Using 
113, 994 river stage observations procured from a nearby sensor, an LSTM network 
was developed to improve the accuracy of publicly available forecasts. The result 
was an improvement in both the frequency and accuracy of forecasts provided. 

Figure 12. 
Flood affected road segments for flood inundation profile corresponding to 45 ft. stage value for Valley Park, 
Missouri.
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Once the stage value is predicted it can be tied to a spatial flood inundation profile 
using the publicly available FIM. Using the flood inundation profile for 45 feet 
observed at Valley Park as a proxy for the historic crest at this location, data visual-
ization of flood affected road segments was generated in a GIS setting. The key ben-
efit of this output is the ease with which traffic decision makers can use the results 
presented to inform urban planning and decision making. Traffic decision makers 
can use the resulting data visualization presented here to guide real-time decision 
making in the event that a river stage value is predicted to reach a flood event stage 
for a specified river segment. Despite the usefulness of the findings, there remain a 
number of model limitations that represent areas of future work.

Model limitations can be divided into two categories: data gathering and 
model extension. Deep learning models are dependent on large amounts of data. 
Therefore, sensors that collect data need to be installed and active for an extended 
period. The cost to install and maintain an enlarged sensor network might be 
prohibitive for some locations. Due to this fact, model implementation is limited 
to river locations where sensors are already installed. Additionally, FIM coverage is 
confined to a small number of locations nationwide. Similarly, to sensor coverage, 
if there are not already-available flood inundation maps, then the model cannot be 
applied to those locations. Model extension includes options to improve the model 
in a material way. One recommendation would be to determine the best locations 
for road signage that will provide optimal re-routing to motorists given a finite 
amount of signage. Another approach would involve working with local decision 
makers to determine re-routing effectiveness based on how quickly resources are 
deployed given model predictions. Areas of future work not related to model exten-
sions include alternative prediction approaches in river networks with no sensors 
and refinement of the model to account for flash floods. Each of these components 
represent considerable opportunity for model enrichment that further improve the 
decision-making effectiveness for traffic management professionals.

The results presented here demonstrate the utility of using machine learning 
models and geospatial data to generate data visualization tools that key stakeholders 
can use to improve planning effectiveness. As data becomes increasingly avail-
able, use of comparably sophisticated methods can be applied to a suite of natural 
disaster phenomena. The outcome of such an undertaking will be the widespread 
use of data visualization tools that will reduce the risk motorists are exposed to and 
mitigate the accompanying economic fallout.
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Chapter 6

Visual Data Science
Johanna Schmidt

Abstract

Organizations are collecting an increasing amount of data every day. To make
use of this rich source of information, more and more employees have to deal with
data analysis and data science. Exploring data, understanding its structure, and
finding new insights, can be greatly supported by data visualization. Therefore, the
increasing interest in data science and data analytics also leads to a growing interest
in data visualization and exploratory data analysis. We will outline how existing
data visualization techniques are already successfully employed in different data
science workflow stages. In some cases, visualization is beneficial, while still future
research will be needed for other categories. The vast amount of libraries and
applications available for data visualization has fostered its usage in data science.
We will highlight the differences among the libraries and applications currently
available. Unfortunately, there is still a clear gap between visualization research
developments over the past decades and the features provided by commonly used
tools and data science applications. Although basic charting options are commonly
available, more advanced visualization techniques have hardly been integrated as
new features yet.

Keywords: visual data science, data visualization, visual analysis, data visualization
libraries, data visualization systems

1. Introduction

Within the last years, data science has been established as its own important
emergent scientific field. Data science is defined as a “concept to unify statistics,
data analysis, machine learning, and their related methods” to “understand and
analyze actual phenomena with data” [1]. As such, data science comprises more
than pure statistical data analytics, but the interdisciplinary integration of tech-
niques from mathematics, statistics, computer science, and information science [2].
Data science also involves the consideration of domain knowledge for the analysis
and the interpretation of the data and the results [3].

Data visualization research is largely driven by current use cases that users have
to face when working with data. The problems and tasks that need to be solved by
data scientists are, naturally, a precious source for further developments in data
visualization research. On the other hand, data scientists already use data visualiza-
tions to visualize data on a daily basis. It is, therefore, worthwhile to think about
how the well-established methods for visual analysis fit into the existing workflows
of data scientists [4]. According to recent findings from interviews with people
working with data [5], data scientists’ tasks usually follow a very similar workflow
path, and along this path, different stages can be identified. Every stage poses
different challenges for data handling. For example, at the beginning of the
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workflow, data wrangling is considered to be an essential and tedious part of the
workflow. Data wrangling comprises, among others, data parsing, cleaning, and
merging. Data visualization techniques can help to quickly identify data flaws like
missing data, anomalies like duplicates or outliers, and other inconsistencies in this
stage. As a next step, data scientists have to understand the data at hand and
evaluate its usefulness for modeling. Here, data visualization can help understand
the structure of the data, detect correlations and clusters, and select data parts
suitable for modeling.

The rise in data science currently very strongly fuels data visualization tech-
niques by users from very diverse domains. This has now led to many new data
visualization tools and libraries being developed. Many of these libraries are open-
source and are embedded into programming environments like Python, R, and
JavaScript. Prominent examples for such libraries are, for example, Matplotlib
(Python), ggplot2 (R), and D3 (JavaScript). Open source technologies are a great
advantage since data scientists can rely on a large community that can provide them
with advice and support, and access to a wide range of libraries and plugins.
Especially for Python, there are libraries for high-performance computing, numer-
ical calculations, regression modeling, and visualization, which are regularly
extended and maintained. On the other hand, feature-rich, standalone visual anal-
ysis applications have been increasingly established within the last years. These
applications, such as Tableau, Microsoft Power BI and Qlik, provide easy access to
data visualization and visual data exploration for users unfamiliar with program-
ming scripting, data wrangling, and/or data visualization design. Standalone
applications are usually commercial, since a lot of maintenance and continous
development has to happen in the background. As many of these applications are
available, data visualization and visual analysis are more widely known and used
today in many different domains and are used and applied by many users and
domain experts.

This chapter aims to provide a concise overview of existing data visualization
techniques for data science and how they fit into the different stages of the data
science workflow. Several studies that focused on categorizing and evaluating the
different libraries and applications for data visualization currently used in data
science will be outlined to create a better picture of which libraries should be used
for which type of tasks. Unfortunately, there is still a gap between current research
in data visualization and the features and techniques actually provided by libraries
and applications. We would, therefore, like to foster the usage of data visualization
in data science to bring both communities closer together.

2. Visualization supporting data science

Data science is an interdisciplinary approach that combines input from other
domains like mathematics, statistics, computer science, or graphics. Given this vast
amount of tasks and skills, several studies have been conducted to understand
better and start to categorize the tasks and requirements of data scientists. Kim et al.
[6] highlighted the diversity of skills, tasks, and toolsets used by data scientists in
software development teams. As an important conclusion, they highlighted that the
heterogeneity and diversity make it hard to reuse work. Kandel et al. [5] conducted
an interview study with several data scientists and categorized them into the three
archetypes of Hacker, Scripter, and Application User. Based on the archetype, data
scientists use very diverse tools to solve their tasks. The survey by Harris et al. [7]
among different data workers, as they call people working with data, from different
disciplines, provided a very comprehensive overview of the different tasks data
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scientists need to solve. As a result of their study, they were then able to categorize
data scientists into one of four major categories based on their skills (e.g., business
orientation vs. programming skills). In general, both studies concluded that data
scientists either prefer to use hands-on scripts and program their own algorithms
over using fully-featured applications.

As a basis for better explaining how data visualization fits into the data science
workflow, we would like to use the categorization introduced by Kandel et al. [5].
They proposed to divide the data science workflow into five Stages:

• Discover: As a first step, data scientists usually search for suitable datasets, either
by locating them in databases or online or by asking colleagues. Especially within
large organizations, finding and understanding relevant data is often considered a
significant bottleneck in the work process, also due to access restrictions.

• Wrangle: When available, the datasets need to be brought into the desired
format. Data wrangling involves parsing files, manipulating data layouts, and
also integrating multiple heterogeneous data sources. Being considered to be a
very tedious and highly manual task, data wrangling eats up a majority of the
time spent on data analysis.

• Profile: After being available in the desired format, the quality of the data has
to be verified, and the suitability for the analysis has to be estimated. Datasets
often contain severe flaws, including missing data, outlier, erroneous values,
and other problems. Understanding the structure of the data is therefore
considered an important task in data science.

• Model: Finally, an essential and interesting part of the data science workflow is
to use the datasets as training sets to train prediction models. In this stage, the
models have to be created and evaluated against existing real-world data to test
their performance.

• Report: All analysis results usually need to be reported to external people,
colleagues, or customers. In such a presentation, it is important to cover the
essential findings discovered during the data science process. In many cases
dashboards or reports are used to present the findings.

In theDiscover stage, data scientists need to identify the data relevant to their current
project. This involves searching for internal but also external data sources. Themain
challenges in this stage are restricted data access andmissing documentation of data
attributes. This stage is, in general, not supported by data visualization applications.
There are approaches in data visualization to, for example, improve the visualization of
search engine results [8], but the general problem of data being difficult to find/access is
not treated.We therefore do not concentrate on this stage here in this chapter.

2.1 Data wrangling

Data wrangling in the Wrangle stage requires to, on the one hand, focus on data
flaws like duplicates and inconsistencies (e.g., in naming), and, on the other hand,
the process of profiling and transforming datasets. Data wrangling’s central goal is
to make the data usable in the subsequent steps.

Initially, data wrangling was not considered by data visualization itself, which
started to operate once the data was available in the desired format. Since data
wrangling nowadays became an essential and tedious task in data science, which eats
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up a lot of the time in the whole workflow (up to 50–80% [9]), data visualization
researchers started to think about techniques how to support this task. Wrangler [10]
is the most prominent application to mention here, an interactive system for creating
data transformations. Changes in the data are visualized, and data scientists can
explore the space of possible operations. The Wrangler system infers further actions
from what has been done by the user so far manually, and in this way, greatly speeds
up the wrangling process. The idea was picked up by the company Trifacta, which
included the Wrangler idea into their product to build data pipelines.

In general, data wrangling itself constitutes a very interesting use case which,
hopefully, in the future, will get more attention by data visualization research.
At the moment, data scientists mostly have to rely on manual tasks and scripting
tools to get the data into the right format.

2.2 Data profiling

The most demanding stage in terms of visualization design is the Profile stage,
where data scientists need to explore the data to understand its structure. This
process is very circular and undirected, without a specific goal in mind. Basic
information about the related problem domain is required. The goal is to under-
stand the patterns found in the data. This includes, but is not limited to, the
distribution of values, correlations, outliers, and clusters.

Datasets usually contain several quality issues, such as missing values, outliers or
extreme values, and inconsistencies. Missing data might be due to observations
completely missing in a dataset, which can be in many cases identified by empty
cells of null values. There might also be cases where numbers encode missing data
(e.g., 0 or �1) or characters (e.g., “N/A”), something that needs to be considered
during the analysis. Inconsistencies and heterogeneous information are often erro-
neously created by humans, especially in names and terms, and because certain cells
have been overloaded with information. Data scientists need to be aware of these
flaws when working with a particular dataset. Checking the quality of a dataset has
already been addressed by several approaches in visualization. Profiler [11] was
intended to support the quality assessment of datasets visually; Visplause [12]
provided the same for time series data. More generally, Bertini et al. [13] developed
quality metrics for multi-dimensional datasets. Quality checks are nowadays
also provided as features in standalone visualization applications. In Python, the
package pydqc provides automatic quality checks.

In data visualization, the process of looking at data from different directions and
studying different aspects to understand the data structure [14] is called exploratory
data analysis (EDA). EDA requires a high degree of interactivity and inter-
connectivity between different visualizations from a data visualization perspective.
EDA has been studied quite extensively within the last years in visualization
research. Several paradigms about interaction design [15] and system design [16]
have been established. Exploration of data usually happens by using different views
and different visualizations. EDA contrasts with the more traditional statistical
approach to data analysis that starts with hypothesis testing. In EDA, data scientists
usually do not have a clear goal and should support the hypothesis-building process.
The typical EDA tasks [17] are:

• Plotting the raw data,

• Plotting simple statistics (e.g., mean, standard deviation, box plots), and

• Positioning such plots for comparison (e.g., in a multiple-view setting).
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These tasks are, in general, supported by all visualization applications. In case
scripting languages are used, data scientists tend to create several data representa-
tions to check various aspects. Programming environments like Jupyter Notebooks
[19] enable scientists to combine both data analysis scripts and visualization. An
example for showing Python Plotly visualizations in Jupyter can be seen in Figure 1.
Such narrative or literate programming tools [20] as notebooks help data scientists
to record their steps and decisions in a data analysis workflow. They allow scientists
to save whole workflows and, in this way, make decisions and results reproducible.
This has also been recognized by data visualization research [21], where researchers
increasingly think about new solutions for more advanced data visualization in
notebook environments and literate programming.

2.3 Modeling

Data scientists make assumptions to find out which types of transformations
they need to use for modeling. This also includes understanding which of the data
fields are most relevant to a given analysis task. In the Model stage, the data is used
as input data for building models of the underlying phenomenon. When models
have been built, it is important to evaluate them against suitable real-world data.

Building and evaluating simple models like regression models is already
supported by some visualization applications [22]. More advanced techniques, often
summarized under the term “explainable AI” [23], try to find new, often visual,
ways for humans to explain the decision structure of AI (artificial intelligence)

Figure 1.
Jupyter Notebook and Plotly. Literate programming tools as notebooks allow scientists to combine both data
analysis scripts and visualization. Figure by [18].
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models and verify their decision according to their own ground-truth knowledge.
One problem that is mentioned often by data scientists is the scalability of model
testing to large data. Currently, models are often evaluated using EDA techniques
very similar to the ones described in the Profile stage. In the future, data visualiza-
tion research will concentrate on advanced methods for the verification of model
outputs, especially in relation to the input and output data.

2.4 Reporting

In the Report stage, mostly simple and easy-to-understand visualizations are
needed since here the results of the data analysis stage have to be presented to a
broader audience. The use cases in this stage can be mostly covered by employing
basic charts, which are already well supported by current data science tools.

In many cases, dashboards with more or less interactivity are used to present the
results. Many data science tools already support building dashboards. This was also
recognized by the data visualization community recently. Sarikaya et al. [24]
pointed out that dashboards are actually much more than just a collection of differ-
ent graphs and that they need to be treated as separate research objects in data
visualization. In their work, they categorized existing dashboards into seven cate-
gories, mostly based on the intended task (e.g., information and education vs.
decision-making). Three examples are shown in Figure 2. Such approaches point

Figure 2.
Dashboards types by [24]. Dashboards for reporting data findings may differ according to the intended user
group and task. In this figure, dashboards for operational decision-making, strategic decision-making,
communication, and studying your own data (quantified self) are shown. The dashboards in the first column
(operational and organizational) target a narrow group of users with particular tasks in mind. The second
column’s dashboards (communication and quantified self) are intended to be viewed by a larger audience.
Images by [24].

94

Data Science, Data Visualization, and Digital Twins



out the necessity for dashboard designers to be clear about the intended user group
and always have a clear story when presenting data to external people.

One important aspect to consider is to choose the right visualizations for the
right type of data. This is especially important if the exact structures in the data are
unknown to the viewers and if the viewers’ experience with data visualization is
unclear. Based on research on human perception and possibilities for data visuali-
zation, researchers started to create guidelines for data- or task-driven suggestions
for data visualizations. The Draco system by Moritz et al. [25] uses predefined rules
to suggest several visualizations based on the data and attempt what should be
shown in the data. On their website From Data to Viz, Holtz and Healy [26] outline
several paths how, starting from a specific data type, certain patterns in the
datatype can be visualized. The Data Visualisation Catalogue [27] summarizes
different visualization techniques and explains how they can be employed to encode
information. All-in-all, these approaches show the need for further research on
guidelines in data visualization research.

3. Data visualization toolboxes

As more and more people started working in data science, more and more
software applications for data analysis, many of which are open source, have
evolved within the last years [28]. All steps in the data science workflow contain
circular processes where data scientists have to rethink actions they made and
restart analysis processes from scratch. For this reason of a very interactive and
undirected workflow [29], there are no applications, yet, that can cover the entire
data science workflow. Data scientists must, therefore, always use a list of combi-
nations of different tools, scripts, and applications to achieve their goals [30]. These
tools are often focused on specific tasks, such as efficient data storage and access
(e.g., for Big Data applications), data wrangling (i.e., mapping data to another
format), or automated analysis (e.g., machine learning). They are based on differ-
ent programming languages (e.g., Python, R, JavaScript) or are built as fully-
featured, standalone applications. In this chapter we specifically concentrate on
libraries and tools for data visualization.

When talking about libraries and application for data visualization we use the
definition by Rost [31]. They conducted a study about features of visualization
libraries and applications by creating one specific chart with different tools. In the
study the authors differentiate between charting libraries (i.e., programming
toolkits) and apps (i.e., fully-featured applications). As also noted by Kandel et al.
[5], different types of data scientists tend to use different types of tools. A data
scientist being identified as an archetype hacker would not be happy by having to
use a standalone application, because he/she would not be able to access the latest
library in a scripting environment, and would therefore not be able to customize
his/her individual workflow. We, therefore, stick to this differentiation in this
chapter.

3.1 Charting libraries

Charting libraries are considered to be all kinds of visualization libraries that
need some programming environment to work. In many cases, this is a scripting
environment, so many libraries nowadays are based on Python or R. The popularity
of data visualization libraries changes from year to year since many of these libraries
are open source and therefore undergo continuous adaptations and improvements.
Open-source technologies are a great advantage since data scientists can rely on a
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large community that can provide them with advice and support, and access to a
wide range of libraries and plugins. There are some libraries which are repeatedly
mentioned in high score lists [32], which are, among others: ggplot2 (R), Matplotlib
(Python), Seaborn (Python), Bokeh (Python), D3 (JavaScript), Chart.js (JavaScript)
Lattice (R), Vegas (Scala), Breeze-viz (Scala), Rgl (R). The differences between these
libraries are, on the one hand, given by the different programming environments
they live in. On the other hand, the libraries also offer different features and
assets for data visualization. Especially for Python, there are libraries for
high-performance computing, numerical calculations, regression modeling, and
visualization, which are regularly extended and maintained. This is very similar in
the case of R.

The study by Rost [31] reveals fascinating differences between some of the
charting libraries. The libraries which have been tested in this study have been
classified according to whether they are more suited for analysis tasks or presenta-
tion tasks. The results can be seen in Figure 3. The analysis very nicely shows that
charting libraries for both analysis (Wrangle, Profile, Model) and presentation
(Report) purposes can be found. Interestingly, the charting libraries rather suited
for presentation are based on JavaScript (highlighted by underline). This also shows
that web-based visualization methods are currently rather placed in the presenta-
tion or reporting phase of a data science workflow. This also makes sense when
thinking about the client–server environment of web-based visualizations, and that
visualization designers have to carefully think about which type of data to show in
this setting–since large datasets could probably not be transferred over the network
and could potentially lead to processing or rendering problems on the client-side
(e.g., smartphones). Such a careful design can usually only be done after the
analysis (Profile, Model) is already finished.

In the study by Schmidt [33], different charting libraries were compared
according to how many different visualization techniques they support. This study
revealed big differences between the libraries and identified two leaders in the field,
which currently offer the largest range of different visualization techniques. The
first leader is D3 (short for Data-Driven Documents), which is based on JavaScript
and uses SVG (Scalable Vector Graphics) elements to display data in the web
browser. It was released in 2011 [34] as a successor to the earlier Protovis framework
to provide a more expressive framework that, at the same time, focuses on web
standards and provides improved performance. The second leader is Plotly, a col-
laborative browser-based plotting and analytics platform based on Python [35].
Plotly developers especially take care to allow data scientists to share visualizations
and information within a large community.

All-in-all, the field of charting libraries is constantly changing, and many
more advances are expected to be seen in the future. When deciding for a charting

Figure 3.
Comparison of charting libraries. The chart shows the charting libraries used in the study by Rost [31] ranked
by whether they are rather suited for analysis or presentation. Charting libraries based on JavaScript (which
are, therefore, web-based) are marked by underline. Figure adapted from [31].
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library to be used, other factors like the task to be solved and programming skills
have to be considered.

3.2 Apps

Apps are considered to be fully-featured, standalone applications. They do not
require any programming environment to be installed on a system to run them.
Data visualizations can be created by using the user interface tools provided by the
application. Apps are more targeted towards users without programming skills who
are not familiar with manual data processing, analytics, and visualization. In almost
all cases, apps are commercial products. This is because a lot of maintenance and
continuous development is needed in the background to keep the apps up-to-date.
According to Gartner’s Magic Quadrants, a study that is done every year in different
areas, the leaders in the field of business intelligence platforms [36] are considered
to be Tableau, Microsoft Power BI, and Qlik.

In its yearly study, Gartner compares business intelligence applications that are
considered most significant in the marketplace. The applications are evaluated and
placed in one of four quadrants, rating the applications as either challengers,
leaders, visionaries, or niche players. Many apps are currently available on the
market. These applications differ in terms of targeted user groups and also visuali-
zation features that they offer. Since Gartner’s Magic Quadrants are published every
year, interesting patterns can be detected by looking at the yearly changes, as shown
in Figure 4. The three leaders that have been identified previously already show an
excellent performance throughout the last six years. Interestingly, the field of
leaders is left to the three main players over the last years. It can also be seen that

Figure 4.
Gartner’s Magic Quadrants of the last six years. The quadrants are divided into the four fields of Leaders,
Visionaries, Niche Players, and Challengers. It can be seen that the group of leaders only slightly changed over
the last four years. Especially Qlik stayed quite constant. The group of other apps (indicated by a gray circle)
shows the field’s dynamic movements. New apps have been developed (e.g., Infor, 2021) and others disappeared
(e.g., GoodData, 2019). Figure adapted from [37].
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other tools appeared or vanished over the years, which shows the dynamic of the
market of business intelligence tools.

The differences between commercial tools have also been highlighted in other
studies. Zhang et al. [38] concentrated on specific visualization techniques and
evaluated their usage in commercial business analytics tools. They ranked tools and
applications based on classifications according to feature richness, flexibility, learn-
ing curve, and tasks (e.g., for analysis or presentation). Behrisch et al. [39]
conducted an exhaustive survey on commercial visual analytics tools, evaluating
them according to which degree they feature data handling, visualization, and
automated analysis. Their findings classified the applications according to whether
they are more suited for presentation or exploratory analysis. The results show that
basically all applications feature data presentation, which is mainly supported by
creating dashboards. Some of the applications like Tableau or Qlik also provide the
ability to publish web-based dashboards. Interestingly, only about 50% of the
applications were identified to be suited for exploratory analysis (like Tableau,
TIBCO Spotfire, or Microsoft Power BI). The authors also identified the applications
as useful for different types of users, mainly upper management, reporting man-
agers, or data analysts.

The vast amount of libraries and tools being available has inspired researchers to
conduct studies for quantifying, evaluating, and ranking tools and applications that
data scientists use. Gartner’s Magic Quadrant and several studies about apps for data
visualization in data science show no tools that cover all tasks and needs. The
selection of an app to be used mainly depends on the tasks that need to be solved
(e.g., analysis vs. presentation) and on the scope where the app should be used in.

4. Integration of visualization

Visualization researchers were very successful within the last decades, generat-
ing many different novel techniques for the visual representation of data. These
techniques range from approaches for the efficient representation of data (e.g.,
parallel coordinates) to proposed interaction and user guidance workflows (e.g.,
overview-first, details-on-demand). Current surveys show a large variety of visual-
ization techniques. A survey of survey papers in information visualization by
McNabb and Laramee [40] classified already over 80 survey papers describing
relevant state-of-the-art techniques, and a more recent survey of books in informa-
tion visualization revealed a similar quantity and variety [41]. Unfortunately, there
is only minimal overlap between the recent developments in visualization research
and the data visualization features offered by charting libraries and apps. Most of
the tools and applications feature basic charts and plots (e.g., scatter plots, bar
charts, bubble charts, radar charts), but more advanced visualization techniques
(e.g., chord diagrams, horizon graphs) can hardly be found.

This was confirmed by several studies on the integration of visualization tech-
niques in common libraries and applications. Harger and Crossno [42] evaluated the
feature richness of open source toolkits for visual analytics. They evaluated the
toolkits used for the study based on which basic chart types (e.g., bar charts, line
charts), which types of graph visualization (e.g., circular or force-directed layouts),
and which types of geo-spatial visualization techniques (e.g., choropleth maps,
cartograms) they feature. They concluded that some toolkits are more targeted
towards analytics, and some are more targeted towards visualization. Like this
study, Schmidt [33] surveyed commonly used tools and applications and evaluated
the visualization techniques they feature. They focused on visualization techniques
rather than on derived attributes (e.g., feature richness) and included more recent
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advances in visualization research, considered open source tools and commercial
applications to produce a complete picture of visualization techniques usage. They
also concentrated on 2D information visualization techniques, as these techniques
are more relevant for data science and data analytics, and disregarded spatial
techniques like 3D volume rendering.

In all studies that have been conducted so far, not surprisingly, basic chart types
like scatter plots and bar charts are highly supported by all evaluated tools and
applications. From the more advanced visualization techniques, multi-dimensional
techniques like parallel coordinates and radar charts are already widely used and
known and therefore included in many of the tools. The same applies to scatter plot
matrices and heatmaps. Techniques for hierarchical data are also well supported,
especially by open source tools. Visualization techniques for temporal data are not
available in the majority of the tools and applications. This is probably because
temporal data (e.g., time-series data) is a particular data type used only for specific
tasks. Users usually use their own tools for these purposes. Therefore, temporal data
techniques have not been included yet in common tools and applications, as these
tools usually try to address a broader range of data scientists and data analysts.
Some visualization techniques have not been integrated into any tool or application
yet, like time nets, data vases, or people garden.

From a tools and applications point of view, Plotly and D3 notably provide the
most features among all the tested open source tools. Other tools are targeted
towards exceptional functionalities, like dygraphs for scientific plots, which only
feature a minimal range of visualization techniques. Other libraries which are
intended to be used in web-based applications (e.g., Chart.js or Google Charts)
feature only visualization techniques that will most likely be needed in a web-based
context. Open source tools, especially ggplot2, benefit a lot from the community’s
input since many advanced visualization techniques are only featured via exten-
sions. In the group of commercial tools, it can be depicted that Tableau, Microsoft
Power BI, and Highcharts feature most of the hereby evaluated visualization
techniques.

Data scientists could be supported in all stages of their workflow by using visual
tools. Interestingly, visualization techniques are currently mostly applied in the
Report stage, at the end of the data science workflow. This stands in contrast to the
fact that interactive data exploration workflows are strongly promoted by visuali-
zation research. Even worse, the support for more advanced visualization tech-
niques, especially for interactive data exploration, is still minimal. This has been
identified as the “Interactive Visualization Gap” by Batch and Elmquist [43]. Fur-
ther exchange with data science is considered a valuable and important goal for the
visualization community. Previous research efforts in data science revealed that the
gap between new developments in visualization research and their application
“in the wild” still exists and will hopefully be further mitigated in the future.

5. Conclusions

Data visualization can provide substantial support for users working with data.
Data visualization techniques have proven to be useful for different steps in the data
science workflow. The techniques differ in the interactivity and complexity of the
representations. Many of the visualization techniques have been successfully inte-
grated into libraries and applications for data visualization. Especially in the open-
source sector, many new directions have opened up within the last years. Due to the
programming languages’ success, like Python, R, and Scala, libraries targeted
towards these programming environments are becoming especially popular.
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Among them are Plotly for Python and ggplot2 for R. Also, web-based applications
increasingly gain importance. That is why JavaScript-based libraries like D3 and
Chart.js can also be found among the most popular data visualization libraries. The
market of business intelligence tools is also very dynamic, but it shows some three
leaders in the field, namely Tableau, Microsoft Power BI and Qlik. Different types of
data scientists require different libraries or applications. It, therefore, can be seen
that applications are increasingly targeted towards a specific goal and are designed
to solve specific types of tasks. However, when looking at the data visualization
techniques offered by the most prominent libraries and applications, the “Interac-
tive Visualization Gap” for exploratory data analysis still exists. Many recent devel-
opments and implementations in data visualization research do not find their way
into existing libraries and applications. Therefore, the further exchange between
data science and data visualization is highly recommended, as both parties can learn
a lot from each other and, together, further foster the usage of data visualization in
data analytics.
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