
Azoles 
Synthesis, Properties, Applications  

and Perspectives

Edited by Aleksey Kuznetsov

Edited by Aleksey Kuznetsov

Azoles are a broad and promising class of five-membered heterocyclic compounds 
containing from one up to five nitrogen atom(s) that can also contain sulfur or 

oxygen atoms. Widely used as potent antifungal agents, various azole derivatives 
have also demonstrated many other promising biological properties. This book covers 
studies of several types of thiazole-based heterocyclic scaffolds, the development of 
4-thiazolidinone and thiazole derivatives with heterocyclic fragments as potential 

candidates for new drugs against trypanosomiasis, numerous synthetic approaches for 
the synthesis of 1,2,3-triazoles, the application of N-azole, N,S-azole, and N,O-azole as 
well as their derivatives as retarders of metallic corrosion, and the integration of azoles 

in materials used for renewable energy processing and applications and wood treatment.

Published in London, UK 

©  2021 IntechOpen 
©  selvanegra / iStock

ISBN 978-1-83968-179-0

A
zoles - Synthesis, Properties, A

pplications and Perspectives





Azoles - Synthesis, 
Properties, Applications 

and Perspectives
Edited by Aleksey Kuznetsov

Published in London, United Kingdom





Supporting open minds since 2005



Azoles - Synthesis, Properties, Applications and Perspectives
http://dx.doi.org/10.5772/intechopen.87765
Edited by Aleksey Kuznetsov

Contributors
Abdul Aziz Aziz Ali, Philippe Grellier, Roman Lesyk, Anna Kryshchyshyn, Danylo Kaminskyy, Seham A. 
Ibrahim, Hala F. Rizk, Brahim El Ibrahimi, Lei Guo, Nana Derkyi, Aleksey Kuznetsov

© The Editor(s) and the Author(s) 2021
The rights of the editor(s) and the author(s) have been asserted in accordance with the Copyright, 
Designs and Patents Act 1988. All rights to the book as a whole are reserved by INTECHOPEN LIMITED. 
The book as a whole (compilation) cannot be reproduced, distributed or used for commercial or 
non-commercial purposes without INTECHOPEN LIMITED’s written permission. Enquiries concerning 
the use of the book should be directed to INTECHOPEN LIMITED rights and permissions department 
(permissions@intechopen.com).
Violations are liable to prosecution under the governing Copyright Law.

Individual chapters of this publication are distributed under the terms of the Creative Commons 
Attribution 3.0 Unported License which permits commercial use, distribution and reproduction of 
the individual chapters, provided the original author(s) and source publication are appropriately 
acknowledged. If so indicated, certain images may not be included under the Creative Commons 
license. In such cases users will need to obtain permission from the license holder to reproduce 
the material. More details and guidelines concerning content reuse and adaptation can be found at 
http://www.intechopen.com/copyright-policy.html.

Notice
Statements and opinions expressed in the chapters are these of the individual contributors and not 
necessarily those of the editors or publisher. No responsibility is accepted for the accuracy of 
information contained in the published chapters. The publisher assumes no responsibility for any 
damage or injury to persons or property arising out of the use of any materials, instructions, methods 
or ideas contained in the book.

First published in London, United Kingdom, 2021 by IntechOpen
IntechOpen is the global imprint of INTECHOPEN LIMITED, registered in England and Wales, 
registration number: 11086078, 5 Princes Gate Court, London, SW7 2QJ, United Kingdom
Printed in Croatia

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

Additional hard and PDF copies can be obtained from orders@intechopen.com

Azoles - Synthesis, Properties, Applications and Perspectives
Edited by Aleksey Kuznetsov
p. cm.
Print ISBN 978-1-83968-179-0
Online ISBN 978-1-83968-180-6
eBook (PDF) ISBN 978-1-83968-181-3



Selection of our books indexed in the Book Citation Index 
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 
For more information visit www.intechopen.com

5,300+ 
Open access books available

156
Countries delivered to

12.2%
Contributors from top 500 universities

Our authors are among the

Top 1%
most cited scientists

131,000+
International  authors and editors

155M+ 
Downloads

We are IntechOpen,
the world’s leading publisher of 

Open Access books
Built by scientists, for scientists

BOOK
CITATION

INDEX

 

CL
AR

IVATE ANALYTICS

IN D E X E D





Meet the editor

Dr. Aleksey Kuznetsov pursued his Ph.D. in Physical Chemistry 
at the Department of Chemistry and Biochemistry, Utah State 
University, and graduated after three years of doctorate studies 
with a specialization in Computational/Theoretical Chemistry. 
He has been working in various subareas of this field of research 
since 2000. After several postdoctoral and visiting professor po-
sitions in Germany, the United States, and Brazil, Dr. Kuznetsov 

obtained a permanent faculty position at the Department of Chemistry, Universi-
dad Técnica Federico Santa Maria, Santiago, Chile. He has been working there since 
2019, focusing his research on the computational design of various complexes of 
porphyrins, including core-modified porphyrins, with nanoparticles, fullerenes, 
and graphenes, along with studies of transition metal complexes, organic com-
pounds with pharmacological applications, and more.



Contents

Preface XI

Section 1
Introduction 1

Chapter 1 3
Introductory Chapter: Azoles, Their Importance, and Applications
by Aleksey E. Kuznetsov

Section 2
Thiazoles and Their Derivatives: Synthesis and Applications 11

Chapter 2 13
Synthesis and Biological Evaluation of Thiazole Derivatives
by Seham A. Ibrahim and Hala F. Rizk

Chapter 3 33
Thiazolidinone-Related Heterocyclic Compounds as Potential  
Antitrypanosomal Agents
by Anna Kryshchyshyn, Danylo Kaminskyy, Philippe Grellier and Roman Lesyk

Section 3
Triazoles: Synthesis and Applications 63

Chapter 4 65
1,2,3-Triazoles: Synthesis and Biological Application
by Abdul Aziz Ali

Section 4
Miscellaneous Applications of Azoles 83

Chapter 5 85
Azole-Based Compounds as Corrosion Inhibitors for Metallic Materials
by Brahim El Ibrahimi and Lei Guo

Chapter 6 113
Azoles for Renewable Energy Development and Wood Treatment
by Nana Derkyi



Contents

Preface XIII

Section 1
Introduction 1

Chapter 1 3
Introductory Chapter: Azoles, Their Importance, and Applications
by Aleksey E. Kuznetsov

Section 2
Thiazoles and Their Derivatives: Synthesis and Applications 11

Chapter 2 13
Synthesis and Biological Evaluation of Thiazole Derivatives
by Seham A. Ibrahim and Hala F. Rizk

Chapter 3 33
Thiazolidinone-Related Heterocyclic Compounds as Potential  
Antitrypanosomal Agents
by Anna Kryshchyshyn, Danylo Kaminskyy, Philippe Grellier and Roman Lesyk

Section 3
Triazoles: Synthesis and Applications 63

Chapter 4 65
1,2,3-Triazoles: Synthesis and Biological Application
by Abdul Aziz Ali

Section 4
Miscellaneous Applications of Azoles 83

Chapter 5 85
Azole-Based Compounds as Corrosion Inhibitors for Metallic Materials
by Brahim El Ibrahimi and Lei Guo

Chapter 6 113
Azoles for Renewable Energy Development and Wood Treatment
by Nana Derkyi



Preface

Azoles represent a broad, interesting, and promising class of five-membered 
heterocyclic aromatic compounds containing from one up to five nitrogen atom(s), 
which can also contain at least one sulfur or oxygen atom as a part of their conjugated 
ring (N,S and N,O subclasses of azoles, respectively). The parent azole compounds, 
as exemplified by imidazole, pyrazole, 1,2,3-triazole, tetrazole, and pentazole, are 
aromatic structures with two double bonds. Various successively reduced analogs, 
such as azolines and azolidines, with just one double bond, have been synthesized.

Only one lone pair of electrons from each heteroatom in the azole ring participates 
in the aromatic bonding. The numbering of ring atoms in azoles starts with the 
heteroatom that does not participate in the double bond and proceeds towards the 
other heteroatom. Imidazole, which contains two N atoms, and other five-membered 
aromatic heterocyclic compounds with two nitrogens (e.g., pyrazole) are extremely 
common in nature and form the core of many biomolecules, for instance, histidine, 
or parts of purine nucleobases.

Azoles have always been considered suitable scaffolding for the design of various 
novel therapeutic agents. Various oxygen-containing azoles, as exemplified by 
oxadiazoles, oxazoles, and isoxazoles, have been thoroughly studied for their 
diversified biological activities. Widely used as potent antifungal agents due to 
their valuable properties like a broad spectrum of action, chemical stability, and 
oral bioavailability, various azole derivatives have also demonstrated many other 
promising biological properties including antidiabetic, immunosuppressant,  
anti-inflammatory, and anticancer activities.

This book includes four sections. The first section contains an introductory 
chapter written by the editor and explains the importance and applications of 
Azoles. The second section, “Thiazoles and Their Derivatives: Synthesis and 
Applications,” is composed of two chapters. Chapter 2, “Synthesis and Biological 
Evaluation of Thiazole Derivatives,” presents the several types of thiazole-based 
heterocyclic scaffolds (monocyclic or bicyclic systems), their synthesis, studies 
of their biological activities, and the modifications of thiazole-based compounds 
to generate new molecules with potent antitumor, antioxidant, and antimicrobial 
activities. Chapter 3, “Thiazolidinone-Related Heterocyclic Compounds as Potential 
Antitrypanosomal Agents,” describes the development of 4-thiazolidinone and 
thiazole derivatives with heterocyclic fragments, which exhibit good inhibition 
of trypanosome growth and might be potential candidates for the development of 
new drugs against trypanosomiasis.

The third section, “Triazoles: Synthesis and Applications,” contains one chapter. 
Chapter 4, “1,2,3-Triazoles: Synthesis and Biological Application,” considers 
numerous synthetic approaches for the synthesis of 1,2,3-triazoles, especially the 
popular click chemistry approach, and discusses several biological activities of 
these promising heterocycles.
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The last section, “Miscellaneous Applications of Azoles,” contains two chapters. 
Chapter 5, “Azole-Based Compounds as Corrosion Inhibitors for Metallic Materials,” 
discusses the application of N-azole, N,S-azole (thiazole), and N,O-azole (oxazole) 
molecules and their derivatives as retarders of metallic corrosion as well as related 
highlighted outcomes in recent years. Chapter 6, “Azoles for Renewable Energy 
Development and Wood Treatment,” provides a concise overview of integrating 
azoles in materials used for renewable energy processing and applications and wood 
treatment, with an outlook on challenges and opportunities.

Aleksey Kuznetsov
Department of Chemistry,

Universidad Técnica Federico Santa María,
Santiago, Chile
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Chapter 1

Introductory Chapter:  
Azoles, Their Importance, 
and Applications
Aleksey E. Kuznetsov

1. Introduction

Heterocyclic compounds constitute an important and very broad class of 
organic molecules that are found to play a vital role in our daily life. The presence 
of the various heterocyclic frameworks in natural products and their widespread 
applications in the areas of material science, medicinal chemistry, agrochemicals, 
etc. emphasizes their extraordinary significance in diverse fields. Among the 
heterocyclic frameworks, structurally diverse azoles have been found to play an 
extremely significant role. Azoles represent a broad, very interesting, and perspec-
tive class of five-membered heterocyclic aromatic compounds whose framework 
contains from one and up to five nitrogen atom(s) and can also contain at least 
one S or O atom as a part of the azole conjugated ring (N,S and N,O subclasses of 
azoles, respectively) [1]. The parent azole compounds, as exemplified by imidaz-
ole, pyrazole, 1,2,3-triazole, tetrazole, and pentazole, are aromatic structures with 
two double bonds (Figure 1).

There have been synthesized various successively reduced analogs, such as 
azolines and azolidines, with just one double bond. Only one lone pair of elec-
trons from each heteroatom in the azole ring participates in the aromatic bond-
ing. The numbering of ring atoms in azoles starts with the heteroatom that does 
not participate in the double bond and proceeds toward the other heteroatom 
(Figure 1). Since the beginning of their studies and applications, major advances 
in the chemistry of pyrazoles, imidazoles, triazoles, tetrazoles, and their fused 
heterocyclic derivatives have been performed [2–6]. These azoles are also widely 
found as core structures in a large variety of natural and artificially synthesized 
compounds possessing important agrochemical and pharmaceutical properties 
[7–11]. The well-known ability of these heterocyclic cores to serve both as biomi-
metics and reactive pharmacophores encourages their applications in numerous 
drugs [12–17].

Figure 1. 
Structural formulae of unsubstituted neutral azoles (only includes nitrogen). Reprinted (adapted) with 
permission from ref. [2]. Copyright (2011) American Chemical Society.
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2. Coordination Chemistry of Azoles

Also, among other applications, which will be briefly touched in this chapter, 
azoles are known to play a significant role in coordination chemistry [18–22]. 
Thus, 1,2,3-triazoles (cf. Figure 1) have been known since the end of the 19th 
century, when 2-phenylbenzotriazole 1-oxide was described [23]. As early as 1937, 
the binding ability of the triazole ring was studied [24], although the first crystal-
lographically characterized coordination compound was reported only in 1976 [25]. 
The isomeric to 1,2,3-triazoles 1,2,4-triazole ring was first mentioned in the end of 
the 19th century, in 1885 [18, 26]. Its ability to bind metal ions was established a few 
decades later [27] and the first crystal structure of one of the adducts was published 
already in 1962 [28]. In 1886, the term tetrazole was proposed for a five-membered 
heteroarene with four nitrogens [18], and in first decade of the 20th century, 1910, 
the potential binding of this heterocycle to metal ions was reported [18]. The first 
tetrazole complex characterized by X-ray diffraction study was reported in 1971 by 
Mason [10]. It should be noticed that although the chemistry of these three prin-
cipal azoles has been studied for more than a century, their coordination behavior 
earlier was not the subject of extensive investigation [18, 27, 29]: structural reports 
of triazole- and tetrazole-based coordination compounds became increasingly com-
mon in the research literature only since the early 1980s [30]. The excellent 2011 
review by Aromi et al. [18] clearly demonstrated the high versatility and suitability 
of the 1,2,3-triazole, 1,2,4-triazole, and tetrazole rings for the design and construc-
tion of outstanding coordination materials with attractive physicochemical proper-
ties. The straightforward preparation of such azole-containing ligands together 
with their synthetic flexibility allowed the syntheses of numerous outstanding sys-
tems such as coordination polymers and MOFs (metalloorganic frameworks), metal 
complexes, and coordination compounds with spin-crossover properties. It should 
be emphasized that these areas indeed represent current hot topics of investigation. 
Moreover, these N-donor ligands have found applications in many other fields of 
applied coordination chemistry, such as biological chemistry, nanomaterials, anion 
recognition, and nonlinear optics [18].

3. Azoles in Polymers

It is also of high interest to mention recent progress in azine- and azole-type 
N-heteroaromatic compounds for applications in structural engineering of 
high-mobility polymeric semiconductors [31]. The most fast developing area of 
polymeric semiconductors is production of novel semiconductors by employing 
the highly tunable donor−acceptor structural motifs. This approach revolution-
ized the whole strategy of the semiconducting polymers design. Furthermore, the 
appeal of replacing benzene or thiophene moieties with various sp2-hybridized 
N-heteroaromatics, such as azine or azole heterocycles, directed design efforts 
toward developing materials with n-type or ambipolar charge transport behaviors. 
The nitrogen atoms introduced in polymer molecules allow to adjust molecular 
orbital energies, enhancing electron injection by lowering frontier molecular orbital 
energy levels. Moreover, they allow to reduce the steric effects which, in turn, 
results in maximizing electronic coupling. In this work an overview of recent prog-
ress in syntheses and characterization of azine- or azole-type N-heteroaromatics to 
be used in structural engineering of high-mobility polymeric semiconductors was 
given [31]. Various synthetic routes for creating these N-heteroaromatic building 
blocks and corresponding polymers were reviewed. These routes may inspire new 
developments in molecular engineering. Also, important structural features were 
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discussed including the new semiconductor polymer electronic structures and 
conformational preferences. This review also discussed the correlations between the 
molecular structures of these N-heteroaromatic compounds and the device perfor-
mances. To summarize, the semiconducting polymers containing N-heteroaromatic 
rings should be considered as primary candidates for functional design of com-
pounds for specific applications in modern organic electronics.

Moreover, recently the latest achievements and problems associated with 
self-healing and shape memory metallopolymers (MP) such as metal complexes 
based on the polymers containing azole donor fragments among others (phenol, 
carboxylic acid, pyridine, histidine, and urethane) were reviewed [32]. Particular 
attention was paid to the principles of action of the shape memory MPs. MPs are 
in general of considerable interest due to their applications as functional materials 
for sensors, soft electronic devices, transistors, conductors, nanogenerators, bone 
tissue engineering, etc.

4. Azoles as Energetic Compounds

Of course, of a very high interest are applications of azoles and their derivatives 
as energetic compounds: thus, various azole-based energetic salts – tetrazole-based, 
triazole-based, imidazole and pyrazole-based – were reviewed by Gao and Shreeve 
in 2011 [2], and recently current synthesis and properties of energetic pentazolate 
and its derivatives were reviewed by Wozniak and Piercey [33]. The pentazolate, 
or cyclo-N5

−, received increased attention in last two decades. Being the compound 
without carbons and hydrogens, the pentazolate anion is well known to release large 
amounts of energy upon decomposition simultaneously liberating environmentally 
friendly N2 gas. Due to these extremely appealing qualities, the pentazolate anion 
and derivatives are essential in the development of novel high-energy-density 
materials. The review by Wozniak and Piercey considered the following aspects: 
(i) historical significance of cyclo-N5

−; (ii) its precursors; (iii) synthesis routes of 
obtaining cyclo-N5

− with a focus on arylpentazole precursors; (iv) factors affecting 
the stability of cyclo-N5

−; (v) energetic performances of currently used energetic 
cyclo-N5

−-containing compounds; and (vi) future possible experimental research.

5. Azoles in Ionic Liquids

Furthermore, it is worthwhile to mention the review by Easton et al. [34] where 
azolate anions in ionic liquids (IL) were considered. Owing to their ease of synthe-
sis, diffuse positive charge, and chemical stability, 1-alkyl-3-methylimidazolium 
cations are one of the most routinely utilized and historically important compo-
nents in ionic liquid chemistry. However, the versatile chemistry of azoles to allow 
their use as an anionic component in ILs, as azolates, was investigated relatively 
scarcely. Azolate anions possess numerous desired properties for IL formation, 
such as diffuse ionic charge, tailorable asymmetry, and synthetic flexibility, with 
the added advantages of not relying on halogen atoms for electron withdrawing 
effects. The review explored the 122 known so far azolate-containing ionic liquids 
which were prepared from only 39 disparate azolate anions, with a goal to highlight 
not only their well pronounced utility as IL components, but also the ways in which 
their advantageous properties may be used by the broader scientific community for 
design of new tailored materials. In this context, it is also worthwhile to mention 
another work by Easton et al. [35] where a non-stoichiometric approach to control 
the solid-state behavior of protic ionic liquids (PILs) was demonstrated by direct 
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azolate anions in ionic liquids (IL) were considered. Owing to their ease of synthe-
sis, diffuse positive charge, and chemical stability, 1-alkyl-3-methylimidazolium 
cations are one of the most routinely utilized and historically important compo-
nents in ionic liquid chemistry. However, the versatile chemistry of azoles to allow 
their use as an anionic component in ILs, as azolates, was investigated relatively 
scarcely. Azolate anions possess numerous desired properties for IL formation, 
such as diffuse ionic charge, tailorable asymmetry, and synthetic flexibility, with 
the added advantages of not relying on halogen atoms for electron withdrawing 
effects. The review explored the 122 known so far azolate-containing ionic liquids 
which were prepared from only 39 disparate azolate anions, with a goal to highlight 
not only their well pronounced utility as IL components, but also the ways in which 
their advantageous properties may be used by the broader scientific community for 
design of new tailored materials. In this context, it is also worthwhile to mention 
another work by Easton et al. [35] where a non-stoichiometric approach to control 
the solid-state behavior of protic ionic liquids (PILs) was demonstrated by direct 
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mixing of 4,5-dicyanoimidazole (HDCNim) with either 1-ethylimidazole (C2im) or 
1-butylimidazole (C4im) in different mole fractions.

6. Azoles as Corrosion Inhibitors

Also, azoles and their derivatives find numerous applications as organic corro-
sion inhibitors as was reviewed by Xhanari and Finšgar [36] and Fateh et al. [37]. 
In the first review, the authors summarized the research performed during the last 
two decades regarding the use of very important organic corrosion inhibitors for 
Al and its alloys in alkaline (mainly NaOH and KOH) and chloride solutions. The 
focus of this review was on the type of corrosion inhibitors and on their inhibition 
effectiveness and mechanism. The most frequently used corrosion inhibitors were 
shown to be the mercapto compounds, azole derivatives, organic dyes, and differ-
ent polymers. Weight loss and electrochemical techniques were among the most 
frequently used techniques for evaluation of the corrosion inhibition effectiveness 
of the studied compounds. The second review covered corrosion of Cu and its 
alloys in corrosive environments along with their corrosion inhibitors. The main 
corrosion inhibitor groups for copper were introduced and a review of adsorption 
models was provided. The most widely used corrosion inhibitors for protection of 
copper in salt and weak acidic environments were shown to be organic compounds 
from azole family, such as triazole, benzotriazole, and thiazole, and for strong 
acidic media imidazol and tetrazole were demonstrated to perform the best. Also, 
it is worthwhile to mention the 2008 work by Kuznetsov and Kazansky [6].

7. Azoles in Chemosensors

Next, it is interesting to mention the recent developments in 1,2,3-triazole-
based chemosensors as very recently reviewed by Ahmed and Xiong [38]. This 
review summarized the latest developments in the field of chemosensors based on 
click-generated triazoles which were used for detection of a range of metal cations, 
anions, and neutral analytes. The detection of metal ions became a significant and 
perspective field of research due to their medicinal, biological, and environmental 
impacts. This resulted in significant increase in the number of articles published 
on this subject, which reported more reliable and sophisticated triazole-based 
chemosensors for a variety of analytes. The review considered the development 
of chemosensors reported between 2012 and 2020 due to their advantages over 
other chemosensors, including such criteria as ease of recognition, simple instru-
mentation, along with high selectivity and high sensitivity.

8. Conclusions and Perspectives

Various oxygen-containing azoles, as exemplified by oxadiazoles, oxazoles, 
and isoxazoles, have been also thoroughly studied for their diversified biological 
activities. Widely used as potent antifungal agents (fungicides) due to their valuable 
properties like broad spectrum of action, chemical stability, and oral bioavailability 
[39–42], various azole derivatives have also demonstrated many other promising 
biological properties including antidiabetic, immunosuppressant, antiinflamma-
tory, antiviral, antitubercular, and anticancer activities [8, 12, 42–46].

As can be seen, azoles have always been considered as an extremely suitable 
scaffold for the design of various novel therapeutic agents and other extremely 
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versatile and useful compounds with potential applications in various areas such 
as materials, energetics, catalysis, etc. The intensive research work in the area of 
azoles, covering synthesis, characterization, and computational studies of their 
various novel derivatives is continuously ongoing [44, 47–52]. Thus, the area of 
azoles and their derivatives, their physico-chemical properties, and applications is 
of continuous high interest, and therefore this book will be a valuable addition to 
the knowledge which has been accumulated so far in this field.
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Chapter 2

Synthesis and Biological 
Evaluation of Thiazole Derivatives
Seham A. Ibrahim and Hala F. Rizk

Abstract

Thiazoles belong to the group of azole heterocycles. They are aromatic  
five-membered heterocycles containing one sulfur and one nitrogen atom. In recent 
years thiazoles, their derivatives, and isomers have gained considerable attention 
because of their broad applications in different fields, such as agrochemicals, 
industrial, and photographic sensitizers. Also, they have pharmaceutical and bio-
logical activities that include antimicrobial (sulfazole), antiretroviral (ritonavir), 
antifungal (abafungin), anticancer (tiazofurin), antidiabetic, anti-inflammatory, 
anti-Alzheimer, antihypertensive, antioxidant, and hepatoprotective activities. The 
compounds containing thiazole moieties are a prominent structural feature in a 
variety of natural products, such as vitamin B and penicillin. Thus, in this chapter 
several types of thiazole-based heterocyclic scaffolds such as monocyclic or bicyclic 
systems synthesis and their biological activities studies are presented. Furthermore 
modification of thiazole-based compounds at different positions to generate new 
molecules with potent antitumor, antioxidant, and antimicrobial activities is 
described.

Keywords: azole heterocycles, thiazoles, biological activities, antioxidants, 
antimicrobial, anticancer, anti-Alzheimer, antihypertensive

1. Introduction

Thiazoles are five-membered heterocyclic compounds containing nitrogen 
and sulfur atoms with isothiazole isomer. Thiazoles are a basic scaffold found in 
many natural compounds as vitamin B1-thiamine, alkaloids, anabolic steroids, 
flavones [1].

The interest in the synthesis of compounds containing the thiazole moiety has 
been increasing steadily in view of their utility in the field of photosensitizers, 
rubber vulcanization [2], liquid crystals [3, 4], sensors [5], sunscreens [6], catalysts 
[7], dyes [8], pigments [1], and chromophores [9, 10]. Moreover, thiazoles occupy a 
prominent place in current medicinal chemistry due to their wide range of applica-
tions in the field of drug design and discovery [11]. They appear in the bacitracin, 
penicillin antibiotics [12], and various synthetic drugs as short-acting sulfa drug 
sulfathiazole [1]. Also, they are used as an antidepressant drug (pramipexole) 
[13], antiulcer agent (nizatidine) [14], anti-inflammatory drug (meloxicam) [15], 
HIV/AIDS drug (ritonavir) [16], and cancer treatment drug (tiazofurin) [17]. In 
fact, thiazole is a more common component of FDA-approved pharmaceuticals 
than related five-membered heterocycles such as isothiazole, thiophene, furan, 
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isoxazole, and oxazole. On the other hand, the metal complexes of thiazole are 
widely used in photocatalysis [18]. 1,3-Thiazoles undergo different types of reac-
tions to yield various biologically active fused heterocyclic moieties as thiazolopy-
rimidine, imidazothiazoles, thiazolopyridine, etc. [19–21].

2. Synthesis strategies of 1,3-thiazole derivatives

Thiazole ring system were easily synthesized by well-known methods of 
Hantzsch [22], Cook-Heilbron [23], and Gabriel [24]. A number of compounds 
may serve as nucleophilic reagent in this reaction, such as thioamides, thiourea, 
ammonium thiocarbamate or dithiocarbamate, and their derivatives. Hantzsch syn-
thesized the simple thiazole nucleus in 1887 [25]. This synthesis approach involves 
cyclization and condensation of haloketones with thioamide, and it is considered 
the most widely popular process for the synthesis of thiazole moiety. In contrast, 
Gabriel synthesized thiazoles by treating α-acylaminoketones with stoichiometric 
amounts of P2S5 or Lawesson’s reagent [26]. Also, Cook-Heilbron used versatile 
methods for the synthesis of substituted aminothiazoles involving the reaction of 
α-aminonitriles with dithioacids or esters, carbon disulfide, carbonyl sulfide, and 
isothiocyanates under mild conditions [27].

Lately, thiazole derivatives were synthesized in the presence of various catalysts 
[28–31] and with the use of a microwave irradiation technique [32].

2.1 Synthesis from α-halocarbonyl compounds (Hantzsch’s synthesis) (type I)

2.1.1 Reactions with thioamides

Thioamides and various α-halocarbonyl compounds were reacted to give numer-
ous thiazoles with alkyl, aryl, arylalkyl, or heteroaryl of several functional groups at 
position 2, 4, or 5 (2.1.1) [33, 34] (Figure 1).

2.1.2 Reactions with N-substituted thiourea

2-Monosubstituted or disubstituted aminothiazoles (2.1.2) were obtained by the 
reaction of halocarbonyl compounds with N-substituted thiourea compounds [35] 
(Figure 2).

2.1.3 Reaction with esters of thiocarbamic acid

The condensation of α-halocarbonyl compounds with thiocarbamates gave 
2-hydroxythiazole derivatives (2.1.3) [36, 37] (Figure 3).

Figure 1. 
Synthesis of 2-, 4-, 5-trisubstituted thiazole.
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2.2  Synthesis from α-aminonitrile compounds (Cook-Heilbron’s synthesis) 
(Type II)

This class of synthesis gives 5-aminothiazole with different substituted in 
position 2 by interacting aminonitrile with salts and esters of dithioacids carbon 
oxysulfide, carbon disulfide, and isothiocyanates significantly [38–40].

2.2.1 Reaction with carbon disulfide

The condensation of carbon disulfide with α-aminonitriles gave 2-mercapto-
5-amino thiazoles, which can be converted to 5-amino thiazoles substituted in 
position 2 (2.2.1) [41, 42] (Figure 4).

2.3 Reaction with esters and salts of dithioacids

The salts or the esters of both dithioformic and dithiophenacetic acids were 
reacted with α-aminonitriles to give 5-aminothiazoles (2.3) in good yields [43] 
(Figure 5).

2.4  Reaction with acylaminocarbonyl compounds and phosphorus pentasulfide 
and related condensation (Gabriel’s synthesis) (Type III)

This reaction was originally designated by Gabriel in 1910. The reaction of 
phosphorus pentasulfide with acylaminoketone gave 2-phenyl-5-alkyl-thiazole in 
good yield (2.4) [44] (Figure 6).

2.5 Synthesis with eco-friendly methods

2.5.1 Using microwave-assisted synthesis (MAOS)

The synthesis of thiazole derivatives involves vigorous reaction conditions and 
wastage of solvents and catalysts. To overcome these shortcomings, eco-friendly 
methods as microwave irradiation technique are commonly used for synthesis of 

Figure 2. 
Synthesis of substituted aminothiazoles.

Figure 3. 
Synthesis of 2-hydroxythiazole derivatives.
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thiazole derivatives [45]. Rapid and elegant synthesis of a series of thiazoles (2.5.1) 
uses microwave heating under solvent-free conditions [32, 46, 47] (Figure 7).

2.5.2 One-pot multicomponent reaction in aqueous medium

Water is economically viable, nontoxic, and the most friendly reaction medium 
available, making it an environmentally acceptable solvent for the design and 
development of green chemistry technique. A three-component reaction of phenyl 
acetylene, N-bromosuccinimide, and thiourea in aqueous medium gave substituted 
thiazole derivatives (2.5.2) in good yield [48] (Figure 8).

2.5.3 Using silica-supported tungstosilisic acid

An efficient and green method has been developed for the synthesis of new 
substituted Hantzsch thiazole derivatives (2.5.3) by one-pot multicomponent pro-
cedure. 3-(Bromoacetyl)-4-hydroxy-6-methyl-2H-pyran-2-one was reacted with 

Figure 6. 
Synthesis of 2-phenyl-5-alkyl-thiazole derivatives.

Figure 7. 
Synthesis of thiazoles under microwave irradiation.

Figure 4. 
Synthesis of 5-aminothiazole derivatives.

Figure 5. 
Synthesis of 5-aminothiazoles derivatives.
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thiourea and substituted benzaldehydes in the presence of silica-supported tungs-
tosilisic acid as a catalyst under conventional heating or under ultrasonic irradiation 
technique [46, 49] (Figure 9).

2.6 Miscellaneous methods

Hantzsch construction of thiazole derivatives (2.6) was established by the 
reaction of α-chloroglycinate esters with thioamides or thioureas. Targeted 
compounds are obtained from readily available and inexpensive building 
blocks through an environmentally benign process and without catalysts [50] 
(Figure 10).

The C − H substitution reaction of thiazole by the catalysis of the palladium/
copper system is carried out in the presence of tetrabutylammonium fluoride under 
mild conditions. Various 2,5-diarylthiazole derivatives (2.6.1) were synthesized in 
good yields [51] (Figure 11).

Figure 10. 
Synthesis of thiazole derivatives.

Figure 11. 
Synthesis of thiazole derivatives using palladium/copper.

Figure 8. 
Synthesis of 2-aminothiazole in aqueous medium.

Figure 9. 
Synthesis of thiazole derivatives using silica.
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2.7 Using oxidizing agents and thiourea

The mixtures of thiourea and acetophenone were treated with various oxidizing 
gents as sulfuryl chloride, chlorosulfonic acid, thionyl chloride, sulfur mono-
chloride, sulfur trioxide, sulfuric acid, nitric acid, and sulfur. In each case a large 
amount of 2-amino-4-phenylthiazole (2.7) was obtained [52] (Figure 12).

3. Biological importance of thiazoles

Thiazole and its derivatives are among the most active classes of compounds that 
are known for their broad spectrum of activity, e.g., antibacterial [53], antifungal 
[54], antimalarial [55], antitubercular [56], antiviral [57], anti-inflammatory 
[58], antidiabetic [59], anthelmintic [60], anticonvulsant [61], antioxidant [62], 
anticancer [63], and cardiovascular activities [64], and known as new inhibitors of 
bacterial DNA gyrase B [65]. Some drugs that already are on the market including 
the recent entry dasatinib possess thiazoles nucleus [66].

3.1 Antitumor activity

Compounds containing thiazole have marked their presence in a number of 
clinically available anticancer drugs such as tiazofurin [67], dasatinib [68], dab-
rafenib [69], patellamide A [70], ixabepilone [71], and epothilone [72].

Ramla et al. synthesized a variety of 4-amino-3-methyl-5-(2-methyl-1H-
benzo[d]imidazol-1-yl)thiazol-2(3H)-one (3.1.1) and evaluated them for antitumor 
activity [73] (Figure 13).

Popsavin et al. reported a set of 2-(2,3-anhydrofuranosyl) thiazole-4-carbox-
amide (2′,3′-anhydrotiazofurin) derivatives (3.1.2) and screened them for their 
antitumor activity [74] (Figure 14).

A series of 5-arylidene derivatives were synthesized and evaluated for their 
antitumor activity. Compound 2-{2-[3-(benzothiazol-2-ylamino)-4-oxo-2-thioxothia-
zolidin-5-ylidenemethyl]-4-chlorophenoxy}-N-(4-methoxyphenyl)-acetamide (3.1.3) 
was found to be the most active among the tested compounds [75] (Figure 15).

In another approach towards triple-negative breast cancer, Zhou et al. synthe-
sized and optimized a series of hybrids of 2,4-diaminopyrimidine and thiazole 
derivatives (3.1.4). These compounds showed anti-proliferative properties against 
two breast cancer cell lines, MCF-7 and MDA-MB-231. Several of these compounds 
also exhibited potent activities against tumor cell colony [76] (Figure 16).

A series of 2-(4-benzoyl-phenoxy)-N-(4-phenyl-thiazol-2-yl)-acetamides were 
synthesized by Prashanth et al. The authors suggest that the effect of compound 
(3.1.5) could be due to methyl, fluoro, and methoxy groups which are attached to 
phenoxy, benzoyl, and the phenyl ring of thiazole, respectively [77] (Figure 17).

Dae-Kee K et al. produced a set of 5-(pyridin-2-yl)thiazoles enclosing a p- and/
or m-carboxamide or carbonitrile-substituted phenylmethylamino moiety at posi-
tion 2 of the thiazole ring (3.1.6). This series is evaluated for its ALK5 inhibitory 
activity [78, 79] (Figure 18).
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A series of 2,4-disubstituted thiazole compounds containing N-n-butyl or 
N-cyclohexyl thioureido synthon at position 2 and N-substituted thiosemicar-
bazone moiety (3.1.7) at position 4 were synthesized by HI El-Subbagh et al. and 
verified for their antitumor activity. All of the established derivatives revealed 
antineoplastic activity [80] (Figure 19).

Santos et al. synthesized 6,7-bis(hydroxymethyl)-1H,3H-pyrrolo[1,2-c]thiazole 
(3.1.8) which showed activity for the triple-negative breast cancer, the most chal-
lenging tumor in clinical practice [81] (Figure 20).

El-Borai et al. synthesized a series of 2 6-substituted-3-(pyridin-3-yl)
imidazo[2,1-b]thiazole (3.1.9) which are tested for anticancer activity against 
human cancer cell lines HEPG2 (liver cancer) and MCF7 using sulforhodamine B 

Figure 13. 
Structure of compound 3.1.1.

Figure 14. 
Structure of compound 3.1.2.

Figure 15. 
Structure of compound 3.1.3.
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(SRB) assay. All the synthesized compounds displayed more anticancer activity 
towards the selected cell line cancer, suggesting that it might be a potential alterna-
tive agent for human hepatic cancer therapy [82] (Figure 21).

3.2 Antimicrobial activity

Fungal and bacterial resistance to antimicrobial drugs is increasing rapidly due 
to nonselective antimicrobial activities and a limited number of drugs. To overcome 
this situation, several molecules containing thiazole are synthesized to treat bacte-
rial and fungal infections [83, 84].

Figure 18. 
Structure of compound 3.1.6.

Figure 19. 
Structure of compound 3.1.7.

Figure 16. 
Structure of compound 3.1.4.

Figure 17. 
Structure of compound 3.1.5.
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El-Borai et al. work on an ongoing program in the field of synthesis and evalu-
ated antimicrobial activity of medicinally important new compounds, taking the 
fused thiazole compounds as thiazolopyrimidines (3.2.1), imidazolothiazoles 
(3.2.2), and their derivatives as new examples in this domain [82] (Figure 22).

Vicini et al. synthesized a new set of 2-thiazolylimino-5-arylidene-4-thia-
zolidinones which were assayed in vitro for their antimicrobial activity against 
Gram-positive and Gram-negative bacteria and yeast. Compound (3.2.3) exhibited 
activity against Gram-positive bacteria [85] (Figure 23).

A series of thiazolyl thiazolidine-2,4-dione derivatives were synthesized by 
Dundar et al. These compounds were screened for their antibacterial and antifungal 
activities against methicillin-resistant S. aureus, E. coli, and C. albicans. All the com-
pounds particularly (3.2.4) were found to be moderately potent against screened 
microorganisms [86] (Figure 24).

Abdel-Wahab et al. synthesized 3-(benzofuran-2-yl)-4,5-dihydro-5-aryl-1-[4-
(aryl)-1,3-thiazol-2-yl]-1H-pyrazoles (3.2.5). The synthesized compounds were 
screened for their antibacterial and antifungal activities and showed a significant 
activity against E. coli higher than that of the control drug, whereas antifungal 
activity against Aspergillus niger was also exhibited and equal to that of the reference 
drug [87] (Figure 25).

Bera et al. Synthesized pyridinyl thiazole ligand having hydrazone moiety and 
its cobalt complex. Both ligand and its complex were tested for antibacterial proper-
ties towards Gram-positive and Gram-negative bacteria. The results revealed that 
the ligand (3.2.6) exhibited excellent antibacterial activity. The presence of pyri-
dinium ion in the ligand showed increased solubility of the ligand which enhances 
the cell penetrating ability and cell binding activity of the ligand. Hydrolysis of 
ligand decreases the pH of the medium which facilitates easy penetration of ligand 
into the cell [88] (Figure 26).

Figure 20. 
Structure of compound 3.1.8.

Figure 21. 
Structure of compound 3.1.9.
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Figure 22. 
Structure of compounds 3.2.1 and 3.2.2.

Figure 23. 
Structure of compound 3.2.3.

Figure 24. 
Structure of compound 3.2.4.

Figure 25. 
Structure of compound 3.2.5.
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3.3 Antifungal activity

Narayana et al. synthesized a series of 5-(2-substituted–1,3-thiazol-5-yl)-2-alk-
oxybenzamides and 5-(2-N-(substituted aryl)-1,3-thiazol-5-yl)-2-alkoxy benza-
mides. The synthesized compounds were screened for their antifungal activity. The 
derivatives of compound (3.3.1) exhibited significant activity [89] (Figure 27).

Chimenti et al. reported the synthesis of a novel series of 2-thiazolylhydrazone 
derivatives and the influence of the substituents on the thiazole ring and on anti-
fungal activity. Some of the tested compounds were found to possess significant 
antifungal activity when compared to clotrimazole, in particular compound (3.3.2) 
which exhibited higher potency against most of the Candida [90] (Figure 28).

3.4 Antioxidant activity

Antioxidants are of great interest due to their participation in important biological 
and industrial processes. They are generated in the human body and may cause dam-
age to lipids, proteins, and DNA and thus may lead to various diseases such as cancer, 
atherosclerosis, diabetes, cirrhosis, and Alzheimer’s and inflammatory diseases [91]. 
Thiazole and derivatives are the core structure in a variety of pharmaceuticals with a 
wide range of biological activity [92–94].

Figure 26. 
Structure of compound 3.2.6.

Figure 27. 
Structure of compound 3.3.1.

Figure 28. 
Structure of compound 3.3.2.
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Figure 22. 
Structure of compounds 3.2.1 and 3.2.2.

Figure 23. 
Structure of compound 3.2.3.

Figure 24. 
Structure of compound 3.2.4.

Figure 25. 
Structure of compound 3.2.5.
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The antioxidant potential compounds (3.4.1) was evaluated by spectro-
photometric method, using DPPH radical or Fe (TPTZ)3+ complex, and EPR 
spectroscopy and revealed that the synthesized compounds were showing potent 
antioxidant activity [95] (Figure 29).

Bozdag-Dundar et al. synthesized a series of 2, 4-dichlorothiazolyl thiazolidine-
2,4-dione and 4-chloro-2-benzylsulfanylthiazolyl-thiazolidine-2,4-dione deriva-
tives, and they were tested for their antioxidant properties. Compound (3.4.2) 
showed the best superoxide anion scavenging activity [96] (Figure 30).

Gouda et al. synthesized 2-amino thiazole derivatives and evaluated their 
antioxidant activity. They reported that the three compounds (3.4.3) showed potent 
antioxidant activity after postulating the structure–activity relationship (SAR) [97] 
(Figure 31).

A series of N2-[2-chloro-4(3,4,5-trimethoxy phenyl) azetidin-1-yl)]-N4-
(substituted aryl)-1,3-thioazol-2,4-diamine (3.4.4) were synthesized and screened 
for their in vitro antioxidant properties. The IC50 values revealed that some of the 
synthesized compounds were showing potent antioxidant activity [98] (Figure 32).

Figure 30. 
Structure of compound 3.4.2.

Figure 31. 
Structure of compound 3.4.3.

Figure 29. 
Structure of compound 3.4.1.

25

Synthesis and Biological Evaluation of Thiazole Derivatives
DOI: http://dx.doi.org/10.5772/intechopen.93037

Author details

Seham A. Ibrahim* and Hala F. Rizk
Department of Chemistry, Faculty of Science, Tanta University, Tanta, Egypt

*Address all correspondence to: sehamabdelatif@yahoo.com

4. Conclusion

Thiazole moieties have occupied a pivotal position in the modern organic and 
medicinal chemistry due to its broad-spectrum pharmacological and medicinal activi-
ties such as antimicrobial, anticancer, and antioxidant. The presence of thiazole ring 
in many drugs such as penicillin, pramipexole, tiazofurin, meloxicam, and nizatidine 
motivates the chemists to design new thiazole scaffolds. Thiazole nucleus exhibited an 
important role in finding new leads and drugs for various diseases. This chapter has 
illustrated the commonly used approaches to synthesize subsisted thiazole deriva-
tives, described their key electronic properties, and highlighted their most important 
chemical reactivity. A particular focus has been on the use of thiazole in dyes and 
their metal complexes and miscellaneous applications of thiazole dyes. Also we have 
focused our attention on the biological application of thiazole derivatives.
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FDA Food and Drug Administration (USA)
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MAOS microwave-assisted synthesis
HTIB [hydroxy-(tosyloxy)-iodo] benzene
TBAF tetrabutylammonium fluoride

Figure 32. 
Structure of compound 3.4.4.
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Abstract

Human African trypanosomiasis (HAT) and Chagas disease are neglected 
tropical diseases (NTDs) due to parasite protists from the Trypanosoma genus 
transmitted by insect vectors. Trypanosomiases affect mostly poor populations in 
the developing countries, and the development of new antitrypanosomal drugs is 
underinvested by governments and the pharmaceutical industry. In this chapter, 
we described the development of 4-thiazolidinone and thiazole derivatives with 
heterocyclic fragments which exhibit good inhibition of trypanosome growth and 
might constitute potential candidates for the development of new drugs against try-
panosomiasis. Antitrypanosomal design, mainly within structure-based design, led 
to the synthesis of 5-ene-4-thiazolidinone-3-alkanecarboxylic acids; 2,3-disubsti-
tuted 4-thiazolidinones; thiazolidinone-pyrazoline, phenylindole-thiazolidinone, 
and imidazothiadiazole-thiazolidinone hybrids; as well as 4-thiazolidinone-based 
fused heterocycles, especially thiopyrano[2,3-d]thiazoles, and non-thiazolidinone 
compounds–namely, isothiocoumarine derivatives. Moreover, antitrypanosomal 
4-thiazolidinones are of special interest in the search for new antimalarial and anti-
leishmanial agents. Also many active anticancer agents among the abovementioned 
4-thiazolidinones have been discovered.

Keywords: sleeping sickness, Chagas disease, antitrypanosomal drugs, 
thiazolidinone derivatives, hybrids

1. Introduction

Trypanosomatid infections belong to the neglected tropical diseases (NTDs)–a 
group of communicable diseases spread in 149 countries in the tropical and sub-
tropical regions of the globe and affecting more than 1 billion people [1]. These 
vector-borne parasitic diseases are associated with poverty, contact with infectious 
vectors, as well as limited accesses to health services [2]. Human trypanosomiasis is 
caused by kinetoplastids, flagellated protists of Trypanosoma genus transmitted by 
an insect vector [3].

Trypanosoma brucei gambiense (T.b. gambiense) and Trypanosoma brucei rhod-
esiense (T.b. rhodesiense) are transmitted by the tsetse fly and cause two forms of 
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human African trypanosomiasis (HAT) known as sleeping sickness when neuro-
logical manifestations associated with presence of parasites in the brain become 
apparent [4]. T.b. gambiense accounts for more than 98% of reported cases; T.b. 
rhodesiense is responsible for an acute infection and represents under 2% of reported 
cases [5]. Other Trypanosoma species (e.g., T. vivax, T. congolense, and T. evansi) 
affect cattle, causing animal African trypanosomiasis (Nagana) and contributing to 
livestock losses. Cattle are also a reservoir of infection for human trypanosomes [6]. 
Therefore, the necessity to control animal trypanosomiasis should not be underes-
timated within the concept of “one health” [7]. There had been several devastating 
HAT epidemics during the twentieth century, the last one occurred in the late 
1990s with estimated near 300,000 cases. Thanks to the coordinated work of the 
WHO and governmental and nongovernmental organizations to combat NTDs, 
the number of cases reported in 2009 has dropped below 10,000 for the first time 
in 50 years. This trend persists, and in 2019 there were less than 1000 incidences of 
HAT, although the estimated number of people being at risk of infection is near 65 
million. First signs and symptoms of HAT are observed a few weeks after infection. 
During the first hemolymphatic stage, trypanosomes invade the human host and 
locally multiply spreading via the lymph and blood to various peripheral organs. 
The following meningoencephalitic stage develops when the parasites invade the 
brain parenchyma crossing the blood-brain barrier. The second stage of HAT is 
characterized by neurological disturbances and neuropsychiatric and sleep disor-
ders [4]. If left untreated, the disease leads to coma and death [8]. Vector control 
is an important issue in the efforts taken to eliminate HAT. This is evidenced by 
the elimination of trypanosomiasis in Zanzibar Island due to tsetse clearance. This 
approach is still difficult to implement on a continent; therefore chemotherapy 
remains the main tool in the HAT management [9]. Difficulty of vaccine develop-
ment because of the antigenic variation of the parasite surface proteins has been one 
more unsolved problem [10].

Chagas disease (American trypanosomiasis) caused by Trypanosoma cruzi (T. 
cruzi) is a devastating human disease with about 8 million infected people mostly 
in Latin and South America. Over the past decades, due to migration and popula-
tion mobility, Chagas disease cases were reported in Europe, the United States, and 
Canada [11]. It is transmitted to man during the bite of a bloodsucking triatomine 
bug, via its feces or urine through skin breaks or mucous membranes, and occasion-
ally causing outbreaks through contaminated food. Transmission through blood 
transfusion and pregnancy is also possible and, less frequently, through organ 
transplantation or laboratory accidents [12–14]. Once the parasite reaches the human 
host, it multiplies in the host’s cells in the amastigote form that differentiates into the 
infective trypomastigote form, which is released after the host cell rupture, causing 
inflammatory reactions and leading to megaesophagus, megacolon, and cardiac 
conduction disturbances [15, 16]. Since Chagas disease was discovered in 1909, 
numerous studies have been carried out to investigate the pathogenesis of acute and 
chronic phases of the disease [11]. While the acute phase is often asymptomatic or 
characterized by non-specific symptoms, except sometimes occurring chagoma or 
Romaña sign, the chronic phase can be subdivided into an asymptomatic indeter-
minate phase and a symptomatic determinant phase [17]. Between 60% and 70% of 
serologically positive patients have no manifestation of the disease; in the remaining 
30–40%, cardiac and gastrointestinal complications develop, indicating a symptom-
atic determinant phase [18]. If earlier autoimmune reactions were thought to be the 
primary factors leading to the lesions associated with the chronic stage, recent inves-
tigations showed that the persistence of parasites also contribute to the inflammatory 
processes, leading to cardiac or gastrointestinal complications. Therefore treatment 
success depends greatly on the elimination of T. cruzi from the organism [16].
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1.1 Treatments of trypanosomiasis

1.1.1 HAT

Suramin, pentamidine, melarsoprol, and eflornithine have been used to treat 
HAT for decades [19, 20] (Figure 1). An important advance was the development of 
the nifurtimox-eflornithine combination therapy (NECT), which has now became 
the standard first-line treatment for the second stage of T.b. gambiense HAT [20, 21]. 
Choice of the drug as well as duration of treatment depends on the stage of the dis-
ease and the parasite subspecies. Pentamidine isethionate is the first-line treatment 
for the first stage of T.b. gambiense disease, while suramin is used in the treatment of 
first stage of HAT caused by T.b. rhodesiense. Intravenous treatment with suramin, 
although usually effective, especially when given early in the disease, can result in 
potential complications such as renal failure, skin lesions, anaphylactic shock, bone 
marrow toxicity, and neurological complications. Pentamidine, administered by 
the intramuscular route or intravenously, despite non-negligible undesirable effects 
(hypoglycemia, prolongation of the QT interval on electrocardiogram, hypoten-
sion, and gastrointestinal features), is in general well tolerated by patients and is 
usually effective [22, 23]. NECT, being the first-line treatment for the second stage 
of T.b. gambiense disease, consists of nifurtimox delivered orally and eflornithine 
delivered intravenously. In the case of contraindications to nifurtimox, eflornithine 
may be given as a monotherapy for T.b. gambiense HAT (meningoencephalitic 
stage), but it is not recommended for T.b. rhodesiense disease [4, 24]. Melarsoprol 
is restricted to the treatment of the second stage of T.b. rhodesiense HAT because 
of severe adverse drug reactions, such as an encephalopathy syndrome that occurs 
in 5–18% of all treated cases and may be fatal [25–27]. The only indication of 

Figure 1. 
Drugs used for human trypanosomiasis treatment.
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melarsoprol for the treatment of T.b. gambiense HAT appears in the case of disease 
relapse after administering NECT or eflornithine monotherapy.

New effective oral monotherapy of HAT with fexinidazole has been developed 
and approved, so in 2018 the European Medicines Agency’s (EMA) Committee 
for Medicinal Products for Human Use issued a positive opinion for fexinidazole 
treatment of T.b. gambiense HAT [28–30]. According to new WHO guidelines, under 
particular conditions, fexinidazole may replace pentamidine as first-line treatment 
in patients with the first stage of T.b. gambiense HAT and replace nifurtimox-eflorni-
thine combination therapy as first-line treatment in patients with the second stage 
of T.b. gambiense HAT with fewer than 100 cerebrospinal fluid white blood cells 
per μL. These recommendations cannot be applied for the treatment of patients 
younger than 6 years or with a bodyweight less than 20 kg [31, 32]. One more 
new oral compound developed for treatment of all stages of T.b. gambiense HAT is 
acoziborole being at late Phase II/III of clinical trials [31].

1.1.2 Chagas disease

Only two drugs are currently available, nifurtimox and benznidazole (Figure 1), 
that both are active in the acute stage of the disease (up to 80% efficacy), though 
of limited efficacy against the established chronic stage of the disease [14, 33]. 
Benznidazole is a nitroimidazole, which generates radical species in aerobic and 
anaerobic conditions [34], and is the agent of choice for monotherapy of Chagas 
disease because of its extensive security and efficacy profile. Generalized adverse 
effects [17] as well as occasionally reported resistance to benznidazole make nifurti-
mox usage an alternative treatment. Both drugs produce important adverse reac-
tions, especially in adults, because newborn, nursing, and small children tolerate 
these drugs better [35, 36]. In the acquired acute period, 70% of the cases are cured, 
and in newborn and nursing children with congenital Chagas disease, 98–100% 
cure is obtained. On the one hand, there is evidence about efficiency of benzni-
dazole in early chronic infections [33], but on the other hand, the expediency of 
antitrypanosomal treatment in the chronic stages remains controversial, because of 
significant toxicity profiles and the unproven role in preventing the cardiomyopathy 
progression. Therefore, therapy for the majority of patients suffering from chronic 
Chagas disease consists mostly in nonetiologic treatments [11]. New effective and 
safety drugs are needed, especially for the chronic stage treatment [37].

1.2 Drug discovery strategies

As American and African trypanosomiases affect mostly poor population in 
the low- and middle-income countries and have not been interesting for the big 
pharmaceutical companies for years, a number of public and private institutions, 
partnerships, and consortia were initiated. For example, the Special Programme for 
Research and Training in Tropical Diseases of WHO (WHO/TDR), the European 
Commission [38] as a government agency, or the international Drugs for Neglected 
Diseases Initiative (DNDi) [39] had emerged. The work of these organizations has 
had an undeniable positive impact on the development of novel therapies and for 
the elimination of trypanosomiasis.

In general, three known major approaches to novel drug development, including 
antitrypanosomals, may be outlined: (i) ligand-based approach, (ii) target-based 
drug discovery [40], and (iii) phenotype-based drug discovery [41]. Different types 
of compounds, namely, thiosemicarbazones, thiazolidines, triazole- and furan-based 
compounds, benzofuran derivatives, peptidyl compounds, peptidomimetics acyl- 
and arylhydrazones, etc. have been studied as novel antitrypanosomal agents [42].
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In ligand-based approaches, already known active synthetic and natural com-
pounds or approved drugs are used as starting scaffolds to develop novel agents 
[43]. For example, development of pentamidine analogues resulted in the lead 
compound DB289 that underwent preclinical and clinical studies [44]. Other 
examples of the abovementioned approach are label extension or search for the new 
indications of existing drugs [45].

Target-based approaches involve screening of drug libraries with established 
targets, within target repurposing strategy, or screening libraries of novel com-
pounds against a definite protein target. The structures of identified hit compounds 
are often optimized in order to increase their selectivity and pharmacokinetic 
properties or decrease their toxicity [46]. It should be mentioned that the target 
validation status used in the antitrypanosomal drug discovery often has not been 
clear. WHO/TDR Target Prioritization Network helps the scientists in the rational 
drug design of antiparasitic agents including antitrypanosomal drugs. The TDR 
Targets database, developed by this organization, contains information on vali-
dated, essential, as well as putative targets; it also can serve as a tool for prioritiza-
tion of targets in whole genomes [47, 48].

1.3 Examples of targets used in novel antitrypanosomal agent development

1.3.1 Trypanosomatid peptidases

Numerous studies showed that intra- and/or extracellular trypanosomatid 
peptidases play important roles in different cell functions including invasion, 
intracellular survival, replication, differentiation, infectivity, immune evasion, and 
nutrition. “Validated” trypanosomatid peptidases belong to the endopeptidases and 
include cruzipain, prolyl oligopeptidases (POPs; T. cruzi), congopain (T. congo-
lense), rhodesain (T.b. rhodesiense), and brucipain (T.b. brucei) [49]. For example, 
the cysteine peptidase cruzipain being differentially expressed in the different 
stages of T. cruzi, along with other peptidases, is responsible for parasite survival, 
differentiation, and growth. Cruzipain is a sulfated glycoprotein, which is investi-
gated not only as a drug target but also as a candidate for vaccine development [50]. 
Selective inhibitors of this peptidase arrest metacyclogenesis in vitro and block the 
proliferation of both extracellular epimastigotes and intracellular amastigotes. The 
main lysosomal cysteine peptidases rhodesain, brucipain, and congopain are cathep-
sin L-like proteases [49]. They may play a role in anemia and immunosuppression 
due to infection, and conversely, anti-cysteine peptidase antibodies may modulate 
the trypanosome-induced pathology [51]. Oligopeptidases B and Tc80 are serine 
protease representatives of the prolyl oligopeptidase family [49]. Oligopeptidase 
B is involved in the mammalian host cell invasion by the trypomastigotes [52]. It 
retains full catalytic activity when released into the host bloodstream providing 
anomalous degradation of host peptide hormones that reinforces the importance 
of its protein-processing activity [53]. POP Tc80 has been detected in all the devel-
opmental stages of T. cruzi but is secreted by the trypomastigotes. POP Tc80 was 
shown to exhibit the unusual property of cleaving collagens I and IV, fibronectin, 
and peptide hormones. POP TC80 inhibitors block the host cell invasion by trypo-
mastigotes; selectivity between parasitic and human POPs toward inhibitors could 
be expected [54, 55].

1.3.2 Nitroreductases

Nitroreductases are mainly associated with the nifurtimox mode of action. The 
activity of type I nitroreductase is believed to be “oxygen-insensitive” as it does not 
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involve oxygen in the reduction process and therefore does not cause the reactive 
oxygen species production. In contrast, the activity of type II nitroreductase results 
in the production of superoxide anions, so it is considered “oxygen-sensitive.” 
Nifurtimox selectivity toward parasites was associated with the expression of type 
I nitroreductase. But, considering that nifurtimox-treated trypanosome extracts 
contain superoxide anions and nitro anion radicals, an oxidative stress with a type II 
nitroreductase involving is generally accepted to be the main trypanocidal mode of 
its action [56].

1.3.3 Dolicholphosphate mannose synthase

Dolicholphosphate mannose synthase is a mannosyltransferase critically 
involved in glycoconjugate biosynthesis in T. brucei. Variant surface glycoprotein 
(VSG) dimers, covering the surface of the parasite and undergoing constant 
antigenic variation, act as a physical diffusion barrier for components of the innate 
immune system as the parasite switches between many immunologically distinct 
VSG genes. All VSG variants are linked to the plasma membrane via glycosylphos-
phatidylinositol (GPI) anchors. The biosynthesis of GPI anchor was shown to be 
essential for viability of the bloodstream form of T. brucei, thus validating it as a 
drug target against HAT [57].

1.3.4 Dihydrofolate reductase

Dihydrofolate reductase (DHFR) is a key enzyme of the folate metabolism, 
deeply studied in the design of a number of anticancer, antibacterial, and anti-
malarial agents [58]. Detailed structural analysis of T. brucei and T. cruzi DHFRs 
showed their differences from the human enzyme, indicating them as attractive 
targets for the development of selective antitrypanosomals. Well-known DHFR 
inhibitors, as trimethoprim and pyrimethamine, are weakly active against T. brucei 
and T. cruzi DHFR unlike methotrexate being reported to inhibit T. cruzi enzyme in 
nanomolar concentrations [59].

1.3.5 Trypanothione reductase

Trypanothione reductase (TryR)–an enzyme of the NADPH-dependent flavo-
protein oxidoreductase family–converts trypanothione disulfide into the physi-
ologically relevant reduced dithiol. TryR is essential for growth of trypanosomatids 
as in the absence of catalase and glutathione peroxidase, the trypanothione system 
is involved in response to an oxidative stress. To some extent, trypanothione disul-
fide serves as glutathione in mammalian cells. Although mammalian glutathione 
reductase is homologous to parasite TryR, there are significant differences in their 
active sites [60, 61].

1.3.6 Kinases

The genomic analysis of T. brucei and T. cruzi revealed 156 and 171 eukaryotic 
protein kinases (PKs) in the parasite genomes. Atypical PKs representing four fami-
lies, RIO, alpha, PIKK, and PDK, had also been discovered. Such an amount of PKs 
that are key mediators of signal transduction indicates the important role they play 
in trypanosomatid life cycles [62]. The differences in structure between trypanoso-
matid PKs and mammalian PKs as well as the evidence that some trypanosomatid 
PKs are vital for the parasite make these enzymes suitable for the antitrypanosomal 
drug search [63].

39

Thiazolidinone-Related Heterocyclic Compounds as Potential Antitrypanosomal Agents
DOI: http://dx.doi.org/10.5772/intechopen.91861

1.3.7 Triosephosphate isomerase

Triosephosphate isomerase (TIM) catalyzes the interconversion between glyc-
eraldehyde 3-phosphate and dihydroxyacetone phosphate in the glycolytic pathway 
[64]. The presence of TIM in both human and parasite (68–74% of identity between 
both enzymes) makes targeting this enzyme problematic [65]. The structures of 
T. brucei and T. cruzi TIMs are also quite similar, except the structural differences 
that influence their different sensitivity to sulfhydryl reagents. T. cruzi TIM showed 
the highest sensitivity, constituting a good target for the development of selective 
therapeutics for the Chagas disease [66].

1.3.8 Farnesyl diphosphate synthase

Farnesyl diphosphate synthase (FPPS) catalyzes isopentenyl diphosphate and 
dimethylallyl diphosphate condensation resulting in the formation of geranyl 
diphosphate and subsequently farnesyl diphosphate that are precursors for the 
biosynthesis of isoprenoid derivatives (e.g., dolichols, sterols) and for protein pre-
nylation. Bisphosphonates, such as alendronate and risedronate, are considered to 
be ligands for T. cruzi FPPS [67]. FPPS is an attractive target for antichagasic drug 
development as it is essential for parasite’s growth and proliferation [68, 69].

1.3.9 Cyclic nucleotide-specific phosphodiesterases

Cyclic nucleotide-specific phosphodiesterases (PDEs) are also shown to be 
promising antitrypanosomal drug targets [70]. There are four distinct PDE families 
encoded in the genome of T. brucei [71].

Kinase inhibitors [72], such as human Aurora kinase inhibitors, typified by 
danusertib [73], and human epidermal growth factor receptor (EGFR) inhibitors 
lapatinib and canertinib [74] are examples of successful implementations of the 
target repurposing strategy when pathogen targets are matched with known 
homologous human targets.

One more variation of target-based drug design is the screening of known drug 
libraries in order to establish new pharmacological profile. For example, screening 
of a library of bioactive compounds against TryR [75] led to identification of a new 
class of TryR inhibitors based on indatraline, a nonselective monoamine reuptake 
inhibitor [76].

1.3.10 Lanosterol 14α-demethylase

Lanosterol 14α-demethylase or CYP51, which belongs to the family of cyto-
chrome P450s, is one of the most promising antitrypanosomal targets. This enzyme 
is involved in the ergosterol biosynthesis, taking part in the production of compo-
nents of the plasma membranes and serving as precursors for regulatory molecules 
that modulate growth, division, differentiation, and development processes [77, 78]. 
Fungicides as well as clinically used antifungal azoles inhibit CYP51 that along with 
the resemblance of sterol biosynthesis in trypanosomatids to such in fungi [79], 
makes lanosterol 14α-demethylase an attractive target for the design of antitrypano-
somal agents.

In the era of target therapy, phenotypic screening that lies in pharmacological 
screening of chemical libraries against whole-cell or biological system should not be 
neglected [80–82]. This approach is particularly advantageous in the search of anti-
trypanosomals [83, 84], as the success strongly depends on the penetration proper-
ties of the drug into the parasite as well as on the crossing of the blood-brain barrier. 
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contain superoxide anions and nitro anion radicals, an oxidative stress with a type II 
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Dolicholphosphate mannose synthase is a mannosyltransferase critically 
involved in glycoconjugate biosynthesis in T. brucei. Variant surface glycoprotein 
(VSG) dimers, covering the surface of the parasite and undergoing constant 
antigenic variation, act as a physical diffusion barrier for components of the innate 
immune system as the parasite switches between many immunologically distinct 
VSG genes. All VSG variants are linked to the plasma membrane via glycosylphos-
phatidylinositol (GPI) anchors. The biosynthesis of GPI anchor was shown to be 
essential for viability of the bloodstream form of T. brucei, thus validating it as a 
drug target against HAT [57].

1.3.4 Dihydrofolate reductase

Dihydrofolate reductase (DHFR) is a key enzyme of the folate metabolism, 
deeply studied in the design of a number of anticancer, antibacterial, and anti-
malarial agents [58]. Detailed structural analysis of T. brucei and T. cruzi DHFRs 
showed their differences from the human enzyme, indicating them as attractive 
targets for the development of selective antitrypanosomals. Well-known DHFR 
inhibitors, as trimethoprim and pyrimethamine, are weakly active against T. brucei 
and T. cruzi DHFR unlike methotrexate being reported to inhibit T. cruzi enzyme in 
nanomolar concentrations [59].

1.3.5 Trypanothione reductase

Trypanothione reductase (TryR)–an enzyme of the NADPH-dependent flavo-
protein oxidoreductase family–converts trypanothione disulfide into the physi-
ologically relevant reduced dithiol. TryR is essential for growth of trypanosomatids 
as in the absence of catalase and glutathione peroxidase, the trypanothione system 
is involved in response to an oxidative stress. To some extent, trypanothione disul-
fide serves as glutathione in mammalian cells. Although mammalian glutathione 
reductase is homologous to parasite TryR, there are significant differences in their 
active sites [60, 61].

1.3.6 Kinases

The genomic analysis of T. brucei and T. cruzi revealed 156 and 171 eukaryotic 
protein kinases (PKs) in the parasite genomes. Atypical PKs representing four fami-
lies, RIO, alpha, PIKK, and PDK, had also been discovered. Such an amount of PKs 
that are key mediators of signal transduction indicates the important role they play 
in trypanosomatid life cycles [62]. The differences in structure between trypanoso-
matid PKs and mammalian PKs as well as the evidence that some trypanosomatid 
PKs are vital for the parasite make these enzymes suitable for the antitrypanosomal 
drug search [63].
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1.3.7 Triosephosphate isomerase

Triosephosphate isomerase (TIM) catalyzes the interconversion between glyc-
eraldehyde 3-phosphate and dihydroxyacetone phosphate in the glycolytic pathway 
[64]. The presence of TIM in both human and parasite (68–74% of identity between 
both enzymes) makes targeting this enzyme problematic [65]. The structures of 
T. brucei and T. cruzi TIMs are also quite similar, except the structural differences 
that influence their different sensitivity to sulfhydryl reagents. T. cruzi TIM showed 
the highest sensitivity, constituting a good target for the development of selective 
therapeutics for the Chagas disease [66].

1.3.8 Farnesyl diphosphate synthase

Farnesyl diphosphate synthase (FPPS) catalyzes isopentenyl diphosphate and 
dimethylallyl diphosphate condensation resulting in the formation of geranyl 
diphosphate and subsequently farnesyl diphosphate that are precursors for the 
biosynthesis of isoprenoid derivatives (e.g., dolichols, sterols) and for protein pre-
nylation. Bisphosphonates, such as alendronate and risedronate, are considered to 
be ligands for T. cruzi FPPS [67]. FPPS is an attractive target for antichagasic drug 
development as it is essential for parasite’s growth and proliferation [68, 69].

1.3.9 Cyclic nucleotide-specific phosphodiesterases

Cyclic nucleotide-specific phosphodiesterases (PDEs) are also shown to be 
promising antitrypanosomal drug targets [70]. There are four distinct PDE families 
encoded in the genome of T. brucei [71].

Kinase inhibitors [72], such as human Aurora kinase inhibitors, typified by 
danusertib [73], and human epidermal growth factor receptor (EGFR) inhibitors 
lapatinib and canertinib [74] are examples of successful implementations of the 
target repurposing strategy when pathogen targets are matched with known 
homologous human targets.

One more variation of target-based drug design is the screening of known drug 
libraries in order to establish new pharmacological profile. For example, screening 
of a library of bioactive compounds against TryR [75] led to identification of a new 
class of TryR inhibitors based on indatraline, a nonselective monoamine reuptake 
inhibitor [76].

1.3.10 Lanosterol 14α-demethylase

Lanosterol 14α-demethylase or CYP51, which belongs to the family of cyto-
chrome P450s, is one of the most promising antitrypanosomal targets. This enzyme 
is involved in the ergosterol biosynthesis, taking part in the production of compo-
nents of the plasma membranes and serving as precursors for regulatory molecules 
that modulate growth, division, differentiation, and development processes [77, 78]. 
Fungicides as well as clinically used antifungal azoles inhibit CYP51 that along with 
the resemblance of sterol biosynthesis in trypanosomatids to such in fungi [79], 
makes lanosterol 14α-demethylase an attractive target for the design of antitrypano-
somal agents.

In the era of target therapy, phenotypic screening that lies in pharmacological 
screening of chemical libraries against whole-cell or biological system should not be 
neglected [80–82]. This approach is particularly advantageous in the search of anti-
trypanosomals [83, 84], as the success strongly depends on the penetration proper-
ties of the drug into the parasite as well as on the crossing of the blood-brain barrier. 
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Sometimes, high-affinity ligands toward validated trypanosomal targets were 
shown ineffective in vivo against the parasite because not crossing the membranes, 
that is one more argument in favor of the whole-cell phenotypic assays [42]. Target 
resolution from phenotypic hits may also contribute to drug discovery process [84].

It should be mentioned that the parasites of Leishmania genus belong to the 
same order Kinetoplastida as Trypanosoma ssp. sharing some phylogenetic similari-
ties [85]. Similar structural and biochemical features include, for example, special 
organelles (kinetoplast (mitochondrion with a discrete structured DNA body), 
glycosomes (involved in glycolysis)), a sub-pellicular microtubular corset, and a 
unique thiol metabolism [10, 86]. Interesting is that hit compounds found in anti-
trypanosomal screening may be used for the design of agents against Leishmania 
ssp. [87, 88] or vice versa.

2. 4-Thiazolidinone frame in the design of antitrypanosomals

4-Thiazolidinones are well-known class of azoles, which have been investigated 
for many decades as useful tools for the design and development of new drugs 
[89–93]. 4-Thiazolidinone scaffolds (2,4-thiazolidinedione, rhodanine (2-thioxo-
4-thiazolidinone), 2-alkyl(aryl)-substituted and 2-amino(imino)-substituted 
4-thiazolidinones) (Figure 2) are used as privileged structures and substructures in 
the modern medicinal chemistry [94–98] for the design of new anti-inflammatory, 
antitumor, antimicrobial, antidiabetic, antibacterial agents, etc. The synthetic 
approaches for these heterocycles are well known and described [96].

Majority of the 4-thiazolidinone-based hit and lead compounds, drug-like 
molecules, and approved drugs belong to derivatives containing the exocyclic 
double bond at C5 position—5-ene-4-thiazolidinones [96, 97]. These compounds, 
especially rhodanine derivatives, are possible Michael acceptors and are claimed 
as frequent hitters or pan-assay interference compounds (PAINS), being treated 
as useless in the drug discovery process because of their possible/predicted insuf-
ficient selectivity [99]. This statement should not be regarded as a general knockout 
criterion that excludes such screening hits from further development and should be 
studied in more detail [96, 97, 100, 101]. Therefore, “4-thiazolidinones and related 
scaffolds should not be regarded as problematic or promiscuous binders per se” [95], 
while “positive” properties of Michael acceptors should be effectively used [95, 97]. 
For instance, Michael acceptors are among the most effective activators of Nrf2 
through the Keap1 modification, which open new perspectives in the treatment of 
inflammation, cancer, etc. [102]. Moreover, Michael acceptor properties are often 
not confirmed in experimental studies [103, 104] under conditions similar to physi-
ological ones.

The search for new antimicrobial and antiparasitic agents based on 4-thia-
zolidinone cores is one of the earliest directions of biological studies of 4-thia-
zolidinones. The structural similarity of 4-azolidinones with penicillin antibiotics 
was the stimulus to the study of such type of activity [90, 105–107]. However, 

Figure 2. 
Main 4-thiazolidinone-based scaffolds.
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currently the effects of 4-thiazolidinones are not related to the “penicillin” mode 
of action [91, 96].

In the field of antiprotozoal agent search, the design of antitrypanosomal agents 
based on thiazolidinone scaffolds is of special interest [42, 108]. Data on the search 
for new antitrypanosomal agents among 4-thiazolidinone derivatives present 
mostly investigations on the inhibition of parasite growth (phenotype screening) 
mainly within a privileged substructure-based design. A much smaller number of 
publications are devoted to the study of the mechanism of action or the design of 
high-affinity ligands to “validated” targets [42, 96].

One of the arguments for the study of 4-thiazolidine-based compounds as anti-
trypanosomal agents is the thesis that thiazoles, especially 4-thiazolidinones, are 
considered as thioureas/thiosemicarbazones’ cyclic analogues and biomimetics [42, 
96, 108, 109]. Different (thio)ureas/(thio)semicarbazides were reported as inhibi-
tors of the trypanosome proliferation [110–112] and had shown high affinity to 
the antitrypanosomal targets: cruzain and rhodesain [109, 113], cysteine proteases 
[114], etc. Different classes of “drug-like” molecules based on a thiazolidinone scaf-
fold have been designed and synthesized in the process of search for antitrypano-
somals [42, 115–119]. One of the most prominent directions is the conjugation of 
the thiazolidinone core with other different molecular fragments (mainly privileged 
substructures) [120, 121] that proves the efficiency of a molecular hybridization 
approach and a hybrid pharmacophore approach for the design of new antitrypano-
somals [122–124].

Combination of 4-thiazolidinone and pyrazoline cores led to the synthesis of 
rows of promising trypanocidal agents (1–4) (Figure 3) with sub-micromolar 
activity levels against T.b. brucei and T.b. gambiense [121, 125–127] and low toxicity 
levels against mammalian cells.

Compounds with an enamine linker 5, 6 (Figure 4) were designed based on the 
early hits 1, 2 (4-thiazolidinone and pyrazoline cores are bonded without additional 
linker). Most active compounds from these series, 5-[5-(4-methoxyphenyl)-3-naph-
thalen-2-yl-4,5-dihydropyrazol-1-ylmethylene]-3-methyl-2-thioxothiazolidin-4-one 
(IC50 = 0.6μM) and 5-[5-(2-hydroxyphenyl)-3-(4-methoxyphenyl)-4,5-dihydro-
pyrazol-1-ylmethylene]-3-(3-acetoxyphenyl)-2-thioxothiazolidin-4-one (IC50 
= 0.7μM), possess sub-micromolar activities and high selectivity indexes [121]. 
Elongation of the enamine bearing linker group (compounds 6) led to a decrease of 
the activity, and modification of the N3 position of thiazolidinone core (compounds 

Figure 3. 
Thiazolidinone-pyrazoline conjugate synthesis.
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currently the effects of 4-thiazolidinones are not related to the “penicillin” mode 
of action [91, 96].

In the field of antiprotozoal agent search, the design of antitrypanosomal agents 
based on thiazolidinone scaffolds is of special interest [42, 108]. Data on the search 
for new antitrypanosomal agents among 4-thiazolidinone derivatives present 
mostly investigations on the inhibition of parasite growth (phenotype screening) 
mainly within a privileged substructure-based design. A much smaller number of 
publications are devoted to the study of the mechanism of action or the design of 
high-affinity ligands to “validated” targets [42, 96].

One of the arguments for the study of 4-thiazolidine-based compounds as anti-
trypanosomal agents is the thesis that thiazoles, especially 4-thiazolidinones, are 
considered as thioureas/thiosemicarbazones’ cyclic analogues and biomimetics [42, 
96, 108, 109]. Different (thio)ureas/(thio)semicarbazides were reported as inhibi-
tors of the trypanosome proliferation [110–112] and had shown high affinity to 
the antitrypanosomal targets: cruzain and rhodesain [109, 113], cysteine proteases 
[114], etc. Different classes of “drug-like” molecules based on a thiazolidinone scaf-
fold have been designed and synthesized in the process of search for antitrypano-
somals [42, 115–119]. One of the most prominent directions is the conjugation of 
the thiazolidinone core with other different molecular fragments (mainly privileged 
substructures) [120, 121] that proves the efficiency of a molecular hybridization 
approach and a hybrid pharmacophore approach for the design of new antitrypano-
somals [122–124].

Combination of 4-thiazolidinone and pyrazoline cores led to the synthesis of 
rows of promising trypanocidal agents (1–4) (Figure 3) with sub-micromolar 
activity levels against T.b. brucei and T.b. gambiense [121, 125–127] and low toxicity 
levels against mammalian cells.

Compounds with an enamine linker 5, 6 (Figure 4) were designed based on the 
early hits 1, 2 (4-thiazolidinone and pyrazoline cores are bonded without additional 
linker). Most active compounds from these series, 5-[5-(4-methoxyphenyl)-3-naph-
thalen-2-yl-4,5-dihydropyrazol-1-ylmethylene]-3-methyl-2-thioxothiazolidin-4-one 
(IC50 = 0.6μM) and 5-[5-(2-hydroxyphenyl)-3-(4-methoxyphenyl)-4,5-dihydro-
pyrazol-1-ylmethylene]-3-(3-acetoxyphenyl)-2-thioxothiazolidin-4-one (IC50 
= 0.7μM), possess sub-micromolar activities and high selectivity indexes [121]. 
Elongation of the enamine bearing linker group (compounds 6) led to a decrease of 
the activity, and modification of the N3 position of thiazolidinone core (compounds 

Figure 3. 
Thiazolidinone-pyrazoline conjugate synthesis.
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5 as well as compounds 2 and 4) was considered as crucial for the trypanocidal 
activity (methyl or small aryl fragments are desirable) [127].

It should be noted that mentioned compounds are considered as prominent 
anticancer agents [127] and compounds 5 showed a strong antileukemic activity 
with an apoptotic-related mitochondria-dependent mode of action with a prooxi-
dant action [128].

Related 4-thiazolidinone-pyrazoline conjugates 7 (Figure 5) synthesized based 
on an isorhodanine (4-thioxo-2-thiazolidinone) core [129, 130] were also studied 
in vitro against T.b. brucei, and compounds with a micromolar activity were identi-
fied [126].

A moderate antitrypanosomal activity of pyrimidine-thiazolidine-4-one 
hybrids 8 (Figure 6) was reported against bloodstream forms of T.b. brucei (IC50 = 
25–100 μM) [131].

Related 2,3-substituted 4-thiazolidinones 9 with simple aromatic substituents at 
the position C2 and N3 also possessed low to moderate levels of activity against T.b. 
brucei and T.b. gambiense [132]. The synthetic methods for their obtaining are based 
on the one-pot three-component reaction of amine, oxocompound, and thiogly-
colic acid or its derivatives [133, 134]. It should be noted that the abovementioned 
derivatives of thioglycolic acids, namely, 2-mercaptoacrylic acids, can be easily 
synthesized or formed via a metabolic transformation based on simple 5-aryliden-
erhodanines (Figure 7) and possess similar pharmacological profiles [135].

Moreover, simple 5-ene-2,4-thiazolidinones were proposed as possible 
 scaffolds for the design of new antitrypanosomal agents as pteridine reductase 
1 inhibitors [136].

5-Arylidenerhodanine-3-acetic acids 10 (Figure 8) as one of the most studied 
types of thiazolidinones were reported to inhibit the activity of the dolicholphos-
phate mannose synthase and the GPI anchor synthesis and exhibited trypanocidal 
activity against the bloodstream forms of T.b. brucei (ED50 = from 96 to 492 μM) [57]. 
Structure optimization of 4-thiazolidinone-carboxylic acids, including compounds 
with anticancer properties [137, 138], allowed to obtain a series of 2-(5- aminome
thylene-4-oxo-2-thioxothiazolidin-3-yl)-3-phenylpropionic acid ethyl esters 11. 
Among them, several hit compounds (2-{5-[(5-chloro-2-methoxyphenylamino)-
methylene]-4-oxo-2-thioxothiazolidin-3-yl}-3-phenylpropionic acid ethyl ester, 
2-(5-{[2-methyl-5-(morpholine-4-sulfonyl)phenylamino]-methylene}-4-oxo-
2-thioxothiazolidin-3-yl)-3-phenylpropionic acid ethyl ester, and 4-{[3-(1-ethoxycar-
bonyl-2-phenylethyl)-4-oxo-2-thioxothiazolidin-5-ylidenemethyl]-amino}-benzoic 

Figure 4. 
5-Enamine 4-thiazolidinone-pyrazoline conjugates.
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acid ethyl ester) inhibited the in vitro growth of T.b. brucei and T.b. gambiense at 
nano- and sub-micromolar concentrations (IC50 = 0.027–1.936 μM), and significant 
selectivity indices (SI = 108–1396) were calculated [139].

Screening of a focused kinase inhibitor library against cultures of T.b. brucei 
allowed identifying a series of active compounds based on 2,4-diaminothiazoles, 
some of them possessing antitrypanosomal activity at the nanomolar range [140]. 
Combination of thiazolidine scaffold with a thiophene moiety yielded thiophen-
2-iminothiazolidine hybrids that showed trypanocidal activity in vitro against T. 
cruzi (amastigote and trypomastigote forms) and cruzain inhibition activity [115].

One of the directions for the design of new antitrypanosomal agents using 
a molecular hybridization approach is the utilization of hydrazone fragments 
(Figure 9) as the linker group for the connection of the thiazole/4-thiazolidinone 
scaffold with the other molecular fragments [117, 141–147].

Screening of 4-thiazolidinone-hydrazones against T. cruzi yielded active 
and non-cytotoxic compounds 12 (Figure 10) [148, 149]. The 2-hydrazolyl-
4-thiazolidinone-5-carboxylic acid derivatives 13 have shown promising activity 
on the cruzipain protease. Compounds were selected based on a virtual screening 
of 500,000 chemical structures (ZINC5 database). Structurally related compounds 
14 (with exocyclic double bond at C5 position) showed the highest antiproliferative 
activity when screened on T. cruzi epimastigotes but were inactive toward cruzipain 
[127]. 5-Alkyl-4-thiazolidinone-2-hydrazones 15 tested in a cruzain inhibition 
assay and against cultures of the epimastigote and trypomastigote forms (T. cruzi, 
Y strain) inhibited the cruzain activity and showed an antiproliferative activity 

Figure 5. 
4-Substituted 2-thiazolidinone synthesis.

Figure 6. 
2,3-Disubstituted 4-thiazolidinone synthesis.
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acid ethyl ester) inhibited the in vitro growth of T.b. brucei and T.b. gambiense at 
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selectivity indices (SI = 108–1396) were calculated [139].
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cruzi (amastigote and trypomastigote forms) and cruzain inhibition activity [115].
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a molecular hybridization approach is the utilization of hydrazone fragments 
(Figure 9) as the linker group for the connection of the thiazole/4-thiazolidinone 
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Screening of 4-thiazolidinone-hydrazones against T. cruzi yielded active 
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4-thiazolidinone-5-carboxylic acid derivatives 13 have shown promising activity 
on the cruzipain protease. Compounds were selected based on a virtual screening 
of 500,000 chemical structures (ZINC5 database). Structurally related compounds 
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[127]. 5-Alkyl-4-thiazolidinone-2-hydrazones 15 tested in a cruzain inhibition 
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at non-cytotoxic concentrations [150]. Study of analogues, namely, 2-imino-
1,3-thiazoles, showed that the bioisosteric replacement of thiazolidine cycle with 
thiazole led to loss of the cruzain inhibitory activity and a significant reduction of 
the trypanocidal activity. The most potent cruzain inhibitor 2-((1-phenoxypropan-
2-ylidene)hydrazono)-3-phenyl-5-isopropylthiazolidine-4-one also impaired 
intracellular trypomastigote development and attenuated trypomastigote invasion 

Figure 9. 
2-Hydrazono-4-thiazolidinone synthesis.

Figure 7. 
Thiazolidinone-based approach to 2-mercaptoacrylic acid formation.

Figure 8. 
5-Ene-4-thiazolidinone-3-carboxylic acid synthesis.
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of macrophages; however it did not eradicate parasite in mice [150]. 2-Aminoacyl-
4-thiazolidinone derivatives also showed good trypanocidal properties against 
T. cruzi; the proline derivative 16 showed differences of efficiency according to the 
parasite strains tested (Y strain vs Colombian strain). Docking analysis to T. cruzi 
cruzain that corroborated the experimental IC50 data and analysis of the binding 
characteristics of tested ligands revealed important interactions, which explain the 
affinity of such derivatives to cruzain [42, 151]. Combination of 4-dialkylaminobi-
cyclo[2.2.2]octane fragment with the 5-unsubstituted 4-thiazolidinone core led to 
compounds 17 with weak to moderate activity against T.b. rhodesiense [152].

Molecular hybridization of the thiazole ring with a pyridine moiety through 
a hydrazine bridge led to identification of selective N-[3-phenyl-3H-thiazol-2-
ylidene]-N′-(1-pyridin-2-yl-ethylidene)-hydrazines inducing the parasite death 
via an apoptotic mechanism [153]. Combination of a thiazole core with fused [6+5] 
or [6+6] scaffolds turned out to be especially interesting, leading to highly active 
and selective antitrypanosomal agents. Synthesized indanone-thiazole hybrids 
18 (Figure 11) provide good trypanocidal properties against T. cruzi (IC50 within 
0.09–1.35 μM, Tulahuen 2 strain); these compounds were also characterized by low 
mammalian cell cytotoxicity [154].

Development of optimization directions of thiazolidinone-hydrazone struc-
tures led to new hybrid molecules bearing thiazolidinone/thiazole and 2-phenyl-
indole/6-phenyl-imidazo[2,1-b][1, 3, 4]thiadiazole cores with hydrazone linkers 19, 
20 [155]. Compounds with sub-micromolar levels of trypanocidal activity toward 
bloodstream forms of T.b. brucei and T.b. gambiense and relatively low cytotoxicity 
upon human primary fibroblasts were identified, as well as some aspects of SAR 
(Figure 12) were derived.

Compounds with a 2-arylindole fragment were more active than 6-aryl-
imidazo[2,1-b][1, 3, 4]thiadiazole analogues. For the compounds without phenyl 
ring attached to the indole fragment, no significant antitrypanosomal activity was 
found as well as for the compounds with a C5-ene-fragment in the 4-thiazolidinone 
core [155].

The main features of the molecular structure of thiazolidinone-hydrazone-
based compounds can be outlined as the following: (i) thiazole core (position C4, 
small aryl or alkyl substituent; C5 position, unsubstituted or small alkyl fragment; 

Figure 10. 
4-Thiazolidinone-hydrazones as trypanocidal agents.
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N3 position, variety of substituents) or 4-thiazolidinone core (C5 position, unsub-
stituted or small alkyl fragment); (ii) hydrazone linker in the C2 position of the 
main core; (iii) additional molecular fragment, diverse substituents (from simple 
alkyl(aryl)ydene fragment to privileged heterocyclic cores); and (iv) target com-
pounds imitating the thiosemicarbazones with trypanocidal activity [147, 153, 155].

The “fixation” of the hydrazone fragment in a pyrazoline core (Figure 13) as 
one of the methods of such compound optimization has been also described for the 
synthesis of active compounds 21, 22 [126, 127].

Figure 11. 
Thiazolidinone-indanone/indole/imidazothiadiazole hybrids.

Figure 12. 
SAR of indole/imidazothiadiazole-thiazolidinone/thiazole hybrids.
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The hit compound from thiazolidinone-pyrazoline hybrids 21 showed inhibitory 
activity on the in vitro growth of T.b. rhodesiense (IC50 = 12 μg/mL) and Leishmania 
donovani (IC50> 30 μg/mL) and a higher influence on Plasmodium falciparum (IC50 > 
5 μg/mL) with cytotoxicity level CC50> 90 μg/mL.

3. Fused heterocyclic molecules based on the core 4-thiazolidinone

Thiopyranothiazoles that frequently are synthesized in hetero-Diels-Alder reac-
tion starting from 5-ene-thiazolidinones are considered as their fused mimetics, 
without Michael acceptor properties, though with saved pharmacological profiles 
(Figure 14) [90, 96, 156, 157].

So, various thiopyranothiazoles serve as a fruitful source of drug-like molecules 
that, unlike their precursors 5-ylidene-4-thiazolidinones, cannot be claimed as 
PAINS [99]. This class of fused thiazolidinone derivatives is characterized by a 
number of different biological activities [158], the most studied being the antitu-
mor activity [96, 157, 159, 160]. Recently, antiparasitic properties of these polycyclic 
compounds have been also reported.

A series of N-substituted thiopyrano[2,3-d]thiazoles showed excellent inhibi-
tory activity of T.b. brucei (bloodstream form) at the concentration of 10 μg/mL 
in vitro. The most promising compounds were 3-[2-(4-fluoro(chloro)phenyl)-2-
oxoethyl]-3,5a,6,11b-tetrahydro-2Н,5Н-chromeno[4′,3′:4,5]thiopyrano[2,3-d]
thiazol-2-ones and N-(4-chloro(ethylcarboxy)phenyl)-2-(2-oxo-5a-methyl-
(5aRS,11bSR)-3,5a,6,11b-tetrahydro-2Н,5Н-chromeno[4′,3′:4,5]thiopyrano[2,3-d]
thiazol-3-yl)-acetamides 23 (Figure 15) that inhibited more than 95% of parasite 
growth in the above concentration and near quarter at the concentration of 1 μg/
mL [132].

Development of novel synthetic protocols for the thiopyrano[2,3-d]thiazoles and 
their modifications led to the synthesis of new spiro thiopyrano[2,3-d]thiazoles. A 
hit compound rel-(6′R,7′R)-7′-(3,4-dimethoxyphenyl)-1-(4-chlorophenyl)-3′,7′-
dihydro-2H,2′H,5H-spiro[pyrolidin-3,6′-thiopyrano[2,3-d]thiazol]-2,2′,5-trione 24 
(Figure 16), inhibiting growth of T.b. brucei and T.b. gambiense with the IC50 values 
of 0.26 μM and 0.42 μM, respectively, was identified [161].

Effective and feasible method of functionalized thiazolothiopyrane core 
synthesis has been the utilization of norbornene as a dienophile with 5-ylidene-
isorhodanines as heterodienes in the hetero-Diels-Alder reaction. Obtained 
9-aryl(heteryl)-3,7-dithia-5-azatetracyclo[9.2.1.02,10.04,8]tetradecen-4(8)-ones-6 
and their N-arylidene substituted analogues 25 (Figure 17) showed moderate 
trypanocidal activity. The most active representatives possessed IC50 within 

Figure 13. 
“Fixation” of hydrazone fragment for thiazolidinone-pyrazoline hybrid synthesis.
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3.7–4.1 μM against T.b. brucei. Interesting was the dual antileukemic and trypano-
cidal effects observed for some thiopyranothiazoles bearing norbornane moiety 
that may be used for establishing the molecular mode of action for this class of 
compounds [118].

Comparable antitrypanosomal activity was observed for a series of 
isothiochromeno[4a,4-d][1,3]thiazoles 26 (Figure 18) in vitro against bloodstream 
forms of T.b. brucei. It should be mentioned that SAR analysis revealed the positive 
influence of N3-substituent for the trypanocidal activity. The same trend was found 
for the abovementioned tetracyclic thiopyrano[2,3-d]thiazoles 23 and thiopyrano-
thiazoles with norbornane core 25. Good trypanocidal properties along with a low 
acute toxicity in mice (LD50: 240–480 mg/kg) for the isothiochromeno[4a,4-d][1,3]
thiazole hits make such fused systems based on the thiazolidinone core attractive 
scaffolds for the discovery of antitrypanosomals [162].

Figure 16. 
Synthesis of spiro thiopyrano[2,3-d]thiazole derivatives as trypanocidal agents.

Figure 17. 
Thiopyrano[2,3-d]thiazoles bearing norbornane moiety as antitrypanosomal agent.

Figure 14. 
General scheme of thiopyranothiazole core formation.

Figure 15. 
Chromeno-thiopyrano-thiazolidinones as trypanocidal agents.
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One more class of polycyclic fused molecules based on the thiazolidinone scaf-
fold, being tested against T.b. brucei, were different 1-oxo-1H-2-benzothiopyran-
3-carboxylic acids. The latter were synthesized in a result of heterocyclization of 
intermediates obtained in the hydrolysis reaction of 5-arylidenerhodanines with 
substituent in ortho position (Figure 19). Investigated amides did not exhibit sig-
nificant antitrypanosomal effects except 1-oxo-1H-isothiochromene-3-carboxylic 
acid naphthalen-1-ylamide and 7,8-dimethoxy-1-oxo-1H-isothiochromene-3-car-
boxylic acid (4-sulfamoyl-phenyl)-amide 27 that inhibited growth of T.b. brucei 
bloodstream forms [119].

4. Conclusion

Thus, 4-thiazolidinone derivatives, especially thiazolidinone-bearing hybrids, as 
well as fused analogues are efficient compounds for the design of new antitrypano-
somal agents within different drug design strategies. Thiazolidinone derivatives are 
more active than the known thiosemicarbazone analogues. Moreover, they can be 
used as starting compounds for the design and development of non-thiazolidinone 
compounds with trypanocidal activity. In addition, there are many active anti-
cancer agents among 4-thiazolidinones with trypanocidal properties, and some 
active antitrypanosomal 4-thiazolidinones can be interesting for the search for new 
antimalarial and antileishmanial agents.
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Figure 18. 
Isothiochromeno[4a,4-d][1,3]thiazoles as antitrypanosomal agents.

Figure 19. 
Rhodanine-based isothiocoumarine derivative synthesis.
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Chapter 4

1,2,3-Triazoles: Synthesis
and Biological Application
Abdul Aziz Ali

Abstract

Among nitrogen-containing heterocyclic compounds, 1,2,3-triazoles are
privileged structure motif and received a great deal of attention in academics and
industry. Even though absent in nature, 1,2,3-triazoles have found broad applica-
tions in drug discovery, organic synthesis, polymer chemistry, supramolecular
chemistry, bioconjugation, chemical biology, fluorescent imaging, and materials
science. Therefore, the development of facile and straightforward methodology for
the synthesis of 1,2,3-triazoles is of noteworthy interest. In this study, emphasis will
be given to numerous synthetic approaches for the synthesis of 1,2,3-triazoles,
especially the popular click chemistry approach. Furthermore, several biological
activities of this promising heterocycle will also be discussed.

Keywords: 1,2,3-triazoles, click chemistry, organocatalysis, biological activity,
drug discovery

1. Introduction

Nitrogen-containing heterocyclic compounds are indispensable for life as they
are part of essential building blocks like amino acids, nucleotides, etc. 1,2,3-
Triazoles are one of the most important nitrogen-containing five-membered het-
erocycles and have a wide range of applications in pharmaceuticals, supramolecular
chemistry, organic synthesis, chemical biology and industry [1–6]. The 1,2,3-
triazoles has numerous useful properties like high chemical stability (usually inert
to acidic or basic hydrolysis as well as oxidizing and reducing conditions even at
high temperature), aromatic character, strong dipole moment (4.8–5.6 Debye), and
hydrogen bonding ability [7]. These spectacular features make the substituted 1,2,3-
triazole motif structurally resembling to the amide bond, mimicking an E or a Z
amide bond. Many prominent medicinal compounds having a 1,2,3-triazole core are
available in the market like anticonvulsant drug Rufinamide, broad spectrum
cephalosporin antibiotic cefatrizine, an anticancer drug carboxyamidotriazole and
β-lactum antibiotic tazobactam, etc. [8].

2. Synthesis of 1,2,3-triazoles

Owing to its versatile applications, the synthesis of 1,2,3-triazoles has been a
subject of extensive research. The synthetic methodologies for the preparation of
this important scaffold can be broadly divided into four categories (Figure 1) [9]:
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i. Huisgen 1,3-dipolar cycloaddition

ii. Metal-catalyzed 1,3-dipolar cycloaddition

iii. Strain-promoted azide alkyne cycloaddition

iv. Metal-free synthesis of 1,2,3-triazoles

2.1 Huisgen 1,3-dipolar cycloaddition

Huisgen 1,3-dipolar cycloaddition was the most straightforward and atom-
economical synthesis of 1,2,3-triazoles. However, elevated reaction temperature
and poor regioselectivity (mixtures of 1,4- and 1,5-isomers) make this process
unsatisfactory [10].

2.2 Metal-catalyzed 1,3-dipolar cycloaddition

In 2001, Sharpless et al. coined the term “Click Chemistry,” a set of highly
reliable, practical, and selective reactions for the rapid synthesis of valuable new
compounds and combinatorial libraries. The click reaction should be modular, with

Figure 1.
Strategy of the synthesis of 1,2,3-triazoles.
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high yield, wide in scope, generate only innocuous by-products (that can be removed
without chromatography), stereospecific, easy to carry out and that need benign solvent
[11]. In 2002, the groups of Sharpless and Meldal independently revealed a copper-
catalyzed variant of Huisgen’s azide-alkyne cycloaddition (CuAAC reaction) iden-
tified as one of the prime example of click chemistry in the literature [12, 13]. The
unique advantages of CuAAC reaction are excellent substrate scope, prominent
atom economy, good regioselectivity (only 1,4-isomer), high yield of products and
mild reaction conditions [14–17].

In 2005, Fokin and coworkers devised an efficient approach for the construction
of 1,5-disubstituted 1,2,3-triazoles by ruthenium cyclopentadienyl complexes
(RuAAC). In addition, internal alkynes also effective in this protocol leading to fully
substituted 1,2,3-triazoles [18].

The McNulty group reported a well-defined Ag(I) complex for the regioselective
synthesis of 1,4-disubstituted 1,2,3-triazoles at room temperature [19].

An interesting Zn(OAc)2-catalyzed azide-alkyne cycloaddition was developed
by Postnikov and his research group affording 1,4-disubstituted 1,2,3-triazoles [20].
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high yield, wide in scope, generate only innocuous by-products (that can be removed
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In 2017, Kim et al. devised Cp2Ni/Xantphos catalytic method to access
1,5-disubstituted 1,2,3-triazoles under mild condition [21].

Sun and coworkers reported intermolecular iridium-catalyzed azide-alkyne
cycloaddition reaction (IrAAC) of electron-rich internal alkynes [22].

2.3 Strain-promoted azide alkyne cycloaddition

Despite the overwhelming popularity of click chemistry in modern science
and technology, the using of metals creates serious concern in biological
system due to cellular toxicity. The Bertozzi group explored an interesting proto-
col of strain-promoted azide-alkyne cycloaddition (SPAAC) reaction for
bioconjugation. The driving force for this reaction was the release of large ring
strain in the cycloalkynes which proceeds under physiological condition without
any catalyst [23].

2.4 Metal free synthesis of 1,2,3-triazoles

Organocatalytic reactions has gained considerable attention in the synthesis of
1,2,3-triazoles using enamines, enolates as dipolarophiles. Besides, activated alkenes
were established as a useful substrate for triazole formation.

Ramachary and coworkers developed L-proline-catalyzed synthesis of
1,2,3-triazoles via an enamine mediated [3 + 2]-cycloaddition reaction [24].
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In 2011, the regioselective synthesis of 1,4,5-trisubstituted 1,2,3-triazoles was
achieved by Wang et al. using an organocatalytic enamine azide reaction [25].

The Bressy group reported synthesis of substituted 1,2,3-triazoles from
unactivated ketone and aromatic azide using microwave condition [26].

Wang and coworkers devised an organocatalytic method for the preparation of
fully substituted 1,2,3-triazoles by diethylamine-catalyzed reaction of azides and
allyl ketones [27].

Iodine mediated, oxidant free synthesis of 1,5-disubstituted 1,2,3-triazoles
was reported by the Wan group using primary amines, enamines and
tosylhydrazine [28].

Using potassium carbonate, Kannan and co-workers developed a protocol for
the synthesis of 4-acetyl-5-methyl-1,2,3-triazoles from acetylacetone and aromatic
azides [29].

The Ramachary group described an efficient methodology for the preparation of
1,4-disubstituted 1,2,3-triazoles using organocatalytic azide-aldehyde [3 + 2] cyclo-
addition reaction [30].
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Paixão et al. reported the use of alkylidenemalononitriles in 1,3-dipolar
cycloaddition with aromatic azides mediated by DBU [31].

In their another pioneering work, Ramachary and coworkers reported an
interesting organocatalytic [3 + 2]-cycloaddition reaction of ketones with azides for
synthesis of fully substituted 1,2,3-triazoles [32].

In a methodology published in 1986, Sakai et al. used primary amines and
α,α-dichloro ketone derived tosylhydrazones for the metal free synthesis of
1,2,3-triazoles [33].

Westermann and co-workers developed a cascade reaction using α,α-dichloro-
tosylhydrazones and primary amines in the presence of diisopropylethylamine [34].

Metal free regioselective synthesis of 1,4,5-trisubstituted 1,2,3-triazoles was
reported by Dehaen et al. from aldehydes, nitroalkanes and organic azides [35].
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The Guan group developed p-toluenesulfonic acid-catalyzed 1,3-dipolar cyclo-
addition reaction for the synthesis of 4-aryl-NH-1,2,3-triazoles from nitroolefins
with sodium azide [36].

3. Biological activity of 1,2,3-triazoles

1,2,3-triazoles are stable towards metabolic degradation and easily form hydro-
gen bonding which can increase solubility favoring the binding of biomolecular
targets. Owing to their unique properties, 1,2,3-triazoles are attractive building
blocks in drug discovery.

3.1 Anti-cancer activity

Cancer is a major public health concern and second leading cause of mortality
globally. Despite that numerous anticancer agents including taxol, vincristine, vin-
blastine, camptothecin derivatives, topotecan are available, search for novel com-
pounds with different modes of actions has received significant interest.

Kallander et al. reported 4-aryl-1,2,3-triazoles 1 as inhibitors of human methio-
nine aminopeptidase type 2 (hMetAP2). The anticancer activity of these molecules
is due to the N1 and N2 nitrogen atoms of the triazole moiety that actively contrib-
ute in binding to the active site of enzyme [37].

Odlo and coworkers disclosed a series of cis-restricted 1,5-disubstituted 1,2,3-
triazole analogues of combretastatin A-4. One of the triazole derivatives 2 showed
effective cytotoxic activity against various cancer cell lines with IC50 values in the
nanomolar range. Molecular docking study shows that the triazole moiety interacts
with β-tubulin via H-bonding with numerous amino acids [38].

The series of triazole-modified 20,30-dideoxy-20,30-diethanethioribonu-
cleosides 3 displayed considerably better antitumor activity towards HepG2, A549,
and Hela cell lines and higher cytotoxicity towards HepG2, LAC, and Hela cell lines
compared to the control drug floxuridine [39].

Rangappa and coworkers prepared a series of 1,2-benzisoxazole tethered 1,2,3-
triazoles 4 and established its noteworthy antiproliferative effect against human
acute myeloid leukemia (AML) cells. Using MTT assay, 3-(4-(4-phenoxyphenyl)-
1H-1,2,3-triazol-1-yl)benzo[d]isoxazole was found to be the most potent antiproli-
ferative agent with an IC50 of 2 μM against MV4-11 cells [40].

Using “click chemistry” approach, the Miller group prepared a series of N-((1-
benzyl-1H-1,2,3-triazol-4-yl)methyl)arylamides and examined their antiproli-
ferative activity. One of the compound 5 displayed an IC50 of 46 nM against MCF-7
human breast tumor cells [41].
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Lin and coworkers synthesized a series of heterocycle-fused 1,2,3-triazoles and
evaluated their cytotoxic activity. With IC50 values lower than 1:9 μg=mL against
A431 and K562 human tumor cell lines, 4-Methoxyphenyl substituted 1,3-
oxazoheterocycle fused 1,2,3-triazole 6 was found to be the most potent
derivative [42].

1,2,3-triazole derivatives of betulinic acid were synthesized by Koul et al. and
their cytotoxic activity against nine human cancer cell lines was evaluated
(Figure 2). Two molecules 7 and 8 exhibited notable IC50 values (2.5 and 3:5 μM,

respectively) against leukemia cell line HL-60 (5–7-fold higher potency than
betulinic acid) [43].

3.2 Anti-inflammatory activity

Inflammation is particularly complex biological process of body tissues, where
membrane-bound phospholipids release arachidonic acid (AA), followed by

Figure 3.
Various examples of 1,2,3-triazole containing molecules with anti-inflammatory activity.

Figure 2.
Some examples of 1,2,3-triazole containing molecules with anticancer activity.
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biotransformation processes using cycloxygenase (COX) and 5-lipoxygenase (5-
LOX) pathways. Several non-steroidal anti-inflammatory drugs (NSAIDs) such as
indomethacin, ibuprofen, and naproxen block arachidonic acid metabolism by
obstructing cycloxygenase. Nevertheless the side effects associated with these drugs
prompted medicinal chemists to develop alternative scaffolds.

The Jung group synthesized twenty-four phenyl-1H-1,2,3-triazole derivatives and
studied their biological activity. At the same dose of 25 mg/kg, compound 9 showed
more compelling effects than the existing anti-inflammatory drug diclofenac [44].

Yar and coworkers reported 1,2,3-triazole tethered Indole-3-glyoxamide deriva-
tives for in vivo anti-inflammatory activity using click chemistry approach. Two
compounds 10 and 11 displayed excellent inhibition of COX-2 (IC50 0:12µM) with
good COX-2 selectivity index (COX-2/COX-1) of 0.058 and 0.046, respectively
(Figure 3) [45].

3.3 Antitubercular activity

Tuberculosis (TB) caused by Mycobacterium tuberculosis is one of the infectious
contagious disease and remains a serious risk to public health worldwide. Generally,
the direct observed therapy strategy (DOTS) is the treatment for TB, but the
emergence of multidrug-resistant TB (MDR-TB) and extensively drug-resistant TB
(XDR-TB) developed challenges. Therefore identifying of effective anti-TB drug
candidates has received enormous interest.

Labadie and coworkers used click chemistry to synthesize a small library of
1,2,3-triazole derivatives and screened them against Mycobacterium tuberculosis and
Mycobacterium avium. The biological screening indicated that the triazole 12
displayed more significant activity against M. tuberculosis than standard drug [46].

Using click chemistry, the Boechat group reported 4-substituted N-phenyl-
1,2,3-triazole derivatives for antimicrobial activity against Mycobacterium tubercu-
losis strain H37Rv (ATCC 27294). Derivatives of isoniazid, (E)-N0-[(1-aryl)-1H-
1,2,3-triazole-4-yl)methylene] isonicotinoyl hydrazides, 13 revealed significant
activity with minimum inhibitory concentration (MIC) value of 0:62 μg=mL [47].

The Kantevari group described a molecular hybridization approach for the syn-
thesis of triazole clubbed dibenzo[b,d]thiophene-based Mycobacterium tuberculosis
inhibitors. The most potent compounds 14 and 15 in check of their in vitro activity
against M. tuberculosis strain H37Rv exhibited MIC ¼ 0:78 μg=mL [48].

Zhang et al. synthesized triazole-based library of benzofuran salicylic acid
derivatives using click chemistry strategy. The compound 16 was found to be
potent antiTB therapeutic with efficient cellular activity (Figure 4) [49].

Figure 4.
Representative examples of 1,2,3-triazole containing molecules with antitubercular activity.
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3.4 Antimicrobial activity

Fungal and bacterial infections create severe apprehension for human and ani-
mal survival. The inefficacy of available drugs and rising resistant strains demand
significant interest into new classes of antimicrobial agents.

Agarwal and coworkers synthesized 1,2,3-triazole derivatives of chalcones and
flavones by click chemistry and screened their antimicrobial and antiplasmodial
activity. Several compound including 17 showed promising antifungal and
antibacterial activity [50].

The Murugulla group studied antimicrobial activity of theophylline containing
1,2,3-triazoles with variant nucleoside derivatives. Compound 18 was shown to be
potent and effective against three bacterial strains B. cereus, Escherichia coli and P.
aureoginosa with MIC values of 0.0156, 0.03125, 0.0625 mg/mL and compound 19
with MIC values of 0.03125, 0.0156, 0.0625 mg/mL was found to be effective
against S. aureus, B. cereus and Escherichia coli, respectively [51].

Diaryl sulfone containing novel 1,2,3-triazoles were synthesized by Jørgensen
and coworkers and their biological evaluation was carried out as well. Compound 20
was found to be the most potent antifungal agents with MIC at 25 μg=mL [52].

Zhou et al. reported a series of 1,2,3-triazole-derived naphthalimides for poten-
tial antimicrobial activity. Bioactive assay revealed that 21 showed better anti-
Escherichia coli activity than existing drugs Norfloxacin and Chloromycin [53].

5-nitrofuran—triazole congener—was prepared by the Kamal group and its bio-
logical activity was studied. Among the other compounds, 22 exhibited promising
antibacterial activity (MIC value of 1:9 μg=mL against different bacterial strains)

Figure 5.
Representative examples of 1,2,3-triazole containing molecules with antimicrobial activity.
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and antifungal activity (MIC ¼ 3:9 μg=mL) compared to the standard miconazole
(MIC ¼ 7:8 μg=mL) against C. albicans and C. parapsilosis (Figure 5) [54].

3.5 Antiviral activity

Viral diseases are caused by viruses infecting an organism body. Although vac-
cines and antiviral drugs are used for treating viral infections, advance of novel
viruses creates health risk over the world. Therefore development of alternative
antiviral agents is of significant interest.

Boechat and coworkers reported the synthesis of 1,2,3-triazole nucleoside riba-
virin analogs and studied their antiviral activity. The synthesized compound 23
displayed potent activity with IC50 values 14 and 3.8 μM for Influenza A and reverse
transcriptase (RT) from human immunodeficiency virus type 1 (HIV-1 RT),
respectively [55].

Ribavirin analogues—4,5-disubstituted 1,2,3-triazole nucleosides—were synthe-
sized by Zeidler et al. and screened for their biological activity. 5-ethynyl nucleoside
24 exhibited effective virus-inhibitory activity against influenza A (H1N1, H3N2
and H5N1), influenza B, measles and respiratory syncytial viruses [56].

The Ding group targeted virus nucleoprotein and synthesized 1,2,3-triazole-4-
carboxamide derivatives for anti-influenza drug development. The compound 25,
inhibited the replication of various H3N2 and H1N1 influenza A virus strains with
IC50 values ranging from 0.5 to 4.6 μM (Figure 6) [57].

4. Conclusion

In summary, 1,2,3-triazole moiety has proven to be a privileged scaffolds in
medicinal chemistry. The exceptional properties of this promising heterocycle facil-
itate its wide range of applications from material science to bioconjugation. Thanks
to Sharpless for introducing “Click Chemistry,” one of the most prevailing tools in
drug discovery, chemical biology, and proteomic applications and undoubtedly
opens new avenue to the scientific community towards the improvement of life.
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carboxamide derivatives for anti-influenza drug development. The compound 25,
inhibited the replication of various H3N2 and H1N1 influenza A virus strains with
IC50 values ranging from 0.5 to 4.6 μM (Figure 6) [57].

4. Conclusion

In summary, 1,2,3-triazole moiety has proven to be a privileged scaffolds in
medicinal chemistry. The exceptional properties of this promising heterocycle facil-
itate its wide range of applications from material science to bioconjugation. Thanks
to Sharpless for introducing “Click Chemistry,” one of the most prevailing tools in
drug discovery, chemical biology, and proteomic applications and undoubtedly
opens new avenue to the scientific community towards the improvement of life.
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Figure 6.
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Chapter 5

Azole-Based Compounds as
Corrosion Inhibitors for Metallic
Materials
Brahim El Ibrahimi and Lei Guo

Abstract

To face against metallic corrosion and its corresponding undesirable
consequences, the implementation of corrosion inhibitor compounds is a
well-known method. In this regard, a wide range of organic heterocyclic molecules
has been employed as anti-corrosion agents for several metal/medium systems.
Azole-based compounds, namely, N-azole, N&S-azole (i.e., thiazole), and N and
O-azole (i.e., oxazole) molecules, as well as their derivatives, have shown an excel-
lent ability to act as efficient corrosion inhibitors for different metals and alloys in
various corrosive media. For this purpose, we aim in the current chapter to discuss
the application of these compounds as retarders of metallic corrosion as well as
related highlighted outcomes in recent years.

Keywords: azole, oxazole, thiazole, heterocycle, corrosion, metal, inhibitor,
organic, electrochemical, surface

1. Introduction

Corrosion is an undesirable natural (i.e., spontaneous) phenomenon that
involves the degradation of material via its electrochemical and/or chemical reac-
tions with the components of the adjacent aggressive environment. Metals and their
alloys are known as the most susceptible materials for corrosion phenomena, which
are the subject of the current chapter. This spontaneous process results in signifi-
cant economic and safety losses in many industrial fields, as well as in non-
industrial ones [1]. According to the recent NACE’s study [2], the financial loss due
to the corrosion is around 2.5 trillion $ (USD), which is about 4.2% of the total gross
domestic product. In the aim to face against metallic corrosion and corresponding
outcomes, the implementation of corrosion inhibitor compounds is a well-known
method due to its economic rentability, high efficiency, and simple utilization. By
definition, a corrosion inhibitor is a chemical compound that is added, at a lower
concentration, into the aggressive medium to prevent or retard (to an acceptable
level) the corrosion of considered metallic material [3, 4].

There is a broad agreement in the corrosion literature that the inhibitor com-
pounds protect metal against corrosion via their adsorption, namely, through
chemical or/and physical adsorptions process, into the metal surface, which forms
protective film upon the surface. Afterward, the formed compact film acts as a
protective barrier on metal against aggressive species existing in the surrounding
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environment [5, 6]. Chemical adsorption involves the sharing of electrons between
inhibitor molecules and the atoms of metal surface that leads to form coordination
bonds, whereas physical bonding involves the electrostatic and/or van der Waals
interactions between the inhibitor molecules and metal surface [7].

Among employed corrosion inhibitors in the industrial area, organic inhibitors
are the most used ones, which are employed mainly in acidic media during the acid
pickling, acid descaling, and acid cleaning processes of metallic materials [8, 9].
These organic compounds are characterized by the presence of lone pair electrons
of heteroatoms (i.e., O, N, P, and S), functional groups (e.g., alcohols, acids, and
amines), and/or multiple bonds on their molecular skeletons, which act as the
favorable sites of adsorption during the inhibitor-metal interactions [10]. The
adsorption process of inhibitors, hence their protection ability, is related to many
factors like chemical composition and charge nature of the metal surface, electronic
and molecular structures of considered inhibitor, solution’s pH, temperature,
inhibited solution/metal contact time, hydrodynamic conditions, and so on [11].

A wide range of organic heterocyclic molecules have been used as anti-corrosion
compounds for many metal/medium systems, and others are still being explored by
several researchers over the world. Especially, heterocyclic molecules containing
nitrogen, oxygen, and/or sulfur atoms, such as azole, oxazole, and thiazole com-
pounds or their derivatives, have shown remarkable protection effectiveness
against metallic corrosion in several aggressive media. Figure 1 shows the molecular
structure of azole moieties, which are used as corrosion inhibitors for various
metallic materials. These compounds are five-atom aromatic ring molecules that
contain a nitrogen atom and at least one other nitrogen, oxygen, or sulfur atom as
part of the ring [12]. The azole-based compounds can be divided into three major
classes, namely, N-, N&O-, and N&S-containing azole sets. In addition to their
attractive molecular structures, i.e., presence of heteroatoms, double bonds, and
their planar structure, azole-based compounds are soluble in almost any polar
aggressive environments, particularly in acidic media.

In this context, the inhibition of metallic corrosion by using these compounds is
a well-studied academic and industrial topic. Figure 2(a) illustrates the number of
produced publications over this topic in the last 50 years. As can be seen from this
histogram, the increase of publication number demonstrates an exponential behav-
ior, which reveals that the current topic is an active one. According to available
corrosion literature (Figure 2(b)), nitrogen-azole derivatives (N-azoles) are exten-
sively studied and reported as corrosion inhibitors in comparison with thiazole
(N&S-azoles) and oxazole (N&O-azoles) ones. It is important to outline that
recently considerable attention is directed toward the synthesizing of new azole,

Figure 1.
Molecular structures of the core rings of some azole-based compounds used as corrosion inhibitors.
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thiazole, and oxazole substituted derivatives with higher prevention capacities and
stability for different metal/medium combinations.

To quantify the prevention ability (i.e., inhibition efficiency) and/or to charac-
terize the inhibition behavior/mechanism of azole-based compounds toward metal-
lic corrosion, direct and indirect experimental techniques are used. Regarding direct
techniques, they include weight loss (WL), the volume of liberated hydrogen gas
(VG), and temperature variations (TV) [13–16]. Among them, the WL method is
widely used because it can be employed in either concentrated or diluted corrosive
solutions contrary to VG or TV ones. Besides, the indirect techniques include some
direct current (DC) and alternating current (AC) electrochemical techniques,
especially potentiodynamic polarization (PDP), electrochemical impedance spec-
troscopy (EIS), and electrochemical frequency modulation (EFM). In recent works,
several researchers have limited their experimental investigations in the use of
electrochemical techniques due to their high precision, the possibility to understand
the action mechanism, minimal time, and material consumptions [17–19]. The
inhibition efficiency of an exanimated inhibitor compounds can be calculated using
Eq. ((1) in which v0 and v denote the corrosion rate of considered metal without
and with the addition of inhibitor compound, respectively.

IE %ð Þ ¼ v0 � v
v0

� �
� 100 (1)

In the present chapter, we aim to present the application of azole-based com-
pounds as anti-corrosion agents for metals and their alloys in the corrosive aqueous
media, as well as related highlighted outcomes in recent years. For this purpose, the
current chapter will be divided into three sections. We begin by the application of
N-azoles as corrosion inhibitors. Afterward, we move to illustrate the main findings
in the case of N&S-azoles (i.e., thiazole derivatives). Finally, we end the present
chapter by their N&O-azoles (i.e., oxazole derivatives).

2. Using N-containing azole compounds as corrosion inhibitors for
metallic materials

Among available suggestions for metal inhibition against its corrosion, N-azole
compounds have shown a remarkable ability to prevent metallic degradation in
different corrosive environments. For example, good inhibition effectiveness was

Figure 2.
(a) The number of produced publications per each year from 1969 to 2020 and (b) its corresponding
percentage repartition for each azole-based compounds set (i.e., N-azole, N&O-azole, and N&S-azole
derivatives) according to the Scopus® database.
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outlined in the case of iron and copper as well as their alloys in almost any mineral
acid, saline, and alkaline solutions. In this context, numerous corrosion inhibitors
containing different N-azole nucleus structures (Figure 1) were tested and reported
in the literature [20–24]. Figure 3 displays the produced publications dealing with
the inhibition of metal corrosion using these inhibitors in the latest 50 years. It is
evident from this chart that triazole-based compounds are widely served as inhibi-
tors compared to imidazole, pyrazole, and tetrazole ones, respectively. Subse-
quently, we will discuss the property of triazole- and imidazole-based compounds
to retard the corrosion of metallic materials.

Triazole moiety can be found in numerous compounds that are used in a wide
application range, especially in the medical field as antimicrobial, anti-
inflammatory, anticancer, and antifungal drugs [20, 21]. On the other hand, the
existence of three nitrogen atoms in the same molecule with a planar geometry has
attracted the attention of many corrosion scientists to evaluate the protective effect
of triazole molecules against metallic corrosion. Good inhibition property of either
1,2,4- or 1,2,3-triazole molecules is noted in the case of various metals, e.g., copper,
iron, and its alloys in acid and non-acid media [22–24]. Recently, more attention has
been focused on the development of new stable anti-corrosion compounds
containing triazole core rings [25, 26]. As a result, these compounds have shown a
remarkable affinity toward metallic surfaces, leading to the formation of a protec-
tive organic film on the surface of the protected metal. Furthermore, in most cases,
the inhibition efficiency of these compounds increases by increasing their concen-
tration. The role of triazole-based compounds as corrosion inhibitors for copper,
iron, aluminum, zinc, and its alloys has been outlined in many corrosive media
[27–31]. Among considered media, there are H2SO4, HCl, HNO3, H3PO4, and NaOH
solutions at different concentrations, as well as natural/artificial seawater, sulfate,
and chloride environments [32]. Figure 4 shows the molecular structures of some
1,2,4-triazole derivatives used as effective corrosion inhibitors.

It was found that the nature of side substitutions of the triazole moiety has
strongly influenced its ability to prevent corrosion phenomena. For instance,
Resende et al. [33] have evaluated the inhibition capacity of three newly synthe-
sized 1,2,3-triazole derivatives (C-1, C-2, and C-3, Figure 5) through click chemis-
try reaction against carbon steel corrosion in acid media. They observed that the
recorded inhibition efficiency of these heterocyclic molecules depends on the sub-
stituent nature, which is ranked as C-2 (96%) > C-1 (92%) > C-3 (72%) at
250 mg L�1 of inhibitors after 24 hours of immersion. Moreover, C-2 and C-1
inhibitors exhibited an excellent inhibition trend in comparison with a commercial
inhibitor as reported by the authors. In another study, additionally to O&N

Figure 3.
Distribution of produced publications related to the use of N-azole family corrosion inhibitors according to the
Scopus® database.

88

Azoles - Synthesis, Properties, Applications and Perspectives

heteroatoms and phenyl rings characterizing C-1 and C-2 compounds, the intro-
duction of phosphorus atom (P) was done to synthesis two new ecologically 1,2,3-
triazole derivatives (C-4 and C-5, Figure 5). The corrosion assays demonstrated
that the addition of dimethylamino (dN(CH3)2) functional group in the side phe-
nyl ring has improved the prevention efficiency of newly examined inhibitors from
91 to 94% at 1 mM for mild steel in 1 M HCl solution. An inhibition efficiency over
80% is also achieved by using other 1,2,3-triazole derivatives, e.g., C-6, C-7, C-8,
C-9, and C-10 in Figure 5 [34–37].

It is well-known for more than 60 years that the combination of triazole core
ring with benzene one, the so-called benzotriazole (C-1 in Figure 6), as well as their
derivatives can act as efficient and stable corrosion inhibitors during long contact
time for several metal/solution systems, especially for copper and its alloys [38]. For
instance, this bicyclic aromatic molecule behaves as a useful inhibitor for pure
copper, Cu90Zn10, and Cu60Zn40 alloys in chloride environments such as 3.5% NaCl
solutions and artificial seawater [39, 40]. The good corrosion prevention capacity
was also obtained both for dynamic and stagnate conditions at lower concentra-
tions. Nonetheless, lesser inhibition efficiencies of benzotriazole and its derivatives
are gained in acidic media than the base and near-neutral ones, which is due to the
dissolution of formed protective film on the metal surface in acid media [38, 41]. A
literature examination discloses that benzotriazole showed a particular ability to
control the corrosion of AA2024 aluminum alloy in 5 mM NaCl solution as com-
pared to 1,2,4-triazole and amino-1,2,4-triazole, and in its presence both anodic and
cathodic dissolutions were reduced [27]. Additionally, in sulfide-polluted 3.5% NaCl
solution, an excellent inhibition performance of 93% is obtained for carbon steel at
5 mM of benzotriazole [42].

As the main way to enhance the capability of benzotriazole to control metallic
corrosion, there is the chemical modification of its molecular structure. This strat-
egy aims to introduce more adsorption sites within the benzotriazole skeleton by
adding functional groups and conjugated systems. In this regard, various
benzotriazole-based derivatives were synthesized and tested as corrosion inhibitors.
For instance, a new heterocyclic derivative consisting of two benzotriazole mole-
cules and 1,3,4-thiadiazole moiety (C-2, Figure 6) exhibited good inhibition effi-
ciency for copper in chloride environments both at acidic and near-neutral pH, 79

Figure 4.
Some 1,2,4-triazole-based compounds used as corrosion inhibitors.

Figure 5.
Some 1,2,3-triazole derivatives used as corrosion inhibitors.
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heteroatoms and phenyl rings characterizing C-1 and C-2 compounds, the intro-
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that the addition of dimethylamino (dN(CH3)2) functional group in the side phe-
nyl ring has improved the prevention efficiency of newly examined inhibitors from
91 to 94% at 1 mM for mild steel in 1 M HCl solution. An inhibition efficiency over
80% is also achieved by using other 1,2,3-triazole derivatives, e.g., C-6, C-7, C-8,
C-9, and C-10 in Figure 5 [34–37].

It is well-known for more than 60 years that the combination of triazole core
ring with benzene one, the so-called benzotriazole (C-1 in Figure 6), as well as their
derivatives can act as efficient and stable corrosion inhibitors during long contact
time for several metal/solution systems, especially for copper and its alloys [38]. For
instance, this bicyclic aromatic molecule behaves as a useful inhibitor for pure
copper, Cu90Zn10, and Cu60Zn40 alloys in chloride environments such as 3.5% NaCl
solutions and artificial seawater [39, 40]. The good corrosion prevention capacity
was also obtained both for dynamic and stagnate conditions at lower concentra-
tions. Nonetheless, lesser inhibition efficiencies of benzotriazole and its derivatives
are gained in acidic media than the base and near-neutral ones, which is due to the
dissolution of formed protective film on the metal surface in acid media [38, 41]. A
literature examination discloses that benzotriazole showed a particular ability to
control the corrosion of AA2024 aluminum alloy in 5 mM NaCl solution as com-
pared to 1,2,4-triazole and amino-1,2,4-triazole, and in its presence both anodic and
cathodic dissolutions were reduced [27]. Additionally, in sulfide-polluted 3.5% NaCl
solution, an excellent inhibition performance of 93% is obtained for carbon steel at
5 mM of benzotriazole [42].

As the main way to enhance the capability of benzotriazole to control metallic
corrosion, there is the chemical modification of its molecular structure. This strat-
egy aims to introduce more adsorption sites within the benzotriazole skeleton by
adding functional groups and conjugated systems. In this regard, various
benzotriazole-based derivatives were synthesized and tested as corrosion inhibitors.
For instance, a new heterocyclic derivative consisting of two benzotriazole mole-
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and 87% at 1 mM, respectively [41]. Recently, two structural benzotriazole deriva-
tives (C-3 and C-4, Figure 6) have been reported as useful anti-corrosion com-
pounds against the degradation of brass alloy in an artificial seawater. For example,
at 150 ppm the inhibitors offer 82 and 92% as corrosion reduction percentages for
C-4 and C-3, respectively [39]. Furthermore, Ravichandran et al. [43] have carried
out a comparative study on three benzotriazole-based inhibitors, namely, C-1, C-5,
and C-6 as depicted in Figure 6, for brass alloy corrosion in 3% NaCl solution. The
associated outcomes of this study reveal that all tested heterocyclic molecules
behave as efficient corrosion inhibitors and the inhibition efficiency increases as
follows: C-1 (77%) < C-5 (90%) < C-6 (93%) at lower concentration (150 ppm).
The observed protection is attributed to the formation of inhibitor Cu(I) complexes
on the metal surface, which isolate the surface from aggressive agents in the solu-
tion. Many other novel benzotriazole derivatives with more or less complex molec-
ular structures have been reported in the literature as potent anti-corrosion
compounds such as C-7, C-8, C-9, C-10, and C-11 derivatives in Figure 6 [44–46].

It is important to specify that the introduction of further functional groups into
the benzotriazole skeleton has not usually improved its inhibition performance. For
instance, it was outlined that the alcohol-benzotriazole derivative (C-12, Figure 6)
exhibited reduced inhibition efficiency compared to simple benzotriazole for pure
copper immersed in 3% NaCl medium [47]. Besides, without performed additional
chemical modifications on the benzotriazole molecular skeleton, the improvement
of its inhibition performance can be also done via the synergism effect with other
additive species, e.g., halide and metallic ions and organic and inorganic compounds
[48, 49]. As reported by Bokati et al. [50], the addition of phosphate (Na3PO4) and
molybdate (Na2MoO4) compounds into corrosive solution (natural seawater) have
enhanced the inhibition efficiency of benzotriazole, particularly for copper, as
compared to mild steel alloy. Additionally, the mixture of benzotriazole/Ce3+ was
proven to have greater synergistic inhibition effect for zinc/iron and aluminum/
copper model galvanic couples in NaCl solution [51, 52].

An additional N-containing azole variety compound that has also received suffi-
cient attention is imidazole and its derivatives as well. Such attention is due to its
non-toxicity and appropriate molecular and electronic structures to act as a corro-
sion inhibitor: the compound is planar and aromatic and contains 2 N heteroatoms.
Its mechanism of action as an inhibitor is the same as stated for other reported azole
compounds. An increase of concentration leads to an enhancement of its protection
capacity, while in many cases the temperature has shown an undesirable effect: its
increase can imply a reduction of observed inhibition property of imidazole-based

Figure 6.
Some benzotriazole family corrosion inhibitors.
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inhibitors. The tendency of imidazole heterocyclic molecules to inhibit metal cor-
rosion, especially for copper, has been extended to synthesis novel derivatives
having excellent inhibition efficiency for a longer time. The latter extension aimed
to introduce additional favorable centers of adsorption via some functional or non-
functional groups such as dSH, dNH2, dCOH, dOCH3, dSCH2Phe, and dPhe
[53–57]. Figure 7 illustrates the chemical structure of some substituted imidazole
moieties used as corrosion inhibitors. It was outlined that imidazole-based com-
pounds showed interesting activity to act as anti-corrosion agents in several corro-
sive environments like HNO3, HCl, H2SO4, NaCl, and NaOHmedia, with the higher
prevention efficiencies noted in chloride and in sulfuric acid solutions. Table 1
shows the inhibition data related to the application of some imidazole derivative
(Figure 7) as retarder compounds against copper corrosion in various media
[58–64]. On the other hand, the synergism effect has also been used to improve
further the attained inhibition efficiency, which was performed by adding supple-
mentary additives, e.g., halide ions, into the inhibited solution [60].

Another common anti-corrosion compound among imidazole-based derivatives
is benzimidazole, which is a heterocyclic aromatic molecule with planar geometry
consisting of an imidazole and a benzene moiety (C-1, Figure 8). It was discovered
for the first time by Hoebrecker as a part of vitamin B12 [65]. In the last decades,
benzimidazole, as well as its derivatives, has been reported as effective anti-
corrosion agents for many metallic materials such as mild and carbon steels [66, 67].
The property of benzimidazole-based inhibitor to retard corrosion rate was attrib-
uted to the formation of an adsorbed protective film on the metal surface, which
can consist of metal-benzimidazole complex or adsorbed benzimidazole molecules
[68, 69]. As stated for benzotriazole, numerous benzimidazole derivatives with
different structural compositions have been synthesized and then used as corrosion
inhibitors. In this regard, simple benzimidazole derivatives showed potent inhibi-
tion effect, and in order to obtain them the chemical modification of benzimidazole
core is carried out by the insertion of different functional groups. Among intro-
duced groups, there are dSH, dNH2,dOH, dSCH3, dCH2NH2, dCH2OH, dCl,
dBr, and carbon chain with different lengths [70–78]. Figure 8 summarizes the
chemical structures of some benzimidazole-based derivatives employed as corro-
sion inhibitors and their corresponding inhibition data.

Figure 7.
Molecular structures of some substituted imidazole derivatives used as corrosion inhibitors.

Inhibitor Media IE ([inh.])

Imidazole 0.5 M H2SO4/3% NaCl/0.1 M NaOH 55% (0.5 M)/50% (0.1 mM)/46% (2 mM)

C-1 1 M H2SO4/1 M HCl/3% NaCl 70% (10 mM)/90% (10 mM)/61% (10 mM)

C-7 0.5 M H2SO4/3% NaCl 93% (0.5 M)/94% (5 mM)

C-8 0.5 M 2SO4/0.5 M HCl/3%NaCl 88% (0.05 M)/54% (0.1 M)/93% (0.7 mM)

[inh.]: inhibitor concentration.

Table 1.
The inhibition efficiency (IE) of imidazole and some of its derivatives (see Figure 7) against copper corrosion.
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behave as efficient corrosion inhibitors and the inhibition efficiency increases as
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ular structures have been reported in the literature as potent anti-corrosion
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It is important to specify that the introduction of further functional groups into
the benzotriazole skeleton has not usually improved its inhibition performance. For
instance, it was outlined that the alcohol-benzotriazole derivative (C-12, Figure 6)
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copper immersed in 3% NaCl medium [47]. Besides, without performed additional
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of its inhibition performance can be also done via the synergism effect with other
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compounds. An increase of concentration leads to an enhancement of its protection
capacity, while in many cases the temperature has shown an undesirable effect: its
increase can imply a reduction of observed inhibition property of imidazole-based

Figure 6.
Some benzotriazole family corrosion inhibitors.

90

Azoles - Synthesis, Properties, Applications and Perspectives

inhibitors. The tendency of imidazole heterocyclic molecules to inhibit metal cor-
rosion, especially for copper, has been extended to synthesis novel derivatives
having excellent inhibition efficiency for a longer time. The latter extension aimed
to introduce additional favorable centers of adsorption via some functional or non-
functional groups such as dSH, dNH2, dCOH, dOCH3, dSCH2Phe, and dPhe
[53–57]. Figure 7 illustrates the chemical structure of some substituted imidazole
moieties used as corrosion inhibitors. It was outlined that imidazole-based com-
pounds showed interesting activity to act as anti-corrosion agents in several corro-
sive environments like HNO3, HCl, H2SO4, NaCl, and NaOHmedia, with the higher
prevention efficiencies noted in chloride and in sulfuric acid solutions. Table 1
shows the inhibition data related to the application of some imidazole derivative
(Figure 7) as retarder compounds against copper corrosion in various media
[58–64]. On the other hand, the synergism effect has also been used to improve
further the attained inhibition efficiency, which was performed by adding supple-
mentary additives, e.g., halide ions, into the inhibited solution [60].

Another common anti-corrosion compound among imidazole-based derivatives
is benzimidazole, which is a heterocyclic aromatic molecule with planar geometry
consisting of an imidazole and a benzene moiety (C-1, Figure 8). It was discovered
for the first time by Hoebrecker as a part of vitamin B12 [65]. In the last decades,
benzimidazole, as well as its derivatives, has been reported as effective anti-
corrosion agents for many metallic materials such as mild and carbon steels [66, 67].
The property of benzimidazole-based inhibitor to retard corrosion rate was attrib-
uted to the formation of an adsorbed protective film on the metal surface, which
can consist of metal-benzimidazole complex or adsorbed benzimidazole molecules
[68, 69]. As stated for benzotriazole, numerous benzimidazole derivatives with
different structural compositions have been synthesized and then used as corrosion
inhibitors. In this regard, simple benzimidazole derivatives showed potent inhibi-
tion effect, and in order to obtain them the chemical modification of benzimidazole
core is carried out by the insertion of different functional groups. Among intro-
duced groups, there are dSH, dNH2, dOH, dSCH3, dCH2NH2, dCH2OH, dCl,
dBr, and carbon chain with different lengths [70–78]. Figure 8 summarizes the
chemical structures of some benzimidazole-based derivatives employed as corro-
sion inhibitors and their corresponding inhibition data.

Figure 7.
Molecular structures of some substituted imidazole derivatives used as corrosion inhibitors.

Inhibitor Media IE ([inh.])

Imidazole 0.5 M H2SO4/3% NaCl/0.1 M NaOH 55% (0.5 M)/50% (0.1 mM)/46% (2 mM)

C-1 1 M H2SO4/1 M HCl/3% NaCl 70% (10 mM)/90% (10 mM)/61% (10 mM)
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An additional strategy to enhance the performance of benzimidazole to inhibit
metallic corrosion is the combination of the latter heterocyclic molecule with other
aromatic systems like benzene or triazole core rings without and with further
substituent groups. Under this view, various hybrid benzimidazole/aromatic ring-
based derivatives have been reported as anti-corrosion molecules [79–86]. Figure 9
summarizes some benzimidazole/aromatic ring class inhibitors, as well as
corresponding inhibition data. Even in very corroding media, benzimidazole/aro-
matic ring derivatives have shown excellent ability to protect metallic materials
against corrosion in these media. For instance, it was found that C-9 and C-10
(Figure 9) derivatives could offer good protection against mild steel corrosion in
a 15% HCl solution. The maximum corrosion retardation of 91% was pointed out
for C-9 derivative with dOCH3 side phenyl substituent at 200 ppm
concentration [87, 88].

On the other hand, several simple and complex bridged benzimidazole
derivatives (i.e., bis-benzimidazoles) were employed as potent corrosion inhibitors
in which different chain bridges are implemented as linear carbon chains without
and with heteroatoms. Figure 10 presents some bis-benzimidazole corrosion
retarders. For instance, 1,4-bis-benzimidazolyl-butane (C-1 in Figure 10) exhibited
an efficiency of 98% at 0.68 mM inhibitor for mild steel in acid media [89], while at
lower concentration (0.10 mM) the insertion of a nitrogen atom in the carbon
bridge (C-2, Figure 10) provided good inhibition efficiency of 89% [71]. Ahamad
et al. [90] reported the connection of two benzimidazoles via di-sulfur-bridge for
the synthesis of the novel derivative (C-3, Figure 10). The corrosion tests reveal the
excellent property of bridged benzimidazole inhibitors to control mild steel corro-
sion both in hydrochloric and in sulfuric acid media, with the attained inhibition
efficiencies around 98%. Furthermore, it was found that some bis-benzimidazole
derivatives can offer higher inhibition prevention for prolonged immersion time as

Figure 8.
Molecular structures of some reported benzimidazole-based derivatives as corrosion inhibitors, as well as
corresponding inhibition data, which are presented as “inhibition efficiency, % (inhibitor concentration, mM)/
corrosive medium, M/metal.” Abbreviations: CS, carbon steel; MS, mild steel; Fe, pure iron; Cu, copper; Zn,
zinc; Al, aluminum.
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reported by Dutta et al. [91] for C-4, C-5, C-6, and C-7 compounds, with the lower
recorded efficiency 88% after 4-day immersion of mild steel in 1 M HCl solution.
The length of the carbon chain of the benzimidazole bridge has influenced the
ability of these derivatives to retard corrosion. In this context, three bis-
benzimidazole derivatives (C-8, C-9 and C-10, Figure 10) exhibited a significant

Figure 9.
Molecular structures of some reported benzimidazole/aromatic ring derivatives set as corrosion inhibitors as well
as corresponding inhibition data.

Figure 10.
Molecular structures of some used bis-benzimidazole corrosion retarder’s type.
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tendency to reduce mild steel corrosion in acid environment, with an inhibition
percentage up to 94% obtained at 0.1 mM for the derivative with longer carbon
chain (i.e., C-10).

To understand the action mechanism of an inhibitor compound at an atomic
scale, the calculation of some electronic and molecular parameters using a chemical
computational approach corresponding to the adsorption process is required. In this
context, Kokalj’s team and other groups have studied in-depth the role of the
molecular and electronic structures of many N-azole inhibitor molecules for their
inhibition property for various metallic materials [92–97]. Density functional theory
(DFT)-based calculations have been employed by these scientists to quantify the
interaction magnitude of considered inhibitor molecules with the chosen metal
surfaces, as well as their adsorption configuration onto these surfaces through
qualitative analysis.

3. Using N&S-containing azole compounds (thiazoles) as corrosion
inhibitors for metallic materials

Referring to previous works [98–100], heterocycle-based inhibitors with both
sulfur and nitrogen atoms in their structure were offered outstanding prevention
activities in comparison with those containing only sulfur or nitrogen atoms. In this
regard, several N&S-containing azole compounds (Figure 1), like thiazole and
thiadiazole derivatives, have been attested to be operational inhibitors against the
corrosion of many metallic materials in a wide variety of corrosive media. Based on
the available corrosion literature, special attention is devoted to thiadiazole-based
compounds compared to thiazole ones. Such attention trend is based on the fact that
the presence of further heteroatoms (N atoms) on those heterocyclic molecules can
raise their adsorption onto the metal surface and consequently enhance their inhi-
bition effectiveness.

In addition to the potent affinity of pre-existing heteroatoms (i.e., N and S
atoms) in the 1,3-thiazole ring to interact with the metal surface during the inhibi-
tion process, the attachment of the latest ring with further substituents to improve
its inhibition efficiency was recently reported. In this view, many 1,3-thiazole-based
derivatives are developed via different synthesizing reaction procedures. Confer-
ring to obtained results, these new derivatives were shown to have a great tendency
to reduce the dissolution of various metallic substrates. For instance, Raviprabha
and Bhat [101] have evaluated the anti-corrosion property of ethyl-2-amino-4-
methyl-1,3-thiazole-5-carboxylate derivative (C-1, Figure 11) for AA6061 alumi-
num alloy in 0.05 M HCl medium. Based on the calculated thermodynamic param-
eters corresponding to the adsorption process of C-1 molecules, the chemisorption
process of derivative molecules is proposed as a potential mechanism of inhibition.
Moreover, it was disclosed that an increase in temperature level implies an elevation
of inhibition activity of evaluated 1,3-thiazole derivative, with the prevention per-
centage of 93% at 333 K and 100 ppm of C-1. Another similar 1,3-thiazole derivative
(C-2, Figure 11) with pyridinium ring also showed a good capacity to regulate
copper dissolution in molar HCl solution, with a maximum of 94% as prevention
efficiency achieved at 10�3 M.

The nature and position of added substituents in a 1,3-thiazole ring-based
inhibitor can considerably influence its inhibition performance. Recently, two
mono-substituted 1,3-thiazole derivatives (C-3 and C-4, Figure 11) have revealed
this behavior, which were used to protect X65 steel alloy largely employed in
pipelines for natural gas transportation purposes. The ethenone-substituted 1,3-
thiazole derivative (C-4) exhibited superior performance to control X65 steel
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dissolution than isobutyl one (C-3), in which the recorded prevention efficiency at
5 � 10�3 M is being around 90 and 70%, for C-3 and C-4, respectively [102].

In addition to lateral substituents, which contain supplementary electron-
donating centers (e.g., functional groups, aromatic and azole rings), the inhibition
performance of 1,3-thiazole-based derivatives is also improved by increasing their
electron-donating capability via attachment with a benzene ring. In this regard,
Chugh et al. [103] have synthesized four new derivatives based on benzo[d]thiazole
core structure (C-5, Figure 11), which exhibited an increased anti-corrosion prop-
erty by replacing hydrogen atom (IE = 79%) of R substituent (on the lateral benzene
ring) by chlorine atom (IE = 85%), methyl group (IE = 88%), and finally dNH2

functional group (IE = 90%). In the same way, the combination of benzo[d]thiazole
bi-rings with imidazoline ring (C-6, Figure 11) is found to act as an efficient
corrosion inhibitor in the water-glycol medium [104]. More complex 1,3-thiazole
derivative molecules were evaluated and reported as good corrosion inhibitors at
lower concentrations, e.g., ceftriaxone 1,3-thiazole derivative (C-7, Figure 11)
demonstrated an inhibition percentage of 95% at 400 ppm for mild steel in acidic
environment [105]. Table 2 illustrates the relevant outcomes on the use of two
other 1,3-thiazole-based compounds as corrosion inhibitors [106, 107].

1,3,4-Thiadiazoles, another class of thiazole heterocyclic molecules, have been
widely examined for their uses in numerous fields such as agrochemical and pharma-
ceutical areas. For example, sulfamethoxazole and methazolamide are market drugs
that contain a 1,3,4-thiadiazole ring [108, 109]. On the other hand, the use of
1,3,4-thiadiazole-based compounds as inhibitor additives also reduced the degradation
of metals caused by the surrounding aggressive environment. Many 1,3,4-thiadiazole
derivatives were reported to act as potent anti-corrosion agents in different operating
conditions. The molecular structure of this five-atom ring type is characterized by the
incorporation of an additional nitrogen atom into the 1,3-thiazole ring in 4 position.
The presence of further heteroatoms in conjugated 1,3,4-thiadiazole-based molecules
plays a curious role in their protection activities. The latest feature is due to the highest
tendency of heteroatoms with the conjoint multi-bonds to facilitate the adsorption of
these compounds onto the metal surface, and subsequently formed protective film
isolates the substrate from solution components.

Several 1,3,4-thiadiazole derivatives with different attached hydrocarbon chains
were synthesized and evaluated as corrosion inhibitors. It was found that the size
and shape of inserted substituents, as well as their chemical properties, can influ-
ence the performance of developed 1,3,4-thiadiazole derivatives to retard metal
dissolution. For instance, the substitution of mercapto groups at 2 and 5 positions of
the thiadiazole nucleus by ethyldisulfanyl (C-1, Figure 12) augmented the achieved

Figure 11.
Molecular structures of some 1,3-thiazole-based derivatives used as anti-corrosion agents.
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inhibition efficiency from 82.4 to 88.1% at 0.4 mM of inhibitors toward copper
corrosion in PAO base oil environment. Concerning the protection activity of these
compounds, it was attributed to their physical adsorption on copper oxide surface
as theoretically expected and experimentally verified [110]. Moreover, a series of
2,5-dimercapto-1,3,4-thiadiaxole derivatives was also reported as anti-corrosion
compounds by Wei and Gemmill et al. [111, 112]. Molecular structures of some
reported derivatives are summarized in Figure 13.

In recent years, microwave irradiation heating has been used as a convenient
green method for the synthesis of different heterocyclic inhibitors [113] from which
we mention 2-amino-5-alkyl-1,3,4-thiadiazole derivatives, with the corresponding
synthesizing scheme displayed in Figure 14. The length of the side alkyl chain
impacted their capacity to control the dissolution of mild steel in 1 M H2SO4

solution, with the inhibition effectiveness increase with rising chain length, except
for dC13H27 alkyl case for which the prevention efficiency rapidly decreases [114].
Additionally, the replacement of the alkyl chain of 2-amino-5-alkyl-1,3,4-
thiadiazole by mercapto substituent (dSH) was led to a perfect protection
efficiency of 99.3% [115].

On the other hand, four novel 1,3,4-thiadiazole-thiosemicarbazones derivatives
and their cobalt(II) ion complexes (C-2, Figure 12) have been found to play the
important role as anti-corrosion agents for carbon steel in acid media. However, the
tests revealed that the molecular structure of these compounds has a little effect on
the obtained inhibition efficiencies, which are around 90% in the presence of
500 ppm inhibitors [17]. Based on 1,3,4-thiadiazol-2-amine, new heterocyclic scaf-
fold derivative (C-3, Figure 12) was synthesized and reported as an excellent
inhibitor (IE = 91% at 0.5 mM) against mild steel corrosion in the molar
hydrochloric acid medium [116, 117]. Another derivative of 1,3,4-thiadiazol-2-
amine (C-4, Figure 12) has been also reported to act as a useful inhibitor for copper
in de-aerated, aerated, and oxygenated 3% NaCl solutions, with a maximum effi-
ciency of 94% obtained at 5 mM of the inhibitor [118]. Besides, 1,3,4-thiadiazol-
containing organic inhibitors also served to improve the anti-corrosion property of

1,3-Thiazole derivative Metal Medium Inhibition efficiency (IE)

Mild
steel

1 M HCl IE = 96% at 298 K and 5 mg kg�1

304 L
stainless
steel

3 M HCl IE: OCH3 (93%) > CH3 (91%) > H
(89%) > Br (87%) > NO2 (86%). IE was
enhanced by synergistic combination with
1 mM KSCN at 303 K and 11 � 10�3 mM

Table 2.
Relevant data related to the application of some 1,3-thiazole-based compounds as corrosion inhibitors.

Figure 12.
Molecular structures of some 1,3,4-thiadiazole-based derivatives used as anti-corrosion agents.
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some coatings. For instance, 2-acetylamino-5-mercapto-1,3,4-thiadiazole
(C-5, Figure 12) has shown a good ability to improve the protective quality of
chitosan coatings on zinc, for which the protection efficiency passed from 64 to 91%
in the presence of C-5 derivative [119].

4. Using N&O-containing azole compounds (oxazoles) as corrosion
inhibitors for metallic materials

In addition to N&S-containing azole corrosion inhibitors, oxazole-based com-
pounds (i.e., N&O-containing azoles) have gained considerable attention in recent
years in this regard. Oxadiazole molecule consists of a five-membered heterocyclic
ring with at least one nitrogen and an oxygen atom. These N&O-containing
heterocycles are interesting molecules that exist in wide biological-based compounds
like diuretics, anxiolytics, and local anesthetics. Moreover, oxazole shows an
antimycotic activity and can be used as anti-inflammatory agents as well as
antibacterial toward pneumoniae, micrococcus, and Staphylococcus aureus [120, 121].

Numerous N&O-containing azole heterocyclic molecules have been studied and
reported as efficient anti-corrosion agents for various metallic materials, especially
in acidic media [122–126]. Such beneficial effects are related to their special affinity
to adsorb on the metallic surfaces. Moreover, these compounds possess lone pair
electrons on the oxygen and nitrogen atoms, which can interact favorably with the
vacant orbitals of metal, leading to formation of protective barrier film [127].
Figure 15 shows the produced publications related to the inhibition of metal corro-
sion employing oxazole-based inhibitors in the last 50 years. It is clear from this
figure that among available N&O-containing azole compounds, the oxazole,
isoxazole, 1,2,4-oxadiazole, and 1,3,4-oxadiazole ones (Figure 1) are frequently
used for corrosion inhibition purposes. Noticeable attention is focused on 1,2,4- and
1,3,4-oxadiazole inhibitors, mainly due to the presence of several nitrogen atoms on
their five-membered heterocycle in comparison to other N&O-azoles.

Due to its excellent descaling properties, sulfamic acid (NH2HSO3) is used in a
large variety of industrial applications such as cleaning of heat exchangers and cooling

Figure 13.
Some 2,5-dimercapto-1,3,4-thiadiaxole anti-corrosion compounds.

Figure 14.
Synthesis route of 2-amino-5-alkyl-1,3,4-thiadiazole derivatives under microwave irradiations.
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ring with at least one nitrogen and an oxygen atom. These N&O-containing
heterocycles are interesting molecules that exist in wide biological-based compounds
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antimycotic activity and can be used as anti-inflammatory agents as well as
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Numerous N&O-containing azole heterocyclic molecules have been studied and
reported as efficient anti-corrosion agents for various metallic materials, especially
in acidic media [122–126]. Such beneficial effects are related to their special affinity
to adsorb on the metallic surfaces. Moreover, these compounds possess lone pair
electrons on the oxygen and nitrogen atoms, which can interact favorably with the
vacant orbitals of metal, leading to formation of protective barrier film [127].
Figure 15 shows the produced publications related to the inhibition of metal corro-
sion employing oxazole-based inhibitors in the last 50 years. It is clear from this
figure that among available N&O-containing azole compounds, the oxazole,
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their five-membered heterocycle in comparison to other N&O-azoles.
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water systems. As compared to other acids like hydrochloric acid, sulfamic acid shows
a lower corrosion rate of stainless steel (SS) without the problem of chloride-induced
stress corrosion cracking of SS. In order to reduce further this corrosion, the addition
of inhibitor compounds into sulfamic media is mandatory. As effective inhibitor
candidates, four new synthesized oxazole derivatives have been reported as good
corrosion inhibitors for 316 L-type SS in 0.6 M NH2HSO3 solution by Fouda et al.
[122]. The molecular structures of reported oxazole derivatives are presented in
Figure 16 (C-1, C-2, C-3, and C-4). According to weight loss experiments and
electrochemical tests via different techniques, a good prevention ability around 90%
is recorded at lower concentration (i.e., 2 � 10�4 M) of investigated derivatives after
a moderate immersion time (3 h), especially for the fourth derivative (C-4). In
addition to the presence of benzene ring and nitrogen and oxygen atoms, the good
inhibition property of C-4 derivative as compared to the other ones is attributed to
the existence of four aromatic rings as substituents, which results in its larger molec-
ular size and planar geometry, leading to highest coverage of the metal surface area
by adsorbed C-4 molecule. Based on this study, it can be outlined that the substitu-
tion of oxazole core ring by biggest lateral substituents can effectively improve the
inhibition property of oxazole derivatives at lower concentrations.

The protection activity of other oxazole derivatives set has been reported in
recently published work [123]. The authors of this work have synthesized a series of
three 2-phenyl oxazole derivatives with different substitutions at the carbon five of
the oxazole ring (C-5, C-6, and C-7, Figure 16). A significant reduction of mild
steel dissolution rate in molar hydrochloric acid solution is observed in the presence
of these derivatives. The protective effect of synthesized oxazole compounds can be
clearly revealed in Figure 17, in which i-E curve decrease is shown in the presence
of these compounds as their concentrations rise (colored lines) compared to the
blank solution (black line). Accordingly, the order of corrosion inhibition is as
follows: C-6 (94.7%) > C-7 (85.9%) > C-5 (78.6%) at 10�3 M concentration. Using
quantum chemical computations via the DFT-B3LYP/6-31G(d,p) method, the
highest inhibition activity of the C-6 oxazole derivative is attributed to its great
reactivity with the metal surface, which is induced by the benzene-1-sulfonate
substituent. The presence of sulfur atom can cause the elevation of oxazole com-
pounds adsorption process onto the metal surface, which reflects the good preven-
tion capacity of these compounds.

In order to get great protection performance, the synthesis of new oxazole deriv-
atives in which other azole-based core rings are incorporated has been reported. In
this context, three new benzoimidazole/1,3,4-oxadiazole derivatives (C-1, C-2, and
C-3, Figure 18) were reported as efficient organic inhibitors for mild steel dissolution

Figure 15.
Distribution of produced publication percentage related to the corrosion inhibition using oxazole-based
compounds according to the Scopus® database.
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in acidic solutions [124–126]. These compounds exhibited an interesting effect in
both sulfuric and hydrochloric acid solutions, which are largely used for the metal
cleaning process in several industrial fields. It should be kept in mind that the higher
reduction of corrosion rate caused by adding these inhibitors is obtained in
hydrochloric acid than the sulfuric one, which reveals the possible effect of aggressive

Figure 16.
Chemical structures of newly synthesized benzo and 2-henyl oxazole derivatives.

Figure 17.
Potentiodynamic curves of mild steel in 1 M HCl without and with synthesized 2-phenyl oxazole derivatives
(C-6, C-7, and C-8, Figure 16) at different concentrations [112].

Figure 19.
SEM images of mild steel samples (a) before and after immersion in 0.5 M HCl solution, (b) without and
(c) with C-2 benzoimidazole/1,3,4-oxadiazole derivative [115].

Figure 18.
Chemical structures of examined 1,3,4-oxadiazole derivatives.
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both sulfuric and hydrochloric acid solutions, which are largely used for the metal
cleaning process in several industrial fields. It should be kept in mind that the higher
reduction of corrosion rate caused by adding these inhibitors is obtained in
hydrochloric acid than the sulfuric one, which reveals the possible effect of aggressive
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Potentiodynamic curves of mild steel in 1 M HCl without and with synthesized 2-phenyl oxazole derivatives
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(c) with C-2 benzoimidazole/1,3,4-oxadiazole derivative [115].

Figure 18.
Chemical structures of examined 1,3,4-oxadiazole derivatives.
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media on the inhibition activity of used benzoimidazole/1,3,4-oxadiazole inhibitors.
Moreover, the nature of considered acid can influence also the trend of recorded
inhibition efficiencies, e.g., in HCl solution; the order is C-1 (≈92%) > C-2, while in
H2SO4 one is C-2 (75%) > C-1 > C-3 at the same concentration. Such conclusions are
in good agreement with those of Bentiss et al. [128], which used other 1,3,4-
oxadiazole derivatives (C-4 and C-5, Figure 18). This means that the corrosive
environments can influence the inhibition efficiency of oxadiazole compounds [90].
On the other hand, the substitution of a small carbon chain (e.g., ethyl in the case of
C-2, Figure 18) by another one with the bigger size (e.g., propyl in the case of C-3,
Figure 18) cannot usually induce an enhancement of the inhibition ability of oxazole-
based inhibitors. The SEM images of mild steel surface in Figure 19 confirm the
efficacy of C-2 derivative as an effective corrosion inhibitor.

A novel synthesizing procedure of 3,5-disubstituted 1,2,4-oxadiazole molecule
was proposed by Outirite et al. [129]. By means of this procedure, three new 1,2,4-
oxadiazole derivatives with pyridinium substituents (Figure 20) have been synthe-
sized and reported as excellent corrosion inhibitors for C38 carbon steel in 1 M
hydrochloric acid solution [130]. It is well-known that an increase of inhibitor
concentration in the corrosive medium mainly leads to an enhancement of its
prevention activity. Under this fact, the inhibition capacity of the latest listed
derivatives was elevated by raising their amount in considered corrosive solution.
On the other hand, the position of nitrogen atoms in pyridine substituents was
shown not to have a notable influence on the anti-corrosion property of evaluated
compounds. Nevertheless, a remarkable inhibition efficiency of around 95% was
obtained at 8 � 10�4 M of synthesized 1,2,4-oxadiazole derivatives.

Several isoxazole-based molecules have also demonstrated noticeable protective
performance for various metallic materials, such as Cu90Ni10 alloy and galvanized
and mild steels, under different operating conditions. For instance, two new 5-
phenylisoxazole derivatives have been developed and evaluated by Dominguez-
Crespo et al. (C-1 and C-2, Figure 21) [131]. According to experimental tests, 5-
phenylisoxazole compounds exhibited great prevention effectiveness toward the
degradation of galvanized steel and copper/nickel alloy. At 5 ppm as inhibitor
concentration, the recorded prevention percentages are 100 and 93% for C-2 and
C-1 in the case of galvanized steel, while in the case of Cu90Ni10 alloy they are 88
and 68% for C-2 and C-1 compounds. It is interesting to underline that achieved
protection efficiencies are comparable to those of the commercial inhibitors (work-
ing under the same conditions). Another isoxazole derivative has been found to be
an adequate inhibitor for mild steel in 1 M HCl aggressive solution [132]. The

Figure 20.
Chemical structures of 1,2,4-oxadiazole derivatives with pyridinium substituents.

Figure 21.
Chemical structures of isoxazole derivatives.
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molecular structure of the new synthesized derivative (C-3) is depicted in
Figure 21. Both experimental and theoretical approaches pointed out that evaluated
C-3 derivative acts as an effective corrosion inhibitor, in which its inhibition per-
formance reaches 93% at 10�3 M.

Rather than employing oxazole derivatives, another novel strategy to enhance
the anti-corrosion activity of these compounds is the use of its metal complexes. In
the recent work, Najeeb [133] has reported the good performance of some metal
complexes of a 1,3,4-oxadiazole derivative (C-6, Figure 18) against the corrosion of
mild steel in 1 M HNO3 medium. As core metal ions, Najeeb has tested Co(II), Ni
(II), and Cu(II) ions. As a major outcome of this work, an increase of inhibition
efficiency was observed via the metallic complexing process, and the following
order of the inhibition efficiency is outlined: Co(II)-oxadiazole > Ni(II)-
oxadiazole > Cu(II)-oxadiazole > oxadiazole. Moreover, the inhibition performance
of these heterocyclic oxygen/nitrogen compounds can be synergistically enhanced
by adding halide ions into the inhibition systems [134].

As was revealed in the literature, many other oxazole-based derivatives have
recently stated as good anti-corrosion compounds for several metallic materials that
immersed in different corrosive environments. Table 3 illustrates the relevant data
related to the use of some oxazole-based compounds as corrosion inhibitors [134–136].

5. Conclusion

In the current chapter, we focused on the application of azole-based compounds
as inhibitor agents against metallic corrosion. Almost N-, N&S-, and N&O-azole-
containing compounds were found to provide good protection property for numer-
ous metal (or alloy)/medium systems. In this context, three main strategies were

Oxazole derivative Metal Medium Inhibition efficiency (IE)

Mild
steel

0.1 M
H2SO4

IE = 94%, IE was enhanced by synergistic
combination with halides at 303 K and

12�10�4 M

Mild
steel

1.0 M
H2SO4

and 1.0 M
HCl

IE: C-1 (78%) < C-2 (86%) < C-3 (89%)
in 1.0 M H2SO4 solution, IE: C-1 (71%)
< C-2 (77%) < C-3 (83%) in 1.0 M HCl

solution at 301 � 2 K and 500 ppm

Mild
steel

1.0 M HCl
and 0.5 M
H2SO4

IE = 93% in 1.0 M HCl solution, IE = 82%
in 0.5 M H2SO4 solution at 298�1 K and

5 � 10�3 M

Table 3.
Relevant data related to the application of some oxazole-based compounds as corrosion inhibitors for mild steel.
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was proposed by Outirite et al. [129]. By means of this procedure, three new 1,2,4-
oxadiazole derivatives with pyridinium substituents (Figure 20) have been synthe-
sized and reported as excellent corrosion inhibitors for C38 carbon steel in 1 M
hydrochloric acid solution [130]. It is well-known that an increase of inhibitor
concentration in the corrosive medium mainly leads to an enhancement of its
prevention activity. Under this fact, the inhibition capacity of the latest listed
derivatives was elevated by raising their amount in considered corrosive solution.
On the other hand, the position of nitrogen atoms in pyridine substituents was
shown not to have a notable influence on the anti-corrosion property of evaluated
compounds. Nevertheless, a remarkable inhibition efficiency of around 95% was
obtained at 8 � 10�4 M of synthesized 1,2,4-oxadiazole derivatives.

Several isoxazole-based molecules have also demonstrated noticeable protective
performance for various metallic materials, such as Cu90Ni10 alloy and galvanized
and mild steels, under different operating conditions. For instance, two new 5-
phenylisoxazole derivatives have been developed and evaluated by Dominguez-
Crespo et al. (C-1 and C-2, Figure 21) [131]. According to experimental tests, 5-
phenylisoxazole compounds exhibited great prevention effectiveness toward the
degradation of galvanized steel and copper/nickel alloy. At 5 ppm as inhibitor
concentration, the recorded prevention percentages are 100 and 93% for C-2 and
C-1 in the case of galvanized steel, while in the case of Cu90Ni10 alloy they are 88
and 68% for C-2 and C-1 compounds. It is interesting to underline that achieved
protection efficiencies are comparable to those of the commercial inhibitors (work-
ing under the same conditions). Another isoxazole derivative has been found to be
an adequate inhibitor for mild steel in 1 M HCl aggressive solution [132]. The
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molecular structure of the new synthesized derivative (C-3) is depicted in
Figure 21. Both experimental and theoretical approaches pointed out that evaluated
C-3 derivative acts as an effective corrosion inhibitor, in which its inhibition per-
formance reaches 93% at 10�3 M.

Rather than employing oxazole derivatives, another novel strategy to enhance
the anti-corrosion activity of these compounds is the use of its metal complexes. In
the recent work, Najeeb [133] has reported the good performance of some metal
complexes of a 1,3,4-oxadiazole derivative (C-6, Figure 18) against the corrosion of
mild steel in 1 M HNO3 medium. As core metal ions, Najeeb has tested Co(II), Ni
(II), and Cu(II) ions. As a major outcome of this work, an increase of inhibition
efficiency was observed via the metallic complexing process, and the following
order of the inhibition efficiency is outlined: Co(II)-oxadiazole > Ni(II)-
oxadiazole > Cu(II)-oxadiazole > oxadiazole. Moreover, the inhibition performance
of these heterocyclic oxygen/nitrogen compounds can be synergistically enhanced
by adding halide ions into the inhibition systems [134].

As was revealed in the literature, many other oxazole-based derivatives have
recently stated as good anti-corrosion compounds for several metallic materials that
immersed in different corrosive environments. Table 3 illustrates the relevant data
related to the use of some oxazole-based compounds as corrosion inhibitors [134–136].

5. Conclusion

In the current chapter, we focused on the application of azole-based compounds
as inhibitor agents against metallic corrosion. Almost N-, N&S-, and N&O-azole-
containing compounds were found to provide good protection property for numer-
ous metal (or alloy)/medium systems. In this context, three main strategies were
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IE = 94%, IE was enhanced by synergistic
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< C-2 (77%) < C-3 (83%) in 1.0 M HCl

solution at 301 � 2 K and 500 ppm
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and 0.5 M
H2SO4
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Relevant data related to the application of some oxazole-based compounds as corrosion inhibitors for mild steel.
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adopted to enhance the capability of these compounds to inhibit the corrosion. The
first one is based on the synergistic effect, in which supplementary additives (e.g.,
halide ions) are added into the corrosive media containing azole-based compound,
while the chemical modification of azole molecular structures is the second strategy.
The latest one is widely used and aimed to introduce further active sites of adsorp-
tion within these heterocyclic molecules. Recently, the metallic complex of azole
compounds was also reported as an effective strategy to improve their prevention
capacity. It is important to outline that N-azole compounds are extensively studied
and reported as inhibitors for many metal/medium combinations in comparison
with N&S- and N&O-azole ones. Consequently, more attention should be directed
to examine the latest two-azole classes, especially oxazole-based compounds.
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Chapter 6

Azoles for Renewable Energy 
Development and Wood 
Treatment
Nana Derkyi

Abstract

Azole applications in energy are empirical and, despite increasing interest in 
azole and energy research, many challenges remain in synthesizing and processing 
azoles with functionality for energy applications. The use of azole in wood treat-
ment has been effective to some extent in producing durable wood; however, there 
is still the need for improving the treatment of wood species. This chapter seeks 
solutions which are developed systematically with scientific validation principles. 
Consequently, this chapter aims to provide a concise overview of integrating azoles 
in materials used for renewable energy processing and applications, and wood 
treatment, with an outlook on challenges and opportunities.

Keywords: azole applications, organic solar cells, polymer electrolyte membranes, 
fungal decay, wood treatment, functionality, copper azole, overview

1. Introduction

There exists a huge demand for favorable new materials in the research space. 
With this huge demand, the building of a wide array of custom-made materials for 
different and also multiple applications have been made possible. Most often, the 
design of conjugated molecules is commonly built around small functionalized 
aromatic polycyclic systems like azole (Figure 1). These systems are built up as 
pieces of larger conjugated systems like polymers.

In an energy setting that progressively requires efficient and cleaner energy 
sources, fuel cells are considered as promising electrochemical devices for meeting 
such demand. This is because they can deliver electric energy with high efficiency 
and low environmental effect, converting the energy kept in fuels with no pollu-
tion. The proton-exchange membrane fuel cells (PEMFC) are known to be one of 
the most promising sources within the numerous kinds of current fuel cells owing 
to their great power density and high power-to-weight ratio. One of the downsides 
of current cells is linked to the electrolytes presently in use, which limit their use to 
temperatures below 100°C when working with water-assisted proton conduction 
[1–4]. Operating temperatures above 100°C increase the performance of PEMFC 
due to a quicker electrode reaction which takes place without carbon monoxide 
poisoning of the platinum electro-catalyst, high energy efficiency and easier heat-
ing, [1–4]. Organic semiconductors (OSCs) have attracted much attention over the 
past few decades owing to their unique properties, which allow them to be included 
in a host of electronic device applications.
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Chapter 6

Azoles for Renewable Energy 
Development and Wood 
Treatment
Nana Derkyi

Abstract

Azole applications in energy are empirical and, despite increasing interest in 
azole and energy research, many challenges remain in synthesizing and processing 
azoles with functionality for energy applications. The use of azole in wood treat-
ment has been effective to some extent in producing durable wood; however, there 
is still the need for improving the treatment of wood species. This chapter seeks 
solutions which are developed systematically with scientific validation principles. 
Consequently, this chapter aims to provide a concise overview of integrating azoles 
in materials used for renewable energy processing and applications, and wood 
treatment, with an outlook on challenges and opportunities.

Keywords: azole applications, organic solar cells, polymer electrolyte membranes, 
fungal decay, wood treatment, functionality, copper azole, overview

1. Introduction

There exists a huge demand for favorable new materials in the research space. 
With this huge demand, the building of a wide array of custom-made materials for 
different and also multiple applications have been made possible. Most often, the 
design of conjugated molecules is commonly built around small functionalized 
aromatic polycyclic systems like azole (Figure 1). These systems are built up as 
pieces of larger conjugated systems like polymers.

In an energy setting that progressively requires efficient and cleaner energy 
sources, fuel cells are considered as promising electrochemical devices for meeting 
such demand. This is because they can deliver electric energy with high efficiency 
and low environmental effect, converting the energy kept in fuels with no pollu-
tion. The proton-exchange membrane fuel cells (PEMFC) are known to be one of 
the most promising sources within the numerous kinds of current fuel cells owing 
to their great power density and high power-to-weight ratio. One of the downsides 
of current cells is linked to the electrolytes presently in use, which limit their use to 
temperatures below 100°C when working with water-assisted proton conduction 
[1–4]. Operating temperatures above 100°C increase the performance of PEMFC 
due to a quicker electrode reaction which takes place without carbon monoxide 
poisoning of the platinum electro-catalyst, high energy efficiency and easier heat-
ing, [1–4]. Organic semiconductors (OSCs) have attracted much attention over the 
past few decades owing to their unique properties, which allow them to be included 
in a host of electronic device applications.
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Wood has been used as a traditional material for the construction of marine 
structures, such as groynes and jetties [5], and yachts and other boats. The applica-
tion of wood in marine structures is attributable to the wood explicit properties. 
The factors for utilizing wood in marine structures include ease of construction and 
repair, relatively low energy costs of production, high strength-to-weight ratio, and 
renewability. However, biodegradation of wood is predominantly harsh in maritime 
construction due to the action of marine wood borers and crustaceans, in contrast 
to beetles, decay fungi, and termites active above the waterline [6]. In borer attack 
prevention, biocides are, in some cases, used to treat wood [6].

The use of durable hardwood species, mostly tropical hardwoods which are 
resistant to biodegradation, has led to tropical deforestation that continues to be a 
cause of concern. There are many other factors associated with this tropical defores-
tation other than the use of timber in maritime structures. The decrease in naturally 
durable species has necessitated the treatment of softwoods by using preservatives 
to achieve suitable protection for the wood under service conditions, mainly for 
outdoor applications [7].

This chapter seeks solutions which are developed systematically with scientific 
validation principles. Consequently, this chapter aims to provide a concise overview 
of integrating azoles in materials used for renewable energy processing and wood 
treatment, with an outlook on challenges and opportunities.

2. Chemistry of azoles

Azole compounds are part of a large class of heterocyclic compounds in Organic 
chemistry. Azoles are five-membered heterocyclic compounds containing a nitro-
gen atom and at least one other non-carbon atom of either nitrogen, sulfur, or 
oxygen [8]. They include the heterocyclic rings in Figure 2.

The chemistry of 1,2,3-triazoles gained much attention since the discovery of the 
copper-catalyzed alkyne-azide cycloaddition (CuAAC) reaction, which delivers the 
1,4-regioisomer exclusively in high yields [8].

Triazoles are five-membered aromatic heterocyclics, containing three nitrogen 
atoms. These atoms may be found arranged consecutively or not, given the isomers 
1,2,3-triazoles or 1,2,4-triazoles, respectively (Figure 3) [8].

The structure of 1,2,3-triazoles, as shown in Figure 3, may exist in two diverse 
tautomers, per their position of the N-H bond on the ring. The position of the N-H 

Figure 1. 
Basic benzobisazole units.
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bond can be on nitrogen 1 (1H) or in nitrogen 2 (2H). If the 1,2,3-triazole skeleton 
is substituted at the nitrogen and carbon atoms, dissimilar regioisomers may be 
obtained as shown in Figure 4.

When compared to their 1,2,4 isomers, the 1,2,3-triazoles have very distinct 
properties and more importantly, the N2 substituted has different properties than 
the N1 as well as N3, despite the structural likeness. For instance, the differences 
in basicity between the N1 and N2 isomers could be responsible for their different 
behavior within biological systems [8]. The N2-1,2,3-triazole core is found in sev-
eral bioactive compounds, including antifungals [8]. The different tautomers shown 
in Figure 5 have distinct physical, chemical and biological properties [8].

The substitution of the triazole implies the study of the N3 -H tautomer, in 
addition to the N1 -H and N2 -H. Table 1 gives a summary of some energy values 
obtained by substituting the 1,2,3-triazole at carbon with different substituents, 
generating tautomers. It has been observed that in all cases studied, the N2 -H 
tautomer is the most stable. Figure 6 depicts substituent X on the different 

Figure 2. 
Examples of azole compounds.

Figure 3. 
Structures of isomeric triazoles.
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X ΔE (kJ/mol)

N3 N2 N1

NH2 30.734 0 22.019

F 37.059 0 21.340

Cl 27,557 0 20,780

CH3 20,566 0 20,080

CN 22,475 0 18,004

NO2 22,194 0 16,941

CHO 17,188 0 15,530

COOH 12,081 0 13,261

OH 35.946 0 18,578

CONH2 23,266 0 10,892

BF2 12,336 0 16,966

BH2 5547 0 15,815

Table 1. 
The relative energy of N1-H and N3-H to N2-H in the presence of different substituents [9].

Figure 4. 
Substituted 1,2,3-triazoles with dissimilar regioisomers of carbon and nitrogen.

Figure 5. 
Different tautomers of substituted and unsubstituted 1,2,3-triazoles [8].
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tautomers, and from Table 1 it can be realized that the substituent X has a strong 
correlation on the stabilization of the N1-H tautomer against the N3-H tautomer. It 
can be observed from Table 1 that the donor or electron-withdrawing performance 
of different groups does not render differences in the stabilization of the tautomers. 
However, the steric hindrance and hydrogen bonds between the substituent and the 
adjacent azole nitrogen atom which seem to be the preeminent factor in the stabili-
zation of N1-H versus N3-H.

Azoles are known for their broad-spectrum biological activities including anti-
microbial, anti-inflammatory, analgesic, antimitotic, anticonvulsive, diuretic and 
many other uses as main ingredients in many drugs, [10]. Azoles are also known for 
their usage wood preservatives [11].

Generally, isolated natural products of heterocyclic nature act as lead com-
pounds for the development of new molecules of bioactive interest. Also, most of 
the heterocyclic compounds are synthesized from readily available fine chemicals. 
In this respect, synthesis and characterization of new molecular entities incorporat-
ing heterocyclic structures are of great importance.

Azoles constitute a crucial category of antifungal agents in clinical, agricultural, 
and wood treatment uses. In general, they target the inhibition of ergosterol synthe-
sis. Fungi are eukaryotes just like mammalian cells, and so agents that affect protein 
or nucleic acid biosynthesis are likely to display general eukaryotic toxicity [12]. 
Ergosterol, the predominant component of fungal cell membranes, is, therefore, 
evident and specific target for fungal inhibition.

3. History of azoles

In the beginning of the development of organic chemistry, heterocyclic chem-
istry of which azoles belong has held center stage in the development of molecules 
to enhance the quality of human life. Examples include drugs development, 
agricultural produce and wood preservation, as well as energy applications [8, 13]. 
Some of these organic compounds, as early as the 1950s, had been reported to have 
electrical conductivity [13]. However, the first breakthroughs did not occur until 
the 1970s. OSCs have been incorporated into various electronic devices, including 
organic photovoltaics (OPVs) [14, 15], some of which have been developed com-
mercially [16, 17].

Researchers had become interested in the antifungal activity of azole com-
pounds since 1958 after the introduction of topical chlormidazole. However, the 
first report of the antifungal activity of an azole compound, benzimidazole, was 
already described in 1944 by Woolley [18]. The initial reports of antifungal proper-
ties for imidazoles were published in the late 1960s [19]. During that period, three 
new topical compounds: clotrimazole, developed by Bayer Ag (Germany), and 
miconazole and econazole, both developed by Janssen Pharmaceutica (Belgium) 
were introduced [20].

Figure 6. 
Substituents on different azole tautomers.
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There have been significant changes in the wood preservation industry over 
the past several years. For ground contact applications, copper-based systems have 
replaced the chromate copper arsenate (CCA) product used for many years but 
had some corrosion and mold issues during the initial phases of the transition [20]. 
Creosote was virtually the only preservative until various new preservatives were 
introduced in the 1930 and 1940s. There was a continued evolution of preservative 
systems, and in 1990, copper-azole preservatives were introduced [20].

4. Azole-based materials for renewable energy applications

There is quite a large number of azole compounds that are suitable for energy 
applications. These include but not limited to imidazoles, diazoles, triazoles, 
tetrazoles, thyazoles and pyrazoles [2]. A fuel cell, which is a device that provides 
electrical energy with high efficiency and low environmental impact, converts the 
chemical energy stored in fuel, such as hydrogen, methanol, ethanol, etc., directly 
and efficiently to electrical energy. In fuel cell applications, the fuel cell consists 
of thermal, humidification, and reactant/product management systems, electron-
ics, and the membrane electrode assembly (MEA) [2]. The membrane electrode 
assembly is the electrochemically active portion of the cell, which contains an 
ion-permeable but electrically non-conductive electrolyte sandwiched between 
an anode and cathode at which oxidation of fuel and reduction of oxygen occur. 
Organic ionic liquids, molten salts, and strong acids/bases can all be utilized as the 
electrolyte separating anode and cathode. However, to minimize corrosion and 
gas diffusion and to improve the mechanical strength of fuel cells, solid oxide and 
polymer electrolyte membranes are the predominant separators in modern systems. 
Engineering of the complete fuel cell, including its support systems, is, therefore, 
an essential task in which the materials and chemistry are focused on the electroac-
tive MEA. Thus, the proton-exchange membrane (PEM) is a significant component 
for the operation of proton-exchange membrane fuel cell (PEMFC).

Generally, PEM are made of polymeric organic compounds containing acidic 
functions (example, Nafion). The restrictions of modern membranes have nurtured 
the research and development of alternative membranes, including doped poly-
benzimidazole (a combination of Nafion and metal oxides), organosiloxane based 
on inorganic-organic hybrids with various acidic species, and sulfonated polymers 
based on aromatic hydrocarbons [8–14].

Typically, some amount of hydration is essential to conduct ions, and there are 
some new materials merging acceptor and donor ion carrier abilities of numerous 
groups [10]. Heterocyclics do act as a proton-conducting species, due to the ampho-
teric behavior of nitrogen. Thus, they can be used either as dopant or pendant 
groups in PEMFC devoid of the need to use external humidification. The properties 
of numerous heterocyclics, including benzimidazole and triazole, permit them to 
be used in materials operational above 100°C [21–24].

Several azole derivatives have been synthesized to become precursors for 
novel fuel cell membrane materials. For example, from the azole compound 
4,7-dibromobenzimidazole, new phosphonate-, hydroxybisphosphonate- and 
aminobisphosphonate benzimidazole derivatives substituted at N-1 position have 
been synthesized in good yields. Again, new regioisomers of phosphonate- and 
aminobisphosphonatebenzotriazole derivatives substituted at N-1 or N-2 posi-
tions have been synthesized in good yields from 4,7-dibromobenzotriazole. 
Characterization by NMR, IR spectroscopy and mass spectrometry (low and high 
resolution) of these compounds have been fully done allowing the assignment of 
regioisomers [24].
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Considering chemical viewpoint, two principal structural features give rise to 
the properties of organic semiconductors (OSCs). These are conjugated core or sup-
port, and countless types of solubilizing side chains. These two structural features, 
exact by chemical synthesis, have a wide influence on the nano-scale morphology, 
optoelectronic energy levels, and the bulk physical features of these materials.

Standard monomer building blocks to construct conjugated polymer for solar 
cells include azoles, and they are categorized by the number of rings and way of 
linking. Polybenzobisazoles, a class of polymers that are known for their excep-
tional thermal stability and high tensile strength of fibers spun from them, are 
important in organic solar cells applications. 9 An example is poly(p-phenylene-
2,6-benzobisoxazole) which is a liquid crystalline polymer based on benzo[1,2-d; 
4,5-d’]benzobisoxazole that is spun into fibers commercially sold under the 
name Zylon® [25]. Because of the previous use of polybenzobisazoles in high-
performance applications, all of the necessary monomers can be synthesized on 
an industrial scale, and purified without the use of column chromatography. This 
ability to synthesize monomers on an industrial scale is advantageous for large-scale 
synthesis. Furthermore, the benzobisazole ring system is electron-deficient and 
planar, which leads to strong intermolecular interactions and good charge transport 
properties within polymer films [26].

5.  Current trends and prospects of azoles in renewable energy 
development

5.1 Fuel cells

The quest for clean and efficient energy has motivated the search for new 
materials to develop environmentally friendly energy applications. Fuel cells have 
potential for alternative clean and efficient energy conversion devices with zero 
pollution [1, 27]. Considering the various kinds of fuel cells, the proton-exchange 
membrane fuel cells (PEMFCs) are known to be sources of power, due to their 
inherent great high power-to-weight ratio and power density. The PEM is a key 
material for the operation of PEMFC. In recent years, PEM has been a focus of 
many research works, to obtain membranes with good chemical/thermal stability, 
high proton conductivity, low electrical conductivity, low permeability to fuel and 
oxidant, good mechanical properties and cost-effective [1, 27]. Temperature is a 
critical factor in operating PEMFCs due to its correlation with the water content of 
fuel cell. The processes above 100°C increase the performance of the fuel cell due 
to quicker electrode reaction without carbon monoxide poisoning of the platinum 
electrocatalyst, easier heating, water consumption management and high energy 
efficiency [1, 27]. The PEM is usually made of polymeric organic compounds 
containing acidic ends; however, the proton transport properties of these mem-
branes are strongly related to the water content and, therefore, limit their operating 
temperatures up to 90°C [1, 27].

The limitations of temperature have brought about an increased interest in 
research and development of new alternative membranes. Among them, a variety 
of membranes have been developed as alternative to the perfluorosulphonic poly-
mers,, such as polybenzimidazole (PBI)-doped composites of Nafion and metal 
oxides, sulfonated polymers based on aromatic hydrocarbons, and organosiloxane 
polymers based on inorganic-organic hybrids with various acidic species [1, 27].

Azoles as amphoteric species conduct protons as pure compounds. Recent com-
putational studies are geared towards elucidating the mechanism underlying struc-
tural diffusion in some of these amphoteric species. In protonated imidazole, charge 



Azoles - Synthesis, Properties, Applications and Perspectives

118

There have been significant changes in the wood preservation industry over 
the past several years. For ground contact applications, copper-based systems have 
replaced the chromate copper arsenate (CCA) product used for many years but 
had some corrosion and mold issues during the initial phases of the transition [20]. 
Creosote was virtually the only preservative until various new preservatives were 
introduced in the 1930 and 1940s. There was a continued evolution of preservative 
systems, and in 1990, copper-azole preservatives were introduced [20].

4. Azole-based materials for renewable energy applications

There is quite a large number of azole compounds that are suitable for energy 
applications. These include but not limited to imidazoles, diazoles, triazoles, 
tetrazoles, thyazoles and pyrazoles [2]. A fuel cell, which is a device that provides 
electrical energy with high efficiency and low environmental impact, converts the 
chemical energy stored in fuel, such as hydrogen, methanol, ethanol, etc., directly 
and efficiently to electrical energy. In fuel cell applications, the fuel cell consists 
of thermal, humidification, and reactant/product management systems, electron-
ics, and the membrane electrode assembly (MEA) [2]. The membrane electrode 
assembly is the electrochemically active portion of the cell, which contains an 
ion-permeable but electrically non-conductive electrolyte sandwiched between 
an anode and cathode at which oxidation of fuel and reduction of oxygen occur. 
Organic ionic liquids, molten salts, and strong acids/bases can all be utilized as the 
electrolyte separating anode and cathode. However, to minimize corrosion and 
gas diffusion and to improve the mechanical strength of fuel cells, solid oxide and 
polymer electrolyte membranes are the predominant separators in modern systems. 
Engineering of the complete fuel cell, including its support systems, is, therefore, 
an essential task in which the materials and chemistry are focused on the electroac-
tive MEA. Thus, the proton-exchange membrane (PEM) is a significant component 
for the operation of proton-exchange membrane fuel cell (PEMFC).

Generally, PEM are made of polymeric organic compounds containing acidic 
functions (example, Nafion). The restrictions of modern membranes have nurtured 
the research and development of alternative membranes, including doped poly-
benzimidazole (a combination of Nafion and metal oxides), organosiloxane based 
on inorganic-organic hybrids with various acidic species, and sulfonated polymers 
based on aromatic hydrocarbons [8–14].

Typically, some amount of hydration is essential to conduct ions, and there are 
some new materials merging acceptor and donor ion carrier abilities of numerous 
groups [10]. Heterocyclics do act as a proton-conducting species, due to the ampho-
teric behavior of nitrogen. Thus, they can be used either as dopant or pendant 
groups in PEMFC devoid of the need to use external humidification. The properties 
of numerous heterocyclics, including benzimidazole and triazole, permit them to 
be used in materials operational above 100°C [21–24].

Several azole derivatives have been synthesized to become precursors for 
novel fuel cell membrane materials. For example, from the azole compound 
4,7-dibromobenzimidazole, new phosphonate-, hydroxybisphosphonate- and 
aminobisphosphonate benzimidazole derivatives substituted at N-1 position have 
been synthesized in good yields. Again, new regioisomers of phosphonate- and 
aminobisphosphonatebenzotriazole derivatives substituted at N-1 or N-2 posi-
tions have been synthesized in good yields from 4,7-dibromobenzotriazole. 
Characterization by NMR, IR spectroscopy and mass spectrometry (low and high 
resolution) of these compounds have been fully done allowing the assignment of 
regioisomers [24].

119

Azoles for Renewable Energy Development and Wood Treatment
DOI: http://dx.doi.org/10.5772/intechopen.93472

Considering chemical viewpoint, two principal structural features give rise to 
the properties of organic semiconductors (OSCs). These are conjugated core or sup-
port, and countless types of solubilizing side chains. These two structural features, 
exact by chemical synthesis, have a wide influence on the nano-scale morphology, 
optoelectronic energy levels, and the bulk physical features of these materials.

Standard monomer building blocks to construct conjugated polymer for solar 
cells include azoles, and they are categorized by the number of rings and way of 
linking. Polybenzobisazoles, a class of polymers that are known for their excep-
tional thermal stability and high tensile strength of fibers spun from them, are 
important in organic solar cells applications. 9 An example is poly(p-phenylene-
2,6-benzobisoxazole) which is a liquid crystalline polymer based on benzo[1,2-d; 
4,5-d’]benzobisoxazole that is spun into fibers commercially sold under the 
name Zylon® [25]. Because of the previous use of polybenzobisazoles in high-
performance applications, all of the necessary monomers can be synthesized on 
an industrial scale, and purified without the use of column chromatography. This 
ability to synthesize monomers on an industrial scale is advantageous for large-scale 
synthesis. Furthermore, the benzobisazole ring system is electron-deficient and 
planar, which leads to strong intermolecular interactions and good charge transport 
properties within polymer films [26].

5.  Current trends and prospects of azoles in renewable energy 
development

5.1 Fuel cells

The quest for clean and efficient energy has motivated the search for new 
materials to develop environmentally friendly energy applications. Fuel cells have 
potential for alternative clean and efficient energy conversion devices with zero 
pollution [1, 27]. Considering the various kinds of fuel cells, the proton-exchange 
membrane fuel cells (PEMFCs) are known to be sources of power, due to their 
inherent great high power-to-weight ratio and power density. The PEM is a key 
material for the operation of PEMFC. In recent years, PEM has been a focus of 
many research works, to obtain membranes with good chemical/thermal stability, 
high proton conductivity, low electrical conductivity, low permeability to fuel and 
oxidant, good mechanical properties and cost-effective [1, 27]. Temperature is a 
critical factor in operating PEMFCs due to its correlation with the water content of 
fuel cell. The processes above 100°C increase the performance of the fuel cell due 
to quicker electrode reaction without carbon monoxide poisoning of the platinum 
electrocatalyst, easier heating, water consumption management and high energy 
efficiency [1, 27]. The PEM is usually made of polymeric organic compounds 
containing acidic ends; however, the proton transport properties of these mem-
branes are strongly related to the water content and, therefore, limit their operating 
temperatures up to 90°C [1, 27].

The limitations of temperature have brought about an increased interest in 
research and development of new alternative membranes. Among them, a variety 
of membranes have been developed as alternative to the perfluorosulphonic poly-
mers,, such as polybenzimidazole (PBI)-doped composites of Nafion and metal 
oxides, sulfonated polymers based on aromatic hydrocarbons, and organosiloxane 
polymers based on inorganic-organic hybrids with various acidic species [1, 27].

Azoles as amphoteric species conduct protons as pure compounds. Recent com-
putational studies are geared towards elucidating the mechanism underlying struc-
tural diffusion in some of these amphoteric species. In protonated imidazole, charge 
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transport occurs via a method directly analogous to aqueous transport, exhibiting 
rapid molecular reorientations and a shifting hydrogen bond network [28].

In several azole-based systems, proton conductivity is being investigated by 
pulsed field gradient spin-echo nuclear magnetic resonance (PFGSE-NMR) and 
impedance spectroscopies, to confirm results obtained by computational simula-
tions [29, 30]. Improving the proton conductivity of polymer electrolytes under 
high temperature and low humidity conditions by imbibing polymers (Figure 7) 
that exhibit favorable hydrated properties with small-molecule amphoteric species 
is a current research agenda. These molecules effectively replace the water that 
would traditionally exist as a proton solvent, enabling proton conduction under 
these dehydrating conditions. Doping studies of PEM with azoles are thus high on 
the research agenda [31, 32].

5.2 Solar cells

Enormous potential exists in solar energy to take the place of fossil fuels due to 
its vast energy stock and availability worldwide [33]. Solar energy conversion system 
is traditionally based on silicon technology. However, the wide use of silicon-based 
solar cell technology is limited by its high power conversion cost [34]. To address this 
issue, organic solar cell has been developed to replace Si-solar cell [35].

The optoelectronic properties of polymeric semiconductor materials can be used 
for the fabrication of photonic devices. If key structural requirements are met, these 
materials exhibit distinctive properties such as solution processability, large charge-
transporting capabilities, and/or broad optical absorption. Developments in the area 
of π-conjugated polymeric semiconductors for bulk-heterojunction photovoltaic cell 
(BHJ-OPV) or organic solar cell (OSC) applications have been made, and these conju-
gated polymers (CPs) have become pervasive in photovoltaic cells applications [36].

Conjugated polymers offer several advantages over their inorganic counterparts, 
including solution processability to reduce fabrication costs, and the ability to tune 
their properties via organic synthesis, which enables optimization for use in specific 
applications. Currently, a good and effective strategy for adjusting the optical and 
electronic properties of conjugated polymers is through the integration of alternat-
ing electron-donating and electron-accepting comonomers within the polymer 
backbone. This approach which is a current trend, has afforded many materials with 
narrow bandgaps suitable for effective harvesting of solar energy. For example, 
a synthesis of benzo[1,2-c:4,5-c]bis[1,2,5]thiadiazole containing donor-acceptor 
monomers and their acid-catalyzed polymerization has been reported [37].

Conjugated polymer-based solar cell (PSC) has several important advantages 
compared with conventional Si-based solar cell. These include solution process-
ability by spin-coating, ink-jet printing and roll-to-roll processing to reduce 
manufacturing cost; tunable physical properties, and mechanical flexibility for PSC 
application on curved surfaces [38].

Figure 7. 
Chemical structure of unsubstituted polybenzimidazole (PBI) (poly-2,2-m-phenylene-5,5-bibenzimidazole).
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An important electron-accepting unit in organic electronics including organic 
solar cells is 2,1,3-benzothiadiazole (BT). Two types of BT-fused units have been 
synthesized. These are thiazole-fused BT containing electron-withdrawing C=N 
bond and imidazole-fused BT containing electron-donating nitrogen atom as well 
as an electron-withdrawing C=N bond. Theoretical calculations and measurements 
by electrochemical means suggest that thiazole-fusion enhances electron-accepting 
ability [39]. In contrast, imidazole-fusion bestows the benzothiadiazole skeleton 
with electron-donating capacity while sustaining its electron-accepting ability. 
Besides, in thiazole-fused BT units, the electronic configuration could be addition-
ally controlled by tuning the oxidation number of the sulfur atom in methylthio 
group at the fused thiazole ring [39]. Thus, the electron withdrawing ability of BT 
can be further increased by replacing one carbon atom with sp2-hybridized N atom 
(Figure 8).

A variety of low bandgap polymers containing BT have been synthesized and 
tested for PSC performance (Figure 9) [40, 41].

6. Challenges of azoles in renewable energy development

Doping of azoles with strong acids can bring about the problems, including 
incorporating some of the undesirable anhydrous properties of these acids (e.g. high 
water uptake, physical stiffening of the polymer matrix) into mixed materials. In 
fuel cells applications, introducing polymer electrolytes with small-molecule proton 
solvent does not entirely solve the problem of anhydrous proton conductivity. For 
instance, imidazole still evaporates or is washed from the membrane over time. 
Also, unlike water, its equilibrium partial pressure in the surrounding atmosphere is 
negligible, and once it leaves the membrane, it is not easy to re-introduce. Even for 
species large enough to have little vapor pressure like imidazoles with long tethers 
(Figure 10), leaking along with the water that is formed and expelled during fuel 

Figure 8. 
Structure of (a) BT, (b) aza-BT and (c) Se-BT.

Figure 9. 
Benzothiadiazole containing low bandgap polymers.
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cell operation is a significant challenge. This leaking leads to both loss of conductiv-
ity with time and potentially to the corrosion of other parts of the fuel cell.

Although some recent examples of anhydrous proton conducting polymers 
utilize members of the azole family as proton solvents. Yet, still, comparatively few 
azoles have been studied to date due in part to the synthetic limitations of available 
techniques. Also, there is a problem of leaking and other forms of solvent loss which 
could, however, be overcome by tethering the solvent providing proton transport 
(e.g. imidazole, phosphoric acid) directly to a polymer backbone. An outcome is 
that the connectivity and percolation of solvating species is key for conduction in 
materials where their long-range diffusion is restricted. The low anhydrous conduc-
tivities of poly(styrenesulfonic acid) and poly(vinylphosphonic acid) for example, 
illustrate this effect. Figure 10 shows azole-based materials with a polymer-bound 
proton solvent that exhibit measurable proton conductivity [42].

Organic photovoltaic (OPV) systems, in particular, polymer solar cells, made 
by solution-processed organic materials, have shown great promise as a technology 
for affordable electricity. Until recently, the commercialization of OPV has been 
hampered by the difficulty of converting laboratory-produced cell into reliable 
industrial-scale product performances. Unfortunately, a significant barrier to the 
introduction of organics into these areas has to do with inferior electrical properties 
as compared to traditional inorganic semiconductors.

The significant concerns by using some azole polymers arise from the azole 
synthesis and processing conditions. These azole polymers require very high 
temperatures (more than 200°C) in highly acidic media (poly(phosphoric acid)) to 
be synthesized and maintain its solubility after cooling [43]. Molding these poly-
meric materials into films also necessitates that the materials are dissolved in highly 
acidic media (conc. Sulfuric acid, aluminum chloride in nitromethane) [43]. Once 
formed, it is also challenging to get rid of trace acid, which leads to unintentional 
doping. The performance of organic electronic devices is hampered by the presence 
of acidic impurities by the interference with charge and exciton transport.

7. Opportunities for utilizing azoles in energy development

Fuel cells, as zero pollution systems have the potential to become alternative 
clean and efficient energy conversion systems [1]. From previous experiences of 
utilizing polybenzobisazoles in high-performance applications, all of the neces-
sary monomers for fuel cells can now be synthesized on an industrial scale, and 
purification effected without the use of column chromatography. This is beneficial 
for large-scale synthesis of azoles. Furthermore, the ring system of benzobisazole 

Figure 10. 
Tethered imidazoles used to investigate relative rates of a vehicle and structural diffusion in imidazole-based 
molecules [42].
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is electron-deficient and planar, and as a consequence, leads to resilient intermo-
lecular interactions and good charge transport properties within polymer films 
[44]. The key to conductivity in systems where the proton solvent is tethered to 
a backbone is rotational and translational mobility of the tethered moiety. While 
imidazole, phosphoric acid, and sulfuric acid all conduct well as mobile small-
molecule liquids, the proximity to poly(vinylphosphonic acid) and stiffness of the 
backbone in the poly(vinylphosphonic acid) significantly limits these acids’ ability 
to form conductive networks. By contrast, the low glass transition temperature (Tg) 
of the backbone and flexible tether of the imidazole-containing polymer illustrated 
in Figure 10 enables proton conductivity in this material.

Azole-containing polymers are particularly attractive as anhydrous proton con-
ductors due to their chemical diversity and comparatively small changes in physical 
properties in the presence of water. Sulfonic acids form stiff, immobile clusters 
at low hydration and absorb significant quantities of water from the atmosphere 
at high humidity. By contrast, less acidic moieties, such as carboxylic acids (e.g. 
Surlyn®, a copolymer of ethylene and methacrylic acid) hydrate much less strongly, 
mitigating changes in properties with changing RH [36]. The weak hydrogen bond-
ing observed in imidazole, and by extension, the azoles in general likewise enables 
polymers containing these moieties to remain fluid under anhydrous conditions. 
This property plagues the anhydrous behaviour of sulfonated materials.

The goals of OSC technological development are not necessarily to exceed the 
performance of inorganics. There is a great opportunity in using combinations of 
the organics and inorganics. OSCs offer new device functionalities (optical trans-
parency, chemical response, lightweight) as well as a way to produce electronic 
materials at a lower cost [45]. A critical factor in achieving excellent performance 
is to develop OPV materials (buffer materials, polymer donors, acceptors, elec-
trodes materials and encapsulants) exhibiting the required technical and economic 
characteristics to be conveniently used in an industrial environment. The improve-
ment in new materials development remains an important area of research despite 
the fact that CP-based OPVs are rapidly approaching the 10% power conversion 
efficiency recommended for them to be of commercial importance. Particularly, 
the advancement of effective donor materials that takes into consideration practi-
cal aspects of commercialization such as enhanced environmental and thermal 
stability of the resulting material, facile synthesis and purification of monomers, 
is still pertinent. The most attractive part about the use of OSCs instead of using 
traditional inorganic semiconductors, is derived from the synthetic range intrinsic 
in organic molecules. There exist many different ways to alter the properties of 
OSCs by chemical synthesis, making the OSCs easily tunable to fit the needs of a 
device [46].

Still needed for commercialization of azole-based materials for energy applica-
tions is the continued improvements in efficiency, stability, and cost. Ongoing 
research and development of azole materials, devices, and systems are making 
significant advances, benefiting from strong synergies with current research efforts 
in photovoltaics, nanotechnologies, and azole materials. In this vein, efficiencies are 
being improved through enhanced sunlight absorption and better surface catalysis.

8. Wood preservatives

Wood preservatives are known to be chemicals impregnated into wood to help 
with the resistance of attack by mold, decay fungi, and termites. When a wood 
may be in contact with humans or will be painted, waterborne wood preserva-
tives are commonly used in their treatment. Different formulations of waterborne 
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ing observed in imidazole, and by extension, the azoles in general likewise enables 
polymers containing these moieties to remain fluid under anhydrous conditions. 
This property plagues the anhydrous behaviour of sulfonated materials.

The goals of OSC technological development are not necessarily to exceed the 
performance of inorganics. There is a great opportunity in using combinations of 
the organics and inorganics. OSCs offer new device functionalities (optical trans-
parency, chemical response, lightweight) as well as a way to produce electronic 
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is to develop OPV materials (buffer materials, polymer donors, acceptors, elec-
trodes materials and encapsulants) exhibiting the required technical and economic 
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the fact that CP-based OPVs are rapidly approaching the 10% power conversion 
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preservatives have been made, but only a few of these have been used commercially. 
Most commercial treatments contain copper ions, which give treated wood its 
characteristic greenish-brown colouration.

Alkaline copper quaternary (ACQ ) amine, a wood preservative, is composed of 
67% copper oxide and a 33% didecyldimethylammonium chloride or carbonate (a 
quaternary ammonium compound) [47]. Since its initial commercialization, the 
quaternary ammonium compound has been produced using a chloride formulation, 
which was later replaced with a formulation from a carbonate. Several preparations 
of ACQ have been commercialized, and it can be treated with an amine or ammonia 
carrier. Copper azole preservatives (denoted as CA-B and CA-C under American 
Wood Protection Association/AWPA standards) are composed of 96% ammine 
copper and a 4% azole. In copper azole type B, the azole is entirely composed of 
tebuconazole. In type C, the azole is a 50/50 mixture of propiconazole and tebuco-
nazole. While copper azole contains a higher percentage of copper than does ACQ , 
the retention required for aboveground use [47] is lower and, therefore, the total 
amount of copper in the treated wood is less.

9. Azole-based materials for wood preservation

Tebuconazole had been first identified by Grundlinger and Exner (1990) as an 
unleachable, light and heat-stable organic biocide that provides protection against 
copper tolerant fungi” [48]. Kugler et al. reported of tebuconazole and propicon-
azole as complementing each other in terms of their efficacy against the brown rot 
basiodiomycete fungi [49]. The test method for assessing the performance against 
basiodiomycete decay fungi is EN113, and the toxic values for Coniophoraputeana is 
between 0.08–0.13 kg/m3 active ingredient [48].

Copper azole type B (CA-B) is formulated from tebuconazole (4%) and amine 
copper (96%). In copper azole type C (CA-C), half of the tebuconazole in copper 
azole type B is replaced with the azole, propiconazole. Thus, the copper azole type C 
consists of 2% tebuconazole, 2% propiconazole and 96% amine copper. A previous 
preparation, copper azole type A (CBA-A) contained boric acid as a main ingredient 
in addition to the tebuconazole. Although copper azole is an amine formulation, it 
may also be formulated with an amine-ammonia compound. The ammonia may be 
added if the copper azole formulation is used to treat refractory wood species.

Through laboratory screening tests and extensive field trials, copper and triazole 
were identified as the active ingredients which could offer a viable alternative to 
CCA. For example, the main active ingredients in the commercial preservative 
TanalithR E are copper carbonate, tebuconazole and propiconazole, [50]. The ratio 
of actives as presented by Enviros [51] in their treated timber classification report 
on a percentage weight/weight basis in the preservative was copper carbonate 20%, 
propiconazole 0.2% and tebuconazole at 0.2%.

Azole molecules and their derivatives are among the organic corrosion inhibi-
tors for copper that are frequently used. In this vein, density functional theory 
(DFT) calculations have been performed on the adsorption of four azole molecules; 
imidazole, 1,2,3-triazole, tetrazole, and pentazole on Cu (III) and Al (III) surfaces, 
and these have been characterized. It was found out that the molecules adsorb in an 
upright geometry onto the top site of Cu (III) only weakly, via single nitrogen atom. 
The chemical bonding with two nitrogen atoms to a bridge site becomes slightly 
preferred in all the molecules except for triazole. Molecular electronic structure 
is only weakly perturbed when adsorbed, and hybridization between molecular 
σ orbitals and metal states constitutes the molecule-surface interaction. Yet, the 
significant contribution to bonding comes from the electrostatic dipole interactions 

125

Azoles for Renewable Energy Development and Wood Treatment
DOI: http://dx.doi.org/10.5772/intechopen.93472

due to the dipole-dipole moment of azole molecules. Also, the lateral intermolecular 
repulsion can be significant and very long-ranged. The molecular electronegativity 
and chemical hardness increase linearly with increasing number of nitrogen atoms 
in the azole ring. The harder the molecule the more difficult the hybridization with 
metal states. This explains why with the increasing number of nitrogen atoms in 
azole ring the molecule-Cu(III) bond strength decreases linearly as: imidazole > 
1,2,3–triazole > tetrazole > pentazole [52].

10. Current trends and future prospects of azoles in wood preservation

Wood-degrading organisms, in conditions that support their growth are gener-
ally responsible for the deterioration of many commonly-used wood species if 
exposed. Wood products are therefore, protected by utilizing chemical preserva-
tives for protection against attack by decay fungi, harmful insects, or marine 
borers. Treating wood materials with preservatives increases their lifespan, which 
leads to reduced replacement costs and ensures greater resourceful use of forest 
trees. The extent of wood protection is dependent on the type of chemical preserva-
tive used, and the treatment method used. In terms of effectiveness, some of the 
chemical preservatives are better than others, while some are also more adaptable 
to specific applications. For long-term effectiveness, chemical preservative, and 
treatment method for each wood species are needed for adequate penetration and 
retention [53].

Wood preservatives must meet two broad criteria which include the provision of 
the desired wood protection in the intended end-use, and doing so without present-
ing unreasonable risks to people and the environment. For several decades now, 
copper-based wood preservatives have dominated the industrial preservation of 
wood for exterior applications [54].

Materials and products from nanotechnology are increasingly being produced 
and used for the potential they hold to provide great interests to society. As such, 
although still emerging, nanotechnology has been identified as a key enabling tech-
nology. One of its important areas of application is biocide preservatives for wood 
protection. One prominent example is copper azole, used in wood preservation 
through impregnations. The use of nanoscale Cu instead of bulk Cu improves the 
durability of wood against microbial and fungal activity due to mainly decreased 
viscosity of formulations and increased effective surface area of Cu, enhancing 
dispersion stability. These properties contribute to easier impregnation and deeper 
and more homogeneous uptake of reactive biocide into the wood, which allows 
continuous and effective protection over its lifetime. In these preservatives, copper 
is the main biocide, and the azole is a co-biocide. These preservatives have gained a 
significant market importance in the wood industry.

Copper azole which is a water-based preservative and dependent principally on 
copper solubilized in ethanolamine and an organic trizaole co-biocide, is a recent 
development. The first copper azole preservative that was developed consisted of 
49% copper, 49% boric acid, and 2% tebuconazole. More recently, a copper azole 
preservative containing 96% copper and 4% tebuconazole has been manufactured. 
The copper in copper azole systems provides the primary fungicide and insecticide 
activity. The azole component protects against copper tolerant fungi, and thus acts 
as a co-biocide.

During the preservation process, proper handling and conditioning of the wood 
after treatment helps minimize leeching and potential environmental impacts for 
these preservatives. Amine keeps copper soluble in these treatment solutions. After 
preservative treatment, wood has to be thoroughly dried and suitably stabilized. 
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due to the dipole-dipole moment of azole molecules. Also, the lateral intermolecular 
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In the copper azole (CA–B) preservative, copper stabilization is very rapid occur-
ring within 24 h at a retention of 1.7 kg m−3. However, the stabilization process slows 
down to a large extent at higher retentions unless the wood is heated to enhance the 
stabilization [53].

With increasing demand for wood products, utilization of wood composites will 
increase, and these composite products also need to be protected with suitable wood 
preservatives. Thus, in the wood preservation industry, there is the need for superior 
alternative technologies to the traditional preservatives and pressure-treatment 
processes. In this instance, the development of effective and economical 3rd genera-
tion organic preservatives for wood used in areas with high or severe decay and 
deterioration hazards, will be interesting. The wood preservation industry needs to 
develop high-value products with desirable and dependable properties that have a 
high economic return sufficient to encourage companies to undertake the long-term 
and expensive research necessary to create azole-based preservatives for the future.

11. Challenges of azoles in wood preservation

There are known risks to aquatic communities associated with the use of azole-
based wood preservatives. For instance, it has been established that micronized 
copper azole represents a source of harm to marine benthic communities compa-
rable to that from copper salts, such as copper sulfate. There is therefore a need for 
better understanding of benthic community interactions when exposed to nanoma-
terial stress [55].

The increased use of copper azole as wood preservative for residential construc-
tion has exposed the preservative as causing corrosion to fasteners. There is limited 
evidence on the effects of these preservatives on the corrosion rate of the fasteners. 
However, Simpson Strong Tie has a technical bulletin publication which indicates 
that both ACQ and copper azole are roughly twice as corrosive as chromate copper 
arsenate (CCA) and gives recommendations on fastener types for a given environ-
ment and preservative [56].

Recently, however, the durability of fasteners in preservative-treated wood has 
been a key concern. Changes in legislation and certification in some countries have 
restricted the use of chromate copper arsenate (CCA), which used to be the most 
extensively used waterborne wood preservative [57]. Ensuing these changes, several 
different wood preservatives have come to the market, some of which are much 
more corrosive than CCA [58].

Prospective health effects of exposure to copper azole preservative are shown in 
Table 2. Tebuconazole is slightly persistent in the environment, and it is not mobile. 
Also, light intensely increases the degradation progression. Tebuconazole degrada-
tion is approximately 20% in water according to the Organization for Economic 
Co-operation and Development’s Test Guideline 301C. Its half-life in soil is around 
100 days. Tebuconazole is considered moderately toxic to aquatic organisms and has 
a slight potential to bioconcentrate, but it is rapidly eliminated from fish [59].

12. Opportunities for utilizing azoles in wood preservatives

Both old and new structures are susceptible to mold infestation in the absence of 
moisture. Treatment of wood products with nontoxic, nonvolatile fungicides adds 
a level of protection against mold infestation. However, these preservatives have 
corrosion problems. Use of azole-based fungicides to protect wood from indoor 
mold infestations is one strategy to address this problem. Although a lot of recent 
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research has been conducted in this area, no attempt has been made to summarize 
all the recent advances, and confusion exists about the corrosiveness of alternatives 
to CCA and proper materials selection for use in treated wood. Thus, opportunities 
exist in searching for appropriate materials for the requisite preservatives.

Copper azole is a major copper-based wood preservative that has come into 
wide use in both developed and developing countries following restraints on CCA. 
The use of copper azole and other preservatives are directed by national and inter-
national specifications, which give the requirement for the volume of preservative 
application for a specific wood end-use. In terms of chemical composition, copper 
azole is similar to ACQ . The difference between them, however, is the dissolved 
copper preservative which is augmented by an azole co-biocide like organic triazoles 
such as tebuconazole or propioconazole, in the copper azole preservative. These pre-
servatives are also used in food crops protection, instead of the quaternary biocide 
which is used in ACQ [60]. The azole co-biocide produces a copper azole compound 
that is effective at lower retentions than required for equivalent ACQ performance.

Wood treated with copper azole is marketed widely across many international 
markets. The AWPA standard retention for CA-B is 0.10 lb/ft3 for above ground 
applications and 0.21 lb/ft3 for ground contact applications. Copper azole type C 

(Wolman® NB) Possible health effects

Exposure category 
(Route of Entry)

Type of exposure Short-term exposure Long-term exposure

Estimated daily intake from various sources (air, water, food) with limited to no heath effecta

Copper (an essential 
element)

2.47 mg/day

Eye contacta,b Direct contact CA-B concentrate is 
corrosive

Ulceration, may cause 
irreversible damage

Will cause irritation, pain 
and reddening

Skin contacta,b Significant skin 
contact with 
concentrates

Short term (up to 1 hour) Long term

Mild to moderate skin 
irritation, inflammation, 
reddening

Severe irritation, 
ulceration, chemical 
burns

ACGIH threshold limit 
value-time weighted 
averages (TWAs)c

Ethanolamine: 
8 mg/m3 air 3 ppm

Exposure to airbome 
contaminant or dust 
inhalationa,b

Inhalation of mists, 
droplets or dust of 
concentrates

May cause upper 
respiratory tract irritation

Moderate to severe 
irritations of mucous 
membrane, nose, 
throat and lungs

Moderate irritation of 
nose, throat and lungs

ACGIH threshold limit 
value-time weighted 
averages (TWAs)c

Copper (dusts and 
mists): 1.0 mg Cu/
m3 air

Irritation of eyes Irritation of eyes

aInternational Labour Organization ICSC Card database, http://www.ilo.org/dyn/icsc/showcard.home
bAgency for Toxic Substances and Disease Registry (ATSDR) http://www.atsdr.cdc.gov/substances/index.asp
cAmerican Conference of Governmental Industrial Hygienists (ACGIH): http://www.acgih.org/tlv/

Table 2. 
Prospective health effects of exposure to copper azole preservative [59].
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that both ACQ and copper azole are roughly twice as corrosive as chromate copper 
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different wood preservatives have come to the market, some of which are much 
more corrosive than CCA [58].
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tion is approximately 20% in water according to the Organization for Economic 
Co-operation and Development’s Test Guideline 301C. Its half-life in soil is around 
100 days. Tebuconazole is considered moderately toxic to aquatic organisms and has 
a slight potential to bioconcentrate, but it is rapidly eliminated from fish [59].

12. Opportunities for utilizing azoles in wood preservatives

Both old and new structures are susceptible to mold infestation in the absence of 
moisture. Treatment of wood products with nontoxic, nonvolatile fungicides adds 
a level of protection against mold infestation. However, these preservatives have 
corrosion problems. Use of azole-based fungicides to protect wood from indoor 
mold infestations is one strategy to address this problem. Although a lot of recent 
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exist in searching for appropriate materials for the requisite preservatives.
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The use of copper azole and other preservatives are directed by national and inter-
national specifications, which give the requirement for the volume of preservative 
application for a specific wood end-use. In terms of chemical composition, copper 
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servatives are also used in food crops protection, instead of the quaternary biocide 
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that is effective at lower retentions than required for equivalent ACQ performance.
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has been presented under the Wolmanized and Preserve brands. The AWPA stan-
dard retention for CA-C is 0.06 lb/ft3 for above ground applications and 0.15 lb/
ft3 for ground contact applications. Opportunities exist for local standardization 
of these copper-azole preservatives as well as expanded local markets. Also, 
research question on how azoles contribute to the leaching of copper in treated 
wood is significant.

13. Environmental impact of azoles utilization

Azoles are widely used and efficient fungicides commonly employed to treat and 
prevent fungal diseases in humans and animals, as well as in food production, horti-
culture and wood industry. Residues of azoles in nature are regarded as environ-
mental toxins and suggested to have general endocrine-disrupting properties. It has 
been suggested that triazole resistance has evolved in the environment and could be 
driven by the selective pressure of azole fungicides [61].

A significant challenge facing treated wood products is the lack of an effective 
strategy for handling treated wood that has been removed from service [61]. Until 
recently, the fixation processes of the amine wood preservatives were poorly under-
stood, but ongoing research in North American university laboratories is beginning 
to expand the knowledge base considerably [62].

Some research works have shown that copper azole-treated wood can be 
chipped or flaked and recycled to form durable panel products or wood composites. 
However, this type of recycling has not gained significant commercial acceptance 
because of concerns with processing the treated wood. Recycling of the treated 
wood releases the preservatives into the panel fabrication process, which leeches 
into the environment, with consequent adverse impacts [63].

The widespread use of azoles in biomass preservation can affect the environ-
ment and the phytopathogens therein, with concomitant medical implications [64]. 
Accordingly, with azole treatment, fungi causing important human mycoses may 
develop azole-resistance [64, 65]. Azole as fungicide is very significant, as some 
human diseases are caused by fungi such as Aspergillus, Histoplasma, Coccidioides 
and Cryptococcus that survive in different environments [65].

14. Conclusion

Azole-based solar cells, fuel cells, and wood preservatives are of critical impor-
tance in energy applications and wood treatment, respectively. Multiple benefits 
are accrued from exploring this type of research in organic chemistry. Firstly, it will 
help in unraveling the intrinsic chemical behavior of azoles and their interactions 
with other molecules. Secondly, it will significantly help in the advancement of 
novel synthetic methods. Thirdly, using spectral methods for the characterization 
of a set of compounds could create benchmarks for similar molecules. In the next 
step, structure–activity relationships of azoles applications in energy and wood 
preservation will enhance their utilization. Finally, biological evaluation of the 
synthesized azole compounds may explore lead-compounds for further structural 
fine-tuning. Among the broad array of organic compounds, those incorporating 
one or more sulfur or nitrogen atoms like azoles are of great significance because of 
their unique properties imparted by these elements.

There are four main determinants as to how well an OSC will perform in a 
device: oxidative and thermal stability, properly aligned energy levels, good thin-
film morphological characteristics, and purity and defects. The more researchers 
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explore azole functions, the greater the possibility for OPV to demonstrate at last its 
enormous potential on the industrial scale.

Recommendations for additional steps to assess the risks and consequences of 
the environmental usage of azole derivatives are pertinent. With azoles applications 
in both solar cells and fuel cells, where electronic excitations and ions mobility 
properties respectively of the azoles are taken advantage of, a solar PV/fuel cell 
hybrid energy systems for stationary applications employing azoles, could be 
embarked upon, and preliminary energy and exergy efficiency analyses performed 
for the hybrid energy system. Such a system, built on different scientific principles, 
can convert solar energy and chemical energy of fuel to electrical energy simultane-
ously within the same system.

For azole-based fuel cells and solar cells to achieve widespread production and 
adoption in energy applications, especially in developing countries, it is neces-
sary to decrease their cost of production. Also, an increase in research output in 
the area and improvement in the range of environmental conditions under which 
they effectively operate will ensure widespread production and adoption in energy 
applications.

A broad approach that combines preservative formulations, treatment effi-
ciency, component interaction studies, and carefully designed strategies for 
azole-based wood preservative utilization is needed. This approach will increase 
preservative efficacy, corrosion resistance, and reduce the risk of environmental 
pollution, and prevent azole-resistant infections. Improved research work, includ-
ing azole-based preservative optimization and modeling, is a significant key to a 
better understanding of the magnitude of this emerging approach.

© 2020 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 
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in both solar cells and fuel cells, where electronic excitations and ions mobility 
properties respectively of the azoles are taken advantage of, a solar PV/fuel cell 
hybrid energy systems for stationary applications employing azoles, could be 
embarked upon, and preliminary energy and exergy efficiency analyses performed 
for the hybrid energy system. Such a system, built on different scientific principles, 
can convert solar energy and chemical energy of fuel to electrical energy simultane-
ously within the same system.

For azole-based fuel cells and solar cells to achieve widespread production and 
adoption in energy applications, especially in developing countries, it is neces-
sary to decrease their cost of production. Also, an increase in research output in 
the area and improvement in the range of environmental conditions under which 
they effectively operate will ensure widespread production and adoption in energy 
applications.

A broad approach that combines preservative formulations, treatment effi-
ciency, component interaction studies, and carefully designed strategies for 
azole-based wood preservative utilization is needed. This approach will increase 
preservative efficacy, corrosion resistance, and reduce the risk of environmental 
pollution, and prevent azole-resistant infections. Improved research work, includ-
ing azole-based preservative optimization and modeling, is a significant key to a 
better understanding of the magnitude of this emerging approach.

© 2020 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 



130

Azoles - Synthesis, Properties, Applications and Perspectives

[1] Wanga Y, Chen KS, Mishler C, 
Cho SC, Adroher XC. A review of 
polymer electrolyte membrane fuel 
cells: Technology, applications, and 
needs on fundamental research. Applied 
Energy. 2011;88:981-1007

[2] Zhang H, Shen PK. Recent 
development of polymer electrolyte 
membranes for fuel cells. Chemical 
Reviews. 2012;112:2780. DOI: 10.1021/
cr200035s

[3] Wu L, Zhang Z, Ran J, Zhou D, Li C, 
Xu T. Advances in proton-exchange 
membranes for fuel cells: An overview 
on proton conductive channels 
(PCCs). Physical Chemistry Chemical 
Physics. 2013;15:4870. DOI: 10.1039/
C3CP50296A

[4] Kreuer KD. Ion conducting 
membranes for fuel cells and other 
electrochemical devices. Chemistry of 
Materials. 2014;26:361. DOI: 10.1021/
cm402742u

[5] Crossman M, Simm J. Manual on 
the Use of Timber in Coastal and River 
Engineering. London: Thomas Telford 
Publishing; 2004

[6] Borges LMS, Cragg SM, Busch S. A 
laboratory assay for measuring feeding 
and mortality of the marine wood 
borer Limnoria under forced feeding 
conditions: A basis for a standard test 
method. International Biodeterioration 
& Biodegradation. 2009;63:289-296

[7] Hill CAS. Wood Modification: 
Chemical, Thermal and Other 
Processes. Chichester: Wiley; 2006

[8] Eicher T, Hauptmann S. The 
Chemistry of Heterocyclics: Structure, 
Reactions, Synthesis, and Applications. 
2nd ed. Weinheim, Germany: John 
Wiley & Sons; 2003

[9] Souza R, Miranda L. Strategies 
towards the synthesis of N2-substituted 

1,2,3-triazoles. Anais da Academia 
Brasileira de Ciências. 2019;91:24. DOI: 
10.1590/0001-3765201820180751

[10] Shawa AY, Chang C, Hsu M, 
Lu P, Yang C, Chen H, et al. 
Exploration of carbamide derived 
pyrimidine-thioindole conjugates as 
potential VEGFR-2 inhibitors with 
anti-angiogenesis effect. European 
Journal of Medicinal Chemistry. 
2010;45:2860-2867

[11] Kuznetsov YI, Kazansky LP. 
Physicochemical aspects of metal 
protection by azoles as corrosion 
inhibitors. Russian Chemical Reviews. 
2008;77(3):219-232

[12] Gupte M, Kulkarni P, Ganuli BN. 
Antifungal antibiotics. Applied 
Microbiology and Biotechnology. 
2002;58:46-57

[13] Naarmann H. Polymers, electrically 
conducting. In: Ullmann’s Encyclopedia 
of Industrial Chemistry. KGaA: Wiley-
VCH Verlag GmbH & Co; 2000

[14] Hösel M, Angmo D, Krebs FC. 
Organic solar cells. In: Ostroverkhova O, 
editor. Handbook of Organic 
Materials for Optical and (Opto)
electronic Devices: Properties and 
Applications. Cambridge, United 
Kingdom: Woodhead Publishing 
Series; 2013. pp. 473-507. DOI: 
10.1533/9780857098764.3.473

[15] Kietzke T. Advances in 
OptoElectronics. Egypt: Hindawi 
Publishing Corporation; 2007. p. 40285

[16] Loo YL, McCulloch I. Progress 
and challenges in commercialization 
of organic electronics. MRS Bulletin. 
2008;33(7):653-705

[17] Bernius MT, Inbasekaran M, 
O’Brien J, Wu W. Progress with light-
emitting polymers. Advanced Materials. 
2000;12(23):1737-1750

References

131

Azoles for Renewable Energy Development and Wood Treatment
DOI: http://dx.doi.org/10.5772/intechopen.93472

[18] Woolley DW. Some biological 
effects produced by benzimidazole 
and their reversal by purines. The 
Journal of Biological Chemistry. 
1944;152:225-232

[19] Sheehan DJ, Hitchcock CA, 
Sibley CM. Current and emerging azole 
antifungal agents. Clinical Microbiology 
Reviews. 1999;12:40-79

[20] Fromtling R. Overview of medically 
important antifungal azole derivatives. 
Clinical Microbiology Reviews. 
1988;1:187-217

[21] Sanghi S, Tuominen M, 
Coughlin EB. Hybrid inorganic–organic 
proton-exchange membranes containing 
1H-1,2,3-triazole moieties. Solid State 
Ionics. 2010;181:1183. DOI: 10.1016/j.
ssi.2010.06.051

[22] Je-Deok K, Toshiyuki M, 
Shigenobu H, Itaru H. Anhydrous 
proton-conducting properties of 
Nafion–1,2,4-triazole and Nafion–
benzimidazole membranes for polymer 
electrolyte fuel cells. Journal of the 
Electrochemical Society. 2007;154:4. 
DOI: 10.1149/1.2436611

[23] Song MK, Zhu X, Liu M. A triazole-
based polymer electrolyte membrane 
for fuel cells operated in a wide 
temperature range (25-150 °C) with 
little humidification. Journal of Power 
Sources. 2013;241:219

[24] Fátima C, Teixeira C, Rangel M. 
Synthesis of azole phosphonates 
precursors for proton-exchange 
membrane for application in high 
temperature PEM fuel cells. In: 
Proceedings of the 4th International 
Seminar on Advances in Hydrogen 
Energy Technologies: Oportunities and 
Challenges in a Hydrogen Economy. 
Viana do Castelo – Portugal; November 
10-11, 2011

[25] Wolfe JF. Encyclopedia of Polymer 
Science and Engineering. Vol. 11.  

New York, NY: John Wiley and Sons; 
1988. p. 601

[26] Osaka I, Takimiya K, 
McCullough RD. Benzobisthiazole-
based semiconducting copolymers 
showing excellent environmental 
stability in high-humidity air. Advanced 
Materials. 2010;22:4993. DOI: 10.1002/
adma.201002117

[27] Laberty-Robert C, Valle K, Pereira F, 
Sanchez C. Design and properties of 
functional hybrid organic–inorganic 
membranes for fuel cells. Chemical 
Society Reviews. 2011;40:961-1005

[28] Li A, Cao Z, Li Y, Yan T, Shen P. 
Structure and dynamics of proton 
transfer in liquid imidazole. A 
Molecular Dynamics Simulation. 
The Journal of Physical Chemistry. B. 
2012;116:12793-12800

[29] Schuster MFH, Meyer WH, 
Kreuer KD. Toward a new type 
of anhydrous organic proton 
conductor based on immobilized 
imidazole. Chemistry of Materials. 
2004;16:329-337

[30] Edmondson C, Fontanella J, 
Chung SH, Greenbaum SG, Wnek G. 
Complex impedance studies of S-SEBS 
block polymer proton-conducting 
membranes. Electrochimica Acta. 
2001;46(10):1623-1628. DOI: 10.1016/
S0013-4686(00)00762-3

[31] Gustian I, Çelik SÜ, Bozkurt A. 
Novel proton conductive hybrid 
membranes based on sulfonated 
polysulfone and benzotriazole. 
Journal of Materials Research. 
2012;27:2650-2656

[32] Sen U, Unugurcelik S, Ata A, 
Bozkurt A. Anhydrous proton 
conducting membranes for PEM fuel 
cells based on nafion/azole composites. 
International Journal of Hydrogen 
Energy. 2008;33:2808-2815



130

Azoles - Synthesis, Properties, Applications and Perspectives

[1] Wanga Y, Chen KS, Mishler C, 
Cho SC, Adroher XC. A review of 
polymer electrolyte membrane fuel 
cells: Technology, applications, and 
needs on fundamental research. Applied 
Energy. 2011;88:981-1007

[2] Zhang H, Shen PK. Recent 
development of polymer electrolyte 
membranes for fuel cells. Chemical 
Reviews. 2012;112:2780. DOI: 10.1021/
cr200035s

[3] Wu L, Zhang Z, Ran J, Zhou D, Li C, 
Xu T. Advances in proton-exchange 
membranes for fuel cells: An overview 
on proton conductive channels 
(PCCs). Physical Chemistry Chemical 
Physics. 2013;15:4870. DOI: 10.1039/
C3CP50296A

[4] Kreuer KD. Ion conducting 
membranes for fuel cells and other 
electrochemical devices. Chemistry of 
Materials. 2014;26:361. DOI: 10.1021/
cm402742u

[5] Crossman M, Simm J. Manual on 
the Use of Timber in Coastal and River 
Engineering. London: Thomas Telford 
Publishing; 2004

[6] Borges LMS, Cragg SM, Busch S. A 
laboratory assay for measuring feeding 
and mortality of the marine wood 
borer Limnoria under forced feeding 
conditions: A basis for a standard test 
method. International Biodeterioration 
& Biodegradation. 2009;63:289-296

[7] Hill CAS. Wood Modification: 
Chemical, Thermal and Other 
Processes. Chichester: Wiley; 2006

[8] Eicher T, Hauptmann S. The 
Chemistry of Heterocyclics: Structure, 
Reactions, Synthesis, and Applications. 
2nd ed. Weinheim, Germany: John 
Wiley & Sons; 2003

[9] Souza R, Miranda L. Strategies 
towards the synthesis of N2-substituted 

1,2,3-triazoles. Anais da Academia 
Brasileira de Ciências. 2019;91:24. DOI: 
10.1590/0001-3765201820180751

[10] Shawa AY, Chang C, Hsu M, 
Lu P, Yang C, Chen H, et al. 
Exploration of carbamide derived 
pyrimidine-thioindole conjugates as 
potential VEGFR-2 inhibitors with 
anti-angiogenesis effect. European 
Journal of Medicinal Chemistry. 
2010;45:2860-2867

[11] Kuznetsov YI, Kazansky LP. 
Physicochemical aspects of metal 
protection by azoles as corrosion 
inhibitors. Russian Chemical Reviews. 
2008;77(3):219-232

[12] Gupte M, Kulkarni P, Ganuli BN. 
Antifungal antibiotics. Applied 
Microbiology and Biotechnology. 
2002;58:46-57

[13] Naarmann H. Polymers, electrically 
conducting. In: Ullmann’s Encyclopedia 
of Industrial Chemistry. KGaA: Wiley-
VCH Verlag GmbH & Co; 2000

[14] Hösel M, Angmo D, Krebs FC. 
Organic solar cells. In: Ostroverkhova O, 
editor. Handbook of Organic 
Materials for Optical and (Opto)
electronic Devices: Properties and 
Applications. Cambridge, United 
Kingdom: Woodhead Publishing 
Series; 2013. pp. 473-507. DOI: 
10.1533/9780857098764.3.473

[15] Kietzke T. Advances in 
OptoElectronics. Egypt: Hindawi 
Publishing Corporation; 2007. p. 40285

[16] Loo YL, McCulloch I. Progress 
and challenges in commercialization 
of organic electronics. MRS Bulletin. 
2008;33(7):653-705

[17] Bernius MT, Inbasekaran M, 
O’Brien J, Wu W. Progress with light-
emitting polymers. Advanced Materials. 
2000;12(23):1737-1750

References

131

Azoles for Renewable Energy Development and Wood Treatment
DOI: http://dx.doi.org/10.5772/intechopen.93472

[18] Woolley DW. Some biological 
effects produced by benzimidazole 
and their reversal by purines. The 
Journal of Biological Chemistry. 
1944;152:225-232

[19] Sheehan DJ, Hitchcock CA, 
Sibley CM. Current and emerging azole 
antifungal agents. Clinical Microbiology 
Reviews. 1999;12:40-79

[20] Fromtling R. Overview of medically 
important antifungal azole derivatives. 
Clinical Microbiology Reviews. 
1988;1:187-217

[21] Sanghi S, Tuominen M, 
Coughlin EB. Hybrid inorganic–organic 
proton-exchange membranes containing 
1H-1,2,3-triazole moieties. Solid State 
Ionics. 2010;181:1183. DOI: 10.1016/j.
ssi.2010.06.051

[22] Je-Deok K, Toshiyuki M, 
Shigenobu H, Itaru H. Anhydrous 
proton-conducting properties of 
Nafion–1,2,4-triazole and Nafion–
benzimidazole membranes for polymer 
electrolyte fuel cells. Journal of the 
Electrochemical Society. 2007;154:4. 
DOI: 10.1149/1.2436611

[23] Song MK, Zhu X, Liu M. A triazole-
based polymer electrolyte membrane 
for fuel cells operated in a wide 
temperature range (25-150 °C) with 
little humidification. Journal of Power 
Sources. 2013;241:219

[24] Fátima C, Teixeira C, Rangel M. 
Synthesis of azole phosphonates 
precursors for proton-exchange 
membrane for application in high 
temperature PEM fuel cells. In: 
Proceedings of the 4th International 
Seminar on Advances in Hydrogen 
Energy Technologies: Oportunities and 
Challenges in a Hydrogen Economy. 
Viana do Castelo – Portugal; November 
10-11, 2011

[25] Wolfe JF. Encyclopedia of Polymer 
Science and Engineering. Vol. 11.  

New York, NY: John Wiley and Sons; 
1988. p. 601

[26] Osaka I, Takimiya K, 
McCullough RD. Benzobisthiazole-
based semiconducting copolymers 
showing excellent environmental 
stability in high-humidity air. Advanced 
Materials. 2010;22:4993. DOI: 10.1002/
adma.201002117

[27] Laberty-Robert C, Valle K, Pereira F, 
Sanchez C. Design and properties of 
functional hybrid organic–inorganic 
membranes for fuel cells. Chemical 
Society Reviews. 2011;40:961-1005

[28] Li A, Cao Z, Li Y, Yan T, Shen P. 
Structure and dynamics of proton 
transfer in liquid imidazole. A 
Molecular Dynamics Simulation. 
The Journal of Physical Chemistry. B. 
2012;116:12793-12800

[29] Schuster MFH, Meyer WH, 
Kreuer KD. Toward a new type 
of anhydrous organic proton 
conductor based on immobilized 
imidazole. Chemistry of Materials. 
2004;16:329-337

[30] Edmondson C, Fontanella J, 
Chung SH, Greenbaum SG, Wnek G. 
Complex impedance studies of S-SEBS 
block polymer proton-conducting 
membranes. Electrochimica Acta. 
2001;46(10):1623-1628. DOI: 10.1016/
S0013-4686(00)00762-3

[31] Gustian I, Çelik SÜ, Bozkurt A. 
Novel proton conductive hybrid 
membranes based on sulfonated 
polysulfone and benzotriazole. 
Journal of Materials Research. 
2012;27:2650-2656

[32] Sen U, Unugurcelik S, Ata A, 
Bozkurt A. Anhydrous proton 
conducting membranes for PEM fuel 
cells based on nafion/azole composites. 
International Journal of Hydrogen 
Energy. 2008;33:2808-2815



Azoles - Synthesis, Properties, Applications and Perspectives

132

[33] Balzani V, Credi A, Venturi M. 
Photochemical conversion of solar 
energy. ChemSusChem. 2008;1:26-58

[34] Wöhrle D, Meissner D. Organic 
solar cells. Advanced Materials. 
1991;3:129-138

[35] Tang CW. Two-layer organic 
photovoltaic cell. Applied Physics 
Letters. 1986;48(2):183-185

[36] Facchetti A. π-Conjugated polymers 
for organic electronics and photovoltaic 
cell applications. Chemistry of 
Materials. 2011;23:733-758. DOI: 
10.1021/cm102419z

[37] van Mullekom HAM, 
Vekemans JAJM, Havinga EE, Meijer W. 
Developments in the chemistry and 
band gap engineering of donor-acceptor 
substituted conjugated polymers. 
Materials Science and Engineering R. 
2001;32(1):1-40. DOI: 10.1016/
S0927-796X(00)00029-2

[38] Sariciftci NS. Plastic photovoltaic 
devices. Materials Today. 
2004;7(9):36-40

[39] Nakamura T, Okazaki S, 
Arakawa N, Satou M, Endo M, 
Murata Y, et al. Synthesis of azole-fused 
benzothiadiazoles as key units for 
functional π-conjugated compounds. 
Journal of Photopolymer Science and 
Technology. 2017;30(5):561-568. DOI: 
10.2494/photopolymer.30.561

[40] Zhou E, Nakamura M, Nishizawa T, 
Zhang Y, Wei Q , Tajima K, et al. 
Synthesis and photovoltaic properties 
of a novel low band gap polymer 
based on N-substituted dithieno 
[3,2-b:2′,3′-d]pyrrole. Macromolecules. 
2008;41(22):8302-8305

[41] Blouin N, Michaud A, Leclerc M. 
A low-bandgap poly(2,7-carbazole) 
derivative for use in high-performance 
solar cells. Advanced Materials. 
2007;19(17):2295-2300

[42] Scharfenberger G, Meyer WH, 
Wegner G, Schuster M, Kreuer KD, 
Maier J. Anhydrous polymeric proton 
conductors based on imidazole 
functionalized polysiloxane. Fuel Cells. 
2006;6:237-250

[43] Hu XD, Jenkins SE, Min BG, 
Polk MB, Kumar S. Rigid-rod 
polymers: Synthesis, processing, 
simulation, structure, and properties. 
Macromolecular Materials and 
Engineering. 2003;288(11):823-843

[44] Conti F, Willbold S, Mammi S, 
Korte C, Lehnert W, Stolten D. 
Carbon NMR investigation of the 
polybenzimidazole–dimethylacetamide 
interactions in membranes for fuel cells. 
New Journal of Chemistry. 2013;37:152

[45] Start PR, Mauritz KA. Surlyn®/
silicate nanocomposite materials via 
a polymer in situ sol–gel process: 
Morphology. Journal of Polymer 
Science Part B: Polymer Physics. 
2003;41:1563-1571

[46] Celik SU, Bozkurt A, Hosseini SS. 
Alternatives toward proton conductive 
anhydrous membranes for fuel cells: 
Heterocyclic protogenic solvents 
comprising polymer electrolytes. 
Progress in Polymer Science. 
2012;3:1265

[47] Anon A. WPA U1-06: Use Category 
System. Granbury, TX: American Wood 
Preservers’ Association; 2007

[48] Grundlinger R, Exner O. 
Tebuconazole, a new wood preserving 
fungicide. In: Proceedings of the 21st 
Annual Meeting of IRG/WP/3634. 
Rotorua, New Zealand; 1990. p. 3

[49] Kugler M, Bruns R, Jaetsch T, 
Spetmann P. Fungicidal Mixtures for 
Wood Preservation. Pittsburg, US: 
Lanxess Corp; 2008

[50] Arch Timber Protection. Best 
Practice - Treatment Plant Design 

133

Azoles for Renewable Energy Development and Wood Treatment
DOI: http://dx.doi.org/10.5772/intechopen.93472

and Site Maintenance. Technical, 
Environmental & regulatory Affairs, 
Ref Gl/08; 2008

[51] Enviros Consulting Ltd. Assessment 
of File on Classification of Treated 
Timber Waste. Final Report prepared 
for the Environmental Protection 
Agency. Manchester; 2003. pp. 8-10

[52] Kovačević N, Kokalj A. DFT study 
of interaction of azoles with Cu(111) 
and Al(III) surfaces: Role of azole 
nitrogen atoms and dipole–dipole 
interactions. Journal of Physical 
Chemistry C. 2011;115(49):24189-24197. 
DOI: 10.1021/jp207076w

[53] Stan T. Lebow Wood Preservation 
General Technical Report, Vol. 15. FPL–
GTR–190; 2010. pp. 1-28

[54] Joerg H. Copper-based wood 
preservative formulations. In: 
Proceedings of the Workshop 
on Lifecycle Impacts of Copper 
Nanomaterials Released from Timber 
Preserving Impregnations. Venice, Italy: 
University Ca’ Foscari; January 2016

[55] Kay TH, Lisa P, Anthony AC, 
Marguerite P, Mark C, David K, et al. 
Effects of micronized and nano-copper 
azole on marine benthic communities. 
Environmental Toxicology and 
Chemistry. 2017;37:362-375. DOI: 
10.1002/etc.3954

[56] Simpson Strong Tie. Corrosion Fact 
Sheet. Simpson Strong Tie Technical 
Bulletin T-PTWOOD06. 2006. Available 
from: www.strongtie.com/ftp/bulletins/
T-PTWOOD06.pdf

[57] Lebow S. Wood preservation. 
In: Wood handbook – Wood as an 
engineering material. Madison, WI: 
U.S. Department of Agriculture, Forest 
Service, Forest Products Laboratory; 
2010. p. 508

[58] Kear G, Wu HZ, Jones MS. Weight 
loss studies of fastener materials 

corrosion in contact with timbers 
treated with copper azole and alkaline 
copper quaternary compounds. 
Corrosion Science. 2009;51:252-262

[59] Occupational Safety & Health 
Administration (OSHA). Permissible 
Exposure Limits (PELs). Available from: 
http://www.osha.gov/dsg/topics/pel/
index.html

[60] Lebow S. Alternatives to Chromated 
Copper Arsenate for Residential 
Construction. US Department of 
Agriculture. Report Research Paper 
FPL-RP-618; 2004

[61] Connell M. Waste management 
options in the wood protection industry. 
Journal of the Institute of Wood Science. 
1999;15(1):51-58

[62] JCF W, editor. Primary Wood 
Processing: Principles and Practice. 
2nd ed. Berlin, Heidelberg: Springer; 
2006. p. 336

[63] Kartal SN, Clausen CA. Leachability 
and decay resistance of particleboard 
made from acid extracted and 
bioremediated CCA-treated wood. 
International Biodeterioration & 
Biodegradation. 2001;47:18391

[64] Hof H. Critical annotations to 
the use of azole antifungals for plant 
protection. Antimicrobial Agents and 
Chemotherapy. 2001;45:2987-2990

[65] Azevedo MM, Faria-Ramos I, 
Cruz LC, Pina-Vaz C, Rodrigues AG. 
Genesis of azole antifungal resistance 
from agriculture to clinical settings. 
Journal of Agricultural and Food 
Chemistry. 2015;63:7463-7468



Azoles - Synthesis, Properties, Applications and Perspectives

132

[33] Balzani V, Credi A, Venturi M. 
Photochemical conversion of solar 
energy. ChemSusChem. 2008;1:26-58

[34] Wöhrle D, Meissner D. Organic 
solar cells. Advanced Materials. 
1991;3:129-138

[35] Tang CW. Two-layer organic 
photovoltaic cell. Applied Physics 
Letters. 1986;48(2):183-185

[36] Facchetti A. π-Conjugated polymers 
for organic electronics and photovoltaic 
cell applications. Chemistry of 
Materials. 2011;23:733-758. DOI: 
10.1021/cm102419z

[37] van Mullekom HAM, 
Vekemans JAJM, Havinga EE, Meijer W. 
Developments in the chemistry and 
band gap engineering of donor-acceptor 
substituted conjugated polymers. 
Materials Science and Engineering R. 
2001;32(1):1-40. DOI: 10.1016/
S0927-796X(00)00029-2

[38] Sariciftci NS. Plastic photovoltaic 
devices. Materials Today. 
2004;7(9):36-40

[39] Nakamura T, Okazaki S, 
Arakawa N, Satou M, Endo M, 
Murata Y, et al. Synthesis of azole-fused 
benzothiadiazoles as key units for 
functional π-conjugated compounds. 
Journal of Photopolymer Science and 
Technology. 2017;30(5):561-568. DOI: 
10.2494/photopolymer.30.561

[40] Zhou E, Nakamura M, Nishizawa T, 
Zhang Y, Wei Q , Tajima K, et al. 
Synthesis and photovoltaic properties 
of a novel low band gap polymer 
based on N-substituted dithieno 
[3,2-b:2′,3′-d]pyrrole. Macromolecules. 
2008;41(22):8302-8305

[41] Blouin N, Michaud A, Leclerc M. 
A low-bandgap poly(2,7-carbazole) 
derivative for use in high-performance 
solar cells. Advanced Materials. 
2007;19(17):2295-2300

[42] Scharfenberger G, Meyer WH, 
Wegner G, Schuster M, Kreuer KD, 
Maier J. Anhydrous polymeric proton 
conductors based on imidazole 
functionalized polysiloxane. Fuel Cells. 
2006;6:237-250

[43] Hu XD, Jenkins SE, Min BG, 
Polk MB, Kumar S. Rigid-rod 
polymers: Synthesis, processing, 
simulation, structure, and properties. 
Macromolecular Materials and 
Engineering. 2003;288(11):823-843

[44] Conti F, Willbold S, Mammi S, 
Korte C, Lehnert W, Stolten D. 
Carbon NMR investigation of the 
polybenzimidazole–dimethylacetamide 
interactions in membranes for fuel cells. 
New Journal of Chemistry. 2013;37:152

[45] Start PR, Mauritz KA. Surlyn®/
silicate nanocomposite materials via 
a polymer in situ sol–gel process: 
Morphology. Journal of Polymer 
Science Part B: Polymer Physics. 
2003;41:1563-1571

[46] Celik SU, Bozkurt A, Hosseini SS. 
Alternatives toward proton conductive 
anhydrous membranes for fuel cells: 
Heterocyclic protogenic solvents 
comprising polymer electrolytes. 
Progress in Polymer Science. 
2012;3:1265

[47] Anon A. WPA U1-06: Use Category 
System. Granbury, TX: American Wood 
Preservers’ Association; 2007

[48] Grundlinger R, Exner O. 
Tebuconazole, a new wood preserving 
fungicide. In: Proceedings of the 21st 
Annual Meeting of IRG/WP/3634. 
Rotorua, New Zealand; 1990. p. 3

[49] Kugler M, Bruns R, Jaetsch T, 
Spetmann P. Fungicidal Mixtures for 
Wood Preservation. Pittsburg, US: 
Lanxess Corp; 2008

[50] Arch Timber Protection. Best 
Practice - Treatment Plant Design 

133

Azoles for Renewable Energy Development and Wood Treatment
DOI: http://dx.doi.org/10.5772/intechopen.93472

and Site Maintenance. Technical, 
Environmental & regulatory Affairs, 
Ref Gl/08; 2008

[51] Enviros Consulting Ltd. Assessment 
of File on Classification of Treated 
Timber Waste. Final Report prepared 
for the Environmental Protection 
Agency. Manchester; 2003. pp. 8-10

[52] Kovačević N, Kokalj A. DFT study 
of interaction of azoles with Cu(111) 
and Al(III) surfaces: Role of azole 
nitrogen atoms and dipole–dipole 
interactions. Journal of Physical 
Chemistry C. 2011;115(49):24189-24197. 
DOI: 10.1021/jp207076w

[53] Stan T. Lebow Wood Preservation 
General Technical Report, Vol. 15. FPL–
GTR–190; 2010. pp. 1-28

[54] Joerg H. Copper-based wood 
preservative formulations. In: 
Proceedings of the Workshop 
on Lifecycle Impacts of Copper 
Nanomaterials Released from Timber 
Preserving Impregnations. Venice, Italy: 
University Ca’ Foscari; January 2016

[55] Kay TH, Lisa P, Anthony AC, 
Marguerite P, Mark C, David K, et al. 
Effects of micronized and nano-copper 
azole on marine benthic communities. 
Environmental Toxicology and 
Chemistry. 2017;37:362-375. DOI: 
10.1002/etc.3954

[56] Simpson Strong Tie. Corrosion Fact 
Sheet. Simpson Strong Tie Technical 
Bulletin T-PTWOOD06. 2006. Available 
from: www.strongtie.com/ftp/bulletins/
T-PTWOOD06.pdf

[57] Lebow S. Wood preservation. 
In: Wood handbook – Wood as an 
engineering material. Madison, WI: 
U.S. Department of Agriculture, Forest 
Service, Forest Products Laboratory; 
2010. p. 508

[58] Kear G, Wu HZ, Jones MS. Weight 
loss studies of fastener materials 

corrosion in contact with timbers 
treated with copper azole and alkaline 
copper quaternary compounds. 
Corrosion Science. 2009;51:252-262

[59] Occupational Safety & Health 
Administration (OSHA). Permissible 
Exposure Limits (PELs). Available from: 
http://www.osha.gov/dsg/topics/pel/
index.html

[60] Lebow S. Alternatives to Chromated 
Copper Arsenate for Residential 
Construction. US Department of 
Agriculture. Report Research Paper 
FPL-RP-618; 2004

[61] Connell M. Waste management 
options in the wood protection industry. 
Journal of the Institute of Wood Science. 
1999;15(1):51-58

[62] JCF W, editor. Primary Wood 
Processing: Principles and Practice. 
2nd ed. Berlin, Heidelberg: Springer; 
2006. p. 336

[63] Kartal SN, Clausen CA. Leachability 
and decay resistance of particleboard 
made from acid extracted and 
bioremediated CCA-treated wood. 
International Biodeterioration & 
Biodegradation. 2001;47:18391

[64] Hof H. Critical annotations to 
the use of azole antifungals for plant 
protection. Antimicrobial Agents and 
Chemotherapy. 2001;45:2987-2990

[65] Azevedo MM, Faria-Ramos I, 
Cruz LC, Pina-Vaz C, Rodrigues AG. 
Genesis of azole antifungal resistance 
from agriculture to clinical settings. 
Journal of Agricultural and Food 
Chemistry. 2015;63:7463-7468



Azoles 
Synthesis, Properties, Applications  

and Perspectives

Edited by Aleksey Kuznetsov

Edited by Aleksey Kuznetsov

Azoles are a broad and promising class of five-membered heterocyclic compounds 
containing from one up to five nitrogen atom(s) that can also contain sulfur or 

oxygen atoms. Widely used as potent antifungal agents, various azole derivatives 
have also demonstrated many other promising biological properties. This book covers 
studies of several types of thiazole-based heterocyclic scaffolds, the development of 
4-thiazolidinone and thiazole derivatives with heterocyclic fragments as potential 

candidates for new drugs against trypanosomiasis, numerous synthetic approaches for 
the synthesis of 1,2,3-triazoles, the application of N-azole, N,S-azole, and N,O-azole as 
well as their derivatives as retarders of metallic corrosion, and the integration of azoles 

in materials used for renewable energy processing and applications and wood treatment.

Published in London, UK 

©  2021 IntechOpen 
©  selvanegra / iStock

ISBN 978-1-83968-179-0

A
zoles - Synthesis, Properties, A

pplications and Perspectives

ISBN 978-1-83968-181-3


	Azoles - Synthesis, Properties, Applications and Perspectives
	Contents
	Preface
	Section 1 - Introduction
	Chapter1
Introductory Chapter: Azoles, Their Importance, and Applications

	Section 2
Thiazoles and Their Derivatives: Synthesis and Applications
	Chapter2
Synthesis and Biological Evaluation of Thiazole Derivatives
	Chapter3
Thiazolidinone-Related Heterocyclic Compounds as Potential Antitrypanosomal Agents

	Section 3
Triazoles: Synthesis and Applications
	Chapter4
1,2,3-Triazoles: Synthesis and Biological Application

	Section 4
Miscellaneous Applications of Azoles
	Chapter5
Azole-Based Compounds as Corrosion Inhibitors for Metallic Materials
	Chapter6
Azoles for Renewable Energy Development and Wood Treatment


