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Preface

This book is devoted to some of the current fundamental tools on physics, 
communications, economy and health, that is, Fourier transforms and the treatment 
of superconductivity under the vision of the electromagnetic properties of both 
type I and type II superconductors. We begin in Chapter 1, “On the Zap Integral 
Operators over Fourier Transforms,” with the latest applications and mathematical 
properties of Fourier transforms like projection operators aimed at communications 
and electromagnetic emissions. The authors prove that under an appropriate space 
generated by the solutions of the generalized inhomogeneous Fredholm equation it is 
possible to operate in it with integral operators like those of the quantum mechanics 
theory, killing and creating solutions of homogeneous or inhomogeneous Fredholm 
equations, which can be used to improve communications and broadcasting by 
selecting the type of behavior we need. Chapter 2, “Quantum Fourier Operators 
and Their Application” revises the structure of the Quantum Fourier Operators 
(QFT) and its implementation putting these concepts in their proper perspective, 
the authors provide a brief overview of quantum computation and provide a 
permutation structure for putting the QFT in the context of universal computation. 
In Chapter 3, “A Fast Method for Numerical Realization of Fourier Tools,” the 
author presents a new algorithm for fast summations of truncated Fourier series. 
Chapter 4, “Fourier Transform Infrared Spectroscopy of the Animal Tissues,” 
examines how animal tissues are extensively used as scaffolds for tissue engineering 
and regenerative therapies. They are typically subjected to a decellularization 
process to obtain cell-free extracellular matrix (ECM) scaffolds. It is important to 
identify the chemical structure of the ECM scaffolds, and Fourier transform infrared 
spectroscopy (FTIR) appears to be the technique of choice. The chapter presents 
FTIR spectra of native and decellularized buffalo aortae, buffalo diaphragms, goat 
skin, and native bovine cortical bone. The transmittance peaks are that of organic 
collagen amide A, amide B, amide I, amide II, and amide III chemical functional 
groups in both native and decellularized aortae, diaphragms, and skin. In bone, the 
transmittance peaks are that of inorganic ν1, ν3 PO4

3−, OH− in addition to organic 
collagen amide A, amide B, amide I, amide II, and amide III chemical functional 
groups. In Chapter 5, “Medical Image Classification Using the Discriminant Power 
Analysis (DPA) of Discrete Cosine Transform (DCT) Coefficients,” we see the 
relevance of medical imaging systems in medicine. These systems assist specialists 
in making the final decision about a patient’s condition, and strongly help in early 
cancer detection. The classification of mammogram images represents a very 
important operation to identify whether breast cancer is benign or malignant. The 
authors propose a new computer-aided diagnostic (CAD) system composed of three 
steps. In the first step, the input image is pre-processed to remove the noise and 
artifacts and to separate the breast profile from the pectoral muscle. This operation 
is a difficult task that can affect the final decision. In the second step, we propose a 
features extraction method based on the discrete cosine transform (DCT), where the 
processed images of the breast profiles are transformed by the DCT where the part 
containing the highest energy value is selected. Then, in the features selection step, a 
new most discriminative power coefficients algorithm is proposed to select the most 
significant features. The obtained results show the effectiveness. In Chapter 6, “Path 
Integral Two Dimensional Models of P– and D–Wave Superconductors and Collective 

XII
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Modes,” we return to superconductivity in which the main parameter that is the order 
parameter describes superfluids and superconductors and all their main properties.

All properties of 2D–superconductors (for example, of CuO2 planes of HTSC) and, in 
particular, the collective excitations spectrum, are determined by these functionals. 
The authors consider all superconducting states, arising in symmetry classification 
of p-wave and d-wave 2D–superconductors, and calculate the full collective modes 
spectrum for each of these states. This will help to identify the type of pairing and the 
symmetry of the order parameter in HTSC and HFSC. In Chapter 7, “Periodogram 
Analysis under the Popper-Bayes Approach,” the authors describe the Lomb-Scargle 
periodogram, its advantages, and pitfalls from a geometrical rather than statistical 
point of view. This means emphasizing more the transformation properties of the 
finite sampling (i.e., the available data) rather than the ensemble properties of the 
assumed model statistical distributions. The whole discussion is under the geophysi-
cal inverse theory point of view, the Tarantola’s combination of information or the 
so-called Popper-Bayes approach. Finally, the authors discuss the Lomb-Scargle-
Tarantola (LST) periodogram, which is an estimator of spectral content existing in 
irregularly sampled time series that implements these principles. Chapter 8, “Spread 
Option Pricing on Single-Core and Parallel Computing Architectures,” introduces 
parallel computation for spread options using a two-dimensional Fourier transform. 
Spread options are multi-asset options whose payoffs depend on the difference of 
two underlying financial securities. Their results indicate a significant increase in 
computational performance when the algorithm is performed on multiple CPU cores 
and GPU. Moreover, the literature on spread option pricing using FFT methods docu-
ments that the pricing accuracy increases with FFT grid size while the computational 
speed has opposite effect. By using the multi-core/GPU implementation, the trade-
off between pricing accuracy and speed is taken into account effectively. In Chapter 9, 
“Use of Transforms in Biomedical Signal Processing and Analysis,” the authors write 
about low-frequency biomedical signals like electrocardiogram (ECG), photoplethys-
mographic (PPG), and blood pressure that need to be processed for further diagnosis 
and clinical monitoring. They use Fourier and wavelet transforms to reduce motion 
artifacts from PPG signals to produce correct blood oxygen saturation (SpO2) values. 
In an important contribution, FT is utilized for the generation of the reference signal 
for adaptive filter-based motion artifact reduction eliminating additional sensors for 
the acquisition of reference signals. In Chapter 10, “Insights from Systematic DFT 
Calculations on Superconductors,” the authors present three systematic approaches 
to the use of Density Functional Theory (DFT) for interpretation and prediction of 
superconductivity in new or existing materials. Systematic calculations on conven-
tional superconductors show that to attain a level of resolution comparable to the 
energy gap, two key parameters, Δk and the cut-off energy, must be optimized for a 
specific compound. The optimal level of resolution is achieved with k-grids smaller 
than the minimum reciprocal space separation between key parallel Fermi surfaces. 
These approaches enable estimates of superconducting properties including the 
transition temperature (Tc). They demonstrate these approaches for the conventional 
superconductors MgB2, metal substituted MgB2, and boron-doped diamond.

Juan Manuel Velázquez Arcos
Basic Sciences Department,

Metropolitan Autonomous University,
CDMX, México
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Chapter 1

On the Zap Integral Operators
over Fourier Transforms
Juan Manuel Velazquez Arcos,
Ricardo Teodoro Paez Hernandez, Alejandro Perez Ricardez,
Jaime Granados Samaniego and Alicia Cid Reborido

Abstract

We devote the current chapter to describe a class of integral operators with
properties equivalent to a killer operator of the quantum mechanics theory acting
over a determined state, literally killing the state but now operating over some kind
of Fourier integral transforms that satisfies a certain Fredholm integral equation, we
call this operators Zap Integral Operators (ZIO). The result of this action is to
eliminate the inhomogeneous term and recover a homogeneous integral equation.
We show that thanks to this class of operators we can explain the presence of two
extremely different solutions of the same Generalized Inhomogeneous Fredholm
equation. So we can regard the Generalized Inhomogeneous Fredholm Equation as a
Super-Equation with two kinds of solutions, the resonant and the conventional but
coexisting simultaneously. Also, we remember the generalized projection operators
and we show they are the precursors of the ZIO. We present simultaneous academic
examples for both kinds of solutions.

Keywords: integral operators, generalized inhomogeneous Fredholm equations,
killer operators, evanescent waves, electromagnetic resonances

1. Introduction

Recently a new question about the solutions of integral Fredholm emerges, that
is the question about the type of equation each of them solve. If we follow the steps
or the clue marked by the linear second order differential equations the solutions of
the inhomogeneous equation do not solve de homogeneous equation. But we have
shown in a recent paper that both kind of solutions of the homogeneous and also the
inhomogeneous Fredholm equations satisfy a third class of integral equation we
named the Generalized Inhomogeneous Fredholm Equation (GIFE) which is only a
bit different for the traditional inhomogeneous [1–3]. Even more, we can transform
his appearance in a continuous form from homogeneous to inhomogeneous, but
preserving his very extraordinary property: the two kinds of solutions are simulta-
neous solutions. This situation is quite different from differential equations but not
the connection between eigenfunctions and solutions of inhomogeneous equations
through the Green function [4–7]. And if we want to explain this behavior we find a
founder: an integral operator which is hidden in the structure of the GIFE. There is
no surprise in the fact that the new operator treats in different manner both kinds of
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solutions. Indeed, it seems to be natural that the new operators include the Green
function and are close to the Fredholm operator [2, 3]. Before we define the ZIO
operators we must underline the fact that in a broadcasting situation [8–10] we
must take into accounts not only one kind of traveling waves but all the known ones
because the complete description of the phenomena comes from the GIFE. Another
important goal of this paper is to give an explanation of the simultaneous validity of
two sets of boundary conditions that are very apart one to the other and the fact that
there is a connection with other projection operators, the generalized projection
operators (GPO) [11] that separates the constituents of a signal in orthogonal parts.

2. Remembering the GIFE

We remember that if we take the inhomogeneous vector integral Fredholm
Eq. (1):

um r,ωð Þ ¼ um ∘ð Þ r,ωð Þ

þ λ ωð Þ
ð∞

0

Km ∘ð Þ
n ω; r, r0ð Þun r0,ωð Þdr0

(1)

Where the kernel Km ∘ð Þ
n ω; r, r0ð Þ, is the product of the interaction Am

t ω; r, sð Þ
(may be a non-local potential) with the free Green function Gt ∘ð Þ

n ω; r, sð Þ.
And we make the ansatz of two successive approximations (a second order

approach) [9], by the consideration that λ ωð Þ is a number with a very small absolute
value ( λ ωð Þj j≪ 1), we arrive to the integral equation we named the GIFE:

sm r,ωð Þ ¼ sm ∘ð Þ r,ωð Þ þ Θm r,ωð Þ

þ ν ωð Þ
ð∞

0

Km ∘ð Þ
n ω; r, r0ð Þsn r0,ωð Þdr0

(2)

This last equation is the one that have the property of represent a complete
panorama in a broadcasting problem, that is describes both the resonant and the
conventional behavior of the electromagnetic field [12].

As we have commented, Eq. (2) carries a mechanism that allows
simultaneously consider both types of solution. The so called generalized source is
indeed a blend of integral operators as we will see with properties we want to
visualize. But first we must present the Generalized Homogeneous Fredholm
Equation (GHFE) [1]:

yme r;ωð Þ ¼ ηe ωð Þ
ð∞

0

Km ∘ð Þ
n ω; r, r0ð Þyne dr0 (3)

Eq. (3) has a special index e that mean a specific resonance [1, 4, 5, 8, 9]. Among
the three Eqs. (1), (2), and (3) there are a common ingredient, for each equation we
have used different names: λ, ν and η [1–3] but any of them can be incorporated to
the kernel or used as an independent function or even an eigenvalue. In order to
connect the homogeneous and inhomogeneous equation we must define some
functions as we will see in the next sections.
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3. Connection between the eigenvalues ηe and the functionλ

We know that because of the Hilbert-Schmidt theory [2, 3] and more recently by
our previous results [1], the solutions of Eq. (3) that is all the yme r;ωð Þ, form a set of
orthogonal functions and then a set of eigenvalues ηe ωð Þ. Thus we can relate the
functions appearing in Eqs. (1) and (3) as follows:

By means of the spectral representation of Green function, [2, 3] we have:

Gn ∘ð Þ
m ω; r, sð Þ ¼

X
e
Ce

yme rð Þyne sð Þ
λ� ηe

(4)

And also

um r,ωð Þ ¼ um ∘ð Þ r,ωð Þ

�
X∞
e¼1

ð∞

0

yme r,ωð Þyne r0,ωð Þ
λ ωð Þ � ηe ωð Þ um ∘ð Þ r0;ωð Þdr0

(5)

The orthogonality relation is

ð∞

0

yme r;ωð ÞAmnyni r;ωð Þdr ¼ 0 ifi 6¼ e (6)

4. Conditions imposed over the homogeneous Fredholm equations

In accordance with the theory of homogeneous Fredholm integral equations
[1, 2, 13], the first Fredholm minor is a two point function, like a Green function,
which must comply with an integral equation:

M m r, r0;ωð Þ ¼ η ωð ÞΔ η,ωð Þ

þ η ωð Þ
ð∞

0

Km ∘ð Þ
n ω; r, sð ÞM n s, r0;ωð Þds

(7)

Two other conditions must be satisfied:
The first is that Fredholm determinant is zero

Δ η,ωð Þ ¼ 0 (8)

The second that the Fredholm eigenvalue equals to one:

η ωð Þ ¼ 1 (9)

But thanks to our second order approximation Eq. (2) we can show that other
interesting conditions are satisfied, for example if we define some particular
functions (and operators):

Ψ r;ωð Þ � M m r, r0;ωð Þ � Δ η,ωð Þum r;ωð Þ (10)
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yme r;ωð Þ ¼ ηe ωð Þ
ð∞

0

Km ∘ð Þ
n ω; r, r0ð Þyne dr0 (3)

Eq. (3) has a special index e that mean a specific resonance [1, 4, 5, 8, 9]. Among
the three Eqs. (1), (2), and (3) there are a common ingredient, for each equation we
have used different names: λ, ν and η [1–3] but any of them can be incorporated to
the kernel or used as an independent function or even an eigenvalue. In order to
connect the homogeneous and inhomogeneous equation we must define some
functions as we will see in the next sections.
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3. Connection between the eigenvalues ηe and the functionλ

We know that because of the Hilbert-Schmidt theory [2, 3] and more recently by
our previous results [1], the solutions of Eq. (3) that is all the yme r;ωð Þ, form a set of
orthogonal functions and then a set of eigenvalues ηe ωð Þ. Thus we can relate the
functions appearing in Eqs. (1) and (3) as follows:

By means of the spectral representation of Green function, [2, 3] we have:

Gn ∘ð Þ
m ω; r, sð Þ ¼

X
e
Ce

yme rð Þyne sð Þ
λ� ηe

(4)

And also

um r,ωð Þ ¼ um ∘ð Þ r,ωð Þ

�
X∞
e¼1

ð∞

0

yme r,ωð Þyne r0,ωð Þ
λ ωð Þ � ηe ωð Þ um ∘ð Þ r0;ωð Þdr0

(5)

The orthogonality relation is

ð∞

0

yme r;ωð ÞAmnyni r;ωð Þdr ¼ 0 ifi 6¼ e (6)

4. Conditions imposed over the homogeneous Fredholm equations

In accordance with the theory of homogeneous Fredholm integral equations
[1, 2, 13], the first Fredholm minor is a two point function, like a Green function,
which must comply with an integral equation:

M m r, r0;ωð Þ ¼ η ωð ÞΔ η,ωð Þ

þ η ωð Þ
ð∞

0

Km ∘ð Þ
n ω; r, sð ÞM n s, r0;ωð Þds

(7)

Two other conditions must be satisfied:
The first is that Fredholm determinant is zero

Δ η,ωð Þ ¼ 0 (8)

The second that the Fredholm eigenvalue equals to one:

η ωð Þ ¼ 1 (9)

But thanks to our second order approximation Eq. (2) we can show that other
interesting conditions are satisfied, for example if we define some particular
functions (and operators):

Ψ r;ωð Þ � M m r, r0;ωð Þ � Δ η,ωð Þum r;ωð Þ (10)
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And also

Ψ ∘ð Þ r;ωð Þ � Δ η,ωð Þ η ωð Þ � um ∘ð Þðr;ωÞ
h i

þ Δ η,ωð Þ η ωð Þ � ν ωð Þ½ �
ð∞

0

Km ∘ð Þ
n ω; r, r0ð Þun r0;ωð Þdr0

(11)

We can see that the first Fredholm minor must satisfy through Ψ the inhomo-
geneous equation

Ψ r;ωð Þ � Ψ ∘ð Þ r;ωð Þ þ η ωð Þ
ð∞

0

Km ∘ð Þ
n ω; r, tð ÞΨ t;ωð Þdt (12)

In order to write Eq. (2) in terms of the solutions of Eq. (1), we can define the
operator:

Θm r;ωð Þ � ν2 ωð Þε ωð Þ
ð∞

0

Km ∘ð Þ
n ω; r, r0ð Þ

ð∞

0

Kn ∘ð Þ
l ω; r0, r00ð ÞPm r00;ωð Þdr00dr0 (13)

In Eq. (13) the function Pm r;ωð Þ is an arbitrary negative exponential regulator.
Near a resonance the two small parameters ν ωð Þ and ε ωð Þ makes Θm r;ωð Þ lesser

than a second order term, so can be neglected. Far of a resonance this later function
sketches the behavior of the simultaneous existence of the resonant and non-
resonant solutions because in terms of Θm r;ωð Þ the conventional waves satisfy the
inhomogeneous equation:

um r;ωð Þ ¼ um ∘ð Þ r;ωð Þ þ Θm r;ωð Þ

þ ν ωð Þ
ð∞

0

Km ∘ð Þ
n ω; r, r0ð Þun r0;ωð Þdr0

(14)

5. Defining a new class of integral operators

As we said in Section 1, hidden in the structure of Eq. (2) there are some integral
operators which allow the simultaneous existence of solutions with extremely
different boundary conditions. So, let us define the Zap operators by the rules:

Zum r;ωð Þ � Z r;ω; um ∘ð Þ r;ωð Þ
h i

um r;ωð Þ ¼

þ Δ ηð Þ η� um oð Þ r;ωð Þ
h i

þ η

ð∞

0

Km ∘ð Þ
n ω; r, r0ð Þun r0;ωð Þdr0

(15)

That is, the Zap operator is associated to the integral Fredholm equation satisfied
by the affected solution (um r;ωð Þ or yme r;ωð Þ), from which takes the source term
and the free kernel.
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The same operator (15) acting over a homogeneous equation looks like

Zyme r;ωð Þ � Z r;ω; 0½ �yme r;ωð Þ ¼
þ Δ ηð Þ η� 0½ �

þ η

ð∞

0

Km ∘ð Þ
n ω; r, r0ð Þyne r0;ωð Þdr0

(16)

That is

Zyme r;ωð Þ � Z r;ω; 0½ �yme r;ωð Þ ¼ λyme r;ωð Þ (17)

As we can see the effect of the Zap operator is to kill or eliminate the inhomo-
geneous term when applied to a resonant state. But this seems very artificial because
we are giving indeed two parts for the complete rule. However we can build
projection operators that can make the work we need.

Now, we define Zap projection operators in the next section.

6. The zap projection operators and their properties

On this section, we define the so named Zap projection operators (ZPO) which
enable us to project a complex broadcasting system over a reduced resonant sim-
plest one. The Zap operators acts over Fourier transforms [14, 15] related to integral
operators.

Then, based on (15) and (17), we define de following operator:

P r;ω; um ∘ð Þ r;ωð Þ
� �

¼ lim
η!1

Z r;ω; um ∘ð Þ r;ωð Þ
� �

(18)

In order to get a display of the properties of this operator we propose a specific
set of discrete antennas in the next example:

Suppose that we have p punctual sources that can be represented in the
inhomogeneous term of the Fredholm equation like:

um ∘ð Þ r;ωð Þ ¼
Xp

i¼1

αni δ r� rið ÞKm ∘ð Þ
n ω; r, rið Þ (19)

Then, by applying the projection operator to Eq. (19) we have (remember that
when η ¼ 1 thus Δ ¼ 0):

P r;ω; um ∘ð Þ r;ωð Þ
h i

um r;ωð Þ ¼ lim
η!1

½Δ ηð Þ η�
Xp

i¼1

αni δ r� rið ÞKm ∘ð Þ
n ðω; r, riÞ

 !

þη

ð∞

0

Km ∘ð Þ
n ω; r, r0ð Þun r0;ωð Þdr0� (20)

Now, because η ¼ 1 implies Δ ¼ 0, and because also ν ¼ λ ¼ 1

P r;ω; um ∘ð Þ r;ωð Þ
h i

um r;ωð Þ ¼ yme r;ωð Þ (21)
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In the last step we have used the fact that the solution of the remaining homo-
geneous equation is denoted by yme r;ωð Þ.

Eq. (21) says that if we take a blend of regular and resonant solutions we have:

P r;ω; um ∘ð Þ r;ωð Þ
h i

ðum r;ωð Þ þ yme r;ωð ÞÞ ¼ 2yme r;ωð Þ (22)

So taken into account from Eqs. (18) until (22), we see that we have projected
the original problem into a resonant one.

In analogy with P we can define a projector over their complement:
Let us define the complementary Zap projection operator as

Q r;ω; um ∘ð Þ r;ωð Þ
� �

um r;ωð Þ � lim
η!1

ZC r;ω; um ∘ð Þ r;ωð Þ
� �

� lim
η!1

Δ ηð Þηþ νð Þf
ð∞

0

Km ∘ð Þ
n ω; r, r0ð Þun r0;ωð Þdr0

þ ηum ∘ð Þ r;ωð Þg ¼ um r;ωð Þ
(23)

Even we apply Q to a resonant state:

Q r;ω; um ∘ð Þ r;ωð Þ
� �

yme r;ωð Þ � lim
η!1

ZC r;ω; um ∘ð Þ r;ωð Þ
� �

¼ lim
η!1

Δ ηð Þηþ νð Þf
ð∞

0

Km ∘ð Þ
n ω; r, r0ð Þyne r0;ωð Þdr0

þ ηum ∘ð Þ r;ωð Þg ¼ um r;ωð Þ
(24)

This is because the name of the solution of the remaining inhomogeneous equa-
tion is precisely um r;ωð Þ.

7. An academic example for conventional traveling waves

In order to convince us of the utility of the P and Q operators we remember
that in all of our developments the kernel always is Km ∘ð Þ

n that only contains the free
Green function Gt ∘ð Þ

n ω; r, sð Þ. But then, there is no difference between the kernels of
the integral equations when are referred to conventional traveling waves or to
evanescent or resonant waves. This last statement allows describing in an algebraic
mode the application of the Zap projection operators. In this manner we can fix our
kernel in accordance with a previous example that we have presented in some place
as the matrix (27).

For the case of only two source points and omitting the three components of the
field lifting only one, this matrix can be for example:

But first remember that

ð

V

A r0ð ÞG ∘ð Þ
ω r; r0ð Þu r0;ωð ÞdV 0 � K ∘ð Þ ωð Þu r;ωð Þ (25)

6
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In Eq. (25) A rð Þ is the interaction that in the general case may contain a non-
local potential, but not in our example.

K ∘ð Þ ωð Þu r;ωð Þ � K ∘ð Þ
11 K ∘ð Þ

12

K ∘ð Þ
21 K ∘ð Þ

22

 !
u1 r;ωð Þ
u2 r;ωð Þ

� �
� K ∘ð Þ ωð Þ g1 ωð Þ

g2 ωð Þ
� �

u rð Þ (26)

In Eq. (26) u rð Þ is a scalar function.
And then, the kernel may be

K ∘ð Þ ωð Þ ¼

sin ω� ωp
� �

d
ω� ωp
� �

d
�i

cos ω� ωp
� �

d
ω� ωp
� �

d

i
cos ω� ωp
� �

d
ω� ωp
� �

d
sin ω� ωp
� �

d
ω� ωp
� �

d

0
BBB@

1
CCCA (27)

So Eq. (19) takes the form:

u ∘ð Þ r;ωð Þ ¼
X2
i¼1

αiδ r� rið ÞK ∘ð Þ ωð Þei (28)

Where

e1 ¼
1

0

� �
ande2 ¼

0

1

� �
(29)

That is

u ∘ð Þ r;ωð Þ ¼ α1δ r� r1ð ÞK ∘ð Þ ωð Þe1 þ α2δ r� r2ð ÞK ∘ð Þ ωð Þe2 (30)

The conventional waves satisfy the scalar form of Eq. (1)

u r,ωð Þ ¼ u ∘ð Þ r,ωð Þ

þ λ ωð Þ
ð∞

0

K ∘ð Þ ω; r, r0ð Þu r0,ωð Þdr0
(31)

Or in accordance with Eq. (25)

u r,ωð Þ ¼ u ∘ð Þ r,ωð Þ
þ λ ωð ÞK ∘ð Þ ωð Þu r,ωð Þ

(32)

Where the form of u r,ωð Þ is unknown but possibly be sketched as

u r,ωð Þ ¼

sin ω� ωp
� �

d
ω� ωp
� �

d

sin ω� ωp þ β
� �

d
ω� ωp þ β
� �

d

0
BBBB@

1
CCCCA
u rð Þ (33)

Now we can apply the projection operator P r;ω; u ∘ð Þ r;ωð Þ� �
to Eq. (32) and

obtain
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P r;ω; u ∘ð Þ r;ωð Þ
h i

u r;ωð Þ ¼ lim
η!1

½Δ ηð Þ η�
X2
i¼1

αiδ r� rið ÞK ∘ð Þ ωð Þei
 !

þηK ∘ð Þ ωð Þu r;ωð Þ� (34)

Then, by putting η ¼ 1 and Δ ¼ 0 finally

P r;ω; u ∘ð Þ r;ωð Þ
h i

u r;ωð Þ ¼ ye r;ωð Þ (35)

So it is irrelevant the part of the problem concerning the two sources, it is only a
problem about resonances. Our problem is now to find the resonant frequencies by
taking K ∘ð Þ ωð Þ and impose the conditions η ¼ 1 and Δ ¼ 0.

But, what is the real advantage of the P and Q operators?, the answer is that
the Zap operator formalism may be viewed as a test for distinguish between an
expression that cannot be transformed or yes, in whatever sense between the
homogeneous and inhomogeneous equations under the rules established above; if
not, we can ensure that some kind of irregular things are present. In case of the
positive transformation, we have the confidence that both kinds of solutions can
coexists, and then we can separate the solutions for convenience as if it was a
problem of two steps: homogeneous and inhomogeneous.

Now the last condition over the Fredholm determinant is

Δ

sin ω� ωp
� �

d
ω� ωp
� �

d
� η �i

cos ω� ωp
� �

d
ω� ωp
� �

d

i
cos ω� ωp
� �

d
ω� ωp
� �

d
sin ω� ωp
� �

d
ω� ωp
� �

d
� η

0
BBB@

1
CCCA ¼ 0 (36)

The parameters d, η (the Fredholm eigenvalue) and ωp (the plasma frequency)
can take in principle, arbitrary values but for a specific media can be take numeric
values. Now, we remember that we must also impose η ¼ 1.

Then, Eq. (36) has two resonances:

ω1 ¼ π

4d
þ ωp (37)

And

ω1 ¼ 3π
4d

þ ωp (38)

8. Forerunners of the zap projection operators

In Section 6 we defined a new class of integral operators we named Zap projec-
tion operators that literally cleans from a broadcasting problem the inhomogeneous
part and leaves a projected homogeneous version. These operators act directly over
an inhomogeneous Fredholm equation and are related to the Fredholm operators.
But recently, we have defined another set of operators we called generalized pro-
jection operators (GPO) which projects a complete broadcasting signal (maybe
described by a GIFE) not only into several independent mutually orthogonal signals
but also can reverse the time direction as we wish. These GPO may be considered as
the precursors of the Zap operators and we will see why. We remember their form:
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In Eqs. (39) and (40) Pe
Sa T � tð Þ are simple projection operators [11].

Denoting the Fourier transform like
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F Pe
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h i
¼
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n¼�∞

Cn,e 2ωej jp4πωe
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Where p4πωe
2 ω� ωeð Þωeð Þ is a rectangular function.

And for the convolution we have

F Pe
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Sb tð Þeiωut
h i

¼ FSa ω� ωeð ÞFSb ω� ωuð Þ (43)

Then we see that the set of Fourier transforms of the GPOs behaves like a set of
orthogonal basis functions for the frequency domain, that is, the resonant functions
yme r;ωð Þ as we can verify in Figure 1. So the GPO can be considered as the fore-
runners of the Zap projection operators.

9. Conclusions

We can conclude that the Zap projection operators (ZPO) can be used as an
alternative approach to the generalized projection operators (GPO) that is like an
alternative for clean the evanescent signals [10] from disturbances generated by the
sources and at the same time to clean the source signals from resonant solutions. We

Figure 1.
The two rectangular functions p4πωe
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can also use the two classes of projectors in a consecutively manner. The former
vision suppose that the evanescent waves [10] can be considered as part of the
conventional traveling waves like an everything and that we must take away the
effect of the resonances with the application of the Q operator. In any case we have
shown the power of the Fourier transform applied to mathematical analysis in
broadcasting problems and to physically characterize and solve them.

Author details

Juan Manuel Velazquez Arcos*, Ricardo Teodoro Paez Hernandez,
Alejandro Perez Ricardez, Jaime Granados Samaniego and Alicia Cid Reborido
Metropolitan Autonomous University, Mexico City, Mexico

*Address all correspondence to: jmva@correo.azc.uam.mx

©2020TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

10

Real Perspective of Fourier Transforms and Current Developments in Superconductivity

References

[1] J. M. Velázquez-Arcos, Fredholm's
equations for subwavelength focusing. J.
Math. Phys. Vol. 53, No. 10, 103520
(2012), doi: 10.1063/1.4759502.

[2] Harry Hochstadt, Integral Equations,
Wiley Classics Library, ISBN-10 :
1580531741; ISBN-13 : 978–1580531740 .

[3] Witold Pogorzelsky and Ian Snnedon,
Integral Equations and their Applications,
Pergamon, ISBN-10 : 0486685225; ISBN-
13 : 978–0486685229 .

[4] A. Mondragón, E. Hernández and J.
M. Velázquez Arcos Resonances and
Gamow States in Non-Local Potentials,
Annalen der Physik Volume 48, Issue 8,
1991, PP 503–616 .

[5] R. de la Madrid,The decay widths, the
decay constants, and the branching
fractions of a resonant state, Nuclear
Physics A 940 (2015) 297–310.

[6] J. M. Velázquez-Arcos, C. A. Vargas,
J. L. Fernández-Chapou, A. L. Salas-
Brito, On computing the trace of the kernel
of the homogeneous Fredholm's equation. J.
Math. Phys. Vol. 49, 103508 (2008), doi:
10.1063/1.3003062.

[7] R. de la Madrid,The rigged Hilbert
space approach to the Gamow states, J.
Math. Phys. Vol. 53, No. 10, 102113
(2012), doi: 10.1063/1.4758925.

[8] J. M. Velázquez-Arcos and J.
Granados-Samaniego, Wave propagation
under confinement break, IOSR Journal of
Electronics and Communication
Engineering (IOSR-JECE)e-ISSN: 2278–
2834, p- ISSN: 2278–8735. Volume 11,
Issue 2, Ver. I (Mar-Apr. 2016), PP
42-48www.iosrjournals.org.

[9] J. M. Velázquez-Arcos, J. Granados-
Samaniego, C.A. Vargas,The confinement
of electromagnetic waves and Fredholm’s
alternative, Electromagnetics in
Advanced Applications (ICEAA), 2013

International Conference pp.411–414,
9–13 Sept. 2013 doi: 10.1109/
ICEAA.2013.6632268.

[10] Xiang-kun Kong, Shao-bin Liu, Hai-
feng Zhang, Bo-rui Bian, Hai-ming Li
et al., Evanescent wave decomposition in a
novel resonator comprising unmagnetized
and magnetized plasma layers, Physics of
Plasmas, Vol. 20, 043515 (2013); doi:
10.1063/1.4802807.

[11] J. M. Velázquez-Arcos, J. Granados-
Samaniego, A. Cid-Reborido and C. A.
Vargas,The electromagnetic Resonant
Vector and the Generalized Projection
Operator, IEEE Xplore, 2018 Progress In
Electromagnetics Research Symposium
(PIERS-Toyama), Japan, pp 1225–1232.

[12] F. Hernández-Bautista, C. A. Vargas
and J. M. Velázquez-Arcos, Negative
refractive index in split ring resonators,
Rev. Mex. Fis. Vol. 59, no. 1, pp. 139–
144, January–February 2013, ISSN:
0035-00IX.

[13] von der Heydt von N. Die
Schrödinger-Gleichung mit nichtlokalem
Potential. I.) Die Resolvente, Annalen der
Physik Volume 29, Issue 4, 1973, PP 309–
324.

[14] Richard R. Goldberg, Fourier
Transforms, Cambridge University Press.
ISBN-13: 978–0521095556; ISBN-10:
0521095557.

[15] David Brandwood, Fourier
Transforms in Radar and Signal
Processing, Artech House Radar Library
ISBN-10: 1580531741; ISBN-13:
978–1580531740.

11

On the Zap Integral Operators over Fourier Transforms
DOI: http://dx.doi.org/10.5772/intechopen.94573



can also use the two classes of projectors in a consecutively manner. The former
vision suppose that the evanescent waves [10] can be considered as part of the
conventional traveling waves like an everything and that we must take away the
effect of the resonances with the application of the Q operator. In any case we have
shown the power of the Fourier transform applied to mathematical analysis in
broadcasting problems and to physically characterize and solve them.

Author details

Juan Manuel Velazquez Arcos*, Ricardo Teodoro Paez Hernandez,
Alejandro Perez Ricardez, Jaime Granados Samaniego and Alicia Cid Reborido
Metropolitan Autonomous University, Mexico City, Mexico

*Address all correspondence to: jmva@correo.azc.uam.mx

©2020TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

10

Real Perspective of Fourier Transforms and Current Developments in Superconductivity

References

[1] J. M. Velázquez-Arcos, Fredholm's
equations for subwavelength focusing. J.
Math. Phys. Vol. 53, No. 10, 103520
(2012), doi: 10.1063/1.4759502.

[2] Harry Hochstadt, Integral Equations,
Wiley Classics Library, ISBN-10 :
1580531741; ISBN-13 : 978–1580531740 .

[3] Witold Pogorzelsky and Ian Snnedon,
Integral Equations and their Applications,
Pergamon, ISBN-10 : 0486685225; ISBN-
13 : 978–0486685229 .

[4] A. Mondragón, E. Hernández and J.
M. Velázquez Arcos Resonances and
Gamow States in Non-Local Potentials,
Annalen der Physik Volume 48, Issue 8,
1991, PP 503–616 .

[5] R. de la Madrid,The decay widths, the
decay constants, and the branching
fractions of a resonant state, Nuclear
Physics A 940 (2015) 297–310.

[6] J. M. Velázquez-Arcos, C. A. Vargas,
J. L. Fernández-Chapou, A. L. Salas-
Brito, On computing the trace of the kernel
of the homogeneous Fredholm's equation. J.
Math. Phys. Vol. 49, 103508 (2008), doi:
10.1063/1.3003062.

[7] R. de la Madrid,The rigged Hilbert
space approach to the Gamow states, J.
Math. Phys. Vol. 53, No. 10, 102113
(2012), doi: 10.1063/1.4758925.

[8] J. M. Velázquez-Arcos and J.
Granados-Samaniego, Wave propagation
under confinement break, IOSR Journal of
Electronics and Communication
Engineering (IOSR-JECE)e-ISSN: 2278–
2834, p- ISSN: 2278–8735. Volume 11,
Issue 2, Ver. I (Mar-Apr. 2016), PP
42-48www.iosrjournals.org.

[9] J. M. Velázquez-Arcos, J. Granados-
Samaniego, C.A. Vargas,The confinement
of electromagnetic waves and Fredholm’s
alternative, Electromagnetics in
Advanced Applications (ICEAA), 2013

International Conference pp.411–414,
9–13 Sept. 2013 doi: 10.1109/
ICEAA.2013.6632268.

[10] Xiang-kun Kong, Shao-bin Liu, Hai-
feng Zhang, Bo-rui Bian, Hai-ming Li
et al., Evanescent wave decomposition in a
novel resonator comprising unmagnetized
and magnetized plasma layers, Physics of
Plasmas, Vol. 20, 043515 (2013); doi:
10.1063/1.4802807.

[11] J. M. Velázquez-Arcos, J. Granados-
Samaniego, A. Cid-Reborido and C. A.
Vargas,The electromagnetic Resonant
Vector and the Generalized Projection
Operator, IEEE Xplore, 2018 Progress In
Electromagnetics Research Symposium
(PIERS-Toyama), Japan, pp 1225–1232.

[12] F. Hernández-Bautista, C. A. Vargas
and J. M. Velázquez-Arcos, Negative
refractive index in split ring resonators,
Rev. Mex. Fis. Vol. 59, no. 1, pp. 139–
144, January–February 2013, ISSN:
0035-00IX.

[13] von der Heydt von N. Die
Schrödinger-Gleichung mit nichtlokalem
Potential. I.) Die Resolvente, Annalen der
Physik Volume 29, Issue 4, 1973, PP 309–
324.

[14] Richard R. Goldberg, Fourier
Transforms, Cambridge University Press.
ISBN-13: 978–0521095556; ISBN-10:
0521095557.

[15] David Brandwood, Fourier
Transforms in Radar and Signal
Processing, Artech House Radar Library
ISBN-10: 1580531741; ISBN-13:
978–1580531740.

11

On the Zap Integral Operators over Fourier Transforms
DOI: http://dx.doi.org/10.5772/intechopen.94573



Chapter 2

Quantum Fourier Operators and
Their Application
Eric Sakk

Abstract

The application of the quantum Fourier transform (QFT) within the field of
quantum computation has been manifold. Shor’s algorithm, phase estimation and
computing discrete logarithms are but a few classic examples of its use. These initial
blueprints for quantum algorithms have sparked a cascade of tantalizing solutions
to problems considered to be intractable on a classical computer. Therefore, two
main threads of research have unfolded. First, novel applications and algorithms
involving the QFT are continually being developed. Second, improvements in the
algorithmic complexity of the QFT are also a sought after commodity. In this work,
we review the structure of the QFT and its implementation. In order to put these
concepts in their proper perspective, we provide a brief overview of quantum
computation. Finally, we provide a permutation structure for putting the QFT
within the context of universal computation.

Keywords: quantum Fourier transform, quantum computation, quantum circuit,
entanglement, unitary operators, permutation operators

1. Introduction

The quantum Fourier transform (QFT) has been applied in a number of differ-
ent contexts within the field of quantum computation [1–3]. As this operator is
central to so many quantum algorithms, a major thrust of current research is
directed toward its efficient implementation [4–9]. The QFT calculation is, to a
degree, based upon the discrete Fourier transform (DFT) where, given a discrete
sequence

x ¼ x0, x2,⋯, xN�1f g (1)

of length N, the DFT of x can be computed as

DFT xf g ¼ Fx (2)

with DFT matrix elements

Fjk ¼ 1ffiffiffiffi
N

p ei
2π
Njk j, k ¼ 0, 1,⋯,N � 1 (3)

Since the DFT matrix is N �N, the computational complexity of computing
DFT xf g is O N2� �

. If the input sequence length of the input sequence x can be
written as N ¼ 2n (i.e. a power of two for some positive integer, n), there exist fast
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Fourier transform (FFT) implementations that can compute DFT xf g with
O N logNð Þ complexity. While there are other FFT implementations that do not
require N ¼ 2n, the ‘radix-2’ implementation will be the starting point as it is
relevant when introducing quantum computational bases. Before elevating the DFT
to its quantum description, in Section 2 we will take a brief tour of quantum
computation in order to provide some necessary context. We will then, in Section 3,
develop the QFT operator and discuss its quantum implementation. Finally, in
Section 4, we will discuss the QFT in the context of universal computation and its
formulation in terms of permutation matrices.

2. Quantum computation

A starting point for quantum computation begins with choosing a qubit
representation for the computational basis [3]

∣0i � 1

0

� �
, ∣1i � 0

1

� �
(4)

This qubit basis forms a complete orthonormal set so that any single qubit
quantum mechanical state can be written as the linear superposition

∣ψi ¼ α∣0i þ β∣1i: (5)

where the coefficients α and β are complex scalars. If hψ ∣ represents the
Hermitian conjugate of ∣ψi, according to quantum mechanics, the inner product

ψ jψh i ¼ αj j2 þ βj j2 ¼ 1 (6)

is normalized so that ψ represents a probability density function. This implies
that, at any given instance in its time evolution, a quantum system can simulta-
neously be in the logical states ∣0i and ∣1i with their associated probabilities αj j2 and
βj j2. This is in stark contrast to classical digital computation whose operations must
always exclusively evaluate to a value of either 0 or 1. Quantum computation allows
an algorithm to simultaneously visit both logical states ∣0i and ∣1i of a single qubit. If
n qubits (i.e. multiple qubits) are applied, then a quantum system, in principal, has
the potential to simultaneously visit 2n logical states (again, with their associated
probabilities). This exponential computational capacity is the source of quantum
parallelism. However, there is a catch. Only when some observable is measured can
we ascertain the current logical state of the system. Hence, quantum computers
require large samples of measurements in order to build up the statistics necessary
to determine the outcome of any given algorithm.

2.1 Unitary operators

The time evolution operator U associated with a quantum system must be
unitary meaning that

U†U ¼ I (7)

where U† is the conjugate transpose of U. A major implication of this require-
ment is that the forward time system evolution must (at least mathematically) be
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reversible. This requirement, in turn, constrains computations that are
implemented by quantum operators to be reversible. Therefore, logical
operations such as AND, OR, and XOR (exclusive-or) would not be a quantum
mechanical possibility unless some additional input information were to be pre-
served. This is because, in the absence of information about the input, measuring
the output of these operations is not enough to ascertain the values of the inputs.
Hence, these boolean processes, by themselves, are not reversible. However, there
is a theory of reversible computation that can augment these logical operations so
that input information is recoverable. Furthermore, much thought has gone into
phrasing reversible computation in the context of unitary operators. Given the
discussion so far, it is appropriate to give a short list of standard single qubit
operators:

I ¼ 1 0

0 1

� �
,H ¼ 1ffiffiffi

2
p 1 1

1 �1

� �
,Rϕ ¼ 1 0

0 eiϕ

� �
(8)

X ¼ 0 1

1 0

� �
,Y ¼ 0 �i

i 0

� �
,Z ¼ 1 0

0 �1

� �
(9)

The reader can check that these are all unitary. As a simple example of how to
apply such operators, consider the action of X on the basis vector ∣0i

X∣0i ¼ 0 1

1 0

� �
∣0i ¼ 0 1

1 0

� �
1

0

� �
¼ 0

1

� �
¼ ∣1i (10)

where ∣0i and ∣1i are ‘swapped’, indicating a form of logical inversion. H is a
Hadamard transform (i.e. a DFT for a sequence of length N=2). X, Y and Z are Pauli
matrices. Rϕ is a generalization of Z ¼ Rπ and I ¼ R0. While these are single quhit
operators, the next sections discuss how they can be extended to the multiple qubit
case. Amazingly, this set of quantum operators can be applied to devise some very
powerful quantum algorithms (e.g. QFT computation) [3, 10].

2.2 Tensor product (Kronecker product)

The Kronecker product of an m� n matrix A with a p� q matrix B is
defined to be

A⊗B ¼

a11B a12B ⋯ a1nB

a21B a22B ⋯ a2nB

⋮ ⋮ ⋮ ⋮

am1B am2B ⋯ amnB

2
6666664

3
7777775
: (11)

Furthermore, assuming the dimensions are compatible for matrix
multiplication, the following identity often proves useful

A⊗Bð Þ C⊗Dð Þ ¼ ACð Þ⊗ BDð Þ (12)

for matrices A,B,C,D.
The computational basis can be extended to any number of qubits using the

tensor product. For example, if two qubits are required for the computational space,
using Eq. (2), the basis becomes
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discussion so far, it is appropriate to give a short list of standard single qubit
operators:

I ¼ 1 0

0 1

� �
,H ¼ 1ffiffiffi

2
p 1 1

1 �1

� �
,Rϕ ¼ 1 0

0 eiϕ

� �
(8)

X ¼ 0 1

1 0

� �
,Y ¼ 0 �i

i 0

� �
,Z ¼ 1 0

0 �1

� �
(9)

The reader can check that these are all unitary. As a simple example of how to
apply such operators, consider the action of X on the basis vector ∣0i

X∣0i ¼ 0 1

1 0

� �
∣0i ¼ 0 1

1 0

� �
1

0

� �
¼ 0

1

� �
¼ ∣1i (10)

where ∣0i and ∣1i are ‘swapped’, indicating a form of logical inversion. H is a
Hadamard transform (i.e. a DFT for a sequence of length N=2). X, Y and Z are Pauli
matrices. Rϕ is a generalization of Z ¼ Rπ and I ¼ R0. While these are single quhit
operators, the next sections discuss how they can be extended to the multiple qubit
case. Amazingly, this set of quantum operators can be applied to devise some very
powerful quantum algorithms (e.g. QFT computation) [3, 10].

2.2 Tensor product (Kronecker product)

The Kronecker product of an m� n matrix A with a p� q matrix B is
defined to be

A⊗B ¼

a11B a12B ⋯ a1nB

a21B a22B ⋯ a2nB

⋮ ⋮ ⋮ ⋮

am1B am2B ⋯ amnB

2
6666664

3
7777775
: (11)

Furthermore, assuming the dimensions are compatible for matrix
multiplication, the following identity often proves useful

A⊗Bð Þ C⊗Dð Þ ¼ ACð Þ⊗ BDð Þ (12)

for matrices A,B,C,D.
The computational basis can be extended to any number of qubits using the

tensor product. For example, if two qubits are required for the computational space,
using Eq. (2), the basis becomes
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∣0i � ∣00i ¼ ∣0i⊗∣0i ¼
1

0

 !
⊗

1

0

 !
¼

1

0

0

0

0
BBBBB@

1
CCCCCA

∣1i � ∣01i ¼ ∣0i⊗ ∣1i ¼
1

0

 !
⊗

0

1

 !
¼

0

1

0

0

0
BBBBB@

1
CCCCCA

∣2i � ∣10i ¼ ∣1i⊗ ∣0i ¼
0

1

 !
⊗

1

0

 !
¼

0

0

1

0

0
BBBBB@

1
CCCCCA

∣3i � ∣11i ¼ ∣1i⊗ ∣1i ¼
0

1

 !
⊗

0

1

 !
¼

0

0

0

1

0
BBBBB@

1
CCCCCA

(13)

To generalize this example for n qubits, the set of computational basis vectors
can, for the sake of brevity, be labeled in base 10 as

j0i, j1i, j2i,⋯, j2n � 1if g: (14)

On the other hand, in order to highlight the qubit values, this basis can equiva-
lently be expressed in base 2 as

∣k1k2⋯kni ¼ ∣k1i⊗ ∣k2i⊗ ∣⋯⊗ ∣kni (15)

where ki ∈ 0, 1f g for i ¼ 1,⋯, n. In other words, k1, k2,⋯, knf g represents the
binary expansion

k ¼ k12n�1 þ k22n�2 þ⋯þ kn�121 þ kn20 ¼
Xn
t¼1

kt2n�t (16)

for the kth basis vector ∣ki � ∣k1k2⋯kni. We have chosen this bit index ordering
as it will prove convenient for the QFT formulation in the next section. An equally
acceptable (and, quite typical) bit index convention for an n qubit system could, for
example, be ∣qi � ∣qn�1qn�2⋯q1q0i.

Eq. (15) tells us that the n qubit basis is derived from the tensor product of single
qubits. This is important to keep in mind in order to avoid confusion when using the
symbol ∣0i. For example, when using n ¼ 1 qubit, ∣0i in decimal is equivalent to ∣0i
in binary; however,, when using n ¼ 3 qubits, ∣0i in decimal is equivalent to ∣000i
in binary. Hence, the number of qubits n is the anchor for the relationship between
Eq. (14) and Eq. (15). Assuming n qubits, there are 2n basis vectors that can be used
to construct a quantum state. Hence, all 2n basis vectors will simultaneously evolve
with their associated probabilities; again, this is the source of quantum parallelism.
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2.3 Quantum circuits

One particularly useful application of Eq. (12) arises when building up n qubit
quantum circuits (i.e. schematic depictions of quantum operations on qubits). For
instance, assume a two qubit system ∣q1q0iwhere two unitary operators H and Z act
on single qubits as

H∣q1i,Z∣q0i (17)

and the result is desired to be combined as

H∣q1i⊗Z∣q0i: (18)

Eq. (12) tells us that this action is equivalent to

H⊗Zð Þ jq1i⊗ jq0i
� �

: (19)

However, by construction, ∣q1i⊗ ∣q0i ¼ ∣q1q0i. Therefore,

H∣q1i⊗Z∣q0i ¼ H⊗Zð Þ∣q1q0i (20)

making it straightforward to develop multiple qubit quantum systems from
unitary operators. The schematic representation of H⊗Zð Þ∣q1q0i is show in
Figure 1.

With the groundwork laid for multiple qubits, it becomes possible to introduce
more unitary operators that facilitate reversible computation. For example, the
controlled NOT (CNOT) function can be phrased as a two qubit reversible XOR
operator

CNOT ¼

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

2
6664

3
7775: (21)

where c represents the control bit, t represents the target XOR function and
∣q1q0i ¼ ∣cti. This operator is a permutation matrix that is consistent with Table 1 in
that it swaps the ∣11i and ∣10i qubits. The XOR operation, by itself, can act as an
irreversible controlled NOT operation. For the sake of quantum computation, the
CNOT operator is unitary and a reversible XOR function is achieved because the
control bit ∣q1i is preserved from input to output.

There exist powerful tools for the simulation of quantum operations (referred to
as ‘quantum gates’) and for the rendering of multiple qubit quantum circuits [11].

Figure 1.
Two qubit quantum circuit for H⊗Zð Þ∣q1q0i.
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Figure 2 shows a schematic representation of the CNOT circuit corresponding to
Table 1. In this circuit, the control bit is used to swap the target ∣q0i (using an X
gate) if ∣q1i ¼ ∣1i.

For the sake of this work, we point out that an equally valid interpretation of the
quantum CNOT function can be realized if the roles of the control and target are
interchanged where ∣q1q0i ¼ ∣tci (see Table 2). In this case the CNOT operator
becomes

CNOT ¼

1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

2
6664

3
7775: (22)

which is a permutation matrix that swaps the ∣11i and ∣01i qubits and
corresponds to the circuit in Figure 3.

We shall have more to say about this implementation in the following sections.
For now, with this brief overview of quantum computation, we can now introduce
the quantum Fourier transform.

cin tin cout tout

0 0 0 0

0 1 0 1

1 0 1 1

1 1 1 0

Table 1.
Controlled NOT.

Figure 2.
Two qubit CNOT quantum circuit swap of ∣11i and ∣10i using Qiskit [11].

tin cin tout cout

0 0 0 0

0 1 1 1

1 0 1 0

1 1 0 1

Table 2.
Controlled NOT where ∣q1q0i ¼ ∣tci.
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3. The quantum Fourier transform

It should be clear that the DFT matrix in Eq. (2) is unitary where

F†F ¼ I (23)

and F† is the Hermitian conjugate of F. Because of this unitarity, the potential for
using the DFT within the context of quantum computation naturally follows. How-
ever, such an application requires a decomposition involving tensor products of
unitary operations typically applied in quantum computation. As with the FFT, the
choice of the decomposition dictates the algorithmic complexity. There is much
introductory literature available regarding the QFT [3, 12–14]. Given a specific
quantum algorithm where the QFT is applied, current research endeavors reside in
attempts to improve the computational complexity [4, 7, 9, 15, 16].

The QFT matrix is defined as

Q ¼ 1ffiffiffiffi
N

p
XN�1

j¼0

XN�1

k¼0

ei
2π
Njk∣kihj∣: (24)

For example, with N ¼ 2n and n = 1, we recover the Hadamard matrix

Q ¼ 1ffiffiffi
2

p 1 1

1 �1

� �
, (25)

or, for n = 2,

Q ¼ 1
2

1 1 1 1

1 i �1 �i

1 1 1 �1

1 �i �1 i

2
6666664

3
7777775
: (26)

As expected, this operator is unitary where, with

Q† ¼ 1ffiffiffiffi
N

p
XN�1

j¼0

XN�1

k¼0

e�i2πNjk∣jihk∣, (27)

Figure 3.
Two qubit CNOT quantum circuit swap of ∣11i and ∣01i.
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it should be clear that

QQ† ¼ 1ffiffiffiffi
N

p
XN�1

j¼0

XN�1

k¼0

ei
2π
Njkjkihjj

 !
1ffiffiffiffi
N

p
XN�1

j0¼0

XN�1

k0¼0

e�i2πN j0k0 ∣ j0ihk0∣
 !

¼ 1
N

XN�1

k0¼0

XN�1

k¼0

XN�1

j0¼0

XN�1

j¼0

ei
2π
N jk� j0k0ð Þ∣ki jj j0h ihk0∣

¼ 1
N

XN�1

k0¼0

XN�1

k¼0

XN�1

j0¼0

XN�1

j¼0

ei
2π
N jk� j0k0ð Þδ j0j∣kihk0∣

¼ 1
N

XN�1

k0¼0

XN�1

k¼0

XN�1

j¼0

ei
2π
Nj k�k0ð Þ∣kihk0∣

¼ 1
N

XN�1

k0¼0

XN�1

k¼0

Nδk0kð Þ∣kihk0∣

¼
XN�1

k¼0

∣kihk∣

¼ I:

(28)

In general, given a state vector

∣ψi ¼
XN�1

j¼0

a j∣ji (29)

the QFT operates on ∣ψi to form

∣Ψi ¼ QFT jψif g ¼ QFT
XN�1

j¼0

a jj ji
( )

¼
XN�1

j¼0

a jQFT j jif g

¼
XN�1

j¼0

a jQ ∣ji:

(30)

Given this result, let us consider the QFT of a single n qubit basis vector ∣jiwhere
N ¼ 2n. First, observe that while

QFT jjif g ¼ Q ∣ji ¼ 1
2n=2

XN�1

j0¼0

XN�1

k¼0

ei
2π
Nj

0k∣ki j0jjh i

¼ 1
2n=2

XN�1

j0¼0

XN�1

k¼0

ei
2π
Nj

0k∣kiδj0j

¼ 1
2n=2

X2n�1

k¼0

ei
2π
2njk∣ki,

(31)
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given Eqs. (15) and (16), it will be more helpful to express this relation as

QFT jjif g ¼ 1
2n=2

X1

k1¼0

X1

k2¼0

⋯
X1

kn¼0

e
i2πj

Xn
t¼1

kt2�t

 !

∣k1k2⋯kni:

¼ 1
2n=2

X1

k1¼0

X1

k2¼0

⋯
X1

kn¼0

ei2πj k12�1þk22�2þ⋯þkn�12� n�1ð Þþkn2�nð Þ∣k1k2⋯kni:

¼ 1
2n=2

X1

k1¼0

X1

k2¼0

⋯
X1

kn¼0

ei2πj k12�1þk22�2þ⋯þkn�12� n�1ð Þþkn2�nð Þ∣k1i⊗ ∣k2i⊗ ∣⋯⊗ ∣kni:

¼ 1
2n=2

⊗
n

v¼1

X1

kv¼0

ei2πj kv2
�vð Þ∣kvi:

(32)

This leads to the result that

Q ∣ji ¼ 1
2n=2

⊗
n

v¼1
j0ð i þ ei2πj2

�v j1iÞ: (33)

3.1 QFT qubit representation

To forge a path toward efficient implementation, it is important to recognize
how Eq. (33) can be decomposed into a set of operators relevant to quantum
computation (see Section 2.1). First, consider the n ¼ 1 single qubit case,

Q ∣ji ¼ 1ffiffiffi
2

p j0i þ ei
2πj
2 j1i

� �
: (34)

Then, for each qubit state ∣ji ¼ ∣0i, ∣1i, it follows that

Q ∣0i ¼ 1ffiffiffi
2

p j0iþj1ið Þ ¼ 1ffiffiffi
2

p
1

1

 !

Q ∣1i ¼ 1ffiffiffi
2

p j0i�j1ið Þ ¼ 1ffiffiffi
2

p
1

�1

 ! (35)

as expected since Q ¼ H for the single qubit case. Hence, it should be nn surprise
that the v ¼ 1 contribution to Eq. (10) should be a Hadamard gate.

To handle the phase factors in the other contributions to the tensor product
(where v≥ 2), the keen eye will recognize that the terms ei2πj2

�v
could lead to a

unitary quantum mechanical operator. Before leveraging this observation in a QFT
algorithm, it will be helpful to consider the qubit representation ∣ji ¼ ∣ j1 j2⋯ jni. As
the index v ranges from 1 to n, the index j in the term ei2πj2

�v
experiences successive

divisions by 2 (i.e. successive right shifts of its binary representation by one bit):

v ¼ 1 : j2�1 ) j1 j2⋯ jn�1: jn
v ¼ 2 : j2�2 ) j1 j2⋯ jn�2: jn�1 jn

⋮
v ¼ n� 1 : j2� n�1ð Þ ) j1: j2⋯ jn�1 jn
v ¼ n : j2�n ) 0: j1 j2⋯ jn�1 jn

(36)
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2n=2

⊗
n

v¼1
j0ð i þ ei2πj2

�v j1iÞ: (33)

3.1 QFT qubit representation

To forge a path toward efficient implementation, it is important to recognize
how Eq. (33) can be decomposed into a set of operators relevant to quantum
computation (see Section 2.1). First, consider the n ¼ 1 single qubit case,

Q ∣ji ¼ 1ffiffiffi
2

p j0i þ ei
2πj
2 j1i

� �
: (34)

Then, for each qubit state ∣ji ¼ ∣0i, ∣1i, it follows that

Q ∣0i ¼ 1ffiffiffi
2

p j0iþj1ið Þ ¼ 1ffiffiffi
2

p
1

1

 !

Q ∣1i ¼ 1ffiffiffi
2

p j0i�j1ið Þ ¼ 1ffiffiffi
2

p
1

�1

 ! (35)

as expected since Q ¼ H for the single qubit case. Hence, it should be nn surprise
that the v ¼ 1 contribution to Eq. (10) should be a Hadamard gate.

To handle the phase factors in the other contributions to the tensor product
(where v≥ 2), the keen eye will recognize that the terms ei2πj2

�v
could lead to a

unitary quantum mechanical operator. Before leveraging this observation in a QFT
algorithm, it will be helpful to consider the qubit representation ∣ji ¼ ∣ j1 j2⋯ jni. As
the index v ranges from 1 to n, the index j in the term ei2πj2

�v
experiences successive

divisions by 2 (i.e. successive right shifts of its binary representation by one bit):

v ¼ 1 : j2�1 ) j1 j2⋯ jn�1: jn
v ¼ 2 : j2�2 ) j1 j2⋯ jn�2: jn�1 jn

⋮
v ¼ n� 1 : j2� n�1ð Þ ) j1: j2⋯ jn�1 jn
v ¼ n : j2�n ) 0: j1 j2⋯ jn�1 jn

(36)
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Since these values appear in the phase factor, the integer parts will only result in
integer multiples of 2π and can therefore be discarded. Eq. (33) can then be
expressed as

QFT j jif g ¼ 1
2n=2

½ j0i þ ei2π jn2
�1 j1i

� �
⊗ j0i þ ei2π jn�12

�1þ jn2
�2ð Þj1i

� �
⊗⋯

⋯⊗ j0i þ ei2π j12
�1þ j22

�2þ⋯þ jn2
�nð Þj1i

� �
:

(37)

It is often this version of the QFT that is used as a starting point for quantum
circuit implementation when N ¼ 2n [3].

As an example, consider the two qubit case where n ¼ 2 and ∣ji ¼ ∣ j1 j2i, then

Q ∣ji ¼ Q ∣ j1 j2i
¼ 1

2
j0i þ ei2π j22

�1 j1i
� �

⊗ j0i þ ei2π j12
�1þ j22

�2ð Þj1i
� � (38)

If we let ∣ j1 j2i ¼ ∣01i, then

Q ∣ji ¼ Q ∣01i

¼ 1
2

j0i þ ei2π 1ð Þ2�1 j1i
� �

⊗ j0i þ ei2π 0ð Þ2�1þ 1ð Þ2�2ð Þj1i
� �

¼ 1
2

j0i�j1ið Þ⊗ j0i þ ij1ið Þ

¼ 1
2

j00i þ ij01i�j10i � ij11ið Þ

(39)

which corresponds to the column ∣01i entries in Eq. (26). If not already obvious,
it should be emphasized that the tensor product is not commutative and that
consistent qubit ordering is instrumental to the success of this calculation.

3.2 Quantum implementation

Based upon Eq. (37), it is sensible to introduce an iterable version of the R
operator introduced in Section 2.1:

Rv ¼
1 0

0 e
i2π
2v

� �
: (40)

Furthermore, because each qubit contribution contains phase terms involving
the binary expansion of j, one approach to addressing these interactions is to
introduce a controlled version of Rv:

CRv ¼
I 0

0 Rv

� �
: (41)

This operator can be used to induce the correct phase factor as follows. Assume
tci is the target/control structure for single qubits jr js were s> r in the binary
representation of ∣ji. Then, the following holds true

CRv∣ jr0i ¼ ∣ jr0i
CRv∣ jr1i ¼ e

i2π
2v jr ∣ jr1i

(42)
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Hence, the control bit determines when to introduce the phase factor involving
the target bit.

The goal of this section is to introduce enough nomenclature in order to put the
next section of this work in context. The reader is encouraged to visit the provided
references in order to fill in the details of a generalized quantum circuit that can
implement an n qubit QFT. For now, we provide an n ¼ 2 qubit example to
illustrate an algorithm for performing the QFT. Whatever principled series of
operations is chosen, the goal of the quantum algorithm (and, hence, the associated
quantum circuit) is to reproduce Eq. (11). Starting with ∣ji ¼ ∣ j1 j2i,

a. Apply H to ∣ j1i so that

∣ j1i⊗ ∣ j2i ! H∣ j1i⊗ ∣ j2i

¼ 1ffiffiffi
2

p j0i þ ei2π j12
�1 j1i

� �
⊗ ∣ j2i

(43)

b. Apply CR2 to target qubit j1 controlled by j2. This yields

1ffiffiffi
2

p j0i þ ei2π j12
�1 j1i

� �
⊗∣ j2i !

1ffiffiffi
2

p j0i þ ei2π j22
�2þ j12

�1ð Þj1i
� �

⊗ ∣ j2i (44)

c. Apply H to ∣ j2i

1ffiffiffi
2

p j0i þ ei2π j22
�2þ j12

�1ð Þj1i
� �

⊗ ∣ j2i !
1ffiffiffi
2

p j0i þ ei2π j22
�2þ j12

�1ð Þj1i
� �

⊗
1ffiffiffi
2

p j0i þ ei2π j22
�1 j1i

� �

¼ 1
2

j0i þ e
i2πj
22 j1i

� �
⊗ j0i þ e

i2πj
21 j1i

� �

(45)

Comparing this result with either Eq. (33) or Eq. (37), it is clear that this
algorithm, derived using quantum reversible operators, recovers the QFT from
Eq. (38) with one slight difference: the bit ordering is reversed. Given n qubits, it is
possible to apply n=2 swaps using, for example, tensor products involving an X
operator (see Section 2.1) in order to reverse the bit order. Such bit reversal per-
mutations are reminiscent of the radix-2 FFT algorithm. If one generalizes this
algorithm to n qubits, it can be shown that the algorithmic complexity is O n2ð Þ.
With N ¼ 2n, this is a considerable improvement over N logN ¼ n2n for the radix-2
FFT. However, algorithmic improvements and variations have been developed that
can further reduce QFT complexity to O n log nð Þ [9, 15].

4. QFT permutations

Universal computation, by its very nature, must involve some set of
permutation operators [17–20]. As with other universal gates applied in
quantum computation, in this section, we show that the QFT can generate
operators that have the properties of a permutation. Consider a successive
application of the QFT such as Q2 ¼ QQ and let us analyze the matrix elements
of such an operation:
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Comparing this result with either Eq. (33) or Eq. (37), it is clear that this
algorithm, derived using quantum reversible operators, recovers the QFT from
Eq. (38) with one slight difference: the bit ordering is reversed. Given n qubits, it is
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operator (see Section 2.1) in order to reverse the bit order. Such bit reversal per-
mutations are reminiscent of the radix-2 FFT algorithm. If one generalizes this
algorithm to n qubits, it can be shown that the algorithmic complexity is O n2ð Þ.
With N ¼ 2n, this is a considerable improvement over N logN ¼ n2n for the radix-2
FFT. However, algorithmic improvements and variations have been developed that
can further reduce QFT complexity to O n log nð Þ [9, 15].
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Universal computation, by its very nature, must involve some set of
permutation operators [17–20]. As with other universal gates applied in
quantum computation, in this section, we show that the QFT can generate
operators that have the properties of a permutation. Consider a successive
application of the QFT such as Q2 ¼ QQ and let us analyze the matrix elements
of such an operation:
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QQ½ � j,k ¼
1
N

XN�1

m¼0

ei
2π
Njm∣jihm∣

� �
ei

2π
Nmk∣mihk∣

� �

¼ 1
N

XN�1

m¼0

ei
2π
Nm jþkð Þ mjmh i∣jihk∣

¼
0 jþ k 6¼ 0 modN

1 jþ k ¼ 0 modN

8<
:

� PQ2

h i
j,k
:

(46)

For an n qubit system ∣qn�1⋯q1q0i, it should be clear that PQ2 is a permutation
operator that leaves the position of ∣q0i unchanged and inverts the order of the
remaining qubits to form ∣q1⋯qn�1q0i. For example, the CNOT operator in Eq. (22)
is equal to PQ2 for n ¼ 2

CNOT ¼ Q2 ¼

1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

2
66664

3
77775
¼ PQ2 (47)

having properties similar to that of a Sylvester shift matrix (i.e. a generalization
of a Pauli matrix). It is sensible that a CNOT operation followed by a CNOT
operation should result in the identity operation and, hence, that PQ2PQ2 ¼ Q4 ¼ I
(i.e. a double inversion recovers the original qubit sequence). These results can be
generalized for any n. For example, with n ¼ 3, Eq. (46) becomes

PQ2 ¼

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0

2
6666666666666664

3
7777777777777775

(48)

which, after the appropriate sequence of swaps, can be transformed into a
Toffoli (CCNOT) gate. Hence, PQ2 can be thought of as a generalization of swap
permutation operators and the QFT can be phrased as its square root. For example,
it is common to define a two qubit swap operator as

Sw ¼

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

2
66664

3
77775

(49)
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along with its square root

ffiffiffiffiffiffi
Sw

p
¼

1 0 0 0

0
1
2

1þ ið Þ 1
2

1þ ið Þ 0

0
1
2

1þ ið Þ 1
2

1þ ið Þ 0

0 0 0 1

2
666664

3
777775
: (50)

In a similar manner, Eq. (46) leads us to the following
Theorem 1 Given the N �N inversion permutation matrix defined as

PQ2

h i
j,k

¼ 0 jþ k 6¼ 0 mod N
1 jþ k ¼ 0 mod N

�
, (51)

it follows that

Q ¼
ffiffiffiffiffiffiffiffi
PQ2

q
(52)

where Q is a QFT matrix.
In addition, given that Q4 ¼ I we have the following
Corollary 1 Any algorithm that iteratively applies the QFT can result in only one

of the following outcomes

a. Qk ¼ ffiffiffiffiffiffiffiffi
PQ2

p
if k ¼ 1 mod 4.

b. Qk ¼ PQ2 if k ¼ 2 mod 4.

c. Qk ¼ Q�1 if k ¼ 3 mod 4.

d. Qk ¼ I if k ¼ 0 mod 4.

These results indicate a deeper connection between universal computation, per-
mutations and the QFT. Furthermore, decomposing the QFT calculation into a
product of permutations indicates a potential for reducing the computational com-
plexity of QFT implementations.

5. Conclusions

In this work, we have revisited the quantum Fourier transform which is central
to many algorithms applied in the field of quantum computation. As a natural
extension of the discrete Fourier transform, the QFT can be implemented using
efficient tensor products of quantum operators. Part of the thrust of current
research deals with reducing the QFT computational complexity. With this goal in
mind, we have phrased the QFT as a permutation operator. Future research will be
directed toward quantum circuit implementation using QFT permutation operators
within the context of universal computation.
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Chapter 3

A Fast Method for Numerical
Realization of Fourier Tools
Anry Nersessian

Abstract

This chapter presents new application of author’s recent algorithms for fast
summations of truncated Fourier series. A complete description of this method is
given, and an algorithm for numerical implementation with a given accuracy for the
Fourier transform is proposed.

Keywords: Fourier series, Fourier transforms, approximation, over-convergence
phenomenon, numerical methods

1. Introduction

One of the classical tools of Mathematics is the apparatus of Fourier series, based
on the orthogonal system eiπkx

� �
, k ¼ 0, � 1, � 2, … complete in L2 �1, 1½ �. How-

ever, in practice it is extremely limited because of the poor approximation of
piecewise smooth functions. Thus, in the case when a function has discontinuity
points (taking into account also discontinuities at the ends of the interval �1, 1½ �),
an intense oscillation arises in their neighborhood, and the uniform convergence is
absent (the Gibbs phenomenon). This leads to a slow L2-convergence on the entire
segment �1, 1½ �. The corresponding phenomenon is observed in the case of Fourier
interpolation. Classical methods of summation truncated Fourier series (see, for
example, [1], Chapter 3) do not actually change the situation.

Since the beginning of the last century, a huge amount of research has been
carried out, devoted to the methods of effective summation of the Fourier series.
Let us briefly dwell on the works to overcome this situation (for detiles see, for
example, articles [2–13] and their links).

The pioneer of “overcoming the Gibbs phenomenon” is A.N.Krylov, who at the
dawn of the 20th century (see [2]) proposedmethods that he later developed in the
monograph [3]. In particular, he proposed the following approach. Let a piecewise
smooth function f is given on the segment �1, 1½ �with Fourier coefficients f s

� �
, s ¼

0, � 1, … , � n, n≥ 1, andwith the following jumps of the function f or its derivatives
until degrees of the order q≥ 1 at the points akf g,�1< a1 <⋯< am ¼ 1, 1≤m<∞,

Ap,k fð Þ ¼ f kð Þ ap � 0
� �� f kð Þ ap þ 0

� �
,

k ¼ 0, 1,⋯, q≥0, p ¼ 1,⋯,m:
(1)

In the neighborhoods of other points we assume that f ∈Cqþ1. Let us construct a
function g ¼ g xð Þ, x∈ �1, 1½ � with Fourier coefficients gs

� �
, 0≤ ∣s∣ ≤ n, which has the

same jumps at the same points, and g∈Cqþ1 at the neighborhoods of other points.
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Known the jumps (1), one can construct, e.g. piecewise-polynomial g. As a result,
2-periodic extension of the function F ¼ f � gð Þ is q times continuously differen-
tiable on whole axis, and then

f xð Þ � g xð Þ ¼
Xn
s¼�n

f s � gs
� �

eiπsx þ rs xð Þ,

where rs xð Þ ¼ o s�qð Þ, s ! ∞, x∈ �1, 1½ �.
Therefore, taking into account only first 2nþ 1ð Þ Fourier coefficients and trun-

cating the remainder term rs, it is possible to approximate f in the form

f xð Þ≃ f n xð Þ ¼def g xð Þ þ
Xn

k¼�n

f s � gs
� �

eiπsx (2)

However, the computing of the jumps Ask fð Þf g directly by the function f
sharply limits the scope of practical application of the method of A. N. Krylov.

The “spectral” method proposed by Kurt Eckhoff in [4] (1993) turned out to be
more practical, as it is based only on the use of coefficients f s

� �
(see also [5]). It is

easy to obtain using the integration in parts the following asymptotic representation
of the Fourier coefficients:

f s ¼ � 1
2

Xm
p¼1

e�iπs ap
Xq�1

k¼0

Ap,k

iπsð Þkþ1 þ rs, rn ¼ o s�qð Þ, s ! ∞: (3)

As a function g from (2) K. Eckhoff used those Bernoulli polynomials
Bk xð Þf g, x∈ �1, 1½ �, k≥0, which Fourier coefficients bk,sf g have the following sim-

ple form

bk,s ¼
0, s ¼ 0,
�1ð Þsþ1

2 iπsð Þkþ1 , s 6¼ 0, k ¼ 1, 2, :…

8><
>:

(4)

Denoting B0 xð Þ ¼ 1, polynomials Bk xð Þf g, k ¼ 0, 1, … , n, x∈ �1, 1½ � compose a
basis on the space of polynomials of degree n. Bernoulli polynomials extended to the
real axis with period 2 as piecewise-smooth functions.

According to Krylov’s scheme, the sequence

Fn xð Þ ¼def
Xm
p¼1

Xq

k¼0

Ap,kBk x� ap � 1
� �þ

Xn
s¼�n

ωs eiπsx, (5)

where the quantities ωsf g are given explicitly, converges to f with the rate
o n�qð Þ, n ! ∞.

K. Eckhoff suggests to find approximate values of jumps ~Ap,k≈Ap,k
� �

by solving
the following system of linear equations with the Vandermonde matrix, obtained by
principal part (1) choosing the indexes s ¼ sk, k ¼ 1, 2, … ,m qþ 1ð Þ, θn≤ ∣sk∣ ≤ n,
0< θ ¼ const< 1

f s ¼ � 1
2

Xm
p¼1

e�iπs ap
Xq

k¼0

~Ap,k

iπsð Þkþ1 , s ¼ s1, s2, … , sm qþ1ð Þ (6)

Further, the problem is solved by the Krylov method. It is natural to call this
acceleration scheme the Krylov-Eckhoff method (KE-method). Over the past two
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to three decades, in the KE-method scheme, not only polynomials have been used as
functions of g.

In [14], for a smooth function f , a combination of the solution of Eq.(6) and the
Pade approximation (applied to the asymptotic expansion of the Fourier coeffi-
cients) is implemented there. As a result of numerical experiments it turned out
that, as a rule, such an algorithm is “almost exact” on certain infinite-dimensional
spaces, although only a finite number of Fourier coefficients is used. In [15], a
similar phenomenon was discovered for Bessel series, and in [16] for some
eigenfunction expansions. The theoretical substantiation of this phenomenon for
Fourier series and the corresponding algorithm were published in [17–19]. Our goal
is to use this method in the case of one-dimensional Fourier transforms. Let us start
with a complete description of the required algorithms from [17].

2. Acceleration of convergence of Fourier series

2.1 Basic definitions

The classical definition of the partial sums of the Fourier series is based on a
gradual increase in the frequencies of the Fourier system. Below we use a more
general notations from the work [17].

Definition 1. Let us call the truncated Fourier series any sum of the form

Sn xð Þ ¼def
X
k∈Dn

f k exp iπkxð Þ, x∈ �1, 1½ �, (7)

where

f s ¼
1
2

ð1
�1
f xð Þe�iπ s x dx, s ¼ 0, � 1, � 2, … (8)

are Fourier coefficients of f , and Dn ¼ dkf g, k ¼ 1, … , n, is a set of n different
integers (n≥ 1). We will assume that D0 ¼ Ø.

Definition 2. Let n≥ 1 be a fixed integer. Consider a system of functions Un ¼
exp iπλk xð Þf g, λk ∈, x∈ �1, 1½ �, k ¼ 1, 2, … , n, where λkf g are arbitrary parameters.

Consider the linear span Qn ¼ span Unf g. We call a function q∈Qn as quasi-
polynomial of degree at most n.

It is easy to see that q∈Qn, if and only if when either q xð Þ � 0 or q xð Þ ¼P
kPβk xð Þ exp iπλk xð Þ, where polynomials Pβk xð Þ≢0 have the exact degree βk and

m ¼Pk 1þ βkð Þ≤ n. The number m will be considered below as the degree of the
quasi-polynomial q.

Definition 3.We call the system λkf g⊂ as parameters of the quasi-polynomial q xð Þ ¼P
kPβk xð Þ exp iπ λk xð Þ∈Qn and the number 1þ βk as multiplicity of the parameter λk.
Definition 4. Let parameters λkf g, k ¼ 1, … , n are 1 fixed. We denote by Qn λkf gð Þ

the set of all corresponding q xð Þ∈Qn.
Remark 1. The set of quasi-polynomials q xð Þ∈Qn is invariant with respect to a

linear change of the variable x. The set of quasi-polynomials q xð Þ∈Qn λkf gð Þ is invariant
with respect to a shift of the variable x.

For a fixed integer n≥ 1, consider a set of non-integer parameters
λkf g⊂, k∈Dn, and the following infinite sequence

1 Unless otherwise stated, we will not exclude the repetition of values of λk in a set λkf g.
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Consider the linear span Qn ¼ span Unf g. We call a function q∈Qn as quasi-
polynomial of degree at most n.

It is easy to see that q∈Qn, if and only if when either q xð Þ � 0 or q xð Þ ¼P
kPβk xð Þ exp iπλk xð Þ, where polynomials Pβk xð Þ≢0 have the exact degree βk and

m ¼Pk 1þ βkð Þ≤ n. The number m will be considered below as the degree of the
quasi-polynomial q.

Definition 3.We call the system λkf g⊂ as parameters of the quasi-polynomial q xð Þ ¼P
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1 Unless otherwise stated, we will not exclude the repetition of values of λk in a set λkf g.
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tr,s ¼def �1ð Þs�r
Y

p∈Dn
p6¼r

s� p
r� p

0
BBB@

1
CCCA
Y
k∈Dn

r� λk
s� λk

, r∈Dn, s ¼ 0, � 1, … : (9)

Remark 2. The last product in (3) is invariant with respect to the numbering of the
parameters λkf g. Here this numbering is tied to the set k∈Dn.

In the general case, the parameters λkf g (i.e., and tr,s) may depend on n. In order not
to complicate the notation, we will indicate this dependence as needed.

Further we denote (see [17] for details)

Tr xð Þ ¼def exp iπ rxð Þ þ
X
s �∈Dn

tr,s exp iπ sxð Þ, r∈Dn, x∈ �1, 1½ �,

f xð Þ≃Fn xð Þ ¼def
X
r∈Dn

f rTr xð Þ,Rn xð Þ ¼def f xð Þ � Fn xð Þ
(10)

The system Tr xð Þ, 1=2 exp iπ rxð Þf g, r∈Dn, is biorthogonal on the segment
x∈ �1, 1½ � and L2-error of approximation f xð Þ≃Fn xð Þ can be found from the formula

Rnk k2 ¼
X
s �∈Dn

f s �
X
r∈Dn

f rtr,s

�����

�����
2

(11)

Here we confine ourselves to the one-dimensional case. A similar universal
algorithm for multivariate truncated Fourier series was proposed and numerically
implemented in [1].

The following obvious formula (x∈ �1, 1½ �)

exp iπ λxð Þ ¼
X∞
s¼�∞

sinc π s� λð Þð Þ exp iπ sxð Þ, λ∈, (12)

where sinc zð Þ ¼ sin zð Þ=z, sinc 0ð Þ ¼ 1, z∈, plays a key role in the future. This
Fourier series can be repeatedly differentiated by the parameter λ.

2.2 The case of integer or multiple parameters

To include the case of a quasi-polynomial q∈Qn containing some integer
parameters from λkf g, consider the following quasi-polynomials associated with
formula (12) and sequence (9)

Λ j,k xð Þ ¼def

i2�k

2πk�1 k� 1ð Þ!
dk�1

dλk�1
j

csc πλ j
� �

exp iπλ j x
� �� � ¼

X∞
s¼�∞

�1ð Þs exp iπ sxð Þ
2 iπ s� λp

� �� �k ,

λ j ∈, j∈Dn, k≥ 1, x∈ �1, 1½ �:

(13)

Lemma 1. If λ j is an integer parameter, then

Λ j,k xð Þ ¼ Bk xð Þ exp iπ λ j x
� �

(14)

where Bk xð Þ is a Bernoulli polynomial (see (4)).
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Since the Bernoulli polynomial Bk xð Þ corresponds to one k -multiple parameter
λ j ¼ 0 in the KE - method, formula (14) can be considered as a generalization of
Bernoulli polynomials to the case of any integer λ j .

Remark 3. Like the Bernoulli polynomials in the KE- method, quasi-polynomials
Λ j,k
� �

, k≥ 1 can be decomposed into a Fourier series with coefficients (8), for which

f s ¼ O sj j�k
� �

, s ! ∞.

If in the sequence (9) parameters λkf g and its corresponding multiplicities nkf g
are known, then we will use the representation s ¼ 0,�1, …ð Þ

tr,s ¼ �1ð Þs�r
Y

p∈Dn

p 6¼r

s� p
r� p

0
BBB@

1
CCCA
Y
j∈Dm

r� λ j

s� λ j

� �n j

, 9 ∗ð Þ (15)

where r∈Dn,Dm ⊂Dn, nq
� �

are corresponding positive integers, andP
j∈Dm

n j ¼ n, λp 6¼ λq if p 6¼ q. However, this sequence is still defined only for

non-integer numbers in λp
� �

.
Consider now the possibility of including in the consideration of some integer

parameters in (10). First of all, note that if for some j ∉ Dn, λ j is integer, then
tr,λ j ¼ ∞. So here the system Trf g from (10) does not exist.

If λ j are integers for j, j∈Dn, then, firstly, it is natural to accept tr,r ¼ 1,
and secondly, we notice that for s 6¼ r the number of the products in tr,s are
reduced.

Finally, we note that in the latter case, the sequence tr,s can be represented as a
sum of simple fractions with respect to s∈. Bearing in mind Lemma 1, it is not
difficult to proof, that.

Lemma 2. Let in (9 ∗ ) the parameters λ j
� �

, j∈Dm, be given and the subset Λ consists
of all integer parameters from λ j

� �
. Then.

i. If there is an λk ∈Λ, λk ∉ Dn, then the system Trf g from (10) does not exist.

ii. If Λ ¼ Λ1 ∪Λ2ð Þ⊂Dn, where Λ1 ⊂Dm contains only different integers and
Λ2 ⊂Dm contains only multiple integers, then

Tr xð Þ ¼ exp iπ rxð Þ, r∈Λ1: (16)

With a λr ∈Λ2 we can apply Lemma 1 and also find the explicit form of
functions Tr xð Þf g .

iii. If Λ 6¼ Ø and Λ 6¼ Dn then the system Tr xð Þf g, r∈DmnΛ is determined based on
the sequence, similar to (15), in which n j ¼ 1, ∀j, and n is replaced by n� pð Þ
where p is the number of elements Λ.

2.3 Explicit form of the system Trf g

The following result is a generalization of Theorem 1 in [17] to the case that in
formula (15) there are integer values among the parameters λkf g.

Theorem 1. Suppose the sequence (15) is given and the possible integer parameters in
λkf g satisfy the condition λk ∈Dm. Then the corresponding functions Trf g are

quasi-polynomials and have the following explicit form
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0
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r� λk
s� λk

, r∈Dn, s ¼ 0, � 1, … : (9)

Remark 2. The last product in (3) is invariant with respect to the numbering of the
parameters λkf g. Here this numbering is tied to the set k∈Dn.

In the general case, the parameters λkf g (i.e., and tr,s) may depend on n. In order not
to complicate the notation, we will indicate this dependence as needed.

Further we denote (see [17] for details)

Tr xð Þ ¼def exp iπ rxð Þ þ
X
s �∈Dn

tr,s exp iπ sxð Þ, r∈Dn, x∈ �1, 1½ �,

f xð Þ≃Fn xð Þ ¼def
X
r∈Dn

f rTr xð Þ,Rn xð Þ ¼def f xð Þ � Fn xð Þ
(10)

The system Tr xð Þ, 1=2 exp iπ rxð Þf g, r∈Dn, is biorthogonal on the segment
x∈ �1, 1½ � and L2-error of approximation f xð Þ≃Fn xð Þ can be found from the formula

Rnk k2 ¼
X
s �∈Dn

f s �
X
r∈Dn

f rtr,s

�����

�����
2

(11)

Here we confine ourselves to the one-dimensional case. A similar universal
algorithm for multivariate truncated Fourier series was proposed and numerically
implemented in [1].

The following obvious formula (x∈ �1, 1½ �)

exp iπ λxð Þ ¼
X∞
s¼�∞

sinc π s� λð Þð Þ exp iπ sxð Þ, λ∈, (12)

where sinc zð Þ ¼ sin zð Þ=z, sinc 0ð Þ ¼ 1, z∈, plays a key role in the future. This
Fourier series can be repeatedly differentiated by the parameter λ.

2.2 The case of integer or multiple parameters

To include the case of a quasi-polynomial q∈Qn containing some integer
parameters from λkf g, consider the following quasi-polynomials associated with
formula (12) and sequence (9)

Λ j,k xð Þ ¼def

i2�k

2πk�1 k� 1ð Þ!
dk�1

dλk�1
j

csc πλ j
� �

exp iπλ j x
� �� � ¼

X∞
s¼�∞

�1ð Þs exp iπ sxð Þ
2 iπ s� λp

� �� �k ,

λ j ∈, j∈Dn, k≥ 1, x∈ �1, 1½ �:

(13)

Lemma 1. If λ j is an integer parameter, then

Λ j,k xð Þ ¼ Bk xð Þ exp iπ λ j x
� �

(14)

where Bk xð Þ is a Bernoulli polynomial (see (4)).
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Since the Bernoulli polynomial Bk xð Þ corresponds to one k -multiple parameter
λ j ¼ 0 in the KE - method, formula (14) can be considered as a generalization of
Bernoulli polynomials to the case of any integer λ j .

Remark 3. Like the Bernoulli polynomials in the KE- method, quasi-polynomials
Λ j,k
� �

, k≥ 1 can be decomposed into a Fourier series with coefficients (8), for which

f s ¼ O sj j�k
� �

, s ! ∞.

If in the sequence (9) parameters λkf g and its corresponding multiplicities nkf g
are known, then we will use the representation s ¼ 0,�1, …ð Þ

tr,s ¼ �1ð Þs�r
Y

p∈Dn

p 6¼r

s� p
r� p

0
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Y
j∈Dm

r� λ j

s� λ j

� �n j

, 9 ∗ð Þ (15)

where r∈Dn,Dm ⊂Dn, nq
� �

are corresponding positive integers, andP
j∈Dm

n j ¼ n, λp 6¼ λq if p 6¼ q. However, this sequence is still defined only for

non-integer numbers in λp
� �

.
Consider now the possibility of including in the consideration of some integer

parameters in (10). First of all, note that if for some j ∉ Dn, λ j is integer, then
tr,λ j ¼ ∞. So here the system Trf g from (10) does not exist.

If λ j are integers for j, j∈Dn, then, firstly, it is natural to accept tr,r ¼ 1,
and secondly, we notice that for s 6¼ r the number of the products in tr,s are
reduced.

Finally, we note that in the latter case, the sequence tr,s can be represented as a
sum of simple fractions with respect to s∈. Bearing in mind Lemma 1, it is not
difficult to proof, that.

Lemma 2. Let in (9 ∗ ) the parameters λ j
� �

, j∈Dm, be given and the subset Λ consists
of all integer parameters from λ j

� �
. Then.

i. If there is an λk ∈Λ, λk ∉ Dn, then the system Trf g from (10) does not exist.

ii. If Λ ¼ Λ1 ∪Λ2ð Þ⊂Dn, where Λ1 ⊂Dm contains only different integers and
Λ2 ⊂Dm contains only multiple integers, then

Tr xð Þ ¼ exp iπ rxð Þ, r∈Λ1: (16)

With a λr ∈Λ2 we can apply Lemma 1 and also find the explicit form of
functions Tr xð Þf g .

iii. If Λ 6¼ Ø and Λ 6¼ Dn then the system Tr xð Þf g, r∈DmnΛ is determined based on
the sequence, similar to (15), in which n j ¼ 1, ∀j, and n is replaced by n� pð Þ
where p is the number of elements Λ.

2.3 Explicit form of the system Trf g

The following result is a generalization of Theorem 1 in [17] to the case that in
formula (15) there are integer values among the parameters λkf g.

Theorem 1. Suppose the sequence (15) is given and the possible integer parameters in
λkf g satisfy the condition λk ∈Dm. Then the corresponding functions Trf g are

quasi-polynomials and have the following explicit form
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Tr xð Þ ¼
X
j∈Dm

Xn j

k¼1

cr,j,k Λ j,k xð Þ, r∈Dn, x∈ �1, 1½ � (17)

where

cr,j,k ¼
�1ð Þrþ1 iπð ÞkQp∈Dm

r� λp
� �np

2 n j � k
� �

!
Q

p∈Dn

p 6¼ r

r� pð Þ

dn j�k

dλn j�k
j

Q
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p 6¼ r

λ j � p
� �

Q
p∈Dn

p 6¼ j

λ j � λp
� �np

0
BBBB@

1
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2.4 The adaptive algorithm and over-convergence phenomenon

In the main Theorem of paper [17], the phenomenon of over-convergence was
theoretically substantiated. The basis of this result was the following Algorithm A.

Let Sn xð Þ be a truncated Fourier series (see (7)). Consider formulas (9)–(10)
with symbolic (not numerical) parameters λq

� �
, q∈Dn. Let us now choose a new

set of integer numbers ~Dn ¼ ~dk
n o

, k ¼ 1, … , n, ~Dn ∩Dn ¼ Ø. To determine the

parameters λq
� �

, q∈Dn, we additionally use Fourier coefficients f s
� �

, s∈ ~Dn, and
solve the following system of equations (compare with (11))

f s �
X
r∈Dn

f rtr,s ¼ 0, s∈ ~Dn (18)

regarding parameters λq
� �

. Note that Eq. (18) is essentially nonlinear. If the solution
exists, then the system Trf g from (4) is used to approximate f by Fn (see (10)).

Here we show how Algorithm A can be step-by-step realized using given 2n

Fourier coefficients f dk

n o
⋃ f ~dk

n on o
(see (7)).

Step 1. Using the representation (9), we formally bring the left side of (18) to a
common denominator, and fix the conditions λq 6¼ ~dk, k ¼ 1, 2, … , n. Then Eq. (18)
will take the form (s∈ ~Dn)

f s
Y
q∈Dn

s� λq
� � ¼

X
r∈Dn

�1ð Þs�dr f r
sinc dr � λrð Þ

Y
p∈Dn

p 6¼ dr

s� dp
dr � dp

 ! Y
q∈Dn

dr � λq
� �

:

(19)

Step 2. Using the Vieta’s formula decompose the products in (18) containing the
parameters λkf g and denote

ek ¼ �1ð Þk
X

i1 < i2 < … < ik

λi1λi2 , … , λik , k ¼ 1, 2, … , n:

It is not difficult to see that, as a result, Eq.(18) will take the form of a linear
system of equations with respect to the variables ekf g.
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Step 3. Solve resulting equation by the least square method.
Step 4. Again, according to the Vieta’s formulae find all roots zkf g, k ¼ 1, 2, … , n

of the corresponding polynomial P zð Þ ¼Pn
p¼0ep z

n�p, e0 ¼ 1, and put λkf g ¼ zkf g.
Step 5. Realize the approximation f ≃ Fn (see (10) and (17)).
Remark 4. Least square method provides only one solution in Step 3.
The following theorem is the main result of the paper [17].
Theorem 2. {The phenomenon of the over-convergence}. Let f ∈Qn (see Defini-

tion 2) and the sets Dn, ~Dn and the Fourier coefficients f s
� �

, s∈Dn ∪ ~Dn, of the f be
given. Denote by Λ the set of integer parameters in the representation f ¼P

kPmk xð Þ exp iπμk xð Þ. In order for the approximation by Algorithm A to be exact (that
is f xð Þ � Fn xð Þ, x∈ �1, 1½ �), it is necessary and sufficient that Λ⊆Dn ∪ ~Dn .

It is now natural to formulate the following definition of the acceleration of the
convergence of a truncated Fourier series.

Definition 5. Let f ∈L2 �1, 1½ � and the sets Dn, ~Dn and the Fourier coefficients
f s

� �
, s∈Dn ∪ ~Dn, of the f be given. Applying Algorithm 1, we get parameters

λkf g, k∈Dn. The accelerating the convergence of truncated Fourier series

S2n xð Þ ¼
X

k∈Dn ∪ ~Dn

f k exp iπkxð Þ, x∈ �1, 1½ �, (20)

we define by formula (17).
Remark 5. There are no Fourier coefficients f r

� �
, r∈ ~Dm in formula (17). These

coefficients are used in Algorithm A to an optimal choice of parameters λkf g, k∈Dm.

3. An numerical algorithm for Fourier transform

Consider the Fourier transform F of a function f ∈L2 �∞,∞ð Þ the form

F ωð Þ ¼ 1ffiffiffiffiffi
2π

p
ð∞
�∞

f tð Þei tωdt, ω∈ �∞,∞ð Þ (21)

3.1 Algorithm construction scheme

The method of the item 2 can be applied by linear change of variable to function
f defined on any finite segment. For a fixed h>0 formula (21) can be rewritten as

F ωð Þ ¼ 1ffiffiffiffiffi
2π

p
X∞

k¼�∞

ðkþh

k�h
f tð Þei tωdt (22)

On the other hand, our method allows one to approximate function f ≃
P

f rTr

on each segment k� h, kþ hð Þ, ∀k, using Algorithm A and formula (17).
Our idea is as follows. First, based on the required 1 error, you can leave a fnite

number of intervals. Second, on the remaining intervals, the integrals are calculated
explicitly. Really, each function Tr xð Þ is a linear combination of functions of the
form exp iπ λ1xð Þ or its derivative with respect to λ of a certain order. For example,
if k ¼ 0, then for functions exp iπ λ1xð Þ, we have (see (12), here k ¼ 0)

ðh
�h

exp iπ λ1 tð Þei tωdt ¼ 2 h sinc h πλ1 þ ωð Þð Þ
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2.4 The adaptive algorithm and over-convergence phenomenon

In the main Theorem of paper [17], the phenomenon of over-convergence was
theoretically substantiated. The basis of this result was the following Algorithm A.

Let Sn xð Þ be a truncated Fourier series (see (7)). Consider formulas (9)–(10)
with symbolic (not numerical) parameters λq

� �
, q∈Dn. Let us now choose a new

set of integer numbers ~Dn ¼ ~dk
n o

, k ¼ 1, … , n, ~Dn ∩Dn ¼ Ø. To determine the

parameters λq
� �

, q∈Dn, we additionally use Fourier coefficients f s
� �

, s∈ ~Dn, and
solve the following system of equations (compare with (11))

f s �
X
r∈Dn

f rtr,s ¼ 0, s∈ ~Dn (18)

regarding parameters λq
� �

. Note that Eq. (18) is essentially nonlinear. If the solution
exists, then the system Trf g from (4) is used to approximate f by Fn (see (10)).

Here we show how Algorithm A can be step-by-step realized using given 2n

Fourier coefficients f dk

n o
⋃ f ~dk

n on o
(see (7)).

Step 1. Using the representation (9), we formally bring the left side of (18) to a
common denominator, and fix the conditions λq 6¼ ~dk, k ¼ 1, 2, … , n. Then Eq. (18)
will take the form (s∈ ~Dn)

f s
Y
q∈Dn

s� λq
� � ¼

X
r∈Dn

�1ð Þs�dr f r
sinc dr � λrð Þ

Y
p∈Dn

p 6¼ dr

s� dp
dr � dp
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q∈Dn
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:

(19)

Step 2. Using the Vieta’s formula decompose the products in (18) containing the
parameters λkf g and denote

ek ¼ �1ð Þk
X

i1 < i2 < … < ik

λi1λi2 , … , λik , k ¼ 1, 2, … , n:

It is not difficult to see that, as a result, Eq.(18) will take the form of a linear
system of equations with respect to the variables ekf g.
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Step 3. Solve resulting equation by the least square method.
Step 4. Again, according to the Vieta’s formulae find all roots zkf g, k ¼ 1, 2, … , n

of the corresponding polynomial P zð Þ ¼Pn
p¼0ep z

n�p, e0 ¼ 1, and put λkf g ¼ zkf g.
Step 5. Realize the approximation f ≃ Fn (see (10) and (17)).
Remark 4. Least square method provides only one solution in Step 3.
The following theorem is the main result of the paper [17].
Theorem 2. {The phenomenon of the over-convergence}. Let f ∈Qn (see Defini-

tion 2) and the sets Dn, ~Dn and the Fourier coefficients f s
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, s∈Dn ∪ ~Dn, of the f be
given. Denote by Λ the set of integer parameters in the representation f ¼P

kPmk xð Þ exp iπμk xð Þ. In order for the approximation by Algorithm A to be exact (that
is f xð Þ � Fn xð Þ, x∈ �1, 1½ �), it is necessary and sufficient that Λ⊆Dn ∪ ~Dn .

It is now natural to formulate the following definition of the acceleration of the
convergence of a truncated Fourier series.

Definition 5. Let f ∈L2 �1, 1½ � and the sets Dn, ~Dn and the Fourier coefficients
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, s∈Dn ∪ ~Dn, of the f be given. Applying Algorithm 1, we get parameters

λkf g, k∈Dn. The accelerating the convergence of truncated Fourier series
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X
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f k exp iπkxð Þ, x∈ �1, 1½ �, (20)

we define by formula (17).
Remark 5. There are no Fourier coefficients f r

� �
, r∈ ~Dm in formula (17). These

coefficients are used in Algorithm A to an optimal choice of parameters λkf g, k∈Dm.

3. An numerical algorithm for Fourier transform

Consider the Fourier transform F of a function f ∈L2 �∞,∞ð Þ the form

F ωð Þ ¼ 1ffiffiffiffiffi
2π

p
ð∞
�∞

f tð Þei tωdt, ω∈ �∞,∞ð Þ (21)

3.1 Algorithm construction scheme

The method of the item 2 can be applied by linear change of variable to function
f defined on any finite segment. For a fixed h>0 formula (21) can be rewritten as

F ωð Þ ¼ 1ffiffiffiffiffi
2π

p
X∞

k¼�∞

ðkþh

k�h
f tð Þei tωdt (22)

On the other hand, our method allows one to approximate function f ≃
P

f rTr

on each segment k� h, kþ hð Þ, ∀k, using Algorithm A and formula (17).
Our idea is as follows. First, based on the required 1 error, you can leave a fnite

number of intervals. Second, on the remaining intervals, the integrals are calculated
explicitly. Really, each function Tr xð Þ is a linear combination of functions of the
form exp iπ λ1xð Þ or its derivative with respect to λ of a certain order. For example,
if k ¼ 0, then for functions exp iπ λ1xð Þ, we have (see (12), here k ¼ 0)

ðh
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exp iπ λ1 tð Þei tωdt ¼ 2 h sinc h πλ1 þ ωð Þð Þ
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On the complex plane s∈, this is an entire function of exponential type. It is
easy to see that this is true in the general case.

Remark 6. Depending on function f in formula (21), interval �∞,∞ð Þ can be split
into a finite number of unequal intervals instead of partition (22).

Let us turn to the main details of the algorithm for such a numerical implemen-
tation of the Fourier transform for a piecewise smooth function f .

3.2 Implementation notes

To make our approach understandable to a wide range of specialists, when
developing an applied algorithm, we will assume that (see formulas (7–19)) for a
fixed n≥ 1,Dn ¼ 0, 1, … , n� 1f g, ~Dn ¼ �n,�nþ 1, … ,�1f g.

Consider now the following when writing code to implement the one-
dimensional Fourier transform.

1.The computer used must be installed with programs that can perform
symbolic mathematical operations as well as numerical integration (for
example, as system Wolfram Mathematica, see [19]). It is desirable to use the
highest possible accuracy of calculations.

2.The singularities of piecewise-smooth function f (discontinuity points of the
function and the discontinuity of the derivatives of low order) must be
included in the partition of interval �∞,∞ð Þ (see Remark 6).

3.The computer errs or freezes most often due to type 0=0 uncertainty. The
point is that in practice, due to rounding errors, when the parameters coincide,
they are often not fixed (see formula (15)). This must be taken into account
also in the presence of integer parameters (see item 2.2).

For example, let in the process of computer operation at the output of Algorithm
A we have λ1 ¼ 1:00012, λ2 ¼ 1:00031. At this point, so that the calculations do
not stop, it is necessary to make following correction in the code: λ1 ¼ λ2 ¼ 1.
Of course, here we mean the permissible error 10�3 when computer precision is
10�5 (see above item 1).

1.During the operation of the proposed algorithm for Fourier transform,
L2- error can be monitored every time the adaptive algorithm is applied.
In practice, it has the same order as the L2-error for the Fourier transform.

3.3 A simple example

Let us explain the details on the following example of an approximate finding of
the Fourier transform (see notation (21)).

f xð Þ ¼ e�4 x�1
3j j þ i

2
e�4 x�1

2ð Þ2 , x∈ �∞,∞ð Þ (23)

F ωð Þ ¼
4

ffiffi
2
π

q
e
iω
3

ω2 þ 16
þ ie�

1
16ω ω�8ið Þ

4
ffiffiffi
2

p : ω∈ �∞,∞ð Þ (24)

Our goal is to provide a final value of a L2 - error that does not exceed 10�2. With
the help of numerical integration (in this case, explicitly), one can make sure that
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið∞
3
2

f xð Þj j2dxþ
ð�2

�∞
f xð Þj j2dx

s
¼ 4:� 10�3

and when deleting these semi-infinite intervals, further actions should lead to an
error no greater than 5:99� 10�3.

On the other hand, we see that function f is infinitely differentiable everywhere
except the point x ¼ 1=3, where its derivative has a jump. Therefore (see item 2),
we can consider the following partition into two intervals: I1 ¼ �2, 1=3ð Þ, I2 ¼
1=3, 3=2ð Þ. Method of item 3.1 at n ¼ 3 was applied to each of these intervals.

Monitoring showed (see item 4) that L2- error for I1 is 1:� 10�3, and for I2 is
1:44� 10�3. We see that this is less than allowed above.

The total L2- error turned out to be 4:38� 10�3. As for the uniform error, it is
reached approximately at point ω ¼ 0:185 and is equal to 1:04� 10�3.

These calculations were performed using system Wolfram Mathematica 9.

4. Conclusion

Those who have mastered the technique of using Algorithm A can easily obtain a
similar method of sine and cosine Fourier transforms. Despite the fact that with an
increase in n the complexity of the corresponding algorithms increases markedly,
modern computers allow you to perform the necessary actions with increased bit
depth. The proposed method for finding the one-dimensional Fourier transform
with a given accuracy can be useful in such different fields of activity as mathe-
matical physics, astronomy, engineering, economics, biology, etc.

There are good prerequisites for other classical (in a broad sense) Fourier tools
for efficient applications based on the method of item 2 (see articles [14, 15]).
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On the complex plane s∈, this is an entire function of exponential type. It is
easy to see that this is true in the general case.

Remark 6. Depending on function f in formula (21), interval �∞,∞ð Þ can be split
into a finite number of unequal intervals instead of partition (22).

Let us turn to the main details of the algorithm for such a numerical implemen-
tation of the Fourier transform for a piecewise smooth function f .

3.2 Implementation notes

To make our approach understandable to a wide range of specialists, when
developing an applied algorithm, we will assume that (see formulas (7–19)) for a
fixed n≥ 1,Dn ¼ 0, 1, … , n� 1f g, ~Dn ¼ �n,�nþ 1, … ,�1f g.

Consider now the following when writing code to implement the one-
dimensional Fourier transform.

1.The computer used must be installed with programs that can perform
symbolic mathematical operations as well as numerical integration (for
example, as system Wolfram Mathematica, see [19]). It is desirable to use the
highest possible accuracy of calculations.

2.The singularities of piecewise-smooth function f (discontinuity points of the
function and the discontinuity of the derivatives of low order) must be
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point is that in practice, due to rounding errors, when the parameters coincide,
they are often not fixed (see formula (15)). This must be taken into account
also in the presence of integer parameters (see item 2.2).

For example, let in the process of computer operation at the output of Algorithm
A we have λ1 ¼ 1:00012, λ2 ¼ 1:00031. At this point, so that the calculations do
not stop, it is necessary to make following correction in the code: λ1 ¼ λ2 ¼ 1.
Of course, here we mean the permissible error 10�3 when computer precision is
10�5 (see above item 1).

1.During the operation of the proposed algorithm for Fourier transform,
L2- error can be monitored every time the adaptive algorithm is applied.
In practice, it has the same order as the L2-error for the Fourier transform.

3.3 A simple example

Let us explain the details on the following example of an approximate finding of
the Fourier transform (see notation (21)).
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we can consider the following partition into two intervals: I1 ¼ �2, 1=3ð Þ, I2 ¼
1=3, 3=2ð Þ. Method of item 3.1 at n ¼ 3 was applied to each of these intervals.

Monitoring showed (see item 4) that L2- error for I1 is 1:� 10�3, and for I2 is
1:44� 10�3. We see that this is less than allowed above.

The total L2- error turned out to be 4:38� 10�3. As for the uniform error, it is
reached approximately at point ω ¼ 0:185 and is equal to 1:04� 10�3.

These calculations were performed using system Wolfram Mathematica 9.

4. Conclusion

Those who have mastered the technique of using Algorithm A can easily obtain a
similar method of sine and cosine Fourier transforms. Despite the fact that with an
increase in n the complexity of the corresponding algorithms increases markedly,
modern computers allow you to perform the necessary actions with increased bit
depth. The proposed method for finding the one-dimensional Fourier transform
with a given accuracy can be useful in such different fields of activity as mathe-
matical physics, astronomy, engineering, economics, biology, etc.

There are good prerequisites for other classical (in a broad sense) Fourier tools
for efficient applications based on the method of item 2 (see articles [14, 15]).
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Abstract

Animal tissues are extensively used as scaffolds for tissue engineering and 
 regenerative therapies. They are typically subjected to decellularization process to 
obtain a cell-free extracellular matrix (ECM) scaffolds. It is important to identify 
chemical structure of the ECM scaffolds and Fourier transform infrared (FTIR) 
appears to be a technique of choice. In this chapter, FTIR spectra of native and 
decellularized buffalo aortae, buffalo diaphragms, goat skin, and native bovine 
cortical bone are presented. The transmittance peaks are that of organic collagen 
amide A, amide B, amide I, amide II and amide III chemical functional groups in 
both native and decellularized aortae, diaphragms and skin. In bone, the transmit-
tance peaks are that of inorganic ν1, ν3 PO4

3−, OH− in addition to organic collagen 
amide A, amide B, amide I, amide II and amide III chemical functional groups. 
These important transmittance peaks of the tissue samples will help researchers in 
defining the chemical structure of these animal tissues.

Keywords: buffalo aorta, buffalo diaphragm, bovine bone, goat skin,  
Fourier transform infrared spectroscopy

1. Introduction

The extracellular matrix (ECM) scaffolds primarily composed of structural 
collagen protein are widely used in tissue engineering and regenerative medicine 
[1–15]. These are usually prepared from animal tissues by decellularization process. 
Decellularization is the process of removal of native cells from animal tissue, leaving 
behind a three-dimensional network of ECM proteins while preserving the bioactivity 
and mechanics of the tissue. In the decellularization process, animal tissues are sub-
jected to physical, enzymatic and chemical treatments. Physical methods of decellu-
larization include freezing, direct pressure, sonication, and agitation [16]. Enzymatic 
techniques of decellularization include the use of protease (trypsin) [1–5, 8, 10, 12–15], 
endonucleases and exonucleases. Chemical methods of decellularization include the 
use of acids and alkalis (acetic acid, peracetic acid, hydrochloric acid, sulfuric acid, 
ammonium hydroxide), nonionic detergents (Triton X-100), ionic detergents (sodium 
dodecyl sulfate, sodium deoxycholate, Triton X-200) [1–15], zwitterionic detergents 
(3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate, sulfobetaine-10, 
sulfobetaine-16), organic solvent (Tri(n-butyl)phosphate) [3, 10], hypertonic and 
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Animal tissues are extensively used as scaffolds for tissue engineering and 
 regenerative therapies. They are typically subjected to decellularization process to 
obtain a cell-free extracellular matrix (ECM) scaffolds. It is important to identify 
chemical structure of the ECM scaffolds and Fourier transform infrared (FTIR) 
appears to be a technique of choice. In this chapter, FTIR spectra of native and 
decellularized buffalo aortae, buffalo diaphragms, goat skin, and native bovine 
cortical bone are presented. The transmittance peaks are that of organic collagen 
amide A, amide B, amide I, amide II and amide III chemical functional groups in 
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1. Introduction

The extracellular matrix (ECM) scaffolds primarily composed of structural 
collagen protein are widely used in tissue engineering and regenerative medicine 
[1–15]. These are usually prepared from animal tissues by decellularization process. 
Decellularization is the process of removal of native cells from animal tissue, leaving 
behind a three-dimensional network of ECM proteins while preserving the bioactivity 
and mechanics of the tissue. In the decellularization process, animal tissues are sub-
jected to physical, enzymatic and chemical treatments. Physical methods of decellu-
larization include freezing, direct pressure, sonication, and agitation [16]. Enzymatic 
techniques of decellularization include the use of protease (trypsin) [1–5, 8, 10, 12–15], 
endonucleases and exonucleases. Chemical methods of decellularization include the 
use of acids and alkalis (acetic acid, peracetic acid, hydrochloric acid, sulfuric acid, 
ammonium hydroxide), nonionic detergents (Triton X-100), ionic detergents (sodium 
dodecyl sulfate, sodium deoxycholate, Triton X-200) [1–15], zwitterionic detergents 
(3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate, sulfobetaine-10, 
sulfobetaine-16), organic solvent (Tri(n-butyl)phosphate) [3, 10], hypertonic and 
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hypotonic solutions [2, 3, 8, 10, 13, 15], and chelating agents (EDTA). These reagents 
at higher concentrations extensively disrupt the structural proteins of ECM scaffolds 
and make it impossible to analyze by routine techniques [17]. Fourier transform 
infrared (FTIR) spectroscopy is one of the preferred technique for identification of 
biomolecules through the study of their characteristic vibrational movements [11, 13, 
14, 18]. This technique is simple, reproducible, nondestructive to the tissue, and only 
small amounts of tissue (micrograms to nanograms) with a minimum preparation 
are required. In addition, this technique also provides molecular-level information 
allowing investigation of functional groups, bonding types, and molecular conforma-
tions. The characteristic peaks in FTIR spectra are molecule specific and provide direct 
information about biochemical composition. This chapter highlights the application 
of FTIR spectroscopy for characterization of native and decellularized buffalo aortae, 
buffalo diaphragms, goat skin, and native bovine cortical bone.

2. Materials

2.1 Chemicals and reagents

Sodium dodecyl sulfate (SDS), Trypsin, Sodium chloride (NaCl), Phosphate-
buffered saline (PBS), Ethylene diaminetetraacetic acid (EDTA), Sodium azide 
(NaN3), Gentamicin, Potassium bromide (KBr) powder. All the chemicals and 
reagents used were of the high purity and obtained from Sigma-Aldrich (St. Louis, 
MO, USA) unless mentioned otherwise. All solutions were prepared fresh using 
deionized water and analytical grade chemicals at room temperature (unless 
indicated otherwise).

2.2 Equipments

Magnetic stirrer (C-MAG HS7, IKA, USA), Analytical digital lab balance 
(Citizen Enterprises, Delhi, India), Fourier transform infrared spectrophotometer 
(FTIR 8400 s Shimadzu Corporation, Tokyo, Japan), Bard Parker blade number 24, 
Autoclaved sterile dissecting scissors, Autoclaved sterile jar (Borosil, India), Sterile 
measuring cylinders (Borosil, India), Dishes (Borosil, India) and Protective equip-
ment such as surgical gloves and surgical autoclaved instruments were used.

2.3 Tissue samples

Fresh cadaver buffalo aorta (Figure 1A), buffalo diaphragm (Figure 1B) and 
goat skin (Figure 1C) collected in chilled (4°C) sterile 1X PBS (pH 7.4) containing 
0.016% gentamicin (antibiotic), 0.0205% EDTA (proteolytic inhibitor) and 0.1% 
NaN3 (antimycotic) were our study materials. A cortical bone collected from the 
anterior diaphysis of the right femur of an adult cadaver Gir cow was also used.

Figure 1. 
Gross images of buffalo aorta (a), buffalo diaphragm (B), and goat skin (C).
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3. Methods

3.1 Fourier transform infrared spectroscopy of the buffalo aorta

The aorta, an elastic artery, has a trilaminar structure consisting of a tunica 
intima, media, and adventitia. The media comprises cellular elements (including 
smooth muscle cells) and structural proteins (notably collagen and elastin) that 
form the ECM. Before being used in regenerative therapies, cellular elements of the 
aorta should be removed by decellularization process. The decellularization of fresh 
posterior aorta from deceased donor buffalo was completely achieved by treatment 
with 1% SDS for 24 hours followed by 0.25% trypsin for 2 hours and again by 1% 
SDS for 24 hours [19]. Both the native and decellularized aortae were characterized 
by FTIR spectroscopy [14]. Herein, one milligram of each freeze-dried tissues were 
mixed with pure dry KBr powder in 1:10 ratio, and pelleted. The FTIR spectra were 
recorded by an infrared spectrophotometer in the 500–4000 cm−1 wave number 
spectral range with a spectral resolution of 2 cm−1 and 45 scans. Figure 2 illustrates 
the FTIR spectra of native and decellularized aortae. The transmittance peaks 
indicated the presence of organic collagen amide A, amide B, amide I, amide II and 
amide III chemical functional groups in both native and decellularized aortae. The 
amide A band (3294 cm−1) is associated with H-bonded N-H stretching [11, 13, 20] 
and was found at 3282.95 cm−1 for native aorta and 3280 cm−1 for decellularized 
aorta. The amide B band (2953 and 2928 cm−1) is related to CH2 asymmetric stretch-
ing [11, 13, 21] and was observed at 2958.9 cm−1 for native aorta and 2954.08 cm−1 
for decellularized aorta. The amide I band (1641–1658 cm−1) is associated with C=O 
hydrogen bonded stretching [11, 13, 22] as recorded at 1658.84 cm−1 for native aorta 
and 1658.84 cm−1 for decellularized aorta. The amide II (1539–1546 cm−1) is associ-
ated with C-N stretching and N-H in plane bending from amide linkages, including 
wagging vibrations of CH2 groups from the glycine backbone and proline side-
chains [11, 13, 23] in native aorta and decellularized aorta appeared at 1526.71 cm−1 
and 1529.60 cm−1, respectively. The amide III (NH bend) band was found at 
1282.55 cm−1 for NA and 1230.69 cm−1 for decellularized aorta [11, 13, 24].

3.2 Fourier transform infrared spectroscopy of the buffalo diaphragm

The diaphragm is a dome shaped structure, composed of muscle surround-
ing a central tendon, which separates the thoracic and abdominal cavities. Before 

Figure 2. 
FTIR spectra showing transmittance peaks of native aorta (NA) at 1282.55, 1526.71, 1658.84, 2958.9 and 
3282.95 cm−1; and decellularized aorta (DA) at 1230.69, 1529.60, 1658.84, 2954.08 and 3280 cm−1.
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spectral range with a spectral resolution of 2 cm−1 and 45 scans. Figure 2 illustrates 
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hydrogen bonded stretching [11, 13, 22] as recorded at 1658.84 cm−1 for native aorta 
and 1658.84 cm−1 for decellularized aorta. The amide II (1539–1546 cm−1) is associ-
ated with C-N stretching and N-H in plane bending from amide linkages, including 
wagging vibrations of CH2 groups from the glycine backbone and proline side-
chains [11, 13, 23] in native aorta and decellularized aorta appeared at 1526.71 cm−1 
and 1529.60 cm−1, respectively. The amide III (NH bend) band was found at 
1282.55 cm−1 for NA and 1230.69 cm−1 for decellularized aorta [11, 13, 24].
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Figure 2. 
FTIR spectra showing transmittance peaks of native aorta (NA) at 1282.55, 1526.71, 1658.84, 2958.9 and 
3282.95 cm−1; and decellularized aorta (DA) at 1230.69, 1529.60, 1658.84, 2954.08 and 3280 cm−1.
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the clinical application, fresh tendinous portion of diaphragm from deceased 
donor buffalo was decellularized using 2% SDS solution for 48 hours and FTIR 
spectroscopic characterization was performed [11]. Herein, one milligram of 
each freeze-dried native and decellularized diaphragms were mixed with pure 
dry KBr powder in 1:10 ratio, and pelleted. The FTIR spectra were recorded by an 
infrared spectrophotometer in the 500–4000 cm−1 wave number spectral range 
with a spectral resolution of 2 cm−1 and 45 scans. The FTIR spectra of native and 
decellularized diaphragms are illustrated in the Figure 3. The transmittance peaks 
indicated the presence of organic collagen amide A, amide B, amide I, amide II 
and amide III chemical functional groups in both native and decellularized dia-
phragms. The amide A band is associated with H-bonded N-H stretching [20] and 
was found at 3386.15 cm−1 for native diaphragm and 3343.71 cm−1 for decellularized 
diaphragm. The amide B band is related to CH2 asymmetric stretching [21] and was 
observed at 2955.04 cm−1 for native diaphragm and 2954.08 cm−1 for decellularized 
diaphragm. The amide I band is associated with C=O hydrogen bonded stretching 
[22] as recorded at 1657.87 cm−1 for native diaphragm and 1649.19 cm−1 for decellu-
larized diaphragm. The amide II is associated with C-N stretching and N-H in plane 
bending from amide linkages, including wagging vibrations of CH2 groups from the 
glycine backbone and proline side-chains [23] in native diaphragm and decellular-
ized diaphragm appeared at 1535.39 cm−1 and 1534.11 cm−1, respectively. The amide 
III band was found at 1238.34 cm−1 for native diaphragm and 1220.02 cm−1 for 
decellularized diaphragm confirming presence of hydrogen bonds [24].

3.3 Fourier transform infrared spectroscopy of the goat skin

The goat skin consists of two layers; superficial epidermis, composed of strati-
fied squamous keratinized epithelium and underlying dermis, composed of dense, 
irregular connective tissue mainly collagen fibers. Skin appendages such as hair 
follicles, sebaceous and sweat glands were found in the dermis. The deepithelializa-
tion of fresh goat skin was completely achieved by treatment with 0.25% trypsin 
in 4 mol/L NaCl for 8 hours. Further treatment with 2% SDS for 48 hours demon-
strated complete decellularization of the cellular dermis [13]. Native, deepithelial-
ized and decellularized goat skins were characterized by FTIR spectroscopy [13]. 
One milligram of each freeze-dried native, deepithelialized and decellularized 
skins were mixed with pure dry KBr powder in 1: 10 ratio, and pelleted. The FTIR 
spectra were recorded by an infrared spectrophotometer in the 500–4000 cm−1 

Figure 3. 
FTIR spectra showing transmittance peaks of the native diaphragm (ND) at 1238.34, 1535.39, 1657.87, 2955.04 
and 3386.15 cm−1; decellularized diaphragm (DD) at 1220.02, 1534.11, 1649.19, 2954.08 and 3343.71 cm−1.
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wave-number spectral range with a spectral resolution of 2 cm−1 and 45 scans. The 
FTIR spectra of native, deepithelialized and decellularized skins are illustrated in 
the Figure 4. The transmittance peaks indicated the presence of organic collagen 
amide A, amide B, amide I, amide II and amide III chemical functional groups in 
native, deepithelialized and decellularized skins. The peaks at 3288.74 cm−1 for 
native skin, 3289.70 cm−1 for deepithelialized skin and 3306.10 cm−1 for decellular-
ized skin corresponds to the amide A band (3294 cm−1) of collagen is due to N-H 
stretching vibrations when the N-H group of the peptide is involved in hydrogen 
bonds [20]. The peaks at 2936.72 cm−1 for native skin, 2953.12 cm−1 for deepithelial-
ized skin and 2953.12 cm−1 for decellularized skin corresponds to the amide B band 
(2953 and 2928 cm−1) is due to asymmetric stretching of the CH2 stretching vibra-
tion [21]. The peaks at 1657.87 cm−1 for native skin, 1658.84 cm−1 for deepithelial-
ized skin and 1666.55 cm−1 for decellularized skin corresponds to the amide I band 
(1641–1658 cm−1) is due to the stretching vibration of the peptide carbonyl group 
(-C=O) along the polypeptide backbone [22]. The peaks at 1546.96 cm−1 for native 
skin, 1530.57 cm−1 for deepithelialized skin and 1547.93 cm−1 decellularized skin 
corresponds to the amide II (1500–1560 cm−1) which arises from the N-H bending 
vibration coupled to C-N stretching [23]. Amide III band was found at 1236.41 cm−1 
for NCS, 1238.34 cm−1 for DCS, 1238.34 cm−1 for CADM, and 1238.34 cm−1 for BSC 
confirming the presence of hydrogen bonds [24].

3.4 Fourier transform infrared spectroscopy of the bovine bone

Bone is a composite biomaterial mainly composed of organic collagen fibers 
(chiefly type I collagen) and inorganic hydroxyapatite [Ca10(PO)6(OH)2] crystals. 
Both the components of bone have specific chemical signatures and, consequently, 
distinctive infrared spectra at the molecular level [18]. The FTIR spectroscopy of 
the bovine bone tissue was described in a recent study in which one milligram of 
powdered native cortical bone was mixed with pure dry KBr powder in 1:10 ratio, 
and pelleted. The FTIR spectrum was recorded by an infrared spectrophotometer 

Figure 4. 
FTIR spectra showing peaks of native goat skin (NS) at 1236.41, 1546.96, 1657.87, 2936.72, 3288.74 cm−1, 
deepithelialized goat skin (DS) at 1238.34, 1530.57, 1658.84, 2953.12, 3289.70 cm−1 and decellularized goat skin 
(AS) at 1238.34, 1547.93, 1666.55, 2953.12, 3306.10 cm−1.
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the clinical application, fresh tendinous portion of diaphragm from deceased 
donor buffalo was decellularized using 2% SDS solution for 48 hours and FTIR 
spectroscopic characterization was performed [11]. Herein, one milligram of 
each freeze-dried native and decellularized diaphragms were mixed with pure 
dry KBr powder in 1:10 ratio, and pelleted. The FTIR spectra were recorded by an 
infrared spectrophotometer in the 500–4000 cm−1 wave number spectral range 
with a spectral resolution of 2 cm−1 and 45 scans. The FTIR spectra of native and 
decellularized diaphragms are illustrated in the Figure 3. The transmittance peaks 
indicated the presence of organic collagen amide A, amide B, amide I, amide II 
and amide III chemical functional groups in both native and decellularized dia-
phragms. The amide A band is associated with H-bonded N-H stretching [20] and 
was found at 3386.15 cm−1 for native diaphragm and 3343.71 cm−1 for decellularized 
diaphragm. The amide B band is related to CH2 asymmetric stretching [21] and was 
observed at 2955.04 cm−1 for native diaphragm and 2954.08 cm−1 for decellularized 
diaphragm. The amide I band is associated with C=O hydrogen bonded stretching 
[22] as recorded at 1657.87 cm−1 for native diaphragm and 1649.19 cm−1 for decellu-
larized diaphragm. The amide II is associated with C-N stretching and N-H in plane 
bending from amide linkages, including wagging vibrations of CH2 groups from the 
glycine backbone and proline side-chains [23] in native diaphragm and decellular-
ized diaphragm appeared at 1535.39 cm−1 and 1534.11 cm−1, respectively. The amide 
III band was found at 1238.34 cm−1 for native diaphragm and 1220.02 cm−1 for 
decellularized diaphragm confirming presence of hydrogen bonds [24].

3.3 Fourier transform infrared spectroscopy of the goat skin

The goat skin consists of two layers; superficial epidermis, composed of strati-
fied squamous keratinized epithelium and underlying dermis, composed of dense, 
irregular connective tissue mainly collagen fibers. Skin appendages such as hair 
follicles, sebaceous and sweat glands were found in the dermis. The deepithelializa-
tion of fresh goat skin was completely achieved by treatment with 0.25% trypsin 
in 4 mol/L NaCl for 8 hours. Further treatment with 2% SDS for 48 hours demon-
strated complete decellularization of the cellular dermis [13]. Native, deepithelial-
ized and decellularized goat skins were characterized by FTIR spectroscopy [13]. 
One milligram of each freeze-dried native, deepithelialized and decellularized 
skins were mixed with pure dry KBr powder in 1: 10 ratio, and pelleted. The FTIR 
spectra were recorded by an infrared spectrophotometer in the 500–4000 cm−1 

Figure 3. 
FTIR spectra showing transmittance peaks of the native diaphragm (ND) at 1238.34, 1535.39, 1657.87, 2955.04 
and 3386.15 cm−1; decellularized diaphragm (DD) at 1220.02, 1534.11, 1649.19, 2954.08 and 3343.71 cm−1.
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stretching vibrations when the N-H group of the peptide is involved in hydrogen 
bonds [20]. The peaks at 2936.72 cm−1 for native skin, 2953.12 cm−1 for deepithelial-
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(-C=O) along the polypeptide backbone [22]. The peaks at 1546.96 cm−1 for native 
skin, 1530.57 cm−1 for deepithelialized skin and 1547.93 cm−1 decellularized skin 
corresponds to the amide II (1500–1560 cm−1) which arises from the N-H bending 
vibration coupled to C-N stretching [23]. Amide III band was found at 1236.41 cm−1 
for NCS, 1238.34 cm−1 for DCS, 1238.34 cm−1 for CADM, and 1238.34 cm−1 for BSC 
confirming the presence of hydrogen bonds [24].

3.4 Fourier transform infrared spectroscopy of the bovine bone

Bone is a composite biomaterial mainly composed of organic collagen fibers 
(chiefly type I collagen) and inorganic hydroxyapatite [Ca10(PO)6(OH)2] crystals. 
Both the components of bone have specific chemical signatures and, consequently, 
distinctive infrared spectra at the molecular level [18]. The FTIR spectroscopy of 
the bovine bone tissue was described in a recent study in which one milligram of 
powdered native cortical bone was mixed with pure dry KBr powder in 1:10 ratio, 
and pelleted. The FTIR spectrum was recorded by an infrared spectrophotometer 
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Figure 5. 
FTIR spectrum of the native cortical bone showing transmittance peaks at 931.65, 1032.92, 1235.45, 1530.51, 
1671.37, 2877.89, 2966.62, 3079.46, 3281.99, 3615 cm−1.

in the 500–4000 cm−1 wave number spectral range with a spectral resolution of 
2 cm−1 and 45 scans [18]. The FTIR bone spectrum can be roughly separated into 
two regions where the organic and inorganic components have distinct peaks 
(Figure 5). The peak at 931.65 cm−1 assigned to the ν1 phosphate band [25–27] is 
due to the symmetric stretching vibration of the apatitic phosphate ion (PO4

3−) of 
hydroxyapatite [27, 28]. The peak at 1032.92 cm−1 corresponds to the ν3 phosphate 
band [29, 30] is due to the asymmetric stretching vibration of the PO4

3− [27, 31]. The 
ν3 phosphate peak at 1032.92 cm−1 is coming from the nonstoichiometric hydroxy-
apatite which may contain CO3

2− or HPO4
2− or both in the apatite [27, 31]. With 

age, the concentration of CO3
2− increases during apatite maturation, the amount 

of labile HPO4
2− decreases, keeping the Ca/(C + P) atomic ratio almost constant 

[32]. The peaks at 1235.45 cm−1, 1530.51 cm−1 and 1671.37 cm−1 correspond to the 
amide group, and they originate from the collagen [27]. The peak at 1235.45 cm−1 
corresponds to the amide III results from mixed C-N stretch and N-H in-plane bend 
with additional contributions from C-Cα stretch [29]. The peak at 1530.51 cm−1 cor-
responds to the amide II which arises from the combined effect of C-N stretch and 
N-H in-plane bending [27, 31]. The peak at 1671.37 cm−1 corresponds to the amide 
I is due to the stretching vibration of the peptide carbonyl group (-C=O) along the 
polypeptide backbone [27]. The peak at 2879.82 cm−1 is asymmetric CH2 stretch and 
it arises from the organic component [27]. The peak at 2965.82 cm−1 corresponds to 
the symmetric CH2 and asymmetric CH3 stretch of the organic component [27]. The 
peak at 3079.46 cm−1 corresponds to the amide B is due to asymmetric stretching of 
the CH2 stretching vibration and the absorption due to the CH2 alkyl chain [27]. The 
weak intensity peak at 3281.99 cm−1 corresponds to the amide A band of collagen 
is due to N-H stretching vibrations when the N-H group of the peptide is involved 
in hydrogen bonds [27]. The broad peak at 3536.60 cm−1 is attributed to the pres-
ence of the OH− group [27, 33]. The transmittance peaks indicated the presence of 
inorganic ν1, ν3 PO4

3−, OH− in addition to organic collagen amide A, amide B, amide 
I, amide II and amide III chemical functional groups in the bovine cortical bone 
(Figure 5).
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4. Conclusions

The FTIR spectra of native and decellularized buffalo aortae, buffalo 
 diaphragms, goat skin, and native bovine cortical bone are presented. The trans-
mittance peaks are that of organic collagen amide A, amide B, amide I, amide II 
and amide III chemical functional groups in both native and decellularized aortae, 
diaphragms and skin. In bone, the transmittance peaks are that of inorganic CO3

2−, 
ν1, ν3 PO4

3−, OH− in addition to organic collagen amide A, amide B, amide I, amide II 
and amide III chemical functional groups. These important transmittance peaks of 
the tissue samples will help researchers in defining the chemical structure of these 
animal tissues.
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Chapter 5

Medical Image Classification
Using the Discriminant Power
Analysis (DPA) of Discrete Cosine
Transform (DCT) Coefficients
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Abstract

Medical imaging systems are very important in medicine domain. They assist
specialists to make the final decision about the patient’s condition, and strongly help
in early cancer detection. The classification of mammogram images represents a
very important operation to identify whether the breast cancer is benign or malig-
nant. In this chapter, we propose a new computer aided diagnostic (CAD) system,
which is composed of three steps. In the first step, the input image is pre-processed
to remove the noise and artifacts and also to separate the breast profile from the
pectoral muscle. This operation is a difficult task that can affect the final decision.
For this reason, a hybrid segmentation method using the seeded region growing
(SRG) algorithm applied on a localized triangular region has been proposed. In the
second step, we have proposed a features extraction method based on the discrete
cosine transform (DCT), where the processed images of the breast profiles are
transformed by the DCT where the part containing the highest energy value is
selected. Then, in the feature’s selection step, a new most discriminative power
coefficients algorithm has been proposed to select the most significant features. In
the final step of the proposed system, we have used the most known classifiers in
the field of the image classification for evaluation. An effective classification has
been made using the Support Vector Machines (SVM), Naive Bayes (NB), Artificial
Neural Network (ANN) and k-Nearest Neighbors (KNN) classifiers. To evaluate
the efficiency and to measure the performances of the proposed CAD system, we
have selected the mini Mammographic Image Analysis Society (MIAS) database.
The obtained results show the effectiveness of the proposed algorithm over others,
which are recently proposed in the literature, whereas the new CAD reached an
accuracy of 100%, in certain cases, with only a small set of selected features.

Keywords: medical images, breast cancer, pectoral muscle removal,
discrete cosine transform, classification, SVM, KNN, ANN
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dangerous public health problem in many countries. In all kinds of cancer, the
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problem arises when cancer cells begin to grow in uncontrolled manner or do
not die when they should do so. In addition, breast cancer is a malignant tumor
that is considered the most common type of cancer occurs in women and the
second type of cancer in general. It has been announced, that more than
2 million new cases have been registered worldwide in 2018 [1]. Awareness of
symptoms and the need for screening are very important to reduce the risk of
cancer [2].

In medical imaging, it has been shown that early detection and proper
treatment of breast cancer reduces the mortality rate by 20–40% [3]. The use of
Mammography, represents an effective tool in the early detection of the breast
cancer. As a result, many computer-aided diagnostic (CAD) systems have been
developed using digital image processing techniques applied to mammography
images. These systems are very useful to help radiologists in the early
detection of breast cancers and then to classify the breast tumor as malignant or
benign [4–6].

In general, any CAD system can be composed of three different steps: image pre-
processing step, features extraction and selection step and finally the classification
step. For the breast cancer detection and classification, many works have been
presented to improve the efficiency of the CAD systems. In the pre-processing step,
the pectoral muscle removal and the region of interest (ROI) extraction rest a big
challenge. Numerous segmentation algorithms have been also proposed to suppress
the pectoral muscle [7–10]. However, there is no universal segmentation algorithm
that can give acceptable results for all cases.

In the features extraction step, different techniques can be used like, shape and
texture features [11, 12], morphological and texture features [13], independent
component analysis (ICA) [14], the discrete cosine transform (DCT) [15], the
discrete wavelet transform (DWT) [16, 17] and other transforms. In [18], the
authors used non-subsampled contourlet transformation together with discrete
wavelet transform with gray level co-occurrence matrix for texture features extrac-
tion. Salabat Khan et al. used a Gabor filter blank (GBF) optimized by Particle
Swarm Optimization (PSO) for the extraction of Gabor characteristics [19]. Mughal
B et al. used the backpropagation neural network on the hat transformation with
gray level co-occurrence matrix (GLCM) features [20].

For the classification step, the most used classifiers are Artificial Neural Net-
works (ANN), Support Vector Machine (SVM), Naïve Bayes (NB) and k-Nearest
Neighbors (KNN). Recently, in [21], the authors used deep learning architecture
that is known as You Only Look Once (YOLO). In [22], the authors proposed a deep
Convolutional Neural Network (CNN). In [23], Agnes et al., used Multiscale All
Convolutional Neural Network (MA-CNN).

In this chapter, we propose a new computer-aided diagnostic system to classify
breast tumors as malignant or benign. In the pre-processing step, we have proposed
a new algorithm to select a limited triangular region that contains the pectoral
muscle to be eliminated, and then apply the SRG segmentation algorithm. Features
extraction and selection are also very important processes to improve the system
performances in classification and pattern recognition methods. By using discrete
Fourier transform or discrete cosine transform, we obtain a frequency domain
representation of the image that can be considered as a set of features for pattern
recognition problems. While the FFT give complex coefficients, the DCT provide
real values in the frequency domain. We have used the DCT transform for feature
extraction, and we have proposed the selection of the most significant features
using the (DPA) algorithm [24]. Finally, we have evaluated the performances of the
algorithm using SVM, ANN, NB and KNN classifiers and the MIAS database
mammograms [25].
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2. The proposed CAD system

The proposed Computer-aided diagnostic system (CAD) that is used to classify
the breast tissue in mammograms as malignant or benign is divided into three basic
processing steps as shown in Figure 1.

2.1 Image pre-processing

This step represents an important one in most CAD systems. The image pre-
processing helps strongly in the selection of the region of interest (ROI) that con-
tains the abnormalities. It is performed to remove the unwanted objects, which
include artifacts, labels, background noises and to suppress the pectoral muscle
(Figure 2). The use of efficient image processing methods is an indispensable step
for achieving a high accuracy classification in CAD systems for the diagnosis of
breast cancer.

2.1.1 Noise removal

There are various types of noises affected on mammogram images, such as Salt
and pepper noise, Speckle noise, Gaussian noise and Poisson noise. Therefore, it is
important to remove the noises to enhance the image quality on the preprocessing
step. Traditionally, the median filter is a well-known used filter for this kind of
noises, due to its nonlinear behavior, its simplicity and capability to preserve edges
[26]. The median filter replaces each pixel value by the median of all the neighbor-
ing pixels values in a window. In this chapter, we used a (3x3) median filter to
reduce noise in the mammogram images.

2.1.2 Artifacts suppression and background separation

In order to remove all unwanted objects in the selected image and separate the
breast profile, we follow the next four steps:

Step (1) Thresholding of the mammogram image by 0.0706 normalized
value.

Figure 1.
Flow chart of CAD system for breast cancer classification.
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Step (2) Mark all regions in the thresholded image (i.e., Artifacts, labels, … ).
Step (3) Calculate the area of each region, and select the largest one.
Step (4) The result of the step (3) is then used as a mask of the original
grayscale mammography image.

2.1.3 Localization and extraction of the pectoral muscle

In the mammogram preprocessing, the identification and extraction of the pec-
toral muscle is one of the major challenges in Medio lateral Oblique (MLO) view. It
could be noticed here, that this step is important to improve the diagnostic accuracy
of the CAD system. The difficulty in removing the pectoral muscle is due to the
following reasons [27]:

• Homogeneous area situated in the top left/right corner contains the brightest
pixels in the image.

• The pectoral muscle boundary shape is concave, convex or a mixture of both of
them.

• The density of the pectoral muscle area appears at approximately with similar
density as the dense tissues.

• Varying position, size, shape and texture from image to image.

Figure 2.
The preprocessing steps of mammogram image: (a) original image, (b) noise removed image, (c) binary image,
(d) largest area, (e) image right flipped, (f) parenchyma of the breast.
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In this chapter, we present a new algorithm for pectoral muscle suppression, this
operation is based on the Localization of the triangular region that contains the
Pectoral Muscle, where the Seeded Region Growing (SRG) algorithm is invoked in
this operation.

Algorithm 1 Removal of the of pectoral muscle [15]

Input: MLO mammograms size of 1024x1024
Step (1) All the right MLO mammograms are left–right flipped
Step (2) Divided MLO into four equal quadrants of 512x512 pixels.
Step (3) The upper left quadrant is cropped with removing the left background
Step (4) The result is divided diagonally into two equal triangles.
Step (5) Select the Seed point
Step (6) Apply the SRG in the upper left triangle ABC (that contains the Pectoral Muscle)
Step (7) Re-Construct the Image and removing all backgrounds

Output: The region of interest (ROI)

Seeded Region Growing (SRG) is a useful image segmentation technique for
medical images that is initially proposed by R. Adams et al. [28]. This technique is
robust, fast and consists of three major steps: seed selection, region growing, and
region merging.

The advantage of applying the (SRG) method into the localized triangular ABC
region (Figure 3) is to remove only the pectoral muscle, without completely
suppressing the triangular region as in some other methods. Figures 3–5 show a
visual scheme of the proposed algorithm.

The Seed point is selected automatically by considering the results obtained from
step (4) of algorithm 1.

Figure 5(a) shows the cropped image, where Figure 5(b) shows the selected
region of interest (ROI). All obtained (ROI) images are resized in order to get the
same dimension.

Figure 3.
Localization of the ABC triangle in the left upper quadrant.
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2.2 Frequency domain features extraction and selection

Features extraction plays an essential role, and a challenging step in the accurate
classification and diagnostic rate of mammograms. In this chapter, we have used
features extracted from the image in the frequency domain representation. The
most used transform to this domain is the discrete Fourier transform with its fast
algorithm (FFT) [29]. In classification problems, for example, Fourier descriptors
have been used for pattern recognition [30, 31]. Another interesting transform is
the discrete cosine transform (DCT) which decomposes the image on a set of cosine
functions. It provides a real representation of the image contrary to the FFT, which
give complex coefficients.

The frequency domain features are very used in the classification and pattern
recognition field. However, the hard task is the selection of the transformed

Figure 5.
Identification of the region of interest (ROI). (a) Cropped image, and (b) Selected region of Interest (ROI).

Figure 4.
Pectoral muscle segmentation steps: (a) mammogram top left quadrant, (b) triangular mask, (c) masked top
left quadrant, (d) suppression of the pectoral muscle, (e) cropped top left quadrant without pectoral muscle.
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coefficients, while these coefficients do not have the same aptitude to discriminate
between the different classes. However, the use of the standard approaches to select
these coefficients are not always efficient in selecting the most discriminative coef-
ficients. In this chapter, we present a novel features extraction technique that is
composed of two phases. In the first one, the discrete cosine transforms (DCT) is
applied on all the obtained regions of interest (ROI), and then the low frequency
coefficients in the upper left corner (ULC) are retained. In the second phase, a
combination of the retained frequency coefficients with the discriminative power
coefficients algorithm [24] is proposed to calculate the discrimination power
matrix, which is given by the ratio between the two variances, the between-class
variance and the within-class variance. Where, high classification accuracies are
represented by high rate values.

2.2.1 Discrete cosine transform (DCT)

This mathematical tool transforms any signal or image from the spatial
domain to frequency domain. It has been widely used in digital signal and image
processing, where its major advantages over the FFT reside in giving real
coefficients. In addition, it concentrates the information in the low frequency
region. Fast implementation can be obtained by using the FFT algorithm [29]
which make the use of this transform very simple in real-time applications. It is
defined by Eq. (1):

F u, vð Þ ¼ 1ffiffiffiffiffiffiffiffiffi
MN

p α uð Þα vð Þ
XM�1

i¼0

XN�1

j¼0
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with 0≤ u≤M,0≤ v≤N, and α uð Þ, α vð Þ are defined by Eq. (2), Eq. (3)
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p u ¼ 0

1 otherwise
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and F u, vð Þ is the DCT coefficient matrix of the image I i, jð Þ.
After the calculation of the DCT coefficients, we retain only the 512x512 region

in the upper left corner (ULC coefficients). In the feature’s selection step, a new
most discriminative power analysis (DPA) algorithm has been proposed to select
the most significant features that have the high discrimination power (DP) values.

2.2.2 Discriminative power analysis of DCT coefficients

The calculation of the (DP) for each transformed coefficient is shown in the
(DCT-DPA) algorithm shown below. Considering an image Iij of size N �M. Fuv are
the transformed coefficient by the 2D-DCT. The used database has C classes each is
composed of S training images. Consequently, a total of C � S training images are
used.

55

Medical Image Classification Using the Discriminant Power Analysis (DPA) of Discrete Cosine…
DOI: http://dx.doi.org/10.5772/intechopen.94026



2.2 Frequency domain features extraction and selection
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algorithm (FFT) [29]. In classification problems, for example, Fourier descriptors
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functions. It provides a real representation of the image contrary to the FFT, which
give complex coefficients.

The frequency domain features are very used in the classification and pattern
recognition field. However, the hard task is the selection of the transformed
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Figure 4.
Pectoral muscle segmentation steps: (a) mammogram top left quadrant, (b) triangular mask, (c) masked top
left quadrant, (d) suppression of the pectoral muscle, (e) cropped top left quadrant without pectoral muscle.
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The Dp i, jð Þ matrix is defined as the ratio of between-class variance and within-
class variance. Large values of DP imply a large discrimination power of the coeffi-
cients. The selection of the DCT coefficients is made in an adaptive way according
to their corresponding DP values, where the DCT coefficients with higher DP are
preserved [24]. The Dp i, jð Þ matrix is then transformed into a column vector that
will be sorted in descending order. Therefore, the number k selected among the
highest values, defines the number of the features to be used by the classifier. By
setting the positions of selected features as ones and the others as zeros, we create a
mask that can be used later in the selection process of the classification step.
Alternatively, we can use a thresholding step of the DPmatrix to create a mask that
contain k elements as follows:

Mask i, jð Þ ¼
1 Dp i, jð Þ≥T

0 otherwise:

(
(4)

with 1≤ k≤MxN and T is the kth highest value in the DP matrix.
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2.3 Classification

The classification is the last step to identify if the breast tumor is benign or
malignant. It plays a vital role in the medical image diagnosis field. Therefore, the
images need to be classified with maximum accuracy. As a result, some automated
classification methods have been proposed. In this part, we presented some of these
classifiers including NB, SVM, ANN, and KNN that are used for breast cancer
detection. A brief description of these algorithms will be presented as well as their
advantages and disadvantages.

2.3.1 The support vector machine (SVM)

SVMs are a set of machine learning algorithms that help solve problems associ-
ated with classification, regression, and fault detection. They are considered to be
among the algorithms that are distinguished by their strong theoretical guarantee
and their great flexibility. They are also considered among the easiest algorithms
in terms of ease of use even in cases where there is a little knowledge of data
extraction.

The SVMs use increases widely in medical imaging field especially for breast
cancer diagnosis [32]. The basic principle of SVM in this chapter is to separate and
classify images into two categories malignant and benign using a hyperplane deci-
sion boundary, ensuring a maximum distance between different data sets and the
boundary separating them. For linearly separable data, the hyperplane decision
boundary is given by [33]:

g xð Þ ¼ wtxþ b ¼
Xn
i¼1

wt
ixi þ b (5)

where x is the input data set vector w is (n) dimensional and b is a bias. The main
advantages of the (SVM) classifier can generally be listed as follows [15]:

1.SVM generally gives good accuracy with less memory use.

2. It works very well in cases where the separation margin between data sets is
clear.

3. It can also solve any complex problem by specifying different kernel function.

The main disadvantages of the SVM algorithm are the difficulty of choosing the
appropriate kernel function and the long training time for large datasets.

2.3.2 Artificial neural network (ANN)

The artificial neural networks are feed-forward networks that can be trained to
classify inputs according to target classes. Generally, a neural network is composed
of three layers: an input layer, a hidden layer and an output layer [34]. Usually, only
the input and output signals of the network are already known [17]. The process of
training an artificial neural network before setting it up represents a serious opera-
tion and affects directly the final obtained results. This operation depends on some
constraints like the initial parameters setting, the use weights, bias and finally the
used algorithm learning rate. To adjust the weights of the ANN, one can use some
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learning methods like the back-propagation or an optimization algorithm. In this
work, the input layer is based on the number of the features selected, the hidden
layer contains 10 neurons, and finally the out layer.

2.3.3 Naive Bayes classifier (NB)

Naive Bayes is becoming increasingly popular in many areas, it has shown
excellent performances for classification tasks. It is a simple probabilistic classifier
based on Bayes' theorem, which is based on conditional probabilities [35]. A Naive
Bayes classifier assigns a new observation to the most probable class, assuming the
features are conditionally independent for a given the class value. It is easy and fast
to predict the class of the test data set, but their biggest disadvantage is its require-
ment to an independent predictor [15].

2.3.4 K-nearest neighbors (KNN)

K-nearest neighbors’ classifier is a statistical non-parametric method that is used
for both classification and regression [36]. In its simplest version, the KNN takes an
arbitrary number (k) of neighbors nearer from the training set, and for each test
point we start by determining all of its k-nearest neighbors among the learning
points. The class that we assign to the new point is then the more frequent. In the
KNN the Euclidean distance metric is used and it is given by:

d x, yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXk

i¼1
xi � yi
� �2

r
(6)

where xi is the test sample with k features and yi specified the training samples
with k features. The Advantages of using KNN are that it is robust to noisy training
data, and it is effective when used with large training data. On the other hand, it
needs to determine the number of nearest neighbors (k) and the distance-based
learning.

3. Results and discussions

To validate the proposed system, experiments were performed on the digital
mammography images from the Mammographic Image Analysis Society (MIAS)
database [25]. The MIAS database is a standard and publicly available database of
digital mammogram images. Each mammogram is 1024 � 1024 pixels of size with a
resolution of 200 microns. MIAS contains 322 mammograms for right and left
breast of 161 patients in the mediolateral oblique (MLO) view, 61 mammograms
were diagnosed as benign, 54 as malignant and 207 normal. The performance of the
proposed method has been tested based on algorithms’ accuracy, sensitivity and
specificity using the following expressions:

Sensitivity ¼ TP
TPþ FN

� 100 %ð Þ (7)

Specificity ¼ TN
TN þ FP

� 100 %ð Þ (8)

Accuracy ¼ TN þ TP
TN þ FN þ FPþ TP

� 100 %ð Þ (9)
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Where:
TN (True Negative) is the number of a benign classified as benign.
TP (True Positive) is the number of a malignant classified as malignant.
FN (False Negative) is the number of a benign classified as malignant.
FP (False Positive) is the number of a malignant classified as benign.
In this test, we have calculated the Dp matrix using a set of 50 images of benign

mammograms and another 50 images of malignant mammograms. These images are
randomly selected as shown in the DCT-DPA algorithm. It is very important to
select an equal number of samples from each class. The increase of the number of
samples implies an increase of the efficiency of the performance of the classifier.
However, the best results in this test are obtained using 50–50 mammogram images.
Then, the database is randomly divided into train and test data sets. We have taken
113 (ROIs) divided into 70% for training and 30% for testing. The given results are
the average of ten runs.

Table 1 shows a comparison of the measured performances of the SVM, ANN,
NB and KNN classifiers. It is observed that the classification accuracy can reach
100% for the (ANN) classifier, is 98.8, 96.7%, 87.3% for SVM, NB and KNN

Classifiers Sensitivity (%) Specificity (%) Accuracy (%)

KNN 91.05 82.67 87.3

NB 97.9 97.3 96.7

SVM 99.5 98.1 98.8

ANN 100 100 100

Abbreviations: ANN, artificial neural network; SVM, support vector machines; NB, Naive Bayes, KNN, K-nearest
neighbors.

Table 1.
Classification performance using ANN, SVM, NB and KNN classifiers.

ANN SVM NB KNN

ULC size N. of Features Accuracy (%)

128x128 60 95.6 86.76 90.6 77.9

80 96.5 90.3 92.3 78.5

100 98.2 94.7 92.6 79.7

256x256 60 98.2 91.2 93.2 75.0

80 97.3 91.7 95.3 75.8

100 98.2 93.8 93.8 76.1

512x512 60 98.2 92.1 93.8 77.0

80 99.1 97.3 97.3 79.1

100 100 98.8 97.6 87.3

1024x1024 60 98.2 92.6 93.1 82.6

80 96.5 88.5 93.2 83.5

100 97.3 91.7 94.1 85.6

Abbreviations: ANN, artificial neural network; SVM, support vector machines; NB, Naive Bayes, KNN, K-nearest neighbors.

Table 2.
Classification accuracy with various sizes of ULC and different numbers of features. Where the best results are
represented by bold values.
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respectively. We have evaluated the classification performances of the proposed
algorithm according to the number of the used features in the classification.

The SVM, ANN, NB and KNN classifiers are used to classify input images into
benign or malignant. The sensitivity, accuracy and specificity are shown in Table 2.
According to the results in Table 2, we can see that small number of features (100
features in this case) can achieve best performances in the case of 512x512 ULC size.
In addition, we have studied the effect of the ULC size on the obtained results. The
accuracy curve of the classification accuracy versus the ULC size is shown in
Figure 6. The number of used features is 100 features.

Figure 7 represents the variation of the classification accuracy according to
different features’ number with a fixed ULC size of 512x512. Figure 8 demonstrates
the classification performance of ANN using the confusion matrix for training, test
and validation data.

To show the efficiency of the presented technique, Table 3 shows a comparison
between the results of the proposed algorithm with previous results, which are
reported in the literature. We can see that the proposed CAD system gives better
accuracy results compared to those obtained using the other methods.

Figure 6.
Classification accuracy performances vs. the ULC sizes with 100 features.

Figure 7.
Classification performances vs. the number of features. (ULC size of 512x512).
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Figure 8.
Confusion matrix for training, test and validation data.

Authors Year Database Classifier Classes Accuracy (%)

Lima [12] 2016 MIAS SVM 2 94.1

Singh [37] 2017 MIAS RF 2 97.3

Elmoufidi [38] 2017 MIAS SVM 2 94.4

Mughal [20] 2018 MIAS NNB 2
2

98.5
95

Benzebouchi [22] 2019 MIAS SVM 2 94.0

Benhassine [15] 2019 MIAS ANN
SVM
NB

2 100
94.1
92.6

El-Sokary [39] 2019 MIAS SVM 2
3

92.5
90.0

Benhassine [17] 2020 MIAS ANN
SVM
RF
NB

2 99.1
99.4
98.2
97.7

Taifi [18] 2020 MIAS SVM 2 94.1

KNN 2 88.8
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4. Conclusions

We have developed in the present chapter a new CAD system used for mammo-
gram images classification. It consists of three main parts. First, we remove all
unnecessary regions or objects from the input image, where we have proposed a
mixed approach for pectoral muscle removing which can improve the diagnostic
accuracy of the developed CAD system. Then, we have focused in our work on
frequency domain features where we have used the discrete cosine transform (DCT).
The extracted features are subject to a selection process that choose only the most
important features. This step is done using the discriminant power analysis (DPA)
algorithm. Finally, some of the most known classifiers in the field are used to make
the final decision. The proposed system is evaluated onmammogram images from the
MIAS database, where we have shown that a small number of selected features can
give good results of the accuracy, sensitivity and specificity. The obtained results
prove that the frequency domain features can give high performances especially with
the use of the discrimination power analysis, and highlight the importance of DCT
transform in recent artificial intelligence applications. The comparison of the obtained
results with those obtained using recently proposed techniques shows the superiority
of the proposed algorithm against the other methods.
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unnecessary regions or objects from the input image, where we have proposed a
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Chapter 6

Path Integral Two Dimensional
Models of P– and D–Wave
Superconductors and Collective
Modes
Peter Brusov and Tatiana Filatova

Abstract

The main parameter, which describes superfluids and superconductors and all
their main properties is the order parameter. After discovery the high temperature
superconductors (HTSC) and heavy fermion superconductors (HFSC) the uncon-
ventional pairing in different superconductors is studied very intensively. The main
problem here is the type of pairing: singlet or triplet, orbital moment of Cooper pair
value L, symmetry of the order parameter etc. Recent experiments in Sr2RuO4

renewed interest in the problem of the symmetry of the order parameters of the
HTSC. The existence of CuO2 planes – the common structural factor of HTSC –

suggests we consider two-dimensional (2D) models. A 2D– model of p–pairing
using a path integration technique has been developed by Brusov and Popov. A 2D
model of d–pairing within the same technique has been developed by Brusov et al.
All properties of 2D–superconductors (for example, of CuO2 planes of HTSC) and,
in particular, the collective excitations spectrum, are determined by these func-
tionals. We consider all superconducting states, arising in symmetry classification
of p-wave and d-wave 2D–superconductors, and calculate the full collective modes
spectrum for each of these states. This will help to identify the type of pairing and
the symmetry of the order parameter in HTSC and HFSC.

Keywords: path integral, two-dimensional models, P- and D-wave superconductors,
collective modes

1. Introduction

The main parameter, which describes superfluids and superconductors and all
their main properties is the order parameter, which is equal to zero above transition
temperature Tc into superconducting (superfluid) state and becomes nonzero below
Tc. In Bose–systems the transition is caused by Bose–Einstein condensation of bosons
while in case of Fermi–systems first the pairing of fermions with creation of Bose
particles (Cooper pairs) takes place with their subsequent condensation. Besides the
ordinary superconductors (where traditional s–pairing takes place) after discovery
the high temperature superconductors (HTSC) and heavy fermion superconductors
(HFSC) the unconventional pairing in different superconductors is studied very
intensively [1–5]. The main problem here is the type of pairing: singlet or triplet,
orbital moment of Cooper pair value L, symmetry of the order parameter etc.
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Recent experiments in Sr2RuO4 [2–4] renewed interest in the problem of the
symmetry of superconducting order parameters of the high temperature
superconductors (HTSC).

Sr2RuO4 has been the candidate for a spin–triplet superconductor for more than
25 years. Recent NMR experiments have cast doubt on this candidacy. Symmetry–
based experiments are needed that can rule out broad classes of possible
superconducting order parameters. In Ref. 3 authors use the resonant ultrasound
spectroscopy to measure the entire symmetry–resolved elastic tensor of Sr2RuO4

through the superconducting transition. They observe a thermodynamic disconti-
nuity in the shear elastic modulus c66, which implies that the superconducting order
parameter has two components. A two–component p–wave order parameter, such
as px + ipy, satisfies this requirement. As this order parameter appears to have been
precluded by recent NMR experiments, the alternative two–component order
parameters of Sr2RuO4 are as following {dxz,dyz} and {dx2�y2,gxy(x2�y2)}.

Authors of Ref. 4 have come to similar conclusions. They use ultrasound velocity
to probe the superconducting state of Sr2RuO4. This thermodynamic probe is sen-
sitive to the symmetry of the superconducting order parameter. Authors observe a
sharp jump in the shear elastic constant c66 as the temperature is increased across
the superconducting transition. This supposes that the superconducting order
parameter is of a two–component nature.

The existence of CuO2 planes [6] – the common structural factor of HTSC –

suggests we consider 2D models. A 2D– model of p–pairing using a path integration
technique has been developed by Brusov and Popov [7, 8]. A 2D model of d–pairing
within the same technique has been developed by Brusov et al. [9–14]. The models
use the hydrodynamic action functionals, which have been obtained by path inte-
gration over “fast” and “slow” Fermi–fields. All properties of 2D–superconductors
(for example, of CuO2 planes of HTSC) and, in particular, the collective excitations
spectrum, are determined by these functionals. We consider all superconducting
states, arising in symmetry classification of 2D–superconductors and calculate the
full collective modes spectrum for each of these states. Current study continue our
previous investigation [5], where we consider the problem of distinguish the mix-
ture of two d–wave states from pure d–wave state of HTSC.

2. Two–dimensional models of p– and d–pairing in unconventional
superconductors

2.1 p–Pairing

Below we develop 2D–model of p–pairing starting with the 3D scheme
considered by Brusov et al. [9–14].

Two main distinctions between 3D–case and 2D–case are as follows:

a. The Cooper pair orbital moment l (l = 1) should be perpendicular to the plane
and can have only two projections on the ẑ–axis: �1. The p– pairing is a
triplet, thus the total spin of the pair is equal to 1, and in the case of 2D
p–pairing we have 3� 2� 2 ¼ 12 degrees of freedom. In this case one can
describe the superconducting state by complex 2� 3 matrices cia pð Þ. The
number of the collective modes in each phase is equal to the number of
degrees of freedom. Just remind that in the 3D case this number is equal to 18.

b. Vector x is a 2D vector and square “volume” will be S ¼ L2 (instead of V ¼ L3

in 3D case).
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2.1.1 Two–dimensional p–wave superconducting states

Effective action In case of two–dimensional p–wave superconductivity effective
action takes a form (see the case of two–dimensional superfluidity of 3He in Chapter
XIX of Ref. 1)

Seff ¼ �βV
16π2TCΔT

7ζ 3ð Þ F (1)

where

F ¼ �trAAþ þ νtrAþAPþ trAþAð Þ2 þ trAAþAAþ þ trAAþA ∗AT�
�trAATA ∗Aþ � 1=2ð ÞtrAATtrA ∗Aþ,

ν ¼ 7ζ 3ð Þμ2H2=4π2TCΔT (2)

The effective action F is identical in form with that arising in the case of three–
dimensional (3D) superconducting system. The difference is connected with the
fact that the matrix A with elements aia for the two–dimensional system is а 2 � 3
matrix instead of 3 � 3 matrix in the case of three–dimensional (3D)
superconducting system. The matrix P is the projector оn the third axis: P = δi3δj3

P ¼
0 0 0

0 0 0

0 0 1

0
B@

1
CA

The following equation for the condensate matrix А could be obtained by
minimizing F:

�Aþ νAPþ 2 trAAþð ÞAþ 2AAþAþ 2A ∗ATA� 2AATA ∗�
� trAAT� �

A ∗ ¼ 0:
(3)

There are several solutions of Eq. (3), corresponding to the different superfluid
phases. Let us consider the following possibilities:

A1 ¼ 1
2

1 0 0

i 0 0

� �
,A2 ¼ 1

2
1 0 0

0 1 0

� �
,A3 ¼ 1

4
1 i 0

i �1 0

� �
,

A5 ¼ 1ffiffiffi
3

p 0 0 0

0 1 0

� �
,A6 ¼ 1

2
1 0 0

0 �1 0

� �
,A7 ¼ 1

2
0 �1 0

1 0 0

� �
,

A8 ¼ 1� ν

3

� �1=2 0 0 1

0 0 0

� �
,A9 ¼ 1� ν

4

� �1=2 0 0 1

0 0 i

� �
: (4)

The corresponding values of the effective action F are equal to:

F1 ¼ � 1
4
,F2 ¼ � 1

4
, F3 ¼ � 1

8
,F4 ¼ � 1

6
, F5 ¼ � 1

6
,

F6 ¼ � 1
4
,F7 ¼ � 1

4
,F8 ¼ � 1� νð Þ2=6,F9 ¼ � 1� νð Þ2=4:

(5)

The quantity of the effective action F for the first eight phases does not depend
оn H. The minimum value of F = �1/4 is reached for phases A1 and A2 as well as for
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the phases with matrices A6 and A7 and A9 (last state has minimum energy in zero
magnetic field (ν = 0)).

The first two phases have been discovered by Brusov and Popov [7, 8] in the
films of superfluid 3He. Authors [7, 8] have called them the a – and b –phases and
have proved that the phases a– and b– are stabile relative to the small perturbations.
Brusov and Popov [7, 8] have calculated the full collective mode spectrum for two
these phases. Brusov et al. [9–14] have calculated the full collective mode spectrum
for A6 and A7 states.

2.1.2 The collective mode spectrum

The full collective mode spectrum for each of these phases consists of 12 modes
(the number of degrees of freedom). Among them we have found Goldstone modes
as well as high frequency modes (with energy (frequency) which is proportional to
energy of the gap in single–particle spectrum).

The results obtained by Brusov and Popov [7, 8] and Brusov et al. [9–14] are
shown below for collective mode spectrum for different two–dimensional
superconducting states under p–pairing.

The collective mode spectrum for a–phase with order parameter

1
2

1 0 0

i 0 0

� �
:

E2 ¼ c2Fk
2

2
1� 5c2Fk

2

96Δ2

 !
, 3 modesð Þ

E2 ¼ 2Δ2 þ c2Fk
2=2, 6 modesð Þ (6)

E2 ¼ 4Δ2 þ 0:500þ i0:433ð Þc2Fk2: 3 modesð Þ

The collective mode spectrum for b–phase with order parameter

1
2

1 0 0

0 1 0

� �
:

E2 ¼ c2Fk
2

2
1� 5c2Fk

2

48Δ2

 !
, 2 modesð Þ

E2 ¼ 3c2Fk
2

4
1� c2Fk

2

72Δ2

 !
, 1 modeð Þ

E2 ¼ c2Fk
2

4
1� c2Fk

2

48Δ2

 !
, 1 modeð Þ

E2 ¼ 2Δ2 þ c2Fk
2=2, 4 modesð Þ (7)

E2 ¼ 4Δ2 þ 0:500� i0:433ð Þc2Fk2, 2 modeð Þ
E2 ¼ 4Δ2 þ 0:152� i0:218ð Þc2Fk2, 1 modeð Þ
E2 ¼ 4Δ2 þ 0:849� i0:216ð Þc2Fk2: 1 modeð Þ

It is seen that in a– and b–phases the so–called two–dimensional (2D) sound
with velocity v2 ¼ cF=

ffiffiffi
2

p
exists. Note that dispersion coefficient of 2D–sound in b–

phase is twice higher than in a–phase. We should remind that in bulk systems the
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three–dimensional sound with velocity v3 ¼ cF=
ffiffiffi
3

p
is well known). After Brusov

et al. [7, 8] this result has been reproduced by a number of authors (Nagai [15],
Tewordt [16] etc.).

The collective mode spectrum for the phase with order parameter

1
2

0 0 1

0 0 i

� �
:

E2 ¼ 0, 3 modesð Þ;
E2 ¼ 2Δ2, 6 modesð Þ;
E2 ¼ 4Δ2: 3 modesð Þ (8)

The collective mode spectrum for two phases with order parameters

1
2

0 �1 0

1 0 0

� �
:

E2 ¼ 0, 4 modesð Þ;
E2 ¼ 2Δ2, 4 modesð Þ;
E2 ¼ 4Δ2: 4 modesð Þ (9)

The collective mode spectrum for the phase with order parameter

1
2

1 0 0

0 �1 0

� �
:

E2 ¼ 0, 4 modesð Þ;
E2 ¼ 2Δ2, 4 modesð Þ;
E2 ¼ 4Δ2: 4 modesð Þ (10)

3. Two–dimensional d–Wave superconductivity

3.1 2D–model of d–pairing in CuO2 planes of HTSC

The existence of CuO2 planes — the common structural factor of HTSC —

suggests we consider two–dimensional (2D) models. For two–dimensional (2D)
quantum antiferromagnet (AF) it was shown that only the d–channel provides an
attractive interaction between fermions. The d– pairing arises also in symmetry
classifications of CuO2 planes HTSC. In Sr2RuO4 where the p–pairing appears to
have been precluded by recent NMR experiments, the two–component d–wave
order parameters, namely {dxz,dyz} and even with admixture of g–wave {dx2 � y2,gxy
(x2 � y2}, are now the prime candidates for the order parameter of the quasi–two–
dimensional Sr2RuO4.

The two–dimensional (2D) model of d– pairing in the CuO2 planes of HTSC has
been developed by Brusov and Brusova (BB) [9, 10, 13] and Brusov, Brusova and
Brusov (BBB) [14] using a path integration technique. The hydrodynamic action
functional, obtained by path integration over “fast” and “slow” Fermi–fields, has
been used under construction of this model. This hydrodynamic action functional
determines all properties of the CuO2 planes and, in particular, the spectrum of
collective excitations.
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To develop the model of d–pairing in the two–dimensional (2D)–case we modify
the three–dimensional (3D) considered by us in Ref. 1.

The main distinctions between 3D and 2D cases are as follows:

a. The orbital moment l
!

l
!���
��� ¼ 2

� �
should be perpendicular to the plane and can

have only two projections on the ẑ– axis:�2 instead of the three–dimensional
(3D) case where the orbital moment can have five projections on the ẑ– axis:�2;
�1;0. Because the d– pairing is a singlet the total spin of the pair is equal zero, so in
the case of the two–dimensional (2D) d– pairing one has 1� 2� 2 ¼ 4 degrees of
freedom. Thus the superconductive state in this case can be described by complex
symmetric traceless 2� 2 matrices cia pð Þ,which have the same number of
degrees of freedom (2� 2� 2� 2� 2 ¼ 4). This number is equal to the number
of the CM in each phase. Note that in the three–dimensional (3D) case this
number is equal to 10, aswell as the number of the collectivemodes in each phase.

b. The pairing potential t is given by:

t ¼ v k̂, k̂
0� �

¼
X

m¼�2, 2

gmY2m k̂
� �

Y ∗
2m k̂

0� �
(11)

We consider the case of circular symmetry g2 ¼ g�2 ¼ g, which is describes by
one coupling constant g. Note, that less symmetric cases require both
constants g2 and g�2. We consider the circularly symmetric case where:

v k̂, k̂
0� �

¼ g Y2�2 k̂
� �

Y ∗
2�2 k̂

0� �
þ Y22 k̂

� �
Y ∗
22 k̂

0� �h i
(12)

c. x will be a 2D–vector and square “volume” will be S ¼ L2 (instead of V ¼ L3

as in 3D case).

Account these distinctions between the two–dimensional (2D) and the three–
dimensional (3D) cases we will describe our Fermi–system by the anticommuting
functions χs x, τð Þ, χs x, τð Þ, defined in the square volume S ¼ L2 and antiperiodic in
“time” τ with period β ¼ T�1.

After path integrating over slow and fast Fermi–fields (which is a very similar to
3D one) one gets the effective action functional Seff , which takes (formally) the
same form as in 3D case.

The number of degrees of freedom in the case of two–dimensional (2D) d–
pairing is equal to 4. By the other words, one has two complex canonical variables. It
is easy to see from non–diagonal elements of M̂ matrix that the following canonical
variables should be chosen:

c1 ¼ c11 � c22, c2 ¼ c12 þ c21: (13)

One has for the conjugate variables:

cþ1 ¼ cþ11 � cþ22, c
þ
2 ¼ cþ12 þ cþ21: (14)

Below we transform the effective action functional Seff to these new variables.
One has:

Seff ¼ 2gð Þ�1
X
p, j

cþj pð Þ c j pð Þ þ 1
2
ln det

M̂ cþj , c j
� �

M̂ cþ 0ð Þ
j , c 0ð Þ

j

� � (15)
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where

M11 ¼ Z�1 iω� ξþ μ Hσð Þ½ �δp1p2
M22 ¼ Z�1 �iωþ ξþ μ Hσð Þ½ �δp1p2 (16)

M12 ¼ Mþ
21 ¼ σ0α βSð Þ�1=2 c1 cos 2ϕþ c2 sin 2ϕð Þ:

The effective functional Seff determines all properties of considering model
system – superconducting CuO2 planes. It determines, in particular, the full collec-
tive–mode spectrum, consisting of four collective–modes in each phase.

3.2 The collective mode spectrum

Two SC states arise in the symmetry classification of CuO2 planes with OP which

are proportional to
1 0

0 �1

� �
and

0 1

1 0

� �
respectively. In the former phase the

gap is proportional to Y22 þ Y2�2 � sin 2θ cos 2ϕj j � cos 2ϕj j while in the later one
is proportional to �i Y22 � Y2�2ð Þ � sin 2θ sin 2ϕj j � sin 2ϕj j. For 2D case we put
θ ¼ π=2 and sin θ ¼ 1.

Brusov and Brusova [9, 10] and Brusov, Brusova and Brusov [14] have calcu-
lated the collective– mode spectrum for both of these states. In the first approxi-
mation the collective excitations spectrum is determined by the quadratic part of
Seff , obtained by the shift c j pð Þ ! c 0ð Þ

j þ c j pð Þ in Seff . Here c 0ð Þ
j are the condensate

values of the canonical Bose–fields c j pð Þ.
The collective mode spectrum for the phases with order parameters
1 0

0 �1

� �
and

0 1

1 0

� �
.

The spectra in both phases turns out to be identical. Brusov and Brusova [9, 10]
found two high frequency modes in each phase with following energies (frequencies):

E1 ¼ Δ0 1:42� i0:65ð Þ,
E2 ¼ Δ0 1:74� i0:41ð Þ: (17)

Note that the energies of both modes turn out to be complex. This results from
the d–pairing, or in other words, via the disappearance of a gap in the chosen
directions. In this case the Bose–excitations decay into fermions. This leads to a
damping of the collective modes. The value of imaginary part of energy is 23% for
the second mode and 46% for first one. Thus both modes should be regarded as
resonances and the second mode is better defined than the first.

The other twomodes are Goldstone or low–energymodes (with energy ≤ 0:1Δ0).

4. Lattice symmetry and collective mode spectrum

The made calculations of the collective mode spectrum are not completely self–-
consistent, because Brusov, Brusova and Brusov [14] working within spherical
symmetry approximation, use the order parameters obtained with taking the lattice
symmetry into account. The taking the lattice symmetry into account, as we men-
tioned above, requires a few coupling constants using instead of one. The number of
collective excitations (collective modes) in superconducting state, which is equal to
number of degrees of freedom, will change too (note, that in case of spherical
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b. The pairing potential t is given by:

t ¼ v k̂, k̂
0� �

¼
X

m¼�2, 2

gmY2m k̂
� �

Y ∗
2m k̂

0� �
(11)

We consider the case of circular symmetry g2 ¼ g�2 ¼ g, which is describes by
one coupling constant g. Note, that less symmetric cases require both
constants g2 and g�2. We consider the circularly symmetric case where:

v k̂, k̂
0� �

¼ g Y2�2 k̂
� �

Y ∗
2�2 k̂

0� �
þ Y22 k̂

� �
Y ∗
22 k̂

0� �h i
(12)

c. x will be a 2D–vector and square “volume” will be S ¼ L2 (instead of V ¼ L3

as in 3D case).

Account these distinctions between the two–dimensional (2D) and the three–
dimensional (3D) cases we will describe our Fermi–system by the anticommuting
functions χs x, τð Þ, χs x, τð Þ, defined in the square volume S ¼ L2 and antiperiodic in
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3D one) one gets the effective action functional Seff , which takes (formally) the
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c1 ¼ c11 � c22, c2 ¼ c12 þ c21: (13)

One has for the conjugate variables:
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þ
2 ¼ cþ12 þ cþ21: (14)

Below we transform the effective action functional Seff to these new variables.
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Seff ¼ 2gð Þ�1
X
p, j

cþj pð Þ c j pð Þ þ 1
2
ln det

M̂ cþj , c j
� �

M̂ cþ 0ð Þ
j , c 0ð Þ

j

� � (15)
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where

M11 ¼ Z�1 iω� ξþ μ Hσð Þ½ �δp1p2
M22 ¼ Z�1 �iωþ ξþ μ Hσð Þ½ �δp1p2 (16)

M12 ¼ Mþ
21 ¼ σ0α βSð Þ�1=2 c1 cos 2ϕþ c2 sin 2ϕð Þ:

The effective functional Seff determines all properties of considering model
system – superconducting CuO2 planes. It determines, in particular, the full collec-
tive–mode spectrum, consisting of four collective–modes in each phase.

3.2 The collective mode spectrum

Two SC states arise in the symmetry classification of CuO2 planes with OP which

are proportional to
1 0

0 �1

� �
and

0 1

1 0

� �
respectively. In the former phase the

gap is proportional to Y22 þ Y2�2 � sin 2θ cos 2ϕj j � cos 2ϕj j while in the later one
is proportional to �i Y22 � Y2�2ð Þ � sin 2θ sin 2ϕj j � sin 2ϕj j. For 2D case we put
θ ¼ π=2 and sin θ ¼ 1.

Brusov and Brusova [9, 10] and Brusov, Brusova and Brusov [14] have calcu-
lated the collective– mode spectrum for both of these states. In the first approxi-
mation the collective excitations spectrum is determined by the quadratic part of
Seff , obtained by the shift c j pð Þ ! c 0ð Þ

j þ c j pð Þ in Seff . Here c 0ð Þ
j are the condensate

values of the canonical Bose–fields c j pð Þ.
The collective mode spectrum for the phases with order parameters
1 0

0 �1

� �
and

0 1

1 0

� �
.

The spectra in both phases turns out to be identical. Brusov and Brusova [9, 10]
found two high frequency modes in each phase with following energies (frequencies):

E1 ¼ Δ0 1:42� i0:65ð Þ,
E2 ¼ Δ0 1:74� i0:41ð Þ: (17)

Note that the energies of both modes turn out to be complex. This results from
the d–pairing, or in other words, via the disappearance of a gap in the chosen
directions. In this case the Bose–excitations decay into fermions. This leads to a
damping of the collective modes. The value of imaginary part of energy is 23% for
the second mode and 46% for first one. Thus both modes should be regarded as
resonances and the second mode is better defined than the first.

The other twomodes are Goldstone or low–energymodes (with energy ≤ 0:1Δ0).

4. Lattice symmetry and collective mode spectrum

The made calculations of the collective mode spectrum are not completely self–-
consistent, because Brusov, Brusova and Brusov [14] working within spherical
symmetry approximation, use the order parameters obtained with taking the lattice
symmetry into account. The taking the lattice symmetry into account, as we men-
tioned above, requires a few coupling constants using instead of one. The number of
collective excitations (collective modes) in superconducting state, which is equal to
number of degrees of freedom, will change too (note, that in case of spherical
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symmetry it is equal to 10). In case of the simple irreducible representation (IR) the
number of collective modes is equal to twice number of irreducible representation
dimensionality. For orthorhombic (OR) symmetry and singlet pairing all irreduc-
ible representations are one dimensional (1D), so in each superconducting state
there are two modes corresponding to phase and amplitude variations. Amplitude
mode is high frequency with E≈2Δ, where Δ is the gap in a single particle spectrum.

Among irreducible representations of tetragonal (TG) symmetry there are 1D as
2D (remind that we consider the singlet pairing). Thus in addition to the
superconducting states, with two collective modes of conventional superconductors
there are states which have four collective modes, none of which are Goldstone. We
would like to mention, that for cylindrical Fermi–surface (D∞) among collective
modes there is Goldstone mode in 1, 0ð Þ and 1, 1ð Þ states but there is not Goldstone
mode in 1, ið Þ state.

Because it looks like that there is a mixture of different irreducible representa-
tions (corresponding, for example, to s– and d–wave states or to two different d–
wave states: dx2�y2 and dxy; or dxz and dyz) it will be interesting to investigate the
collective mode spectrum in this case for different admixture values of s–wave state
(dxy– state). Considered by Brusov et al. particular case of dx2�y2 þ idxy state [1]
shows that such consideration leads to very interesting results. One more possibility
is connected with the recent experiments in Sr2RuO4 where the p–pairing appears
to have been precluded by recent NMR experiments, the two–component d–wave
order parameters, namely {dxz,dyz} and even with admixture of g–wave {dx2�y2,
gxy(x2�y2}, are now the prime candidates for the order parameter of the quasi–two–
dimensional Sr2RuO4. So, it will be interesting to study the collective mode spec-
trum in such states.

5. Conclusions

We consider all superconducting states, arising in symmetry classification of
p-wave and d-wave 2D–superconductors, and calculate the full collective modes
spectrum for each of these states.

The collective mode spectrum could manifest itself in microwave impedance
technique, in ultrasound experiments, ultrasound velocity measurements and
others. They allow determine the type of pairing and the symmetry of order
parameter in HTSC and HFSC.
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Chapter 7

Periodogram Analysis under
the Popper-Bayes Approach
George Caminha-Maciel

Abstract

In this chapter, we discuss the use of the Lomb-Scargle periodogram, its
advantages, and pitfalls on a geometrical rather than statistical point of view. It
means emphasizing more on the transformation properties of the finite
sampling – the available data – rather than on the ensemble properties of the
assumed model statistical distributions. We also present a brief overview and
criticism of recent literature on the subject and its new developments. The whole
discussion is under the geophysical inverse theory point of view, the Tarantola’s
combination of information or the so-called Popper-Bayes approach. This approach
has been very successful in dealing with large ill-conditioned, or under-determined
complex problems. In the case of periodogram analysis, this approach allows us to
manage more naturally the experimental data distributions and its anomalies
(uncorrelated noise, sampling artifacts, windowing, aliasing, spectral leakage,
among others). Finally, we discuss the Lomb-Scargle-Tarantola (LST)
periodogram: an estimator of spectral content existing in irregularly sampled time
series that implements these principles.

Keywords: Lomb-Scargle, periodogram, irregular sampling, inverse theory,
spectral analysis, cyclostratigraphy, paleoclimatology, pattern recognition

1. Introduction

Although being old, periodogram analysis until nowadays represents the main
workhorse for the studying of irregularly sampled time series from a vast majority
of scientific branches. Since its introduction more than a century ago by A.
Schuster, the periodogram has evolved and gained widespread use, even if some-
times without a complete understanding of its more subtle aspects. Its popularity
comes from its relatively simple statistical behavior, easy implementation, and easy
interpretation of the results. In summary, the Lomb-Scargle periodogram is an
estimation method that emulates the power of Fourier decomposition – in a case
when it is not possible to apply it – for data series irregularly sampled in time.

Being unnecessary to advocate for Fourier analysis, we want here to remember
one of its main advantages – its simplicity. Fourier basis, sines and cosines, are the
most basic functions that exhibit periodic behavior. Then it is very natural to use a
Fourier basis to compare and detect periodic patterns in experimental data.

Usually applied in areas as diverse as astronomy, biology, meteorology, ocean-
ography, and cyclostratigraphy [1–7], the Lomb-Scargle periodogram has not,
however, a unique direct rule of use. We should always consider the subtle
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ography, and cyclostratigraphy [1–7], the Lomb-Scargle periodogram has not,
however, a unique direct rule of use. We should always consider the subtle
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differences in the time series from each of these areas to explore better the spectral
content in the data set and to improve understanding of the results.

There are fundamental questions that still permeate the whole subject of
periodogram analysis:

• What are the necessary conditions on the original continuous function for the
periodogram to analyze the irregularly sampled time series?

• What is the relationship between the Lomb-Scargle periodogram [8–14] and
the Discrete Fourier Transform (DFT)?

• What is the appropriate discrete domain of frequency numbers for which an
irregularly sampled time series has information? What is the minimum
frequency allowable? Is there a maximum frequency (Nyquist limit) to the
analysis of an unevenly sampled time series, and which it would be? What is
the proper density of frequency points?

• What is the source of the several spurious peaks arising in the periodogram,
besides the original peak on the proper periodicity frequencies?

• What is the uncertainty in the frequency of the periodicity found?

In this chapter, we discuss these questions and present a Popper-Bayes point of
view of the periodogram, comparing it with the more traditional approach. See [15]
for a comprehensive review (see also https://jakevdp.github.io/blog/2017/03/30/
practical-lomb-scargle/). The traditional approach of the Lomb-Scargle method was
developed mainly by astronomers and was adapted to applying to the characteristics
of the astronomical data. Here we point out that the techniques devoted to astron-
omy are non-unique and not necessarily appropriate to other areas. We also show
examples from cyclostratigraphy, our subject of study, which has some typical
sampling anomalies.

Then we will present the Lomb-Scargle-Tarantola (LST) periodogram
[16, 17], a more general technique for the use of the periodogram. The LST
periodogram applies the Popper-Bayes perspective to the periodogram of
irregularly sampled time series: incorporate the a priori variance (sampled data with
all of its anomalies) directly into the a posteriori (periodogram) variance, and
analyze the ill-defined, possibly multi-modal, complex obtained distribution.

2. The Popper-Bayes approach to inverse problems

In geophysics, it is usual to deal with high-dimensional and ill-conditioned
problems. This happens because geophysicists are always trying to understand and
image subsurface structures with data generally obtained from the surface. Fur-
thermore, the measurements we want to interpret are, in general, indirectly related
to the structure we want to model.

In gravimetry, for example, we get measurements of the gravitational field at a
spatial grid on the surface and try to figure out what possible subsurface density
anomalies could produce the observed gravitational field anomaly. This problem is
highly ill-conditioned since an infinite number of configurations of subsurface
bodies and density contrasts could originate the same set of field measurements at
the surface. It cannot be solved without adding an a priori information or some kind
of regularization.
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To solve this class of problems, geophysicists developed statistical techniques
collectively called inverse theory. In the inverse theory, we deal with two main
difficulties: first, to find at least one model that satisfies the measurements; second,
to qualify the set of obtained models. Usually, we find the best model approach to
attack this problem – where we pick a model from a subset of possibilities by
maximizing some kind of measure over the whole set of possibilities. After that, we
attach some uncertainty to the best model chosen.

This approach is favored by statisticians and can be mathematically formalized.
Generally, it works well when the involved variables, data and noise, follow regular
statistical distributions. However, in the case of very irregularly sampled short time
series, this assumption departs from reality.

2.1 Progressing by falsification

A Bayesian attack on the problem would be by posing the following question:
how does this newly obtained data set modify our previous knowledge about the
system?

Furthermore, it means to think about what we already know about the system –

usually put in the form of probability distributions on the dynamical variables – and
how to incorporate new information through the means of the constitutive equa-
tions on the dynamics. After what, we arrive on the a posteriori distributions (or
models) “assimilating” the new data.

Here we present a more radical idea of physical inference, which is called the
Popper-Bayes approach, which departs entirely from the idea of finding the best
model, the mean model, or the maximum likelihood model. Professor Albert
Tarantola started this idea: observations might not be used to produce models; they
should be used only to falsify models [18–20].

He proposed that physical inference could be set in principle as:

1.Using the available a priori information to create all possible models on the
system – potentially an infinite number of them;

2.For each model, solve the direct problem – assuming as true, calculate a
measure (or probability) for this model in comparison with the actual
observations;

3.Use some criteria to define which models are acceptable based on these
measures (or probabilities) and the physical theory on the system. The
unacceptable models should be dropped or falsified;

4.The set of surviving models constitute the solution for the physical inference.
Uncertainties on these models should consider the properties of these a
posteriori distributions over the variables subspace.

Then we have a natural interpretation of multi-modal probability distributions
or ill-defined final models –what is very useful in periodogram analysis of unevenly
sampled times series.

3. Periodogram analysis of irregularly sampled time series

What are the needed assumptions for properly analyzing a continuous signal by
the Fourier method through a discrete sampling?
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periodogram applies the Popper-Bayes perspective to the periodogram of
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In gravimetry, for example, we get measurements of the gravitational field at a
spatial grid on the surface and try to figure out what possible subsurface density
anomalies could produce the observed gravitational field anomaly. This problem is
highly ill-conditioned since an infinite number of configurations of subsurface
bodies and density contrasts could originate the same set of field measurements at
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To solve this class of problems, geophysicists developed statistical techniques
collectively called inverse theory. In the inverse theory, we deal with two main
difficulties: first, to find at least one model that satisfies the measurements; second,
to qualify the set of obtained models. Usually, we find the best model approach to
attack this problem – where we pick a model from a subset of possibilities by
maximizing some kind of measure over the whole set of possibilities. After that, we
attach some uncertainty to the best model chosen.

This approach is favored by statisticians and can be mathematically formalized.
Generally, it works well when the involved variables, data and noise, follow regular
statistical distributions. However, in the case of very irregularly sampled short time
series, this assumption departs from reality.

2.1 Progressing by falsification

A Bayesian attack on the problem would be by posing the following question:
how does this newly obtained data set modify our previous knowledge about the
system?

Furthermore, it means to think about what we already know about the system –

usually put in the form of probability distributions on the dynamical variables – and
how to incorporate new information through the means of the constitutive equa-
tions on the dynamics. After what, we arrive on the a posteriori distributions (or
models) “assimilating” the new data.

Here we present a more radical idea of physical inference, which is called the
Popper-Bayes approach, which departs entirely from the idea of finding the best
model, the mean model, or the maximum likelihood model. Professor Albert
Tarantola started this idea: observations might not be used to produce models; they
should be used only to falsify models [18–20].

He proposed that physical inference could be set in principle as:

1.Using the available a priori information to create all possible models on the
system – potentially an infinite number of them;

2.For each model, solve the direct problem – assuming as true, calculate a
measure (or probability) for this model in comparison with the actual
observations;

3.Use some criteria to define which models are acceptable based on these
measures (or probabilities) and the physical theory on the system. The
unacceptable models should be dropped or falsified;

4.The set of surviving models constitute the solution for the physical inference.
Uncertainties on these models should consider the properties of these a
posteriori distributions over the variables subspace.

Then we have a natural interpretation of multi-modal probability distributions
or ill-defined final models –what is very useful in periodogram analysis of unevenly
sampled times series.

3. Periodogram analysis of irregularly sampled time series

What are the needed assumptions for properly analyzing a continuous signal by
the Fourier method through a discrete sampling?

79

Periodogram Analysis under the Popper-Bayes Approach
DOI: http://dx.doi.org/10.5772/intechopen.93162



First of all, it has to be a single function of the time variable t (t can also be a
spatial variable). It means that the signal needs to be a unique sequence of values
x tð Þ, tð Þ, where, for each t, there is one and only one assigned value x tð Þ. Besides
that, the values x tð Þ cannot “explode” (as the exponential function) – they all have
to be limited by two real numbers: a maximum and a minimum. Furthermore, the
function x tð Þ cannot oscillate too fast; it has to be relatively smooth. This last
condition means that the function cannot have “jumps”; in Fourier analysis, this
would mean that the function has limited informational content or is “bandlimited.”
Our discussion here uses real-valued functions, but the same ideas can be easily
extended for complex-valued cases.

The Fourier transform is a mathematical tool that for which a real function x tð Þ
relates another, a complex function – X fð Þ. As a complex number, each X fð Þ value
can be described by a pair of real numbers – an amplitude A fð Þ and a phase θ fð Þ.
These values A fð Þ represent the relative importance of each time scale T f ¼ 1=Tð Þ.
The squared values A2 fð Þ are proportional to the relative energy of each of the
frequencies f in the signal. The function that gives the relative energy of each of these
frequency components is called power spectral density (PSD) PX fð Þ, where PX fð Þ ¼
A2 fð Þ. It is usual, in the literature, to find these expressions in terms of the variable
ω, called angular frequency, instead of f , where ω ¼ 2πf .

3.1 The periodogram

The Fourier transform has an analytical form applicable to continuous functions
and also has a discrete form applicable to discrete functions – as the sampled time
series we intend to study. That one is called Discrete Fourier Transform (DFT). Being
computationally intensive, particularly for large data sets, the DFT has a fast
implementation called Fast Fourier Transform (FFT) algorithm. The FFT algorithm
dramatically reduces the time and the computational cost of calculating Fourier
transforms for real-time series. It is worth mentioning that if the time series is
irregularly sampled, the FFT algorithm cannot be applied.

From the DFT, we can obtain estimates for the PSD of experimental real-time
series. The statistics that gives an estimation of the relative energy among the
different frequencies present in a signal is called the periodogram.

The classical periodogram is simply the squared modulus of the DFT. In the
exponential form, it can be written as

PX ωð Þ ¼ 1
N0

X
j

x j � e�iωt j
� �

�����

�����
2

(1)

Or in the trigonometric (equivalent) form as
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where N0 is the number of data points in the time series.
One main statistical property of the classical periodogram is that for a time series

constituted solely of evenly spaced Gaussian noise, the values of the periodogram
are exponentially distributed. Unfortunately, when the time series is irregularly
sampled in time, this property no longer holds. This statistical behavior also only
applies to observations of uncorrelated white noise.
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Lomb [9] and Scargle [10] addressed the problem of finding a generalized form
of periodogram in order to:

• Reduces to the classical form in the case of uniformly sampled time series;

• Its statistics are computable;

• It is invariant to global time-shifts in the series.

The classical periodogram is very noisy even for time series only slightly noisy.
The Scargle’s modified periodogram, called Lomb-Scargle periodogram, is much
smoother and differs from the classical periodogram in at least two aspects:

• It adds a time-shift term τ. This time-shift is calculated to minimize
independence between the two trigonometric basis sinωt j

� �
and cosωt j

� �
. In

other words, it minimizes the crossing term
P

j sinωt j cosωt j
� �

. It is an

attempt to improve orthogonality in the equations.

• It adds the denominators
P

j sin
2ω t j � τ
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and
P

j cos
2ω t j � τ
� �� �

to the

terms in periodogram. These denominators differ from N0=2, which is the
expected value in the limiting case of complete phase sampling at each
frequency (as in the uniformly sampled series).

The Lomb-Scargle periodogram is given by
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where τ is given by

arctan 2ωτð Þ ¼
P

j sin 2ωt j
� �

P
j cos 2ωt j

� � (4)

With this formulation, the periodogram of uncorrelated irregularly spaced
Gaussian noise is also exponentially distributed (sum of squares of two zero-mean
Gaussian variables).

3.1.1 The least-squares periodogram and its extensions

The Lomb-Scargle periodogram is equivalent to the least-squares fitting of a
sinusoidal model to the data at each frequency ω. The Lomb-Scargle periodogram
power relates to the χ2 ωð Þ goodness-of-fit, at the frequency ω.

Let us consider a sinusoidal model at the frequency ω,

y t;ωð Þ ¼ Aω sin ω t� ϕωð Þð Þ (5)

The χ2 goodness-of-fit can be defined as

χ2 ωð Þ �
X
j

y j � y t j;ω
� �� �2

(6)
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We can find the “best” model ŷ t;ωð Þ by minimizing χ2. Let χ̂2 be the minimum

and Âω; ϕ̂ω

� �
the optimal value, then we can write

PLS ωð Þ � Â
2
ω (7)

For data sets with errors, we can consider introducing them into the
periodogram. Vio and others [16, 17] studied a more general model, including a
N �N error covariance matrix Σ, for N timely observations.

χ2 ωð Þ ¼ y! � y!model

� �
Σ�1 y! � y!model

� �
(8)

In the case of uncorrelated zero-mean colored noise, this expression reduces to

χ2 ωð Þ ¼
X
j

y j � y t j;ω
� �

σ2j

 !2

(9)

where σ2j are the gaussian errors.
For practical applications, there are some additional issues to consider when

introducing data errors in the periodogram calculations, such as unaccountable
uncertainties in error estimates, correlated noise, and the dependence in the signal
slope. All of that makes the use of error estimates not very advisable [13].

3.2 Periodograms and significance

The Lomb-Scargle periodogram keeps most of the optimal analytical properties
of the Fourier transform and its power spectrum:

• Linearity;

• The periodogram of a pure sinusoidal at ω0 is a sum of the Dirac delta functions
at �ω0ð Þ;

• The periodogram, just as the power spectrum, is insensitive to translations in
time (only reflects on the phase spectrum);

• It is a real-valued even function (that is the reason why we only calculate the
positive part);

• The transform of a gaussian is another (different) gaussian;

• The “Heisenberg uncertainty principle” of Fourier transforms (usual in
quantum mechanics) applies: a narrow feature in time becomes a broader peak
in frequency and vice-versa.

3.2.1 Spectral windows

The pointwise product of the underlying infinite periodic signal with a rectan-
gular window function usually describes the observed signal; its length is the time
series duration T.
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In the Fourier transform, the windowing replaces each Dirac delta function at
some frequency ωi with a sinc function centered at that same frequency ωi, in the
Fourier transform. This behavior is a direct consequence of the inverse relationship
between the time window width and the width of its Fourier transform.

An infinite sin ωitð Þ function runs from �∞ to þ∞ and has two delta functions
at �ωi as its Fourier transform. The finite signal, the windowing version, has a
broader transform – the sinc function. The sinc function, besides having a broader
and lower central peak (delta function has infinite height), also has side lobes. It
spreads the power at the frequency ωi to the adjacent frequencies. This phenome-
non is called spectral leakage, and it is more pronounced as the shorter is the
duration of the time series (narrower window).

There is another essential aspect of spectral windows: its smoothness. The more
abrupt (less smooth) is the window, the more spectral leakage happens in the
Fourier transform, lowering the central peak and heightening the side lobes. Instead
of a rectangular function, we can use a smoother function, like a sin bell function,
for example, and the resulting spectrum will exhibit much less leakage.

Though we made this discussion about the spectrum power, the Fourier trans-
form squared modulus, it equally applies to its actual estimate from data – the
periodogram.

3.2.2 Frequencies for periodogram analysis

There are three parameters to consider when choosing the appropriate
frequency grid for periodogram analysis of a particular time series:

1.The minimum frequency, f min;

2.The maximum frequency, f max;

3.The frequency spacing, Δf .

Recommendations for the choice of each of these parameters vary in the litera-
ture. Here we discuss some points to consider in the case of regularly as well as to
irregularly sampled time series.

Minimum frequency: The minimum frequency, fmin, is the easiest to define. It
relates to the largest period of a wave we can investigate in the time series. We
usually set it as the inverse of T – the length of the time series, or as zero – where its
value virtually equals to the frequency spacing, Δf .

Maximum frequency: The maximum frequency, f max, represents the shortest
period of a wave we can investigate in the time series. For evenly sampled time
series, the Nyquist theorem or Sampling theorem defines this maximum frequency –

called Nyquist frequency, f Nyquist.
This theorem states that if we have a regularly sampled function with the

sampling rate of f δ ¼ 1=δt, we can only recover full frequency information if the
signal is band-limited between frequencies f δ=2. This theorem states that if we have
a regularly sampled function with the sampling rate of f δ ¼ 1=δt, we can only
recover full frequency information if the signal is band-limited between frequencies
� f δ=2.

Putting in another way, the theorem says that to fully represent the content of a
band-limited signal whose Fourier transform is zero outside the range of �B, we
must sample the signal with a rate at least f δ ¼ 2B. Then, for evenly sampled time
series, f max ¼ f Nyquist ¼ f δ=2.
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Frequency spacing: The frequency spacing, Δf , has only general guidelines: too
small frequency spacing can lead to unnecessarily long computation times, which
adds up fastly for large data sets. Too coarse frequency spacing can risk missing
narrow peaks in the periodogram – which would fall between adjacent grid points.
However, there is a controversy when considering these frequency grids as inde-
pendent points when applying statistical significance tests in the periodogram ordi-
nates (testing for true periodicities).

An evenly sampled time series represents a pointwise product of the original
continuous signal with a sequence of Dirac delta functions (a Dirac comb) at the
sampling times. The Nyquist limit is a direct consequence of the symmetry in this
Dirac comb window. Beyond this limit, the spectrum becomes a periodic repetition
of itself – that is why the periodogram is unique between the limits � f Nyquist. The
rise of power in the spectrum beyond the Nyquist limit is called aliasing since these
peaks are not real but “alias” of the real power inside the Nyquist interval in the
original signal.

For unevenly sampled time series:

• The structure in the observing window can lead to partial aliasing in the
periodogram;

• The non-structured spacing of observations also leads to the arising of non-
structured peaks in the window transform;

• The maximum frequency limit might or might not exist, and if it exists, it tends
to be far higher than for the evenly sampled case.

For irregularly sampled time series, if there is a periodic pattern in the observation
times gaps, this can lead to a peak in the periodogram indicating a periodicity. For
example, the daily pattern of measurements in astronomy: an observation in time t0
is likely to be followed by other observation only at time t0 þ np (p is an integer
number of days, and n is an integer). Therefore, it can generate a peak at the
frequency p in the periodogram.

We find in the literature some proposals for the maximum frequency (Nyquist-
like) limit for irregular sampling [15, 21–26]. These estimates are easy to calculate
and reduce to the Nyquist frequency limit in the evenly sampled case:

• Arithmetic average of the time intervals.

• Harmonic average of the time intervals.

• Median of the time intervals.

• Minimum of the time intervals.

There are also, in the literature, some Nyquist-like limits based on not-so-simple
statistics of the time intervals [15]:

• Greatest common divisor (gcd) of the time intervals. We should consider
sampling times as integer numbers (what can always be done by re-scaling the
time values).

• Frequency limit due to time windowing when observations are not pointwise
instantaneous, but instead, they consist of short-time (δt) integrations of the
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continuous signals, around the sampling times t j. This kind of sampling is
typical in several applications, including cyclostratigraphy. In that case, again,
the Fourier transform is the product of the original signal transform and the
transform of the time window, which has the width proportional to 1=δt. Then,
f max ¼ f Nyquist ¼ 1= 2δtð Þ. However, in this case, this frequency limit does not
imply aliasing. Instead, it is about a frequency limit beyond which all signal is
attenuated to zero.

• Frequency limit based on a priori knowledge on the expected signals.

Finally, for irregularly sampled time series, the maximum frequency limit can be
set by the precision of time measurements.

3.2.3 Statistics of the periodogram

The classical periodogram has a fundamental statistical property for evenly
sampled time series: when the signal consists solely of pure Gaussian noise, the
values of the periodogram are exponentially distributed – for irregularly sampled
times, this property no longer holds.

The Scargle’s generalized form of the periodogram brings back that statistical
simplicity for the irregularly sampled case: for time series consisting solely of pure
Gaussian noise, the unnormalized periodogram has its ordinates exponentially
distributed.

This statistical property is used to test for what would be a “true” periodicity in
periodogram ordinates. The standard procedure is to assume that the periodogram
maximum ordinate represents a true periodicity, called Fisher criteria, and to test
this value against all others ordinates – supposedly arising from the background
noise.

Scargle defined a False Alarm Probability (FAP) that, based on the assumed
distribution of Gaussian noise, simply measures the probability that a time series
without any signal would arise, due to stochastic fluctuations only, an ordinate of
the observed magnitude in the periodogram. Following Scargle [15], the detection
threshold, z0, is a magnitude level above which, if we claim that a peak is due a real
signal, we would only be wrong a small fraction p0 (FAP) of the time:

z0 ¼ � ln 1� 1� p0
� �1=Nh i

, (10)

where p0 (FAP) is a small number, and N is the number of independent frequen-
cies tested.

It is worth noting that this statistical analysis answers the question: “What is the
probability that a time series without any periodic component would make arise a
peak of that magnitude in the periodogram?” It does not answer the utterly more
physically significant, more direct question: “What is the probability that this
periodogram feature comes from a periodic phenomenon?”

The ability to analytically quantify the relationship between peak height and
statistical significance of a feature in the periodogram has been one of the main
reasons for the widespread use of the Lomb-Scargle periodogram [10–13, 23–25].
However, the independence of the tested frequencies remains an open issue.

Data quality (and quantity) generally reflects on the peak height related to the
background noise, which gives peak significance, as discussed above. Neither the
number of points in a time series or the signal-to-noise ratio affects the peak
frequency determination nor its precision. The uncertainty in the frequency value of
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continuous signals, around the sampling times t j. This kind of sampling is
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a peak is related to the peak width, usually in Fourier analysis defined as the peak
half-width. For this reason, in periodogram analysis, Gaussian error bars should be
avoided as a way to report uncertainties in frequency determinations.

4. The Lomb-Scargle-Tarantola (LST) periodogram

In geophysical inverse theory, there are high mature methods to deal with large
uncertainties in data and ill-conditioned models. It comes from the constant
necessity; geophysicists have to build and evaluate physical models of the subsur-
face (or Earth’s deep interior) based mostly on data acquired from the surface.

In Seismics, for example, geophysicists developed a procedure called stacking
where a set of different signals, acquired by distinct geophones, are gathered under
specific geometrical settings. The procedure aims to amplify the signal and to cancel
noise, improving overall information about the same subsurface points. The
stacking of seismic signals is one of the main reasons for the success of this tech-
nique on the oil industry nowadays, allowing the discovery of new oil fields and
improving oil/gas recovering on reservoir structures.

Caminha-Maciel and Ernesto [16, 17] created a method to analyze spectral
content (and its uncertainties) in irregularly sampled times series applying some
principles from the geophysical inverse theory – the Popper-Bayes approach, as
developed by Albert Tarantola [18–20]. This approach uses freely normalizable
probability distributions to encapsulate the information and afterward operates
with these distributions (the data information and the model/geometrical
information on the problem). The results of these operations constitute a Bayesian
physical inference method, and its a posteriori probability distributions are proper
solutions to our inverse problem. In the following section, we will see how this
applies to the Lomb-Scargle periodogram.

4.1 State of information periodogram-based functions

There is a vast diversity of methods to analyze time series, both in time and in
frequency domains. Fourier-derived methods still show continued interest since
they are fast (due to FFT algorithm), intuitive, and have a straightforward
extension to irregularly sampled time series.

However, in some applications, as the high-resolution deep-sea stratigraphic
records, there are novel challenges for the extraction and interpretation of mean-
ingful information. It is worth to mention the uncertainties in the measured times
(plus the usual uncertainties on the other variables), non-stationarity of the
dynamical systems observed, and shortness of the records compared to wavelengths
of interest. In the stratigraphic time series, there is also a general dependence of the
recording-sampling process on the unknown-climatic signal itself. These issues
contribute to breaking the orthogonality among periodogram ordinates, which is
necessary to perform appropriately statistical significance tests on supposed-
independent ordinates.

Nevertheless, there are some less-known interesting properties of the Lomb-
Scargle periodogram:

• Analytical independence among ordinates – non-statistical independence.
Since we have a fixed set of points X t j

� �
, t j

� �
and a fixed frequency point ω0,

P ω0ð Þ gives the same result regardless of how many different frequencies ωi
we use in the analysis. The periodogram does not “see” other ordinates. The
problem is when we try to compare different ordinates (statistical
independence).
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• The maximum frequency (Nyquist-like) allowed can be much higher than in
the evenly sampled case. We can define a Nyquist-like frequency related to the
inverse of the minimum time interval, or even the gcd of the time intervals [8].

• The signal-noise (S/N) ratio does not depend on the periodogram
normalization factor. In other words, P ωað Þ=P ωbð Þ is independent of the
chosen normalization factor (there are several different options in the
literature).

• There is a low false-negative probability for the periodogram for a real signal
present in the time series. Then, if we guess correctly a frequency ω0 present in
the time series, we have a very low probability of obtaining a small value for
P ω0ð Þ. The problem is that we also obtain high periodogram ordinates for other
frequencies besides the true ones – this makes it difficult to identify them if we
do not know beforehand.

In the LST periodogram, a freely normalized version of the Lomb-Scargle
periodogram is initially defined over the broadest possible range of frequencies. The
frequency set is chosen to include all wavelengths about which could exist infor-
mation on the time series. The next step is to choose the minimum frequency as
zero, the frequency grid spacing δf , or the total length of time series, or some
fraction in between these values. We can choose the maximum frequency as the
highest frequency about which we believe there is any information in the time
series, as some a priori known Nyquist limit, up to the limit of the inverse of the gcd
of time intervals. Above this limit, we probably have to deal we some folding in the
periodogram. The frequency grid δf has to be chosen to allow the calculation to be
computationally feasible.

4.1.1 Normalizing by the bandwidth total content

We define

PLST ωð Þ ¼ K � PLS ωð Þ (11)

where the normalizing constant K is set as K ¼ P
ωP ωð ÞΔω� ��1. This values of

the constant K is such that the function PLST normalizes to total area under the
curve equals to 1 over the whole set of frequencies ωi. This area represents the total
power in the bandwidth and reflect the times series total variance.

Note that the S/N ratio, as well as the ratio between any two distinct frequencies
P ωað Þ=P ωbð Þ, does not depend on the times series total power.

This procedure is equivalent to a stretching of the data series variable X tð Þ in the
time domain and also has the property of making comparable the total power of the
various periodograms.

4.2 Periodogram analysis by combination of information

The two main ideas of the Lomb-Scargle-Tarantola periodogram are

1.Smoothing the periodogram.

2.Stacking independent periodogram estimates.

Since its proposition, the periodogram is recognized as high noisy statistics, even
for less noisy data. Smoothing the periodogram is not a new idea. There are several
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a peak is related to the peak width, usually in Fourier analysis defined as the peak
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stacking of seismic signals is one of the main reasons for the success of this tech-
nique on the oil industry nowadays, allowing the discovery of new oil fields and
improving oil/gas recovering on reservoir structures.
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content (and its uncertainties) in irregularly sampled times series applying some
principles from the geophysical inverse theory – the Popper-Bayes approach, as
developed by Albert Tarantola [18–20]. This approach uses freely normalizable
probability distributions to encapsulate the information and afterward operates
with these distributions (the data information and the model/geometrical
information on the problem). The results of these operations constitute a Bayesian
physical inference method, and its a posteriori probability distributions are proper
solutions to our inverse problem. In the following section, we will see how this
applies to the Lomb-Scargle periodogram.

4.1 State of information periodogram-based functions

There is a vast diversity of methods to analyze time series, both in time and in
frequency domains. Fourier-derived methods still show continued interest since
they are fast (due to FFT algorithm), intuitive, and have a straightforward
extension to irregularly sampled time series.

However, in some applications, as the high-resolution deep-sea stratigraphic
records, there are novel challenges for the extraction and interpretation of mean-
ingful information. It is worth to mention the uncertainties in the measured times
(plus the usual uncertainties on the other variables), non-stationarity of the
dynamical systems observed, and shortness of the records compared to wavelengths
of interest. In the stratigraphic time series, there is also a general dependence of the
recording-sampling process on the unknown-climatic signal itself. These issues
contribute to breaking the orthogonality among periodogram ordinates, which is
necessary to perform appropriately statistical significance tests on supposed-
independent ordinates.

Nevertheless, there are some less-known interesting properties of the Lomb-
Scargle periodogram:

• Analytical independence among ordinates – non-statistical independence.
Since we have a fixed set of points X t j

� �
, t j

� �
and a fixed frequency point ω0,

P ω0ð Þ gives the same result regardless of how many different frequencies ωi
we use in the analysis. The periodogram does not “see” other ordinates. The
problem is when we try to compare different ordinates (statistical
independence).
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• The maximum frequency (Nyquist-like) allowed can be much higher than in
the evenly sampled case. We can define a Nyquist-like frequency related to the
inverse of the minimum time interval, or even the gcd of the time intervals [8].

• The signal-noise (S/N) ratio does not depend on the periodogram
normalization factor. In other words, P ωað Þ=P ωbð Þ is independent of the
chosen normalization factor (there are several different options in the
literature).

• There is a low false-negative probability for the periodogram for a real signal
present in the time series. Then, if we guess correctly a frequency ω0 present in
the time series, we have a very low probability of obtaining a small value for
P ω0ð Þ. The problem is that we also obtain high periodogram ordinates for other
frequencies besides the true ones – this makes it difficult to identify them if we
do not know beforehand.

In the LST periodogram, a freely normalized version of the Lomb-Scargle
periodogram is initially defined over the broadest possible range of frequencies. The
frequency set is chosen to include all wavelengths about which could exist infor-
mation on the time series. The next step is to choose the minimum frequency as
zero, the frequency grid spacing δf , or the total length of time series, or some
fraction in between these values. We can choose the maximum frequency as the
highest frequency about which we believe there is any information in the time
series, as some a priori known Nyquist limit, up to the limit of the inverse of the gcd
of time intervals. Above this limit, we probably have to deal we some folding in the
periodogram. The frequency grid δf has to be chosen to allow the calculation to be
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4.1.1 Normalizing by the bandwidth total content

We define

PLST ωð Þ ¼ K � PLS ωð Þ (11)

where the normalizing constant K is set as K ¼ P
ωP ωð ÞΔω� ��1. This values of

the constant K is such that the function PLST normalizes to total area under the
curve equals to 1 over the whole set of frequencies ωi. This area represents the total
power in the bandwidth and reflect the times series total variance.

Note that the S/N ratio, as well as the ratio between any two distinct frequencies
P ωað Þ=P ωbð Þ, does not depend on the times series total power.

This procedure is equivalent to a stretching of the data series variable X tð Þ in the
time domain and also has the property of making comparable the total power of the
various periodograms.

4.2 Periodogram analysis by combination of information

The two main ideas of the Lomb-Scargle-Tarantola periodogram are

1.Smoothing the periodogram.

2.Stacking independent periodogram estimates.

Since its proposition, the periodogram is recognized as high noisy statistics, even
for less noisy data. Smoothing the periodogram is not a new idea. There are several
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attempts in this direction by averaging adjacent estimates (as in Daniel’s averaged
periodogram, for example) and in many Bayesian formulations.

A new idea on working with periodograms is stacking in the frequency domain:
we can consider two or more distinct time series with information about the same
dynamical variable as independent observations of the same phenomenon. For
example, several stratigraphic sections covering the same time interval; different
variables related to the same dynamics – sediment accumulation and δ18O time
series, both related to seawater surface temperature; independent observations of
the same variable – as astronomical observations from distinct geographic locations;
and biological circadian rhythms from different organisms.

After that, we operate these periodogram distributions with two logical opera-
tors “OR” and “AND.” The OR operator can be described as a generalization of
doing histograms and is mathematically defined as the arithmetic average of the
individual LST periodograms (very similar to usual stacking of seismic signals). The
AND operator is a non-linear operator that represents the generalization of condi-
tional probability and is mathematically defined as ΠiPi ωð Þ

μ , where μ is the null
information function – characterizing the geometry of the physical problem.

In some physical problems involving the dynamical variable frequency, f , itself,
the null information function can be better written as 1=f . However, in spectral
analysis, the variable frequency only means labels for some general class of
eigenfunctions – as the Fourier basis sin and cos . Then we can fairly consider the
null information function, μ, as a constant function over the entire domain.

4.2.1 Using LSTperiod software

We have published [17] a proof-of-concept software to implement the LST
periodogram. This software, the LSTperiod (Download it at http://www.iag.usp.br/
paleo/sites/default/files/LSTperiod-files.zip), exemplify one possible implementa-
tion of the LST periodogram. We have made a set of choices for the frequency grid,
normalizations of the state of information functions, evaluation of the resulting
models (candidates periodicities), and visualizations of the results. Those choices
are for no means unique [27].

To illustrate the use of the LSTperiod software, we show a set of five strati-
graphic series of benthic δ18O from the sedimentary core drilled by the Ocean

Figure 1.
LST periodograms for the benthic δ18O series from ocean drilling project (ODP) cores. The windows show the
periodogram calculated for each data file separately (bottom) and the combined results for the OR (middle)
and AND (top) spectra.
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Drilling Project (ODP) [28]. These time series were subjected to spectral analysis
and other statistical methods and show Milankovitch climatic cycles around 19, 23,
and 41 kyr [28–30].

In Figure 1, we can see the periodograms for these time series – individual and
combined (OR/AND) periodograms. Figure 2 shows the amplitude and phase
analysis for the � 41kyr Milankovitch period found, for each analyzed series.

5. Conclusions

With the recent advances in experimental sciences, there is an increased need to
analyze and statistically evaluate the information contained in time series. In some
areas, as paleoclimatic studies, the study of the information on this kind of data
constitutes the main body of physical evidence to understand and solve
fundamental today’s problems – as the origin and development of the climatic
change observed in recent years.

Fourier methods still constitute an updated tool since they are simple and offer
easy-to-understand results. However, in several of these applications, as in strati-
graphic data, these time series come with severe sampling anomalies. These anom-
alies ultimately prevent the use of standard Fourier techniques, as the FFT
algorithm and periodograms. The Lomb-Scargle periodogram has been very useful
to attack this sort of problem. However, its use, as seen in the literature, lacks a
proper analysis of the uncertainties associated and, worse, is unfit to be applied in
the most poorly sampled time series.

Figure 2.
Rose diagram showing the phases and amplitudes of the calculated period T ¼ 40:92kyr for each analyzed
series.
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attempts in this direction by averaging adjacent estimates (as in Daniel’s averaged
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Drilling Project (ODP) [28]. These time series were subjected to spectral analysis
and other statistical methods and show Milankovitch climatic cycles around 19, 23,
and 41 kyr [28–30].

In Figure 1, we can see the periodograms for these time series – individual and
combined (OR/AND) periodograms. Figure 2 shows the amplitude and phase
analysis for the � 41kyr Milankovitch period found, for each analyzed series.

5. Conclusions

With the recent advances in experimental sciences, there is an increased need to
analyze and statistically evaluate the information contained in time series. In some
areas, as paleoclimatic studies, the study of the information on this kind of data
constitutes the main body of physical evidence to understand and solve
fundamental today’s problems – as the origin and development of the climatic
change observed in recent years.

Fourier methods still constitute an updated tool since they are simple and offer
easy-to-understand results. However, in several of these applications, as in strati-
graphic data, these time series come with severe sampling anomalies. These anom-
alies ultimately prevent the use of standard Fourier techniques, as the FFT
algorithm and periodograms. The Lomb-Scargle periodogram has been very useful
to attack this sort of problem. However, its use, as seen in the literature, lacks a
proper analysis of the uncertainties associated and, worse, is unfit to be applied in
the most poorly sampled time series.
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Rose diagram showing the phases and amplitudes of the calculated period T ¼ 40:92kyr for each analyzed
series.
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The spectral analysis of irregularly sampled times series represents a problem of
studying a physical system from incomplete information. As we know, from geo-
physical inverse theory, this kind of problem cannot be solved without some input
of a priori information – explicitly or not.

The Popper-Bayes approach for physical inference proposes to solve inference
problems by a combination of information: theoretical usually expressed through
the functional form of statistical distributions and by combining independent
experimental data. The LST periodogram is a development of the Lomb-Scargle
periodogram that brings these inference principles to the periodogram analysis of
irregularly sampled time series. The main idea of the LST periodogram is to smooth
the periodogram of a dynamical variable through the stacking of spectral informa-
tion from multiple irregularly sampled times series.

The periodogram of an irregularly sampled times series cannot, by any means,
become a set of independent ordinates for being submitted to a proper statistical
test. With the LST periodogram, we propose to change the use of the periodogram:
from an auxiliary tool to statistical decision theory (define a periodicity) to a
dimension reduction problem – from a broad set of possible frequencies to very
narrow set of periodogram local maxima (peaks).
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Note
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The spectral analysis of irregularly sampled times series represents a problem of
studying a physical system from incomplete information. As we know, from geo-
physical inverse theory, this kind of problem cannot be solved without some input
of a priori information – explicitly or not.

The Popper-Bayes approach for physical inference proposes to solve inference
problems by a combination of information: theoretical usually expressed through
the functional form of statistical distributions and by combining independent
experimental data. The LST periodogram is a development of the Lomb-Scargle
periodogram that brings these inference principles to the periodogram analysis of
irregularly sampled time series. The main idea of the LST periodogram is to smooth
the periodogram of a dynamical variable through the stacking of spectral informa-
tion from multiple irregularly sampled times series.

The periodogram of an irregularly sampled times series cannot, by any means,
become a set of independent ordinates for being submitted to a proper statistical
test. With the LST periodogram, we propose to change the use of the periodogram:
from an auxiliary tool to statistical decision theory (define a periodicity) to a
dimension reduction problem – from a broad set of possible frequencies to very
narrow set of periodogram local maxima (peaks).
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Chapter 8

Spread Option Pricing on
Single-Core and Parallel
Computing Architectures
Shiam Kannan and Mesias Alfeus

Abstract

This paper introduces parallel computation for spread options using two-
dimensional Fourier transform. Spread options are multi-asset options whose
payoffs depend on the difference of two underlying financial securities. Pricing
these securities, however, cannot be done using closed-form methods; as such, we
propose an algorithm which employs the fast Fourier Transform (FFT) method to
numerically solve spread option prices in a reasonable amount of short time while
preserving the pricing accuracy. Our results indicate a significant increase in
computational performance when the algorithm is performed on multiple CPU
cores and GPU. Moreover, the literature on spread option pricing using FFT
methods documents that the pricing accuracy increases with FFT grid size while the
computational speed has opposite effect. By using the multi-core/GPU implemen-
tation, the trade-off between pricing accuracy and speed is taken into account
effectively.

Keywords: spread option, single core, parallel computing

1. Introduction

Spread options have widespread uses across many industries, remarkably in the
seasonal commodity market futures. One notable example is the crack spread, which
is the pricing difference between a barrel of crude oil and the petroleum products
refined from it. Traditionally, crack spreads involve the purchase of oil futures and
the simultaneous sale of futures of the refined product, whether it be gasoline,
heating oil, or other similar products. Refiners seek a positive spread between the
prices of crude oil and refined products, meaning that the price of the input (oil in
this case) is lower than the price of the output (gasoline, kerosene, etc.).

Beyond the oil industry, spread options are utilized by suppliers in industries as
disparate as the soybean and electricity markets. Soybean spread options are known
as crush spreads, and electricity spread options are known as spark spreads. Similar
to crack spreads, both these options seek to maximize the spread between input
costs and output prices for suppliers to maximize profit.

The use of spread options across such disparate fields is but a testament to their
widespread use. Considering the popularity of spread options, it thus prompts the
needs of accurate and fast pricing of price of these options. This paper dwells on the
discussion of fast algorithms for these options.
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As mentioned previously, pricing spread options tends to be something that
cannot be easily performed using traditional closed-form solutions. Therefore, we
explore the utilization of the fast Fourier transform method to price these securities.
Specifically, we perform the FFT on the spread options payoff, assuming knowledge
of the model joint characteristic function, which we represent as a pointwise multi-
plication of the characteristic function and the complex gamma function in the
Fourier domain.

Regarding our implementation, we adapt the parallel computing Toolbox in
MATLAB to take advantage of the multi-core capabilities of GPU processing, to
substantially improve the performance and computational efficiency of the algorithm
for spread options. This methodology may serve a great deal especially in model
calibration and risk management approach. For measuring performance, we only
time the execution of the inverse Fast Fourier Transform, as the prior steps are
merely initialization of the necessary arrays. For measuring accuracy, we compute the
Euclidean norms of each of the resulting option price arrays from each implementa-
tion (single-core and GPU), and find the percent error between the norms as follows:

GPU norm� single core norm
single core norm

� 100 (1)

The main contribution of this paper is the use of parallel computation for the
spread option value using two-dimensional Fourier transform. Our implementation
is developed both for single-core processors, as well as for parallel processing on
multi-core/GPU systems. For both execution methods, we have implemented our
algorithm using MATLAB built-in functions to produce a version of the algorithm
compatible for multi-core systems. To ascertain the impact of the different envi-
ronments as well as the different methods of execution on the computational effi-
ciency of the algorithm, we record the times of execution for different values of FFT
grid size N, which is the number of grid points of discretization of the characteristic
function along the two asset dimensions, for both the classical single-core imple-
mentation and the multi-core/GPU implementation. This approach completely
eliminates the trade off between computational accuracy and speed, that is, we
price spread option accurately and in a fastest possible way.

2. Model description

2.1 Spread option valuation

We fix the trading time horizon T and consider a filtered probability space
Ω,F ,P, F tð Þt<T <T

� �
defined in the usual way.

The goal is to compute the value of an European spread option between stock
price processes S1 ¼ S1 tð Þf g0≤ t≤T and S2 ¼ S2 tð Þf g0≤ t≤T with maturity time T and
exercise price K.

At expiration time T, the payoff is given by

ST S1, S2,Kð Þ ¼ max S1 Tð Þ � S2 Tð Þ � K, 0f g, (2)

and under a risk-neutral conditional measure1 Q its value at time t is given by

1 3 Specifically: Under the risk–neutral measure associated with taking the continuously compounded

savings account as the numeraire, and (for expositional simplicity) assuming a constant interest rate r.
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St S1, S2,Kð Þ ¼ e�r T�tð ÞEQ S1 Tð Þ � S2 Tð Þ � Kð ÞþjF t
� �

: (3)

Under normality assumption, Eq. (3) can be analytically approximated as done
in [1]. However, a departure from normality assumption ushers into numerical
computational difficulties. In option pricing literature of finance, Fourier
transform-based method is usually the best candidate to approximate the solution
for Eq. (3), in this case whenever the joint characteristic function of the asset price
processes, S1 and S2 are available. For spread options pricing valuation methodology
using two-dimensional fast Fourier transform (FFT) techniques was coined in
[2, 3]. We cite the important formula from [3] that gives the price for spread option

St S1, S2,Kð Þ ¼ e�r T�tð ÞEQ S1 Tð Þ � S2 Tð Þ � Kð ÞþjF t
� �

¼ 1

2πð Þ2 e
�rT
ð ð

Rþiϵ
eiuX

0
0Φ u,Tð ÞP̂ uð Þd2u

(4)

P̂ uð Þ ¼ Γ i u1 þ u2ð Þ � 1ð ÞΓ �iu2ð Þ
Γ iu1 þ 1ð Þ (5)

Γ zð Þ ¼
ð∞
0
e�ttz�1dt, (6)

where X0 ¼ log S, Φ u,Tð Þ ¼ E eiu X0
T�X0

0ð Þh i
, is the joint characteristic function of

the log return.
Fast and accurate pricing is often the most desirable feature of the model. In [4],

the authors consider spread options pricing in C++ using fast Fourier transform in
the west (FFTW). They observed the trade off between fast computation and
numerical accuracy; pricing accuracy is monotonic in the number of FFT grid size
used in the price computation. However, using a large number of FFT grid size slow
down the speed of price computation.

2.2 Model characteristic function

Fast Fourier transform (FFT) method is generically applicable in finance
because it only requires the specification of the characteristic function of the ran-
dom variable. In terms of spread options, one just need a characteristic function of
the joint distribution of the financial variables in question. Here, we employ two
characteristic functions: one based on two-dimensional normal distribution and the
other one based on two-dimensional normal inverse Gaussian (NIG) distribution.

2.2.1 Two-dimensional geometric Brownian motion (GBM)

The characteristic function for a spread option comprised of two assets, each of
which is modeled as a correlated GBM, is given by

ΦGBM u;Tð Þ ¼ exp iu rTe� σ2T
2

� �0
� uΣGBMu0T

2

 !
(7)

where e ¼ 1, 1½ �, ΣGBM ¼ σ21 σ1σ2ρ

σ1σ2ρ σ22

 !
, and σ2 ¼ diag ΣGBMð Þ, i ¼ ffiffiffiffiffiffi�1

p
, .

r, σi : i ¼ 1, 2 denote the risk-free rate, volatilities, respectively, and ρ is the
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correlation parameter between two asset prices processes S1 and S2. Here, ΣGBM is
the covariance matrix.

2.2.2 Two-dimensional normal inverse Gaussian (NIG) Levy process

Let S denote a two-dimension NIG random variable. The characteristic function
of S ¼ S1, S2ð Þ is given by

ΦNIG u;Tð Þ ¼ exp iu0μT þ δT
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 � βΔβ0
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where α, δ∈Rþ, β, μ∈R2, and Δ∈R2�2 is a symmetric, positive-definite matrix.
Moreover, the structural matrix Δ is assumed to have determinant Det Δð Þ ¼ 1.

The covariance matrix corresponding to the two-dimensional NIG-distributed
random variable S is

ΣNIG ¼ δ α2 � βΔβ0
� ��1

2 Δþ α2 � βΔβ0
� ��1Δββ0Δ

� �
(9)

2.3 FFT algorithm

The FFT algorithm for spread option pricing along the line of [3] can be
described as follows

3. Numerical results

3.1 Implementation outlook

As mentioned earlier, two versions of the algorithm were programmed in
MATLAB, namely a single-core variant and a multi-core GPU variant. In MATLAB,
the Parallel Processing Toolbox was used to exploit multi-core GPU capabilities to
run the algorithm. Among its capabilities is the ability to run for loops and perform
array operations in parallel, both on multi-core CPUs as well as GPUs.

As in the Algorithm 1 given above, the for loop in lines 3–6 was run in parallel,
across six CPU cores, employing the parfor directive available in the MATLAB
Parallel Processing Toolbox. We also sought to run computationally heavy functions
on the GPU we had available, to improve the efficiency of our algorithm beyond
what would be possible on a multi-core CPU. In that regard, we executed the
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inverse FFT, as described in line 7, on the GPU. We accomplished this by copying
our H and A arrays onto the GPU, such that any further processing of those arrays
would only occur on the GPU. To perform this operation, we utilized the MATLAB
inbuilt function gpuArray() and copied the two aforementioned arrays to the GPU
after the for loop. To transfer the GPU results (following execution of the inverse
FFT) back to the local workspace, we used the MATLAB function gather().

Table 1 shows the market parameters, and these inputs are taken from [5] where
d1 and d2 represent the dividend rate for S1 and S2, respectively.

The computer used to produce the following results was an ASUS ROG Strix Scar
II GL704GW, with an Intel Core i7-8750H processor clocked at 2.20 Hz and compris-
ing of 6 cores, 16GB RAM, and an NVIDIA GeForce RTX 2070 GPU with 8GB
memory, runningWindows 10. The computational times of the algorithm are tabu-
lated inTable 2 and Figure 1. In a single run, we compute the price of 10 options, that
is, NO ¼ 10. The pricing accuracy is gauged using the root mean square error (rmse):

rmse ¼
XNO

j¼1

P j
FFT � P j

Monte

P j
Monte

 !2

, (10)

where PMonte represents the benchmark price computed using Monte Carlo
method with 1000000 simulations and 1000 time step and PFFT is the price from
two-dimensional FFT.

S1 S2 r T d1 d2

100 96 0.1 1.0 0.05 0.05

Table 1.
Market pricing parameters.

Grid points: 2N Pricing accuracy Single core (s) GPU parallel (s) GPU speed factor

(a) 2d-GBM model: σ1 ¼ 0:2, σ2 ¼ 0:1, ρ ¼ 0:5

8 1.10E-04 2.671126 0.213765 12.49561902

9 4.29E-05 10.155822 0.254708 39.87241076

10 1.97E-05 39.884087 0.650358 61.32635718

11 1.06E-05 157.833762 2.422815 65.14478489

12 6.19E-06 317.858516 9.474695 33.54815284

13 3.80E-06 1316.938937 38.519949 34.18849119

(b) 2d-NIG model: μ1 ¼ 0, μ2 ¼ 0,α ¼ 6:20, δ ¼ 0:150 β1 ¼ �3:80, β2 ¼ �2:50, ρ ¼ 0, μ1 ¼ 0, μ2 ¼ 0
and Δ ¼ I

8 1.20E-04 2.528521 0.21573 11.72087536157

9 5.21E-05 9.768831 0.31099 31.41244621944

10 3.00E-05 39.372496 1.03477 38.04969824066

11 2.12E-05 162.069306 4.57217 35.44691939427

12 1.72E-05 651.850506 19.92393 32.71695934733

13 1.50E-05 2592.307476 83.77870 30.94232156861

Table 2.
Computational accuracy and processing times (a) 2d-GBM, (b) 2d-NIG.
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From Table 2, we can see that the optimal values of N (in terms of computation
efficiency) are in the middle of the tested range, 9 and 10 for both the 2d-GBM and
2d-NIG models. The decline in performance for larger values of N is due to the
increased memory requirements. When compared to 2d-GBM, 2d-NIG seems to
have less of an increase in performance when executed on GPU, which could be
because it is more computationally heavy (such as calculating the characteristic
function ΦNIG u;Tð Þ, which involves two square root and exponential calculations,
as opposed to simply one in the GBM model).

4. Conclusion

In this work, we built on the literature on fast and accurate pricing of spread
options based on two-dimensional FFT method using parallel computation. We
examined the effectiveness of this approach by comparing the computational times
of CPU and GPU implementations of the FFT Spread Option Pricing Algorithm in
MATLAB. We have taken benchmarks prices from Monte Carlo simulations with
1000000 paths and 100 discretization time steps. Our results decisively conclude
that the execution of the algorithm on a GPU significantly improves computational
performance, decreasing the time taken to run by a factor of up to almost 60x.
Considering how common spread options are in the financial market, a faster way
to price these securities means increased efficiency in transactions involving spread
options, and the FFT algorithm implemented for this project also vastly improves

Figure 1.
Numerical results for spread option pricing.
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the accuracy of spread option pricing. This approach is very useful to accurate
calibration of spread options which is recognized to be a challenging exercise.

As an extension to this work, one could develop a 3-asset spread option pricing
algorithm using the 3D Fast Fourier Transform Algorithm. Such a scheme, while
computationally heavy, could be rendered more efficient by harnessing the power
of GPUs through the tools available in MATLAB.
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Chapter 9

Use of Transforms in Biomedical
Signal Processing and Analysis
Ette Harikrishna and Komalla Ashoka Reddy

Abstract

Biomedical signals like electrocardiogram (ECG), photoplethysmographic
(PPG) and blood pressure were very low frequency signals and need to be processed
for further diagnosis and clinical monitoring. Transforms like Fourier transform
(FT) and Wavelet transform (WT) were extensively used in literature for
processing and analysis. In my research work, Fourier and wavelet transforms were
utilized to reduce motion artifacts from PPG signals so as to produce correct blood
oxygen saturation (SpO2) values. In an important contribution we utilized FT for
generation of reference signal for adaptive filter based motion artifact reduction
eliminating additional sensor for acquisition of reference signal. Similarly we
utilized the transforms for other biomedical signals.

Keywords: Fourier transform, biomedical signals, electrocardiogram signal,
photoplethysmographic signal, wavelet transform

1. Introduction

The essence of mathematical design cannot be ignored in the analysis of real
world engineering applications i.e. the research in engineering and mathematics is a
two way parallel track that interrelates and coordinates towards value added
research. In specific, the use of transforms in the field of electrical, electronic and
communication engineering is unimaginable. In the present scenario of Covid-19
pandemic, world is looking to sustainable development of biomedical devices for
critical monitoring and efficient vaccination for human survival [1–4]. In general,
the Fourier transform (FT) is a mathematical tool which transforms the time
domain signal into a frequency domain representation used in analysis of biomedi-
cal, wireless communication, signal and image processing applications. In literature,
many researchers had used this tool in frequency domain analysis of all biomedical
signals like electrocardiogram (ECG), photoplethysmographic (PPG) and blood
pressure (BP).

In continuation to FT, different transforms were developed to analyze and
design of various applications based on the requirement [5, 6]. In general, the FT is
used in analysis of stationary signals; the wavelet transform (WT) is a mathematical
tool used in analysis of both stationary and non-stationary signals. Discrete wavelet
transform (DWT) used in enormous application in various engineering fields.

So, in this chapter we addressed some of the research challenges in ECG and
PPG signal processing using Fourier and Wavelet transforms.
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2. Transforms and its use in biomedical signal analysis

2.1 Transforms

Jean-Baptiste Joseph Fourier a French mathematician had developed theoretical
and mathematical framework for Fourier analysis and harmonic analysis, which
was laid down foundation to other transforms and important applications. Forward
and inverse transform of a continuous time Fourier transform (CTFT) for a time
domain signal x(t) is defined as

X jωð Þ ¼
ð∞

�∞

x tð Þ e�jϖt dt (1)

x tð Þ ¼ 1
2π

ð∞

�∞

X jωð Þ e jωt dω (2)

Here, e�jϖt is called as a basis function for CTFT.
For ease of processing the continuous time signal is converted into discrete time,

then the corresponding forward and inverse transform of a discrete Fourier
transform (DFT) for a discrete time signal x(n) is defined as

X kð Þ ¼
XN�1

n¼0

x nð Þ e�j2πnkN ; for k ¼ 1, 2, 3……N (3)

x nð Þ ¼ 1
N

XN�1

k¼0

X kð Þ e j2πnkN ; for n ¼ 1, 2, 3……N (4)

Here, e�j2πnkN is called as a basis function for DFT.
Similarly, the continuous wavelet transform (CWT) is defined as

F a, bð Þ ¼ 1ffiffiffi
a

p
ð∞

�∞

ψ
t� a
b

� �
f tð Þdt (5)

where, f(t) is a time domain signal, ψ tð Þ is a basis function also called as mother
wavelet; F(a, b) is WT of a signal f(t); ‘a’ and ‘b’ are shifting and scaling parameters
respectively;

Discrete WT (DWT) uses a series of low pass filters (LPF) and high pass filters
(HPF) to decompose the signal of interest into different scales as approximate (Aj)
and detailed coefficients (Dj). The output coefficients of the LPF are called approx-
imations while the output coefficients of the HPF are called details.

A 3-stage DWT decomposition tree is illustrated in Figure 1.
After first level of decomposition A1 and D1 will be the outputs, D1 will be stored

in C matrix as shown in Figure 1. A1 will be further decomposed in 2nd level of
decomposition as D2, A2. D2 will be stored in C matrix, and A2 will be decomposed
in 3rd level of decomposition as D3, A3. Then A3 and D3 will be stored in C matrix,
i.e. Cmatrix consists of concatenated A3, D3, D2, D1 coefficients. Lmatrix stores the
length of each corresponding approximate and detailed coefficient as in C matrix.

C matrix gives the concatenated approximate and detail coefficients. L matrix
gives length of each coefficient. C and L matrices along with suitable filters will be
used to get back the original time domain signal f(t).
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2.2 Biomedical signals

The Electrocardiogram (ECG) is an electrical manifestation of contractile
activity of the heart, is a representation of instantaneous electrical activity of the
heart during its contraction and relaxation over a period of time. A standard 12 leads
ECG is recorded with the help of surface electrodes placed on the limbs and chest.
In general, ECG is a widely accepted diagnosis tool in clinical validations of heart
related diseases. Figure 2 shows a typical ECG signal, marked with all the charac-
teristic waves and durations such as P wave, QRS complex wave, T wave and ST
segment [7].

Monitoring of blood oxygen saturation (SpO2) is one of the important parameter
to know the health status of Covid-19 affected patient. Pulse oximeter uses sensor
probes to record photoplethysmographic (PPG) signals so as to estimate the SpO2

values. Typical recorded PPG signal is shown in Figure 3.

Figure 1.
A sample of 3-stage Wavelet decomposition tree, In Matlab® ‘wavedec’ command will decompose signal of
interest and gives C and L matrices.

Figure 2.
Typical recorded ECG signal in the laboratory.
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2.3 Biomedical signal processing using transforms

Fourier transform (FT) is used to analyze the behavior of biomedical signals in
frequency domain. In Matlab FFT command can be used to get the frequency
domain signal.

Following is the sample code to plot time and frequency domain signals.

load ecg_signal.txt;
ecg_signal_fft=fft(ecg_signal);
figure(1)
subplot(211)
plot(ecg_signal)
subplot(212)
plot(ecg_signal_fft)

Some additional modifications will be done in the program to get the
following plots.

In the bottom trace of Figure 4, it can be seen that the frequency domain compo-
nents of ECG signal are extending from 0 to 100 Hz, the main source of noise 60 Hz
power line interference (PLI) the spike at 60 Hz can be observed. So, the complete
frequency domain behavior of signal can be computed using fft command.

Similarly, the frequency domain components of PPG signal is shown in Figure 5.
It can be seen from the bottom trace that frequency components present in PPG
signal are pulse rate or heart rate component and MA noise component. Likewise it
can be continued for many biomedical signals to see the frequency domain behavior
of the signal.

So, use of Fourier transform in de-noising of signal can be described as shown
in Figure 6.

In general adaptive filter provide a viable solution when signal and noise are in
same frequency range. Adaptive filter requires a two input signals [8].

For example, in a power line interference cancelation from ECG signal, one is
recorded noisy ECG signal and other is power line noise. So, here a synthetic noise
reference signal will be generated using Fourier transform which will be used as
another input to the adaptive filter will potentially eliminate additional sensor for
acquisition shown in Figure 7.

A synthetic noise reference signal is generated for use in adaptive filtering
without using any extra hardware. It is generated from the motion corrupted signal

Figure 3.
Typical recorded PPG signal in the laboratory.
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in the following way. The frequency spectrum of MA corrupted PPG signal consists
of various frequency components, the pulsatile (0.5–4 Hz), respiratory activity
(0.2–0.35 Hz) and MA noise component (0.1 Hz or more) information. By setting
the co-efficients of cardiac and respiratory activity frequency components in the
spectrum of MA corrupted PPG to zero, a modified spectrum corresponding to
noise is obtained. By applying inverse Fourier transform to this modified spectrum,
a synthetic noise reference signal is generated. The corresponding adaptive filter is
shown in Figure 8.

Figure 5.
Recorded PPG signal in top trace and its corresponding spectrum after application of FFT in bottom trace.

Figure 4.
Recorded ECG signal in top trace and its corresponding spectrum after application of FFT in bottom trace.

105

Use of Transforms in Biomedical Signal Processing and Analysis
DOI: http://dx.doi.org/10.5772/intechopen.98239



2.3 Biomedical signal processing using transforms

Fourier transform (FT) is used to analyze the behavior of biomedical signals in
frequency domain. In Matlab FFT command can be used to get the frequency
domain signal.

Following is the sample code to plot time and frequency domain signals.

load ecg_signal.txt;
ecg_signal_fft=fft(ecg_signal);
figure(1)
subplot(211)
plot(ecg_signal)
subplot(212)
plot(ecg_signal_fft)

Some additional modifications will be done in the program to get the
following plots.

In the bottom trace of Figure 4, it can be seen that the frequency domain compo-
nents of ECG signal are extending from 0 to 100 Hz, the main source of noise 60 Hz
power line interference (PLI) the spike at 60 Hz can be observed. So, the complete
frequency domain behavior of signal can be computed using fft command.

Similarly, the frequency domain components of PPG signal is shown in Figure 5.
It can be seen from the bottom trace that frequency components present in PPG
signal are pulse rate or heart rate component and MA noise component. Likewise it
can be continued for many biomedical signals to see the frequency domain behavior
of the signal.

So, use of Fourier transform in de-noising of signal can be described as shown
in Figure 6.

In general adaptive filter provide a viable solution when signal and noise are in
same frequency range. Adaptive filter requires a two input signals [8].

For example, in a power line interference cancelation from ECG signal, one is
recorded noisy ECG signal and other is power line noise. So, here a synthetic noise
reference signal will be generated using Fourier transform which will be used as
another input to the adaptive filter will potentially eliminate additional sensor for
acquisition shown in Figure 7.

A synthetic noise reference signal is generated for use in adaptive filtering
without using any extra hardware. It is generated from the motion corrupted signal

Figure 3.
Typical recorded PPG signal in the laboratory.

104

Real Perspective of Fourier Transforms and Current Developments in Superconductivity

in the following way. The frequency spectrum of MA corrupted PPG signal consists
of various frequency components, the pulsatile (0.5–4 Hz), respiratory activity
(0.2–0.35 Hz) and MA noise component (0.1 Hz or more) information. By setting
the co-efficients of cardiac and respiratory activity frequency components in the
spectrum of MA corrupted PPG to zero, a modified spectrum corresponding to
noise is obtained. By applying inverse Fourier transform to this modified spectrum,
a synthetic noise reference signal is generated. The corresponding adaptive filter is
shown in Figure 8.

Figure 5.
Recorded PPG signal in top trace and its corresponding spectrum after application of FFT in bottom trace.

Figure 4.
Recorded ECG signal in top trace and its corresponding spectrum after application of FFT in bottom trace.

105

Use of Transforms in Biomedical Signal Processing and Analysis
DOI: http://dx.doi.org/10.5772/intechopen.98239



With the help of LMS adaptive algorithm, MA noise is removed by estimating
the synthetic noise reference signal and adapting the filter coefficients based on
filter order. The necessary equations to implement the proposed method are given
below:

Ŝ nð Þ ¼ S nð Þ þN nð Þ � N̂ nð Þ (6)

Figure 6.
Flowchart for de-noising of recorded signal using Fourier transform.

Figure 7.
Flowchart for generation of synthetic noise reference signal using Fourier transform.
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N̂ nð Þ ¼
XL
i¼0

wiNR n� ið Þ (7)

wi nþ 1ð Þ ¼ wi nð Þ þ 2μS nð ÞNR n� ið Þ (8)

where i: 0,1,2, … , L, L: filter order, S(n) + N(n): MA corrupted PPG signal, Ŝ(n)
=e(n): MA reduced PPG signal, N̂(n): estimated synthetic noise reference signal,
and NR(n): the synthetic noise reference signal.

The result of above methodology is presented in Figure 9, below. Figure 9(b1)
represents the generated synthetic noise reference signal which potentially
eliminates the additional sensor for data acquisition.

The biomedical signals such as ECG and PPG signals are quasi periodic signals
i.e. the period of the signal continuously changes with time, but it is a periodic
signal. In general, the pure periodic signals are stationary in nature means its period
will be constant irrespective of time. So, Fourier transform is not sufficient to
analyze the quasi-periodic signals. Wavelet transform will provide a viable solution
to the same [9, 10].

Figure 8.
Motion artifact reduction from PPG signals using Adaptive filter.

Figure 9.
Recorded PPG signal in (a1), generated MA synthetic reference signal in (b1) and MA reduced PPG signal in
(c1) and their corresponding spectra in (a2)-(c2) respectively.
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The general de-noising procedure follows the steps described below and shown
in Figure 10.

Decomposition: Choose a wavelet and choose a convenient level N for decomposition.
Compute the wavelet decomposition of the signal s at level N.

Thresholding detail coefficients: For each level from 1 to N, select a threshold and
apply soft or hard thresholding to the detail coefficients.

Reconstruction: Perform the wavelet reconstruction using the original approxima-
tion coefficients of level N and the modified detail coefficients of levels from 1 to N.

There are two important steps: how to choose the threshold, and how to perform
the thresholding [10]. In hard thresholding process, the elements whose absolute
values are lower than the threshold will be set to zero. Soft thresholding is an
extension of hard thresholding, first setting to zero the elements whose absolute
values are lower than the threshold, remaining coefficients are compressed.

Figure 10.
Wavelet Denoising methodology.

Figure 11.
(a) ECG signal corrupted with Electromyography signal (b) De-noised ECG signal using wavelet de-noising
methodology.

Figure 12.
(a) ECG signal corrupted with baseline noise (b) De-noised ECG signal using wavelet de-noising methodology.
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The same results were presented in Figures 11–13. Similar results were
presented for PPG signal as shown in Figure 14.

3. Conclusions

Transforms like Fourier and wavelet transforms were used in biomedical signal
analysis and processing. Fourier and wavelet transforms were utilized to reduce
motion artifacts from PPG signals so as to produce correct blood oxygen saturation
(SpO2) values. In an important contribution we utilized FT for generation of refer-
ence signal for adaptive filter based motion artifact reduction eliminating additional
sensor for acquisition of reference signal.

Figure 13.
(a) ECG signal corrupted with power line noise (b) De-noised ECG signal using wavelet de-noising
methodology.

Figure 14.
(a) PPG signal corrupted with MA noise (b) De-noised PPG signal using wavelet de-noising methodology.
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Chapter 10

Insights from Systematic DFT 
Calculations on Superconductors
Ian D.R. Mackinnon, Alanoud Almutairi and Jose A. Alarco

Abstract

We present three systematic approaches to use of Density Functional Theory 
(DFT) for interpretation and prediction of superconductivity in new or existing 
materials. These approaches do not require estimates of free parameters but utilize 
standard input values that significantly influence computational resolution of 
reciprocal space Fermi surfaces and that reduce the meV-scale energy variability 
of calculated values. Systematic calculations on conventional superconductors 
show that to attain a level of resolution comparable to the energy gap, two key 
parameters, Δk and the cut-off energy, must be optimized for a specific compound. 
The optimal level of resolution is achieved with k-grids smaller than the minimum 
reciprocal space separation between key parallel Fermi surfaces. These approaches 
enable estimates of superconducting properties including the transition tem-
perature (Tc) via (i) measurement of the equivalent thermal energy of a phonon 
anomaly (if present), (ii) the distribution of electrons and effect on Fermi energy 
(EF) when subjected to a deformation potential and (iii) use of parabolic, or higher 
order quartic, approximations for key electronic bands implicated in electron–pho-
non interactions. We demonstrate these approaches for the conventional supercon-
ductors MgB2, metal substituted MgB2 and boron-doped diamond.

Keywords: Fermi energy, Fermi level, Fermi surface, reciprocal space,  
density functional theory, parabolic equations, phonon dispersions,  
transition temperature, magnesium diboride

1. Introduction

Design and synthesis of new materials requires translation of reciprocal space 
detail in electronic band structures (EBSs) and phonon dispersions (PDs) to 
equivalent real space representations [1–4]. We have shown that for conventional 
superconductors (SCs), the format and depth of modes in PDs associated with a 
Kohn anomaly are strongly influenced by the computational resolution of DFT 
models [5]. Our view is that EBS calculations, performed with appropriate resolu-
tion, may also provide critical information on the superconducting gap, which for 
many SC materials, is in the meV range.

The Fermi level, Fermi energy (EF), and the density of nearly free-electron 
carriers calculated by DFT are key values that, to date, have been variously reported 
with differences of many hundreds of meV for the same compound. For example, 
the value of EF for a well studied compound such as MgB2 has been variously 
reported as “several eV” [6], 0.55 eV or 0.122 eV [7], and more recently, as 0.428 eV 
[8]. In comparison, many publications on MgB2 and software packages such as 
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CASTEP and ADF consistently report a value for EF of ~8.4 eV [9–11]. Calculated 
variations of this magnitude have garnered limited attention [8] for SCs due to an 
underlying assumption that EF/kθ > > 1 (where k is Boltzman’s constant and θ is the 
Debye temperature). Due to this assumption and the deceptive influence of average 
values for phonon frequencies, a value for EF is not considered in the simplified 
McMillan version of the Eliashberg model for superconductivity [12]. However, 
as noted by Malik [8], equations that explicitly include EF and/or critical current 
(jo) values may provide clues on how to increase or modify Tc. Malik suggests that 
regardless of physical attributes, SCs may be distinguished by their values of EF [8].

Approximations to the Eliashberg model that minimize computational cost 
require estimates of the electron–phonon interaction, λ, and the Coulomb strength, 
μ* [13, 14]. For many conventional SCs, these parameters are limited to a narrow 
range of values and provide reasonable estimates for superconducting properties 
of known materials [15–18]. More recently, Sanna et al. [19] show that a fully ab 
initio Eliashberg approach provides good estimates of superconducting properties 
including Tc for a range of compounds without invoking estimates of free param-
eters such as μ*. This work by Sanna et al. [19], as well as development and use of 
the Superconducting Density Functional Theory (SCDFT) [20, 21], are elegant 
computational approaches to the Eliashberg model that have successfully predicted 
superconducting properties of new materials such as H3S [19, 22]. Nevertheless, 
these codes are not universally available to materials researchers particularly if deep 
mathematical rigor is required for implementation.

In our search for new SCs, we have evaluated the computational resolution and 
electron–phonon detail possible with DFT codes readily available in well-known 
software packages such as CASTEP or Quantum Espresso, to name a couple of 
examples. Using MgB2 and similar Bardeen-Cooper-Schrieffer (BCS) compounds, 
we have systematically explored the sensitivity and use of PD and EBS constructs 
to calculate key superconducting properties without recourse to free parameter 
estimates or modification of functionals. We initially explored use of a phonon 
anomaly to estimate Tc [23, 24]; an approach that appears effective for strong pho-
non mediated superconductivity including for metal substituted MgB2 [25]. In other 
work, we extended this systematic approach to evaluate PDs and EBSs for a wide 
range of metal diboride compounds (e.g. ScB2, YB2, TiB2) using DFT at appropriate 
computational resolution [26].

More recently, we have examined the link between PDs and EBSs and, in par-
ticular, the topology of the Fermi Surface (FS) with pressure [27] and the change in 
electron density distributions as MgB2 transitions to the superconducting state [28]. 
In both approaches, we are able to confirm experimentally determined supercon-
ducting properties for a range of conventional (BCS) compounds and then, to 
predict Tc for new metal substituted analogues of MgB2 [23, 25]. These approaches 
are, in essence, empirical methods, which systematically identify regular dispersion 
patterns in calculated PDs and EBSs, based entirely on accepted codification of the 
DFT [9, 10] and, equally, a clear understanding of input parameter limitations that 
determine computational resolution. Thus, this use of DFT software, underpinned 
by elegant formalism and constructs by Kohn and colleagues [29, 30], is a comple-
ment to approximations of the Eliashberg model [19, 20].

In this work, we show why computational resolution for DFT models of EBSs 
and PDs for conventional SCs is critical. In addition, we delineate a third approach 
to estimate the superconducting gap using parabolic, or higher order quartic, 
approximations to key bands in the EBS. This approach requires examination of 
an extended Brillouin zone (BZ) schema and demands lower computational cost 
compared to equivalent PD calculations for similar outcome(s). When applied to 
MgB2, at sufficiently fine k-grid and reciprocal space cut-off, this approach directly 
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estimates the superconducting gap and assists identification of valence bands and 
the origin for EF. In combination, these three approaches provide reliable property 
predictions for unknown, or theoretical, structures for materials researchers.

2. Calculation methods

EBS calculations are undertaken using DFT as implemented in the Cambridge 
Serial Total Energy Package (CASTEP) of Materials Studio (MS) 2017 and 2018 
[9, 10]. All structures are optimized for geometry, including cell parameters, start-
ing with crystal information files (.cif) available in standard databases. In general, 
the local density approximation (LDA) and generalized gradient approximation 
(GGA), with norm-conserving pseudopotentials, are used in DFT calculations. 
The typical setup for calculations uses a k-grid ranging from 0.06 Å−1 to 0.02 Å−1 or 
smaller, with a plane wave basis set cut-off of 990 eV, ultra-fine (or better) cus-
tomized setup to ensure total energy convergence of less than 5 × 10−6 eV/atom, a 
maximum force of less than 0.01 eV/Å, a maximum stress of less than 0.02 GPa and 
maximum displacements of less than 5 × 10−4 Å.

All outputs meet convergence criteria at the same fine tolerance level for geom-
etry optimization. The effects of input parameters to DFT calculations described 
in this work are not related to differences in calculation convergence, but critically, 
are due to the discreteness, or the finite number of the reciprocal space points, used 
to select plane waves as basis functions. To illustrate particular points, we also vary 
specific parameters such as basis set cut-off values, Δk values or software versions 
as identified in the text.

We also perform numerical interpolations of EBSs to validate higher order 
trends and to delineate fine structure in computed outcomes. To obtain parabolic, 
or higher order polynomial, approximations to the electronic bands, the DFT calcu-
lated data from MS is exported in csv/excel format. For MgB2, sections of particular 
bands in the energy range − 14 to 4 eV along the Γ-M (and Γ-K) directions are 
selected and mirrored across the vertical axis at Γ. Individual parabolic, or higher 
order quartic, trendline fittings are obtained and used to overlay for comparison 
with the (periodically repeated) extended BZ scheme of the DFT calculated EBS. 
Effective masses are also calculated and evaluated for parabolic approximations of 
different branches of the EBS.

3. Computational resolution

We provide outputs from a series of ab initio DFT calculations on two SC com-
pounds with substantially different experimentally determined Tc values (i.e. MgB2 
Tc ~ 39.5 K; B-doped diamond Tc ~ 4.0–7.5 K depending on level of doping) [31–33]. 
For both compounds, when the value of k-grid is varied in the examples below, all 
other parameters are maintained the same for all calculations. A range of k-grid 
values are exemplified in order to highlight differences in sensitivity of EBS and PD 
outputs for SC compounds. These examples highlight the key role computational 
resolution can play with interpretation of SC properties.

3.1 Band structure – variation with k-grid

We have been intrigued by the potential to directly determine the supercon-
ducting gap energy for a BCS SC using an appropriate resolution EBS. In this 
regard, MgB2 offers good opportunity to evaluate this potential due to well defined 
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CASTEP and ADF consistently report a value for EF of ~8.4 eV [9–11]. Calculated 
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regard, MgB2 offers good opportunity to evaluate this potential due to well defined 
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crystallography and the key role ascribed to σ bands and superconductivity [12, 34]. 
DFT calculations for a compositional suite, or structure type, produce EBSs that 
show, in general, similar formats even when two different functional approxima-
tions are used [26]. A typical outcome for MgB2 using the LDA approximation in 
the CASTEP module of Materials Studio using a k-grid value of 0.008 Å−1 is shown 
in Figure 1. These band structures convey useful information for elucidation of 
potential for superconductivity. For example, the σ bands appear as approximate 
inverted parabolas (in red and blue lines; green dotted box) near the Γ center point 
and cross the Fermi level on either side of Γ (Figure 1). These bands display a strong 
electron–phonon coupling to the E2g phonon modes and are implicated in supercon-
ductivity for MgB2 via both theoretical and experimental analyses [35–38].

Figure 1. 
Electronic band structure for MgB2 calculated with the LDA approximation for k = 0.008 Å−1 using the 
CASTEP module of materials studio [9]. The green boxes enclose sections of σ bands.

Figure 2. 
Schematic showing the direct relationship between σ bands crossing the Fermi level around Γ and the topology 
of the FS.
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For MgB2, the relationship of these σ bands near the Fermi level on either side of 
Γ is shown in the schematic in Figure 2. The reciprocal space projection of degener-
ate σ bands at the Fermi level correspond to the three-dimensional reciprocal space 
representations of two FSs at Γ parallel with the kz direction. That is, except for 
the direction along kz, the band is a 2D projection at kz = 0 of the 3D Fermi surface 
representation. The region between these two FSs is sensitive to the reciprocal space 
projection(s) at the Fermi level and, as noted in previous work, is key to the super-
conducting mechanism in MgB2 [27, 28].

Variations in the calculated energies of specific bands, for example in MgB2 where 
electron–phonon coupling is predominantly linked to the σ bands [17, 39, 40], are 
strongly influenced by the k-grid value used in DFT computations. Figure 3 demon-
strates the effect of k-grid value, or the sensitivity of DFT calculations, on the EBS 
for MgB2 using the LDA functional for a series of Δk values 0.02 Å−1, 0.04 Å−1 and 
0.06 Å−1. The k-grid value affects calculated energies for bands near the Fermi level 
particularly those σ bands associated with superconductivity highlighted in Figure 1 
for MgB2. The differences in energy at Γ or A between calculations range from tens of 
meV to hundreds of meV for three different k-grid values as shown in Figure 3.

In Table 1, we show substantial meV shifts in enthalpy and EF for MgB2 calcu-
lated at different k-grid values using the same functional and the same ultra-fine 
tolerance for geometry optimization convergence. For MgB2, Table 1 shows the 
difference in energy, ΔEv (in eV), between the Fermi level and the vertex of the 
parabola at Γ for different values of Δk. Differences in lattice parameters (i.e. 
~0.01 Å), enthalpy values (i.e. ~10–20 meV) and EF values (i.e. ~200 meV) are 
evident for geometry optimized calculations with different k-grids. Table 1 also 
shows that as the Δk value is reduced, values for enthalpy achieve a consistent value 
for MgB2.

We also show calculated values for B-doped diamond using different k-grid values 
in Table 1. In this case, k-grid intervals are smaller (0.005 Å−1 < Δk < 0.020 Å−1) than 
those used for MgB2 with corresponding smaller shifts in enthalpy and EF. This lower 
magnitude impact of the k-grid is in part due to fewer degrees of freedom (e.g. cubic 
symmetry compared to hexagonal) and a significantly lower value for Tc [32, 33],  
with corresponding FSs in closer reciprocal space proximity. Nevertheless, the EF value 

Figure 3. 
Electronic band structure for MgB2 calculated with the LDA approximation for k-grid values 0.02 Å−1 (red), 
0.04 Å−1 (blue) and 0.06 Å−1 (black) using the CASTEP module of materials studio. Notice the substantial 
differences in band energies, particularly in regions associated with the σ bands.
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representations of two FSs at Γ parallel with the kz direction. That is, except for 
the direction along kz, the band is a 2D projection at kz = 0 of the 3D Fermi surface 
representation. The region between these two FSs is sensitive to the reciprocal space 
projection(s) at the Fermi level and, as noted in previous work, is key to the super-
conducting mechanism in MgB2 [27, 28].

Variations in the calculated energies of specific bands, for example in MgB2 where 
electron–phonon coupling is predominantly linked to the σ bands [17, 39, 40], are 
strongly influenced by the k-grid value used in DFT computations. Figure 3 demon-
strates the effect of k-grid value, or the sensitivity of DFT calculations, on the EBS 
for MgB2 using the LDA functional for a series of Δk values 0.02 Å−1, 0.04 Å−1 and 
0.06 Å−1. The k-grid value affects calculated energies for bands near the Fermi level 
particularly those σ bands associated with superconductivity highlighted in Figure 1 
for MgB2. The differences in energy at Γ or A between calculations range from tens of 
meV to hundreds of meV for three different k-grid values as shown in Figure 3.

In Table 1, we show substantial meV shifts in enthalpy and EF for MgB2 calcu-
lated at different k-grid values using the same functional and the same ultra-fine 
tolerance for geometry optimization convergence. For MgB2, Table 1 shows the 
difference in energy, ΔEv (in eV), between the Fermi level and the vertex of the 
parabola at Γ for different values of Δk. Differences in lattice parameters (i.e. 
~0.01 Å), enthalpy values (i.e. ~10–20 meV) and EF values (i.e. ~200 meV) are 
evident for geometry optimized calculations with different k-grids. Table 1 also 
shows that as the Δk value is reduced, values for enthalpy achieve a consistent value 
for MgB2.

We also show calculated values for B-doped diamond using different k-grid values 
in Table 1. In this case, k-grid intervals are smaller (0.005 Å−1 < Δk < 0.020 Å−1) than 
those used for MgB2 with corresponding smaller shifts in enthalpy and EF. This lower 
magnitude impact of the k-grid is in part due to fewer degrees of freedom (e.g. cubic 
symmetry compared to hexagonal) and a significantly lower value for Tc [32, 33],  
with corresponding FSs in closer reciprocal space proximity. Nevertheless, the EF value 
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0.04 Å−1 (blue) and 0.06 Å−1 (black) using the CASTEP module of materials studio. Notice the substantial 
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differs by ~35 meV and the difference in energy to the vertex of the band at Γ (i.e. ΔEv) 
differs by up to ~35 meV depending on the Δk value.

We show a more detailed systematic comparison of calculated enthalpies as a 
function of the k-grid value for MgB2 in Figure 4. As noted above, all calculations 
are converged to the same ultra-fine criteria, or tolerance, where self-consistency 
is achieved. The variability of results shown in Figure 4 is due to the discreteness 
of functions and values used to derive the full solution of the Schroedinger equa-
tion. The variability is not due to lack of convergence which in all cases is defined in 
Section 2 above.

Figure 4a shows that the value of enthalpy for MgB2 oscillates around a consis-
tent minimal value of −1,748.502 eV as the k-grid value is decreased to <0.015 Å−1. 
The context for this variation in enthalpy is shown in Figure 4b where the k-grid 
value is extended to 0.2 Å−1– a value that has been used in some DFT  calculations 
as criterion for machine learning algorithms [41]. At these higher values for Δk, 
enthalpy calculations do not provide useful information on subtle structural 

Compound k-grid 
value 
[Å−1]

Lattice parameters [Å] Enthalpy 
[eV]

Fermi 
energy [eV]

ΔEv 
[eV]

a c

MgB2

Tc ~ 40 K
0.010 3.038657 3.487973 −1748.5037 8.4055 0.3424

0.018 3.038630 3.487921 −1748.5039 8.4126 0.3975

0.020 3.039107 3.486623 −1748.5046 8.3976 0.4038

0.040 3.042948 3.478367 −1748.5003 8.4704 0.3281

0.060 3.031477 3.514558 −1748.4685 8.2108 0.6365

B-doped 
diamond
Tc ~ 4–7.5 K

0.005 3.582982 −1163.6112 11.0832 1.6164

0.010 3.582982 −1163.6114 11.0844 1.6152

0.015 3.582984 −1163.6121 11.0956 1.6039

0.017 3.582987 −1163.6120 11.0941 1.6056

0.020 3.583024 −1163.6102 11.0579 1.6410

Table 1. 
Parameters calculated for MgB2 and for B-doped diamond.

Figure 4. 
Systematic comparison of calculated enthalpies for MgB2 (a) for fine values of k-grid (i.e. < 0.03 Å−1) and  
(b) for coarser grid values including those utilized for machine learning searches (arrowed) of materials 
databases [41]. Enthalpies shown in Figure 4(a) are reproduced in (b) for reference. The lightly shaded region 
in Figure 2(b) delineates the k-grid values used for EBS calculation in Figure 3.
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variations due to superlattices or of order/disorder. For example, we have shown 
using DFT calculations with appropriate k-grid values for (Mg1-xAlx)B2 that ordered 
motifs with adjacent Al-layers are thermodynamically favored by ~0.15 eV over 
more complex, disordered configuration(s) [42]. A discrepancy of ~0.2 eV due to 
incorrect choice of k-grid value (Figure 4) does not enable such distinction to be 
made with confidence.

3.2 Influence of atom displacements

In a dynamic system, other factors may also influence the position of key 
electronic bands with respect to the Fermi level. For example, atoms in all solids at 
temperatures above absolute zero vibrate [43] and in some cases, the resulting pho-
nons may align with specific crystallographic real space features such as inter-atom 
bonds. This circumstance occurs for MgB2 in which one of the dominant E2g phonon 
modes – shown to be intimately involved in electron–phonon coupling at the onset 
of superconductivity [17, 34] – aligns with B–B bonds in the ab plane [36]. Using 
DFT, we can model the effect of bond deformation along specific planar orienta-
tions by displacing atoms from their structural equilibrium positions consistent 
with the direction of the E2g phonons [26, 28]. Under different extents of displace-
ment, electron density distributions along the B–B bond and the corresponding 
EBS, can be determined [28, 36].

Figure 5 shows the effect on the EBS for MgB2 of atom displacement along the 
B–B bond by ~0.6% (i.e. a shift of ~0.063 Å) from equilibrium [28]. Figure 5  
shows that the E2g phonon, which is degenerate at Γ with a peak parabola at 
398 meV, splits into two separate non-degenerate bands above and below the equi-
librium condition. The upper σ band - which we attribute to the heavy effective 
mass - has a calculated energy 813 meV above the Fermi level. Thus, parallel or 
nearly parallel FSs attributable to the superconducting condition [44], no longer 
exist with a 0.6% shift in atom position(s) [28]. A shift of atom position(s) is also 
reflected in the form and energy of key phonon modes in the corresponding PD 
for MgB2 [26]. An atom displacement of 0.6% along B–B for MgB2 is not unrea-
sonable at temperatures >40 K [28].

Figure 5. 
Enlarged view of EBS around Γ for MgB2 using LDA functional and Δk = 0.018 Å−1 showing (a) degenerate 
σ bands at equilibrium (blue lines) and (b) after atom displacement Dx = 0.063 Å (red lines) along 
the E2g mode direction; note the split of σ bands causing loss of degeneracy which coincides with loss of 
superconductivity [26].
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differs by up to ~35 meV depending on the Δk value.
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variations due to superlattices or of order/disorder. For example, we have shown 
using DFT calculations with appropriate k-grid values for (Mg1-xAlx)B2 that ordered 
motifs with adjacent Al-layers are thermodynamically favored by ~0.15 eV over 
more complex, disordered configuration(s) [42]. A discrepancy of ~0.2 eV due to 
incorrect choice of k-grid value (Figure 4) does not enable such distinction to be 
made with confidence.

3.2 Influence of atom displacements

In a dynamic system, other factors may also influence the position of key 
electronic bands with respect to the Fermi level. For example, atoms in all solids at 
temperatures above absolute zero vibrate [43] and in some cases, the resulting pho-
nons may align with specific crystallographic real space features such as inter-atom 
bonds. This circumstance occurs for MgB2 in which one of the dominant E2g phonon 
modes – shown to be intimately involved in electron–phonon coupling at the onset 
of superconductivity [17, 34] – aligns with B–B bonds in the ab plane [36]. Using 
DFT, we can model the effect of bond deformation along specific planar orienta-
tions by displacing atoms from their structural equilibrium positions consistent 
with the direction of the E2g phonons [26, 28]. Under different extents of displace-
ment, electron density distributions along the B–B bond and the corresponding 
EBS, can be determined [28, 36].

Figure 5 shows the effect on the EBS for MgB2 of atom displacement along the 
B–B bond by ~0.6% (i.e. a shift of ~0.063 Å) from equilibrium [28]. Figure 5  
shows that the E2g phonon, which is degenerate at Γ with a peak parabola at 
398 meV, splits into two separate non-degenerate bands above and below the equi-
librium condition. The upper σ band - which we attribute to the heavy effective 
mass - has a calculated energy 813 meV above the Fermi level. Thus, parallel or 
nearly parallel FSs attributable to the superconducting condition [44], no longer 
exist with a 0.6% shift in atom position(s) [28]. A shift of atom position(s) is also 
reflected in the form and energy of key phonon modes in the corresponding PD 
for MgB2 [26]. An atom displacement of 0.6% along B–B for MgB2 is not unrea-
sonable at temperatures >40 K [28].

Figure 5. 
Enlarged view of EBS around Γ for MgB2 using LDA functional and Δk = 0.018 Å−1 showing (a) degenerate 
σ bands at equilibrium (blue lines) and (b) after atom displacement Dx = 0.063 Å (red lines) along 
the E2g mode direction; note the split of σ bands causing loss of degeneracy which coincides with loss of 
superconductivity [26].
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The σ bands for MgB2 consist of two bands degenerate at the Γ point, but 
degeneracy is lost when the vector k does not equal 0. The two bands thus have 
different effective masses (or curvatures) which appear to vary as a deformation 
potential is applied. In fact, the curvatures become very similar and/or identical 
along Γ–K at the point where a deformation shifts one band tangential to the Fermi 
level as shown in Figure 5. Along Γ–M, the effective masses are shown to cross over, 
where the top band has the curvature of the original light effective mass band, and 
for k-vectors away from the origin, the curvature remains the same as the original 
heavy effective mass band.

The response of the effective masses (i.e. the σ bands) to the deformation 
potential suggests that electronic behavior associated with superconductivity may 
be explained by directly analyzing the reciprocal space trajectories of these effec-
tive masses. Such an interpretation depends on the collective electronic response 
in reciprocal space which may, by inference, transform into localized information 
in real space. This outcome is, again, strongly dependent on the use of a fine k-grid 
value (< 0.015 Å−1) wherein a polynomial approximation to the bands can be cal-
culated [45]. Figure 6 shows this polynomial calculated as an average band (dotted 
line) of the two σ bands for the EBS of MgB2 at an equilibrium position and for the 
degenerate condition arising from a deformation potential shift of 0.063 Å along 
the B–B bond.

The calculated coefficients for the polynomials, fitted to σH, σL and the average 
trend line for these bands, σM, are dependent on the k-grid values used in DFT cal-
culations as shown for the equilibrium condition (Figure 6a) in Table 2. The terms 
of these polynomial coefficients (i.e. for X0 in Table 2) for the σH and σL bands 
show an interesting characteristic with k-grid value. For example, if we assume 
that the term is in eV and describes the intersection of the polynomial trend 
curve with the vertical axis (i.e. along the y axis), then the difference between 
coefficients for the σH and σL bands not only varies with k-grid value but also 
approximates the SC gap energy for MgB2 at finer k-grid values [12, 34, 46]. As 
the k-grid value increases, the notional SC gap energy also changes and is zero for 
Δk = 0.03 Å−1. This trend supports the notion that a higher resolution DFT calcula-
tion (i.e. with Δk < 0.02 Å−1) may provide indicative energy gap values for an SC 
compound directly from an EBS calculation [45]. Table 2 also shows coefficients 
for the polynomials at the displaced condition with boron atom positions along the 
E2g mode direction [28] calculated for different values of Δk. As expected, with σH 

Figure 6. 
Sigma bands (heavy: Red, light: Blue and average: Black dotted) for the EBS of MgB2 along the Γ–K and Γ–M 
directions calculated with the LDA functional using Δk = 0.01 Å−1 (a) for equilibrium boron atom positions 
and (b) for degenerate bands formed by displaced boron atom positions along E2g mode directions by 0.6% 
relative to the equilibrium position. The green dotted region delineates extent of polynomial trend lines matched 
to the EBS.
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and σL tracing parallel bands on either side of Γ, along Γ–K the linear terms show a 
large energy gap, almost constant as a function of Δk, of ~0.78 eV (Figure 6b).

3.3 Brillouin zone schemes and high order quartic approximations

Conceptually, it is generally accepted that two approaches: (a) the free-electron 
theory and (b) the tight binding, or linear combination of atomic orbitals (LCAO), 
offer reasonably good approximations to the conduction and valence bands, respec-
tively, in the electronic structure of materials [1, 2, 47–50]. With increased com-
putational power, the distinction between these two models becomes negligible. In 
general, the actual EBS should be similar to an average of respective contributions 
from these two types of approximations.

The detailed origin of particular bands and that of the zero of EF can be more 
readily appreciated when we examine an extended Brillouin zone scheme, instead 
of a reduced zone scheme [1, 2, 48, 51, 52]. For example, Figures 7a-c show periodi-
cally repeated reciprocal unit cells with reference to the extended Brillouin zone 
schemes for the electronic bands of MgB2 along the Γ-M and Γ-K directions, respec-
tively. Figure 7a shows a 2D representation of multiple reciprocal unit cells viewed 
along c* and identifies reciprocal directions for the calculated EBSs for extended 
BZs in Figure 7b and c.

The origin of EF determined by the parabolic approximation is identified at (i) 
the cross-over of two parabolas “1” at M in Figure 7b and (ii) the inflection point of 
parabola 3 at K + M in Figure 7c. The calculated EF for MgB2 at zero pressure using 
the LDA functional in CASTEP (and Δk =0.01A−1) is 8.4055 eV. Figure 7b and c 
show the location for the origin of EF, at a K + M type reciprocal space position or 
the midpoint between two reciprocal space Γ vectors along Γ–K. This location is 
difficult to infer from a reduced BZ scheme, particularly for complex structures. 
Nevertheless, these two locations at M and ± K ± M nodal points, directly relate to 
the real space B–B hexagonal plane in the MgB2 structure.

For MgB2, sections of the σ bands along the Γ–M and Γ–K directions are approx-
imated by upward facing parabolas, even when inside the valence band region. 

Grid Value 
(Å−1)

Coefficient X4 Coefficient X2 Coefficient X0 Coefficient 
X0

σH- σL

(eV)
σH

* σL
* σH

* σL
* σH

* σL
*

At Equilibrium (Dx = 0.0)

0.005 4.2955 18.572 8.161 14.749 0.3441 0.3266 0.0175

0.008 8.0342 36.301 11.159 20.344 0.3441 0.3287 0.0154

0.010 4.0135 17.807 7.960 14.371 0.3912 0.3745 0.0167

0.022 6.8879 36.014 10.381 19.477 0.3377 0.3289 0.0088

0.030 6.4614 42.492 10.330 20.213 0.3830 0.3830 0.0

Displaced along E2g (Dx = 0.006)

0.005 382.94 36.37 46.15 25.80 0.753 −0.032 0.785

0.008 382.94 36.37 46.15 25.80 0.753 −0.032 0.785

0.010 321.72 19.84 44.98 26.12 0.751 −0.031 0.784
*σH, σL are the heavy and light sigma bands, respectively.

Table 2. 
Calculated polynomial coefficients for sigma bands along Γ–K for MgB2.
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where the top band has the curvature of the original light effective mass band, and 
for k-vectors away from the origin, the curvature remains the same as the original 
heavy effective mass band.

The response of the effective masses (i.e. the σ bands) to the deformation 
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and σL tracing parallel bands on either side of Γ, along Γ–K the linear terms show a 
large energy gap, almost constant as a function of Δk, of ~0.78 eV (Figure 6b).

3.3 Brillouin zone schemes and high order quartic approximations

Conceptually, it is generally accepted that two approaches: (a) the free-electron 
theory and (b) the tight binding, or linear combination of atomic orbitals (LCAO), 
offer reasonably good approximations to the conduction and valence bands, respec-
tively, in the electronic structure of materials [1, 2, 47–50]. With increased com-
putational power, the distinction between these two models becomes negligible. In 
general, the actual EBS should be similar to an average of respective contributions 
from these two types of approximations.

The detailed origin of particular bands and that of the zero of EF can be more 
readily appreciated when we examine an extended Brillouin zone scheme, instead 
of a reduced zone scheme [1, 2, 48, 51, 52]. For example, Figures 7a-c show periodi-
cally repeated reciprocal unit cells with reference to the extended Brillouin zone 
schemes for the electronic bands of MgB2 along the Γ-M and Γ-K directions, respec-
tively. Figure 7a shows a 2D representation of multiple reciprocal unit cells viewed 
along c* and identifies reciprocal directions for the calculated EBSs for extended 
BZs in Figure 7b and c.

The origin of EF determined by the parabolic approximation is identified at (i) 
the cross-over of two parabolas “1” at M in Figure 7b and (ii) the inflection point of 
parabola 3 at K + M in Figure 7c. The calculated EF for MgB2 at zero pressure using 
the LDA functional in CASTEP (and Δk =0.01A−1) is 8.4055 eV. Figure 7b and c 
show the location for the origin of EF, at a K + M type reciprocal space position or 
the midpoint between two reciprocal space Γ vectors along Γ–K. This location is 
difficult to infer from a reduced BZ scheme, particularly for complex structures. 
Nevertheless, these two locations at M and ± K ± M nodal points, directly relate to 
the real space B–B hexagonal plane in the MgB2 structure.

For MgB2, sections of the σ bands along the Γ–M and Γ–K directions are approx-
imated by upward facing parabolas, even when inside the valence band region. 
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Displaced along E2g (Dx = 0.006)

0.005 382.94 36.37 46.15 25.80 0.753 −0.032 0.785

0.008 382.94 36.37 46.15 25.80 0.753 −0.032 0.785
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Table 2. 
Calculated polynomial coefficients for sigma bands along Γ–K for MgB2.



Real Perspective of Fourier Transforms and Current Developments in Superconductivity

122

Deviations from parabolas occur particularly at zone boundaries where the periodic 
crystal potential primarily influences free-electron like level crossings [49, 52, 53]. 
Along Γ–M, a parabola with convex inflection at Γ occurs at −12.55 eV (parabola 1, 
Figure 7b) and its translated homologs reproduce large sections of the light effec-
tive mass σ band distant from Γ.

Similarly, a parabola with convex inflection at M and at -M at −2.152 eV (parab-
ola 3, Figure 7b) reproduces the heavy effective mass σ band. Along Γ–K, differen-
tiation of the σ bands is less pronounced in the extended zones but is apparent at Γ 
(Figure 7c). In Figure 7c along Γ–K, an additional K–M section is shown because a 
hexagonal boundary edge, equivalent to K–M by symmetry, transects an adjacent 
reciprocal space point outside the first BZ (node M1 in Figure 7a). Both Figure 7b 
and c show the origin of EF for this structure. Table 3 summarizes values of key 
parameters associated with these parabolic approximations to extended BZ schemes 
for the Γ–M and Γ–K directions, respectively.

Figure 7. 
(a) Schematic of Brillouin zones for MgB2 viewed along c* with nodal point nomenclature for primary 
reciprocal space orientations along Γ-M and Γ-K. This schematic shows the orientation of the real space 
asymmetric unit (Mg atoms are yellow; B atoms are gray) as well as nodal points and zones identified 
in Figure 7b and c. Extended Brillouin zone schemes for the EBS of MgB2 along: (b) Γ-M and (c) Γ-K. 
Representative values of energy at the zone boundary and at zone centres are indicated. Energy band 
sections are labeled as types 1 to 4. The red and blue lines in both EBS schemes refer to similar traces in 
Figure 1.
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3.4 Fermi energy values

The value of EF for a particular DFT calculation is not only sensitive to the k-grid 
value as shown above but also to other extrinsic conditions such as compositional 
substitution in a solid-solution and/or changes in applied pressure. Figure 8 
displays the calculated Fermi energies for Al and Sc substitution in Mg1-xAlxB2 and 
Mg1-xScxB2 determined with the LDA and GGA functionals. For each calculated 
series, the value of k-grid is constant (i.e. Δk = 0.02 Å−1). Figure 8 also shows the 
calculated Fermi energies for other end-member compositions with AlB2-type 
structure. Note that NbB2 and ZrB2 are reported superconductors at very low 
temperatures (Tc = 0.6 K and 5.5 K, respectively) albeit non-stoichiometric or 
substituted niobium diboride (e.g. NbB2.5 or Nb0.95Y0.05B2.5) is superconducting at 
6.3 K and 9 K, respectively [54].

Table 4 lists key parameters based on EBS calculations for MgB2 with applied 
external pressure. For each calculation, the LDA functional and k-grid value is 
constant and values are computed after geometry optimization. The value for the 
effective mass, H

effm , is determined from the parabolic approximations described 
below in Section 3.4.

Table 4 shows that as pressure is applied, EF largely conforms to the textbook 
equation:
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In general, Eq. (2) provides estimates of EF at ~93% or more of the DFT cal-
culated value without corrections for charge redistribution along bond directions 

Orientation Band Type Energy at Γ
(eV)

Energy at M
(eV)

Energy at K
(eV)

Effective Mass

Γ–M 1 −12.5501 −8.4219 1.2821

2 −2.9339 0.17329 1.3145

3 0.3979 −2.1520 1.4598

4 1.5331 4.0308 1.3236

Γ–K 1 −12.5501 — −7.1550 1.3059

2 −2.9339 — — 1.2900

3 — −8.4200 −7.1550 1.4311

Table 3. 
Calculated parameters at Γ and M, K points for MgB2.
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3.4 Fermi energy values

The value of EF for a particular DFT calculation is not only sensitive to the k-grid 
value as shown above but also to other extrinsic conditions such as compositional 
substitution in a solid-solution and/or changes in applied pressure. Figure 8 
displays the calculated Fermi energies for Al and Sc substitution in Mg1-xAlxB2 and 
Mg1-xScxB2 determined with the LDA and GGA functionals. For each calculated 
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structure. Note that NbB2 and ZrB2 are reported superconductors at very low 
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6.3 K and 9 K, respectively [54].
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external pressure. For each calculation, the LDA functional and k-grid value is 
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which take place as pressure is applied [55]. Use of parabolic approximations in 
this manner may provide a useful benchmark (or “rule of thumb”) for models of 
predicted new compounds.

3.5 Phonon dispersions – variation with k-grid

As noted in earlier publications [17, 23, 25, 34], the k-grid value also influences 
the form and mode order of phonons in a DFT calculated PD. Figure 6 dem-
onstrates this influence on the MgB2 PD for the range 0.02 Å−1 < Δk < 0.06 Å−1. 
The more regularly shaped phonon anomaly becomes apparent with smaller 
k-grid value and is evident for Δk = 0.02 Å−1 (circled; Figure 8a). For values of 
Δk > 0.05 Å−1, the calculated PD for MgB2 implies that the phase is unstable yet 
we know from experimental evidence that this is not the case. For SC compounds 
with lower values of Tc and/or where Fermi surfaces closely intersect the Fermi 

Figure 8. 
Fermi energy (EF) as function of metal substitution in Mg1-xAlxB2 and Mg1-xScxB2 calculated with the LDA 
and GGA functionals using the CASTEP module of materials studio for Δk = 0.02 Å−1. Calculated Fermi 
energies for end-member compositions of AlB2-type structures are also shown.

Pressure
[GPa]

Unit 
cell 

volume
[A3]

H
effm

[me]*

Fermi 
energy 

[eV]

EF(P)

[eV] ( )1F formula

F DFT calculated

E
E

−

−

[%]

0 27.8912 0.5070 8.4055 8.4055 100.0

2 27.5344 0.5059 8.5368 8.4964 99.5

3 26.5752 0.5035 8.9059 8.7411 98.1

8 25.7498 0.5018 9.2430 8.9572 96.9

9 25.0255 0.5003 9.5549 9.1565 95.8

14 24.3834 0.4990 9.8450 9.3409 94.9

20 23.8050 0.4983 10.1183 9.5049 94.0

38 23.2793 0.4981 10.3776 9.6513 93.0
*me is the electron mass.

Table 4. 
List of calculated Fermi energy (EF) values for MgB2 at pressure using Eq. (2).
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level with minimal difference in reciprocal space, the sensitivity of the PD to 
k-grid value will be shifted towards smaller k-grids compared to the effect 
with MgB2.

Measurement of the parameter, δ, shown in Figure 9a provides a reliable 
estimate of Tc for MgB2 when the PD is calculated with Δk < 0.02 Å−1 [23]. This 
approach, which determines the thermal energy, Tδ, of the key E2g phonon mode 
using an empirical formula [23], precisely tracks the experimentally determined 
reduction of Tc for metal-substituted forms of MgB2 such as (Mg1-xAlx)B2 and 
(Mg1-xScx)B2 [23, 25]. When the value for δ is determined with two sequential DFT 
calculations using the LDA and the GGA functionals, error estimates (in terms of 
the amplitude of the spread of the DFT approximations) for the value of Tδ at each 
level of metal substitution can be obtained.

We have used this approach to estimate the likely value(s) of Tc for other 
metal-substituted forms of MgB2 that have received limited attention or have 
not been identified previously in the literature. For example, we determined the 
PD for (Mg1-xBax)B2, and for (Mg1-xCdx)B2 where x = 0.33, 0.5 or 0.66 [23, 25]. 
Figure 10a shows the PD for (Mg0.5Ba0.5)B2 calculated using the LDA functional 
with Δk = 0.02 Å−1. Measurement of the four values for δ in Figure 10a (i.e. two 
non-degenerate E2g modes each in the Γ–K and Γ–M directions) and conversion to 
Tδ gives an average value of 58.1 ± 3.4 K for (Mg0.5Ba0.5)B2. Figure 10b is adapted 
from the work of Palnichenko et al. [56] in which Ba, Rb and Cs were substituted 
into MgB2 via solid state synthesis. In all cases, the Tc determined experimentally 
using magnetic susceptibility is higher than that for MgB2. Unfortunately, while 
the effects of substitution are evident, the explicit levels of substitution were not 
determined [45].

Figure 9. 
Phonon dispersions for MgB2 calculated using the LDA functional with different k-grids: (a) Δk = 0.02 Å−1, 
(b) Δk = 0.04 Å−1, (c) Δk = 0.05 Å−1 and (d) Δk = 0.06 Å−1. E2g (red) and B2g (blue) phonon modes are 
highlighted. The energy associated with the E2g phonon anomaly in (a) is ~16 meV [23]. Note the negative 
phonon frequencies for Δk = 0.06 Å−1 which, due to insufficient k-grid resolution, implies an unstable 
compound.
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level with minimal difference in reciprocal space, the sensitivity of the PD to 
k-grid value will be shifted towards smaller k-grids compared to the effect 
with MgB2.

Measurement of the parameter, δ, shown in Figure 9a provides a reliable 
estimate of Tc for MgB2 when the PD is calculated with Δk < 0.02 Å−1 [23]. This 
approach, which determines the thermal energy, Tδ, of the key E2g phonon mode 
using an empirical formula [23], precisely tracks the experimentally determined 
reduction of Tc for metal-substituted forms of MgB2 such as (Mg1-xAlx)B2 and 
(Mg1-xScx)B2 [23, 25]. When the value for δ is determined with two sequential DFT 
calculations using the LDA and the GGA functionals, error estimates (in terms of 
the amplitude of the spread of the DFT approximations) for the value of Tδ at each 
level of metal substitution can be obtained.

We have used this approach to estimate the likely value(s) of Tc for other 
metal-substituted forms of MgB2 that have received limited attention or have 
not been identified previously in the literature. For example, we determined the 
PD for (Mg1-xBax)B2, and for (Mg1-xCdx)B2 where x = 0.33, 0.5 or 0.66 [23, 25]. 
Figure 10a shows the PD for (Mg0.5Ba0.5)B2 calculated using the LDA functional 
with Δk = 0.02 Å−1. Measurement of the four values for δ in Figure 10a (i.e. two 
non-degenerate E2g modes each in the Γ–K and Γ–M directions) and conversion to 
Tδ gives an average value of 58.1 ± 3.4 K for (Mg0.5Ba0.5)B2. Figure 10b is adapted 
from the work of Palnichenko et al. [56] in which Ba, Rb and Cs were substituted 
into MgB2 via solid state synthesis. In all cases, the Tc determined experimentally 
using magnetic susceptibility is higher than that for MgB2. Unfortunately, while 
the effects of substitution are evident, the explicit levels of substitution were not 
determined [45].

Figure 9. 
Phonon dispersions for MgB2 calculated using the LDA functional with different k-grids: (a) Δk = 0.02 Å−1, 
(b) Δk = 0.04 Å−1, (c) Δk = 0.05 Å−1 and (d) Δk = 0.06 Å−1. E2g (red) and B2g (blue) phonon modes are 
highlighted. The energy associated with the E2g phonon anomaly in (a) is ~16 meV [23]. Note the negative 
phonon frequencies for Δk = 0.06 Å−1 which, due to insufficient k-grid resolution, implies an unstable 
compound.
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4. Discussion

The calculated EF and Fermi level allow systematic comparison of EBSs from 
a structural family or group of materials with varying properties. Moreover, the 
FS is generally of a well-defined orbital character and topology determined by 
the value of EF as a result of bands that cross the Fermi level. The Fermi level 
determined from DFT calculations is defined as at zero energy while the calcu-
lated value of EF obtained after an accurate DFT calculation is seldom described 
in the published literature. By definition, the Fermi level is determined in the 
ground state by the filling of lower energy electronic states by all the (nearly) free 
electrons up to a highest possible value of the energy, which in practice should 
correspond to EF [49, 50, 55, 57, 58].

4.1 Fermi energy

The superconducting gap in many compounds (e.g. diborides, disilicides, A15 
compounds, B-doped diamond) is in the meV range of energy [59]. For many SC 
materials, the gap is directly linked to the separation of parallel, or nearly parallel, 
FSs that may not be identifiable if the k-grid value is at an insufficient resolution 
[45]. Table 1 also shows that for MgB2 differences in EF and enthalpy of a few tens 
of meV are associated with exceptionally small differences in lattice parameter, of 
the order ~10−5 Å. This attribute highlights the robustness and sensitivity of DFT 
calculations, particularly when represented in reciprocal space. More importantly, 
these differences in EF, attributed to differences in k-grid value, are substantially 
greater than the superconducting gap for MgB2 [60]. Hence, detection of a gap – 
which in an EBS for MgB2 is related to the separation of σ bands crossing the Fermi 
level – may not be achieved with low resolution DFT calculations.

We demonstrate this issue using the EBS for MgB2 as shown in Figure 11. In this 
figure, we have reproduced the EBS for MgB2 as calculated using the LDA func-
tional for Δk = 0.018 Å−1. The Fermi level is set at 0 eV and a notional “Fermi level 
2” is also shown as a red dotted line at −250 meV. As noted in Table 1, a change in 
calculated EF ~ 200 meV may occur with choice of Δk > 0.04 Å−1. The intersection 
of σ bands with the calculated Fermi level are separated by a distance λ1, which also 
defines the separation between Fermi surfaces for MgB2.

However, if the value of Δk, or the calculated value for EF, results in a shift of 
the Fermi level by ~250 meV, the separation of Fermi surfaces, illustrated by λ2, 

Figure 10. 
(a) Phonon dispersion for (Mg0.5Ba0.5)B2 calculated using the LDA functional for Δk = 0.02 Å−1, showing the 
extent, δ, of the E2g phonon anomaly (in red) along the Γ–K and Γ–M directions; (b) magnetic susceptibility 
for MgB2 and metal substituted forms of MgB2 showing experimentally determined Tc values (arrowed); 
adapted from Figure 1 of Palnichenko et al. [56]. Substitution of Ba, Rb and Cs shows a higher Tc than 
for MgB2.
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is different. We estimate that this order of Fermi level or EF shift may result in 
discrepancies between 20% and 35% of the value(s) for λ. As shown in Figure 11, 
the shape of the σ bands around Γ are asymmetric. The difference in value(s) for λ 
with variation in EF, will accordingly be dependent on the form, or shape, of these 
parabolas. Projections of the density of states at the Fermi level will also be affected 
by this shift of EF as will the outcomes of Eliashberg or McMillan equations for the 
determination of Tc.

The apparent discrepancy in determination of the value for EF, noted in the 
Introduction, may be elucidated by examination of Figure 11. For example, we sug-
gest that some researchers define a value for EF as equivalent to the energy shown as d1 
in Figure 11 (i.e. the distance to the vertex of the parabolic band [61]). If this defini-
tion for EF is used, then a shift in the Fermi level as described above would lead to 
an estimate equivalent to d2 in Figure 11. The literature contains calculations of EBS 
where the specific approach to determine EF is not identified; for superconductors, 
this practice provides an unfortunate level of uncertainty. An uncertain position for 
the Fermi level will also result in varying cross-sectional areas of the FS at the Fermi 
level (see Figure 2), which directly determines the period of sensitive quantum oscil-
lation measurements [62]. Discrepancies between DFT predicted values and experi-
mental quantum oscillations may be reconciled by revisiting the choice of k-grid.

4.2 Computational resolution

Table 5 provides a summary of reports on previous DFT calculations for MgB2 
and of systematic calculations from this study. This table highlights the diversity of 
computational methods used to date as well as wide variations in parameters such as 
k-grid value and the cut-off energy. Systematic evaluation of these two parameters 
shows that the value for EF may differ by several hundred meV for the same cut-off 
energy with change in Δk value. For our systematic calculations of these parameters 
shown in Table 5, the LDA functional is used for consistency. Calculations with 
the GGA functional show similar trends albeit at different absolute values (by 
~0.2 eV) for EF.

Table 5 shows that a low value for cut-off energy (i.e. < 500 eV) results in a value 
for EF > 1 eV different to that with cut-off energy >500 eV for calculations using 

Figure 11. 
Representative EBS showing the effect of a change in Fermi level of 250 meV (red dotted line). The values for 
λ1 and λ2, which define the distance between parallel Fermi surfaces, and the values for d1 and d2 (the energy 
above the Fermi level at the vertex of the σ band parabola), are not equivalent. This example is based on the 
EBS for MgB2.
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4. Discussion

The calculated EF and Fermi level allow systematic comparison of EBSs from 
a structural family or group of materials with varying properties. Moreover, the 
FS is generally of a well-defined orbital character and topology determined by 
the value of EF as a result of bands that cross the Fermi level. The Fermi level 
determined from DFT calculations is defined as at zero energy while the calcu-
lated value of EF obtained after an accurate DFT calculation is seldom described 
in the published literature. By definition, the Fermi level is determined in the 
ground state by the filling of lower energy electronic states by all the (nearly) free 
electrons up to a highest possible value of the energy, which in practice should 
correspond to EF [49, 50, 55, 57, 58].

4.1 Fermi energy

The superconducting gap in many compounds (e.g. diborides, disilicides, A15 
compounds, B-doped diamond) is in the meV range of energy [59]. For many SC 
materials, the gap is directly linked to the separation of parallel, or nearly parallel, 
FSs that may not be identifiable if the k-grid value is at an insufficient resolution 
[45]. Table 1 also shows that for MgB2 differences in EF and enthalpy of a few tens 
of meV are associated with exceptionally small differences in lattice parameter, of 
the order ~10−5 Å. This attribute highlights the robustness and sensitivity of DFT 
calculations, particularly when represented in reciprocal space. More importantly, 
these differences in EF, attributed to differences in k-grid value, are substantially 
greater than the superconducting gap for MgB2 [60]. Hence, detection of a gap – 
which in an EBS for MgB2 is related to the separation of σ bands crossing the Fermi 
level – may not be achieved with low resolution DFT calculations.

We demonstrate this issue using the EBS for MgB2 as shown in Figure 11. In this 
figure, we have reproduced the EBS for MgB2 as calculated using the LDA func-
tional for Δk = 0.018 Å−1. The Fermi level is set at 0 eV and a notional “Fermi level 
2” is also shown as a red dotted line at −250 meV. As noted in Table 1, a change in 
calculated EF ~ 200 meV may occur with choice of Δk > 0.04 Å−1. The intersection 
of σ bands with the calculated Fermi level are separated by a distance λ1, which also 
defines the separation between Fermi surfaces for MgB2.

However, if the value of Δk, or the calculated value for EF, results in a shift of 
the Fermi level by ~250 meV, the separation of Fermi surfaces, illustrated by λ2, 

Figure 10. 
(a) Phonon dispersion for (Mg0.5Ba0.5)B2 calculated using the LDA functional for Δk = 0.02 Å−1, showing the 
extent, δ, of the E2g phonon anomaly (in red) along the Γ–K and Γ–M directions; (b) magnetic susceptibility 
for MgB2 and metal substituted forms of MgB2 showing experimentally determined Tc values (arrowed); 
adapted from Figure 1 of Palnichenko et al. [56]. Substitution of Ba, Rb and Cs shows a higher Tc than 
for MgB2.
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is different. We estimate that this order of Fermi level or EF shift may result in 
discrepancies between 20% and 35% of the value(s) for λ. As shown in Figure 11, 
the shape of the σ bands around Γ are asymmetric. The difference in value(s) for λ 
with variation in EF, will accordingly be dependent on the form, or shape, of these 
parabolas. Projections of the density of states at the Fermi level will also be affected 
by this shift of EF as will the outcomes of Eliashberg or McMillan equations for the 
determination of Tc.

The apparent discrepancy in determination of the value for EF, noted in the 
Introduction, may be elucidated by examination of Figure 11. For example, we sug-
gest that some researchers define a value for EF as equivalent to the energy shown as d1 
in Figure 11 (i.e. the distance to the vertex of the parabolic band [61]). If this defini-
tion for EF is used, then a shift in the Fermi level as described above would lead to 
an estimate equivalent to d2 in Figure 11. The literature contains calculations of EBS 
where the specific approach to determine EF is not identified; for superconductors, 
this practice provides an unfortunate level of uncertainty. An uncertain position for 
the Fermi level will also result in varying cross-sectional areas of the FS at the Fermi 
level (see Figure 2), which directly determines the period of sensitive quantum oscil-
lation measurements [62]. Discrepancies between DFT predicted values and experi-
mental quantum oscillations may be reconciled by revisiting the choice of k-grid.

4.2 Computational resolution

Table 5 provides a summary of reports on previous DFT calculations for MgB2 
and of systematic calculations from this study. This table highlights the diversity of 
computational methods used to date as well as wide variations in parameters such as 
k-grid value and the cut-off energy. Systematic evaluation of these two parameters 
shows that the value for EF may differ by several hundred meV for the same cut-off 
energy with change in Δk value. For our systematic calculations of these parameters 
shown in Table 5, the LDA functional is used for consistency. Calculations with 
the GGA functional show similar trends albeit at different absolute values (by 
~0.2 eV) for EF.

Table 5 shows that a low value for cut-off energy (i.e. < 500 eV) results in a value 
for EF > 1 eV different to that with cut-off energy >500 eV for calculations using 

Figure 11. 
Representative EBS showing the effect of a change in Fermi level of 250 meV (red dotted line). The values for 
λ1 and λ2, which define the distance between parallel Fermi surfaces, and the values for d1 and d2 (the energy 
above the Fermi level at the vertex of the σ band parabola), are not equivalent. This example is based on the 
EBS for MgB2.



Real Perspective of Fourier Transforms and Current Developments in Superconductivity

128

the same Δk value (e.g. compare Δk = 0.03 Å−1 calculated for MgB2 in Table 5). The 
importance of such parameters has been noted in the literature primarily in relation 
to PD calculations [17, 63]. However, the specific impact of both computational 
parameters on EF and the effect on band structures has not previously been enu-
merated for MgB2 nor for other SCs.

Table 5 also lists the variation in energy, ΔEv (in eV), between the Fermi level 
and the vertex of the parabola at Γ for different values of Δk and for two cut-off 
energies using the LDA functional for the EBS of MgB2 (in Figure 11, this energy 
is represented as d1). As we have noted for EF, there are substantial variations (i.e. 
> 100 meV) in ΔEv with choice of Δk and cut-off energy. Calculated outcomes in 
our systematic study of MgB2 parameters over a wide range of input parameters as 
listed in Table 5, show that for MgB2, Δk < 0.008 Å−1 and a cut-off energy >900 eV, 
provides reliable determination of meV phenomena in this structure and in sub-
stitutional analogues of MgB2. We note that these attributes apply to plane wave 
calculations. We are yet to undertake a systematic evaluation of augmented plane 
wave calculations using similar strategies.

The calculations by de la Pena-Seaman [71] on the transformation of Fermi 
surfaces with substitution of Al and C into MgB2 and recent work by Pesic et al. 
[72] are notable exceptions on the previous studies shown in Table 5 albeit each 
with a low cut-off energy. Note that a cut-off energy of 500 eV in Table 5 results in 
Fermi energies similar to those obtained for molecular fragments obtained by the 
ADF software (data not shown). This suggests that calculations with smaller cut-off 
energy do not adequately capture periodic crystal behavior, but instead, model a set 
of values that are molecule-like. Some DFT studies reveal inherent inconsistencies 
in EBS and PD calculations for known superconductor materials due to insufficient 
computational resolution. This aspect of DFT models also appears to confuse the 
peer review process for some journal papers.

4.3 Phonon dispersions and k-grid

We have examined the changes in PD form and mode order for the substi-
tutional series Mg1-xAlxB2 [23] and Mg1-xScxB2 [25] where 0 < x < 1. For PDs, 
the value of k-grid in a DFT calculation may obscure phenomena that imply 
superconductivity such as the presence or absence of a phonon anomaly [5, 34]. 
We have also demonstrated for MgB2 that the change in the E2g phonon anomaly 
varies with applied pressure and correlates with the experimentally determined 
change in Tc [27]. For these cases, we show that a temperature, calculated from 
the extent of the anomaly, Tδ, is a reliable ab initio indicator of Tc determined by 
experiment [23, 24, 27]. A fine k-grid (or a k-grid value smaller than ~0.025 Å−1 
depending on the structure) is important for PD plots of SCs with AlB2-type 
structures and for estimations of Tc for BCS-type compounds that display a 
phonon anomaly [5, 23].

In an earlier publication [25], we compare for MgB2 the calculation of Tc (i) 
using the McMillan formalism of the Eliashberg model [12] and (ii) using the E2g 
phonon anomaly energy, Tδ, as noted above [23, 27, 28]. In both cases, with suit-
able assumptions for the McMillan formalism, the “predictive” fidelity of either 
method adequately matches experimental data. However, the Eliashberg model 
requires an estimate for two key parameters, λ and μ*, based on average values of 
electron–phonon behavior summed over all orientations. In practice, determina-
tion of λ and/or μ* by a priori methods is non-trivial for compounds with inde-
terminate physical properties [67]. In this regard, we applaud the recent advances 
in mathematical formalism and computational implementation of the Eliashberg 
model by Sanna et al. [19].
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the same Δk value (e.g. compare Δk = 0.03 Å−1 calculated for MgB2 in Table 5). The 
importance of such parameters has been noted in the literature primarily in relation 
to PD calculations [17, 63]. However, the specific impact of both computational 
parameters on EF and the effect on band structures has not previously been enu-
merated for MgB2 nor for other SCs.

Table 5 also lists the variation in energy, ΔEv (in eV), between the Fermi level 
and the vertex of the parabola at Γ for different values of Δk and for two cut-off 
energies using the LDA functional for the EBS of MgB2 (in Figure 11, this energy 
is represented as d1). As we have noted for EF, there are substantial variations (i.e. 
> 100 meV) in ΔEv with choice of Δk and cut-off energy. Calculated outcomes in 
our systematic study of MgB2 parameters over a wide range of input parameters as 
listed in Table 5, show that for MgB2, Δk < 0.008 Å−1 and a cut-off energy >900 eV, 
provides reliable determination of meV phenomena in this structure and in sub-
stitutional analogues of MgB2. We note that these attributes apply to plane wave 
calculations. We are yet to undertake a systematic evaluation of augmented plane 
wave calculations using similar strategies.

The calculations by de la Pena-Seaman [71] on the transformation of Fermi 
surfaces with substitution of Al and C into MgB2 and recent work by Pesic et al. 
[72] are notable exceptions on the previous studies shown in Table 5 albeit each 
with a low cut-off energy. Note that a cut-off energy of 500 eV in Table 5 results in 
Fermi energies similar to those obtained for molecular fragments obtained by the 
ADF software (data not shown). This suggests that calculations with smaller cut-off 
energy do not adequately capture periodic crystal behavior, but instead, model a set 
of values that are molecule-like. Some DFT studies reveal inherent inconsistencies 
in EBS and PD calculations for known superconductor materials due to insufficient 
computational resolution. This aspect of DFT models also appears to confuse the 
peer review process for some journal papers.

4.3 Phonon dispersions and k-grid

We have examined the changes in PD form and mode order for the substi-
tutional series Mg1-xAlxB2 [23] and Mg1-xScxB2 [25] where 0 < x < 1. For PDs, 
the value of k-grid in a DFT calculation may obscure phenomena that imply 
superconductivity such as the presence or absence of a phonon anomaly [5, 34]. 
We have also demonstrated for MgB2 that the change in the E2g phonon anomaly 
varies with applied pressure and correlates with the experimentally determined 
change in Tc [27]. For these cases, we show that a temperature, calculated from 
the extent of the anomaly, Tδ, is a reliable ab initio indicator of Tc determined by 
experiment [23, 24, 27]. A fine k-grid (or a k-grid value smaller than ~0.025 Å−1 
depending on the structure) is important for PD plots of SCs with AlB2-type 
structures and for estimations of Tc for BCS-type compounds that display a 
phonon anomaly [5, 23].

In an earlier publication [25], we compare for MgB2 the calculation of Tc (i) 
using the McMillan formalism of the Eliashberg model [12] and (ii) using the E2g 
phonon anomaly energy, Tδ, as noted above [23, 27, 28]. In both cases, with suit-
able assumptions for the McMillan formalism, the “predictive” fidelity of either 
method adequately matches experimental data. However, the Eliashberg model 
requires an estimate for two key parameters, λ and μ*, based on average values of 
electron–phonon behavior summed over all orientations. In practice, determina-
tion of λ and/or μ* by a priori methods is non-trivial for compounds with inde-
terminate physical properties [67]. In this regard, we applaud the recent advances 
in mathematical formalism and computational implementation of the Eliashberg 
model by Sanna et al. [19].
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An and Pickett [36] estimate that the influence of the E2g mode is at least a factor 
of 25 times greater than all other phonon modes in MgB2. The E2g mode is predomi-
nantly associated with movement within the boron planes of MgB2; that is, along 
specific orientations [73]. Nevertheless, use of an average value for phonon frequen-
cies integrated over all directions in reciprocal space is a feature of the McMillan 
formalism that provides a reasonable “post facto” estimate of Tc presumably because 
the E2g mode is so dominant. Such coincidence does not enable, nor guarantee, 
ab initio predictive capacity for a priori models, particularly if evaluating structures 
for which experimental data are limited or unavailable. Thus, we advocate an alter-
native approach for superconductivity prediction that complements the McMillan 
formalism. In this alternative approach, appropriate values for Δk and the cut-off 
energy enable ab initio DFT calculations to estimate values for Tδ that correlate with 
experimentally determined values for the Tc of MgB2 [23, 27], for compounds of the 
form (Mg1-xMx)B2 (where M = Al, Sc, Ti) [23–25], and for disilicides [23] and metal 
hexaborides [74].

The predictive value of the approaches we advocate to estimate Tc that utilizes 
calculation of a value for Tδ using a phonon anomaly [23–25, 74] is evident for 
Ba-substitution into MgB2 [56]. Our estimates for (Mg1-xBax)B2 at three levels of Ba 
substitution (x = 0.33, 0.5 and 0.66) and using both LDA and GGA approximations 
suggest that 62.1 K < Tδ < 64.4 K with an error of ±4.9 K. These estimates are higher 
by ~15 K than the experimentally determined value of ~45 K by Palnichenko et al. 
[56]. However, the extent of Ba substitution in MgB2 was not determined in this 
experimental work; albeit 11B NMR analysis shows that the final product has the 
same site symmetry as MgB2 [56]. Substitution of Ba in MgB2 at levels less than 33% 
may result in a lower value for Tc.

The presence of multiple phases in the Rb- and Cs- substituted forms of MgB2 
synthesized by Palnichenko et al. [56] is difficult to verify from the data presented 
due to limited microstructural and compositional characterization. However, we 
note that PD calculations on a nominal 50:50 ratio for Rb:Mg and Cs:Mg for sub-
stituted MgB2 results in asymmetric and multi-level anomalies (data not shown) 
similar to that shown in Figure 11a. By measuring the extent of the anomaly in 
each of these cases, the values for Tδ are similar to the onsets of transitions shown 
for these compositions in Figure 11b. While circumstantial, this combination of 
modeling and experiment suggests that these substituted MgB2 compositions may 
be homogeneous single phase. Further analyses of this compositional suite, and that 
of (Mg1-xCdx)B2 may reveal additional SC compounds in the AlB2-type structural 
group with significantly enhanced superconducting properties to MgB2.

Fully converged PDs are a useful indicator of phase stability [26, 74]. The sensi-
tivity of PDs to changes in stoichiometry, composition or Δk is significantly higher 
than typically encountered in an EBS [26]. The PD calculated at a deliberately 
large k-grid value 0.06 Å−1 in Figure 9d may be interpreted as a dynamic instabil-
ity. MgB2 is a well-studied case and we know that this is not correct; however, for 
unknown or other materials with closer FSs in reciprocal space, we would expect 
similar phenomena to be manifest at smaller k-grids. Thus, sometimes conclusions 
about phase transitions may be artifacts of the DFT calculation if k-grids of insuf-
ficient resolution are used for materials with approximately parallel FSs in close 
reciprocal space proximity [45].

4.4 Fermi surfaces and superconductivity

Electronic bands and FSs of constant energy possess all point symmetries of a 
crystal as a function of position in reciprocal space [48, 51]. The intersections of 
the σ bands with the Fermi level, as shown in Figure 1, determine points that, by 
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An and Pickett [36] estimate that the influence of the E2g mode is at least a factor 
of 25 times greater than all other phonon modes in MgB2. The E2g mode is predomi-
nantly associated with movement within the boron planes of MgB2; that is, along 
specific orientations [73]. Nevertheless, use of an average value for phonon frequen-
cies integrated over all directions in reciprocal space is a feature of the McMillan 
formalism that provides a reasonable “post facto” estimate of Tc presumably because 
the E2g mode is so dominant. Such coincidence does not enable, nor guarantee, 
ab initio predictive capacity for a priori models, particularly if evaluating structures 
for which experimental data are limited or unavailable. Thus, we advocate an alter-
native approach for superconductivity prediction that complements the McMillan 
formalism. In this alternative approach, appropriate values for Δk and the cut-off 
energy enable ab initio DFT calculations to estimate values for Tδ that correlate with 
experimentally determined values for the Tc of MgB2 [23, 27], for compounds of the 
form (Mg1-xMx)B2 (where M = Al, Sc, Ti) [23–25], and for disilicides [23] and metal 
hexaborides [74].

The predictive value of the approaches we advocate to estimate Tc that utilizes 
calculation of a value for Tδ using a phonon anomaly [23–25, 74] is evident for 
Ba-substitution into MgB2 [56]. Our estimates for (Mg1-xBax)B2 at three levels of Ba 
substitution (x = 0.33, 0.5 and 0.66) and using both LDA and GGA approximations 
suggest that 62.1 K < Tδ < 64.4 K with an error of ±4.9 K. These estimates are higher 
by ~15 K than the experimentally determined value of ~45 K by Palnichenko et al. 
[56]. However, the extent of Ba substitution in MgB2 was not determined in this 
experimental work; albeit 11B NMR analysis shows that the final product has the 
same site symmetry as MgB2 [56]. Substitution of Ba in MgB2 at levels less than 33% 
may result in a lower value for Tc.

The presence of multiple phases in the Rb- and Cs- substituted forms of MgB2 
synthesized by Palnichenko et al. [56] is difficult to verify from the data presented 
due to limited microstructural and compositional characterization. However, we 
note that PD calculations on a nominal 50:50 ratio for Rb:Mg and Cs:Mg for sub-
stituted MgB2 results in asymmetric and multi-level anomalies (data not shown) 
similar to that shown in Figure 11a. By measuring the extent of the anomaly in 
each of these cases, the values for Tδ are similar to the onsets of transitions shown 
for these compositions in Figure 11b. While circumstantial, this combination of 
modeling and experiment suggests that these substituted MgB2 compositions may 
be homogeneous single phase. Further analyses of this compositional suite, and that 
of (Mg1-xCdx)B2 may reveal additional SC compounds in the AlB2-type structural 
group with significantly enhanced superconducting properties to MgB2.

Fully converged PDs are a useful indicator of phase stability [26, 74]. The sensi-
tivity of PDs to changes in stoichiometry, composition or Δk is significantly higher 
than typically encountered in an EBS [26]. The PD calculated at a deliberately 
large k-grid value 0.06 Å−1 in Figure 9d may be interpreted as a dynamic instabil-
ity. MgB2 is a well-studied case and we know that this is not correct; however, for 
unknown or other materials with closer FSs in reciprocal space, we would expect 
similar phenomena to be manifest at smaller k-grids. Thus, sometimes conclusions 
about phase transitions may be artifacts of the DFT calculation if k-grids of insuf-
ficient resolution are used for materials with approximately parallel FSs in close 
reciprocal space proximity [45].

4.4 Fermi surfaces and superconductivity

Electronic bands and FSs of constant energy possess all point symmetries of a 
crystal as a function of position in reciprocal space [48, 51]. The intersections of 
the σ bands with the Fermi level, as shown in Figure 1, determine points that, by 
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construction, belong to the FSs. The FS corresponding to σ bands in the reduced 
BZ become two approximately parallel tubes [28], as schematically represented in 
Figure 12 below. As shown for MgB2 in earlier work [23, 24, 27, 28] and by others 
[65, 75, 76], these σ band FSs are not strictly cylindrical, but form as warped tubes 
with a narrowing in all directions towards Γ (sketched more accurately in Figure 2).

Since the FS tubes represent hole carrier sections, their interior will be empty in 
the ground state, while their exterior will be occupied. In a reduced zone schema, 
this construct creates ambiguous electron/hole character for the inter-tubular 
region. Ambiguity arises because this inter-tubular region should be, in the ground 
state, empty (i.e. without electrons) relative to the outer heavy effective mass σ 
band, but, in the ground state, filled with electrons relative to the inner light effec-
tive mass σ band.

This notion creates an apparent dilemma, although according to Ziman [55], 
“There can be points in the zone where one cannot assign the label ‘hole’ or ‘electron’ 
uniquely to the states”. Further, “the excitations of the superconducting state are peculiar 
quasi-particles which change from being ‘electrons’ to being ‘holes’ as they pass through 
the Fermi level” [53]. Alternatively, we may reconcile this dilemma by considering 
that the reduced BZ scheme merges two different diameter tubes from points in 
reciprocal space within an extended BZ scheme [27, 28].

Given the indeterminate nature of the origin in reciprocal space, specific diam-
eter tubes may be selected interchangeably by the DFT calculation; thus, implying 
a potential resonating behavior [28]. Analysis of electron–phonon behavior deter-
mined by DFT calculations suggests that this inter-tubular region of FSs (or other 
regions enclosed by parallel surfaces of different topology) is a region in reciprocal 
space that reveals the extent of superconductivity in typical BCS-type materials 
[5, 23, 24, 26–28]. Our calculations for both MgB2 and B-doped diamond show that 
this inter-tubular region is of meV energy scale from the Fermi energy.

Parallel FSs are common features of superconducting compounds albeit their 
identification is dependent on crystal symmetry and the choice of k-grid value for 
DFT calculations [5, 23, 25]. The “resolution” of reciprocal space calculations using 
DFT (i.e. the value of k-grid) is a critical factor for identification of phenomena 
that may be influenced by changes of a few meV. For example, we show above that 
the value of EF for MgB2 may change by several hundred meV with a difference of 
~0.02 Å−1 for Δk (noting that Tc ~ 40 K). Such changes in EF may shift the apparent 
Fermi level to a position where parallel FSs are not shown in an EBS. For compounds 
with a higher EF value, closer to the parabola vertex (likely associated with lower Tc) 
and with larger difference in effective masses (i.e. the light mass displays a steeper 
EBS variation with k), the impact of this sensitivity to Δk increases.

Figure 12. 
Schematic of the FSs for MgB2 viewed along: (a) the c-axis and (b) perpendicular to the c-axis. In this 
schematic, these FSs are simplified by neglecting warping in the DFT calculated model for MgB2 [28]. Hatched 
section represents the inter-tubular region.
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Thus, the value of k-grid used for DFT calculations is paramount. For PDs, this 
computational requirement has previously been well documented [14, 17, 20, 24] 
and, we suggest, is equally requisite for the use of EBS to predict, or design, new 
superconducting materials.

The recent development of an ML-based scheme to efficiently assimilate the 
function of the Kohn-Sham equation, and to directly and rapidly, predict the 
electronic structure of a material or a molecule, given its atomic configuration [41] 
is of salient interest with regard to k-grid value. This ML approach maps the atomic 
environment around a grid-point to the electron density and local density of states 
at that grid-point. The method clearly demonstrates more than two orders of mag-
nitude improvement in computational time over conventional DFT calculations to 
generate accurate electronic structure details [41]. Utilization of this methodology 
at a k-point spacing <0.2 Å−1 to initialise ML-training for charge density [41] may 
enable very rapid determination of potential SC materials with many hundreds of 
atoms in the base structure. Nevertheless, as we have shown in this article, caution 
in the use of such values for Δk using ML is suggested because “false positives” for 
superconductivity may emerge and valid “hits” may be missed.

Thermal effects on electronic properties are generally included in DFT calcula-
tions as a smearing of electron behavior. However, high structural symmetry, or 
the lack of it, may impose significant anisotropy and/or preferred directionality of 
ionic movement that remains active even as temperature is increased. For refer-
ence, thermal excitation of the free-electron gas is kBT or about 26 meV at ambient 
temperatures [51, 57]. As noted above, variations in EF for superconducting phases 
may be in the meV range depending on the structure. We also note the importance 
of the smearing parameter in DFT calculations. We suggest that for particular 
superconducting cases where the Tc and/or phonon energy is low (i.e. Tc < 10 K) 
default values (~ 0.1–0.2 eV) in software packages for the smearing parameter may 
be misleading [77].

Calculated Fermi energies and Fermi levels are essential attributes for deter-
mination of materials properties in a range of other applications, such as for the 
energy band alignment of components in solar cell materials [78, 79], with solid-
electrolyte interfaces [80], as well as for interface induced phenomena such as the 
substantial increase in Tc of monolayer FeSe on SrTiO3 substrates [81]. Improved 
interpretation and understanding of electronic behavior in SCs and SC systems can 
be achieved with reliable calculated output values determined by ab initio DFT [82]. 
Indeed, Kohn posits that to achieve high accuracy with comprehensible representa-
tions of multi-particle systems, it is necessary to focus on real, three-dimensional 
coordinate space, via electron density distributions calculable using DFT [29].

5. Conclusions

The EBS encapsulates a wealth of information for superconductivity that may be 
misinterpreted due to the quality, or resolution, of DFT computations. A tendency 
to be satisfied with poor or limited computational resolution is evident in super-
conductivity literature unlike other fields that compute electronic properties using 
DFT. Translation of reciprocal space detail to real space periodicity for DFT-based 
design of new materials in an EBS with appropriate k-grid resolution can provide 
evidence for structures that may be viable SCs. As we have shown above, the EF 
value is explicitly determined in DFT computations and, with consistent use of 
k-grid resolution, can provide comparable estimates of SC properties for proposed 
structures of a compositional suite. We encourage inclusion of these DFT calculated 
parameters in reports of SC materials.
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construction, belong to the FSs. The FS corresponding to σ bands in the reduced 
BZ become two approximately parallel tubes [28], as schematically represented in 
Figure 12 below. As shown for MgB2 in earlier work [23, 24, 27, 28] and by others 
[65, 75, 76], these σ band FSs are not strictly cylindrical, but form as warped tubes 
with a narrowing in all directions towards Γ (sketched more accurately in Figure 2).

Since the FS tubes represent hole carrier sections, their interior will be empty in 
the ground state, while their exterior will be occupied. In a reduced zone schema, 
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region. Ambiguity arises because this inter-tubular region should be, in the ground 
state, empty (i.e. without electrons) relative to the outer heavy effective mass σ 
band, but, in the ground state, filled with electrons relative to the inner light effec-
tive mass σ band.

This notion creates an apparent dilemma, although according to Ziman [55], 
“There can be points in the zone where one cannot assign the label ‘hole’ or ‘electron’ 
uniquely to the states”. Further, “the excitations of the superconducting state are peculiar 
quasi-particles which change from being ‘electrons’ to being ‘holes’ as they pass through 
the Fermi level” [53]. Alternatively, we may reconcile this dilemma by considering 
that the reduced BZ scheme merges two different diameter tubes from points in 
reciprocal space within an extended BZ scheme [27, 28].

Given the indeterminate nature of the origin in reciprocal space, specific diam-
eter tubes may be selected interchangeably by the DFT calculation; thus, implying 
a potential resonating behavior [28]. Analysis of electron–phonon behavior deter-
mined by DFT calculations suggests that this inter-tubular region of FSs (or other 
regions enclosed by parallel surfaces of different topology) is a region in reciprocal 
space that reveals the extent of superconductivity in typical BCS-type materials 
[5, 23, 24, 26–28]. Our calculations for both MgB2 and B-doped diamond show that 
this inter-tubular region is of meV energy scale from the Fermi energy.

Parallel FSs are common features of superconducting compounds albeit their 
identification is dependent on crystal symmetry and the choice of k-grid value for 
DFT calculations [5, 23, 25]. The “resolution” of reciprocal space calculations using 
DFT (i.e. the value of k-grid) is a critical factor for identification of phenomena 
that may be influenced by changes of a few meV. For example, we show above that 
the value of EF for MgB2 may change by several hundred meV with a difference of 
~0.02 Å−1 for Δk (noting that Tc ~ 40 K). Such changes in EF may shift the apparent 
Fermi level to a position where parallel FSs are not shown in an EBS. For compounds 
with a higher EF value, closer to the parabola vertex (likely associated with lower Tc) 
and with larger difference in effective masses (i.e. the light mass displays a steeper 
EBS variation with k), the impact of this sensitivity to Δk increases.
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Thus, the value of k-grid used for DFT calculations is paramount. For PDs, this 
computational requirement has previously been well documented [14, 17, 20, 24] 
and, we suggest, is equally requisite for the use of EBS to predict, or design, new 
superconducting materials.

The recent development of an ML-based scheme to efficiently assimilate the 
function of the Kohn-Sham equation, and to directly and rapidly, predict the 
electronic structure of a material or a molecule, given its atomic configuration [41] 
is of salient interest with regard to k-grid value. This ML approach maps the atomic 
environment around a grid-point to the electron density and local density of states 
at that grid-point. The method clearly demonstrates more than two orders of mag-
nitude improvement in computational time over conventional DFT calculations to 
generate accurate electronic structure details [41]. Utilization of this methodology 
at a k-point spacing <0.2 Å−1 to initialise ML-training for charge density [41] may 
enable very rapid determination of potential SC materials with many hundreds of 
atoms in the base structure. Nevertheless, as we have shown in this article, caution 
in the use of such values for Δk using ML is suggested because “false positives” for 
superconductivity may emerge and valid “hits” may be missed.

Thermal effects on electronic properties are generally included in DFT calcula-
tions as a smearing of electron behavior. However, high structural symmetry, or 
the lack of it, may impose significant anisotropy and/or preferred directionality of 
ionic movement that remains active even as temperature is increased. For refer-
ence, thermal excitation of the free-electron gas is kBT or about 26 meV at ambient 
temperatures [51, 57]. As noted above, variations in EF for superconducting phases 
may be in the meV range depending on the structure. We also note the importance 
of the smearing parameter in DFT calculations. We suggest that for particular 
superconducting cases where the Tc and/or phonon energy is low (i.e. Tc < 10 K) 
default values (~ 0.1–0.2 eV) in software packages for the smearing parameter may 
be misleading [77].

Calculated Fermi energies and Fermi levels are essential attributes for deter-
mination of materials properties in a range of other applications, such as for the 
energy band alignment of components in solar cell materials [78, 79], with solid-
electrolyte interfaces [80], as well as for interface induced phenomena such as the 
substantial increase in Tc of monolayer FeSe on SrTiO3 substrates [81]. Improved 
interpretation and understanding of electronic behavior in SCs and SC systems can 
be achieved with reliable calculated output values determined by ab initio DFT [82]. 
Indeed, Kohn posits that to achieve high accuracy with comprehensible representa-
tions of multi-particle systems, it is necessary to focus on real, three-dimensional 
coordinate space, via electron density distributions calculable using DFT [29].

5. Conclusions

The EBS encapsulates a wealth of information for superconductivity that may be 
misinterpreted due to the quality, or resolution, of DFT computations. A tendency 
to be satisfied with poor or limited computational resolution is evident in super-
conductivity literature unlike other fields that compute electronic properties using 
DFT. Translation of reciprocal space detail to real space periodicity for DFT-based 
design of new materials in an EBS with appropriate k-grid resolution can provide 
evidence for structures that may be viable SCs. As we have shown above, the EF 
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We have described three fundamental approaches, based on ab initio DFT 
calculations to elucidate superconducting properties of existing and new com-
pounds with relatively simple structures such as the AlB2-type. This utilization of 
DFT, without modified functionals or estimates of free parameters, allows precise 
description of SC features in EBSs and PDs provided k-grid value and cut-off 
energy are optimized for high computational resolution. Through this process, we 
have identified a suite of AlB2-type structures by metal substitution into MgB2, 
that are likely to show higher Tc values than for MgB2. These structures include 
compositions such as (Mg1-xMx)B2 where M = Ba, Rb, Cs or Cd. In addition, the use 
of parabolic, or higher order quartic polynomials, to quantify key bands in an EBS 
offers a direct and low computational cost approach to determination of the super-
conducting gap for simple structures.

We are uncertain whether these approaches to DFT calculations apply to all 
SCs recognizing that now hundreds of compounds have been identified. Hardware 
and software limitations may restrict the use of these approaches to small unit cell 
structures of simple composition and higher symmetry. Nevertheless, in combina-
tion, these systematic and simple approaches to use of a well-known theory of 
electron distribution in solids suggest that prediction of properties for unknown, or 
hypothesized, SC structures is well within the reach of many materials researchers.
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