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It was estimated that 80% of the information received by human is visual. Image 
processing is evolving fast and continually. During the past 10 years, there has been 
a significant research increase in image segmentation. To study a specific object in 

an image, its boundary can be highlighted by an image segmentation procedure. The 
objective of the image segmentation is to simplify the representation of pictures into 
meaningful information by partitioning into image regions. Image segmentation is 
a technique to locate certain objects or boundaries within an image. There are many 

algorithms and techniques have been developed to solve image segmentation problems, 
the research topics in this book such as level set, active contour, AR time series image 

modeling, Support Vector Machines, Pixon based image segmentations, region 
similarity metric based technique, statistical ANN and JSEG algorithm were written 

in details. This book brings together many different aspects of the current research on 
several fields associated to digital image segmentation. Four parts allowed gathering 

the 27 chapters around the following topics: Survey of Image Segmentation Algorithms, 
Image Segmentation methods, Image Segmentation Applications and Hardware 

Implementation. The readers will find the contents in this book enjoyable and get many 
helpful ideas and overviews on their own study.

ISBN 978-953-307-228-9

Im
age Segm

entation



IMAGE SEGMENTATION
Edited by Pei-Gee Peter Ho

INTECHOPEN.COM



IMAGE SEGMENTATION
Edited by Pei-Gee Peter Ho

INTECHOPEN.COM



Image Segmentation
http://dx.doi.org/10.5772/628
Edited by Pei-Gee Ho

Contributors

Xiqun Lu, Luciano Cássio Lugli, Arthur José Vieira Porto, Mario Luiz Tronco, Ana Teodoro, Hernâni Gonçalves, Zhaohui 
Li, Gilson Giraldi, Paulo Rodrigues, Jasjit Suri, Sameer Singh, Fengzhi Dai, Masanori Sugisaka, Baolong Zhang, Yuee 
Wu, Houqin Bian, Lhoussaine Masmoudi, Rachid Zennouhi, Mohamed El Ansari, Roberto Rodriguez, Ivan Lizarazo, 
Paul Elsner, Francesco Tufano, Donatello Conte, Pasquale Foggia, Mario Vento, Angel Barriga, Pei-Gee Ho, Qiang 
He, Henry Chu, Satoko Takemoto, Hideo Yokota, Mohd. Yusoff Mashor, Rafikha Aliana A Raof, R. Badlishah Ahmad, 
Siti Suraiya Md. Noor, Sagarmay Deb, Delia Cabrera DeBuc, Erik Cuevas, Hector Alejandro Montes-Venegas, Maria E. 
Barilla-Pérez, Ricardo García-Iñigo, Ricardo Mejía-Iñigo, Francisco J. Díaz-Pernas, Mario Martínez-Zarzuela, Isabel De la 
Torre-Díez, David González-Ortega, Daniel Boto-Giralda, J. Fernando Díez-Higuera, Míriam Antón-Rodríguez, Tomaz 
Romih, Peter Planinsic, Vassilis Katsouros, Vassilis Papavassiliou, Jose Alfredo Ferreira Costa, Jackson Gomes Souza, 
Hadi Yousefian, Hamid Hassanpour, Amin Zehtabian, Weixing Wang, Licheng Jiao, Shuang Wang, Maoguo Gong, 
Fang Liu, Jingjing Ma

© The Editor(s) and the Author(s) 2011
The moral rights of the and the author(s) have been asserted.
All rights to the book as a whole are reserved by INTECH. The book as a whole (compilation) cannot be reproduced, 
distributed or used for commercial or non-commercial purposes without INTECH’s written permission.  
Enquiries concerning the use of the book should be directed to INTECH rights and permissions department 
(permissions@intechopen.com).
Violations are liable to prosecution under the governing Copyright Law.

Individual chapters of this publication are distributed under the terms of the Creative Commons Attribution 3.0 
Unported License which permits commercial use, distribution and reproduction of the individual chapters, provided 
the original author(s) and source publication are appropriately acknowledged. If so indicated, certain images may not 
be included under the Creative Commons license. In such cases users will need to obtain permission from the license 
holder to reproduce the material. More details and guidelines concerning content reuse and adaptation can be 
foundat http://www.intechopen.com/copyright-policy.html.

Notice

Statements and opinions expressed in the chapters are these of the individual contributors and not necessarily those 
of the editors or publisher. No responsibility is accepted for the accuracy of information contained in the published 
chapters. The publisher assumes no responsibility for any damage or injury to persons or property arising out of the 
use of any materials, instructions, methods or ideas contained in the book.

First published in Croatia, 2011 by INTECH d.o.o.
eBook (PDF) Published by  IN TECH d.o.o.
Place and year of publication of eBook (PDF): Rijeka, 2019.
IntechOpen is the global imprint of IN TECH d.o.o.
Printed in Croatia

Legal deposit, Croatia: National and University Library in Zagreb

Additional hard and PDF copies can be obtained from orders@intechopen.com

Image Segmentation
Edited by Pei-Gee Ho

p. cm.

ISBN 978-953-307-228-9

eBook (PDF) ISBN 978-953-51-5520-1



Selection of our books indexed in the Book Citation Index 
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 
For more information visit www.intechopen.com

4,000+ 
Open access books available

151
Countries delivered to

12.2%
Contributors from top 500 universities

Our authors are among the

Top 1%
most cited scientists

116,000+
International  authors and editors

120M+ 
Downloads

We are IntechOpen,
the world’s leading publisher of 

Open Access books
Built by scientists, for scientists

 





Meet the editor

Dr. Pei-Gee Peter Ho was born in Hsinchu, Taiwan. He 
received his BSEE from National Cheng Kung Univer-
sity, Tainan, Taiwan in 1976. After two years military 
service, he worked two years in On-Line Power System 
Dispatch group of Taiwan Power Company. In 1981, 
he was awarded a research assistantship and obtained 
the MSEE degree from UMass Dartmouth. During the 

following 20 plus years he has worked in various electrical and computer 
engineering companies such as Wang Lab., Brooktrout Technology, Comp-
ugraphics, SystemSoft, Ennovate Networks, Quarry Technology, Lockheed 
Martin Inc. and was primarily associated with embedded computing sys-
tems, networking, and device driver developments. He received his Ph.D. 
degree in Electrical and Computer Engineering from UMass Dartmouth in 
January 2008. He is now working in the Digital Signal Processing Algo-
rithm and Software Design group in Range and Engineering department 
of NUWC at Newport, Rhode Island USA. 



Part 1

Chapter 1

Chapter 2

Part 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Preface IX

Survey of Image Segmentation Algorithms 1

A Survey of Image Segmentation 
by the Classical Method and Resonance Algorithm 3
Fengzhi Dai, Masanori Sugisaka and Baolong Zhang

A Review of Algorithms for Segmentation 
of Retinal Image Data Using 
Optical Coherence Tomography 15
Delia Cabrera DeBuc

Image Segmentation Methods 55

Image Segmentation through Clustering 
Based on Natural Computing Techniques 57
Jose Alfredo F. Costa and Jackson G. de Souza

Segmentation with Learning Automata 83
Erik Cuevas, Daniel Zaldivar and Marco Pérez-Cisneros

Surround Suppression and Recurrent Interactions 
V1-V2 for Natural Scene Boundary Detection 99
Francisco J. Díaz-Pernas, Míriam Antón-Rodríguez, 
Isabel de la Torre-Díez, Mario Martínez-Zarzuela, 
David González-Ortega, Daniel Boto-Giralda 
and J. Fernando Díez-Higuera

Using Emergence Phenomenon 
in Meaningful Image Segmentation 
for Content-based Image Retrieval 119
Sagarmay Deb

Dual Active Contour Models 
for Medical Image Segmentation 129
Gilson Giraldi, Paulo Rodrigues, Jasjit Suri and Sameer Singh

Contents



Part 1

Chapter 1

Chapter 2

Part 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Preface XIII

Survey of Image Segmentation Algorithms 1

A Survey of Image Segmentation 
by the Classical Method and Resonance Algorithm 3 
Fengzhi Dai, Masanori Sugisaka and Baolong Zhang

A Review of Algorithms for Segmentation 
of Retinal Image Data Using 
Optical Coherence Tomography 15
Delia Cabrera DeBuc

Image Segmentation Methods 55

Image Segmentation through Clustering 
Based on Natural Computing Techniques 57
Jose Alfredo F. Costa and Jackson G. de Souza

Segmentation with Learning Automata 83
Erik Cuevas, Daniel Zaldivar and Marco Pérez-Cisneros

Surround Suppression and Recurrent Interactions 
V1-V2 for Natural Scene Boundary Detection 99 
Francisco J. Díaz-Pernas, Míriam Antón-Rodríguez, 
Isabel de la Torre-Díez, Mario Martínez-Zarzuela, 
David González-Ortega, Daniel Boto-Giralda 
and J. Fernando Díez-Higuera

Using Emergence Phenomenon 
in Meaningful Image Segmentation 
for Content-based Image Retrieval 119
Sagarmay Deb

Dual Active Contour Models 
for Medical Image Segmentation 129
Gilson Giraldi, Paulo Rodrigues, Jasjit Suri and Sameer Singh

Contents



X Contents

Image Segmentation Using Maximum 
Spanning Tree on Affinity Matrix 153
Qiang He and Chee-Hung Henry Chu

Image Segmentation by
Autoregressive Time Series Model 161
Pei-Gee Peter Ho

Evolutionary-based Image Segmentation Methods 179
Licheng Jiao

Segmentation of Handwritten 
Document Images into Text Lines 225
Vassilis Katsouros and Vassilis Papavassiliou

IR Image Segmentation by Combining Genetic 
Algorithm and Multi-scale Edge Detection 241
Li Zhaohui and Chen Ming

Segmentation of Remotely Sensed Imagery:
Moving from Sharp Objects to Fuzzy Regions 249
Ivan Lizarazo and Paul Elsner

Color-based Texture Image Segmentation
for Vehicle Detection 273
Ricardo Mejía-Iñigo, María E. Barilla-Pérez 
and Héctor A. Montes-Venegas

Image Segmentation Applications 291

An Enhanced Level Set Algorithm
for Wrist Bone Segmentation 293
Donatello Conte, Pasquale Foggia, 
Francesco Tufano and Mario Vento

Mineral Grain Boundary Detection With Image
Processing Method: From Edge Detection
Operation To Level Set Technique 309
Bibo Lu and Weixing Wang

Multiscale Segmentation Techniques for Textile Images 327
Xiqun Lu

JSEG Algorithm and Statistical ANN Image 
Segmentation Techniques for Natural Scenes 343
Luciano Cássio Lulio, Mário Luiz Tronco 
and Arthur José Vieira Porto

Chapter 8

Chapter 9

Chapter 10

Chapter 11

Chapter 12

Chapter 13

Chapter 14

Part 3

Chapter 15

Chapter 16

Chapter 17

Chapter 18

Contents VII

Image Segmentation of Ziehl-Neelsen 
Sputum Slide Images for Tubercle Bacilli Detection 365
R. A. A. Raof, M. Y. Mashor, R. B. Ahmad and S. S. M. Noor

Image Segmentation Based 
on a Two-Dimensional Histogram 379
Masmoudi Lhoussaine, Zennouhi Rachid and Mohamed EL Ansari

Segmentation Methods for Biomedical Images 389
Roberto Rodríguez Morales

Algorithm Selection Based on a Region Similarity
Metric for Intracellular Image Segmentation 419
Satoko Takemoto and Hideo Yokota

Extraction of Estuarine/Coastal Environmental 
Bodies from Satellite Data through 
Image Segmentation Techniques 435
Ana Teodoro and Hernâni Gonçalves

Rock Fracture Image Segmentation Algorithms 459
Weixing Wang

Image Segmentation Integrating Generative
and Discriminative Methods 489
Yuee Wu and Houqin Bian

Pixon-Based Image Segmentation 495
Hamid Hassanpour, Hadi Yousefian and Amin Zehtabian

Hardware Implementation 517

Hardware Implementation of a Real-Time 
Image Segmentation Circuit based on Fuzzy Logic 
for Edge Detection Application 519
Angel Barriga

Chapter 19

Chapter 20

Chapter 21

Chapter 22

Chapter 23

Chapter 24

Chapter 25

Chapter 26

Part 4

Chapter 27



ContentsVI

Image Segmentation Using Maximum 
Spanning Tree on Affinity Matrix 153
Qiang He and Chee-Hung Henry Chu

Image Segmentation by
Autoregressive Time Series Model 161
Pei-Gee Peter Ho

Evolutionary-based Image Segmentation Methods 179
Licheng Jiao

Segmentation of Handwritten 
Document Images into Text Lines 225
Vassilis Katsouros and Vassilis Papavassiliou

IR Image Segmentation by Combining Genetic 
Algorithm and Multi-scale Edge Detection 241
Li Zhaohui and Chen Ming

Segmentation of Remotely Sensed Imagery:
Moving from Sharp Objects to Fuzzy Regions 249
Ivan Lizarazo and Paul Elsner

Color-based Texture Image Segmentation
for Vehicle Detection 273
Ricardo Mejía-Iñigo, María E. Barilla-Pérez 
and Héctor A. Montes-Venegas

Image Segmentation Applications 291

An Enhanced Level Set Algorithm
for Wrist Bone Segmentation 293
Donatello Conte, Pasquale Foggia, 
Francesco Tufano and Mario Vento

Mineral Grain Boundary Detection With Image
Processing Method: From Edge Detection
Operation To Level Set Technique 309
Bibo Lu and Weixing Wang

Multiscale Segmentation Techniques for Textile Images 327
Xiqun Lu

JSEG Algorithm and Statistical ANN Image 
Segmentation Techniques for Natural Scenes 343
Luciano Cássio Lulio, Mário Luiz Tronco 
and Arthur José Vieira Porto

Chapter 8

Chapter 9

Chapter 10

Chapter 11

Chapter 12

Chapter 13

Chapter 14

Part 3

Chapter 15

Chapter 16

Chapter 17

Chapter 18

Contents XI

Image Segmentation of Ziehl-Neelsen 
Sputum Slide Images for Tubercle Bacilli Detection 365
R. A. A. Raof, M. Y. Mashor, R. B. Ahmad and S. S. M. Noor

Image Segmentation Based 
on a Two-Dimensional Histogram 379
Masmoudi Lhoussaine, Zennouhi Rachid and Mohamed EL Ansari

Segmentation Methods for Biomedical Images 389
Roberto Rodríguez Morales

Algorithm Selection Based on a Region Similarity 
Metric for Intracellular Image Segmentation 419
Satoko Takemoto and Hideo Yokota

Extraction of Estuarine/Coastal Environmental 
Bodies from Satellite Data through 
Image Segmentation Techniques 435
Ana Teodoro and Hernâni Gonçalves

Rock Fracture Image Segmentation Algorithms 459
Weixing Wang

Image Segmentation Integrating Generative
and Discriminative Methods 489
Yuee Wu and Houqin Bian

Pixon-Based Image Segmentation 495
Hamid Hassanpour, Hadi Yousefian and Amin Zehtabian

Hardware Implementation 517

Hardware Implementation of a Real-Time 
Image Segmentation Circuit based on Fuzzy Logic 
for Edge Detection Application 519
Angel Barriga

Chapter 19

Chapter 20

Chapter 21

Chapter 22

Chapter 23

Chapter 24

Chapter 25

Chapter 26

Part 4

Chapter 27



Preface

It was estimated  that 80% of the information received by human being is visual. Image 
processing is evolving fast and continually. During the past 10 years, there has been a 
signi cant increase in knowledge-based image analysis, image recognition as well as 
image segmentation. To study a specic object in an image, its boundary can be high-
lighted by an image segmentation procedure.

The objective of the image segmentation is to simplify the representation of pictures 
into meaningful information by partitioning into image regions. Image segmenta-
tion is a technique to locate certain objects or boundaries within an image. There are 
many algorithms and techniques have been developed to solve image segmentation 
problems, though, none of the method is a general solution. Among the best, these 
are neural networks segmentation, one-dimensional signal segmentation, multi-scale 
segmentation, model based segmentation, graphic partitioning, region growing and 
K-mean clustering segmentation methods.

This book brings together many different aspects of the current research on several
elds associated to digital image segmentation. Four main parts have been de ned 
and allowed gathering the 27 chapters around the following topics: Survey of Image 
Segmentation Algorithms, Image Segmentation methods, Image Segmentation Appli-
cations and Hardware Implementation of Image Segmentation.

The book starts with a rst set of chapters which addresses most recent general ap-
proaches in the image segmentation elds. One can nd discussion about various new 
trends on image segmentation techniques. The evolutionary image segmentation algo-
rithms and methods are presented next. Recently the most used approach in segmenta-
tion of medical images is the level set which is based on optimization mathematics. A 
segmentation of the image plane is computed by locally minimizing an appropriate en-
ergy functional E(C) by evolving the contour C of the region to be segmented starting 
from an initial contour. In general, this method may use either an explicit (parametric) 
or implicit representation of the contours. The active contour (also called snakes) image 
segmentation scheme is very popular in medical surgery these days. The basic idea of 
the dual snakes is to reject local minima by using two contours: one which contracts 
from outside the target and one which expands from inside. Such proposal makes pos-
sible to reduce the sensitivity to initialization through the comparison between the two 
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XIV Preface

contours energy and positions. The newly developed combined Autoregressive time 
series imaging modeling with either region growing or Support Vector Machine as 
classi ers are detailed in one of the book chapter. In order to solve the image segmen-
tation thresholding problem , a new way of  using an optimization algorithm based 
on learning automata for multilevel thresholding is proposed in one chapter of this 
book. The pixon concept based on  a set of disjoint regions with constant shapes and 
variable sizes was introduced in 1993 to decreases the computational time on image 
segmentation. A few innovative methods to improve the effi  ciency are also included.  
Nevertheless, the image segmentation applications that demand constrained response 
times, the speci c hardware implementation is required. In this book, the chapter ti-
tle “Hardware Implementation of a Real-Time Image Segmentation Circuit based on 
Fuzzy Logic for Edge Detection Application” provides the hardware approach for im-
age segmentation.

Last, but not the least, we would like to thank all contributors to this book for their re-
search, Intech publisher CEO Dr. Aleksandar Lazinica and Ms. Ivana Lorkovic for their 
publishing eff ort. I am sure that you will enjoy reading this book and get many helpful 
ideas and overviews on your own study.

Pei-Gee Peter Ho, Ph.D.
DSP Algorithm development group

Naval Undersea Warfare Center at Newport RI, 
USA
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A Survey of Image Segmentation by the 
Classical Method and Resonance Algorithm 

Fengzhi Dai1, Masanori Sugisaka2 and Baolong Zhang3 

1Tianjin University of Science and Technology 
2Nippon Bunri University, ALife Robotics Co., Ltd 

3Tianjin University of Science and Technology, GianTOPtics Technology Co., Ltd 
1,3China 

2Japan 

1. Introduction    
Computer vision and recognition plays more important role on intelligent control (Chen & 
Hwang, 1998). For an intelligent system, it is necessary to acquire the information of the 
external world by sensors, to recognize its position and the surrounding situation. Camera is 
one of the most important sensors for computer vision. That is to say, the intelligent system 
endeavours to find out what is in an image taken by the camera: traffic signs, obstacles or 
guidelines.  
For image analysis, image segmentation is needed, which means to partition an image into 
several regions that have homogeneous texture feature. This process is usually realized by the 
region-based, boundary- based or edge-based method (Castleman, 1998). And from the 
viewpoint of clustering, it is divided into supervised and unsupervised texture segmentation. 
Since before segmentation, the intelligent control system seldom knows the feature of the 
image, e.g. which type and how many types of textures exist in an image, thus the 
unsupervised segmentation algorithm is always needed, although it is more difficult than 
the supervised method (Dai, Zhao & Zhao, 2007). 
In this chapter, the classical method (Agui & Nagao, 2000) and the resonance theory (Heins 
& Tauritz, 1995; He & Chen, 2000) are proposed respectively for image segmentation. The 
classical method is simple but practicable, which will be introduced in section 2. But for 
some situations, it is not suitable for complex image segmentation (e.g., the gradient 
variations of intensity in an image). 
We know that human vision can recognize the same texture that has gradient variations of 
intensity. And many image segmentation methods are proposed based on the change of 
intensity (Nakamura & Ogasawara, 1999; Deguchi & Takahashi, 1999). But they always fail 
to handle the wide-ranged gradations in intensity (Jähne, 1995). It is usually difficult to give 
a suitable threshold for pixel-based image processing methods to deal with this gradation. 
Resonance algorithm is an unsupervised method to generate the region (or feature space) 
from similar pixels (or feature vectors) in an image. It tolerates gradual changes of texture to 
some extent for image segmentation. The purpose of section 3 is to propose the resonance-
theory-based method for image segmentation, which means that the same texture in an 
image will be resonated into one region by seed pixels. This method assumes that the 
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differences of feature between adjacent pixels of the same texture must be within a tolerable 
range. Thus the selection of feature distance to segment them is important. 
In this chapter, Section 2 introduces the classical method. Section 3 gives the resonance 
theory and the algorithm for image segmentation. Section 4 is the conclusion. 

2. The classical method 
2.1 The principle 
This section introduces the classical method for image segmentation, and the example is to 
recognize the simple characters (the digit and letter). Recognizing the whole word needs to 
segment it into the characters 0 to 9, a to z, or A to Z firstly. The principle (Agui, Nakajima & 
Kimi, 1990; Tanaka, 1989) and a result of segmentation is shown in Fig. 1. This section is 
simple but is the original meaning of image segmentation, which is useful when the reader 
wants to understand image segmentation clearly.  
 

 
Fig. 1. The principle of segmentation 
Fig. 1. gives the example of the digit segmentation. In the image there are some digits but as 
the image style, not the character. If the computer or intelligent system wants to recognize 
these digits autonomously, first image segmentation is needed to search and locate each 
digit, and then recognize them.  
The method is that it calculates the values of the pixels by searching the X-axis and Y-axis to 
find the neighboring distribution of the digits (looking for the break of the character). 
For each line (row and column) where there is a character, it appears that the values of 
pixels is not 0. If there are blanks, it means that they are the space between one character 
and another. Thus it gives the position of the break of the characters. In Fig. 1, there are four 
rows and four columns of digits. 

2.2 Image segmentation 
If there are several targets in an image, image segmentation is necessary: locating and 
isolating the targets in an image and then identifying them. Once isolated, the targets can be 
measured and classified. The general image segmentation algorithm (Agui, Nakajima & 
Kimi, 1990) is shown in Fig. 2a. And Fig. 2b is the result of segmentation for the word ‘R05’. 
Table 1 gives the segmented result. The steps for character segmentation are divided into 2 
steps: 
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                             (a) Principle                                                         (b) Segmentation result      

Fig. 2. The classical image segmentation algorithm 
 

Result for Fig. 2a Result for Fig. 2b 
There are two rows. 
row-0 has two targets, 
row-1 has two targets. 

There is One row. 
row-0 has three target. 

(top, bottom, left, right) is (top, bottom, left, right) is 

row-0, col-0:  F 
(line[0].starty, 
line[0].endy, 
line[0][0].startx, 
line[0][0].endx) 

row-0, col-1:  L 
(line[0].starty, 
line[0].endy, 
line[0][1].startx, 
line[0][1].endx) 

row-1, col-0:  7 
(line[1].starty, 
line[1].endy, 
line[1][0].startx, 
line[1][0].endx) 

row-1, col-1:  6 
(line[1].starty, 
line[1].endy, 
line[1][1].startx, 
line[1][1].endx) 

row-0, col-0:  R 
(line[0].starty, 
line[0].endy, 
line[0][0].startx, 
line[0][0].endx) 

row-0, col-1:  0 
(line[0].starty, 
line[0].endy, 
line[0][1].startx, 
line[0][1].endx) 

row-0, col-2:  5 
(line[0].starty, 
line[0].endy, 
line[0][2].startx, 
line[0][2].endx) 

Table 1. Segmented result of Fig. 2a, b 

1. Search the screen from top to bottom line-by-line horizontally to find the start and the 
end line that contains how many rows of characters: the variables are line[0].starty, 
line[0].endy, line[1].starty and line[1].endy in Fig. 2a, which means that the image 
contains two rows of characters. The horizontal location of the first row of characters is 
from line[0].starty to line[0].endy, the second is from line[1].starty to line[1].endy, 
respectively. 

2. For each row of characters, search the image from left to right vertically to locate and 
calculate how many characters in each row. For example, in Fig. 2a for characters within 

line[0].starty 

line[1].starty 
line[0].endy 

line[1].endy 
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differences of feature between adjacent pixels of the same texture must be within a tolerable 
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Fig. 1. The principle of segmentation 
Fig. 1. gives the example of the digit segmentation. In the image there are some digits but as 
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these digits autonomously, first image segmentation is needed to search and locate each 
digit, and then recognize them.  
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2.2 Image segmentation 
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Fig. 2. The classical image segmentation algorithm 
 

Result for Fig. 2a Result for Fig. 2b 
There are two rows. 
row-0 has two targets, 
row-1 has two targets. 

There is One row. 
row-0 has three target. 

(top, bottom, left, right) is (top, bottom, left, right) is 

row-0, col-0:  F 
(line[0].starty, 
line[0].endy, 
line[0][0].startx, 
line[0][0].endx) 

row-0, col-1:  L 
(line[0].starty, 
line[0].endy, 
line[0][1].startx, 
line[0][1].endx) 

row-1, col-0:  7 
(line[1].starty, 
line[1].endy, 
line[1][0].startx, 
line[1][0].endx) 

row-1, col-1:  6 
(line[1].starty, 
line[1].endy, 
line[1][1].startx, 
line[1][1].endx) 

row-0, col-0:  R 
(line[0].starty, 
line[0].endy, 
line[0][0].startx, 
line[0][0].endx) 

row-0, col-1:  0 
(line[0].starty, 
line[0].endy, 
line[0][1].startx, 
line[0][1].endx) 

row-0, col-2:  5 
(line[0].starty, 
line[0].endy, 
line[0][2].startx, 
line[0][2].endx) 

Table 1. Segmented result of Fig. 2a, b 

1. Search the screen from top to bottom line-by-line horizontally to find the start and the 
end line that contains how many rows of characters: the variables are line[0].starty, 
line[0].endy, line[1].starty and line[1].endy in Fig. 2a, which means that the image 
contains two rows of characters. The horizontal location of the first row of characters is 
from line[0].starty to line[0].endy, the second is from line[1].starty to line[1].endy, 
respectively. 
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line[0].starty and line[0].endy, there are two letters in this row. They are the letter ‘F’ 
from line[0][0].startx to line[0][0].endx, and ‘L’ from line[0][1].startx to line[0][1].endx. 
Thus each character (letter or digit) can be segmented. 

2.3 An experimental result 
Fig. 3 shows an experiment (including the image sampling, processing, segmentation and 
recognition), which is to segment the image and then recognize each character one by one.  
 

 
Fig. 3. An example of the classical image segmentation 
In Fig. 3, part 1 is the image sampling and segmentation. The top-left window in part 1 gives 
the image sampled directly from the camera. After image processing, the segmented result 
is shown in the top-right window (Dai, Shimogaki & Fujihara, 2008). 
Part 2 in Fig. 3 shows some parameters for image processing. These parameters can be 
adjusted based on environment in real time, so that the result of image processing is good 
enough to segmentation. 
Part 3 is the process for character recognition. The feature vector of each segmented character 
is extracted and then matches it to the templates. By the template matching method (Snyder & 
Qi, 2004), each digit or letter can be recognized respectively, and then the whole meaning of 
the word can be understood by combination of the meaning of each character.  

2.4 Problem of the classical method 
From the above explanation, we see that the classical method is really simple but 
practicable. It can segment the characters in an image by locating and calculating how many 
rows of characters, and how many characters in each row. 

Part 1

Part 2

Part 3
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But this method cannot segment the characters in Fig. 4 correctly.  Since the classical method 
cannot correctly divide the image into two rows of character (the numbers “127” and “305”) 
by any horizontal line (the dashed lines), the wrong result is appeared: all the characters in 
the image are recognized into one row. Of cause the correct number cannot be gotten. 
 
 

 
Fig. 4. An example for wrong segmentation by the classical method 

3. Resonance theory and algorithm 
3.1 Resonance theory 
The resonance theory (He & Chen, 2000) can be expressed in Fig. 5. Assumes that in a scene 
of space, each point has a mass m. These points are not isolated from each other but inter-
connected by inter-force. In Fig. 5, two points (a) and (b) are given and the distance between 
them is d.  
 

 
Fig. 5. Resonance theory 

If an externally sinusoidal force F adds to the point (a), the movement of the point (a) can be 
expressed by 

d 

(a)                           (b) 

m             m

line[0].starty

line[0].endy
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b, k are the parameters of the system and point, the values of which are not important to the 
following explanation. y and y means the first and second-order derivatives with respect to 
the time t for the motive distance y. The frequency of force F is w. Its stable solution is 

 ( ) sin( )y t A wt θ= +   (2) 
where  

 2 2 2 2 2 2
0/ ( )A F m w w b w= − +   (3) 

is the oscillating amplitude. θ is the initial phase, w0 = /k m  is called the natural frequency. 
From Eq. (3), if the frequency of the external force F (to the point (a)) is equal to the natural 
frequency w0, the amplitude A has the maximal value, and this case is called the resonance 
between the external force and the point (a). 
Since we have assumed that the points are not isolated, the motion of the point (a) will result 
in the spreading of its effect to other points that are around it. This is the resonance among 
the points, which is the theory for image segmentation proposed in section 3.2 to 3.4. From 
the analysis of the resonance mechanics (He & Chen, 2000), the amplitude of point (b) with 
the distance of d from (a) has the feature of 

 distance ) (point a) /dA A d= ∝(   (4) 

From the above analysis, if we assume that point (a) is the source to resonate and another 
point (b) can be largely affected, then the difference between the external frequency and the 
natural frequency, and the distance d between those two points should be small sufficiently. 
These two conditions can be satisfied by: 
1. A threshold is set to ensure the difference of external frequency from the natural 

frequency is small enough. 
2. The resonance algorithm is used within the adjacent points (in image segmentation) to 

ensure the distance between them is small enough. 

3.2 Resonance algorithm 
By the spreading of the resonance, the adjacent points that have the same or similar feature 
(e.g. texture in an image) are clustered into one region. It seems like the general region 
growing algorithm (Castleman, 1998; Jähne, 1995), but they are essentially different.  
Region growing method partitions an image by the threshold directly: in an image, defining 
the maximum and minimum thresholds for each region to segment them. If an image 
contains complex color (or gray level) gradation, the selection of threshold is difficult. 
Differently, the resonance algorithm emphasizes the similarity between the adjacent points, 
not the threshold for global usage. And the resonance can be spread from point to point. 
Thus the problem caused by gradation in intensity can be solved. Only the sudden change 
of features between adjacent points can be regarded as the boundary of different regions. 
Define ( , )P a bδ as the path between the point a and b (a and b need not to be adjacent) under 
the threshold δ (the value to estimate the difference of features between two adjacent 
points). If there are sequences of adjacent points connecting between a and b, all of which 
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have the same features or have different features between the adjacent points but below δ, 
they form the connected path by the determination of the path between point a and b. 
And if s is a point in an image, all points xi that satisfies ( , )iP s xδ will form the region ( )R sδ . 
The point s is always called as seed (Dai, Zhao & Zhao, 2007; He & Chen, 2000). Remember 
that the region ( )R sδ is not centered by the point s, but refers to a region that all points in 
which have the same features to s, or the difference of features between adjacent points 
below δ. 
Now the principle of the resonance algorithm for image segmentation is clear (in image 
processing, the point is called pixel): From one or some seed pixels, the adjacent pixels that 
belong to the same region under δ are clustered until all the pixels are searched. 
From the above definitions and the transfer of resonance, we see that the selection of seeds 
does not influence the segmentation result in an image.  
Fig. 6 gives the expression of the resonant process. In Fig. 6, a is the seed pixel, from which 
to resonate all the space in the image. 
 

 
Fig. 6. Resonance process 

By comparing with the difference of feature values between the point a and the adjacent 
pixels, all the pixels in ( , )iP a xδ  are labeled to belong to one region, e.g. ( )R aδ  (Regin-1) = {a, 
xi (i = 1,…,n)}. Next, from xn to the pixel b, the difference between them is larger than δ, b is 
defined as a pixel belonging to a new region, e.g. ( )R bδ  (Region-2) = {b, yj (j = 1,…,m)}, all 
the pixels in which are ( , )jP b yδ . The same is to ( )R cδ  (Region-3) = {c, zk (k = 1,…,l)} that are 

( , )kP c zδ  until all the pixels are labeled. The selection of seeds will not affect the result of 
segmentation. 
From Fig. 6, although the pixel d has the same feature to Region-1, since it is far from Region-1 
and is segmented by other regions, by the resonance theory, the pixel d cannot be resonated by 
any pixel in Region-1. Thus a new region creates from the point d. That is to say, the number of 
the segmented regions in an image does not absolutely equal to the number of real different 
texture types. In fact, this is not the weakness of the algorithm. Just as this case, it clearly 
shows that between Region-1 and the pixel d, there must exist some other textures. 
Thus by the resonance theory, the resonance algorithm is determined by three important 
elements:  
1. One or several seed points,  
2. The features to determine the difference between points, 
3. The parameter of the threshold δ. 
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And the steps of the resonance algorithm for image segmentation are: 
1. Initialization. (0)Rδ . 
2. Segmentation. Find new region ( )R iδ . 
3. Termination after having searched all pixels. 

4. Result. 
0

( )
M

i
R R iδ

=
= ∪ . 

Thus we see that this method is to find a harmonious threshold within adjacent points, not 
to estimate a global value. Fig. 7 gives the flow chart of the resonance algorithm for image 
segmentation. 
 

 
Fig. 7. Resonance algorithm 

3.3 Selection of elements 
Selection of the three elements of the resonance algorithm will be considered in this section. 
First, we see that from the resonance theory and the transfer of resonance, the initial place of 
the seed does not influence the segmentation result in an image. Thus the seed can be 
selected randomly. 
The threshold δ is important in the resonance algorithm. Too large will include surplus 
regions into one while too small reject some points that belong to the same region. δ should 
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be larger than the distance in one region and less than the difference between two different 
regions. But different images, or different regions in one image, may have different 
thresholds. We propose an automatic selection method for δ. 
Since δ is used to partition the different regions in an image, it is rather a range of values 
(determine the maximum and minimum values) than a fixed value to ensure the points have 
the same or similar features in one region. 
If δ for different regions in an image are selected well, then all the regions are segmented 
stably. That is to say, when the correct δ varies by a small value, the change of regions in an 
image is not distinct. Other word is that if the selection of δ is incorrect, a small change of it 
may vary the area of region greatly. This is the influence of δ for the region segmentation, 
and comparatively, it can be used as criterion to estimate δ. 
Since the suitable threshold should be selected to ensure greater than the intra-region 
feature difference and less than the inter-region feature differences (Castleman, 1998; He & 
Chen, 2000), from the initial seeds, the resonance begins from the current region to extend to 
other regions with the rise of δ. 
Fig. 8 is an example. In a unit square, three different regions are in it: the black, the gray and 

white region. The area of black is Sblack = 1 1 1 0.25
2 2 4
× = = , the area of gray is Sgray = 

black

3 3 5 0.3125
4 4 16

S× − = = , and the white Swhite = 3 3 71 0.4375
4 4 16

− × = = . 

 

 
Fig. 8. δ - area curve 

Fig.8b gives the δ-area curves of Fig.8a for the seed point selected in the top-left and bottom-
right corner respectively, from which we see that the selection of seeds will affect the 
parameter δ, but not affect the segmentation result (He & Chen, 2000). 
Another element for resonance is the selection of features to estimate whether the distance 
between two adjacent points is below δ or not. In fact, it can be chosen by any features of the 
image, and the different selection of features results to different threshold δ. In this chapter, 
the eight-connectivity is used to connect the pixels of the object. 
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3.4 Image segmentation 
When there are multi-objects in an image, image segmentation is necessary: locating and 
isolating the objects from the image and then identifying them. Once isolated, the objects 
can be measured and classified. The correct segmentation should be that it divides the image 
S into several independent regions {S1, S2, …, Sn}, each region represents one kind of 
textures (Tanaka, 1989). 
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Pr(x) is the probability of the existence of x and Φ is the null set. 
Fig. 9a (a strong light is given behind the right hand of the black rectangle) is always used to 
compare the results among different image processing algorithms, which is the scene of 
setting the experiment. Fig. 9b is the original experimental image extracted from Fig. 9a. 
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By using the resonance algorithm proposed in the chapter, the segmentation result is given 
in Fig. 9c, in which the effect of light is removed, so that the background is in one region. A 
compared result is given in Fig. 9d by the reinforcement histogram algorithm (Castleman, 
1998), which shows that the background is difficult to be clustered into one region. 

3.5 The experiment 
In this section, compared to the conventional method, the natural image in real environment 
will be applied to analyze the resonance algorithm for image segmentation. 
Fig. 10 shows the source image and the segmentation result (Dai, Fujihara & Sugisaka, 2008). 
In the original image of Fig. 10a, sky and trees are two main regions, while the color of the 
sky is varied gradually by clouds. 
Fig. 10b is the result after segmented by the proposed resonance algorithm. We adopt the 
gray level as the feature and the seed pixel is selected from the top-left corner of the image. 
The image is divided into three parts. The sky is separated into part-1 and 3 by a trunk of 
tree in the image. Part-2 is the region of trees. The influence of clouds is greatly eliminated 
because the resonance algorithm can handle gradual changes of intensity. 
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Fig. 10. Image segmentation: (a) color image, (b) by the resonance algorithm, (c) by the 
histogram analysis 
Also if we do not satisfy that the sky is separated, the part-1 and 3 can be combined by the 
later processing easily, because the features of them are the same. The compared result is 
given by Fig. 10c, which is produced by the general histogram analysis method. It shows 
that the influence of the clouds cannot be ignored. 

4. Conclusion 
In this chapter, first the classical method for image segmentation is introduced. It is suitable 
for digit or letter segmentation and the program to realize the method is easy to be 
composed. But it still has some limitations. 
In the second part of the chapter, the resonance theory and algorithm, and the three 
important elements of resonance are introduced.  
The unsupervised resonance algorithm is proposed for complex image segmentation, which has 
the feature to eliminate the influence of gradual changes of texture in intensity to some extent. 
The resonance algorithm for image segmentation is to search the same or similar texture 
pixels (among the adjacent pixels) so as to cluster them into one region: the resonance is 
spread among all the pixels within the image. 
The compared result is also given and shows that the resonance algorithm emphasizes the 
similarity among the adjacent pixels rather than the global threshold values, and the 
segmentation result is satisfied. But there are some problems still existed to be solved: 
1. How to select the parameter δ more correctly, 
2. How to improve the program to fasten the algorithm. 
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1. Introduction    
In the context of biomedical imaging analysis and computer-assisted diagnosis, 
segmentation analysis is an intense field of research and development. The most difficult 
part of medical image analysis is the automated localization and delineation of structures of 
interest. Automated data evaluation is one way of enhancing the clinical utility of 
measurements. In particular, medical image segmentation extracts  meaningful information 
and facilitate the display of this information in a clinically relevant way. A crucial role for 
automated information extraction in medical imaging usually involves the segmentation of 
regions of the image in order to quantify volumes and areas of interest of biological tissues 
for further diagnosis and localization of pathologies.  
Optical coherence tomography (OCT) is a powerful imaging modality used to image various 
aspects of biological tissues, such as structural information, blood flow, elastic parameters, 
change of polarization states and molecular content (Huang et al., 1991). OCT uses the 
principle of low coherence interferometry to generate two or three dimensional imaging of 
biological samples by obtaining high-resolution cross-sectional backscattering profiles. A 
variety of successful algorithms for computer-aided diagnosis by means of OCT image 
analysis are presented in the literature, but robust use in clinical practice is still a major 
challenge for ongoing research in OCT image analysis. There are, therefore, efforts being 
made to improve clinical decision making based on automated analysis of OCT data. 
Particularly, in ophthalmology, efforts have been made to characterize clinically important 
features, such as damage to the fovea and optic nerve, automatically. 
The transfer of image analysis models from algorithmic development into clinical 
application is currently the major bottleneck due to the complexity of the overall process. 
For example, the process to establish an application for OCT medical image analysis 
requires difficult and complex tasks that should considers the following actions: 1) to define 
the OCT image data structures representing relevant biomedical features and the algorithms 
determining a valid example for given image values, 2) to select meaningful values for all 
technical parameters of the image data structures and algorithms and, as a result, to 
configure such a method to operate on specific OCT clinical data, 3) to run the algorithm 
with the selected parameters to find the individual model instance that best explains the 
input image and 4) to validate the procedure to ensure a trustworthy result from an 
automated segmentation algorithm even if a gold standard is unavailable.  
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1. Introduction    
In the context of biomedical imaging analysis and computer-assisted diagnosis, 
segmentation analysis is an intense field of research and development. The most difficult 
part of medical image analysis is the automated localization and delineation of structures of 
interest. Automated data evaluation is one way of enhancing the clinical utility of 
measurements. In particular, medical image segmentation extracts  meaningful information 
and facilitate the display of this information in a clinically relevant way. A crucial role for 
automated information extraction in medical imaging usually involves the segmentation of 
regions of the image in order to quantify volumes and areas of interest of biological tissues 
for further diagnosis and localization of pathologies.  
Optical coherence tomography (OCT) is a powerful imaging modality used to image various 
aspects of biological tissues, such as structural information, blood flow, elastic parameters, 
change of polarization states and molecular content (Huang et al., 1991). OCT uses the 
principle of low coherence interferometry to generate two or three dimensional imaging of 
biological samples by obtaining high-resolution cross-sectional backscattering profiles. A 
variety of successful algorithms for computer-aided diagnosis by means of OCT image 
analysis are presented in the literature, but robust use in clinical practice is still a major 
challenge for ongoing research in OCT image analysis. There are, therefore, efforts being 
made to improve clinical decision making based on automated analysis of OCT data. 
Particularly, in ophthalmology, efforts have been made to characterize clinically important 
features, such as damage to the fovea and optic nerve, automatically. 
The transfer of image analysis models from algorithmic development into clinical 
application is currently the major bottleneck due to the complexity of the overall process. 
For example, the process to establish an application for OCT medical image analysis 
requires difficult and complex tasks that should considers the following actions: 1) to define 
the OCT image data structures representing relevant biomedical features and the algorithms 
determining a valid example for given image values, 2) to select meaningful values for all 
technical parameters of the image data structures and algorithms and, as a result, to 
configure such a method to operate on specific OCT clinical data, 3) to run the algorithm 
with the selected parameters to find the individual model instance that best explains the 
input image and 4) to validate the procedure to ensure a trustworthy result from an 
automated segmentation algorithm even if a gold standard is unavailable.  
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This chapter is intended to give a broad, but by no means complete, overview over common 
segmentation methods encountered in OCT retinal image processing. To do this, some 
algorithms that are representative for each class in some detail are described. In addition an 
understanding of the original derivation and motivation of each algorithm is provided, 
instead of merely stating how each method functions. This is of high importance in order to 
get an idea where and under what circumstances a method can function and when one can 
expect an algorithm to fail. To briefly motivate why one should consider different 
segmentation algorithms, consider the example of a 2D OCT image in Fig. 1. Simple 
thresholding can be used to mark the locations of the inner and outer boundaries of the 
retina in this OCT image. But some boundary sections  are not properly identified due to 
poor contrast or low resolution, making it impossible to identify the exact extent of the 
retina in this image (see Fig.1A). Since these boundaries are found by a threshold procedure, 
their estimated locations could be sensitive to relative differences in reflectance between the 
outer and deeper retinal structures. By choosing a different segmentation algorithm (see Fig. 
1B), identification of the retinal boundaries can be improved (Cabrera Fernández et al., 
2005b). All segmentation methods that have been proposed in the literature aim at 
improving retinal image segmentation in this or other aspects. The causes for problems such 
as the ones in Fig. 1 can by manifold, many times being inherent to the respective image 
acquisition method itself.  
 

 
Fig. 1. Segmentation results showing the performance of the Stratus OCT custom built-in 
algorithm compared to the results using a custom algorithm. A) Macular scan obtained from 
a healthy eye. Note the misidentification of the outer boundary of the retina outlined in 
white. B) Results obtained for the same eye using a custom algorithm. Note that the custom 
algorithm was able to correctly detect the outer boundary of the retina. 

The chapter is organized as follows. The next section continues with an outline of current 
retinal imaging modalities. Section 3 explains the physical principles and technical details of 
how OCT works. The interpretation of the OCT image along with the current and future 
technology development of OCT systems is also presented in this section. Section 4 provides 
the necessary background about medical image segmentation approaches. A review of 
algorithms for segmentation of retinal image data using OCT is presented in Section 5. All 
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published (within the author's awareness) papers related to retinal image segmentation are 
gathered into this single compilation. Section 6 offers some concluding remarks. 

2. Current retinal imaging modalities 
Millions of people worldwide live with retinal disease and the accompanying threat of 
severe vision loss or blindness.  During the last few years, the retinal research field has 
undergone a dramatic change in terms of diagnostic tools and therapies that have resulted 
in substantial benefits for patients suffering from retinal disease. Traditionally the retina has 
been observed either directly via an ophthalmoscope or similar optical devices such as the 
fundus camera. The field of ophthalmology was revolutionized in 1851 with the invention of 
the ophthalmoscope by Hermann von Helmholtz (von Helmholtz, 1851) as for the first time 
detailed examinations of the interior of the eye could be made in living patients. The 
ophthalmoscope and later the fundus camera remained the primary methods of ocular 
examination into the 1960’s, and they are standard tools still effective and in use today, 
although they are not without limitations, and both require trained users to operate and 
make diagnoses.  
With advances in medical technology, more powerful techniques were introduced. In 1961 
fluorescein angiography was developed by Novotny and Alvis, a procedure in which 
sodium fluorescein is injected into a vein, and under filtered light the sodium fluorescein 
within the blood fluoresces, glowing brightly and providing easily observed patterns of 
blood flow within the eye (Novotny & Alvis, 1961). This allows the arteries, capillaries and 
veins to be easily identified and photographed, and from this, large amounts of information 
concerning the health or otherwise of the circulatory system can be determined.  
During the 1990’s the indocyanine green dye angiography technique was developed; 
similarly to the flourescein angiography a dye is injected into the bloodstream, however the 
indocyanine green dye glows in the infra-red section of the spectrum. The indocyanine 
green dye approach only came into widespread use when digital cameras sensitive into the 
infra-red became commonly available, and it complements fluorescein angiography by 
highlighting different aspects of the vasculature of the eye. In particular it enhances the 
structure of the choroid, which is the layer of blood vessels beneath the retina. These two 
techniques can be used together to gain a more thorough understanding of the structure and 
pathologies affecting an eye. They can illustrate patterns of blood flow, haemorraging and 
obstructions within the vascular system, but, like the ophthalmoscope, both require trained 
medical staff to perform the procedure, and a clinical environment where the images can be 
taken and analyzed. In addition to these methods for observing the vasculature of the eye 
there are a range of other, more advanced, methods of mapping structures and changes 
within the eye, including ultrasound, OCT and laser-based blood flowmeters in 
development and in use. All of these can be used to scan the eye and make observations and 
diagnoses on the eye and circulatory system. Specifically, the introduction of OCT imaging 
in daily routine have resulted in some of the central changes to retinal disease 
understanding and management. Figure 2 shows the operational range of the OCT 
technology compared to standard imaging.  
OCT is a rapidly emerging medical imaging technology that has applications in many 
clinical specialties. OCT uses retroreflected light to provide micron-resolution, cross-
sectional scans of biological tissues (Hee et al., 1995; Huang et al., 1991; Izatt et al., 1994a). 
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Fig. 2. OCT vs. standard imaging. 

The first micron-resolution OCT system for imaging human retina in vivo was introduced in 
1991 (Huang et al., 1991). In ophthalmology; OCT is a powerful medical imaging technology 
because it enables visualization of the cross- sectional structure of the retina and anterior eye 
with higher resolutions than any other non-invasive imaging modality (Huang et al., 1991). 
The depth resolution of OCT is extremely fine, typically on the order of 0.01mm or 0.4 
thousandth of an inch. An OCT image represents a cross-sectional, micron scale picture of 
the optical reflectance properties of the tissue (Huang et al., 1991). This image can either be 
used to qualitatively assess tissue features and pathologies or to objectively make 
quantitative measurements. 
While this is just a brief introduction to some of the diagnostic tools available to obtain 
retinal images, to draw diagnoses from these images requires specialist training, and to 
adequately extract and track the retinal damage from the images often takes extensive image 
processing and analysis. Once automatic image analysis is possible, those at risk of 
numerous diseases and problems of the retinal tissue can be rapidly identified and referred 
for further treatment. The development of this methodology would also allow automated 
tracking of the progress of such health problems as diabetic retinopathy, and track changes 
in the eyes as the subject ages. This would have numerous health benefits, including 
providing an early prediction of retinal diseases. 
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The clinical potential of OCT technology in ophthalmology was originally recognized in the 
early 1990s.  OCT is an extension of optical coherence domain reflectometry to imaging in two 
or three dimensions (Brezinski et al., 1996). This imaging technique generates a cross-sectional 
image by recording axial reflectance profiles while the transverse position of the optical beam 
on the sample is scanned. Thus, the longitudinal location of tissue structures are determined 
by measuring the time-of-flight delays of light backscattered from these structures. The optical 
delays are measured by low coherence interferometry. Light reflected from deeper layers has a 
longer propagation delay than light reflected from more superficial layers. 
Conventional or time domain OCT (TDOCT) is based on the principle of low coherence 
interferometry which is a powerful tool to section a transparent object. Low coherence 
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means that the system employs a wide range of wavelengths. The most straightforward and 
currently the most common interferometer for OCT is a simple Michelson interferometer 
(see Fig 3) (Michelson & Morley, 1887). A low-coherence source illuminates the 
interferometer. The light is split by a 50/50 beamsplitter into a sample and a reference path. 
Light retroreflected from the reference and the sample is recombined at the beamsplitter and 
half is collected by a photodetector in the detection arm of the interferometer. Half of the 
light is returned towards the source, where it is lost. In addition, the reference arm light is 
typically attenuated by orders of magnitude in order to improve signal to noise ratio. 
 

 
Fig. 3. Schematic drawing of the principle of OCT emphasizing how it is essentially a 
Michelson intereferometer. The outgoing light paths are solid lines, while reflected light is 
drawn as dashes lines. 

The axial resolution of an OCT image depends on the coherence length which is a 
fundamental property of the light source, whereas transverse resolution for OCT imaging is 
determined by focused spot size, as in microscopy. By rapidly varying the reference arm 
mirror and synchronously recording the magnitude of the resulting interference signal, a 
single axial profile or A-scan is obtained which is a graph of the optical reflectivity versus 
distance in the eye. A sequence of such A-scans is obtained by scanning the probe beam 
across the entire retina which forms a B-scan tomogram. As a result, a cross-sectional view 
of the structure similar to a histology section is obtained.  
OCT can be used for retinal imaging and  anterior segment imaging. The OCT for 
ophthalmic examination is similar to a slit lamp for anterior segment imaging and a fundus 
camera for retinal imaging. The instrumentation includes a video display for operator 
viewing of the anterior segment or fundus while obtaining the OCT images and a 
simultaneous computer display of the tomograms. Images are stored via computer for the 
diagnostic record (Puliafito, 1996). 

3.1 Interpreting OCT images 
The OCT signal from a particular tissue layer is a combination of its reflectivity and the 
absorption and scattering properties of the overlying tissue layers. Strong reflections occur at 
the boundaries between two materials of different refractive indices and from a tissue that has 
a high scattering coefficient along with a disposition to scatter light in the perfectly backward 
direction (Huang et al., 1991; Puliafito, 1996 ). Thus, an OCT image is a map of the reflectivity 
of the sample. In most tissues, main sources of reflection are collagen fiber bundles, cell walls, 
and cell nuclei. Dark areas on the image represent homogeneous material with low reflectivity, 
such as air or clear fluids. The imaging light is attenuated in the sample, so there is an 
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Fig. 2. OCT vs. standard imaging. 
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exponential decrease in the intensity of the image with depth. Blood attenuates the signal 
faster than collagenous tissues, fat and fluids attenuate the signal the least. 
In OCT images, the signal strength is represented in false color. High backscatter appears red-
orange and low backscatter appears blue-black (see Fig. 4). Thus, tissues with different 
reflectivity are displayed in different colors. It is important to note that OCT image contrast 
arises from intrinsic differences in tissue optical properties. Thus, coloring of different 
structures represents different optical properties in false color image and it is not necessarily 
different tissue pathology (see Fig. 4). The exact relationship between the histology of the 
tissue and the OCT map is still under investigation. Relative high reflectivity layers 
correspond to areas of horizontal retinal elements such as the nerve fiber layer at the retinal 
surface or deeper plexiform layers and a single layer of retinal pigment epithelium (RPE) and 
choroid. Relative low reflectivity layers correspond to the nuclear layers and a single layer of 
photoreceptor inner and outer segments. Warm colors (red to white) represent areas of relative 
high reflectivity, while cold colors (blue to black) represent areas of relative low reflectivity.  
In the retina, the vitreoretinal interface is demarcated by the reflections from the surface of the 
retina. The retinal pigment epithelium (RPE) and choriocapillaris layer (ChCap) is visualized 
as a highly reflective red layer and represents the posterior boundary of the retina. Below the 
choriocapillaris weakly scattered light returns from the choroid and sclera because of 
attenuation of the signal after passing through the neurosensory retina, RPE, and ChCap. The 
outer segments of the rods and cones appear as a dark layer of minimal reflectivity anterior to 
the RPE and ChCap. The intermediate layers of the retina exhibit moderate backscattering (see 
Fig. 4). The fovea appears as a characteristic thinning of the retina. The lateral displacement of 
the retina anterior to the photoreceptors is evident (see Fig. 4).  
 

 
Fig. 4. OCT image of the normal human macula. (A) Stratus OCT image showing the various 
cellular layers of the retina. (B) Comparison of the OCT image (same as shown in A) to a 
histologic micrograph of the normal human macula.  
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3.2 Quantitative measurements of retinal morphology 
OCT can aid in identifying, monitoring and quantitatively assessing various posterior 
segment conditions including macular edema, age-and-non-age related macular 
degeneration, full and partial-thickness macular hole, epiretinal membrane, intaretinal 
exudate, idiopathic central serous chorioretinopathy, RPE detachment, detachment of the 
neurosensory retina, and macular lesions associated with optic nerve head pits or glaucoma 
Figure 5 shows exemplary images of two of the above cited pathological cases obtained with 
a RTVue FD-OCT system (Optovue Inc., Freemonth, CA).  
 

 
Fig. 5. OCT images showing two OCT B-scans (6 mm length) from pathological retinas. A) 
Macular hole, B) Epiretinal membrane. 

As a matter of fact, OCT can demonstrate the presence of edema where it is not seen on 
biomicroscopy or angiographically. A very important feature of the OCT system is that it 
provides information on the retinal structures. For example, the location of fluid 
accumulation in relation to the different retinal layers may be determined and the response 
to treatment without the need to perform invasive studies such as fluorescein angiography 
may be objectively monitored. At the same time it may be possible to explain why some 
patients respond to treatment while others do not. OCT has significant potential both as a 
diagnostic tool and particularly as a way to monitor objectively subtle retinal changes 
induced by therapeutic interventions. Thus, OCT may become a valuable tool in 
determining the minimum maintenance dose of a certain drug in the treatment of retinal 
diseases, and may demonstrate retinal changes that explain the recovery in some patients 
without angiographically demonstrable improvement and lack of recovery in others.  
In the clinical routine, measurement of retinal thickness by the OCT software depends on 
the identification of the internal limiting membrane and the hyper-reflective band believed 
to correspond to the retinal pigment epithelium – choriocapillaris interface (or, more 
precisely, the photoreceptor inner-outer segment border in the case of third generation 
OCTs). The OCT software algorithms calculates the distance between these 2 boundaries 
across all of the sampled points and interpolates the retinal thickness in the unsampled 
areas between these lines. However, once the various layers can be identified and correlated 
with the histological structure of the retina, it may seem relevant to measure not only the 
entire thickness of the retina, but the thickness of the various cellular layers. Moreover, 
measuring the reflectance of the various retinal layers on OCT images may also be of 
interest. Drexler et al. have shown in in vitro and in vivo (Bizheva et al., 2006; Hermann et al., 
2006) studies that physiological processes of the retina lead to optical density changes that 
can be observed by a special M-mode OCT imaging, known as optophysiology. Thus, it also 
seems rational that quantitative analysis of reflectance changes may provide clinically 
relevant information in retinal patophysiology.  
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3.3 Recent developments in OCT technology 
The emergence of ultrabroad bandwidth femtosecond laser technology has allowed the 
development of an ultra-high resolution OCT, which has been demonstrated to achieve axial 
resolutions of 3 µm during in vivo imaging of the human retina, which is two orders of 
magnitude higher than what can be achieved by conventional ultrasound imaging. Figure 6 
shows the ultrahigh resolution OCT cross section of a normal human macula showing all of 
the major layers and internal structures of the retina. The ultrahigh resolution OCT will in 
effect be a microscope capable of revealing certain histopathological aspects of macular 
disease in the living eye.  
As it was previously explained, in the conventional or time domain OCT (TDOCT) system 
the length of the reference arm in an interferometer is rapidly scanned over a distance 
corresponding to the imaging depth range. The mechanism of scanning largely limits the 
acquisition speed and makes real-time imaging impossible. In recent years a new model 
OCT based on Fourier domain interferometry has emerged, and it has been called spectral 
domain OCT (SDOCT) or Fourier domain OCT (FDOCT) (Fercher et al., 1995; Fercher et al., 
2003; Hausler & Lindner, 1998). SDOCT can avoid scanning of the reference, thus it can 
reach very high acquisition speed. As a matter of fact, in time domain OCT the location of 
scatters in the sample is observed by generation of interferometric fringes at the detector as 
the reference reflector position is axially translated. In contrast, Fourier domain OCT 
required the reference arm to be held fixed, and the optical path length difference between 
sample and reference reflections is encoded by the frequency of the interferometric fringes 
as a function of the source spectrum. Two configurations have prevailed in Fourier domain 
systems: spectral domain (SD) OCT uses a grating to spatially disperse the spectrum across 
an array-type detector, and in swept source (SS) OCT a narrow band laser is swept across a 
broad spectrum, encoding the spectrum as a function of time. SDOCT offers a significant 
sensitivity advantage over TDOCT (Choma et al., 2003; de Boer et al., 2003, Leitgeb et al., 
2003; Mitsui, 1999).  
 

 
Fig. 6. Ultrahigh resolution OCT cross section of a normal human macula with 3 microns 
resolution (Courtesy "James Fujimoto," (Fujimoto et al., 2003)).  

New technology has also been developed to improve resolution in the transverse 
dimension. In the current commercial application of OCT, the transverse resolution is 
limited by the intrinsic ocular aberrations of the eye. The transverse resolution can be 
significantly improved by correcting the aberrations across a large pupil using adaptive 
optics (AO). A high axial (3 µm) and improved transverse (5–10 µm) resolution AO-OCT 
system was demonstrated for the first time in in vivo retinal imaging (Hermann et al., 2004). 
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The instrument uses a wavefront sensor that measures the aberrations in patient’s eyes and 
then adjusts the surface of an adaptive mirror to correct the visual flaws. An improvement 
of the transverse resolution of two to three times, compared with ultrahigh resolution OCT 
systems used so far, was obtained by using adaptive optics A significant signal-to-noise 
ratio improvement of up to 9 dB in corrected compared with uncorrected OCT tomograms 
was also achieved. Zawadzki et al. also demonstrated the ability to image microscopic blood 
vessels and the cone photoreceptor mosaic using an AO-OCT instrument with high 3D 
resolution(4x4x6 μm) (Zawadzki et al., 2005).  AO-OCT is currently the only option for 
studying living retinal tissue at the cellular level and clinical trials of the instrument are still 
being performed. 
Another limitation of OCT technology has been the difficulty in accurately localizing the 
cross-sectional images and correlating them with a conventional en face view of the fundus. 
One way to localize and visually interpret the images would be to integrate a scanning laser 
ophthalmoscope (SLO) into the OCT, thereby mapping OCT pixels to the conventional en 
face view of the SLO. This rationale was used by Ophthalmic Technologies Inc (Toronto, 
Canada) to develop the Spectral OCT-SLO in 2004 (Podoleaunu et al., 2004). The system 
simultaneously produces SLO and OCT images that are created through the same optical 
path, and therefore correspond pixel to pixel. OCT-SLO, offers multiple views from a single 
scan with perfect registration of images. OCT-SLO imaging offers very accurate localisation 
of pathology with enhancement of the vitreoretinal interface. Its ability to align serial 
topographies and to fuse other modalities, with real-time, ultrahigh resolution capability 
and multi-planar anterior segment imaging should make it an invaluable addition to the 
diagnostic arsenal of the vitreoretinal surgeon. 
A number of other instruments have also been built based on variations of the basic OCT 
system. For instance, polarization-sensitive optical coherence tomography (PS-OCT) uses 
polarization-altering optics in the arms of the interferometer to determine the sample 
birefringence from the magnitude of the back-reflected light (de Boer et al., 1997; de Boer et 
al., 2003). This instrument can be used to assess effects such as retinal nerve fiber layer 
thickness (Cense et al., 2002), early osteoarthritic changes in cartilage (Hermann et al., 1999) 
or burn depth in thermally damaged tissue (de Boer et al., 1998). Optical coherence 
microscopy (OCM) is a hybrid instrument that uses a system of high numerical aperture to 
achieve resolutions comparable to confocal microscopy but with increased depth of 
penetration (Izatt et al., 1994b). This instrument has been applied to gastrointestinal tissues 
and promises to enable endoscopically based cellular imaging (Izatt et al., 1996; Aguirre et 
al., 2003). Doppler optical coherence tomography (Doppler OCT) is an augmentation 
capable of simultaneous blood flow mapping and spatially resolved imaging (Chen et al., 
1997;  Izatt et al., 1997; Westphal et al., 2002; Wong et al., 2002; Yazdanfar et al., 2003; Zhao et 
al., 2000; Ding et al., 2002; Ren et al., 2002). Doppler flow measurements can be performed 
by measuring the Doppler shift of light scattered from blood. Doppler OCT has been used to 
explore the human retinal flow dynamics (Yazdanfar et al., 2003); and it is a promising 
imaging technology for quantitatively assessing capillarity density and angiogenesis 
(Fujimoto et al., 2003).  
Functional OCT imaging is another emerging modality that facilitates the assessment of 
functional or biochemical properties of the investigated tissue. Spectroscopic OCT imaging 
using broadband light sources enables the spectrum of the backscattered light from each 
pixel to be measured (Morgner et al., 2000). This extension of OCT is closely related to 
classical Fourier transform infrared spectroscopy and has the advantage that the 
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spectroscopic information can be acquired at multiple wavelengths across the available 
bandwidth of the light source in a single measurement (Boppart et al., 1999). The potential 
of Spectroscopic OCT in developmental and cellular biology is really promising.  
As it can be seen, a wide range of OCT imaging platforms with rapidly emerging 
applications spanning a range of fields has been developed. The rapid advances in OCT 
imaging are likely to alter the practice of ophthalmology dramatically in the next several 
years. Increased resolution and imaging speeds, wavefront correction, improved multiple 
functionality of the OCT systems; and the possibility of quantitative 3D modeling are just a 
few of the features to look for in the future. Further advances may transform the OCT from 
an ancillary procedure to a common and necessary “optical biopsy”. Indeed, future 
ophthalmologists will use the next generation of OCT devices as a broad based tool for 
comprehensive ophthalmic examinations; and may even diagnose macular disorders 
exclusively by digital imaging, without a funduscopic examination. 

4. Medical image segmentation approaches 
Imaging operations may be broadly classified according to four categories: preprocessing, 
visualization, manipulation and analysis. Segmentation is a common used operation in 
preprocessing approaches and an essential operation for most visualization, manipulation 
and analysis tasks in image processing (see Fig. 7). Segmentation is, therefore, the most 
critical among all imaging procedures, and also the most challenging.  
Segmentation purpose is to identify and delineate objects. Here, an object refers to any 
physical object such as an anatomical organ or a pathological entity such as a tumor or cyst 
(see Fig. 8). Segmentation is defined as the partitioning of an image into non-overlapping, 
component regions which are homogeneous with respect to some characteristic such as 
intensity or texture (Haralick et al., 1985; Gonzalez & Woods, 1992; Pal & Pal, 1993). 
Typically, image segmentation consist of two related tasks: recognition and delineation. 
Recognition consists of determining approximately the objects' location in the image. For 
example, in Figure 9, this task involves determining the location of the RNFL, GCL, IPL, etc. 
This does not involve the precise specification of the region occupied by the object. 
Delineation involves determining the objects' precise spatial extent and composition 
including gradation of intensities. In Figure 9 again, if retinal tissue is the object structure of 
interest, then delineation consists of the spatial extent of the RNFL and GCL separately, and 
for each element (i.e. pixels for 2D and voxels for 3D) in each object, specifying a 
characteristic value of the object (for example, RNFL thickness or volume). Once the objects 
are defined separately, the RNFL and GCL can be individually visualized, manipulated and 
analyzed. While automatic and human-assisted are the only two approaches for recognition 
tasks, numerous methods are available for delineation. Approaches to delineation can be 
classified as: 1) boundary-based and 2) region-based (Kim & Hori, 2000).  
Numerous approaches regarding image segmentation techniques are available in the 
literature. Some of these techniques use only the gray level histogram, some use spatial 
details while others use fuzzy set theoretic approaches. Most of these techniques are not 
suitable for noisy environments. In particular, segmentation approaches can be classified 
according to the methodology used in the segmentation strategy (see Fig. 10): 
1. Classical segmentation methods: These approaches  classically partition an image into non-

overlapping segments which are homogeneous with respect to some characteristic such 
as intensity or texture (Haralick et al., 1985; Gonzalez & Woods, 1992; Pal & Pal, 1993).  
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Fig. 8. OCT image segmentation results showing isolated retinal features of interest. A) OCT 
B-scan showing multiple lesions in the central retinal area of a patient with age related 
macular degeneration.  Macular cysts and the subretinal fluid area were segmented using a 
deformable model (Cabrera Fernández et al., 2005a). B) Segmentation result showing the 
intraretinal layers outlined on  an OCT B-scan section obtained from a healthy subject . 

2. Pixel classification methods: These methods basically do not require the constraint that 
regions be connected. Thresholding, classifier, clustering, and Markov random field 
(MRF) approaches can be considered pixel classification methods. Thresholding is the 
most intuitive approach to segmentation (Sahoo et al., 1988). Specifically, algorithms 
based on threshold create a partitioning of the image based on quantifiable features, 
like image intensity or gradient magnitude. These algorithms  map and cluster pixels in 
a feature space called a histogram. Thresholds are chosen at valleys between pixel 
clusters so that each pair represents a region of similar pixels in the image. The 
segmentation is then achieved by searching for pixels that satisfy the rules defined by 
the thresholds. Thresholds in these algorithms can be selected manually according to a 
priori knowledge or automatically through image information. Thresholding 
algorithms can be divided into edge-based ones (e.g. Canny edge detector and 
Laplacian edge detector), region-based ones (e.g. region growing algorithms) and 
hybrid ones (e.g. watershed algorithms). Edge-based algorithms attempt to find edge 
pixels while eliminate the noise influence. Thresholds in the edge-based algorithms are 
related with the edge information. Region-based algorithms exploit the fact that pixels 
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inside a structure tend to have similar intensities. Region growing algorithms, once 
initial seeds are selected, search for the neighboring pixels whose intensities are inside 
the intervals defined by the thresholds and then merge them to expand the regions. 
Hybrid algorithms fuse region information with a boundary detector to complete the 
segmentation. Typical hybrid algorithms are the level set method with regularizers and 
the watershed algorithm. Particularly, the watershed algorithms (Yezi et al., 1999) 
combine the image intensity with the gradient information. In addition, the 
methodology of using MRF based methods to the problem of segmentation has received 
a great deal of attention in the past decade (Tamás et al., 2000). MRF modeling itself is 
not a segmentation method but a statistical model which can be used within 
segmentation methods. As shown in Fig. 10, MRF is a region-based approach.  MRF 
models spatial interactions between neighboring or nearby pixels. Hence, the 
classification of a particular pixel is based, not only on the intensity of that pixel, but  
 

 
Fig. 9. Segmentation results for an OCT B-scan obtained from a healthy normal eye. The 
layers have been labeled as: ILM: inner limiting membrane, RNFL: retinal nerve fiber layer, 
GCL+IPL complex: ganglion cell layer and inner plexiform layer, INL: inner nuclear layer, 
OPL: outer plexiform layer, ONL: outer nuclear layer, OS: outer segment of photoreceptors, 
and retinal pigment epithelial layer (RPE). We note that the sublayer labeled as ONL is 
actually enclosing the external limiting membrane (ELM) and IS, but in the standard 10 µm 
resolution OCT image this thin membrane cannot be visualized clearly, making the 
segmentation of the IS difficult. Therefore, this layer classification is our assumption and 
does not reflect the actual anatomic structure. Also, observe that since there is no significant 
luminance transition between GCL and IPL, the outer boundary of the GCL layer is difficult 
to visualize in the Stratus OCT image shown. Thus, a combined GCL+IPL layer is 
preferable. 
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also on the classification of neighbouring pixels. These local correlations provide a 
mechanism for modeling a variety of image properties (Li, 1995). MRF is often 
incorporated into clustering segmentations such as K-means under a Bayesian prior 
model (Held et al., 1997; Pappas et al., 1992; Rajapakse et al. 1997). 

3. Pattern recognition methods: Since structures in medical images can be considered as 
patterns, pattern recognition techniques can be used in segmentation procedures. There 
are supervised and unsupervised classification methods used to perform segmentation. 
Supervised classification algorithms are pattern recognition techniques that require 
training data that are manually segmented and then used as references for automatically 
segmenting new data. Typical supervised algorithms include artificial neural network 
(ANN), support vector machine (SVM) and active appearance models (AAM) (Alirezaie et 
al., 1997; Cootes et al., 2001; Wang et al., 2001). Unsupervised classification algorithms, 
also known as clustering algorithms, do not require a training set but they do require  
initial parameters to perform segmentation. Commonly used unsupervised classification 
algorithms include Fuzzy C-means algorithm (FCM), iterative self-organizing data 
analysis technique algorithm (ISODATA) and unsupervised neural network (Cheng et al., 
1996; Mohamed et al., 1998; Wong et al., 2002). 

4. Deformable model methods: These are model-based techniques for delineating region 
boundaries using closed parametric curves or surfaces that deform under the influence 
of internal and external forces. Deformable models can be classified into parametric and 
geometric models depending on the contour representation. These algorithms are 
usually interpreted as a modeling of curve evolution because they delineate an object 
boundary in an image by placing  a closed curve or surface near the desired boundary 
and then allowing to undergo an iterative relaxation process. The parametric 
deformable models sample contours  as discrete points and track them according to 
their respective moving equations. The moving equation for the parametric deformable 
models can be derived through either energy functional or dynamic forces.  A priori 
knowledge can be easily incorporated to the procedures of parametric models.  The 
geometric deformable models are based on the level set method (Osher & Sethian, 
1988), which embed the moving contour into a higher dimensional level set function 
and view the contour as its zero level set. Then, instead of tracking the contour points, 
the zero level set of the level set function are tracked. The advantage of doing so is that 
topological changes can be naturally handled and the geometric properties of the 
contour such as normal vector and curvature can be calculated implicitly. 
Consequently, the computational complexity is decreased.  

5. Global optimization methods: A growing number of image segmentation approaches use 
energy minimization techniques (Boykov & Funka-Lea, 2006; Kolmogorov & Zabih, 
2004).  Among all the various energy minimization techniques for segmentation, graph 
cuts are based on partitioning a graph by a minimum cut / maximum flow 
optimization algorithm (Greg et al., 1986; Ford & Fulkerson, 1956). The image is 
represented using an adjacency graph. Each vertex of the graph represents an image 
pixel, while the edge weight between two vertices represents the similarity between 
two corresponding pixels. Usually, the cost function to be minimized is the summation 
of the weights of the edges that are cut.  

6. Registration Methods: The standard method used is the atlas-guided approach which 
treats segmentation as a registration problem (Maintz & Viergever, 1998). Typically, the 
atlas is generated by compiling information on the anatomy that requires segmentation 
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and then used as a reference frame for segmenting new images. This approach is 
theoretically similar to classifier methods but it is implemented in the spatial domain of 
the image rather than in a feature space. This approach uses a procedure  known as 
atlas warping which first finds a one-to-one transformation that maps a pre-segmented 
atlas image to the target image that requires segmenting. The warping can be 
performed using linear transformations (Andreasen et al., 1996; Lancaster et al., 1997; 
Talairach and P. Tournoux, 1988). 

7. Model-fitting methods: These approaches usually fits a simple geometric shape such as an 
ellipse or parabola to the locations of extracted image features in an image (Pathak et 
al., 1998). It is a technique which is specialized to the structure being segmented but is 
easily implemented and can provide good results when the model is appropriate. A 
more general approach is to fit spline curves or surfaces to the features (Kim & Hori, 
2000).  

8. LEGION based: These approaches are a biologically plausible computational framework 
for image analysis based on a biologically inspired oscillator network, called the locally 
excitatory globally inhibitory oscillator network (LEGION) (von der Malsburg, 1981;  
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Wang & Terman, 1995; Wang & Terman, 1997). The network was proposed based on 
theoretical and experimental considerations that point to oscillatory correlation as a 
representational scheme for the working of the brain. The oscillatory correlation theory 
assumes that the brain groups and segregates visual features on the basis of correlation 
between neural oscillations (von der Malsburg, 1981; Wang & Terman, 1995).  

As a final point, it is noteworthy to mention that years of research in segmentation have 
demonstrated that significant improvements on the final segmentation results may be 
achieved by using notably more sophisticated feature selection procedures, more elaborate 
segmentation techniques, taking into account prior distribution on the labels, region 
processes, or the number of classes, finally, involving (e.g. in the case of energy-based 
segmentation models) more costly optimization techniques. 

5. Review of algorithms for segmentation of retinal image data using OCT 
In opthalmology, a number of segmentation approaches of retinal image data using OCT 
have been proposed to enhance the clinical benefit of the OCT technology in the process of 
clinical decision making. The success of OCT in the investigation and treatment of  retinal 
diseases might be best illustrated by the progress in automated analysis and the recent 
advancement of this technology from time domain to spectral domain (Cense et al., 2004; 
Drexler & Fujimoto, 2008; Fercher et al., 1995; Huang et al., 1991; Wojtkowski et al., 2003). 
The segmentation of the retinal structure is a challenging topic that faces major problems. 
First, OCT images suffer from the intrinsic speckle noise, which decreases the image quality 
and complicates the image analysis. This particular noise is the foundation of existing 
problems in the precise identification of  the boundaries of the various cellular layers of the 
retina and other specific retinal features present in the OCT tomograms. Second, since the 
intensity pattern in OCT images results from absorption and scattering of light in the retinal 
tissue, intensity of a homogeneous area decreases with increasing imaging depth 
deterministically.  This complicates segmentation algorithms which are commonly based on 
the assumption that intensity variations of homogeneous regions are only due to noise and 
not intrinsic to the imaging modality. The third problem is the low optical contrast in some 
regions of the OCT images due to the optical shadows of the retinal blood vessels resulting 
from the high haemoglobin absorption of light. Finally, motion artifacts and sub-optimal 
imaging conditions affecting the quality of the OCT tomograms also cause failure in the 
segmentation approaches or reduce their accuracy.  
In this section, a number of approaches that have appeared in the literature on OCT image 
segmentation are described. This review concentrates on automated and semi-automated 
algorithms developed to segment the various cellular layers of the retina, structural 
irregularities associated to retinal disease (e.g. drusen and fluid-filled regions),  and 
particular features of the optic nerve head in OCT images. Specifically, automation in OCT 
image analyses requires the establishment of parameters and features obtained from 
quantitative measurements of OCT data such as optical and structural parameters, 
scattering properties and refractive index of biological tissues. Thus, Table 1 gives an 
overview of the approaches discussed in this section based on the details of the above 
quantitative parameters and features. Although retinal blood vessel segmentation methods 
often consist of applying segmentation algorithms to fundus images, and more recently to 
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and then used as a reference frame for segmenting new images. This approach is 
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particular features of the optic nerve head in OCT images. Specifically, automation in OCT 
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overview of the approaches discussed in this section based on the details of the above 
quantitative parameters and features. Although retinal blood vessel segmentation methods 
often consist of applying segmentation algorithms to fundus images, and more recently to 
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advanced OCT images (e.g. SDOCT and UHR OCT) using the vessel shadows (Wehbe et al., 
2007), I consider this application of segmentation to be a separate branch of research and do 
not included it in this review. The segmentation methods that will be reviewed can be 
classified into three groups based on the dimension (D) of the image analyzed. In particular, 
a number of different methods have been reported under the 1D, 2D and 3D categories (see 
Table 1).  Segmentation approaches of OCT retinal images differ depending on the number 
of retinal features (e.g. number of intraretinal layers and fluid-filled regions) to be 
segmented, and on their robustness in the presence of inherent speckle noise, retinal blood 
vessel shadows and structural irregularities at the fovea, macula and optic nerve in 
pathological retinal tissue. Most of the initial segmentation algorithms are based on 
information retrieved from either gradient or conventional intensity data. However, some 
recent segmentation methods are based on more complex models, such as active contours 
and optimal graph search methods.  It is worthy of mention that all existing published 
segmentation approaches have been basically introduced to overcome the limitation of the 
commercial OCT softwares and most of them have provided additional quantitative 
information of the retinal structure.  
As it can be seen in Table 1, a number of segmentation approaches have been proposed to 
segment the retinal structure. The initial segmentation method proposed by Hee et al. was 
based on intensity variation and demonstrated the potential of OCT as a quantitative tool to 
measure total retina and RNFL thickness (Hee et al., 1995a, 1995b; Hee, 1997). This very first 
method used a 1D edge detection kernel approach, which is independent of the absolute 
signal level in the image, to compute the derivative of reflectivity versus axial distance for 
each A-scan in the OCT image. Thus, it is more effective than threshold identification. 
Specifically, the detection kernel identified the strongest two edges in each A-scan using 
peak-detection in more than 90% of the A-scans. Huang et al. used a similar approach to 
characterize the retina and outer retina choroid complex in hereditary retinal degenerations 
in experimental animals and humans (Huang et al., 1998). This early work, to the knowledge 
of the author, represents the first study to characterize and quantify OCT signals in relation 
to the optical properties of retinal layers. In contrast,   George et al. used a dual threshold to 
segment the retina and choriocapillaries structure from OCT images (George et al., 2000). 
Unfortunately, very little information is available about this work. However, simple 
thresholding is sensitive to noise and intensity inhomogeneities in OCT images because it 
does not take into account the spatial characteristics of the image. Koozekanani, et al. 
introduced a Markov random field (MRF) model for extracting the inner and outer retinal 
boundaries from radial scans of the macula (Koozekanani et al., 2001). This autoregressive 
model showed to be more robust on the macular region of normal retinas than standard 
column-wise thresholding methods. Particularly, retinal thickness was calculated with an 
error comparable to the 10µm resolution of the OCT system used, representing a substantial 
improvement over clinical measurements provided by the Humphrey 2000 OCT built-in 
algorithm. Although a difficulty associated with MRF models is the proper selection of 
parameters controlling the strength of spatial interactions, Koozekanani's model is entirely 
independent and involves no critically tuned parameters. However, the main problem of 
this model is to find reliable “seed” points for OCT images of retinal pathologies. On the 
other hand, since this model relies on simply connecting 1D points, makes it sensitive to 
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noise. Thus, it demands to apply special rules to correct for errors in the extracted layer 
borders because the model per se is sensitive to noise. 
Since the problem with thresholding lies in the selection of the threshold, Herzog et al. 
proposed a method based on edge maximization and smoothness constraints to choose an 
optimal threshold to utomatically extract the optic nerve and retinal boundaries from axial 
OCT scans through the optic nerve head (ONH) (Herzog et al., 2004). A method to 
automatically segment the curve to extract the nerve head profile was also proposed. An 
interesting aspect is that in this approach the boundaries are obtained by maximizing the 
number of edges that lie on the boundary while minimizing the boundary’s average rate of 
change. The algorithm generally identified the correct vitreal-retinal boundary in the images 
except in regions where the OCT signal was severely attenuated due to shadowing. This 
study is the first published work on ONH segmentation using TDOCT data. Two years later, 
a more efficient methodology to segment OCT nerve head images and extract the necessary 
parameters for clinical measurements such as the cup-to-disk ratio and RNFL thickness was 
proposed by Boyer et al. (Boyer et al., 2006) The improved methodology is esentially a 
parabolic model of the cup geometry and an extension of the Markov model introduced by 
Koozekanani et al. This study is the first published work on clinical parameter extraction  
taking advantage of the optic nerve head cross-sectional geometry in TDOCT images. 
Recently, Shrinivasan et al. also used a modification of the Koozekanini algorithm to 
perform quantitative measurements of the outer retinal morphology using UHR OCT 
(Shrinivasan et al., 2008). In this study the thick scattering region of the outer retina 
previously attributed to the RPE is shown to consist of distinct scattering bands 
corresponding to the photoreceptor outer segment tips, RPE, and Bruch’s membrane. 
Gregori et al. presented the first algorithm that was able to locate automatically and/or 
interactively  the complex geometry and topology typical of many macular pathologies in 
TDOCT images (Stratus OCT system), and lately in SDOCT images (Cirrus HD-OCT unit) 
(Gregori et al., 2004; Gregori et al., 2005; Gregori et al., 2008). Unfurtunately, this is a 
proprietary algorithm that has not been described in detail because has been licensed to Carl 
Zeiss Meditec, and it is currently part of the commercial Cirrus HD-OCT instrument. 
However, it is a robust algorithm able to locate the boundaries of the major anatomical 
layers internal to the retina with great accuracy not only in eyes presenting abnormal and 
unusual anatomy but also in poor quality images. Table 1 includes a summary of all the 
results that have been presented in the ARVO meetings since 2004.  
In 2005, algorithms based only on intensity variation were also presented (Shahidi et al., 
2005; Ishikawa et al., 2005; Cabrera Fernández et al., 2005b). In general, these algorithms 
overcame the limitations of the commercial OCT3/Stratus OCT software and also provided 
additional quantitative information. For example, Shahidi et al. segmented three retinal 
segments by using a simple search of peaks corresponding to high- and low-intensity bands, 
and an improved edge detection approach using the correlation between axial A-scans was 
presented in a more recent study (Bagci et al., 2007). Ishikawa et al. used a modified median 
filter and an adaptive thresholding method based on the reflectivity histogram of each A-
scan line to segment four layer structures within the retina (Ishikawa et al., 2005). A similar 
adaptive thresholding approach along with an intensity peak detection procedure was also 
employed by Ahlers et al. to segment data from patients with RPE detachments (Ahlers et 
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advanced OCT images (e.g. SDOCT and UHR OCT) using the vessel shadows (Wehbe et al., 
2007), I consider this application of segmentation to be a separate branch of research and do 
not included it in this review. The segmentation methods that will be reviewed can be 
classified into three groups based on the dimension (D) of the image analyzed. In particular, 
a number of different methods have been reported under the 1D, 2D and 3D categories (see 
Table 1).  Segmentation approaches of OCT retinal images differ depending on the number 
of retinal features (e.g. number of intraretinal layers and fluid-filled regions) to be 
segmented, and on their robustness in the presence of inherent speckle noise, retinal blood 
vessel shadows and structural irregularities at the fovea, macula and optic nerve in 
pathological retinal tissue. Most of the initial segmentation algorithms are based on 
information retrieved from either gradient or conventional intensity data. However, some 
recent segmentation methods are based on more complex models, such as active contours 
and optimal graph search methods.  It is worthy of mention that all existing published 
segmentation approaches have been basically introduced to overcome the limitation of the 
commercial OCT softwares and most of them have provided additional quantitative 
information of the retinal structure.  
As it can be seen in Table 1, a number of segmentation approaches have been proposed to 
segment the retinal structure. The initial segmentation method proposed by Hee et al. was 
based on intensity variation and demonstrated the potential of OCT as a quantitative tool to 
measure total retina and RNFL thickness (Hee et al., 1995a, 1995b; Hee, 1997). This very first 
method used a 1D edge detection kernel approach, which is independent of the absolute 
signal level in the image, to compute the derivative of reflectivity versus axial distance for 
each A-scan in the OCT image. Thus, it is more effective than threshold identification. 
Specifically, the detection kernel identified the strongest two edges in each A-scan using 
peak-detection in more than 90% of the A-scans. Huang et al. used a similar approach to 
characterize the retina and outer retina choroid complex in hereditary retinal degenerations 
in experimental animals and humans (Huang et al., 1998). This early work, to the knowledge 
of the author, represents the first study to characterize and quantify OCT signals in relation 
to the optical properties of retinal layers. In contrast,   George et al. used a dual threshold to 
segment the retina and choriocapillaries structure from OCT images (George et al., 2000). 
Unfortunately, very little information is available about this work. However, simple 
thresholding is sensitive to noise and intensity inhomogeneities in OCT images because it 
does not take into account the spatial characteristics of the image. Koozekanani, et al. 
introduced a Markov random field (MRF) model for extracting the inner and outer retinal 
boundaries from radial scans of the macula (Koozekanani et al., 2001). This autoregressive 
model showed to be more robust on the macular region of normal retinas than standard 
column-wise thresholding methods. Particularly, retinal thickness was calculated with an 
error comparable to the 10µm resolution of the OCT system used, representing a substantial 
improvement over clinical measurements provided by the Humphrey 2000 OCT built-in 
algorithm. Although a difficulty associated with MRF models is the proper selection of 
parameters controlling the strength of spatial interactions, Koozekanani's model is entirely 
independent and involves no critically tuned parameters. However, the main problem of 
this model is to find reliable “seed” points for OCT images of retinal pathologies. On the 
other hand, since this model relies on simply connecting 1D points, makes it sensitive to 
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noise. Thus, it demands to apply special rules to correct for errors in the extracted layer 
borders because the model per se is sensitive to noise. 
Since the problem with thresholding lies in the selection of the threshold, Herzog et al. 
proposed a method based on edge maximization and smoothness constraints to choose an 
optimal threshold to utomatically extract the optic nerve and retinal boundaries from axial 
OCT scans through the optic nerve head (ONH) (Herzog et al., 2004). A method to 
automatically segment the curve to extract the nerve head profile was also proposed. An 
interesting aspect is that in this approach the boundaries are obtained by maximizing the 
number of edges that lie on the boundary while minimizing the boundary’s average rate of 
change. The algorithm generally identified the correct vitreal-retinal boundary in the images 
except in regions where the OCT signal was severely attenuated due to shadowing. This 
study is the first published work on ONH segmentation using TDOCT data. Two years later, 
a more efficient methodology to segment OCT nerve head images and extract the necessary 
parameters for clinical measurements such as the cup-to-disk ratio and RNFL thickness was 
proposed by Boyer et al. (Boyer et al., 2006) The improved methodology is esentially a 
parabolic model of the cup geometry and an extension of the Markov model introduced by 
Koozekanani et al. This study is the first published work on clinical parameter extraction  
taking advantage of the optic nerve head cross-sectional geometry in TDOCT images. 
Recently, Shrinivasan et al. also used a modification of the Koozekanini algorithm to 
perform quantitative measurements of the outer retinal morphology using UHR OCT 
(Shrinivasan et al., 2008). In this study the thick scattering region of the outer retina 
previously attributed to the RPE is shown to consist of distinct scattering bands 
corresponding to the photoreceptor outer segment tips, RPE, and Bruch’s membrane. 
Gregori et al. presented the first algorithm that was able to locate automatically and/or 
interactively  the complex geometry and topology typical of many macular pathologies in 
TDOCT images (Stratus OCT system), and lately in SDOCT images (Cirrus HD-OCT unit) 
(Gregori et al., 2004; Gregori et al., 2005; Gregori et al., 2008). Unfurtunately, this is a 
proprietary algorithm that has not been described in detail because has been licensed to Carl 
Zeiss Meditec, and it is currently part of the commercial Cirrus HD-OCT instrument. 
However, it is a robust algorithm able to locate the boundaries of the major anatomical 
layers internal to the retina with great accuracy not only in eyes presenting abnormal and 
unusual anatomy but also in poor quality images. Table 1 includes a summary of all the 
results that have been presented in the ARVO meetings since 2004.  
In 2005, algorithms based only on intensity variation were also presented (Shahidi et al., 
2005; Ishikawa et al., 2005; Cabrera Fernández et al., 2005b). In general, these algorithms 
overcame the limitations of the commercial OCT3/Stratus OCT software and also provided 
additional quantitative information. For example, Shahidi et al. segmented three retinal 
segments by using a simple search of peaks corresponding to high- and low-intensity bands, 
and an improved edge detection approach using the correlation between axial A-scans was 
presented in a more recent study (Bagci et al., 2007). Ishikawa et al. used a modified median 
filter and an adaptive thresholding method based on the reflectivity histogram of each A-
scan line to segment four layer structures within the retina (Ishikawa et al., 2005). A similar 
adaptive thresholding approach along with an intensity peak detection procedure was also 
employed by Ahlers et al. to segment data from patients with RPE detachments (Ahlers et 
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al., 2008).  This study was also based on the work by Gregori et al. (Gregori et al., 2005). It is 
worthy of mentioning that the work of Ishikawa et al.  was the first report demonstrating 
that the thickness of the innermost layers in the macula had diagnostic power comparable 
with that of circumpapillary  nerve fib er layer (cpNFL) in glaucoma studies (Ishikawa et al., 
2005).  Later on, Tan et al. using a 2D gradient approach in a dynamic programming 
framework also confirmed that glaucoma primarily affects the thickness of the inner retinal 
layers (RNFL, GCL, IPL) in the macula (Tan et al., 2008). Cabrera Fernández et al.  used 
complex diffusion filtering to reduce speckle noise without blurring retinal structures and a 
peak finding algorithm based on local coherence information of the retinal structure to 
determine seven intraretinal layers in a automatic/semi-automatic framework (Cabrera 
Fernández et al.,  2005b). This algorithm searches for edges in a map obtained by calculating 
the first derivative of the structure coherence matrix using the denoised image. Although, 
good results were obtained for some pathological Stratus OCT images, the algorithm in its 
original development was prone to failure and allowed detected boundaries to overlap.  
This algorithm worked reliably for data from 72 OCT B-scans from healthy normal subjects. 
The automatic/semi-automatic framework developed by Cabrera Fernández et al.  was used 
to demonstrate for the first time the potential  of OCT quantification for early DR damage 
(Cabrera Fernández et al., 2008; Cabrera DeBuc et al., 2010). The early segmentation work of 
Gregori et al., Ishikawa et al. and Cabrera Fernández et al. allowed the automated generation 
of 2D thickness maps of individual retinal layers and, therefore, also a more local analysis of 
the retinal morphology using Stratus OCT data  before the introduction of advanced OCT 
systems (Gregori et al.,2005; Ishikawa et al., 2005;  Cabrera Fernández et al., 2005b).  
A different approach using active contour algorithms has been used to quantify structural 
irregularities in OCT retinal images. For example, Cabrera Fernández et al. applied  for the 
first time a deformable model to TDOCT images of retinas demonstrating cystoids and 
subretinal fluid spaces using a semi-automatic framework (Cabrera Fernández et al., 2004; 
Cabrera Fernández et al., 2005a). Specifically,  this method used a nonlinear anisotropic 
diffusion filter to remove strong speckle noise and a gradient vector flow (GVF) snake 
model to extract fluid-filled regions in the retinal structure of AMD patients. Extension of 
this deformable model framework to a daily routine image analysis  might prove to be 
difficult and unpractical since the  algorithm requires manual interaction to place an initial 
model and choose appropriate parameters. Mujat et al. used deformable splines to assess the 
thickness of the RNFL in SDOCT images. (Mujat et al., 2005). Although all the model 
parameters were set based on a large number of OCT scans in different retinal areas, 
contour initialization is still a major problem because it must be close to the true boundary 
locations. In addition, though  sensitivity to initialization was not reported in this study, the 
approach was highly vulnerable to the existence of blood vessels and other morphological 
retinal features. However, the advantage of this automated snake methodology is that it is 
able to provide larger area maps of the RNFL thickness facilitating the correct registration of 
ROIs with visual field defects which could allow better longitudinal evaluation of RNFL 
thinning in glaucoma studies. In 2009, Yazdanpanah et al. presented a modified Chan–
Vese’s energy-minimizing active contour algorithm  in a multi-phase framework to segment 
SDOCT data from rodent models. This approach incorporated a circular shape prior based 
on expert anatomical knowledge of the retinal  layers, avoiding the need for training 
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(Yazdanpanah, et al., 2009).  Although the sensitivity of the algorithm with respect to model 
parameters and initialization was not tested, the experimental results showed that this 
approach was able to detect with good accuracy the desired retinal layers in OCT retinal 
images from rats compared to the ground truth segmentation used in the evaluations 
performed. Moreover, the algorithm was not evaluated for images including the foveal pit. 
Later on, Mishra et al. also presented a modified active contour algorithm based on a sparse 
dynamic programming method and a two-step kernel based optimization scheme (Mishra et 
al., 2009). Although this effective algorithm achieves accurate intra-retinal segmentation on 
rodent OCT images under low image contrast and in the presence of irregularly shaped 
structural features, results on images including the foveal pit region were not given and no 
quantitative evaluation using a large data set was provided. 
Baroni et al. used a multi-step approach to extract the boundaries of the vitreo-retinal 
interface and the inner and outer retina by maximizing an edge likelihood function (Baroni 
et al., 2007). Interestingly, the effect of intravitreal injection of triamcinolone acetonide for 
the treatment of vitreo-retinal interface syndrome was evaluated using a set of measures 
such as thickness measurement, densitometry, texture and curvature extracted from the 
identified retinal layers. This study was the first report, to the knowledge of the author, that 
demonstrated the potential of texture information in TDOCT retinal images as a 
complimentary information of retinal features to aid diagnosis. Another intensity variation 
based approach to segment the posterior retinal layers, which is resistant to discontinuities 
in the OCT tomogram, was presented by Szulmowski et al (Szulmowski et al., 2007). 
Furthermore, the quantitative analysis has been largely limited to total retinal thickness 
and/or inner and outer retinal thickness in early studies exploring the correlation between 
histology and OCT in rodents (e.g. see Kocaoglu et al., 2007 & Ruggeri et al., 2007). Recently, 
more intensity variation based approaches have also been presented (see Table 1 for details) 
(Fabritius et al., 2009; Tumlinson et al., 2009; Koprowski et al., 2009 ; Lu et al., 2010 and Yang 
et al., 2010) Among them, it is worthy to mention that Fabritius et al. incorporated 3D 
intensity information to improve the intensity based segmentation and segmented the ILM 
and RPE directly from the OCT data without massive pre-processing in a very faster 
manner. (Fabritius et al., 2009). Likewise, Yang et al. presented a fast, efficient algorithm that 
simultaneously utilized both local and global gradient information (Yang et al., 2010). This 
approach skillfully used an A-scan reduction technique to reduce the execution time to 16 
seconds per volume (480x512x128 voxels) without  remarkably degrading the accuracy or 
reproducibility of the results.  In addition, an alternative promising method was introduced 
by Mayer et al., who used a fuzzy C-means clustering technique to automatically segment 
RNFL thickness in circular OCT B-scans without the need of parameter adaptation for 
pathological data (Mayer et al., 2008).  
In contrast to the edge detection approaches mentioned above, a multi-resolution 
hierarchical support vector machine (SVM) was used in a semi-automatic approach to 
calculate the thickness of the retina and the photoreceptor  layer along with the volume of 
pockets of fluid in 3D OCT data (Fuller et al., 2007). In this approach, the SVM included  
scalar intensity, gradient, spatial location, mean of the neighbors, and variance. Although 
this SVM method performed well on both healthy and diseased OCT data, a major 
drawback was that some voxels were mis-classified resulting in scattered noise in the 
thickness maps. In addition,  this method requires that the user paints the areas of interest in 
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al., 2008).  This study was also based on the work by Gregori et al. (Gregori et al., 2005). It is 
worthy of mentioning that the work of Ishikawa et al.  was the first report demonstrating 
that the thickness of the innermost layers in the macula had diagnostic power comparable 
with that of circumpapillary  nerve fib er layer (cpNFL) in glaucoma studies (Ishikawa et al., 
2005).  Later on, Tan et al. using a 2D gradient approach in a dynamic programming 
framework also confirmed that glaucoma primarily affects the thickness of the inner retinal 
layers (RNFL, GCL, IPL) in the macula (Tan et al., 2008). Cabrera Fernández et al.  used 
complex diffusion filtering to reduce speckle noise without blurring retinal structures and a 
peak finding algorithm based on local coherence information of the retinal structure to 
determine seven intraretinal layers in a automatic/semi-automatic framework (Cabrera 
Fernández et al.,  2005b). This algorithm searches for edges in a map obtained by calculating 
the first derivative of the structure coherence matrix using the denoised image. Although, 
good results were obtained for some pathological Stratus OCT images, the algorithm in its 
original development was prone to failure and allowed detected boundaries to overlap.  
This algorithm worked reliably for data from 72 OCT B-scans from healthy normal subjects. 
The automatic/semi-automatic framework developed by Cabrera Fernández et al.  was used 
to demonstrate for the first time the potential  of OCT quantification for early DR damage 
(Cabrera Fernández et al., 2008; Cabrera DeBuc et al., 2010). The early segmentation work of 
Gregori et al., Ishikawa et al. and Cabrera Fernández et al. allowed the automated generation 
of 2D thickness maps of individual retinal layers and, therefore, also a more local analysis of 
the retinal morphology using Stratus OCT data  before the introduction of advanced OCT 
systems (Gregori et al.,2005; Ishikawa et al., 2005;  Cabrera Fernández et al., 2005b).  
A different approach using active contour algorithms has been used to quantify structural 
irregularities in OCT retinal images. For example, Cabrera Fernández et al. applied  for the 
first time a deformable model to TDOCT images of retinas demonstrating cystoids and 
subretinal fluid spaces using a semi-automatic framework (Cabrera Fernández et al., 2004; 
Cabrera Fernández et al., 2005a). Specifically,  this method used a nonlinear anisotropic 
diffusion filter to remove strong speckle noise and a gradient vector flow (GVF) snake 
model to extract fluid-filled regions in the retinal structure of AMD patients. Extension of 
this deformable model framework to a daily routine image analysis  might prove to be 
difficult and unpractical since the  algorithm requires manual interaction to place an initial 
model and choose appropriate parameters. Mujat et al. used deformable splines to assess the 
thickness of the RNFL in SDOCT images. (Mujat et al., 2005). Although all the model 
parameters were set based on a large number of OCT scans in different retinal areas, 
contour initialization is still a major problem because it must be close to the true boundary 
locations. In addition, though  sensitivity to initialization was not reported in this study, the 
approach was highly vulnerable to the existence of blood vessels and other morphological 
retinal features. However, the advantage of this automated snake methodology is that it is 
able to provide larger area maps of the RNFL thickness facilitating the correct registration of 
ROIs with visual field defects which could allow better longitudinal evaluation of RNFL 
thinning in glaucoma studies. In 2009, Yazdanpanah et al. presented a modified Chan–
Vese’s energy-minimizing active contour algorithm  in a multi-phase framework to segment 
SDOCT data from rodent models. This approach incorporated a circular shape prior based 
on expert anatomical knowledge of the retinal  layers, avoiding the need for training 
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(Yazdanpanah, et al., 2009).  Although the sensitivity of the algorithm with respect to model 
parameters and initialization was not tested, the experimental results showed that this 
approach was able to detect with good accuracy the desired retinal layers in OCT retinal 
images from rats compared to the ground truth segmentation used in the evaluations 
performed. Moreover, the algorithm was not evaluated for images including the foveal pit. 
Later on, Mishra et al. also presented a modified active contour algorithm based on a sparse 
dynamic programming method and a two-step kernel based optimization scheme (Mishra et 
al., 2009). Although this effective algorithm achieves accurate intra-retinal segmentation on 
rodent OCT images under low image contrast and in the presence of irregularly shaped 
structural features, results on images including the foveal pit region were not given and no 
quantitative evaluation using a large data set was provided. 
Baroni et al. used a multi-step approach to extract the boundaries of the vitreo-retinal 
interface and the inner and outer retina by maximizing an edge likelihood function (Baroni 
et al., 2007). Interestingly, the effect of intravitreal injection of triamcinolone acetonide for 
the treatment of vitreo-retinal interface syndrome was evaluated using a set of measures 
such as thickness measurement, densitometry, texture and curvature extracted from the 
identified retinal layers. This study was the first report, to the knowledge of the author, that 
demonstrated the potential of texture information in TDOCT retinal images as a 
complimentary information of retinal features to aid diagnosis. Another intensity variation 
based approach to segment the posterior retinal layers, which is resistant to discontinuities 
in the OCT tomogram, was presented by Szulmowski et al (Szulmowski et al., 2007). 
Furthermore, the quantitative analysis has been largely limited to total retinal thickness 
and/or inner and outer retinal thickness in early studies exploring the correlation between 
histology and OCT in rodents (e.g. see Kocaoglu et al., 2007 & Ruggeri et al., 2007). Recently, 
more intensity variation based approaches have also been presented (see Table 1 for details) 
(Fabritius et al., 2009; Tumlinson et al., 2009; Koprowski et al., 2009 ; Lu et al., 2010 and Yang 
et al., 2010) Among them, it is worthy to mention that Fabritius et al. incorporated 3D 
intensity information to improve the intensity based segmentation and segmented the ILM 
and RPE directly from the OCT data without massive pre-processing in a very faster 
manner. (Fabritius et al., 2009). Likewise, Yang et al. presented a fast, efficient algorithm that 
simultaneously utilized both local and global gradient information (Yang et al., 2010). This 
approach skillfully used an A-scan reduction technique to reduce the execution time to 16 
seconds per volume (480x512x128 voxels) without  remarkably degrading the accuracy or 
reproducibility of the results.  In addition, an alternative promising method was introduced 
by Mayer et al., who used a fuzzy C-means clustering technique to automatically segment 
RNFL thickness in circular OCT B-scans without the need of parameter adaptation for 
pathological data (Mayer et al., 2008).  
In contrast to the edge detection approaches mentioned above, a multi-resolution 
hierarchical support vector machine (SVM) was used in a semi-automatic approach to 
calculate the thickness of the retina and the photoreceptor  layer along with the volume of 
pockets of fluid in 3D OCT data (Fuller et al., 2007). In this approach, the SVM included  
scalar intensity, gradient, spatial location, mean of the neighbors, and variance. Although 
this SVM method performed well on both healthy and diseased OCT data, a major 
drawback was that some voxels were mis-classified resulting in scattered noise in the 
thickness maps. In addition,  this method requires that the user paints the areas of interest in 
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any slice of the volume. Thus, the training data set grows through painting increasing the 
complexity of the SVM, and as a result  more time is required to complete the segmentation 
task. A different approach was presented by Tolliver et al., who used a graph partitioning 
algorithm that assumes that different regions of the OCT image correspond to different 
modes of oscillation. The oscillation steps that represent the retinal edges are then 
determined by an eigenvector calculation (Tolliver et al., 2008). By using the eigenvector 
from the prior step as a starting point, for finding the new eigenvector, the approach works 
in only a small number of steps. In this study, the accuracy range for the detected 
boundaries was good and the algorithm performed well  in the presence of retinal 
pathology. On the contrary to the vast  majority of the studies cited so far,  Götzinger et al. 
used PS-OCT to segment the RPE layer  employing polarization scramble features. Even 
though the two algorithms presented facilitated a better visualization and quantification of 
RPE thickening and RPE atrophies when compared to algorithms based on intensity images, 
a PS-OCT system is needed to acquire polarization data (Götzinger et al., 2008). 
A more complex approach to OCT retinal layer segmentation using gradient and/or 
intensity information in a 3D context was presented by Haecker et. al., who generated a 
composite 3D image from radial linear TDOCT 2D scans and performed a 3D graph-search 
(Haecker et al., 2006). The basic idea of this graph approach is to break a graph into paths or 
fragments, which are utilized as filtering features in graph search. The early development of 
Haecker et al.'s algorithm extracted only 2 intratretinal layers and was evaluated on data 
from 18 controls and 9 subjects with papilledema (Haecker et al., 2006). This approach was 
further developed into a multilayer segmentation (Garvin et al., 2008) showing superior 
results for high quality OCT data. This graph-search approach potentially increased the 
accuracy of segmentation by using weights describing both edge and regional information 
to segment the volume.  However, assumptions on the layers, as Garvin et. al. made, may be 
violated in pathological cases, or parameters have to be adapted for either normal subjects 
or pathological patients. Even though this elegant method can guarantee to find the global 
minimums when compared to deformable models, its computational complexity can really 
increase the computation time if more complex constraints are required to segment diseased 
retinal images showing common structural irregularities and a less ideal foveal pit. In 2009, 
Abramoff et al. combined a multiscale 3D graph search algorithm and a voxel column 
classification algorithm using a k-NN classifier to segment the ONH cup and rim (Abramoff, 
et al., 2009). This preliminary study showed for the first time a high correlation between 
segmentation results of the ONH cup and  rim from SDOCT images and planimetry results 
obtained by glaucoma experts on the same eye. Later on, Lee et al. presented an improved 
and  fully automatic method based on a similar methodology using graph search combined 
with a k-NN classifier that employed contextual information combined with  a convex hull-
based fitting procedure to segment the ONH cup and rim (Lee et al., 2010). In general, the 
methodology showed good performance but additional processing steps to compensate for 
the presence of vessels in and around the ONH would be required to reduced misclassified  
A-scans on the vessels and increase the accuracy of the ONH rim or cup contour 
segmentation. Similarly, Hu et al. used a graph-theoretic approach to segment the neural 
canal opening (NCO) and cup at the level of RPE/Bruch’s membrane complex (Hu et al., 
2010). Qellec et al. presented a promising method for detecting footprints of fluid-filled 
regions in SDOCT images from AMD patients (Quellec et al., 2010). This approach also used 
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a multiscale 3D graph search method to identify automatically a total of 10 intraretinal layers. 
The segmented layers were characterized by their thickness and 3D textural features. As in the 
Baroni et al. study, this report confirmed that useful 3D textural information can be also 
extracted from SDOCT scans to aid local retinal abnormality detection. In addition, Chiu et al. 
reported a skillful approach based on graph-based theory and dynamic programming that 
significantly reduced the processing time required for image segmentation and feature 
extraction (Chiu et al., 2010). This methodology is able to address sources of instability such as 
the merging of layers at the fovea, uneven tissue reflectivity, vessel hypo-reflectivity and the 
presence of pathology. Interestingly, the approach incorporates an automatic initialization that 
bypasses the need for manual endpoint selection. 
The development of SDOCT systems has also made possible a better visualization and 
identification of the RPE-Bruch's membrane providing the ability to image drusen. As a 
result, segmentation algorithms have been recently presented to quantify drusen area and 
volume in AMD patients. For example, Farsiu et al. presented the DOCTRAP algorithm that 
is based on a modified implementation of the GVF snake model to accurately segment 
drusen in SDOCT images of AMD eyes (Farsiu et al., 2008 ). This methodology also included 
a semi-supervised approach to correct for segmentation errors such as false regions marked 
as drusen in images showing RPE elevation unrelated to drusen. The approach presented by 
Fuller et al.  and  described above also facilitates the semi-automatic segmentation of drusen 
in SDOCT images (Fuller et al., 2007). Gregrori et al. has also measured drusen area and 
volume using quantitative descriptors of drusen geometry in three dimensional space 
(Gregori et al., 2008). In addition, Yi et al. characterized ONH drusen using a commercial 
available software (see Table 1 for details) (Yi et al., 2009). 
Kajić et al. presented a promissing novel statistical model based on texture and shape able to 
capture the variance of the training data used to segment unseen data (Kajic et al., 2007). As 
the authors themselves stated, this guarantees that the segmentation will be close to the 
ground truth and less sensitive to noise. This algorithm successfully segments 8 intraretinal 
layers on 3D OCT data even under conditions which prove extremely difficult for some pre-
existing segmentation approaches cited in the literature. It also has the potential of 
segmenting choroid layers and the ONH. In this study, for the first time, an error measure is 
computed from a large manually segmented data set which was certainly segmented twice 
by different operators. 

6. Concluding remarks 
In contrast to OCT technology development which has been a field of active research since 
1991, OCT image segmentation has only being fully active explored during  the last decade. 
However, it continues to be one of the more difficult and at the same time most commonly 
required steps in OCT image analysis, therefore, there does not and can not exist a typical 
segmentation method that can be expected to work equally well for all tasks. The works 
cited in this review spread from the 1997’s until  September 2010. Of course, the citation in 
this review is by no means complete. For example, an early active research topic such as 
manual tools for image segmentation has not been covered. It is also worthy the mentioning  
that it was difficult to assess the robustness of the various segmentation approaches because 
of many authors have used different OCT imaging setups and reported limited quantitative 
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any slice of the volume. Thus, the training data set grows through painting increasing the 
complexity of the SVM, and as a result  more time is required to complete the segmentation 
task. A different approach was presented by Tolliver et al., who used a graph partitioning 
algorithm that assumes that different regions of the OCT image correspond to different 
modes of oscillation. The oscillation steps that represent the retinal edges are then 
determined by an eigenvector calculation (Tolliver et al., 2008). By using the eigenvector 
from the prior step as a starting point, for finding the new eigenvector, the approach works 
in only a small number of steps. In this study, the accuracy range for the detected 
boundaries was good and the algorithm performed well  in the presence of retinal 
pathology. On the contrary to the vast  majority of the studies cited so far,  Götzinger et al. 
used PS-OCT to segment the RPE layer  employing polarization scramble features. Even 
though the two algorithms presented facilitated a better visualization and quantification of 
RPE thickening and RPE atrophies when compared to algorithms based on intensity images, 
a PS-OCT system is needed to acquire polarization data (Götzinger et al., 2008). 
A more complex approach to OCT retinal layer segmentation using gradient and/or 
intensity information in a 3D context was presented by Haecker et. al., who generated a 
composite 3D image from radial linear TDOCT 2D scans and performed a 3D graph-search 
(Haecker et al., 2006). The basic idea of this graph approach is to break a graph into paths or 
fragments, which are utilized as filtering features in graph search. The early development of 
Haecker et al.'s algorithm extracted only 2 intratretinal layers and was evaluated on data 
from 18 controls and 9 subjects with papilledema (Haecker et al., 2006). This approach was 
further developed into a multilayer segmentation (Garvin et al., 2008) showing superior 
results for high quality OCT data. This graph-search approach potentially increased the 
accuracy of segmentation by using weights describing both edge and regional information 
to segment the volume.  However, assumptions on the layers, as Garvin et. al. made, may be 
violated in pathological cases, or parameters have to be adapted for either normal subjects 
or pathological patients. Even though this elegant method can guarantee to find the global 
minimums when compared to deformable models, its computational complexity can really 
increase the computation time if more complex constraints are required to segment diseased 
retinal images showing common structural irregularities and a less ideal foveal pit. In 2009, 
Abramoff et al. combined a multiscale 3D graph search algorithm and a voxel column 
classification algorithm using a k-NN classifier to segment the ONH cup and rim (Abramoff, 
et al., 2009). This preliminary study showed for the first time a high correlation between 
segmentation results of the ONH cup and  rim from SDOCT images and planimetry results 
obtained by glaucoma experts on the same eye. Later on, Lee et al. presented an improved 
and  fully automatic method based on a similar methodology using graph search combined 
with a k-NN classifier that employed contextual information combined with  a convex hull-
based fitting procedure to segment the ONH cup and rim (Lee et al., 2010). In general, the 
methodology showed good performance but additional processing steps to compensate for 
the presence of vessels in and around the ONH would be required to reduced misclassified  
A-scans on the vessels and increase the accuracy of the ONH rim or cup contour 
segmentation. Similarly, Hu et al. used a graph-theoretic approach to segment the neural 
canal opening (NCO) and cup at the level of RPE/Bruch’s membrane complex (Hu et al., 
2010). Qellec et al. presented a promising method for detecting footprints of fluid-filled 
regions in SDOCT images from AMD patients (Quellec et al., 2010). This approach also used 
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a multiscale 3D graph search method to identify automatically a total of 10 intraretinal layers. 
The segmented layers were characterized by their thickness and 3D textural features. As in the 
Baroni et al. study, this report confirmed that useful 3D textural information can be also 
extracted from SDOCT scans to aid local retinal abnormality detection. In addition, Chiu et al. 
reported a skillful approach based on graph-based theory and dynamic programming that 
significantly reduced the processing time required for image segmentation and feature 
extraction (Chiu et al., 2010). This methodology is able to address sources of instability such as 
the merging of layers at the fovea, uneven tissue reflectivity, vessel hypo-reflectivity and the 
presence of pathology. Interestingly, the approach incorporates an automatic initialization that 
bypasses the need for manual endpoint selection. 
The development of SDOCT systems has also made possible a better visualization and 
identification of the RPE-Bruch's membrane providing the ability to image drusen. As a 
result, segmentation algorithms have been recently presented to quantify drusen area and 
volume in AMD patients. For example, Farsiu et al. presented the DOCTRAP algorithm that 
is based on a modified implementation of the GVF snake model to accurately segment 
drusen in SDOCT images of AMD eyes (Farsiu et al., 2008 ). This methodology also included 
a semi-supervised approach to correct for segmentation errors such as false regions marked 
as drusen in images showing RPE elevation unrelated to drusen. The approach presented by 
Fuller et al.  and  described above also facilitates the semi-automatic segmentation of drusen 
in SDOCT images (Fuller et al., 2007). Gregrori et al. has also measured drusen area and 
volume using quantitative descriptors of drusen geometry in three dimensional space 
(Gregori et al., 2008). In addition, Yi et al. characterized ONH drusen using a commercial 
available software (see Table 1 for details) (Yi et al., 2009). 
Kajić et al. presented a promissing novel statistical model based on texture and shape able to 
capture the variance of the training data used to segment unseen data (Kajic et al., 2007). As 
the authors themselves stated, this guarantees that the segmentation will be close to the 
ground truth and less sensitive to noise. This algorithm successfully segments 8 intraretinal 
layers on 3D OCT data even under conditions which prove extremely difficult for some pre-
existing segmentation approaches cited in the literature. It also has the potential of 
segmenting choroid layers and the ONH. In this study, for the first time, an error measure is 
computed from a large manually segmented data set which was certainly segmented twice 
by different operators. 

6. Concluding remarks 
In contrast to OCT technology development which has been a field of active research since 
1991, OCT image segmentation has only being fully active explored during  the last decade. 
However, it continues to be one of the more difficult and at the same time most commonly 
required steps in OCT image analysis, therefore, there does not and can not exist a typical 
segmentation method that can be expected to work equally well for all tasks. The works 
cited in this review spread from the 1997’s until  September 2010. Of course, the citation in 
this review is by no means complete. For example, an early active research topic such as 
manual tools for image segmentation has not been covered. It is also worthy the mentioning  
that it was difficult to assess the robustness of the various segmentation approaches because 
of many authors have used different OCT imaging setups and reported limited quantitative 



 Image Segmentation 

 

36 

validation. Accordingly, a careful evaluation of different available academic and commercial 
segmentation methods using common test datasets is required to choose the one that best 
solves the given image processing task.  
Current research in the segmentation of OCT images is striving towards improving the 
accuracy, precision, and computational speed of segmentation methods, as well as reducing 
the amount of manual interaction. On the other hand, most of the reported computation 
times of segmentation methods on 2D and 3D OCT datasets (see Table 1) are not really 
practical for general clinical use. However, segmentation methods will be particularly 
valuable in areas such as computer assisted surgery, where real-time visualization of the 
anatomy is a crucial component. For increasing computational efficiency, multiscale 
processing and parallelizable methods appear to be promising approaches (Sylwestrzak et 
al., 2010). As  a matter of fact, the current expanding use of 3D OCT systems along with the  
advances in volume rendering techniques, is now shifting slowly the focus of segmentation 
to volume segmentation. In addition, the potential of OCT image segmentation to evaluate 
therapeutic or adverse effects of experimental interventions in time-course experiments 
might prove to be even more important to translate insights from bench to bedside in a 
proficient and timely manner. 
Since OCT allows real-time data acquisition, future research will strive towards improving 
automation and data evaluation in near real time to support retinal disease screening and 
diagnosis. Automated segmentation still remains one of the most difficult problems in the 
world of OCT retinal image segmentation. This dificulty mainly arises due to the sheer size 
of the datasets coupled with the complexity and variability of the pathological retinal 
anatomy. The situation is worsened by the shortcomings of OCT imaging systems, such as 
sampling artifacts, noise, low contrast etc. which may cause the boundaries of retinal  
structures to be indistinct and disconnected.  Recently, Liu et al. introduced a very effective 
approach for automated macular pathology identification in retinal OCT images (Liu et al., 
2010). This method uses a machine learning approach that has the potential to provide 
unsupervised objective classifications for automated OCT data analysis in real time. 
Computational efficiency is particularly important in real-time processing applications for 
computer aided diagnosis and surgical planning. As a matter of fact, segmentation 
algorithms do have the capability to run in parallel with the OCT scanning method and to 
provide a concrete support for clinical decision making in real time.  
Finally, it is worthy of mention that automated segmentation methods will never replace 
physicians but they will likely become crucial elements of medical image interpretation.  
Thus, there are numerous challenges to improve clinical decision making based on 
automated processing of OCT data, as outlined throught this chapter, for engineers, 
mathematicians, physicists and physicians working to advance the field of OCT image 
analysis.  
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validation. Accordingly, a careful evaluation of different available academic and commercial 
segmentation methods using common test datasets is required to choose the one that best 
solves the given image processing task.  
Current research in the segmentation of OCT images is striving towards improving the 
accuracy, precision, and computational speed of segmentation methods, as well as reducing 
the amount of manual interaction. On the other hand, most of the reported computation 
times of segmentation methods on 2D and 3D OCT datasets (see Table 1) are not really 
practical for general clinical use. However, segmentation methods will be particularly 
valuable in areas such as computer assisted surgery, where real-time visualization of the 
anatomy is a crucial component. For increasing computational efficiency, multiscale 
processing and parallelizable methods appear to be promising approaches (Sylwestrzak et 
al., 2010). As  a matter of fact, the current expanding use of 3D OCT systems along with the  
advances in volume rendering techniques, is now shifting slowly the focus of segmentation 
to volume segmentation. In addition, the potential of OCT image segmentation to evaluate 
therapeutic or adverse effects of experimental interventions in time-course experiments 
might prove to be even more important to translate insights from bench to bedside in a 
proficient and timely manner. 
Since OCT allows real-time data acquisition, future research will strive towards improving 
automation and data evaluation in near real time to support retinal disease screening and 
diagnosis. Automated segmentation still remains one of the most difficult problems in the 
world of OCT retinal image segmentation. This dificulty mainly arises due to the sheer size 
of the datasets coupled with the complexity and variability of the pathological retinal 
anatomy. The situation is worsened by the shortcomings of OCT imaging systems, such as 
sampling artifacts, noise, low contrast etc. which may cause the boundaries of retinal  
structures to be indistinct and disconnected.  Recently, Liu et al. introduced a very effective 
approach for automated macular pathology identification in retinal OCT images (Liu et al., 
2010). This method uses a machine learning approach that has the potential to provide 
unsupervised objective classifications for automated OCT data analysis in real time. 
Computational efficiency is particularly important in real-time processing applications for 
computer aided diagnosis and surgical planning. As a matter of fact, segmentation 
algorithms do have the capability to run in parallel with the OCT scanning method and to 
provide a concrete support for clinical decision making in real time.  
Finally, it is worthy of mention that automated segmentation methods will never replace 
physicians but they will likely become crucial elements of medical image interpretation.  
Thus, there are numerous challenges to improve clinical decision making based on 
automated processing of OCT data, as outlined throught this chapter, for engineers, 
mathematicians, physicists and physicians working to advance the field of OCT image 
analysis.  
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1. Introduction      
 Natural Computing (NC) is a novel approach to solve real life problems inspired in the life 
itself. A diversity of algorithms had been proposed such as evolutionary techniques, Genetic 
Algorithms and Particle Swarm Optimization (PSO). These approaches, together with fuzzy 
and neural networks, give powerful tools for researchers in a diversity of problems of 
optimization, classification, data analysis and clustering.  
Clustering methods are usually stated as methods for finding the hidden structure of data. 
A partition of a set of N patterns in a p-dimensional feature space must be found in a way 
that those patterns in a given cluster are more similar to each other than the rest. 
Applications to clustering algorithms range from engineering to biology (Xu & Wunsch II, 
2005; Xu & Wunsch, 2008; Jain et al., 1999).  
Image segmentation techniques are based on Pattern Recognition concepts and such a task 
aims to identify behavior in a data set. In the context of image segmentation, the data set 
represents image data, coded as follows: the light intensity value (the pixel data) represents a 
pattern, an item in the data set, and the color information is represented by columns (the 
feature vectors). Clustering techniques represent the non-supervised pattern classification in 
groups (Jain et al., 1999). Considering the image context, the clusters correspond to some 
semantic meaning in the image, which is, objects. More than simple image characteristics, 
these grouped semantic regions represent information; and image segmentation is applicable 
in an endless list of areas and applications, for example: computer-aided diagnosis (CAD) 
being used in the detection of breast cancer on mammograms (Doi, 2007), outdoor object 
recognition, robot vision, content-based image, and marketplace decision support.  
Among the many methods for data analysis through clustering and unsupervised image 
segmentation is: Nearest Neighbor Clustering, Fuzzy Clustering, and Artificial Neural 
Networks for Clustering (Jain et al., 1999). Such bio and social-inspired methods try to solve 
the related problems using knowledge found in the way nature solves problems. Social 
inspired approaches intend to solve problems considering that an initial and previously 
defined weak solution can lead the whole population to find a better or a best so far solution. 
This chapter presents concepts and experimental results of approaches to data clustering 
and image segmentation using (NC) approaches. The main focus are on Evolutionary 
Computing, which is based on the concepts of the evolutionary biology and individual-to-
population adaptation, and Swarm Intelligence, which is inspired in the behavior of 
individuals, together, try to achieve better results for a complex optimization problem. 
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Genetic and PSO based K-means and fuzzy K-means algorithms are described. Results are 
shown for data clustering using UCI datasets such as Ruspini, Iris and Wine and for image 
texture and intensity segmentation using images from BrainWeb system.  
The remainder of the chapter is organized in the following form: section 2 describes Data 
Clustering and Image Segmentation; section 3 presents the state-of-the-art in Image 
Segmentation techniques; section 4 presents Natural Computing; section 5 focuses on 
clustering using Natural Computing methods. Section 6 presents experimental results and 
discussion and section 8 gives the conclusions and final considerations. 

2. Image segmentation and data clustering 
Digital Image Processing is an extremely important and fundamental task to image analysis, 
whose main task is the separation or isolation of image regions, reducing the data space to 
be analyzed. On monochromatic images, image segmentation algorithms are based on the 
following image gray level properties (Gonzalez & Woods, 2003): 
a. Discontinuity: the objective is to find hard changes on gray level, using this 

information as the method to edge detection; and 
b. Similarity: closest pixels are very similar. 
Some of the main challenges to the scientific community are related to the development of 
techniques that realize the automatic or unsupervised image segmentation. In controlled 
environment the image segmentation process is easily achieved than in a non-controlled 
environment, where light and other circumstances affect physical process of image 
acquisition. 
Image segmentation applications contemplate many areas of Computer Graphics. In the 
case of Computer Vision, one of the objectives is make robots move in a semi or non-
controlled environment, and realize tasks like find and interact with specific objects. 
Another area of interest is the automatic vehicle guiding. On Image Understanding and 
Analysis there is Content Based Image Retrieval, that aims to develop efficient search 
engines that can find items on an image database by using a reference image, detecting 
similarities. 
The mathematical formulation of segmentation is defined as follows (Raut et al., 2009): 
Let I be the set of all image pixels, then by applying segmentation we obtain different 
unique non-overlapping regions{ }1 2 3, , ,..., nS S S S  which, when combined, form I: 

 
1,

n

i
i n

S I
=

=∪    where i jS S∩ =∅  (1) 

where: 
a. iS  is a connected region, i = 1, 2, …, n 
b. ( )iP S  = TRUE for i = 1, 2, …, n 

c. ( )i jP S S∪ =FALSE for i j≠  

d. ( )iP S  is a logical predicate defined over points in set iS . 
Eq. 1 is a condition that indicates that segmentation must be complete: every pixel in the 
image must be covered by segmented regions, which must by disjoint.  
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2.1 Data clustering 
In a very simple level of abstraction, the image segmentation process is very close to the 
clustering problem. To find clusters in a data set is to find relations amongst unlabeled data. 
The "relation" means that some data are in some way next to another that they can be 
grouped. It is found in (Jain et al., 1999) that the components of a clustering task are:  
1. Pattern representation includes: feature selection, which identifies the most effective 

subset of the original features to use in clustering; and feature extraction, which is the 
preprocessing of the input features. 

2. A Distance measure is used to determine pattern proximity. A simple, and, perhaps, 
the most used, distance function is the Euclidean Distance. 

3. Clustering relates to finding the groups (or, labeling the data) and it can be hard (an 
element belongs to one group only) or fuzzy (an element belongs to one group 
following a degree of membership).  

4. Data abstraction is an optional phase and extracts a simple and compact representation 
of a data set and, in the case of data clustering, some very representative patterns are 
chosen: the centroids. 

5. Assessment of output is the process of evaluating the clustering result. Cluster 
validation techniques are, also, a traditional approach to dynamic clustering (Omram et 
al., 2006). 

Two classical clustering algorithms are used in this work: K-means (Forgy, 1965) and Fuzzy 
C-Means (Zadeh, 1994). 

2.1.1 K-means 
K-means objective if minimize the J function, which represents the minimization of the 
distance between objects (patterns) and clusters: 

 2
K means

1
( , )

k

K

j k
k j S

J d x c−
= ∈

= ∑ ∑  (2) 

where: 
a. k is the number of clusters evaluated (in a space defined by Sk) 
b. xj is the pattern j evaluated in relation to the centroid ck 
c. d2(xj, ck) is the distance between pattern xj and centroid ck 
The algorithm performs as follows: 
a. Initialize K centroids (for example, randomly) 
b. Until a stop criterion is not satisfied 

a. Calculate the distances between all elements in the dataset and the K centroids. 
Elements closer to centroids form clusters 
b. Centroids are updated (assume the clusters values) 

The main advantages of this algorithm are (Turi, 2001): 
a. Is easy to implement 
b. The complexity is O(Np), which makes it very applicable to large datasets. 
The main disadvantages are (Davies, 1997): 
a. It is dependent on the dataset 
b. It is a greedy algorithm, which depends upon initial conditions that can lead to sub-

optimal solutions 
c. The number of clusters (K) must be informed by the user. 
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Genetic and PSO based K-means and fuzzy K-means algorithms are described. Results are 
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clustering using Natural Computing methods. Section 6 presents experimental results and 
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d. ( )iP S  is a logical predicate defined over points in set iS . 
Eq. 1 is a condition that indicates that segmentation must be complete: every pixel in the 
image must be covered by segmented regions, which must by disjoint.  
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2.1 Data clustering 
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2.1.2 Fuzzy C-means 
The Fuzzy C-means (FCM) algorithm is defined by (Bezdek et al., 1987) as follows: let 

2c ≥ be an integer; let { }1 ,..., nX x x= be a finite dataset which contains at least c n< distinct 
points; and let cnR  be the set of all real matrices c n× . A partition of the X  set is represented 
by a matrix [ ] cn

ikU u R= ∈ whose elements satisfy the following equations: 
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where vi is the centroid of cluster i (most representative element). Partitions and centroids 
are chosen from the minimization of the functional J: 
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where 1 'm≤ < ∞  is the fuzzyficator parameter and |.| is a distance measure. Yet, the 
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and, for every k, in such a way that if 2 0ik k id x v= − >  for every i, then the following is true 
for every i:    
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This chapter understands Clustering and Image Segmentation as a similar task. We make no 
distinction between them, in the view of the experiments. For a review on clustering 
techniques, please refer to (Jain et al., 1999; Xu & Wunsch, 2005; Hruschka et al., 2009). 

3. The state-of-the-art 
Some image segmentation techniques are presented by (Raut et al., 2009) and they can be 
classified in: 
a. Threshold-based techniques: are generally used for gray level images. A threshold 

value T is defined to split the image in two parts: foreground and background based on 
pixel value 
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b. Histogram-based techniques: the histogram of all the pixels is calculated, and 
according to peaks and valleys different clusters are formed 

c. Edge detection techniques: first and second order derivatives are used for detection of 
edges. Edges are divided in two categories: intensity edges and texture edges 

d. Region-based techniques: uses region growing and region splitting-merging 
procedures. Region growing procedure groups pixels or sub regions into large regions 
based on predefined criteria. Region split-merge divides image into disjoint regions and 
then either merge and/or split to satisfy prerequisite constraints 

e. Watershed Transformation techniques: considered to be more stable than the previous 
techniques, it considers the gradient magnitude of an image (GMI) as a topographic 
surface. Pixels having the highest GMI correspond to watershed lines, which represent 
region boundaries. Water placed on any pixel enclosed by a common watershed line 
flows downhill to a common local intensity minima (LMI). Pixels draining to a common 
minimum form a catchments basin, which represent the regions. 

Clustering can be formally considered as a particular kind of NP-hard grouping problem 
(Hruschka et al., 2009). This assumption has stimulated much research and use of efficient 
approximation algorithms.  
Many variations of approaches have been introduced over last 30 years, and image 
segmentation remains an open-solution problem. Recently there has been an increase in the 
presence of optimization-based techniques. (Angus, 2007) proposed a technique for a 
Population-based Ant Colony Optimization (PACO) to Multi-objective Function 
Optimization (MOFO). (Raut et al., 2009) proposed an approach used for prediction using 
segmentation. They use a Graph-Partitioning technique which has some bases on Ontology. 
In summary, image features may contain concepts (definitions of things) and relations 
between concepts. This makes up a knowledge database used for object prediction. 
Important to note about the almost obvious result in the use of optimization techniques and 
how much it differs from, for example, the much well known K-means algorithm: the 
optimization technique will, theoretically, always find a better solution. Let single be an 
algorithm that finds one solution; let multi be an algorithm based on single that executes it 
about 100 times; from the 100 times, multi finds the better solution. It is possible that the 
single’s solution is the same found by multi, but optimization techniques tend to actually see 
the problem by the worst side, i.e. if there is a local best maybe there is a global best. This 
behavior demonstrates the expectation-exploitation dilemma. As we will see in Section 4, most 
of the Natural Computing techniques are based on some common facts: 
a. A population can achieve better results than one individual [of that population]; 
b. Every population needs some sort of change in its life. It is called progress or evolution; 
c. The evolution can obey a random process, sometimes called mutation, and it can occur 

when a population tend to remain unchanged for a long period of time; 
d. Every population has an individual that knows a very good solution. Sometimes, this 

individual can be crossed over another individual (that knows a good solution too) to 
generate another, eve better individual; 

e. It is also a good approach to select the most capable individuals from one population 
(parents), cross over them, and create the next generation of individuals (descendants). 
It is assumed that every generation is better than the previous one; 

f. There is a method to calculate how good an individual is, to measure it. It is often called 
fitness function. 
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how much it differs from, for example, the much well known K-means algorithm: the 
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about 100 times; from the 100 times, multi finds the better solution. It is possible that the 
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It is assumed that every generation is better than the previous one; 

f. There is a method to calculate how good an individual is, to measure it. It is often called 
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This chapter is located in this context of optimization techniques. We present some 
techniques to solve clustering and image segmentation problems and discussion about 
experiments and results. 

4. Natural computing 
According to (Castro, 2007) Natural Computing is the computational version of the process 
of extracting ideas from nature to develop computational systems, or using natural 
materials to perform computation. It can be classified in (Castro, 2007): 
a. Computing inspired by nature: algorithms take inspiration from nature to solve 

complex problems; 
b. The simulation and emulation of nature by means of computing: a synthetic whose 

product mimics natural phenomena; 
c. Computing with natural materials: the use of novel materials to perform computation 

to substitute or complement silicon-based computers. 
d. Next section presents some of the most representative approaches. 

4.1 Artificial Neural Networks (ANN) 
An Artificial Neural Network, as found in (Haykin, 1998), is a massively distributed parallel 
built-in processor composed of simple processing units (the neurons) that act, naturally, to 
store useful knowledge which is acquired through a learning process that yields better 
results when the processing units work in a network interconnected form (the neural 
network).  
The learning process, realized through a learning algorithm, resembles brain in two aspects: 
a. Knowledge is obtained by the network from its environment through a learning 

process, which means the network does not acts in an unknown environment. ANN fits 
in a class of algorithms that need an instructor, a professor, who identifies and models 
the domain, presents data to the network and evaluate obtained results; 

b. Forces connecting neurons, the synapse, are used to store achieved knowledge. 
Some useful properties of ANN are: 
1. Non-linearity 
2. Mapping between Input-Output 
3. Adaptability 
4. Fault-tolerance 
5. Uniformity of analysis and project 

4.2 Evolutionary computing 
The ideas of evolutionary biology and how descendants carry on knowledge from their 
parents to be adaptive and better survive are the main inspiration to develop search and 
optimization techniques for solving complex problems.  
Evolutionary Algorithms have their bases on biology and, specifically, Evolutionary Theory 
and adapting organisms. (Castro, 2007) says that this category of techniques are based on 
the existence of a population of individuals that are capable of reproduction and are subject 
to genetic variation, followed by selection of new more adapted individuals in its 
environment. 
There are many variations in the concept of Evolutionary Algorithms: 

Image Segmentation through Clustering Based on Natural Computing Techniques   

 

63 

a. Genetic Algorithms 
b. Evolutionary Strategies 
c. Evolutionary Programming and 
d. Genetic Programming 
Although, they are all based on the following principles: 
a. A population of individuals reproduces and transmits characteristics to other 

generations (inheritance). This concept determines that every individual, called 
chromosome carries a potential solution to the optimization problem in question. The 
solution represents the genetic trace of the individual, the chromosomes’ components, 
the alleles, and it’s encoded and structured in some way. These individuals are capable 
of reproduction, which is, a combination between two individuals and, after this 
process, future generation carry characteristics of previous ones. 

b. Genetic variation: the individual reproduction mechanism generates modifications in 
the genetic trace of the next population’s individuals. A process known as mutation 
allows the exploration of new solutions inside the search space. 

c. Natural selection: the living environment for individuals is competitive, for only one of 
them will give a most adequate and useful solution to a given problem. So, it’s 
necessary to define some way to verify how much an individual is able to participate in 
the process of generation of new individuals. The evaluation is realized through a 
performance evaluation function, known as fitness function. 

It is important to remember that some characteristics of living organisms are not present in 
the formulation of evolutionary methods. (Bar-Cohen, 2006) presents some of them: 
a. In nature, the occurrence of climate variations and environmental situations changes 

the characteristics of species through time and are fundamental to the verification of 
how much skilled an organism is. Evolutionary algorithms, otherwise, consider that the 
fitness function is constant in time. 

b. In natural evolution, individuals of different species can battle and only one will 
survive. In evolutionary algorithms there is only one species. 

In summary, with bases in (Krishna & Murty, 1999) an evolutionary algorithm is composed 
of the following steps: 
1. Initialization of Population or Initial Generation: is often a random process to generate 

individuals for the initial population. 
2. Selection: chromosomes of a previous population are selected to be part of the 

reproduction process. In general, a probabilistic distribution is used and the selection is 
based in the value of the fitness function for every individual. 

3. Mutation: the individual’s encoded solution, the allele, generated in the reproduction 
process, is exchanged in some way to make the algorithm don’t stay stuck on local 
optima, but, through an exploration process, stay next to the global optima. 

This process of generation of new individuals and population modification or update is 
repeated several times, until a stop criterion is satisfied. 
Some applications of evolutionary algorithms are: 
• Planning (i.e.: routing and scheduling) 
• Design (i.e.: signal processing) 
• Simulation and identification 
• Control 
• Classification (i.e.: machine learning, pattern recognition) 



 Image Segmentation 

 

62 

This chapter is located in this context of optimization techniques. We present some 
techniques to solve clustering and image segmentation problems and discussion about 
experiments and results. 

4. Natural computing 
According to (Castro, 2007) Natural Computing is the computational version of the process 
of extracting ideas from nature to develop computational systems, or using natural 
materials to perform computation. It can be classified in (Castro, 2007): 
a. Computing inspired by nature: algorithms take inspiration from nature to solve 

complex problems; 
b. The simulation and emulation of nature by means of computing: a synthetic whose 

product mimics natural phenomena; 
c. Computing with natural materials: the use of novel materials to perform computation 

to substitute or complement silicon-based computers. 
d. Next section presents some of the most representative approaches. 

4.1 Artificial Neural Networks (ANN) 
An Artificial Neural Network, as found in (Haykin, 1998), is a massively distributed parallel 
built-in processor composed of simple processing units (the neurons) that act, naturally, to 
store useful knowledge which is acquired through a learning process that yields better 
results when the processing units work in a network interconnected form (the neural 
network).  
The learning process, realized through a learning algorithm, resembles brain in two aspects: 
a. Knowledge is obtained by the network from its environment through a learning 

process, which means the network does not acts in an unknown environment. ANN fits 
in a class of algorithms that need an instructor, a professor, who identifies and models 
the domain, presents data to the network and evaluate obtained results; 

b. Forces connecting neurons, the synapse, are used to store achieved knowledge. 
Some useful properties of ANN are: 
1. Non-linearity 
2. Mapping between Input-Output 
3. Adaptability 
4. Fault-tolerance 
5. Uniformity of analysis and project 

4.2 Evolutionary computing 
The ideas of evolutionary biology and how descendants carry on knowledge from their 
parents to be adaptive and better survive are the main inspiration to develop search and 
optimization techniques for solving complex problems.  
Evolutionary Algorithms have their bases on biology and, specifically, Evolutionary Theory 
and adapting organisms. (Castro, 2007) says that this category of techniques are based on 
the existence of a population of individuals that are capable of reproduction and are subject 
to genetic variation, followed by selection of new more adapted individuals in its 
environment. 
There are many variations in the concept of Evolutionary Algorithms: 

Image Segmentation through Clustering Based on Natural Computing Techniques   

 

63 

a. Genetic Algorithms 
b. Evolutionary Strategies 
c. Evolutionary Programming and 
d. Genetic Programming 
Although, they are all based on the following principles: 
a. A population of individuals reproduces and transmits characteristics to other 

generations (inheritance). This concept determines that every individual, called 
chromosome carries a potential solution to the optimization problem in question. The 
solution represents the genetic trace of the individual, the chromosomes’ components, 
the alleles, and it’s encoded and structured in some way. These individuals are capable 
of reproduction, which is, a combination between two individuals and, after this 
process, future generation carry characteristics of previous ones. 

b. Genetic variation: the individual reproduction mechanism generates modifications in 
the genetic trace of the next population’s individuals. A process known as mutation 
allows the exploration of new solutions inside the search space. 

c. Natural selection: the living environment for individuals is competitive, for only one of 
them will give a most adequate and useful solution to a given problem. So, it’s 
necessary to define some way to verify how much an individual is able to participate in 
the process of generation of new individuals. The evaluation is realized through a 
performance evaluation function, known as fitness function. 

It is important to remember that some characteristics of living organisms are not present in 
the formulation of evolutionary methods. (Bar-Cohen, 2006) presents some of them: 
a. In nature, the occurrence of climate variations and environmental situations changes 

the characteristics of species through time and are fundamental to the verification of 
how much skilled an organism is. Evolutionary algorithms, otherwise, consider that the 
fitness function is constant in time. 

b. In natural evolution, individuals of different species can battle and only one will 
survive. In evolutionary algorithms there is only one species. 

In summary, with bases in (Krishna & Murty, 1999) an evolutionary algorithm is composed 
of the following steps: 
1. Initialization of Population or Initial Generation: is often a random process to generate 

individuals for the initial population. 
2. Selection: chromosomes of a previous population are selected to be part of the 

reproduction process. In general, a probabilistic distribution is used and the selection is 
based in the value of the fitness function for every individual. 

3. Mutation: the individual’s encoded solution, the allele, generated in the reproduction 
process, is exchanged in some way to make the algorithm don’t stay stuck on local 
optima, but, through an exploration process, stay next to the global optima. 

This process of generation of new individuals and population modification or update is 
repeated several times, until a stop criterion is satisfied. 
Some applications of evolutionary algorithms are: 
• Planning (i.e.: routing and scheduling) 
• Design (i.e.: signal processing) 
• Simulation and identification 
• Control 
• Classification (i.e.: machine learning, pattern recognition) 



 Image Segmentation 

 

64 

4.3 Swarm intelligence 
Optimization based on swarm intelligence corresponds to methods that have become target 
of recent scientific researches. (Brabazon & O’Neill, 2006) indicates that there are two 
variations of this swarm model: 
a. The first is inspired in bird flock social behavior 
b. The second is based on behavior of insects, like ants. 
The term “swarm intelligence” can have many definitions. (Castro, 2007) quotes some of them: 
• Swarm intelligence is a property of non-intelligent agent systems with limited 

individual capabilities that exhibit collective intelligent behavior (White & Parurek, 
1998). 

• Swarm intelligence includes every effort to design algorithms or distributed devices to 
solve problems inspired in collective behavior or social insects and other animal 
societies (Bonabeau et al., 1999). 

Ant Colony Optimization (ACO) was designed in 1997 by Dorigo and collaborators. They 
showed how the behavior of ants following pheromone could be used to optimize 
Travelling Salesman Problem (TSP) (Kennedy & Eberhart, 2001). For a detailed presentation 
of this method, please refer to (Brabazon & O’Neill, 2006). 
Particle Swarm Optimization (PSO) (Kennedy & Eberhart, 2001) is a population based 
stochastic algorithm, modeled after the observation and bird flock behavior simulation. 
Even being very similar to other evolutionary approaches, PSO defines that each individual 
(called particle) benefits from its own previous solutions (a notion of history) (Omram, 2004). 
The theory that delineates PSO design is under the Adaptive Culture Model and three 
fundamental principles are taken into account: 
a. To evaluate: learning is based on the analysis that every individual make of its own 

responses to external stimuli. 
b. To compare: individuals are stimulated to compare themselves to other individuals, 

mainly that ones who have better performance and success.  
c. To imitate: the logical consequence of the previous principles, it directs the individuals 

on their learning process. 

4.3.1 The algorithm 
The classical PSO design is that each particle, amongst the multitude of individuals (the 
swarm), flies through the search space (Omram, 2004) and carries on a potential solution to 
the optimization problem (Omram et al., 2006). The movement of each particle, which is, the 
changing of position, is determined by an equation that considers he current position of the 
particle and a velocity vector (Omram, 2004; Omram et al., 2006): 

 ( ) ( 1)i i it t= + +x x v  (9) 

 ( ) ( )( 1) ( ) 1 1 ( ) ( ) 2 2 ( ) ( )i i i i g it t c r t t c r t tϖ+ = + − + −v v p x p x  (10) 

where, according to (Omram et al., 2006): 
a. ω  is the inertia weight, which controls the impact of the previous velocity 
b. c1 and  c2 are acceleration constants 
c. r1~U(0,1) and r2~U(0,1) 
d. U(0,1) is a uniform distribution between 0 and 1 
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e. ( )i tp  is the cognitive component, which represents the experience of particle i about 
where is the best solution. It considers the memory of particle’s previous solutions 

f. ( )g tp  is the social component, which represents the experience of the whole swarm about 
where is the best solution 

A user defined maximum velocity can be used to constraint the velocity update (Kennedy & 
Eberhart, 2001). The performance of the particle is measured using a fitness function which 
depends on the optimization problem. 
The PSO algorithm is summarized as follows: 
1. For each particle, randomly position it in the search space and randomly initialize its 

velocity vector 
2. Repeat while until a stop criterion is satisfied 

a. For each particle 
i. Evaluate its quality (using the fitness function) 
ii. Update its best position 
iii. Update swarm’s best position 
iv. Update its velocity (Eq. 10) 
v. Update its position (Eq. 9) 

4.4 Artificial Immune Systems 
Artificial Immune Systems (AIS) is a term to adaptive systems, emerging in 1980’s, that 
extract ideas and metaphors from the biologic immune system to solve computer problems 
(Castro, 2007). 
The main idea is inspired in following understanding (Castro, 2007): 
a. that every living organism have the ability to resist over illness caused by pathogenic 

agents (virus or bacteria) 
b. the first rule of the immune system is to protect the body or structure of the living 

organism; the cells of the immune system are capable to recognize molecular patterns 
(some sort of molecular signature) that is present within pathogens 

c. once the pathogen is recognized, cells send each other signals that indicates the need for 
fight against the illness 

This framework of immunologic engineering is composed by (Castro, 2007): 
a. a representation of the system’s components 
b. a set of mechanisms to evaluate the interaction between individuals and their 

environment. The environment is simulated by a series of stimuli (input patterns), one 
or more evaluation functions (fitness) 

c. adaptive procedures rule the system dynamics, which is, how its behavior changes over 
the time. 

As can be seen, there is a very large set of naturally inspired approaches, each one needing 
its own chapter to be clearly detailed. This chapter will focus on Genetic Algorithms and 
Particle Swarm Optimization. 

5. Clustering and image segmentation based on natural computing 
This section presents two clustering methods based on GA and PSO, both used in clustering 
and image segmentation. 



 Image Segmentation 

 

64 

4.3 Swarm intelligence 
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c. adaptive procedures rule the system dynamics, which is, how its behavior changes over 
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As can be seen, there is a very large set of naturally inspired approaches, each one needing 
its own chapter to be clearly detailed. This chapter will focus on Genetic Algorithms and 
Particle Swarm Optimization. 

5. Clustering and image segmentation based on natural computing 
This section presents two clustering methods based on GA and PSO, both used in clustering 
and image segmentation. 
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5.1 Genetic K-means algorithm 
Genetic Algorithms have been applied to many function optimization problems and are 
shown to be good in finding optimal and near optimal solutions (Krishna & Murty, 1999). 
Aiming to solve the partitional clustering algorithm problem of finding a partition in a given 
data, with a number of centroids (or clusters), Genetic K-Means Algorithm (GKA) is 
introduced by (Krishna & Murty, 1999); it establishes an evaluation criterion based on the 
minimization of the Total Within Cluster Variation (TWCV), an objective function that is defined 
as follows (Doi, 2007; Lu et al., 2004): given X, the set of N patterns, and Xnd the dth feature of a 
pattern Xn, Gk the kth cluster and Zk the number of patterns in Gk, the TWCV is defined as: 

 2 2

1 1 1 1

1N D K D

nd kd
kn d k d

TWCV X SF
Z= = = =

= −∑∑ ∑ ∑  (11) 

where SFkd is the sum of the dth features of all patterns in Gk. The TWCV is also known as 
square-error measure (Krishna & Murty, 1999). The objective function, thus, tries to minimize 
the TWCV, finding the clustering that has centroids attending concepts of (Omram et al., 
2006) compactness (patterns from on cluster are similar to each other and different from 
patterns in other clusters) and separation (the clusters’ centroids are well-separated, 
considering a distance measure as the Euclidean Distance). It is found in (Bandyopadhyay & 
Maulik, 2002) another method for genetic algorithm based clustering that uses another 
fitness function, the Davies-Boudin index, which is a function of the ration of the sum of 
within-cluster scatter to between-cluster separation. As will be seen later, other validation 
indexes may be used and despites the objective function, GKA main aspects are:  
1. Coding. Refers to how to encode the solution (the chromosome); one way of doing this 

is the string-of-group-numbers encoding where for Z coded solutions (partitions), 
represented by strings of length N, each element of each string (an allele) contains a 
cluster number. 

2. Initialization. The initial population P0 is defined randomly: each allele is initialized to 
a cluster number. The next population Pi+1 is defined in terms of the selection, mutation 
and the K-means operator. 

3. Selection. Chromosomes from a previous population are chosen randomly according to 
a distribution. 

4. Mutation. The mutation operator changes an allele value depending on the distances of 
the cluster centroids from the corresponding pattern. 

5. K-Means Operator (KMO). This operator is used to speed up the convergence process 
and is related to one step of the classical K-means algorithm. Given a chromosome, each 
allele is replaced in order to be closer to its centroid. 

Another approach, K-Means Genetic Algorithm (KGA), is presented in (Bandyopadhyay & 
Maulik, 2002) and shows a slight modification to the definitions presented before: the 
crossover operator is added to the algorithm and it is a probabilistic process that exchanges 
information between two parent chromosomes for generating two new (descendant) 
chromosomes. 

5.2 Clustering using Particle Swarm Optimization 
Different approaches are found that implement clustering based PSO algorithms, such as 
(Omram et al., 2006) and (Omram, 2004). A PSO-based Clustering Algorithm (PSOCA) can 
be defined as follows (Omram, 2004; Omram et al., 2006): in the context of data clustering, a 
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single particle represents de set of K cluster centroids, in other words, each particle 
represents a solution to the clustering problem and, thus, a swarm represents a set of 
candidate data clusterings. The main steps are:  
a. Initialize particle position and velocity (for each particle);  
b. While a stop criterion is not found, for each particle:  

a. Calculates particle’s quality 
b. Finds particle’s best and global best 
c. Updates particle’s velocity. 

6. Experiments and results 
The experiments rely on evaluate numerical results of clustering algorithms based on 
Genetic Algorithms and PSO. As previously seen, both methods are modeled to allow a 
switch of the traditional and basic clustering algorithm. Thus, this allows us to define the 
following algorithms variations: 
a. Genetic K-means Algorithm (GKA) 
b. Genetic Fuzzy C-means Algorithm (GFCMA) 
c. PSO-based K-means Algorithm (PSOKA) 
d. PSO-based Fuzzy C-means Algorithm (PSOFCMA) 
The datasets used in data clustering experiments are the following: 
a. Ruspini: two-dimensional dataset with 75 patterns. Has four classes easily separable 
b. Wine: thirteen dimensions and 178 patterns. Has three classes 
c. Iris: four-dimensional dataset with 150 patterns. Has three classes 
Implementation was made in Matlab and used the Fuzzy Clustering and Data Analysis 
Toolbox (Balasko et al., 2005). 
To best evaluate the results, considering classification error, in each dataset was added 
another dimension, corresponding to the cluster number associated to the pattern. Cluster 
Validation Indexes (CVI) was used to obtain numerical results and guide the possible best 
solution found by the algorithms: Davies-Bouldin (DB), SC (separation and compactness), S 
(separation), and Xie-Beni (XB). For a review on CVI please refer to (El-Melegy et al., 2007). 
To compare the effectiveness of GA and PSO-based approaches, Table 1 presents K-means 
and FCM clustering results for Ruspini, Wine and Iris datasets. It can be seen that FCM 
performs better than K-means considering the CVI and Error of classification. 
Table 2 presents GKA and GFCMA clustering results for Ruspini, Wine and Iris datasets. It 
can be seen that, in general, GKA got better results than K-means, FCM and GFCMA. 
 
 
 

K-Means FCM CVI Min Mean Max - 
DB 0.61212 0.69081 0.77991 0.62613 
SC 0.46308 0.48372 0.51758 0.62798 
S 0.00446 0.00465 0.00497 0.00638 
XB 3.41458 4.47178 4.93836 3.97634 
Error (%) 11.33 19.60 42.67 10.67 

(a) 
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crossover operator is added to the algorithm and it is a probabilistic process that exchanges 
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Different approaches are found that implement clustering based PSO algorithms, such as 
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single particle represents de set of K cluster centroids, in other words, each particle 
represents a solution to the clustering problem and, thus, a swarm represents a set of 
candidate data clusterings. The main steps are:  
a. Initialize particle position and velocity (for each particle);  
b. While a stop criterion is not found, for each particle:  

a. Calculates particle’s quality 
b. Finds particle’s best and global best 
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another dimension, corresponding to the cluster number associated to the pattern. Cluster 
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(separation), and Xie-Beni (XB). For a review on CVI please refer to (El-Melegy et al., 2007). 
To compare the effectiveness of GA and PSO-based approaches, Table 1 presents K-means 
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K-Means FCM CVI Min Mean Max - 
DB 0.61212 0.69081 0.77991 0.62613 
SC 0.46308 0.48372 0.51758 0.62798 
S 0.00446 0.00465 0.00497 0.00638 
XB 3.41458 4.47178 4.93836 3.97634 
Error (%) 11.33 19.60 42.67 10.67 

(a) 



 Image Segmentation 

 

68 

K-Means FCM CVI Min Mean Max - 
DB 0.29046 0.44717 0.87690 0.33632 
SC 0.27625 0.35350 0.51807 0.36330 
S 0.00407 0.00665 0.01296 0.00541 
XB 2.88926 7.18313 8.57401 6.04515 
Error (%) 0.00 30.43 100.00 0.00 

(b) 
K-Means FCM CVI Min Mean Max - 

DB 1.10551 1.26082 1.57878 1.30418 
SC 0.95495 0.97880 1.25538 1.62948 
S 0.00664 0.00682 0.00859 0.01197 
XB 1.90714 1.96253 2.17519 0.97245 
Error (%) 2.81 6.19 47.75 5.06 

(c) 
Table 1. Clustering results for K-means and FCM: (a) Iris; (b) Ruspini; (c) Wine 

 
GKA GFCMA CVI Min. Mean Max. Min. Mean Max. 

DB 0.58931 0.61651 0.66188 0.45831 0.62613 0.64908 
SC 0.43933 0.45049 0.45839 0.62725 0.62947 0.63466 
S 0.00389 0.00416 0.00458 0.00630 0.00638 0.00644 
XB 2.50475 2.58308 2.68649 1.35521 1.63055 1.85673 
Error (%) 10.67 32.39 68.00 10.00 15.42 55.33 

(a) 
GKA GFCMA CVI Min. Mean Max. Min. Mean Max. 

DB 0.29046 0.29046 0.29046 0.29046 0.32035 0.32237 
SC 0.27625 0.27625 0.27625 0.36330 0.36332 0.36339 
S 0.00407 0.00407 0.00407 0.00540 0.00541 0.00542 
XB 2.81341 2.90996 3.04789 0.77498 1.28165 1.95288 
Error (%) 0.00 11.56 100.00 0.00 7.19 76.00 

(b) 
GKA GFCMA CVI Min. Mean Max. Min. Mean Max. 

DB 1.10055 1.10605 1.29697 0.84352 1.11319 1.30337 
SC 0.96569 0.96961 0.97382 1.62937 2.41962 5.31974 
S 0.00670 0.00674 0.00680 0.01197 0.01913 0.04760 
XB 1.52923 1.58911 1.63309 0.60118 0.60694 5.31974 
Error (%) 3.37 9.11 23.03 5.06 17.10 53.37 

(c) 

Table 2. Clustering results for GKA and GFCMA: (a) Iris; (b) Ruspini; (c) Wine 
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Fig. 1 shows clustering results for Wine dataset using GFCMA and GKA methods (PCA is 
used to reduce dimensions) obtaining error rate of 5.05% and 4.5%, respectively. 
 

 
(a) 

 

 
(b) 

Fig. 1. GA clustering results for Wine dataset: (a) GFCMA; (b) GKA 
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Fig. 1 shows clustering results for Wine dataset using GFCMA and GKA methods (PCA is 
used to reduce dimensions) obtaining error rate of 5.05% and 4.5%, respectively. 
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Fig. 1. GA clustering results for Wine dataset: (a) GFCMA; (b) GKA 
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PSOKA PSOFCMA CVI Min. Mean Max. Min. Mean Max. 

DB 0.27045 0.36780 0.52796 0.57841 0.62335 0.62613 
SC 0.39613 0.47915 0.54635 0.62484 0.62749 0.62796 
S 0.00365 0.00421 0.00516 0.00637 0.00637 0.00638 
XB 1.19575 1.52560 2.06278 1.21399 1.37726 1.68562 
Error (%) 6.00 65.97 100.00 10.67 15.75 35.33 

(a) 

 
PSOKA PSOFCMA CVI Min. Mean Max. Min. Mean Max. 

DB 0.00471 0.00489 0.29046 0.00538 0.00540 0.00541 
SC 0.29046 0.30640 0.33533 0.29046 0.30042 0.32035 
S 0.00832 0.71131 1.68594 0.36314 0.36328 0.36330 
XB 0.18273 1.01053 1.75728 0.80723 1.44156 3.27777 
Error (%) 0.00 22.25 100.00 0.00 9.81 92.00 

(b) 

 
PSOKA PSOFCMA CVI Min. Mean Max. Min. Mean Max. 

DB 0.23707 0.69798 1.02811 0.86679 1.10988 1.30337 
SC 0.79707 0.95203 1.22435 1.62937 1.62937 1.62937 
S 0.00479 0.00672 0.00870 0.01197 0.01197 0.01197 
XB 1.19477 1.36998 1.54367 0.59022 0.60331 0.61588 
Error (%) 5.06 31.25 72.47 5.06 13.80 49.44 

(c) 

 
Table 3. Clustering results for PSOKA and PSOFCMA: (a) Iris; (b) Ruspini; (c) Wine 

 
Table 3 summarizes clustering results for PSOKA and PSOFCMA. It can be seen that 
PSOKA performs better than PSOFCMA considering CVI and PSOFCMA is better than 
PSOKA considering Error (error of classification). Fig. 2 presents PSOFCMA and PSOKA 
clustering for Wine. 
The dataset used in image segmentation experiments was obtained from the BrainWeb 
system (BrainWeb, 2010; Cocosco et al., 1997; Kwan et al., 1996; Kwan et al., 1999; Collins et 
al., 1998), it corresponds to simulated MR images of T1 modality, 0% noise, and 0% 
intensity. BrainWeb dataset contains 10 classes that range from background to connective 
material. For ground truth and classification error evaluation is used the “crisp” dataset. Fig. 
3 presents a slice from the MRI Volume in BrainWeb that is used as dataset for experiments. 
Fig. 3a represents the input to algorithms. Fig. 3b represents the ground truth. Image 
segmentation approaches of current work are unsupervised, so the ground truth is used 
only as a final evaluation step, to quantify image segmentation results. 
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Fig. 2. PSO clustering results for Wine dataset: (a) PSOFCMA; (b) PSOKA 
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SC 0.39613 0.47915 0.54635 0.62484 0.62749 0.62796 
S 0.00365 0.00421 0.00516 0.00637 0.00637 0.00638 
XB 1.19575 1.52560 2.06278 1.21399 1.37726 1.68562 
Error (%) 6.00 65.97 100.00 10.67 15.75 35.33 

(a) 

 
PSOKA PSOFCMA CVI Min. Mean Max. Min. Mean Max. 

DB 0.00471 0.00489 0.29046 0.00538 0.00540 0.00541 
SC 0.29046 0.30640 0.33533 0.29046 0.30042 0.32035 
S 0.00832 0.71131 1.68594 0.36314 0.36328 0.36330 
XB 0.18273 1.01053 1.75728 0.80723 1.44156 3.27777 
Error (%) 0.00 22.25 100.00 0.00 9.81 92.00 

(b) 

 
PSOKA PSOFCMA CVI Min. Mean Max. Min. Mean Max. 

DB 0.23707 0.69798 1.02811 0.86679 1.10988 1.30337 
SC 0.79707 0.95203 1.22435 1.62937 1.62937 1.62937 
S 0.00479 0.00672 0.00870 0.01197 0.01197 0.01197 
XB 1.19477 1.36998 1.54367 0.59022 0.60331 0.61588 
Error (%) 5.06 31.25 72.47 5.06 13.80 49.44 

(c) 

 
Table 3. Clustering results for PSOKA and PSOFCMA: (a) Iris; (b) Ruspini; (c) Wine 

 
Table 3 summarizes clustering results for PSOKA and PSOFCMA. It can be seen that 
PSOKA performs better than PSOFCMA considering CVI and PSOFCMA is better than 
PSOKA considering Error (error of classification). Fig. 2 presents PSOFCMA and PSOKA 
clustering for Wine. 
The dataset used in image segmentation experiments was obtained from the BrainWeb 
system (BrainWeb, 2010; Cocosco et al., 1997; Kwan et al., 1996; Kwan et al., 1999; Collins et 
al., 1998), it corresponds to simulated MR images of T1 modality, 0% noise, and 0% 
intensity. BrainWeb dataset contains 10 classes that range from background to connective 
material. For ground truth and classification error evaluation is used the “crisp” dataset. Fig. 
3 presents a slice from the MRI Volume in BrainWeb that is used as dataset for experiments. 
Fig. 3a represents the input to algorithms. Fig. 3b represents the ground truth. Image 
segmentation approaches of current work are unsupervised, so the ground truth is used 
only as a final evaluation step, to quantify image segmentation results. 
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                                      (a)                                                                               (b) 

Fig. 3. Slice from volume in BrainWeb dataset: a) fuzzy dataset; b) crisp dataset 
Final objective is to find the correct classes that represent brain regions. Fig. 4 shows crisp 
dataset in detail and with every class individually. 
 

 
Fig. 4. Crisp dataset in detail: every class corresponding to one brain region in BrainWeb 
Cluster Validation Indexes are commonly used to evaluate image segmentation, but results 
did show that classification error was not acceptable – experiments did show it was around 
90%. From this assumption, another study has begun in the direction of finding a better way 
to evaluate image segmentation. (Chabrier et al., 2006) work on unsupervised image 
segmentation evaluation methods present several approaches. Amongst them we use the 
Rosenberger’s evaluation criterion, which is defined by following equation (Chabrier et al., 
2006): 
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where: 
a. RI  corresponds to the segmentation result of image I in a set of regions 

{ }1 ,..., }
RNR R R=  having RN  regions 
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b. ( )I ig R  can be generalized to a feature vector computed on the pixels values of the 

region iR  . The same occurs for ( )I jg R  

c. 2
RNC is the number of combinations of 2 regions among RN  

According to (Chabrier et al., 2006) this criterion combines intra and interregions disparities: 
intraregion is computed by the normalized standard deviation of gray levels in each region; 
interregions disparity computes the dissimilarity of the average gray level of two regions in 
the segmentation result.  
For comparison purposes experiments were taken for classical K-means and Fuzzy C-means 
(FCM) algorithms, considering 100 rounds – with maximum 100 iterations each. Table 4 
presents best results considering lower classification error.  
 

K-means FCM Measure Min. Mean. Max. -- 
DB 0.33098 0.39152 0.47994 0.38630 

MSE 39.47764 181.26347 749.88781 86.35377 
SC 0.15269 0.20480 0.27183 0.29905 
S 1.00000 4.32406 10.00000 0.00001 

XB 141.13651 997.30277 26302.67634 145.14488 
ROS 0.50030 0.50036 0.50042 0.50039 

Error (%) 50.21514 65.40306 84.72134 68.78071 

Table 4. Image Segmentation results for K-means and FCM 
Important to note is that there were no heuristics for experiments with K-means and FCM: 
values from Table 4 are obtained may be different every time the experiment runs, unless 
for FCM, for it has the same results have always been found. 
Fig. 5 and Fig. 6 show qualitative results for K-means and FCM, respectively.  
Both image segmentations using K-means and FCM shows that all classes have many 
classification errors and many of them are indistinguishable from each other. In other 
words, most classes are very similar. 
Current work’s objective is that approaches under investigation (GKA, GFCMA, PSOKA 
and PSOFCMA) achieve better values for all measures and classification error. Each method 
runs in a set of experiments, which evaluate the effect of some parameters: 
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Fig. 5. Crisp dataset in detail: every class corresponding to one brain region in BrainWeb 
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Fig. 6. Crisp dataset in detail: every class corresponding to one brain region in BrainWeb 

a. Parameters for GKA and GFCMA 
• Crossover rate 
• Mutation rate 
• Number of generations 
• Population size 
b. Parameters for PSOKA and PSOFCMA 
• Maximum velocity 
• Number of individuals in swarm 
For each approach the fitness function is based on one of measures: Cluster Validation 
Indexes, MSE or ROS. This can be considered a parameter to the algorithm as well. Some 
measures need to be minimized (DB, MSE, XB, ROS) and others need to be maximized (SC, 
S). It is important to note that current approaches are unsupervised. This means that 
obtaining classification error has no influence on approaches’ behavior and is used only as a 
way to evaluate its performance in a controlled scenario. 
Based on observations from experiments, GKA and GFCMA experiments evaluate best 
when they use crossover rate of 70%, mutation rate of 0.5% and number of generations 
around 100. Higher numbers of generation values have no influence. Population size is of 10 
individuals. Numerical results for GKA and GFCMA are shown by Table 5.  
 

GKA GFCMA Measure\Algorithm 
Value Error Value Error 

DB 0.30636 63.53082 0.34955 66.07175 
MSE 12.40774 66.08193 74.99295 72.4037 
SC 0.42729 68.42427 0.90113 48.82756 
S 0.00002 72.61756 0.00007 51.29974 

XB 124.14228 66.22705 84.06929 72.45716 
ROS 0.50026 63.51045 0.50025 40.63447 

Table 5. Image Segmentation results for GKA and GFCMA 

According to results from Table 5 it is noted that GFCMA experiment with ROS measure 
outperforms other experiment’s configurations – considering classification error. Fig. 7 
shows classes for GFCMA’s experiment that achieved best results. 

Image Segmentation through Clustering Based on Natural Computing Techniques   

 

75 

 
Fig. 7. Crisp dataset in detail: every class corresponding to one brain region in BrainWeb 

PSOKA and PFOFCMA experiments use a maximum velocity parameter equals to 0.2 and 
stops when stabilization is found (value of objective function does not change across 10 
iterations). Table 6 shows numerical results for PSOKA and PSOFCMA. 
 

PSOKA PSOFCMA 
Measure\Algorithm 

Value Error Value Error 

DB 0.34345 71.69336 0.33365 65.24938 

MSE 14.26504 72.21529 74.46232 69.18044 

SC 0.77279 66.34926 0.99548 71.43621 

S 0.00007 68.00163 0.00004 71.37001 

XB 260.60458 60.57489 94.1416 68.5312 

ROS 0.50018 66.03356 0.50030 68.31479 

Table 6. Image Segmentation results for PSOKA and PSOFCMA 

Table 6 shows that PSOKA experiment with XB measure got lower classification error. Fig. 8 
shows brain regions for PSOKA’s experiment that achieved best results. 
 

 
Fig. 8. Crisp dataset in detail: every class corresponding to one brain region in BrainWeb 
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Experiments with BrainWeb dataset had the ground truth to evaluate the approaches and 
used gray scale images. To show the performance of approaches with general purpose 
images, we will segment color images: Lena, Peppers and Duck. 
 

     
                           (a)                                               (b)                                                  (c) 

Fig. 9. Color images: a) Lena; b) Peppers; and c) Duck 

Results will show segmentation results considering each approach and all quality measures. 
The number of clusters proceeds as follows: Lena – 6 classes; Peppers – 5 classes; and Duck – 
3 classes. Image has been resized to 96 x 96 pixels, RGB color. Tables 7 to 9 and Figures 10 to 
12 present quantitative and qualitative image segmentation results, respectively. For these 
datasets there is no ground truth (no true labels). Thus, the evaluation about how 
measure/approach has the best result need to be made through quantitative and qualitative 
results. Best quantitative results are bolded in tables. Best qualitative results are harder to 
analyze, so the methodology is to consider: 
a. For Peppers image: well defined frontiers and region homogeneity 
b. For Lena image: well defined frontiers between skin, hat and hair and region 

homogeneity 
c. For Duck image: well defined frontiers between duck body, mouth and glasses/ 

background 
This criterion is used to qualitatively evaluate image segmentation results. Considerations 
about the results are presented in next section. 
 

Measure\Algorithm GKA GFCMA PSOKA PSOFCMA 

DB 0.56110 0.56504 0.54677 0.6147 

MSE 211.10835 651.25003 239.515 640.409 

SC 1.47962 8.50041 1.4389 8.09223 

S 0.00017 0.00140 0.00032 0.00087 

XB 8.67126 3.70102 5.69572 4.11349 

ROS 0.49947 0.51484 0.48019 0.51205 

Table 7. Image Segmentation results for Peppers image 

Image Segmentation through Clustering Based on Natural Computing Techniques   

 

77 

 
 
 

 
Fig. 10. Qualitative image segmentation results for Peppers image. Rows: 1 – GFCMA, 2 – 
GKA, 3 – PSOFCMA, 4 – PSOKA. Columns: 1 – DB, 2 – MSE, 3 – SC, 4 – S, 5 – XB, 6 – ROS. 

 
 
 
 

Measure\Algorithm GKA GFCMA PSOKA PSOFCMA 

DB 0,63599 0,67499 0,44408 0,62798 

MSE 105,67107 373,08084 114,80000 369,99500 

SC 0,89346 10,49051 1,21201 4,71058 

S 0,00012 0,00112 0,00023 0,00052 

XB 11,58644 6,47175 7,62521 5,82961 

ROS 0,54312 0,54141 0,53541 0,54345 

Table 8. Image Segmentation results for Lena image 
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Fig. 11. Qualitative image segmentation results for Lena image. Rows: 1 – GFCMA, 2 – GKA, 
3 – PSOFCMA, 4 – PSOKA. Columns: 1 – DB, 2 – MSE, 3 – SC, 4 – S, 5 – XB, 6 – ROS. 

 
 
 
 

Measure\Algorithm GKA GFCMA PSOKA PSOFCMA 

DB 0,43669 0,44730 0,30422 0,44495 

MSE 260,16469 542,49030 347,33520 536,90780 

SC 1,05008 4,85890 1,08519 29,61981 

S 0,00021 0,00243 0,00019 0,00081 

XB 9,32596 6,74430 1,83358 7,99377 

ROS 0,46663 0,56625 0,50669 0,58084 

Table 9. Image Segmentation results for Duck image 
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Fig. 12. Qualitative image segmentation results for Duck image. Rows: 1 – GFCMA, 2 – 
GKA, 3 – PSOFCMA, 4 – PSOKA. Columns: 1 – DB, 2 – MSE, 3 – SC, 4 – S, 5 – XB, 6 – ROS. 

7. Conclusion and future research 
The present work presents two natural computing methods for data clustering and image 
segmentation, their implementation and some results, one based on Genetic Algorithms and 
the other based on Particle Swarm Optimization. The task of image segmentation is not a 
trivial process. Considering the medical imaging context it is highly important the 
specialist’s opinion about the results found. As the MRI dataset is simulated the experiments 
were guided by this situation. Thus, it is necessary to make experiments with real MRI 
imagery. Color images were used as well to analyze the performance of approaches on 
general purpose image segmentation. 
The methodology used in this work was based on the following:  

1. To implement the algorithms 
2. To evaluate clustering results on known databases 
3. To use the obtained results to guide tests with image segmentation. Image 
segmentation tests must consider image characteristics.  

As the present methods are based on Evolutionary Computation and all have a performance 
(fitness) function, there must be some way to guide this evolution, so tests were made 
considering several Clustering Validation Indexes (DB, SC, S and XB), a commonly used 
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error measure (MSE) and an image segmentation specific measure (ROS). Also, when 
available, a measure of classification error was used to identify the method’s final and 
overall performance. CVI, MSE and ROS can be used as a function of quality of a solution 
(population/generation for GKA or particle for PSO). 
Considering classical clustering, K-means outperforms FCM considering classification error. 
Qualitative analysis shows that both algorithms did not identify correctly any of the classes 
and it is dificult to evaluate the quality of solution because, according to ground truth, most 
classes are merged or part of one class is in other class. Class 1, which may be background is 
the most correctly identified, even having some elements from other class in its interior. 
Classes 2 and 4 are almost correct also. 
Considering GA, the lower classification error was obtained by GFCMA (around 40%), with 
ROS index. GFCMA also got best results considering SC, S, XB and ROS measures. 
Qualitative result shows that the same considerations for K-means and FCM apply to 
GFCMA, but most classes are almost identical, which results in weak qualitative evaluation. 
The quantitative measures were also enhanced. Only index S was better with K-means.  
Considering PSO, the lower classification error was obtained by PSOKA (around 60%), with 
XB index. PSOKA was better considering MSE, S and ROS, while PSOFCMA was better 
considering DB, SC and XB. Curiously, better value of XB was not the one that obtained 
lower classification error. PSO also enhanced quantitative measures. 
MRI dataset evaluation has considered the ground truth, so it was possible to evaluate 
experiment's results considering classification error. Experiments were made to evaluate the 
performance of GA and PSO considering general purpose color images. For Peppers image, 
GFCMA got best quantitative results (indexes SC, S and XB), followed by PSOKA (indexes 
DB and ROS). Qualitative analysis shows that GFCMA with index DB got best results, 
considering that red and green peppers where correctly separated and GFCMA also identify 
some background (between peppers). For Lena image, GFCMA (indexes SC and S) and 
PSOKA (indexes DB and ROS) got best results. Qualitative analysis shows that all 
approaches had problems with regions of hat and skin. Considering skin and hair, GFCMA 
with ROS index and PSOKA with ROS index got best results. For Duck image, GKA 
(indexes MSE and ROS), GFCMA (indexes SC and S) and PSOKA (indexes DB and XB) got 
best quantitative results. Qualitative analysis shows that GKA with index SC and S, 
PSOFCM with index SC and S got best results.  
Most experiments using classical K-means and FCM run to 100 iterations – and more 
iteration could lead to lower error values. It’s necessary to remember that GA and PSO both 
use only one iteration of K-means and  FCM, and the convergence is fast (about 5 to 10 
iterations). The problem of possible premature convergence of PSO is investigated by (Yong-
gang, et al., 2005), which proposed the Improved PSO (IPSO) algorithm. This is a problem to 
take into account as a try to improve image segmentation results for PSO and GA also.  
In summary, considering the results obtained from the experiments, it can be said that 
methods based on FCM performed better. As the present work does not evolves to image 
registration and classification more evaluation is necessary to argue about Fuzzy C-means 
superiority over K-means, in terms of the implemented algorithms. The use of image 
segmentation benchmarks to compare to obtained results is also a task for future research, 
together with studies about newer approaches and definitions for GA and PSO, mainly 
considering image characteristics, like texture, region and borders (frontiers). 
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One problem with these evolutionary algorithms is that the only concern is the quality of the 
solution, with little attention given to computational efficiency (Hruschka et al., 2009). The 
authors also analyze that the literature on clustering and image segmentation techniques 
based on evolutionary or natural computing does not provide detailed theoretical analyses 
in terms of time complexity. As we agree with this argumentation, one future work is the 
correct understanding of these algorithms in terms of computational efficiency and 
complexity. 
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superiority over K-means, in terms of the implemented algorithms. The use of image 
segmentation benchmarks to compare to obtained results is also a task for future research, 
together with studies about newer approaches and definitions for GA and PSO, mainly 
considering image characteristics, like texture, region and borders (frontiers). 
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1. Introduction    
Several image processing applications aim to detect and mark remarkable features which in 
turn might be used to perform high-level tasks. In particular, image segmentation seeks to 
group pixels within meaningful regions. Commonly, gray levels belonging to the object are 
substantially different from the gray levels featuring the background. Thresholding is thus a 
simple but effective tool to isolate objects of interest from the background. Its applications 
include several classics such as document image analysis, whose goal is to extract printed 
characters (Abak et al., 1997; Kamel & Zhao, 1993) logos, graphical content, or musical 
scores; also it is used for map processing which aims to locate lines, legends, and characters 
(Trier & Jain, 1995). It is also used for scene processing, aiming for object detection and 
marking (Bhanu, 1986); Similarly, it has been employed to quality inspection for materials 
(Sezgin & Sankur, 2001; Sezgin & Tasaltin, 2000), discarding defective parts. 
Thresholding selection techniques can be classified into two categories: bi-level and multi-
level. In bi-level thresholding, one limit value is chosen to segment an image into two 
classes: one represents the object and the other represents the background. When an image 
is composed of several distinct objects, multiple threshold values have to be selected for 
proper segmentation. This is called multilevel thresholding. 
A variety of thresholding approaches have been proposed for image segmentation, 
including conventional methods (Guo & Pandit, 1998; Pal & Pal, 1993; Shaoo et al., 1988; 
Snyder et al., 1990) and intelligent techniques such as in (Chen & Wang, 2005; Chih-Chih, 
2006). Extending the algorithm to a multilevel approach may arise some inconveniences: (i) 
they may have no systematic and analytic solution when the number of classes to be 
detected increases and (ii) the number of classes is either difficult to be predicted or must be 
pre-defined. However, this parameter is unknown for many real applications. 
In order to solve these problems, an alternative approach using an optimization algorithm 
based on learning automata for multilevel thresholding is proposed in this paper. In the 
traditional multilevel optimal thresholding, the intensity distributions belonging to the 
object or to the background pixels are assumed to follow some Gaussian probability 
function; therefore a combination of probability density functions is usually adopted to 
model these functions. The parameters in the combination function are unknown and the 
parameter estimation is typically assumed to be a nonlinear optimization problem 
(Gonzalez & Woods, 1990). The unknown parameters that give the best fit to the processed 
histogram are determined by using a LA algorithm (Thathachar & Sastry, 2002).  
The main motivation behind the use of LA as an optimization algorithm for parameter 
adaptation is to use its capabilities of global optimization when dealing to multimodal 
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turn might be used to perform high-level tasks. In particular, image segmentation seeks to 
group pixels within meaningful regions. Commonly, gray levels belonging to the object are 
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characters (Abak et al., 1997; Kamel & Zhao, 1993) logos, graphical content, or musical 
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marking (Bhanu, 1986); Similarly, it has been employed to quality inspection for materials 
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Thresholding selection techniques can be classified into two categories: bi-level and multi-
level. In bi-level thresholding, one limit value is chosen to segment an image into two 
classes: one represents the object and the other represents the background. When an image 
is composed of several distinct objects, multiple threshold values have to be selected for 
proper segmentation. This is called multilevel thresholding. 
A variety of thresholding approaches have been proposed for image segmentation, 
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2006). Extending the algorithm to a multilevel approach may arise some inconveniences: (i) 
they may have no systematic and analytic solution when the number of classes to be 
detected increases and (ii) the number of classes is either difficult to be predicted or must be 
pre-defined. However, this parameter is unknown for many real applications. 
In order to solve these problems, an alternative approach using an optimization algorithm 
based on learning automata for multilevel thresholding is proposed in this paper. In the 
traditional multilevel optimal thresholding, the intensity distributions belonging to the 
object or to the background pixels are assumed to follow some Gaussian probability 
function; therefore a combination of probability density functions is usually adopted to 
model these functions. The parameters in the combination function are unknown and the 
parameter estimation is typically assumed to be a nonlinear optimization problem 
(Gonzalez & Woods, 1990). The unknown parameters that give the best fit to the processed 
histogram are determined by using a LA algorithm (Thathachar & Sastry, 2002).  
The main motivation behind the use of LA as an optimization algorithm for parameter 
adaptation is to use its capabilities of global optimization when dealing to multimodal 
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surfaces. Using LA, the search for the optimum is done within a probability space rather than 
seeking within a parameter space as done by other optimization algorithms (Najim &Poznyak, 
1994). Learning automata is referred to as an automaton, acting embedded into an unknown 
random environment. Such automaton improves its performance to obtain an optimal action. 
On the other hand, an action is applied to a random environment and gives a fitness value to 
the selected action of the automata. The response of the environment is used by automata to 
select its next action. This procedure is continued to reach the optimal action. 
LA has been used for solve different sorts of engineering problems. For instance, pattern 
recognition (Seyed-Hamid, 2008), adaptive control (Zeng et al., 2000) signal processing 
(Howell & Gordon, 2000) and power systems (Wu, 1995). Recently, some effective 
algorithms have been proposed for multimodal complex function optimization based on the 
LA (see (Howell & Gordon, 2000; Thathachar & Sastry, 2002; Zeng & Liu, 2005; Beygi & 
Meybodi, 2006)). Furthermore, it was shown experimentally that the performance of these 
optimization algorithms is comparable to or better than the genetic algorithm (GA) in [22]. 
This work employs the algorithm proposed in (Zeng & Liu, 2005), which is called 
continuous action reinforcement learning automata (CARLA). 
In this chapter, an automatic image multi-threshold approach based on Learning Automata 
is presented. Hereby the segmentation process is considered to be similar to an optimization 
problem. First, the algorithm approximates the 1-D histogram of the image using a mix of 
Gaussian functions whose parameters are calculated using the Learning automata method. 
Each Gaussian function approximating the histogram represents a pixel class and therefore 
the threshold points. 
This chapter is organized as follows. Section 2 presents the Gaussian approximation to the 
histogram. Section 3 presents the LA algorithm, while Section 4 shows the determination of 
the threshold points. In section 5 the implementation details are shown. Experimental 
results for the proposed approach are presented in Section 6, finally the conclusion are 
presented in Section 7.normal) 

2. Gaussian approximation 

Assuming an image has L gray levels −…[0, , 1]L , following a gray level distribution which 
can be displayed in the form of the histogram ( )h g . In order to simplify the description, the 
histogram is normalized and is considered as a probability distribution function: 
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Assuming that gn  denotes the number of pixels with gray level g while N is the total 
number of pixels in the image. The histogram function can be contained into a mix of 
Gaussian probability functions, yielding: 
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considering that  Pi  is the a priori probability of class i, ( )ip x  is the probability distribution 
function of gray-level random variable x in class i, iμ and iσ  are the mean and standard 
deviation of the i-th probability distribution function, and K is the number of classes within 

the image. In addition, the constraint 
1

1
K

ii
P

=
=∑  must be satisfied. 

The typical mean square error consideration is used to estimate the 3K parameters iP , iμ  
and iσ , i = 1, . . ,K. For example, the mean square error between the composite Gaussian 
function ( )ip x  and the experimental histogram function ( )ih x is defined as follows: 
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Assuming an n-point histogram as in [13] and ω  being the penalty associated with the 

constrain 
1

1
K

ii
P

=
=∑ . In general, the determination of parameters that minimize the square 

error is not a simple problem. A straightforward method to decrease the partial derivatives 
of the error function to zero considers a set of simultaneous transcendental equations 
(Gonzalez & Woods, 1992). An analytical solution is not available due to the non-linear 
nature of the equations. The algorithm therefore makes use of a numerical procedure 
following an iterative approach based on the gradient information. However, considering 
that the gradient descent method may easily get stuck within local minima. In the standard 
gradient method, the new operation point lies within a neighbourhood distance of the 
previous point. This is not the case for adaptation algorithm based on stochastic principles 
such as LA, as the new operating point is determined by probability function and is 
therefore not considered to be near the previous operating point. This gives the algorithm a 
higher ability to locate the global minima.  
Some previous experiences have shown that the intelligent approaches actually provide a 
satisfactory performance in case of image processing problems (Chen & Wang, 2005; Chih-
Chih, 2006; Baştürk & Günay, 2009; Lai & Tseng, 2001; Tseng & Lai, 1999). The LA algorithm 
is therefore adopted in order to find the parameters and their corresponding threshold 
values. 

3. Learning automata 
LA operates by selecting actions via a stochastic process. Such actions operate within an 
environment while being assessed according to a measure of the system performance. 
Figure 1a shows the typical learning system architecture. The automaton selects an action 
(X) probabilistically. Such actions are applied to the environment, and the performance 
evaluation function provides a reinforcement signal β . This is used to update the 
automaton’s internal probability distribution whereby actions that achieve desirable 
performance are reinforced via an increased probability, while those not-performing actions 
are penalised or left unchanged depending on the particular learning rule which has been 
employed. Over time, the average performance of the system will improve while a given 
limit is reached. In terms of optimization problems, the action with the highest probability 
would correspond to the global minimum as demonstrated by rigorous proofs of 
convergence available in (Narendra & Thathachar, 1989) and (Najim & Poznyak, 1994).  
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2. Gaussian approximation 

Assuming an image has L gray levels −…[0, , 1]L , following a gray level distribution which 
can be displayed in the form of the histogram ( )h g . In order to simplify the description, the 
histogram is normalized and is considered as a probability distribution function: 
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Assuming that gn  denotes the number of pixels with gray level g while N is the total 
number of pixels in the image. The histogram function can be contained into a mix of 
Gaussian probability functions, yielding: 
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considering that  Pi  is the a priori probability of class i, ( )ip x  is the probability distribution 
function of gray-level random variable x in class i, iμ and iσ  are the mean and standard 
deviation of the i-th probability distribution function, and K is the number of classes within 

the image. In addition, the constraint 
1

1
K

ii
P

=
=∑  must be satisfied. 

The typical mean square error consideration is used to estimate the 3K parameters iP , iμ  
and iσ , i = 1, . . ,K. For example, the mean square error between the composite Gaussian 
function ( )ip x  and the experimental histogram function ( )ih x is defined as follows: 
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Assuming an n-point histogram as in [13] and ω  being the penalty associated with the 

constrain 
1

1
K

ii
P

=
=∑ . In general, the determination of parameters that minimize the square 

error is not a simple problem. A straightforward method to decrease the partial derivatives 
of the error function to zero considers a set of simultaneous transcendental equations 
(Gonzalez & Woods, 1992). An analytical solution is not available due to the non-linear 
nature of the equations. The algorithm therefore makes use of a numerical procedure 
following an iterative approach based on the gradient information. However, considering 
that the gradient descent method may easily get stuck within local minima. In the standard 
gradient method, the new operation point lies within a neighbourhood distance of the 
previous point. This is not the case for adaptation algorithm based on stochastic principles 
such as LA, as the new operating point is determined by probability function and is 
therefore not considered to be near the previous operating point. This gives the algorithm a 
higher ability to locate the global minima.  
Some previous experiences have shown that the intelligent approaches actually provide a 
satisfactory performance in case of image processing problems (Chen & Wang, 2005; Chih-
Chih, 2006; Baştürk & Günay, 2009; Lai & Tseng, 2001; Tseng & Lai, 1999). The LA algorithm 
is therefore adopted in order to find the parameters and their corresponding threshold 
values. 

3. Learning automata 
LA operates by selecting actions via a stochastic process. Such actions operate within an 
environment while being assessed according to a measure of the system performance. 
Figure 1a shows the typical learning system architecture. The automaton selects an action 
(X) probabilistically. Such actions are applied to the environment, and the performance 
evaluation function provides a reinforcement signal β . This is used to update the 
automaton’s internal probability distribution whereby actions that achieve desirable 
performance are reinforced via an increased probability, while those not-performing actions 
are penalised or left unchanged depending on the particular learning rule which has been 
employed. Over time, the average performance of the system will improve while a given 
limit is reached. In terms of optimization problems, the action with the highest probability 
would correspond to the global minimum as demonstrated by rigorous proofs of 
convergence available in (Narendra & Thathachar, 1989) and (Najim & Poznyak, 1994).  
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Fig. 1. (a) Reinforcement learning system and (b) Interconnected automata. 

A wide variety of learning rules have been reported in the literature. One of the most widely 
used algorithms is the linear reward/inaction ( RIL ) scheme, which has been shown to 
guaranteed convergence properties (see [1008]). In response to action ix , being selected at 
time step k, the probabilities are updated as follows: 
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beingθ  a learning rate parameter and 0 1θ< < and [0,1]β ∈ the reinforcement signal; 
1β = indicates the maximum reward and 0β = is a null reward. Eventually, the probability 

of successful actions will increase to become close to unity. In case that a single and foremost 
successful action prevails, the automaton is deemed to have converged.  
With a large number of discrete actions, the probability of selecting any particular action 
becomes low and the convergence time can become excessive. To avoid this, learning 
automata can be connected in a parallel setup as shown by Figure 1b. Each automaton 
operates a smaller number of actions and the ‘team’ works together in a co-operative 
manner. This scheme can also be used where multiple actions are required. 
Discrete stochastic learning automata can be used to determine global optimal states for 
control applications with multi-modal mean square error surfaces. However, the discrete 
nature of the automata requires the discretization of a continuous parameter space, and the 
level of quantization tends to reduce the convergence rate. A sequential approach may be 
adopted (Howell & Gordon, 2000) to overcome such problem by means of an initial coarse 
quantization. It may be later refined using a re-quantization around the most successful 
action. In this paper, an inherently continuous form of the learning automaton is used to 
speed the learning process and to avoid this additional complexity. 

3.1 CARLA algorithm 
The continuous action reinforcement learning automata (CARLA) was developed as an 
extension of the discrete stochastic learning automata for applications involving searching of 
continuous action space in a random environment (Howell & Gordon, 2000). Several 
CARLA can be connected in parallel, in a similar manner to discrete automata (Figure 1b), to 
search multidimensional action spaces. The interconnection of the automata is through the 
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environment however, no direct inter-automata communication exist. The automaton’s 
discrete probability distribution is replaced by a continuous probability density function 
which is used as the basis for action selection. It operates a reward/inaction learning rule 
similar to the discrete learning automata. Successful actions receive and increase on the 
probability of future selection via a Gaussian neighborhood function which increases the 
probability density in the vicinity of such successful action. Table 1 shows the generic 
pseudo-code for the CARLA algorithm.  The initial probability distribution can be chosen as 
being uniform over a desired range. After a considerable number of iterations, it converges 
to a probability distribution with a global maximum around the best action value. 
If action x is defined over the range min max( , )x x , the probability density function ( , )f x n at 
iteration n is updated according to the following rule: 

 min min[ ( , ) ( ) ( , )] if ( , )
( , 1)

0 otherwise
f x n n H x r x x x

f x n
α β⋅ + ⋅ ∈⎧

+ = ⎨
⎩

 (5) 

With α being chosen to re-normalize the distribution according to the following condition 
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with ( )nβ being again the reinforcement signal from the performance evaluation and 
( , )H x r a symmetric Gaussian neighbourhood function centered on ( )r x n= . It yields 
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CARLA Algorithm 
Initialize the probability density function to a uniform distribution 
     Repeat 
              Select an action using its probability density function 
              Execute action on the environment 
              Receive cost/reward for previous action 
              Update performance evaluation function β  

              Update probability density function 
    Until stopping condition 

Table 1. Generic pseudo-code for the CARLA algorithm 

with λ  and σ being parameters that determine the height and width of the neighborhood 
function. They are defined in terms of the range of actions as follows: 

 max min( )wg x xσ = ⋅ −  (8) 
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environment however, no direct inter-automata communication exist. The automaton’s 
discrete probability distribution is replaced by a continuous probability density function 
which is used as the basis for action selection. It operates a reward/inaction learning rule 
similar to the discrete learning automata. Successful actions receive and increase on the 
probability of future selection via a Gaussian neighborhood function which increases the 
probability density in the vicinity of such successful action. Table 1 shows the generic 
pseudo-code for the CARLA algorithm.  The initial probability distribution can be chosen as 
being uniform over a desired range. After a considerable number of iterations, it converges 
to a probability distribution with a global maximum around the best action value. 
If action x is defined over the range min max( , )x x , the probability density function ( , )f x n at 
iteration n is updated according to the following rule: 

 min min[ ( , ) ( ) ( , )] if ( , )
( , 1)

0 otherwise
f x n n H x r x x x

f x n
α β⋅ + ⋅ ∈⎧

+ = ⎨
⎩

 (5) 

With α being chosen to re-normalize the distribution according to the following condition 

 
max

min

( , 1) 1
x

x

f x n dx+ =∫  (6) 

with ( )nβ being again the reinforcement signal from the performance evaluation and 
( , )H x r a symmetric Gaussian neighbourhood function centered on ( )r x n= . It yields 

 
2

2

( )( , ) exp
2

x rH x r λ
σ

⎛ ⎞−
= ⋅ −⎜ ⎟

⎝ ⎠
 (7) 

 
CARLA Algorithm 
Initialize the probability density function to a uniform distribution 
     Repeat 
              Select an action using its probability density function 
              Execute action on the environment 
              Receive cost/reward for previous action 
              Update performance evaluation function β  

              Update probability density function 
    Until stopping condition 

Table 1. Generic pseudo-code for the CARLA algorithm 

with λ  and σ being parameters that determine the height and width of the neighborhood 
function. They are defined in terms of the range of actions as follows: 

 max min( )wg x xσ = ⋅ −  (8) 

 
max min( )

hg
x x

λ =
−

 (9) 



 Image Segmentation 

 

88 

The speed and resolution of learning are thus controlled by free parameters wg and hg . Let 
action x(n) be applied to the environment at iteration n, returning a cost or performance 
index J(n). Current and previous costs are stored as a reference set R(n). The median and 
minimum values medJ  and minJ  may thus be calculated, by means of ( )nβ being defined as: 

 med

med min

( )( ) max 0, J J nn
J J

β
⎧ ⎫−⎪ ⎪= ⎨ ⎬

−⎪ ⎪⎩ ⎭
 (10) 

To avoid problems with infinite storage, and to allow the system to adapt to changing 
environments, only the last m values of the cost functions are stored in R(n). Equation (10) 
limits ( )nβ  to values between 0 and 1 and only returns nonzero values for costs that are 
below the median value. It is easy to understand how ( )nβ  affects the learning process 
informally as follows: during the learning, the performance and the number of selecting 
actions can be wildly variable, generating extremely high computing costs. However, 

( )nβ is insensitive to these extremes and to the very high values of J(n) resulting from a poor 
choice of actions. As learning continues, the automaton converges towards more worthy 
regions of the parameter space and these actions within such regions are chosen for 
evaluation increasingly often. While more of such responses are being received, medJ  gets 
reduced. Decreasing medJ  in the performance index effectively enables the automaton to 
refine its reference around the better responses previously received, and hence resulting in a 
better discrimination between the competing selected actions. 
To define an action value x(n) which has been associated to this probability density function, 
an uniformly distributed pseudo-random number z(n) is generated within the range of [0,1]. 
Simple interpolation is then employed to equate this value to the cumulative distribution 
function: 

 
min

( )

( , ) ( )
x n

x

f x n dx z n=∫  (11) 

For implementation purposes, the distribution is stored at discrete points with an equal 
inter-sample probability. Linear interpolation is used to determine values at intermediate 
positions (see full details in [19]). 

4. Determination of threshold values 
The next step is to determine the optimal threshold values. Considering that the data classes 
are organized such that 1 2 Kμ μ μ< < <… , the threshold values are obtained by computing 
the overall probability error for two adjacent Gaussian functions, following: 

 1 1 2( ) ( ) ( ),i i i i iE T P E T P E T+= ⋅ + ⋅   1,2, , 1i K= −…  (12) 
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and 
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i

i i
T

E T p x dx
∞

= ∫  (14) 

1( )iE T is the probability of mistakenly classifying the pixels in the (i + 1)-th class to the i-th 
class, while 2( )iE T is the probability of erroneously classifying the pixels in the i-th class to 
the (i + 1)-th class. sjP ′  are the a priori probabilities within the combined probability density 
function, and iT  is the threshold value between the i-th and the (i + 1)-th classes. One iT  
value is chosen such as the error ( )iE T  is minimized. By differentiating ( )iE T  with respect 
to iT  and equating the result to zero, it is possible to use the following equation to define the 
optimum threshold value iT : 

 2 0i iAT BT C+ + =  (15) 
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2 2
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Although the above quadratic equation has two possible solutions, only one of them is 
feasible (positive and inside the interval). The figure 2 shows the determination process of 
the threshold points. 
 

 
Fig. 2. Determination process of the threshold points 
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5. Implementation 
In the implementation four different pixel classes are used to segment the images. The idea 
is to show the effectiveness of the algorithm and the little information required for the 
localization of the threshold points, the implementation could be effortlessly carried out for 
a bigger number of pixel classes. 
To approach the histogram of an image by 4 Gaussian functions (one for each pixel class), it 
is necessary first, calculate the optimum values of the 3 parameters (Pi, iμ and iσ ) for each 
Gaussian function (in this case, 12 values according to equation 2). This problem can be 
resolved optimizing equation 3, considering that function ( )p x is formed by 4 Gaussian 
functions. 
The parameters to be optimized are summarized in table 2. Where i

Pk  is the parameter that 
represents the a priori probability (P), ikσ  represents the variance (σ ) and ikμ  represents the 
expected value ( μ ) of the Gaussian function i. 
 

Parameters Gaussian 

1
Pk  1kσ  1kμ  1 

2
Pk  2kσ  2kμ  2 

3
Pk  3kσ  3kμ  3 

4
Pk  4kσ  4kμ  4 

Table 2. Parameters to be optimized 

In LA optimization, each parameter is considered like an Automaton which chooses actions. 
The actions correspond to values assigned to the parameter, by a probability distribution 
inside of an interval. The intervals used in this work for the parameters are defined as 

i
Pk ∈ [0,0.5],  ikσ ∈ [0,60] , and ikμ ∈ [0,255]. 

For this 12-dimensional problem will be 12 different Automatons which represent the 
parameters to approach the corresponding histogram. One of the main advantages of the LA 
is that in a multi-dimensional problem the Automatons are coupled only through the 
enviorement, thus each Automaton operated independently, during the optimization.  
Thus, in each instant n each Automaton chooses an action according to their probability 
distribution, which can be represented in a vector A(n)={ 1

Pk , 1kσ , 1kμ …, 4
Pk , 4kσ , 4kμ }.  This 

vector represents a certain approach of the histogram. Then, the quality of the approach is 
evaluated (according to equation 3) and converted to a reinforcement signal ( )nβ  (through 
equation 10). Having obtained the reinforcement value ( )nβ  as product of the elected 
approach A(n), the distribution of probability is update for n+1 of each Automaton 
(according to the equation 5). To simplify parameters of equation 8 and 9 are the same for 
the 12 Automatons, such that 0.02wg = and hg =0.3.  In this work is considers to limit to 2000 
the iterations on the optimization process. 
Next, the optimization algorithm is described: 
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i Set iteration n=0. 

ii 
Define the action set A(n)={ 1

Pk , 1kσ , 1kμ …, 4
Pk , 4kσ , 4kμ } such that i

Pk ∈ [0,0.5], ikσ ∈  

[0,60] and ikμ ∈  [0,255]. 

iii Define probability density functions at iteration n: ( , )i
Pf k n , ( , )if k nσ  and ( , )if k nμ   

iv 
Initialize ( , )i

Pf k n , ( , )if k nσ  and ( , )if k nμ  as an uniform distribution between the 
defined limits. 

v Repeat while 2000n ≤  

 (a) 
Using a pseudo-random number generator for each Automaton, select ( )i

Pz n , 
( )iz nσ  and ( )iz nμ  uniformly between 0 and 1. 

 (b) 

Select i
Pk ∈  [0,0.5], ikσ ∈  [0,60] and ikμ ∈  [0,255] where the area under the 

probability density function is 
( )

0
( , ) ( )

i
Pk n i i

P Pf k n z n=∫ , 
( )

0
( , ) ( )

ik n i if k n z nσ

σ σ=∫  and 
( )

0
( , ) ( )

ik n i if k n z nμ

μ μ=∫ . 

 (c) Evaluate the performance using Eq. (3). 
 (d) Obtain the minimum, minJ , and median, medJ  of  J (n). 

 (e) Evaluate ( )nβ via Eq. (10). 

 (f) 
Update the probability density functions ( , )i

Pf k n , ( , )if k nσ  and ( , )if k nμ  using 
Eq. (5). 

 (g) Increment iteration number n. 

The learning system search in the 12-dimensional parameter space with the aim of reducing 
the values for J in Eq. (3).  

6. Experimental results 
In this section the performance of the algorithm is tested by two experiments. In both 
experiments a 4 pixel class segmentation is consider and an approaching of the original 
histogram of the image by LA. To test the consistency of the algorithm, 10 independent 
repetitions were made for each experiment. 
In the first experiment the image represented in figure 3a was used, whose original 
histogram is shown in figure 3b. Considering the proposed LA algorithm (detailed in the 
previous section) a global minimum was obtained (equation 3), the point defined as 

1
Pk =0.0210, 1kσ =6, 1kμ =15, 2

Pk =0.0404, 2kσ =29, 2kμ =63, 3
Pk =0.0608, 3kσ =10, 3kμ =93, 4

Pk =0.1002, 
4kσ =30, and 4kμ =163. The values of these parameters define 4 different Gaussian functions, 

which are represented in figure 4. From the mix of these 4 Gaussian functions, an approach 
to the original histogram is obtained as shown in figure 5. 
The evolution of the probability densities parameters, whose represent the expected 
values 1( , )f k nμ , 2( , )f k nμ , 3( , )f k nμ  and 4( , )f k nμ of the Gaussian functions are shown in figure 
6. It can be seen that most of the convergence is achieved at the first 1500 iterations, after 
that a gradual sharpening of the distribution occurs. The final probability densities (n=2000) 
can be taken as the final parameter value. 
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5. Implementation 
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Parameters Gaussian 

1
Pk  1kσ  1kμ  1 

2
Pk  2kσ  2kμ  2 

3
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4
Pk  4kσ  4kμ  4 
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i Set iteration n=0. 

ii 
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 (a) 
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Pz n , 
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 (b) 

Select i
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( )

0
( , ) ( )

i
Pk n i i

P Pf k n z n=∫ , 
( )

0
( , ) ( )

ik n i if k n z nσ

σ σ=∫  and 
( )

0
( , ) ( )

ik n i if k n z nμ

μ μ=∫ . 
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Fig. 3. (a) Original image used on the first experiment, (b) and its histogram 
 
 
 

 
Fig. 4. Gaussian functions obtained by LA 
 
 
 
 

 
Fig. 5. Comparison between the original histogram and its approach 
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Fig. 6. Evolution of the probability densities parameters, whose represent the expected 
values (a) 1( , )f k nμ , (b) 2( , )f k nμ , (c) 3( , )f k nμ  and (d) 4( , )f k nμ , of the Gaussian functions 

From the Gaussian functions obtained by LA (figure 4), the threshold values iT  are 
calculated considering equations 15-16.  From these values the image segmented in 4 classes 
shown in figure 7 is obtained. 
 

 
Fig. 7. Image segmented in 4 classes by LA 
In the second experiment, the image shown in figure 8 was used. The idea is again, to 
segment it in 4 different pixel classes using the LA approach proposed in this work. After 
execute the algorithm with the parameters detailed in the previous sections the Gaussian 
functions obtained are shown in figure 9a. 
The mix of Gaussian functions obtained by the LA algorithm approach to the original 
histogram, as can be seen in figure 9b. From figure 9b is clear that the algorithm approaches 
each one of the pixel concentrations, distributed in the histogram, except to the first one 
(presented approximately around the intensity value 7). This effect shows that the algorithm 
discards the smallest accumulation of pixels and prefer to cover those classes that contribute 
to generate a smaller error  during optimization of the equation 3. The results can be 
improved if 5 pixel classes were used (instead of segmenting the image by 4 pixel classes). 
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Fig. 8. Image used on the second experiment 

 

 
(a) 

 
(b) 

Fig. 9. (a) Gaussian functions obtained by LA, and (b) its comparison to the original 
histogram 

From the Gaussian functions obtained by LA (figure 9a), the threshold values iT  are 
calculated considering equations 15-16.  From these values the image segmented in 4 classes 
shown in figure 10 is obtained. Figure 11 shows the separation of each class obtained by the 
algorithm. 
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Fig. 10. Segmentation obtained by LA 

 

        
                                             (a)                                                           (b) 

        
                                             (c)                                                           (d) 

Fig. 11. Separation of each class obtained by the LA algorithm. (a) Pixel class 1, (b) Pixel class 
2, (c) Pixel class 3, and (d) Pixel class 3. 

6. Conclusions 
This works presents a novel segmentation algorithm which includes an automatic threshold 
determination approach. The overall method can be considered as a Learning automata 
optimization algorithm. Following the intensity distributions for each object. The intensity 
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distributions of objects and background in an image are assumed to obey Gaussian 
distributions with distinct variances and means. The histogram of a given image is approach 
by a mix of Gaussian probability functions. The LA algorithm is used to estimate the 
parameters in the mix density function obtaining a minimum square error between the 
density function and the original histogram. The experimental results reveal that the 
proposed approach can produce satisfactory results. Further work of extending the 
proposed approach with other techniques and comparing the results with state of the art 
image segmentation techniques are in progress. 
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1. Introduction 
Understanding the brain functioning in visual process is one of the more active areas within 
neuroscience, modeling and computation. This great interest is due to the fact that vision 
provides us with the more important information about the surroundings. Oriented early 
filtering processes, perceptual clustering through emerging features, form and depth 
perception, figure-ground separation, and object recognition are all involved in the brain 
visual activity. Important researches have been undertaken to develop models simulating 
this brain behavior. So, neural models of visual perception biologically motivated in early 
vision tasks have been arisen versus others not biologically motivated computer vision 
algorithms. The knowledge about the early vision is notable and, accordingly, the neural 
modeling of the early vision tasks has been very scientifically productive. There are 
numerous visual models of the early visual perception (Kokkinos et al., 2007) (Neumann et 
al., 2007). One of the more significant is the BCS/FCS model of Grossberg and Mingolla 
(Grossberg & Mingolla, 1985). This model is composed of two systems, boundary contour 
system (BCS) and feature contour system (FCS), modeling processes given in the 
interactions among V1, V2 and V4 visual areas. Features so important in the human vision 
like illusory perception, emergent segmentations, diffusive filling-in are integrated in a 
coherent way in the BCS/FCS network. This system has experiment an important evolution 
in its modeling, integrating spatial and orientational competitive processes in a same stage 
(Mingolla et al., 1999). This model has been the framework of many other researchers in the 
development of their approaches. Kokkinos et al. (Kokkinos et al., 2008) have recently 
developed a computational simplification of the BCS/FCS model. They propound a three-
stage structure incorporating feature extraction with contrast normalization, boundary 
formation through a competitive stage of information of feature extraction, cooperative 
signal, anisotropic image smoothing and large scale signal. In their proposal, they include a 
comparison to Canny’s detector, a classical computer vision algorithm. Kokkinos’ 
architecture shows better results than Canny’s algorithm. Main contribution of Kokkinos’ is 
its simplification of the BCS/FCS model more than its evolution as it is somewhat complex. 
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Several neurophysiological studies show that the response modulation by stimuli beyond 
the receptive field is a common phenomenon in the V1 area (Petkov & Westenberg, 2003). 
There are evidences that 80% of the orientation selective cells perform a response 
suppression over a bar texture surround beyond its receptive field. Based on these studies 
Petkov and Westenberg (Petkov & Westenberg, 2003) proposed a surround suppression 
model for the complex cells and they also analyzed this effect by psychophysical 
experiments. This interesting inhibitory effect has been considered in the development of 
our proposal of boundary detection neural network. This surround suppression mechanism 
is not considered in the BCS. Nevertheless, Petrov and Westenberg’s network is limited to 
the simple and complex cells for evaluating the surround suppression effect. Competitive 
and cooperative processes generated by the V2 hypercomplex cells, are not considered in 
their proposal. Another important biological evidence is the existence of feedback 
interactions in the visual cortex (Hubel, 1995). BCS includes a competitive-cooperative loop 
where the completion boundary and the illusory contour extraction are performed. 
Neumann and Sepp (Neumann & Sepp, 1999) presented a V1-V2 recurrent process through 
the integration of the V1 activations from V2 receptive field elongated lobes. 
In the work presented in this paper, trying to obtain a model as simple as possible, we propose 
an architecture considering the more significant mechanisms of the human visual system early 
processing for color scene stimuli: chromatic and achromatic opponent channels, orientational 
filtering, surround suppression, V1-V2 recurrent interactions through competitive and 
cooperative fields. Additionally, we propose an inter-scale information fusion stage in order to 
obtain the boundary output with all the information gathered from the scene. In (Antón-
Rodríguez et al., 2009) we proposed a visual feature extraction architecture for color-texture 
identification corresponding to the color extension of the BCS/FCS system. In this work we 
presented a BCS system for processing signals from three channels, two opponent chromatic 
channels and a luminance one, and two FCS for diffusing the two chromatic channels. 
In the present work, we propose a new model with six opponent channels, four chromatic 
and two achromatic, emerged from the transformation of the RGB image. It also includes 
new mechanisms, like surround suppression and inter-scale fusion, to achieve the natural 
scene boundaries. 

2. Perceptual boundary recurrent detection neural architecture 
The Perceptual boundaRy rEcurrent dEtection Neural (PREEN) proposed model (see Fig. 1) 
comprises five main components, respectively designated as Colour Opponent stage (CO), 
Chromatic Contour stage (CC), Competitive Fusion stage (CF), Contour Saliency stage (CS), 
and Inter-scale Competition (IC). The neural model processing is achieved through multiple 
spatial scales. 
The CO stage transforms the chromatic components of the input signals (RGB) into a bio-
inspired codification system, made up of various opponent chromatic channels and an 
achromatic channel. In order to do this, the CO stage firstly calculates the activations of the 
long- (L), middle- (M), and short- (S) wavelength retinal cones, and then, it generates the 
opponent processes, corresponding to the ON-OFF achromatic channel and the L+M-, M+L-, 
S+(L+M)- and (L+M)+S- chromatic opponencies. Studies of the human visual system have 
found that visual stimuli take part in the color opponent and enhancement processes located 
in retina and Lateral Geniculate Nucleus (LGN) cells of the mammalian visual system 
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Fig. 1. Proposed model architecture 

CC stage is composed of simple and complex cells which filter and perform a surround 
suppression through multiple scales and orientations in order to extract the real boundaries 
of the scene. Simple cell multi-scale filtering extracts textural features from both the color 
opponent and the achromatic signals. 
Complex cells use a competition network with surround suppression, which attenuates the 
contour activities from inner texture areas where it appears a high concentration of false 
boundaries. Complex cells coherently fuse the color and texture activities, generated by the 
simple cells, with a behavior inspired in cells from the V1 visual area of the human visual 
system (Petrov & Westenberg, 2003). 
Biologically inspired V1-V2 recurrent interactions take place in the PREEN architecture. CF 
stage competitively fuses top-down and bottom-up signals, complex-CF-CS, defining and 
shaping the natural boundaries. CF and CS stages model competitive and cooperative 
behaviors exhibited in the V2 area of the human visual system (Hubel, 1995). 
Final output is constituted by a contour map image corresponding to the natural boundaries 
with perceptual significance. 
The PREEN model architecture includes competitive networks. We model these networks 
using the membrane potential network (Hodgkin & Huxley, 1990), whose simplified 
behavior can be expressed according to equation (1). 

 ( ) ( )M
dVC AV V V g V V g
dt

+ + − −= − + − + −  (1) 

where V is the membrane potential, A is a decay constant, V+ and V- are the excitatory and 
inhibitory reversal potentials, and g+ and g- are the excitatory and inhibitory total input, 
respectively. 
In a stationary situation, the potential, V, would be defined by equation (2). This is the 
situation we consider in our model. 
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Several neurophysiological studies show that the response modulation by stimuli beyond 
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comprises five main components, respectively designated as Colour Opponent stage (CO), 
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achromatic channel. In order to do this, the CO stage firstly calculates the activations of the 
long- (L), middle- (M), and short- (S) wavelength retinal cones, and then, it generates the 
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 V g V gV
A g g

+ + − −

+ −
+

=
+ +

 (2) 

where 0V + ≥  and 0V − ≤ . 
Equation (2) expresses the membrane potential as the normalization between the net input 
(difference between excitation and inhibition) and the total input (excitation plus inhibition). 
So, this normalization computes the ratio contrast and solves the noise-saturation dilemma. 

2.1 Colour opponent stage 
The CO stage performs chromatic and achromatic opponent competitive processes based on 
opponent mechanisms and luminance channel competitive enhancement to generate four 
chromatic signals shaping opponent pairs, L+M-, M+L-, S+(L+M)- and (L+M)+S-, and two 
achromatic signals, ON and OFF. This is observed as the generation of three channels of 
opponent pairs. In hierarchical levels of the human system there are evidences of manifold 
cases of opponent pairs, both in the motor and visual systems (Zrenner, 1990). 
The CO processing contains a previous stage in which luminance (I signal), activations of 
the long (L signal), middle (M signal), short (S signal) wavelength cones and (L+M) channel 
activation (Y signal) are generated from R, G and B input signals. 
Equations (3), (4) and (5) define the calculations of those activities (Antón-Rodríguez et al., 
2009). The luminance signal (I) is computed as a weighted sum; the L, M and S signals are 
obtained as the transformation matrix of the three chromatic components R, G and B. 
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 Y L M= +  (5) 

The CO stage models the behavior of the opponent cells whose main characteristics are their 
high sensibility and precision to contrasts contours. These attributes recommend their use as 
a previous step for image contour, shapes, and texture detection (Hubel, 1995). The 
opponent model for L+M- chromatic channels, following membrane competitive network is 
defined by equation (6). 
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where ( )lm s
ijc  is the L+M- channel cell activity for position (i,j), [ ] ( )max 0,c c+ = , A is a decay 

constant, and ( )s
pqD is a difference of Gaussians (see Fig. 2) following equation (7). 
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where eσ  and iσ are the excitation and inhibition deviations and AD  is the amplitude 
constant. 
 
 

 
 

Fig. 2. Difference of Gaussians (dog) 

The remainder opponencies, M+L-, S+Y- and Y+S-, are calculated using equation (6) 
substituting Lij and Mij signals for the corresponding opponency signals. 
Analogously to the achromatic process accomplished in the LGN of the human visual 
system (Hubel, 1995), the neural architecture enhances the luminance signal, Iij, in a 
competitive network generating two opponent channels ON-center  and OFF-center under 
equation (6), similarly to the chromatic channels, replacing the chromatic signals by the 
luminance signal. ON channel processing is in charge of enhancing the information of 
regions with higher luminance intensity in relation to their surroundings, while OFF 
channel enhances regions with lower luminance intensity than their surroundings. 
These competitive processes, derived from equation (6), establish a gain control network 
over the inputs from chromatic and luminance channels, maintaining the sensibility of cells 
to contrasts, compensating variable illumination, and normalizing image intensity. 
These competitive networks are parallelly applied over three different spatial scales, with 
suitable values of eσ  and iσ  for the small, medium and large scales (s=0,1,2). 
Correlation studies about color codification systems based on trichromatic theory have 
proven the suitability of using the red-green and blue-yellow opponent signals (Ohta et al., 
1980), in all, opponencies of long-middle and short-long-middle wavelength. In like manner, 
the ganglionar opponent cells with higher presence rate in the retina correspond to L-M 
opponency, next higher rate is S-(L+M) (Zrenner et al., 1990), so we consider appropriate 
using the opponencies chosen. 
Biologically motivated models for boundary detection, as BCS/FCS (Grossberg et al., 1995) 
or Kokkinos’ model (Kokkinos et al., 2008) do not use chromatic channels for detecting 
boundaries. They only work with the luminance component. Nevertheless, they use images 
of natural scenes for validation. It is clearly that the human visual system operating has an 
essential chromatic component, based on the color opponencies. 
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where eσ  and iσ are the excitation and inhibition deviations and AD  is the amplitude 
constant. 
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equation (6), similarly to the chromatic channels, replacing the chromatic signals by the 
luminance signal. ON channel processing is in charge of enhancing the information of 
regions with higher luminance intensity in relation to their surroundings, while OFF 
channel enhances regions with lower luminance intensity than their surroundings. 
These competitive processes, derived from equation (6), establish a gain control network 
over the inputs from chromatic and luminance channels, maintaining the sensibility of cells 
to contrasts, compensating variable illumination, and normalizing image intensity. 
These competitive networks are parallelly applied over three different spatial scales, with 
suitable values of eσ  and iσ  for the small, medium and large scales (s=0,1,2). 
Correlation studies about color codification systems based on trichromatic theory have 
proven the suitability of using the red-green and blue-yellow opponent signals (Ohta et al., 
1980), in all, opponencies of long-middle and short-long-middle wavelength. In like manner, 
the ganglionar opponent cells with higher presence rate in the retina correspond to L-M 
opponency, next higher rate is S-(L+M) (Zrenner et al., 1990), so we consider appropriate 
using the opponencies chosen. 
Biologically motivated models for boundary detection, as BCS/FCS (Grossberg et al., 1995) 
or Kokkinos’ model (Kokkinos et al., 2008) do not use chromatic channels for detecting 
boundaries. They only work with the luminance component. Nevertheless, they use images 
of natural scenes for validation. It is clearly that the human visual system operating has an 
essential chromatic component, based on the color opponencies. 
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2.2 Chromatic Contour (CC) 
The Chromatic Contour stage models V1 simple and complex cells. It undertakes the 
contour extraction and the merging with surround suppression of the simple cell signals, as 
it can be seen in Fig. 1. CC stage models behaviors of cells located in V1 visual area, 
orientation and spatial frequency selective cells and information fusion cells (Hubel, 1995). 
Simple cells extract contours from chromatic and achromatic CO channels through a Gabor 
filter bank, using even ( ( )s

ijkE ) and odd ( ( )s
ijkO ) components for position (i,j), deviation for 

multiple scales (s=0, 1, 2) and orientation (k=0, 1, 2, 3, 4, 5 corresponding to θ= 30º, 60º, 90º, 
120º, 150º). These cells respond to variations on the textural and color features. Complex 
Gabor filters have sensibility to orientation, spatial frequency and position (Daugman, 1980). 
Grossberg, Mingolla et al. (Grossberg et al., 1995) (Mingolla et al., 1999) modeled simple 
cells with an odd-type filtering in their BCS model. The inclusion of even fields is justified 
due to the importance of these profiles in texture detection (Landy & Bergen, 1991). 
Following the behavior indicated by the membrane potential shown in equation (2), simple 
cell activities are given by equations (8), (9), (10) and (11). 
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where ( )s
ijka , ( )s

ijkb  are the even and odd simple cell activities for the luminance channel, and 
( )lm s

ijke , ( )lm s
ijkf  are the simple cell activities for chromatic channel L+M-, position (i,j) and 

orientation k for even and odd filters respectively, |.| represents the absolute value, 

[ ] ( )max 0,c c+ = , and A is a decay constant. 
For the remainder chromatic channels, the activity equations to use are equations (10) and 
(11) replacing L+M- channel signal by the appropriate channel signal (M+L-, S+Y-, Y+S-). 
For each perceptual position (i,j) a hyper column of simple cells varying in filter type (filter 
profile) and orientation k is applied to each channel. 
The complex cell stage, using two cellular layers, fuses information from simple cells giving 
rise to a map which contains real contours for each of the three scales used (see Fig. 1). 
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The first layer of cells is in charge of combining responses from different Gabor filters at each 
opponent and luminance channel at their three scales (s=0,1,2), as shown in equation (12). 
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where [ ] ( )max 0,c c+ = is a half-wave rectifier. 
The second complex cell layer models a competition network with surround suppression 
(see Fig. 3).  
 

 
 

Fig. 3. Surround suppression receptive field of CC complex cells ( ( )s
ijkS ). 

The behavior of layer 2 complex cells is modeled by equation (13): 
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being ( )s
ijkH  the CC complex cells output; ( )s

ijkh  is the first layer activity, ( ) ( )[ ]s s
ijijkS D += −  is the 

surround suppression receptive field with ( )s
ijD a dog following equation (7), as it is shown 

in Fig. 3, for each of the scales defined by s=0,1,2; A is a decay constant, λ > 0 is the 
suppression constant and [ ] ( )max 0,c c+ = . Equation (13) determines the anisotropic 
surround suppression, as the removal is performed according to the orientations. 
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2.2 Chromatic Contour (CC) 
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where ( )s
ijka , ( )s

ijkb  are the even and odd simple cell activities for the luminance channel, and 
( )lm s

ijke , ( )lm s
ijkf  are the simple cell activities for chromatic channel L+M-, position (i,j) and 

orientation k for even and odd filters respectively, |.| represents the absolute value, 

[ ] ( )max 0,c c+ = , and A is a decay constant. 
For the remainder chromatic channels, the activity equations to use are equations (10) and 
(11) replacing L+M- channel signal by the appropriate channel signal (M+L-, S+Y-, Y+S-). 
For each perceptual position (i,j) a hyper column of simple cells varying in filter type (filter 
profile) and orientation k is applied to each channel. 
The complex cell stage, using two cellular layers, fuses information from simple cells giving 
rise to a map which contains real contours for each of the three scales used (see Fig. 1). 
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The first layer of cells is in charge of combining responses from different Gabor filters at each 
opponent and luminance channel at their three scales (s=0,1,2), as shown in equation (12). 
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where [ ] ( )max 0,c c+ = is a half-wave rectifier. 
The second complex cell layer models a competition network with surround suppression 
(see Fig. 3).  
 

 
 

Fig. 3. Surround suppression receptive field of CC complex cells ( ( )s
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being ( )s
ijkH  the CC complex cells output; ( )s

ijkh  is the first layer activity, ( ) ( )[ ]s s
ijijkS D += −  is the 

surround suppression receptive field with ( )s
ijD a dog following equation (7), as it is shown 

in Fig. 3, for each of the scales defined by s=0,1,2; A is a decay constant, λ > 0 is the 
suppression constant and [ ] ( )max 0,c c+ = . Equation (13) determines the anisotropic 
surround suppression, as the removal is performed according to the orientations. 
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In their work, Petrov and Westenberg (Petrov & Westenberg, 2003) observed various 
manifestations of perceptual modulation by the context. They used image sets of letters and 
bars, and objects icons (of different sizes and orientations) with superimposed band-
spectrum noise. They observed the effects of the surround in contrast for different noise 
frequencies. The inhibitory effect was modeled designing a non-classical receptive field 
(non-CRF) defined by a weighting function with a normalized difference of Gaussians 
profile. This idea is taken in the present paper but with an important difference.  
Model proposed of CC complex cells exhibits a positional competition between a position 
(i,j) and its surroundings. These competitive processes establish a gain control network over 
the fusion channel input, maintaining the sensibility of cells to contrasts, compensating 
variable illumination, and normalizing image intensity. 
In order to obtain a complex non-CRF field external to the CRF field of CC simple cells, we 
choose same values for eσ deviations of ( )s

ijkS  and for ( )sσ deviations of CC simple cells and 

we fix iσ deviations of ( )s
ijkS as twice the value of ( )sσ . 

In Fig. 4 it can be observed the effect produced by the surround suppression depending on 
the inhibition strength (λ=1.0 and λ=2.0). Using a high suppression constant, it is possible to 
remove areas with a high concentration of weak contour caused by inner texture features 
(see left column). It can be noticed that the surround suppression model makes the 
boundaries to have less noisy activities near them, thus achieving a better definition and so a 
better precision. However, as the surround suppression model cleans up the area around the 
boundaries, sometimes the recall value diminishes. 
In a later work, Grigorescu, Petrov and Westenberg (Grigorescu et al., 2004) proposed a 
computational step, called surround suppression for detecting boundaries in natural scenes. 
This step was incorporated to the Canny edge detector. A comparison was performed using 
40 natural images, achieving better results with the step included. 
To strengthen the analysis about the positive effect of the surround suppression modeling, 
we took 20 images from the Berkeley Segmentation DataSet (BSDS) and compared the 
results obtained with and without suppression. In Fig. 4, we can see some processing 
examples. Fig. 4 (e) includes the F-value curve of the processing with (right) and without 
suppression (left). We achieved a mean F-value of 0.64 (0.62, 0.66) when processing with 
suppression versus a mean value of 0.63 (0.69, 0.57) when processing without suppression. It 
can be observed a slightly better result counting the suppression. A remarkable feature is 
the significant difference in the precision value, in favor of the model with suppression, and 
in the recall value, in favor of the model without suppression, which corroborates the 
previous point. 
Using cooperation processes, it is more interesting obtaining high precision than high recall, 
since these processes generate more boundaries, but also more noise. Accordingly, the 
model of complex cells showing surround suppression advantages the cooperative 
processes from V2, which PREEN model includes in the CS stage. 
The explained complex cell stage modeling has significant differences with other processing 
models. The complex cell stage of the BCS model (Grossberg et al., 1995) is in charge of 
summing simple cell signals. This sum produces an independence of the contrast direction, 
so as the entire real boundary map is obtained in this stage. 
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 a)

b)

c)

d)

e)

Fig. 4. Effect of complex cell surround suppression. Image on the left: image 86016. Image on 
the right: image 42049. Row a): original image. Row b): output from first stage (fusion) of 
complex stage (without surround suppression). Row c): output from CC complex stage for 
λ=1.0. Row d): output from CC complex for λ=2.0. Row e): F-measure curves (precision and 
recall) for 20 test images of the Berkeley database, (e)-left without surround suppression and 
(e)-right with surround suppression. 
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In PREEN model, the complex cell stage fuses simple cell signals and also removes the 
surroundings making boundaries to be contrast-independent and more accurate. 
Kokkinos et al.’s model uses a shunting inhibition for surround suppression which implies a 
recurrent stage with obliged stabilization (Kokkinos et al., 2008). PREEN model uses a non-
recurrent competition, as the recurrent process is located in upper stages, where V1-V2 
interaction occurs. 

2.3 Competitive Fusion stage (CF) 
CF stage competitively fuses information from CC complex bottom-up and CS cooperation 
top-down. This stage models the V1-V2 recurrent interactions produced in the PREEN 
model. This recurrent interaction detects, regulates, and completes boundaries into globally 
consistent contrast positions and orientations, while it suppresses activations from 
redundant and less important contours, thus eliminating image noise. There are numerous 
evidences about the existence of hyper-complex cells in the human visual system, where V1-
V2 recurrent interactions occurs (Hubel, 1995). We use a shunting network to model this 
behavior, where lateral inhibitions occur within cells of the same competitive stage. 
Equation (14) describes these CF hyper-complex cells functioning. It includes two 
inhibitions, orientationally and spatially. 
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being ( )s
ijkU  the CF hyper-complex cells output, ( ) ( ) ( )s s s

h fijk ijk ijku K H K F= +  the input to the 

competition stage: ( )s
ijkH  is the CC complex cells output, ( )s

ijkF  is the CS top-down signal, hK  

and fK  are gain constants; the orientational inhibitory receptive field, ( )s
pqrS , is a Gaussian 

kernel with τ (τ>1) aspect ratio, rotated  r grades, and with ( )s
iσ deviation for each of the 

scales defined by s=0,1,2; ( )s
pqG is a Gaussian kernel with ( )s

uσ deviation for each of the scales, 

A is a decay constant, cC and iC are inhibition constants and [ ] ( )max 0,c c+ = . 

Recurrent interaction is solved by an iterative process, where actual state of the ( )s
ijkU  activity 

depends on the previous state activity and the CS stage feedback activity, ( )s
ijkF . 

The inhibitory receptive field in the competition among orientations, ( )s
pqrS , corresponds to a 

Gaussian rotated r grades, with a very high aspect ratio so that all the points in the line of 
orientation r passing through (i,j) have a maximum inhibition (see Fig. 5). 
The point of difference between competitive stages of PREEN model and BCS system is the 
competitive model with shunting inhibition used in PREEN model versus a contrast 
normalization network from BCS system. Shunting inhibition allows higher boundary 
enhancement and thinning yielding higher precision and deletion of noise activities, which 
work against cooperative mechanisms, advantaging the recurrent process. 
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Kokkinos’ architecture also uses a shunting inhibition model, including in the competition a 
gradient signal from the smooth stage through a diffusion process, similar to the FCS stage 
of the BCS/FCS system. Kokkinos’ model does not perform a competition among 
orientations within this stage. PREEN architecture, similarly to BCS system, proposes a 
competition among orientations to better define the boundary orientation in each position. 
In this competition, PREEN uses the inhibition signal from competitive stage neighbor 
instead of the input signal to the competitive stage taken in the BCS model. That is to say 
PREEN model heightens the shunting mechanism in the inhibition. 
 
 

 
 

 

Fig. 5. Orientational inhibition receptive field, ( )s
pqrS . 
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2.4 Contour  saliency stage (CS) 
CS stage models the cooperative process for the saliency detection of the contour activity 
interpolation. In visual cortex, it has been detected cooperative completion or grouping 
processes by realizing a “bipole property” (Mingolla et al., 1999). This property refers to the 
disposition of certain cells in visual cortical areas V1 and V2 to fire in the presence of 
approximately aligned, but spatially separated, image gradients. Salient contours are 
detected determining existent contour activity in both sides of each position (i,j) through a 
bipole receptive field. The behavior of CS cells is modeled by equation (15). 
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where ( )s
ijkU  is the CF hyper-complex activity, ( )s

ijkP  and ( )s
ijkN  are the lobes of the bipole 

receptive field of CS cells (see Fig. 6 ), A is a decay constant, and z(s) is a lineal function with 
a positive cooperative threshold, α: 
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Each lobe is generated as a Gaussian with an aspect ratio of τ and a profile relation of ( )s
lK  

for each scale s, with a coordinate translation cD  and a rotation k, following equation (16). 
Fig. 6 shows a dipole example. 
 

 
Fig. 6. Oriented bipole receptive field. 
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where .  is the L1 norm, the coordinates of the spatial transformation: 
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and the translation origin coordinates are:  
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Equations for computing ( )s
ijkN are similar but with a coordinate translation of cD− . Each 

lobe measures one unit of area, and it is essential to be no activity in the dipole center. 
Competitive stage output ( )s

ijkU  is normalized, bounded between 0 and 1. Hence, maximum 

activity in each lobule will be 1. Thereby, we can appropriately choose the value of α. 
Thanks to this contour cooperative saliency, illusory boundaries of perceptual figures are 
extracted as it can be observed in Fig. 7, where it appears the PREEN model processing 
result of the Kanizsa’s square image. 
 
 

  
 

Fig. 7. PREEN processing of Kanizsa’s square image. 

In BCS system, Kokkinos’ model, and PREEN architecture cooperation is performed in a 
similar way. All uses bipole receptive field cells to generate the cooperative activity 
produced when both lobes of the receptive field are active. Difference between both models 
lie in the way of determining when such excitatory situation is produced. As it is expressed 
in equation (15), PREEN uses the product of the lobe activities to obtain the cooperation 
activity. Each lobe contributes to excite the dipole cell is its activity exceeds the threshold α. 
Hence, the product demands the contribution of both lobes and, so, a normalized bipole cell 
output near 1 will be guaranteed. In remainder cases, the output will be 0. 
Kokkinos utilizes the product of the lobule activities but without activation threshold. And 
BCS uses a pseudo-logic function of decision AND, with a fast saturation function to a value 
near to 1, and with a threshold of 2 (Mingolla et al., 1999). By doing so, it is guaranteed that 
the bipole cell exceed 2 only if there are inputs to both lobules. 
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2.5 Inter-scale Competition stage (IC) 
PREEN model proposes an output stage where signals from the three scales are merged in 
order to obtain the best possible output combining all the information gathered in each 
scale. While scale increases, noise is better filtered and so boundary signals improve, though 
precision and thinning become reduced. Noise does not appear in larger scales, but only 
contours with higher gradient are detected; those are high quality contours but not all 
existing. Boundaries from the small scale are accurate and thin; the boundary map includes 
all perceptual boundaries of the natural scene images, therefore achieving a high recall 
value. It appears evident that better boundary qualities will be found in the small scale 
signal. However, its small receptive fields cause extracting a significant level of noisy 
contours. So, precision, recall and thinning are provided by the small scale, and noise 
shortage is given by larger scales, mainly by the large scale. This analysis leads us to 
propose next assumptions to model the output stage of the PREEN architecture: 
- Small scale signal provides all interesting boundaries for segmenting natural scenes. 
- Medium and large scale signals enclose a reduced level of contour noise. 
- An accurate boundary of a natural scene generates activity in all the scales. 
- Output will be composed of thin and accurate boundaries, with a correct level of recall 

and generating activity in all the scales. 
Basing upon these assumptions, PREEN model proposes a single boundary output signal 
resulting from the inter-scales competition for detecting boundaries with higher quality. 
Equation (17) shows the integration of the three scales through an inter-scale competition 
with major scale context dependent inhibition, ijkρ . 
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where small
ijkU  is the small scale CF hyper-complex activity, small

pqG  is a Gaussian kernel with a 
small scale deviation of smallσ , A is a decay constant, oC  is an inhibitory constant, and 

[ ] ( )max 0,c c+
=  and ijρ  is the major scale context dependent inhibition gain, defined by 

equation (18). 
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with 0K  and η positive constants; ijkv  is the sum of the activities of scales medium and large 

in the 8-connected neighborhood of the consider position. 
Equation (18) shows that ijkρ  has a Gaussian profile, comprised between 0 and 1, with a 

shape dependent of 0K , and close to 0 when higher contour activity from larger scales. 
Equation (17) displays strong inhibition when the 8-connected neighborhood from larger 
scales has a high boundary activity and the boundary activity from the small scale will not 
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be affected if the neighborhood does not include contours. Image areas without contours in 
larger scales will sharply attenuate the boundary activity from the small scale. 

3. Experimental results 
We quantitatively compare our method against the Kokkinos et al.’s model (Kokkinos et al., 
2008), that has been made available publicly. This model proposes a significant 
simplification of the BCS/FCS model proposed by Grossberg, Mingolla et al. (Grossberg et 
al., 1995) (Mingolla et al., 1999). The comparison to the Kokkinos et al.’s proposal (and to the 
BCS/FCS model by extension) is performed according to a common philosophy about 
propounding biologically inspired models. Differences among these models lie in the 
modeling of each stage and substantially in the color contribution of the PREEN model in 
the boundary detection processes in natural scenes. We will try to demonstrate that natural 
scenes have a chromatic component essential for defining and processing them. The 
comparison is accomplished with the boundary-based error, F-measure, which are the 
measure used in Kokkinos et al.’s  paper. The measure computation has been made using 
the Matlab code supplied in next web page: http://www.eecs.berkeley.edu/Research/ 
Projects/CS/vision/grouping/segbench/. We have used all the 100 test images from the 
Berkeley Segmentation Dataset (Martin et al., 2001) and their human segmented images 
were taken as the ground truth to accomplish the F-measure values. Fig. 8-bottom shows a 
precision-recall curve (PR curve) with the average F-measure value of the boundaries 
detected in the all 100 test images. In Fig. 9 it can be observed processing examples for the 
PREEN architecture, including the F-measure values with their precision and recall as well 
as the position that would achieve in the ranking published in the Berkeley Segmentation 
Benchmark web page (BSDS, 2001). 
Kokkinos et al. (Kokkinos et al., 2008) compared its model to the Canny edge detection 
algorithm using the images from the Berkeley dataset achieving better results in different 
scenarios. In their paper, they show the PR curves and the F-measure of the comparisons. 
Their better setting match with their BCS learned fine scale proposal, achieving an F-
measure of 0.573 versus the 0.568 obtained by the Canny’s algorithm. PREEN model 
achieves an F-measure with PR coordinates of 0.59 (0.68, 0.52), as it is shown in Fig. 8. So, it 
obtains better average result when detecting boundaries. Hence, PREEN boundary detection 
process achieves higher precision and recall values. 
There are three notable differences between Kokkinos et al.’ model and PREEN model. As 
previously said, the more significant one is the color contribution in the PREEN model. 
Another modeling difference is that PREEN model includes orientational competition, so 
PREEN obtains more accurate contours. A third significant difference is the output of the 
model. PREEN includes an inter-scale competitive stage as architecture output.  This fusion 
provides us with an output enclosing all the better features of each scale.  The substantial 
effect of color in the boundary detection process can be analyzed in the boundary detection 
algorithm ranking published in the Berkeley Segmentation Benchmark web page 
(http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/bench
/html/algorithms.html). The summary table shows different algorithms for grayscale and 
color processing. There are versions of algorithms for processing both grayscale and color 
images and it can be observed that color version obtains better results. Considering the 
average F-value achieved, PREEN architecture would gain the eighth position in the ranking 
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2.5 Inter-scale Competition stage (IC) 
PREEN model proposes an output stage where signals from the three scales are merged in 
order to obtain the best possible output combining all the information gathered in each 
scale. While scale increases, noise is better filtered and so boundary signals improve, though 
precision and thinning become reduced. Noise does not appear in larger scales, but only 
contours with higher gradient are detected; those are high quality contours but not all 
existing. Boundaries from the small scale are accurate and thin; the boundary map includes 
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and generating activity in all the scales. 
Basing upon these assumptions, PREEN model proposes a single boundary output signal 
resulting from the inter-scales competition for detecting boundaries with higher quality. 
Equation (17) shows the integration of the three scales through an inter-scale competition 
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with 0K  and η positive constants; ijkv  is the sum of the activities of scales medium and large 

in the 8-connected neighborhood of the consider position. 
Equation (18) shows that ijkρ  has a Gaussian profile, comprised between 0 and 1, with a 

shape dependent of 0K , and close to 0 when higher contour activity from larger scales. 
Equation (17) displays strong inhibition when the 8-connected neighborhood from larger 
scales has a high boundary activity and the boundary activity from the small scale will not 
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Fig. 8. Comparative results when processing all the 100 images from the test set of the 
Berkeley database. Top: Color gradient algorithm. Bottom: PREEN architecture. 
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145086, F=0.85 (0.85, 0.84), Fhuman=0.85, ranking=1 

 
147091, F=0.8 (0.79, 0.82), Fhuman=0.87, ranking=1 

 
167062, F=0.92 (0.98, 0.87), Fhuman=0.95, ranking=1 

   
210088, F=0.56 (0.69,0.47), Fhuman=0.54, ranking=3-4 

 
62096, F=0.78 (0.7, 0.87), Fhuman=0.90, ranking=6 

 

Fig. 9. Processing examples of PREEN architecture. Each example includes the image name 
in the Berkeley Segmentation Dataset, the F-measure value, the recall and precision 
coordinates, and the position that would achieve in the ranking published in the Berkeley 
Segmentation Benchmark web-site. 
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published in the BSDS web page, outperforming the Color Gradient algorithm. The PR 
curve of this method can be seen in Fig. 8-left (extracted from the aforementioned web page) 
comparing it to that of the PREEN model. Fig. 8 shows PREEN model achieves outstanding  
results in some benchmark images, overcoming in some cases the first algorithm in ranking. 
However, global result is not so excellent, locating the eighth position. This contradiction 
can be accurately analyzed considering the results shown in Fig. 4 c)-left. The surround 
effect determines the suppression of weak contours sited near other stronger. When 
processing image 86016 by the surround suppression PREEN model, we can observed lineal 
contours are drastically attenuated while round contour is reactivated. Apparently, this can 
be observed as a positive effect, since it affords the possibility to segment the scene into two 
regions with perceptual significance: the furrows area and the vegetation round area. 
However, segmentation performed by humans in the Berkeley database includes lineal 
contours as significant perceptual boundaries, which makes F-measure achieved by the 
PREEN architecture under these circumstances will lean to be lower, considerably 
diminishing the average F-measure value. Fig. 4 c)-right shows the opposite case, PREEN 
model causes the elimination of weak contours from inside tree branch, which makes 
boundaries to be finer considering the human segmentation. 

4. Conclusion 
In this paper we propose a model bio-inspired in the recurrent interactions of the early 
visual areas for detecting boundaries in color natural scenes, called PREEN model. To 
perform the comparative analysis, we have chosen BCS/FCS model (Grossberg et al., 1995) 
(Mingolla et al., 1999) and Kokkinos et al.‘s model (Kokkinos et al., 2008) on the grounds of 
the similar aims. Images used are taken from the Berkeley Segmentation Dataset (BSDS, 
2001). Important features of the proposed model are providing a simple and effective 
modeling, using even and odd oriented filtering, participation of surround suppression 
mechanisms in the complex cell stage, oriented and positional shunting competition, 
contour cooperative saliency extraction through bipole interactions, and a new output stage 
with inhibition among stages. 
Test simulations over al the 100 test images from the Berkeley dataset and a comparative 
analysis have been included. Results achieved outperform those obtained by Kokkinos et 
al.’s model. 
Furthermore, PREEN model has displayed outstanding results, overcoming the best 
algorithms published in the BSDS web page when processing some images of the database. 
In the analysis performed we have observed PREEN model favors boundaries with high 
perceptual significance attenuating the remainder boundaries. Thereby, PREEN model 
obtains low values in such images with human segmentations including boundaries of 
secondary importance, more germane to attentive mechanisms. We think if the database 
would have human segmentations with higher participation, the proposed model would 
achieve more favorable results. This higher participation, in our view, would mean remove 
or strongly attenuate secondary boundaries in human segmentations. 
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1. Introduction 
Research on multimedia systems and content-based image retrieval has gained momentum 
during the last decade. Content-based image retrieval (CBIR) is a very difficult area in the 
access of multimedia databases simply because there still exist vast differences in the 
perception capacity between a human and a computer. There are two basic problems that 
still remain unresolved in the area although some progresses have been made [13]. The first 
one is the problem of efficient and meaningful image segmentation where we break-up a 
particular image into meaningful parts based on low-level features like color, texture, shape 
and spatial locations. Developing a segmentation algorithm which will meaningfully 
segment all images is yet an open problem in image analysis [8]. The second one is the vast 
gap existing for an image between low-level features mentioned earlier and high-level or 
semantic expressions contained in the image like the image of a car, a house, a table and so 
on [11]. To develop efficient indexing techniques for the retrieval of enormous volumes of 
images being generated these days, we need to achieve reasonable solutions to these above-
mentioned two problems. But only in very limited and selected cases, some kinds of 
solutions have been achieved with apparently promising experimental results. In this paper 
we focus our attention on the first problem. The research identifies few issues causing this 
gap, for example, failure to capture local image details with low level features, 
unavailability of semantic representation of images, inadequate human involvement in the 
retrieval, and ambiguity in query formulation [9]. We offer future directions of research in 
solving this difficult problem using emergence phenomena. 
Section one gives an introduction of the area. Section two provides a definition of emergence 
phenomenon. Section three talks about the use of emergence phenomenon in extracting 
meanings in image segmentation. Section four suggests future directions of research. We put 
our concluding remarks in section five. 

2. Emergence phenomenon 
2.1 Definition of emergence phenomenon  
A feature of an image which is not explicit would be emergent feature if it can be made 
explicit. There are three types of emergence: computational emergence, thermodynamic 
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1. Introduction 
Research on multimedia systems and content-based image retrieval has gained momentum 
during the last decade. Content-based image retrieval (CBIR) is a very difficult area in the 
access of multimedia databases simply because there still exist vast differences in the 
perception capacity between a human and a computer. There are two basic problems that 
still remain unresolved in the area although some progresses have been made [13]. The first 
one is the problem of efficient and meaningful image segmentation where we break-up a 
particular image into meaningful parts based on low-level features like color, texture, shape 
and spatial locations. Developing a segmentation algorithm which will meaningfully 
segment all images is yet an open problem in image analysis [8]. The second one is the vast 
gap existing for an image between low-level features mentioned earlier and high-level or 
semantic expressions contained in the image like the image of a car, a house, a table and so 
on [11]. To develop efficient indexing techniques for the retrieval of enormous volumes of 
images being generated these days, we need to achieve reasonable solutions to these above-
mentioned two problems. But only in very limited and selected cases, some kinds of 
solutions have been achieved with apparently promising experimental results. In this paper 
we focus our attention on the first problem. The research identifies few issues causing this 
gap, for example, failure to capture local image details with low level features, 
unavailability of semantic representation of images, inadequate human involvement in the 
retrieval, and ambiguity in query formulation [9]. We offer future directions of research in 
solving this difficult problem using emergence phenomena. 
Section one gives an introduction of the area. Section two provides a definition of emergence 
phenomenon. Section three talks about the use of emergence phenomenon in extracting 
meanings in image segmentation. Section four suggests future directions of research. We put 
our concluding remarks in section five. 

2. Emergence phenomenon 
2.1 Definition of emergence phenomenon  
A feature of an image which is not explicit would be emergent feature if it can be made 
explicit. There are three types of emergence: computational emergence, thermodynamic 
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emergence and emergence relative to a model [1]. In computational emergence, it is 
assumed computational interactions can generate different features or behaviors [3],[7]. 
This is one of the approaches in the field of artificial life. Thermodynamic emergence is of 
the view that new stable features or behaviors can arise from equilibrium through the use 
of thermodynamic theory. In emergence relative to a model, deviation of the 
behavior from the original model gives rise to emergence. We will use this latter view in 
our work. 
In computational emergence, new shapes or images develop but within certain limit as 
programmed by the computer programmers. No new shape can emerge beyond the logic of 
the program. 
In thermodynamic emergence, emergence can be defined as emergence of order from noise. 
Stochastic processes at micro-level form discrete macro-level structures or behaviors. The 
example of this type of emergence is gas where stochastic movements of atoms or molecules 
within the gas create the ordered properties of temperature, pressure and volume at a 
higher level. 
Example of emergence relative to a model is where changes in internal structure and 
consequently in its behavior occur and we as observers will need to change our model to 
track the device’s behavior in order to successfully continue to predict actions. The example 
of a square having two triangles hidden in it as given below is of this type. 
Whenever we shift our focus on an existing shape in other words an image, new shape 
emerges. The representation of the new shape is based upon view of the original shape. The 
new shape emerges as we change our view of the original shape. This is the fundamentally 
most important idea of emergence. 
Two classes of shape emergence have been identified: embedded shape emergence and 
illusory shape emergence. In embedded shape emergence all the emergent shapes can be 
identified by set theory kind of  procedures on the original shape under consideration. For 
example, in a set S = {a, b, c, d, e}, we can find subsets like S1 = {a, b, c}, S2 = {c, d, e}, S3 = {a, c, 
e} and so on. But in illusory shape emergence, where contours defining a shape are 
perceived even though no contours are physically present, this kind of set theory 
procedures are not enough and more effective procedures have to be applied to find these 
hidden shapes [4],[5]. These procedures could be based on geometrical, topological or 
dimensional studies of the original shape.  

2.2 Structure, behavior and function of emergence 
Structure of a shape is the physical definition of the shape. For example, a box could be 
rectangular in shape, its length, width and height as well as color, substance like wood, 
metal or hard paper would define the structure of the shape. Behavior of the box could be to 
contain certain stuffs in it and the function could be to carry stuff from one place to another 
using the box as a container, which is the purpose for which the box is used. Emergence of 
new structure, behavior or function takes place when these descriptions are interpreted in 
ways not anticipated in the original description [4]. 

2.3 Examples of emergence 
Shape emergence is associated with emergence of individual or multiple shapes. The 
following figures are examples of shape emergence. 
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Fig. 1.1. Two emergent shapes derived from the existing one [5] 
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based on those hidden meanings as well as explicit meanings, an index of search is defined 
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When images are retrieved based on textual information, various parameters and 
descriptions might define the input and the images of the database. Whenever there would 
be symmetry of parameters and descriptions, the image could be retrieved. In CBIR, color, 
texture and shape are widely used as index to retrieve images. But in our studies, we can 
find the hidden meanings of the images and whenever those hidden meanings match with 
the input given, although the original image may not match at all with the input, we can 
retrieve that image. 
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To describe in detail, as we have mentioned, emergence is a phenomenon where we bring 
out the shapes, which are not explicit but implicit. The above figure shows a simple example 
of emergence where an apparently square shape has two triangles hidden in it as we 
discussed earlier. 
When an input would come in the form of an image, the image could be studied based on 
features, constraints, variables, domains and emergence and converted into parametric 
form. Then the image database would be accessed and each image would be interpreted 
considering the items mentioned above and converted into parametric form like the input 
image. Whenever there would be a match between parameters of the input and the images 
of the database, those records would be selected. In other words, indexing would be decided 
by the outcome of emergence which means more meaningful images could be found hidden 
in an image which would otherwise not be understood.  
As we have mentioned earlier, many images of the database may not have any apparent 
similarities with the input, but emergence could bring out the hidden meaning of the image 
and could establish similarities with the input image. So emergence outcomes of the images 
would form the index structure of the search.  

2.5 Structure of emergence index 
2.5.1 Parameter definitions 
To make an effective query, the images in the query or database must be analysed so that we 
know what we are looking for and where to look for. Features, domains, variables, 
constraints, similarities, indexing are the parameters, which play very important role in 
similarity searching. Hence they constitute the structure of the emergence index. 

Features 
Input, as we mentioned earlier, could come in the form of text. For example, the text may 
indicate we have to pick up all the images of a database that contains the image of a 
particular person or an object. In this case, nothing much could be done on input side in the 
sense that we cannot study the input's features etc. We have to go through the images and 
pick up the image records. But if the query comes in the form of an image of a person then 
we have to analyse it before accessing the database images. Features would tell us about a 
few important characteristics of the input image. To start up, our query could be an image 
where a particular person is sitting on a chair. Then obviously there are two important 
features in the query image - the particular person and the chair. We have to locate these 
two features in the database image while searching for similarities. 
We know color plays a very important role in the definition of features. Quite often a query 
might mention an object with certain specified color to be picked up from the databases. 
Besides, color is being used extensively in various models as a tool in finding symmetry 
with the input image. 
Sometimes the input may be in the form of a sketch. In that case, a similar kind of image 
should be selected from the image database. The selection should be made on the basis of 
few dominant characteristics of the input and image and finding similarities in those 
characteristics. 
Texture is another part of the feature where the general alignment of the image like the 
background part of the image is considered where the image of a person or an object could 
be the dominant part. 
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There would be some global features of an image like area, perimeters and a set of 
rectangles or triangles that cover the entire shape and there would be some local features, 
which can be obtained from the image's local region. 
When we retrieve images by browsing, then in most cases the user does not have clear idea 
about what he or she is looking for. In this case, there would not be input image and the 
search through browsing would be manual. The user would have vague idea about the 
features of the images to be retrieved like the picture of a particular person with certain 
specified background. In the objective features based queries, the retrieval is performed on 
an exact match of attribute values whereas in the subjective features, query is specified by 
features, which could be interpreted differently by different users. 
Retrieval by motion facilitates retrieving spatio-temporal image sequence depicting a 
domain phenomenon that varies in time or geographic space. 
Again, sometimes images are retrieved, as we mentioned earlier, by text. In other words, 
text defines the features of the images to be selected. Then the database is searched based on 
those features defined in the input [6]. 

Domain 
We now proceed to discuss the domain. Domain is a sort of classification of the images into 
certain categories. Domain is a way for a class of objects to present knowledge representing 
a certain concept held by objects [10].  
We can make use of the various properties of the features of an image to define the domain 
in which the image concerned would lie. For example, from an image we can understand 
whether the image is that of a geographical location of a certain area of the earth or the 
image is that of a person or object with certain background like a screen or a landscape 
behind. This kind of classification at the initial stage of search should enable us to access the 
image database rapidly and more efficiently. 
Also in a multimedia database, the database might contain various kinds of records like the 
images, the data in figures, the documents, audios, videos and so on. The concept of domain 
would classify them according to their categories. 
The domain could also be formulated based on the length of the certain features of the 
image like finding the images of a particular person or object where the length is of certain 
range value. Color could also define a domain where the images having a particular color or 
a combination of colors lie in one domain. Domain could be defined on the basis of objects 
only. For example, we can pick up image where the images of a triangle and square would 
be present. We can make it more specific by mentioning color and length or size of the 
triangle and the rectangle to pick up images like where the triangle is red colored and sides 
of length, say, (3, 3, 3) and rectangle of color white and sides of length, say, (4, 2). 

Variables 
Since in our research we are considering a multimedia database where a particular record in 
the database could be an image or a data record or a document and so on, the definition of 
variables would vary depending upon the type of records we are considering. 
In an image database, where we would consider two-dimensional pictures, the image of an 
object or a person have to be measured. If we try to measure it graphically, then the size 
could be measured in terms of x and y coordinates. Therefore, size would be a very 
important variable in our research. 
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Color could be another very important variable. There are, as we know, many colors 
available and for specific definition of the image, the color would play a very vital role. It is 
possible to define colors digitally in the sense that each color could be given a digital 
number like red =1, blue = 2 and so on. 
Location would point towards where a particular object of interest is situated. If we were 
interested in finding the image of a person with a certain background at a particular point of 
the image, then location would tell us about where it is present. In a graphically defined 
image, the coordinate of the center of the image would give information about the location 
of the object. 
Distance between two particular objects of interest is a variable to be considered. Sometime 
in an image depicting a geographic picture, the distance between two points is very 
important. Here also we should be able to measure the distance between two objects by 
applying graphical methods. 
Motion of objects, like storm or cloud moving in a satellite picture, is also an important 
variable. We have to measure the distance travelled by the object in the picture and then 
convert it into kilometers and notice the time difference. From these we can measure the 
speed, velocity and so on of the object. 
Constraints 
It could be a very good idea to define an image in terms of various constraints in the sense 
that constraints help define the image more specifically. 
In our case of multimedia database, where various kinds of data could be there, the concept 
of constraints is very important. For example, if the image is that of a rectangle, we know 
one of the constraints would be that the number of sides of the object is 4. Then the second 
constraint would be opposite sides are parallel. The third one would be opposite sides are 
equal. If we include the emergence phenomenon, then if there is a diagonal drawn on it, this 
would give rise to two triangles. These constraints together could define the image 
successfully. 
In an image of a geographical map of any part of the world, the concept of constraint would 
be effective in finding the location. If we are interested in finding a place, for example, an 
island with triangular shape, then obviously the constraint would be number of sides is 3. If 
we have more information about sides like whether any two sides are same or all sides are 
same or all sides are of different size, then this kind of information should help us identify 
the object more accurately. 
Similarities 
In  a database containing only data, the input may be a query with certain constraints like to 
pick up records from a SALARY database where salary is greater than, say, 30000. In 
relational database, as we know, this can be accomplished by a SQL command with the 
following kind of statement: 

 SEL * FROM SALARY_DB WHERE SALARY > 30000. 

This would pick up all the records with salary > 30000. 
In our multimedia database system, this kind of queries could also be made and we can 
handle them with this kind of or more complicated SQL statements. 
But when the input is in the form of image, then we have to find the similarities of the input 
in the image part of the database. The basic approach to the problem of similarity is to find 

Using Emergence Phenomenon in 
Meaningful Image Segmentation for Content-basedImage Retrieval   

 

125 

certain parametric values as well as some coordinates of the input image. Then we find the 
same for various image of the image database and pick up records where some matching 
occurs. Of course, we study the emergence phenomenon in both input and images of an 
image database while calculating parameters.  For example, if we want to find similarities 
involving a triangular figure as input, then some of the parametric values could be defined 
like, number of sides which is 3, length of each sides, color of the triangle. Based on these 
values and constraints, we can find out similarities in the image database. But in the image 
database, there could be figures like squares or rectangles with a diagonal drawn on them. 
Then obviously this diagonal gives rise to two triangles according to emergence. So we have 
to study these cases too, find out the parameters of these triangles to see whether they match 
our parameters from the input. 
Indexing 
In the early stage of data processing, there was no established conception of indexing. Most of 
the data files were accessed sequentially. This was pretty slow and inefficient particularly 
when the data file is big enough. To get rid of this problem, the concept of indexing came to 
the picture. At the initial stage, a number is used to be given against each record by the system 
in a file created on disk. We could specify these numbers to access any record randomly. Then 
came the concept of Indexed Sequential Access Method where instead of assigning separate 
number against each record, a field or a combination of fields were started being used as key. 
There could be two kinds of indexing, one where the key value in a particular file is unique 
and the other where the key value could be duplicate. The search method is called Binary 
Search where to find a particular key value, the whole file is divided into two halves and the 
part, which contains the particular key value we are searching, is taken and then divided into 
two halves again. The part here which contains the key value is again taken and divided into 
two halves. This process continues until it finds the match against the key value. 
Nowadays an old file system is hardly used in maintaining computer records. Instead, a 
database system has been developed. The latest development in this field is Relational 
Database System, which contains tables to store data. 
In our problem of dealing with multimedia databases, which would contain images, the 
concept of indexing is very important. We are trying to develop a more sophisticated method 
of indexing where there won't be any clear-cut definition of index against the images, but 
indexes would be defined based on our study of emergence phenomenon of each of the image. 
Sometime to locate a particular spot in the geographic map of a part of the world, an input 
image would point to a particular part and that particular part in one or more than one 
image could be the outcome of emergence or it could be straight away present in the map 
without any emergence. In either case, input image refers to an index, which is nothing but 
that particular spot of the map. 

2.5.2 Model of the emergence index 
Emergence indexes can be defined out of five factors as discussed in section 2.5.1. 

 EI  =  f(D, F, V, C, E) (1) 

Where EI stands for emergence index, D for domain where the image belongs, F for features, 
V for variables which can define the feature’s constraints under which the features are 
defined, C for constraints and E for emergence characteristics of images.  
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Color could be another very important variable. There are, as we know, many colors 
available and for specific definition of the image, the color would play a very vital role. It is 
possible to define colors digitally in the sense that each color could be given a digital 
number like red =1, blue = 2 and so on. 
Location would point towards where a particular object of interest is situated. If we were 
interested in finding the image of a person with a certain background at a particular point of 
the image, then location would tell us about where it is present. In a graphically defined 
image, the coordinate of the center of the image would give information about the location 
of the object. 
Distance between two particular objects of interest is a variable to be considered. Sometime 
in an image depicting a geographic picture, the distance between two points is very 
important. Here also we should be able to measure the distance between two objects by 
applying graphical methods. 
Motion of objects, like storm or cloud moving in a satellite picture, is also an important 
variable. We have to measure the distance travelled by the object in the picture and then 
convert it into kilometers and notice the time difference. From these we can measure the 
speed, velocity and so on of the object. 
Constraints 
It could be a very good idea to define an image in terms of various constraints in the sense 
that constraints help define the image more specifically. 
In our case of multimedia database, where various kinds of data could be there, the concept 
of constraints is very important. For example, if the image is that of a rectangle, we know 
one of the constraints would be that the number of sides of the object is 4. Then the second 
constraint would be opposite sides are parallel. The third one would be opposite sides are 
equal. If we include the emergence phenomenon, then if there is a diagonal drawn on it, this 
would give rise to two triangles. These constraints together could define the image 
successfully. 
In an image of a geographical map of any part of the world, the concept of constraint would 
be effective in finding the location. If we are interested in finding a place, for example, an 
island with triangular shape, then obviously the constraint would be number of sides is 3. If 
we have more information about sides like whether any two sides are same or all sides are 
same or all sides are of different size, then this kind of information should help us identify 
the object more accurately. 
Similarities 
In  a database containing only data, the input may be a query with certain constraints like to 
pick up records from a SALARY database where salary is greater than, say, 30000. In 
relational database, as we know, this can be accomplished by a SQL command with the 
following kind of statement: 

 SEL * FROM SALARY_DB WHERE SALARY > 30000. 

This would pick up all the records with salary > 30000. 
In our multimedia database system, this kind of queries could also be made and we can 
handle them with this kind of or more complicated SQL statements. 
But when the input is in the form of image, then we have to find the similarities of the input 
in the image part of the database. The basic approach to the problem of similarity is to find 

Using Emergence Phenomenon in 
Meaningful Image Segmentation for Content-basedImage Retrieval   

 

125 

certain parametric values as well as some coordinates of the input image. Then we find the 
same for various image of the image database and pick up records where some matching 
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Sometime to locate a particular spot in the geographic map of a part of the world, an input 
image would point to a particular part and that particular part in one or more than one 
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2.5.2 Model of the emergence index 
Emergence indexes can be defined out of five factors as discussed in section 2.5.1. 

 EI  =  f(D, F, V, C, E) (1) 

Where EI stands for emergence index, D for domain where the image belongs, F for features, 
V for variables which can define the feature’s constraints under which the features are 
defined, C for constraints and E for emergence characteristics of images.  
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We believe any image, static or in motion, could be expressed semantically in terms of the 
above mentioned five parameters.  
Construction 
We take the case of a square with a diagonal, as mentioned earlier, to build up an emergence 
index. If this is an image in the database, then firstly we have to put it under certain domain 
D for the ease of accessing. Since images are generated in enormous volume, we have to put 
them in various separate entities or tables according to certain classification rather than in 
one table which could be extremely time consuming to access. The table that would contain 
this square image record would define the domain of the image. We can term it as TAB1. 
To define the second factor F, we find the number of maximum sides present would be 5, 
where there are 4 regular sides and 1 diagonal.  
The variables are a, b, c, d, e where first four define the perimeter of the square and e the 
diagonal. 
The constraints c are a = b = c = d since it is a square. 
The emergence E is composed of two triangles with sides a ,b, e and c, d, e. 
Hence Emergence Index  

EI = {TAB1;  5;  a, b, c, d, e; a = b = c = d; (a, b, e and c, d, e)} 

3. Use of emergence phenomenon 
We provide a very simple example of how emergence phenomenon can give rise to 
meanings for a segmented image where apparently no meaning exists. 
 

 
Fig. 1.3. The image of a tiger in a picture before segmentation [12] 

 

 
Fig. 1.4. The image of the tiger after segmentation [12] 
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Here we see in Figure 1.3 the image is very clearly of a tiger. We segment the while picture 
and get the image of the tiger in Figure 1.4. But we note that the figure does not clearly point 
to the image of the tiger but indicates an animal. So we can interpret the image of the tiger in 
Figure 1.4 as that of an animal instead of a tiger. This is the outcome of emergence 
phenomenon where we are able to interpret the segmented image in a different way than 
original picture shows or in other words we extract different meaning of the segmented 
image. This would enable us to ascribe some meanings to segmented image which 
otherwise after segmentation may not deliver any meaning. This way through emergence 
phenomenon we interpret segmented image in a meaningful way. 

4. Suggested future directions of research 
There are various attempts made to extract semantic meanings from an image to fill-in the 
semantic gap between low-level features and high-level semantic meanings which can arise 
from image segmentation. These include Latent Semantic Indexing (LSI), contextual search, 
user feedback, data clustering in the extraction of perceptual concepts, content-based soft 
annotation (CBSA), image classifications, ontology, top-down, ontologically driven 
approaches and bottom-up, automatic-annotation approaches, using machine learning 
methods to associate low-level features with query concepts, using relevance feedback to 
learn users' intention, generating semantic template to support high-level image retrieval, 
fusing the evidences from HTML text and the visual content of images for WWW image 
retrieval , use of ontology which represent task-specific attributes, objects, and relations, and 
relate these to the processing modules available for their detection and recognition, use of 
context-awareness for identifying image semantics and relationships to contribute to closing 
the semantic gap between user information requests and the shortcomings of current 
content-based image retrieval techniques , enhanced ICBIR system which allows users to 
input partial relevance which includes not only relevance extent but also relevance reason 
for a multi-phase retrieval where partial relevance can adapt to the user's searching 
intention in a from-coarse-to-fine manner [2].  
Although these are good, constructive progresses in solving the problem of semantic gap in 
CBIR, they cannot define the semantic meanings of an image specifically. They can 
contribute to some broad classification of the image in certain groups. 
To solve this problem we have to develop devices to define the semantic meanings of an 
image very specifically from low-level features and that should be done automatically 
without users’ interaction. We seem to be still far away from this objectivity.  
As we have shown in Section 3 emergence phenomenon can bring meanings out of a 
segmented image where apparently no meaning could be found. We plan to work on the 
theory of emergence index as described in Section 2 in future to generate softwares to 
provide the assistance in identifying the images from a segmentation.       

5. Conclusion 
In this paper we studied the problem of extracting meaningful image segmentation using 
emergence phenomenon. We plan to continue our work in this area to extract meanings 
from a more complex image segmentation where it is really difficult to find any meaning 
from the segmented image. Since this is a very important area of research with major 
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implications in all spheres of life beginning with medical images, the necessity of this study 
cannot be overestimated.  
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1.  Introduction 
Deformable Models, which includes the popular snake models (Kass et al., 1988) and 
deformable surfaces (McInerney & Terzopoulos, 1996; Suri & Editors, 2006), are well known 
techniques for boundary extraction and tracking in 2D/3D images. Basically, these models 
can be classified into three categories: parametric, geodesic snakes and implicit models. The 
relationships between these models have been demonstrated in several works in the 
literature (Sapiro, 1997). 
Parametric Deformable Models consist of a curve (or surface) which can dynamically 
conform to object shapes in response to internal (elastic) forces and external forces (image 
and constraint ones) (Suri & Editors, 2006). Snake models, also called active contour models, 
are 2D deformable models proposed by Kass at al. (Kass et al., 1988) which have been 
successfully applied in a variety of problems in computer vision and image analysis. Its 
mathematical formulation makes easier to integrate image data, an initial estimated, desired 
contour properties and knowledge-based constraints, in a single extraction process (Suri & 
Editors, 2006). 
In fact, despite of the mentioned capabilities, parametric models in general can not deal with 
topological changes. Among the approaches to deal with the topological limitations of the 
traditional snake model (Bischoff & Kobbeit, 2004; Oliveira et al., 2004), the T-Snakes has the 
advantage of being a general one (McInerney & Terzopoulos, 1999). Besides, parametric 
models are too sensitive to their initial conditions due to nonconvexity problems (see 
(Davatzikos & Prince, 1999) and references therein). To address this limitation some authors 
have proposed multiscale techniques (Leymarie & Levine, 1993), dynamic program (DP) 
(Amini et al., 1990)and dual methods, also called dual snakes (Gunn & Nixon, 1997). The 
non-invariance under affine transformations is another limitation of the traditional snake 
models. As a consequence, the internal energy is sensitive to distortions due to changes in 
viewing geometry. From a dynamical point of view, it means that the elastic forces may 
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affect the efficiency of the energy minimization process (Ip & Shen, 1998). Some methods 
have been proposed to address this problem (Giraldi & Oliveira, 2004; Ip & Shen, 1998), 
even in the context of dual active contour models (Gunn & Nixon, 1997). 
The basic idea of the dual snakes is to reject local minima by using two contours: one which 
contracts from outside the target and one which expands from inside. Such proposal makes 
possible to reduce the sensitivity to initialization through the comparison between the two 
contours energy and positions. The two contours are interlinked to provide a driving force 
to carry the contours out of local minima, which makes the solution less sensitive to the 
initial position (Gunn & Nixon, 1997). 
In (Giraldi et al., 2000b), it is presented an extension of the dual method through the T-
Snakes. The dual approach was embedded in the T-Snakes framework to propose a 
generalized dual method: one T-snake contracts and splits from outside the target(s) and the 
other one(s) expand(s) from inside in the process of seeking for the objects boundaries in an 
image. Such generalization, called the Dual-T-Snakes model, allows to address some 
limitations of the dual approach proposed in (Gunn & Nixon, 1997) and offers an efficient 
framework for dual surface models. 
In (Suri & Editors, 2006) some of us present an implicit formulation for dual snakes, based 
on the level set approach. The key idea of that work is to view the inner/outer contours as a 
level set of a suitable embedding function. The mathematical background of the method is 
explained and its utility for segmentation of cell images discussed. Besides, a fast dual front 
implementation of active contours has been proposed in (Li & Yezzi, 2005) and applied for 
segmentation of 2D images. The method is motivated by minimal path technique (Cohen, 
2001; Cohen & Kimmel, 1996) and uses fast marching methods (Sethian, 1999) to compute 
the minimal partition curve that represents the object boundary. The same formulation can 
be used for both 2D and 3D and it was applied for segmentation of the brain cortex (Li & 
Yezzi, 2005). 
Dual active contour models have been applied for feature and geometric measures 
extraction (Gunn, 1996), boundary extraction on ultrasound images (Chen et al., 2001; 2002), 
brain surface extraction from PET images (Tohka et al., 2004) and cell image segmentation 
based on a two stage approach (Bamford & Lovell, 1997; Giraldi et al., 2000b) : (1) the region 
of interest is reduced; (2) a search based technique, like dynamic programming, is used to 
find the object boundaries. 
In this chapter we review parametric and implicit dual snake models. Following, in section 
2, we offer some background for the material. Section 3 gives a review of parametric dual 
models. The Dual-T-Snakes algorithm and the cell-based dual snake model are discussed in 
this section. Following, in section 4 we describe the implicit formulations for dual snakes: 
the Dual-Level-Set and Dual-Front methods. During the presentation of these methods, we 
show results in medical image segmentation. We offer a discussion on section 5 by 
comparing the presented methods and by pointing out drawbacks of dual approaches. In 
section 6 we present the conclusions and future developments in dual approaches. 

2. Background review  
The original snake model (Kass et al., 1988) is formulated as a functional energy 
minimization process that consists of an initial model which is carried to the desired object 
boundary by forces described by the Euler-Lagrange equations. In a different way, the snake 
evolution can be formulated by local deformations to dynamically reshape the initial model 
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in a process which do not apply minimization techniques explicitly. This approach is used in 
the T-Snakes model which is revised in section 2.1. On the other hand, implicit formulations 
based on the level set method can be used, as we shall see in section 2.2. 

2.1 T-Snakes model  
The classical snake model proposed in (Kass et al., 1988) do not incorporate topological 
changes. Among the proposals for incorporating topological capabilities to parametric snake 
models (Bischoff & Kobbeit, 2004; Oliveira et al., 2004), the T-Snakes approach (McInerney & 
Terzopoulos, 1999) has the advantage of been a general one, in the sense that the same 
formulation can be used for 2D and 3D, for both splits and merges. 
The T-Snakes approach is composed basically by four components (McInerney & 
Terzopoulos, 1999): (1) a simple CF-triangulation of the image domain; (2) projection of each 
snake over the grid; (3) a binary function called characteristic function χ , defined on the 
grid nodes, which distinguishes the interior from the exterior of a snake; (4) a discrete snake 
model. 
To clear the ideas, consider the characteristic functions ( 1χ  and 2χ ) relative to the two 
contours pictured in Figure 1. The vertices marked are those where { }1 2max , 1χ χ = . 
Observe that the merge of the curves belongs to the triangles in which the characteristic 
function changes value. 
 

 

Fig. 1. Two snakes colliding with the inside grid nodes and snake points (snaxels) marked. 

Thus, from the points obtained in the step (2), we can choose a set of N points 
( ){ }, , 0,..., 1i i iv x y i N= = −  to be connected to form a closed contour (T-Snake). In (Giraldi et 

al., 2003)we evolve a T-Snake based on a tensile force ( iB ),  an external (image) force ( if ), 
and a normal (balloon-like) force ( iF ), defined as follows: 

 
( )

1 1
1 2

2 ,
t t t
i i i

i
i

v v vB w
s

− +
⎛ ⎞− +⎜ ⎟=
⎜ ⎟Δ⎝ ⎠

 (1) 

 ( ) ,i if P vγ= ∇  (2) 

 ( ) ,i i iF k sign n=  (3) 

where in  is the normal at the snaxel iv  and 1w , γ ,k are force scale factors, 1isign =  if 
( )iI v T≥ and 0isign =  otherwise ( T  is a threshold for the image I ) and 2P I= − ∇ . The 



 Image Segmentation 

 

130 

affect the efficiency of the energy minimization process (Ip & Shen, 1998). Some methods 
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the Dual-Level-Set and Dual-Front methods. During the presentation of these methods, we 
show results in medical image segmentation. We offer a discussion on section 5 by 
comparing the presented methods and by pointing out drawbacks of dual approaches. In 
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2. Background review  
The original snake model (Kass et al., 1988) is formulated as a functional energy 
minimization process that consists of an initial model which is carried to the desired object 
boundary by forces described by the Euler-Lagrange equations. In a different way, the snake 
evolution can be formulated by local deformations to dynamically reshape the initial model 
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in a process which do not apply minimization techniques explicitly. This approach is used in 
the T-Snakes model which is revised in section 2.1. On the other hand, implicit formulations 
based on the level set method can be used, as we shall see in section 2.2. 

2.1 T-Snakes model  
The classical snake model proposed in (Kass et al., 1988) do not incorporate topological 
changes. Among the proposals for incorporating topological capabilities to parametric snake 
models (Bischoff & Kobbeit, 2004; Oliveira et al., 2004), the T-Snakes approach (McInerney & 
Terzopoulos, 1999) has the advantage of been a general one, in the sense that the same 
formulation can be used for 2D and 3D, for both splits and merges. 
The T-Snakes approach is composed basically by four components (McInerney & 
Terzopoulos, 1999): (1) a simple CF-triangulation of the image domain; (2) projection of each 
snake over the grid; (3) a binary function called characteristic function χ , defined on the 
grid nodes, which distinguishes the interior from the exterior of a snake; (4) a discrete snake 
model. 
To clear the ideas, consider the characteristic functions ( 1χ  and 2χ ) relative to the two 
contours pictured in Figure 1. The vertices marked are those where { }1 2max , 1χ χ = . 
Observe that the merge of the curves belongs to the triangles in which the characteristic 
function changes value. 
 

 

Fig. 1. Two snakes colliding with the inside grid nodes and snake points (snaxels) marked. 

Thus, from the points obtained in the step (2), we can choose a set of N points 
( ){ }, , 0,..., 1i i iv x y i N= = −  to be connected to form a closed contour (T-Snake). In (Giraldi et 

al., 2003)we evolve a T-Snake based on a tensile force ( iB ),  an external (image) force ( if ), 
and a normal (balloon-like) force ( iF ), defined as follows: 
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 ( ) ,i if P vγ= ∇  (2) 

 ( ) ,i i iF k sign n=  (3) 

where in  is the normal at the snaxel iv  and 1w , γ ,k are force scale factors, 1isign =  if 
( )iI v T≥ and 0isign =  otherwise ( T  is a threshold for the image I ) and 2P I= − ∇ . The 
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utility of the balloon-like force given by expression (3) is two-fold. Firstly, it avoids the 
unwanted contraction effect of the tensile force due to the inflation (see 
(Cohen, 1991) for details). Secondly, this force pushes the model towards the object(s) of 
interest, characterized by the threshold T . The external force if  given by expression (2) 
attracts the snake to object boundaries in the image. We update the T-Snake position 
according to the evolution equation: 

 ( ) ( ) ,t t t t t t
i i i iiv v t B F f+Δ = + Δ + +  (4) 

where tΔ  is a time step. The T-Snakes model incorporates also an entropy condition: “once 
a node is burnt (passed over by the snake) it stays burnt “ (McInerney & Terzopoulos, 1999). 
A specific termination condition is defined based on the number of deformations steps 
(temperature) that a triangle was cut by a T-Snake. A T-Snake is considered to have reached 
its equilibrium state when the temperature of all the snaxels fall bellow a preset value 
(called ''freezing point'' in the T-Snakes literature (McInerney & Terzopoulos, 1999)). 

2.2 Level set 
In this section we review some details of the level set formulation (Malladi et al., 1995). The 
main idea of this method is to represent the deformable surface (or curve) as a level set 

( ){ }3 0x G x∈ℜ =  of an embedding function: 

 3: ,G +ℜ ×ℜ →ℜ  (5) 

such that the deformable surface (also called front in this formulation), at t=0, is given by a 
surface S : 

 ( ) ( ){ }30 , 0 0 ,S t x G x t= = ∈ℜ = =  (6) 

The next step is to find an Eulerian formulation for the front evolution. Following Sethian 
(Malladi et al., 1995), let us suppose that the front evolves in the normal direction with 
velocity F  that may be a function of the curvature, normal direction, etc. 
We need an equation for the evolution of ( ),G x t , considering that the surface S  is the level 
set given by: 

 ( ) ( ){ }3 , 0 ,S t x G x t= ∈ℜ =  (7) 

Let us take a point ( )x t , t +∈ℜ  of the propagating front S . From its implicit definition 
given above we have: 

 ( )( ), 0,G x t t =  (8) 

Now, we can use the Chain Rule to compute the time derivative of this expression: 

 0,tG F G+ ∇ =  (9) 
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where /F dx dt=  is called the speed function and ∇  is the gradient operator, with respect 
to x . An initial condition ( ), 0G x t =  is required. A straightforward  technique to define this 
function is to compute a signed-distance function as follows: 

 ( ), 0 ,G x t d= = ±  (10) 

where d is the distance from x to the surface ( )0S t =  and the sign indicates if the point is 
interior (-) or exterior (+) to the initial front. The “fast marching method” (FMM) can be used  
to efficiently compute this function (Sethian, 1996). 
Finite difference schemes, based on an uniform grid, can be used to solve equation (9). The 
same entropy condition of T-Surfaces (once a grid node is burnt it stays burnt) is 
incorporated in order to drive the model to the desired solution (in fact, T-Surfaces was 
inspired on the level set model (McInerney & Terzopoulos, 1999)). 
In this higher dimensional formulation, topological changes can be efficiently implemented. 
Numerical schemes are stable, and the model is general in the sense that the same 
formulation holds for 2D and 3D, as well as for merge and splits. Besides, the surface 
geometry is easily computed. For example, the front normal ( n ) and curvature (K) are 
given, respectively, by: 

 ( ) ( )
( )

,
, , ,

,
G x t

n G x t K
G x t

⎛ ⎞∇⎜ ⎟= ∇ = ∇ ⋅
⎜ ⎟∇⎝ ⎠

 (11) 

where the gradient (∇ ) and the divergent ( .∇ ) are computed with respect to x. 
The update of the embedding function through expression (9) can be made cheaper if the 
narrow-band technique is applied. The key idea of this method comes from the observation 
that the front can be moved by updating the level set function at a small set of points in the 
neighbourhood of the zero set instead of updating it at all the points on the domain (see 
(Malladi et al., 1995; Sethian, 1996) for details). 

3. Parametric dual models 
Parametric dual active contour models have been applied for cell image segmentation (Chen 
et al., 2002; 2001; Giraldi et al., 2003), features and geometric measures extraction (Gunn, 
1996; Gunn & Nixon, 1997). The main advantage of these methods against usual snake 
models is their capability to reject local minima by using two contours: one which contracts 
from outside the target and one which expands from inside. Such proposal makes possible 
to reduce the sensitivity to initialization, by enabling a comparison between the two 
contours energy, which is used to reject local minima. In what follows, we firstly present the 
original dual snake model, proposed by Gunn and Nixon (Gunn, 1996; Gunn & Nixon, 
1997). Next, we review more recent approaches that incorporate topological abilities (the 
Dual-T-Snakes) and improve the efficiency for ultrasound images (Dual-Cell)  

3.1 Original dual model 
The dual snake methodology was firstly proposed in (Gunn & Nixon, 1997). To obtain the 
conventional continuity and smoothness constraints, but removes the unwanted contraction 
force, a scale invariant internal energy function (shape model) is developed. In (Gunn & 
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utility of the balloon-like force given by expression (3) is two-fold. Firstly, it avoids the 
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attracts the snake to object boundaries in the image. We update the T-Snake position 
according to the evolution equation: 
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A specific termination condition is defined based on the number of deformations steps 
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its equilibrium state when the temperature of all the snaxels fall bellow a preset value 
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main idea of this method is to represent the deformable surface (or curve) as a level set 
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such that the deformable surface (also called front in this formulation), at t=0, is given by a 
surface S : 
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The next step is to find an Eulerian formulation for the front evolution. Following Sethian 
(Malladi et al., 1995), let us suppose that the front evolves in the normal direction with 
velocity F  that may be a function of the curvature, normal direction, etc. 
We need an equation for the evolution of ( ),G x t , considering that the surface S  is the level 
set given by: 

 ( ) ( ){ }3 , 0 ,S t x G x t= ∈ℜ =  (7) 

Let us take a point ( )x t , t +∈ℜ  of the propagating front S . From its implicit definition 
given above we have: 

 ( )( ), 0,G x t t =  (8) 

Now, we can use the Chain Rule to compute the time derivative of this expression: 
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where /F dx dt=  is called the speed function and ∇  is the gradient operator, with respect 
to x . An initial condition ( ), 0G x t =  is required. A straightforward  technique to define this 
function is to compute a signed-distance function as follows: 

 ( ), 0 ,G x t d= = ±  (10) 

where d is the distance from x to the surface ( )0S t =  and the sign indicates if the point is 
interior (-) or exterior (+) to the initial front. The “fast marching method” (FMM) can be used  
to efficiently compute this function (Sethian, 1996). 
Finite difference schemes, based on an uniform grid, can be used to solve equation (9). The 
same entropy condition of T-Surfaces (once a grid node is burnt it stays burnt) is 
incorporated in order to drive the model to the desired solution (in fact, T-Surfaces was 
inspired on the level set model (McInerney & Terzopoulos, 1999)). 
In this higher dimensional formulation, topological changes can be efficiently implemented. 
Numerical schemes are stable, and the model is general in the sense that the same 
formulation holds for 2D and 3D, as well as for merge and splits. Besides, the surface 
geometry is easily computed. For example, the front normal ( n ) and curvature (K) are 
given, respectively, by: 

 ( ) ( )
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G x t

n G x t K
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⎛ ⎞∇⎜ ⎟= ∇ = ∇ ⋅
⎜ ⎟∇⎝ ⎠
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where the gradient (∇ ) and the divergent ( .∇ ) are computed with respect to x. 
The update of the embedding function through expression (9) can be made cheaper if the 
narrow-band technique is applied. The key idea of this method comes from the observation 
that the front can be moved by updating the level set function at a small set of points in the 
neighbourhood of the zero set instead of updating it at all the points on the domain (see 
(Malladi et al., 1995; Sethian, 1996) for details). 

3. Parametric dual models 
Parametric dual active contour models have been applied for cell image segmentation (Chen 
et al., 2002; 2001; Giraldi et al., 2003), features and geometric measures extraction (Gunn, 
1996; Gunn & Nixon, 1997). The main advantage of these methods against usual snake 
models is their capability to reject local minima by using two contours: one which contracts 
from outside the target and one which expands from inside. Such proposal makes possible 
to reduce the sensitivity to initialization, by enabling a comparison between the two 
contours energy, which is used to reject local minima. In what follows, we firstly present the 
original dual snake model, proposed by Gunn and Nixon (Gunn, 1996; Gunn & Nixon, 
1997). Next, we review more recent approaches that incorporate topological abilities (the 
Dual-T-Snakes) and improve the efficiency for ultrasound images (Dual-Cell)  

3.1 Original dual model 
The dual snake methodology was firstly proposed in (Gunn & Nixon, 1997). To obtain the 
conventional continuity and smoothness constraints, but removes the unwanted contraction 
force, a scale invariant internal energy function (shape model) is developed. In (Gunn & 
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Nixon, 1997) a snake is considered as a particle system ( ){ }, , 0,..., 1i i iv x y i N= = −  whose 

particles are linked by internal constraints. The shape model is accomplished by the 
following internal energy: 

 ( )
21

int int
0

1 1; ,
2

N
i

R i
i

e
E E v E

N h

−

=

⎛ ⎞
⎜ ⎟= =
⎜ ⎟
⎝ ⎠

∑  (12) 

where: 

 ( ) ( )1 1 1 1
1 1 ,
2 2i i i i i i ie v v v R v vθ− + − += + − + +  (13) 

h is the average space step, R is a 90o rotation matrix and iθ  is related to the internal angle  

iφ  in the vertex iv by: 

 cot .
2

i
i

ϕ
θ ⎛ ⎞= ⎜ ⎟

⎝ ⎠
 (14) 

The Figure 2 helps to understand the geometric meaning of these elements. In this figure, 
the vector ie  is such that the triangle with vertices 1 1, ,i i i iv v e v+ −+  is isosceles.  
 

 
Fig. 2. Geometric elements of the local shape model. Reprinted from (Gunn & Nixon, 1997) 

It is clear that RE has a global minimum when 0,ie =  0,1,2,..., 1i N= − . From (13)-(14) it 
can be shown that this happens when: 

( ) ( )2 / 2 , 0,1,..., 1,i N N i Nϕ π= − = −  

which are the internal angles of a regular polygon with vertices given by the points iv  
(Gunn & Nixon, 1997). The energy (12) can be also shown to be rotation, translation and 
scale invariant (Gunn & Nixon, 1997). Therefore there is no tendency to contraction as 
already pointed out for the original snake model (see (Cohen, 1991) for details). With the 
internal energy given by expression (12), the curve is biased towards a regular polygon 
(Gunn & Nixon, 1997). As before, the external energy is defined by: 
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 ( ) ( ) 2
.ext i iE v I v= − ∇  (16) 

The total energy of the model is given by: 

 ( ) ( ) ( )( )
1

int
0

1 1 .
N

i ext i
i

E E v E v
N

λ λ
−

=
= + −∑  (17) 

where λ  is a smoothing parameter which lies between 0 and 1 (Gunn & Nixon, 1997). This 
expression guarantees that during the optimization process, the snake will seek for strong 
object boundaries, due to extE , whose shape resembles a regular polygon, due to shape 
model given by expression (12). This fact makes easier to establish the correspondence 
(matching) between the points of the two contours because the form of the snake during the 
evolution is limited by the energy (12). The methodology takes advantage of this 
correspondence by proposing the driving force: 

 ( ) ,
t

i i
driving t

i i

u vF g t
u v
−

=
−

 (18) 

where t
iv   is the contour being processed at time t, t

iu  is the contour remaining at rest and 
( )g t  is the strength of the force. The termination condition adopted in (Gunn & Nixon, 

1997) is the following one, based on low velocity criterion: 

 1 ,max t t
i i

i
v v δ+ − <  (19) 

where δ  is a termination parameter. 
The dual approach consists in making the inner and outer contours evolve according the 
following algorithm: The contour with the highest energy is selected. If its motion remains 
below some termination condition then the driving force (18) is increased until it moves at a 
rate greater than the chosen threshold δ . When the energy begins to decrease, the added 
driving force is removed and the contour is allowed to come into equilibrium. The 
procedure is then repeated until both contours have found the same equilibrium position. 

3.2 Dual-T-Snakes algorithm  
The key idea behind this method is to explore the T-Snakes framework to propose a 
generalized dual active contour model: one T-Snake contracts and splits from outside the 
targets and another one expand from inside the targets (Giraldi et al., 2003; 2000b). 
To make the outer snake to contract and the inner ones to expand we assign an inward 
normal force to the first and an outward normal force to the others according to expressions 
(3). Also, to turn the T-Snakes evolution interdependent we use the image energy and an 
affinity restriction. 
We use two different definitions for image energy: one for the outer contour ( outerE ) and 
another one for the set of inner contours enclosed by it ( innerE ): 

 ( )
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internal energy given by expression (12), the curve is biased towards a regular polygon 
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.ext i iE v I v= − ∇  (16) 
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where λ  is a smoothing parameter which lies between 0 and 1 (Gunn & Nixon, 1997). This 
expression guarantees that during the optimization process, the snake will seek for strong 
object boundaries, due to extE , whose shape resembles a regular polygon, due to shape 
model given by expression (12). This fact makes easier to establish the correspondence 
(matching) between the points of the two contours because the form of the snake during the 
evolution is limited by the energy (12). The methodology takes advantage of this 
correspondence by proposing the driving force: 
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where t
iv   is the contour being processed at time t, t

iu  is the contour remaining at rest and 
( )g t  is the strength of the force. The termination condition adopted in (Gunn & Nixon, 

1997) is the following one, based on low velocity criterion: 
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where δ  is a termination parameter. 
The dual approach consists in making the inner and outer contours evolve according the 
following algorithm: The contour with the highest energy is selected. If its motion remains 
below some termination condition then the driving force (18) is increased until it moves at a 
rate greater than the chosen threshold δ . When the energy begins to decrease, the added 
driving force is removed and the contour is allowed to come into equilibrium. The 
procedure is then repeated until both contours have found the same equilibrium position. 

3.2 Dual-T-Snakes algorithm  
The key idea behind this method is to explore the T-Snakes framework to propose a 
generalized dual active contour model: one T-Snake contracts and splits from outside the 
targets and another one expand from inside the targets (Giraldi et al., 2003; 2000b). 
To make the outer snake to contract and the inner ones to expand we assign an inward 
normal force to the first and an outward normal force to the others according to expressions 
(3). Also, to turn the T-Snakes evolution interdependent we use the image energy and an 
affinity restriction. 
We use two different definitions for image energy: one for the outer contour ( outerE ) and 
another one for the set of inner contours enclosed by it ( innerE ): 
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kNm
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k i

E I v N
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−−

= =

⎛ ⎞⎛ ⎞
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where m is the number of inner curves, N , kN  are the number of snaxels of the outer snake 
and of the inner snake k, respectively. The normalization is necessary in order to be 
compared. Otherwise, the snake energy would be a decreasing function of the number of 
snaxels and comparisons would not make sense. 
Following the dual approach methodology (Gunn & Nixon, 1997), if inner outerE E>  an inner 
curve must be chosen. To accomplish this, we use an affinity operator which estimates the 
pixels of the image most likely to lie on the boundaries of the objects. Based on this operator, 
we can assign to a snaxel the likelihood that it is close to a boundary. That likelihood is 
thresholded to obtain an affinity function that assigns to the snaxel a 0-1 value: ''0'' for the 
snaxels most likely to lie away from the target boundaries and ''1'' otherwise. 
Then, the inner curve with highest number of snaxels with affinity function value null is 
chosen. If inner outerE E<  the outer snake is evolved if the corresponding affinity function has 
null entries. 
Also, the balance between the energy/affinity of the outer and inner snakes allows to avoid 
local minima. For instance, if a T-Snake has been frozen, we can increase the normal force at 
the snaxels where the affinity function is zero, that is, we add a driving force only to the 
snaxels most like to lie far from the boundary. The self-intersections that may happen 
during the evolution of a snake when increasing the normal force are naturally resolved by 
the T-Snakes model. This is way we can use that added normal force to play the role of the 
driving force used by Gunn and Nixon (avoiding the matching problem required in (Gunn 
& Nixon, 1997)). 
To evaluate similarity between two contours, we use the difference between the 
characteristic function of the outer snake and the characteristic functions of the inner ones 
( _Characteristic Diff ). For example, in the case of the CF triangulation of the Figure 1 we can 
stop the motion of all snaxels of an inner snake inside a triangle σ if any of its vertex v σ∈  
has the two following properties: (a). All the six triangles adjacent to v  have a vertex where 

_ 0Characteristic Diff = ; (b). One of these triangles is crossed by the outer contour 
The freezing point (section 2.1) is used to indicate that a T-Snake has found an equilibrium 
position. In what follows, we call Dual Snake a list of T-Snakes where the first one is an 
outer contour and the other ones are inner contours. The algorithm can be summarized as 
follows: 
 
Algorithm 1:   Dual-T-Snakes 
 Put all the dual snakes into a queue. 
 repeat 
    Pop out a dual snake from the queue; 
      Use the energies (equations (20) and (21)) and the affinity function to decide the 
    snake to be processed;  
   if all snaxels of that snake are frozen 
      repeat 
                 increase the normal force at those with affinity zero 
      until the snake energy starts decreasing 
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    Remove that added normal force;  
      repeat 
                  Evolve the snake 
      until the temperature of all snaxels falls bellow the freezing point; } 
           Analyze the Characteristic\_Diff of the current snake; 
                  if  the snake being processed is close to a snake of the other type (inner/outer)  
                     then remove the dual snake from the queue.} 
            else 
                    mount the resulting dual snake(s) and go to the beginning. 
   until the queue is empty 
 
The experience with this method shows that it is very useful to reduce the search space. So, 
we proposed in (Giraldi et al., 2000b) a two stage segmentation approach: (1) the region of 
interest is reduced by the Dual-T-Snakes; (2) a global minimization technique is used to find 
the object boundaries. In (Giraldi et al., 2000b) we apply the Viterbi algorithm, which is a 
dynamic program technique. The search space is constructed by discretizing each curve in N 
points and establishing a matching between them. Each pair of points is then connected by a 
segment which is subdivided in M points. This process provides a discrete search space, 
with NM points, that is pictured in the Figure 3: 
 

 

Fig. 3. Search space obtained through a matching between inner and outer snakes.  

The target boundary is then determined by minimizing the following energy functional 
(Gunn, 1996): 
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with int , extE E  and lineE defined as follows: 
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where m is the number of inner curves, N , kN  are the number of snaxels of the outer snake 
and of the inner snake k, respectively. The normalization is necessary in order to be 
compared. Otherwise, the snake energy would be a decreasing function of the number of 
snaxels and comparisons would not make sense. 
Following the dual approach methodology (Gunn & Nixon, 1997), if inner outerE E>  an inner 
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interest is reduced by the Dual-T-Snakes; (2) a global minimization technique is used to find 
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dynamic program technique. The search space is constructed by discretizing each curve in N 
points and establishing a matching between them. Each pair of points is then connected by a 
segment which is subdivided in M points. This process provides a discrete search space, 
with NM points, that is pictured in the Figure 3: 
 

 

Fig. 3. Search space obtained through a matching between inner and outer snakes.  
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where the real parameters ,α β and λ  must be chosen in advance. The Viterbi algorithm 
was also used in (Bamford & Lovell, 1997) and sometimes it is called non-evolutionary dual 
model, in the sense that it is not based on a curve evolution. 
The following example shows the application of the segmentation framework that combines 
the Dual-T-Snakes and the Viterbi algorithm (Giraldi et al., 2000b; 2003) for a cell image. The 
Figure 4.a shows a blood cell obtained by an electronic microscope technique. When pass-
band filter is applied, we get an edge map resembling a ribbon whose thickness depends on 
the kernel size of the used filter ( Figure 4.b). That is an ideal situation for applying Dual-T-
Snakes plus Viterbi because, firstly, the former extracts the ribbon (Figure 4.c). Then, the 
later is applied to the original image to give the final result (Figure 4.d). 
 

       
(a)                                                 (b) 

       
(c)                                                     (d) 

Fig. 4. Search space obtained through a matching between inner and outer snakes. (a)Image 
to be processed. (b)Band-Pass filtered image. (c)Dual-T-Snakes solution. (d)Viterbi solution. 

3.3 Cell-Based dual snake model 
In (Chen et al., 2002) it is proposed a cell-based dual snake model for ultrasound image. 
Boundary extraction and segmentation for this kind of image are a much harder problem 
than for other image modalities, due to the speckle, the tissue-related textures, and the 
artifacts resulting from the ultrasonic imaging process. To address such difficulties it is 
proposed in (Chen et al., 2002) a model which is devised into three main stages, namely, cell 
generation, cell-based deformation and contour smoothing. In the cell-generation stage, the 
immersion watershed algorithm (Vincent & Soille, 1991) is used to generate the 
nonoverlapped cells. To alleviate the interference of speckle in cell generation, the speckle is 
reduced by using the multiscale Gaussian filters before computing the gradient map. The 
cell boundaries are defined as the watersheds formed in the gradient map of the speckle-
reduced ultrasound images. 
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Once the cell decomposition of the image domain is performed, we must define the dual 
snakes and the evolution model. Thus, given an initial contour enclosing the region of 
interest (ROI), a set of minimum covering cells, 1 2, ,..., NC C C  containing the ROI is found, 
based on the cells generated in the previous stage (Figure 5). Let 0Γ  and iΓ  be the initial 
outer and inner snakes, respectively, which are pictured on Figure 5. The outer snake is 

defined as the outermost boundary of 
1

N

i
i

C
=
∪ . Suppose that the center of the ROI is the cell 

1C . Then, its boundary is the initial inner snake iΓ , also represented on Figure 5. 
Let 1

tΓ  and 2
tΓ  be the inner and outer snakes, respectively, at the deformation step t. Then, 

the model energy  ( ) ( ) ( )1 2 1 2
t t t tE E EΓ ∪Γ = Γ + Γ  is defined by (Chen et al., 2002): 

 

 

Fig. 5. Region of interest (ROI) and initial snakes. Reprinted from (Chen et al., 2002) 
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ioS  denote the set 
of cells enclosed by the inner and outer snakes at the deformation step t, and , , ,i i i iα β γ δ , 

0,1,..., 1i N= −  are real parameters that controls the influence of each term in the  
expression (26). 
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immersion watershed algorithm (Vincent & Soille, 1991) is used to generate the 
nonoverlapped cells. To alleviate the interference of speckle in cell generation, the speckle is 
reduced by using the multiscale Gaussian filters before computing the gradient map. The 
cell boundaries are defined as the watersheds formed in the gradient map of the speckle-
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The first energy term lenE  gives the perimeter of the contour t
jΓ . If we take 1 0α <  and 

2 0α > , then, minimizing this energy would force the inner snake into expanding outward 
and the outer snake into contracting. The term Eθ approximates the curvature along the 
snake and aims to control the smoothness of the contour. 
The third energy extE  is the external energy defined based on edge features. The last energy, 

AreaE , is the area covered by the cells in t
ioS . When minimizing energy (26) this term will 

provide the attraction force to pull the inner and the outer snakes to each other. 
The energies (27)-(30) may have different ranges. Therefore, the target function to be 
minimized is the normalized energy variation ( )t

iEΔ Γ  rather than the ( )t
iE Γ  itself, that is: 

 ( )1 1
1 2 1 2, ; ,t t t tE + +Δ Γ Γ Γ Γ =  (31) 
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with { }, , ,len ext Areaρ θ∈  and , , ,i i i iα β γ δ  are the same of expression (26). 
Before to proceed, we need other definitions. Let 1

tS  be the set of cells inside the ROI that 
intersect the curve 1

tΓ  (similarly for 2
tS ). Besides, it is defined in (Chen et al., 2002) the 

operators Φ  and Ψ  such that: 

 ( ) ( )2 1.t t t t
io ioS and SΦ = Γ Ψ = Γ  (35) 

 

The deformation of the model is based on the two operators called cell-erosion and the cell-
dilation. These operators are described on Figure 6. The former, denoted by CE, is defined 
as: 

 ( ) { } ( )1 2, , .t t t t t
io p io p p ioCE S C S C C S S S= − ∈ ∪ ∩  (36) 

The cell-dilation, denoted by CD, is defined by: 

 ( ) { } ( )1 2, , .t t t t t
io p io p p ioCD S C S C C S S S= ∪ ∈ ∪ −  (37) 

 

The cell-based dual snakes evolution is the greedy procedure that aims to minimize the 
normalized energy variation defined in expression (32). It is based on the following 
algorithm to find the minimum of the energy variation given by expression (32). 
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(a)                                     (b) 

Fig. 6. (a)Erosion operator. (b) Dilation operation. Reprinted from (Chen et al., 2002) 

1. Initialization: define 0
ioS , ( )0 0

2ioSΦ = Γ , ( )0 0
1ioSΨ = Γ  and and set 0t = . 

2. While 0 ,ioS ≠ ∅  
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2.2.    ( )1 1
2
t t

ioS+ +Γ = Φ  and ( )1 1
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t t

ioS+ +Γ = Ψ . 

Once the boundary is extracted based on this algorithm, some kind of smoothing process 
may be applied in order to improve it. This stage can be performed by an usual snake 
model, that is, the dual result is used to initialize a parametric (single) snake model. Other 
possibility, also discussed in (Chen et al., 2002), would be spline interpolation. 
The Figure 7 pictures the stages of the method for breast ultrasound segmentation. Figure 
7.a pictures the original image with a benign lesion. This input image is then filtered by a 
gaussian kernel followed by a Sobel edge detector. The cells generated by the watershed 
algorithm are pictured on Figure 7.b. The initialization of the method and the obtained 
result (white contour) are shown on Figures 7.c and 7.d, respectively. 

4. Implicit models 
In this section we review the implicit formulation for dual models: the Dual-Level-Set and 
the Dual-Front methods. The former maintains the philosophy of Dual-T-Snakes: one snake 
contracts and splits from outside the targets and another ones expand from inside the 
targets (section 3.2). However, the snake model will be the level set described on section 2.2. 
The later, the Dual-Front method, uses fast marching methods (Sethian, 1999) to propagate 
two action maps until they met each other generating an interface that represents the 
boundary. These action maps are derived from potentials that take lower values near the 
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Fig. 6. (a)Erosion operator. (b) Dilation operation. Reprinted from (Chen et al., 2002) 
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      (a)                                                  (b) 

       
      (c)                                                      (d) 

Fig. 7. (a)Original breast ultrasound image. (b) Cells generated by the watershed algorithm. 
(c)Initial snakes (white contours). (d) Final result. Reprinted from (Chen et al., 2002) 
desired boundaries. So, both the Dual-Level-Set and the Dual-Front methods keep the idea 
of using two linked processes to seek for the global minimum. 

4.1 Dual-Level-Set approach 
In this section we maintain the philosophy of Dual-T-Snakes: one snake contracts and splits 
from outside the targets and another ones expand from inside the targets (section 3.2). 
However, the snake model will be an implicit one. To set ideas, let us consider the Figure 
8.a, which shows two contours bounding the search space and Figure 8.b that pictures a 
surface which zero level set is the union of the two contours just presented. 
 

 
(a)                                  (b) 

Fig. 8. (a)Dual snakes bounding the search space. (b) Initial function which zero level set is 
the two contours presented.  

Dual Active Contour Models for Medical Image Segmentation   

 

143 

If the surface evolves such that the two contours get closer, we can obtain the same behavior 
of Dual-T-Snakes. That is the key idea of the method proposed by some of us in (Suri & 
Editors, 2006). In order to accomplish this goal we must define a suitable speed function and 
an efficient numerical approach. For simplicity, we consider the one dimensional version of 
the problem pictured on Figure 9. In this case, the level set equation given by expression (9) 
can be written as: 

 0.t
GG F
x

∂
+ =
∂

 (40) 

The main point is to design the speed function F  such that 0tG > . Therefore, if we set the 
sign of F  opposite to the one of xG  we get this goal, once: 

 0.t
GG F
x

∂
= − =

∂
 (41) 

Hence, the desired behavior can be obtained by the sign distribution of F , shown in Figure 9. 
 

 

Fig. 9. Sign of speed function. 

However, we should notice that 0xG = for singular points. So, the values of G remain 
constant over these points because tG  becomes null. Thus, we should be careful about the 
surface evolution nearby the singular points because anomalies may happen. One 
possibility to avoid this problem is to stop front evolution before getting close to this point. 
Another possibility could be to change the evolution equation in order to allow the 0tG ≠  
over singular points. Such proposal implies that the isolines may be not preserved, that is, 
they become a function of time also. Thus: 

 ( )( ) ( ), ,G x t t y t=  (42) 

consequently, by applying Chain rule: 
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Therefore, we should provide an speed function in y  direction. 
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4.1 Dual-Level-Set approach 
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from outside the targets and another ones expand from inside the targets (section 3.2). 
However, the snake model will be an implicit one. To set ideas, let us consider the Figure 
8.a, which shows two contours bounding the search space and Figure 8.b that pictures a 
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(a)                                  (b) 

Fig. 8. (a)Dual snakes bounding the search space. (b) Initial function which zero level set is 
the two contours presented.  
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If the surface evolves such that the two contours get closer, we can obtain the same behavior 
of Dual-T-Snakes. That is the key idea of the method proposed by some of us in (Suri & 
Editors, 2006). In order to accomplish this goal we must define a suitable speed function and 
an efficient numerical approach. For simplicity, we consider the one dimensional version of 
the problem pictured on Figure 9. In this case, the level set equation given by expression (9) 
can be written as: 

 0.t
GG F
x

∂
+ =
∂

 (40) 

The main point is to design the speed function F  such that 0tG > . Therefore, if we set the 
sign of F  opposite to the one of xG  we get this goal, once: 

 0.t
GG F
x

∂
= − =

∂
 (41) 

Hence, the desired behavior can be obtained by the sign distribution of F , shown in Figure 9. 
 

 

Fig. 9. Sign of speed function. 

However, we should notice that 0xG = for singular points. So, the values of G remain 
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surface evolution nearby the singular points because anomalies may happen. One 
possibility to avoid this problem is to stop front evolution before getting close to this point. 
Another possibility could be to change the evolution equation in order to allow the 0tG ≠  
over singular points. Such proposal implies that the isolines may be not preserved, that is, 
they become a function of time also. Thus: 

 ( )( ) ( ), ,G x t t y t=  (42) 

consequently, by applying Chain rule: 

 ,t
dyG dxG

x dt dt
∂

+ =
∂

 (43) 

Therefore, we should provide an speed function in y  direction. 

 , 1 , 0,t
dyG dxG

x dt dt
∂ ⎛ ⎞⎛ ⎞+ − ⋅ =⎜ ⎟⎜ ⎟∂⎝ ⎠ ⎝ ⎠

 (43) 
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We can write this expression as: 

 , 1 0,tG F G+ ∇ − =  (45) 

where F is the speed function. For fronts in 3Dwe get: 

 ,t
dyG dx G dzG

x dt y dt dt
∂ ∂

+ + =
∂ ∂

 (46) 

therefore: 

 , , 1 , , 0,t
dyG G dx dzG

x y dt dt dt
⎛ ⎞∂ ∂ ⎛ ⎞+ − ⋅ =⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ⎝ ⎠⎝ ⎠

 (47) 

One way to deal with these models is through viscous conservation laws (Sethian, 1996). For 
example, expression (43) becomes: 

 
2

2 ,t
G dx GG
x dt x

ε∂ ∂
+ =
∂ ∂

 (48) 

If /dy dt  is replaced by xxGε  where ε  is a new parameter. For 2D we will have: 

 2, , ,t
dyG G dxG G

x y dt dt
ε

⎛ ⎞∂ ∂ ⎛ ⎞
+ ⋅ = ∇⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ⎝ ⎠⎝ ⎠

 (49) 

where 2∇  means the Laplace operator defined by: 

 
2 2

2
2 2.
G GG

x y
∂ ∂

∇ = +
∂ ∂

 (50) 

In our model we will maintain the idea that the front evolves in the normal direction. Thus, 
expression (49) can be rewritten as: 

 2 ,tG F G Gε+ ∇ = ∇  (51) 

following the same development to derive expression (9). Such model has been studied in 
the context of front propagation in (Malladi et al., 1995; Sethian, 1996). 
Once our application focus is shape recovery in a image I , we must choose a suitable speed 
function F as well as a convenient stopping term S  to be added to the right-hand side of 
equation (51). Among the possibilities (Suri et al., 2002), the following ones have been 
suitable for our Dual-Level-Set: 

 
2

1 ,
1

kF
I
α+

=
+ ∇

 (52) 

 ,S P Gβ= ∇ ⋅∇  (53) 

where k is the curvature, defined by expression (11), ,α β are scale parameters and 
2P I= − ∇ . Therefore, we are going to deal with the following level set model: 
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2

1 ,
1

t
kG G G P G
I

α ε β
⎛ ⎞+⎜ ⎟= ∇ + ∇ + ∇ ⋅∇
⎜ ⎟+ ∇⎝ ⎠

 (54) 

The evolution of the fronts follows this governing equation and are interdependent due to 
the embedding function. However, once the evolution stops, we must evaluate the similarity 
between the two contours and apply a driving velocity instead of the driving force of section 
3.1. The numerical method is a first order one already known in the level set literature 
(Sethian, 1996). We have also simplified the initialization of the method through smoothed 
versions of step functions (see (Suri & Editors, 2006), for details). 
As usual in level set approaches, we use the narrow band method; that is, only the values of 
G within a tube placed around the front are updated. When the front moves near to the 
edge of the tube boundary, the computation is stopped and a new tube is built with the zero 
level set at the center. For our dual approach, the narrow band is attractive not only for 
computational aspects but also because it allows an efficient way to evaluate similarity 
between two contours. In fact, instead of using the criterion of section 3.2, we take the 
procedure pictured on Figure 10: Firstly, the intersection point is computed (Figure 10.a); 
then, we take a neighborhood of this point (Figure 10.b) and stop to update the function G  
in all the grid points inside it or we can set to zero the speed function for these points. We 
say that those grid points are frozen ones. 
 

                  
(a)                                       (b) 

Fig. 10. (a)Narrow bands touching each other. (b) Neighborhood to define similarity 
between fronts.  

Once the fronts stop moving, we must decide in which grid points we add a driving 
velocity. It is an extra velocity term which goal is the same of the driving force in section 3.2; 
that is, to keep fronts moving again. Therefore, we get a less sensitive model to the initial 
position of the fronts. To accomplish this task we can add an extra velocity term to equation 
(54), called driveV .  
We must be careful when choosing the grid points to apply this term. As in the case of Dual-
T-Snakes, the fronts may be nearby the boundary somewhere, but far away from the target 
in another place. We should automatically realize this fact when the fronts stop moving. To 
accomplish this, we can use the affinity operator explained on section 3.2. Based on this 
operator, we can define an affinity function that assigns to a grid point inside the narrow 
band a 0 1− value: 0  for the grid points most likely to lie away from the target boundaries 
and 1  otherwise. Like in the Dual-T-Snakes, such affinity operator can be defined through 
fuzzy segmentation methods (Giraldi et al., 2003), image transforms (Falcão et al., 2001), 
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Once the fronts stop moving, we must decide in which grid points we add a driving 
velocity. It is an extra velocity term which goal is the same of the driving force in section 3.2; 
that is, to keep fronts moving again. Therefore, we get a less sensitive model to the initial 
position of the fronts. To accomplish this task we can add an extra velocity term to equation 
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accomplish this, we can use the affinity operator explained on section 3.2. Based on this 
operator, we can define an affinity function that assigns to a grid point inside the narrow 
band a 0 1− value: 0  for the grid points most likely to lie away from the target boundaries 
and 1  otherwise. Like in the Dual-T-Snakes, such affinity operator can be defined through 
fuzzy segmentation methods (Giraldi et al., 2003), image transforms (Falcão et al., 2001), 
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region statistics, etc. The whole Dual-Level-Set algorithm can be summarized as follows: (1) 
Initialization through Step Functions; (2) Evolution until fronts stop. (3) Evaluate similarity. 
If frozen, stop. (4) Add driveV  for some time steps. (5) After that, turn-off driveV . Go to step 2. 
Likewise in the Dual-T-Snakes model, when all the grid points inside the narrow bands are 
frozen, we stop the Dual-Level-Set evolution and apply a search based algorithm to get the 
final result. 
Figure 11 shows the application of the Dual-Level-Set to segment the cell image of Figure 
11.a. However, instead of taking a band-pass version of it, like in Figure 4.b, we just apply a 
low pass filter to smooth the image. The Dual-Level-Set parameters are: 0.1α = , 2.0ε = , 

0.1β = , 150T = , 0.05tΔ = . 
 

       
(a)                                                 (b) 

 
(c) 

Fig. 11. (a) Original image. (b) Dual-Level-Set result. (c) Final result.  

Once the two snakes in Figure 3 are very close to each other, a search method based on a 
greedy algorithm can be efficient and less expensive then the Viterbi (section 3.2). Firstly, we 
compute a curve located in-between the two fronts by taking the midpoint of each segment 
of the search space in Figure 3. The obtained curve can be used to initialize a snake model 
based on a greedy algorithm that works as follows (Suri & Editors, 2006). For each snaxel iv  
we take a 3 3×  neighborhood V , and for each pixel p V∈ we compute: 

 ( ) ( ) ( ) ( )int 1 1, , .i i ext lineE p E v p v E p E pα β λ− += + +  (55) 
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where intE , extE  and lineE  are defined in equations (24) and (25), respectively. Then, we 
solve the problem: 

 ( ){ }0 arg min ; .p E p p V= ∈  (56) 

If ( ) ( )0 iE p E v<  then 0iv p← . The Figure 11.c pictures the obtained result. 

4.2 Dual-Front approach  
In (Li & Yezzi, 2005), a fast and flexible dual-front implementation of active contours is 
proposed by iteratively dilating an initial curve to form a narrow region and then finding 
the new closest potential weighted minimal partition curve inside. The method is motivated 
by minimal path technique (Cohen & Kimmel, 1996; Cohen, 2001). In this method, given a 
potential 0P >  and a point p in the domain Ω , the minimal action map ( )0U p  is defined 
as: 

 ( ) ( )( )
,0

0 ,min
p pA

U p P c s ds
Ω

= ∫  (57) 

where P P w= + , with w  been a constant, and 
0 ,p pA  is the set of paths connecting 0p  and 

p . Expression (57) gives the minimal energy integrated along the paths between the starting 
point 0p and any point p  inside the domain Ω . Because the action map 0U  has only one 
minimum value at the starting point 0p  and is a convex function in Ω , it can be easily 
determined by solving the equation (Cohen & Kimmel, 1996): 

 0 0, 0.U P and U∇ = =  (58) 

If we set 1 /P V=  then this expression becomes the so called Eikonal equation which can be 
efficiently solved by using fast marching methods (Sethian, 1999). Equations (57)-(58) are the 
starting point for the dual-front technique (Li & Yezzi, 2005). So, given two points 

0 1,p p ∈Ω ,  the method computes the action maps ( )0U p  and ( )1U p , respectively, through 
the solution of expression (58), seeking for the points p∈Ω  such that: 

 ( ) ( )0 1 .U p U p=  (59) 

At these points, the level set of the minimal action map 0U  meets the level set of the 
minimal action map 1U  generating the Voronoi diagram that decomposes the whole image 
into two regions containing the points 0p  and 1p . We can generalize definition (57) for a set 
X ⊂ Ω  through the expression: 

 ( ) ( ) ,minX p
p X

U q U q
∈

=  (60) 

that mens, ( )XU q  is the minimal energy along the paths of the set ,p qA  where p X∈ . 
Therefore, given two curves inc  and outc  bounding the search space called nR  in the Figure 
12, and two potentials inP  and outP  that takes lower values near desired boundaries, the 
dual-front algorithm firstly computes the minimal action maps inU and outU  until these two 
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(c) 
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action maps meet each other. Then, the evolutions of the level sets of both the action maps 
stops and a minimal partition boundary is formed in the region nR  of the Figure 12. 
Mathematically, this boundary is the solution of the following equations: 

 ( ), 0,in in in inU P with U c∇ = =  (61) 

 ( ), 0,out out out outU P with U c∇ = =  (62) 

 ( ) ( ).in outU p U p=  (63) 

 

 

Fig. 12. One interaction of the Dual-Front algorithm. (a) Initial curve nC c=  of the iteration 
n. (b) Search space defined through dilation of the initial curve nc  with bounds inc  and outc . 
(c) Obtained solution newC , the minimal partition curve. The curve C is replaced by the 
curve newC  to initialize the next iteration. Reprinted from (Li & Yezzi, 2005) 
 

The dual-front approach is an iterative method which is picture on Figure 12. Firstly, the 
curves inc  and outc  are placed by user interaction or obtained by dilation of an initial curve, 
named by C  in Figure 12. Then, the minimal partition boundary is computed by solving 
equations (61)-(63). To perform this task, the actions inU and outU   are computed inside the 
region nR , through expressions (61) and (62), respectively, until condition (63) is achieved. 
The obtained result, named by 1nc +   will replace C  for processing the next iteration. The 
method proceed until the distance between consecutive minimal partition curves is less than 
a pre-defined threshold δ , that means ( )1,n nd c c δ+ <  (like in expressions (19)). The 
potentials inP  and outP  are defined in (Li & Yezzi, 2005) using the following general 
expressions which integrates region based and the edge-based information. 

 ( )( ) ( )2, , ,r b
in in in in in inP w f I x y w g I wμ σ= ⋅ − + ⋅ ∇ +  (64) 

 ( )( ) ( )2, , ,r b
out out out out out outP w f I x y w g I wμ σ= ⋅ − + ⋅ ∇ +  (65) 
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where 2,in inμ σ  are the mean and variance of the image intensity inside region 

( )in in nR R R− ∩ , 2,out outμ σ  are the mean and variance of the image intensity inside region 

( )out out inR R R− ∩ , and , ,r b
in in inw w w  are parameters to be set in advance (the same for 

, ,r b
out out outw w w ). 

The Figure 13 shows an example of the application of the dual-front method for 2D human 
brain MRI image where the segmentation objective is to find the interface between the gray 
matter and the white matter. This example is interesting to observe the sensitivity of the 
method against the width of the search space, called active region in (Li & Yezzi, 2005). We 
observe that the obtained result was much better for the narrower search space than for the 
other ones. In this test, the potentials in expressions (64)-(65) are defined by setting 

1r r
in outw w= = , 0.1b b

in outw w= = ,  0.1in outw w= = , and ,f g  given by: 

 ( ) ( ), , ,inf x y I x y μ= −  (66) 

 ( ) ( )2, 1 ,g x y I= + ∇  (67) 

 

 

Fig. 13. Sensitivity of the of the Dual-Front against different sizes of the active region (search 
space): (a) The original 2D human brain MRI image and the initial curve; (b) The 
corresponding edge map obtained through the gradient information; (c)-(f) Segmentation 
results obtained for a search space defined through morphological dilation of the initial 
curve with 5 5× , 7 7× , 11 11× , 15 15×  pixels circle structuring elements, after 15 iterations, 
respectively. Reprinted from (Li & Yezzi, 2005)   

5. Discussion  
An important point for dual snakes is how to proceed the evolution after both snakes comes 
at rest but are far from each other. The affinity operator in the Dual-T-Snakes and Dual-
Level-Set models is used in this step, in order to avoid that some snaxels pass over the 
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space): (a) The original 2D human brain MRI image and the initial curve; (b) The 
corresponding edge map obtained through the gradient information; (c)-(f) Segmentation 
results obtained for a search space defined through morphological dilation of the initial 
curve with 5 5× , 7 7× , 11 11× , 15 15×  pixels circle structuring elements, after 15 iterations, 
respectively. Reprinted from (Li & Yezzi, 2005)   

5. Discussion  
An important point for dual snakes is how to proceed the evolution after both snakes comes 
at rest but are far from each other. The affinity operator in the Dual-T-Snakes and Dual-
Level-Set models is used in this step, in order to avoid that some snaxels pass over the 
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desired boundary, due to the driving term. Such procedure is bypassed in the original dual 
model (section 3.1) due to the shape model used. The corresponding energy term may 
prevents that a snake pass over a global minimum. However, the shape model given by 
expression (12) limits the application of the method for general shapes and topologies. 
On the other hand, in the cell-based dual model, the cell decomposition of the image domain 
provided by the watershed strongly reduces the search space. Therefore, the energy 
minimization method may be less sensitive to local minima. That is way authors do not take 
care about the possibility of snakes reach equilibrium position far from the target. However, 
it does not seems to be possible to prove that such situation never happens. 
In the Dual-Front, actually the level sets of the action map U give the evolution of the front. 
The velocity of the evolving front is decided by the potential. Therefore, both the potentials 
in expressions (64)-(65) must be defined such that the velocity is much lower when the 
evolving fronts arrive the boundary. If the constant 0w > , the front velocity will be never 
null, and so, fronts only stop when the two action maps meet each other. Such policy is 
interesting to pass over local minima but once there is no an energy balance between fronts 
the global minimum may be also lost. 
Dual-Level-Set as well as Dual-T-Snakes are topologically adaptable deformable models 
which increases their range of applications. However, such generality has also a price: the 
care with local minima should be higher than in the original model, for example, because 
there is no a shape model to bias the solution to the desired shape. 
Also, the characteristic function in the Dual-T-Snakes plays a similar role of the embedding 
function for the Dual-Level-Set in the sense that they provide the framework for topological 
changes. However, the update of the former is based on exhaustive tests (McInerney & 
Terzopoulos, 1999) while the later is just a consequence of the model evolution based on the 
equation (54). As a practical consequence, we observed that it is easier to implement the 
Dual-Level-Set than the Dual-T-Snakes. Also, we observe in our experiments that sometimes 
it is more efficient to apply topologically adaptable dual models just to reduce the search 
space, and, then to apply a search based technique to get the final result. This procedure was 
exemplified in sections 3.2 and 4.1. It is attractive because it simplifies the choice of 
parameters for the dual method and makes the computational cost of the application of a 
global optimization technique smaller. 
Despite of the capabilities to reject local minima, dual models have also some disadvantages. 
Firstly, the method is at least two times more expensive than single approaches. Secondly, 
the initialization may be a tedious task because the user should set two curves at the 
beginning of the process. The choice of parameter values is also another point to be careful 
because in this case there are two snakes to be set. 
A fundamental and more difficult point for dual snakes is how to proceed the evolution 
after both snakes comes at rest but they are far from each other. The snake with higher 
energy must be evolved, but the method should automatically realize the snaxels most likely 
to lie away from the boundary. The affinity operator (section 3.2) was proposals to address 
this problem without imposing restrictions to the snake evolution. 

6. Conclusions and the future of dual methods  
The original dual approach is an interesting technique to address the sensitivity to local 
minima of usual snake models. The idea of using two snakes to seek for the global 
minimum, originally proposed in (Gunn & Nixon, 1997), have been used and extended in 
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recent works. Topological capabilities were incorporated, implicity formulations were 
developed and a cell-based approach were designed in order to improve the efficiency. This 
chapter offered a review of these state-of-the-art techniques as well as the background 
behind dual approaches. 
Dual methods can avoid local minima through the comparison between the two contours 
energy and positions but they are at least two times more expensive than single approaches. 
Therefore, the ultrasound images seems to be the main target for the application of dual 
snakes because the difficulties inherent to the segmentation of these images force the 
application of a more robust approach against local minima. 
The application of GPU techniques (Lefohn et al., 2003) must be considered in further works 
in order to improve the performance of the dual methods. The development of 3D dual 
approaches is another point. For example, Dual-Level-Set as well as Dual-T-Snakes can be 
easily extended to 3D without any extra machinery. Both the Dual-T-Snakes and the Dual-
Level-Set methods are suitable for a parallel implementation in shared memory machines 
because, in the implicit formulation we must distribute the narrow band evolution while in 
the parametric case we should focus in the distribution of the T-Snakes processing. 
Multigrid techniques can be also implemented in both methods through Adaptive Mesh 
Refinement schemes (Giraldi et al., 2000a; Sethian, 1996). 
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1. Introduction  
The objective of image segmentation and clustering is to extract meaningful regions out of 
an image. A graph theoretic approach, as an alternative to the gradient-based methods, is 
usually based on the eigenvectors of an affinity matrix [3,4,5,6,7]. The theoretical foundation 
of this development is the Spectral Graph Theory [1], through which the combinatorial 
features of a graph can be revealed by its spectra. This characteristic can be applied into 
graph partitioning and preconditioning. The typical eigendecompostion based segmentation 
work is called the normalized cuts [6]. The normalized cut measure incorporates the local 
similarity within cluster and total dissimilarity between clusters. The minimization of this 
measure is to solve the Rayleigh quotient, a generalized eigenvalue solving problem. 
However, solving a standard eigenvalue problem for all eigenvectors has exponential 
complexity and is very time consuming. Shi [6] made use of the sparsity of the affinity 
matrix and introduced the Lanczos method to simplify the computation of eigenvalues.  
In this paper, we give a new image segmentation algorithm using the maximum spanning 
tree [2]. Our method works on affinity matrix and addresses the physical meanings of an 
affinity matrix. Instead of computations of eigenvalues and eigenvectors, we proved that the 
image segmentation could be transformed into an optimization problem: finding the 
maximum spanning tree of the graph with image pixels as vertices and pairwise similarities 
as weights. Section 2 describes the related theory and Section 3 gives the experimental 
results on synthetic and real data to illustrate the performance of this algorithm. Finally, we 
draw a conclusion and discuss future work in Section 4. 

2. Method descriptions  
In this section, we first discuss the characteristics of affinity matrix and then define an 
optimization measure based on the weighted graph associated with an image. The solution 
to the optimization problem satisfies the clustering standard with maximal within-class 
similarity and minimum between-class similarity. 
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optimization measure based on the weighted graph associated with an image. The solution 
to the optimization problem satisfies the clustering standard with maximal within-class 
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2.1 Affinity matrix  
The affinity matrix is a symmetric matrix and describes the pairwise pixel similarity. Every 
element ,i jW  of an affinity matrix W  represents the similarity between pixels i  and j . 
There are various definitions for the similarity measures. In general, ,i jW  can be defined as  

 
2 2|| || 2

,
i jx x

i jW e σ− −=   (1) 

where ||.||  is Euclidean distance and σ  is a free parameter. This is somewhat similar to the 
definition to Gaussian distribution.  
The characteristics of an affinity matrix (or similarity measures) are listed as follows.  
• Symmetric property 

The affinity matrix is symmetric, that is, , ,i j j iW W= . So it can be diagonalized.  

• Unit normalization  
That is, ,0 1i jW≤ ≤ . The similarity ,i jW  between pixels i  and j  increases as ,i jW  goes 

from 0 to 1 while the dissimilarity decreases.   
• Transitive property 

If pixels i  and j  are similar and pixels j  and k  are similar, then pixels i  and k  are 
similar.  

• Coherence property 
That is, , ,i j l kW W≥  holds for , , ,i j l k∀  if pixels i  and j  are in the same cluster while 

pixels l  and k  are in different clusters. 
• If similarity ,i jW  is greater than some threshold, then we say that pixels i  and j  are 

similar. 

2.2  Similarity measure for cluster and whole image 
Now, we define a similarity measure for one cluster and the whole image. If we consider the 
affinity matrix represents a weight matrix of a complete graph with all pixels as vertices. 
Then, there is a maximum spanning tree for this complete graph. Obviously, there is a 
subaffinity matrix for every cluster. We define the cluster similarity measure as the product 
of those weights in its maximum spanning tree. That is, 
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1
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h

h i
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S P
−

=
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where h  represents cluster number, hN  is the number of entities (pixels) in cluster h , and 
h

iP  are weights in the maximum spanning tree of cluster h . Because of the symmetric, 
transitive, and coherence properties of affinity matrix, we can understand this as follows. 
Given a pixel p  in cluster h , in order to find all pixels in cluster h , we first find the pixel q  
with maximum similarity to pixel p . Then we find another pixel not in set { , }p q , but with 
maximum similarity either with p  or with q . Repeatedly, until all pixels of cluster h  are 
found. We can see that this measure is reasonable to represent the maximum within-cluster 
similarity for cluster h . 
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After we define cluster similarity measure, we further define a similarity S  for the whole 
image, as follows  

 
1
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where c is the number of clusters of image or number of segmentation components. 
For convenience, sometimes, we use log on S . We have  
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Next, we will show that to maximize the similarity measure S  is to maximize the within-
cluster similarity and minimize the between-cluster similarity, which is preferred by the 
clustering and image segmentation. 
Proposition 1. The following optimization problem 
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guarantees that the within-cluster similarity is maximum and the between-cluster similarity 
is minimal.  
Proof. By contradiction.  
Assume that there is a pixel p in cluster m is misclassified into cluster n. In the maximum 
spanning tree of cluster m, pixel p either connects two edges in the middle of the tree or 
connects one edge as a leaf node. Consider that the pixel p is removed from the cluster m. If 
p is a leaf node, then one its associated edge (also the weight) is removed from the 
maximum spanning tree. If p is in the middle of the tree, then two its associated edges (also 
the weights) are removed from the maximum spanning tree. But a new edge must be added 
to connect the two separate parts into a new maximum spanning tree. When pixel p is added 
into cluster n, it is either in the middle of the tree or exists as a leaf node. However, because 
of the coherence property of affinity matrix, the pairwise similarity between p and any pixel 
in cluster n is the smallest in the maximum spanning tree of cluster n, then p can not be 
added in the middle of the maximum spanning tree of cluster n. So p is added as a leaf node 
and one more edge (also the weight) is added onto the new maximum spanning tree of 
cluster n. 
If p is removed as a leaf node from the cluster m, its cluster similarity measure mS  becomes 
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where rw  is the removed weight.  
If p is removed as a node in the middle of the maximum spanning tree of cluster m, its 
cluster similarity measure mS  becomes 
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2.1 Affinity matrix  
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where h  represents cluster number, hN  is the number of entities (pixels) in cluster h , and 
h

iP  are weights in the maximum spanning tree of cluster h . Because of the symmetric, 
transitive, and coherence properties of affinity matrix, we can understand this as follows. 
Given a pixel p  in cluster h , in order to find all pixels in cluster h , we first find the pixel q  
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found. We can see that this measure is reasonable to represent the maximum within-cluster 
similarity for cluster h . 
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After we define cluster similarity measure, we further define a similarity S  for the whole 
image, as follows  
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where c is the number of clusters of image or number of segmentation components. 
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where bw  and cw  are the removed weights from the maximum spanning tree and aw  is the 
added new weight. From Prim’s algorithm [2] (for minimal spanning tree, but inverse 
weights of maximum spanning tree, we can use it), a bw w≤  or a cw w≤ . Or else, a bw w>  
and a cw w> , aw  will be in the maximum spanning tree. 
After p is added as a leaf node into the cluster n, its cluster similarity measure nS  becomes 

 n d nS w S′ =   (8) 
 

where dw  is the added weight. Because of coherence property, , , ,d r a b cw w w w w< .  
Then either, 
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Therefore, the maximum within-cluster similarity and the minimal between-cluster 
similarity are guaranteed under the above similarity measure.  

2.3 Maximum spanning tree 
After we define the above optimization problem, we want to solve it. We show that the 
above optimization problem can be solved by finding a maximum spanning tree for the 
complete weighted graph of an image. First, we give a brief introduction to Prim's 
algorithm, which, in graph theory, is used to find a minimum spanning tree for a connected 
weighted graph. If we inverse all weights of affinity matrix, to find a maximum  
spanning tree of the original graph is equavalent to finding the minimum spanning tree of 
the graph with new weights. So Prim's algorithm can be used to find a maximum spanning 
tree.  
Prim's algorithm is an algorithm that finds a minimum spanning tree for a connected 
weighted graph, where the sum of weights of all the edges in the tree is minimized. If the 
graph is not connected, then it only finds a minimum spanning tree for one of the connected 
components.  
The time complexity of the Prim's algorithm is (| |log| |)O E V , where | |E  is the number of 
edges in the graph and | |V  is the number of nodes. For a complete graph, the number of 

edges is 
| | | |(| | 1)| |

2 2
V V VE

⎛ ⎞ −
= =⎜ ⎟
⎝ ⎠

. This is also the maximum number of edges that a graph 

can have. So the time complexity of the Prim's algorithm is also 2(| | log| |)O V V . If we only 
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use the transitive property of affinity matrix and compute the local similarity for a pixel, 
then there are only eight similarities for a pixel between it and its eight neighboring pixels. 
The number of edges becomes | | 8| |E V=  and the complexity becomes (| |log| |)O V V . This 
will reduce the complexity considerably. On the other hand, the complexity to a standard 
eigenfunction problems takes 3(| | )O V , where | |V  is the number of nodes in the graph.  
Next, we show that the optimization problem can be solved by finding the maximum 
spanning tree and then removing the 1c −  minimal weights.   
Proposition 2. The following optimization problem 
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can be solved by finding the maximum spanning tree of the graph associated with the image 
and then removing the 1c −  minimal weights.   
Proof. Prim’s algorithm is used to find the maximum spanning tree. 
Searching the maximum spanning tree of the whole image starts from a pixel x in some 
cluster m. According to coherence property of affinity matrix, the maximum spanning tree 
of cluster m must be put into the maximum spanning tree of the image first. Then the 
maximum spanning tree of cluster m will connect some pixel y in another cluster n through 
a between-cluster edge. From pixel y, the maximum spanning tree of cluster n is put into the 
maximum spanning tree of the image next. Repeatedly, all maximum spanning trees of 
clusters will be put in the maximum spanning tree of the image. The 1c −  minimal weights 
connect those maximum spanning trees of c clusters into the maximum spanning tree of the 
whole image. Therefore, we obtain the solution  
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= ∏  is the product of all weights in the maximum spanning tree of the whole image. 

lw  are the 1c −  minimal weights.   

3. Experimental results 
We test our algorithm using synthetic data and real data. The synthetic data are binary data, 
generated by drawing white squares on the black background. The real data is a kid picture. 
The number of clusters (components) is give as prior here. The selection of number of 
clusters is a model selection problem that depends on the application, and is beyond the 
scope of our discussion here.  
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Test on synthetic data 
The synthetic data are a picture with two white squares on the black background. The 
similarity is computed using Equation 1 based on intensity values. We chose 0.1.σ =  Then 
the within-class similarity is  

 
2 2 2 2 2 2|| || 2 ||0 0|| 2 0.1 ||1 1|| 2 0.1 0 1i jx xe e e eσ− − − − ⋅ − − ⋅= = = =   (12)  

and the between-class similarity is 

 
2 2 2 2|| || 2 ||1 0|| 2 0.1 50 0i jx xe e eσ− − − − ⋅ −= = ≈   (13)  

For the data with two white squares, the maximum spanning tree of the image has two 
edges with zero weights. All other edges have weight one. The zero weight edges are two 
minimal weights and separate the maximum spanning tree of the image into three spanning 
trees. One of the new spanning trees represents the background and the other two represent 
two foreground squares. 
The segmentation results are shown in Figure 1. We can see that we obtain perfect results.   
 
 
 
 

                        
 

                                           (a)                  (b)                   (c)                     (d) 

 

Fig. 1. Image segmentation on synthetic data. (a). the original image (b). the segmented 
background (white part) (c). the first segmented square (white part) (d). the second 
segmented square (white part) 
Test on real data 
The real data is a kid picture. The similarity is computed using Equation 1 based on average 
values of three channel values. We still chose 0.1.σ =  The segmentation results are shown 
in Figure 2. The results are reasonable. Since boundary contours of kid face and shirt are not 
consistent with the background and foreground (kid face or shirt), they can be clearly 
separated as we chose 5 components.   
In real images, because of noise and outliers in cluster, some within-cluster similarities are 
very small. Correspondingly, some very small weights do not represent the between-cluster 
separation weights. In practice, we follow the order of edges from the Prim’s algorithm and 
pick those edge weights with considerable differences from (viz. smaller than) its previous 
and afterwards edge weights as the between-cluster separation edges. This method works 
robustly for real images. In practice, the 2χ -statistic [4] for histograms may give a better 
similarity measure for color and texture.  
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Fig. 2. Image segmentation on kid picture. (a). original image (b). the segmented 
background (white part) (c). the segmented kid face (white part) (d). the segmented shirt 
(white part) (e,f). the segmented contours (white part) 

4. Conclusions 
In this paper, we presented a new graph-based image segmentation algorithm. This 
algorithm finds the maximum spanning tree of the graph associated with the image affinity 
matrix. Instead of solving eigenvalues and eigenvector, we proved that the image 
segmentation could be transformed into an optimization problem: finding the maximum 
spanning tree of a graph with image pixels as vertices and pairwise similarities as weights. 
In our future work, we will explore different similarity measures and test the segmentation 
algorithm on more data. 
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1. Introduction     
The objective of the image segmentation is to simplify the representation of pictures into 
meaningful information by partitioning into image regions. Image segmentation is a 
software technique to locate certain objects or boundaries within an image. There are many 
algorithms and techniques have been developed to solve image segmentation problems for 
the past 20 years, though, none of the method is a general solution. Among the best, they are 
neural networks segmentation, one-dimensional signal segmentation, multi-scale 
segmentation, model based segmentation, graphic partitioning, region growing and K-mean 
clustering segmentation methods. In this chapter, the newly developed Autoregressive (AR) 
time series model will be introduced for image segmentation. 
Time series statistical models such as Autoregressive Moving Average (ARMA) were 
considered useful in describing the texture and contextual information of an image. To 
simplify the computation, a two-dimensional (2-D) Autoregressive (AR) model was used 
instead. The 2-D AR time series model is particularly suitable to capture the rich image pixel 
contextual information. This model has been applied for both rough and smooth target 
surfaces and performed very well for image segmentation. 
In the typical statistical approach of image segmentation, there are two broad classes of 
segmentation procedures: The supervised and the unsupervised segmentation methods. The 
unsupervised segmentation procedure is the means by which pixels in the image are 
assigned to classes without prior knowledge of the existence or labeling of the classes. 
Whereas, in the supervised learning process, a teacher provides a label and cost function for 
each pattern in a training set and tries to minimize the sum of cost function for all patterns. 
Each method finds its own applications in the areas of the image analysis. The Support 
Vector Machine, a close cousin of classical multilayer perceptron neural networks and a 
newer supervised segmentation procedure, was adopted after feature extraction for single 
AR model image or pixel features vector extraction from multi-spectral image stack. On the 
other hand, the unsupervised region growing segmentation method was applied after 
univariate time series model was built. 
For the experimental results by applying the proposed AR time series segmentation model, 
the USC texture data set as well as satellite digital remote sensing image data are used. The 
algorithms performance comparisons with other existing contextual models such as Markov 
Random Field model, K-means, PCA, ICA …etc can be found in reference (Ho, 2008).  
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2. 2-D Univariate time series image segmentation model and estimation 
Time series analysis (Shumway 2000) (Wei, 1990) has been used in many applications, 
specifically the weather forecast, atmosphere-ocean model for global climate changes and 
the  Dow Jones economics analysis. Interesting enough, at the University of Massachusetts 
,Dartmouth School of Marine Science and Technology  (SMAST) professor Joachim Gröger 
(Gröger 2007) can successfully trace a group of cod fishes’ approximate swimming routes by 
time series model analysis on tidal data. In this section, we make use of time series concepts 
for image data mathematical formulation which is very new. To understand how, we 
introduce time series theory briefly. The primary objective of time series is to develop 
certain mathematical models that provide descriptions for sample data. We assume any 
image can be defined as a collection of random variables indexed according to the order 
they are obtained in time-space. For example, we consider a sequence of random variables 

1 2 3,  ,  ,  ......., x x x  in general, {xt} indexed by t is the stochastic process. The adjacent points in 
time are correlated. Therefore, the value of  series tx at time t  depends in some fashion on 
the  past values 1 2,  ,  ........t tx x− −  Suppose that we let the value of the time series at some 
point of time t  to be denoted by tx . A stationary time series is the one for which the 
probabilistic behavior of 

1 2
,  ,  .......

kt t tx x x is identical to that of the shifted set 

1 2
,  ,  ......., 

kt h t h t hx x x+ + + . In an image segmentation application, the 2-D image was scanned 

from left upper corner to right bottom as a sequence of time series pixel values. Further, to 
simplify the numerical calculations, we model each class of surface textures by 1st order and 
2nd order Autoregressive stationary time series models. In another way of thinking,  the two-
dimensional Markov model is a similar mathematical model to describe. By using time 
series model, when the within-object interpixel correlation varies significantly from object to 
object, we can build effective imaging region segementation. The unsupervised Region 
Growing is a powerful image segmentation method for use in shape classification and 
analysis. Take one satellite remote sensing example to show, we present the LANDSAT 5 
database in the area of Italy’s Lake Mulargias image data acquired in July 1996 to be used 
for the computing experiments with satisfactory preliminary results (figure 1, figure 2 and 
figure 3). The advanced statistical techniques, such as Gaussian distributed white noise error 
confidence interval calculations, sampling statistics based on mean and variance properties 
are adopted for automatic threshold finding during Region Growing iterations. The linear 
regression analysis with least mean squares error estimation is implemented as a time series 
system optimization scheme. 

2.1 Image modeling and estimation theory 
The raw image data are statistically random and can be modeled with some basic ideas of time 
series analysis and stochastic processes.  It is based on a model which treats the pixels (picture 
elements) of a digitized textural scene as a two-way seasonal time series. A time series is a set 
of observations, each one is recorded at a specific time t. The target image is well treated as a 
time series in which the observations are made at the fixed time intervals. Therefore, for a two 
dimensional image, each pixel gray tone information G(x,y) is equivalent to G(t) in the time 
series analysis.  In the multi-spectral scanner images, the texture information is one of the 
important characteristics for machine vision analysis. The texture classification techniques 
include determination of a number of classes to which the texture region belongs. It estimates 
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texture model parameters for a region and constructs the boundaries between different texture 
regions. The standard probability and the statistics concepts, such as autocovariance and 
sample covariance functions are considered. The techniques in parameter estimation theory to 
extract texture typed trend and seasonality from the observed time series are adapted for 
image segmentation analysis.  Due to the fact that rarely is there an exact priori knowledge 
about the image data, a mathematical model is often used.  The time series stationary 
Autoregressive (AR) models on both the first-order and the second-order with Region 
Growing algorithm are studied and the results are presented below. 

2.2 First-order autoregressive image modeling and parameter estimation  
In the first-order AR analysis, each gray tone pixel value of the image is estimated through 
its neighboring pixels. This is based on the assumption of a causal, linear time invariant 
remote sensing system. The gray level of the ( , )i j th  pixel of the remote sensing image is 
expressed by the equation: 

 ( , ) * [ ( 1, ) ( , 1)] ( , )x i j a b x i j x i j n i j= + − + − +  (1)   

where ( , )n i j  is modeled as a Gaussian white noise random process.  Let ˆ( , )x i j  be an 
estimate  of  ( , )x i j . Note  that  for an 100 by 100 image array, 1 : 100i =  is the row index,  

1 : 100j =  is the column index of the two dimensional image example. Starting with a set of  
region seeds, the weighted coefficients are determined through unsupervised region 
growing iterative procedure to group pixels of a subregion into larger regions. The ground 
truth data were provided as “seeds” for initial processing.  The criterion is to minimize the 
mean square error MSE  formulated as (Seber 1977), (Papoulis 2002): 
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2. 2-D Univariate time series image segmentation model and estimation 
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for image data mathematical formulation which is very new. To understand how, we 
introduce time series theory briefly. The primary objective of time series is to develop 
certain mathematical models that provide descriptions for sample data. We assume any 
image can be defined as a collection of random variables indexed according to the order 
they are obtained in time-space. For example, we consider a sequence of random variables 
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database in the area of Italy’s Lake Mulargias image data acquired in July 1996 to be used 
for the computing experiments with satisfactory preliminary results (figure 1, figure 2 and 
figure 3). The advanced statistical techniques, such as Gaussian distributed white noise error 
confidence interval calculations, sampling statistics based on mean and variance properties 
are adopted for automatic threshold finding during Region Growing iterations. The linear 
regression analysis with least mean squares error estimation is implemented as a time series 
system optimization scheme. 

2.1 Image modeling and estimation theory 
The raw image data are statistically random and can be modeled with some basic ideas of time 
series analysis and stochastic processes.  It is based on a model which treats the pixels (picture 
elements) of a digitized textural scene as a two-way seasonal time series. A time series is a set 
of observations, each one is recorded at a specific time t. The target image is well treated as a 
time series in which the observations are made at the fixed time intervals. Therefore, for a two 
dimensional image, each pixel gray tone information G(x,y) is equivalent to G(t) in the time 
series analysis.  In the multi-spectral scanner images, the texture information is one of the 
important characteristics for machine vision analysis. The texture classification techniques 
include determination of a number of classes to which the texture region belongs. It estimates 
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texture model parameters for a region and constructs the boundaries between different texture 
regions. The standard probability and the statistics concepts, such as autocovariance and 
sample covariance functions are considered. The techniques in parameter estimation theory to 
extract texture typed trend and seasonality from the observed time series are adapted for 
image segmentation analysis.  Due to the fact that rarely is there an exact priori knowledge 
about the image data, a mathematical model is often used.  The time series stationary 
Autoregressive (AR) models on both the first-order and the second-order with Region 
Growing algorithm are studied and the results are presented below. 

2.2 First-order autoregressive image modeling and parameter estimation  
In the first-order AR analysis, each gray tone pixel value of the image is estimated through 
its neighboring pixels. This is based on the assumption of a causal, linear time invariant 
remote sensing system. The gray level of the ( , )i j th  pixel of the remote sensing image is 
expressed by the equation: 

 ( , ) * [ ( 1, ) ( , 1)] ( , )x i j a b x i j x i j n i j= + − + − +  (1)   

where ( , )n i j  is modeled as a Gaussian white noise random process.  Let ˆ( , )x i j  be an 
estimate  of  ( , )x i j . Note  that  for an 100 by 100 image array, 1 : 100i =  is the row index,  

1 : 100j =  is the column index of the two dimensional image example. Starting with a set of  
region seeds, the weighted coefficients are determined through unsupervised region 
growing iterative procedure to group pixels of a subregion into larger regions. The ground 
truth data were provided as “seeds” for initial processing.  The criterion is to minimize the 
mean square error MSE  formulated as (Seber 1977), (Papoulis 2002): 
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M = Total region growing sample row pixels number 
N = Total region growing sample column pixels number 

 Numeratorˆ  
 Denominator   

b =  (5) 

 ˆˆ ( ( , )) * ( ( , ))a E x i j b E z i j= −  (6) 

Note that ( ( , ))E x i j denotes the expectation value. 

2.3 Second-order autoregressive image modeling and parameter estimation 
In the following analysis, each gray tone pixel value of the image is estimated through 
weighted summation of its neighborhood pixels. This is based on an assumption that a 
causal, linear time invariant remote sensing system can be modeled mathematically. The 
gray level of the ( , )i j  th pixel of the remote sensing image is expressed by the following 
formula: 

 ( , ) ( 1, ) ( , 1) ( 1, 1) ( , )x i j a bx i j cx i j dx i j n i j= + − + − + − − +  (7) 

where ( , )n i j is assumed a Gaussian white noise random process.  Let ˆ( , )x i j  be an estimate  
of ( , )x i j Note  that i = 1 to M is the row index, j =  1 to N is the column index of the two 
dimensional image. Starting with a set of  region seeds, the weighted coefficients are 
determined through unsupervised region growing iterative procedure to group pixels of a 
subregion into larger regions. The ground truth “seeds” data were used for initialization.  
Again, the same as the 1st order,  the criterion is to minimize the mean square error MSE  
(Haykin 2003)  that is formulated as: 
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By centering and scaling of the linear regression data, we can easily find the following 
matrix operation which relates estimated parameter matrix with covariance matrix of the 
sample of one image class region. 

 ˆ*P T Q=  (10)  
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∑  due to limited mathematical symbol spacing. 

M =  Total region growing sample row pixels number 
N  =  Total region growing sample column pixels number 
Then, 
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In which, the estimated parameters â , b̂ , ĉ , d̂ can be found from T̂ matrix.  Also 
the optimal estimated pixel gray level can be calculated as 

 ˆ ˆˆ ˆ ˆ( , ) ( 1, ) ( , 1) ( 1, 1)x i j a bx i j cx i j dx i j= + − + − + − −  (14) 

The more iterations performed to grow the region, the more accurate the estimated 
parameters. 

Now, let ˆ( , ) ( , ) ( , )e i j x i j x i j= −  (15) 

Decision making for region growing: 
A two class discrimination decision can be made by: 

 Set class_label = 1 if ( , )e i j  < Threshold * ( )MSE optimal  (16) 

                          Set class_label =  0       otherwise  

Where ( )MSE optimal  is the mean square error calculation of the growing region. 
Based on statistical hypotheses and significance property of the sampling theory plus the 
Gaussian distribution nature of the pixel error populations, the 95% confidence interval 
threshold can be found as: 

 Threshold = 2 /π  + 1 2 /π−  (17)  

To prove (17) for the threshold: 

 Threshold = 2 /π  + 1 2 /π− ;     let SD  =  ( )MSE optimal  (18) 

The error Gaussian distribution function can be expressed as 
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For 95% confidence of 1-sigma  interval value 
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An example of experiment for explanation: 
As shown in figure 1, figure 2 and figure 3, after certain iterations of Lake Mulargias (water) 
region growing (when we are assured that no more water pixel can be found), we stop 
processing. By unsupervised region growing the optimized parameter matrix T̂  can be 
determined to classify the entire image. 

2.4 Region growing algorithm 
Region Growing, as implied by its name, is an algorithm that groups pixel subregions into 
bigger areas. It starts with a set of  known seeds (ground truth information, for example, in 
figure 2)  to grow regions by merging to each seed point those neighborhood  pixels that 
have similar statistical features. 
In remote sensing image analysis and segmentation application, there are just a few 
researchers who proposed or attempted to use region growing. As a matter of fact, its 
practical implementations have proven that in general,  it does work well in most 
circumstances as far as region segmentation is concerned.  In the IEEE IGARSS 2000 paper, 
Dr. Tilton and Lawrence (Tilton  2000) presented the interactive hierarchical segmentation to 
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grow a region. But, this method has some limitations and can only apply to certain scenes 
only. The Region Growing method we proposed is a different approach and can deal with 
the shortfall they have. Other useful references on the subject can be found in Reference 
(Haralick  1992). 
A basic region growing procedure is Outlined in Table 1. 
 

ITERATION_COUNT = 1; MAX_ITERATION = 100; 
Border of R = lake seed (water); 
Start with lake seed, calculate and estimate A, B, C, D parameters 
DO  until ITERATION_COUNT > MAX_ITERATION or NOT LAKE CLASS 
   Increment border of R by one pixel up, down, left, right to R’ 
   for each pixel p at the border of R’-R do  
 if  ( |e(I,J)| < Threshold * SD ), set CLASS of p = LAKE; 
 else 
  CLASS of p = OTHER;       /* CLASSIFICATION */ 
               Updated calculation of A,B,C,D parameters for R’ region with new CLASS LABEL 
   End 
   ITERATION_COUNT ++ ; 
End 

Table 1. AR Model Based Region Growing Algorithm 
 

Remote Sensing Original Image

 
Fig. 1. Original Lake Region Remote Sensing band 5 Image 
 

 
Fig. 2. Ground Truth Information 
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practical implementations have proven that in general,  it does work well in most 
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grow a region. But, this method has some limitations and can only apply to certain scenes 
only. The Region Growing method we proposed is a different approach and can deal with 
the shortfall they have. Other useful references on the subject can be found in Reference 
(Haralick  1992). 
A basic region growing procedure is Outlined in Table 1. 
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Border of R = lake seed (water); 
Start with lake seed, calculate and estimate A, B, C, D parameters 
DO  until ITERATION_COUNT > MAX_ITERATION or NOT LAKE CLASS 
   Increment border of R by one pixel up, down, left, right to R’ 
   for each pixel p at the border of R’-R do  
 if  ( |e(I,J)| < Threshold * SD ), set CLASS of p = LAKE; 
 else 
  CLASS of p = OTHER;       /* CLASSIFICATION */ 
               Updated calculation of A,B,C,D parameters for R’ region with new CLASS LABEL 
   End 
   ITERATION_COUNT ++ ; 
End 

Table 1. AR Model Based Region Growing Algorithm 
 

Remote Sensing Original Image

 
Fig. 1. Original Lake Region Remote Sensing band 5 Image 
 

 
Fig. 2. Ground Truth Information 
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Fig. 3. Segmentation Result After Region Growing Based On AR Model 
In this chapter, we have introduced a new univariate time series AR model based region 
growing algorithm, which attempts to extract a special property region such as water at 
Lake Mulagias. As a matter of fact, this new algorithm can be further used to apply to other 
remote sensing imagery area, such as corn field, city block, grassland, pasture … etc for 
scene classifications. The computer experiments show that the Time series Region Growing 
algorithm is efficient for the remote sensing image region segmentation problems. 
A Region growing is a procedure that group pixels or subregions into larger regions based on 
predefined criteria (Ho 2004). By starting with a set of seed points, it forms the growing 
regions by appending to each seed of the neighboring pixels that have similar properties to the 
seed points. The process is in the iteration mode as depicted in figure 4, where (a) is the region 
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Region Growing : (a)  => (b) => (c) 

(c)  
Fig. 4. Region Growing demonstration in graphics (a) => (b) => (c) 
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before growing, (b) is in the process of growing one pixel layer to the right and one pixel 
layer toward bottom. After certain decision making, the new region was formed as in (c). 
There are many different ways of region growing depends on programmer’s preferences. 
Usually, the first step of image analysis is to partition an input image that is more than one 
uniform region into several homogeneous subimages (Gonzalez 2004). The region of 
homogeneity can be determined by many different properties. In region growing method, 
the image segmentation is implemented by extending some starting pixels or internal small 
area inside regions to boundaries between texture areas. Pixels in a homogeneous region are 
expected to be assigned by an identical class. The boundaries will be drawn by the 
difference in the adjacent class regions. We also need to make sure that regions with the 
same texture but in different parts of an image are labeled by the same class. In the remote 
sensing and USC texture type data examples, the texture property for each observed 
window is extracted from time series 2-D AR model. Under each iteration, the unknown 
regions were segmented into blocks. Each internal region is expanded by comparing the 
properties of its surrounding blocks. As texture boundaries are reached, the size of blocks is 
reduced, each block might contains only one pixel at the end.  
Figure 5 shows an example result on USC data set for the effectiveness of the AR time series 
image segementation. 
  

                                               
                    (a)                                 (b)                                                      (c) 
Fig. 5. (a) Orginal 3-classes real texture image from USC data base (brickwall, grass and 
pigskin)  (b) The segmentation result after 2-D time series multiclass SVM in black and 
white display  (c) The Segmentation result after 2-D time series multiclass SVM in color 
display 

2.5 Higher order AR model 
The 3rd order of AR image model is described as:  

 ( , ) ( 1, ) ( , 1) ( 1, 1) ( 2, ) ( , 2) ( , )x i j a bx i j cx i j dx i j ex i j fx i j n i j= + − + − + − − + − + − +  (29)                          

We have done some experiments on the same Lake Mulagias  remote sensing data set as 
well as USC texture data set by 3rd order AR model, but the region segmentation results did 
not improve further. This told us that the term higher than 2nd order had no impact. The AR 
model order selection criteria is based on sample estimated error or residuals.  

2.6 Experimental results 
The following figures from Figure 6 to Figure 13 are the texture and remote sensing 
segmentation results: 
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Fig. 6. Original TM  remote sensing 
image of Italy Lake Mulagias 

Fig. 7. Original Italy Lake Mulagias 
displayed  in color format 

  
Fig. 8. Segmentation Result by 2nd 
Order AR in black and white 

Fig. 9. Segmentation Result by 2nd 
Order ARMA in color format 

  
Fig. 10. Original USC brick and 
grass two classes natural scene 

Fig. 11. Original USC brick and 
grass displayed in color format 

  
Fig. 12. Texture Segmentation 
Result by 2nd Order AR in black and 
white 

Fig. 13. Texture Segmentation 
Result by 2nd Order AR in color 
format 
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The 2-D time series model based support vector machine (Ho, 2007) was tested with real 
remote sensing images from satellite and the results in figure 14 shows that this method can 
perform well in separating lake region from city building with the accuracy of 96.9%. 
  

                   
(a) (b) 

 

                    
(b) (d) 

 
Fig. 14. (a) Original 2 Classes Remote Sensing Image in black and white mode 

(b) Original 2 Classes Remote Sensing Image in color mode 
(c) The Segmentation Result 2 classes SVM Method 
(d) The Segmentation Result after 2 classes SVM Method in color display 

3. Contexture image models 
A problem of particular importance in remote sensing image classification is the use of 
contextual information.  All experiments indicate that classification performance improves 
with proper use of contextual information.  Because of interest with texture analysis, and the 
fact that remote sensing data is rich in texture, this problem has been studied by pattern 
recognition researchers for some time with a number of approaches presented.  
Markov random field provides a rigorous mathematical characterization of contextual 
information of textures from neighboring pixels on an image. Basically the often rich 



 Image Segmentation 

 

170 

  
Fig. 6. Original TM  remote sensing 
image of Italy Lake Mulagias 

Fig. 7. Original Italy Lake Mulagias 
displayed  in color format 

  
Fig. 8. Segmentation Result by 2nd 
Order AR in black and white 

Fig. 9. Segmentation Result by 2nd 
Order ARMA in color format 

  
Fig. 10. Original USC brick and 
grass two classes natural scene 

Fig. 11. Original USC brick and 
grass displayed in color format 

  
Fig. 12. Texture Segmentation 
Result by 2nd Order AR in black and 
white 

Fig. 13. Texture Segmentation 
Result by 2nd Order AR in color 
format 

Image Segmentation by Autoregressive Time Series Model   

 

171 

The 2-D time series model based support vector machine (Ho, 2007) was tested with real 
remote sensing images from satellite and the results in figure 14 shows that this method can 
perform well in separating lake region from city building with the accuracy of 96.9%. 
  

                   
(a) (b) 

 

                    
(b) (d) 

 
Fig. 14. (a) Original 2 Classes Remote Sensing Image in black and white mode 

(b) Original 2 Classes Remote Sensing Image in color mode 
(c) The Segmentation Result 2 classes SVM Method 
(d) The Segmentation Result after 2 classes SVM Method in color display 

3. Contexture image models 
A problem of particular importance in remote sensing image classification is the use of 
contextual information.  All experiments indicate that classification performance improves 
with proper use of contextual information.  Because of interest with texture analysis, and the 
fact that remote sensing data is rich in texture, this problem has been studied by pattern 
recognition researchers for some time with a number of approaches presented.  
Markov random field provides a rigorous mathematical characterization of contextual 
information of textures from neighboring pixels on an image. Basically the often rich 



 Image Segmentation 

 

172 

textural information in remote sensing image makes Markov random field a very powerful 
image model.  Another image model is the 2-D multivariate autoregressive time series 
analysis. The Markov random field model is for a single image while the 2-D multivariate 
autoregeessive model is for the entire stack of images under consideration and treated as a 
vector time series.   The two image models will be briefly presented in this section. 

3.1 Markov random field 
Markov random field (MRF) contextual image model assumes that the texture is stochastic 
and stationary with conditional independence. MRF theory provides a basis for modeling 
contextual constraints in image processing, analysis, and interpretation (Geman, 1984). 
Several methods are introduced and published about 2-D image restoration or 
reconstruction with MRF model. Very recently a comprehensive treatment of Markov 
random field in remote sensing is given by Serpico and Moser. The neighborhood system of 
a pixel x, in an MxN image, which contains the contextual information under consideration, 
consists of adjacent pixels with a Euclidean distance of say r. and  r takes an integer value 
that is denoted as the order of neighborhood system. The neighborhood system with a 
definitive order is shown in Figure 15 (a), where 1, 2, ⋅⋅⋅⋅⋅⋅ denote the order of neighborhood 
system. The second order neighborhood system has eight neighboring pixels. Therefore, it is 
also called the 8-neighborhood system. In a Markov random field the conditional 
probability density function of each pixel is dependent only on its neighborhood system So 
the MRF represents the local characteristics of x. The MRF can be causal or noncausal.  
Assume that the pixels are scanned sequentially top to down and left to right.  The causal 
MRF depends only on the past while the noncausal or bilateral MRF depends not only on 
the past but also on the future as shown in Figure 15 (b). In general, the neighborhood 
system used in image modeling is symmetrical and sequentially ordered. Also, the 
noncausal Markov chain is usually selected as 2-D image model in practice. 
Each observed data y  can be regarded as the noisy version of original data x .  In other 
words,  = +y x n , where n  is a sample of a white Gaussian noise field with variance σn2. 
The conditional probability density function of x given y  is given by:  

 2 /2 2
1 1( | ) exp{ ( ) ( )}

(2 ) 2
T

MN
n n

p
πσ σ−= − − −x y y x y x  (30)                          

The estimation problem is to obtain the original data x  from the observed data y .  
As proposed by Jeng and Woods (Jeng 1991), the relationship of a pixel in a compound 
Gaussian Markov random field (CGMRF) and its neighborhood system is presented by the 
collection  of binary variables Co = {ckm,n : k = 1, 2, ⋅⋅⋅, 8; m = 1, 2, ⋅⋅⋅, M; n = 1, 2, ⋅⋅⋅, N }, where k 
is  the  same as the Figure 15 (b). If the neighbor pixels are independent, the associated ckm, is 
set to be one and otherwise ckm,n is equal to zero. Let A(C0) be the  covariance matrix of x ,  
which  depends on C0.  The estimation of original image x  is obtained with observed  y  
and  the matrix A(C0),  which should be estimated from the observed y . In general, we have  
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where I is the identity matrix and 0( )Z C  is a normalizing constant called partition  function 
(Jeng 1991).  Maximizing the equation gives us the MAP estimate of x   
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ˆ n
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x

A C I kA C Iσ
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−
−⎛ ⎞

= + = +⎜ ⎟⎜ ⎟
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x y y  (32)             

 

To apply this estimation of observed image, the matrix C0 and the variance ratio k should be 
estimated with the observed data. 
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Fig. 15. The neighborhood system and its order (a) Ordered neighborhood system for MRF. 
The order of the model relative to × is indicated by numbers; (b) The second order  
neighborhood system 

3.2 2-D Multivariate time series analysis 
The remote sensing image data from SAR (Synthetic Aperture Radar), TM (Thermal Mapper 
) or other sensors can be described by time series image models. To analyze and segment the 
images, we need to consider the correlation between neighborhood image pixels rather than 
independent random variables as considered by many pattern recognition researchers. The 
SAR and TM remote sensing data are in multi-spectral format which  consists of a stack of 
images. There are correlations between pixels in a single image as well as correlations 
among image slices. The univariate Autoregressive (AR) model is not enough to describe 
information extracted from multi-spectral satellite sensors. The 2-D Multivariate Vector AR 
time series model described in this section is aimed to solve this problem. 
The multivariate time series data analysis model is a generalized form of univariate models. 
It is also called ARV (AutoRegressive Vector) model. Each time series observation is a vector 
containing multiple components. 

 Let 1 2 3[ , , ,..... ]Ti i i i miX x x x x=           i−∞ ≤ ≤ ∞  (33) 

 1 1 2 2 .....i i i p i p iX W X X Xφ φ φ ε− − −= + + + + +  (34)     
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where I is the identity matrix and 0( )Z C  is a normalizing constant called partition  function 
(Jeng 1991).  Maximizing the equation gives us the MAP estimate of x   
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:    iX m-by-1 column vector, time series observation variable 
:iε     m-by-1 column vector, multivariate white noise 
: 1,2,3,.....k k pφ =  m-by-m autoregressive parameter matrix 
:W  m-by-1 Constant Vector ( deterministic DC  term ) 

To estimate the Multivariate AR model Parameter Matrix, we need to adopt the least 
squares method. 
Consider an m-dimensional time series and let the Parameter Matrix be  

 1 2 .... pB W φ φ φ⎡ ⎤= ⎣ ⎦
 (35) 

 

 Define  
1

2
.
.

1

v

v
v

v p

X
XU

X

−

−

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (36)  

 

An AR(p) time series  model can be expressed as the following regression model: 

 v v vX BU ε= +  (37)  
 

where v noiseε = vector with covariance matrix C  1,2,.....v n=   and n is the total number of 
samples. 
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The Parameter Matrix 1 2 .... pB W φ φ φ⎡ ⎤= ⎣ ⎦  can be estimated as  

 1B̂ ST −=  (42)   
 

The error covariance matrix can be calculated as: 
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n nf

−= −
−

 (43)   

The  matrix  Ĉ   can be factorized by Cholesky decomposition. The diagonal terms of this 
factorized Cholesky matrix are used as feature vector inputs to the pattern classifiers such as 
Support Vector Machine (SVM) or others. 

 ˆ TC E E=  (44)  

where E  is the upper triangular matrix. 
Suppose E  is an m-by-m upper triangular, lower triangular or diagonal  matrix , the 
eigenvalues of E  are the entries on the main diagonal of E . The eigenvalues of E  matrix 
are the characteristics that E  contains.  The E  matrix contains the major information of the 
estimated error covariance matrix  Ĉ . 
The optimal estimated error covariance matrix  Ĉ  can be adopted to our remote sensing 
image classifier. When this optimal parameter matrix B̂   is applied to the  class that the data 
belongs, the total estimation errors are small, whereas when it is applied to any other class, 
the total estimation error would be much larger. Therefore, the differences in total 
estimation errors can be used in the classification process to distinguish among different 
remote sensing image classes. 

4. Time series model segmentation adopted by international researchers 
In this section, we like to present some evidences from international academic researchers to 
prove the effectiveness and efficiency out of time series models. Research scholars P. Steetal 
and N. Natarajan of IITM, Chennai-36  (Seetal  2010) was looking at rock fracture mapping 
problems that has applied to many issues related to rock mechanics. The difficult task was 
on fracture extraction from rock images. They found one interesting time series algorithm 
mathematically derived by P. Ho (Ho 2004). By using the first order autoregressive time 
series image segmentation model, they were able to apply and extract features on both 
rough and smooth fractures successfully as shown in figure 16 and figure 17. In Steetal and 
Natarajan computer experiments, three examples of rock fracture image segmentation 
results were processed by traditional edge detection methods such as Canny, Sobel and 
Prewitt as well as the newer time series models as described in this book chapter. The 
Seetal’s proposed method is a minor modified version from Ho and Chen (Ho 2004). For the 
detailed image segmentation result comparisons, please refer to International Journal of 
Engineering Science and Technology Vol. 2(5), 2010 (Seetal 2010). 

5. Conclusion 
Image segmentation is one of the difficult tasks in image processing problems. The accuracy 
of the segmentation will determine a success or failure of the analysis. Therefore, decision 
making in the segmentation algorithm is very important. In this chapter we have established 
the innovative autoregressive time series model theory and presented many experimental 
results to support its image segmentation use. This image model indeed the effectively 
statistical approach to extract different properties for different objects.  
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the total estimation error would be much larger. Therefore, the differences in total 
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remote sensing image classes. 

4. Time series model segmentation adopted by international researchers 
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and N. Natarajan of IITM, Chennai-36  (Seetal  2010) was looking at rock fracture mapping 
problems that has applied to many issues related to rock mechanics. The difficult task was 
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rough and smooth fractures successfully as shown in figure 16 and figure 17. In Steetal and 
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Fig. 16. Two sets of Rock fracture mapping image segmentation by AR time series model, 
original  rock fractures are on the left column, processing results are on the right column  
((Seetal  2010) 
 

           
Fig. 17. Cameraman image segmentation results by AR time series methods, original Image 
is on the left, AR processing result is on the right (Seetal  2010) 
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Fig. 17. Cameraman image segmentation results by AR time series methods, original Image 
is on the left, AR processing result is on the right (Seetal  2010) 
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China 

1. Introduction 
Nearly 72 years ago, Wertheimer [1] pointed out the importance of perceptual grouping and 
organization in vision and listed several key factors, such as similarity, proximity, and good 
continuation, which lead to visual grouping. However, even to this day, many of the 
computational issues of perceptual grouping have remained unresolved. Since there are 
many possible partitions of an image into subsets, how do you know which one is right? 
There are two aspects to be considered here. The first is that there may not be a single 
correct answer. The second aspect is that the partitioning is inherently hierarchical. Prior 
literature on the related problems of clustering, grouping and image segmentation is huge. 
Unfortunately, there is not a general method existing to solve the problem.[2] 
Image segmentation is one of the central problems in computer vision and pattern 
recognition. It refers to the process of assigning a label to every pixel in an image such that 
pixels with the same label share certain visual characteristics. The result of image 
segmentation is a set of segments (sets of pixels) that collectively cover the entire image. 
Pixels in the same region are similar with respect to some characteristics or computed 
properties, such as color, intensity, and texture. Adjacent regions are significantly different 
with respect to the same characteristics. The goal of segmentation is to simplify and/or 
change the representation of an image into something that is more meaningful and easier to 
analyze.[3] 
There are many general-purpose approaches available for image segmentation such as 
threshold methods[4], edge-based methods[5], region-based methods[6], and graph-based 
methods[7]. Threshold techniques make decisions based on local pixel information. Edge-
based methods are based on connecting together broken contour lines. It is prone to failure 
in the presence of blurring. A region-based method usually partitions an image into 
connected regions by grouping neighboring pixels of similar intensity levels. Adjacent 
regions are then merged under some characteristics. Graph-based techniques generally 
represent the problem in terms of a graph where each node corresponds to a pixel in the 
image, and an edge connects each pair of vertices. A weight is associated with each edge 
based on some property of the pixels that it connects, such as their image intensities. Hybrid 
techniques using a mix of the methods above are also popular.  
What listed above also exposed two basic questions: 
• What is the precise criterion for a good segmentation? 
• How can such a segmentation be computed efficiently? 
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In contrast to the heuristic nature of the methods above, one would formalize an objective 
criterion for evaluating a given segmentation. This would allow us to formulate the 
segmentation problem as an optimization problem. The objective function that one would 
seek to optimize is the interclass variance that is used in cluster analysis. An optimizer can 
lead to efficient solutions for optimal segmentation. But the objective function is usually not 
a monotone chain, therefore the problem is general NP-hard. Following this way, some 
clustering methods have been applied to solve image segmentation problems. Among them, 
K-means algorithm [8] is the most popular and simplest one. It can partition an image into K 
clusters by using an iterative technique. Although it can be proven that the procedure will 
always terminate, the K-means algorithm does not necessarily find the most optimal 
configuration, corresponding to the minimum global objective function. The algorithm is 
also significantly sensitive to the initial randomly-selected cluster centers. As global 
optimization techniques, evolutionary algorithms (EAs) are likely to be good tools for image 
segmentation task. In the past two decades, EAs have been applied to image segmentation 
with promising results [9-16]. These algorithms exploited the metaphor of natural evolution 
in the context of image segmentation. 
In this chapter, in order to solve the image segmentation problem more efficiently, we 
propose two evolutionary-bsed image segmentation algorithms with different objective 
functions.The first is a novel approach based on memetic algorithm (MISA). Watershed 
segmentation is applied to segment original images into non-overlap small regions before 
performing the portioning process by MISA. MISA adopts a straightforward representation 
method to find the optimal combination of watershed regions under the criteria of interclass 
variance in feature space. After implementing cluster-based crossover and mutation, an 
individual learning procedure moves exocentric regions in current cluster to the one they 
should belong to according to the distance between these regions and cluster centers in 
feature space. In order to evaluate the new algorithm, six texture images, three remote 
sensing images and three natural images are employed in experiments. The experimental 
results show that MISA outperforms its genetic version, the Fuzzy c-means algorithm, and 
K-means algorithm in partitioning most of the test problems, and is an effective approach 
when compared with two state-of-the-art image segmentation algorithms including an 
efficient graph-based algorithm and a spectral clustering ensemble-based algorithm. The 
second is manifold evolutionary clustering (MEC). In MEC, the clustering problem is 
considered from a combinatorial optimization viewpoint. Each individual is a sequence of 
real integer numbers representing the cluster representatives. Each data item is assigned to a 
cluster representative according to a novel manifold distance-based dissimilarity measure 
which can measure the geodesic distance along the manifold. After extracting texture 
features from an image, MEC determines partitioning of the feature vectors using 
evolutionary search. We apply MEC to solve seven benchmark clustering problems of 
artificial data sets, three artificial texture image classification problems and two Synthetic 
Aperture Radar image classification problems. The experimental results show that in terms 
of cluster quality and robustness, MEC outperforms the K-Means algorithm, a modified K-
Means algorithm using the manifold distance-based dissimilarity measure, and a genetic 
algorithm-based clustering technique in partitioning most of the test problems. 
In the following sections, we will give the descriptions for the two algorithms in detail. 
Finally, concluding remarks are presented. 
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2. Natural and remote sensing image segmentation using memetic 
computing 
2.1 Introduction 
This work focuses on image segmentation based on memetic computation. Memetic 
algorithms (MAs) are one of the recent growing areas in evolutionary computation [17]. 
They are now widely considered as population-based metaheuristic search approaches 
which may be regarded as a marriage between an evolutionary or any population-based 
global search and local improvement procedures. Recently, MAs have been well used across 
a wide range of problem domains. A lot of studies have demonstrated that MAs converge to 
high-quality solutions more efficiently than their conventional counterparts in many real-
world applications [17-32]. MAs have also been applied in the image processing field [33-
38]. For example, Fernandez, Garana and Cabello [33] proposed a MA-based method for the 
correction of illumination inhomogeneities in images. Batenburg [34] designed an EA with 
hillclimb operator for finding a binary image that satisfies prescribed horizontal and vertical 
projections. Tirronen, Neri et al. [35] studied the defect detection in paper production by 
means of image-processing techniques based on memetic differential evolution frameworks. 
Gesù, Bosco et al. [36,37] introduced a new memetic approach for the reconstruction of 
binary images. Zhang, Wang and Zhang [38] proposed a novel image watermarking scheme 
using a MA and wavelet transform. 
 In this method, in order to solve the image segmentation problem more efficiently, we 
propose a MA-based approach, Memetic Image Segmentation Algorithm (MISA), and 
compare the new method with its genetic version (MISA without learning), the K-means 
algorithm [8], fuzzy c-means algorithm [39], and two state-of-the-art image segmentation 
algorithms including an efficient graph-based algorithm [7] and a spectral clustering 
ensemble-based algorithm [40] in segmenting artificial texture images, remote sensing 
images and natural images. 
The rest of this section is organized as follows: Section 1.2 describes some related 
background including the technologies used in preprocessing the original image and the 
brief background of MAs. Section 1.3 describes the proposed MA-based image segmentation 
algorithm. In Section 1.4, we summarize and evaluate the experimental results.  

2.2 Related background 
Before performing the portioning process by the proposed MISA, some preprocessing 
should be done on original images, including feature extraction based on the gray-level co-
occurrence matrix (GLCM) [41] and wavelet decomposition [42], and over segmenting object 
images into small regions by watershed segmentation algorithm [6]. In this section, we will 
introduce these techniques briefly. The MAs will also be introduced in this section. 

2.2.1 GLCM based statistic features 
GLCM was frequently used in texture analysis and extraction for images [41,43,44]. Texture 
features are demonstrated by the statistics over the GLCM. Four usually used statistics are 
angular second moment (also called energy), correlation, entropy, and inverse difference 
moment (also called inertia). In this method, the 14 statistics, including the previous four 
suggested by Haralick, Shanmugam and Dinstein [41] are exploited. There are four parameters 
that must be indicated to generate a GLCM, i.e., the interpixel orientation, distance, grey level 
quantization, and window size. Here we set the interpixel orientation to 0°  for convenient 
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calculation. Short interpixel distances typically generate the preferred texture features in image 
analysis, so we set interpixel distance to 1. The role of different values for gray levels and 
windows size with respect to statistics from GLCM has been investigated in many literatures 
[43, 44]. According to their analysis and fine-tuned experiments, in this study, we set the image 
quantization to 16 and the window size to 9 9× . 

2.2.2 Wavelet energy features 
Wavelet transform has the ability to examine a signal at different scales [42]. In this section, 
the undecimated wavelet-based feature vector composed by the energies of the subband 
coefficients is used. Here we implement three-level wavelet decomposition on each square 
local area with size of 16 16× . The features of each pixel can be represented as a 10-
dimension vector 1 1 1 1 2( , , , , ,LL LH HL HH LHe e e e e− − − − −  2 2 3 3 3, , , , )HL HH LH HL HHe e e e e− − − − − , in 
which, for example 1LLe −  denotes the energy of the LL subimage in the first level. Wavelet 
transform generates localized spatial and spectral information simultaneously. The energy 
of the low-pass subimage 1LLe − describes the spectral information. The other features except 

1LLe −  characterize the textural properties. Incorporating all the features will enhance the 
performance.  

2.2.3 Watershed segmentation 
We use watershed segmentation [6] to over segment object image into small regions. Each 
region is almost homogeneous in feature space, while neighboring-regions possess different 
characters. We operate these regions as a basic unit during most of MISA unless it is 
necessary to come back to pixels for precise evaluation. The basic concept of watershed 
segmentation is described as follows. 
In an image, ideal step edges do not often exist since every edge is blurred to some contents. 
A blurred edge can be modeled by a ramp. For a ramp edge, a usual gradient operator will 
generate a slope of the edge. Thus, the ramp edge cannot be separated from noise if the 
slope of the edge is small. Wang proposed a multi-scale gradient operator to solve the above 
problem [45]: 
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where ⊕  and Θ  denote dilation and erosion respectively, and iB  is called structural 
element of size (2i −1)×(2i −1), and f is the original image. 
If watershed regions are too large, big ones may contain more than one focused subject in 
image, so that the texture feature in that region may not be homogeneous. If the watershed 
regions are too small, the computational complexity will increase. This is because there will 
be more basic units to operate during most of MISA. In order to control the number of 
watershed regions, we use the watershed segmentation algorithm with markers [6]. In this 
method, a threshold can be adjusted to get an expected number of regions. In this method, 
the number of regions is about 1500 in a 256 256×  image. 

2.2.4 Memetic algorithms 
Evolutionary algorithms perform well for global searching because they are capable of 
quickly finding and exploiting promising regions of search space, but they take a relatively 
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long time to converge to a local optimum. Local improvement procedures quickly find the 
local optimum of a small region of the search space, but are typically poor global searchers. 
Thus, several researchers proposed hybrid algorithms combining excellent global 
exploration characteristics of EAs and efficient refinement capabilities of local search 
algorithms [46,47]. These hybrid algorithms are known as memetic algorithms (MAs).  
MAs assume that combining the features of different methods in a complementary fashion 
may result in more robust and effective optimization tools. They are population-based meta-
heuristic search approaches that have been receiving increasing attention in recent years. 
They are inspired by Darwinian’s principles of natural evolution and Dawkins’ notion of a 
meme defined as the basic unit of cultural transmission. In MAs, a meme is generally 
considered as an individual learning procedure capable of performing local refinements. 
Over the past 15 years, MAs have been a hot topic in the fields of both computer science and 
operational research [17-38]. The typical issues pertinent to MA design [17] include (i) how 
often individual learning should be applied, (ii) on which solutions individual learning 
should be used, (iii) how long individual learning should be run, (iv) what maximum 
computational budget to allocate for individual learning, and (v) what individual learning 
method or meme should be used for a particular problem, sub-problem or individual. 

2.3 The proposed memetic algorithm for image segmentation 
2.3.1 Preprocessing and representation 
Preprocessing is the first step of our method. In this procedure, we use gray-level co-
occurrence matrix and wavelet decomposition for feature extraction of object images. This is 
done for every pixel in the object image. Some algorithms (such as [15]) operate pixels 
directly as basic units, which will lead to high computational cost, especially for large 
images. To reduce the computational complexity, we employ watershed segmentation to 
segment images into non-overlap small regions. MISA operates these regions instead of 
every pixel as the basic unit during most of its evolution unless it is necessary to return back 
to pixels for more precise computation in fitness calculation, learning and crossover 
operations. Fig.1 illustrates the watershed segmentation process. 
 

 
Fig. 1. Illustration of watershed segmentation 

In Fig.1, there is an example of an image of 10 10×  pixels with each small square divided by 
the orange lines representing a pixel. We can see that this image contains 4 regions marked 
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calculation. Short interpixel distances typically generate the preferred texture features in image 
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[43, 44]. According to their analysis and fine-tuned experiments, in this study, we set the image 
quantization to 16 and the window size to 9 9× . 

2.2.2 Wavelet energy features 
Wavelet transform has the ability to examine a signal at different scales [42]. In this section, 
the undecimated wavelet-based feature vector composed by the energies of the subband 
coefficients is used. Here we implement three-level wavelet decomposition on each square 
local area with size of 16 16× . The features of each pixel can be represented as a 10-
dimension vector 1 1 1 1 2( , , , , ,LL LH HL HH LHe e e e e− − − − −  2 2 3 3 3, , , , )HL HH LH HL HHe e e e e− − − − − , in 
which, for example 1LLe −  denotes the energy of the LL subimage in the first level. Wavelet 
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of the low-pass subimage 1LLe − describes the spectral information. The other features except 
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image, so that the texture feature in that region may not be homogeneous. If the watershed 
regions are too small, the computational complexity will increase. This is because there will 
be more basic units to operate during most of MISA. In order to control the number of 
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long time to converge to a local optimum. Local improvement procedures quickly find the 
local optimum of a small region of the search space, but are typically poor global searchers. 
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occurrence matrix and wavelet decomposition for feature extraction of object images. This is 
done for every pixel in the object image. Some algorithms (such as [15]) operate pixels 
directly as basic units, which will lead to high computational cost, especially for large 
images. To reduce the computational complexity, we employ watershed segmentation to 
segment images into non-overlap small regions. MISA operates these regions instead of 
every pixel as the basic unit during most of its evolution unless it is necessary to return back 
to pixels for more precise computation in fitness calculation, learning and crossover 
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by different colors as red, blue, yellow, and green. The watershed segmentation will 
segment the image into four regions divided by the black boldface lines. Then, these four 
regions are the basic unit that we operate during most of MISA.  
After preprocessing, we get the following data from the object image: (i) feature matrix, 
which stores the features of each pixel and is used in initialization with minimum spanning 
tree, learning and fitness calculation; (ii) coordinate of pixels, which are used in fitness 
calculation; (iii) pixel number of each region, which is used in learning; (iv) dissimilarity 
matrix, which is used in initialization with minimum spanning tree. 
Many EC-based clustering algorithms [48-51] have used an indirect representation approach 
that borrows from the K-Means algorithm - the representation codes are for cluster center 
only, and each data item is subsequently assigned to a cluster representative according to an 
appointed dissimilarity measure. The most popular dissimilarity measure is the Euclidean 
distance. By using Euclidean distance as a measure of dissimilarity, these evolutionary 
clustering methods as well as the K-Means algorithm have good performance on the data set 
with compact super-sphere distribution, but tend to fail on the data set organized in more 
complex and unknown shapes. This indirect representation approach can not overcome the 
main drawback of the K-means algorithm unless a more flexible dissimilarity measure is 
adopted [15]. Furthermore, this indirect representation approach is not suitable for 
individual evolutionary and learning operation. In this study, a straightforward encoding 
method is used here for image segmentation problem. In this coding, every locus represents 
the corresponding region in the image, and the gene on each locus is the cluster label of the 
corresponding region.   
In our method, coding length ( CL ) in MISA is the number of regions obtained from 
watershed segmentation of the object image. The serial labels of locus present the 
corresponding regions in image, that means the i -th locus represents the i -th regions. The 
segmentation of an image is expressed by encoding individual with cluster labels of regions. 
Cluster label of each region is put on its corresponding locus as the gene. Fig. 2 illustrates 
this code structure.  
 

 
Fig. 2. Illustration of coding structure 

Here we exhibit the code of an image which owns 10 regions. The lower numbers denote the 
region labels. They are arranged in order from 1 to 10. The upper numbers are cluster labels 
corresponding to each region. In this individual, regions 1, 2, 4 and 10 belong to cluster 1, 
regions 3, 5 and 6 belong to cluster 2, and regions 7, 8 and 9 belong to cluster 3. This 
straightforward representation method is very convenient for evolutionary and learning 
operation as shown in Section 3.2.  
In order to guide the evolution to a meaningful direction related to optimal segmentation, 
Euclid distances in feature space between every pixel and the centroids of the cluster it 
belongs to are calculated. Then, we sum up all these distances and use the reciprocal of this 
summation as the fitness of MISA. This segmentation fitness is defined in Equation (2). 
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where iRN  is the number of regions in the i-th cluster, jPN  is the number of pixels in the j-
th region, ijkp denotes the k-th pixel in the j-th region of the i-th cluster, and im  is the centroid 
of all pixels of the i-th cluster in feature space. Although we operate watershed regions of 
image during most of the evolution, it is necessary to return to every pixel, so that we can 
get a more precise segmentation evaluation. In Equation (2), 
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FN is the number of features and 
gijkp  and 

gim  denote the g-th feature of the current pixel 
and cluster centroid respectively. Therefore, the aim of MISA is to find an individual with 
maximum fitness. 

2.3.2 Memetic image segmentation algorithm 
The main loop of MISA is as follows.  
Algorithm 1.1. Memetic Image Segmentation Algorithm (MISA) 
Step 1. Preprocessing. Feature extraction based on GLCM and wavelet decomposition, and 

over segmenting object image into non-overlapping small regions by watershed 
segmentation. 

Step 2. Initialization. Giving the termination criterion, setting the initial parameters, 
generating a diverse population.  

Step 3. Crossover and Mutation. A cluster-based crossover operator and random mutation 
operator are implemented in this step. 

Step 4. Learning. A supervised local searching strategy is used to improve some 
individuals with probability. 

Step 5. Evaluation and Selection. Tournament selection with elitism strategy is used after 
fitness calculation. 

Step 6. Termination Test: If termination criterion is satisfied, export the individual with 
the highest fitness and return the corresponding image segmentation result, stop 
the algorithm; otherwise, go to Step 3. 

2.3.2.1 Initialization 
The following parameters have to be set in this step: population size (PS), the proportion of 
initial individuals generated using minimum spanning tree (MSTP), crossover probability 
(CP), mutation probability (MP), learning intensity (LI), and cluster number (CN). The 
termination criterion is to run until the number of generations reaches the maximum value 
(Gmax). 
The initial population is generated by two different methods to get a diverse population. 
Some initial individuals are generated based on minimum spanning tree (MST), and the 
others are generated randomly. The details are as follows: 

MSTP PS×⎡ ⎤⎢ ⎥  individuals are generated based on minimum spanning tree (MST). The idea 
of MST is introduced to find a meaningful distribution of all regions. Dissimilarity matrix 
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by different colors as red, blue, yellow, and green. The watershed segmentation will 
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corresponding region.   
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corresponding regions in image, that means the i -th locus represents the i -th regions. The 
segmentation of an image is expressed by encoding individual with cluster labels of regions. 
Cluster label of each region is put on its corresponding locus as the gene. Fig. 2 illustrates 
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and cluster centroid respectively. Therefore, the aim of MISA is to find an individual with 
maximum fitness. 
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from preprocessing is used to build a complete MST by Prim’s algorithm. In dissimilarity 
matrix, the number of the i-th row and the j-th column represents the dissimilarity degree of 
the i-th region to the j-th region. The smaller of the number is, the closer between the i-th 
region and the j-th region. Here the dissimilarity degree between the i-th region ir  and the j-
th region jr  is calculated in Equation (4). 
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Here FN  is the number of features and 
kir  and 

kir  are the value of the k-th feature of ir  
and jr . 
 Based on MST, we break up links selected randomly to produce individuals. The whole 
MST represents one cluster which includes all the regions in the image; and removing n  
links leads to n  more clusters. Breaking up different links will produce different 
distribution among clusters. Fig. 3 and 4 show this procedure with dissimilarity matrix 
given in Table 1. 
 

Region No. 1 2 3 4 5 6 7 8 9 10 
1 Inf 0.7 4.67 0.69 4.73 4.72 4.63 2.56 2.44 2.46 
2 0.7 Inf 4.42 0.58 4.53 4.52 4.33 2.28 2.25 2.21 
3 4.67 4.42 Inf 4.63 0.53 0.67 6.27 4.79 5.29 4.99 
4 0.69 0.58 4.63 Inf 4.75 4.77 4.58 2.5 2.45 2.31 
5 4.73 4.53 0.53 4.75 Inf 0.29 6.17 4.76 5.25 4.98 
6 4.72 4.52 0.67 4.77 0.29 Inf 6.19 4.78 5.26 5.03 
7 4.63 4.33 6.27 4.58 6.17 6.19 Inf 2.16 2.22 2.41 
8 2.56 2.28 4.79 2.5 4.76 4.78 2.16 Inf 0.64 0.52 
9 2.44 2.25 5.29 2.45 5.25 5.26 2.22 0.64 Inf 0.73 

10 2.46 2.21 4.99 2.31 4.98 5.03 2.41 0.52 0.73 Inf 

Table 1. An example of dissimilarity matrix 

 

 
 
Fig. 3. MST generated from dissimilarity matrix   Fig. 4 Clusters generated from breaking up 
links 
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Based on dissimilarity matrix shown in Table 1, we can get a Prim MST starting from region 
3, which is illustrated in Fig. 3. If we break up the links between 2 and 3, 8 and 10, we can 
get a cluster distribution as {1,2,4,10} , {3,5,6} and {7,8,9} , as shown in Fig. 4.  
The rest PS MSTP PS− ×⎡ ⎤⎢ ⎥  individuals are generated randomly, namely, for each locus and 
we put a random cluster label ranges from 1 to CN  as its gene.  

2.3.2.2 Crossover and Mutation 
Based on the meaning of crossover that children should get part of the information from 
parents, we create a novel crossover operator, called cluster-based crossover (CC). In this 
algorithm, the role of crossover is to change the cluster distribution of one parent individual 
by the cluster distribution information of the other parent individual. To make the crossover 
meaningful for segmentation, we try to cross corresponding clusters of two parents, 
individuals A  and B . For example, we divide an image into three clusters, where A  is 
composed of clusters 1α , 2α , 3α  and B is composed of clusters 1β , 2β , 3β . Here 

1 { | cluster 1}x xa aα = ∈ , 2 { | cluster 2}y ya aα = ∈ , 3 { | cluster 3}z za aα = ∈ ,  

1 { | cluster 1}x xb bβ = ∈ , 2 { | cluster 2}y yb bβ = ∈ , 3 { | cluster 3}z zb bβ = ∈ , ( (1, ),x CL∈  (1, ),y CL∈  
(1, ),z CL x y z∈ ≠ ≠ ). First, mean values of every feature of each pixel in each cluster are 

calculated. Then, the modulus values of these mean values for each cluster are sorted from 
small to large. This calculation is similar to Equation (4) in section 3.2.1. For example, if the 
orders of clusters in A  and B  are 2 1 3α α α  and 3 2 1β β β  respectively, then, 2α  will be 
crossed with 3β , 1α  with 2β , and 3α  with 1β . This idea is similar to multi-point 
crossover. The number of ‘points’ equals to the number of clusters. For convenient 
operation, we re-label 2 1 3α α α  and 3 2 1β β β  as 1 2 3α α α  and 1 2 3β β β  respectively, without 
removing regions of any cluster. 
Two individuals are chosen from the population randomly, and then the corresponding 
clusters between them are fixed and then crossed as mentioned above. The detailed steps 
are described as follows, where nc  is the number of regions to be “crossed” in current 
cluster and 

jiα denotes the j-th region in cluster iα  and CN denotes the cluster number. 

Algorithm 1.2. Cluster-based Crossover (CC) 

Crossover: A  cross B  

Step 1. Set 1i =  
Step 2. If i CN≤ , go to Step 3, otherwise, stop 
Step 3. Set nc =  random number from 1 to the size of the i -th cluster in A . 
Step 4. Select nc  regions randomly from the i -th cluster of A , set 1j = . 
Step 5. If 

jiα  does not exist in iβ , then put i  on the 
jia -th gene of B  

Step 6. 1j j= + , if j nc≤  go to Step 5, otherwise, 1i i= + , go to Step 2. 
In CC, A  crosses B  and B  crosses A , producing two children. Both of them inherit parts 
of the information from the two parents. We illustrate CC in Fig. 5. 
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from preprocessing is used to build a complete MST by Prim’s algorithm. In dissimilarity 
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Based on dissimilarity matrix shown in Table 1, we can get a Prim MST starting from region 
3, which is illustrated in Fig. 3. If we break up the links between 2 and 3, 8 and 10, we can 
get a cluster distribution as {1,2,4,10} , {3,5,6} and {7,8,9} , as shown in Fig. 4.  
The rest PS MSTP PS− ×⎡ ⎤⎢ ⎥  individuals are generated randomly, namely, for each locus and 
we put a random cluster label ranges from 1 to CN  as its gene.  

2.3.2.2 Crossover and Mutation 
Based on the meaning of crossover that children should get part of the information from 
parents, we create a novel crossover operator, called cluster-based crossover (CC). In this 
algorithm, the role of crossover is to change the cluster distribution of one parent individual 
by the cluster distribution information of the other parent individual. To make the crossover 
meaningful for segmentation, we try to cross corresponding clusters of two parents, 
individuals A  and B . For example, we divide an image into three clusters, where A  is 
composed of clusters 1α , 2α , 3α  and B is composed of clusters 1β , 2β , 3β . Here 

1 { | cluster 1}x xa aα = ∈ , 2 { | cluster 2}y ya aα = ∈ , 3 { | cluster 3}z za aα = ∈ ,  

1 { | cluster 1}x xb bβ = ∈ , 2 { | cluster 2}y yb bβ = ∈ , 3 { | cluster 3}z zb bβ = ∈ , ( (1, ),x CL∈  (1, ),y CL∈  
(1, ),z CL x y z∈ ≠ ≠ ). First, mean values of every feature of each pixel in each cluster are 

calculated. Then, the modulus values of these mean values for each cluster are sorted from 
small to large. This calculation is similar to Equation (4) in section 3.2.1. For example, if the 
orders of clusters in A  and B  are 2 1 3α α α  and 3 2 1β β β  respectively, then, 2α  will be 
crossed with 3β , 1α  with 2β , and 3α  with 1β . This idea is similar to multi-point 
crossover. The number of ‘points’ equals to the number of clusters. For convenient 
operation, we re-label 2 1 3α α α  and 3 2 1β β β  as 1 2 3α α α  and 1 2 3β β β  respectively, without 
removing regions of any cluster. 
Two individuals are chosen from the population randomly, and then the corresponding 
clusters between them are fixed and then crossed as mentioned above. The detailed steps 
are described as follows, where nc  is the number of regions to be “crossed” in current 
cluster and 

jiα denotes the j-th region in cluster iα  and CN denotes the cluster number. 

Algorithm 1.2. Cluster-based Crossover (CC) 

Crossover: A  cross B  

Step 1. Set 1i =  
Step 2. If i CN≤ , go to Step 3, otherwise, stop 
Step 3. Set nc =  random number from 1 to the size of the i -th cluster in A . 
Step 4. Select nc  regions randomly from the i -th cluster of A , set 1j = . 
Step 5. If 

jiα  does not exist in iβ , then put i  on the 
jia -th gene of B  

Step 6. 1j j= + , if j nc≤  go to Step 5, otherwise, 1i i= + , go to Step 2. 
In CC, A  crosses B  and B  crosses A , producing two children. Both of them inherit parts 
of the information from the two parents. We illustrate CC in Fig. 5. 
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Fig. 5. An illustration of cluster-based crossover 

Fig. 5 shows that in individual A, the cluster 1 to 3 are {1,3,7,5,10} , {2,4} , and {6,8,9} , 
respectively. In individual B, the cluster distribution is {1,4,5,7} , {2,3,6}  and {8,9,10} . For 
example, we begin by selecting 3 regions in cluster 1 of A, which is {1,3,7}  with light red 
shadow. In individual B, region 1 and 7 are in cluster 1, but region 3 exists in cluster 2, so we 
move region 3 from cluster 2 to cluster 1. In the same way, after all the same procedures are 
applied on the rest clusters, we get the child individual illustrated in Fig.5(c).  
In the mutation phase, we change the cluster distribution randomly as follows, where A 
denotes an individual, jA  is the j-th gene of A. MP denotes mutation probability, CN 

denotes the cluster number, and CL denotes coding length.   
Algorithm 1.3. Mutation 

Step 1. Set 1j =  
Step 2. If j CL≤ , set r = a random number range from 0 to 1, ji A= , go to Step 3; 

Otherwise, stop 
Step 3. If r MP< , set l = a random number range from 1 to CN l i∧ ≠ . 
Step 4. jA l= , 1j j= + , go to Step 2.  
In mutation, if a gene should be mutated due to probability, it will change into another 
cluster number generated randomly. This means the region corresponding to this locus will 
be moved into another cluster. 
2.3.2.3 Individual Learning Method 
Within the computational intelligence community, research on MA has since grown 
significantly and the term has come to be associated with the pairing of meta-heuristics or 
population-based methodologies with a separate lifetime learning process that materializes 
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in various forms of individual learning methods or memes, which are generally regarded as 
lifetime learning procedures capable of generating refinement on given individual(s). [32] In 
MISA, we introduce an individual learning method based on cluster distribution as is 
described in Algorithm 1.4. The basic idea is firstly, identify the most distinct region in each 
cluster. Then, for each of these regions, we find the cluster with the most similar average 
feature values, and assign the region to this cluster. In Algorithm 1.4, iAG is the average 
feature values of the i-th cluster and 

iimAG  is the average feature values of the im -th region 
in the i-th cluster where PS denotes population size, CN denotes the cluster number, LI 
denotes learning intensity, and CL denotes coding length.  
Algorithm 1.4.  Individual Learning 

Step 1. Set 1a =  
Step 2. If a PS≤ , go to Step3, otherwise stop. 
Step 3. For the a -th individual in population, r  is a random number from 0 to 1, if 0.5r > , 

go to Step4, otherwise, 1a a= + , go to Step3.  
Step 4. Set 1c = . 
Step 5. For 1 i CN≤ ≤ , find im =arg max

2ii imAG AG− . 

Step 6. For 1 i CN≤ ≤ , move the im -th region to cluster j = arg min
2ij imAG AG− . If i j= , 

that means the im -th region doesn’t need to be moved.  
Step 7. 1c c= + . If c LI CL≤ ×⎢ ⎥⎣ ⎦ , go to Step 5, otherwise, 1a a= + , go to Step 2.  
For more precise evaluation, we return back to pixels to calculate iAG  instead of using the 
average feature values of each region in cluster i  directly, which is shown in Equation (5). 
As described above, iAG  is a vector that comprises FN features. 
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where iRN is the number of regions in the i-th cluster, jPN  is the number of pixels in the j-
th region, ijkp  denotes the feature vector of the k-th pixel in the j-th region of the i-th cluster, 
defined as Equation (6). 
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Fig. 6 illustrates an example of the individual learning procedure. 
In Fig. 6, { }1,2,3,4,5 , { }6,7,8,9,10,11 and { }12,13,14,15,16  demonstrate the three clusters 
before learning, we label them as cluster1, cluster2 and cluster3, respectively. After the 
calculation shown in Step 5 and Step 6 of Algorithm 1.4, region 4, 8 and 12 are shown to be 
the most distinct regions of each cluster. And cluster3, cluster1, and cluster2 are the ones 
with most similar features for region 4, 8 and 12 respectively. Therefore, the learning 
processing will remove region 4, 8 and 12 to cluster3, cluster1 and cluster2 respectively. 
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Fig. 6. Illustration of an example of the individual learning procedure 

From the description above, we can see that half of the whole population is selected 
randomly each time to learn. For each individual in learning, LI CL×⎢ ⎥⎣ ⎦  regions are detected. 
LI  should be adjusted properly as if it is too small, the learning’s effect is not enough. 
However, it is also unnecessary to set the LI too big. This is because learning is a local 
searching strategy so when it comes to the local optimum, the following learning will not 
change any cluster, which makes it meaningless and a waste of the computation. 

2.4 Experimental study 
2.4.1 Experimental setup 
In order to validate the performance of MISA, we apply it to twelve image segmentation 
problems including six artificial texture images, three remote sensing images and three 
natural images. The results will be compared with the K-means algorithm (KM) [8], Fuzzy c-
means algorithm (FCM) [39], the genetic image segmentation algorithm (GISA, MISA 
without learning), and two state-of-the-art image segmentation algorithms including an 
efficient graph-based image segmentation algorithm (EGSA) [7] and the spectral clustering 
ensemble algorithm (SCEA) [40]. 
Based on the parameter sensitivity analysis (as described in Section 1.4.5), for MISA, the 
parameters are set as follows: The maximum number of generations is 50, population size is 
30, MST initialization proportion is 0.6, crossover probability is 0.8, mutation probability is 
0.005, and learning intensity is 0.5. For GISA, the parameters are set as follows: The 
maximum number of generations is 200, population size is 30, MST initialization proportion 
is 0.6, crossover probability is 0.8, and mutation probability is 0.005. Under these parameter 
settings, the computational costs of MISA and GISA are about equivalent. For KM and FCM, 
the maximum iterative number is set to 500, and the stop threshold is 10-10. The software of 
EGSA is downloaded directly from the author’s homepage 
(http://people.cs.uchicago.edu/~pff/segment/). SCEA was proposed by us in 2008. We 
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will perform it under the tuned parameters. Here 30 component spectral clustering with 
Nyström method are combined, and 100 regions are sampled in each component spectral 
clustering algorithm. The scaling parameter for each component is randomly selected from 
the interval [3, 12]. 
 
 

    
             Image1                            Image2                             Image3                          Image4 

    
             Image5                              Image6                            Image7                         Image8 

    
            Image9                            Image10                           Image11                       Image12 

Fig. 7. The original images used in this study 

The original images are shown in Fig. 7. Image1 to Image6 are artificial texture images with 
the size of 256 256×  from the Brodatz texture images [52]. Their standard classification 
images are shown in Fig. 8. Image7 to Image9 are remote sensing images. Image7 is a Ku-
band SAR image of the Rio Grande River nearby Albuquerue, New Mexico, USA. Image8 is 
a Ku-band image of the China Lake Airport, California, USA. Image9 is an optical remote 
sensing image of Shelter Island, San Diego. The sizes of these images are all 256 256× , too. 
Image10 to Image12 are natural images. The sizes of them are 256×256, 320×320, and 
330×320, respectively. 
The watershed segmentation results of the twelve test images are shown in Fig. 9. 
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Fig. 8. The true partitioning of the artificial texture images 

2.4.2 Results on artificial texture images 
Image1 and Image2 contain two textures, Image3 and Image4 contain three textures and 
Image5 and Image6 contain four textures. Gray level, GLCM and wavelet features are used. 
In these experiments, the true partitioning is known. Thus we can calculate the clustering 
correct ratio directly by contrasting a segmentation result to the corresponding true  
 

Correct Ratio 
(Standard Deviation) Problem 
MISA GISA EGSA SCE FCM KM 

Image1 0.9844 
(0.0069) 

0.9837 
(0.0021) 

0.9705 
(0) 

0.9842 
(0.0005) 

0.9841 
(0) 

0.9835 
(0) 

Image2 0.9770 
(0.0012) 

0.9746 
(0.0015) 

0.9341 
(0) 

0.8630 
(0.0158) 

0.9745 
(0) 

0.9719 
(0) 

Image3 0.9475 
(0.0018) 

0.9442 
(0.0026) 

0.9517 
(0) 

0.8983 
(0.0950) 

0.7863 
(0.2938) 

0.7807 
(0.2883) 

Image4 0.9539 
(0.0010) 

0.9505 
(0.0418) 

0.9421 
(0) 

0.9614 
(0.0014) 

0.9502 
(0) 

0.9505 
(0.0001) 

Image5 0.9622 
(0.0008) 

0.9588 
(0.0014) 

0.8326 
(0) 

0.9114 
(0.0783) 

0.7400 
(0.2718) 

0.7711 
(0.2608) 

Image6 0.9493 
(0.0004) 

0.9485 
(0.0006) 

0.8871 
(0) 

0.9319 
(0.0408) 

0.8243 
(0.2737) 

0.8243 
(0.2642) 

Table 2. Statistic results obtained from MISA, GISA, EGSA, SCEA, FCM and KM on the 
artificial texture images 
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Fig. 9. The watershed segmentation results of Image 1 to Image 12. 
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Fig. 9. The watershed segmentation results of Image 1 to Image 12. 
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partitioning. The average results of clustering correct ratios and standard deviations based on 
30 independent runs are shown in Table 2. Fig. 10 shows the typical results of them obtained 
from the six algorithms. For each test image, the six segmentation images arranged from upper 
left to lower right are typical results of MISA, GISA, EGSA, SCEA, FCM and KM, respectively. 
Table 2 shows that MISA obtains higher correct ratio than GISA, FCM and KM do for all 
these six images, and gets the best correct ratio among all the six algorithms on Image1, 
Image2, Image5 and Image6. EGSA and SCEA get better correct ratios than MISA does on 
Image3 and Image4, respectively. EGSA is not a random algorithm, so all the standard 
deviations of its results are 0. MISA exceeds EGSA greatly on Image5 and Image6 and 
surpasses SCEA apparently on Image2 and Image3 in correct ratios. MISA exceeds KM and 
FCM greatly on Image3, Image5 and Image6 in both the correct ratios and standard 
deviation. Fig. 10 illustrates the above numerical comparisons visually.  
 
 
 
 
 
 
 
 
 

   
MISA                           GISA                             EGSA 

   
                                SCEA                                  FCM                                  KM 

 

 

(a) Segmentation results of Image1 
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(b) Segmentation results of Image2 
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(c) Segmentation results of Image3 
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(b) Segmentation results of Image2 
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(c) Segmentation results of Image3 
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(d) Segmentation results of Image4 
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(e) Segmentation results of Image5 
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(f) Segmentation results of Image6 

Fig. 10. Typical results obtained from the compared algorithms on the artificial texture 
images 

2.4.3 Results on remote sensing Images 
Fig. 11 shows the typical results on remote sensing images. For each test image, the six 
segmentation images arranged from upper left to lower right are typical results of MISA, 
GISA, EGSA, SCEA, FCM and KM respectively. Gray level and wavelet features are used. 
For these remote sensing images, there is no true partitioning for reference, thus numerical 
results could not be obtained here. 
For Image7, MISA makes the river bank clearer, and generates more homogeneous lower 
crops part than GISA does. But both MISA and GISA lose the crop line on the upper left 
corner. EGSA lose the crop part in the lower left part and the island in the river, but 
generates a clear bridge. SCEA and FCM might confuse the vegetations with the river. KM 
loses most of the bridge and other detailed information. 
For Image8, MISA gets very clear edges and integrates the building area, leaving some 
speckles in the center which are the trails of thin roads there. In the GISA results, some 
buildings are lost in the background. GISA produces some speckles because 200 generations 
are not enough for it to converge. EGSA and SCEA produce unacceptable results which mix 
up major cluster information. Both FCM and KM generate coarse edges of the main roads 
and lose detailed information of other narrow roads in the center and upper right. 
For Image9, MISA and GISA can distinguish details on the port area but generate some 
speckles on the land area. EGSA doesn’t confuse the land area on the left with water, but 
misses detailed information on the port area. SCEA, FCM and KM have worse results when 
compared with MISA on the port area and compared with EGSA on the land area.  
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(d) Segmentation results of Image4 
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(e) Segmentation results of Image5 
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(f) Segmentation results of Image6 

Fig. 10. Typical results obtained from the compared algorithms on the artificial texture 
images 

2.4.3 Results on remote sensing Images 
Fig. 11 shows the typical results on remote sensing images. For each test image, the six 
segmentation images arranged from upper left to lower right are typical results of MISA, 
GISA, EGSA, SCEA, FCM and KM respectively. Gray level and wavelet features are used. 
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For Image9, MISA and GISA can distinguish details on the port area but generate some 
speckles on the land area. EGSA doesn’t confuse the land area on the left with water, but 
misses detailed information on the port area. SCEA, FCM and KM have worse results when 
compared with MISA on the port area and compared with EGSA on the land area.  
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(a) Segmentation results of Image7 

 

     
                                   MISA                                   GISA                               EGSA 

     
                                 SCEA                                  FCM                                    KM 

 
(b) Segmentation results of Image8 
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(c) Segmentation results of Image9 

 

Fig. 11. Typical results obtained from the compared algorithms on the remote sensing 
images 

2.4.4 Results on natural images 
Fig. 12 shows the typical results on natural images. For each image, the six segmentation 
images arranged from upper left to lower right are typical results of MISA, GISA, EGSA, 
SCEA, FCM and KM respectively. Gray level and wavelet features are used for experiments 
here. 
Image10 is segmented into three clusters; Image11 and Image12 are segmented into two 
clusters. Apparently, MISA produces the best results. GISA also gets better results than FCM 
and KM. EGSA, SCEA, FCM and KM lose a lot of details and even confuse very large parts 
in segmenting Image12. 

2.4.5 Sensitivity in relation to parameters 
Fig.13 shows the convergence curves of MISA and GISA got from experiments on the 
artificial texture Image4, the remote sensing Image9, and the natural Image12. Each 
experiment is repeated 30 times for statistical evaluation, and the points in those figures are 
the average values. We can see that MISA converges within no more than 50 generations on 
all the experiments, while GISA can not converge within 100 generations. 
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(a) Segmentation results of Image10 

 

     
                                  MISA                                   GISA                               EGSA 

     
                                 SCEA                                    FCM                                  KM 

 
(b) Segmentation results of Image11 
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(c) Segmentation results of Image12 

Fig. 12. Typical results obtained from the compared algorithms on the natural images 

Fig. 14 shows the curves which show the influence of learning intensity. We make use of 
correct ratios of the six artificial texture images to exhibit the effect of learning intensity. The 
experiments are repeated 30 times, and we plot their statistical average values. Based on Fig. 
14, we can see that the correct ratio increases as the learning intensity is reinforced before at 
about 0.2. After that，the curves fluctuate but do not increase apparently. This demonstrates 
that learning intensity should be adjusted properly as a small value is not enough for good 
convergency while a big one will lead to wasting of computation. 

3. Image texture classification using a manifold distance based evolutionary 
clustering cethod 
3.1 Introduction 
Image classification or segmentation based on texture features using unsupervised 
approaches has been a challenge topic. Texture is an important property of some images. A 
lot of texture feature extraction methods have been developed over the past three decades. 
These texture features can be categorized into four major categories [53, 54]: statistical, 
geometrical, model-based, and signal processing. Among them, gray-level co-occurrence 
features, first proposed by Haralick, Shanmugam and Dinstein [55], are one of the most 
common features used in literature. In some images, the same object region may vary in 
appearance from image to image as well as within the same image. Thus, the selected 
training samples in a supervised algorithm may not be sufficient to include all the class 
variability throughout the image. Under these conditions, unsupervised classification, i.e. 
clustering, may be more effective. There are a variety of clustering approaches that could be  
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Fig. 13. The convergence curves of MISA and GISA 
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Fig. 14. The influence of learning intensity versus correct ratio 

used to assign class labels to the feature vectors. These approaches can be categorized into 
two groups [56, 57]: hierarchical clustering and partitional clustering, where partitional 
clustering approaches, such as K-Means Algorithm [58], partition the data set into a 
specified number of clusters by minimizing certain criteria. Therefore, they can be treated as 
an optimization problem. As global optimization techniques, Evolutionary Algorithms 
(EAs) are likely to be a good choice for this task. 
EAs, including Genetic Algorithm (GA), Evolutionary Strategy (ES), Evolutionary 
Programming (EP), etc., have been used for clustering tasks commonly in literature [59~62]. 
A variety of EA representations for clustering solutions have been explored, such as the 
straightforward encoding with each gene coding for the cluster membership of the 
corresponding data item, and the locus-based adjacency representation [62]. Many 
researchers [59~61] have chosen to use a more indirect approach that borrows from the K-
Means algorithm: the representation codes for cluster center only, and each data item is 
subsequently assigned to a cluster representative according to an appointed dissimilarity 
measure. The most popular dissimilarity measure is the Euclidean distance. By using 
Euclidean distance as a measure of dissimilarity, these evolutionary clustering methods as 
well as the K-Means algorithm have a good performance on the data set with compact 
super-sphere distributions, but tends to fail in the data set organized in more complex and 
unknown shapes, which indicates that this dissimilarity measure is undesirable when 
clusters have random distributions. As a result, it is necessary to design a more flexible 
dissimilarity measure for clustering. Su and Chou [63] proposed a nonmetric measure based 
on the concept of point symmetry, according to which a symmetry-based version of the K-
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Means algorithm is given. This algorithm assigns data points to a cluster center if they 
present a symmetrical structure with respect to the cluster center. Therefore, it is suitable to 
clustering data sets with clear symmetrical structure. Charalampidis [64] recently developed 
a dissimilarity measure for directional patterns represented by rotation-variant vectors and 
further introduced a circular K-Means algorithm to cluster vectors containing directional 
information. 
In order to solve the texture classification task effectively, in this study, we design a novel 
evolutionary clustering method, named manifold evolutionary clustering (MEC). In MEC, 
we adopt an indirect encoding approach, namely, each individual is a sequence of real 
integer numbers representing the cluster representatives. Each data item is assigned to a 
cluster representative according to a novel dissimilarity measure which can measure the 
geodesic distance along the manifold. After extracting texture features from an image, MEC 
determines a partitioning of the feature vectors using evolutionary search. The effectiveness 
of MEC will be validated by comparing with the K-Means algorithm, a modified K-Means 
algorithm using the manifold distance-based dissimilarity measure [65], and the genetic 
algorithm-based clustering technique proposed by Maulik and Bandyopadhyay [60] in 
solving seven benchmark clustering problems of artificial data sets, three artificial texture 
image classification problems and two Synthetic Aperture Radar (SAR) images classification 
problems. 
The remainder of this section is organized as follows: Section 2.2 describes the novel 
manifold distance-based dissimilarity measure. Section 2.3 describes the evolutionary 
clustering algorithm based on the novel dissimilarity measure. In Section 2.4, we summary 
and evaluate the experimental results.  

3.2 A novel manifold distance-based dissimilarity measure 
A meaningful measure of distance or proximity between pairs of data points plays an 
important role in partitional clustering approaches. Most of the clusters can be identified by 
their location or global characteristics. Through a large mount of observation, we have 
found the following two consistency characteristics of data clustering.  
a. Local consistency refers that data points close in location will have a high affinity. 
b. Global consistency refers that data points locating in the same manifold structure will 

have a high affinity. 
For real-world problems, the distribution of data points takes on a complex manifold 
structure, which results in the classical Euclidian distance metric can only reflect the local 
consistency, but fail to describe the global consistency. We can illustrate this problem by the 
following example. As shown in Fig. 15, we expect that the affinity between point a and 
point e is higher than the affinity between point a and point f. In other words, we are looking 
for a measure of dissimilarity according to which point a is closer to point e than to point f. 
In terms of Euclidian distance metric, however, point a is much closer to point f than to e, 
thus without reflecting the global consistency. Hence for complicated real-world problems, 
simply using Euclidean distance metric as a dissimilarity measure can not fully reflect the 
characteristics of data clustering. 
Here, we want to design a novel dissimilarity measure with the ability of reflecting both the 
local and global consistency. As an example, we can observe from the data distribution in 
Fig. 15 that data points in the same cluster tend to lie in the same manifold. 
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Fig. 15. An illustration of that the Euclidian distance metric can not reflect the global 
consistency. 

At first, data points are taken as the nodes V  of a weighted undirected graph ( , )G V E= . 
Edges { }ijE W=  reflect the affinity between each pair of data points. We expect to design a 
dissimilarity measure that assigns high affinity to two points if they can be linked by a path 
running along a manifold, and a low affinity if they cannot. This concept of dissimilarity 
measure has been shown in experiments to lead to significant improvement in classification 
accuracy when applied to semi-supervised learning [66, 67]. The aim of using this kind of 
measure is to elongate the paths that cross different manifolds, and simultaneously shorten 
those that not cross. 
To formalize this intuitive notion of dissimilarity, we need first define a so-called manifold 
length of line segment. We have found a property that a distance measure describing the 
global consistency of clustering does not always satisfy the triangle inequality under the 
Euclidean metric. As shown in Fig. 15, to describe the global consistency, it is required that 
the length of the path connected by shorter edges is smaller than that of the direct connected 
path, i.e. ab bc cd de ae+ + + < . In other words, a direct connected path between two points is 
not always the shortest one. 
Enlightened by this property, we define a manifold length of line segment as follows. 
Definition 1. The manifold length of line segment ( , )i jx x  is defined as  

 ( , )( , ) 1i jdist x x
i jL x x ρ −   (7) 

where ( ),i jdist x x  is the Euclidean distance between ix  and jx ; 1ρ >  is the flexing factor. 
Obviously, the manifold length of line segment possesses the property mentioned above, 
thus can be utilized to describe the global consistency. In addition, the manifold length 
between two points can be elongated or shortened by adjusting the flexing factor ρ . 



 Image Segmentation 

 

204 

Means algorithm is given. This algorithm assigns data points to a cluster center if they 
present a symmetrical structure with respect to the cluster center. Therefore, it is suitable to 
clustering data sets with clear symmetrical structure. Charalampidis [64] recently developed 
a dissimilarity measure for directional patterns represented by rotation-variant vectors and 
further introduced a circular K-Means algorithm to cluster vectors containing directional 
information. 
In order to solve the texture classification task effectively, in this study, we design a novel 
evolutionary clustering method, named manifold evolutionary clustering (MEC). In MEC, 
we adopt an indirect encoding approach, namely, each individual is a sequence of real 
integer numbers representing the cluster representatives. Each data item is assigned to a 
cluster representative according to a novel dissimilarity measure which can measure the 
geodesic distance along the manifold. After extracting texture features from an image, MEC 
determines a partitioning of the feature vectors using evolutionary search. The effectiveness 
of MEC will be validated by comparing with the K-Means algorithm, a modified K-Means 
algorithm using the manifold distance-based dissimilarity measure [65], and the genetic 
algorithm-based clustering technique proposed by Maulik and Bandyopadhyay [60] in 
solving seven benchmark clustering problems of artificial data sets, three artificial texture 
image classification problems and two Synthetic Aperture Radar (SAR) images classification 
problems. 
The remainder of this section is organized as follows: Section 2.2 describes the novel 
manifold distance-based dissimilarity measure. Section 2.3 describes the evolutionary 
clustering algorithm based on the novel dissimilarity measure. In Section 2.4, we summary 
and evaluate the experimental results.  

3.2 A novel manifold distance-based dissimilarity measure 
A meaningful measure of distance or proximity between pairs of data points plays an 
important role in partitional clustering approaches. Most of the clusters can be identified by 
their location or global characteristics. Through a large mount of observation, we have 
found the following two consistency characteristics of data clustering.  
a. Local consistency refers that data points close in location will have a high affinity. 
b. Global consistency refers that data points locating in the same manifold structure will 

have a high affinity. 
For real-world problems, the distribution of data points takes on a complex manifold 
structure, which results in the classical Euclidian distance metric can only reflect the local 
consistency, but fail to describe the global consistency. We can illustrate this problem by the 
following example. As shown in Fig. 15, we expect that the affinity between point a and 
point e is higher than the affinity between point a and point f. In other words, we are looking 
for a measure of dissimilarity according to which point a is closer to point e than to point f. 
In terms of Euclidian distance metric, however, point a is much closer to point f than to e, 
thus without reflecting the global consistency. Hence for complicated real-world problems, 
simply using Euclidean distance metric as a dissimilarity measure can not fully reflect the 
characteristics of data clustering. 
Here, we want to design a novel dissimilarity measure with the ability of reflecting both the 
local and global consistency. As an example, we can observe from the data distribution in 
Fig. 15 that data points in the same cluster tend to lie in the same manifold. 

Evolutionary-based Image Segmentation Methods   

 

205 

 

   
Fig. 15. An illustration of that the Euclidian distance metric can not reflect the global 
consistency. 

At first, data points are taken as the nodes V  of a weighted undirected graph ( , )G V E= . 
Edges { }ijE W=  reflect the affinity between each pair of data points. We expect to design a 
dissimilarity measure that assigns high affinity to two points if they can be linked by a path 
running along a manifold, and a low affinity if they cannot. This concept of dissimilarity 
measure has been shown in experiments to lead to significant improvement in classification 
accuracy when applied to semi-supervised learning [66, 67]. The aim of using this kind of 
measure is to elongate the paths that cross different manifolds, and simultaneously shorten 
those that not cross. 
To formalize this intuitive notion of dissimilarity, we need first define a so-called manifold 
length of line segment. We have found a property that a distance measure describing the 
global consistency of clustering does not always satisfy the triangle inequality under the 
Euclidean metric. As shown in Fig. 15, to describe the global consistency, it is required that 
the length of the path connected by shorter edges is smaller than that of the direct connected 
path, i.e. ab bc cd de ae+ + + < . In other words, a direct connected path between two points is 
not always the shortest one. 
Enlightened by this property, we define a manifold length of line segment as follows. 
Definition 1. The manifold length of line segment ( , )i jx x  is defined as  

 ( , )( , ) 1i jdist x x
i jL x x ρ −   (7) 

where ( ),i jdist x x  is the Euclidean distance between ix  and jx ; 1ρ >  is the flexing factor. 
Obviously, the manifold length of line segment possesses the property mentioned above, 
thus can be utilized to describe the global consistency. In addition, the manifold length 
between two points can be elongated or shortened by adjusting the flexing factor ρ . 



 Image Segmentation 

 

206 

According to the manifold length of line segment, we define a new distance metric, called 
manifold distance metric, which measures the distance between a pair of points by 
searching for the shortest path in the graph. 
Definition 2. Let data points be the nodes of graph ( , )G V E= , and lp V∈  be a path of length 

1l p= −  connecting the nodes 1p  and pp , in which 1( , )k kp p E+ ∈ , 1 k p≤ < . Let ,i jP  

denote the set of all paths connecting data points ix  and jx . The manifold distance between 

ix  and jx  is defined as 
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The manifold distance satisfies the four conditions for a distance metric, i.e. 
( , ) ( , )i j j iD x x D x x= ; ( , ) 0i jD x x ≥ ; ( , ) ( , ) ( , )i j i k k jD x x D x x D x x≤ +  for all , ,i j kx x x ; and 

( , ) 0i jD x x =  if and only if i jx x= . 

As a result, the manifold distance metric can measure the geodesic distance along the 
manifold, which results in any two points in the same manifold being connected by a lot of 
shorter edges within the manifold while any two points in different manifolds are connected 
by a longer edge between manifolds, thus achieving the aim of elongating the distance 
among data points in different manifolds and simultaneously shortening the distance 
among data points in the same manifold.  

3.3 Evolutionary clustering based on the manifold distance 
By using EAs to solving clustering tasks, it is necessary to design the individual 
representation method and the heuristic search operators, and formulate the objective 
function for optimization. 

3.3.1 Representation and operators 
In this study, we consider the clustering problem from a combinatorial optimization 
viewpoint. Each individual is a sequence of real integer numbers representing the sequence 
number of K cluster representatives. The length of a chromosome is K words, where the first 
gene represents the first cluster, the second gene represents the second cluster, and so on. As 
an illustration, let us consider the following example. 
Example 1. Let the size of the data set is 100 and the number of clusters being considered is 
5. Then the individual (6, 19, 91, 38, 64) represents that the 6-th, 19-th, 91-st, 38-th, and 64-th 
points are chosen to represent the five clusters, respectively. 
This representation method does not mention the data dimension. If the size of the data set 
is N and the number of clusters is K, then the search space is NK. 
Crossover is a probabilistic process that exchanges information between two parent 
individuals for generating offspring. In this study, we use the uniform crossover [68] 
because it is unbiased with respect to the ordering of genes and can generate any 
combination of alleles from the two parents [62, 69]. An example of the operation of uniform 
crossover on the encoding employed is shown in example 2. 
Example 2. Let the two parent individuals are (6, 19, 91, 38, 64) and (3, 29, 17, 61, 6), 
randomly generate the mask (1, 0, 0, 1, 0), then the two offspring after crossover are (6, 29, 
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17, 38, 64) and (3, 19, 91, 61, 64). In this case, the first offspring is not (6, 29, 17, 38, 6) because 
the 6 in bold is repeat, we keep it unchanged. 
Each individual undergoes mutation with probability pm as example 3. 
Example 3. Let the size of the data set is 100 and the number of clusters being considered is 
5. Then the individual (6, 19, 91, 38, 64) can mutate to (6, 19+ (100-19) +1random×⎢ ⎥⎣ ⎦ , 91, 38, 

64) or (6, 19- (19-1) +1random×⎢ ⎥⎣ ⎦ , 91, 38, 64) equiprobably when the second gene is chosen to 
mutate, random denotes a uniformly distributed random number in the range [0,1). 

3.3.2 Objective function 
Each data item is assigned to a cluster representative according to its manifold distance to 
the cluster representatives. As an illustration, let us consider the following example. 
Example 4. Let the 6-th, 19-th, 91-st, 38-th, and 64-th points represent the five clusters, 
respectively. For the first point, we compute the manifold distance between it and the 6-th, 
19-th, 91-st, 38-th, and 64-th points, respectively. If the manifold distance between the first 
point and the 38-th point is the minimum one, then the first point is assigned to the cluster 
represented by the 38-th point. All the points are assigned in this way.  
Subsequently, the objective function is computed as follows: 

 ( ) ( , )
k k

k
C C i C

Dev C D i μ
∈ ∈

= ∑ ∑   (9) 

where C  is the set of all clusters, kμ  is the representative of cluster kC , and ( , )kD i μ  is the 
manifold distance between the i-th data item of cluster kC  and kμ . 

3.3.3 Manifold evolutionary clustering algorithm 
In MEC, the processes of fitness computation, roulette wheel selection with elitism [70], 
crossover and mutation are executed for a maximum number of generations Gmax. The best 
individual in the last generation provides the solution to the clustering problem. The main 
loop of MEC is as follows. 
 

Algorithm 2.1. Manifold Evolutionary Clustering (MEC)  
Begin 

1. t=0 
2. randomly initialize population P(t) 
3. assign all points to clusters as the manifold distance and     compute the 

objective function values of P(t) 
4. if t< Gmax  
5.   t=t+1 
6.   select P(t) from P(t-1) using roulette wheel selection with elitism 
7.   crossover P(t) 
8.   mutate P(t) 
9.   go to step 3 
10. end if 
11. output the best and stop 

End 
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As a result, the manifold distance metric can measure the geodesic distance along the 
manifold, which results in any two points in the same manifold being connected by a lot of 
shorter edges within the manifold while any two points in different manifolds are connected 
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3.3.1 Representation and operators 
In this study, we consider the clustering problem from a combinatorial optimization 
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17, 38, 64) and (3, 19, 91, 61, 64). In this case, the first offspring is not (6, 29, 17, 38, 6) because 
the 6 in bold is repeat, we keep it unchanged. 
Each individual undergoes mutation with probability pm as example 3. 
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5. Then the individual (6, 19, 91, 38, 64) can mutate to (6, 19+ (100-19) +1random×⎢ ⎥⎣ ⎦ , 91, 38, 

64) or (6, 19- (19-1) +1random×⎢ ⎥⎣ ⎦ , 91, 38, 64) equiprobably when the second gene is chosen to 
mutate, random denotes a uniformly distributed random number in the range [0,1). 

3.3.2 Objective function 
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the cluster representatives. As an illustration, let us consider the following example. 
Example 4. Let the 6-th, 19-th, 91-st, 38-th, and 64-th points represent the five clusters, 
respectively. For the first point, we compute the manifold distance between it and the 6-th, 
19-th, 91-st, 38-th, and 64-th points, respectively. If the manifold distance between the first 
point and the 38-th point is the minimum one, then the first point is assigned to the cluster 
represented by the 38-th point. All the points are assigned in this way.  
Subsequently, the objective function is computed as follows: 

 ( ) ( , )
k k

k
C C i C

Dev C D i μ
∈ ∈

= ∑ ∑   (9) 

where C  is the set of all clusters, kμ  is the representative of cluster kC , and ( , )kD i μ  is the 
manifold distance between the i-th data item of cluster kC  and kμ . 

3.3.3 Manifold evolutionary clustering algorithm 
In MEC, the processes of fitness computation, roulette wheel selection with elitism [70], 
crossover and mutation are executed for a maximum number of generations Gmax. The best 
individual in the last generation provides the solution to the clustering problem. The main 
loop of MEC is as follows. 
 

Algorithm 2.1. Manifold Evolutionary Clustering (MEC)  
Begin 

1. t=0 
2. randomly initialize population P(t) 
3. assign all points to clusters as the manifold distance and     compute the 

objective function values of P(t) 
4. if t< Gmax  
5.   t=t+1 
6.   select P(t) from P(t-1) using roulette wheel selection with elitism 
7.   crossover P(t) 
8.   mutate P(t) 
9.   go to step 3 
10. end if 
11. output the best and stop 

End 
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The initial population in step 2 is initialized to K randomly generated real integer number in 
[1, N], where N is the size of the data set. This process is repeated for each of the P 
chromosomes in the population, where P is the size of the population. 

3.4 Experimental study 
3.4.1 Experimental setup 
In order to validate the performance of MEC, we first apply MEC to seven benchmark 
clustering problems of artificial data sets. The results will be compared with the K-Means 
algorithm (KM) [58], a modified K-Means algorithm using the manifold distance-based 
dissimilarity measure (DSKM) [65], and the genetic algorithm-based clustering technique 
(GAC) proposed by Maulik and Bandyopadhyay [60]. In all the algorithms, the desired 
number of clusters is set to be known in advance.  
In the second experiment, we will solve three artificial texture image classification problems 
using MEC, GAC, DSKM and KM, respectively. 
In the third experiment, we will solve the classification problems of one X-band SAR image 
and one Ku-band SAR image by using MEC, GAC, DSKM and KM, respectively. 
In the image classification experiments (the second and third experiments), we will use the 
gray-level co-occurrence matrix (GLCM) [55] method to extract texture features from 
images. There are many statistics that can be determined from each GLCM, such as angular 
second moment, contrast, correlation, sum of squares, entropy, and so on. Following [54], in 
this study, we chose three statistics, dissimilarity, entropy and correlation which indicate the 
degree of smoothness of the texture, the homogeneity and the correlation between the gray 
level pair, respectively. There are four parameters that must be indicated in order to 
generate co-occurrence data, namely, interpixel orientation, interpixel distance, the number 
of gray levels and window size. Typically, interpixel orientation is set to o o o o0 , 45 ,  90 ,  135  
since this is easiest to implement. Short interpixel distances have typically achieved the best 
success, so interpixel distance is 1 will be used. This combination of offset and orientation 
has characterized SAR texture well [54]. The role of varying the values of the number of 
gray levels and windows size with respect to GLCM statistics has been presented in many 
references [54, 71]. After their analysis and fine-tune experiments, in this study, we set the 
number of gray levels is 16 and the window size is 13 13× . 
The parameter settings used for MEC and GAC in our experimental study are given in Table 
3. For DSKM and KM, the maximum iterative number is set to 500, and the stop threshold is 
10-10. 
 

Parameter MEC GAC 
Maximum Number of 

generations 100 100 

population size 50 50 
Crossover probability 0.8 0.8 
Mutation probability 0.1 0.1 

Table 3. Parameter settings for MEC and GAC 

In the first two experiments, the true partitioning is known, we will evaluate the 
performance using two external measures, the Adjusted Rand Index [62, 72, 73] and the 
Clustering Error [65]. 
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The Adjusted Rand Index [72] is a generalization of the Rand Index [74] which takes two 
partitioning as the input and count the number of pair-wise co-assignments of data items 
between the two partitioning. Given a set of N points { }1 2, , , NS p p p= � , suppose 

{ }1 2, , , KU u u u= �  and { }1 2, , , KV v v v= �  represent two different partitions of the points in 

S such that 
1 1

K K

i j
i j

u v S
= =

= =∪ ∪  and ' 'i i j ju u v v∩ = ∩ =∅  for 1 ' , 1 'i i K j j K≤ ≠ ≤ ≤ ≠ ≤ . 

Suppose that U is the known true partition, and V is a clustering result. Let a be the number 
of pairs of points in the same class in U and in the same class in V, b be the number of pairs 
of points in the same class in U but not in the same class in V, c be the number of pairs of 
points in the same class in V but not in the same class in U, and d be the number of pairs of 
points in different classes in both partitions. The quantities a and d can be interpreted as 

agreements, and b and c as disagreements. Then the Rand Index is a d
a b c d

+
+ + +

. The Rand 

Index lies between 0 and 1, when the two partitions agree perfectly, the Rand Index is 1. A 
problem with the Rand Index is that the expected value of the Rand index of two random 
partitions does not take a constant value (say zero). The Adjusted Rand Index proposed by 
Hubert and Arabie [72] assumes the generalized hypergeometric distribution as the model 
of randomness, i.e. the U and V partitions are picked at random such that the numbers of 
points in the classes are fixed. Let ijn  be the number of points that are in both class iu  and 

class jv . Let in i  and jni  be the number of points in class iu  and class jv  respectively. 

Under the generalized hypergeometric model, it can be shown that: 

 , 22 2 2( ) ( ) ( ) /( )ij jin nn n
i j i jE ••⎡ ⎤ ⎡ ⎤=⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦∑ ∑ ∑i  (10) 

Then the Adjusted Rand Index is given as  
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The Adjusted Rand Index return values in the interval [0, 1] and is to be maximized.  
Let the known true partition be { }1 2, , , KU u u u= �  and the clustering result be 

{ }1 2, , , KV v v v= � . { }, 1,2, ,i j K∀ ∈ � , ( , )Confusion i j denotes the number of same data points 
both in the true cluster iu  and in the cluster jv  produced. Then, the Clustering Error is 

defined as 

 
1 1

1( , ) ( , )
K K

i j
i j

CE U V Confusion i j
N = =

≠

= ∑∑ ,  (12) 

where N is the size of data set. Note that there exists a renumbering problem, so the 
Clustering Error is computed for all possible renumbering of V, and the minimum one is 
taken. The Clustering Error also returns values in the interval [0, 1] and is to be minimized. 
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The Adjusted Rand Index return values in the interval [0, 1] and is to be maximized.  
Let the known true partition be { }1 2, , , KU u u u= �  and the clustering result be 
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where N is the size of data set. Note that there exists a renumbering problem, so the 
Clustering Error is computed for all possible renumbering of V, and the minimum one is 
taken. The Clustering Error also returns values in the interval [0, 1] and is to be minimized. 
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3.4.2 Implementation results on benchmark clustering problems 
We first select seven artificial data sets, named Line-blobs, Long1, Size5, Spiral, Square4, 
Sticks, and Three-circles to study a range of different interesting data properties. The 
distribution of data points in these data sets can be seen in Fig. 16. We perform 30 
independent runs on each problem. The average results of the two metrics, Clustering Error 
and Adjusted Rand Index, are shown in Table 4.  
 

Clustering Error Adjusted Rand Index Problem 
MEC GAC DSKM KM MEC GAC DSKM KM 

line-blobs 0 0.263 0.132 0.256 1 0.399 0.866 0.409 
Long1 0 0.445 0 0.486 1 0.011 1 0.012 
Size5 0.010 0.023 0.015 0.024 0.970 0.924 0.955 0.920 
Spiral 0 0.406 0 0.408 1 0.034 1 0.033 

Square4 0.065 0.062 0.073 0.073 0.835 0.937 0.816 0.816 
Sticks 0 0.277 0 0.279 1 0.440 1 0.504 

three-circles 0 0.569 0.055 0.545 1 0.033 0.921 0.044 

Table 4. Results of MEC, GAC, DSKM and KM on artificial data sets where the results in 
bold are the best ones 
From Table 4, we can see clearly that MEC did best on six out of the seven problems, while 
GAC did best only on the Square4 data set. DSKM also obtained the true clustering on three 
problems. KM and GAC only obtained desired clustering for the two spheroid data sets, i.e. 
Size5 and Square4. This is due to that the structure of the other five data sets does not satisfy 
convex distribution. On the other hand, MEC and DSKM can successfully recognize these 
complex clusters, which indicate the manifold distance metric are very suitable to measure 
complicated clustering structure. When comparisons are made between MEC and DSKM, 
MEC obtained the true clustering on the Long1, Spiral, Sticks, Line-blobs and Three-circles 
in all the 30 runs, but DSKM can not do it on the Line-blobs and Three-circles. Further more, 
for the Size5 and Square4 problems, MEC did a little better than DSKM in both the 
Clustering Error and the Adjusted Rand Index. The main drawback of DSKM is that it has to 
recalculate the geometrical center of each cluster as the K-Means algorithm after cluster 
assignment which reducing the ability of reflecting the global consistency. MEC made up 
this drawback by evolutionary searching the cluster representatives from a combinatorial 
optimization viewpoint. In order to show the performance visually, the typical simulation 
results on the eight data sets obtained from MEC are shown in Fig. 16. 

3.4.3 Implementation results on artificial texture image classification 
Image1 is a simple 256 256×  bipartite image (Fig. 17(a)). The original image contains two 
textures, cork and cotton, selected from the Brodatz texture images [75]. Fig. 17(b) represents 
the true partitioning of Image1. Image2 also contains two textures as shown in Fig. 17(c), 
and Fig. 17(d) represents its true partitioning. Image3 is a more complicated texture 
synthesized image with 4 classes, and Fig. 17(e) and (f) represent the original image and the 
true partitioning, respectively. 
We perform 30 independent runs on each problem. The average results of the two metrics, 
Clustering Error and Adjusted Rand Index, are shown in Table 5. Fig. 18 to Fig. 20 are the 
typical implementation results obtained from the four algorithms, MEC, GAC, DSKM and 
KM, in clustering the three texture images, respectively. 
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Fig. 16. The typical implementation results on the artificial data sets obtained from MEC. (a) 
Line- blobs; (b) Long1; (c) Size5; (d) Spiral; (e) Square4; (f) Sticks; (G) Three-circles. 
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Fig. 16. The typical implementation results on the artificial data sets obtained from MEC. (a) 
Line- blobs; (b) Long1; (c) Size5; (d) Spiral; (e) Square4; (f) Sticks; (G) Three-circles. 
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Fig. 17. Artificial texture images and their true partitioning. (a) Original Image1; (b) True 
partitioning of Image1; (c) Original Image2; (d) True partitioning of Image2; (e) Original 
Image3; (f) True partitioning of Image3. 

Evolutionary-based Image Segmentation Methods   

 

213 

Clustering Error Adjusted Rand Index Problem 
MEC GAC DSKM KM MEC GAC DSKM KM 

Image1 0.0030 0.0069 0.0035 0.0071 0.9462 0.9115 0.9437 0.9113 
Image2 0.0037 0.1594 0.0072 0.2017 0.9376 0.9057 0.9109 0.8869 
Image3 0.1212 0.2554 0.1858 0.2899 0.8638 0.8012 0.8117 0.8094 

Table 5. Results of MEC, GAC, DSKM and KM on artificial texture image classification 
where the results in bold are the best ones 

 

 
Fig. 18. The typical implementation results obtained from (a) MEC, (b) GAC, (c) DSKM and 
(d) KM in clustering Image1. 
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partitioning of Image1; (c) Original Image2; (d) True partitioning of Image2; (e) Original 
Image3; (f) True partitioning of Image3. 
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Fig. 18. The typical implementation results obtained from (a) MEC, (b) GAC, (c) DSKM and 
(d) KM in clustering Image1. 
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As shown in Table 5, all the average values of Cluster Error obtained from MEC, GAC, 
DSKM and KM in clustering Image1 are less than 1%, so all the four algorithms are easily 
able to segment the Image1. The values of Cluster Error and Adjusted Rand Index and Fig. 
18 also show that the results obtained from MEC and DSKM are much better than the results 
of GAC and KM because both MEC and DSKM assign data items according to the manifold 
distance while GAC and KM assign data items according to Euclidian distance. However, 
the computational cost of the manifold distance is much larger than that of Euclidian 
distance. MEC and DSKM have similar results in clustering Image1. 
 
 

 
Fig. 19. The typical implementation results obtained from (a) MEC, (b) GAC, (c) DSKM and 
(d) KM in clustering Image2. 
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Fig. 20. The typical implementation results obtained from (a) MEC, (b) GAC, (c) DSKM and 
(d) KM in clustering Image3. 

In clustering Image2, the average value of Cluster Error obtained from MEC is much smaller 
than the results obtained from GAC, DSKM and KM, and the average value of Adjusted 
Rand Index of MEC is obviously greater than the results obtained from GAC, DSKM and 
KM. So MEC does best in this problem. Fig. 19 also shows that the MEC result and DSKM 
result are obviously better than the GAC result and KM result, and the MEC result is better 
than the DSKM result. MEC segment the two textures better than DSKM may be due to 
MEC search the two cluster representatives using evolutionary searching but DSKM has to 
recalculate the geometrical center of each cluster after cluster assignment in each iteration 
which reduces the ability of reflecting the global consistency.  
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Fig. 19. The typical implementation results obtained from (a) MEC, (b) GAC, (c) DSKM and 
(d) KM in clustering Image2. 
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Fig. 20. The typical implementation results obtained from (a) MEC, (b) GAC, (c) DSKM and 
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In clustering the more complicated texture image Image3, all the average values of Cluster 
Error are greater than 12%, so none of the four algorithms can segment the image very well 
based on GLCM features. However, Table 5 and Fig. 20 show that MEC does much better 
than the other three algorithms. 

3.4.4 Implementation results on remote sensing image classification 
The first image, as shown in Fig. 21(a), is an X-band SAR image of a lakeside in Switzerland. 
The size of the image is 140 155×  pixels. We want to classify the image into three clusters, 
namely, the lake, the city, and the mountainous region. The second image, as shown in Fig. 
21(b), is a Ku-band SAR image of the Rio Grande River nearby Albuquerque, New Mexico, 
USA. The size of the image is 256 256×  pixels. We want to classify the image into three 
clusters, namely, the river, the vegetation, and the crop. Fig. 22 and Fig. 23 shows the 
clustering results obtained from the MEC, DSKM, GAC and KM in clustering these two SAR 
image respectively. 
 
 
 
 

 
 
 

Fig. 21. Original SAR images. (a) X-band SAR image; (b) Ku-band SAR image. 

Fig. 22 shows that all methods are readily able to perform the classification of the X-band 
SAR image. Fig. 22(b) and (d) show that many mountainous regions in the bottom left are 
recognized as lake by KM and GAC. Fig.22 (a) and (c) show that MEC can recognize these 
regions and DSKM can obviously reduce these error recognitions. Meanwhile, KM confuses 
many mountainous regions in the top left with city seriously. MEC reduce these errors 
mostly. Generally speaking, the MEC method outputs relatively better partitioning.   
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Fig. 22. Implementation results obtained from (a) MEC, (b) GAC, (c) DSKM and (d) KM in 
clustering the X-band SAR image. 

Fig. 23 shows that the MEC, GAC, DSKM and KM generate different results, and all the 
methods do not perform as well as the first SAR image. Generally speaking, the two 
methods based on the manifold distance generate better partitioning than GAC and KM. 
The dissimilarity measure based on Euclidean distance tends to confuse the crop with river. 
Relatively, MEC and DSKM generate better partitioning of the river region. In 
distinguishing the vegetation and crop, the partitioning of GAC and KM appear more 
discontinuous than the results of MEC and DSKM method. GAC and KM tend to confuse 
the vegetation with crop along the river, delineating the crop more than it should. However, 
MEC and DSKM tend to identify the vegetation in the bottom left as the river, due to the 
nature of the gray-level of the leads in that region. DSKM also tends to confuse the 
vegetation with crop in the region along the river and the bottom left of the image. 
Generally speaking, MEC does better than DSKM, GAC does better than KM, and MEC and 
DSKM do much better than GAC and KM, in partitioning this Ku-band SAR image. 

3.4.5 Robustness and computing time 
In order to compare the robustness of these methods, we follow the criteria used by [76]. In 
detail, the relative performance of the algorithm m on a particular data set is represented by 
the ratio bm of its mean value of Adjusted Rand Index Rm and the highest mean value of 
Adjusted Rand Index among all the compared methods: 



 Image Segmentation 

 

216 

In clustering the more complicated texture image Image3, all the average values of Cluster 
Error are greater than 12%, so none of the four algorithms can segment the image very well 
based on GLCM features. However, Table 5 and Fig. 20 show that MEC does much better 
than the other three algorithms. 

3.4.4 Implementation results on remote sensing image classification 
The first image, as shown in Fig. 21(a), is an X-band SAR image of a lakeside in Switzerland. 
The size of the image is 140 155×  pixels. We want to classify the image into three clusters, 
namely, the lake, the city, and the mountainous region. The second image, as shown in Fig. 
21(b), is a Ku-band SAR image of the Rio Grande River nearby Albuquerque, New Mexico, 
USA. The size of the image is 256 256×  pixels. We want to classify the image into three 
clusters, namely, the river, the vegetation, and the crop. Fig. 22 and Fig. 23 shows the 
clustering results obtained from the MEC, DSKM, GAC and KM in clustering these two SAR 
image respectively. 
 
 
 
 

 
 
 

Fig. 21. Original SAR images. (a) X-band SAR image; (b) Ku-band SAR image. 

Fig. 22 shows that all methods are readily able to perform the classification of the X-band 
SAR image. Fig. 22(b) and (d) show that many mountainous regions in the bottom left are 
recognized as lake by KM and GAC. Fig.22 (a) and (c) show that MEC can recognize these 
regions and DSKM can obviously reduce these error recognitions. Meanwhile, KM confuses 
many mountainous regions in the top left with city seriously. MEC reduce these errors 
mostly. Generally speaking, the MEC method outputs relatively better partitioning.   

Evolutionary-based Image Segmentation Methods   

 

217 

 
Fig. 22. Implementation results obtained from (a) MEC, (b) GAC, (c) DSKM and (d) KM in 
clustering the X-band SAR image. 

Fig. 23 shows that the MEC, GAC, DSKM and KM generate different results, and all the 
methods do not perform as well as the first SAR image. Generally speaking, the two 
methods based on the manifold distance generate better partitioning than GAC and KM. 
The dissimilarity measure based on Euclidean distance tends to confuse the crop with river. 
Relatively, MEC and DSKM generate better partitioning of the river region. In 
distinguishing the vegetation and crop, the partitioning of GAC and KM appear more 
discontinuous than the results of MEC and DSKM method. GAC and KM tend to confuse 
the vegetation with crop along the river, delineating the crop more than it should. However, 
MEC and DSKM tend to identify the vegetation in the bottom left as the river, due to the 
nature of the gray-level of the leads in that region. DSKM also tends to confuse the 
vegetation with crop in the region along the river and the bottom left of the image. 
Generally speaking, MEC does better than DSKM, GAC does better than KM, and MEC and 
DSKM do much better than GAC and KM, in partitioning this Ku-band SAR image. 

3.4.5 Robustness and computing time 
In order to compare the robustness of these methods, we follow the criteria used by [76]. In 
detail, the relative performance of the algorithm m on a particular data set is represented by 
the ratio bm of its mean value of Adjusted Rand Index Rm and the highest mean value of 
Adjusted Rand Index among all the compared methods: 



 Image Segmentation 

 

218 

 
Fig. 23. Implementation results obtained from (a) MEC, (b) GAC, (c) DSKM and (d) KM in 
clustering the Ku-band SAR image. 
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The best method m* on that data set has bm* =1, and all the other methods have bm≤ 1. The larger 
the value of bm, the better the performance of the method m is in relation to the best performance 
on that data set. Thus the sum of bm over all data sets provides a good measurement of the 
robustness of the method m. A large value of the sum indicates good robustness. 
Fig. 24 shows the distribution of bm of each method over the ten problems. For each method, 
the 10 values of bm are stacked and the sum is given on top of the stack. Fig. 24 reveals that 
MEC has the highest sum value. In fact, the bm values of MEC are equal or very close to 1 on 
all the test problems, which denotes MEC performs very well in different situations. Thus 
MEC is the most robust method among the compared methods. 
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Fig. 24. Robustness of the compared algorithms  

Fig. 25 illustrates the sum of the computing time of the four algorithms in solving the twelve 
problems at an IBM IntelliStation M Pro 6233. From Fig. 25, it can be seen that the 
computing time of MEC is obviously longer than the computing time of GAC and KM. The 
main computational cost of MEC lies in computing the manifold distance between each pair 
of data points. 

 
Fig. 25. Computing time of the compared algorithms. 

4. Concluding remarks 
In the first method, we proposed a novel image segmentation approach based on memetic 
algorithm called MISA. MISA applies the idea of clustering to achieve image segmentation task. 
In preprocessing phase, gray-level co-occurrence matrix and wavelet decomposition are used 
for feature extraction. The watershed segmentation is employed to segment images into non-
overlap small regions. MISA tries to find the optimal combination of the watershed regions 
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under the criteria of interclass variance in feature space by a memetic algorithm. In MISA, after 
implementing cluster-based crossover and mutation, the individual learning procedure moves 
exocentric regions in current cluster to the one they should belong to according to the distance 
between these regions and cluster centers in feature space. Then, tournament selection and 
elitism strategy are used for producing the next generation. If stop criterion is satisfied, the 
segmentation result is outputted directly using the best individual in population. 
In order to evaluate the new algorithm, six artificial texture images, three remote sensing 
images and three natural images are employed in experiments. The EGSA, SCEA, GISA, 
FCM and KM are our compared algorithms. We exhibit typical segmentation results, 
convergence curves for all kinds of images, and numerical results on artificial texture images 
for which the true partitioning is known. Experimental results showed that MISA 
outperformed GISA on most of the tested images. The only difference between GISA and 
MISA lies in the individual learning strategy. Thus the new improvement of MISA could 
benefit from the learning operator. The comparisons between MISA and the compared 
algorithms showed that MISA was an effective image segmentation approach. 
Image segmentation remains a challenging problem. The main contribution of this study is 
to make substantial progress through the introduction of memetic computing methods to 
solving this problem. This study also shows that MAs provide useful computational tools. 
However we only designed one local search technique for image segmentation problem in 
this method. We will try to design more individual learning methods to cooperate together 
as well as higher order learning strategy in our future work. 
In this study, we have attempted to illustrate the power of MA for segmenting the three 
kinds of images, namely texture images, remote sensing images and natural images. In fact, 
it is difficult or impossible to design an always powerful general-purpose algorithm. Thus, 
applying the proposed algorithm for practical applications such as magnetic resonance 
imaging (MRI) image segmentation and synthetic aperture radar (SAR) image segmentation 
with domain-specific knowledge is also planned in our future work. 
In the second method, we proposed the manifold evolutionary clustering using a novel 
representation method and a manifold distance-based dissimilarity measure to solve 
unsupervised image classification based on texture features. The experimental results on 
seven artificial data sets with different manifold structure, three artificial texture images and 
two SAR images showed that the novel manifold evolutionary clustering algorithm 
outperformed the KM, GAC and DSKM in terms of cluster quality and robustness. MEC 
made up the drawbacks of DSKM by evolutionary searching the cluster representatives 
from a combinatorial optimization viewpoint instead of recalculating the center of each 
cluster after cluster assignment.  
The manifold evolutionary clustering algorithm is a trade-off of flexibility in clustering data 
with computational complexity. The main computational cost for the flexibility in detecting 
clusters lies in searching for the shortest path between each pair of data points which makes 
it much slower than GAC and KM. To find a fast or approximate computing method of the 
manifold distance is also our future work. 
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1.  Introduction  
There are many governmental, cultural, commercial and educational organizations that manage 
large number of manuscript textual information. Since the management of information 
recorded on paper or scanned documents is a hard and time-consuming task, Document Image 
Analysis (DIA) aims to extract the intended information as a human would (Nagy, 2000). The 
main subtasks of DIA (Mao et al. 2003) are: i) the document layout analysis, which aims to 
locate the “physical” components of the document such as columns, paragraphs, text lines, 
words, tables and figures, ii) the document content analysis, for understanding/labelling these 
components as titles, legends, footnotes, etc. iii) the optical character recognition (OCR) and iv) 
the reconstruction of the corresponding electronic document.  
The proposed algorithms that address the above-mentioned processing stages come mainly 
from the fields of image processing, computer vision, machine learning and pattern 
recognition. Actually, some of these algorithms are very effective in processing machine-
printed document images and therefore they have been incorporated in the workflows of 
well-known OCR systems. On the contrary, no such efficient systems have been developed 
for handling handwritten documents. The main reason is that the format of a handwritten 
manuscript and the writing style depend solely on the author's choices. For example, one 
could consider that text lines in a machine-printed document are of the same skew, while 
handwritten text lines may be curvilinear. 
Text line segmentation is a critical stage in layout analysis, upon which further tasks such as 
word segmentation, grouping of text lines into paragraphs, characterization of text lines as 
titles, headings, footnotes, etc. may be developed. For instance, a task for text-line 
segmentation is involved in the pipeline of the Handwritten Address Interpretation System 
(HWAIS), which takes a postal address image and determines a unique delivery point 
(Cohen et al., 1994). Another application, in which text line extraction is considered as a pre-
processing step, is the indexing of George Washington papers at the Library of Congress as 
detailed by Manmatha & Rothfeder, 2005. A similar document analysis project, called the 
Bovary Project, includes a text-line segmentation stage towards the transcription of the 
manuscripts of Gustave Flaubert (Nicolas et al., 2004a). In addition, many recent projects, 
which focus on digitisation of archives, include activities for document image 
understanding in terms of automatic or semi-automatic extraction and indexing of metadata 
such as titles, subtitles, keywords, etc. (Antonacopoulos & Karatzas, 2004, Tomai et al., 
2002). Obviously, these activities include text-line extraction.  
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detailed by Manmatha & Rothfeder, 2005. A similar document analysis project, called the 
Bovary Project, includes a text-line segmentation stage towards the transcription of the 
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which focus on digitisation of archives, include activities for document image 
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Fig. 1. Handwritten document images included in the training set of ICDAR 2007 
Handwriting Segmentation: 024.tif, 016.tif, 010.tif, 044.tif, 068.tif and 026.tif 
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This chapter is a comprehensive survey of methods exploited to segment handwritten 
document images into text lines during the last two decades. The main underlying 
assumption is that the non-textual information has been removed and the document image 
comprises only plain text. Even though this hypothesis seems to simplify the task, text-line 
segmentation has to face many challenges, such as the touching or overlapping text lines 
and the variation of skew angles. Some typical examples of handwritten document images 
are illustrated in fig. 1.  In the next sections, we will describe, in detail, how the proposed 
methods try to overcome these difficulties. 
The main idea in text-line segmentation is to consider the foreground pixel density and 
employ one of the following three broad classes of techniques (Razak et al., 2008). The first 
includes traditional methods that have been applied to printed documents and is based on 
the analysis of projection profiles. The second class incorporates grouping techniques, also 
known as bottom-up strategies that attempt to build text lines by considering the alignments 
of foreground pixels or connected components. The third category includes smearing 
approaches that aim to enhance the text lines structure by applying linear or morphological 
filters and exploiting well-known image segmentation methods, such as level sets, scale-
space analysis (Lindeberg, & Eklundh, 1992), etc. Moreover, there are some methods that 
exploit a combination of these techniques with the purpose to improve further the 
segmentation results. 
In section 2, the problem definition and the main challenges of the task are described. 
Several techniques and the contributions of the most effective algorithms within each class 
are presented in section 3. The available recourses for validating relative methods and the 
comparative results of recent contests are reported in section 4. Finally, the chapter is 
concluded with a discussion of the main outcomes. 

2. Background 
When creating a manuscript, the author selects the writing instrument and the paper in such a 
way as to produce a readable document, namely a document with high contrast between the 
traces of the pen (foreground) and the paper (background). As a consequence, the digitisation 
of these documents in most of the cases generates binary images. In the case of grey-scale 
document images, most of the proposed methods for text-line extraction incorporate an initial 
processing stage of binarization by employing global (Otsu, 1979) or local thresholding 
(Niblack, 1986, Sauvola & Pietikäinen, 2000). However, some recent techniques combine the 
results of processing both the grey-scale and the binary versions of the document image.  
In binary document images, the traces of the writing instrument are represented by pixels 
that have value one and constitute the text. The other pixels have value zero, corresponding 
to the background. The convention for using the values 1 and 0 for foreground and 
background pixels respectively is very common in studies related to the binary images. 

2.1 Definitions 
Considering that a two-dimensional binary image is defined on the discrete plane 2Z  and 
by selecting a square grid and a certain type of connectivity (e.g. 8-n denotes all the 
neighbours of a pixel, while 4-n indicates only the cross neighbours), we could represent 
objects or shapes of the image as groups of neighbouring pixels with the same value.  In the 
view of set theory, a binary image is modelled by the corresponding set S as follows: 
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Fig. 1. Handwritten document images included in the training set of ICDAR 2007 
Handwriting Segmentation: 024.tif, 016.tif, 010.tif, 044.tif, 068.tif and 026.tif 
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where x  denotes the coordinates of a pixel and s  is a binary function { }2: 0,1s →Z  (Soille, 
2004). Then, the shapes in the binary image are defined as the maximal connected subsets of 
the image foreground pixels, called connected components (CCs). Therefore, the CCs in a 
document image could be noise specks, dots, single symbols, groups of touching characters, 
parts of a character that is broken, etc. The extraction of CCs is accomplished by applying a 
connected component operator that assigns the same value to every pixel of each distinct 
CC. A common algorithm for identifying CCs is outlined in (Haralick & Shapiro, 1992).  
A text line could be considered as a group of CCs that are adjacent, relative close to each 
other and correspond to occurrences of text elements. By adopting this simple definition, 
text-line segmentation produces an image, in which each text pixel has a value that 
identifies the proper text-line (fig. 2, left). Alternatively, a text line could be represented by a 
large CC that covers the corresponding part of the image, or by a closed curve that 
represents the boundary of each text line (fig. 2, right). 
 

  
Fig. 2. Representation of text lines as: groups of text pixels with the same value (left) and 
parts of the document image (right) 

2.2 Challenges 
The main challenges of text-line segmentation of handwritten documents arise from the 
variation of the skew angle between text lines or along the same text line, the existence of 
overlapping and/or touching lines, the variable character size, the variation of intra-line and 
inter-line gaps and the non-manhattan layout. To overcome these difficulties, an efficient 
text-line segmentation algorithm should represent the boundaries of each text line by a 
closed curve instead of enclosing a text line with a rectangular. In addition, such an 
algorithm should incorporate procedures for cutting CCs which running along two or more 
text lines. These are the major differences in handling manuscripts rather than machine-
printed documents. 
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Actually, text line segmentation in printed documents could be seen as a solved problem 
(Plamondon & Srihari, 2000), which is equivalent with the estimation of the document’s 
skew angle. A comprehensive survey and the annotated bibliography on skew detection of 
printed document images are presented in (Hull, 1998). To this point, it is supposed that text 
lines in a printed document have a unique skew angle. Thus, the proper rotation of the 
image will result to horizontal text lines that could be easily located. A well-known and 
efficient method for layout analysis of printed documents, called Docstrum, is outlined in 
(O’Gorman, 1993). The main assumption is that the distances between characters of the same 
text line are smaller than the distances between characters of successive text lines. The fact 
that this assumption does not hold for manuscripts, explains why Docstrum cannot handle 
handwritten documents successfully, as shown in fig. 3.   
As mentioned above, this task focuses on text elements only. Therefore, noise removal is the 
first pre-processing step. In binary document images which incorporate merely textual 
information, noise removal is equivalent with the elimination of CCs that do not represent 
text elements but mainly occur due to misses at the digitisation phase. In document images 
which are considered as normally “clear”, simple methods adopting median filters or 
heuristics based on geometrical and topological properties of the CCs are employed to 
remove the noisy data. For example, a large CC, which is lying on the edges of the image 
arises due to the inaccurate placement of the manuscript to the scanner and need to be 
removed. However, the extraction of actual text elements from digitised historical archives 
might be a significant issue. Actually, historical documents suffer from smudges, smears, 
faded print and bleed-through of writing from the opposite side of a page (Likforman-
Sulem et al., 2007). 
Document images are captured in high resolution (about 300dpi) in order to be suitable for 
OCR engines. However, text lines have an underlying texture that is manifest in printed 
documents at low resolutions about 40dpi (Bloomberg, 1996). Hence, subsampling methods 
that prevent aliasing are also applied in text-line segmentation.  

3. Proposed methods 
Handwritten documents are characterised by high variability of writing styles. Thus, most 
of the existing methods adapt to the properties of a document image and eliminate the use 
of prior knowledge. According to the adopted strategy, the existing methods are classified 
in three categories, which are discussed in this section. In general, text-line segmentation 
techniques are script independent. However, some special scripts such as Indian and Arabic 
incorporate many characters with diacritical points that require great care in CCs 
assignment. 

3.1 Projection-based methods 
Given that an image A  with height M  and width N  could be considered as a matrix of the 
same dimensions, the projection profile of the image is defined as follows:  
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Therefore, the projection is a one-dimensional signal that denotes the amount of text pixels 
per row. Consequently, the lobes (valleys) of the projection correspond to foreground 
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Fig. 3. Text-line segmentation of a machine-printed and a handwritten document image by 
exploiting the Docstrum method (O’Gorman, 1993). The figure is reprinted (Li et al., 2008) 
with permission from the author. 
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(background) areas of the image. Supposing that the text lines have the same skew angle, 
the amplitude and the frequency of the projection are maximized when the skew of the text 
is zero. Based on this characteristic, many proposed approaches rotate the image through a 
range of angles, calculate the projection for each angle and estimate the global skew angle 
according to a properly selected criterion. Such a criterion could be based on the variance of 
the projections (Bloomberg et al., 1993) and the sum of the coefficients of the power 
spectrum (Postl, 1988). After estimating the unique skew angle and rotating the image 
appropriately, the local minima of the projection allocate the positions of text-line 
separators. 
In machine-printed documents, the separators will be horizontal lines lying within the space 
between adjacent text lines. Apparently, this might be occurred in some manuscripts written 
with great care and consistency. In fact, this technique is adopted for the process of 1000 
sampled documents from the George Washington corpus at the Library of Congress 
(Manmatha & Rothfeder, 2005). The additional processing step is the smoothing of the 
projection by applying a Gaussian low pass filter in order to eliminate false alarms (i.e. 
insignificant minima) and reduce the noise. A similar method (Santos et al., 2009) includes a 
post-processing stage for labeling candidate text lines as false or actual, according to their 
geometrical features (i.e. lines, which correspond to very narrow lobes of the projection, 
should be removed). Although this approach has been tested in 150 images from the IAM 
off-line handwritten database (Marti & Bunke, 2002) and showed almost excellent results, it 
is worth to mention that the text-line segmentation in documents of this database seems to 
be a straightforward task. 
A common feature of manuscripts is the overlapping of successive text lines due to the 
ascenders and/or descenders of some characters. Hence, the formulation of a horizontal line 
as a separator is often not feasible. With the purpose to overcome this difficulty, some 
researchers exploit the projections in order to locate the areas (i.e. the areas between two 
successive maxima) in which the separators should be allocated. Considering 
ascenders/descenders as obstacles, the algorithms try to find a path from the left to the right 
edge in each area, by attempting to move around the obstacles (fig. 4). If the deviation is too 
high, the algorithm intersects the character and continues forward. Such segmenters could 
be based on predefined constrains (Yanikoglu & Sandon, 1998) or on the minimization of a 
proper cost function (Weliwitage et al., 2005). 
 

  
Fig. 4. The line separator should be lying in the gray area between the text lines (left, 
reprinted from Yanikoglu & Sandon, 1998). The final line separator (right, reprinted from 
Weliwitage et al., 2005). 

Since variation of skew angles between text lines or along the same text line is common in 
manuscripts, the global projections based approaches cannot provide a general solution. 
Piece-wise projections can be seen as a modification of global projections to the properties of 
handwritten documents, by which the separators between text lines are drawn in staircase 
function fashion along the width of the document page. The main idea of piece-wise 
projections is to divide the document image in vertical non-overlapping equi-width zones 
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and find the critical local minima of each projection. The selection of the width of the zones 
is a trade-off between the local skew and the text density. In other words, if the width was 
large enough, the skew should not be considered as constant. Furthermore, a narrow width 
would produce zones, which do not include adequate amount of text. Relative experiments 
showed that a zone width equal to 5% of the document image width seems to be an 
appropriate value.  
However, the non-manhattan layout of manuscripts will result in vertical zones without 
enough foreground pixels for every text line. In such cases, some local minima may be lost 
and the results of two adjacent zones may be ambiguous. To deal with these problems, we 
calculate a smooth version of the projections influenced by the neighboring zones and 
introduce a separator-drawing algorithm that combines separators of consecutive zones 
according to their proximity and the local text density as shown in fig. 5 (Papavassiliou et al. 
2010). 
 

 0 0 2 0 4 0 6 0 8 1 1 2 1 4 

  0 0 2 0 4 0 6 0 8 1 1 2 1 4  
Fig. 5. The separator-drawing algorithm (reprinted from Papavassiliou et al., 2010). The 
separators in green are ambiguous (first column). New separators in these areas (second 
column) should be located at the global minima of the metric function (third column) 
influenced by the local foreground density and the proximity of the separators. The 
separators with the same colors are associated (fourth column). 

The last challenge that projection-based methods have to face is the assignment of CCs to 
the proper text-lines. In most of the cases, this is a straightforward task since the majority of 
CCs lie between two line separators. However, some CCs either overlap with two text lines 
(i.e. characters with ascenders/descenders) or run along two text lines (touching lines). In 
order to preserve the ascending/descending symbols from been corrupted by arbitrary cuts, 
several heuristics based on the geometrical and topological properties such as the height, the 
length, the distance of neighboring CCs, etc. have been proposed. An interesting approach 
models the text lines by bivariate Gaussian densities considering the coordinates of the 
pixels of the CCs that have been already assigned. Then, the probabilities that the CC under 
consideration belongs to the upper or lower text lines are estimated and the decision is 
made by comparing the probabilities (Arivazhagan et al., 2007). This method has been tested 
on 720 documents including English, Arabic and children’s handwriting and performed a 
detection rate of 97.31%. In the case that a character should be split, the segmentation occurs 
at a proper cross point of the skeleton (Lam et al., 1992) by taking account the distance from 
the separator (fig. 6) as well as the slope and curvature of the stroke (Kuzhinjedathu et al., 
2008).  
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Fig. 6. Segmentation of a CC running along two text lines (reprinted from Papavassiliou et 
al., 2010).  

3.2 Grouping methods  
Grouping approaches, also known as bottom-up techniques, were very popular in text-line 
segmentation of handwritten documents due to their success in prior tasks concerning the 
process of machine-printed documents (Simon et al., 1997). These methods try to group CCs 
considering geometrical and topological characteristics of the CCs such as their distances, 
locations and orientation. The common strategy is to represent each CC with an appropriate 
vector (e.g. the coordinates of its gravity centre), calculate the distances between that point 
and the corresponding points of its neighbouring CCs and compare the distances with a 
proper predefined value. If the constrain is satisfied the CCs are grouped (Khandelwal et al., 
2009). Since such methods strongly depend on the values of the thresholds, they cannot 
handle variation in writing styles. In fact, (Feldbach & Tonnies, 2001) report that a similar 
method tested on historical church registers achieved a 97% recall rate when the thresholds 
values are adjusted to specific authors but decreased to 90% when these parameters 
remained constant for various authors. As a result, many recent methods produce an 
adjacency graph constructed by linking the pairs of neighbouring CCs with edges. Then, 
they try recursively to find the minimum spanning tree, which likely crosses CCs of the 
same text line (Nicolas et al., 2004b).   
Additionally, the orientations of the edges that connect these points are also examined. 
Supposing that CCs in the same text line could be represented by almost collinear points, 
Hough transform (Duda, & Hart, 1972) has been applied on handwritten documents. 
Although Hough-based approaches locate text lines with different skew angles correctly, 
they are not flexible to follow variation of skew along the same text line (fig. 7 left). 

3.3 Smearing methods 
In general, smearing approaches include two main processing steps. The first stage aims to 
enhance text areas by blurring the input image. The second step concerns the modification 
and use of well-known image segmentation methods in order to formulate the text lines. Li 
et al. (2008) apply an anisotropic Gaussian filter to smooth the image and provide a grey-
scale “probabilistic” image that denotes the text line distribution. It is worth to mention that 
the horizontal dimension of the filter is greater than the vertical in order to advance the 
mainly horizontal text-line orientation. Then, they locate the initial boundaries of text lines 
or parts of them using Niblack’s algorithm for binarization and finding the contours of the 
CCs in the produced binary image. Next, the level set method (Osher & Fedkiw, 2003) is 
adopted and the boundaries evolve concerning the local curvature and density with the 
purpose of moving fast along the horizontal direction and towards areas with high  
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the horizontal dimension of the filter is greater than the vertical in order to advance the 
mainly horizontal text-line orientation. Then, they locate the initial boundaries of text lines 
or parts of them using Niblack’s algorithm for binarization and finding the contours of the 
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Fig. 7. (left) Results of Hough-based transform (reprinted from Louloudis et al., 2008); (right) 
Segmentation of CCs based on min-cut/max-flow algorithm (reprinted from Kennard & 
Barret, 2006). 

probability being text. This method has been tested on several manuscripts in different 
scripts and performed pixel-level hit rates varying from 92% to 98%. As expected, the 
proposed method fails when the gap between two neighbouring text lines is smaller than 
the vertical dimension of the Gaussian filter. A similar approach adopts the Mumford-Shah 
model to locate text lines and then applies morphological operations to either segment 
merged text lines or join parts of the same text line (Du et al., 2008). Instead of using 
erosions and dilations Yin & Liu (2009) apply a modification of the variational Bayes 
framework to the downsampled input image. The binary image (after down-sampling, 
smoothing and binarization) is considered as a mixture model in which each CC is a 
Gaussian component. Since, a CC may correspond to more than one text lines, a CC is split 
according to the second eigenvalue of the covariance (i.e. thick CCs are candidate to be 
segmented). 
Other smearing strategies enhance the text areas by estimating an adaptive local 
connectivity map (ALCM). This map is actually a grey-scale image in which each pixel has a 
value that denotes the amount of text pixels in the proximity of the pixel under 
consideration. By converting this image to a binary one, the resulting CCs represent the text 
areas of the document image. In most cases, these CCs include many text lines and should 
be split. Considering such a CC as a graph with candidate source (sink) nodes the pixels in 
the upper (lower) part, the min-cut/max flow algorithm has been proposed for segmenting 
the CC to its main components (Kennard & Barret, 2006), as illustrated in fig. 7 right. 
Alternatively, the ALCM could be replaced by another image produced by applying the run 
length smoothing algorithm (RLSA). In this image, the value of a pixel is the distance of that 
pixel from the nearest text pixel. As previously, text areas are represented by pixels with 
small (dark) values while background corresponds to bright areas. Then, dark areas are 
grouped according to their orientation and proximity in order to formulate text lines (Shi & 
Govindaraju, 2004).  
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4. Evaluation 
Research groups test their method either on their own collection of handwritten documents 
or on a public available database. As a result, many such test sets have been constructed. In 
this section, we refer to three well-known collections that could be used for evaluating 
various processing steps such as text-line segmentation, word segmentation and character 
recognition. The IAM handwriting database1 consists of 1539 pages of scanned text 
containing 13353 and 115320 isolated and labelled text lines and words respectively. 
Although, this database is an excellent resource for validating word segmentation and 
character recognition algorithms, the text-line extraction seems not to be a complex task due 
to significant gaps between successive text lines in many images. Another famous database 
is the NIST Handprinted Forms and Characters Database2, which includes handwritten 
sample forms from 3600 writers. This collection is mainly used for evaluating character 
recognition techniques but it could be also employed to assess text-line segmentation 
algorithms.  
The other two benchmarking databases are the training and test sets constructed for the 
Handwriting Segmentation Contests in the context of ICDAR 20073 and 20094. The first 
collection consists of 100 images (20 and 80 for training and test, respectively). The second 
database includes these images (as the training set) and 200 images that construct the test 
set. The documents are either modern manuscripts written by several writers in several 
languages (English, French, German and Greek) or historical handwritten archives, or 
document samples selected from the web. It is worth to mention that none of the documents 
includes any non-text elements (lines, drawings, etc.)  
The comparative results of the algorithms, which participated in ICDAR 2007 Handwriting 
Segmentation Contest (Gatos et al., 2007) or have been tested on this dataset, are presented 
in Table 1.  Detection Rate (DR) denotes the ratio between the number of text lines detected 
correctly and the number of ground-truth lines (1771). Similarly, Recognition Accuracy (RA) 
is calculated by dividing the number of correctly detected lines with the total number of 
detected text lines. FM denotes the harmonic mean of DR and RA. 
 

 DR(%) RA(%) FM% 
BESUS  (Das et al., 1997) 86.6 79.7 83.0 

DUTH-ARLSA 73.9 70.2 72.0 
ILSP-LWSeg (Papavassiliou et al., 2010) 97.3 97.0 97.1 

PARC 92.2 93.0 92.6 
UoA-HT (Louloudis et al., 2008) 95.5 95.4 95.4 

PROJECTIONS 68.8 63.2 65.9 
Ridges-Snakes (Bukhari et al., 2009) 97.3 95.4 96.3 
Shredding (Nikolaou & Gatos, 2009) 98.9 98.3 98.6 

Table 1. Evaluation results of algorithms tested on the database of ICDAR2007 Handwriting 
Segmentation Contest. 

                                                 
1 http://www.iam.unibe.ch/fki/databases/iam-handwriting-database  
2 http://www.nist.gov/srd/nistsd19.cfm  
3 http://users.iit.demokritos.gr/~bgat/HandSegmCont2007/resources.htm  
4 http://users.iit.demokritos.gr/~bgat/HandSegmCont2009/resources.html  
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The evaluation results of algorithms participated in ICDAR2009 Handwriting Segmentation 
Contest are presented in Table 2. We mention that the test set consists of 200 binary images 
and their dimensions vary from 650x825 to 2500x3500 pixels. The total number of text lines 
included in this dataset is 4034. 
 

 DR(%) RA(%) FM(%) 
CASIA-MSTSeg  
(Yin & Liu, 2008) 95.86 95.51 95.68 

CMM 98.54 98.29 98.42 
CUBS  

(Shi et al., 2009) 99.55 99.50 99.53 

ETS 86.66 86.68 86.67 
ΙLSP-LWSeg-09 99.16 98.94 99.05 
Jadavpur Univ 87.78 86.90 87.34 

LRDE 96.70 88.20 92.25 
PAIS 98.49 98.56 98.52 

AegeanUniv  
(Kavallieratou et al., 2003) 77.59 77.21 77.40 

PortoUniv  
(Cardoso et al., 2008) 94.47 94.61 94.54 

PPSL 94.00 92.85 93.42 
REGIM 40.38 35.70 37.90 

Table 2. Comparative results of ICDAR2009 Handwriting Segmentation Contest. 
PAIS and ILSP are based on piece-wise projections and achieved high results. On the other 
hand, similar methods presented poor results because they either adopt global projections 
(PROJECTIONS) or divide the image into only three vertical zones (AegeanUniv). 
Ten participating methods are classified as grouping approaches. In particular, five methods 
(Jadavpur Univ, CASIA-MSTSeg, CMM, PPSL and REGIM) introduce constrains on the 
topological and geometrical properties of the CCs in order to create groups of CCs that 
correspond to text lines. Since, these approaches require many predefined thresholds, the 
selection of appropriate (improper) values results in good (poor) results. Three approaches 
(BESUS, ETS and PARC) apply morphological operations to produce new CCs by merging 
the initial neighbouring CCs and then adopt similar constrains. Another grouping approach 
is UoA-HT, which exploits the Hough transform. As expected, the algorithm is not very 
effective when the skew of a text line varies along its width. Although, two methods 
(DUTH-ARLSA and CUBS) exploit the RLSA algorithm, their results differ significantly. The 
reason is that CUBS applies the RLSA algorithm in five directions (-20o, -10o, 0o, 10o, and 20o) 
and combines the results in order to calculate the local skew of each text line. 
PortoUniv proposes a tracing algorithm that tries to find proper paths that connect the 
edges of the image without cutting the textual elements. A similar approach (Shredding) 
includes a pre-processing step for blurring and then exploits the tracing algorithm. LRDE is 
a fast algorithm that enhances the test areas by anisotropic Gaussian filtering, smoothes the 
image by applying morphological operations and segments it by using the watershed 
transform (Vincent & Soille, 1991). A recent method (Ridges-Snakes) uses a multi-oriented 
anisotropic Gaussian filter bank for smoothing, approximates the ridges as the central lines 
of the text parts and then the ridges evolve until they overlap the CCs of the manuscript.  
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5. Conclusions 
After reviewing the existing methods for text-line segmentation we conclude that there are 
pros and cons for each approach. For example, piece-wise projection based methods can 
handle text lines with varying skew angles, but fail when the document includes high 
degree of curl text lines. In addition, the benefit of some grouping strategies is that they 
succeed to extract text lines from a complex layout but may fail to segment touching text 
lines. Regarding smearing approaches, some of them seem to be promising since they 
exploit image segmentation algorithms that have been already applied on other kinds of 
images. However, they may merge two successive text lines if the gap between them is not 
large enough. As a conclusion, we report that the existing methods do not generalize very 
well to all possible variations encountered in handwritten documents.  
Thus, text-line segmentation of handwritten documents remains an open issue. This fact 
explains why the number of relative papers and contests is increasing. Since different 
methods can face different challenges of this task, we foresee that a combination of 
complementary techniques could result in a generalized solution.  
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1. Introduction 
The Canny operator applied in a multi-scale edge detection for images is the most optimal 
step edge detection operator. However the Canny edge detection operator is optimal only 
for the step edge detection influenced by white noises because the Canny operator utilizes 
the first order derivative of a Gauss function to get a better compromise between noises 
restraint and edges detection. The Canny operator based edge detection finishes the 
implementation per the three criteria, namely, detecting (no losing important edges and no 
false edges), locating (with the minimal deviation between the real edges and the edges 
detected) and responding singly (reduce multi-response into a single edge response). 
Because the Canny operator is based on a derivative operator (the first order derivative) to 
seek for the derivatives in two directions and their directions about image grey scale, it 
determines the maximum gradient and local maximum by means of non-maximum restraint 
to the gradient. But the function with the maximum gradient and local maximum meeting 
with the above three standards limits is in fact the optimizing process of a multivariate 
function. Generally if an object function is continually differential, the space equation of a 
solution is simpler, and the general analysis is effective. However for the image 
segmentation with a complex configuration or sophisticated texture, it is very difficult to 
describe the multivariable object function satisfied with the above three standard limits by 
use of simple analysis functions because the image function itself is a multivariable 
nonlinear random function. So it has only an approximate and local sense to get the 
maximum gradient and local maximum of a function in traditional analysis methods. For 
multi-scale based Canny operator edge detection, Canny once presented the algorithm to 
get a multi-scale edge image based upon the above three standards for final edges 
composed, but it is related to the problem about the composition of different scale 
detections[1]. Jeong and Kim proposed a method for a single pixie to select local optimized 
scales by minimizing a scale-space energy function. Although this method is able to detect 
step edges exactly, delete false edges, restrain random noises relatively, and parry the 
problem mentioned above, the experiments showed that this method is not ideal compared 
with some fixed large scale methods. The reason is that the algorithm successive over 
relaxation (SOR) used for the solution of a minimizing energy function especially depends 
on initial given values resulting in not converging to the whole optimum solution[2,3]. 
Because there are some individual differences about homogenous properties and edges 
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The Canny operator applied in a multi-scale edge detection for images is the most optimal 
step edge detection operator. However the Canny edge detection operator is optimal only 
for the step edge detection influenced by white noises because the Canny operator utilizes 
the first order derivative of a Gauss function to get a better compromise between noises 
restraint and edges detection. The Canny operator based edge detection finishes the 
implementation per the three criteria, namely, detecting (no losing important edges and no 
false edges), locating (with the minimal deviation between the real edges and the edges 
detected) and responding singly (reduce multi-response into a single edge response). 
Because the Canny operator is based on a derivative operator (the first order derivative) to 
seek for the derivatives in two directions and their directions about image grey scale, it 
determines the maximum gradient and local maximum by means of non-maximum restraint 
to the gradient. But the function with the maximum gradient and local maximum meeting 
with the above three standards limits is in fact the optimizing process of a multivariate 
function. Generally if an object function is continually differential, the space equation of a 
solution is simpler, and the general analysis is effective. However for the image 
segmentation with a complex configuration or sophisticated texture, it is very difficult to 
describe the multivariable object function satisfied with the above three standard limits by 
use of simple analysis functions because the image function itself is a multivariable 
nonlinear random function. So it has only an approximate and local sense to get the 
maximum gradient and local maximum of a function in traditional analysis methods. For 
multi-scale based Canny operator edge detection, Canny once presented the algorithm to 
get a multi-scale edge image based upon the above three standards for final edges 
composed, but it is related to the problem about the composition of different scale 
detections[1]. Jeong and Kim proposed a method for a single pixie to select local optimized 
scales by minimizing a scale-space energy function. Although this method is able to detect 
step edges exactly, delete false edges, restrain random noises relatively, and parry the 
problem mentioned above, the experiments showed that this method is not ideal compared 
with some fixed large scale methods. The reason is that the algorithm successive over 
relaxation (SOR) used for the solution of a minimizing energy function especially depends 
on initial given values resulting in not converging to the whole optimum solution[2,3]. 
Because there are some individual differences about homogenous properties and edges 
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vagueness between IR (infrared) images and general grey scale images, the former region 
segmentation mainly depends on the temperature field distribution of an equivalent black 
body for a target and the edge contour tends to blurring. It is more convenient to deal with 
the IR image edge detection by use of the individual fitness and mutation operation of the 
genetic algorithm. The individual fitness evaluation may be applied to the evaluation of a 
region segmentation with no segmentation reference. And the variation operation may be 
integrated with a kind of local contrast to design a dynamic variation operator as to measure 
the fuzziness of region edge information. This paper proposed a new multi-scale edge 
detection method based upon an optimized genetic searching algorithm, and put it into the 
image segmentation of IR target signature. 

2. Optimized genetic searching algorithm 
The genetic algorithm is introduced into an image segmentation based on edge detection. 
Firstly we determine the selection of a coding mode and a fitness function. Here according 
to the n cities’ universal rank as a genetic coding, we take the inverse of Hamilton ring 
length, Td, as a fitness function because there are always legal restraints of a hidden TSP 
problem in the initialization for possible solutions, crossover operation and mutation 
operation. 

 d t1 /( )f T Nα= + ⋅  (1) 

where Nt is the measurement for TSP route illegality, α  is a penalty coefficient. 
The application of crossover strategy: based upon the above TSP rank coding, the OX [4] 
method proposed by Davis is used in order to reduce the space searched. Firstly select a 
region to be matched:  

 
9 8 4 | 5 6 7 | 1 3 2 0
8 7 1 | 2 3 0 | 9 5 4 6

A
B
=
=

 (2) 

In accordance with the relation mapped of a region to be matched, H is signed at the relative 
position outside the region, thus 

 
9 8 4 | 5 6 7 | 1
8 1 | 2 3 0 | 9 4

A H H H
B H H H
′ =
′ =

 (3) 

Move the region matched to the initial position, pre-leave the space (H number) equal to the 
region matched afterwards, and then range other codes behind the region pre-left in 
accordance with their relative rank, thus  

 
5 6 7 1 9 8 4
2 3 0 9 4 8 1

A H H H
B H H H
′′ =
′′ =

 (4) 

Finally interchange the father’s A, B regions, put them into A″, B″ regions pre-left, and then 
get two descendant generations: 

 
5 6 7 | 2 3 0 | 1 9 8 4
2 3 0 | 5 6 7 | 9 4 8 1

A
B
′′′ =
′′′ =

 (5) 
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The mutation is an operation on backgrounds in the whole sense of genetic algorithms. For 
the TSP problem, the “Inverse mutation” operation is used in order to keep the individual of 
population varied so that there is a great change in possible solutions rank. Randomly select 
two points and inversely insert the subset between the points into the original positions. 
Because the above mutation operation for the TSP problem made the TSP ring length 
changed around adjustments and this change led to the finest adjustments, the local 
accuracy arrive at a better level. 
From the optimization of genetic algorithms the individual with a superior fitness has more 
opportunities to breed in a limited scale of population. The another feature of the genetic 
algorithm is not good enough to optimize locally. In practical applications GA generally 
converges to some possible solution which is not surely a optimized point as a whole or 
even not a local optimized point. 
To improve the deficiency of a basic genetic algorithm in local optimization and upgrade the 
quality of a solution as a whole, this paper proposed an improved hybridized algorithm 
SGA (Simple genetic algorithm)+SA (Simulated anneal)+TABU, in which SGA is integrated 
with a heuristic searching algorithm. The alternative optimization strategy applied is as 
follows, 
1. Utilize a stochastic method to produce many different possible solutions for an initial 

possible solution population. 
2. For one half of the individuals of possible solutions, execute TABU searching to get a 

local optimization solution. 
3. For the other half of the individuals of possible solutions, execute SA searching to get a 

local optimization solution. 
4. For the local solution from 2) and 3) steps, execute genetic selection and crossover 

operations. 
5. Repeat 2), 3) and 4) steps until the objective condition of an algorithm is finally satisfied. 
Fig.1 shows the comparison between SGA+SA+TABU and SGA performances. Where the 
SGA optimization as a whole is better but poor at local. Relatively the SGA+SA+TABU 
algorithm intensifies the local ability of the simplex SGA. And compared with the simplex 
SA and simplex TABU, the SGA+SA+TABU algorithm extends the local optimization range 
of SA and TABU, and strengthens the whole optimization ability of simplex SA and simplex 
TABU. 
 

 
Fig. 1. Performances comparison of optimization algorithms 
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vagueness between IR (infrared) images and general grey scale images, the former region 
segmentation mainly depends on the temperature field distribution of an equivalent black 
body for a target and the edge contour tends to blurring. It is more convenient to deal with 
the IR image edge detection by use of the individual fitness and mutation operation of the 
genetic algorithm. The individual fitness evaluation may be applied to the evaluation of a 
region segmentation with no segmentation reference. And the variation operation may be 
integrated with a kind of local contrast to design a dynamic variation operator as to measure 
the fuzziness of region edge information. This paper proposed a new multi-scale edge 
detection method based upon an optimized genetic searching algorithm, and put it into the 
image segmentation of IR target signature. 

2. Optimized genetic searching algorithm 
The genetic algorithm is introduced into an image segmentation based on edge detection. 
Firstly we determine the selection of a coding mode and a fitness function. Here according 
to the n cities’ universal rank as a genetic coding, we take the inverse of Hamilton ring 
length, Td, as a fitness function because there are always legal restraints of a hidden TSP 
problem in the initialization for possible solutions, crossover operation and mutation 
operation. 

 d t1 /( )f T Nα= + ⋅  (1) 

where Nt is the measurement for TSP route illegality, α  is a penalty coefficient. 
The application of crossover strategy: based upon the above TSP rank coding, the OX [4] 
method proposed by Davis is used in order to reduce the space searched. Firstly select a 
region to be matched:  

 
9 8 4 | 5 6 7 | 1 3 2 0
8 7 1 | 2 3 0 | 9 5 4 6

A
B
=
=

 (2) 

In accordance with the relation mapped of a region to be matched, H is signed at the relative 
position outside the region, thus 

 
9 8 4 | 5 6 7 | 1
8 1 | 2 3 0 | 9 4

A H H H
B H H H
′ =
′ =

 (3) 

Move the region matched to the initial position, pre-leave the space (H number) equal to the 
region matched afterwards, and then range other codes behind the region pre-left in 
accordance with their relative rank, thus  

 
5 6 7 1 9 8 4
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B H H H
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′′ =

 (4) 

Finally interchange the father’s A, B regions, put them into A″, B″ regions pre-left, and then 
get two descendant generations: 

 
5 6 7 | 2 3 0 | 1 9 8 4
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A
B
′′′ =
′′′ =

 (5) 
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The mutation is an operation on backgrounds in the whole sense of genetic algorithms. For 
the TSP problem, the “Inverse mutation” operation is used in order to keep the individual of 
population varied so that there is a great change in possible solutions rank. Randomly select 
two points and inversely insert the subset between the points into the original positions. 
Because the above mutation operation for the TSP problem made the TSP ring length 
changed around adjustments and this change led to the finest adjustments, the local 
accuracy arrive at a better level. 
From the optimization of genetic algorithms the individual with a superior fitness has more 
opportunities to breed in a limited scale of population. The another feature of the genetic 
algorithm is not good enough to optimize locally. In practical applications GA generally 
converges to some possible solution which is not surely a optimized point as a whole or 
even not a local optimized point. 
To improve the deficiency of a basic genetic algorithm in local optimization and upgrade the 
quality of a solution as a whole, this paper proposed an improved hybridized algorithm 
SGA (Simple genetic algorithm)+SA (Simulated anneal)+TABU, in which SGA is integrated 
with a heuristic searching algorithm. The alternative optimization strategy applied is as 
follows, 
1. Utilize a stochastic method to produce many different possible solutions for an initial 

possible solution population. 
2. For one half of the individuals of possible solutions, execute TABU searching to get a 

local optimization solution. 
3. For the other half of the individuals of possible solutions, execute SA searching to get a 

local optimization solution. 
4. For the local solution from 2) and 3) steps, execute genetic selection and crossover 

operations. 
5. Repeat 2), 3) and 4) steps until the objective condition of an algorithm is finally satisfied. 
Fig.1 shows the comparison between SGA+SA+TABU and SGA performances. Where the 
SGA optimization as a whole is better but poor at local. Relatively the SGA+SA+TABU 
algorithm intensifies the local ability of the simplex SGA. And compared with the simplex 
SA and simplex TABU, the SGA+SA+TABU algorithm extends the local optimization range 
of SA and TABU, and strengthens the whole optimization ability of simplex SA and simplex 
TABU. 
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3. Genetic algorithm + Canny multi-scale edges detection 
Because an image segmentation is different from the simple optimization on the shortest 
route of n cities, the latter is only the construction of a closed route. But the former is about a 
population optimization among route groups composed of many closed and open routes. So 
it is necessary to combine the radiation signature of IR images when the cleavage and 
mergence are used to segment an image into regions in accordance with the homogeneity 
firstly and then execute edges detection based upon the Canny multi-scale in each region, 
searching for the shortest route problem of n cities TSP composed of wavelet transformation 
module maximum values. The specific steps are as follows, 
1. According to the equivalent black body temperature distribution of an IR radiation 

image, specify the initial regions conformed to homogeneity requirements. Supposing 
the maximum number of an image segmentation is n1, the individual chromosome 
coding is an integer sequence Ik={ri|i=1, 2, …, n1}. Where ri is a sub-region order 
number and k is an individual number. 
Crossover operation: it is completed by use of the improved PMX crossover method. 
Here the gene codes in sequence coding may be repeated after finishing a crossover 
operation. Just based upon gene codes generate repeatedly, an image region is able to 
execute the further cleavage and mergence. If the region ri is merged with an adjacent 
region rj , Ik[i]=I, Ik[j]=i , the region rl merged with the region rj is also combined with 
the region ri , Ik[l]=i . So the gene code of the region combined with the region ri is i . 
Mutation operation: it is the design of a dynamic mutation operator in conjunction with 
a local contrast. The operator is used to measure the information vagueness degree of 
the region borders. The distance between the rejoin ri and its adjacent region rj is 

 2

1
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where xijk( j=1,2,…, ni; k=1,2,…,nij ) is the k-th pixel on the border between the region 
ri and its adjacent region rj ; nij is the total pixels number of the border between the 
region ri and its adjacent region rj . The relative distance between the region ri and its 
adjacent region rj is 
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Because uij is conformed to uij∈[0, 1], it may be used as a probability of the choice 
between the cleavage and mergence. According to the definition of a relative distance 
between regions, define the local contrast in any region, 
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Individual fitness estimation: the region segmentation estimation, with no a 
segmentation reference, includes the region homogeneity measurement and edge 
vagueness measurement. 
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• Region homogeneity measurement 
The region homogeneity measurement is defined as follows 
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where gkl is the grey scale of the pixels in the region ri , μi is the average grey scale in 
the region ri . And the reason why the above equation is not an equality is that the 
region ri is not always a rectangle. 
• Edge vagueness measurement 

The integrated measurement definition for all region edges vagueness is as follows, 
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where | |G∇  is the grey scale gradient of the pixels after cleavage and mergence. | |G′∇  
is the grey scale at the pixels in an initial region division. Because there exists always 
| ( , )| | ( , )|G i j G i j′∇ ≤ ∇ , so here is 0≤E≤1. 

2. For each region above divided take a Canny multi-scale edge detection. Suppose the 
unit vectors ( )j u =n  (cos ( , 2 ), sin ( , 2 ))j jAf u Af u  and 2( )( )jf uθ∗∇  are linear each 

other. At a 2j scale, the Mf(u, 2j) in the direction of ( )ju v vλ= + n  gets a local maximum 

at a point u=v，when |λ| becomes small enough. Such a point is the edge point in this 
region, and is also called the wavelet transformation module maximum point. 

3. Take the wavelet module maximum point from 2) as the universal point for n cities and 
constitute a TSP problem. The GA+SA+TABU is applied to the solution of an optimal 
route curve and to the formation of an optimal edge curve. 

4. Change the scale 2j and return to 2). Continue the edge detection and re-find the n 
wavelet module maximum points as the universal points for cities, and then go to the 
next optimization step. 

5. Here is the measurement for a region uniformity computation. The uniformity 
measurement of an image segmentation denotes that the weighting sum for the 
uniformity measurement of all regions: 

 
1

1 ( )
n

i i i
i

G w p G
n =

= ∑  (11) 

where n is the sum of segmented regions. wi(pi) is the weighting coefficient of a region 
area. pi is a region area. The computation of a weighting coefficient is in accordance 
with the following eq. 
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where  α and β denote the minimum and maximum area respectively. 
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3. Genetic algorithm + Canny multi-scale edges detection 
Because an image segmentation is different from the simple optimization on the shortest 
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population optimization among route groups composed of many closed and open routes. So 
it is necessary to combine the radiation signature of IR images when the cleavage and 
mergence are used to segment an image into regions in accordance with the homogeneity 
firstly and then execute edges detection based upon the Canny multi-scale in each region, 
searching for the shortest route problem of n cities TSP composed of wavelet transformation 
module maximum values. The specific steps are as follows, 
1. According to the equivalent black body temperature distribution of an IR radiation 

image, specify the initial regions conformed to homogeneity requirements. Supposing 
the maximum number of an image segmentation is n1, the individual chromosome 
coding is an integer sequence Ik={ri|i=1, 2, …, n1}. Where ri is a sub-region order 
number and k is an individual number. 
Crossover operation: it is completed by use of the improved PMX crossover method. 
Here the gene codes in sequence coding may be repeated after finishing a crossover 
operation. Just based upon gene codes generate repeatedly, an image region is able to 
execute the further cleavage and mergence. If the region ri is merged with an adjacent 
region rj , Ik[i]=I, Ik[j]=i , the region rl merged with the region rj is also combined with 
the region ri , Ik[l]=i . So the gene code of the region combined with the region ri is i . 
Mutation operation: it is the design of a dynamic mutation operator in conjunction with 
a local contrast. The operator is used to measure the information vagueness degree of 
the region borders. The distance between the rejoin ri and its adjacent region rj is 
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Because uij is conformed to uij∈[0, 1], it may be used as a probability of the choice 
between the cleavage and mergence. According to the definition of a relative distance 
between regions, define the local contrast in any region, 
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Individual fitness estimation: the region segmentation estimation, with no a 
segmentation reference, includes the region homogeneity measurement and edge 
vagueness measurement. 
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the region ri . And the reason why the above equation is not an equality is that the 
region ri is not always a rectangle. 
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other. At a 2j scale, the Mf(u, 2j) in the direction of ( )ju v vλ= + n  gets a local maximum 

at a point u=v，when |λ| becomes small enough. Such a point is the edge point in this 
region, and is also called the wavelet transformation module maximum point. 

3. Take the wavelet module maximum point from 2) as the universal point for n cities and 
constitute a TSP problem. The GA+SA+TABU is applied to the solution of an optimal 
route curve and to the formation of an optimal edge curve. 

4. Change the scale 2j and return to 2). Continue the edge detection and re-find the n 
wavelet module maximum points as the universal points for cities, and then go to the 
next optimization step. 

5. Here is the measurement for a region uniformity computation. The uniformity 
measurement of an image segmentation denotes that the weighting sum for the 
uniformity measurement of all regions: 
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where n is the sum of segmented regions. wi(pi) is the weighting coefficient of a region 
area. pi is a region area. The computation of a weighting coefficient is in accordance 
with the following eq. 
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For image segmentation based on a genetic algorithm the multiplication of the 
equations (10) and (11) is applied to a composite individual fitness estimation. 

 F=E·G (13) 

When the value got from eq. (13) is satisfied with the setting objective value the 
optimization searching ceases, otherwise returns to the 2) step for continuous 
optimization computations. 

4. Experiment results and analysis 
In the course of a FLIR target image detection, take a target point source as the initial 
information of a potential target and determine an initial growing point of signature regions 
according to the sequence images inputed. 
The five threshold values of equal intervals[5] are employed in this paper, that is 
tmax＞t0＞t1＞t2＞tmin . where tmax is towards the maximum equivalent black body 
radiance temperature of a target image, tmin towards the minimum grey temperature scale 
of a target image. The first level of isothermal region is determined by tmax-t0 interval, and 
the second isothermal region tmax-t1 is determined by tmax-t1 interval. For the division of 
isothermal regions by use of a genetic algorithm, any grey scale interval in the above regions 
may be used as a seeding region for a target pixel seed till one of the following two 
conditions is satisfied. 
1. the region grows large enough to reach the edge; 
2. the equivalent black body radiance temperature or radiance intensity of a searching 

region degrades too much. 
The seed regions are defined as {tmax-t0, tmax-t1, tmax-t2, tmax-tmin} where {tmax, t0, t1, 
t2, tmin} is used, in a genetic algorithm, as five inner nodes of each segmentation region for 
construction of four layers of equivalent black body temperature differences. Fig.2(a) shows 
the original long wave FLIR image of a running truck, and Fig.2(b) and Fig.2(c) respectively 
illustrate the target IR image segmentation results by means of Laplace-Gauss edge 
detection or wavelet nerve-network algorithm[6]. Although the Laplace-Gauss edge 
detection algorithm is able to locate target contours, a great deal of target details are lost. For 
the PCA analysis about a target region the wavelet nerve-network algorithm embedded in a 
wavelet time-frequency analysis could keep the high frequency details of region contours. 
Fig.2(d) shows the image segmentation based on the genetic and wavelet multi-scale edge 
detection. Compared with the former segmentation algorithms this detection algorithm 
could not only extract edges of a target clearly but also the edges succession behaves better 
because of the “non-maximum restraint” for pixels gradient in course of optimization. From 
Fourier transformation frequency spectra Fig.3(a), Fig.3(b) and Fig.3(c) relative to Fig.2(b), 
Fig.2(c) and Fig.2(d) the effect of the Laplace-Gauss edge detection[7] could be evaluated. 
Their energy is basically along the main axis and lower inside quadrants with a great loss of 
details information. The high energy of an image processed by a wavelet nerve-network 
algorithm is distributed along the two axes from the original point, but the energy 
distribution inside each quadrant exists low state. So the number of little targets with bad 
pixels is available to be restrained. The energy spectrum gotten from the genetic and a 
wavelet multi-scale edge detection is focused around the spectrum center and basically 
exists low value distribution with no mixture of medium value energy. This signature of the 
frequency spectrum distribution has an instant relationship with the segmentation structure 
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of an image because the latter algorithm pays more attention to the edges segmentation 
inside image textures. As is showed in Fig.4 the Pratt quality factor is used as the evaluation 
of edges detection. Under a low signal-noise ratio the Pratt quality factor of a genetic and 
wavelet multi-scale edge detection algorithm is much more superior than other two 
detection algorithms, and more suitable to an image with complex texture and fine 
construction. 
 

 

(a) Original image (b) Laplace-Gauss 
edge detection 

(c) Wavelet-Nero-NET (d) Genetic+multi-
scale edge detection 

Fig. 2. Experimental results 

 

 
(a) Spectrum to Fig.2(b) (b) Spectrum to Fig.2(c) (c) Spectrum to Fig.2(d) 

Fig. 3. Fourier transform spectrum 

 
 
 
 
 
 
 
 
 
Fig. 4. Pratt qualities for different algorithms 
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For image segmentation based on a genetic algorithm the multiplication of the 
equations (10) and (11) is applied to a composite individual fitness estimation. 

 F=E·G (13) 

When the value got from eq. (13) is satisfied with the setting objective value the 
optimization searching ceases, otherwise returns to the 2) step for continuous 
optimization computations. 

4. Experiment results and analysis 
In the course of a FLIR target image detection, take a target point source as the initial 
information of a potential target and determine an initial growing point of signature regions 
according to the sequence images inputed. 
The five threshold values of equal intervals[5] are employed in this paper, that is 
tmax＞t0＞t1＞t2＞tmin . where tmax is towards the maximum equivalent black body 
radiance temperature of a target image, tmin towards the minimum grey temperature scale 
of a target image. The first level of isothermal region is determined by tmax-t0 interval, and 
the second isothermal region tmax-t1 is determined by tmax-t1 interval. For the division of 
isothermal regions by use of a genetic algorithm, any grey scale interval in the above regions 
may be used as a seeding region for a target pixel seed till one of the following two 
conditions is satisfied. 
1. the region grows large enough to reach the edge; 
2. the equivalent black body radiance temperature or radiance intensity of a searching 

region degrades too much. 
The seed regions are defined as {tmax-t0, tmax-t1, tmax-t2, tmax-tmin} where {tmax, t0, t1, 
t2, tmin} is used, in a genetic algorithm, as five inner nodes of each segmentation region for 
construction of four layers of equivalent black body temperature differences. Fig.2(a) shows 
the original long wave FLIR image of a running truck, and Fig.2(b) and Fig.2(c) respectively 
illustrate the target IR image segmentation results by means of Laplace-Gauss edge 
detection or wavelet nerve-network algorithm[6]. Although the Laplace-Gauss edge 
detection algorithm is able to locate target contours, a great deal of target details are lost. For 
the PCA analysis about a target region the wavelet nerve-network algorithm embedded in a 
wavelet time-frequency analysis could keep the high frequency details of region contours. 
Fig.2(d) shows the image segmentation based on the genetic and wavelet multi-scale edge 
detection. Compared with the former segmentation algorithms this detection algorithm 
could not only extract edges of a target clearly but also the edges succession behaves better 
because of the “non-maximum restraint” for pixels gradient in course of optimization. From 
Fourier transformation frequency spectra Fig.3(a), Fig.3(b) and Fig.3(c) relative to Fig.2(b), 
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algorithm is distributed along the two axes from the original point, but the energy 
distribution inside each quadrant exists low state. So the number of little targets with bad 
pixels is available to be restrained. The energy spectrum gotten from the genetic and a 
wavelet multi-scale edge detection is focused around the spectrum center and basically 
exists low value distribution with no mixture of medium value energy. This signature of the 
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of an image because the latter algorithm pays more attention to the edges segmentation 
inside image textures. As is showed in Fig.4 the Pratt quality factor is used as the evaluation 
of edges detection. Under a low signal-noise ratio the Pratt quality factor of a genetic and 
wavelet multi-scale edge detection algorithm is much more superior than other two 
detection algorithms, and more suitable to an image with complex texture and fine 
construction. 
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genetic and wavelet multi-scale edge detection procession could be expressed according to 
the IR radiance energy levels of the target so as to avoid the loss of fine details (high 
frequency contents) inside the target image while its image edge is extracted. 
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1. Introduction

The increasing availability of remotely sensed imagery data with high spatial resolution
is demanding more efficient, and more accurate methods for image analysis. Traditional
per-pixel classifiers focus on analysing spectral characteristics of single pixels and ignore
contextual properties from surrounding pixels (Townshend et al., 2000). This inability
to integrate neighbourhood information triggered the need of developing image analysis
algorithms able to go ‘beyond pixels’ and take also into account spatial information (Jensen,
2005).
New approaches for land cover characterization from high spatial resolution images include
object-based image analysis (OBIA), also referred to as geospatial object based image analysis
(GEOBIA) (Blaschke, 2010). OBIA uses segmentation techniques to group pixels into discrete
image objects as a first stage of the image analysis process. By analysing image objects rather
than individual pixels, it is then possible to include spatial and/or textural properties of
image objects into the process (Blaschke et al., 2006). Recent research demonstrates that this
segmentation based approach for image classification produces higher thematic accuracy than
the traditional per-pixel methods (Blaschke et al., 2006; Lang et al., 2006; Platt & Rapoza, 2008;
Thomas et al., 2003).
The OBIA approach is based on the assumption that image objects produced by segmentation
can be unambiguously linked to the geographic objects of interest and has proven valuable in
a number of applications, see, for example, Shackelford & Davis (2003); Wei et al. (2005); Zhou
et al. (2007). However, it can not be considered to be a silver bullet: when classes overlap
spectrally, high classification accuracy is still difficult to achieve (Platt & Rapoza, 2008). The
aim of creating meaningful image objects may be affected by blurring and distortion problems
inherent to the image acquisition process (Bezdek et al., 1999).
A central stage of OBIA is the segmentation stage. Standard image segmentation usually
requires considerable parameterisation effort to find the right sizes and homogeneity criteria
that produce meaningful image objects for a given scene and application. In many situations,
image segmentation becomes a time consuming task which requires iterative processing,
and may not always succeed (Lang et al., 2006; Schiewe et al., 2001a). Depending on the
complexity of the landscape, the quality of the image and the parameterisation procedure,
image segmentation may produce image objects that represent real-world objects, part of
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genetic and wavelet multi-scale edge detection procession could be expressed according to 
the IR radiance energy levels of the target so as to avoid the loss of fine details (high 
frequency contents) inside the target image while its image edge is extracted. 
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1. Introduction

The increasing availability of remotely sensed imagery data with high spatial resolution
is demanding more efficient, and more accurate methods for image analysis. Traditional
per-pixel classifiers focus on analysing spectral characteristics of single pixels and ignore
contextual properties from surrounding pixels (Townshend et al., 2000). This inability
to integrate neighbourhood information triggered the need of developing image analysis
algorithms able to go ‘beyond pixels’ and take also into account spatial information (Jensen,
2005).
New approaches for land cover characterization from high spatial resolution images include
object-based image analysis (OBIA), also referred to as geospatial object based image analysis
(GEOBIA) (Blaschke, 2010). OBIA uses segmentation techniques to group pixels into discrete
image objects as a first stage of the image analysis process. By analysing image objects rather
than individual pixels, it is then possible to include spatial and/or textural properties of
image objects into the process (Blaschke et al., 2006). Recent research demonstrates that this
segmentation based approach for image classification produces higher thematic accuracy than
the traditional per-pixel methods (Blaschke et al., 2006; Lang et al., 2006; Platt & Rapoza, 2008;
Thomas et al., 2003).
The OBIA approach is based on the assumption that image objects produced by segmentation
can be unambiguously linked to the geographic objects of interest and has proven valuable in
a number of applications, see, for example, Shackelford & Davis (2003); Wei et al. (2005); Zhou
et al. (2007). However, it can not be considered to be a silver bullet: when classes overlap
spectrally, high classification accuracy is still difficult to achieve (Platt & Rapoza, 2008). The
aim of creating meaningful image objects may be affected by blurring and distortion problems
inherent to the image acquisition process (Bezdek et al., 1999).
A central stage of OBIA is the segmentation stage. Standard image segmentation usually
requires considerable parameterisation effort to find the right sizes and homogeneity criteria
that produce meaningful image objects for a given scene and application. In many situations,
image segmentation becomes a time consuming task which requires iterative processing,
and may not always succeed (Lang et al., 2006; Schiewe et al., 2001a). Depending on the
complexity of the landscape, the quality of the image and the parameterisation procedure,
image segmentation may produce image objects that represent real-world objects, part of
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objects or just noise. Such image segmentation approach is a subjective and user driven task
which esentially prevents automated processing of large data sets.
The traditional image segmentation looks for delineating discrete image objects with sharp
boundaries. The underlying assumption of this hard segmentation is that it is always possible
to determine spatial boundaries between land cover classes. However, many geographic
objects, both natural and man made, may not appear clearly bounded in remotely sensed
images. Therefore, a fuzzy segmentation approach which takes into account the fuzziness of
the real world and the ambiguity of remote sensing imagery is potentially more appropriate
than a hard segmentation to resolve the spectral and spatial confusion which characterizes
urban landscapes.
Over the last decades, geographic information systems (GIS) researchers have applied fuzzy
concepts to deal with the vagueness and imprecision widespread among geographic objects
(Burrough, 1989; Burrough & Frank, 1996). Remote sensing researchers have applied per-pixel
fuzzy classification to study geographic phenomena that are continuous and lack sharp
boundaries (Fisher & Pathirana, 1990; Foody, 1992; Wang, 1990). However, fuzzy concepts
have not been applied yet in the segmentation process for environmental remote sensing
image analysis. As remote sensing applications include a wide spectrum of geographic
phenomena ranging from discrete objects to continuous fields, a fuzzy segmentation approach
can be potentially useful for land cover characterization on natural and man-made landscapes.
This chapter proposes a method for land cover characterization based on fuzzy image
segmentation. It argues that, in order to handle uncertainty of real world landscapes, image
segmentation should output fuzzy image regions rather than sharp image objects.
The chapter has been structured in two parts. In the first part, basic principles and
assumptions of OBIA are explained. It is highlighted that a successful application of OBIA
depends on the quality of the discrete image objects produced at the segmentation stage. In
the second part, a fuzzy image segmentation approach is proposed in more detail.

2. Traditional Object-based image classication

A basic assumption underlying traditional object-based image classification is that it is always
possible to identify groups of pixels that can be related to geographic objects. These groups
of pixels with meaning in the real world are referred to as image objects (Schneider &
Steinwender, 1999). Thus, image objects are basic entities, composed of similar digital values,
and possessing intrinsic sizes,shapes and geographic relationships with the real-world scene
they model (Hay et al., 2001).
The standard object-based image analysis (OBIA) approach for image classification can be
represented as shown in Figure 1 using a three stage workflow (Benz, 2001):

1. image segmentation which creates meaningful image objects;

2. feature analysis which measures spectral, spatial, and contextual attributes of image
objects; and

3. classification which allocates image objects to target classes

Image segmentation, the first stage, outputs image objects that hopefully represent,
completely or partially, the structural properties of the geographic objects under study.
Feature analysis, the second stage, aims to select a set of attributes (also referred to as a
feature vector) able to differentiate the classes of interest (i.e. the target classes). This stage
requires users to establish correspondence between the image objects and the real-world
objects (classes), and also to determine which properties can be relevant for the problem under
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Fig. 1. Flowchart of the OBIA image classification process.

study. Classification, the last stage, assigns classes to image objects applying appropriate
classification rules which can be set up automatically or manually. This classification may
be conducted using conventional (e.g. maximum likelihood or minimum distance to mean)
or non-conventional techniques (e.g. neural networks, fuzzy logic, nearest neighbor) (Gao,
2009; Jensen, 2005). The final outcome of the process are digital objects representing the
categories of interest. The OBIA process is iterative rather than linear and strictly subsequent,
and knowledge input may occur at any stage of the process (Lang, 2008).

2.1 Image segmentation
Image segmentation is recognized as the critical step of the OBIA approach because its results
affect directly all the subsequent tasks (Carleer et al., 2005; Neubert et al., 2006; Rekik et al.,
2007). Image segmentation aims to partition the image into a set of regions which are distinct
and uniform with respect to some intrinsic property of the image, such as grey level, texture or
color (Freixenet et al., 2002). The selection of an appropriate segmentation technique depends
greatly on the type of data being analyzed and on the application area (Pal & Pal, 1993).
A successful segmentation produces image objects which can be unambiguously linked with
ground objects. Typically, the segmentation stage is not concerned with the thematic identity
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objects or just noise. Such image segmentation approach is a subjective and user driven task
which esentially prevents automated processing of large data sets.
The traditional image segmentation looks for delineating discrete image objects with sharp
boundaries. The underlying assumption of this hard segmentation is that it is always possible
to determine spatial boundaries between land cover classes. However, many geographic
objects, both natural and man made, may not appear clearly bounded in remotely sensed
images. Therefore, a fuzzy segmentation approach which takes into account the fuzziness of
the real world and the ambiguity of remote sensing imagery is potentially more appropriate
than a hard segmentation to resolve the spectral and spatial confusion which characterizes
urban landscapes.
Over the last decades, geographic information systems (GIS) researchers have applied fuzzy
concepts to deal with the vagueness and imprecision widespread among geographic objects
(Burrough, 1989; Burrough & Frank, 1996). Remote sensing researchers have applied per-pixel
fuzzy classification to study geographic phenomena that are continuous and lack sharp
boundaries (Fisher & Pathirana, 1990; Foody, 1992; Wang, 1990). However, fuzzy concepts
have not been applied yet in the segmentation process for environmental remote sensing
image analysis. As remote sensing applications include a wide spectrum of geographic
phenomena ranging from discrete objects to continuous fields, a fuzzy segmentation approach
can be potentially useful for land cover characterization on natural and man-made landscapes.
This chapter proposes a method for land cover characterization based on fuzzy image
segmentation. It argues that, in order to handle uncertainty of real world landscapes, image
segmentation should output fuzzy image regions rather than sharp image objects.
The chapter has been structured in two parts. In the first part, basic principles and
assumptions of OBIA are explained. It is highlighted that a successful application of OBIA
depends on the quality of the discrete image objects produced at the segmentation stage. In
the second part, a fuzzy image segmentation approach is proposed in more detail.

2. Traditional Object-based image classication

A basic assumption underlying traditional object-based image classification is that it is always
possible to identify groups of pixels that can be related to geographic objects. These groups
of pixels with meaning in the real world are referred to as image objects (Schneider &
Steinwender, 1999). Thus, image objects are basic entities, composed of similar digital values,
and possessing intrinsic sizes,shapes and geographic relationships with the real-world scene
they model (Hay et al., 2001).
The standard object-based image analysis (OBIA) approach for image classification can be
represented as shown in Figure 1 using a three stage workflow (Benz, 2001):

1. image segmentation which creates meaningful image objects;

2. feature analysis which measures spectral, spatial, and contextual attributes of image
objects; and

3. classification which allocates image objects to target classes

Image segmentation, the first stage, outputs image objects that hopefully represent,
completely or partially, the structural properties of the geographic objects under study.
Feature analysis, the second stage, aims to select a set of attributes (also referred to as a
feature vector) able to differentiate the classes of interest (i.e. the target classes). This stage
requires users to establish correspondence between the image objects and the real-world
objects (classes), and also to determine which properties can be relevant for the problem under
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study. Classification, the last stage, assigns classes to image objects applying appropriate
classification rules which can be set up automatically or manually. This classification may
be conducted using conventional (e.g. maximum likelihood or minimum distance to mean)
or non-conventional techniques (e.g. neural networks, fuzzy logic, nearest neighbor) (Gao,
2009; Jensen, 2005). The final outcome of the process are digital objects representing the
categories of interest. The OBIA process is iterative rather than linear and strictly subsequent,
and knowledge input may occur at any stage of the process (Lang, 2008).

2.1 Image segmentation
Image segmentation is recognized as the critical step of the OBIA approach because its results
affect directly all the subsequent tasks (Carleer et al., 2005; Neubert et al., 2006; Rekik et al.,
2007). Image segmentation aims to partition the image into a set of regions which are distinct
and uniform with respect to some intrinsic property of the image, such as grey level, texture or
color (Freixenet et al., 2002). The selection of an appropriate segmentation technique depends
greatly on the type of data being analyzed and on the application area (Pal & Pal, 1993).
A successful segmentation produces image objects which can be unambiguously linked with
ground objects. Typically, the segmentation stage is not concerned with the thematic identity
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of the image objects as they are class labelled later in the classification stage (Rosenfeld & Kak,
1992).
The result of image segmentation is determined by the purpose of the study, the grouping
strategy and specific decisions about the desired levels of homogeneity and (or) the expected
size of the resulting segments (Pal & Pal, 1993). Image segmentation is therefore a highly
subjective task which has to be adapted to the specific interest of users and the spatial and
spectral constraints of the available images (Bock & Lessing, 2002). This poses significant
problems for the transferability of image segmentation methods and the development of
automated classification rules (Bock & Lessing, 2002).
Traditional image segmentation can be referred to as crisp or hard segmentation because it
produces image objects with clearly defined boundaries. In a crisp segmentation, it is assumed
that the image can be partitioned into spatially continuous, disjoint and homogeneous groups
of pixels which represent the relative homogeneity of geographic phenomena (Blaschke et al.,
2006). However, real-world landscapes are comprised by objects of different sizes which
may exhibit internal heterogeneity (Herold et al., 2003). As single scale segmentations may
not suffice to capture such complexity, it has been suggested that image segmentation be
conducted in a nested hierarchy of scales modeling relationships between sub-objects, objects
and super-objects (Burnett & Blaschke, 2003). While it is an appealing approach, it can bring
further complications to the classification stage due to the additional need for user-driven
individual parameterization.

2.1.1 Image segmentation in computer vision
Computer vision is concerned with the theory for building artificial systems that obtain
information from images. The image data can take many forms, such as a video sequence,
views from multiple cameras, or multi-dimensional data from medical scanners (Azad et al.,
2008). As opposed to multispectral remote sensing, computer vision deals mainly with single
band data sets, i.e. greyscale images.
Image segmentation is an active field of research in computer vision and ‘hundreds of
segmentation algorithms have been proposed in the last 30 years’ (Freixenet et al., 2002) (p.
408). This proliferation of algorithms shows how elusive a satisfactory segmentation is. There
is an almost infinite number of ways an image can be sub-divided, they are all technically
correct, but most of them are not what users want (Shi & Malik, 2000).
Comprehensive reviews of image segmentation techniques have been published in the last
two decades in the computer vision literature, including, for example Freixenet et al. (2002);
Haralick & Schapiro (1992); Pal & Pal (1993).
In computer vision, image segmentation is the process of extracting objects from background
or separating the image into several regions which are considered to be coherent and
meaningful (Pal & Pal, 1993). Generally, image segmentation is a process of clustering pixels
in an image based on some rules, e.g. pixels with similar attributes should be together (Pal &
Pal, 1993).
In general terms, image segmentation techniques may be divided into two basic categories:
edge-based and region-based (Pal & Pal, 1993). Edge-based segmentation methods look
for detecting image discontinuities. In this category, the assumption is that boundaries
of regions are sufficiently different from each other and from the background to allow
boundary detection based on local discontinuities in grey level intensity. On the another
hand, region-based segmentation methods are based on partitioning an image into regions
that are similar according to a set of predefined criteria such as grey level, shape or texture.
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Two common approaches for region-based segmentation are either merging individual image
objects (bottom-up approach) or recursively splitting regions starting from the whole image
(top-down approach) (Pal & Pal, 1993).
Although the edge and region approaches are considered to yield good results, some
researchers have argued the impossibility of extracting complete information of either aspect
of the image independent of the other and have proposed hybrid approaches which integrate
boundary and region information (Moigne & Tilton, 1995; Pal & Pal, 1993). One example of
these approaches is the watershed algorithm which sees an image as a topographic surface
and, after identifying maxima (ridges) and minima (valleys), attempts ‘flooding’ the terrain to
obtain catchment regions (Dam, 2000).

2.1.2 Image segmentation in remote sensing
Image segmentation is a relatively recent field of research in environmental remote sensing,
despite the fact that it has been applied extensively in neighboring disciplines such as
computer vision and medical imaging (Carleer et al., 2005) . The main problem was the
inability of computer vision algorithms to process color or multiband image data sets.
However, in the last decade, the remote sensing community has adapted and enhanced
the computer vision segmentation approach for dealing with multispectral data sets. A
number of operational software tools are now available to conduct segmentation-based image
classification for remote sensing. This includes Definiens Developer, previously known as
eCognition, ENVI’s Feature Analysis, ERDAS’s Objective, and IDRISI’s Segmentation. Although
all of these programs offer a number of similar functionalities, Definiens Developer implements
the most advanced algorithms and is a popular choice in OBIA applications (Blaschke
et al., 2006) and will therefore be reviewed as example for current standard ’crisp’ OBIA
implementations.
Definiens implements the fractal net evolution algorithm which provides multiresolution
segmentation capabilities ‘applicable and adaptable to many problems and data types’ (Baatz
& Schape, 2000) (p. 1). Multiresolution segmentation is a bottom up, region-merging
technique which starts building one-pixel image objects which grow by merging adjacent
objects based on heterogeneity criteria (Yan et al., 2006). These objects may be extracted from
the image in a number of hierarchical levels and each subsequent level yields image objects
of a larger size by combining objects from a level below, which represents information on
different scales simultaneously (Baatz & Schape, 2000).
Image object heterogeneity can be spectral heterogeneity, hspectral, or shape heterogeneity,
hshape (Baatz & Schape, 2000). Spectral heterogeneity is a function of user-assigned layer
weights, number of pixels comprising the objects, and standard deviation of pixel values
within each layer. Shape heterogeneity is based upon the change in object shape before and
after an eventual merge. Object shape is described in two ways: (i) compactness and (ii)
smoothness.
Compactness C is measured as indicated in Equation 1:

C = sn ∗ ln/bn (1)

where sn is the size of each image object, ln is the perimeter of the image object and bn is the
perimeter of a minimum box bounding each image object.
Smoothness S is measured as indicated in Equation 2:

S = sn ∗ ln/
√

sn (2)
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of the image objects as they are class labelled later in the classification stage (Rosenfeld & Kak,
1992).
The result of image segmentation is determined by the purpose of the study, the grouping
strategy and specific decisions about the desired levels of homogeneity and (or) the expected
size of the resulting segments (Pal & Pal, 1993). Image segmentation is therefore a highly
subjective task which has to be adapted to the specific interest of users and the spatial and
spectral constraints of the available images (Bock & Lessing, 2002). This poses significant
problems for the transferability of image segmentation methods and the development of
automated classification rules (Bock & Lessing, 2002).
Traditional image segmentation can be referred to as crisp or hard segmentation because it
produces image objects with clearly defined boundaries. In a crisp segmentation, it is assumed
that the image can be partitioned into spatially continuous, disjoint and homogeneous groups
of pixels which represent the relative homogeneity of geographic phenomena (Blaschke et al.,
2006). However, real-world landscapes are comprised by objects of different sizes which
may exhibit internal heterogeneity (Herold et al., 2003). As single scale segmentations may
not suffice to capture such complexity, it has been suggested that image segmentation be
conducted in a nested hierarchy of scales modeling relationships between sub-objects, objects
and super-objects (Burnett & Blaschke, 2003). While it is an appealing approach, it can bring
further complications to the classification stage due to the additional need for user-driven
individual parameterization.

2.1.1 Image segmentation in computer vision
Computer vision is concerned with the theory for building artificial systems that obtain
information from images. The image data can take many forms, such as a video sequence,
views from multiple cameras, or multi-dimensional data from medical scanners (Azad et al.,
2008). As opposed to multispectral remote sensing, computer vision deals mainly with single
band data sets, i.e. greyscale images.
Image segmentation is an active field of research in computer vision and ‘hundreds of
segmentation algorithms have been proposed in the last 30 years’ (Freixenet et al., 2002) (p.
408). This proliferation of algorithms shows how elusive a satisfactory segmentation is. There
is an almost infinite number of ways an image can be sub-divided, they are all technically
correct, but most of them are not what users want (Shi & Malik, 2000).
Comprehensive reviews of image segmentation techniques have been published in the last
two decades in the computer vision literature, including, for example Freixenet et al. (2002);
Haralick & Schapiro (1992); Pal & Pal (1993).
In computer vision, image segmentation is the process of extracting objects from background
or separating the image into several regions which are considered to be coherent and
meaningful (Pal & Pal, 1993). Generally, image segmentation is a process of clustering pixels
in an image based on some rules, e.g. pixels with similar attributes should be together (Pal &
Pal, 1993).
In general terms, image segmentation techniques may be divided into two basic categories:
edge-based and region-based (Pal & Pal, 1993). Edge-based segmentation methods look
for detecting image discontinuities. In this category, the assumption is that boundaries
of regions are sufficiently different from each other and from the background to allow
boundary detection based on local discontinuities in grey level intensity. On the another
hand, region-based segmentation methods are based on partitioning an image into regions
that are similar according to a set of predefined criteria such as grey level, shape or texture.
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Two common approaches for region-based segmentation are either merging individual image
objects (bottom-up approach) or recursively splitting regions starting from the whole image
(top-down approach) (Pal & Pal, 1993).
Although the edge and region approaches are considered to yield good results, some
researchers have argued the impossibility of extracting complete information of either aspect
of the image independent of the other and have proposed hybrid approaches which integrate
boundary and region information (Moigne & Tilton, 1995; Pal & Pal, 1993). One example of
these approaches is the watershed algorithm which sees an image as a topographic surface
and, after identifying maxima (ridges) and minima (valleys), attempts ‘flooding’ the terrain to
obtain catchment regions (Dam, 2000).

2.1.2 Image segmentation in remote sensing
Image segmentation is a relatively recent field of research in environmental remote sensing,
despite the fact that it has been applied extensively in neighboring disciplines such as
computer vision and medical imaging (Carleer et al., 2005) . The main problem was the
inability of computer vision algorithms to process color or multiband image data sets.
However, in the last decade, the remote sensing community has adapted and enhanced
the computer vision segmentation approach for dealing with multispectral data sets. A
number of operational software tools are now available to conduct segmentation-based image
classification for remote sensing. This includes Definiens Developer, previously known as
eCognition, ENVI’s Feature Analysis, ERDAS’s Objective, and IDRISI’s Segmentation. Although
all of these programs offer a number of similar functionalities, Definiens Developer implements
the most advanced algorithms and is a popular choice in OBIA applications (Blaschke
et al., 2006) and will therefore be reviewed as example for current standard ’crisp’ OBIA
implementations.
Definiens implements the fractal net evolution algorithm which provides multiresolution
segmentation capabilities ‘applicable and adaptable to many problems and data types’ (Baatz
& Schape, 2000) (p. 1). Multiresolution segmentation is a bottom up, region-merging
technique which starts building one-pixel image objects which grow by merging adjacent
objects based on heterogeneity criteria (Yan et al., 2006). These objects may be extracted from
the image in a number of hierarchical levels and each subsequent level yields image objects
of a larger size by combining objects from a level below, which represents information on
different scales simultaneously (Baatz & Schape, 2000).
Image object heterogeneity can be spectral heterogeneity, hspectral, or shape heterogeneity,
hshape (Baatz & Schape, 2000). Spectral heterogeneity is a function of user-assigned layer
weights, number of pixels comprising the objects, and standard deviation of pixel values
within each layer. Shape heterogeneity is based upon the change in object shape before and
after an eventual merge. Object shape is described in two ways: (i) compactness and (ii)
smoothness.
Compactness C is measured as indicated in Equation 1:
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Spectral and shape heterogeneity are summarized by a single fusion value ( f ), which indicates
the potential merge between two image objects given by Equation 3 (Zhang, 2006):

f = (1 − w) ∗ hspectral − w ∗ hshape (3)

where w is the weight associated with shape heterogeneity (Definiens, 2007).
Throughout a single segmentation step, the underlying optimization procedure minimizes
the heterogeneity of resulting image objects weighted by their size. A segmentation step is
finished when every original image object is assigned to the optimal higher level image object.
To achieve adjacent image objects of similar size and thus of comparable quality, the procedure
simulates the growth of objects over a scene in each step and also for the final result (Yan et al.,
2006).
Other alternatives to multiresolution segmentation are provided by Definiens. The chessboard
algorithm produces a regular grid of segments with a predefined size. The quadtree
segmentation splits an image domain into squares, and then into smaller squares, until the
spectral heterogeneity of every image object falls below a user-defined threshold. The spectral
difference segmentation merges adjacent image objects that do no exceed a user-defined
threshold for a weighted spectral difference (Esch et al., 2008).
An approach to address the problems associated with multi-level segmentation is the move
from multi-level to single-level segmentation approaches (Corcoran & Winstanley, 2006).
This approach is advantageous due to two main reasons. First, it looks for conducting
segmentation in a way closer to human visual perception. Second, it helps to solve
practical problems for evaluation of multi-level segmentation such as complex hierarchical
classification schemas and complicated quality evaluation procedures. In fact, it has been
argued that a robust set of intensity and texture features could be extracted and integrated
to represent urban land cover in a "true form" with just one level segmentation (Corcoran &
Winstanley, 2006).
In summary, the traditional approach for image segmentation is problematic due to the
following reasons: (i) remotely sensed images portray an ambiguous representation of
geographic objects which often prevents the formation of meaningful image objects; (ii)
the current implementations of such segmentation are highly dependent on complicated
parameterisation procedures which are both labour intensive and time consuming; (iii) linking
image objects to real world classes, and identifying appropriate attributes, are not trivial tasks,
and usually require a trial and error approach. This means that the effectiveness of crisp
segmentation for land cover classification is at least partly depending on effort and skill of the
individual user.

2.1.3 Segmentation quality
Image segmentation can be seen as an improvement of the analysis process of remotely sensed
imagery. It provides an alternative means to conduct image classification. However, it has
been observed that object-based image classification also has limitations (Song et al., 2005):

• classification accuracy depends on the quality of the image segmentation (i.e. if objects are
extracted inaccurately, subsequent classification accuracy will not improve);

• classification error could be accumulated due to error in both image segmentation and
classification process; and

• once an object is mis-segmented, all pixels in this object will be misclassified.
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Image segmentation is therefore the critical stage in OBIA, but it is also viewed as an ill-posed
problem in the sense that it has no unique solution: a minor change of the homogeneity
measure leads to different segmentation outcome (Hay & Castilla, 2008).
However, not all segmentation methods are good enough for a particular type of images
and users of each application have to evaluate the quality of the image output from a
given segmentation algorithm. Thus, the problem is to ensure that the evaluation of the
segmentation results is an objective process. A common approach, in computer vision
applications, is to create a vector of comparison measures between the segmented image and
a ’ground truth’ segmentation (Pal & Pal, 1993).
A simple way to evaluate the quality of segmentation, provided that such ground truth
segmentation is available, is to use an overlapping area matrix (OAM) and the following
metrics (Ortiz & Oliver, 2006):

• percentage of correctly grouped pixels (CG);

• percentage of oversegmentation (OS); and

• percentage of undersegmentation (US).

In the field of environmental remote sensing, similar concepts have been proposed to evaluate
segmentation quality. A good segmentation is achieved when the overall differences between
the segmentation results and the associated reference objects are as low as possible (Meinel
& Neubert, 2004; Neubert et al., 2006). In general, the quality of image segmentation may
be evaluated using both qualitative and quantitative methods. Qualitative measures are
visual evaluations of general criteria such as the delineation of varying land cover types, the
segmentation of linear objects, or the ocurrence of faulty segmentation. Quantitative measures
make a comparison between clearly defined reference areas (varying in location, form, texture,
contrast, land cover type) and segmentation results using geometric properties such as area
Ai, perimeter Pi, and shape index Si = Pi/4

√
Ai of the image object i (Meinel & Neubert, 2004;

Neubert et al., 2006).
As presented, all of the methods proposed for quantitative evaluation of segmentation quality
of remotely sensed images rely on a reference segmentation. A main issue is how to define
such ground truth or reference segmentation. Some researchers have suggested adopting
a library of reference images with their corresponding segmentation reference image, as
computer vision community does, in order to evaluate different segmentation algorithms
(Corcoran & Winstanley, 2006). Using that approach, a group of researchers have evaluated
the performance of different segmentation algorithms using a common set of remotely sensed
images and measures (Neubert et al., 2008). However, this initiative is just a first step on
the path to well established criteria and methods for judging the quality of segmentation for
remote sensing applications.
For practical purposes, users need to build the reference segmentation suitable for their
own applications by visual interpretation. In this case, expert humans partition the image
into spectrally homogeneous regions, adjust them to accommodate spatial or contextual
characteristics and, then, use that ideal segmentation to evaluate segmentation results. A
problem with this approach is that the whole process of image classification becomes more
dependent on visual interpretation and harder to automate.
Segmentation evaluation becomes more complex with multiscale segmentation which
produces a number of segments at different scales. It seems impractical to define an ideal
reference segmentation for each scale. A sensible approach in this case would be a qualitative
evaluation through visual inspection of each segmentation level. However, a subjectivity
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Spectral and shape heterogeneity are summarized by a single fusion value ( f ), which indicates
the potential merge between two image objects given by Equation 3 (Zhang, 2006):

f = (1 − w) ∗ hspectral − w ∗ hshape (3)

where w is the weight associated with shape heterogeneity (Definiens, 2007).
Throughout a single segmentation step, the underlying optimization procedure minimizes
the heterogeneity of resulting image objects weighted by their size. A segmentation step is
finished when every original image object is assigned to the optimal higher level image object.
To achieve adjacent image objects of similar size and thus of comparable quality, the procedure
simulates the growth of objects over a scene in each step and also for the final result (Yan et al.,
2006).
Other alternatives to multiresolution segmentation are provided by Definiens. The chessboard
algorithm produces a regular grid of segments with a predefined size. The quadtree
segmentation splits an image domain into squares, and then into smaller squares, until the
spectral heterogeneity of every image object falls below a user-defined threshold. The spectral
difference segmentation merges adjacent image objects that do no exceed a user-defined
threshold for a weighted spectral difference (Esch et al., 2008).
An approach to address the problems associated with multi-level segmentation is the move
from multi-level to single-level segmentation approaches (Corcoran & Winstanley, 2006).
This approach is advantageous due to two main reasons. First, it looks for conducting
segmentation in a way closer to human visual perception. Second, it helps to solve
practical problems for evaluation of multi-level segmentation such as complex hierarchical
classification schemas and complicated quality evaluation procedures. In fact, it has been
argued that a robust set of intensity and texture features could be extracted and integrated
to represent urban land cover in a "true form" with just one level segmentation (Corcoran &
Winstanley, 2006).
In summary, the traditional approach for image segmentation is problematic due to the
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Image segmentation is therefore the critical stage in OBIA, but it is also viewed as an ill-posed
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In the field of environmental remote sensing, similar concepts have been proposed to evaluate
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visual evaluations of general criteria such as the delineation of varying land cover types, the
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make a comparison between clearly defined reference areas (varying in location, form, texture,
contrast, land cover type) and segmentation results using geometric properties such as area
Ai, perimeter Pi, and shape index Si = Pi/4

√
Ai of the image object i (Meinel & Neubert, 2004;

Neubert et al., 2006).
As presented, all of the methods proposed for quantitative evaluation of segmentation quality
of remotely sensed images rely on a reference segmentation. A main issue is how to define
such ground truth or reference segmentation. Some researchers have suggested adopting
a library of reference images with their corresponding segmentation reference image, as
computer vision community does, in order to evaluate different segmentation algorithms
(Corcoran & Winstanley, 2006). Using that approach, a group of researchers have evaluated
the performance of different segmentation algorithms using a common set of remotely sensed
images and measures (Neubert et al., 2008). However, this initiative is just a first step on
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remote sensing applications.
For practical purposes, users need to build the reference segmentation suitable for their
own applications by visual interpretation. In this case, expert humans partition the image
into spectrally homogeneous regions, adjust them to accommodate spatial or contextual
characteristics and, then, use that ideal segmentation to evaluate segmentation results. A
problem with this approach is that the whole process of image classification becomes more
dependent on visual interpretation and harder to automate.
Segmentation evaluation becomes more complex with multiscale segmentation which
produces a number of segments at different scales. It seems impractical to define an ideal
reference segmentation for each scale. A sensible approach in this case would be a qualitative
evaluation through visual inspection of each segmentation level. However, a subjectivity
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problem may arise with visual evaluations. This problem suggests that, while multi-scale
segmentation seems valuable to capture both the coarse and the fine scales of real world
objects (Benz, 2001), it may demand intensive user interaction to validate the consistency of
the different segmentation levels.
An additional issue could emerge as a by-product of changing the classification paradigm
from pixels to image objects. Although quality assessment of pixel-based classes can be done
without many problems using proven techniques based on the well known mis-classification
or error matrix, it could be not entirely right for objects obtained using the object-based
approach. It could be necessary to build a new framework for assessing the quality of
ground objects derived from remotely sensed data. In that direction, Zhan et al. (2005) have
proposed adopting a so-called per-object method of quality assessment able to measure spatial
or contextual attributes of the object-classes not just the label assigned to each pixel.
In summary, the objective evaluation of segmentation quality remains problematic. As
an example, a detailed evaluation of four different segmentation algorithms (i.e. optimal
edge detector, watershed segmentation, multilevel thresholding, and fractal net evolution)
concluded that the ‘miraculous segmentation’ method which segments in a correct way for all
types of landscape does not exist (Carleer et al., 2005).

2.1.4 Uncertainty in image segmentation
A useful model for understanding uncertainty in image analysis is the image chain approach
which considers the remote sensing process as a chain linking subsequent stages from image
collection to the final thematic mapping (Schott, 1997). In such a view, image analysis is only
as strong as the weakest link in the chain and limitations existing at each step affect the entire
process (Woodcock, 2002).
In the case of object-based image analysis, image segmentation is not only the weakest
link in the chain but also the earliest one. Understanding uncertainties associated with the
image classification process may be useful to propose alternative ways for conducting image
segmentation.
Atkinson & Foody (2002) suggested dividing uncertainty between ambiguity and vagueness.
Ambiguity is the uncertainty associated with crisp sets, for example, when hard classification
is conducted to allocate pixels to one of several possible land cover classes. Vagueness, on the
other hand, is expressed by the degree of incompleteness of land cover classification schemas
or the eventual fuzziness needed to deal with borderline cases (e.g. the dividing line between
a sprawling shrub and a woody vine which is indefinite).
Such ambiguity intensifies in urban areas, where mixed pixels occur in images with different
spatial resolution (Herold et al., 2003; Mesev, 2003). This ambiguity is due to the complex
composition of urban landscapes where the same materials may be present in different land
cover classes, as for example in roads and rooftops made of asphalt and concrete. In such
cases, any attempt to produce crisp image objects representing one or another land cover class
can fail easily. As a simple illustration, Figure 2 shows eight crisp segmentations obtained
from a high spatial resolution image over an urban area. In this example, image segmentation
was conducted using a watershed segmentation algorithm which needs three parameters
as input: (i) denoising factor (conductance of an anisotropic diffusion filter), (ii) scale (size
of the image objects), and (iii) dissimilarity criteria (threshold value to merge the image
objects). A visual assessment of the resulting image segmentations suggests that none of these
single level segmentations produces meaningful image objects. Morever, it demonstrates that
parameterisation of a meaningful segmentation is really a complicated and hard task. This
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Fig. 2. Examples of crisp image objects produced by a hard image segmentation of a
multispectral image using the watershed algorithm and different combinations of parameters

example illustrates that, very often, a discrete image segmentation does not help to resolve
the ambiguity present in urban image data sets.
On the other side of uncertainty is vagueness, a component which refers to the application
of fuzzy sets concepts, for example, when fuzzy classification is used to establish degrees of
membership to natural land cover that varies continuously (Atkinson & Foody, 2002). This
topic is reviewed in the next section.

2.2 Fuzzy sets and image classication
Fuzzy classification attempts to address the fact that geographic information is imprecise,
meaning that the boundaries between different phenomena are fuzzy, or there is heterogeneity
within a class, perhaps due to physical differences. A fuzzy classification takes into account
that there are pixels of mixed composition, that is, a pixel cannot be definitively assigned to
one or another category (Fisher & Pathirana, 1990; Wang, 1990).
A hard classification algorithm is based on classic set theory, which requires precisely defined
set boundaries for which an element (i.e. a pixel) is either a member (true = 1) or not a member
(false = 0) of a given class. In contrast, a fuzzy classification allows degrees of membership of
image objects to each of the different classes. A main advantage of fuzzy classifiers is that they
provide a more informative and potentially more accurate alternative to hard classification
(Atkinson & Foody, 2002). Thus, a fuzzy classifier is a realistic way to take into account the
ambiguity problem described in the previous section.
Fuzzy approaches for per-pixel image classification have been proposed since 1990 (Foody,
1996; Wang, 1990; Zhang & Foody, 1998). It has been argued that, because of mixed pixels,
remotely sensed images provide an ambiguous representation of the landscape (Fisher, 1997).
As a consequence, identification of thematic classes from images can not be achieved with
a high level of certainty (Molenaar & Cheng, 2000). Hence, a hard classification of images
into well-defined classes has been evaluated as inappropriate and inaccurate (Doan & Foody,
2007). A fuzzy or soft image classification can be obtained by using either a per-pixel or
a per-field approach (i.e. using existing boundary data) (Aplin & Atkinson, 2001; Zhang &
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Stuart, 2001). A fuzzy classification is especially useful for analyzing and detecting changes
in complex landscapes (Burrough & Frank, 1996; Fisher et al., 2006).
Pixel-based fuzzy classification is typically conducted using three main stages:

1. fuzzification, in which membership functions to classes are established for a number of
features,

2. fuzzy rules definition, in which different membership functions are combined into a rule set
base and used for classification, and

3. defuzzification, in which the fuzzy classification result is discretized to produce the eventual
crisp allocation/classsification.

Fig. 3. Crisp (rectangular) and fuzzy (i.e. triangular and normal) membership functions for
feature z.

Fuzzification is a term used to describe the transition from crisp (classic) sets to fuzzy sets.
In a fuzzy system, every class is represented as a fuzzy set and memberships take values
anywhere in the range [0, 1] (Zadeh, 1965). Figure 3 shows that , for a particular feature z, the
membership value μ to a given class can be defined by either a crisp membership function
as the rectangular function or by a fuzzy membership function such as the triangular or the
bell-shaped functions. In a crisp function, such as the rectangular one, the membership value
μ is full (1.0) if b1 ≤ z ≤ b2, or null (0.0), otherwise. In a fuzzy function, such as the triangular
in (a) or the normal in (b), the membership value μ can be any value between 1.0 and 0.0,
depending on the value of z and the specific nature of the selected function.
The second stage is the definition of fuzzy rules, i.e. if - then rules in which, if a condition is
fulfilled, an action takes place. Referring to Figure 4 the following rules apply: If the value
of feature z is below 25, then the pixel has a full membership to a given land cover class (e.g.
class A). If the value of feature z is 50, then the pixel has 0.5 membership to class A and 0.5
membership to class B. A fuzzy rule base produces a fuzzy classification which consists of
discrete return values of membership of pixels for each of the output classes.
In defuzzification, the last stage of the process, every pixel is assigned to one of the classes of
interest. A common way of defuzzification is to assign each pixel to the class with the highest
membership degree value. If this value is below a certain threshold (e.g. less than 0.50), no
classification is performed to ensure a minimum reliability of such allocation.
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Fig. 4. The fuzzy membership functions for feature z define the fuzzy set L (low), M
(medium), and H (high) of membership to classes A, B and C.

It should be noted that the use of fuzzy sets techniques in the context of conventional OBIA
is not new. However, fuzziness has not been considered at the segmentation stage but later
in the process chain, that is, at the classification stage. In this stage, the richness of fuzzy
sets concepts is used to handle the uncertainty carried by sharp image objects and hopefully
to increase the final thematic accuracy (Benz et al., 2004). Fuzzy classification is, however,
the last stage of the process, and it may be too late to take into account uncertainty. As
an example, Definiens software provides capabilities for fuzzy classification of image objects.
However, in such implementation users need to manually select fuzzy membership functions
and experiment with classification rules. This particular setup of the defuzzification step
leads to time consuming trial and error experiments which add significant effort to the whole
classification process.
Fuzzy sets concepts have been implemented in the segmentation stage of OBIA only very
recently (Lizarazo & Elsner, 2009). This chapter links into this work and pursues the argument
that a much more natural way for dealing with uncertainty is to apply fuzzy set concepts
at the very beginning of the OBIA process, that is in the segmentation stage. By doing
that, the earliest (and regularly weakest) link could be strengthened and therefore the entire
classification process be improved.
In the next section , a general framework for object-based image classification based on fuzzy
segmentation will be proposed.

3. Geographic objects and image objects

In the previous section, ‘image objects’ were introduced as the core spatial units for conducting
object-based image analysis (OBIA). As segmentation, the OBIA’s critical stage, produces
such image objects which aim to identify real world objects, it is important to review how
geographic objects are conceptualised in digital environments.
At its most basic level, geographic objects can be modeled as discrete objects or continuous
fields, depending on a number of considerations, including purpose and scale of analysis
(Couclelis, 1992; Goodchild, 1992; Goodchild et al., 2007).
Discrete objects are non-overlapping partitions of the geographic space which can be used to
conceptualise sharply bounded objects like buildings, roads or real estate units. Continuous
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fields are functions that map locations to a given property (attribute) which may serve to
conceptualise spatially variant phenomena like elevation, soil type, agricultural suitability or
flood risk. For some applications, a given geographic object can be modeled simultaneously
as being a field and an object, e.g. an agricultural parcel can be conceptualised as an enclosed
area of land whose soil acidity varies continuously (Bian, 2007; Goodchild et al., 2007).
Thus, geographic objects can be represented using three main categories: (i) geo-objects for
discrete objects, (ii) geo-fields for continuous fields, and (iii) field-objects for spatial regions
with internal heterogeneity (Goodchild et al., 2007). All categories can be derived from the
concept of a geo-atom which associates a point location in space-time and a property. In
formal language, a geo-atom is a tuple 〈x, Z, z(x)〉 where x defines a point in space-time, Z
identifies a property and z(x) defines the particular value of the property at that point.
A geo-object is therefore an aggregation of points in space-time whose geo-atoms have
uniform values for certain properties. A geo-object can have either natural (also known as
bona fide) boundaries or cognition-induced (also known as fiat) boundaries (Goodchild et al.,
2007). Examples of bona fide boundaries are buildings, roads, or rivers. Examples of fiat
boundaries are county borders or property-lines.
In geo-fields, the values for a particular property of geo-atoms are allowed to vary. A
scalar geo-field describes a single property such as elevation; a vector geo-field describes
both magnitude and orientation of continuous phenomena such as wind or temperature. A
field-object is a mixed object which describes the variation of a continuous property across an
areal geo-object such as changes on biomass in a forest. In current GIS practice, geo-objects
can be represented in the two dimensional space using points, lines and polygons. Geo-fields
are commonly represented by raster grid cells or triangular irregular networks (Goodchild
et al., 2007). Field-objects, however, are not very well represented yet in GIS systems (Bian,
2007).
In the realm of OBIA, the segments output by standard ‘hard’ segmentation procedures can
be related to geo objects. However, segmentation could be defined in a broader way to be
compatible with other types of geographic objects as well. Such a more generic view of the
image segmentation process would allow it to produce image regions able to resemble both
discrete geo-objects and continuous geo-fields.
It is proposed here that image segmentation should be understood as the process of grouping
pixels either spatially or thematically. In the first case, spatial segments can be identified
as crisp image objects which are discrete groups of pixels with clearly delimited boundaries
but no thematic description. These are the geo-object type segments that are produced by
current standard OBIA approaches. In the second case, segments can be conceptualised as
image fields, whose pixels store individual values to a given property. Image fields are not
single layer output such as the spatial segments of standard OBIA approaches. Rather, image
fields consist of as many layers as properties of interest, e.g. target land cover classes, exist.
A set of image fields representing respective membership to a given set of thematic categories
and individual image fields can be understood as continuous image regions.
Figure 5 illustrates both spatial and thematic image segmentation: (a) an example of spatial
segmentation with four discrete image objects labelled as 1,2,3, and 4; (b) three layers of
continuous image regions, identified as target land cover classes A, B, and C. In (c), the
hypothetical thematic categories A, B, and C, are shown for reference. Typically, discrete
image objects, or spatial segments, are crisply bounded, have individual identity but lack
any thematic description. Crisp image objects are created using intrinsic homogeneity criteria
which usually do not refer to thematic similarity. Thus, discrete image objects are simply crisp
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(a) (b) (c)

Fig. 5. Two different types of segments output by image segmentation: (a) discrete image
objects with crisp boundaries but no thematic description; and (b) continuous image regions
with indeterminate boundaries but thematic description. Three hypothetical thematic
categories A, B and C are shown in (c) for reference.

regions whose spatial and spectral properties need to be analysed at a later stage of the OBIA
process to produce an eventual thematic allocation.
Continuous image regions, or thematic segments, on the other hand, are a set of image
fields with no spatial boundaries but holding a membership value to a given set of thematic
categories. Thematic segments have no sharply defined boundaries, thus they can be
considered as fuzzy or vague regions. As illustrated in (b), there are as many layers of image
regions as target classes exist. Each pixel in a image region holds membership values to every
one of target classes A, B and C. A given pixel, for example the one to the top right corner,
holds the following membership values: 0.7 to class A, 0.0 to class B, and 0.3 to class C (in this
example, it is assumed that membership values add up to 1.0 which is not always the case).

3.1 Spatial image segmentation and sharp image objects
Spatial or crisp image segmentation that is undertaken in traditional OBIA analysis can
formally be described as follows. Let R represent the entire geographic region occupied by
an image. Spatial segmentation can be seen as a process that partitions R into n homogeneous
sub-regions R1, R2, . . . , Rn such that:

n⋃

i=1

Ri = R. (4)

R is a connected set, i = 1, 2, . . . , n. (5)

Ri ∩ Rj = ∅ for all i and j, i �= j. (6)

Pred(Ri) = TRUE for i = 1, 2, . . . , n. (7)

Pred(Ri ∪ Rj) = FALSE for any adjacent regions Ri and Rj. (8)
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which usually do not refer to thematic similarity. Thus, discrete image objects are simply crisp
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(a) (b) (c)

Fig. 5. Two different types of segments output by image segmentation: (a) discrete image
objects with crisp boundaries but no thematic description; and (b) continuous image regions
with indeterminate boundaries but thematic description. Three hypothetical thematic
categories A, B and C are shown in (c) for reference.

regions whose spatial and spectral properties need to be analysed at a later stage of the OBIA
process to produce an eventual thematic allocation.
Continuous image regions, or thematic segments, on the other hand, are a set of image
fields with no spatial boundaries but holding a membership value to a given set of thematic
categories. Thematic segments have no sharply defined boundaries, thus they can be
considered as fuzzy or vague regions. As illustrated in (b), there are as many layers of image
regions as target classes exist. Each pixel in a image region holds membership values to every
one of target classes A, B and C. A given pixel, for example the one to the top right corner,
holds the following membership values: 0.7 to class A, 0.0 to class B, and 0.3 to class C (in this
example, it is assumed that membership values add up to 1.0 which is not always the case).

3.1 Spatial image segmentation and sharp image objects
Spatial or crisp image segmentation that is undertaken in traditional OBIA analysis can
formally be described as follows. Let R represent the entire geographic region occupied by
an image. Spatial segmentation can be seen as a process that partitions R into n homogeneous
sub-regions R1, R2, . . . , Rn such that:

n⋃

i=1

Ri = R. (4)

R is a connected set, i = 1, 2, . . . , n. (5)

Ri ∩ Rj = ∅ for all i and j, i �= j. (6)

Pred(Ri) = TRUE for i = 1, 2, . . . , n. (7)

Pred(Ri ∪ Rj) = FALSE for any adjacent regions Ri and Rj. (8)
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In equations 4 to 8, Pred(Rk) is a logical predicate defined over the points in set Rk, and ∅ is
the null set. The symbols ∪ and ∩ represent set union and intersection, respectively. A region
is a connected set of pixels. Two regions Ri and Rj are considered adjacent if pixels lying on
their boundaries are neighbours. A pixel may have either 4 neighbours (i.e. two horizontal and
two vertical) or 8 neighbours (when the four diagonal neighbors are also considered). Equation
4 indicates that every pixel is allocated to a region. Equation 5 requires that pixels in a region
be 4- or 8- connected. Equation 6 indicates that the regions must be disjoint (i.e. they have no
pixel in common). Equation 7 indicates what properties must be satisfied by the pixels in a
segmented region –for example, Pred(Ri) = TRUE if all pixels in Ri have their intensity level
within certain interval. Finally, equation 8 denotes that two adjacent regions Ri and Rj must
be different in the sense of predicate P.

Fig. 6. Spatial or crisp image segmentation produces one single image composed of sharp
image objects with clearly defined boundaries. In a field representation of sharp image
objects, as the one depicted to the right, pixels hold full or null membership to image objects.
In a perfect segmentation, discrete image objects can be unequivocally associated to target
land cover classes.

Discrete image segmentation divides an image into a set of non-overlapping regions or image
objects whose union is the entire image (Haralick & Schapiro, 1992). Figure 6 illustrates
that crisp image objects are discrete structures with clearly defined boundaries which cover
the totality of the imaged geographic area. Image objects are an aggregation of (raw or
pre-processed) pixels whose digital values, located at one or several spectral bands, meet one
or several homogeneity criteria defined by predicate P. Pixels aggregated as image objects
satisfy predicate P –which usually involves properties of single pixels but may also include
constraints related to the segment under construction like minimum or maximum size. As
outlined earlier, the definition of predicate P is a subjective decision which usually entails a
trial and error parameterisation procedure in established OBIA workflows.
However, Figure 6 demonstrates that such image objects can be expressed as well in the field
view of thematic segmentation. This is done as three image regions in which the membership
of pixels to image objects 1 to 4 is expressed in the binary 0/1 membership to each individual
region. In a perfect segmentation each image object 1, 2, 3, and 4 can be unequivocally linked
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to the target classes A, B, and C (as shown in Figure 5). This demonstrates that the spatial
segments can also be conceptualised as extreme examples of thematic segmentation.

3.2 Fuzzy image segmentation and fuzzy image regions
Thematic segmentation offers the opportunity to widen the binary crisp membership
attributes that are inherent in the spatial segmentation approach by allowing not just
membership values of 0 or 1 but also any value in between, i.e. expressing fuzzy membership
values. This is the central paradigm of the proposed fuzzy image segmentation approach.
Figure 7 shows vague (or fuzzy) image regions output by a fuzzy segmentation. In this
hypothetical example, the input image is a multispectral image composed of n spectral bands.
The output of the fuzzy classification is a set X composed of m image regions, where m is
defined by the number of target land cover classes of the OBIA process. In the example of
Figure 7, Xm comprises of three land cover classes A, B, and C. Partial membership values
μ(Xm) are represented by continuous values ranging from 0.0 (no membership) to 1.0 (full
membership).

Class

Fig. 7. Thematic or fuzzy image segmentation outputs fuzzy image regions holding multiple
membership values to target thematic categories A, B, and C. Fuzzy image regions are
continuous or thematic segments which take into account the inherent ambiguity of remotely
sensed images.

A fuzzy segmentation partitions the image R into overlapping image fields with
indeterminate boundaries and uncertain thematic allocation. This means that equations
5, 6 and 8 that apply to discrete segmentation do not hold for continuous or thematic
segmentation. Instead, there is no condition of spatial connectedness (Equation 5); each pixel
belongs to all m fuzzy image regions with varying degrees of membership (Equation 6); and
there is no condition of dissimilarity between regions ( Equation 8). In addition, membership
values can be anywhere in the range from 0.0 to 1.0.
The concept of a fuzzy image region can be further extended in order to allow pixels to store
not only a single membership value per class (a scalar) but a multi-valued membership per
class (a vector). This extension may be useful to store, for example, minimum, mean and
maximum estimated values of membership. This additional type of fuzzy image region can
be referred to as a composed fuzzy image region. A composed image region can be seen as a
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finite set of possible realizations of a fuzzy image-region where each realization is the value
inferred using one specific processing technique.
Once fuzzy image regions have been established, there are two alternative approaches for
conducting the subsequent OBIA classification process:

• direct discretization which transforms fuzzy image regions into discrete objects or classes
skipping the feature analysis stage (i.e. using a similar approach to traditional pixel-wise
fuzzy classification), or

• object-oriented discretization which introduces a feature analysis stage in
which fuzzy image regions properties are measured before proceeding to the
defuzzification/classification stage.

3.3 A general workow for image classication
A general framework to conduct fuzzy segmentation-based image analysis is proposed in
Figure 8. The image classification process can be understood as the sequential development
of three distinct and interrelated stages: (i) fuzzy segmentation in which n spectral bands are
transformed into m fuzzy image regions, (ii) feature analysis in which properties of fuzzy
image regions are measured to build a set of relevant features, and (iii) defuzzification (or
classification) in which fuzzy image regions are allocated to one of m land cover classes.

3.3.1 Fuzzy segmentation
In this stage, fuzzy image regions are created from raw or pre-processed pixels. As outlined
in the previous section, fuzzy image-regions have membership values in the range [0, 1].
Such values represent degrees of belongingness of every pixel to the classes under study.
Fuzzy segmentation can be understood here as a supervised regression task in which, training
samples are used to infer membership values to classes for the whole image. Thus, following
such a concept, any statistical technique able to fit a supervised regression model may be
used to produce fuzzy image regions. Once a set of membership grey-level images has been
produced, there will be one fuzzy image region available for each target class.

3.3.2 Feature analysis
This stage aims to define, select and extract a relevant set of image regions’ properties and
relationships suitable to be used as a feature vector to infer appropriate decision rules to
resolve the spectral ambiguity of land cover classes. An example metric is the absolute
normalized difference index (ANDI) defined in Equation 9:

ANDI = |μiA− μiB|/(μiA+ μiB) (9)

where μiA and μiB are the membership values of the ith pixel to the classes A and B,
respectively. The ANDI value is an indicator of the overlap existing between two specific
fuzzy image regions. ANDI values range in [0, 1]. ANDI values close to 0 represent areas of
thematic confusion.
Another metric is the sum of logarithms index (SOL) defined in Equation 10:

SOL = lnμiA+ lnμiB (10)

where ln is the natural logarithm. The SOL index measures the overlap between two fuzzy
image regions A and B and highlights areas exhibiting high membership values to more than
one target class.
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Fig. 8. A general workflow for image classification based on fuzzy segmentation.

3.3.3 Defuzzication
This stage aims to infer (and apply) appropriate decision rules to assign either full
membership from the fuzzy image regions to the target land-cover classes (in the case of
categorical qualitative analysis) or compositional values representing proportion of land cover
classes at every pixel (in the case of quantitative analysis).
For qualitative analysis, a common defuzzification technique used in fuzzy applications is the
allocation using the maximum membership values (Wang, 1990), which has been applied in
per-pixel classification in the last two decades. Other approaches include the centroid method,
the weighted average method and the mean max membership method (Ross, 2004). However,
all these established techniques do not exploit the potential richness of information carried
by fuzzy image regions (and quantified in the feature analysis stage). Thus, in the approach
proposed here, the process of defuzzification is addressed as a problem of supervised learning
in which a variety of non parametric classification algorithms could be applied.
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Fig. 8. A general workflow for image classification based on fuzzy segmentation.
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For quantitative analysis, the defuzzification task can be understood as a supervised regression
problem in which appropriate training samples are used to infer compositional land cover
values for the whole image (in this case, fuzzy image regions need to add to 1.0). For solving
such a problem, a double regression is conducted: one for the fuzzy segmentation, and the
other one for the final classification.

3.4 Application of the proposed framework
The proposed framework has been applied to qualitative and quantitative land cover analysis.
The following sections summarize main results of applying the fuzzy image segmentation
approach for classification of a number of remotely sensed urban datasets.

3.4.1 Categorical land cover analysis
Lizarazo & Elsner (2009) applied the fuzzy segmentation method to classify the University
image, a hyperspectral dataset of the University of Pavia (Italy) that was collected by the

Hysens project on 8th July 2002 (Gamba, 2004).
The University data set size is 610x339 pixels. Spatial resolution is 1.2 m. There are 112
hyperspectral channels ranging from 400 to 1260 nm. This data set was chosen because it
was used in a previous OBIA study using crisp image segmentation (Aksoy, 2006).
Seven spectral channels which roughly correspond to the center wavelength of Landsat
Thematic Mapper (TM) channels were selected as input for the image classification
experiment. The University data set includes training and testing samples for nine land
cover classes: asphalt, meadows, gravel, trees, (painted) metal sheets, bare soil, bitumen,
self-blocking bricks, and shadow. The training sample comprises 3921 pixels and the testing
sample 42762 pixels.
For this experiment, the fuzzy segmentation stage was conducted using the generalized
additive method (GAM) which output nine fuzzy image regions (i.e. one image region per
target land cover class) from the seven spectral channels. For the feature analysis stage, the
ANDI indices were calculated for the following pairs of classes as they were visually identified
as potencial source of spectral confusion: asphalt and gravel, asphalt and bitumen, asphalt
and bricks, meadows and trees, and meadows and bare soil. For the final defuzzification stage,
a support vector machine (SVM) was used to output the intended land cover classification.
The overall classification accuracy reported by Lizarazo & Elsner (2009) was a 0.95 confidence
interval of KIA (Kappa Index of Agreement) equals to [0.764, 0.784].
The performance of the proposed fuzzy segmentation method was evaluated by using an
earlier classification of the University data set (Aksoy, 2006) as benchmark. In that work, a
three stage crisp segmentation OBIA procedure was applied. Input to the crisp segmentation
comprised of 24 bands as follows: 8 linear discriminant analysis (LDA) bands, 10 principal
components analysis (PCA) bands, and 16 Gabor texture bands. The feature analysis step
used a feature vector of 4 values for each image object by clustering spectral statistics from the
24 input bands and from 10 shape attributes. The final classification was based on Bayesian
classifiers. The overall classification accuracy reported by Aksoy (2006) was a 0.95 confidence
interval of KIA equals to [0.788, 0.814].
It is apparent that the work of Aksoy (2006) achieved slightly higher accuracies. However,
it also required significant user input and has very limited potential for automation. Fuzzy
segmentation-based OBIA as implemented by Lizarazo & Elsner (2009) required very little
user-input and could easily be automated for the analysis of large data sets.
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3.4.2 Quantitative land cover analysis
The traditional OBIA methods, based on crisp segmentation, are mainly used to delineate and
classify land cover efficiently (Duveiller et al., 2008). As crisp segmentation deals with the
delineation of meaningful sharp image objects, it is clear that its main advantage relies on
its ability to produce qualitative land cover units. The OBIA approach focuses on qualitative
interpretation of remote sensing images. Often, however, it is preferable to use a continuous
representation of land cover (i.e. a quantitative analysis) rather than a discrete classification
(i.e. a qualitative classification). In a continuous representation of land cover, the different
compositional classes vary continuously not only in space but also in time. By contrast, in the
discrete representation of land cover, each spatial unit is represented by a single categorical
value which is stable over time (Lambin, 2000). Quantitative land cover clasification is of
particular relevance where a individual land surface characteristic is of interest, e.g. the
fraction of impervious surface in each pixel, or the percentage of tree cover at each location.
Lizarazo (2010) applied the fuzzy segmentation method for estimation of impervious surface
area (ISA) values in Montgomery County, Maryland, USA, from Landsat-TM ortorectified
images. The Landsat images, collected in 1990 and 2000, comprised of seven spectral channels
with pixel size of 28.5 m at 50 m root mean square error (RMSE) positional accuracy. As part
of an extensive study on urbanization in the Chesapeake Bay Watershed, Jantz et al. (2005)
obtained accurate ISA maps and qualitative land cover maps for the study area. These maps
were used as ground reference for training sample collection and accuracy evaluation.
The estimation of quantitative land cover involved four main stages: (i) pre-processing for
relative radiometric normalization of the two Landsat-TM scenes, (ii) fuzzy segmentation,
(iii) feature analysis, and (iv) final regression. For the fuzzy segmentation stage, a supervised
regression SVM model was fitted using land cover class memberships as a response variable
and six independent analysis components (ICA) as predictor variables. Training sample
comprised 1000 randomly selected pixels representing 0.27% of the study area. As a result
of this stage, the following five fuzzy image regions were created: water, urban, grass, trees,
and bare soil. For the feature analysis stage, ANDI indices were calculated for the following
pair of fuzzy image regions: urban and water, urban and grass, urban and trees, and urban
and bare soil. For the final regression stage, the SVM regression technique was used to predict
ISA values from the five vague image regions and the four SOL indices.
As a final step, the accuracy of the fuzzy segmentation method was evaluated by comparing
the predicted ISA values with the ground reference data using the standard correlation
index (Jensen, 2005). The correlation index between the predicted ISA images and the
ground reference images were 0.75 for the 1990 date, and 0.79 for the 2000 date. The fuzzy
segmentation method overestimated ISA values by 10% and 8% respectively. This estimation
level can be considered to be a good approximation to the real impervious surface area. Minor
misprediction problems were detected only after a careful visual assessment.
Unlike traditional OBIA methods, the fuzzy segmentation approach can therefore be used
for both qualitative and quantitative land cover analysis. This characteristic of the proposed
approach is clearly one of its central advantages. This potential is very important for remote
sensing image analysis, as there is an increasing need to estimate biophysical parameters to
better understand the environmental dynamics at local and national scales (Camps-Valls et al.,
2009). In this context, there seems to be an urgent need for robust and accurate regression
methods in order to overcome the challenges posed by the inversion of analytical models
which are often considered as too complex, computationally intensive, or sensitive to noise
(Camps-Valls et al., 2009; Kimes et al., 2000).
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were used as ground reference for training sample collection and accuracy evaluation.
The estimation of quantitative land cover involved four main stages: (i) pre-processing for
relative radiometric normalization of the two Landsat-TM scenes, (ii) fuzzy segmentation,
(iii) feature analysis, and (iv) final regression. For the fuzzy segmentation stage, a supervised
regression SVM model was fitted using land cover class memberships as a response variable
and six independent analysis components (ICA) as predictor variables. Training sample
comprised 1000 randomly selected pixels representing 0.27% of the study area. As a result
of this stage, the following five fuzzy image regions were created: water, urban, grass, trees,
and bare soil. For the feature analysis stage, ANDI indices were calculated for the following
pair of fuzzy image regions: urban and water, urban and grass, urban and trees, and urban
and bare soil. For the final regression stage, the SVM regression technique was used to predict
ISA values from the five vague image regions and the four SOL indices.
As a final step, the accuracy of the fuzzy segmentation method was evaluated by comparing
the predicted ISA values with the ground reference data using the standard correlation
index (Jensen, 2005). The correlation index between the predicted ISA images and the
ground reference images were 0.75 for the 1990 date, and 0.79 for the 2000 date. The fuzzy
segmentation method overestimated ISA values by 10% and 8% respectively. This estimation
level can be considered to be a good approximation to the real impervious surface area. Minor
misprediction problems were detected only after a careful visual assessment.
Unlike traditional OBIA methods, the fuzzy segmentation approach can therefore be used
for both qualitative and quantitative land cover analysis. This characteristic of the proposed
approach is clearly one of its central advantages. This potential is very important for remote
sensing image analysis, as there is an increasing need to estimate biophysical parameters to
better understand the environmental dynamics at local and national scales (Camps-Valls et al.,
2009). In this context, there seems to be an urgent need for robust and accurate regression
methods in order to overcome the challenges posed by the inversion of analytical models
which are often considered as too complex, computationally intensive, or sensitive to noise
(Camps-Valls et al., 2009; Kimes et al., 2000).
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Consequently, the fuzzy segmentation approach can be included in the list of emerging
methods which use empirical models to learn the relationship between the acquired imagery
and actual ground measurements. Furthermore, the fuzzy segmentation approach can act as
an unifying framework which contributes to bridging the gap between the two traditional
branches of remote sensing analysis, i.e. those methods that study categorical variables and
those methods focused on estimating continuous variables, which are often considered as
opposite, and independent worlds (Liang, 2007).

4. Conclusions

Fuzzy image regions can serve as a general conceptual framework for producing both accurate
quantitative and qualitative characterizations of land cover. The application of the proposed
method in several case studies illustrated that fuzzy image segmentation provides a robust,
accessible and easy to use method for urban land cover analysis. The contribution of this
chapter, which was discussed in last section, can be summarized as follows:

1. The potential of fuzzy sets concepts to extend the traditional perspective of image
segmentation was evaluated.

2. The suitability of the fuzzy segmentation approach to produce both categorical and
compositional characterization of land cover was tested.

The proposed method therefore enhances the range of OBIA alternatives and contributes to
improving the remote sensing image analysis process. It addresses the concerns of Platt &
Rapoza (2008) that traditional OBIA approaches commonly have difficulties dealing with
spectrally overlapping classes. This is particularly true in urban landscapes which usually
comprise objects of different sizes with high levels of within-class heterogeneity (Herold
et al., 2007). In such landscapes, where spectral complexity is a common issue, the fuzzy
segmentation approach represents a suitable alternative to the hard image segmentation
approach, a trial and error process which may not always succeed (Frauman & Wolff, 2005;
Lang et al., 2006; Robson et al., 2006; Schiewe et al., 2001b). In addition, in contrast to image
classification based on hard segmentation, the proposed method is able to deal, throughout
the whole process, with the inherent imperfections of remote sensing data such as sensor
noise, local shading and highlights which often prevent the creation of meaningful image
objects (Bezdek et al., 1999).
Lastly, standard crisp OBIA implementations require significant user input for the
parameterization of segmentation models. This introduces significant subjectivity into the
process and makes the eventual classification performance at least partly a function of
individual user skill and effort. Fuzzy segmentation-based OBIA on the other hand requires
very little user input. This makes the approach more robust, objective, and reproducible.
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1. Introduction

Traffic flow is the study of interactions between vehicles, drivers and related infrastructure
with the goal of understanding and developing an efficient road network. A number of
devices have been implemented for monitoring traffic flow such as magnetic strips and radar
detectors (Haidarian-Shahri et al. (2007)). All these devices have served for a very specific
purpose. However, they do not provide as much information of the scene as cameras may do.
The resulting information acquired from cameras should be properly processed to monitor
vehicles’ behavior. Vision-based techniques have been increasingly used to extract useful
traffic information from image sequences such as vehicle count, vehicle flow, vehicle speed,
vehicle classification, and lane changes. All these tasks require an accurate vehicle tracking
(Zhu et al. (2009)).
Vehicle tracking is a technique that generates the trajectory of the vehicle over time by locating
its position in every frame of an image sequence (Yilmaz (2006)). Usually, vehicle tracking
requires three initial steps, namely, (a) choosing a suitable object representation, (b) selection
of image features used as an input for the tracker and (c) vehicle detection. Vehicle detection is
considered a difficult task, as an appropriate feature selection is needed to deal with the visual
complexity of the road scene that may include congestions, shadows, weather incidences,
headlights, road conditions and other traffic participants (Coifman et al. (1998)).
Different approaches can be used to carry out the vehicle detection task, such as point
detectors, background subtraction, segmentation or supervised learning methods. The
selection of discriminative features plays a critical role because they should be so unique as to
be easily distinguished in a feature space (Yilmaz (2006)).
Texture is considered to be a rich source of information about the nature and the
three-dimensional shape of objects. It is defined by Petrou (2006) and Materka & Strzelecki
(1998) as complex visual patterns and subpatterns with singular properties such as brightness,
color and size. There exist different approaches for texture modeling, such as statistical
models, structural models and models based on transforms. Nevertheless, texture by itself
is not enough to differentiate among different objects because contrasting surfaces cause false
positives detections (Sun et al. (2006)).
Color is considered a relevant feature when dealing with the perception of static and moving
images. Visual contrast is useful to filter information present in each color component
(Trémeau et al. (2008)) and to distinguish among similar gray-scale intensities (Barilla-Pérez
& Spann (2008)).
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Vehicle tracking is a technique that generates the trajectory of the vehicle over time by locating
its position in every frame of an image sequence (Yilmaz (2006)). Usually, vehicle tracking
requires three initial steps, namely, (a) choosing a suitable object representation, (b) selection
of image features used as an input for the tracker and (c) vehicle detection. Vehicle detection is
considered a difficult task, as an appropriate feature selection is needed to deal with the visual
complexity of the road scene that may include congestions, shadows, weather incidences,
headlights, road conditions and other traffic participants (Coifman et al. (1998)).
Different approaches can be used to carry out the vehicle detection task, such as point
detectors, background subtraction, segmentation or supervised learning methods. The
selection of discriminative features plays a critical role because they should be so unique as to
be easily distinguished in a feature space (Yilmaz (2006)).
Texture is considered to be a rich source of information about the nature and the
three-dimensional shape of objects. It is defined by Petrou (2006) and Materka & Strzelecki
(1998) as complex visual patterns and subpatterns with singular properties such as brightness,
color and size. There exist different approaches for texture modeling, such as statistical
models, structural models and models based on transforms. Nevertheless, texture by itself
is not enough to differentiate among different objects because contrasting surfaces cause false
positives detections (Sun et al. (2006)).
Color is considered a relevant feature when dealing with the perception of static and moving
images. Visual contrast is useful to filter information present in each color component
(Trémeau et al. (2008)) and to distinguish among similar gray-scale intensities (Barilla-Pérez
& Spann (2008)).
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The combination of color and texture have been proved to achieve better results and could
be exploited more effectively when integrated than when treated in isolation (Barilla-Pérez
& Spann (2008)). In this chapter we propose two segmentation methods based on color and
texture to solve the problem of differentiating vehicles from the background. Both features
were used under the following assumptions:

• Road color is considered homogeneous because the road surface is made of the same
material.

• An abrupt difference between the color of the road and the color of the vehicles is useful
to discriminate them from each other.

• Even if vehicles are similar in color to the road, car and road textures are different. Thus,
texture may still be used to effectively discriminate between road and cars.

In this chapter two methods are described for vehicle detection by segmenting the regions they
occupy, both methods use color and texture as main features. The first method uses L*u*v*
color space and the Dual-Tree Complex Wavelet Transform (DTCWT) for texture modeling
and a simple background identification to carry out the vehicle detection. The second method
is based on a change detection technique that integrates the intensity and texture differences
between the current frame and a previously modeled background. L*u*v* color space is
also used in this method and texture differencing measure is based on a function between
gradient vectors. In both methods, an additional process is also applied using morphological
operations to improve the detection of the regions that describe the vehicles.
The chapter also includes an overview of related work and a detailed description of how
color and texture features can be properly combined with both approaches to achieve accurate
vehicle detection results. An experimental comparison of the two vehicle detection methods
is performed both qualitatively and quantitatively. The Outex framework have been used
in order to compare the accuracy of both methods (Ojala et al. (2002)). Finally, the work is
summarized and results are discussed.

2. Overview of previous work

This section presents an overview of relevant vision-based vehicle detection systems. Vehicle
detection using optical sensors is a very challenging task due to the various conditions found
in any road scene. The variability of such conditions may be caused by the weather, by
illumination changes, by the presence of shadows and by the numerous objects that are part
of the scene. Additionally, vehicle features such as shape, size and color are not always
sufficient for a reliable detection as the appearance of a vehicle also depends on its pose
and its interaction with other traffic participants. In this section we identify several methods
for vehicle detection, namely, background extraction methods, edges detection methods and
statistical-based approaches. We also review previous works that deal with the occlusion
problem as well as with the shadow removal problem.

2.1 Background subtraction
Background subtraction for vehicle detection methods compare each video frame against a
reference background model. Assuming that all moving objects are vehicles, the elements in
the current frame that are significantly different from the background model are considered
the objects of interest. Methods for building a background model include estimates based on
median filters (Cucchiara et al. (2003); Lo & Velastin (2001); Zhou & Aggarwal (2001)), Kalman
filters (Halevy & Weinshall (1999); Wren et al. (1997)), Gaussian models (Cheng et al. (2007);
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Lee et al. (2003); Stauffer & Grimson (2000)) or simple histograms and blob formation models
(Elgammal et al. (1999); Sen-Ching et al. (2005)).

2.2 Edge detection
Edge detection methods have been used under the assumption that they are robust to
illumination changes. In order to increase robustness of vehicle detection, edges have been
used in conjunction with color information.
Tsai et al. (2007) proposed a color model to find candidate vehicles under the assumption that
vehicles colors change with lightning conditions. Possible vehicles are then actually found by
using local features such as corners, edge maps and wavelet coefficients. Eng et al. (2008)
also use color and edge information to detect vehicles. They developed a vehicle detection
method by subtracting objects from a background which is previously modeled by color
and edges. Techawatcharapaikul et al. (2008) proposed a method for vehicles and shadows
segmentation using temporal edge density information from adjacent frames. Mo & Zhang
(2010) have detected vehicles by finding their voting center which is then used to implement
a traffic analysis system. The vehicles voting centers are calculated by matching the results of
a segmentation process with a previously learned spatial distribution of the objects of interest.

2.3 Statistical-based approaches
Wang & Lien (2008) proposed an statistical approach for vehicle detection based on the vector
projection of three main local features of vehicles, namely the roof and the two headlights.
Both Principal Component Analysis (PCA) and Independent Component Analysis (ICA) techniques
are combined in order to improve the tolerance of the detection process under illumination
variations and for vehicle position. Although the authors show very promising results, it is
unclear if the method is robust under significant rotations of the main local features of the car.
An additional work using a graph-based approach that considers the identity of neighboring
vehicles has been proposed by Shahri et al. (2007). Their results showed that vehicle tracking
is feasible, even for low quality and low frame rate traffic cameras.

2.4 Handling occlusions
Occlusion is one of the most difficult problems associated with vehicle detection. In order
to address this problem Kamijo et al. (2000) proposed a method based on a Spatio-Temporal
Markov Random Field model that considers the texture correlation between consecutive images
and the correlation among neighbors within an image. This algorithm requires only gray scale
images and does not assume any physical models of the vehicles. Even though occlusions in
the scene happened in very complicated manners (vehicles appear in various shapes and they
move in unpredictable ways), the method achieved a success rate as high as 95%.
Also to detect and handle vehicle occlusions, Zhang et al. (2008) presented a framework
composed of three levels named intraframe, interframe, and tracking. On the intraframe
level, occlusions are handled by evaluating the size of vehicles. On the interframe level,
occlusions are detected by using the motion vectors of vehicles. On the tracking level,
occlusions are handled while tracking the vehicle by performing a bidirectional occlusion
reasoning algorithm. Most partial occlusions are handled on the intraframe and interframe
levels, and full occlusions are handled on the tracking level. In addition to this work,
Zhang & Yuan (2007) used low-resolution images for detecting and tracking vehicles as
most of these images were captured far from the vehicles. The authors used borders to
build a model to find outliers that can differentiate the vehicle from another object in the
scene. Kalman Filters in combination with the body’s radius allow handling total and
partial occlusions when obstacles blocked the view of the vehicle. This method requires
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The combination of color and texture have been proved to achieve better results and could
be exploited more effectively when integrated than when treated in isolation (Barilla-Pérez
& Spann (2008)). In this chapter we propose two segmentation methods based on color and
texture to solve the problem of differentiating vehicles from the background. Both features
were used under the following assumptions:

• Road color is considered homogeneous because the road surface is made of the same
material.

• An abrupt difference between the color of the road and the color of the vehicles is useful
to discriminate them from each other.

• Even if vehicles are similar in color to the road, car and road textures are different. Thus,
texture may still be used to effectively discriminate between road and cars.

In this chapter two methods are described for vehicle detection by segmenting the regions they
occupy, both methods use color and texture as main features. The first method uses L*u*v*
color space and the Dual-Tree Complex Wavelet Transform (DTCWT) for texture modeling
and a simple background identification to carry out the vehicle detection. The second method
is based on a change detection technique that integrates the intensity and texture differences
between the current frame and a previously modeled background. L*u*v* color space is
also used in this method and texture differencing measure is based on a function between
gradient vectors. In both methods, an additional process is also applied using morphological
operations to improve the detection of the regions that describe the vehicles.
The chapter also includes an overview of related work and a detailed description of how
color and texture features can be properly combined with both approaches to achieve accurate
vehicle detection results. An experimental comparison of the two vehicle detection methods
is performed both qualitatively and quantitatively. The Outex framework have been used
in order to compare the accuracy of both methods (Ojala et al. (2002)). Finally, the work is
summarized and results are discussed.

2. Overview of previous work

This section presents an overview of relevant vision-based vehicle detection systems. Vehicle
detection using optical sensors is a very challenging task due to the various conditions found
in any road scene. The variability of such conditions may be caused by the weather, by
illumination changes, by the presence of shadows and by the numerous objects that are part
of the scene. Additionally, vehicle features such as shape, size and color are not always
sufficient for a reliable detection as the appearance of a vehicle also depends on its pose
and its interaction with other traffic participants. In this section we identify several methods
for vehicle detection, namely, background extraction methods, edges detection methods and
statistical-based approaches. We also review previous works that deal with the occlusion
problem as well as with the shadow removal problem.

2.1 Background subtraction
Background subtraction for vehicle detection methods compare each video frame against a
reference background model. Assuming that all moving objects are vehicles, the elements in
the current frame that are significantly different from the background model are considered
the objects of interest. Methods for building a background model include estimates based on
median filters (Cucchiara et al. (2003); Lo & Velastin (2001); Zhou & Aggarwal (2001)), Kalman
filters (Halevy & Weinshall (1999); Wren et al. (1997)), Gaussian models (Cheng et al. (2007);
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Lee et al. (2003); Stauffer & Grimson (2000)) or simple histograms and blob formation models
(Elgammal et al. (1999); Sen-Ching et al. (2005)).

2.2 Edge detection
Edge detection methods have been used under the assumption that they are robust to
illumination changes. In order to increase robustness of vehicle detection, edges have been
used in conjunction with color information.
Tsai et al. (2007) proposed a color model to find candidate vehicles under the assumption that
vehicles colors change with lightning conditions. Possible vehicles are then actually found by
using local features such as corners, edge maps and wavelet coefficients. Eng et al. (2008)
also use color and edge information to detect vehicles. They developed a vehicle detection
method by subtracting objects from a background which is previously modeled by color
and edges. Techawatcharapaikul et al. (2008) proposed a method for vehicles and shadows
segmentation using temporal edge density information from adjacent frames. Mo & Zhang
(2010) have detected vehicles by finding their voting center which is then used to implement
a traffic analysis system. The vehicles voting centers are calculated by matching the results of
a segmentation process with a previously learned spatial distribution of the objects of interest.

2.3 Statistical-based approaches
Wang & Lien (2008) proposed an statistical approach for vehicle detection based on the vector
projection of three main local features of vehicles, namely the roof and the two headlights.
Both Principal Component Analysis (PCA) and Independent Component Analysis (ICA) techniques
are combined in order to improve the tolerance of the detection process under illumination
variations and for vehicle position. Although the authors show very promising results, it is
unclear if the method is robust under significant rotations of the main local features of the car.
An additional work using a graph-based approach that considers the identity of neighboring
vehicles has been proposed by Shahri et al. (2007). Their results showed that vehicle tracking
is feasible, even for low quality and low frame rate traffic cameras.

2.4 Handling occlusions
Occlusion is one of the most difficult problems associated with vehicle detection. In order
to address this problem Kamijo et al. (2000) proposed a method based on a Spatio-Temporal
Markov Random Field model that considers the texture correlation between consecutive images
and the correlation among neighbors within an image. This algorithm requires only gray scale
images and does not assume any physical models of the vehicles. Even though occlusions in
the scene happened in very complicated manners (vehicles appear in various shapes and they
move in unpredictable ways), the method achieved a success rate as high as 95%.
Also to detect and handle vehicle occlusions, Zhang et al. (2008) presented a framework
composed of three levels named intraframe, interframe, and tracking. On the intraframe
level, occlusions are handled by evaluating the size of vehicles. On the interframe level,
occlusions are detected by using the motion vectors of vehicles. On the tracking level,
occlusions are handled while tracking the vehicle by performing a bidirectional occlusion
reasoning algorithm. Most partial occlusions are handled on the intraframe and interframe
levels, and full occlusions are handled on the tracking level. In addition to this work,
Zhang & Yuan (2007) used low-resolution images for detecting and tracking vehicles as
most of these images were captured far from the vehicles. The authors used borders to
build a model to find outliers that can differentiate the vehicle from another object in the
scene. Kalman Filters in combination with the body’s radius allow handling total and
partial occlusions when obstacles blocked the view of the vehicle. This method requires
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very low-resolution images to work correctly. Earlier research efforts for solving vehicle
occlusions on monocular traffic-image sequences (Pang et al. (2004)) and for detecting and
tracking vehicles by segmenting scenes with severe occlusions (Gentile et al. (2004)) have
been published. However, based on their experimental results, Zhang et al. (2008) stated that
“quantitative evaluation and comparison demonstrate that the proposed method outperforms
state-of-the-art methods”.

2.5 Shadows removal
Shadows interfere with moving vehicle detection because they cause erroneous segmentation
of objects. For this reason, there is a recent interest on developing algorithms to deal with
shadows of the vehicles present in the scene. Chen et al. (2010) have removed shadows from
the luminance component of an image while keeping the chrominance components intact.
Fang et al. (2008) have used spectral and geometrical properties of shadows to create a model
to eliminate them from the scene. This method is considered a previous step before the actual
vehicle detection.

2.6 Driver assistance
For traffic monitoring tasks it is crucial to detect the lane and other features of the road and
then identify the presence of other vehicles. Kastrinaki et al. (2003) present a survey on
video-based systems considering both areas of road traffic monitoring and automatic vehicle
guidance. In their paper, the authors survey methods for the two main subtasks involved
in traffic applications, i.e. the automatic lane finding and vehicle detection. Two particular
cases are considered in this paper. The first one is the case in which a static camera (usually
located in a high position) observes a road scene for the purpose of traffic surveillance. In
the second case at least one camera is mounted on a vehicle that moves in a dynamic road
scene. In a later work, Sun et al. (2006) present an extended review of systems for vehicle
detection for on-board automotive driver assistance systems. For the methods summarized
in this paper, the camera is mounted on the vehicle. Diaz-Alonso et al. (2008) have proposed
an aid system to help the driver in overtaking and lane changing decisions. These tasks are
addressed with an optic-flow-driven scheme, focusing on the visual field in the side mirror by
placing a camera on top of it.

3. Color-based texture segmentation

Color-based texture segmentation is a process that divides an image into homogeneous
regions using both color and textures features to distinguish from non-similar regions
(Barilla-Pérez (2008)). Using more than one descriptor helps to improve the segmentation
process when the descriptors are visually relevant and they can be integrated to obtain a single
similarity measure.
In this section, a color-based texture segmentation algorithm originally proposed by
Mejia-Iñigo et al. (2009) is described. The algorithm uses a feature vector based on color and
texture to differentiate vehicles from the background. This selection of features is based on
the assumptions listed in Section 1.

3.1 Texture and color
Texture is regarded as a rich source of information about the nature and three-dimensional
shape of objects (Petrou (2006)). It consists of complex visual patterns and subpatterns with
singular properties such as brightness, color and size (Materka & Strzelecki (1998)). There
exist different approaches for texture modeling, such as statistical models, structural models
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and models based on transforms. Materka & Strzelecki (1998) suggested that transform
methods permit the variation of spatial resolution to represent textures at different scales.
In this sense, Wavelet Transform is a viable method to obtain time-frequency localization
analysis and to identify stationary and non-stationary textures. As a framework, the Dual-Tree
Complex Wavelet Transform (DTCWT) overcomes several difficulties present in other Wavelet
Transform methods (Selesnick et al. (2005)) and offers the following advantages:

• Nearly shift invariance. When the transform is applied, the results seem to be mildly
affected by translations in the original input.

• Directional selectivity. A resulting set of 6 different positive and negative directions: 15◦,
45◦ , 75◦ , -15◦ , -45◦ and -75◦.

• Moderate redundancy. The redundancy introduced by Complex Wavelets is 2d:1 for d
dimensions (Kingsbury (1999)).

Fig. 1. Directional results of applying the Dual-Tree Complex Wavelet Transform to L*
component (b) of a car image (a) for (c) 75◦, (d) -75◦, (e) 15◦, (f) -15◦, (g) 45◦ and (h) -45◦
directions

Color is perceived as a non-linear psycho-visual system too complex to be modeled by a
simple function (Bovik & Bovik (2000)). The L*u*v* color space is considered one of the
most suitable color spaces to represent human perception, as it is perceptually uniform
(Malacara (2001)). Its L* component provides lightness information useful to describe texture
by illumination changes on the surface of the object, whereas u* and v* provide chrominance
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very low-resolution images to work correctly. Earlier research efforts for solving vehicle
occlusions on monocular traffic-image sequences (Pang et al. (2004)) and for detecting and
tracking vehicles by segmenting scenes with severe occlusions (Gentile et al. (2004)) have
been published. However, based on their experimental results, Zhang et al. (2008) stated that
“quantitative evaluation and comparison demonstrate that the proposed method outperforms
state-of-the-art methods”.

2.5 Shadows removal
Shadows interfere with moving vehicle detection because they cause erroneous segmentation
of objects. For this reason, there is a recent interest on developing algorithms to deal with
shadows of the vehicles present in the scene. Chen et al. (2010) have removed shadows from
the luminance component of an image while keeping the chrominance components intact.
Fang et al. (2008) have used spectral and geometrical properties of shadows to create a model
to eliminate them from the scene. This method is considered a previous step before the actual
vehicle detection.

2.6 Driver assistance
For traffic monitoring tasks it is crucial to detect the lane and other features of the road and
then identify the presence of other vehicles. Kastrinaki et al. (2003) present a survey on
video-based systems considering both areas of road traffic monitoring and automatic vehicle
guidance. In their paper, the authors survey methods for the two main subtasks involved
in traffic applications, i.e. the automatic lane finding and vehicle detection. Two particular
cases are considered in this paper. The first one is the case in which a static camera (usually
located in a high position) observes a road scene for the purpose of traffic surveillance. In
the second case at least one camera is mounted on a vehicle that moves in a dynamic road
scene. In a later work, Sun et al. (2006) present an extended review of systems for vehicle
detection for on-board automotive driver assistance systems. For the methods summarized
in this paper, the camera is mounted on the vehicle. Diaz-Alonso et al. (2008) have proposed
an aid system to help the driver in overtaking and lane changing decisions. These tasks are
addressed with an optic-flow-driven scheme, focusing on the visual field in the side mirror by
placing a camera on top of it.

3. Color-based texture segmentation

Color-based texture segmentation is a process that divides an image into homogeneous
regions using both color and textures features to distinguish from non-similar regions
(Barilla-Pérez (2008)). Using more than one descriptor helps to improve the segmentation
process when the descriptors are visually relevant and they can be integrated to obtain a single
similarity measure.
In this section, a color-based texture segmentation algorithm originally proposed by
Mejia-Iñigo et al. (2009) is described. The algorithm uses a feature vector based on color and
texture to differentiate vehicles from the background. This selection of features is based on
the assumptions listed in Section 1.

3.1 Texture and color
Texture is regarded as a rich source of information about the nature and three-dimensional
shape of objects (Petrou (2006)). It consists of complex visual patterns and subpatterns with
singular properties such as brightness, color and size (Materka & Strzelecki (1998)). There
exist different approaches for texture modeling, such as statistical models, structural models

276 Image Segmentation Color-based Texture Image Segmentation
for Vehicle Detection 5

and models based on transforms. Materka & Strzelecki (1998) suggested that transform
methods permit the variation of spatial resolution to represent textures at different scales.
In this sense, Wavelet Transform is a viable method to obtain time-frequency localization
analysis and to identify stationary and non-stationary textures. As a framework, the Dual-Tree
Complex Wavelet Transform (DTCWT) overcomes several difficulties present in other Wavelet
Transform methods (Selesnick et al. (2005)) and offers the following advantages:

• Nearly shift invariance. When the transform is applied, the results seem to be mildly
affected by translations in the original input.

• Directional selectivity. A resulting set of 6 different positive and negative directions: 15◦,
45◦ , 75◦ , -15◦ , -45◦ and -75◦.

• Moderate redundancy. The redundancy introduced by Complex Wavelets is 2d:1 for d
dimensions (Kingsbury (1999)).

Fig. 1. Directional results of applying the Dual-Tree Complex Wavelet Transform to L*
component (b) of a car image (a) for (c) 75◦, (d) -75◦, (e) 15◦, (f) -15◦, (g) 45◦ and (h) -45◦
directions

Color is perceived as a non-linear psycho-visual system too complex to be modeled by a
simple function (Bovik & Bovik (2000)). The L*u*v* color space is considered one of the
most suitable color spaces to represent human perception, as it is perceptually uniform
(Malacara (2001)). Its L* component provides lightness information useful to describe texture
by illumination changes on the surface of the object, whereas u* and v* provide chrominance
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information about the pixel values. Compared to other color spaces, L*u*v* has been proved
to achieve high success rates for image segmentation when using texture and color features
(Barilla-Pérez (2008)).

3.2 Feature extraction
Let be IL∗u∗v∗ (x, y) a color image in the L*u*v* color space of size M× N where {x = 0, ..., M−
1} and {y = 0, ..., N − 1}. For the color plane IL∗ (x, y) of the image IL∗u∗v∗ (x, y), we compute

W(s,b)
IL∗

(i, j) = DTCWT{IL∗ (x, y)}. (1)

where W(s,b)
IL∗

(i, j) are the wavelet coefficients as complex numbers, {s = 1, ..., S} represents
the levels of resolution from the highest to the lowest and {b = 1, ..., 6} indicates the number
of subbands produced by the wavelet transform at scale s. The size of the subbands b at scale
s is M

2s × N
2s where {i = 0, ..., M

2s − 1} and {j = 0, ..., N
2s − 1}. Computing the modulus of the

wavelet coefficients yields its energy. The feature vectors are constructed from this energy
combined with the chrominance components u* and v*.
Vehicles traveling on a one-direction road have texture qualities in different directions, but
if the vehicles are moving towards the capture device we only consider -75◦ and 75◦ given
that these two components provide more information about the vertical displacement of the
vehicles (see Fig. 1). Also, DTCWT can be applied successively until scale s = S is achieved.
Considering the resolution of the images, a S = 3 feature vector limit is employed.
L*u*v* color space components are separated in chrominance and lightness information
(Sangwine et al. (1998)). DTCWT is applied on the L* component at different coarseness
levels because texture features are considered to be more sensitive to lightness and scale
changes. In contrast, color remains almost invariant to different textures variations. By
reducing DTCWT components, the dimensional space of the feature vector is also reduced
to decrease computational cost. The feature vector extraction process is depicted in Fig. 2.

Fig. 2. Feature vector extraction and wavelet components.
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3.2.1 Segmentation
Once the feature vectors have been calculated, the coarsest level at scale S is processed to
obtain a global initialization that will be used to segment higher-resolution vectors. K-means
clustering was used to provide this initial segmentation.
The reason for using K-means clustering is that can be easily implemented and provides a
good reference to identify the most representative k macro-textures for the coarsest level s = S
(Barilla-Pérez (2008)). There are other segmentation methods that could be used to provide
this initialization, such as statistical or graph-based methods (Felzenszwalb & Huttenlocher
(2004)), but they require several parameters usually defined heuristically. In contrast, K-means
clustering only requires a k parameter to indicate the most significant regions to be identified
within the image.
Feature vectors are thought to have 2 representative regions: cars and road, so k = 2 seems
to be a reasonable parameter value. The resulting classification at scale s = S is used as an
initialization for the Expectation-Maximization method at scale s = S − 1, and the result is
used to process the feature vector at scale s = S − 2. This process is repeated until the same
action is performed to the feature vector at scale s = 1 (See Fig. 3).

Fig. 3. Segmentation process of feature vectors at different scales.

Classification combines Multi Resolution Analysis (MRA) with a Gaussian Mixture Model to
segment images at scale s based on the segmentation provided by scale (s + 1). Segmentation
results are in the form of a binary image as depicted in Fig. 4.

3.3 Vehicle motion detection
The analyzed scene is considered static, where only the vehicles are in constant change and
the background always preserves the same texture and color. Modeling of the background is
needed to separate vehicles from the road.

3.3.1 Background modeling
Considering a scene where images are taken at a time t and an interval between frames Δt,
it is possible to build the background from the scene using binary images. Let Frame(t) be
a frame taken at a time t; a pixel is part of the background if it keeps the same value from
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results are in the form of a binary image as depicted in Fig. 4.
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The analyzed scene is considered static, where only the vehicles are in constant change and
the background always preserves the same texture and color. Modeling of the background is
needed to separate vehicles from the road.

3.3.1 Background modeling
Considering a scene where images are taken at a time t and an interval between frames Δt,
it is possible to build the background from the scene using binary images. Let Frame(t) be
a frame taken at a time t; a pixel is part of the background if it keeps the same value from
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Fig. 4. Binary image obtained by a 2-cluster segmentation. The white blob is the vehicle in
motion and the white vertical stripes are divisions of the lanes.

(t − 1) to (t − m) at interval Δt, where m can be as big as needed to classify the frame. For
the experiments discussed in this chapter, the size of m is set to 9. Equation (2) represents the
function that classifies pixels on an image at a given time.

Background(t, m) =

{
0 Frame(t − i) = Frame(t).
1 otherwise.

(2)

∀i ∈ {1, ..., m},

An example of a classified background is shown in Fig.5.d.

3.3.2 Using logic operations for vehicle detection
The background model is represented by a binary value of 1 for all possible objects that can
be described as a moving vehicle, and 0 for all objects that do not change in the images from
Frame(t − m) to Frame(t). A possible vehicle, PosVehicle, is extracted by applying the logical
AND operation between the modeled background Background(t,m) and frame Frame(t). The
resultant image contains the pixels that represent the vehicles (see Fig.5.e).

Fig. 5. Possible vehicle detection process. (a) Frame(t-2), (b) Frame(t-1), (c) current scene
Frame(t), (d) modeled background Background(t) and (e) possible vehicle.

A number of morphological operations are then used to reduce undesired elements present in
the image where the possible vehicles have been detected.
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3.3.3 Morphological processing
The resultant binary image contains the area of the vehicles along with several undesired
elements as well as small holes inside those vehicles caused by illumination changes,
background irregularities and vibrations of the capture device (Fig. 6 (a)). In order to
remove these unwanted elements while distorting the shape of the objects as little as possible,
erosion, opening, dilation and closing operations are applied (Fig. 6 (b)). These morphological
operations are useful as describe above, but there are still elements that do not belong to the
vehicle, seen as holes inside the objects of interest. Using region filling (González & Woods
(2002)), these holes can be removed to produce a more precise shape of the vehicles detected
(Fig. 6.c).

Fig. 6. Morphological processing. (a) Resultant binary image, (b) unwanted elements
removal and (c) region filling.

4. Segmentation based on lightness and texture differences

Vehicle detection can be understood as a segmentation process, which allows us to separate
the two most significative homogeneous regions in a traffic scene: (a) vehicles and (b) road.
The method described in this Section attempts to deal with time-variant objects in the scene
by differencing those regions in the current frame with a previously modeled background.
The background and current frame difference is computed using features of texture and L*
component intensities of the L*u*v* color space.

4.1 Background modeling
Vehicle detection can be achieved by building a background model and then identifying the
pixels of every frame of the image sequence that vary significatively from that model (Yilmaz
(2006)). Those pixels are assumed to be a moving vehicle.
Several techniques have been proposed to model background as they overcome different
drawbacks usually related to the scene being examined (Cheung & Kamath (2004)). These
techniques can be classified as follows:

• Recursive techniques: a single background model is updated on each input image. These
techniques required less storage, but errors in the background model can persist over the
time.

• Non-recursive methods: require an image buffer to estimate a background and variation is
estimated for each pixel. Adaptability level is very high as they do not depend on previous
background processing, but a large buffer is required to detect movement in congested
roads.

In order to deal with noise and other objects that may appear in the scene, it is preferable to
use non-recursive techniques to model the background, for instance, a Median Filter.
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the two most significative homogeneous regions in a traffic scene: (a) vehicles and (b) road.
The method described in this Section attempts to deal with time-variant objects in the scene
by differencing those regions in the current frame with a previously modeled background.
The background and current frame difference is computed using features of texture and L*
component intensities of the L*u*v* color space.

4.1 Background modeling
Vehicle detection can be achieved by building a background model and then identifying the
pixels of every frame of the image sequence that vary significatively from that model (Yilmaz
(2006)). Those pixels are assumed to be a moving vehicle.
Several techniques have been proposed to model background as they overcome different
drawbacks usually related to the scene being examined (Cheung & Kamath (2004)). These
techniques can be classified as follows:

• Recursive techniques: a single background model is updated on each input image. These
techniques required less storage, but errors in the background model can persist over the
time.

• Non-recursive methods: require an image buffer to estimate a background and variation is
estimated for each pixel. Adaptability level is very high as they do not depend on previous
background processing, but a large buffer is required to detect movement in congested
roads.

In order to deal with noise and other objects that may appear in the scene, it is preferable to
use non-recursive techniques to model the background, for instance, a Median Filter.
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Let us consider an image buffer B(x, y, t) that consist on a set of β images, where x and y are
defined as spatial image coordinates at a given time t. Median filter background is defined as

Background(x, y, t) = Median( B(x, y, t − β), ..., B(x, y, t − 1) ) ∀ x, ∀ y . (3)

The median filter is very consistent even in the presence of outliers caused by noise or sudden
object appearance. Correct background model is achieved only when the background is
visible at least on 50% of the image buffer for each pixel (Gutchess et al. (2001)).
The background is modeled with a buffer using the L* component of the L*u*v* color space.
This background model is updated every β frames and it is used as a reference to identify the
most persistent pixels within an image. Vehicles are formed by the pixels of the current frame
that have a significant deviation from the background.

4.2 Image difference
Image difference commonly use absolute value of two-frames intensities subtraction to
identify moving objects. However, intensity subtraction is prone to errors because two
different objects can have similar intensity. Adding an additional feature, such as texture,
may help to effectively discriminate between different objects.
In line with Li and Leung’s work (Li & Leung (2002)), texture and intensity information
are used to detect changes between two images by using a gradient vector relationship that
supports noise and illumination changes. Integrating intensity and texture differences for
change detection works under the assumption that background texture remains relatively
stable with respect to noise and illumination variations unless it is covered by moving objects
or when abrupt lightness changes occur. When the background is covered by a moving
object, even if intensities of foreground and background are similar, textures in both images
are different. If texture difference is not sufficient to identify homogeneous regions, then
intensities are considered more relevant to discriminate regions.

4.2.1 Texture difference
Li & Leung (2002) suggested gradients as a texture measure because neighborhood
information is included and it is not easily affected by lightness conditions. Let I be an image,
there exists an image I� = ( Ix, Iy ), where Ix and Iy are results of Sobel gradient operators
for its corresponding direction.
Image cross-correlation Ca,b of gradient vectors for two frames a and b is defined as:

Ca,b = �I
�
a� �I

�
b� cosθ (4)

where θ is the angle between both vectors. Added to this measure, auto-correlation for a
gradient vector frame is

Ca,a = �I
�
a�2 (5)

Vectorial correlation components satisfies triangle inequality

Ca,a + Cb,b ≥ 2Ca,b (6)

�I
�
a�2 + �I

�
b�2 ≥ 2�I

�
a� �I

�
b� cosθ (7)

From equation 7, we can see that when θ ≈ 0 and when �I
�
a�2 ≈ �I

�
b�2, it means that a

significative change inside the image does not exist. If there is a change in gradient image
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vectors directions of images a and b, the difference of both values will grow according to their
magnitude and direction.
As mentioned above, auto-correlation and cross-correlation is applied to differentiate vector
direction changes between the current frame L* component and the background model of the
same component. Let Mx,y be a 5x5 neighborhood centered at pixel (x, y), a gradient texture
difference measure to discriminate objects between the background and the input frame is
defined as follows:

R(x, y) = 1 −
∑

u,v∈Mx,y

2CB,F(u, v)

∑
u,v∈Mx,y

(CB,B(u, v) + CF,F(u, v))
(8)

where B is the modeled background and F is the L* component of the current frame. The
region Mx,y is used to integrate gradient vector intensities of surrounding pixels that represent
local texture features. A change is deemed significant when variations in direction are bigger
than 90◦ in their orientation. Values of R(x, y) are in the [0,1] interval; where lower values
represent non significant changes in texture and if values approximate to 1 indicates a higher
difference in gradient texture directions. This measure is valid as long as there exist noise and
intensity variations in the pixels of the Mx,y region; otherwise, texture becomes less relevant
as there is not significant gradient change.
R(x, y) is then adjusted through a series of validity weights wtexture(x, y) using the definition
given by Li & Leung (2002). To compute wtexture(x, y), Li & Leung (2002) produced an image
g (equation 9) that combines autocorrelations of two images to validate the pixel values of
R. Information of autocorrelation is considered relevant as it contains significative intensity
changes in both R and g images. Equation 9 uses a maximum function because texture
information may exist in any images that have been compared.

g(x, y) = maxi∈{B,F}

√√√√ 1
|Mx,y| ∑

u,v∈Mx,y

Ci,i(u, v) (9)

The g(x, y) values from equation 9 are coefficients used to detect all pixels with relevant
gradient values whether those values belong to the background image or to the current frame.
These coefficients are also used to estimate the validity weights wtexture(x, y) in the [0, 1]
interval. For the results reported in this chapter, it is not necessary to detect every change in
texture because the images involved can have undesired textured regions not relevant in the
current frame; i.e., when background is not modeled properly due to the existence of cluttered
regions inside the image buffer, it then causes that the moving objects are considered part of
the background. If so, texture detection is not precise because cluttered regions will cause
high autocorrelation values, and consequently, high g values that promote a vehicle detection
for as long as the same background model is used.
In order to address this issue, equation 9 has been modified as follows:

g(x, y) =

√√√√ 1
|Mx,y| ∑

u,v∈Mx,y

CF,F(u, v) ∀x, y ∈ F (10)

g(x, y) is used to estimate the validity weights wtexture(x, y) as follows:

283Color-based Texture Image Segmentation for Vehicle Detection



10 Image Segmentation
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vectors directions of images a and b, the difference of both values will grow according to their
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where B is the modeled background and F is the L* component of the current frame. The
region Mx,y is used to integrate gradient vector intensities of surrounding pixels that represent
local texture features. A change is deemed significant when variations in direction are bigger
than 90◦ in their orientation. Values of R(x, y) are in the [0,1] interval; where lower values
represent non significant changes in texture and if values approximate to 1 indicates a higher
difference in gradient texture directions. This measure is valid as long as there exist noise and
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The g(x, y) values from equation 9 are coefficients used to detect all pixels with relevant
gradient values whether those values belong to the background image or to the current frame.
These coefficients are also used to estimate the validity weights wtexture(x, y) in the [0, 1]
interval. For the results reported in this chapter, it is not necessary to detect every change in
texture because the images involved can have undesired textured regions not relevant in the
current frame; i.e., when background is not modeled properly due to the existence of cluttered
regions inside the image buffer, it then causes that the moving objects are considered part of
the background. If so, texture detection is not precise because cluttered regions will cause
high autocorrelation values, and consequently, high g values that promote a vehicle detection
for as long as the same background model is used.
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wtexture(x, y) =

{
1, i f g(x, y) > 2Tw

g(x, y)/(2Tw) otherwise
∀x, y (11)

From equation 11, Tw is a noise distribution parameter calculated from the image intensity
difference. It is required that Tw > 2

√
2σd, however, a very large Tw would deem texture

information less significant in R. For the experiments reported in this chapter, Tw has been set
to a value of 50% larger than 2

√
2σd; in turn, σd is defined in equation 16. Finally, the texture

difference measure is computed as follows:

dtexture(x, y) = wtexture (x, y) · R(x, y) , ∀x, ∀y (12)

4.2.2 Lightness difference
To compute lightness difference, first we perform an initial subtraction d(x, y) defined as
follows:

d(x, y) = L∗
F(x, y)− L∗

B(x, y) (13)

where B is the modeled background and F is the current frame. d(x, y) measures lightness
variations that might be caused by the moving vehicles and other elements in the scene. These
elements are removed by smoothing d(x, y) using the following procedure:

d(x, y) =
1

|Mx,y| ∑
u,v∈Mx,y

d(u, v) (14)

Now we compute a difference image d
�

that contains only the lightness variations:

d
�
(x, y) = d(x, y)− d(x, y) (15)

It is assumed that the noise contained in image d(x, y) (equation 13) follows a Gaussian
distribution N(0, σd). Consequently, σd is estimated from d

�
(x, y) as it contains all the small

lightness variations.
Outlier pixels with high lightness variation can cause a poor noise estimation when deviation
needs to be calculated. To tackle this problem, the Least Median of Squares method (LMedS)
(Rousseeuw & Leroy (1986)) is used on d

�
(x, y) as it supports corruption of up to 50% of the

input data. Following the definition given by Rosin (1988), the standard deviation of the noise
is calculated as follows:

σd =
LMedS
0.33724

(16)

Finally, d(x, y) is used to estimate the lightness difference dlightness(x, y) as follows:

dlightness(x, y) =

{
1, i f |d(x, y)| > 2T
|d(x, y)|/(2T) otherwise

(17)

The T parameter needs to be properly calculated to deal with Gaussian noise. Li & Leung
(2002) sets the T parameter as:

T = |ds|+ 3σd. (18)
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ds in equation 18 describes lightness changes. It grows when global illumination changes
occur, but shadows and local changes diminish this value. ds is calculated as:

ds =
1

|Ns| ∑
u,v∈Ns

d(u, v) (19)

Ns is the set of pixels d(x, y) that satisfy equation 20.

Ns = {x, y : (|d�
(x, y)| < 2σd) ∧ (|d(x, y)| < T50%)} (20)

where T50% is the median value of |d(x, y)|.

4.2.3 Texture and lightness differences integration
Assuming that texture and lightness differences complement each other in a [0,1] interval,
wlightness(x, y) = 1 − wtexture(x, y), the integration of texture and lightness intensity
differences with their corresponding validation weights is carried out by equation 21.

dtexture,lightness(x, y) = wlightness(x, y) · dlightness(x, y) + wtexture(x, y) · dtexture(x, y) ∀x, ∀y
(21)

The final segmentation for vehicle detection is produced by thresholding the
dtexture,lightness(x, y) image with the median value of [0, 1] = 0.5.

4.2.4 Morphological processing
The resultant binary image contains a number of the same unwanted elements that are present
in the images produced by the Color-based texture segmentation method (Section 3). As a result,
the morphological operations used in that method are also applied here in the same fashion.

5. Experimental results

In this section we present the results of applying both segmentation methods using natural
scenes images. The image database used in our experiments is publicly available and
it is described in Martel-Brisson & Zaccarin (2007). We have proceded according to the
supervised texture segmentation testing protocol of the Outex database (Ojala et al. (2002)).
This framework involves the following components:

• Image segmentation test suite. The test sequence is called Highway III and it includes
traffic flow scenes and ground truth images. Ground truth images show individual pixel
group of vehicles and shadows. However, we have modified these images so both the
vehicle and its shadow are within the same object.

• Input data in an individual problem. I is the image to be segmented with NI pixels. RI is
the number of regions in I, each one with a distinct class label LR.

• Required output in an individual problem. O is the output labeled image equal in size to
I.

• Performance metric in an individual problem. Let Iij and Oij denote the class labels of
pixel (i, j) in I and O, respectively. The score of an individual problem Sp is the proportion
of all pixels that are correctly labelled:

Sp =
100
NI

NI

∑
ij

δ(Iij, Oij)% (22)
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This framework involves the following components:

• Image segmentation test suite. The test sequence is called Highway III and it includes
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Fig. 7. First column shows the ground truth images. Second and third columns show the
results of the methods described in Section 3 and Section 4, respectively.
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where δ denotes the Kronecker delta function.

• Test suite score. Let P be the number of problems to be considered. If test suite contains
P > 1 problems, then the scores from equations 23, 24, 25 and 26 are computed.

Smean =
1
P

P

∑
p

Sp (23)

Smin = min(Sp) ∀p ∈ {1, ..., P} (24)

Smax = max(Sp) ∀p ∈ {1, ..., P} (25)

Sdev =

√√√√ 1
P

P

∑
p
(Sp − Smean)2 (26)

We have measured the performance of the above values in both segmentation methods.
Qualitative image results are shown in Figure 7 and quantitative measures over the image
test suite are listed in Table 1.

Image ground truth Color-based texture
segmentation (Section 3)

Segmentation based on
lightness and texture
differences (Section 4)

Smin 78.5091% 97.2174%
Smax 99.1536% 99.4817%
Smean 89.7853% 98.5516%
Sdev 8.0121% 0.6786%

Table 1. Performance scores of the two segmentation methods described in this chapter over
the image test suite.

6. Discussion

Given the estimators shown in table 1, particularly the mean and standard deviation, it is
evident, without any further analysis or evidence beyond themselves, that the Segmentation
based on lightness and texture differences method (Section 4) has achieved a better performance
than the Color-based texture segmentation method (Section 3).
The Smean score measures how successful the segmentation rate is. This score is the average
of the performance values of all the individual problems considered in our experiments
expressed as a percentage. The Segmentation based on lightness and texture differences method
achieved a Smean = 98.5516, whereas the Color-based texture segmentation method achieved a
Smean = 89.7853.
Also, the Sdev score shows that the performance of the method is consistent under similar
experimental conditions, as its value tends to be smaller when the dispersion from the
mean (successful segmentation rate) is also small. For this score, the Segmentation based on
lightness and texture differences method achieved a Sdev = 0.6786, whereas the Color-based texture
segmentation method achieved a Sdev = 8.0121.
In the Segmentation based on lightness and texture differences method, the computed gradient
vector’s directions have a high tolerance to noisy images and illumination changes. This
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method builds a background model to detect the changes of the objects of interest with
respect to that reference model. The method achieves a higher accuracy rate but the borders
slightly exceed the region of interest because a number of filtering processes are used to make
homogeneous the gradient textures.
On the other hand, the Color-based texture segmentation method is very discriminative when
abrupt changes in color are present in the input images. Even though only two components
are used in this method, namely 75◦ and −75◦, calculating the DTCWT coefficients still
involves multiple filtering of images at different coarseness levels, thus increasing the
computational time cost.
The results derived from the experiments of the methods presented in this chapter can be
useful in the preliminary phases of a vehicle tracking system. We will include these results in
our future research efforts.
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1. Introduction

In the last decades there was a growing interest in designing CAD devices for medical
imaging: the main role of these system is to acquire the images, generally TAC or RMI,
and to display the parts of interest of human body on suitable visual devices, after some
pre-elaboration steps aimed to improve the quality of the obtained images. A TAC or a
MRI sequence, obtained as a result of a scan process of the interested parts of the human
body is a generally wide set of 2D gray-level images, seen as the projection of the body into
three different coordinate planes. Starting from these sequences it is rather difficult, for the
radiologist, to imagine the whole appearance of the body parts, since without a 3D model of
each part it is only possible to browse the images in the three planes independently.
In this framework, the most challenging task remains that of extracting, from the whole
images, a 3D model of the different parts; such a model would be important not only for
visualization purposes, but also for obtaining quantitative measurements that could be used
as an input to the diagnostic process.
Even if the pre-processing step of the acquired images plays a key role in the achievement of
a good visualization quality, the literature is today so rich of papers describing procedures
aimed to increase the signal/noise ratio that this problem can be now considered as definitely
solved. So, the attention of researchers is nowadays concentrated on the definition of robust
methods for the 3D segmentation. In the case of Magnetic Resonance Images (MRI), the
segmentation is made complex by the unavoidable presence of inhomogeneity in the images,
as well as the presence of image distortions.
Despite the research efforts and the significant advances achieved in recent years, the image
segmentation problem still remains a notoriously known challenging problem, especially in
the case of poor quality images. In particular, the segmentation of MR images is made even
more complex, by the complexity of the shapes of the parts to be segmented, and by the lack
of suitable anatomical models able to fully capture all the possible shape variations for each
of them. These models can provide, if suitably exploited, important information: for bone
tissues it is relevant the knowledge about the shape and the size of the synovial parts, devoted
to connecting bones: their characterization allows the scientist to choose the most appropriate
technique for a correct segmentation. Namely, synovia appears in the images as a darker
surface surrounding the bones; its presence is fundamental for the correct segmentation, since
often the bone tissues and the adjacent cartilagineous tissues have similar intensity levels, and
would be indistinguishable without the synovia.
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2 Will-be-set-by-IN-TECH

a) b)

Fig. 1. The effect of the similarity threshold on region growing segmentation. a) A threshold
too low produces an over-segmentation. b) A threshold too high produces an
under-segmentation.

The simplest segmentation approaches are those based on a thresholding applied to each pixel
(or voxel) on its intensity values: they result to be generally uneffective in the case of an MR
image: the segmentation results are in fact very poor, as the intensity levels of the pixels of
bones and the synovia are quite similar, so causing the undersegmention of some regions
contemporarily to oversegmented areas. A threshold, appropriate for reaching the solution
all over the image is practically impossible to be determined. More complex solutions, based
on partitioning of the image in different parts, on which different values of the thresholds, in
the experience of the authors, can perform better but the results are far from satisfying the
radiologist.
An other class of segmentation algorithms are those based on the well known region growing
paradigm. A point, surely belonging to the area to be segmented, is given as input by the
user, and considered as a seed: the pixels adjacents to the seed are considered as belonging
to the region to be segmented, if their intensity values are similar to that of the seed: the
similarity is suitably defined on the application domain and generally a threshold is applied
to determine wether two pixels are similar or not. The process is iterated for the last added
pixels until, at the given step, no further pixel is added to the region. Although different
variants of this class of algorithms have been developed along the years, their rationale is
that of expanding the regions on the basis of their homogeneity. Their application in all
the cases in which foreground and background have little gray level differences can results
in over-segmentation problems. Figure 1 highlights these effect on a wrist bone, with two
different similarity thresholds, so demonstrating the difficulty of obtaining effective results in
a practical case.
More recently, some approaches, based on the attempt of facing the segmentation approach
by a classification system, have been proposed. The rationale of these methods is aimed to
obtaining algorithms able to work without the interaction with the radiologist: they perform
the training of the classifier on a suitably built training set of pixels and, once adequately
trained, classify the pixels of the image as belonging to a foreground area or to the background.
In this way, the interaction with the radiologist, if any, is required in the training phase.
The simplest implementations of this class of methods is based on the k-nearest-neighbor, as
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in Vrooman et al. (2007), where brain tissues are segmented; the k-NN classifier is trained
automatically using an a priori model of the brain provided by a brain atlas. Another
approach of this kind is based on Bayes classifiers Banga et al. (1992); in particular in the cited
article the segmentation of the retina is performed using an unsupervised Bayesian classifier
whose parameters have been estimated using the Expectation-Maximization algorithm. In
spite of their simplicity and their low computational cost, their intrinsic nature does not allows
them to take into account spatial information, so making them unprofitable in all those cases
in which the latter information is crucial for the final result, as in the case of bone tissues.
A further class of segmentation algorithms are those based on (unsupervised) clustering
techniques. The three most used clustering techniques are the K-means, the Fuzzy C-means
and the Expectation-Maximization algorithm. An example of the use of K-means is Vemuri
et al. (1995), that performs the segmentation of brain MR images by clustering the voxels on
the basis of wavelet-derived features. Two papers using the Fuzzy C-means clustering are
Ardizzone et al. (2007), that is also applied to brain MR images, and Foggia et al. (2006), that
is applied to mammographic images. Finally, in Wang et al. (2005) a clustering method based
on the Expectation-Maximization algorithm is used for segmenting brain images showing a
greater robustness with respect to the noise due to field inhomogeneity.
The algorithms discussed so far assume that the intensities of each voxel class are stationary:
this assumption does apply only on limited sets of images, due to the intrinsic heterogeneity
of a class, the nonuniform illumination, or other imaging artifacts. So, to take into account
spatial information, recently some approaches based on the use of the Markov Random Field
(MRF) Models have been used, as in Ruan & Bloyet (2000) and Krause et al. (1997). The idea
behind them is that, in the case of biomedical images, the probability of a pixel to belong to a
class is strongly related to the values of the surrounding pixels, as rarely the anatomical parts
are composed by just one pixel. Two critical points of MRF approach are the computational
burden (due to the required iterative optimization schemes) and the sensitivity of the results
to the model parameters.
The most used approach in segmentation of medical images is the level set (Cremers et al.
(2005)), based on an optimization apprach. A segmentation of the image plane Ω is computed
by locally minimizing an appropriate energy functional E(C) by evolving the contour C of
the region to be segmented starting from an initial contour. In general, method based on this
approach may use either an explicit (parametric) or implicit representation of the contours. In
explicit representations (Leitner & Cinquin (1991), McInerney & Terzopoulos (1995)) – such as
splines or polygons – a contour is defined as a mapping from an interval to the image domain:
C : [0, 1] → Ω. In implicit contour representations (Dervieux & Thomasset (1979), Osher &
Sethian (1988)), contours are represented as the (zero) level line of some embedding function
φ : Ω → �:

C = {x ∈ Ω|φ(x) = 0}.

In the original level set algorithm, only gradient information is taken into account in the
energy term E(C). Some authors (Osher & Santosa (2001), Chan & Vese (2001), Russon &
Paragios (2002)) have proposed improvements of the classical algorithm by introducing some
priors information (e.g. shape, color or motion information).
Level set algorithms are widely used in medical images segmentation because they are very
effective. However they present some drawbacks:

• The segmentations obtained by a local optimization method are strongly dependent to the
initialization. For many realistic images, the segmentation algorithm tends to get stuck in
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a) b)

Fig. 2. The effect of the seed point on Level Set segmentation. Between a) and b), a slight
change of the seed point determines a different segmented region shape (the seed point in
the image is indicated by the star-like cursor).

undesired local minima (especially in the presence of noise) forcing the user to try with
several seed points before obtaining a satisfactory solution.

• This approach lacks a meaningful probabilistic interpretation. Extensions to other
segmentation criteria Ű such as color, texture or motion Ű are not straight-forward.

• This algorithm has a problem in finding correct contours of the regions when the region
boundaries have corners or other singularities.

In a recent paper (Conte et al. (2009)) we presented a new algorithm that overcomes the first
of the considered problems. In this paper we propose a significant improvement, especially
with respect to the last problem (that is still an open problem in the literature).
The paper is organized as follows: in section 2 a review of the most used approaches for
segmenting MR images is shown; the proposed algorithm is presented in section 3 while
in section 4 the experimental phase together with the analysis of the results are described.
Section 5 summarizes the conclusions obtained from our work.

2. Important

Manuscript must contain clear answers to following questions: What is the problem / What
has been done by other researchers and where you can contribute / What have you done /
Which method or tools you used / What are your results / What is new and good, what is
not good / Future research

3. The proposed method

As we have seen, every segmentation approach has its strenght and its weak points. Our
proposal is to base the segmentation on the integration of two complementary approaches:
region growing and level set segmentation.
Region growing has problems with local noise, especially on the boundary of the region
to be segmented, and has a strong dependency on a similarity threshold, leading to either
over-segmentation (if the threshold is chosen conservatively) or under-segmentation (if the
threshold is chosen to capture as much as possible the shape of the region). But neither of
those problems affect the level set algorithm.
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On the other hand, level set has a strong dependency on the choice of the seed point, as shown
in fig. 2, and also may have problems where the region boundary has some singularity (e.g. a
sharp corner). Region growing instead is fairly immune to both those problems. So, region
growing and level set segmentation appear to complement each other with respect to their
strenght, and this is the reason why we have chosen to combine them into a technique that
should overcome the limitations of both.
Basically, our method is composed of the following steps:

• first, a smoothing of the image is performed using a low pass filter; this step is related to
the use of the Laplacian Level Set variant of the level set technique, as we will discuss later;

• then a pre-segmentation is realized using region growing, to obtain a rough, conservative
estimate of the region;

• the result of the pre-segmentation is used to initialize the proper segmentation, performed
by means of a level set algorithm; in this way the result of the level set algorithm is not
dependent on the choice of the seed point;

• finally, a local contour refinement, based again on region growing, is applied in order to
better fit the contour to sharp corners and other singularities.

Each of these steps will be described with more detail in the following subsections. As an
illustration of the different steps, we will present their effect on an example image, shown in
figure 3.

3.1 Smoothing filter
The region growing technique used for the pre-segmentation step is highly sensitive to
pixel-level noise. So it is important to remove this kind of noise before the pre-segmentation.
Moreover, for the proper segmentation step, we have used a variant of the level set technique
called Laplacian Level Set (LLS), introduced in Conte et al. (2009). The LLS algorithm
performs a Laplacian filter on the image to enhance the boundaries of the regions; but a side
effect of the Laplacian filter is a magnification of the high-frequency noise components. Hence,
the denoising is important also for the LLS segmentation.
In order to remove the noise we have used a Gaussian smoothing filter, which is a well known
low-pass filter widely used in the image processing field.
The use of a low-pass filter may seem contradictory with the goals of a segmentation
algorithm: if the algorithm has to determine the sharp edges that form the boundary of the
regions, it may be thought that by smoothing those very edges should make the task of the
algorithm more complicated. However, the following factors should be considered:

• by carefully choosing the filter cutoff frequency, the filter can cancel out only the intensity
variations that are due to noise, while the ones due to the boundaries between regions will
only be a little bit blurred

• the pre-segmentation process needs only to find a reasonable approximation of the region,
so it can easily be tuned to be unaffected by the blurring of the region boundary; on the
other hand it greatly benefits from the reduction of the pixel level noise achieved by the
low-pass filter

• the proper segmentation process will apply a laplacian filter to the image; the net effect
of the combination of the low-pass and laplacian filter is that of a band pass filter that, by
virtue of the choosen cutoff frequency, will preserve exactly the variations whose spatial
frequency correspond to the boundaries between the regions.
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As we have seen, every segmentation approach has its strenght and its weak points. Our
proposal is to base the segmentation on the integration of two complementary approaches:
region growing and level set segmentation.
Region growing has problems with local noise, especially on the boundary of the region
to be segmented, and has a strong dependency on a similarity threshold, leading to either
over-segmentation (if the threshold is chosen conservatively) or under-segmentation (if the
threshold is chosen to capture as much as possible the shape of the region). But neither of
those problems affect the level set algorithm.
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illustration of the different steps, we will present their effect on an example image, shown in
figure 3.
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algorithm more complicated. However, the following factors should be considered:

• by carefully choosing the filter cutoff frequency, the filter can cancel out only the intensity
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virtue of the choosen cutoff frequency, will preserve exactly the variations whose spatial
frequency correspond to the boundaries between the regions.
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a)

b)

Fig. 3. An example image, that will be used to illustrate the different steps of the proposed
algorithm. What is actually shown is a 2D slice of the 3D MR image. a) The original image. b)
A zoomed image of the bone that will be the target for the segmentation.
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Fig. 4. The result of the application of the Gaussian filter to the image of fig. 3b.

The Gaussian filter introduces a parameter σ, related to the cutoff frequency, that needs to
be tuned for obtaining an adequate performance. However the optimal value of σ depends
only on the resolution of the image and the size of the smallest features of interest in the
segmented region. Hence, for a given MRI machine and anatomical district, the tuning of σ
has to be performed only once.
Figure 4 shows the effect of the gaussian filter on our example image.

3.2 Image pre-segmentation
The level set technique starts with a tentative contour of the region to be segmented, and
makes this contour evolve so as to reach a (local) minimum of a suitably defined energy
function. The usual approach for initializing the contour is to choose a small sphere around
the user selected seed point.
However, especially if the shape of the target region is complex, starting with a contour that
is so different from the desired one may easily lead the algorithm to a local minimum that
does not correspond to the ideal segmentation. Furthermore, this local minimum strongly
depends on the choice of the seed point, making it difficult to have a repeatable result for the
segmentation process.
On the other hand, if the level set algorithm starts from a tentative contour that is reasonably
close to the true boundary of the region, it usually converges without problems to the desired
minimum of the energy function.
In order to provide such an initial contour, our method performs a pre-segmentation step.
In this step, our system attempts to segment the region of interest using a region growing
technique Adams & Bischof (1994). In region growing, basically, the algorithms starts with a
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Fig. 5. The result of the pre-segmentation on the image of figure 3b

tentative region formed by the seed point alone; and then repeatedly add adjacent voxels as
long as their intensity is within a threshold θ from the average intensity of the region built so
far.
The tuning of θ is one of the most delicate aspects of region growing, since a value too tight
will not make the algorithm cover the whole region (over-segmentation), while a value too
loose would cause extra parts to be included in the region (under-segmentation).
However, since we are using region growing only as a pre-segmentation step, we do not need
to find the optimal value for θ. We just need to be sure to “err on the safe side”, in the sense
that the algorithm should not produce an under-segmentation. This is necessary because the
level set algorithm can expand the contour, but cannot contract it.
So, also the tuning of θ can be done once for a given MRI machine/anatomical district
combination, instead of adjusting this parameter for each different image.
As an alternative to region growing we have also tried the fast marching technique Zhang et al.
(2007) for pre-segmentation. The results of both algorithms are similar, but fast marching is
slower than region growing, and has more parameters to be tuned. Hence, we have decided
to adopt region growing.
The pre-segmentation of our example image is shown in figure 5.

3.3 Laplacian Level Set
The current trend in MR imaging is towards the reduction of the intensity of the magnetic
field to which the patient is exposed, in order to obtain a reduction in the costs but also in the
weight and and space occupied by the MRI machines. At the same time, the acquisition time
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Fig. 6. The result of the Laplacian filter applied to the example image of figure 3b.

Fig. 7. The result of the Laplacian Level Set segmentation applied to the example image of
figure 3b.
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has to be kept short, since during the scan the patient has to remain still, and so the MRI exam
would be too uncomfortable if it were too long.
As a result, the contrast between different tissues is often quite low, and this can cause
problems to any segmentation algorithm. In order to overcome this issue, in Conte et al. (2009)
the so called Laplacian Level Set (LLS) algorithm has been proposed. The LLS algorithm is
based on the use of the Laplacian filter, defined as:

∇2 f (x, y, z) =
δ2 f (x, y, z)

δx2 +
δ2 f (x, y, z)

δy2 +
δ2 f (x, y, z)

δz2

where f (x, y, z) is the intensity of the voxel at position (x, y, z). Actually, a discrete
approximation of the filter is used. The filtered image enhances the contours of the regions, as
exemplified (on a 2D slice of the image) in Fig. 6.
The algorithm operates on the filtered image, starting with a contour surface C that is
initialized as the contour of the region found in the pre-segmentation step, and evolving it
in order to minimize an energy function E(C) which is defined as:

E(C) =
∫

Vin(C)
(u(x, y, z)− μin(C))2dxdydz +

+
∫

Vout(C)
(u(x, y, z)− μout(C))2dxdydz +

+ k
|C|

|Vin(C)| (1)

where

• Vin(C) is the region inside C

• Vout(C) is the region outside C

• u(x, y, z) is the intensity of the filtered image

• μin(C) and μout(C) are the average value of u(x, y, z) over Vin(C) and Vout(C) respectively

• |C|/|Vin(C)| is the ratio between the area of C and the volume of Vin(C), that acts as a
regularization factor for the contour; this factor is weighted by the parameter k: a larger
value for k makes the algorithm oriented towards smoother contours and more robust to
noise, but also less able to follow sharp corners on the region boundary

The result of the LLS algorithm on our example image is presented in figure 7.

3.4 Local contour refinement
The last step of the algorithm starts with the contour C found by the Laplacian level set and
tries to refine it to better fit the sharp corners that are usually smoothed out by the level set.
Namely, this refinement is performed using a limited form of region growing, that has no
problem in following sharp corners. Since region growing is prone to under-segmentation,
especially in low contrast images such as the ones produced by MRI, special care is taken in
the definition of the stopping criterion to ensure that only small corrections to the contour C
are performed.
More formally, the voxels adjacent to C are examined and are added to the contour iff:

| f (x, y, z)− f (n(x, y, z, C))| < θ�/d(x, y, z, C) (2)

where:
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Fig. 8. The result of the local contour refinement applied to the segmentation shown in
figure 7.

• f (x, y, z) is the intensity value of the considered voxel of coordinates (x, y, z)

• n(x, y, z, C) is the position of the voxel in C that is the nearest to (x, y, z); so f (n(x, y, z, C))
is the intensity of this voxel

• d(x, y, z, C) is the Euclidean distance between (x, y, z) and n(x, y, z, C)

• θ′ is a suitably defined threshold

The division of the threshold θ′ by d(x, y, z, C) ensures that this refinement step will never
extend too much the initial contour C. In particular, this extension is performed on a local
basis, only where the adjacent pixels are very similar to the ones already in C.
Figure 8 shows the effect of the local contour refinement algorithm on our example image,
starting from the segmentation presented in figure 7.

4. Experimental results

The algorithm has been tested on 11 MRI sequences of wrist bones acquired at low magnetic
field, for a total of 762 bi-dimensional slices. The ground truth has been manually traced by
medical experts.
We compare the proposed enhanced laplacian level set algorithm (ELLS) with the following
algorithms:

• our previous algorithm (Laplacian Level Set, LLS);

• the basic level set (BLS)

• the basic level set with pre-segmentation module (PLS)

• Geodesic Active Contours (see Caselles et al. (1997) and Yan & Kassim (2006)); Geodesic
Active Contours (GAC) algorithms are similar to Level Set algorithms, but the first are
motivated by a curve evolution approach and not by an energy minimization one;
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Fig. 8. The result of the local contour refinement applied to the segmentation shown in
figure 7.
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• Geodesic Active Contours with pre-segmentation module (PGAC).

The choice of Geodesic Active Contours for the comparison is motivated by the fact that also
this family of algorithms, like our method, is fairly robust with respect to the choice of the
seed point.
To evaluate the results of the proposed algorithm we used the precision, recall and f-index
indices so defined:

precision =
TP

TP + FP

recall =
TP

TP + FN

f-index =
2 · precision · recall
precision + recall

where TP is the number of correctly detected objects of interest, FP is the number of wrongly
detected objects of interest and FN is the number of missed objects of interest.
The most commonly used definition of these indexes is directly usable for applications where
the objects of interest are either completely detected or completely missed. In our application,
however, the objects of interest are not atomic regions, so we need to consider also partial
recognition of the tissue of interest. For this reason we have redefined TP, FP and FN in a
fuzzy sense as follows:

TP =
|g ∩ d|
|g ∪ d|

FP =
|d| − |d ∩ g|

|d|

FN =
|g| − |d ∩ g|

|g|
where g is the set of voxels actually belonging to the region of interest (ground truth), d is
the set of voxels detected by the algorithm and |·| denotes the cardinality of a set. It is simple
to show that when the object of interest is perfectly detected (in the sense that all the voxels
in the ground truth are detected, and no voxel outside of the ground truth is detected), then
precision = 1 and recall = 1; on the other hand, if the algorithm detects voxels that do not
belong to the ground truth, it will have precision < 1, and if the algorithm misses some of the
voxels in the ground truth, it will have recall < 1.
In the following table we report the results, averaged over the 11 MRI sequences:

Precision Recall f-index
BLS 0.81 0.89 0.85
PLS 0.92 0.94 0.93
GAC 0.95 0.89 0.92
PGAC 0.99 0.90 0.94
LLS 0.99 0.94 0.96
ELLS 0.98 0.97 0.97

Table 1. Experimental Results
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Notice that for the BLS algorithm we had to perform the test changing both the seed point
and the value of the parameter k of the Level Set energy function, since the algorithm did
not provide adequate results for all the images with a single choice of these parameters. The
other algorithms did not have this problem. It is important to remark that the idea of the
pre-segmentation phase allows also the level set algorithm to overcome this problem.
Furthermore, the results presented in table 1 show that the Laplacian operator provides an
important contribution to the improvement of the performance. Indeed, the two algorithms
based on this operator (LLS and ELLS) achieve the best overall performance.
Algorithms that exhibit an under-segmenting behavior can be expected to obtain a low value
of the precision index. This is indeed the case of the BLS algorithm, as it is evident from table
1.
On the other hand, algorithms with a tendence to over-segmentation attain a low value of
the recall index. As shown in table 1, this happens for BLS, GAC and PGAC. Notice that the
BLS algorithm can yield (depending on the input image) both an under-segmentation and an
over-segmentation.
Table 1 shows that Geodesic Active Contours based approaches have a relatively low recall
value. From a detailed analysis of the images it can be concluded that the while the boundary
of the region is usually well approximated, the low recall is due to the fact that often these
algorithms miss voxels that are internal to the region.
In conclusion, Table 1 shows that our approaches are more effective than all the others.
In particular, the ELLS algorithm shows a significant improvement in the recall index. A
good recall index (together with a good precision) is important for applications that use the
segmentation as the basis for quantitative measurements, e.g. for diagnostic purposes.
To have a visual idea of the effectiveness of our proposed algorithm, in Fig. 9 the results of
each segmentation algorithm are shown.
Note that the result of the PLS algorithm, even after a difficult calibration phase, is not able
to avoid the under-segmentation problem. Also notice that the result of the PGAC algorithm
presents some holes within the tissue.
The comparison between fig. 9f and fig. 9g, and between fig. 9f and fig. 9g, demonstrates
how the new ELLS algorithm is able to segment correctly the sharp corners of the tissue,
overcoming the problems of our previous method.

5. Conclusion

In this paper we propose a novel segmentation method for MRI images, that is based on the
integration of two complementary techniques: region growing and level set segmentation.
Each technique is used at a different stage of the segmentation process, and the results are
combined in such a way as to obtain a final segmentation that is not affected by the problems
and limitations of both techniques when used alone.
The new method is robust with respect to the choice of the initial seed and to the setup of the
(few) parameters, yielding repeatable results; furthermore, its performance is high in terms
of both the precision and recall indices, as we have demonstrated experimentally, resulting
appropriate for Computer Aided Diagnosis applications that need accurate quantitative
measurements.
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(few) parameters, yielding repeatable results; furthermore, its performance is high in terms
of both the precision and recall indices, as we have demonstrated experimentally, resulting
appropriate for Computer Aided Diagnosis applications that need accurate quantitative
measurements.
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Fig. 9. An example of the segmentation obtained by the tested algorithms (only a 2D slice is
presented). a) Original image. b) A zoomed image of the region of interest. c) Basic Level Set
segmentation (BLS). d) Level Set with Pre-segmentation (PLS). e) Geodesic Active Contours
(GAC). f) Laplacian Level Set (LLS). g) Extended Laplacian Level Set (ELLS).
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1. Introduction

The recognition of grain boundaries in deformed rocks from images of thin-sections or
polished slabs is an essential step in describing and quantifying various features and
analysis, which is usually achieved by image processing procedures. Recently, researchers
from geoscience and computer science focused on this issue and many methods have been
proposed.
We begin with an application of mineral grain boundary detection of thin section in
geoscience: strain analysis[1]. Strain analysis plays an important role in the study of structural
geology, especially when investigating the tectonic history of a region(see [2] and [3]). The
following scheme illustrates main steps of strain analysis. The critical step in the above scheme

is identifying mineral with image segmentation techniques based on edges or regions. High
sample intensity is required to provide adequate raw data for precious strain analysis. But in
recent publications, the samples used for analysis seem to be insufficient. The primary reason
maybe is the laborious and time-consuming methods to obtain the raw data required for strain
analysis[4]. Though many methods based on the technology of image processing have been
proposed, there is still much room for improving in efficiency and accuracy.
In image processing and computer version, segmentation or boundary detection is still
a challenging problem and is motivated by some new certain applications. As a
interdisciplinary problem, grain boundary detection provides much room to improve well
established method to tackle with the special situations in geosciences. Three aspects should
be paid more attention when designing the new approaches. The two of them are derived
from image capture, and the other is the features of objects to be identified.

• Light phenomenon: under plane-polarised light, many mineral grains appear as colorless;
under cross-polarised light, mineral grains show varying colors and intensities. In
cross-polarized light the interference color displayed depends on the mineral type, the
orientation of the indicatrix of the grain with respect to the polarizers and the thickness of
the thin section.
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• Rotating stage: grains may appear different light with different angels. To get a better
visual effect, thin section must be rotated and several images are captured. Each of
these image contains the important available for image segmentation. But how many
images should be collected and how to fuse the information from these image have been
completely answered yet.

• Grain features: every kind of grains has its own special shape features. However, in a thin
section image, some grains are with a certain orientation, which is determined by the way
how it is cut and polished. These features provide important cues for image segmentation
and data match.

In the previous publications, various techniques have been reported for some certain grains
identify. Threshold is used to identify grains of thin section image, while interview is often
necessary to select different thresholds to separate several kinds of mineral. Edge detection
has a simple control structure and provides more precise location of grain boundaries, but
cannot guarantee closure of boundaries. If a boundary is discontinuous, pixels belonging to
adjacent grains may be connected and therefore identified as belonging to a single mineral
grain. Thus, grain identification will be finished completely. Several techniques, such as
heuristic search and artificial neural net can be used to correct such edge detection errors.
Instead of directly identifying the grain boundary, region based method is proposed to
identify a region, i.e. a set of points that purportedly belong to the clast. Region-based
segmentation uses image features to map individual pixels to sets of pixels that correspond
to objects. Closed boundaries are always segmented but the positions of the boundaries
may not be as accurate as those obtained from edge detection. Seeds are always selected
by human interaction, which can be replaced by an automated complex algorithm. Holes
may appear in the identified region, but for extracting features like major and minor axes,
orientation, centroid, etc., the presence of these holes has a far diminished role to play
than incorrectly identified edges. Watershed usually produce over-segmentation results for
boundary detection. An important tool of post-processing, it is often used to separate touching
grains in binary map created by other arithmetic.
In the past two decades, methods based on the partial differential equation (PDE) have been
widely used in image segmentation and other image science fields recently. Impressive effects
have been obtained with various PDE models. In [5] and [6] , Chan and Verse proposed a
successful segmentation model (C-V model) using level set, which derived from the classical
active contour(snake) model[7]. The essential idea of the snake model is to evolve an initial
contour governed by a PDE until it stops on the edge of the objects. To represent the evolving
curve, level set technique is adopted. Level set method is based on the description of the
curve as the zero crossing of a higher-dimensional function and allows major simplifications.
It offers a nature representation for the contour of the object, which can deal with complicated
structures with many advantages, especially when the curve undergoes complex topological
change. The key of level set method is to identify grain boundaries and to represent them
as closed outlines. A framework of level set for mineral boundary detection was reported
recently[8]. Level set method identifies all the objects simultaneity instead of identifying all
the interesting objects chosen by clicking them using mouse one by one.
In this paper, we present a framework for boundary detection with level set for different
kinds of input images. After reviewing related work, we first introduce the the level set for
boundary detection with a single gray scale image as input. Then level set for color image is
presented. For processing two color polarising images as input, a novel energy functional with
a curve represented with level set is constructed and a new mathematical model for mineral
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identification is obtained. The curve evolves driven by the structures of two color polarising
images and stops at the region edge of the grains.

2. Previous work: Brief view

Boundary detection of mineral from thin section image is not a trivial task. Various method,
including threshold, gradient operator, region grow, watershed, level set, artificial neural
network or a combination of them, have been proposed to address this problem. We give
a detailed review of previous work in order of publication.
Lumbreras and Serrat considered the segmentation of grains in digital image of thin marble
section[10]. An over-segmentation of the image with watershed method was performed
and a region-merging procedure was carried out with some parameters determined by a
sequence of images of the same sample with polarized light. In [11], polished rock samples
were scanned by a color image scanner and an automatic mineral classification approach was
presented. Fueten devised a computer-controlled rotating polarizer stage for the petrographic
microscope. In this pioneer work, Fueten presented an important system allowed a thin
section to remain fixed while the polarizing filters were rotated by stepper motors. This
approach permitted a better integration between the processing software and the microscope
and hence better data gathering possibilities. In 1998, Goodchild and Fueten proposed a
boundary detection procedure which calculated closed boundary with a series of image
processing routines[12]. A color RGB image was converted into a gray intensity image
and seven steps were performed to produced accurate and closed edges for mineral grains.
Whereas this algorithm was not perfect effective it presented a significant improvement over
existing routines of that time. In fact, only intensity information was utilized in the original
publication and some of color information was missed. The work of Nail and Murthy in
[13], in which they constructed a standardization of edge magnitude in color image, may
be helpful to improve the algorithm in [12]. To depict the geometrical structures of rock,
boundary was defined as pixel with high gradient and fragmentation were rebuilt and
reconnected ro form an uninterrupted boundary net[14]. Orientation contrast (OC) images
represent a useful starting point to develop an automated technique able to assess grain
boundaries in a completely objective and reproducible way. The method in [15] defined
boundaries as high brightness gradient features on an OC image of a quartz mylonite through
a specifically designed sequence of detection and filter algorithms that minimize the effect
of local background noise. The initial boundaries produced by edge detection methods were
with many imperfections. They employed a detection-filtering algorithm to automatically
rebuild the real boundary net. When quantifying microstructures of fine grained carbonate
mylonites, manually setting the threshold value was adopted to select as much of the dark
grain-boundary area as possible without selecting the grey values of the grain interiors[16].
Heilbronner presented a simple procedure for creating grain boundary maps in a crystalline
aggregate from multiple input images: for each image of a given input set, only the most
significant grain boundaries were detected with gradient filtering and by combining those,
a single grain boundary map was obtained[17]. Thompson, Fueten and Bockus used an
artificial neural network(ANN) for the classification of minerals[18]. Based on a set of seven
primary images during each sampling, a selected set of parameters were estimated and a
three-layer feed forward neural network was trained on manually classified mineral samples.
This is a beginning of ANN for mineral classification. Ross, Fueten and Yashkir proposed an
automatic mineral identification with another important evolutionary computation: genetic
algorithm[19]. Touching grains in digital images of thin sections is a hot potato when
considering segmentation. Van den Berg and his collaborators tried to deal with it with a
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algorithm by separating touching grain sections in binary images of granular material[20].
The algorithm detected characteristic sharp contact wedges in the outline of touching grain
sections and created an intersection after checking if the angle of the contact wedge was
smaller than a user-defined threshold value. When making analysis of deformation of rock
analogues, Fueten et.al applied gradient filtering for different types of movies with frames[21].
Zhou et al. proposed a segmentation method of petrographic images by integrating edge
detection and region grow method[22]. They employed a boundary detection method to
get the edge information, with which the seeds for region grow were selected automatically.
Gradient filtering and threshold were also adopted step by step to pick several minerals
in olivine–phyric basalts[23]. A similar method with multi-threshold was presented to
extract several kinds of objects and to produce the corresponding binary images[24]. A
recent method was presented by Roy Choudhury et al. , which they called CASRG, to
identify a ’region’, a set of points belonging to the grain[4]. The authors selected the seeds
manually and chose the optimal threshold separately for each grain instead of using a single
threshold for the whole image. The modification was very efficient and the accuracy has
been validated for low and high strain samples in their contribution. The imperfections of
this method was that all the seeds should be chosen by clicking the mouse. The working
of choosing the seeds was also onerous for the large or high stress samples when the clats
needed to be clicked are too much or the clasts were deformed badly. In fact, complex
optical properties of plagioclase, such as twinning, present a particularly difficult challenge
to thin section image processing. Gradient-based boundary detection method are likely
to classify optical twin zones as different grains. Barraud shown an example of textural
analysis of thin sections of rocks with a Geographic Information System (GIS) program, in
which boundary was obtained by watershed segmentation on digital pictures of the thin
section[25]. Region-grow method have also been improved to identify both twinned and
un-twinned plagioclase areas as seeds[26]. To overcome this problem, a set of plane polarised
light images, taken at 51 intervals with 18 polarizer rotations were used to create an average
grey level image with high resolution. homogeneous zones were detected and they were
classified manually as seeds to form the basis of further grain boundary recognition. Obara
presented a registration algorithm for reversed transformation of rock structure images taken
with polarizing microscope stage rotations[27]. The idea behind this algorithm was based
on finding the optimal rotation angle and optimal translation vector, thus ensuring the best
correspondence between analysed images. The criteria for optimization was formulated
on the basis of the shapes of edges located on images, in which edges were detected with
gradient filtering. To identify transcrystalline microcracks in microscope images of a dolomite
structure, Obara devised a polarizing system using two nicols: one was fixed and the other
could be rotated, while the thin section was kept fixed. 12 colour images were taken: 11
images with two crossed nicols and one with one nicol[28]. Based on the dolomite structure,
CIELab color system was used and some image processing techniques, including gradient,
threshold and mathematical morphology functions utilizing linear structuring elements, were
performed for different components to detect transcrystalline microcracks. The maximum of
standard deviation values of 11 α components were fused to be a single image for consequent
operations. Obara also used a similar method to detection of the morphological anisotropy of
calcite grains in marble[29]. Filtering with a rotated stencil consisting of two linear structuring
elements preserved fine structure in thin section image. Fueten and Mason proposed to
edit edges with an artificial neural net assisted approach[30]. The goal of this method was
to produce close boundaries and enclose areas were considered to be grains. This method
significantly improved the speed with which edges could be edited in preparation for other
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studies, although training of the neural network and manual correction of the results were still
necessary.. Using GIS, Li, Onasch and Guo presented an automated method to detect grain
boundaries and construct a boundary database in which the shape, orientation, and spatial
distribution of grains could be quantified and analyzed in a reproducible manner[31]. In this
procedure, they calculated the difference between the maximum and minimum value within
a specified neighborhood, large values were recognized as grain boundaries.
In [8], level set method(LSM) was introduced to detect the grain boundary. The major
advantage of the LSM is that the grain boundary detected by the LSM is a closed curve,
which is preferred for features extraction and data analysis. To quantify microstructures of
coarse-grained marbles, Ebert et al. presented a new approach based on the intensity of light
reflectance in dependence of the crystallographic orientation of calcite grains[32]. As filters
could not distinguish between twin boundaries and different phases (especially in the case
of thin micas), and the grain boundaries were compiled from a stack of images (one image
for each sample rotation increment), grain boundaries was traced with Photoshop manually.
To determine crystal size distributions of olivine in kimberlite, scanned images of polished
rock slab were analysed and region of interesting(ROI) was determined by combining texture,
colour and grey intensity analysis outputs. Adjoined crystals were separated by adapting
and extending the marker-based watershed algorithm. In a study in [33], the application of
2D and 3D textural analysis to the quantification of olivine populations in kimberlites was
investigated. Olivine grains were segmented with a threshold filter selecting grey-values
from 50 to 73 connected to grey-values from 50 to 66 (seeded threshold) after the data set was
subjected to a median filter for noise reduction. Using ANN for image processing seemed
to be more popular and is a highly researched area. Baykan proposed an ANN for the
classification of minerals using color spaces without boundary detection[36]. A microscopic
information system(MIS) for petrographic analysis was presented with GIS and applied to
transmitted light images[37]. Two region functions were developed and embedded in the GIS
environment. GIS software provided optimal management of the MIS database, allowing the
cumulative measurement of more than 87,000 grains.
The methods mentioned above are mainly based on the traditional image segmentation and
edge detection technology in image processing. The initial boundaries produced by edge
detection methods have many imperfections. The boundary may be open, discontinuous,
which do not coincide with the realistic boundary. Grain boundary, specifically a close
one, provides fundamental information about material properties, such as area, orientation,
percent, microstructural analyse [32] and crystal size distributions [33]. Such boundaries can
not be used to feature extraction and other image processing tasks and a post processing
arithmetic is needed to obtain more realistic boundaries. So post-processing is necessary to
get a closed boundary. Some techniques, as suggested in [30], have been reported to link
edges. Concomitantly, the subjectivity and the modification on raw data introduced by the
post-processing make them unsuitable for data analysis. Region grow method tries to identify
the region of the grain by ’absorbing’ all the points similar with the ’seed’ point. It’s best
advantage is that the boundary of the region is closed, which is preferred for measurements
and analysis. A critical point in this method is to select the seeds, which often involves
human interventions to avoid the seeds failing to grow according to the given rules. In
CASGR[4], seed was selected by human interaction and the threshold was set adaptive to
data automatically. Zhou et al. tried to overcome this problem by introducing a hybrid
method that the results of edge-detection provided clues for automated seed select[22].
Apart from the human intervention in seeding, another defect is the occur of the holes
within the region. The size of the hole depends on the noise distribution and the area of
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algorithm by separating touching grain sections in binary images of granular material[20].
The algorithm detected characteristic sharp contact wedges in the outline of touching grain
sections and created an intersection after checking if the angle of the contact wedge was
smaller than a user-defined threshold value. When making analysis of deformation of rock
analogues, Fueten et.al applied gradient filtering for different types of movies with frames[21].
Zhou et al. proposed a segmentation method of petrographic images by integrating edge
detection and region grow method[22]. They employed a boundary detection method to
get the edge information, with which the seeds for region grow were selected automatically.
Gradient filtering and threshold were also adopted step by step to pick several minerals
in olivine–phyric basalts[23]. A similar method with multi-threshold was presented to
extract several kinds of objects and to produce the corresponding binary images[24]. A
recent method was presented by Roy Choudhury et al. , which they called CASRG, to
identify a ’region’, a set of points belonging to the grain[4]. The authors selected the seeds
manually and chose the optimal threshold separately for each grain instead of using a single
threshold for the whole image. The modification was very efficient and the accuracy has
been validated for low and high strain samples in their contribution. The imperfections of
this method was that all the seeds should be chosen by clicking the mouse. The working
of choosing the seeds was also onerous for the large or high stress samples when the clats
needed to be clicked are too much or the clasts were deformed badly. In fact, complex
optical properties of plagioclase, such as twinning, present a particularly difficult challenge
to thin section image processing. Gradient-based boundary detection method are likely
to classify optical twin zones as different grains. Barraud shown an example of textural
analysis of thin sections of rocks with a Geographic Information System (GIS) program, in
which boundary was obtained by watershed segmentation on digital pictures of the thin
section[25]. Region-grow method have also been improved to identify both twinned and
un-twinned plagioclase areas as seeds[26]. To overcome this problem, a set of plane polarised
light images, taken at 51 intervals with 18 polarizer rotations were used to create an average
grey level image with high resolution. homogeneous zones were detected and they were
classified manually as seeds to form the basis of further grain boundary recognition. Obara
presented a registration algorithm for reversed transformation of rock structure images taken
with polarizing microscope stage rotations[27]. The idea behind this algorithm was based
on finding the optimal rotation angle and optimal translation vector, thus ensuring the best
correspondence between analysed images. The criteria for optimization was formulated
on the basis of the shapes of edges located on images, in which edges were detected with
gradient filtering. To identify transcrystalline microcracks in microscope images of a dolomite
structure, Obara devised a polarizing system using two nicols: one was fixed and the other
could be rotated, while the thin section was kept fixed. 12 colour images were taken: 11
images with two crossed nicols and one with one nicol[28]. Based on the dolomite structure,
CIELab color system was used and some image processing techniques, including gradient,
threshold and mathematical morphology functions utilizing linear structuring elements, were
performed for different components to detect transcrystalline microcracks. The maximum of
standard deviation values of 11 α components were fused to be a single image for consequent
operations. Obara also used a similar method to detection of the morphological anisotropy of
calcite grains in marble[29]. Filtering with a rotated stencil consisting of two linear structuring
elements preserved fine structure in thin section image. Fueten and Mason proposed to
edit edges with an artificial neural net assisted approach[30]. The goal of this method was
to produce close boundaries and enclose areas were considered to be grains. This method
significantly improved the speed with which edges could be edited in preparation for other
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studies, although training of the neural network and manual correction of the results were still
necessary.. Using GIS, Li, Onasch and Guo presented an automated method to detect grain
boundaries and construct a boundary database in which the shape, orientation, and spatial
distribution of grains could be quantified and analyzed in a reproducible manner[31]. In this
procedure, they calculated the difference between the maximum and minimum value within
a specified neighborhood, large values were recognized as grain boundaries.
In [8], level set method(LSM) was introduced to detect the grain boundary. The major
advantage of the LSM is that the grain boundary detected by the LSM is a closed curve,
which is preferred for features extraction and data analysis. To quantify microstructures of
coarse-grained marbles, Ebert et al. presented a new approach based on the intensity of light
reflectance in dependence of the crystallographic orientation of calcite grains[32]. As filters
could not distinguish between twin boundaries and different phases (especially in the case
of thin micas), and the grain boundaries were compiled from a stack of images (one image
for each sample rotation increment), grain boundaries was traced with Photoshop manually.
To determine crystal size distributions of olivine in kimberlite, scanned images of polished
rock slab were analysed and region of interesting(ROI) was determined by combining texture,
colour and grey intensity analysis outputs. Adjoined crystals were separated by adapting
and extending the marker-based watershed algorithm. In a study in [33], the application of
2D and 3D textural analysis to the quantification of olivine populations in kimberlites was
investigated. Olivine grains were segmented with a threshold filter selecting grey-values
from 50 to 73 connected to grey-values from 50 to 66 (seeded threshold) after the data set was
subjected to a median filter for noise reduction. Using ANN for image processing seemed
to be more popular and is a highly researched area. Baykan proposed an ANN for the
classification of minerals using color spaces without boundary detection[36]. A microscopic
information system(MIS) for petrographic analysis was presented with GIS and applied to
transmitted light images[37]. Two region functions were developed and embedded in the GIS
environment. GIS software provided optimal management of the MIS database, allowing the
cumulative measurement of more than 87,000 grains.
The methods mentioned above are mainly based on the traditional image segmentation and
edge detection technology in image processing. The initial boundaries produced by edge
detection methods have many imperfections. The boundary may be open, discontinuous,
which do not coincide with the realistic boundary. Grain boundary, specifically a close
one, provides fundamental information about material properties, such as area, orientation,
percent, microstructural analyse [32] and crystal size distributions [33]. Such boundaries can
not be used to feature extraction and other image processing tasks and a post processing
arithmetic is needed to obtain more realistic boundaries. So post-processing is necessary to
get a closed boundary. Some techniques, as suggested in [30], have been reported to link
edges. Concomitantly, the subjectivity and the modification on raw data introduced by the
post-processing make them unsuitable for data analysis. Region grow method tries to identify
the region of the grain by ’absorbing’ all the points similar with the ’seed’ point. It’s best
advantage is that the boundary of the region is closed, which is preferred for measurements
and analysis. A critical point in this method is to select the seeds, which often involves
human interventions to avoid the seeds failing to grow according to the given rules. In
CASGR[4], seed was selected by human interaction and the threshold was set adaptive to
data automatically. Zhou et al. tried to overcome this problem by introducing a hybrid
method that the results of edge-detection provided clues for automated seed select[22].
Apart from the human intervention in seeding, another defect is the occur of the holes
within the region. The size of the hole depends on the noise distribution and the area of
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the heterogeneity of color information within the clasts. The small holes can be filled by
employing simple morphological operations, but the larger ones remains almost unchanged.
Such post-processing ineluctably affects the extracted boundaries as well as the extracted
features, such as major and minor axes, orientation, centroid, etc[4].

3. Level set method for grain boundary detection

Methods based on the partial differential equation (PDE) have been widely used in image
segmentation and other image science fields recently. Impressive effects have been obtained
with various PDE models. In [6], Chan and Verse proposed a successful segmentation model
(C-V model) using level set, which derived from the classical active contour (snake) model [7].
The essential idea of snake model is to evolve an initial contour governed by a PDE until it
stops on the edge of the objects. For initial snake model, the edge is defined where have larger
magnitude of gradient. As imposed with a second order derivative constraint, the curve have
a good smoothing shape, which is contrast to the boundaries produced by edge-detection
operator. Level set method is based on the description of the curve as the zero crossing of a
higher-dimensional function and allows major simplifications[38]. In level set, a closed curve
is seen as the zero level set of a function in high dimension. It offers a nature representation for
the contour of the object, which can deal with complicated structures with many advantages,
especially when the curve undergoes complex topological change. It is a thriving method in
image science for its following advantages:

• easy to implement numerically;

• the outline of the object is closed;

• tackle with the topology change easily, such as merge and split.

• some geometric quantities can be expressed directly.

With this method, initial curve can be anywhere or with any shape in the image plane. In
the following, we will give a framework of level set for grain boundary detection. First we
introduce level set for gray scale image. Then, active contour for vector image is given. We
end this section by consider a level set model with two polarising images as input.

3.1 Level set for gray scale image
For a garyscale image u, considering the following energy functional:

E(c1, c2, C) =
∫

inside(C)
|u0(x, y)− c1|2dxdy +

∫

outside(C)
|u0(x, y)− c2|2dxdy + μ · Length(C),

(1)

where c1 and c2 are constant unknowns representing the average value of u inside and outside
the curve C.
For curve evolution, the level set has been used widely. It can deal with cusps, corners
and automatic topological changes. Now, we rewrite the original model (1) in the level set
formulation. The curve C is defined as the zero level set as follows: C = {(x, y) ∈ Ω|φ(x, y) =
0}. Assuming that φ has opposite signs on each side of C, the energy can be rewritten as:

E(c1, c2, φ) =
∫

Ω

((u(x, y)− c1)
2H(φ) + (u(x, y)− c2)

2(1 − H(φ)))dxdy + μ
∫

Ω

|∇H(φ)|dxdy,

(2)
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where φ is level set function, ν is a positive coefficient, H denotes the Heaviside function:

H(z) =

�
1, z ≥ 0;
0, z < 0.

In order to compute the associated Euler–Lagrange equation for the unknown function, we
consider slightly regularized versions of the function H, denoted here by H� as � → 0. One
example of such approximations is given by

H�(z) =

⎧
⎪⎪⎨

⎪⎪⎩

1, z > �,
0, z < �,
1
2

�
1 + z

� + 1
π sin(πz

� )
�

, |z| ≤ �,

as proposed in [6].
For minimizing the functional defined in (2), fixing c1 and c2, we obtain the following
Euler-Lagrange equation:

δ�(φ)[νdiv(
∇φ

|∇φ| )− (u0 − c1)
2) + (u0 − c2)

2] = 0 (3)

where δ is one-dimensional Dirac measure and δ� = H�
�(z). Using gradient descent method

by an artificial time t, we yield the following evolution equation:

∂φ

∂t
= δ�(φ)[νdiv(

∇φ

|∇φ| )− (u0 − c1)
2) + (u0 − c2)

2] (4)

An alternative way to improving the above model is to replace δ�(φ) by |∇u| to extend the
evolution to all level set of φ.
Keeping φ fixed and minimizing the energy yields the following expressions for c1 and c2:

c1(φ) =

�
Ω

u(x, y)H�(φ(x, y))dxdy�
Ω

H�(φ(x, y))dxdy
, (5)

c2(φ) =

�
Ω

u(x, y)(1 − H�(φ(x, y)))dxdy�
Ω
(1 − H�(φ(x, y)))dxdy

. (6)

To solve this evolution problem, we use a finite differences scheme, as suggested in [6].
As the thin section image contain abundant structure, the initial contour we obtain is so
complex that it is almost impossible to make strain analysis directly, though all the valuable
ones have been identified. The following we have to do is to select the useful grains suitable
for analysis. It is a difficult task as the noise disturbs the segmented results, and the small
objects are too much, so we should set constrains to discard the useless ones. The select
depends on the grain to be identified and the question tackled with. Here we provide a
simple way, which could be improved by the Recalling when the image is processed manually
or using other automated methods, the intensity, area and shape of the grain are dominant
factors for human inspection and segmentation criterion. Level set provides the boundaries
of the objects by utilizing the intensity distribution, so area and shape criterions are adopted
for a tough tentative strains to abandon the unsuitable objects. The theory of level set method
shows that the contour is a closed curve, so the objects whose area is ranging between two
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the heterogeneity of color information within the clasts. The small holes can be filled by
employing simple morphological operations, but the larger ones remains almost unchanged.
Such post-processing ineluctably affects the extracted boundaries as well as the extracted
features, such as major and minor axes, orientation, centroid, etc[4].

3. Level set method for grain boundary detection

Methods based on the partial differential equation (PDE) have been widely used in image
segmentation and other image science fields recently. Impressive effects have been obtained
with various PDE models. In [6], Chan and Verse proposed a successful segmentation model
(C-V model) using level set, which derived from the classical active contour (snake) model [7].
The essential idea of snake model is to evolve an initial contour governed by a PDE until it
stops on the edge of the objects. For initial snake model, the edge is defined where have larger
magnitude of gradient. As imposed with a second order derivative constraint, the curve have
a good smoothing shape, which is contrast to the boundaries produced by edge-detection
operator. Level set method is based on the description of the curve as the zero crossing of a
higher-dimensional function and allows major simplifications[38]. In level set, a closed curve
is seen as the zero level set of a function in high dimension. It offers a nature representation for
the contour of the object, which can deal with complicated structures with many advantages,
especially when the curve undergoes complex topological change. It is a thriving method in
image science for its following advantages:

• easy to implement numerically;

• the outline of the object is closed;

• tackle with the topology change easily, such as merge and split.

• some geometric quantities can be expressed directly.

With this method, initial curve can be anywhere or with any shape in the image plane. In
the following, we will give a framework of level set for grain boundary detection. First we
introduce level set for gray scale image. Then, active contour for vector image is given. We
end this section by consider a level set model with two polarising images as input.

3.1 Level set for gray scale image
For a garyscale image u, considering the following energy functional:

E(c1, c2, C) =
∫

inside(C)
|u0(x, y)− c1|2dxdy +

∫

outside(C)
|u0(x, y)− c2|2dxdy + μ · Length(C),

(1)

where c1 and c2 are constant unknowns representing the average value of u inside and outside
the curve C.
For curve evolution, the level set has been used widely. It can deal with cusps, corners
and automatic topological changes. Now, we rewrite the original model (1) in the level set
formulation. The curve C is defined as the zero level set as follows: C = {(x, y) ∈ Ω|φ(x, y) =
0}. Assuming that φ has opposite signs on each side of C, the energy can be rewritten as:

E(c1, c2, φ) =
∫

Ω

((u(x, y)− c1)
2H(φ) + (u(x, y)− c2)

2(1 − H(φ)))dxdy + μ
∫

Ω

|∇H(φ)|dxdy,

(2)
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where φ is level set function, ν is a positive coefficient, H denotes the Heaviside function:

H(z) =
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1, z ≥ 0;
0, z < 0.

In order to compute the associated Euler–Lagrange equation for the unknown function, we
consider slightly regularized versions of the function H, denoted here by H� as � → 0. One
example of such approximations is given by
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as proposed in [6].
For minimizing the functional defined in (2), fixing c1 and c2, we obtain the following
Euler-Lagrange equation:

δ�(φ)[νdiv(
∇φ

|∇φ| )− (u0 − c1)
2) + (u0 − c2)

2] = 0 (3)

where δ is one-dimensional Dirac measure and δ� = H�
�(z). Using gradient descent method

by an artificial time t, we yield the following evolution equation:

∂φ

∂t
= δ�(φ)[νdiv(

∇φ

|∇φ| )− (u0 − c1)
2) + (u0 − c2)

2] (4)

An alternative way to improving the above model is to replace δ�(φ) by |∇u| to extend the
evolution to all level set of φ.
Keeping φ fixed and minimizing the energy yields the following expressions for c1 and c2:

c1(φ) =
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Ω

u(x, y)H�(φ(x, y))dxdy�
Ω

H�(φ(x, y))dxdy
, (5)

c2(φ) =
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Ω

u(x, y)(1 − H�(φ(x, y)))dxdy�
Ω
(1 − H�(φ(x, y)))dxdy

. (6)

To solve this evolution problem, we use a finite differences scheme, as suggested in [6].
As the thin section image contain abundant structure, the initial contour we obtain is so
complex that it is almost impossible to make strain analysis directly, though all the valuable
ones have been identified. The following we have to do is to select the useful grains suitable
for analysis. It is a difficult task as the noise disturbs the segmented results, and the small
objects are too much, so we should set constrains to discard the useless ones. The select
depends on the grain to be identified and the question tackled with. Here we provide a
simple way, which could be improved by the Recalling when the image is processed manually
or using other automated methods, the intensity, area and shape of the grain are dominant
factors for human inspection and segmentation criterion. Level set provides the boundaries
of the objects by utilizing the intensity distribution, so area and shape criterions are adopted
for a tough tentative strains to abandon the unsuitable objects. The theory of level set method
shows that the contour is a closed curve, so the objects whose area is ranging between two
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thresholds k1 and k2 are selected. As for the shape information, the ration of major axis and
minor axis could be adopted as another important criterion for high formed minerals. It is a
simple attempt to devise such constraints, more precious constraints, mainly decided by the
previous knowledge of the the grains, will be proposed in future work.

3.2 Level set for color image
Color information is important factor for image segmentation and edge detection. Though
luminance could be extracted from color image and processed as gray scale image, but it is
still necessary to consider color components for grain boundary detection. In the following
we will discuss the level set for color micrographic of thin section.
Let ui,j be the jth channel of an color image u on Ω, with j = 1, 2, 3 channels and C the
evolving curve. Each channel would contain the same image with some differences. Let
c+ = (c+1 , c+2 , c+3 ) be a unknown constant vector. The extension of the C-V model to vector
images is

E(c+, c−, C) =
�

inside(C)

1
3

3

∑
j=1

λ+
j |uj(x, y)− c+j |2dxdy +

�

outside(C)

1
3

3

∑
j=1

λ−
j |uj(x, y)

− c−j |2dxdy + μ · Length(C). (7)

The curve C is defined as the zero level set as follows: C = {(x, y) ∈ Ω|φ(x, y) = 0}.
In this model, the active contour C is the boundary between two regions defined over all
channels. Rewrite it in level set form, we obtain

E(c+, c−, φ) =
�

Ω

1
3

3

∑
j=1

λ+
j |uj(x, y)− c+j |2H�(φ(x, y))dxdy

+
�

Ω

1
3

3

∑
j=1

λ−
j |uj(x, y)− c−j |2(1 − H�(φ(x, y)))dxdy + μ

�

Ω

|∇H�(φ)|dxdy, (8)

for j = 1, 2, 3. The parameters μ is the weight for the length term of the curve. λ+,− = (λ+,−
j )

are the weights for the noise error. H denotes the Heaviside function, again.
Minimizing the energy with respect to the constant c+j , c−j , for j = 1, 2, 3, we obtain:

c+j =

�
Ω

uj H�(φ(x, y))dxdy�
Ω

H�(φ(x, y))dxdy
, average(uj)onŒ ≥ 0,

c−j =

�
Ω

uj(1 − H�(φ(x, y)))dxdy�
Ω

H�(φ(x, y))dxdy
, average(uj)onŒ < 0.

Assuming that c+j are constant vectors, and minimizing the energy functional with respect to
φ, we obtain the following Euler-lagrange equation for φ:

δ�(φ)

⎡

⎣−1
3

3

∑
j=1

λ+
j (uj − c+j )

2 +
1
3

3

∑
j=1

λ−
j (uj − c+j )

2 + μ · div
� ∇Œ
|∇Œ|

�⎤

⎦ = 0, (9)
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where δ is one-dimensional Dirac measure and δ� = H�
�(z). To solve this PDE numerically, we

introduce an artificial time as gradient descent method

∂φ

∂t
= δ�(φ)

⎡

⎣−1
3

3

∑
j=1

λ+
j (uj − c+j )

2 +
1
3

3

∑
j=1

λ−
j (uj − c+j )

2 + μ · div
� ∇Œ
|∇Œ|

�⎤

⎦ = 0, (10)

in Ω with the boundary condition
δ�(φ)∂φ

|∇u|∂n
= 0

on ∂Ω, where ∂n denotes the unit normal at the boundary of Ω.

3.3 Level set for polarised images
Polarised images captured under different light contain important clues for mineral boundary
detection. For a thin section, two images can be captured from plane- or cross-polarised
light in microscopy. The main difference between polarizing images and ordinary images
is polarised light phenomenon: under plane-polarised light, many mineral grain appear as
colorless; under cross-polarised light, mineral grains show varying colors and intensities.
The colors and intensity rely the mineral, the thickness of the grain and its crystallographic
orientation. In the previous publications, gradient filtering has been proposed to deal with
every image followed by a fuse procedure. We extend the level set method to segment multi
images captured from different light. Figure 1 shows the two images of a thin section. Figure
1(a) is of a less contrast and the edges of Fig. 1(b) seems to be more legible. It is not proper
to detect the grain boundary with any image. To segmentation the polarised images, we
construct a new active contour model below. The energy as well as the evolving is similar
with that of the equation above.
Let ui,j be the jth channel of an image ui on Ω, with j = 1, 2, 3 channels, i = 1, 2 images and C
the evolving curve. Each channel would contain the same image with some differences. Let
c+ = (c+1,1, c+1,2, c+1,3) and c− = (c−2,1, c−2,2, c−2,3) be two unknown constant vectors. The extension
of the C-V model to polarised images is

E(c+, c−, C) =
�

inside(C)

1
6

2

∑
i=1

3

∑
j=1

λ+
i,j|ui,j(x, y)− c+i,j|2dxdy

+
�

outside(C)

1
6

2

∑
i=1

3

∑
j=1

λ−
i,j|ui,j(x, y)− c−i,j|2dxdy + μ · Length(C). (11)

In this model, the active contour C is the boundary between two regions defined over all
channels. Rewrite it in level set form, we obtain

E(c+, c−, φ) =
�

Ω

1
6

2

∑
i=1

3

∑
j=1

λ+
i,j|ui,j(x, y)− c+ij |2H�(φ(x, y))dxdy

+
�

Ω

1
6

2

∑
i=1

3

∑
j=1

λ−
i,j|ui,j(x, y)− c−ij |2(1 − H�(φ(x, y)))dxdy + μ

�

Ω

|∇H�(φ)|dxdy, (12)

for i = 1, 2 and j = 1, 2, 3. The parameters μ is the weight for the length term of the curve.
λ+,− = (λ+,−

i,j ) are the weights for the noise error.
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thresholds k1 and k2 are selected. As for the shape information, the ration of major axis and
minor axis could be adopted as another important criterion for high formed minerals. It is a
simple attempt to devise such constraints, more precious constraints, mainly decided by the
previous knowledge of the the grains, will be proposed in future work.

3.2 Level set for color image
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still necessary to consider color components for grain boundary detection. In the following
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Let ui,j be the jth channel of an color image u on Ω, with j = 1, 2, 3 channels and C the
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c+ = (c+1 , c+2 , c+3 ) be a unknown constant vector. The extension of the C-V model to vector
images is
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3
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�

outside(C)
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3

3

∑
j=1

λ−
j |uj(x, y)

− c−j |2dxdy + μ · Length(C). (7)

The curve C is defined as the zero level set as follows: C = {(x, y) ∈ Ω|φ(x, y) = 0}.
In this model, the active contour C is the boundary between two regions defined over all
channels. Rewrite it in level set form, we obtain
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�
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�

Ω

|∇H�(φ)|dxdy, (8)

for j = 1, 2, 3. The parameters μ is the weight for the length term of the curve. λ+,− = (λ+,−
j )

are the weights for the noise error. H denotes the Heaviside function, again.
Minimizing the energy with respect to the constant c+j , c−j , for j = 1, 2, 3, we obtain:
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�
Ω
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Ω
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�
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Assuming that c+j are constant vectors, and minimizing the energy functional with respect to
φ, we obtain the following Euler-lagrange equation for φ:
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⎡
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3
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∑
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2 +
1
3

3

∑
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� ∇Œ
|∇Œ|

�⎤

⎦ = 0, (9)
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where δ is one-dimensional Dirac measure and δ� = H�
�(z). To solve this PDE numerically, we
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in Ω with the boundary condition
δ�(φ)∂φ

|∇u|∂n
= 0

on ∂Ω, where ∂n denotes the unit normal at the boundary of Ω.

3.3 Level set for polarised images
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(a) Taken under plane-polised light

(b) Taken under cross-polised light

Fig. 1. Two polarizid thin section images.

Minimizing the energy with respect to the constant c+i,j, c−i,j, for i = 1, 2, j = 1, 2, 3, we obtain:

c+i,j =

�
Ω

ui,j H�(φ(x, y))dxdy�
Ω

H�(φ(x, y))dxdy
, average(ui,j)onŒ ≥ 0,

c−i,j =
�

Ω
ui,j(1 − H�(φ(x, y)))dxdy�

Ω
H�(φ(x, y))dxdy

, average(ui,j)onŒ < 0.

Assuming that c+i,j are constant vectors, and minimizing the energy functional with respect
to φ, we obtain the following Euler-lagrange equation for φ (introducing an artificial time as
gradient descent method):

∂φ

∂t
=δ(φ)

⎡

⎣−1
6

2

∑
i=1

3

∑
j=1

λ+
i,j(ui,j(x, y)−c+ij )

2+
1
6

2

∑
i=1

3

∑
j=1

λ−
i,j(ui,j(x, y)−c+ij )

2+μ · div
� ∇Œ
|∇Œ|

�⎤

⎦ ,

(13)

in Ω with the boundary condition
δ�(φ)∂φ

|∇u|∂n
= 0

on ∂Ω, where ∂n denotes the unit normal at the boundary of Ω. To solve this evolution
problem, we use a finite differences scheme, as suggested in [6].
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The mail difference between the proposed model and the classical model in [6] is the income
images. Our model is strongly inspired by the work of [6]. The three methods evolve the
curve depending on the information with multichannel. The main difference is the number
of the input image and channel. Our model deals with the two polarised images of a thin
section of the same view. Under plane- and cross-polarised light, different color information
is captured. Some grains can be observed in one image while they may have a unconspicuous
edges or regions. In the new model, the active contour evolves according to the structure of
the two polarised images instead of any single image. More information is concerned to locate
a more reasonable and accurate edge position. Similarly, the contour produce by the above
model need a post-processing to remove unmeaning objects.

4. Experimental results

We present in this section some numerical results obtained with the models from the previous
section. For the details of the numerical schemes and for other numerical results, we refer the
reader to [6],[8],[39]. As we will see in this section, these models have the abilities of automatic
detection of grain boundaries. Every grain boundary is represented with a closed curve.
In Fig.2–Fig.4, we illustrator the whole procedures of low strain grain boundaries detection
using level set with gray scale as input. We also compare the grains detected by level set
with that of hand-drawn method. Comparisons of features and strain analysis results can be
found in [8]. In Fig.5, an example of high strain sample boundary detection is given and the
result is compared with that of a region growing method: CASGR[4]. A note to this example
is that our detection is performed on gray scale image and CASGR is performed with color
image. In Fig.6, we show the result of color grain boundary detection with equation (10).
We skip the preprocessing of TV flow and the we refer to [40] for more details. In Fig.7 , we
demonstrate the segmentation of polarising images of a thin section. The thin section contains
some grains and other clasts. The red contours represent the edges of the identified grains. In
Fig.7(a), segmentation of plane-polarising image with classical vector-valued image is shown.
Some small clasts are identified as grains wrongly. Segmentation of cross-polarising image is
shown in Fig.7(b). In the left of the image, a large part of ares is recognized as inner of a grain
according to the structure of the cross-polarsing image, which is not coincide with the fact of
plane-polarising image. The edges of grains detected with the proposed model is shown in
Fig.7(c). The time space is 0.1 and the total iter number is set 200. The other parameter are
set as follows: μ = 0.2, λ

i,j
+,− = 1, i, j = 1, 2, 3. Some clasts are excluded from the identified

grains. The reason for a new segmenting result is that the information in six channel is used to
determine the regions of the grains. With more clues concerned, the disturb of the noise and
false edges is suppressed.

5. Conclusion

We have presented in this paper a framework for grain boundary detection using level set with
different input images: gray scale image, color image, plane-polarising and cross-polarising
images. The obtained variational level set models yield closed grain boundary which is
preferred for feature extraction and data analysis. Application to grain boundary detection
have been illustrated. In future, we will focus on the grain identification and classification
with multi-phase level set approach for thin section image of complex topologies.
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Fig. 1. Two polarizid thin section images.
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in Ω with the boundary condition
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= 0

on ∂Ω, where ∂n denotes the unit normal at the boundary of Ω. To solve this evolution
problem, we use a finite differences scheme, as suggested in [6].
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the two polarised images instead of any single image. More information is concerned to locate
a more reasonable and accurate edge position. Similarly, the contour produce by the above
model need a post-processing to remove unmeaning objects.
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We present in this section some numerical results obtained with the models from the previous
section. For the details of the numerical schemes and for other numerical results, we refer the
reader to [6],[8],[39]. As we will see in this section, these models have the abilities of automatic
detection of grain boundaries. Every grain boundary is represented with a closed curve.
In Fig.2–Fig.4, we illustrator the whole procedures of low strain grain boundaries detection
using level set with gray scale as input. We also compare the grains detected by level set
with that of hand-drawn method. Comparisons of features and strain analysis results can be
found in [8]. In Fig.5, an example of high strain sample boundary detection is given and the
result is compared with that of a region growing method: CASGR[4]. A note to this example
is that our detection is performed on gray scale image and CASGR is performed with color
image. In Fig.6, we show the result of color grain boundary detection with equation (10).
We skip the preprocessing of TV flow and the we refer to [40] for more details. In Fig.7 , we
demonstrate the segmentation of polarising images of a thin section. The thin section contains
some grains and other clasts. The red contours represent the edges of the identified grains. In
Fig.7(a), segmentation of plane-polarising image with classical vector-valued image is shown.
Some small clasts are identified as grains wrongly. Segmentation of cross-polarising image is
shown in Fig.7(b). In the left of the image, a large part of ares is recognized as inner of a grain
according to the structure of the cross-polarsing image, which is not coincide with the fact of
plane-polarising image. The edges of grains detected with the proposed model is shown in
Fig.7(c). The time space is 0.1 and the total iter number is set 200. The other parameter are
set as follows: μ = 0.2, λ
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+,− = 1, i, j = 1, 2, 3. Some clasts are excluded from the identified

grains. The reason for a new segmenting result is that the information in six channel is used to
determine the regions of the grains. With more clues concerned, the disturb of the noise and
false edges is suppressed.
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We have presented in this paper a framework for grain boundary detection using level set with
different input images: gray scale image, color image, plane-polarising and cross-polarising
images. The obtained variational level set models yield closed grain boundary which is
preferred for feature extraction and data analysis. Application to grain boundary detection
have been illustrated. In future, we will focus on the grain identification and classification
with multi-phase level set approach for thin section image of complex topologies.
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(a) Original color image. (b) Gray scale image.

Fig. 2. Thin section image of mylonite.

(a) iter=0 (b) iter=10

(c) iter=15 (d) iter=22

Fig. 3. Curve involving of thin section image.

320 Image Segmentation Mineral Grain Boundary Detection With Image Processing Method: From Edge Detection Operation To Level Set Technique 13

(a) Grains boundaries by level set
in color image.

(b) Contours of grains by level set
in corresponding binary image..

(c) Hand-drawn boundaries of
grains in color image.

(d) Hand-drawn boundaries of
grains in corresponding binary
image.

Fig. 4. Grain boundaries: level set VS hand-drawn.

(a) Color image . (b) Gray scale image .

(c) Grain boundaries by CASGR. (d) Grain boundaries by level set.

Fig. 5. Grain boundaries detection of low strain sample.
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(a) Color thin section image (b) Red channel

(c) Blue channel (d) Green channel

(e) Contour of segmenting result (f) Boundary of identified andalusite

Fig. 6. Grain boundary detection of andalusite with color image.
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(a) Segmentation of plane-polarising image

(b) Segmentation of cross-polarising image

(c) Segmentation of two palarising images

Fig. 7. Grain boundary detection with different input images
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1. Introduction 
In this chapter we focus on image segmentation techniques for some very special images —
textile images. They are generated from the color halftoning technique in textile and printing 
production lines. In contrast with natural color images, textile images have some very 
distinctive features: (1) generally there are a few dominant colors in a textile image, whereas 
there may exist hundreds of significant colors in a natural color image; (2) in the textile 
industry designers combine threads of different colors, thickness, and densities to produce the 
visual impression of other colors (the color halftoning technique in textile printing). The fabric 
texture structure — texture noise — has a great influence on the colors’ appearance in textile 
images, which makes the color segmentation of textile images a very difficult problem [1]. 
A typical textile image is shown in Fig.1. According to human visual observation, there are 
about six dominant colors in the textile image, but when the image is enlarged to the pixel-
level, we will find that there are many different colors in perceived uniform color regions as 
shown in Fig.1. (a) and (b). Four histograms of the spatial variation magnitudes of the four 
uniform and edge blocks (as shown in Fig.1 (a), (b), (c) and (d)) are illustrated in Fig.2 (Here 
the spatial variation magnitude is computed as the added value of the two absolute forward 
differences along the horizontal and vertical directions on the luminance component of each 
 

(a) Uniform red area (b) Uniform blue area

(c) Edge area I (d) Edge area II  
Fig. 1. A typical textile image 
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(a) Uniform red area (b) Uniform blue area

(c) Edge area I (d) Edge area II
 

Fig. 2. Histograms of the spatial variation magnitudes of uniform areas and edge areas in 
the textile image 
block). From these histograms, we can see that it is very difficult to distinguish the 
variations caused by genuine spatial edges from those caused by texture noise. 
Some distinctive properties of texture noise are compared with those of white Gaussian 
noise in [2]. Fig.3. (a) shows a 16×16 texture noise block extracted from the textile image as 
shown in Fig.1. Fig.3. (d) is a 16×16 white noise block generated by the “randn” function in 
MatlabTM. Texture noise is clearly non-Gaussian distributed, and has highly correlative 
spatial structure. 
Any image segmentation algorithm that independently classifies each pixel in the image plane 
is unlikely to perform well for textile images since there is insufficient information to make a 
good decision. So many segmentation algorithms divide the image into arbitrary blocks, and 
classify each block independently. However, if the block size is too small, discriminating 
among similar textures may be difficult. Alternatively, if the block size is too large, regions of 
differing textures may be lost. In either case, the resulting boundaries will not be accurate since 
there is no reason to believe that the actual boundaries occurred along the block boundaries [3]. 
Multiscale image segmentation approaches [1, 3-14] have been proven efficient to integrate both 
image features and contextual information to classify a region in an image differently from its 
surroundings if there is sufficient statistical evidence to justify a distinct region regardless of 
size, and refine the segmentation results recursively between different scales. The number of 
important contributions in this area is so great that just listing all of them would more than 
exhaust the page budget of this chapter (for example, the bibliography in [4] is 8 pages in a 
two-column format). So in Section 2 we review a few representative multiscale image 
segmentation techniques which developed over the past decades. In Section 3 we test some of 
the benchmark multiscale image segmentation techniques on textile images, and compare the 
experimental results analytically. We finally give some concluding remarks in Section 4. 
In the following sections, we will follow the convection of using upper-case letters for 
random variables and lower-case letters for their realizations. 
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(b) PDF of texture noise
(a) Texture noise

(c) Autocorrelation function of texture noise

(d) White noise

(f) Autocorrelation function of white noise(e) PDF of white noise
 

Fig. 3. Distinctive properties of texture noise 

2. Multiscale image segmentation techniques 
2.1 Problem statement and notations 
The image segmentation problem can be considered as the process of inferring the “best” 
configuration of labelling X  from the observed image data Y y= , and both random fields 
X  and Y  are defined on a rectangular gird S . Each random variable of X  takes its values 
from a finite set of class labels { }1 KΛ = , where K  is the total number of classes. The 
standard Bayesian formulation of this inference problem consists in minimizing the 
expectation of some cost function C , given the data 

 ˆ arg min ( ( , )| )
x

x E C X x Y y= =  (1) 

Where ( , )C X x  is the cost of estimating the true segmentation X  by an approximate 
segmentation x . 
The MAP (Maximum a Posteriori) estimator is an solution of (1) if we use the cost functional 
of ( , ) 1C X x =  whenever any pixel is incorrectly classified. The MAP estimator aims at 
maximizing the probability that all pixels will be correctly classified. It is well known that 
the MAP estimator is excessively conservative, and appear even more inappropriate for the 
estimation of multiscale Markov random fields [6]. 
An alternative criterion to the MAP estimation is to minimize the probability of 
classification error, the Maximization of the Posterior Marginals (MPM) estimator, which 
associates to each cite the most probable value given all the data 
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 ˆ, arg min ( | )
s

s s
x

s S x P x Y y
∈Λ

∀ ∈ = =  (2) 

The MPM estimator results in high computational complexity since each of these functions 
should be obtained by simultaneously integrating out all ( )tx t s≠  [5]. Usually in real 
situations, it is unfeasible to compute these posterior marginals ( | )sP x y   exactly since the 
original joint distribution ( , )P x y   is unavailable or it is intractable to specify the joint 
distribution for each possibility. 

2.2 Sequential MAP [6] 
Although the MPM criterion seems to be more appropriate than the MAP criterion, both the 
MPM and MAP cost functions do not take into account the location of estimation errors in a 
hierarchical quadtree structure. Bouman and Shapiro introduced the following cost function 
in [6] 

 ( ) ( )1

0
( , ) 2 (1 ( , ))

LL
i in

SMAP
n i n

C X x X xδ−

= =

= −∑ ∏   (3) 

At each scale n , the segmentation or labeling is denoted by the random field ( )nX , and the 
set of lattice points is denoted by ( )nS . This sequential MAP (SMAP) cost function is to sum 
up the segmentation errors from multiple scales together. The SMAP estimator aims at 
minimizing the spatial size of errors. 
The multiscale image model proposed in [6] is composed of a series of random fields at 
multiple scales. Each scale has a random field of image feature vectors ( )nY , and a random 
field of class labels ( )nX . We denote an individual sample at scale n  by ( )n

sy   and ( )n
sx , 

where s  is the position in the 2-D lattice ( )nS . Markovian dependencies are assumed across 
scales to capture interscale dependencies of multiscale class labels, and the SMAP recursion 
can be estimated in a fashion of coarse-to-fine 

 { }( ) ( ) ( ) ( 1)
( )

( ) ( ) ( ) ( ) ( 1)
| |

ˆ ˆarg max log ( | ) log ( | )n n n n
n

n n n n n
y x x x

x
x p y x P x x+

+= +  (4) 

The two terms in (4) are the likelihood function of the image feature ( )ny and the context-
based prior knowledge from the next coarser scale, respectively. Specifically, the quadtree 
pyramid developed in [6] is to capture interscale dependencies of multiscale class labels 
regarding the latter part of (4). But a big problem with the quadtree pyramid is that spatially 
adjacent samples may not have a common parent sample at the next coarser scale which 
may result in discontinuous boundaries. Therefore a more generalized pyramid graph 
model was introduced in [6] where each sample has multiple parents at the next coarser 
scale. However, this pyramid graph also complicates the computation of likelihood 
functions, and the coarse-to-fine recursion of (4) has to be solved approximately. 
Based on the same framework, a trainable context model for multiscale Bayesian 
segmentation was proposed in [7], where the contextual behavior can be trained off-line by 
providing image data the corresponding ground truth segmentations. Then the 
segmentation can be accomplished efficiently via a single fine-to-coarse-to-fine iteration 
through the pyramid. 
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2.3 Wavelet-domain HMT [8] 
A distinct context-based Bayesian segmentation algorithm was proposed in [8] where the 
context model is characterized by a context vector ( )nv   derived from a set of neighboring 
samples (3×3) at the next coarse scale. It is assumed that, given ( )n

sy , its context vector  

{ }( )( ) ( ) nn n
s ps lsv x x=  can provide supplement information regarding ( )n

sx , where ( )n
psx   denotes 

the class label of its parent sample, and ( )n
lsx denote the dominant class label of the 3×3 

samples at the next coarser scale. Given ( )n
sv , ( )n

sx  is independent with all other class labels. 
In particular, the contextual prior ( ) ( )| ( | )n nx vp c u  is involved in the SMAP estimation which 

has the same purpose as the second term in (4), and it can be estimated by maximizing the 
following context-based mixture model likelihood as 

 ( ) ( )
( )

( ) ( ) ( ) ( ) ( )
|

1

ˆ( | ) ( | ) ( | )n n
n

K
n n n n n

s s sx v
cs S

f y v u p x c v u f y c
=∈

= = = =∑∏   (5) 

where the likelihood function ( ) ( )( | )n nf y x  is computed by using the wavelet-domain 
hidden Markov model (HMT) proposed in [9]. An iterative Expectation Maximization (EM) 
training algorithm was developed in [8] to approach the above problem. 
The HMT is a tree-structure model in the wavelet-domain to characterize the joint statistics 
of wavelet coefficients across scales. In order to perform multiscale segmentation, an image 
is recursively divided into four sub-images of same size J  times, and a pyramid is 

constructed with J  scales. A block ( )ny  at scale n  is associated with three wavelet subtrees 

in three subbands as, { }( ) ( ) ( )n n n
LH HL HHT T T . The computation of the model likelihood of 

( )( | )nf y θ  is a realization of the HMT model  θ and is obtained by 

 ( ) ( ) ( )( )( | ) ( | ) ( | ) ( | )n n nn
LH HL HHLH HL HHf y f T f T f Tθ θ θ θ=   (6) 

Where it is assumed that the three DWT subbands are independent and each one in (6) can 
be estimated based on a close formula proposed in [9].  
An improved wavelet-domain hidden Markov model, HMT-3S [10], was developed to 
capture the wavelet coefficients dependencies not just across scales, but across subbands as 
well, where the three DWT subbands are grouped into one quadtree structure. It is worth 
noting that two-state GMMs (Gaussian Mixture Model) in HMT [8] are still used to 
characterize the DWT marginal statistics, and there will be eight states in a node of HMT-3S. 
Thus, HMT-3S is parameterized by 

 { }, 2
3 , 1 , ,( ), , | , 1, ; , 0, ,7; 0,1u v

HMT S J j j b j hp u b B j J u v hθ ε σ− −= ∈ = = =  (7) 

Where { }B LH HL HH= , and ,
, 1

u v
j jε −  is the transition probability of the Markov chain 

from scale j  to scale 1j − . The EM training algorithm in [8] can be straightforwardly 
extended to the eight-state HMT-3S. 
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sx , where ( )n
psx   denotes 

the class label of its parent sample, and ( )n
lsx denote the dominant class label of the 3×3 

samples at the next coarser scale. Given ( )n
sv , ( )n

sx  is independent with all other class labels. 
In particular, the contextual prior ( ) ( )| ( | )n nx vp c u  is involved in the SMAP estimation which 

has the same purpose as the second term in (4), and it can be estimated by maximizing the 
following context-based mixture model likelihood as 

 ( ) ( )
( )

( ) ( ) ( ) ( ) ( )
|

1

ˆ( | ) ( | ) ( | )n n
n

K
n n n n n

s s sx v
cs S

f y v u p x c v u f y c
=∈

= = = =∑∏   (5) 

where the likelihood function ( ) ( )( | )n nf y x  is computed by using the wavelet-domain 
hidden Markov model (HMT) proposed in [9]. An iterative Expectation Maximization (EM) 
training algorithm was developed in [8] to approach the above problem. 
The HMT is a tree-structure model in the wavelet-domain to characterize the joint statistics 
of wavelet coefficients across scales. In order to perform multiscale segmentation, an image 
is recursively divided into four sub-images of same size J  times, and a pyramid is 

constructed with J  scales. A block ( )ny  at scale n  is associated with three wavelet subtrees 

in three subbands as, { }( ) ( ) ( )n n n
LH HL HHT T T . The computation of the model likelihood of 

( )( | )nf y θ  is a realization of the HMT model  θ and is obtained by 

 ( ) ( ) ( )( )( | ) ( | ) ( | ) ( | )n n nn
LH HL HHLH HL HHf y f T f T f Tθ θ θ θ=   (6) 

Where it is assumed that the three DWT subbands are independent and each one in (6) can 
be estimated based on a close formula proposed in [9].  
An improved wavelet-domain hidden Markov model, HMT-3S [10], was developed to 
capture the wavelet coefficients dependencies not just across scales, but across subbands as 
well, where the three DWT subbands are grouped into one quadtree structure. It is worth 
noting that two-state GMMs (Gaussian Mixture Model) in HMT [8] are still used to 
characterize the DWT marginal statistics, and there will be eight states in a node of HMT-3S. 
Thus, HMT-3S is parameterized by 

 { }, 2
3 , 1 , ,( ), , | , 1, ; , 0, ,7; 0,1u v

HMT S J j j b j hp u b B j J u v hθ ε σ− −= ∈ = = =  (7) 

Where { }B LH HL HH= , and ,
, 1

u v
j jε −  is the transition probability of the Markov chain 

from scale j  to scale 1j − . The EM training algorithm in [8] can be straightforwardly 
extended to the eight-state HMT-3S. 
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2.4 Joint multi-context and multiscale HMT-3S [12] 
Most multiscale segmentation algorithms adopt SMAP estimator and mainly consider 
interscale dependencies of multiscale class labels by assuming Markovian dependencies 
across scales, and intrascale dependencies are not considered due to the fact that the non-
causal structure usually requires extra iterative training process. 
However, the characterization of intrascale dependencies is useful for boundary localization 
[11]. Based on three numerical segmentation criteria: 1) aP  the percentage of pixels which 
are correctly classified; 2) bP  the percentage of boundaries that are coincided with the true 
ones; 3) cP  the percentage of true boundaries that can be detected, Fan and Xia quantified 
the segmentation performances of five contextual models in [11]. And show that interscale 
context models (context-1 and context-2) may favor aP  by encouraging the homogeneity of 
texture classification across the scales of the pyramid, and the intrascale context model 
(context-5) may help cP   by being sensitive to texture boundaries within a scale. As hybrid 
context models (context-3 and context-4) may provide high bP   by appropriately balancing 
both interscale dependencies and intrascale dependencies of multiscale class labels into the 
MAP estimation. It is shown that none of the five context models can work well singly [11]. 
Since a single context model is unable to provide high accuracy for both texture 
classification and boundary localization, Fan and Xia proposed a joint multi-context and 
multiscale (JMCMS) approach to Bayesian segmentation in [12] which reformulates (1) as a 
multi-object optimization as 

 

1ˆ arg min ( ( , )| )

ˆ arg min ( ( , )| )

SMAP
x

SMAP z
x

x E C X x Y y

x E C X x Y y

= =

= =

  (8) 

Where an image y can be represented as multiple (Z) copies characterized by distinct 
context models, i.e., { }| 1, ,zy z Z= . Different context models provide different multiscale 
modeling, the multi-objective problem in (8) is roughly analogous to the multiple criteria: 

aP , bP  and cP . The above problem can be solved by a heuristic algorithm called the 
multistage problem-solving technique [11]. 
Both JMCMS [11] and HMT-3S [10] can improve segmentation results in terms of aP , bP  
and cP  by emphasizing the two terms in (4), respectively. It is shown in [12] that 
combination of them provides the best segmentation result regarding aP  and bP . 

2.5 Multiresolution Gaussian Autoregressive Models (MGAR) based on MMPM [13] 
A double-stochastic model is proposed in [13] for multiresolution textured-image 
segmentation where the observed image is represented as a multiresolution Gaussian 
autoregressive (MGAR) model and class labels are assumed to be dependent on both the 
same scale and the adjacent finer and coarser scales as a 3-D MRF.  
The optimization criterion used for segmentation is the minimization of the expected value 
of the number of misclassified nodes in a multiresolution lattice. The estimator that satisfies 
this criterion is referred to as the “multiresolution maximization of the posterior marginals” 
(MMPM) estimator, and is a natural extension of the single-resolution MPM estimate [13]. 
The cost function in (1) is given by 
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Where J denotes the total number of levels of the multiresolution lattice S , and the 
multiresolution representation of the observed image Y  and the class label pyramid X are 
defined on the same lattice S . The segmentation x that minimizes the conditional 
expectation of this cost function will be denoted as *x . Thus 
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where ( , ) 1s sX xδ = , if s sX x= ; ( , ) 0s sX xδ = , otherwise. 
It is assumed that the number of distinct textures in the observed image is known in this 
approach, but the parameters θ  of the MGAR model — the means, prediction coefficients, 
and prediction error variances of different textures are unknown. A modified version of the 
EM algorithm is used to estimate the parameters [13]. 
The Gibbs sampler with constant temperature can be used to generate a Markov chain ( )X t  
which converges in distribution to a random field with probability mass function 

| ( | , )X Yp X Y θ . The marginal conditional probabilities | ( | , )
sX Yp k Y θ , which are to be 

maximized, are then approximated as the fraction of time the Markov chain spends in state 
k  at node s , for each k   and s  [13]. If 0N   is the number of iterations (complete passes 
through the pyramid) of the Gibbs sampler, then the approximations 
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provide estimates of the value needed to obtain the MMPM estimate of X . Integrating the 
multiresolution EM with the approximated MMPM algorithm, image segmentation and 
parameters estimation can be obtained simultaneously [13]. 

2.6 Multi-grid Belief Propagation [14] 
Markov random field models provide a robust and unified framework for image 
segmentation, but the MRF framework yields an optimization problem that is NP hard, and 
it is usually highly advantageous to use graphs as diagrammatic representations to facilitate 
analysis and manipulations. One of the feasible approximation solutions is belief 
propagation [14-16]. Belief Propagation (BP) algorithm utilizes the conditional independent 
properties in the network to derive efficient solutions. Corresponding to the MPM and the 
MAP estimators, there are two types of BP algorithms. One is belief update (BU) also known 
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It is assumed that the number of distinct textures in the observed image is known in this 
approach, but the parameters θ  of the MGAR model — the means, prediction coefficients, 
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| ( | , )X Yp X Y θ . The marginal conditional probabilities | ( | , )
sX Yp k Y θ , which are to be 

maximized, are then approximated as the fraction of time the Markov chain spends in state 
k  at node s , for each k   and s  [13]. If 0N   is the number of iterations (complete passes 
through the pyramid) of the Gibbs sampler, then the approximations 

  
0

|
0 1

1( | , ) ( ( ), ) ,
s

N

X Y s
t

p k Y X t k k s
N

θ δ
=

= ∀∑   (11) 

provide estimates of the value needed to obtain the MMPM estimate of X . Integrating the 
multiresolution EM with the approximated MMPM algorithm, image segmentation and 
parameters estimation can be obtained simultaneously [13]. 

2.6 Multi-grid Belief Propagation [14] 
Markov random field models provide a robust and unified framework for image 
segmentation, but the MRF framework yields an optimization problem that is NP hard, and 
it is usually highly advantageous to use graphs as diagrammatic representations to facilitate 
analysis and manipulations. One of the feasible approximation solutions is belief 
propagation [14-16]. Belief Propagation (BP) algorithm utilizes the conditional independent 
properties in the network to derive efficient solutions. Corresponding to the MPM and the 
MAP estimators, there are two types of BP algorithms. One is belief update (BU) also known 
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as the sum-product algorithm for the MPM inferences, and another is belief revision (BR) 
a.k.a. the max-product algorithm for the MAP inferences [15]. 
The quality of image segmentation can be described in an energy function as following 
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∈ ∈
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Where N are the (undirected) edges in the four-connected image grid graph. ( )
sx sD x  is the 

cost of assigning label ( {1, , })s sx x K∈ to pixel  s  in the lattice S , and is referred to as the 
data cost. ( , )s pW x x measures the cost of assigning different labels to two neighboring pixels 
s  and p , and is generally referred to as the discontinuity cost. An intuitive measurement of 
the discontinuity cost is based on the degree of difference between the two neighboring 
labels, that is, ( , ) ( )s p s pW x x V x x= − . 
The BP algorithm works by passing messages around the graph defined by the four-
connected image grid. The method is iterative, with messages from all nodes (pixels) being 
passed in parallel. At each iteration, in the max-product BP algorithm, new messages can be 
computed with negative log probabilities where the max-product becomes a min-sum: 

 ( 1)

( )\
( ) min( ( ) ( ) ( ))

s
s

tt
s p p s p x s q s sx q N s p

m x V x x D x m x−
→ →

∈

= − + + ∑  (13) 

In the sum-product BP algorithm, new messages are updated as  
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The standard implementation of max-product message passing algorithm on the grid graph 
runs in 2( )O nK T time, where n  is the number of pixels in the image, K is the number of 
possible labels for each pixel and T is the number of iterations. So the computation 
complexity is very high for images with large sizes. 
Felzenszwalb and Huttenlocher [14] proposed an efficient multi-grid BP technique without 
changing the graph structure and the energy function: first the data costs are constructed 
from fine to coarse scales, where the data cost at coarse level can be calculated by summing 
over four data costs at the next finer level; then the message propagation process is started 
at the coarsest level, and the belief information is propagated from coarse to fine scales. 
In contrast, the underlying graph in the example proposed in [16] is changed. First, a 
multiscale algebraic multigrid technique is used to select nodes that strongly influence 
others as the coarse nodes at the next coarser level, and an iterated weighted aggregation 
(IWA) process is followed to calculate the new edge weights among the selected coarse 
nodes. Second, given the belief propagation result at coarse level is interpolated as a start 
point for the next finer scale. Since the start point is believed to be close to the true solution, 
this BP is expected to converge rapidly. 

2.7 Multiscale probabilistic reasoning model [1] 
The quadtree structure induces causal properties that enable design of a non-iterative 
coarse-to-fine multiscale segmentation algorithm. However, an important disadvantage of 
the quadtree structure is that blocks that are spatial adjacent may not have common 
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neighbors at the next coarser scale, and this may result in blocky artifacts in the final 
segmentation [1].  
Fan and Xia listed five contextual models in [11], and proved that the context-4 model can 
provide a high percentage of boundaries that coincide with the true ones. A hierarchical 
probabilistic reasoning model is proposed in [1] to alleviate the problem of blocky artifacts 
by providing a quadtree structure which combined with a spatial lattice neighborhood at 
each scale. 
This hierarchical probabilistic reasoning model [1] is very different from the multiscale 
models proposed in [6-13]. The concept of scale in [1] is related to the size of a block in the 
spatial domain. While the scale described in [6-13] is related to either the Gaussian pyramid 
or the wavelet decomposition of the observed image. The Gaussian low-pass filter can 
alleviate texture noise to some degree, but it can also blur edges at the same time, especially 
for those low-contrast edges. The wavelet transform is very useful to represent the 
singularities (edges and ridges) in an image at multiple scale and three different orientations 
[8]. However, for textile images, the singularities are corrupted by uniformly distributed 
texture structure (see Fig.2). So it is more appropriate to perform segmentation in the spatial 
domain directly than in the wavelet-domain, and the experimental results in Section 3 also 
prove this scheme is inappropriate for textile images. 
As we know that a large block usually enhances the classification reliability (because the use 
of many pixels can lessen the disturbance caused by texture noise), but simultaneously risks 
having pixels of different classes inside the block; while a small block reduces the possibility 
of having multiple classes in the block, but sacrifices classification reliability due to the 
paucity of color information and texture noise. So both the large and small scale behavior 
should be utilized to properly segment both large homogeneous regions and detailed 
boundary regions. 
In [1], no special prior distribution assumption is made about the size and shape of regions. 
At every increasing scale, each block is subdivided into four child blocks, forming a 
quadtree structure. By adopting the context-4 model proposed in [11] the correlations of 
spatial blocks across different scales and within the same spatial scale are integrated as 
shown in Fig.4 
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Where #  is the counting operator, and kr  is half of the minimum distance between the 
dominant color ( 1, , )kc k K=  and the other dominant color ( , 1, , )lc l k l K≠ = .  
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Fig. 4. Hierarchical probabilistic reasoning model [1] 
The contextual information vb in (15) contains the color information of its parent block at the 
next coarser scale and that of the eight neighbor blocks of the current block at the same 
scale. We assume that the dependence on its parent block’s color information is totally 
uncorrelated with the dependencies on its eight neighbor blocks’ color information at the 
same scale. Therefore we can write the contextual probability | ( | )

k bc v k bp c c v=  as 
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where “parent” denotes the parent block at the next coarser scale, and “neighbor” denotes 
the eight neighboring blocks at the same scale of the current block. According to Bayes rule, 
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where ~ indicates either “parent” or “neighbor”. The prior distribution of the dominant 
color ( )kp c c= ( 1, , )k K=  can be computed according to (16), where ( )nb will be the size of 
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the entire image. The likelihood ( | )parent
kbp v v c c= =  of the parent block and the likelihood 

( | )neighbor
kbp v v c c= = of the eight neighbor blocks, given the dominant colors ( 1, , )kc k K= , 

can be computed from coarse to fine scales according to (15) respectively. 

3. Performances of multiscale image segmentation techniques on textile 
images 
In this section we focus on textile image segmentation based on several representative 
multiscale image segmentation techniques, and test their performance analytically. 
Texture noise — the texture appearance of the fabric in textile images makes bottom-up, 
solely image-driven segmentation techniques always prone to errors [1]. Most of textile 
images are taken directly from the production line in textile industries, there are no ground 
truth segmentation results for these textile images, and it is difficult for us to manually 
prepare training data for training-based supervised image segmentation [7, 8]. In this paper 
we mainly consider supervised multiscale image segmentation, that is, it is assumed the 
number of distinct colors in the input textile image is known, and the dominant colors and 
their corresponding features can be obtained earlier. 
The texture statistical characteristics are very helpful for image segmentation when the given 
image contains different visual texture regions [3, 8, 10-13]. However textile images contain 
uniformly distributed texture structure (as shown in Fig.1), so the color information is the 
main feature can be handled with during segmentation with during segmentation. Since there 
are usually only a few dominant colors in textile images, we obtain dominant colors by picking 
and averaging homogeneous regions from the given image. We extract six dominant colors: 
blue, red, white, yellow, dark green and shallow green from textile image 1, and eleven 
dominant colors from textile image 2, and five dominant colors from textile image 3 and textile 
image 4, respectively.  
In order to capture the cross-scale relationships of texture regions, prior to segmentation, 
learning-based supervised image segmentation techniques [7, 8] have to pick large enough 
homogeneous regions as training data from textile images. However, some of the dominant 
colors only occupied very small areas in textile images, such as black color in textile image 2 and 
textile image 3, so we only apply the HMTSeg algorithm [8] to textile image 1 and 4 because in 
these two images each dominant color occupies large enough area. In this paper we only 
examine supervised multiscale image segmentation techniques on textile images: the multiscale 
probabilistic reasoning model [1], sequential MAP [6], HMTSeg [8], belief propagation [14]. 
In the multiscale probabilistic reasoning model [1], no special prior distribution is assumed 
about the size and shape of regions, but in the SMAP [6] a multivariate Gaussian 
distribution is applied for that purpose, so in addition to inputting the number of dominant 
colors and corresponding RGB values, the SMAP algorithm requires inputting the 
covariance matrices of the three RGB channels of the dominant colors. The SMAP algorithm 
is good for textile images with fine texture structure and large homogeneous regions, such 
as textile image 4. Although the computation complexity of the SMAP algorithm is higher 
than that of the maximum likelihood algorithm, the performance of SMAP is comparable to 
that of ML for textile images with coarse fabric texture structure and delicate structures. 
In order to apply the HMTSeg algorithm [8] to textile images, we have to pick several 
homogeneous blocks from the inputted image as training data. Both textile image 1 and 
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learning-based supervised image segmentation techniques [7, 8] have to pick large enough 
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textile image 3, so we only apply the HMTSeg algorithm [8] to textile image 1 and 4 because in 
these two images each dominant color occupies large enough area. In this paper we only 
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In the multiscale probabilistic reasoning model [1], no special prior distribution is assumed 
about the size and shape of regions, but in the SMAP [6] a multivariate Gaussian 
distribution is applied for that purpose, so in addition to inputting the number of dominant 
colors and corresponding RGB values, the SMAP algorithm requires inputting the 
covariance matrices of the three RGB channels of the dominant colors. The SMAP algorithm 
is good for textile images with fine texture structure and large homogeneous regions, such 
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In order to apply the HMTSeg algorithm [8] to textile images, we have to pick several 
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textile image 4 have large homogeneous regions, and for each dominant color, we randomly 
pick ten 16×16 blocks. With this training data and interscale tying in the wavelet-domain 
HMT models [8], the EM training algorithm [9] is used to estimate the parameters of the HMT 
model for each dominant color. Since each HMT model is trained on 16×16 uniform blocks, 
the output segmentation results are very blocky (see Fig.5. (f) and Fig.8. (f)). Though the 
wavelet-domain HMT model is very helpful to images with edges and ridges, in textile 
images, edges and ridges are corrupted by uniformly distributed texture noise and the test 
image generally is much larger than the training images, so repeat the likelihood 
computations for image subblocks assuming that the blocks are independent. The wavelet-
domain HMT model which designed for distinct visual texture statistics is not suitable for 
textile images, and from the segmentation results, we can see that the misclassified color 
areas are large. We don’t apply the HMTSeg algorithm to textile image 2 and 3 because 
some of the dominant colors only occupied very small areas in these two images, and it is 
difficult for us to pick large enough training blocks from those images. 
The belief propagation approach [14] can be used to approximate the MAP solutions to MRF 
problems. The local minima found by BP are minima over “large neighborhoods”, so they 
can produce high accurate segmentation results in practice. In [14] they proposed three 
algorithmic schemes to improve the running time of the loopy belief propagation approach: 
the min-convolution algorithm, belief propagation on grid graphs and a multi-grid method 
which speed up and reduce the memory requirements of belief propagation. In order to 
allow for large discontinuities in the labelling, the cost function stops growing after the 
difference becomes large, and they introduced a data term d  to ( )V x  in eq. (13) to control 
the cost to stop increasing when the discontinuities are large. Another parameter λ is 
applied to balance between the fidelity of the data cost term ( )D x  and the smoothness of the 
discontinuity cost ( )V x . Both d and λ  are selected heuristically. In all the experiments, d is 
set as 410 , and λ  is set as 15. The iteration number for each scale is set as 10, and the 
experimental results do not change too much as the iteration number increases above 10. 
The BP algorithm is good for large homogeneous regions but will simplify fine structures, 
and good examples are illustrated in Fig.6 and Fig.8. 

4. Conclusions 
In contrast with natural images, textile images have some very distinctive properties: 1) 
generally there are a few dominant colors in a textile image, whereas there may exist 
hundreds of significant colors in a natural image; 2) the fabric texture structure caused by 
the color halftoning technique in textile printing has a great influence on the colors’ 
appearance in textile images.  
The uniform fabric structure (texture noise) makes it a difficult problem for the existing 
automatic color segmentation methods to extract the dominant colors from textile images. In 
this chapter, we study various multiscale image segmentation techniques by considering 
image segmentation as inferring the “best” labeling configuration X from the observed 
image data Y . The causal properties induced by multiscale structure enable the design of 
exact, non-iterative inference algorithms. In most multiscale image segmentation techniques, 
the joint probability density of ( , )X Y and the marginal density are modeled as multivariate 
Gaussian distributions or Gaussian mixtures. Whereas textile images are corrupted by non-
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Gaussian texture noise, it is difficult to specify a prior distribution about the size and shape 
of regions, and this is an open problem of our future research work. 
We analyze the performances of different multiscale image segmentation techniques on 
some representative textile images, and find that the spatial contextual model proposed in 
[1] can produce high visual quality segmentation results on average. Since these textile 
images have no ground truth segmentation results, it is difficult for us to evaluate the 
performances of different techniques quantitatively. So to evaluate the segmentation results 
quantitatively is also a problem of our future research works. 
 
 
 
 
 
 
 

 

 
 
 
 
 

Fig. 5. Segmentation results of textile image 1 
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Gaussian texture noise, it is difficult to specify a prior distribution about the size and shape 
of regions, and this is an open problem of our future research work. 
We analyze the performances of different multiscale image segmentation techniques on 
some representative textile images, and find that the spatial contextual model proposed in 
[1] can produce high visual quality segmentation results on average. Since these textile 
images have no ground truth segmentation results, it is difficult for us to evaluate the 
performances of different techniques quantitatively. So to evaluate the segmentation results 
quantitatively is also a problem of our future research works. 
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(a) Textile image 2 (b) Probabilistic Reasoning [1] (c) SMAP [6] (d) BP [14]
 

 
 

Fig. 6. Segmentation results of textile image 2 

 
 
 
 
 
 
 

 

(a) Textile image 3 (b) Probabilistic Reasoning [1] (c) SMAP [6] (d) BP [14]
 

 
 

Fig. 7. Segmentation results of textile image 3 
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(a) Textile image 1 (b) Probabilistic Reasoning [1] (c) SMAP [6]

(d) BP [14] (e) ML (f) HMT [8]
 

Fig. 8. Segmentation results of textile image 4 
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1. Introduction     
Computer vision, when used in open and unstructured environments as in the inspection of 
crops for natural scenes, demands and requires complex analysis of image processing and 
segmentation algorithms, since these computational methods evaluate and predict 
environment physical characteristics, such as color elements, complex objects composition, 
shadows, brightness and inhomogeneous region colors for texture.  
Several segmentation algorithms proposed in literature were designed to process images 
originally characterized by the above-mentioned items. Additionally, agricultural 
automation may take advantage of computer vision resources, which can be applied to a 
number of different tasks, such as crops inspection, classification of fruits and plants, 
estimated production, automated collection and guidance of autonomous machines.  
Bearing the afore-named in mind, the present chapter aims the use of JSEG unsupervised 
segmentation algorithm (Deng et al., 1999a), Statistical Pattern Recognition and Artificial 
Neural Networks (ANN) Multilayer Perceptron (MLP) topology (Haykin, 2008) as merging 
processing techniques in order to segment and therefore classify images into predetermined 
classes (e.g. navigable area, planting area, fruits, plants and general crops). The intended 
approach to segment classification deploys a customized MLP topology to classify and 
characterize the segments, which deals with a supervised learning by error correction – 
propagation of pattern inputs with changes in synaptic weights in a cyclic processing, with 
accurate recognition as well as easy parameter adjustment, as an enhancement of iRPROP 
algorithm (improved resilient back-propagation) (Igel and Hüsken, 2003) derived from Back-
propagation algorithm, which has a faster identification mapping process, that verifies what 
region maps have similar matches through the explored environment. 
To carry through this task, a feature vector is necessary for color channels histograms (layers 
of primary color in a digital image with a counting graph that measures how many pixels 
are at each level between black and white). After training process, the mean squared error 
(MSE), denotes the best results achieved by segment classification to create the image-class 
map, which represents the segments into distinct feature vectors. Several metrics (vector 
bundle) can be part of a feature vector, however, a subset of those which describes and 
evaluates appropriate classes of segments should be chosen.  
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approach to segment classification deploys a customized MLP topology to classify and 
characterize the segments, which deals with a supervised learning by error correction – 
propagation of pattern inputs with changes in synaptic weights in a cyclic processing, with 
accurate recognition as well as easy parameter adjustment, as an enhancement of iRPROP 
algorithm (improved resilient back-propagation) (Igel and Hüsken, 2003) derived from Back-
propagation algorithm, which has a faster identification mapping process, that verifies what 
region maps have similar matches through the explored environment. 
To carry through this task, a feature vector is necessary for color channels histograms (layers 
of primary color in a digital image with a counting graph that measures how many pixels 
are at each level between black and white). After training process, the mean squared error 
(MSE), denotes the best results achieved by segment classification to create the image-class 
map, which represents the segments into distinct feature vectors. Several metrics (vector 
bundle) can be part of a feature vector, however, a subset of those which describes and 
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2. JSEG image segmentation 
Color images with homogeneous regions are segmented with an algorithm to generate 
clusters in the color space/class (different measures classes in spectral distribution, with 
distinct intensity of visible electro-magnetic radiation at many discrete wavelengths) 
(Cavani, 2007). One way to segment images with textures is to consider the spatial 
arrangement of pixels using a region-growing technique whereby a homogeneity mode is 
defined with pixels grouped in the segmented region. Furthermore, in order to segment 
texture images one must consider different scales of images.  
An unsupervised color-texture regions segmentation algorithm is ideal for this purpose, 
since it tests the homogeneity of a given color-texture pattern, which is computationally 
more feasible than model parameter estimation. It deals with the following assumptions for 
the acquired image: 
- Image containing homogeneous color-texture regions. 
- Color information is represented by quantized colors. 
- Colors between two neighboring regions are distinguishable. 
The JSEG algorithm segments images of natural scenes properly, without manual parameter 
adjustment for each image and simplifies texture and color. Segmentation with this 
algorithm passes through two major stages, namely color space quantization (number 
reduction process of distinct colors in a given image), and hit rate regions with similar color 
regions merging, as secondary stage.  
In the first stage, the color space is quantized with little perceptual degradation by using the 
quantization algorithm (Deng et al, 1999b; Deng and Manjunath, 2001) with minimum 
coloring. Each color is associated with a class. The original image pixels are replaced by 
classes to form the class maps (texture composition) for the next stage.  
Before performing the hit rate regions, the J-image - a class map for each windowed color 
region, whose positive and negative values represent the edges and textures of the 
processing image - must be created with pixel values used as a similarity algorithm for the 
hit rate region. These values are called „J-values“ and are calculated from a window placed 
on the quantized image, where the J-value belongs. Therefore, the two-stage division is 
justified through the difficult analysis of the colors similarity whital their distributions. 
The decoupling of these features (color similarity and spatial distribution) allows tractable 
algorithms development for each of the two processing stages. 
 

 
Fig. 1. JSEG image segmentation steps. 
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2.1 Segmentation algorithm evaluation 
Natural scenes present a 24-bit chromatic resolution color image, which is coarsely 
quantized preserving its major quality. The main idea for a good segmentation criterion is to 
extract representative colors differentiating neighboring regions in the acquired image, as an 
unsupervised method. 
Therewith, the color quantization using peer group filtering (Deng et al., 199a) is applied 
through perceptual weighting on individual pixels, to smooth the image and remove the 
existing noise. Then, new values indicating the smoothness of the local areas are obtained, 
and a weight is assigned to each pixel, prioritizing textured areas to smooth areas. These 
areas are identified with a quantization vector to the pixel colors, based on General Lloyd 
Algorithm (GLA) (Gersho and Gray, 1999), which the perceptually uniform L*u*v color 
space is adopted, presenting the overall distortion D: 
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The parameters: ci is the centroid of cluster Ci, x(n) and v(n) are the color vector and the 
perceptual weight for pixel n. Di is the total distortion for Ci. 
With the centroid value, as denoted by Equation (2) - after the vector quantization and 
merged clusters, pixels with the same color have two or more clusters, affected by GLA 
global distortion. For merging close clusters with minimum distance between preset 
thresholds for two centroids, an agglomerative clustering algorithm is performed on ci 
(Duda and Hart, 1970), as the quantization parameter needed for spatial distribution. 
After clustering merging for color quantization, a label is assigned for each quantized color, 
representing a color class for image pixels quantized to the same color. The image pixel 
colors are replaced by their corresponding color class labels, creating a class-map. 
 

segmented class-map 1                not segmented class-map 2 
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Fig. 2. Two different class-map representing three distinct classes of data points. 

 
In Figure 2, class-map 1 indicates three regions containing a single class of data points for 
segmentation process, and class-map 2 is not segmented indicating a color uniformity. 
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2.1 Segmentation algorithm evaluation 
Natural scenes present a 24-bit chromatic resolution color image, which is coarsely 
quantized preserving its major quality. The main idea for a good segmentation criterion is to 
extract representative colors differentiating neighboring regions in the acquired image, as an 
unsupervised method. 
Therewith, the color quantization using peer group filtering (Deng et al., 199a) is applied 
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existing noise. Then, new values indicating the smoothness of the local areas are obtained, 
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global distortion. For merging close clusters with minimum distance between preset 
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colors are replaced by their corresponding color class labels, creating a class-map. 
 

segmented class-map 1                not segmented class-map 2 

+ + + + + + + + + + # + # + # + # +
+ + + + + + + + + - + - + - + - + -
+ + + + + + + + + + # + # + # + # +
- - - - - - - - - - + - + - + - + -
- - - - - - - - - + # + # + # + # +
- - - - - - - - - - + - + - + - + -
# # # # # # # # # + # + # + # + # +
# # # # # # # # # - + - + - + - + -
# # # # # # # # # + # + # + # + # +

Fig. 2. Two different class-map representing three distinct classes of data points. 

 
In Figure 2, class-map 1 indicates three regions containing a single class of data points for 
segmentation process, and class-map 2 is not segmented indicating a color uniformity. 
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The symbols (+, -, #) denotes the label values (J-value) for three distinct data points. All 
necessary segmentation information, after color quantization, is extracted and relocated to a 
class-map. A specific region contains pixels from a color class set, which is distributed in 
image regions. These regions, forming each one, a class-map, has distributed points in all 
spatial data segments, corresponding a two-dimensional plane, and represents the cartesian 
position vector (x,y). 
In order to calculate the J-value, Z is defined as the set of all points of quantized image, then 
z = (x, y) with z ∈ Z and being m the average in all Z elements. C is the number of classes 
obtained in the quantization. Then Z is classified into C classes, Zi are the elements of Z 
belonging to class i, where i=1,...,C, and mi are the element averages in Zi.  
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The parameter ST represents the sum of quantized image points within the average in all Z 
elements. Thereby, the relation between SB and SW, denotes the measures of distances of this 
class relation, for arbitrary nonlinear class distributions. J for higher values indicates an 
increasing distance between the classes and points for each other, considering images with 
homogeneous color regions. The distance and consequently, the J value, decrease for images 
with uniformly color classes. 
Each segmented region could be recalculated, instead of the entire class-map, with new 
parameters adjustment for J  average. JK represents J calculated over region k, Mk is the 
number of points in region k, N is the total number of points in the class-map, with all 
regions in class-map summation.  
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For a fixed number of regions, a criterion for J  is intended for lower values. 

2.2 Spatial segmentation technique 
The global minimization of J  is not practical, if not applied to a local area of the class-map. 
Therefore, the idea of J-image is the generation of a gray-scale image whose pixel values are 
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the J values calculated over local windows centered on these pixels. With a higher value for 
J-image, the pixel should be near region boundaries. 
Expected local windows dimensions determines the size of image regions, for intensity and 
color edges in smaller sizes, and the opposite occurs detecting texture boundaries. 
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Fig. 3. (a) A 9x9 circular window to avoid rectangular objects bias for local J values; (b) A 
downsampling scale 2, for a 17x17 window. 

Using a region-growing method to segment the image, this one is considered initially as one 
single region. The algorithm for spatial segmentation starts segment all the regions in the 
image at an initial large scale until the minimum specified scale is reached. This final scale is 
settled manually for the appropriate image size. The initial scale 1 corresponds to 64x64 
image size, scale 2 to 128x128 image size, scale 3 to 256x256 image size, with due proportion 
for increasing scales and the double image size. 
Below, in Figure 4, the spatial segmentation algorithm is structured in flow steps. 

2.2.1 Valley determination 
A heuristics for the valley determination, presupposes a condition for small initial regions to 
be determined as the pattern growing. These regions have the lowest J values (valleys). As 
follows: 
a. Calculate the standard deviation and the average of the local J values in the region, 

denoted by σJ and μJ, respectively.  
b. Threashold for parameters above: 

 J J JT aμ σ= +  (9) 

The condition to consider candidate valley points for pixels with local J values is determined 
TJ > J. Connect the points based on the 4-connectivity and obtain the valleys. 
a. For candidate valleys smaller than the spatial segmentation relation between scale and 

image size, they are denoted as valleys. 
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The symbols (+, -, #) denotes the label values (J-value) for three distinct data points. All 
necessary segmentation information, after color quantization, is extracted and relocated to a 
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For a fixed number of regions, a criterion for J  is intended for lower values. 

2.2 Spatial segmentation technique 
The global minimization of J  is not practical, if not applied to a local area of the class-map. 
Therefore, the idea of J-image is the generation of a gray-scale image whose pixel values are 
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the J values calculated over local windows centered on these pixels. With a higher value for 
J-image, the pixel should be near region boundaries. 
Expected local windows dimensions determines the size of image regions, for intensity and 
color edges in smaller sizes, and the opposite occurs detecting texture boundaries. 
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Fig. 3. (a) A 9x9 circular window to avoid rectangular objects bias for local J values; (b) A 
downsampling scale 2, for a 17x17 window. 

Using a region-growing method to segment the image, this one is considered initially as one 
single region. The algorithm for spatial segmentation starts segment all the regions in the 
image at an initial large scale until the minimum specified scale is reached. This final scale is 
settled manually for the appropriate image size. The initial scale 1 corresponds to 64x64 
image size, scale 2 to 128x128 image size, scale 3 to 256x256 image size, with due proportion 
for increasing scales and the double image size. 
Below, in Figure 4, the spatial segmentation algorithm is structured in flow steps. 

2.2.1 Valley determination 
A heuristics for the valley determination, presupposes a condition for small initial regions to 
be determined as the pattern growing. These regions have the lowest J values (valleys). As 
follows: 
a. Calculate the standard deviation and the average of the local J values in the region, 

denoted by σJ and μJ, respectively.  
b. Threashold for parameters above: 

 J J JT aμ σ= +  (9) 

The condition to consider candidate valley points for pixels with local J values is determined 
TJ > J. Connect the points based on the 4-connectivity and obtain the valleys. 
a. For candidate valleys smaller than the spatial segmentation relation between scale and 

image size, they are denoted as valleys. 
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b. A preset parameter values [-0.6, -0.4, -0.2, 0, 0.2, 0.4] is given for variable a, which gives 
the most number of valleys. 

 
Fig. 4. Sequence for spatial segmentation algorithm. 

2.2.2 Valley growing and region merge 
After valley determination, the new regions grow from the valleys, which obey the 
following rules:  
c. Non-determined pixels must be removed in the valleys, producing the local J values 

average in the remaining unsegmented regions. Then, pixels are connected below the 
average to form growing areas, and if these are adjacent to one and only one valley, 
they are assigned to that valley. 
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d. Calculate local J values for the remaining pixels at the corresponding scale to locate the 
boundaries regions. 

e. Grow the remaining pixels at the final scale. Unclassified pixels at valley boundaries are 
stored in a buffer. The buffer is updated when all pixels are classified. 

 An initial segmentation of the image is obtained, after region growing, providing over-
segmented regions, merged on their color similarity. The quantized colors represent color 
histogram bins and their distance features are calculated through the regions extraction. 
This distance means the Euclidean distance between two neighboring regions. The pair of 
regions with minimum distance is merged together. All distances are stored in a database 
and it is updated when an estimate for color feature vector and the corresponding region is 
calculated. The process continues until a maximum threshold for the distance is reached. 
After region merging, the final segmentation results are obtained. 

3. Programming (Color quantization and spatial distribution) 
The sequential images in Figure 5 evince not only the color quantization (spatial 
distributions forming a map of classes), but also the space segmentation (J-image 
representing edges and regions of textured side). 
Several window sizes are used by J-values: the largest detects the region boundaries by 
referring to texture parameters; the lowest detects changes in color and/or intensity of light. 
Each window size is associated with a scale image analysis. The concept of J-image, together 
with different scales, allows the segmentation of regions by referring to texture parameters. 
Regions with the lowest values of J-image are called valleys. The lowest values are applied 
with a heuristic algorithm. Thus, it is possible to determine the starting point of efficient 
growth, which depends on the addition of similar valleys. The algorithm ends when there 
are spare pixels to be added to those regions. 
Figures 6 to 10 illustrate not only color quantization and spatial distributions of J-image in 
others natural scenes, but the flood fill implemented algorithm, for determining the 
boundaries edges connected on the region growing areas (using queue data structure 
provided from region valleys). All scenes were submitted to a gradient magnitude, as 
segmentation function rating (Sobel masks for higher values at the borders of navigation 
areas and lower values inside planting areas), then image is segmented with a watershed 
transform directly on the gradient magnitude. JSEG outperforms the evaluation for all 
images, with an effective spatial distribution on planting lines. 

4. Artificial Neural Networks (ANN) and statistical pattern recognition 
Due to the nature of nonlinear vectors, it is fundamental that an ANN-based classification 
method associated with a statistical pattern recognition be used. Multi-Layer Perceptron 
(MLP) is suitable for default ANN topology to be implemented through a customized back-
propagation algorithm for complex patterns. 
The most appropriate segment and topology classifications are those using vectors extracted 
from HSV color space (Hue, Saturation, Value), matching RGB color space (Red, Green, 
Blue) components. Also, the network with less MSE in the neurons to color space proportion 
is used to classify the entities. 
Statistical methods are employed as a combination of results with ANN, showing how 
accuracy in non-linear features vectors can be best applied in a MLP algorithm with a 
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d. Calculate local J values for the remaining pixels at the corresponding scale to locate the 
boundaries regions. 
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stored in a buffer. The buffer is updated when all pixels are classified. 
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Fig. 5. (a) Original images; (b) Color quantization (map of classes); (c) J-image representing 
edges and regions of textured side (Spatial distributions). 
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Fig. 6. JSEG segmentation and watershed transform of gradient magnitude in flood fill class-
map for scene 1. 



 Image Segmentation 

 

350 

   
  

   
  

   
  

   
  

   
                            (a)                                               (b)                                                (c) 

Fig. 5. (a) Original images; (b) Color quantization (map of classes); (c) J-image representing 
edges and regions of textured side (Spatial distributions). 

JSEG Algorithm and Statistical ANN Image Segmentation Techniques for Natural Scenes   

 

351 

 
 
 

   
 
 
 

 
 
 
 

  
Fig. 6. JSEG segmentation and watershed transform of gradient magnitude in flood fill class-
map for scene 1. 
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Fig. 7. JSEG segmentation and watershed transform of gradient magnitude in flood fill class-
map for scene 2. 
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Fig. 8. JSEG segmentation and watershed transform of gradient magnitude in flood fill class-
map for scene 3. 
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Fig. 8. JSEG segmentation and watershed transform of gradient magnitude in flood fill class-
map for scene 3. 
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Fig. 9. JSEG segmentation and watershed transform of gradient magnitude in flood fill class-
map for scene 4. 
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Fig. 10. JSEG segmentation and watershed transform of gradient magnitude in flood fill 
class-map for scene 5. 
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Fig. 10. JSEG segmentation and watershed transform of gradient magnitude in flood fill 
class-map for scene 5. 
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statistical improvement, which processing speed is essentially important, for pattern 
classification. Bayes Theorem and Naive Bayes both use a technique for iterations inspection, 
namely MCA (Main Component Analysis), which uses a linear transformation that minimizes 
co-variance while it maximizes variance. Features found through this transformation are 
totally uncorrelated, so the redundancy between them is avoided. Thus, the components 
(features) represent the key information contained in data, reducing the number of 
dimensions. Therefore, RGB space color is used to compare the total number of dimensions 
in feature vectors with HSV. With a smaller dimension of iterations, HSV is chosen as the 
default space color in most applications. 
Bayes Theorem introduces a modified mathematical equation for the Probability Density 
Function (PDF), which estimates the training set in a conditional statistics. Equation (4) 
denotes the solution for p(Ci|y) relating the PDF to conditional class i (classes in natural 
scene), and y is a n-dimensional feature vector. Naive Bayes implies independence for vector 
features, what means that each class assumes the conditional parameter for the PDF, 
following Equation (5). 
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Thus, the following items detail these merging techniques for image processing and pattern 
recognition as far as generated and customized segmenting algorithms are concerned 
withal. As a result, a modular strategy with JSEG algorithm, ANN and Bayes statistical 
theorem approach is essential for based applications on agricultural scenes. 

4.1 Multilayer perceptron customized algorithm 
Derived from back-propagation, the iRPROP algorithm (improved resilient back-
propagation) (Cavani, 2007) is both fast and accurate, with easy parameter adjustment. It 
features an Octave (Eaton, 2006) module which was adopted for the purposes of this work  
 

 
Fig. 11. ANN schematic topology for planting lines with three classes. 
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and it is classified with HSV (H – hue, S – saturation, V – value) color space channels 
histograms of 256 categories (32, 64,128 and 256 neurons in a hidden layer training for each 
color space channel: H, HS, and HSV). The output layer has three neurons, each of them 
having a predetermined class. 
All ANN-based topologies are trained with a threshold lower than 0.0001 mean squared errors 
(MSE), the synaptic neurons weights are initiated with random values and the other algorithm 
parameters were set with Fast Artificial Neural Network (FANN) library (Nissen, 2006) for 
Matlab (Mathworks Inc.) platform, and also its Neural Network toolbox. The most appropriate 
segment and topology classifications are those using vectors extracted from HSV color space. 
Also, a network with less MSE in the H-64 was used so as to classify the planting area; for class 
navigable area (soil), HSV-256 was chosen; as for the class sky, the HS-32. 

5. Normalization and feature extraction 
This section tackles how statistical methods were employed as a combination of results with 
ANN, showing how accuracy in non-linear features vectors can be best applied in a MLP 
algorithm with a statistical improvement, which processing speed is essentially important, 
for patter classification. The MSE results for each topology, shown in Table 1, were 
partitioned to eliminate the feature vectors that are distant from the class centroids, so the 
classifier will deal in less dispersed vectors. Upon observing the following table, which 
shows the vector distribution in five training sets (20%, 30%, 50%, 70% and 100%), this work 
approached two probabilistic classification methods in order to match final pattern 
recognition results with ANN: Bayes theorem and Naive Bayes. 
 

MSE Neurons Navigation area Planting area Sky 
H 32 0,079117 0,098437 0,098574 
 64 0,110642 0,098566 0,190555 
 128 0,075546 0,079303 0,079874 
 256 0,086501 0,023520 0,079111 

HS 32 0,089143 0,094905 0,023409 
 64 0,099398 0,045956 0,089776 
 128 0,049100 0,095064 0,097455 
 256 0,057136 0,099843 0,034532 

HSV 32 0,089450 0,022453 0,067545 
 64 0,059981 0,010384 0,082364 
 128 0,049677 0,078453 0,043493 
 256 0,038817 0,079856 0,045643 

Table 1. MSE results for each topology. 

RGB space color is used to compare the total number of dimensions in feature vectors with 
HSV. With a smaller dimension of iterations, HSV was chosen as the default space color. For 
such iterations inspection, a technique (main component analysis – MCA) uses a linear 
transformation that minimizes co-variance while it maximizes variance. Features found 
through this transformation are totally uncorrelated, so the redundancy between them is 
avoided. Thus, the components (features) represent the key information contained in data, 
reducing the number of dimensions (Costa and Cesar Jr, 2001; Haykin, 1999; Comaniciu and 
Meer, 1999). 
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In HSV space color, the Bayesian classifiers have produced results which are similar to RGB, 
where there is a hit rate when the number of dimensions increases in an accuracy average 
ranging from 20% to 50%. A maximum rate accuracy for HSV is 0.38817, which occurs for 
30% and 6777 dimensions. In RGB space color, Bayesian conventional classifiers are identical 
to Naive results, because as the dispersion of classes increases, there is an average hit rate, 
which goes up to 50%. The classifiers concerning the number of dimensions are different 
from the previous ones, which range from 20% and 30%, where hit rates fall as the number 
of dimensions increases. 
 

  RGB  HSV  
% NA PA Sky NA PA Sky 
20 1029 5486 34 1024 5384 26 
30 1345 5768 54 1342 5390 45 
50 1390 6094 130 1390 6003 103 
70 1409 6298 149 1402 6209 140 
100 1503 6300 158 1402 6209 145 

Table 2. Vector distribution for RGB and HSV space colors. (Navigation area = NA; Planting 
are = PA) 

As a consequence, Bayesian classifiers in HSV space color, outperforms the other classifiers 
as shown in “Fig. 12”. The average rate of achievement value, together with the number of 
dimensions draw a linear convergence for all vector distribution in the five training sets.  
 

 
Fig. 12. Average hit rates for the three major training sets. 

Although the three methods deliver different performances, yet similar behavior, because 
the hit rate of the class sky tends to improve owing to the increase in the number of 
dimensions. Navigation and planting area classes are listed as false feature vectors by the 
texture similarities in training, which means that ANN and Bayesian must be coupled for 
improved results. 
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The following graph about the first components shows that the RGB curves have a higher 
percentage than most HSV curves. Also, it can be observed that all curves present values 
lower than 90%. 
 

 
Fig. 13. RGB and HSV relation with amount of dimensions. 

After the main component analysis (MCA), the following graph shows the HSV training sets 
for 100% feature vectors distribution. 
 

 
Fig. 14. HSV training set for 100% feature vectors distribution. 



 Image Segmentation 

 

358 

In HSV space color, the Bayesian classifiers have produced results which are similar to RGB, 
where there is a hit rate when the number of dimensions increases in an accuracy average 
ranging from 20% to 50%. A maximum rate accuracy for HSV is 0.38817, which occurs for 
30% and 6777 dimensions. In RGB space color, Bayesian conventional classifiers are identical 
to Naive results, because as the dispersion of classes increases, there is an average hit rate, 
which goes up to 50%. The classifiers concerning the number of dimensions are different 
from the previous ones, which range from 20% and 30%, where hit rates fall as the number 
of dimensions increases. 
 

  RGB  HSV  
% NA PA Sky NA PA Sky 
20 1029 5486 34 1024 5384 26 
30 1345 5768 54 1342 5390 45 
50 1390 6094 130 1390 6003 103 
70 1409 6298 149 1402 6209 140 
100 1503 6300 158 1402 6209 145 

Table 2. Vector distribution for RGB and HSV space colors. (Navigation area = NA; Planting 
are = PA) 

As a consequence, Bayesian classifiers in HSV space color, outperforms the other classifiers 
as shown in “Fig. 12”. The average rate of achievement value, together with the number of 
dimensions draw a linear convergence for all vector distribution in the five training sets.  
 

 
Fig. 12. Average hit rates for the three major training sets. 

Although the three methods deliver different performances, yet similar behavior, because 
the hit rate of the class sky tends to improve owing to the increase in the number of 
dimensions. Navigation and planting area classes are listed as false feature vectors by the 
texture similarities in training, which means that ANN and Bayesian must be coupled for 
improved results. 

JSEG Algorithm and Statistical ANN Image Segmentation Techniques for Natural Scenes   

 

359 

The following graph about the first components shows that the RGB curves have a higher 
percentage than most HSV curves. Also, it can be observed that all curves present values 
lower than 90%. 
 

 
Fig. 13. RGB and HSV relation with amount of dimensions. 

After the main component analysis (MCA), the following graph shows the HSV training sets 
for 100% feature vectors distribution. 
 

 
Fig. 14. HSV training set for 100% feature vectors distribution. 



 Image Segmentation 

 

360 

 
 

  
Fig. 15. Class-map 1 – Bayes/HSV and Bayes/RGB. 

 
 

  
Fig. 16. Class-map 1 – Naïve Bayes/HSV and Naïve Bayes/RGB. 

 
 

  
Fig. 17. Class-map 1 – ANN/HSV and ANN/RGB. 

JSEG Algorithm and Statistical ANN Image Segmentation Techniques for Natural Scenes   

 

361 

 
 

  
Fig. 18. Class-map 2 – Bayes/HSV and Bayes/RGB. 

 
 

  
Fig. 19. Class-map 2 – Naïve Bayes/HSV and Naïve Bayes/RGB. 

 
 

  
Fig. 20. Class-map 2 – ANN/HSV and ANN/RGB. 
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Fig. 21. Class-map 3 – Bayes/HSV and Bayes/RGB. 

 
 

  
Fig. 22. Class-map 3 – Naïve Bayes/HSV and Naïve Bayes/RGB. 

 
 

  
Fig. 23. Class-map 3 – ANN/HSV and ANN/RGB. 
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The corresponding class maps, the corresponding class-maps for the three first natural 
scenes in Figure 4, were shown above, for normalization merging techniques and space 
colors (Bayes/HSV), (Bayes/RGB), (Naive Bayes/HSV), (Naive Bayes/RGB), (ANN/HSV) 
and (ANN/RGB). 

6. Conclusions 
This chapter presented merging techniques for segmentation and ANN-statistical 
classification of navigation agricultural scenes, running multiple segmentation tests with 
JSEG algorithm possible. As the data provided evince, this generated algorithms fulfils the 
expectations as far as segmenting is concerned, so that it sorts the appropriate classes 
(navigation area, planting area and sky). As a result, a modular strategy with ANN and 
Bayes statistical theorem can be an option for the classification of segments. 
Moreover, the classification using different types of feature vectors caused the classification 
metric to be more accurate and sophisticated with ANN, as well as the HSV color space to 
have lower MSE in test values. Both JSEG and MLP proved suitable for the construction of 
an image recognition system. 
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1. Introduction    
Tuberculosis (TB) remains one of the leading causes of death in developing countries and its 
recent resurgences in both developed and developing countries warrants global attention. 
Globally, there were an estimated of 9.27 million incident cases of TB in 2007. This is an 
increase from 9.24 million cases in 2006, 8.3 million cases in 2000 and 6.6 million cases in 
1990. Most of the estimated numbers of cases in 2007 were in Asia (55%) and Africa (31%), 
with small proportions of cases in the Eastern Mediterranean Region (6%), the European 
Region (5%) and the Region of the Americas (3%). The five countries that rank first to fifth in 
terms of total numbers of cases in 2007 are India (2.0 million), China (1.3 million), Indonesia 
(0.53 million), Nigeria (0.46 million) and South Africa (0.46 million). Of the 9.27 million 
incident TB cases in 2007, an estimated 1.37 million (15%) were HIV-positive; 79% of these 
HIV-positive cases were in the African Region and 11% were in the South-East Asia Region 
(WHO, 2009). 
Ziehl-Neelsen stain method is one of the common techniques that are being used to 
diagnose the TB infection. Smear microscopy with Ziehl-Neelsen technique has been the 
main means of diagnosing TB patients in developing countries. This is because the method 
is simple, rapid, reproducible, low cost and effective in detecting infectious disease such as 
TB (Luna, 2004). TB diagnosis is usually being done manually by microbiologist through 
microscopic examination of sputum specimen of TB patients for pulmonary TB diseases.  
However, there are some problems that have been reported with manual screening process, 
such as time consuming and labor-intensive, especially for screening of the negative slides. 
(Veropoulus et al., 1998). When reporting the results of the microscopic examination, the 
microbiologist should provide the clinician with an estimation of the number of acid-fast 
bacilli detected. If the smear microscopy is clearly positive, very little observation time is 
needed to confirm the result. The slide is classified as TB positive if at least one tubercle 
bacilli is found in 300 microscopic fields. The case will then be classified into one of four 
severity category if the smear on the slide is found to be positive, according to the number of 
tubercle bacilli found in the slide. For a well-trained microbiologist, it takes 15 to 20 minutes 
to read and confirm one negative slide, with an average of 25 slides can be read per day. In 
addition, for some developing countries, there is also a lack of well-trained microbiologist, 
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TB (Luna, 2004). TB diagnosis is usually being done manually by microbiologist through 
microscopic examination of sputum specimen of TB patients for pulmonary TB diseases.  
However, there are some problems that have been reported with manual screening process, 
such as time consuming and labor-intensive, especially for screening of the negative slides. 
(Veropoulus et al., 1998). When reporting the results of the microscopic examination, the 
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bacilli is found in 300 microscopic fields. The case will then be classified into one of four 
severity category if the smear on the slide is found to be positive, according to the number of 
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to read and confirm one negative slide, with an average of 25 slides can be read per day. In 
addition, for some developing countries, there is also a lack of well-trained microbiologist, 
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which may results in overload, fatigue and reduces the diagnostic performance (Khutlang et 
al., 2009). Therefore, an automated TB diagnosis is required so that large number of cases 
can be handled with the same accuracy and speeding up the process while improving the 
low sensitivity of manual TB diagnosis. 
In this research, images of Ziehl-neelsen sputum slide are captured using a digital camera 
attached to a light microscope and displayed on a computer screen. In order to extract the 
TB bacilli pixels from the TB slide images, several image processing techniques are required. 
One of the image processing techniques is image segmentation, which is useful to classify 
the pixels in the image into two region, TB and background. The sputum specimen that has 
undergone the process of staining using Ziehl-Neelsen procedure will make the TB bacilli 
appear red and other cells and organisms in the sputum smear sample will retained blue 
background. Image segmentation is a part of image processing technique that will help to 
discriminate between the TB bacilli and background pixels in the digital image. 
There are many attempts already been made to enable the image captured by a camera that 
is attached to the microscope to be viewed through the computer screen. Some image 
processing algorithms also have been developed in order to carry out automatic TB bacilli 
detection in the captured image. Forero applied adaptive color thresholding technique to the 
images that have been captured using fluorescence microscopy (Forero et al., 2003; Forero et 
al., 2004). Veropoulos used an identification method based on shape descriptors and neural 
network classifiers (Veropoulus et al., 1998; Veropoulus et al., 1999). Wilkinson proposed a 
rapid multi resolution segmentation technique based on computing thresholds for different 
areas in a monochromatic image (Wilkinson, 1996). The studies mentioned above used 
images captured from fluorescence microscope, which appear different from Ziehl-Neelsen 
sputum slide images captured under light microscope. 
In this study, a method of grey thresholding technique is reviewed, and it is then being 
adapted to suit with color images. Thus the color thresholding algorithm is expected to be 
able to discriminate between the pixels that comprises the mycobacterium and sputum in 
the Ziehl-Neelsen slide images. The outcome of this study should be able to provide a way 
of getting the suitable threshold values for the images and using the values to achieve the 
main objective of color thresholding and image segmentation. 

2. Image segmentation 
Segmentation process subdivides an image into its constituent regions or objects. The level 
of subdivision depends on the problem being solved, where the segmentation should stop 
when the objects of interest in an application have been isolated. Image segmentation 
algorithms generally are based on one of the two basic properties of intensity values: 
discontinuity and similarity. Thresholding is a method of similarity category. It partitions an 
image into regions that are similar according to a set of predefined criteria. There are 
various thresholding techniques and it is also a fundamental approach to segmentation that 
enjoys a significant degree of popularity, especially in applications where speed is an 
important factor (Gonzalez & Woods, 2002). 
Traditionally, one simple way to accomplish thresholding is by defining a range of 
brightness value in the original image, then selects the pixels within the range as belonging 
to the foreground and rejects all of other pixels to the background. Such an image is then 
usually displayed as a binary or two-level image (Sezgin & Sankur, 2004). 
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The general rule for grey level pixel thresholding is as in Equation (1). 
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where T  is the threshold value, ( , )f x y  is the original pixel value, and ( , )g x y  is the 
resulted pixel value after thresholding has been done. Equation (1) specifies 0 and 1 as 
output values, which will give the result as a true binary image. Equation (1) can be further 
visualized by Figure 1 as mappings of input grey level to output grey level (Efford, 2000). 
 

 
 

Fig. 1. Thresholding for a single threshold 

There could be more than one thresholding value at a time, which change Equation (1), to 
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where 1T  is the lower threshold value and 2T is the upper threshold value. 
Figure 2 shows the visualization of how thresholding with a pair of threshold is being done 
(Efford, 2000). 
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For color images, more than one variable characterises each pixel in the image, which allows 
multi spectral thresholding (Otsu, 1979). In color imaging, each pixel is characterised by 
three red, green and blue (RGB) values. However, with multi spectral or multilayer images 
such as RGB model, it can be difficult to specify the selection criteria. The logical extension 
of thresholding is simply to place brightness thresholds on each image, for instance to 
specify the range of red, blue and green intensities. 
These multiple criteria are then usually combined with an AND operation (i.e. the pixel is 
defined as part of the foreground if its three RGB components all lie within the selected 
range). This logically equivalent to segmenting each image plane individually, creating 
separate binary images and then combining them with a Boolean AND operator afterward. 
This color thresholding method is widely used in the image segmentation (Forero et al., 
2003; Forero et al., 2004; Mancas-Thillou & Gosselin, 2005). 

3. Methodology 
In this study, a conventional thresholding method has been adopted to suit with color 
images of Ziehl-Neelsen sputum slide specimen for TB detection. The method is used to 
segment the image into two regions, which are TB and background (consists of sputum and 
other bacilli). Figure 3 demonstrates the steps involved in the proposed image segmentation 
process. 
 
 
 
 
 
 
 
 

Fig. 3. Block diagram of proposed segmentation process 

3.1 Image acquisition 
The sputum specimens consist of TB bacilli were obtained from Department of Microbiology 
and Parasitology, School of Medical Science, Universiti Sains Malaysia, Kubang Kerian. The 
sputum specimens have been stained using Ziehl-Neelsen staining procedure. The sputum 
slides were analysed under 40x magnification using LEICA DM-LA microscope and the 
images were captured using Infinity-2 digital camera attached directly to the microscope. 
Figure 4 shows few samples of captured sputum slide images consist of TB bacilli. It can be 
seen that the TB bacilli appear to be red while the sputum background have bluish color. 
The original images are images which are directly captured using the digital camera which 
is attached to the microscope. Since it is manually prepared by the technologist, the 
thickness of the specimen may vary from one end of the slide to the other end. That is why; 
it results in the variation in the quality of the images being captured. 

3.2 Pixel study 
A study on the color information on digital sputum slide images that consist of the tubercle 
bacilli and sputum was carried out to get the most suitable threshold values. The study was 
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Fig. 4. Samples of sputum slide images consisting of TB bacilli 

carried out on an amount of 244 TB bacilli with more than 2000 pixel samples together with 
more than 10000 background pixel samples. Sampling is done within five different category 
of images.  
The properties of the RGB pixels are being studied to extract the important features from the 
image. Based on the color information, the color thresholding algorithm should be able to 
extract the pixels of tubercle bacilli and reject pixels of other objects. In order to view the 
important properties of each segment so that necessary features and accurate value of 
threshold can be obtained from the result, the information is being gathered in a table. 
Among the features that are noted are the maximum, minimum and average values for each 
of the RGB components in tubercle bacilli and sputum respectively. It is found that the 
featured values are different from one category of images to another. Sample of featured 
values for  normal and dark images are shown in Table 1 and Table 2. 
 

TB Background  
MIN MAX AVERAGE MIN MAX AVERAGE 

RED 14 255 175 14 255 230 
GREEN 8 248 157 15 255 239 
BLUE 45 255 196 61 255 252 

Table 1. RGB information for images in normal category 
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From the data in Table 1, thresholding rules have been constructed based on average values. 
Rules for images from normal category are shown in Equation (3) – (5).  
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where ( , )red x y , ( , )green x y and ( , )blue x y  are the pixel values for each of the red, green and 
blue components respectively. 
 

TB Background  
MIN MAX AVERAGE MIN MAX AVERAGE 

RED 5 252 155 0 255 160 
GREEN 1 235 148 0 255 188 
BLUE 38 255 183 33 255 217 

Table 2. RGB information for images in dark category 

Since the average values between RGB information for images in normal category and dark 
category are different, separate set of rules has to be constructed for dark images. Rules for 
images from dark category are shown in Equation (6) – (8). 
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However, it is found that rules for one category of images are not universal and it can only 
be used within that particular image category. For example, rules for images in normal 
category will not give good result when it is applied to images in dark category. In order to 
overcome this problem, the images are brought through the image enhancement process so 
that the all the image from various categories are standardized into one same category. 

3.3 Image enhancement 
Image enhancement process are carried out to overcome the problem risen in the previous 
stage. This involves the adjustment of brightness, contrast and color in an image so that the 
pixel values fall into about the same range. Image enhancement technique that is used in 
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this study is partial contrast. Stretching method is done by requantizing each pixel value to a 
new value using pre-specified function.  Linear stretching will generally improve the overall 
contrast of an image.  
Contrast stretching is a process that applies auto-scaling method, which is a linear mapping 
function. It is usually used to enhance the brightness as well contrast level of the image. The 
general mapping function is shown in Equation (9) (Weeks, 1996). 

 (max min) ( ) minmin( )max min
p q fk kf f
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= − +

−
 (9) 

Referring to Equation (9), fmax and fmin are the maximum and minimum color level in an 
input image. Variable max and min are the desired maximum and minimum color level in 
the output image. qk is the color level of the input pixel while pk is the color level of the 
output pixel. The combination of stretching and compressing process is called partial 
contrast. A part of the intensity level is being stretched to a new range, while other intensity 
levels left is being compressed to a different new range as well. The stretching and 
compressing processes are illustrated by Figure 5. 
 

 
Fig. 5. Illustration of partial contrast process 
The process illustrated by Figure 5 can be put into a mathematical function such as in 
Equation (10). 
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3.4 Color thresholding 
The color thresholding technique was carried out based on the color information of the 
bacterium to extract TB pixels from the sputum and other objects. This technique specifies 
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the range of RGB intensities for thresholding. The objects that lie outside the selection range 
will be rejected. Therefore, it is very important to determine the selection range because if 
this threshold cannot acquire a suitable value, the thresholding algorithm will extract pixels 
other than the expected object.  
After image enhancement is done, the process of pixel sampling is done once again using 
enhanced images and the information is gathered in a table to observe its properties.  Table 
3 reflect the featured values for all the images that have been enhanced.  
 

TB Background  
MIN MAX AVERAGE MIN MAX AVERAGE 

RED 0 255 185 0 255 235 
GREEN 0 249 161 0 255 246 
BLUE 24 255 206 27 255 254 

Table 3. RGB information for enhanced images 

This time a universal rule for segmentation is produced as in Equation (11) – (13). 
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From Equations (11), (12), and (13), it can be seen that the original equation that has been 
mentioned in Equations (1) and (2) have been slightly modified to adopt the method of grey 
level thresholding to color thresholding. For the new equations, each RGB component is 
being treated independently. Since there are three components, the thresholding process is 
being done to one component at a time, and they are then combined into 1 rule using a 
Boolean AND operator. One more important feature that has been extracted from the 
information gathered from the study is that in sputum images, the values of green pixels are 
always greater than the values of red pixels. Therefore, this information also has been 
adopted as another rule for this thresholding algorithm as in Equation (14). 
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Another modification that has been made is that, the output value is not 0 or 1, but either 255 
(white pixel) or retaining the old value of the pixel. This means that if the value of that 
particular pixel falls in the range of the rule whereby the output value is 255, the original pixel 
value will be automatically changed to 255, which indicates that it is the area of sputum. 
However, if it is not fall within that range the original value of the pixel is retained to enable it 
to go through the next filtering algorithm. Note that since Equation (14) is the last rule for the 
whole algorithm, then the final value is either 0 (red pixel) or 255 (white pixel). 
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4. Results 
The rules that have been formulated are applied to the original raw image of Ziehl-Neelsen 
sputum slide. Rules for normal images as shown in Equation (3) – (5) have been applied to 
these images. The result is good for normal images. However, for other types of images, the 
result is not satisfactorily achieved. Some of the pixels are lost and in some images, too 
many noises exist. This is reflected in Figure 6. 
 

           
(a) Original normal image    (b) After threshold 

           
(c) Original dark image    (d) After threshold 

          
(e) Original bright image    (f) After threshold 

Fig. 6. Original images from normal, dark and bright category with their respective result 
after applying rules for normal image 



 Image Segmentation 

 

372 

the range of RGB intensities for thresholding. The objects that lie outside the selection range 
will be rejected. Therefore, it is very important to determine the selection range because if 
this threshold cannot acquire a suitable value, the thresholding algorithm will extract pixels 
other than the expected object.  
After image enhancement is done, the process of pixel sampling is done once again using 
enhanced images and the information is gathered in a table to observe its properties.  Table 
3 reflect the featured values for all the images that have been enhanced.  
 

TB Background  
MIN MAX AVERAGE MIN MAX AVERAGE 

RED 0 255 185 0 255 235 
GREEN 0 249 161 0 255 246 
BLUE 24 255 206 27 255 254 

Table 3. RGB information for enhanced images 

This time a universal rule for segmentation is produced as in Equation (11) – (13). 
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always greater than the values of red pixels. Therefore, this information also has been 
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However, when the process of thresholding is done to the images with the rules formulated 
from its own category, the result is satisfying. In Figure 7, samples of dark images are 
thresholded using rules from dark category as shown in Equation (6) – (8).  
In Figure 8, samples of bright images are thresholded using rules from bright category. This 
result proves that rules for one category of images are not universal and it can only be used 
within that particular image category. To overcome the poor result, the images are brought 
through the image enhancement process.  
The results of thresholding to the image before the image enhancement process and the 
results of thresholding to the image after the image enhancement process are shown in 
Figure 9 to 11 .  
 
 
 

           
 
 

(a) Original dark image 1    (b) After threshold 

 
 

           
 

(c) Original dark image 2    (d) After threshold 

 

Fig. 7. Original images from dark category with the result after applying rules for dark 
image 
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(a) Original bright image 1    (b) After threshold 

Fig. 8. Original images from bright category with the result after applying rules for bright 
image 

 
 

           
(a) Original Image    (b) Enhanced image 

 

           
(c) Result of thresholding original image                 (d) Result of thresholding enhanced image 

 
Fig. 9. Segmentation result of normal image 
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(a) Original bright image 1    (b) After threshold 

Fig. 8. Original images from bright category with the result after applying rules for bright 
image 

 
 

           
(a) Original Image    (b) Enhanced image 

 

           
(c) Result of thresholding original image                 (d) Result of thresholding enhanced image 

 
Fig. 9. Segmentation result of normal image 
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In order to determine whether the thresholding method that has been carried out is 
successful or not, it relies solely on human intervention. Therefore, the threshold value need 
to be varied until acceptable results are achieved, based on the human observation. That is 
why, in carrying the color thresholding procedure, it may be necessary to do a few level of 
thresholding in order to get the best results.  
The thresholding procedure must be done to the red, green and blue components. The 
thresholding on the three colors may be combined into one complete rule using the Boolean 
AND operator or it may also be separated into two or more rules. If more than one rule is 
being created, then it is considered to be done on a few level of thresholding. In this study, 
the process of thresholding is being done automatically based on the predetermined 
threshold value.  
In the case of sputum slide images, it can be seen from the original images that most of the 
pixels appears to be blue in color. The main objective is to filter out those blue pixels and 
retain the reddish pixels, which are the tubercle bacilli. Therefore, the first level thresholding 
has been carried out, which involves pixels of RGB components which have been combined 
using Boolean AND operator, as mentioned earlier in the methodology part.  The second 
level filtering which involves the difference between green and red pixel is carried out, 
resulting in a binary image, in which the tubercle bacilli finally appears red, while the 
background which are originally blue, turn out to be white. 
 

           
(a) Original Image    (b) Enhanced image 

          
(c) Result of thresholding original image                 (d) Result of thresholding enhanced image 

Fig. 10. Segmentation result of dark image 

Image Segmentation of Ziehl-Neelsen Sputum Slide Images for Tubercle Bacilli Detection   

 

377 

From the resulted images that have been presented, it can be said that this technique could 
be an alternative solution for the image segmentation of TB bacilli, and to further helps the 
process of TB bacilli identification as well as classification in sputum samples. Most of the 
research that have been done previously used fluorescence images of sputum (Veropoulos 
et al., 1998; Veropoulos et al., 1999; Forero et al., 2003; Forero et al., 2004), whereby this 
research concentrates on the Ziehl-Neelsen stained images of sputum. Hence, it provides 
another option of TB bacilli identification especially for developing countries which are still 
sticking to this method for TB detection. 
 

          
(a) Original Image    (b) Enhanced image 

           
(c) Result of thresholding original image                 (d) Result of thresholding enhanced image 

Fig. 11. Segmentation result of bright image 

5. Conclusion 
A technique of image segmentation by conducting a thresholding method for sputum slide 
images has been presented. The segmentation allows the elimination of a great amount of 
unwanted pixels, and retained only those pixels characterised to have similar color to the TB 
bacilli. The key to this method is to conduct a study on the color attribute of the tubercle 
bacilli in order to get the basic rules of selecting the most accurate threshold value. The 
resulted images satisfactorily showed that after the image enhancement process, and by 
using the selected threshold values, the image segmentation method has been able to filter 
out the sputum images from the tubercle bacilli images.  
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1. Introduction      
Image segmentation refers to the partitioning of an image into non-overlapping different 
regions with similar attributes. For gray level images, the most basic attribute used is the 
luminance amplitude, and for color or multispectral images, color or information 
components are used.  Various methods are found in the literature and are roughly 
classified into several categories according to the dominant features they employ. This 
includes edge-based methods (Zugaj & Lattuati, 1998), region growing methods (Tremeau & 
Borel, 1998; Schettini, 1993), neural networks methods, physics-based methods (Maxwell & 
Shafer, 1996; Bouda et al. 2008) and histogram thresholding methods (Sezgin & 
Sankur,2004). 
It is demonstrated that in unsupervised classification cases the histogram threshold method 
is a good candidate for achieving segmentation for a wide class of gray level images with 
low computation complexity (Cheng et. al., 2001). This method ignores the spatial 
relationship information of the pixels that can give improper results.  Abutaleb’s work 
(Abutaleb, 1989) presents another type of 2D gray level histogram. It is formed by the 
Cartesian product of the original 1D gray level histogram and 1D local average gray level 
histogram generated by applying a local window to each pixel of the image and then 
calculating the average of the gray level within the window. Zhang and al. (Zhang & Zhang, 
2006) proposed using a minimum gray value in the 4-neighbor and the maximum gray 
value in the 3×3 neighbor except pixels of the 4-neighbor. This method’s main advantage is 
that it does not require prior knowledge regarding the number of objects in the image, and 
classical and fast gray level image processing algorithms can be used to cluster the 2D 
histogram (Clement, 2002).  
For color or multispectral images, the one-dimensional (1D) histogram method detracts 
from the fact that a color cluster is not always present in each component and the 
combination of the different segmentations cannot catch this spatial property of colors 
(Clément & Vigouroux, 2001). It also does not take into account the correlation between 
components (Uchiyama & Arbib, 1994). Therefore multiple histogram-based thresholding is 
required. However, in a full multi-dimensional manner, the three-dimensional histogram 
(3D-histogram) method is handicapped by data sparseness, the complexity of the search 
algorithm (Lezoray & Cardot,2003) and a huge memory space (Clément & Vigouroux, 2001). 
An interesting alternative method lies with the use a partial histogram (2D-histogram)( 
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Image segmentation refers to the partitioning of an image into non-overlapping different 
regions with similar attributes. For gray level images, the most basic attribute used is the 
luminance amplitude, and for color or multispectral images, color or information 
components are used.  Various methods are found in the literature and are roughly 
classified into several categories according to the dominant features they employ. This 
includes edge-based methods (Zugaj & Lattuati, 1998), region growing methods (Tremeau & 
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is a good candidate for achieving segmentation for a wide class of gray level images with 
low computation complexity (Cheng et. al., 2001). This method ignores the spatial 
relationship information of the pixels that can give improper results.  Abutaleb’s work 
(Abutaleb, 1989) presents another type of 2D gray level histogram. It is formed by the 
Cartesian product of the original 1D gray level histogram and 1D local average gray level 
histogram generated by applying a local window to each pixel of the image and then 
calculating the average of the gray level within the window. Zhang and al. (Zhang & Zhang, 
2006) proposed using a minimum gray value in the 4-neighbor and the maximum gray 
value in the 3×3 neighbor except pixels of the 4-neighbor. This method’s main advantage is 
that it does not require prior knowledge regarding the number of objects in the image, and 
classical and fast gray level image processing algorithms can be used to cluster the 2D 
histogram (Clement, 2002).  
For color or multispectral images, the one-dimensional (1D) histogram method detracts 
from the fact that a color cluster is not always present in each component and the 
combination of the different segmentations cannot catch this spatial property of colors 
(Clément & Vigouroux, 2001). It also does not take into account the correlation between 
components (Uchiyama & Arbib, 1994). Therefore multiple histogram-based thresholding is 
required. However, in a full multi-dimensional manner, the three-dimensional histogram 
(3D-histogram) method is handicapped by data sparseness, the complexity of the search 
algorithm (Lezoray & Cardot,2003) and a huge memory space (Clément & Vigouroux, 2001). 
An interesting alternative method lies with the use a partial histogram (2D-histogram)( 
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Kurugollu et al.,2001), obtained by projecting a 3D-histogram onto two color planes 
(Clément & Vigouroux, 2003). This has several advantages, including a lack of  data 
encountered in the 3D case, such as RGB image color, that is partially overcome and the 
search complexity is drastically reduced ( Lezoray & Cardot,2003). Another advantage is the 
fact that a 2D-histogram is nothing more than a gray level image. Therefore classical and fast 
gray level image processing algorithms can be used to cluster the 2D-histogram ( Clément, 
2002).  
It is noted that the HSV color space is fundamentally different from the widely known RGB 
color space since it separates the intensity from the color information (chromaticity). HSV 
space was demonstrated to be a perceptual color space that consists of the three components 
H (hue), S (saturation) and V (value) and corresponds to the color attributes closely 
associated with the way human eyes perceive the colors. Many works related to the HSV 
color image have been developed and used (Qi et al., 2007;  Sural et al, 2002 ; Zennouhi & 
Masmoudi, 2009). 
The organization of this chapter is as follows: in section 2, the 2D-histogram strategy is 
presented. Section 3 details the segmentation algorithm based on a 2D-histogram using HSV 
space. The experimental results are presented and discussed in section 4. Section 5 
concludes the chapter. 

2. Two-dimensional histogram  
The histogram threshold method is a good candidate for gray level image segmentation 
(Cheng et. al., 2001). It is based on the shape of the histogram properties, such as the peaks, 
valleys and curvatures of the smoothed histogram (Sezgin et Sankur, 2001). Abutaleb’s work  
(Abutaleb, 1989) presents another type of 2D gray level histogram. It is formed by the 
Cartesian product of the original 1D gray level histogram and 1D local average gray level 
histogram generated by applying a local window to each pixel of the image and then 
calculating the average of the grey levels within the window. The change in the pixel value in 
the horizontal or vertical directions appears slow and the gradation change continuity appears 
strong compared to the change in the diagonal direction. Zhang and al. (Zhang & Zhang, 2006) 
proposed using a minimum gray value in the 4-neighbor and the maximum gray value in the 
3×3 neighbor except pixels of the 4-neighbor. This method’s main advantage is that it does not 
require prior knowledge about the number of objects in the image. 
For RGB color or multispectral image, the one-dimensional (1D) histogram method detracts 
from the fact that a color cluster is not always present in each component and the 
combination of the different segmentations cannot catch this spatial property of colors 
(Clément & Vigouroux, 2001). It also does not take into account the correlation between 
components (Uchiyama & Arbib, 1994). Therefore multiple histogram-based thresholding is 
required. However, in a full multi-dimensional manner, the 3D-histogram method is 
handicapped by data sparseness, the complexity of the search algorithm (Lezoray & 
Cardot,2003) and a huge memory space (Clément & Vigouroux, 2001). An interesting 
alternative method lies with the use of 2D-histogram (Kurugollu et al.,2001), which selects 
two color bands together, namely RG, RB or GB in the RGB space color, obtained by 
projecting a 3D-histogram onto two color planes which can be constructed as follows.  
A 2D-histogram pn of a RGB color image I maps p(x ,x )1 2 , the number of pixels in image I 
presenting the colorimetric components (x ,x )1 2 . Since each colorimetric axis of image I is 

Image Segmentation Based on a Two-Dimensional Histogram   

 

381 

quantified on 256 levels, the 2D-histogram pn can be represented by an image J whose 
spatial resolution is equal to 256x256. The value p (x ,x )n 1 2  of the pixel of coordinates 
(x ,x )1 2 in J is obtained by a linear dynamic contraction of the histogram between 1 and 
M min(p ,255)max=  (Clément & Vigouroux, 2003): 

 
(M 1)p(x ,x ) Mp pmax1 2 minp (x ,x ) roundn 1 2 p pmax min

⎡ ⎤− − +
= ⎢ ⎥

−⎢ ⎥⎣ ⎦
 (1) 

where pmin and pmax are respectively the minimum and maximum values of p.  

3. Image segmentation algorithm 
This section presents the segmentation algorithm based on 2D-dimensional histogram 
analysis using HSV space. 

3.1 Two-dimensional histogram using HSV space 
A three dimensional representation of the HSV color space is a hexacone that consists of 
three components: Hue, Saturation, and value. Hue is a color attribute that describes what a 
pure color (pure yellow, orange, or red) is. Hue refers to the perceived color (technically, the 
dominant wavelength). As hue varies from 0 to 1.0, the corresponding colors vary from red, 
through yellow, green, cyan, blue, and magenta, back to red, so that there are actually red 
values both at 0 and 1.0. Saturation is a measure of the degree to which a pure color is 
diluted by white light, giving rise to ‘light purple’, ‘dark purple’, etc. It can be loosely 
thought of as how pure the color is. Greater values in the saturation channel make the color 
appear stronger. Lower values (tending to black) make the color appear washed out. As 
saturation varies from 0 to 1.0, the corresponding colors (hues) vary from unsaturated 
(shades of gray) to fully saturated. As value, or brightness, varies from 0 to 1.0, the 
corresponding colors become increasingly brighter (Chen & Wu, 2005). 
It is noted that the HSV color space is fundamentally different from the widely known 
RGB color space since it separates the intensity from the color information (chromaticity). 
And  it was demonstrated that the HSV components correspond to the color attributes 
closely associated with the way human eyes perceive the colors. Many works related to 
the color image have been developed using this color space (Qi et al., 2007; Sural et al, 
2002). 
Sural et al. (Sural et al., 2002) analyzed the properties of the HSV color space with emphasis 
on the visual perception of the variation in hue, saturation and intensity values of an image 
pixel. For a given intensity and hue if the saturation is changed from 0 to 1, the perceived 
color changes from a shade of gray to the most pure form of the color represented by its hue. 
Looked at from a different angle, any color in the HSV space can be transformed to a shade 
of gray by sufficiently lowering the saturation. The saturation threshold that determines the 
transition, between the low and the higher values of the saturation, is once again dependent 
on the intensity. It is illustrated by Sural et al.(Sural et al., 2002) that for higher values of 
intensity, a saturation of 0.2 differentiates between hue and intensity dominance. Assuming 
the maximum intensity value to be 255, the threshold function to determine if a pixel should 
be represented by its hue or its intensity as its dominant feature is given by 
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projecting a 3D-histogram onto two color planes which can be constructed as follows.  
A 2D-histogram pn of a RGB color image I maps p(x ,x )1 2 , the number of pixels in image I 
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And  it was demonstrated that the HSV components correspond to the color attributes 
closely associated with the way human eyes perceive the colors. Many works related to 
the color image have been developed using this color space (Qi et al., 2007; Sural et al, 
2002). 
Sural et al. (Sural et al., 2002) analyzed the properties of the HSV color space with emphasis 
on the visual perception of the variation in hue, saturation and intensity values of an image 
pixel. For a given intensity and hue if the saturation is changed from 0 to 1, the perceived 
color changes from a shade of gray to the most pure form of the color represented by its hue. 
Looked at from a different angle, any color in the HSV space can be transformed to a shade 
of gray by sufficiently lowering the saturation. The saturation threshold that determines the 
transition, between the low and the higher values of the saturation, is once again dependent 
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intensity, a saturation of 0.2 differentiates between hue and intensity dominance. Assuming 
the maximum intensity value to be 255, the threshold function to determine if a pixel should 
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 0.8VTh (V) 1s 255
= −  (2) 

That can lead to a feature vector of two parts: the hue values between 0 and 2π quantized 
after a transformation and a quantized set of intensity values. 
In this way we use the HSV color space to build the histogram where each pixel contributes 
to either its hue or its intensity. Based on the threshold function equation (2), we determine 
an intermediate image (Fig. 1a): for low values of saturation, a color can be approximated by 
a gray value specified by the intensity level, while for higher saturation; the color can be 
approximated by its hue value.  
 

 
Fig. 1. 3x3 block : (a) and (c) intermediate image; (b) and (d) their component in the original 
image 

Subsequently we can construct the 2D color histogram for the intermediate image as follow: 
for each block of 3x3 pixels of the intermediate image, we consider the central pixel which can 
be an intensity Component or a hue Component (Fig. 1a and c), according to the equation (2), 
and we calculate the maximum (Max) and the minimum (Min) in its corresponding 
component (H or V) in the original image (Fig. 1b and d) (zennouhi & Masmoudi, 2009). 
Where the Max is the maximum hue or intensity in the 3x3 neighbor except pixels of the four-
neighbor and Min is the minimum hue or intensity in the four-neighbor 
 

 
Fig. 2. 2D histogram 
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Max = maximum [(v4, v2, v6, v8)  or  ( h4, h2, h6, h8)] and  Min = minimum[(v0,v1,v3,v5,v7)   or 
(h0,h1,h3,h5, h7)]   
Then we build the 2D-histogram by mapping the number of pixels presenting the minimum  
and the maximum (Min, Max) in all 3x3 block of the image according to Ph(Min; Max) and 
Pv(Min; Max)  for central pixel represented by H or V component respectively (Fig.2). 

3.2 Segmentation algorithm 
The segmentation algorithm is achieved in two main steps: one, building the 2D-histogram 
using HSV space according the approach developed before. Two, detecting the peaks 
representing classes using the classification algorithm proposed in Ref. (Clément & 
Vigouroux, 2003). A peak is labeled as significant if it represents a population greater than 
or equal to a threshold d0 (expressed in per cent of the total population in image). The 
classification algorithm is performed by reclassification of the pixels not classified in the 
determined classes according to Euclidian distance. 
In order to evaluate the segmentation algorithm, we use the Q function (Zhang et al., 2008; 
Borsotti et al. , 1998) 

 
( )22 R NR e1 iiQ(Im) R 210000N 1 logN Ni 1 i i

⎛ ⎞
⎜ ⎟

= × +∑ ⎜ ⎟+⎜ ⎟=
⎝ ⎠

 (3) 

Im is the segmented image, N is the image size, R is the number of regions of the segmented 
image, Ni is the area of the ith region, R(Ni) is the number of regions having an area equal to 
Ni, and ei is the average color error of the ith region, which is defined as the sum of the 
Euclidean distances between the RGB color vectors of the pixels of the ith region and the 
color vector attributed to the ith region in the segmented image. The smaller the Q value, the 
better the image segmentation method. 

4. Experimentation results 
This section presents the experimentation results obtained on synthetic and real images. 
Two color images are selected: the 465x386 synthetic Squares, which is comprised of four 
colors, the 709x608 real Mandrill image. Figure 3 shows the original images and the results 
of the proposed method. It can be seen that the performance is acceptable both for synthetic 
and real images. 
In order to compare the performance of the segmentation method with other existing ones, 
two different images are used. 
First, we consider a synthetic image (Gillet et al., 2002, Macaire et al., 2006) that contains 
four patterns with different shapes and different colors. The circular pattern contains two 
shapes that differ only by the variation of the saturation component. The image contains 
then, if we consider the background, six classes. 
The difference between two regions due to the variation of saturation is still a difficult 
problem. Often, two distinct colors are merged together. 
The 2D-histogram segmentation method using RGB space fails to separate the two shapes in 
the circular pattern. The same problem arises when we applied the 1D-histogram method 
using HSV space. It can be seen from experimentation results (Fig. 4) that the proposed 
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Two color images are selected: the 465x386 synthetic Squares, which is comprised of four 
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(a) (b) 

  
(c) (d) 

Fig. 3. (a,c) original images; (b,d) segmented images 

 
 

 
(a) (b) (c ) (d) 

Fig. 4. (a) synthetic image;  (b) RG-histogram; (c)  1D histogram using HSV space; (d) 2D  
histogram using HSV space. 

approach gives better clustering and the problem of missing to separate the two shapes is 
alleviated.  
From theses results, it can be deduced that RGB space is not able to separate the two shapes 
in the circular pattern. This is due to the high correlation among the R, G and B components 
and that the measurement of a color in RGB space does not represent color differences in a 
uniform scale; hence it is impossible to evaluate the similarity of two colors from their 
distance in RGB space. However, in the HSV space where the color and intensity 
information are separated, the segmentation of the two shapes can be achieved by the 
proposed method. 
Second, we are interested in some agricultural applications. Plants are exposed to a 
multitude of natural biotic and abiotic stresses (Lichtenthaler,1996). Water availability is one 
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of the most important limitations to photosynthesis and plant productivity (Tezara et al., 
1999). The proper monitoring of plant water stress is essential for the development of 
appropriate, sustainable irrigation programs for crop production in semiarid areas 
(Penuelas & Filella, 1998). The use of non-destructive imaging methods, such as fluorescence 
imaging, thermal imaging and imaging using near infrared, holds great promise for early, 
efficient and objective detection of plant responses to various stresses (Govindjee and 
Nedbal, 2000; Chaerle & van der Straeten, 2001 ). However, these techniques provide less 
human intuition, are more difficult to assess during system integration and are the most 
costly and time consuming. So, the use of the imaging based on the electromagnetic 
radiation in the visible range would be of great interest. 
 

  
(a) (b) 

  
(c) (d) 

 
Fig. 5. (a) menthe image; (b) RG-histogram;  (c)  1D histogram using HSV space;  (d) 2D  
histogram using HSV space 
In this study we have considered a medicinal plant. The first step in our procedure to detect 
early stress is to segment each image into two classes: vegetation and soil. The color RGB 
images of the plant are provided by a digital camera. Each color plane is quantized on 256 
levels with a resolution of 640x480. 
It was noted that the 2D histogram method using RGB space fails to determine the color and 
intensity variation presented in the image plant. It can be seen from the Fig. 5b that the RGB 
method could not separate the plant and pot. Figure 5c shows the obtained result of 1D 
histogram using HSV space. It is clear that the plant and pot are separated; however, this 
method could not separate the variation intensity presented in soil class which can be useful 
information for the study of the plant environment.  
In contrast, it can be clearly seen from Fig. 5d that the performances of the proposed method 
are higher than those presented for comparison. 
Finally, to evaluate the proposed technique, we have used the ‘Q’ evaluation function 
equation (3). From Table 1, it can be seen that the proposed method performs better than the 
analysis of 2D-histogram using RGB space. 
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 Square 
image 

Mandrill 
image 

Synthetic image 
(Fig 4) 

Reel image 
(Fig.5) 

2D-histogram using 
RGB space 35 ,5067 52128 8080,9 8765,8 

2D-histogram using 
HSV space 33 ,0656 17367 721 ,7661 6466,8 

Table 1. Values of evaluation function ‘Q’ for various images 

5. Conclusion 
In this chapter, we have developed an approach of color image segmentation which is based 
on the analysis of 2D-histogram using HSV space. The method was applied to various 
synthetic and real images to prove the performance of segmentation algorithm. 
Additionally, the method was applied to a particular agricultural application to separate the 
vegetation and soil. The obtained results have been compared to the methods of others, and 
shown to be more satisfactory than those obtained either by 1D-histogram using HSV or by 
2D-histogram using RGB space. 
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1. Introduction  
Nowadays biomedical imaging provides major aid in many branches of medicine; it enables 
and facilitates the capture, transmission and analysis of biomedical images as well as 
providing assistance towards medical diagnoses. Medical imaging is still on the rise with 
new imaging modalities being added and continuous improvements of devices’ capabilities.  
Segmentation and contour extraction are important steps towards image analysis. 
Segmented images are now used routinely in a multitude of different applications, such as, 
diagnosis, treatment planning, localization of pathology, study of anatomical structure, 
computer-integrated surgery, among others. However, image segmentation remains a 
difficult task due to both the variability of object shapes and the variation in image quality. 
Particularly, biomedical images are often corrupted by noise and sampling artifacts, which 
can cause considerable difficulties when applying rigid methods. 
In many occasions, segmentation is considered as a process of classification of objects in a 
scene, and also in certain measure, it is equivalent to its recognition (objects) since, as a 
consequence of segmentation the different objects (physical realizations of classes or abstract 
patterns), these stay perfectly located inside the digital image. 
In a graphic way in Figure 1, it is represented the segmentation process of a simple image. It 
is appreciated in this Figure that as result of segmentation the image was transformed from 
a gross digital image with all their information in form of gray-levels to an image much 
more simplified, where the different objects are well distinguished. 
 

 
Fig. 1. Simple outline that represents the segmentation process 

Many segmentation methods have been proposed for biomedical-image data [Chin-Hsing et 
al., 1998; Kenong & Levine, 1995; Koss et al., 1999; Rodríguez et al., 2002; Sijbers et al., 1997; 
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Schmid, 1999]. Unfortunately, segmentation using traditional low-level image processing 
techniques, such as thresholding, histogram and other classical operations, requires a 
considerable amount of interactive guidance in order to get satisfactory results. Automating 
these model-free approaches is difficult because of shape complexity, shadows, and 
variability within and across individual objects. Furthermore, noise and other image 
artifacts can cause incorrect regions or boundary discontinuities in objects recovered from 
these methods. However, it is accepted that despite the more complex algorithms developed 
so far, the segmentation of images remains highly dependent on the application and a single 
method has not yet been found that can solve all the problems in the universe. 
In mathematical morphology (MM) important methods have been developed for image 
segmentation [Vicent & Soille, 1991; Vincent, 1993]. One of the most powerful tools 
developed in MM is the Watersheds transformation, which is classic in the field of 
topography and it has been used in many problems of image segmentation. However, the 
Watersheds transformation has the disadvantage of producing over-segmentation [Fuh  et al., 
1991; Najman & Schmitt, 1996]. For that reason, the correct way to use watersheds for 
grayscale image segmentation is to mark the regions we want to segment; that is, the objects, 
but also the background. One and only one marker must correspond to each region. The 
design of robust marker detection techniques involves the use of specific knowledge of the 
series of images under study. 
Other technique very used in the last years for image segmentation is the mean shift, which 
is a non-parametric procedure for multimodal data analysis and has shown great 
superiority in many applications of high-level tasks [Comaniciu, 2000]. The mean shift was 
proposed in 1975 by Fukunaga et. al. [Fukunaga & Hostetler, 1975] and was largely 
forgotten until Cheng in 1995 rekindled interests in it [Cheng, 1995]. A computer model 
based on the mean shift procedure is an extremely versatile tool for feature analysis and can 
give a reliable solution for many tasks of computer vision [Comaniciu & Meer, 2002]. 
Segmentation by using the mean shift carries out a smoothing filter as a first step before 
segmentation is performed [Comaniciu, 2000]. 
The aim of this chapter is to present the advances that the author and their collaborators 
have obtained in the biomedical image segmentation. Also, some strategies that constitute 
appropriate tools are presented, which it can be used in many system of image analysis 
where methods of segmentation are required. 
This chapter is structured as follows: In Section 2 the most significant theoretical aspects are 
detailed of each of the used methods in biomedical image segmentation. In Section 3 some 
of the characteristics of the studied images are described. In Section 4 the steps carried out in 
the experimentation are explained, and also an analysis and discussion of the proposed 
strategies is carried out. In this section two algorithms are presented to carry out the 
segmentation. Finally, in Section 5 the most important conclusions of this chapter are given. 

2. Theoretical aspects  
In mathematical morphology, it is usual to consider that grayscale images are often 
considered as topographic reliefs. In the topographic representation of a given image I, the 
numerical value (that is, the gray tone) of each pixel stands for the elevation at this point. 
Such a representation is extremely useful, since it allows one to better appreciate the effect of 
the different transformations on the image under study. 
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2.1 Morphological grayscale reconstruction 
Now, it is given a group of definitions and concepts which are important for a better 
understanding of the proposed strategies.  
Let us consider a two-dimensional grayscale picture I whose definition domain is denoted 
DI ⊂ Z2. I is supposed to take discrete (gray) values in a given range [0, L-1], L being an 
arbitrary positive integer 
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Let J and I be two grayscale images defined on the same domain DI, taking their values in 
the discrete set  {0, 1, ........, L-1}  and  such  that J ≤ I  (i.e., for  each  pixel p Є DI , J(p) ≤ I(p)). 
In this way, it is useful to introduce the geodesic dilations according to the following 
definition [Vincent, 1993]: 
Definition 2.1.1 (Geodesic dilation): The elementary geodesic dilation of (1)( ) I Jδ of grayscale 
image J ≤ I, J “under” I (J is called the marker image and I is the mask) is defined as,  

 (1) ( ) ( )I J J B Iδ = ⊕ ∧         (2) 

where the symbol Λ stands for the pointwise minimum and  J ⊕ B is the dilation of J by flat 
structuring element B. The grayscale geodesic dilation of size n ≥ 0 is obtained by, 
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Starting from the definition 2.1.1 and the expression (3) it can be derived an efficient 
definition for the morphological reconstruction of images in gray-levels. 
Definition 2.1.2 (Grayscale reconstruction): The grayscale reconstruction ( )J

Iρ of I from J is 
obtained by iterating grayscale dilations of J “under” I until stability is reached [Vincent, 
1993], that is,  
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Definition 2.1.3 (Geodesic erosion): Similarly, the elementary geodesic erosion (1) ( )I Jε   of 
grayscale image J ≥ I, J “above” I is given by, 

 (1) ( ) ( )I J J B Iε θ= ∨        (5) 

where ∨ stands for the pointwise maximum and J Bθ  is the erosion of J by flat structuring 
element B. The grayscale geodesic erosion of size n ≥ 0 is then given by,  

 ( ) (1) (1) (1)( ) ( ),n
I I I IJ J n timesε ε ε ε= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅                   (6) 

Definition 2.1.4 (Dual reconstruction): The dual grayscale reconstruction ( )f Jρ∗  of mask I from 
marker J is obtained by iterating grayscale geodesic erosions of J “above” I until stability is 
reached; that is,  
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Reconstruction turns out to provide a very efficient method to extract regional maxima and 
minima from grayscale images. Furthermore, the technique extends to the determination of 
maximal structures, which will be call h-domes and h-basins.  The h-domes transformation 
extracts light structure without involving any size or shape criteria. The only parameter (h) 
is related to the height of these structures. The mathematical background and other 
definitions can be found in [Vincent, 1993]. 

2.1.1 Dome extraction and regional maxima 
We consider the successive thresholds Th (I) of I, for h = 0 to L-1 [Vincent, 1993], 

 ( ) { / ( ) }h IT I p D I p h= ∈ ≤          (8) 

They are said to constitute the threshold decomposition of I, where these sets satisfy the 
following inclusion relationship: 

 Th (I) ⊆ Th-1 (I)       ∀  h ∈ [0, L-1] (9) 

Definition 2.1.1.1 (Regional Minimum): A regional minimum M at altitude h of grayscale 
image I is a connected component C of Th (I) such that C ∩ Th-1 (I) = φ , Th (I) being a 
threshold of I at level h and the symbol φ stands for empty set. 
Definition 2.1.1.2 (Regional maximum):  A regional maximum at altitude h of grayscale 
image I is a connected component C de Th (I) such that C ∩ Th+1(f) =φ . 
In Figure 2 one can observe a representation of regional maxima in a grayscale image. 
 

Regional 
maxima 

 
Fig. 2. Regional maxima in a grayscale image 

Regional maxima should not be mistaken with local maxima. A pixel p of I is a local 
maximum for grid H if and only if its value I (p) is greater or equal to that of any of its 
neighbours. All the pixels belonging to a regional maximum are local maxima, but the 
converse is not true. For example, a pixel p belonging to the inside of a plateau is a local 
maximum, but the plateau may have neighbouring pixels of higher altitude and thus not be 
a regional maximum.  
One of the most efficient methods makes use of grayscale reconstruction and is based on the 
following proposition. 
Proposition 2.1.1.1: The (binary) image M (I) of the regional maxima of I is given by,  
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(  )  (  -  1)IM I f Iρ= −  

where (  -  1)I Iρ ,  it  is  a  morphological  reconstruction   (see  definition  2.1.2,  in   this  
case  J = I-1). The proof of this proposition can be seen in [Vincent, 1993].  
For a better understanding of this proposition the same is illustrated in Figure 3. 
 

 
Fig. 3. Extracting the regional maxima of I  by reconstruction of I from I-1 

The proposition 2.1.1.1 can be generalized and instead of subtracting value 1, an arbitrary 
gray-level constant h can be subtracted from I. This provides a useful technique for extracting 
domes of a given height, which is called h-domes. Then, be the following definition: 
Definition 2.1.1.3: The h-dome image D h (I) of the h-domes of a grayscale image I is given by 

Dh ( I ) = I- (  -  )I I hρ  

The h-dome transformation is illustrated on Figure 4. Unlike the classical transformation Top-
Hat, the h-dome transformation extracts light structures without involving any size or shape 
criterion. The only parameter (h) is related to the height of these structures [Vincent, 1993].  
        

 
Fig. 4. Determination of the h-domes of grayscale image I 
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definitions can be found in [Vincent, 1993]. 

2.1.1 Dome extraction and regional maxima 
We consider the successive thresholds Th (I) of I, for h = 0 to L-1 [Vincent, 1993], 
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They are said to constitute the threshold decomposition of I, where these sets satisfy the 
following inclusion relationship: 
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Definition 2.1.1.1 (Regional Minimum): A regional minimum M at altitude h of grayscale 
image I is a connected component C of Th (I) such that C ∩ Th-1 (I) = φ , Th (I) being a 
threshold of I at level h and the symbol φ stands for empty set. 
Definition 2.1.1.2 (Regional maximum):  A regional maximum at altitude h of grayscale 
image I is a connected component C de Th (I) such that C ∩ Th+1(f) =φ . 
In Figure 2 one can observe a representation of regional maxima in a grayscale image. 
 

Regional 
maxima 

 
Fig. 2. Regional maxima in a grayscale image 

Regional maxima should not be mistaken with local maxima. A pixel p of I is a local 
maximum for grid H if and only if its value I (p) is greater or equal to that of any of its 
neighbours. All the pixels belonging to a regional maximum are local maxima, but the 
converse is not true. For example, a pixel p belonging to the inside of a plateau is a local 
maximum, but the plateau may have neighbouring pixels of higher altitude and thus not be 
a regional maximum.  
One of the most efficient methods makes use of grayscale reconstruction and is based on the 
following proposition. 
Proposition 2.1.1.1: The (binary) image M (I) of the regional maxima of I is given by,  
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(  )  (  -  1)IM I f Iρ= −  

where (  -  1)I Iρ ,  it  is  a  morphological  reconstruction   (see  definition  2.1.2,  in   this  
case  J = I-1). The proof of this proposition can be seen in [Vincent, 1993].  
For a better understanding of this proposition the same is illustrated in Figure 3. 
 

 
Fig. 3. Extracting the regional maxima of I  by reconstruction of I from I-1 

The proposition 2.1.1.1 can be generalized and instead of subtracting value 1, an arbitrary 
gray-level constant h can be subtracted from I. This provides a useful technique for extracting 
domes of a given height, which is called h-domes. Then, be the following definition: 
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The h-dome transformation is illustrated on Figure 4. Unlike the classical transformation Top-
Hat, the h-dome transformation extracts light structures without involving any size or shape 
criterion. The only parameter (h) is related to the height of these structures [Vincent, 1993].  
        

 
Fig. 4. Determination of the h-domes of grayscale image I 
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2.1.2 Watershed segmentation method 
The Watershed segmentation consists in extracting objects from a gray-level image as 
precisely as possible [Vicent & Soille, 1991]. The advantage of this technique is that totally 
closed contours are obtained, and a complete partition of the domain of image is achieved. 
With this method is not necessary to carry out an additional connection of the edges. The 
disadvantage of this method resides in that it produces over-segmentation when the objects 
(to extract) are not appropriately marked. The following definitions and concepts are 
important for understanding better this method. 
In the following, this work equally considers grayscale images as numerical functions or as 
topographic reliefs. Let H denote the underlying digital grid, which can be of any type: a 
square grid in four or eight connectivity, or a hexagonal grid in six connectivity. H is a 
subset of   Z2 x Z2. 
Definition 2.1.2.1: A path P of length l between two pixels p and q in image I is a (l+1)-tuple of 
pixels (p0, p1, ……., pl-1, pl) such that p0 = p, pl = q, and 1[1, ],( , )i ii l p p H−∀ ∈ ∈  
Given the previous definition, it will be denoted l (P) as the length of a given path P. Also, it 
will be denoted NH (p) as the set of the neighbours of a pixel p, with respect to H; NH (p) = { 
p´∈ Z2, (p, p´) ∈ H }. 
Definition 2.1.2.2 (Catchment basin, first definition): Let I be a grayscale image. The catchment 
basin C (M) associated with a minimum M is the set of pixels p of DI such that a water drop 
falling at p flows down along the relief, following a certain descending path called the 
downstream of p, and eventually reaches M [Vicent & Soille, 1991]. The lines which separate 
different catchment basins build what is called the watersheds (or dividing lines) of I. (see 
Figure 5). 
 

 
Fig. 5. Minima, catchment basins, and dividing lines 

Note that the catchment basins of an image I correspond to the influence zones of its 
minima, also called areas of attraction of the drops of water.  In this sense, it there is a close 
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relation between the binary skeleton by influence zones and the watersheds. Therefore, this 
intuitive approach to watershed in not well suited to practical implementations [Vicent & 
Soille, 1991]. Then, the given definitions in the next section are more suited to the 
formalization of catchment basins and watersheds in digital space. 
Definition 2.1.2.3 (Catchment basin by immersion): Suppose, that in each regional minimum of I 
is pierced a hole, this image being regarded as a topographic surface. Then, this image is 
slowly immersed into a lake. Starting from the minima of lowest altitude, the water will 
progressively fill up the different catchment basins of I. Now, at each pixel where the water 
coming from two different minima would merge, a “dam” is built (see Figure 6). At the end 
of this immersion procedure, each minimum is completely surrounded by dams, which 
delimit its associated catchment basin. The whole set of dams which has been built thus 
provides a tessellation of I in its different catchment basins. These correspond to the 
dividing lines of I.  
It is possible to express the immersion procedure more formally [Vicent & Soille, 1991]: I 
being the grayscale image under study, denote hmin the smallest values taken by I on its 
domain DI. Similarly, denote hmax the large value by I on DI. In the following, Th (I) stands for 
the threshold of I at level h (see equation (8)). Denote C (M) the catchment basin associated 
with a minimum M and Ch (M) the subset of this catchment basin made of the points having 
an altitude smaller or equal to h:  

 Ch (M) = {p ∈C (M), f (p) ≤  h} = C (M) ∩Th ( f )  (10) 

As concerns the minima of I, minh (I) refers to the set of points belonging to the minima at 
altitude h.  
 

 
 

Fig. 6. Building dams at the places where the water coming from two different minima 
would merge 
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It is necessary for further understanding in what continues to introduce the definitions of 
geodesic distance and of the geodesic influence zones. Let X be a set which is first supposed to be 
simply connected. 
Definition 2.1.2.4: The geodesic distance dX (p, q) between two pixels p and q in X is the 
infimum of the length of the paths which join p and q and are totally included in X (see 
Figure 7): 

DX (p, q) = inf {l (P), P path between p and q which is totally included in X} 

 
Fig. 7. Geodesic distance between p and q inside X  
Suppose that X contains a set B made of several connected components B1, B2, …….., Bk.  
Definition 2.1.2.5: The geodesic influence zone  izX (Bi) of a connected component Bi in X is the 
locus of the points of X whose geodesic distance to Bi is smaller than their geodesic distance 
to any other component of B ( see  Figure 8): 

 izX(Bi) = {p ∈ X, ∀ j ∈ [1, k]/ {i}, dX (p, Bi) < dX (p, Bj) }  (11) 

 
Fig. 8. Geodesic influence zone of connected component B1 inside set X 
Those points of X which do not belong to any geodesic influence zone constitute the skeleton 
by influence zones, (SKIZ) of B inside X, denoted SKIZX (B):  

 SKIZX (B) = X / izX (B) with izX (B) =
∈
∪ x ii  [1; k]

iz (B  )  (12) 

In [Vicent & Soille, 1991], it is demonstrated that the previous definitions are easily extended 
to the case where X is not simply connected, nor even connected at all. Then, finally the 
following definition is presented. 
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In order to simulate the immersion procedure, one starts from the set ( ),
min

I
hT  the ponits of 

which being those first reached by the water. These points constityute the starting set of the 
recursion. So, of this way,  

min min
=

h h
  (I),X T  

minhX  is made of the points of I which belong to the minima of lowest altitude. For a bigger 

profundización of the theoretical aspects on this issue see [Vicent & Soille, 1991]. 
Definition 2.1.2.6 (Catchment basins and Watersheds by immersion): The set of the catchment 
basins of the grayscale image I is equal to the set 

maxhX obtained after the following 
recursion: 

                                a) =
h h

min min
  (I),X T  

b) 
+ +

+

∀ ∈ = ∪
min max h 1 h 1 T h

h 1

h  [  h , h  - 1 ], X   min   I Z  . (X )
(I)

 

The watersheds transformation of I correspond to the complement of this set in DI; that is, to 
the set of the points of DI which do not belong to any catchment basins. The recursion 
process between two successive levels is illustrated in Figure 9. 
 

 
 
Fig. 9. Recursion process between Xh and Xh+1 
In many practical cases, one of the principal problems is the obtaining of regional minima, 
due to the fact that, in general, digital images are corrupted by noise. Then, if one directly 
applies the watershed transformation to an image many dividing lines are obtained, which 
is known as over-segmentation. 
Therefore, the first step consists in marking the objects we want to segment, and also the 
background. By marker of an object, it means a connected component of pixels located 
inside the object to be extracted.  To each object one and only one marker must correspond. 
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The design of robust marker detection techniques involves the use of knowledge specific to 
the series of images under study. A marking function is then constructed, whose different 
catchment basins correspond to the desired objects. When one works in the other way, then 
the watershed transformation produces over-segmentation. The over-segmentation mainly 
comes from the fact that the markers are not perfectly appropriate to the objects to be 
contoured. In short, the quality of the segmentation is directly linked to the marking 
function. If this condition is attained, with the watershed method continuous edges are 
obtained. With the classical methods this is practically impossible. This statement will be 
verified in the section corresponding to the experimental results. 
The proposed strategy in this work facilitates to obtain a marking function which is of great 
utility for the watershed segmentation. On one hand, the over-segmentation is avoided and 
on the other hand, a correct delimitation of contours of the objects of interest is achieved. 

2.2 The mean shift and analysis 
The iterative procedure to compute the mean shift is introduced as a normalized density 
estimate of the gradient. By employing a differentiable kernel, an estimate of the density can 
be defined as the gradient of the kernel density estimate; that is,  

 ( ) ( )
1

1ˆˆ i
d i

n x x
f x f x K hnh =

⎛ ⎞
⎜ ⎟
⎝ ⎠

−
∇ =∇ = ∇∑  (13) 

The function of the kernel K (x) is now a function defined by the vector x, d-dimensional, 
which satisfies 

 ( ) 1
Rd K x dx =∫   (14) 

Conditions on the kernel K(x) and the window radius h are derived in [Fukunaga & 
Hostetler, 1975] to guarantee asymptotic unbiasedness, mean-square consistency, and 
uniform consistency of the estimate in the expression (13). For example, for Epanechnikov 
kernel: 
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where cd is the volume of  the unit d-dimensional sphere, the density gradient estimate 
becomes 
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where the region ( )hS x  is a hypersphere of radius h having volume d
dh c , centered at x, and 

containing xn  data points; that is, the uniform kernel. In addition, in this case d = 3, due to 
that the vector x has three dimensions, two for the spatial domain and one for the range 
domain (levels of gray).The last factor in expression (16) is called the sample mean shift, 
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The quantity 
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 is the kernel density estimate ˆ ( )Uf x  (the uniform kernel) computed 

with the hypersphere ( )hS x , and thus we can write the expression (16) as: 
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which yields, 
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Expression (19) shows that an estimate of the normalized gradient can be obtained by 
computing the sample mean shift in a uniform kernel centered on x. In addition, the mean 
shift has the direction of the gradient of the density estimate at x when this estimate is 
obtained with the Epanechnikov kernel. Since the mean shift vector always points towards 
the direction of the maximum increase in the density, it can define a path leading to a local 
density maximum; that is, to a mode of the density (see Figure 10). 
In addition, expression (19) shows that the mean is shifted towards the region in which the 
majority of the points reside. Since the mean shift is proportional to the local gradient 
estimate, it can define a path leading to a stationary point of the estimated density, where 
these stationary points are the modes. Moreover, the normalized gradient in expression (19) 
introduces a desirable adaptive behavior, since the mean shift step is large for low density 
regions corresponding to valleys, and decreases as x approaches a mode. 

Mathematically speaking, this is justified since
ˆ ( ) ˆ ( )ˆ ( )

E
E

U

f x f x
f x
∇

>∇  . Thus, the corresponding 

step size for the same gradient will be greater than the nearer mode. This will allow 
observations far from the mode or near a local minimum to move towards the mode faster 
than using ˆ ( )Ef x∇  alone. 
In [Comaniciu, 2000], it was proven that the mean shift procedure obtained by successive: 
• computation of  the mean shift vector Mh (x) 
• translation of  the window Sh (x) by Mh (x), 
is guaranteed to converge. 
A digital image can be represented as a two-dimensional array of p-dimensional vectors 
(pixels), where p = 1 in the gray level case, p = 3 for color images, and p > 3 in the 
multispectral case.  
As was pointed out in [Comaniciu, 2000] when the location and range vectors are 
concatenated in the joint spatial-range domain of dimension d = p+2, their different nature 
has to be compensated by proper normalization of parameters hs and hr. Thus, the multi-
variable kernel is defined as the product of two radially symmetric kernels and the 
Euclidean metric allows a single bandwidth for each domain, that is: 
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where xs is the spatial part, xr is the range part of a feature vector, k(x) the common profile 
used in both domains, hs and hr the employed kernel bandwidths, and C the corresponding 
normalization constant. The value hs is associated with spatial resolution of the analysis, 
while the value hr is associated with the resolution in the domain of range (levels of gray). 
More details related with the mean shift can be found in [Comaniciu, 2000;  Comaniciu & 
Meer, 2002]. 

3. Some characteristics of the images under study 
Studied images are of arteries, which have atherosclerotic lesions and these were obtained 
from different parts of the human body, from more of 80 autopsies. These arteries were 
contrasted with a special tint in order to accentuate the different lesions in arteries. Later, the 
lesions are manually classified by the pathologists according to World Health Organization. 
They classified the lesions in type I, II, III and IV. For example, the lesions I and II, these are 
the fatty streaks and fibrous plaques respectively, while the lesions III and IV are 
respectively the complicated and calcified plaques. The pathologists mark only the lesions; 
that is, they do not outline to them. For that reason, the edge automatically detection, it is 
very important, because these images will be subject to an additional morphometrical 
analysis in order to study the atherosclerosis and its organic-consequences. 
The arteries were directly digitalized from the working desk by using a video camera and an 
A/D converter. In Figure 11(a) a typical image with lesions I and II can be seen, while in 
Figure 11(b) is shown its histogram. These images were captured via the MADIP system 
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with a resolution of 512x512x8 bit/pixels. MADIP- Morphometrical Analysis by Digital 
Image Processing is a system created to help physicians in his research work using images. 
MADIP is a software for the morphometrical characterization of macro and micro lesions in 
biomedical images. In general, it may be used in any branch of science and technology, 
where not only quantitative techniques of high precision are required, but it is also 
necessary to do a big number of measurements with high accuracy and rapidly [Rodríguez 
et al., 2001]. 
 

 
Fig. 11. (a) Atherosclerosis image. (b) Histogram. It can be observed low contrast. The 
arrows show an example of structures that we attempt to segment. 
Figure 12 shows other examples with other types of lesions. 
 

 
Fig. 12. Atherosclerosis images with different lesions, which are marked with arrows. The 
arrows show the lesions. 
There are several remarkable characteristics of these images, which are common to typical 
images that we encounter in the atherosclerotic lesions: 
1. High local variation of intensity is observed both, within the atherosclerotic lesions and 

the background. However, the local variation of intensities is higher within the lesions 
than in background regions. 
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2. The histogram of Fig. 11(b) shows that there is a low contrast in the images. 
3. The lesions III and IV have better contrast than the lesions I and II (see Fig. 12). In 

addition, due to variations in the intensity of the background across the image and the 
low contrast between lesions and background intensities, principally for the lesions I 
and II, the atherosclerotic lesions in a region of the image may appear lighter than the 
background in a distant region. 

4. It is common of these images the diversity in shape and size of the atherosclerotic lesions. 
5. The boundaries of the atherosclerotic lesions, principally for the lesions I and II, may be 

extremely difficult to define. Due to variations in intensity, both within the lesions and 
in the background, portions of the atherosclerotic lesion may appear blended into the 
background, without creating a distinct boundary. 

While the characteristics presented above testify the difficulty in identifying atherosclerotic 
lesions, a close examination reveals information that can be used. We observed that two 
features of the image, local variation of intensity and image intensity level, can be used to 
identify regions of the image that describe lesions. High local variation of intensity is 
exhibited by regions within and near the boundaries of lesions. Thus, local variation of 
intensity can roughly identify regions of the image that contain lesions. Across the entire 
image, changes in intensity level cannot reliably distinguish atherosclerotic lesions, due to 
possible nonuniformity of the average background intensity and low contrast between 
lesions and background; principally, in the lesions I and II. However, within a region of 
interest, changes in intensity level can effectively distinguish a lesion, since locally a lesion 
has major variation of intensities than its surrounding background. The exact shape and size 
of this region are not important, and hence the region is referred to as an approximate 
region. Other details on this study can be found in [Rodríguez  & Pacheco, 2007]. 
For the study with images of blood vessels were used biopsies, which represent an 
angiogenesis process in malignant tumors. These were included in paraffin by using the 
inmunohistoquimic technique with the complex method of avidina biotina. Finally, 
monoclonal CD34 was contrasted with green methyl to accentuate formation of new blood 
vessels. These biopsies were obtained from soft parts of human bodies. This analysis was 
carried out for more than 100 patients. In Figure 13 can be seen typical images, which were 
captured via MADIP system with a resolution of 512x512x8 bit/pixels. 
 

 
Fig. 13. These images represent the angiogenesis process. The blood vessels are marked with 
arrows 
In Figure 14 a horizontal profile can be observed through the centre of a vessel; that is, a plot 
of the pixel intensities along a single row. In Figure 15 (b), the histogram of this image is 
represented.  
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Fig. 14. An intensity profile through the centre of a vessel. Profile is indicated by a line 
 

 
Fig. 15. (a ) Original image. (b) Histogram image 
There are several notable characteristics of this image, which are common to typical images 
that we encounter in the tissues of biopsies: 
1. The intensity is slightly darker within the blood vessel than in the local surrounding 

background. It is emphasized that this observation holds only within the local 
surroundings. 

2. High local variation of intensity is observed both within the blood vessel and the 
background. However, the local variation of intensity is higher within the blood vessel 
than in background regions (see Fig. 14) 

3. The variability of blood vessels both, in size and shape, it can be observed (see Fig. 13). 
4. The contrast of intensities between the blood vessel (BV) and the background is low. 

This is evident from the intensity histogram (see Fig. 15 (b)). This histogram is uni-
modal, reflecting the low separation in average intensity of the BV and background. 
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Due to acquisition protocol, the images are corrupted with a lot of noise. It can be observed 
the ripple of the histogram in Figure 15(b). Other details on this research can be found in 
[Rodríguez & Pacheco, 2005]. 

4. Experimental results and discussion 
One of the most important diseases to study is the atherosclerosis and its organic-
consequences, which is one of the principal causes of death in the world [Fernández-Britto 
et al., 1988; Fernández-Britto & Carlevaro, 1989]. The atherosclerosis produces as final 
consequence the loss of elasticity and increase of the wall of arteries. For example, heart 
attack, cerebral attack and ischemia are some of its principal consequences [Cotran, 2002]. 
Strategies that can isolate atherosclerotic lesions in an automatic way constitute important 
tools for pathologists. 
With the goal of diminishing the noise existing in the atherosclerosis images, we used the 
Gauss filter according to the parameters described in [Rodríguez & Pacheco, 2007]. Figure 16 
shows two examples. 
 

 
Fig. 16. (a) and (c) Original images, (b) and (d) Filtered images with Gauss (σ = 3, 5x5 
window size). 
One can observe in Figure 16 (b, d) that the images are smoother. It is possible to see that the 
atherosclerotic lesions are more uniform, which is indicative that the noise was diminished.  
In a second step, we carried out a modification of the histogram to these images, according 
to the algorithm presented in [Rodríguez & Pacheco, 2007]. This procedure was carried out 
in order to increase the contrast. We show in Figure 17 the obtained results. 
 

 
Fig. 17. (a) and (c) Filtered images with Gauss. Figures (b) and (d) contrasted images. It is 
evident the good obtained result with the enhancement. 
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We shall carry out a general description of the proposed method before going into the 
details of each one of the steps, which will allow having a panoramic vision of the proposed 
solution. In Figure 18 is depicted all steps of the proposed strategy to obtain robust markers 
for the atherosclerotic lesions. 
 

 
Fig. 18. Steps to obtain the markers of atherosclerotic lesions 
It is very important to point out that the proposed strategy was obtained according to 
experimentation; that is, we carried out firstly a morphological reconstruction by erosion for 
all lesions (see definition 2.1.4), and secondly, we carried out a morphological reconstruction 
by dilation for all lesions (see definition 2.1.2). We verified that, in all cases for the lesions I 
and II, the best results by using a reconstruction by dilation were obtained; while for the 
lesions III and IV the best results were obtained carrying out a reconstruction by erosion. 
This affirmation will be appreciated in the next steps. We processed 100 images in total, but 
for space problem, we only reported 10 cases. 
In order to cope with problems previously cited and with the goal of extracting the 
approximate regions of interest; after the histogram modification, we carried out a 
morphological reconstruction. The region of interest is a region that contains the lesion and its 
neighboring background, where the exact shape and size of this region are not important. This 
region of interest is referred to an approximate region. We verified that the reconstruction by 
erosion (for the lesions III and IV) led to an image where the dark zones correspond to these 
lesions. For example, in Figure 19 is shown the obtained result for a lesion of type IV. 
 

 
Fig. 19. (a) Resulting image of the histogram modification. (b) Image obtained by a 
reconstruction by erosion.  The dark parts correspond to the lesion IV. 
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The result in Figure 19(b) was obtained by using a rhombus as structuring element of 5x5 
pixels and a height equal to 60 (see definition 2.1.1.3).  Basically,   we used   the h-domes, 
where the principle is to subtract an arbitrary constant h from the original image I and to 
perform a grayscale geodesic reconstruction of I from I+h (J = I+h). This provides a useful 
technique for extracting “domes” of a given height h. The choice of h turns out not to be a 
critical operation, since a range of values yield correct results, which we verified in the 
practice. In addition, the selection of this structuring element and its size was obtained via 
experimentation. It is important to point out that when one speaks of size of the structuring 
element its dimension is in pixels. In addition, the structuring element is plane. For an 
understanding better on this aspect, as an example, the form and size of four structuring 
elements are shown (see Figure 20). 
In Figure 21, it is represented the obtained results (in the reconstruction) for other 
structuring elements. In all cases in order to carry out the geodesic reconstruction, the 
considered height was equal to 60. 
As can be appreciated in Figure 21(a), for a structuring element minor than 5x5 pixels, the 
area of the atherosclerotic lesions decreased. Comparing the image of Figure 19 (b) with 
those of Figures 21(b) and 21(c), one can see that for structuring elements (rhombus or circle) 
major than 5x5 pixels, the obtained results were very similar, but the computation time was 
increased. In Figures 21(d), 21(e) and 21(f), it can be observed that for diagonal segments as 
structuring elements, the obtained results were not good. The lesions were notably 
deformed. For these reasons, we considered that the rhombus of 5x5 pixels was the most 
suitable. This behaviour was similar for the 100 processed images. 
 

 
Fig. 20. Four structuring elements; superior left: rhombus of size 5x5 pixels, superior right: 
diagonal segment of 5 pixels, inferior left: circle of 5x5 pixels and inferior right: hexagon of 
5x5 pixels. 
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With respect to the height for carrying out the geodesic reconstruction, we verified that for 
all our images the optimal values were in the range from 40 to 60. In fact, in Figure 22 are 
depicted the obtained results considering a height out of this range. 
In Figures 22 (b) and 22 (c), one can observe that for a large height the atherosclerotic lesions 
were very smoothed. Furthermore, the areas of the lesions also were increased. Some of 
them were fused (see arrows). For a height smaller than 40, according to the criterion of 
pathologists, the area of the atherosclerotic lesions decreased (see Fig. 22(a)). Then, in these 
cases, an exact delimitation of the lesions is not obtained and the final results will be poor. 
This behavior was similar for all the processed images, which is not included here by space 
problem. 
 

 
Fig. 21. (a) Reconstruction by a rhombus of 3x3 pixels. (b) Reconstruction by a rhombus of 
7x7 pixels. (c) Reconstruction by a circle of 7x7 pixels. (d) Reconstruction by a diagonal 
segment (450) of 3 pixels. (e) Reconstruction by a diagonal segment of 5 pixels (450).  (f) 
Reconstruction by a diagonal segment of 7 pixels (450). The height was equal to 60. 
After obtaining both, the size of structuring element and the optimal height, the next step of 
our strategy was to segment the approximate region of interest. That is, as it was pointed 
out, a region that contains the atherosclerotic lesion and its neighbouring background. This 
step was carried out by applying a simple threshold through Otsu method [Otsu, 1978]. The 
thresholding value does not have much influence on the performance, because the exact 
shape and size of this region are not important. In this case, the region is referred to as an 
approximate region. In Figure 23(b) one can see the region of interest. 

(a) (b) (c) 

(d) (e) (f) 



 Image Segmentation 

 

406 

The result in Figure 19(b) was obtained by using a rhombus as structuring element of 5x5 
pixels and a height equal to 60 (see definition 2.1.1.3).  Basically,   we used   the h-domes, 
where the principle is to subtract an arbitrary constant h from the original image I and to 
perform a grayscale geodesic reconstruction of I from I+h (J = I+h). This provides a useful 
technique for extracting “domes” of a given height h. The choice of h turns out not to be a 
critical operation, since a range of values yield correct results, which we verified in the 
practice. In addition, the selection of this structuring element and its size was obtained via 
experimentation. It is important to point out that when one speaks of size of the structuring 
element its dimension is in pixels. In addition, the structuring element is plane. For an 
understanding better on this aspect, as an example, the form and size of four structuring 
elements are shown (see Figure 20). 
In Figure 21, it is represented the obtained results (in the reconstruction) for other 
structuring elements. In all cases in order to carry out the geodesic reconstruction, the 
considered height was equal to 60. 
As can be appreciated in Figure 21(a), for a structuring element minor than 5x5 pixels, the 
area of the atherosclerotic lesions decreased. Comparing the image of Figure 19 (b) with 
those of Figures 21(b) and 21(c), one can see that for structuring elements (rhombus or circle) 
major than 5x5 pixels, the obtained results were very similar, but the computation time was 
increased. In Figures 21(d), 21(e) and 21(f), it can be observed that for diagonal segments as 
structuring elements, the obtained results were not good. The lesions were notably 
deformed. For these reasons, we considered that the rhombus of 5x5 pixels was the most 
suitable. This behaviour was similar for the 100 processed images. 
 

 
Fig. 20. Four structuring elements; superior left: rhombus of size 5x5 pixels, superior right: 
diagonal segment of 5 pixels, inferior left: circle of 5x5 pixels and inferior right: hexagon of 
5x5 pixels. 

1

1

1

1
1

1 111

1 1

1 1

Rhombus 5x5

1

1

1

1

1

Segment of line 450

1

1

1

1

1

1 111 

1 1

1 1

Circle 5x5 

1 1

1 1

1

11

1 

1

1

1

1

1

1 1 11

1 1

1 1

Hexagon 5x5 

1 1

11

Segmentation Methods for Biomedical Images   

 

407 

With respect to the height for carrying out the geodesic reconstruction, we verified that for 
all our images the optimal values were in the range from 40 to 60. In fact, in Figure 22 are 
depicted the obtained results considering a height out of this range. 
In Figures 22 (b) and 22 (c), one can observe that for a large height the atherosclerotic lesions 
were very smoothed. Furthermore, the areas of the lesions also were increased. Some of 
them were fused (see arrows). For a height smaller than 40, according to the criterion of 
pathologists, the area of the atherosclerotic lesions decreased (see Fig. 22(a)). Then, in these 
cases, an exact delimitation of the lesions is not obtained and the final results will be poor. 
This behavior was similar for all the processed images, which is not included here by space 
problem. 
 

 
Fig. 21. (a) Reconstruction by a rhombus of 3x3 pixels. (b) Reconstruction by a rhombus of 
7x7 pixels. (c) Reconstruction by a circle of 7x7 pixels. (d) Reconstruction by a diagonal 
segment (450) of 3 pixels. (e) Reconstruction by a diagonal segment of 5 pixels (450).  (f) 
Reconstruction by a diagonal segment of 7 pixels (450). The height was equal to 60. 
After obtaining both, the size of structuring element and the optimal height, the next step of 
our strategy was to segment the approximate region of interest. That is, as it was pointed 
out, a region that contains the atherosclerotic lesion and its neighbouring background. This 
step was carried out by applying a simple threshold through Otsu method [Otsu, 1978]. The 
thresholding value does not have much influence on the performance, because the exact 
shape and size of this region are not important. In this case, the region is referred to as an 
approximate region. In Figure 23(b) one can see the region of interest. 
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Fig. 22. (a) Reconstruction with a rhombus of 5x5 and height equal to 30. (b) Reconstruction 
with a rhombus of 5x5 and height equal to 80. (c) Reconstruction with a rhombus of 5x5 and 
height equal to 120. 

 
Fig. 23. (a) Image of the reconstruction, where the arrows indicate the lesions.  (b) Regions of 
interest 
 

In Figure 23 (b), it is possible to observe that all the indicated lesions in Figure 23 (a) were 
detected. Furthermore, it can be seen that the regions of interest don't have the exact size of the 
lesions, since they simply are an approximation. We verified that the regions of interest, in 
general, were smaller than the atherosclerotic lesions. This result was the same one for all the 
processed images.  Other regions of interest will be able to be observed in the next section. 
After this result, we developed an algorithm to obtain markers for the atherosclerotic lesion. 

4.1 Algorithm to obtain markers 
The steps of the algorithm are described below: 
1. Obtain the regions of interest, which as we pointed out, it are 

those regions belonging to the lesions and they are obtained 
through a thresholding procedure, after carrying out the 

Fusion of regions Fusion of regions 
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geodesic reconstruction. To the resulting image of this 
procedure we will call IREZI. 

2. Label the resulting image of the step 1. This step is as 
follows. Create an auxiliary image with all pixels in zero: Let 
IA1 be this image. Scan IREZI at iterative way, then in this 
image all the background is labeled with a value equal to 1.  

3. With the goal of finding connected components, scan IREZI again 
from the top to the bottom and from the left to the right. If 
there is a pixel, which belongs to a connected component and in 
the image IA1 this pixel has zero value, then other iterative 
method begins to work. This new iterative method marks with a 
determined value within the image IA1 all pixels belonging to a 
connected component. In addition, pixels within the image IREZI 
are also marked with a value, which identifies the connected 
component to which they belong. This action is carried out in 
the whole image. As this step is finished, in the image IREZI 
all the connected components were filled and in the image IA1 
all the connected components were labeled.  

4. Create other auxiliary image (let IA2 be this image) with the 
same values of the image IA1. Also create an array, which 
controls if a connected component was reduced. In the image IA2 
is where in each step the reduction of the connected components 
are obtained, the final result is represented in the image IA1. 

5. Scan the labeled image (IA1). When in this image a pixel is 
found, which belongs to a connected component, through other 
iterative method, this component is reduced and in the image IA2 
all the frontiers of the connected component are marked. If 
still there is some pixel within the connected component, which 
is no frontier, in the images IA2 and IA1, the mentioned pixel 
is eliminated and this function begins again until that all 
points are frontiers. In this case, the obtained result 
(reduction) is taken as the mark. In the array (see step 4) it 
is indicated that the labeled component with this value was 
processed and it is began to look for other component. 

6. Finish when the image IA1 is completely scanned. When this step 
is concluded, in the image IA1 all marks of the atherosclerotic 
lesions are. These marks are collocated in the image IREZI. 
Here, after the step two, the connected components (in IREZI) 
were filled. The image IREZI is the resulting image.  

All the functions in C of this algorithm appear in [Rodríguez & Pacheco, 2007]. The result of 
carrying out this algorithm to the image of Figure 23(b) is shown in Figure 24. In Figure 
24(b) one can see that the mark is unique for each of the lesions, which is always inside the 
atherosclerotic lesion. In this case, we firstly applied this algorithm to the regions of interest 
of the lesions III and IV. In other words, to the contrasted images of this type of lesions (III 
and IV) a reconstruction by erosion is carried out, later we applied a thresholding in order to 
obtain the regions of interest; lastly the proposed algorithm is applied to the image of the 
regions of interest (see Fig. 24 (b)). This procedure is the same one for all the lesions III and 
IV. In total 40 lesions of type III and IV, it were processed. 
Now, we shall explain the steps that we carried out to obtain the marks for the lesions I and 
II (see Fig. 18). In this case, the first step was to carry out a modification of histogram 
according to the algorithm that appears in [Rodríguez & Pacheco, 2007]. After this step, we 
carried out a reconstruction by dilation. This reconstruction improved, even more, the 
contrast of the lesions I and II. Figure 25 shows the obtained result of the reconstruction. 
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Fig. 22. (a) Reconstruction with a rhombus of 5x5 and height equal to 30. (b) Reconstruction 
with a rhombus of 5x5 and height equal to 80. (c) Reconstruction with a rhombus of 5x5 and 
height equal to 120. 

 
Fig. 23. (a) Image of the reconstruction, where the arrows indicate the lesions.  (b) Regions of 
interest 
 

In Figure 23 (b), it is possible to observe that all the indicated lesions in Figure 23 (a) were 
detected. Furthermore, it can be seen that the regions of interest don't have the exact size of the 
lesions, since they simply are an approximation. We verified that the regions of interest, in 
general, were smaller than the atherosclerotic lesions. This result was the same one for all the 
processed images.  Other regions of interest will be able to be observed in the next section. 
After this result, we developed an algorithm to obtain markers for the atherosclerotic lesion. 

4.1 Algorithm to obtain markers 
The steps of the algorithm are described below: 
1. Obtain the regions of interest, which as we pointed out, it are 

those regions belonging to the lesions and they are obtained 
through a thresholding procedure, after carrying out the 
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geodesic reconstruction. To the resulting image of this 
procedure we will call IREZI. 

2. Label the resulting image of the step 1. This step is as 
follows. Create an auxiliary image with all pixels in zero: Let 
IA1 be this image. Scan IREZI at iterative way, then in this 
image all the background is labeled with a value equal to 1.  

3. With the goal of finding connected components, scan IREZI again 
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there is a pixel, which belongs to a connected component and in 
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determined value within the image IA1 all pixels belonging to a 
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are also marked with a value, which identifies the connected 
component to which they belong. This action is carried out in 
the whole image. As this step is finished, in the image IREZI 
all the connected components were filled and in the image IA1 
all the connected components were labeled.  

4. Create other auxiliary image (let IA2 be this image) with the 
same values of the image IA1. Also create an array, which 
controls if a connected component was reduced. In the image IA2 
is where in each step the reduction of the connected components 
are obtained, the final result is represented in the image IA1. 

5. Scan the labeled image (IA1). When in this image a pixel is 
found, which belongs to a connected component, through other 
iterative method, this component is reduced and in the image IA2 
all the frontiers of the connected component are marked. If 
still there is some pixel within the connected component, which 
is no frontier, in the images IA2 and IA1, the mentioned pixel 
is eliminated and this function begins again until that all 
points are frontiers. In this case, the obtained result 
(reduction) is taken as the mark. In the array (see step 4) it 
is indicated that the labeled component with this value was 
processed and it is began to look for other component. 

6. Finish when the image IA1 is completely scanned. When this step 
is concluded, in the image IA1 all marks of the atherosclerotic 
lesions are. These marks are collocated in the image IREZI. 
Here, after the step two, the connected components (in IREZI) 
were filled. The image IREZI is the resulting image.  

All the functions in C of this algorithm appear in [Rodríguez & Pacheco, 2007]. The result of 
carrying out this algorithm to the image of Figure 23(b) is shown in Figure 24. In Figure 
24(b) one can see that the mark is unique for each of the lesions, which is always inside the 
atherosclerotic lesion. In this case, we firstly applied this algorithm to the regions of interest 
of the lesions III and IV. In other words, to the contrasted images of this type of lesions (III 
and IV) a reconstruction by erosion is carried out, later we applied a thresholding in order to 
obtain the regions of interest; lastly the proposed algorithm is applied to the image of the 
regions of interest (see Fig. 24 (b)). This procedure is the same one for all the lesions III and 
IV. In total 40 lesions of type III and IV, it were processed. 
Now, we shall explain the steps that we carried out to obtain the marks for the lesions I and 
II (see Fig. 18). In this case, the first step was to carry out a modification of histogram 
according to the algorithm that appears in [Rodríguez & Pacheco, 2007]. After this step, we 
carried out a reconstruction by dilation. This reconstruction improved, even more, the 
contrast of the lesions I and II. Figure 25 shows the obtained result of the reconstruction. 
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Fig. 24. (a). Image with regions of interest, (b) Marking image, (c) Marks superimposed on 
the original image 
 

 
Fig. 25. (a) Initial image. (b) Reconstruction by dilation (lesion II) 

The result in Figure 25(b) was obtained by using a structuring element type rhombus of 5x5 
pixels, similar to the one used for the lesions III and IV. In this case, the used height in order 
to carry out a geodesic reconstruction by dilatation was equal to 40. Also, for these lesions (I 
and II), several experiments with distinct structuring elements were carried out. The 
obtained results were very similar to those depicted in Figures 21 and 22. We verified that 
the structuring element type rhombus of 5x5 pixels was of the best performance. In addition, 
with respect to height for the reconstruction, we concluded that the optimal height was in 
the range from 40 to 60 too. Out of this range, similar results were obtained as in the lesions 
III and IV. This experiment was carried out for a total of 50 images (lesions I and II). All the 
obtained results were not shown here because they were very similar. Later, we obtained 
the approximate region of interest via a thresholding and lastly, the markers were obtained 
through the algorithm presented in section 4.1. The obtained result is shown in Figure 26. 
One can observe that the regions of interest are not exactly the atherosclerotic lesions, but 
simply an approximate region. 
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Fig. 26. (a) Regions of interest. The arrows indicate the connected components. (b) Image 
with marks. (c) The marks superimposed on the original image. 
In Figure 26(b) it is possible to see that the marks are unique for each of the lesions, which 
are always inside the atherosclerotic lesion. This aspect is very important. 

4.2 Application of the proposed strategy for atherosclerosis image segmentation by 
using the watershed method 
As have been  pointed out the watershed transformation has the drawback of producing 
over-segmentation.  This is true even if one had taken the precaution of filtering the initial 
image or its gradient. In fact, Figure 27(b) shows the obtained result as we directly applied 
the watershed transformation to an atherosclerosis image without good markers for the 
lesions. It is evident as the contours of the atherosclerotic lesions were not well detected and 
it is observed a lot of noise. However, in Figure 27(c) is shown the excellent obtained result 
according to our strategy and the introduced algorithm in this work (see section 4.1). The 
contours of the atherosclerotic lesions were well defined.  
 

 
Fig. 27. (a) Original image. (b) The watershed segmentation without marks in the lesions. (c) 
The watershed segmentation according to our strategy. 
In Figure 28, we show the contours superimposed on the original image in order to see the 
exact coincidence of the obtained contours. This result is evident. 
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Fig. 24. (a). Image with regions of interest, (b) Marking image, (c) Marks superimposed on 
the original image 
 

 
Fig. 25. (a) Initial image. (b) Reconstruction by dilation (lesion II) 

The result in Figure 25(b) was obtained by using a structuring element type rhombus of 5x5 
pixels, similar to the one used for the lesions III and IV. In this case, the used height in order 
to carry out a geodesic reconstruction by dilatation was equal to 40. Also, for these lesions (I 
and II), several experiments with distinct structuring elements were carried out. The 
obtained results were very similar to those depicted in Figures 21 and 22. We verified that 
the structuring element type rhombus of 5x5 pixels was of the best performance. In addition, 
with respect to height for the reconstruction, we concluded that the optimal height was in 
the range from 40 to 60 too. Out of this range, similar results were obtained as in the lesions 
III and IV. This experiment was carried out for a total of 50 images (lesions I and II). All the 
obtained results were not shown here because they were very similar. Later, we obtained 
the approximate region of interest via a thresholding and lastly, the markers were obtained 
through the algorithm presented in section 4.1. The obtained result is shown in Figure 26. 
One can observe that the regions of interest are not exactly the atherosclerotic lesions, but 
simply an approximate region. 
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Fig. 26. (a) Regions of interest. The arrows indicate the connected components. (b) Image 
with marks. (c) The marks superimposed on the original image. 
In Figure 26(b) it is possible to see that the marks are unique for each of the lesions, which 
are always inside the atherosclerotic lesion. This aspect is very important. 

4.2 Application of the proposed strategy for atherosclerosis image segmentation by 
using the watershed method 
As have been  pointed out the watershed transformation has the drawback of producing 
over-segmentation.  This is true even if one had taken the precaution of filtering the initial 
image or its gradient. In fact, Figure 27(b) shows the obtained result as we directly applied 
the watershed transformation to an atherosclerosis image without good markers for the 
lesions. It is evident as the contours of the atherosclerotic lesions were not well detected and 
it is observed a lot of noise. However, in Figure 27(c) is shown the excellent obtained result 
according to our strategy and the introduced algorithm in this work (see section 4.1). The 
contours of the atherosclerotic lesions were well defined.  
 

 
Fig. 27. (a) Original image. (b) The watershed segmentation without marks in the lesions. (c) 
The watershed segmentation according to our strategy. 
In Figure 28, we show the contours superimposed on the original image in order to see the 
exact coincidence of the obtained contours. This result is evident. 
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Fig. 28. The contours superimposed on the original image. It is possible to see the exact 
coincidence of the contours on the lesions. The arrow indicates an object, which does not 
correspond to an atherosclerotic lesion. In [Rodríguez & Pacheco, 2007], a quantitative 
evaluation of this algorithm was carried out.  
In Figure 29, another example of the application of watershed method on other 
atherosclerosis image is shown. In Figure 29 (b), we applied watershed segmentation on the 
gradient of image. It is evident that, even though the watershed method was applied on the 
gradient of image, an over-segmentation was produced. In Figure 29 (c), one can observe the 
obtained result of carrying out our strategy. In Figure 30 is shown the obtained contours 
with our strategy superimposed on the original image. It is possible to observe the exact 
coincidence of the contours on the lesions. 
 

 
Fig. 29. (a) Original image. (b) Watershed transformation on the gradient of the original 
image (c) The watershed segmentation according to our strategy. 
This same strategy was applied for image segmentation of blood vessels [Rodríguez et al., 
2005], but here we will expose the obtained results on these images (blood vessels) by using 
the mean shift. 
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Fig. 30. The contours superimposed on the original image. The arrow indicates an object, 
which does not correspond to an atherosclerotic lesion (see reference [Rodríguez & Pacheco, 
2007]) 

4.3 Obtained results in image segmentation of blood vessels by using the mean shift 
The angiogenesis process is an important aspect in the histopathological research of diseases 
[Díaz-Flores et al., 1994]. This process is studied by pathological anatomy and it is 
characterised by a new formation of blood vessels in the tissue, which increases its growing. 
Angiogenesis is a normal process that occurs in all tissues, but it is known that in 
pathological cases the increase of blood vessels is abnormal. For example, in mammary, 
prostate, bladder and brain cancers the greater the number of blood vessels, the more 
developed the disease is [Díaz-Flores et al., 1994]. 
In the study of the angiogenesis process the pathologists analyse all information related with 
the blood vessels by using a microscope. This work is very tedious and time consuming and 
obviously, the automation of this analysis is highly desirable. In such a sense, a useful task for 
digital images processing should be the segmentation of blood vessels. 
In this work we utilized the mean shift for segmentation of blood vessels. So, we proposed a 
segmentation algorithm, which will be exposed next.  
In general, an image captured with a real physical device is contaminated with noise and in 
most cases a statistical model of white noise is assumed, mean zero and variance σ. For 
smoothing or elimination of this form of noise many types of filters have been published, 
the most classic being the low pass filter. This filter indiscriminately replaces the central 
pixel in a window by the average or the weighted average of pixels contained therein. The 
end result with this filtering is a blurred image; since this reduces the noise but also 
important information is taken away from the edges. However, there are low pass filtering 
techniques that preserve the discontinuities and reduce abrupt changes near local structures. 
A diverse number of approaches have been published taking into consideration the use of 
adaptive filtering. These range from an adaptive Wiener filter, local isotropic smoothing, to 
an anisotropic filtering. The mean shift works in the spatial-range domain, but differs from 
it (anisotropic filtering) in the use of local information.  
The algorithm that was proposed in [Comaniciu & Meer, 2002] for filtering through mean 
shift is as follows: 



 Image Segmentation 

 

412 

 
Fig. 28. The contours superimposed on the original image. It is possible to see the exact 
coincidence of the contours on the lesions. The arrow indicates an object, which does not 
correspond to an atherosclerotic lesion. In [Rodríguez & Pacheco, 2007], a quantitative 
evaluation of this algorithm was carried out.  
In Figure 29, another example of the application of watershed method on other 
atherosclerosis image is shown. In Figure 29 (b), we applied watershed segmentation on the 
gradient of image. It is evident that, even though the watershed method was applied on the 
gradient of image, an over-segmentation was produced. In Figure 29 (c), one can observe the 
obtained result of carrying out our strategy. In Figure 30 is shown the obtained contours 
with our strategy superimposed on the original image. It is possible to observe the exact 
coincidence of the contours on the lesions. 
 

 
Fig. 29. (a) Original image. (b) Watershed transformation on the gradient of the original 
image (c) The watershed segmentation according to our strategy. 
This same strategy was applied for image segmentation of blood vessels [Rodríguez et al., 
2005], but here we will expose the obtained results on these images (blood vessels) by using 
the mean shift. 
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Fig. 30. The contours superimposed on the original image. The arrow indicates an object, 
which does not correspond to an atherosclerotic lesion (see reference [Rodríguez & Pacheco, 
2007]) 

4.3 Obtained results in image segmentation of blood vessels by using the mean shift 
The angiogenesis process is an important aspect in the histopathological research of diseases 
[Díaz-Flores et al., 1994]. This process is studied by pathological anatomy and it is 
characterised by a new formation of blood vessels in the tissue, which increases its growing. 
Angiogenesis is a normal process that occurs in all tissues, but it is known that in 
pathological cases the increase of blood vessels is abnormal. For example, in mammary, 
prostate, bladder and brain cancers the greater the number of blood vessels, the more 
developed the disease is [Díaz-Flores et al., 1994]. 
In the study of the angiogenesis process the pathologists analyse all information related with 
the blood vessels by using a microscope. This work is very tedious and time consuming and 
obviously, the automation of this analysis is highly desirable. In such a sense, a useful task for 
digital images processing should be the segmentation of blood vessels. 
In this work we utilized the mean shift for segmentation of blood vessels. So, we proposed a 
segmentation algorithm, which will be exposed next.  
In general, an image captured with a real physical device is contaminated with noise and in 
most cases a statistical model of white noise is assumed, mean zero and variance σ. For 
smoothing or elimination of this form of noise many types of filters have been published, 
the most classic being the low pass filter. This filter indiscriminately replaces the central 
pixel in a window by the average or the weighted average of pixels contained therein. The 
end result with this filtering is a blurred image; since this reduces the noise but also 
important information is taken away from the edges. However, there are low pass filtering 
techniques that preserve the discontinuities and reduce abrupt changes near local structures. 
A diverse number of approaches have been published taking into consideration the use of 
adaptive filtering. These range from an adaptive Wiener filter, local isotropic smoothing, to 
an anisotropic filtering. The mean shift works in the spatial-range domain, but differs from 
it (anisotropic filtering) in the use of local information.  
The algorithm that was proposed in [Comaniciu & Meer, 2002] for filtering through mean 
shift is as follows: 
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Let { }xi i  and { }zi i , 1, ,i n= …  be the input and filtered images in the joint spatial-range 

domain. For each pixel ( ) 3, , ,p x p x y zi∈ = ∈ℜ , where ( ) 2,x y ∈ℜ  and 0, 2 1Bz ⎡ ⎤∈ −⎣ ⎦ , B 

being the quantity of bits/pixel in the image. The filtering algorithm comprises the 
following steps: 
 For each 1, ,i n= …  
1. Initialize j =1 and y

i,1
 = p

i
. 

2. Compute the mean shift in order to obtain the mode where the 
pixel converges; that is, the calculation of the mean shift is 
carried out until convergence, y = y

i,c.
 

3. Store at Z
i 
the component of the gray level of calculated 

value: ( ), ,
s rZ x yi i i c= , where sxi  is the spatial component and ,

ryi c 
 is 

the range component. 

4.3.1 Proposed segmentation algorithm via mean shift 
1. Run the mean shift filtering procedure for the image according to 
former steps, and store all the information about the d-dimensional 
convergence point in Zi. 
2. Define the regions, which are found in the spatial domain (h

s
) 

with intensities smaller or equal than h
r
/2. 

3. For each region, which was defined in the step 2, look for all 
the pixels belonging to the region whose mean intensity values are 
assigned at Zi. 
4. Build the region graph through an adjacent list as follows: for 
each region, look for all adjacent regions to the right or under the 
region. 
5. While there are nodes in the graph, which have been not visited, 
run a variant of the “Depth-First Search” (DFS), which allows 
concatenating adjacent regions; as parameter one has to provide a 
node which has been not yet visited. To do this the next steps are 
carried out: 

5.1.Mark the mentioned node as visited. 
5.2.While there is children not yet visited: 
           children = current child 
       if |Z

parent
 − Z

child
|< = h

r
, then, 

          The region of the child is fused with the  
          region of the father, where the same label is  
          assigned and it is marked as visited. 
5.3 To the parent is assigned the children of the visited child 
    from the first position and the children which have been 
    not visited are remained. 
5.4 Look for the following child and come back to 
          step 2 while stability it is not obtained (i.e., 
          no more pixel values are modified). 

6. Eliminate spatial regions containing less than M pixels, since 
those regions are considered irrelevant. 
7. (Binary): To all the pixels belonging to background, assign the 
white color to the objects and the black color to the background. 
 
The effectiveness of this algorithm was recently proven in [Rodríguez et al., 2008]. In that 
paper was carried out a comparison of the obtained results with this algorithm and those 
attained by using the spectral methods.    
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Now, some of the obtained results will be exposed, in real images, using the proposed 
segmentation algorithm of the mean shift. In Figure 31 are presented a first example where 
one can appreciate the segmentation result. 
 

 
Fig. 31. (a) Original Image, (b) Image segmented with the proposed algorithm (hs=4, hr=15, 
M =20), (c) Binarized image. 

In Figures 32 and 33, other two segmentation examples appear using the proposed algorithm. 
 

 
Fig. 32. (a) Original Image, (b) Image segmented with the proposed algorithm (hs=4, hr=15, 
M =20), (c) Binarized image. 
 

 
Fig. 33. (a) Original Image, (b) Image segmented with the proposed algorithm (hs=4, hr=15, 
M =20), (c) Binarized image. 
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5.4 Look for the following child and come back to 
          step 2 while stability it is not obtained (i.e., 
          no more pixel values are modified). 

6. Eliminate spatial regions containing less than M pixels, since 
those regions are considered irrelevant. 
7. (Binary): To all the pixels belonging to background, assign the 
white color to the objects and the black color to the background. 
 
The effectiveness of this algorithm was recently proven in [Rodríguez et al., 2008]. In that 
paper was carried out a comparison of the obtained results with this algorithm and those 
attained by using the spectral methods.    
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Now, some of the obtained results will be exposed, in real images, using the proposed 
segmentation algorithm of the mean shift. In Figure 31 are presented a first example where 
one can appreciate the segmentation result. 
 

 
Fig. 31. (a) Original Image, (b) Image segmented with the proposed algorithm (hs=4, hr=15, 
M =20), (c) Binarized image. 

In Figures 32 and 33, other two segmentation examples appear using the proposed algorithm. 
 

 
Fig. 32. (a) Original Image, (b) Image segmented with the proposed algorithm (hs=4, hr=15, 
M =20), (c) Binarized image. 
 

 
Fig. 33. (a) Original Image, (b) Image segmented with the proposed algorithm (hs=4, hr=15, 
M =20), (c) Binarized image. 
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One can see in Figures 31, 32 and 33 the robustness of the obtained results using the 
proposed segmentation algorithm. According to the opinion of specialists the method was 
able to discriminate all the objects of interest (blood vessels). This is of supreme importance 
from the point of view of the diagnosis. It is also observed that the obtained results are free 
of noise; in addition, for all the segmented images the same parameters hr and hs were used. 
By the way of examples, two of the obtained results in [Rodriguez et al., 2008] it will be 
exposed. These results are shown in Figure 34 and 35. In the presented examples, the reader 
can appreciate that both methods were able to effectively well isolate the blood vessels. 
However, one also can see that the segmented images via the mean shift algorithm were less 
noisy than those obtained via the spectral method. Furthermore, the edges were more robust 
and better defined in the images segmented with the mean shift. 
In order to obtain less noisy images with the spectral method it would be necessary to carry 
out an additional step of filtering with the aim of eliminating the noise that arises during the 
segmentation process. This procedure could be carried out through a morphological 
technique, which can be an opening or a majority filter. Another way could be to use the 
mean shift procedure as a pre-processing in order to improve performance of the spectral 
method. In [Rodriguez et al., 2008], it also can be seen a quantitative method of evaluation of 
these strategies. 
 

 
Fig. 34. (a) Original image, (b) Segmentation via the mean shift, (c) Segmentation via the 
spectral method 

 

 
Fig. 35. (a) Original image, (b) Segmentation via the mean shift, (c) Segmentation via the 
spectral method 
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5. Conclusions 
In this chapter was carried out a brief theoretical introduction of the Watershed 
transformation. Through the experimentation suitable markers were obtained for the 
atherosclerotic lesions (including to the background). In such a sense, a new algorithm was 
introduced, which was efficient in order to mark the atherosclerotic lesions and to eliminate 
all other spurious information. With the proposed strategy the application of the watershed 
segmentation gave good results, where the exact contours of the objects of interest were 
obtained (atherosclerotic lesions). Furthermore, over-segmentation never was obtained.  
A theoretical introduction of the mean shift was carried out too. In such a sense, a new 
algorithm was proposed for image segmentation of blood vessels. The same was suitable for 
this application. In order to demonstrate its good performance, the same one was compared 
with another segmentation algorithm already established (the spectral method). Through 
several experiments with real images, we proven that the segmented images by using the 
mean shift were less noisy than those attained by means of the spectral method. In addition, 
the obtained edges were better defined by using the mean shift than those attained by the 
spectral method. 
The strategies introduced in this chapter can be extended to other types of biomedical 
images and their application is valid for other tasks of image analysis where suitable 
methods of segmentation are required. 
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1. Introduction    
Live-cell imaging using fluorescence microscopy has become popular in modern biology to 
analyze complex cellular events such as the dynamics of substances inside cells (Eils & Athale, 
2003; Bhaskar & Singh, 2007). The next step in furthering this type of analysis is accumulating 
useful information from the observed images to quantify the dynamics (Cong & Parvin, 2000; 
Goldman & Spector, 2004; Harder et al., 2008, Waltera et al., 2010). However, quantification of 
intracellular images is a difficult process because microscopic images with ultra-high 
sensitivity have a low signal-to-noise ratio. In addition, the amount of data required for 
quantification has gradually increased as microscopy has developed. These obstacles make it 
more difficult for cell biologists to identify regions of interest and accumulate various types of 
quantitative information, such as the volume, shape, and dynamics of intracellular substances. 
Hence, it is important to develop computational methods for identifying objective targets, such 
as organelles labeled with, for example, a fluorescent protein. 
Image segmentation, the process by which an image is divided into multiple regions 
corresponding to the components pictured in the image, plays a key role as one of the first 
steps in the quantification of objective targets from observed images. The use of segmented 
regions allows us to distinguish substances of interest from irrelevant regions, including 
background and noise. Numerous segmentation algorithms have been proposed (e.g., 
Haralick & Shapiro, 1985; Pal & Pal, 1993), but most approaches have been developed for a 
specific task and cannot be generalized for other segmentation tasks. As a result, researchers 
have had to face the difficult duty of choosing the most suitable algorithm for a given task 
while facing increasing numbers of images needing quantification. Moreover, recent notable 
improvements in live-cell imaging require that segmentation algorithms be flexible enough 
to accommodate time-variable changes in targets. No single algorithm performed with a 
fixed-parameter setting is considered to be sufficient for analyzing all time-lapse images, 
and optimizing algorithms for a variety of images is a tedious task for researchers. 
Solutions to these problems have been proposed based on the idea of algorithm selection 
(e.g., Cardoso & Corte-Real, 2005; Zhang, 2006; Polak et al., 2009). An appropriate algorithm 
with an optimized parameter setting for each task is automatically selected according to 
unique evaluation metrics of algorithm performance. Evaluation can be roughly divided 
into two types: unsupervised evaluation and supervised evaluation. The former type can 
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Image segmentation, the process by which an image is divided into multiple regions 
corresponding to the components pictured in the image, plays a key role as one of the first 
steps in the quantification of objective targets from observed images. The use of segmented 
regions allows us to distinguish substances of interest from irrelevant regions, including 
background and noise. Numerous segmentation algorithms have been proposed (e.g., 
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specific task and cannot be generalized for other segmentation tasks. As a result, researchers 
have had to face the difficult duty of choosing the most suitable algorithm for a given task 
while facing increasing numbers of images needing quantification. Moreover, recent notable 
improvements in live-cell imaging require that segmentation algorithms be flexible enough 
to accommodate time-variable changes in targets. No single algorithm performed with a 
fixed-parameter setting is considered to be sufficient for analyzing all time-lapse images, 
and optimizing algorithms for a variety of images is a tedious task for researchers. 
Solutions to these problems have been proposed based on the idea of algorithm selection 
(e.g., Cardoso & Corte-Real, 2005; Zhang, 2006; Polak et al., 2009). An appropriate algorithm 
with an optimized parameter setting for each task is automatically selected according to 
unique evaluation metrics of algorithm performance. Evaluation can be roughly divided 
into two types: unsupervised evaluation and supervised evaluation. The former type can 
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evaluate different algorithms only by simply computing some chosen evaluation metrics 
without requiring a prior knowledge about segmentation targets (Cardoso, 2005; Zhang et 
al., 2006). Statistical features, such as the grey-level standard deviation or homogeneity of 
pixel intensities in the segmented region, are generally computed. For example, a region 
contrast (Levine & Nazif, 1985) or region shape (Sahoo et al., 1988) have been proposed (see 
the comprehensive survey; Zhang et al., 2008). Although the advantage of unsupervised 
evaluation is that a large number of segmentation algorithms can be evaluated, if there is no 
guarantee that the pre-defined range for some statistical features will be satisfied, 
unsupervised evaluation should not be used. In addition, the range of features of 
intracellular substances cannot be pre-defined, and the diversity in features of intracellular 
substances may destabilize the result of evaluation.  
The latter type can evaluate different algorithms by using some metrics based on similarity (or 
error) measurement between two regions: an automatically segmented region and a manually 
segmented region, called the reference region or the ground-truth (e.g., Zhang & Gerbrands, 
1992; Martin et al., 2001; Jiang et al., 2006; Polak et al., 2009). For example, the number of mis-
segmented pixels (Ysnoff et al., 1977), or the number of segmented targets (Zhang, 1996) is 
commonly used as an error measurement. Although metrics for supervised evaluation have 
been proposed so as to reflect the human perception, it is not clear whether the evaluation 
procedure has actually reflected the perception. That is, the region, which is segmented by 
using the selected algorithm, may not identify the objective targets to be quantified. 
In this research, we propose a novel evaluation metric composed of similarity 
measurements of a combination of intensity-based and shape-based image features between 
a segmented region and the ground-truth. Our evaluation metric adopts the philosophy of 
supervised evaluation and expands it so as to reflect the human perception. We chose these 
two kinds of image features because cell biologists usually pay attention to them when 
identifying objective targets, and our proposed method is able to select an appropriate 
algorithm with optimal parameter settings so as to satisfy biologists' intentions.  
The proposed method evaluates the performance of segmentation algorithms by comparing 
each segmentation result with the ground-truth specified by cell biologists, and it predicts 
which algorithm will provide the best performance on new images that have similar image 
features to the original ground-truth. We investigated the performance of two types of 
segmentation algorithms under our proposed evaluation metric for the identification of 
fluorescent labeled targets with granular shapes on real intracellular images. In addition to 
demonstrating the automatic selection of an appropriate algorithm suited to the 
segmentation task, we showed that our evaluation metric can rank different types of 
algorithms. We also tested to see whether the selected algorithm showed good segmentation 
results for other similar images.  
The rest of the paper is structured as follows. In Section 2, we describe the algorithm 
selection framework and explain our proposed evaluation metric based on the region 
similarity. Experimental results and discussion including segmentation quality for 
intracellular images taken by a confocal microscope are presented in Section 3. Finally, a 
conclusion is offered in Section 4.  

2. Algorithm selection framework 
Many possible solutions must be considered when establishing a segmentation algorithm 
for a specific application that satisfies a user's intention. In many cases, a target intracellular 
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substance can be represented by a homogeneous unique image feature and can be 
distinguished from other substances, even from background. Here, we focus on the 
segmentation techniques implemented by a pattern classification technique (Duda et al., 
2007) that can classify image features into classes (or categories) associated with substances. 
When performing segmentation, the computer first calculates N-dimensional image features 
that are derived by pixel intensity and classifies them into multiple classes in the N-
dimensional feature space. Ideally, each class is associated with one substance pictured in 
the image, such as an organelle in intracellular images. In the case of supervised 
classification, the distribution of image features of each class is initially specified by a user 
who has knowledge of the segmentation target. Then the classifier (i.e. classification rule), 
such as a discriminant function, is generated based on their distribution so as to assign the 
image features to a specified class. Manual segmentation is generally conducted for 
specifying classes. According to the generated classification rule, the computer is able to 
automatically classify the new inputs that are calculated from the still unsegmented images. 
As a result, target segmentation can be achieved by detecting only the pixels that have the 
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evaluate different algorithms only by simply computing some chosen evaluation metrics 
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substance can be represented by a homogeneous unique image feature and can be 
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task may not be optimal for a different one. To solve these problems, we propose a new 
framework that can select an optimal algorithm that satisfies the user's intention in each 
segmentation task.  
Here, "algorithm" means the set including the feature space constructed by the extracted 
image feature, the classification rule, and the parameter settings for generating the feature 
space and the classification rule. Our framework selects the algorithm that can extract the 
target region with the highest level of accuracy by means of our proposed evaluation metric, 
as long as the ground-truth is specified. As shown in Fig. 2, the algorithm that can segment 
the region most similarly to the ground-truth is automatically selected from a given set of 
algorithms.  
 

 
Fig. 2. A framework of algorithm selection. 

2.1 Selection metric 
The similarities between the ground-truth and the automatically segmented region 
produced by each given algorithm are used as an evaluation metric for selecting the proper 
algorithm in our framework. Previous researchers have used many evaluation metrics based 
on similarities with the ground-truth. For example, (Haindl & Mikes, 2008; Arbelaez, 2009) 
considered segmentations as a clustering of pixels, and used the Variation of Information 
(VI), which is based on the distance between two clusters in terms of their average 
conditional entropy, to measure similarity between two segmentations. Similarly, 
(Unnikrishnan et al., 2007) introduced the Rand Index (RI) for measuring the distance of two 
clusters by comparing the compatibility of assignments between pairs of elements in the 
clusters. Although it is possible to evaluate the performance of segmentation algorithms 
using the RI and VI and the number of segmented regions evaluated is not constrained with 
these indexes, their perceptual meaning (that is, an association between human judgement 
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and these indexes) and applicability in the presence of the ground-truth reference (i.e., 
supervised evaluations) remains unclear.  
Martin et al. (Martin et al., 2001) proposed the similarity indexes called Global Consistence 
Error (GCE) and Local Consistent Error (LCE), which are well-known as evaluation metrics 
for natural image segmentation. Although there are limitations in terms of the number of 
segmented regions that can be evaluated and computational cost, a notable advantage of 
these metrics is that supervised evaluation based on human perception can be conducted 
only from the viewpoint of region boundaries.  
Our evaluation metric for intracellular image segmentation is composed of similarity 
measurements between the ground-truth and automatically segmented regions, not only 
from the viewpoint of region boundaries but also from the statistical features in the 
segmented region. The similarity is measured by the distance of the intensity-based and the 
shape-based image features between the two regions. The algorithm that produces the 
minimum distance is defined as the optimal one for a given segmentation task. That is, a 
user can obtain the most accurate segmentation result by using the selected algorithm to 
segment a target that has similar characteristics to the ground-truth. It is well known that, if 
a highly accurate identification is achieved for a feature distribution with a certain 
classification rule (e.g., a discriminant function), the rule is also applicable to a similar 
feature distribution and can lead to accurate classification results (Duda et al., 2007). 
People generally focus on specific characteristics of a region when evaluating a segmented 
region. We consider that image features derived from the pixel intensity and boundary 
shape of the segmentation target are the most important characteristics. We defined gS  as 
the target region of the ground-truth that is supervised by a user and { , }aS S a A= ∈  as the 
automatically segmented regions by given algorithms in a plane (or a space). The similarity 

AR  between those two regions can be calculated as follows: 
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where k is the number of given algorithms. The feature derived from pixel intensity, such as 
texture, differential features, or local correlation, is set to X . In our framework, we measure 
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Adist X X  by using the Bhattacharyya distance, which is an approximate measurement 

between two statistical distributions.  

2.2 Discrete description of boundary shape 
To calculate the shape-based image feature P , we use the set of boundary points 
( , ) ( 0, 1, ..., 1)j jx y j M= −  obtained by sampling sequential boundary pixels to describe the 
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shape of the target region. A complex autoregressive model is applied to these boundary 
points, and this leads to a stable shape description invariant to translation, rotation, and 
scale of patterns (Sekita et al., 1992). First, each boundary point is represented by a complex 
number j j jz x i y= +  (see Fig. 3).  
 

 
Fig. 3. Schematic diagram of the boundary shape description. 

Next, the complex autoregressive model can be applied to each boundary point, which can 
be represented by a linear combination of the preceding m boundary points as follows: 

 
1

,
m

j k j k
k

z b z −
=

= ∑  (3) 

where 1{ }m
k kb =  is defined by minimizing the mean squared error of 2( )mε

 
, which can be 

calculated as follows: 

 
1

2 21 ˆ( ) ( ) .
M

j j
j m

m z z
M

ε
−

=
= −∑  (4) 

According to these definitions, the distance between the two boundaries 
( ) , ( {1, 2})n Nz C n∈ ∈ can be defined as follows: 
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That is, the distances represented in Eq. (5) are defined as the Euclidean distance of each 
coefficient kb  represented in Eq. (3). For example, the distance between boundary shape 0S  
and its deformed shape 1S  is 52.99 and that between 0S  and its deformed shape 2S  is 36.78 
(see Fig. 4). The difference between 0S  and 2S  is less than that between 0S  and 1S , so the 
boundary shape of 2S  is more similar to the shape of 0S  than is the boundary shape of 1S . 
We use this similarity measure to evaluate whether the automatically segmented region is 
similar to the supervised region. 
 

 
Fig. 4 Examples of a boundary shape (left, 0S ) and two deformed shapes (centre, 1S ; right, 

2S ). 

3. Validation on confocal microscope images 
Various types of organelles (e.g., nuclei and mitochondria) and cytoskeletons (e.g., actin and 
tubulin) exist in cells, and they can be roughly grouped as having granular shapes, fibrous 
structures, mesh structures, or other similar features. As a preliminary test of the algorithm 
selection for segmenting substances that have granular shapes, we used the Golgi apparatus 
region marked by a fluorescent protein from botanical yeast images as a segmentation 
target. Figure 5a shows the image taken under a confocal microscope, and Figure 5b shows 
the specified target region by a biologist, that is, the ground-truth. In this test, we evaluated  
 

 
                       (a) Original Image                                                      (b) Ground-truth 

Fig. 5. Experimental images. The line in (b) is the manually specified boundary of the 
segmentation target of the original image (a). 



 Image Segmentation 

 

424 

shape of the target region. A complex autoregressive model is applied to these boundary 
points, and this leads to a stable shape description invariant to translation, rotation, and 
scale of patterns (Sekita et al., 1992). First, each boundary point is represented by a complex 
number j j jz x i y= +  (see Fig. 3).  
 

 
Fig. 3. Schematic diagram of the boundary shape description. 

Next, the complex autoregressive model can be applied to each boundary point, which can 
be represented by a linear combination of the preceding m boundary points as follows: 

 
1

,
m

j k j k
k

z b z −
=

= ∑  (3) 

where 1{ }m
k kb =  is defined by minimizing the mean squared error of 2( )mε

 
, which can be 

calculated as follows: 

 
1

2 21 ˆ( ) ( ) .
M

j j
j m

m z z
M

ε
−

=
= −∑  (4) 

According to these definitions, the distance between the two boundaries 
( ) , ( {1, 2})n Nz C n∈ ∈ can be defined as follows: 

Algorithm Selection Based on a Region Similarity Metric for Intracellular Image Segmentation   

 

425 

 
2

(1) (2)

1
(1,2) .

m

k k
k

Db b b
=

≡ −∑  (5) 

That is, the distances represented in Eq. (5) are defined as the Euclidean distance of each 
coefficient kb  represented in Eq. (3). For example, the distance between boundary shape 0S  
and its deformed shape 1S  is 52.99 and that between 0S  and its deformed shape 2S  is 36.78 
(see Fig. 4). The difference between 0S  and 2S  is less than that between 0S  and 1S , so the 
boundary shape of 2S  is more similar to the shape of 0S  than is the boundary shape of 1S . 
We use this similarity measure to evaluate whether the automatically segmented region is 
similar to the supervised region. 
 

 
Fig. 4 Examples of a boundary shape (left, 0S ) and two deformed shapes (centre, 1S ; right, 

2S ). 

3. Validation on confocal microscope images 
Various types of organelles (e.g., nuclei and mitochondria) and cytoskeletons (e.g., actin and 
tubulin) exist in cells, and they can be roughly grouped as having granular shapes, fibrous 
structures, mesh structures, or other similar features. As a preliminary test of the algorithm 
selection for segmenting substances that have granular shapes, we used the Golgi apparatus 
region marked by a fluorescent protein from botanical yeast images as a segmentation 
target. Figure 5a shows the image taken under a confocal microscope, and Figure 5b shows 
the specified target region by a biologist, that is, the ground-truth. In this test, we evaluated  
 

 
                       (a) Original Image                                                      (b) Ground-truth 

Fig. 5. Experimental images. The line in (b) is the manually specified boundary of the 
segmentation target of the original image (a). 



 Image Segmentation 

 

426 

whether the given algorithms were able to extract the target region with a high degree of 
similarity to the ground-truth from the viewpoint of the previously discussed metric.  
The test segmentation was first conducted for the entire group of multiple given algorithms; 
therefore, there was the same number of segmentation results as algorithms. Next, for all the 
segmentation results, we calculated the intensity-based image features inside the 
automatically segmented region and described the region's boundary shape numerically by 
the methods described in Section 2.2. At the same time, we calculated the intensity-based 
image features of the target region of the ground-truth and described its boundary shape 
numerically. Finally, we computed the similarity between the ground-truth and each 
automatically segmented region by Eq. (1).  
Although numerous methods for extracting intensity-based image features can be applied in 
our framework, we used the two types of image features associated with each pixel as a 
prototype in this preliminary test: normalized pixel intensity and texture-based statistics inside 
the local region in which each pixel is centrally positioned. The latter is calculated as follows: 

 
( ), ,p q

pqX m n f m n=∑∑  (6) 

where m and n are the x-y coordinates inside the image, and ( ),f m n  is the local region 
consisting of a 5 5×  set of pixels. These calculated features are equivalent to moments, and 
in this test, we calculated the normalized moment of order 2 around ( ),m n  as the second 
image feature. 
 The Support Vector Machine (SVM) (Vapnik, 1995) and Approximate Nearest Neighbour 
(ANN) (Arya et al., 1994) were defined as classification rules in this test, and some 
parameters had to be set for each classification rule. We defined three types of parameter 
settings (P1–P3) related only to the kernel functions in SVM and two types of parameter 
settings (P4 and P5) related only to the number of nearest neighbours in ANN. The 
combination of features, classification rules, and parameters produced the 10 segmentation 
algorithms shown in Table 1. In this table, F1 shows the feature derived from pixel intensity, 
F2 shows the feature derived from texture-based statistics, M1 is SVM, and M2 is ANN. 
Figure 6 shows the distance of intensity-based feature distribution between the ground-
truth and each segmented region for each algorithm. Similarly, Figure 7 shows the shape 
  

Algorithm 
Number Feature Classification 

Rule 
Parameter- 

setting 
A1 F1 M1 P1 
A2 F1 M1 P2 
A3 F1 M1 P3 
A4 F2 M1 P1 
A5 F2 M1 P2 
A6 F2 M1 P3 
A7 F1 M2 P4 
A8 F1 M2 P5 
A9 F2 M2 P4 

A10 F2 M2 P5 

Table 1. The 10 experimental algorithms. 
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distance between them. After normalizing each distance, the similarities were computed by 
Eq. (1), and the results indicate that the segmented region of A4 was most similar to the 
ground-truth (Table 2). Therefore, we regard A4 as the most proper segmentation algorithm, 
not only for this task but also for similar tasks, as long as the target has similar 
characteristics to the ground-truth. 
   

 
Algorithm Number 

Fig. 6. Distance between the results of Ai and the ground-truth for the intensity-based image 
features. 
 

 
Algorithm Number 

Fig. 7. Distance between the results of Ai and the ground-truth for the shape-based image 
features. 
 

Algorithm Normalized Performance 
Number Similarity Ranking 

A1 1.48 8 
A2 1.73 10 
A3 1.41 7 
A4 -3.05 1 
A5 -0.52 3 
A6 -0.49 5 
A7 1.13 6 
A8 1.70 9 
A9 -0.50 4 
A10 -2.91 2 

Table 2. Performance ranking of the algorithms by our evaluation metric. 
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Figure 8 shows the target regions segmented automatically by using each algorithm; it is 
clear that several results include isolated regions other than the target region. In those cases, 
we calculated the distance on the basis of only the largest region. For comparison, we also 
show a binarization result provided by the Otsu method (Otsu, 1979) as A11. Because the 
original image was extremely noisy, the binarization result contained false positive errors. 
Algorithm A4, however, was not affected by the noise and achieved a highly accurate 
segmentation. 
 

 
                                     A9                                        A10                              A11 : Binarization 

Fig. 8. Segmentation results for all the algorithms. A4 was determined to be the optimal 
algorithm 
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If we had used only the metric derived from the intensity-based image features, A4, A5, A6, 
A9, and A10 could have been selected as the proper algorithm. Similarly, if we had used 
only the metric derived from the shape-based image features, A4 or A10 could have been 
selected. However, as can clearly be seen in Fig. 8, over-segmentation occurs in A9 and A10. 
Because we used a combination of two metrics based on the image features in the evaluation 
function in Eq. (1), we avoided the risk of choosing a suboptimal algorithm. 
 In addition, although A4-A6 in Fig. 8 appear to be similar to each other, there is a large 
difference in the boundary shape when A4 is compared with A5 and A6 (see Fig. 7), 
especially for the biologists. In the segmented images of A4-A6, the centre-left of each 
segmented region clearly has a larger boundary change than the other regions. Although 
false-negative error occurs in that region in A5 and A6, A4 achieved an accurate 
segmentation reflecting the boundary of the ground-truth (see Fig. 8). Our evaluation 
function did not miss the difference between these results, which appears to be biologically 
important. Even if the differences were trivial, however, the evaluation framework was able 
to select the most proper algorithm to reflect the biologist's intention. 
We conducted a similar test to validate the conventional evaluation metric. GCE proposed 
by Martin et al. (Martin et al., 2001) was used as an example of typically supervised 
evaluation metric. Evaluation for the same images shown in Fig. 8 according to GCE is 
summarized in Table 3. Although more data are required to validate the advantage of our 
proposed evaluation metric, GCE was not able to select A4 as the most proper algorithm for 
this segmentation task in this validation test. 
 

Algorithm Global Consistency Performance 
Number Error Ranking 

A1 0.01326 10 
A2 0.01321 8 
A3 0.01323 9 
A4 0.01181 3 
A5 0.01145 2 
A6 0.01193 4 
A7 0.01315 6 
A8 0.01318 7 
A9 0.01196 5 

A10 0.01129 1 

Table 3. Performance ranking of the algorithms by GCE (Martin et al., 2001). 

Our segmentation framework assumes that images having similar characteristics will show 
similar segmentation results. To validate this concept, we conducted a follow-up 
experiment. Figure 9 shows six sequential images (in depth) taken by the confocal 
microscope of the marked Golgi apparatus. In fact, the image shown in Figure 5 was 
cropped from this set of images. Therefore, the segmentation target inside these six images 
should be similar to that of the previous experiment. We implemented an automatic 
segmentation of these six images by using the same 10 algorithms shown in Table 1. The 
target region (the Golgi apparatus) was clearly correctly segmented from these very noisy 
images in A4, A5, A6, A9, and A10 (Fig. 10). However, A9 and A10 made a crucial mistake 
in the number of segmented regions because target regions overlapped each other, whereas 
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Figure 8 shows the target regions segmented automatically by using each algorithm; it is 
clear that several results include isolated regions other than the target region. In those cases, 
we calculated the distance on the basis of only the largest region. For comparison, we also 
show a binarization result provided by the Otsu method (Otsu, 1979) as A11. Because the 
original image was extremely noisy, the binarization result contained false positive errors. 
Algorithm A4, however, was not affected by the noise and achieved a highly accurate 
segmentation. 
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Fig. 8. Segmentation results for all the algorithms. A4 was determined to be the optimal 
algorithm 
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A4, A5, and A6 achieved an accurate segmentation. The cell biologist who provided the 
ground-truth evaluated the result from A4 and determined that the selection result of this 
algorithm was correct. 
 
 

 
 

Fig. 9. Live-cell images of botanical yeast with marked regions of the Golgi apparatus. z 
indicates the depth position of each image. 
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Fig. 10. Segmentation results of botanical yeast from multi-slice images. The green region in 
the ground-truth image shows the target region for segmentation.  

4. Conclusion 
We have proposed a novel framework for intracellular image segmentation based on 
effective algorithm selection. Selection is conducted by measurement both of similarities of 
intensity-based image features and of boundary shape between the user-supervised region 
and the automatically segmented regions generated by the given pattern classification 
techniques. Our framework assumes that the algorithm, which has powerful segmentation 
ability for a test image, will show good segmentation results for other similar images. That 
is, our framework can select an optimal algorithm to segment a region that has similar 
characteristics to the user-supervised region, even from many images. Furthermore, as 
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shown in the experiment, our framework can rank different algorithms and define the 
parameters of each algorithm. 
 The evaluation function presented here is versatile, but further investigation may reveal 
other functions that are better able to reflect a user's intention. In addition, our framework 
needs to be expanded to be able to better represent image features and boundary shape, and 
it should include more classification rules and a greater variety of parameters. We tested 
only two types of features and two types of classification rules as a prototype framework. 
These types of improvements will lead to segmentation that will have the necessary 
generality to conduct the variety of segmentation tasks required by researchers. As a result, 
we believe that researchers will be released from a labour-intensive and troublesome task 
and able to concentrate on the accumulation of valuable data. 
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1. Introduction   
The analysis of satellite imagery of natural scenes presents many unique problems, and it 
differs from the analysis and segmentation of urban, commercial, or agricultural areas. 
Natural scenes are not structured and cannot be represented easily by regular rules or 
grammars. The appearance of natural objects can vary greatly based on the geographic area, 
the season, the current weather conditions, or the past weather conditions (Soh & Tsatsoulis, 
1999). 
Segmentation is defined as the process that partitions an image into regions that are 
homogeneous according to given criteria (Gonzalez & Woods, 2008). Image segmentation is 
typically used to locate objects and identify boundaries. A number of problems in remote 
sensing require the segmentation of natural spectral classes such as water bodies, clouds or 
forested areas (Lira, 2006). 
A wide variety of image segmentation methods may be found in the literature (Cheng et al., 
2001; Pal & Pal, 1993). The most popular techniques are those based on gray level 
thresholding, including global thresholding (e.g. Otsu’s method) or using local information 
(e.g. co-occurrence matrix). Another class of methods comprise segmentation obtained 
through the detection of edges, including those based on parallel differential operators (e.g. 
Sobel gradient) and the Canny’s method (Canny, 1986). There are also methods that are 
based on finding the regions directly on the image domain (pixel values), where the region 
growing and region split-and-merge approaches are some of the available procedures 
(Gonzalez & Woods, 2008). The segmentation using morphological watershed is another 
approach, based on the feature space (the watershed transform of the image), and it is 
particularly attractive because it combine positive attributes of the methods previous 
referred (Gonzalez & Woods, 2008). 
The coastal areas are zones of primary importance from human and ecological points of 
view. More than half of the world population lives at less than 100 km from a coast, which 
express the importance of coastal areas from the human point of view. The same occurs 
from the ecological point of view, since coastal zones are areas of strong interactions 
between the biosphere, atmosphere, and hydrosphere. An estuary is a partially enclosed 
body of water, where freshwater from rivers and streams flows into the oceans, mixing with 
the seawater. Estuaries and the lands surrounding them are places of transition from land to 
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sea, and from fresh to saltwater. Estuarine outflow plumes are important coastal processes 
whose variable nature can make it difficult to monitor using traditional ship-based surveys. 
Plumes are a mixture of fresh water and river sediment load, with some dilution caused by 
currents. The river plumes are turbid and carry a high load of suspended sediments. Since 
these suspended sediments can be associated with nutrients, pollutants and other materials, 
it is of crucial importance to remotely survey their dispersal in order to assess the 
environmental quality of the regions surrounding river mouths.  
The main idea of this chapter is to describe and evaluate different segmentation methods, in 
order to accurately extract two different estuarine/coastal features: river plumes and sand 
spits. 
Several studies typically use a threshold value for determining the plume boundaries (e.g. 
Otero & Siegel, 2004). Dzwonkowski & Yan (2005) employed a gradient approach (MODIS 
and SeaWiFS data) on account of previous observations of physical differences (e.g. salinity) 
between the estuarine outflow and the ambient water. Valente & Silva (2009) used three 
years of MODIS-Aqua normalized water-leaving radiance to study Tagus estuary turbid 
plume. In the previous examples, the turbid plume was detected only by the backscattering 
characteristics of the surface waters in the vicinity of the estuary mouth. Nezlin et al. (2005) 
used SeaWiFS images to analyze the spatial-temporal dynamics of plumes in the San Pedro 
Shelf (California) and identified the factors that influence the incidence and dispersal 
patterns of plumes. Lira et al. (1997) developed a methodology to characterize the spatial 
distribution of suspended sediments in Pánuco river plume (Gulf of Mexico) employing 
remote sensing and pattern recognition techniques. Several attempts to segment specific 
spectral classes, as open water bodies, have been reported in the literature (Lira, 2006; 
McFeeters, 1996; Daya-Sabar et al., 1995).  
A spit is a ridge or embankment of sediments attached to the land at one end, with the other 
ending in open waters, being younger than the land to which it is attached. The body of the 
spit extends from the land outward for some distance above the water. The size and shape 
of recurves depends on the space available on the inner side of a growing spit (Bird, 2008). 
The evolution of many spits has been modified by the addition of artificial structures. Sand 
spits are ecosystems of great biological interest. Therefore, environmental monitoring using 
remote sensing data and image processing algorithms is essential for assessing the local 
changes in this area. 
A water body is a region (or area) limited by a well-defined topographic boundary. A sand 
spit does not present a well-defined topographic boundary. Moreover, the boundary is not 
static in time, as the majority of the water bodies. Therefore, the extraction of a sand feature 
from a water environment (e.g. an estuary) is a complex task and the segmentation 
techniques developed should be different in several aspects that those applied and 
optimized for the river plumes extraction.  
This chapter aims to address the problem of segmentation of water bodies and sandy bodies 
in an estuarine/coastal environment, in order to accurately extract them through satellite 
data, allowing for further boundaries delineation. Different segmentation algorithms were 
applied and developed/optimized in order to correctly determine the features boundaries 
and accurately estimate the river plume size and sand spit area. Although the only 
considered attribute as output was the dimension, other attributes may be obtained from the 
segmentation result. The use of different types of satellite data (raw images and satellite 
products) is also a challenge and an important contribution of this work. 
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2. Methodology 
The selection of the segmentation approach used to extract an estuarine/coastal 
environmental body, from remote sensing images, should account for the type of feature to 
be extracted. A flowchart which illustrates the proposed approaches is provided in Fig. 1. A 
concise characterization of the study area and the satellite data used in this work is given in 
section 2.1 and corresponding subsections. The procedures applied for the extraction of river 
plumes and sand spits dimensions are briefly described in the section 2.2 and section 2.3, 
respectively.  
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drowned valley river (927 km), draining to the N-W shore of Portugal. The Douro river 
basin is the largest hydrographical basin in the Iberian Peninsula (97,682 km2). Its estuary is 
located in the Western Portuguese coast, subject to the North Atlantic meteorological and 
hydrodynamic conditions.  
Two thirds of the river mouth are protected by a very dynamic sand spit (Cabedelo), 
creating a micro-ecosystem of great biological interest. Cabedelo sand spit is a very dynamic 
morphologic structure. This sand spit has an average length of 800 m, an average width of 
300 m and an area that usually range between 220 000 and 270 000 m2. The Cabedelo acts as 
a barrier, protecting the estuary banks from waves, especially during storms. In the last 
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sea, and from fresh to saltwater. Estuarine outflow plumes are important coastal processes 
whose variable nature can make it difficult to monitor using traditional ship-based surveys. 
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decades, the protection function of the sand spit has been reduced, especially due to the 
retreatment to the interior of the estuary. Therefore, two breakwaters were constructed 
(between 2004 and 2007) to stabilize the river mouth.  
 

 
Fig. 2. Study area location in the Portuguese west coast (adapted from Portela (2008)) 

As previously mentioned and illustrated in Fig. 1, the considered type of satellite data 
depends on the features to be extracted. Accordingly, MERIS data and IKONOS-2 images 
are briefly addressed in the following (2.1.1 and 2.1.2, respectively). 

2.1.1 MERIS data 
In mid-2002 the European Space Agency (ESA) launched the MERIS (MEdium Resolution 
Imaging Spectrometer) hosting satellite ENVISAT. MERIS is an imaging spectrometer that 
measures the solar radiation reflected by the Earth, at a ground spatial resolution of 300 m, 
in 15 spectral bands (390 - 1040 nm), programmable in width and position, in the visible and 
near infrared. The primary mission of MERIS is the measurement of sea color in oceans and 
coastal areas. Knowledge of the sea color can be converted, for instance, into a measurement 
of total suspended matter (TSM) concentration. The algorithm of the ground segment of 
MERIS, used to retrieve the TSM concentration from spectra of radiances and reflectance of 
coastal waters, is an inverse modeling technique, carried out by an artificial neural network 
(Doerffer et al., 1999; Schiller & Doerffer, 2005). The TSM concentration is expressed as a 
concentration in g/m3 or Log10 (g/m3) with a valid range between 0.01-50.00 g/m3.  
The particulate backscatter at 442 nm is deduced from the water-leaving reflectance 
spectrum and converted from optical units (backscatter in m-1) to geophysical units 
(concentration in g/m3), using a fixed conversion factor (equation 1), derived for 
measurements on water samples using a GF/F filter. The TSM concentration for all the 
scenes is given by the following equation (1): 
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 Log10(TSM)=Scale*DV+Offset (1) 

where DV is the digital value (no physical significance) for each pixel, the scale value  is 
0.015748031437397003 and the offset value is -2.01574802398681 (European Space Agency, 
2007). The TSM concentration retrieved from one MERIS scene considered in this study is 
illustrated in Fig. 3. 
 

 
Fig. 3. TSM concentration retrieved from one of the considered MERIS scenes (08/03/2003). 

In this study, a first dataset (assigned hereafter as “Dataset A”) composed by 21 MERIS Full 
Resolution scenes (level 2 data) from March 2003 to January 2005 was considered (data 
provided by ESA), after the rejection of MERIS scenes that present: more than 10% cloud 
cover or invalid TSM quality flag; errors in the acquisition process (data corruption); or 
incoherent related river flow data. The number of scenes in each individual month is highly 
variable, from zero (e.g. August 2003) to 4 (June 2003). The most represented months in the 
considered three years (2003-2005) are May, June and September. Concerning the year 
distribution, the coverage in 2003 and 2004 was almost uniform, but in 2005 only one scene 
was available (Teodoro et al., 2008). 
In the work developed by Teodoro et al. (2009), it was suggested that the accuracy could be 
improved by increasing the dataset. Additionally, a complete seasonal study of the Douro 
river plume would be interesting, for which a one year window of MERIS data is required. 
Therefore, a project was submitted to ESA in order to acquire a one year window (one 
hydrologic year) of MERIS data. A total of 107 MERIS scenes were considered, between 
August 2008 and October 2009 (“Dataset B”). No previous selection was performed. All the 
MERIS scenes available for this period were considered. The future data exclusion criteria will 
be based in the atmospheric conditions and in problems associated to the segmentation stage, 
as described in the section 4.1.2. Due to the fact that breakwaters were constructed between 
March 2004-2007 in the study area, these two datasets (A and B) were analyzed separately. 

2.1.2 IKONOS-2 images 
As already referred, one of the main objectives of this study was to extract the boundaries 
between Douro river and Cabedelo sand spit, and consequently estimate the sand spit area. 
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distribution, the coverage in 2003 and 2004 was almost uniform, but in 2005 only one scene 
was available (Teodoro et al., 2008). 
In the work developed by Teodoro et al. (2009), it was suggested that the accuracy could be 
improved by increasing the dataset. Additionally, a complete seasonal study of the Douro 
river plume would be interesting, for which a one year window of MERIS data is required. 
Therefore, a project was submitted to ESA in order to acquire a one year window (one 
hydrologic year) of MERIS data. A total of 107 MERIS scenes were considered, between 
August 2008 and October 2009 (“Dataset B”). No previous selection was performed. All the 
MERIS scenes available for this period were considered. The future data exclusion criteria will 
be based in the atmospheric conditions and in problems associated to the segmentation stage, 
as described in the section 4.1.2. Due to the fact that breakwaters were constructed between 
March 2004-2007 in the study area, these two datasets (A and B) were analyzed separately. 

2.1.2 IKONOS-2 images 
As already referred, one of the main objectives of this study was to extract the boundaries 
between Douro river and Cabedelo sand spit, and consequently estimate the sand spit area. 
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Therefore, the use of high spatial resolution satellite data is required. Six IKONOS-2 images 
were used in this study, acquired between 2001 and 2007, under the scope of the ESA project 
Earth Observation Program, Category 1 (ID#5899). IKONOS-2 is able to collect black-and-
white (panchromatic) images with approximately 1-meter resolution and multispectral 
imagery with 4-meter resolution. The IKONOS-2 orbit altitude is approximately 681 km and 
inclined 98.1º to the equator, providing sun-synchronous operation.  The main IKONOS-2 
data specifications are given in Table 1. 
 

Band Spectral Range 
(μm) 

Spatial resolution 
(m) 

Swath width 
(km) 

Panchromatic 0.45-0.90 1 
Band 1 (blue) 0.45-0.53 
Band 2 (green) 0.52-0.61 
Band 3 (red) 0.64-0.72 
Band 4 (near infrared) 0.77-0.88 

4 
 

11.3 

Table 1. IKONOS- 2 data specifications: spectral range, spatial resolution and swath width. 

The data were full 11-bit radiometric resolution and were geo-referenced to the Universal 
Transverse Mercator (UTM) coordinate system, Zone 29 North, World Geodetic System 1984 
(WGS84). Information about the time of acquisition, cloud cover, sun angle elevation and 
nominal collection elevation, is given in Table 2.  
 

Date 
(yyyy/mm/dd) 

Acquisition 
time (GMT) 

Cloud cover 
(%) 

Sun angle 
Elevation (º) 

Nominal 
collection 

elevation (º) 
2001/12/24 11:44 0 24.54 69.58 
2004/06/03 11:43 0 68.66 72.90 
2004/07/31 11:55 6 64.61 61.97 
2005/06/03 11:39 0 68.36 84.51 
2005/09/18 11:36 0 49.01 71.7 
2007/06/06 11:39 0 68.42 78.56 

Table 2. Information related to the 6 IKONOS-2 images: date and time of acquisition, cloud 
cover, sun angle elevation and nominal collection elevation. 

According to Helder et al., (2003), it appears to be a relationship between satellite elevation 
angle and geometric accuracy. It was found that higher elevation angles tend to result in 
lower root mean square error (RMSE). The relationship suggests that satellite elevation 
angles above 75° tend to maximize the geometric accuracy of the IKONOS-2 product. 
Terrain correction, even for a relatively ‘flat’ site (as the sand spit), improved RMSE values 
at lower satellite elevation angles (Helder et al., 2003). Since the nominal collection elevation 
values are mostly near or above 75º, there was no need to perform any terrain correction. 

2.2 River plumes 
As referred before, the MERIS product used in this research provides a suspended 
sediments concentration image, which allows for the extraction of objects corresponding to 
river plumes. A saturation of the TSM concentration values (50 g/m3) is verified for most of 
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the MERIS scenes, in the coastal waters (Case 2 waters). Figure 3 provides a selected 
window from MERIS data where the Douro river plume is visible. The proposed 
segmentation approach for the extraction of river plumes is based on an initial filtering, 
followed by one of the two addressed segmentation methods: region-based and watershed. 
The methodology will be briefly described in the following, and further details may be 
found in (Teodoro et al., 2009). 

2.2.1 Initial filtering and segmentation 
An initial filtering step is required in order to avoid noise and to smooth the image (and 
consequently the plume), which is based on a median filter with a 10x10 pixel window. The 
next and crucial step of the methodology is the segmentation stage. Two different 
segmentation methods were applied: watershed segmentation using gradients and region-
based (region growing) segmentation. 

2.2.1.1 Region-based segmentation 

Region-based methods assume that neighboring pixels within the same region should have 
similar values, e.g. intensity, color and texture (Tremeau & Bolel, 1997; Hojjatoleslami & 
Kittler, 1998). Region growing is a procedure that groups pixels or subregions into larger 
regions based on predefined criteria for growth. The basic approach is to start with a set of 
“seed“ points, and these regions grow by appending to each seed those neighboring pixels 
that have predefined properties similiar to the seed (specific ranges of intensity or color). 
The selection of similarity criteria depends not only on the problem under consideration, but 
also on the type of image data available (e.g. color, texture). The stopping criteria for this 
procedure is when no more pixels satisfy the criteria for inclusion in that region. Additional 
criteria that increase the power of region growing algorithm  utilize the concept of size and 
the shape of the region being grown (Gonzalez & Woods, 2008). 
2.2.1.2 Watershed-based segmentation 

The major idea of watershed segmentation is based on the concept of topographic 
representation of image intensity. The gradient magnitude of an image is considered as a 
topographic surface for the watershed transformation. Watershed segmentation also 
embodies other principal image segmentation methods including discontinuity detection, 
thresholding and region processing (Gonzalez & Woods, 2008). Because of these factors, 
watershed segmentation displays more effectiveness and stableness than other 
segmentation algorithms. As already referred, the basic concept of watershed is based on 
visualizing a gray level image into its topographic representation, which includes three 
basic notions: minima, catchment basins and watershed lines. The objective of watershed 
segmentation is to find all of the watershed lines (the highest gray level). The most intuitive 
way to explain watershed segmentation is the Immersion Approach (Chen et al., 2004).  An 
efficient algorithm to implement this approach proposed by Vincent & Soille (1991) involves 
two steps: the first one is called “sorting step” and the other is called “flooding step”. 
Watershed segmentation produces good results for gray level images with different minima 
and catchment basins. For binary images, however, there are only two gray levels 0 and 1 
standing for black and white. If two black blobs are connected together in a binary image, 
only one minimum and catchment basin will be formed in the topographic surface. The 
direct application of the watershed segmentation algorithm generally leads to over-
segmentation of an image due to noise and other local irregularities of the gradient. 
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Therefore, the use of high spatial resolution satellite data is required. Six IKONOS-2 images 
were used in this study, acquired between 2001 and 2007, under the scope of the ESA project 
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angle and geometric accuracy. It was found that higher elevation angles tend to result in 
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angles above 75° tend to maximize the geometric accuracy of the IKONOS-2 product. 
Terrain correction, even for a relatively ‘flat’ site (as the sand spit), improved RMSE values 
at lower satellite elevation angles (Helder et al., 2003). Since the nominal collection elevation 
values are mostly near or above 75º, there was no need to perform any terrain correction. 

2.2 River plumes 
As referred before, the MERIS product used in this research provides a suspended 
sediments concentration image, which allows for the extraction of objects corresponding to 
river plumes. A saturation of the TSM concentration values (50 g/m3) is verified for most of 
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the MERIS scenes, in the coastal waters (Case 2 waters). Figure 3 provides a selected 
window from MERIS data where the Douro river plume is visible. The proposed 
segmentation approach for the extraction of river plumes is based on an initial filtering, 
followed by one of the two addressed segmentation methods: region-based and watershed. 
The methodology will be briefly described in the following, and further details may be 
found in (Teodoro et al., 2009). 

2.2.1 Initial filtering and segmentation 
An initial filtering step is required in order to avoid noise and to smooth the image (and 
consequently the plume), which is based on a median filter with a 10x10 pixel window. The 
next and crucial step of the methodology is the segmentation stage. Two different 
segmentation methods were applied: watershed segmentation using gradients and region-
based (region growing) segmentation. 

2.2.1.1 Region-based segmentation 

Region-based methods assume that neighboring pixels within the same region should have 
similar values, e.g. intensity, color and texture (Tremeau & Bolel, 1997; Hojjatoleslami & 
Kittler, 1998). Region growing is a procedure that groups pixels or subregions into larger 
regions based on predefined criteria for growth. The basic approach is to start with a set of 
“seed“ points, and these regions grow by appending to each seed those neighboring pixels 
that have predefined properties similiar to the seed (specific ranges of intensity or color). 
The selection of similarity criteria depends not only on the problem under consideration, but 
also on the type of image data available (e.g. color, texture). The stopping criteria for this 
procedure is when no more pixels satisfy the criteria for inclusion in that region. Additional 
criteria that increase the power of region growing algorithm  utilize the concept of size and 
the shape of the region being grown (Gonzalez & Woods, 2008). 
2.2.1.2 Watershed-based segmentation 

The major idea of watershed segmentation is based on the concept of topographic 
representation of image intensity. The gradient magnitude of an image is considered as a 
topographic surface for the watershed transformation. Watershed segmentation also 
embodies other principal image segmentation methods including discontinuity detection, 
thresholding and region processing (Gonzalez & Woods, 2008). Because of these factors, 
watershed segmentation displays more effectiveness and stableness than other 
segmentation algorithms. As already referred, the basic concept of watershed is based on 
visualizing a gray level image into its topographic representation, which includes three 
basic notions: minima, catchment basins and watershed lines. The objective of watershed 
segmentation is to find all of the watershed lines (the highest gray level). The most intuitive 
way to explain watershed segmentation is the Immersion Approach (Chen et al., 2004).  An 
efficient algorithm to implement this approach proposed by Vincent & Soille (1991) involves 
two steps: the first one is called “sorting step” and the other is called “flooding step”. 
Watershed segmentation produces good results for gray level images with different minima 
and catchment basins. For binary images, however, there are only two gray levels 0 and 1 
standing for black and white. If two black blobs are connected together in a binary image, 
only one minimum and catchment basin will be formed in the topographic surface. The 
direct application of the watershed segmentation algorithm generally leads to over-
segmentation of an image due to noise and other local irregularities of the gradient. 
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Therefore, it is recommended to smooth the image before starting the watershed 
segmentation, which is performed through the initial filtering step previously described. 

2.2.2 Comparison of the region-based and watershed-based methods 
The considered segmentation methods differ in the sense that region-based segmentation is 
based on the image domain (pixel values), whereas watershed segmentation is based on the 
feature space (the watershed transform of the image). An example of a segmentation result 
using these two approaches for the same MERIS scene is given in Fig. 4.  
 

 
Fig. 4. Plume identification using image segmentation: watershed using gradients obtained 
through Sobel operator (left); region-based segmentation using a seed value of 225 and a 
threshold of 30 (right). 

Although the segmentation results obtained from the application of these two approaches is 
different, they should be (linearly) related in some manner, since the segmentation is related 
to the same object. Fig. 5 illustrates a linear dependence between these two approaches, 
 

 
Fig. 5. Scatterplot of the region- and watershed-based segmentation values presented in 
Table 3. The solid regression line is defined as y=9241.77+1.00x (r=0.57 with p-value=0.007), 
and is associated to the 21 points. The dashed regression line is defined as y=8930.85+0.83x 
(r=0.71 with p-value=0.001), and is associated to the remaining 19 points obtained after 
excluding the two higher values of region-based segmentation (images of 18-06-2003 and 14-
05-2003). 
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supported by a positive and significant correlation of 0.71 between them, where the slope of 
the regression line is 0.83. This reinforces that, although the shape of the plume is different 
when using these two segmentation approaches, they produce similar plume sizes related 
by a scale ratio (0.83 in this example). 
This procedure of extracting the river plume object through image segmentation techniques 
has important practical applications. For instance, the reduction of the river sediment 
supply may be one of the main causes of the erosion process that has been affecting the 
Portuguese Northwest coast. The relationship between the river plume size and Cabedelo 
sand spit area is another challenge of this analysis. 

2.3 Sand spits 
Two segmentation approaches are addressed for the extraction of sand spits from high 
spatial resolution images, which are different from those previously described for river 
plumes extraction. The first is a new proposed methodology and is based on global 
thresholding refined through detected edges, whereas the second approach consists in a 
multiresolution segmentation (object-based). The segmentation approaches are applicable to 
a single band image, for which the NIR or panchromatic bands of the IKONOS-2 images are 
the most adequate. The NIR is the spectral band which provides better contrast between 
water and land, whereas the panchromatic band has the advantage of providing a better 
spatial resolution, and consequently a more accurate delineation of the sand spit. Several 
aspects regarding the application of these techniques should be taken into account, which 
are addressed in detail in the following. 

2.3.1 Global thesholding refined through detected edges 
The proposed approach for the extraction of sand spits is a new methodology, which 
presents considerable potential for later automation in the future. It consists on histogram 
global thresholding of the original image through the Otsu method (Otsu, 1979), followed 
by a refinement through detected edges. Different approaches for edge detection were 
tested and are addressed in the following.  

2.3.1.1 Global thresholding 

The histograms of IKONOS-2 images, representing a sand spit and a small neighborhood, 
are typically associated to a mode on a histogram with bimodal distribution (an example is 
illustrated in Fig. 6a and Fig. 6b). The Otsu’s method is a nonparametric and unsupervised 
method of automatic threshold selection for image segmentation, having particular 
importance under the scope of bimodal histograms (Otsu, 1979).  It assumes that only the 
gray-level histogram of the image is available, without other a priori knowledge, allowing 
for an unsupervised segmentation of an image. It is based on dichotomizing the pixels of the 
image, transforming the original image to a binary image. The determination of the optimal 
threshold k* is performed through an approach based on probabilities computation. It is 
followed by the computation of discriminant criterion measures (or measures of class 
separability), generally consisting on finding the gray level k* for which a discriminant 
function η(k) corresponds to its maximum. It is equivalent to maximize the separability of 
the resultant classes in the binary image. This method is widely known, and further details 
may be found in (Otsu, 1979). An example of global thresholding is illustrated in Fig. 7a, 
regarding the image in Fig. 6a.  
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Therefore, it is recommended to smooth the image before starting the watershed 
segmentation, which is performed through the initial filtering step previously described. 

2.2.2 Comparison of the region-based and watershed-based methods 
The considered segmentation methods differ in the sense that region-based segmentation is 
based on the image domain (pixel values), whereas watershed segmentation is based on the 
feature space (the watershed transform of the image). An example of a segmentation result 
using these two approaches for the same MERIS scene is given in Fig. 4.  
 

 
Fig. 4. Plume identification using image segmentation: watershed using gradients obtained 
through Sobel operator (left); region-based segmentation using a seed value of 225 and a 
threshold of 30 (right). 

Although the segmentation results obtained from the application of these two approaches is 
different, they should be (linearly) related in some manner, since the segmentation is related 
to the same object. Fig. 5 illustrates a linear dependence between these two approaches, 
 

 
Fig. 5. Scatterplot of the region- and watershed-based segmentation values presented in 
Table 3. The solid regression line is defined as y=9241.77+1.00x (r=0.57 with p-value=0.007), 
and is associated to the 21 points. The dashed regression line is defined as y=8930.85+0.83x 
(r=0.71 with p-value=0.001), and is associated to the remaining 19 points obtained after 
excluding the two higher values of region-based segmentation (images of 18-06-2003 and 14-
05-2003). 
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supported by a positive and significant correlation of 0.71 between them, where the slope of 
the regression line is 0.83. This reinforces that, although the shape of the plume is different 
when using these two segmentation approaches, they produce similar plume sizes related 
by a scale ratio (0.83 in this example). 
This procedure of extracting the river plume object through image segmentation techniques 
has important practical applications. For instance, the reduction of the river sediment 
supply may be one of the main causes of the erosion process that has been affecting the 
Portuguese Northwest coast. The relationship between the river plume size and Cabedelo 
sand spit area is another challenge of this analysis. 

2.3 Sand spits 
Two segmentation approaches are addressed for the extraction of sand spits from high 
spatial resolution images, which are different from those previously described for river 
plumes extraction. The first is a new proposed methodology and is based on global 
thresholding refined through detected edges, whereas the second approach consists in a 
multiresolution segmentation (object-based). The segmentation approaches are applicable to 
a single band image, for which the NIR or panchromatic bands of the IKONOS-2 images are 
the most adequate. The NIR is the spectral band which provides better contrast between 
water and land, whereas the panchromatic band has the advantage of providing a better 
spatial resolution, and consequently a more accurate delineation of the sand spit. Several 
aspects regarding the application of these techniques should be taken into account, which 
are addressed in detail in the following. 

2.3.1 Global thesholding refined through detected edges 
The proposed approach for the extraction of sand spits is a new methodology, which 
presents considerable potential for later automation in the future. It consists on histogram 
global thresholding of the original image through the Otsu method (Otsu, 1979), followed 
by a refinement through detected edges. Different approaches for edge detection were 
tested and are addressed in the following.  

2.3.1.1 Global thresholding 

The histograms of IKONOS-2 images, representing a sand spit and a small neighborhood, 
are typically associated to a mode on a histogram with bimodal distribution (an example is 
illustrated in Fig. 6a and Fig. 6b). The Otsu’s method is a nonparametric and unsupervised 
method of automatic threshold selection for image segmentation, having particular 
importance under the scope of bimodal histograms (Otsu, 1979).  It assumes that only the 
gray-level histogram of the image is available, without other a priori knowledge, allowing 
for an unsupervised segmentation of an image. It is based on dichotomizing the pixels of the 
image, transforming the original image to a binary image. The determination of the optimal 
threshold k* is performed through an approach based on probabilities computation. It is 
followed by the computation of discriminant criterion measures (or measures of class 
separability), generally consisting on finding the gray level k* for which a discriminant 
function η(k) corresponds to its maximum. It is equivalent to maximize the separability of 
the resultant classes in the binary image. This method is widely known, and further details 
may be found in (Otsu, 1979). An example of global thresholding is illustrated in Fig. 7a, 
regarding the image in Fig. 6a.  
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Fig. 6. (a) Panchromatic band of the IKONOS-2 image from 2005/06/03; (b) Histogram of 
the image in (a), with k*= 58 and η(k*)= 0.735; (c) Panchromatic band of the IKONOS-2 
image from 2004/06/03; (d) Histogram of the image in (c), with k*= 77 and η(k*)= 0.605. 
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Fig. 7. (a) Global thresholding of the image in Fig. 6a through the Otsu’s method; (b) Edges 
of the image in Fig. 6a obtained through the Canny edge detector; (c) Final extraction of the 
sand spit in Fig. 6a, through the refinement of the global thresholding in (a) through the 
edges represented in (b). 

2.3.1.2 Edges detection and segmentation refinement 

The previous step of global thresholding allows for an initial segmentation of the image. 
However, the sand spit is frequently still linked to other regions of the image, or to spurious 
pixels. Therefore, there is the need to perform a refinement on the result of the global 
thresholding, separating the sand spit from other parts of the image. A refinement of the 
sand spit delineation is proposed, performed through the application of a binary image 
obtained from detected edges. Several edge detection methods may be found in the 
literature, where the Sobel and Canny methods are among the most known (Gonzalez & 
Woods, 2008). The Sobel is mainly based on computing the partial derivatives ∂f/∂x and ∂f/∂y 
of the image, through the application of filter masks, returning edges at those points where 
the gradient of the image is maximum. The Canny edge detector is a more complex 
algorithm, and is based on three basic objectives: low error rate; edge points should be well 
localized; and single edge point response. Further details of this algorithm may be found in 
Canny (1986). Based on our experiments, the Canny edge detector, with a standard-
deviation of the Gaussian filter equal to 0.5, presented better performance. Therefore, the 
edges used for further segmentation refinement are obtained in this manner. The edges 
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Fig. 7. (a) Global thresholding of the image in Fig. 6a through the Otsu’s method; (b) Edges 
of the image in Fig. 6a obtained through the Canny edge detector; (c) Final extraction of the 
sand spit in Fig. 6a, through the refinement of the global thresholding in (a) through the 
edges represented in (b). 
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The previous step of global thresholding allows for an initial segmentation of the image. 
However, the sand spit is frequently still linked to other regions of the image, or to spurious 
pixels. Therefore, there is the need to perform a refinement on the result of the global 
thresholding, separating the sand spit from other parts of the image. A refinement of the 
sand spit delineation is proposed, performed through the application of a binary image 
obtained from detected edges. Several edge detection methods may be found in the 
literature, where the Sobel and Canny methods are among the most known (Gonzalez & 
Woods, 2008). The Sobel is mainly based on computing the partial derivatives ∂f/∂x and ∂f/∂y 
of the image, through the application of filter masks, returning edges at those points where 
the gradient of the image is maximum. The Canny edge detector is a more complex 
algorithm, and is based on three basic objectives: low error rate; edge points should be well 
localized; and single edge point response. Further details of this algorithm may be found in 
Canny (1986). Based on our experiments, the Canny edge detector, with a standard-
deviation of the Gaussian filter equal to 0.5, presented better performance. Therefore, the 
edges used for further segmentation refinement are obtained in this manner. The edges 
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computed by the Canny edge detector are then used on a clipping operation of the 
segmentation previously obtained on global thresholding. In the case that more than one 
region is produced, and accepting the initial assumption that the considered scene only 
covers the sand spit and a small neighborhood, the object with largest area is assumed to 
correspond to the sand spit. As a final segmentation step, the segmentation is improved 
through a morphological operation, consisting on filling the holes of the segmented object. 
An application example of the Canny edge detector is provided in Fig. 7b, and the final 
result is illustrated in Fig. 7c. 

2.3.1.3 Evaluation of the global thresholding quality 

The global thresholding becomes a simple and useful approach for extracting sand spits, in 
the case that the histogram of the image presents a bimodal shape. The adequacy of the 
image to global thresholding using the Otsu’s method may be evaluated through the 
effectiveness metric η(k) proposed in (Otsu, 1979), where k is the gray level. The measure 
η(k) is always smooth and unimodal, assumes values between 0 and 1, and the optimal gray 
level k* for thresholding the image corresponds to the maximum of η(k). The segmentation 
will be more meaningful as long as η(k*) is near from 1. In Fig. 6 two panchromatic bands of 
different IKONOS-2 images are illustrated, together with their corresponding histograms 
and values of η(k*). 
An example of 15 combinations of the sand spit area estimation error and their corresponding 
values of η(k*) is illustrated in Fig. 8. This example also provides an example of a possible 
criterion to be defined (dashed lines representing an acceptance region), which allows for 
automatically reject those segmentations which may lead to errors higher than 10%. Further 
research on this topic may allow for defining objective criteria, in order to evaluate whether an 
IKONOS-2 image is or not adequate for global thresholding, prior to its application. 
 

 
Fig. 8. Effectiveness metric η(k*) of Otsu’s method as a function of the error obtained in the 
sand spit area estimation, considering the four bands of the 6 IKONOS-2 images described 
in Table 2, which led to sand spit area estimates with an error below 20% (n=15). The dashed 
lines represent a possible validation threshold based on η(k*) values higher than 0.68, 
regarding the achievement of errors below 10%. 
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2.3.2 Multiresolution segmentation 
The second approach was based in the multiresolution segmentation method (followed by 
image-based classification in eCognition® software). The multiresolution segmentation 
groups areas of similar pixel values into objects. Consequently homogeneous areas result in 
larger objects, heterogeneous areas in smaller ones. In multiresolution segmentation, the 
homogeneity criterion is used to determine which heterogeneity attributes of image objects 
are to be minimized as a result of a segmentation run. Three criteria are used to describe 
image object heterogeneities:  color,  smoothness and compactness (Baatz et al., 2001). The 
smoothness and the compactness criteria are additionally summarized to the shape 
criterion. The composition of the entire homogeneity criterion based on the specific criteria 
can easily be defined by assigning weights to each of the specific criteria. The 
multiresolution segmentation algorithm consecutively merges pixels or existing image 
objects. Thus it is a bottom-up segmentation algorithm based on a pairwise region merging 
technique. Multiresolution segmentation is an optimization procedure which, for a given 
number of image objects, minimizes the average heterogeneity and maximizes their 
respective homogeneity. Scale parameter determines the average image object size and is an 
important parameter of this algorithm. The scale parameter is used to determine the upper 
limit for a permitted change of heterogeneity throughout the segmentation process (Rahman 
& Saha, 2008). By applying different scale parameter and color/shape combinations, the 
user is able to create a hierarchical network of image objects (Baatz et al., 2001). After 
segmentation, all image objects are automatically linked to a network in which each image 
object knows its neighbors, thus affording important context information for the 
classification step. In the second step the image segments are classified by generating class 
hierarchy, which is based on fuzzy logic (Rahman & Saha, 2008). 

3. Results and discussion 
The previously mentioned image segmentation techniques were applied to extract the 
Douro river plume and Cabedelo sand spit, both located in the Douro river, city of Porto, 
Portugal. 

3.1 Douro river plume 
With respect to the extraction of the Douro river plume, as previously mentioned in 2.1.1, two 
datasets presenting different characteristics were considered. Between March 2004-2007, two 
breakwaters were constructed in the Douro river estuary. Therefore, since this is associated to 
considerable changes in the river estuary dynamics, these two datasets were firstly analysed 
separately in 3.1.1 and 3.1.2. The comparison of the results obtained with the datasets A and B 
is given in 3.1.3. The relationship between the river plume size and the water volume, through 
models previously established in (Teodoro et al., 2009), is explored in 3.1.4. 

3.1.1 Dataset A 
As previously described in 2.1.1, the dataset A is composed by twenty-one MERIS scenes of 
the study area, covering 20 months from 2003 to 2005. The methodology used in the 
determination of the Douro river plume (DRP) size was implemented in Matlab® (Gonzalez 
et al., 2004). The watershed segmentation was applied using the Sobel filter in the gradient 
computation before the watershed transform (Gonzalez & Woods, 2008). The region 
growing segmentation was applied considering as region seeds (S) pixels with DN value of 



 Image Segmentation 

 

446 

computed by the Canny edge detector are then used on a clipping operation of the 
segmentation previously obtained on global thresholding. In the case that more than one 
region is produced, and accepting the initial assumption that the considered scene only 
covers the sand spit and a small neighborhood, the object with largest area is assumed to 
correspond to the sand spit. As a final segmentation step, the segmentation is improved 
through a morphological operation, consisting on filling the holes of the segmented object. 
An application example of the Canny edge detector is provided in Fig. 7b, and the final 
result is illustrated in Fig. 7c. 

2.3.1.3 Evaluation of the global thresholding quality 

The global thresholding becomes a simple and useful approach for extracting sand spits, in 
the case that the histogram of the image presents a bimodal shape. The adequacy of the 
image to global thresholding using the Otsu’s method may be evaluated through the 
effectiveness metric η(k) proposed in (Otsu, 1979), where k is the gray level. The measure 
η(k) is always smooth and unimodal, assumes values between 0 and 1, and the optimal gray 
level k* for thresholding the image corresponds to the maximum of η(k). The segmentation 
will be more meaningful as long as η(k*) is near from 1. In Fig. 6 two panchromatic bands of 
different IKONOS-2 images are illustrated, together with their corresponding histograms 
and values of η(k*). 
An example of 15 combinations of the sand spit area estimation error and their corresponding 
values of η(k*) is illustrated in Fig. 8. This example also provides an example of a possible 
criterion to be defined (dashed lines representing an acceptance region), which allows for 
automatically reject those segmentations which may lead to errors higher than 10%. Further 
research on this topic may allow for defining objective criteria, in order to evaluate whether an 
IKONOS-2 image is or not adequate for global thresholding, prior to its application. 
 

 
Fig. 8. Effectiveness metric η(k*) of Otsu’s method as a function of the error obtained in the 
sand spit area estimation, considering the four bands of the 6 IKONOS-2 images described 
in Table 2, which led to sand spit area estimates with an error below 20% (n=15). The dashed 
lines represent a possible validation threshold based on η(k*) values higher than 0.68, 
regarding the achievement of errors below 10%. 
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2.3.2 Multiresolution segmentation 
The second approach was based in the multiresolution segmentation method (followed by 
image-based classification in eCognition® software). The multiresolution segmentation 
groups areas of similar pixel values into objects. Consequently homogeneous areas result in 
larger objects, heterogeneous areas in smaller ones. In multiresolution segmentation, the 
homogeneity criterion is used to determine which heterogeneity attributes of image objects 
are to be minimized as a result of a segmentation run. Three criteria are used to describe 
image object heterogeneities:  color,  smoothness and compactness (Baatz et al., 2001). The 
smoothness and the compactness criteria are additionally summarized to the shape 
criterion. The composition of the entire homogeneity criterion based on the specific criteria 
can easily be defined by assigning weights to each of the specific criteria. The 
multiresolution segmentation algorithm consecutively merges pixels or existing image 
objects. Thus it is a bottom-up segmentation algorithm based on a pairwise region merging 
technique. Multiresolution segmentation is an optimization procedure which, for a given 
number of image objects, minimizes the average heterogeneity and maximizes their 
respective homogeneity. Scale parameter determines the average image object size and is an 
important parameter of this algorithm. The scale parameter is used to determine the upper 
limit for a permitted change of heterogeneity throughout the segmentation process (Rahman 
& Saha, 2008). By applying different scale parameter and color/shape combinations, the 
user is able to create a hierarchical network of image objects (Baatz et al., 2001). After 
segmentation, all image objects are automatically linked to a network in which each image 
object knows its neighbors, thus affording important context information for the 
classification step. In the second step the image segments are classified by generating class 
hierarchy, which is based on fuzzy logic (Rahman & Saha, 2008). 

3. Results and discussion 
The previously mentioned image segmentation techniques were applied to extract the 
Douro river plume and Cabedelo sand spit, both located in the Douro river, city of Porto, 
Portugal. 

3.1 Douro river plume 
With respect to the extraction of the Douro river plume, as previously mentioned in 2.1.1, two 
datasets presenting different characteristics were considered. Between March 2004-2007, two 
breakwaters were constructed in the Douro river estuary. Therefore, since this is associated to 
considerable changes in the river estuary dynamics, these two datasets were firstly analysed 
separately in 3.1.1 and 3.1.2. The comparison of the results obtained with the datasets A and B 
is given in 3.1.3. The relationship between the river plume size and the water volume, through 
models previously established in (Teodoro et al., 2009), is explored in 3.1.4. 

3.1.1 Dataset A 
As previously described in 2.1.1, the dataset A is composed by twenty-one MERIS scenes of 
the study area, covering 20 months from 2003 to 2005. The methodology used in the 
determination of the Douro river plume (DRP) size was implemented in Matlab® (Gonzalez 
et al., 2004). The watershed segmentation was applied using the Sobel filter in the gradient 
computation before the watershed transform (Gonzalez & Woods, 2008). The region 
growing segmentation was applied considering as region seeds (S) pixels with DN value of 
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225, and a threshold (T) of 30. These parameters were obtained on the basis of an iterative 
process (Teodoro et al., 2009). 
After the two segmentation methods described were applied to the MERIS scenes, the small 
meaningless regions are further excluded, as well as those regions which correspond to 
rivers and water bodies, leading to the final segmentation result of the river plume. The 
number of pixels of the remaining regions were summed, resulting in the plume size 
(Teodoro et al., 2009). An example of a segmented image using both methods is presented in 
Fig. 4. The values of the plume size obtained through watershed and region-based image 
segmentation for the 21 MERIS processed scenes, are presented in Table 3. 
 

Plume size Plume size Date 
(dd-mm-yyyy) Watershed Region-

based 

Date 
(dd-mm-yyyy) Watershed Region -

based 
08-03-2003 16 040 25 040 20-01-2004 8 604 13 012 
14-05-2003 13 753 36 493 11-02-2004 5 197 15 461 
26-05-2003 9 419 14 324 09-04-2004 7 238 23 144 
05-06-2003 1 971 7 965 12-04-2004 2 423 15 361 
18-06-2003 6 708 33 519 17-05-2004 9 510 17 321 
04-07-2003 11 537 13 126 14-08-2004 5 192 7 090 
10-07-2003 8 515 14 617 15-09-2004 4 641 16 677 
12-09-2003 11 069 21 017 27-09-2004 18 141 24 893 
18-09-2003 8 190 13 271 05-11-2004 8 386 15 595 
07-10-2003 1 486 11 734 20-01-2005 8 330 16 168 
10-12-2003 4 655 9 115  

Table 3. The Douro river plume size values (in number of pixels), obtained through 
watershed and region-based image segmentation methods, applied to dataset A. 

The DRP size obtained through the region-based segmentation (image domain method) led 
to better results, since its nature allows for a more realistic delineation of the plume (Fig. 4). 
Since watershed only identifies sharper transitions on the image (it is a feature domain 
method), the plume is not entirely delineated. The considered segmentation methods 
retrieved significantly different values, as can be seen in Table 3. For instance, the plume 
estimation for 07-10-2003 image was 1 486 pixels for the watershed approach and 11 734 
pixels for region-based approach. Although the values obtained through these two 
approaches are linearly related (as previously analyzed in 2.2.2), the differences found 
between the two segmentation methods are further explored in 3.1.3 and 3.1.4.  

3.1.2 Dataset B: one hydrologic year 
With the aim of a complete seasonal study of the DRP morphology, one hydrologic year 
(between August 2008 and October 2009) composed by 107 MERIS scenes (dataset B) were 
acquired through an ESA funded project. The previous segmentation methods applied to 
dataset A were firstly applied for the MERIS scenes. In a deeper analysis, it was verified that 
some MERIS scenes were not adequate for the segmentation purposes. The main reason is 
related to the presence of clouds or other atmospherics effects that could interfere with the 
plume extraction. The identification of the images presenting some of these problems was 
manually performed, resulting in 82 images. According to the work of Teodoro et al., (2009), 
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the region-based approach is preferable against the watershed segmentation, as the later 
provides a less accurate delineation of the plume. Therefore, the focus of the segmentation 
methods applied to dataset B relied on the region growing segmentation. 
In the previous analysis, the TSM values in the range 0–50 g/m3 were rescaled to 8-bit (0-
255). However, the region seed (S) and threshold (T) considered in the analysis of dataset A 
were not adequate for dataset B, due to slight changes on the content of the MERIS scenes. 
Therefore, in this approach, it was decided to use the TSM concentration values, which 
required an adaptation of the region seed (S) and threshold (T) considered in the previous 
work.  
The adopted methodology consisted in the development and implementation of an 
algorithm to automatically select the region seed (S) and the threshold (T) values for each 
image. In this algorithm two options may be used to select the region seed (S) and the 
threshold (T) values. The first option consisted in assuming S as the centroid value and T as 
S/2, whereas the second option is based on assuming S as the mean value of the plume 
region and T as half the maximum. The second option led to better results, since its nature 
allows for a more realistic and accurate delineation of the plume (Fig. 9). The average, 
maximum, minimum and standard deviation values (in number of pixels) of the plume size, 
obtained through region-based image segmentation method (options 1 and 2) applied to 
dataset B, are presented in Table 4. 
 

 
Fig. 9. Example of the segmentation with the developed region growing method (second 
option). 

 

 Region-based 
Option 1 

Region-based 
Option 2 

Average 391 183
Maximum 997 715
Minimum 27 3

Stdv 250 123

Table 4. Average, maximum, minimum and standard deviation (Stdv) values obtained 
through the option 1 and option 2 region-based segmentation methods for one hydrologic 
year of MERIS scenes. 

The two segmentation options applied led to different results in terms of the size of the 
plume. The estimation of the plume size through option 1 led to highest values when 
compared to the option 2, for all the processed MERIS images. 
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225, and a threshold (T) of 30. These parameters were obtained on the basis of an iterative 
process (Teodoro et al., 2009). 
After the two segmentation methods described were applied to the MERIS scenes, the small 
meaningless regions are further excluded, as well as those regions which correspond to 
rivers and water bodies, leading to the final segmentation result of the river plume. The 
number of pixels of the remaining regions were summed, resulting in the plume size 
(Teodoro et al., 2009). An example of a segmented image using both methods is presented in 
Fig. 4. The values of the plume size obtained through watershed and region-based image 
segmentation for the 21 MERIS processed scenes, are presented in Table 3. 
 

Plume size Plume size Date 
(dd-mm-yyyy) Watershed Region-

based 

Date 
(dd-mm-yyyy) Watershed Region -

based 
08-03-2003 16 040 25 040 20-01-2004 8 604 13 012 
14-05-2003 13 753 36 493 11-02-2004 5 197 15 461 
26-05-2003 9 419 14 324 09-04-2004 7 238 23 144 
05-06-2003 1 971 7 965 12-04-2004 2 423 15 361 
18-06-2003 6 708 33 519 17-05-2004 9 510 17 321 
04-07-2003 11 537 13 126 14-08-2004 5 192 7 090 
10-07-2003 8 515 14 617 15-09-2004 4 641 16 677 
12-09-2003 11 069 21 017 27-09-2004 18 141 24 893 
18-09-2003 8 190 13 271 05-11-2004 8 386 15 595 
07-10-2003 1 486 11 734 20-01-2005 8 330 16 168 
10-12-2003 4 655 9 115  

Table 3. The Douro river plume size values (in number of pixels), obtained through 
watershed and region-based image segmentation methods, applied to dataset A. 

The DRP size obtained through the region-based segmentation (image domain method) led 
to better results, since its nature allows for a more realistic delineation of the plume (Fig. 4). 
Since watershed only identifies sharper transitions on the image (it is a feature domain 
method), the plume is not entirely delineated. The considered segmentation methods 
retrieved significantly different values, as can be seen in Table 3. For instance, the plume 
estimation for 07-10-2003 image was 1 486 pixels for the watershed approach and 11 734 
pixels for region-based approach. Although the values obtained through these two 
approaches are linearly related (as previously analyzed in 2.2.2), the differences found 
between the two segmentation methods are further explored in 3.1.3 and 3.1.4.  

3.1.2 Dataset B: one hydrologic year 
With the aim of a complete seasonal study of the DRP morphology, one hydrologic year 
(between August 2008 and October 2009) composed by 107 MERIS scenes (dataset B) were 
acquired through an ESA funded project. The previous segmentation methods applied to 
dataset A were firstly applied for the MERIS scenes. In a deeper analysis, it was verified that 
some MERIS scenes were not adequate for the segmentation purposes. The main reason is 
related to the presence of clouds or other atmospherics effects that could interfere with the 
plume extraction. The identification of the images presenting some of these problems was 
manually performed, resulting in 82 images. According to the work of Teodoro et al., (2009), 
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the region-based approach is preferable against the watershed segmentation, as the later 
provides a less accurate delineation of the plume. Therefore, the focus of the segmentation 
methods applied to dataset B relied on the region growing segmentation. 
In the previous analysis, the TSM values in the range 0–50 g/m3 were rescaled to 8-bit (0-
255). However, the region seed (S) and threshold (T) considered in the analysis of dataset A 
were not adequate for dataset B, due to slight changes on the content of the MERIS scenes. 
Therefore, in this approach, it was decided to use the TSM concentration values, which 
required an adaptation of the region seed (S) and threshold (T) considered in the previous 
work.  
The adopted methodology consisted in the development and implementation of an 
algorithm to automatically select the region seed (S) and the threshold (T) values for each 
image. In this algorithm two options may be used to select the region seed (S) and the 
threshold (T) values. The first option consisted in assuming S as the centroid value and T as 
S/2, whereas the second option is based on assuming S as the mean value of the plume 
region and T as half the maximum. The second option led to better results, since its nature 
allows for a more realistic and accurate delineation of the plume (Fig. 9). The average, 
maximum, minimum and standard deviation values (in number of pixels) of the plume size, 
obtained through region-based image segmentation method (options 1 and 2) applied to 
dataset B, are presented in Table 4. 
 

 
Fig. 9. Example of the segmentation with the developed region growing method (second 
option). 

 

 Region-based 
Option 1 

Region-based 
Option 2 

Average 391 183
Maximum 997 715
Minimum 27 3

Stdv 250 123

Table 4. Average, maximum, minimum and standard deviation (Stdv) values obtained 
through the option 1 and option 2 region-based segmentation methods for one hydrologic 
year of MERIS scenes. 

The two segmentation options applied led to different results in terms of the size of the 
plume. The estimation of the plume size through option 1 led to highest values when 
compared to the option 2, for all the processed MERIS images. 
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3.1.3 Comparison of segmentation results obtained from datasets A and B 
Despite the slight changes on the selection of the region-growing parameters S and T, it was 
observed that the river plume size values obtained for dataset B (Table 4) were considerable 
lower than the values estimated for dataset A scenes (Table 3). This fact can be justified by 
the construction of two breakwaters between 2004 and 2007, in order to stabilize the Douro 
river mouth, and with the reduction of water flows and consequently the reduction of the 
amount of sediments injected into the sea (plume). This may lead in the future to an increase 
of the sand spit, and deserve further research on this topic. 

3.1.4 Relation of river plume size with the water volume 
The plume size had been modeled by several authors through satellite data by comparing 
the quantitative relations between rainstorm and plume size (Nezlin et al., 2005). Others had 
analyzed the effect of local wind and water discharge on the river plume (Choi & Wilkin, 
2007). In this stage of the work, a simple linear regression model of the river plume (RP) on 
the water volume (Eq. 2) was firstly considered:  

 RP (ti) = a0 + a1*V(ti)+ε (2) 

where ε is the error associated to the proposed model, ti is the present time of the considered 
image, a0  and a1 are the linear regression coefficients and V is the water volume. The water 
volume corresponds to the discharged water flow for the last downstream hydroelectric 
power plant of the Douro river (Crestuma) for each MERIS scene acquisition date. Given the 
lower river discharges in the summer, a refined analysis was performed considering 
separately the summer period (comprising 8 and 24 scenes regarding datasets A and B, 
respectively) associated to lower river discharges, and the rest of the year (the remaining 13 
and 58 scenes for datasets A and B, respectively). 
With respect to the time period of dataset A, a significant seasonal effect was verified on the 
relation between the RP and the water volume. Therefore, considering the model presented 
in Eq. 2 and excluding the summer period, a significant and positive correlation of 0.664 
(p−value=0.013) was found between the RP obtained from watershed segmentation and 
water volume. For region-based segmentation, the correlation coefficient was 0.524 
(p−value=0.066) for the same period. No significant correlations (α=5%) were found 
regarding the summer period. The lack of significant correlation in the summer period may 
be justified by the lower and time inconstant discharges at Crestuma dam, as illustrated in 
Fig. 10. The accuracy of this model was quantified by the mean percentage variation (MPV) 
of each estimated value (ei, obtained through the model in (2)) to the correspondent 
computed value (ci, obtained from segmentation), as presented in Eq. (3):  

 1
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i
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The MPV for watershed was 67.4% and for region-based segmentation was 28.5%. This 
suggests that the plume size obtained from the region-based segmentation may be more 
appropriate than the watershed-based segmentation, when modeling the size of the plume 
as being linearly related to the water volume. 
The second proposed model consists in the incorporation of several variables (last available 
plume, water volume, tide height, and wind speed), presumed to be related to the plume 
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Fig. 10. Water volume (m3/s) regarding the datasets A and B, considering all dates together 
(“All”), all year excluding the summer period (“All-Summer”) and the Summer period 
(“Summer”). 

size. More details about this model may be found in Teodoro et al., (2009). Ignoring the 
seasonal effects the MPV for watershed was 65.4% and for region-based segmentation was 
34.9%. The results of the two models proposed attest the best performance of the region-
based segmentation method in the extraction of the Douro river plume size (Teodoro et al., 
2009). 
A better temporal resolution could increase significantly the performance of the two 
proposed models, considering and ignoring the seasonal effects. Therefore, the same 
procedure was applied to the dataset B (one hydrologic year of MERIS scenes). It was 
verified a significant seasonal effect on the relation between the RP and the water volume. 
Considering the model presented in Eq. 2 and excluding the summer period, a moderate 
and positive correlation of 0.45 (p−value=0.019) was found between the RP obtained from 
region-based segmentation (option 2) and water volume. No significant correlations (α=5%) 
were found regarding the summer period. Considering all the data, the best result were 
found for region-based segmentation (option 2) with a positive correlation of 0.37 
(p−value=0.003). A more robust model incorporating other variables, as last available 
plume, water volume, tide height, and wind speed, will be established in order to improve 
the results. Moreover, a detection of outlying estimations will be performed. An outlier is a 
value in a dataset which appears to be inconsistent with the remainder of that set of data. 
The plume derived from MERIS data represents river Douro plume only when the river 
flow exceeds a certain threshold. During low discharge, the remotely sensed plume results 
from other factors, namely, the flow of small rivers, the flow from a big wastewater 
treatment plant discharge near the river mouth and sediment resuspension resulting from 
waves, tides, and currents. The threshold between the river flow producing plume and the 
flow when the plume cannot be estimated from MERIS scenes is about 300 or 500 m3/s 
(Teodoro et al., 2009). As illustrated in Fig. 10, the water volumes for the time period of 
dataset are mostly below 300 m3/s. Therefore, this explains why lower correlation 
coefficient values were found for dataset B. Nevertheless, the segmentation approach 
applied in this work seems to be a valid method to estimate the plume size. The second 
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3.1.3 Comparison of segmentation results obtained from datasets A and B 
Despite the slight changes on the selection of the region-growing parameters S and T, it was 
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image, a0  and a1 are the linear regression coefficients and V is the water volume. The water 
volume corresponds to the discharged water flow for the last downstream hydroelectric 
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respectively) associated to lower river discharges, and the rest of the year (the remaining 13 
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With respect to the time period of dataset A, a significant seasonal effect was verified on the 
relation between the RP and the water volume. Therefore, considering the model presented 
in Eq. 2 and excluding the summer period, a significant and positive correlation of 0.664 
(p−value=0.013) was found between the RP obtained from watershed segmentation and 
water volume. For region-based segmentation, the correlation coefficient was 0.524 
(p−value=0.066) for the same period. No significant correlations (α=5%) were found 
regarding the summer period. The lack of significant correlation in the summer period may 
be justified by the lower and time inconstant discharges at Crestuma dam, as illustrated in 
Fig. 10. The accuracy of this model was quantified by the mean percentage variation (MPV) 
of each estimated value (ei, obtained through the model in (2)) to the correspondent 
computed value (ci, obtained from segmentation), as presented in Eq. (3):  
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The MPV for watershed was 67.4% and for region-based segmentation was 28.5%. This 
suggests that the plume size obtained from the region-based segmentation may be more 
appropriate than the watershed-based segmentation, when modeling the size of the plume 
as being linearly related to the water volume. 
The second proposed model consists in the incorporation of several variables (last available 
plume, water volume, tide height, and wind speed), presumed to be related to the plume 
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Fig. 10. Water volume (m3/s) regarding the datasets A and B, considering all dates together 
(“All”), all year excluding the summer period (“All-Summer”) and the Summer period 
(“Summer”). 
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Considering the model presented in Eq. 2 and excluding the summer period, a moderate 
and positive correlation of 0.45 (p−value=0.019) was found between the RP obtained from 
region-based segmentation (option 2) and water volume. No significant correlations (α=5%) 
were found regarding the summer period. Considering all the data, the best result were 
found for region-based segmentation (option 2) with a positive correlation of 0.37 
(p−value=0.003). A more robust model incorporating other variables, as last available 
plume, water volume, tide height, and wind speed, will be established in order to improve 
the results. Moreover, a detection of outlying estimations will be performed. An outlier is a 
value in a dataset which appears to be inconsistent with the remainder of that set of data. 
The plume derived from MERIS data represents river Douro plume only when the river 
flow exceeds a certain threshold. During low discharge, the remotely sensed plume results 
from other factors, namely, the flow of small rivers, the flow from a big wastewater 
treatment plant discharge near the river mouth and sediment resuspension resulting from 
waves, tides, and currents. The threshold between the river flow producing plume and the 
flow when the plume cannot be estimated from MERIS scenes is about 300 or 500 m3/s 
(Teodoro et al., 2009). As illustrated in Fig. 10, the water volumes for the time period of 
dataset are mostly below 300 m3/s. Therefore, this explains why lower correlation 
coefficient values were found for dataset B. Nevertheless, the segmentation approach 
applied in this work seems to be a valid method to estimate the plume size. The second 



 Image Segmentation 

 

452 

option of the proposed region-based method (option 2) appears to be the more accurate 
alternative. 

3.2 Cabedelo sand spit 
The segmentation approaches previously mentioned in section 2.3 were applied to 6 
IKONOS-2 images (Table 2), and the results are provided in 3.2.1 and 3.2.2. Some 
experiments considering local filtering methods are addressed in 3.2.3. The evaluation of the 
performance of global thresholding and multiresolution approaches are given in 3.2.4.  

3.2.1 Global thresholding refined by detected edges 
As previously mentioned in 2.3, the first segmentation approach mainly consists on 
histogram thresholding of the original IKONOS-2 image through the Otsu method, followed 
by a boundary refinement through detected edges. The area estimated for the sand spit 
through this approach is given in Table 5, regarding the 6 IKONOS-2 images mentioned in 
Table 2. With respect to the image from 03-06-2004, as already illustrated in Fig. 6, the 
panchromatic band is not the most suitable band to perform the segmentation. Therefore, 
the NIR band was used for this image. The disadvantage of using the NIR band instead of 
the panchromatic band is its lower spatial resolution, which leads to less accurate results, as 
will be further addressed in 3.2.4. 
 

Area (m2) Date 
(dd-mm-yyyy) 2.3.1 2.3.2 Manual reference DGPS reference 

24-12-2001 188 123 198 000 191 056 n.a. 

03-06-2004* 260 448 282 000 275 761 265 200 

31-07-2004 258 973 250 000 260 095 259 864 

03-06-2005 207 214 212 000 212 819 222 636 

18-09-2005 229 186 223 000 228 092 228 688 

06-06-2007 256 747 261 000 267 208 225 237 

* The NIR band was considered instead of the panchromatic band. 

Table 5. Sand spit area (m2) estimated through the segmentation approaches described in 
2.3.1 and 2.3.2, applied to the panchromatic bands of the IKONOS-2 images. The last two 
columns correspond to the reference areas manually obtained (on a GIS environment) and 
by DGPS field surveys. Further details regarding the reference areas may be found in 3.2.4.  
Although the Otsu’s method presents a good performance in several cases at the initial stage 
of global thresholding, it sometimes presents questionable thresholds. In the example 
provided in Fig. 6, it appears that the most adequate threshold should be slightly shifted. 
Therefore, other segmentation approaches based on the delineation of the modes in the 
histogram will deserve further research in the future. 

3.2.2 Multiresolution segmentation 
In the multiresolution segmentation method, the parameters used for the IKONOS-2 images 
were (10, 0.5, 0.5, 0.5, 0.5) for (scale, color, shape, smoothness, compactness), respectively. As 
already mentioned in 2.3.2, after segmentation, all image objects are classified by generating 
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class hierarchy, based on fuzzy logic (Wang, 1990). The accuracy assessment of the 
classification process was performed analyzing the confusion matrix (overall accuracy- OA) 
and Kappa statistics (Smits et al., 1999; Stehman, 1996). The Kappa gives a measure that 
indicates if the confusion matrix is significantly different from a random result. The 
performance of the classification of the object-based method was evaluated through the 
error matrix based on the TTA Mask (Training or Test Areas). The OA varied between 96% 
(24-12-2001) and 100% (03-06-2005). The Kappa statistics varies between 0.92 and 1.0, for the 
same image dates. These values demonstrate the good performance of the segmentation and 
classification methods applied. An example of a sand spit extraction through this approach 
is illustrated in Fig. 11. The sand spit areas obtained through this segmentation method 
(described in 2.3) are provided in Table 5. 
 

 
Fig. 11. An original IKONOS-2 image of June 2005 (left) and the sand spit extraction with 
multiresolution segmentation method - object based classification (right). 

3.2.3 Local filtering methods 
Other segmentation methods based on local filtering could have been used, such as entropy 
filtering, range filtering or standard deviation filtering. However, these methods decrease 
the contrast between the sand spit and the remaining parts of the image, leading to some 
linkage of the sand spit to other regions of the image. The segmentation of the images 
produced by entropy, standard deviation and range filtering was also tested, applying the 
Otsu’s method to the filtered images. However, these filtering procedures lead to a lack of 
accuracy in the sand spit delineation, since it smoothes the transition from sand spit to 
water, and consequently introducing a connection between the sand spit and water in 
posterior segmentation. Taking this into account, an edge sensitive version of the low-pass 
Wiener filtering was also tested, aiming to achieve a more uniform sand spit for later 
segmentation. However, this also presented considerably lower performance than the 
proposed global thresholding, followed by refinement through detected edges. 
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class hierarchy, based on fuzzy logic (Wang, 1990). The accuracy assessment of the 
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Fig. 11. An original IKONOS-2 image of June 2005 (left) and the sand spit extraction with 
multiresolution segmentation method - object based classification (right). 

3.2.3 Local filtering methods 
Other segmentation methods based on local filtering could have been used, such as entropy 
filtering, range filtering or standard deviation filtering. However, these methods decrease 
the contrast between the sand spit and the remaining parts of the image, leading to some 
linkage of the sand spit to other regions of the image. The segmentation of the images 
produced by entropy, standard deviation and range filtering was also tested, applying the 
Otsu’s method to the filtered images. However, these filtering procedures lead to a lack of 
accuracy in the sand spit delineation, since it smoothes the transition from sand spit to 
water, and consequently introducing a connection between the sand spit and water in 
posterior segmentation. Taking this into account, an edge sensitive version of the low-pass 
Wiener filtering was also tested, aiming to achieve a more uniform sand spit for later 
segmentation. However, this also presented considerably lower performance than the 
proposed global thresholding, followed by refinement through detected edges. 
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3.2.4 Evaluation of the methods performance 
In order to evaluate the performance of the two segmentation methods, used in the 
estimation of the sand spit area, two sets of reference values were used (Table 5). The first 
was based on a manual digitalization on a GIS environment of the sand spit on the 
IKONOS-2 image, followed by the computation of the resultant area. The second approach 
was based on regular trimesteral surveys conducted since 2002 through Diferencial Global 
Positioning System (DGPS) processing techniques (Baptista et al., 2008). According to 
Baptista et al., (2008), the ground point positioning of the sand spit boundary was done 
through a system comprising two kinematic antennas installed on an articulate arm fixed to 
a four-wheel motor quad. Because the positioning precision of the kinematic DGPS 
processing techniques around 0.02 and 0.04 m in planimmetric and altimetric measurements 
respectively, the overall precision of the determined ground point coordinates were near 
these values with this DGPS system (Baptista et al.,  2008). The values were later processed 
in a GIS environment and linearly interpolated for different tide levels (z=0, z=1 and z=2 m). 
These values were used to estimate the correspondent sand spit area, for each analyzed 
IKONOS-2 image. It is important to refer that the DGPS values do not correspond to the 
IKONOS-2 acquisition date, but to the closest date (the maximum diference is about 45 
days). The reference results obtained through this second approach are given in Table 5. 
Although a field survey would be the most accurate reference to evaluate the performance 
of the segmentation methods, the time difference between the field survey and the IKONOS-
2 acquisition date for some images was considerably high. This justifies some differences 
observed in Table 5 between the manual and DGPS reference values. 
The average and standard-deviation of the errors (in %), regarding the two segmentation 
methods described in 2.3.1 and 2.3.2, considering the manual and DGPS reference values are 
provided in Table 6. It can be observed that the proposed unsupervised segmentation 
method, based on global thresholding refined through detected edges, presented slightly 
better results than the multiresolution segmentation, with a clear advantage of a 
considerable faster performance, beyond requiring a small human intervention. 
 

Manual reference DGPS reference 
 

Average Stdv Average Stdv 

2.3.1 2.4 2.0 4.2 5.0 

2.3.2 2.5 1.2 6.7 5.3 

Table 6. Average and standard-deviation (Stdv) of the errors (in %), regarding the two 
segmentation methods described in 2.3.1 and 2.3.2, considering the manual and DGPS 
reference values (further details in 3.2.4). 

In the analysis of the effectiveness metric of the Otsu’s method, as a function of the error in 
the sand spit area estimation, a sketch of a possible threshold of acceptance was illustrated 
in Fig. 8. However, in the presence of larger datasets, it may become possible to define 
objective criteria of the appropriateness in using the proposed segmentation methodology. 
Such criteria may correspond to simple linear discriminants, or to other more complex 
nonlinear classification approaches, combining information of more than one spectral band. 
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4. Conclusions 
A water body and a sand spit do not present a similar topographic boundary. Therefore, the 
extraction of a river plume and the extraction of a sand feature from a water environment 
are different in terms of the segmentation techniques employed. With this work, we have 
showed that the same segmentation techniques could not be applied directly in both cases.  
The reduction of the river sediment supply may be one of the main causes of the erosion 
process that has been affecting the Portuguese Northwest coast. The Douro river is one of 
the major sources of beach sediments of the Portuguese Northwest coast. Therefore, the 
estimation of the river plume size from satellite images is an aspect of crucial importance, 
since there is no alternative for performing in situ measurements. The applied segmentation 
methods allowed for estimating the plume size. The plume size obtained through the 
region-based segmentation led to better results, since its nature allows for a more realistic 
delineation of the plume. 
The reduction of the plume size is probably related to reduction of water flows and 
consequently the decreasing of river sediment supply. Associated to the breakwaters 
construction are the changes in the Cadedelo sand spit dynamics. From a regional point of 
view, this research allows for obtaining data in a simple way, currently nonexistent for the 
Cabedelo sand spit. Furthermore, it provides significant contributions to evaluate the 
behaviour of Douro river mouth breakwaters, related with coastal defence and sand spit 
stabilization, offering an effective and accurate methodology for monitoring the sand spit 
size. Moreover, it is a valid alternative for the delineation of sand spits, which allows for 
avoiding expensive DGPS field campaigns. 
The use of different satellite data (MERIS products calibrated for TSM concentration and 
IKONOS raw data) was also a challenge. The considered satellite data showed to be 
adequate for the established purposes. The medium spatial resolution of MERIS data is 
enough to estimate the river plume size. Moreover, the high temporal resolution of MERIS 
data seems to be essential in monitoring the river plume, subject to rapid changes due to 
extreme situations (e.g. precipitation, floods). The high spatial resolution of IKONOS-2 data 
also seems to be a crucial factor in the sand spit area estimation. 
The proposed unsupervised segmentation strategy for the extraction of the sand spit, 
presented slightly better performance than the multiresolution segmentation. Moreover, it 
presents the advantage of being a fast procedure and with a high potential for a fully 
automation. This would allow for a more consistent analysis of the sand spit behavior and 
evolution across the time. This approach has also the advantage of avoiding in situ surveys, 
and allows for assessment of historical records through archived satellite data. Other 
attributes beyond the area may be easily computed from the result of the sand spit 
segmentation, allowing for more complex analysis of the sand spit dynamics. 
The estuarine environment, particularly the size and temporal and spatial variations of river 
plumes and sand spits, is an issue of great importance. Furthermore, very few studies have 
addressed this issue in the past as there are obvious difficulties in establishing an efficient and 
accurate methodology to extract the features boundaries. This work aspires to cover this gap. 
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IKONOS-2 acquisition date, but to the closest date (the maximum diference is about 45 
days). The reference results obtained through this second approach are given in Table 5. 
Although a field survey would be the most accurate reference to evaluate the performance 
of the segmentation methods, the time difference between the field survey and the IKONOS-
2 acquisition date for some images was considerably high. This justifies some differences 
observed in Table 5 between the manual and DGPS reference values. 
The average and standard-deviation of the errors (in %), regarding the two segmentation 
methods described in 2.3.1 and 2.3.2, considering the manual and DGPS reference values are 
provided in Table 6. It can be observed that the proposed unsupervised segmentation 
method, based on global thresholding refined through detected edges, presented slightly 
better results than the multiresolution segmentation, with a clear advantage of a 
considerable faster performance, beyond requiring a small human intervention. 
 

Manual reference DGPS reference 
 

Average Stdv Average Stdv 

2.3.1 2.4 2.0 4.2 5.0 

2.3.2 2.5 1.2 6.7 5.3 

Table 6. Average and standard-deviation (Stdv) of the errors (in %), regarding the two 
segmentation methods described in 2.3.1 and 2.3.2, considering the manual and DGPS 
reference values (further details in 3.2.4). 

In the analysis of the effectiveness metric of the Otsu’s method, as a function of the error in 
the sand spit area estimation, a sketch of a possible threshold of acceptance was illustrated 
in Fig. 8. However, in the presence of larger datasets, it may become possible to define 
objective criteria of the appropriateness in using the proposed segmentation methodology. 
Such criteria may correspond to simple linear discriminants, or to other more complex 
nonlinear classification approaches, combining information of more than one spectral band. 
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4. Conclusions 
A water body and a sand spit do not present a similar topographic boundary. Therefore, the 
extraction of a river plume and the extraction of a sand feature from a water environment 
are different in terms of the segmentation techniques employed. With this work, we have 
showed that the same segmentation techniques could not be applied directly in both cases.  
The reduction of the river sediment supply may be one of the main causes of the erosion 
process that has been affecting the Portuguese Northwest coast. The Douro river is one of 
the major sources of beach sediments of the Portuguese Northwest coast. Therefore, the 
estimation of the river plume size from satellite images is an aspect of crucial importance, 
since there is no alternative for performing in situ measurements. The applied segmentation 
methods allowed for estimating the plume size. The plume size obtained through the 
region-based segmentation led to better results, since its nature allows for a more realistic 
delineation of the plume. 
The reduction of the plume size is probably related to reduction of water flows and 
consequently the decreasing of river sediment supply. Associated to the breakwaters 
construction are the changes in the Cadedelo sand spit dynamics. From a regional point of 
view, this research allows for obtaining data in a simple way, currently nonexistent for the 
Cabedelo sand spit. Furthermore, it provides significant contributions to evaluate the 
behaviour of Douro river mouth breakwaters, related with coastal defence and sand spit 
stabilization, offering an effective and accurate methodology for monitoring the sand spit 
size. Moreover, it is a valid alternative for the delineation of sand spits, which allows for 
avoiding expensive DGPS field campaigns. 
The use of different satellite data (MERIS products calibrated for TSM concentration and 
IKONOS raw data) was also a challenge. The considered satellite data showed to be 
adequate for the established purposes. The medium spatial resolution of MERIS data is 
enough to estimate the river plume size. Moreover, the high temporal resolution of MERIS 
data seems to be essential in monitoring the river plume, subject to rapid changes due to 
extreme situations (e.g. precipitation, floods). The high spatial resolution of IKONOS-2 data 
also seems to be a crucial factor in the sand spit area estimation. 
The proposed unsupervised segmentation strategy for the extraction of the sand spit, 
presented slightly better performance than the multiresolution segmentation. Moreover, it 
presents the advantage of being a fast procedure and with a high potential for a fully 
automation. This would allow for a more consistent analysis of the sand spit behavior and 
evolution across the time. This approach has also the advantage of avoiding in situ surveys, 
and allows for assessment of historical records through archived satellite data. Other 
attributes beyond the area may be easily computed from the result of the sand spit 
segmentation, allowing for more complex analysis of the sand spit dynamics. 
The estuarine environment, particularly the size and temporal and spatial variations of river 
plumes and sand spits, is an issue of great importance. Furthermore, very few studies have 
addressed this issue in the past as there are obvious difficulties in establishing an efficient and 
accurate methodology to extract the features boundaries. This work aspires to cover this gap. 
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1. Introduction 
Since rock fracture is a key property for different rock engineering applications, rock 
fracture measurement is often carried out in classifying the rock mass. Most geo-mechanics 
models (e.g. finite element) are of the equivalent continuum type in which fractures are 
represented not individually, but by their influence on a large element of the rock mass. 
Elastic modulus, for example, is obtained either by large-scale testing of rock containing 
many joints, or, at less expense, by applying a reduction factor to the modulus obtained 
from small-scale tests on intact rock. Other models (e.g. those based on the key block 
concept) are capable of taking into account the position and mechanical characteristics of 
individual fracture. The shear strength of a fracture can be estimated from its roughness 
together with strength and thickness of filling materials, using a variety of empirical or 
semi-empirical methods. The techniques of image processing and segmentation can be 
applied as a power tool for obtaining more detailed information and analysis of rock 
fractures.  
In this chapter, we firstly to give an overview of the current status of the rock fracture 
processing research, then, give a brief description of visual rock fracture properties and 
classify the types of rock fractures, finally, we summarize the work we have done in last year. 

1.1 Overview of image processing literature on rock fractures 
A series of the previous research work is related to the program for storage of high level 
radioactive waste. A repository represents changes of numerical, thermal, hydraulic and 
chemical conditions, which are studied by using numerical models. The models are based 
on the geological conditions of the site, especially characteristics of the fracture network and 
properties of single fracture, since these parameters control the flow through the rock mass.  
Let us now turn to image processing and measurements of rock fractures/1-24/. Maria 
Johansson (1999) in her Lic. Thesis, presented three different algorithms for single rock 
fracture or crack detection. Quanhong Feng (1996) in his master thesis presented the BIP 
system for acquiring borehole images, and studied the measurement of the orientation of a 
single joint in a borehole, and other fracture properties. Masahiro Iwano (1995) in his 
doctoral thesis reviewed the research history of hydro-mechanical characteristics of a single 
rock joint, and studied a series of lab test and theatrical analysis. For the single joint 
measurement by using image technique, Eva Hakami (1995) in her doctoral thesis presented 
a method to measure aperture and roughness, and analyzed the relationship between 
aperture (and roughness) and hydro-mechanical characteristics. 
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from small-scale tests on intact rock. Other models (e.g. those based on the key block 
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individual fracture. The shear strength of a fracture can be estimated from its roughness 
together with strength and thickness of filling materials, using a variety of empirical or 
semi-empirical methods. The techniques of image processing and segmentation can be 
applied as a power tool for obtaining more detailed information and analysis of rock 
fractures.  
In this chapter, we firstly to give an overview of the current status of the rock fracture 
processing research, then, give a brief description of visual rock fracture properties and 
classify the types of rock fractures, finally, we summarize the work we have done in last year. 

1.1 Overview of image processing literature on rock fractures 
A series of the previous research work is related to the program for storage of high level 
radioactive waste. A repository represents changes of numerical, thermal, hydraulic and 
chemical conditions, which are studied by using numerical models. The models are based 
on the geological conditions of the site, especially characteristics of the fracture network and 
properties of single fracture, since these parameters control the flow through the rock mass.  
Let us now turn to image processing and measurements of rock fractures/1-24/. Maria 
Johansson (1999) in her Lic. Thesis, presented three different algorithms for single rock 
fracture or crack detection. Quanhong Feng (1996) in his master thesis presented the BIP 
system for acquiring borehole images, and studied the measurement of the orientation of a 
single joint in a borehole, and other fracture properties. Masahiro Iwano (1995) in his 
doctoral thesis reviewed the research history of hydro-mechanical characteristics of a single 
rock joint, and studied a series of lab test and theatrical analysis. For the single joint 
measurement by using image technique, Eva Hakami (1995) in her doctoral thesis presented 
a method to measure aperture and roughness, and analyzed the relationship between 
aperture (and roughness) and hydro-mechanical characteristics. 
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For multiple fractures on an image, Reid and Harrison (2000) presented a semi-auto tracing 
method for rock fractures. Lemy and Hadjigeorgiou (2003) developed a auto-tracing method 
for rock fractures based on edge detection and neural network. Parviz Soroushian (2003) 
proposed an algorithm for fracture image binarization on theirlaboratory SEM images. 
Similar work have been done by John Kemeny, Randy Post, 2003, Wang, W.X. & 
Stephansson, O., 1997, Lee SW, Kim YJ. , 1995, Wang L, Pavlidis T., 1993, Harrison JP, 1993, 
G. X. Sun, D. J. Reddish and B. N. Whittaker, 1992, Hu J, Sakoda B, Pavlidis T., 1992, 
Whittaker RN, Singh RN, Sun G., 1992, Finn Ouchterlony, 1990, Tanimoto C, Murai S, 
Kiyama Joshi AK.,1989, John A. Franklin, Norberth H. Maerz and Caralyn P. Bennett, 1988. 
For the three-dimensional estimation, the previous work has been done by John Kemeny, 
Randy Post, 2003, Zou Dingxiang, Weixing Wang and Ma Bailing, 1986. Lyman (2003) has 
used neural network technique to detect fractures. 
In the well-known BIPS system, rock fractures (curves) are traced based on input points (the 
more points, the more accurate is the tracing), to fit curves on theoretical sinusoidal shape 
(distribution). It is not an image processing or matching algorithm, the color or grey 
information is not needed. 
In order to make measurements of rock fractures (or spacing, discontinuities) easy and 
sufficiently for the accurate analysis of rock mechanics and engineering geology, we 
combined all the knowledge we have, to establish a programming library for rock fracture 
measurement and analysis, and developed several rock fracture measurement algorithms on 
the rock mechanics and geology applications. Now I have setup an algorithm library, which 
includes a number of algorithms for rock fracture analysis and classification.  

1.2 Visual rock fracture properties and classification for image segmentation 
In most cases, rock surface is rough, except for the variations of colors and gray- scales, three 
dimensional surface roughness is the another property comparing to other applications. For 
image processing and analysis, fractures or cracks belong to linear curved objects; the length 
of an object is much longer than width. Inside the object, it may be empty or filled by 
different materials. The filling materials are with different colors. Since the large width and 
color variation, it is usual that there are many gaps on one object. Another property is that 
some fault object appears on an image due to rough and noised surface. Random and 
multiple fractures may form a complicated network where fractures cross each other. All the 
properties make image processing and segmentation harder than other applications. The 
following are reprehensive examples for different types of fractures or cracks.  
 

 

(a) (b) (c) (d) 

Fig. 1. Four different types of rock fractures: (a) fractures are not continuous, (b) fractures 
have different gray-scales, (c) fractures form a network, and (d) very rough surface. 
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1.3 Summary of our work 
In image processing, as a normal work sequence, we first used global filters and local filters 
to remove the noise and make gray variation correction, which is called image 
preprocessing. After image preprocessing, the image quality is increased, the remaining 
work is to abstract rock fractures from background, so-called image segmentation. In image 
segmentation part, we compared and used thresholding algorithms to binarize the rock 
fracture images for a rough analysis, in addition to this, both edge based algorithms and 
region similarity algorithms are tested and studied. Since the edge based algorithm can 
detect fracture boundary location accurately, and region similarity algorithms are better to 
alleviate producing extra noise, however, which type of algorithms, is selected to use, 
depending on the image properties. In the study, we found that the combination (or fusion) 
of the two or three types of image segmentation algorithms is a best way for segment our 
rock fracture images, but we have not fully used this procedure (it is still under 
development) yet in this work period. Since our image is resin injection fracture image, the 
simplest algorithm is image binarization, therefore we tested five different auto-
thresholding algorithms which are widely used in the world. As the comparing result, we 
selected two binarization algorithms for our images; the one is Optimal binarization 
algorithm, and the other is Between class variance binarization algorithms. In edge based 
segmentation algorithm study, we tested popularly used edge detectors such as Canny edge 
detector and Robert edge detector etc. We found out that week and thin fractures cannot be 
detected y using these algorithms, since fractures are ridge objects, as an alternative, we 
developed a new edge detection algorithm for these kinds of edges. For high resolution 
images, the fractures are relatively thick: on the surface, a lot of white noise appears. To 
overcome this problem, we tried multi-scale technique for both region similarity and edge 
based algorithms. In conclusion, we tested 10 different preprocessing algorithms, five image 
binarization algorithms, and five edge detection algorithms. We developed and modified 
five different algorithms for image enhancement and segmentation. For our rock fracture 
images, we mainly used the modified image binarization algorithms. 

2. Image preprocessing 
The aim of image preprocessing is to enhance images for better visualization and 
processing. Image preprocessing techniques can be classified into global operators and local 
operators/25/. Linear contrast stretch and histogram equalization are two of the most 
widely used global operators. Adaptive histogram-equalization, contrast-limited adaptive 
histogram equalization, kernel filters, morphological functions and multi-scale enhancement 
belong to the local operators. While the global methods use a transformation applied to all 
the pixels of the image, the later methods use input-output transformation that varies 
adaptively with the local characteristics of the image. The typical types of image 
preprocessing can be expressed as: 
Global operators: ( ) ( )( ), ,new originalf x y Trans f x y=  

Local operators: ( ) ( ), ( , ) , .new originalf x y f x y Filter x y Const= − +  

Image enhancement algorithms have been designed to process a given image so the results 
are better than the original image for their applications or objectives. When the objective is 
to improve perceptual aspects, desirable image preprocessing can be performed by the 
contrast and dynamic range modification. 
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(a) (b) (c) (d) 

Fig. 1. Four different types of rock fractures: (a) fractures are not continuous, (b) fractures 
have different gray-scales, (c) fractures form a network, and (d) very rough surface. 
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operators/25/. Linear contrast stretch and histogram equalization are two of the most 
widely used global operators. Adaptive histogram-equalization, contrast-limited adaptive 
histogram equalization, kernel filters, morphological functions and multi-scale enhancement 
belong to the local operators. While the global methods use a transformation applied to all 
the pixels of the image, the later methods use input-output transformation that varies 
adaptively with the local characteristics of the image. The typical types of image 
preprocessing can be expressed as: 
Global operators: ( ) ( )( ), ,new originalf x y Trans f x y=  
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Image enhancement algorithms have been designed to process a given image so the results 
are better than the original image for their applications or objectives. When the objective is 
to improve perceptual aspects, desirable image preprocessing can be performed by the 
contrast and dynamic range modification. 
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In this study, to enhance the fracture image for further processing and segmentation, we 
tried the both methods. To make comprehensively understanding the testing methods, we, 
first, briefly introduce some basic idea of digital images in separated sub-sections. 

2.1 Image converting from color to gray scale 
Notation: image converting from color to gray scale: 
A grey scale image: ( ),f x y  has ( 1,2,.., 256)L i l= ≤  gray levels for each of image pixels, x, y 
are image sizes in horizontal and vertical directions respectively.  
A color image (RGB) is a combination of three images: ( ) ( ) ( ){ }, , , , ,r g bF f x y f x y f x y . 

If one converts a color image to a grey scale image, an general converting equation can be 
presented as: 

( ) ( ) ( ) ( ), , , ,r g bF f x y f x y f x y f x yα β γ⇒ = ⋅ + ⋅ + ⋅ , ( 1α β γ+ + = ) 

As an example in Fig. 2, we split a color image into R.G..B three images, the three images are 
different (the worst one may be the blue image), the differentiation is image dependent. In 
the Fig.3, the color image is split into R.G. ( 0.5 0.5 0.0 1α β γ+ + = + + = ), R.B.  
 

 
Fig. 2. A color fracture image is split into R.G..B. three images 
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( 0.5 0.0 0.5 1α β γ+ + = + + = ), and G.B ( 0.0 0.5 0.5 1α β γ+ + = + + = ) images. The each of 
the new images is a combination of two channel images, which make some new 
presentations for the original image. In the example, the yellow image may show fracture 
clearer than others. 
Except for R.G..B, a color pixel can also be divided into the three values of intensity (I), hue 
(H) and saturation (S), which is another way to represent a color image. An example is 
shown in Fig. 4. For fractures, the best image may be the combination of light intensity (I) 
and color hue (H). 
When a color image is to be converted to a gray scale image, the new image pixel value can 
also be calculated based on the R.G..B values or I.H.S. values in different ways. Fig. 5 shows 
that the above color image is converted to a gray scale image by using minimum or 
maximum R.G..B.values, which means that for each of the image pixels, checking its R.G..B. 
values, and choosing the minimum or maximum value of the three values, as input for the 
new image. In our application image, it is obviously that the minimum converting is better. 
 
 
 

 
 
 
Fig. 3. A color fracture image is split into RG..RB.GB. three images. 
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Fig. 4. A color fracture image is split into HI, I and SI three images 

 
 

   
Fig. 5. The color fracture image is converted into a gray image. (a) Converted by using 
minimum R.G..B.values, and (b) Converted by using maximum R.G..B.values. 
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Anyhow, a color image includes a lot of information, some information is useful, and some 
cannot be used, which depends on the requirements for image processing and analysis. All 
the image converting methods belong to global operators. In our study, since we only 
consider the gray scale image segmentation, we have not used the color information yet, we 
normally directly convert a color image by using Minimum or Middle operators, in a few 
cases, and we also used the combination of GB image to obtain a gray scale image. To fully 
use the available color information, we may need more tests and studies. 

2.2 Comparison of image preprocessing operators 
No matter a color image or a gray scale image, a number of image preprocessing operators 
can be used for image enhancement. For a gray scale image, an operator acts on one image, 
and for a color image, an operator acts on three images (R.G.B.) respectively. Based on our 
rock fracture characteristics, we tested several widely used operators on the images. Based 
on our utilities, we classify all the tested operators into two types: the one is for image noise 
removal, and the other is for rock fracture sharpening on images.  
In Fig. 6, we compared five different operators for a color rock fracture image. In Fig. 6(b), 
the operator is a 3x3 kernel with a Median filter operation (local operator) on the image, on 
the new image, the noise points and lines are removed, but the image is blurred; (c) 
Morphological operation (local operator): simple opening and closing, the operation result is 
similar to the median filter, it maybe more better for removing noise lines or curves; (d) 
Linear stretch (global operator): stretching the range of gray scales, it make intensity 
contrast more better.; (e) Sharpening (local operator): make fracture more shaper, but noise 
arising; and (f) Exponent transformation (global operator): decrease the gray values of the 
non-fracture regions. 
For our images, we often used the operators of Exponent transformation, Linear stretch and 
Median filters. Since this is a testing stage, we have no an automatic procedure for 
enhancement of the rock fracture images currently, we may need to develop that in the next 
step of work. The auto-procedure development will be based on the further processing-
image segmentation (fracture delineation or tracing) requirements. 

3. Fracture delineation or tracing 
After image preprocessing, the next is image segmentation-fracture tracing. The image 
segmentation is an old and topic subject of image analysis and pattern recognition. The 
current tendency is to combine different image segmentation algorithms for special 
application domain/. Our domain is rock fractures or fracture network. 

3.1 Image thretholding 
The scope of the present part is thresholding algorithms applied to a specific DOMAIN, that 
of rock fractures, in rock engineering. Fractures can be natural or man-made, where the 
former is of substantial interest in rock engineering applications. We stresses that the study 
deals with thresholding applied to a special domain rather than thresholding in general, 
because (a) the general problem is rather unspecified, (b) there is a greater chance of 
evaluating thresholding algorithms, if limiting the domain of possible images, and (c) there 
is the application of interest to us. 
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Fig. 6. Comparison of image preprocessing operators: (a) Original image; (b) Median filter; 
(c) Morphological operation; (d) Linear stretch; (e) Sharpening; and (f) Exponent 
transformation. 
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The content of this part is (1) to compare the selected four of widely used global 
thresholding algorithms for four typical fracture images; (2) based on the comparison, to see 
how they work for rock fracture images, and (3) how to choose a global thresholding 
algorithm to segment the rock fracture images with a small variable background (the 
background is not completely uniform). 

3.1.1 Thresholding algorithms selection and implementation 
Thresholding is one of the old, simple, popular and most important approaches to image 
segmentation. From literature review, the thresholding algorithms can be classified 
thresholding algorithms into two groups /26-33/. One is based on the characteristic feature 
(e.g. gray level) histogram. Another is based on gradient (or Laplacian) of an image. The 
main global thresholding algorithms they summarized include: Optimal thresholding 
(OPT), Between class variance (BCV), Entropy, Moment preserving, Bi-modes (the threshold 
is a valley point between main two peaks) - we called it as BIM, Edge based thresholding 
(DIFF), dynamic edge based thresholding (DYN. Lee and Chung 1989 /28/, evaluated five 
of the global thresholding algorithms, the five algorithms are OPT, BCV, Entropy, Moment 
preserving and Quadtree. They gave a conclusion that Entropy and Quadtree are sensitive 
to image characteristics such as contrast and histogram distribution. 
In order to evaluate these global algorithms (abbreviated OPT, BCV, BIM, DYN, and DIFF), 
how available they are for rock fracture images, the algorithms have been implemented into 
a PC computer. As a sever to readers comprehensively understanding the comparison 
between the algorithms, a brief description of these algorithms are listed as the follows. 
Notation: an image ( ),f x y has gradient magnitude image ( ) ( )2, ,g x y f x y= ∇ , and the 
histograms ( )hisf i and ( )hisg i  are corresponding to ( ),f x y  and ( ),g x y respectively. 
(1) OPT [30]: Suppose that an image contains two values combined with additive Gaussian 
noise. In addition of knowing the area percentage of objects, the mean values and their 
standard deviations are also known, the thresholding value can be obtained through an 
optimizing way. The implemented algorithm is iterative (optimal) threshold selection, 
which can be found in [30]. 
The details can be summarized as: 
Pre-set a threshold T, separate an image into objects and background, then use Eq.(1) to 
obtain a threshold. Repeat the steps until T 1t+ = T t , T t  is the threshold. 
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obtain corresponding k as thresholding value. 
(3) DIFF[33]: Define that S is the set of pixels having gray level i, find maximum value  
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and obtain the corresponding i is the threshold. 
(4) DYN: It is the similar to the above algorithm, the difference is that the threshold value is 
not constant on the whole image; it varies from place to place. In this algorithm 
implementation, we used Canny edge detector first, then, divide the image into a number 
windows, the thresholds are obtained on the information of windows. 
(5) BIM [26-27, 30]: After calculating the histogram of gray-level image, the lowest valley 
point between two major peaks is found as the thresholding value. The program 
implemented is: firstly smooth the histogram by using Guassian smoothing function 
(1,2,3,2,1), then detect the two main peaks by using gradient at each point of gray level 
histogram, finally search the valley point between two main peaks. The valley point can be 
detected as  

 ( ) ( )k
lG hisf k hisf k m= − − , ( ) ( )k

rG hisf k hisf k m= − +   

 ( 0, 0)k k k k k
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where, k=1,..., 256, threshold is corresponding to T. m is chosen by an operator, in the 
follows, we use m = 40. 

3.1.2 Comparison between different global thresholding algorithms 
In order to evaluate the performance of these five thresholding algorithms for rock fracture 
images, the test images were chosen based on (a) the images are the represents of fracture 
applications, and (2) fractures and background can be roughly distinguished by human 
vision (e.g. background is darker than fractures). Test images are of the size 320 by 240 
uniformly quantified to 24 bits. Four typical images are shown in Fig. 7 and their histograms 
are shown in Fig.8 respectively. The image in Fig. 7a was taken from a slice, with two long 
fractures; its histogram is of a shape of a normal distribution. In Fig. 7b, the image is a 
microscope image with one fracture in details, and there are no two obvious peaks in the 
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histogram. In Fig. 7c, the image is a slice image, the background is rough; the many fractures 
form a network. The images in Fig. 7d is a round surface image, there is much noise on the 
image, and the fracture network is complicated. Figs. 8a-d show the histograms of the 
corresponding images in Figs. 7a-d. Most of the histograms seem to be ones of two modes, 
with two main peaks, but their shapes are very different. 
One of the most difficult problems in comparing and evaluating the performance of 
thresholding algorithm is choosing a meaningful object performance criterion. The problem 
is that a criterion suitable for one application may not be suitable for a different application 
of thresholding techniques. However, the most important concern is the accuracy in 
segmentation of fracture images. In evaluation of the performance, the probability of error 
(or maximum shape) and uniformity, which are often observed by human vision, could be 
set as criteria. 
In this study, it is not supposed to threshold each of the test images perfectly, the evaluation 
is based on comparing to human vision. The test results could be used for the fracture 
analysis in this work stage.  
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As tested many times, OPT and BVC operations will give a similar result on any of our rock 
fracture images, therefore, in the figures 9-12, we just give OPT, BIM, DIFF and DYN 
operation results on each image in Fig. 7 for comparison. The testing results show (Fig. 9-
Fig. 12) that OPT works on all the four images, BIM works on the image of a two modes 
(peaks) histogram, DYN may work for the images with complicated fracture network, and 
DIFF is sensitive to the information variation of rock fracture images.  
Based on this testing result, we used OPT or BVC for all the rock fractures. The figure 13 
demonstrates other four typical image thresholding results by using BVC thresholding 
algorithm. It is satisfied for our rock fracture images binarization, by using BVC or OPT.  
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Fig. 8. Histograms for the images in Fig. 7 respectively. 
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Fig. 9. Four threholding algorithms on the image in Fig. 7a: BIM and DYN are failed. 



 Image Segmentation 

 

470 

As tested many times, OPT and BVC operations will give a similar result on any of our rock 
fracture images, therefore, in the figures 9-12, we just give OPT, BIM, DIFF and DYN 
operation results on each image in Fig. 7 for comparison. The testing results show (Fig. 9-
Fig. 12) that OPT works on all the four images, BIM works on the image of a two modes 
(peaks) histogram, DYN may work for the images with complicated fracture network, and 
DIFF is sensitive to the information variation of rock fracture images.  
Based on this testing result, we used OPT or BVC for all the rock fractures. The figure 13 
demonstrates other four typical image thresholding results by using BVC thresholding 
algorithm. It is satisfied for our rock fracture images binarization, by using BVC or OPT.  
 
 
 
 

      
                                    (a)                                                                             (b) 

 
 

            
                                     (c)                                                                             (d) 
 
 
Fig. 8. Histograms for the images in Fig. 7 respectively. 

Rock Fracture Image Segmentation Algorithms   

 

471 

 
 
 
 
 
 
 
 

    
 
 
 
 
 
 

    
 
 
 
 
 
 
 
Fig. 9. Four threholding algorithms on the image in Fig. 7a: BIM and DYN are failed. 
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Fig. 10. Four threholding algorithms on the image in Fig. 7b: DIFF is failed, and DYN gives a 
larger fracture area than human vision detection. 

Rock Fracture Image Segmentation Algorithms   

 

473 

 
 
 
 
 
 
 

   
 
 
 
 
 

   
 
 
 
 
 
 
 
Fig. 11. Four threholding algorithms on the image in Fig. 7c: All the operations are seemed 
to be fair except for the scale ruler affection. 
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Fig. 12. Four threholding algorithms on the image in Fig. 7d: DIFF fails completely. 
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Fig. 12. Four threholding algorithms on the image in Fig. 7d: DIFF fails completely. 
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                                    (a)                                                                                  (b) 
Fig. 13. BVC algorithm on the four typical rock fracture images. 

3.1.3 In conclusion 
For a rock fracture image with a rather uniform background, and the range of the grey levels 
of fractures being not too large, the algorithms OPT and BCV are good choices for 
performing global thresholding.  
In this study, a simple BIM algorithm is given, the test results show that it works for some 
kinds of images (the histogram consists of two main peaks); the algorithm design depends 
strongly on the types of histograms of fracture images. 
For the fracture images, it is not suggested to use the thresholding algorithms based on 
gradient magnitude. The textured surfaces of the fractures will strongly affect the 
thresholding results although the background of images is rather uniform. 
In general speaking, thresholding algorithms can be classified into manual, semi-automatic 
and automatic thresholdings. The automatic thresholding algorithms can be sub-classified 
into (1) the grey level histogram based and (2) based on the histogram of gradient 
magnitude. In the application of fracture recognition, if the images can be binarized 
satisfactorily by human vision, OPT and BCV are suggested to use for automatically 
thresholding. For the complex fracture images, adaptive thresholding algorithms maybe 
applied, in which, OPT and BCV are also suggested to use as a basis if needed. 
To more accurately binarize the rock fracture images, adaptive thresholding, edge based or 
region based algorithms maybe needed to study. As a literature review, in recent years, 
many researchers recognized that it is difficult to use a single image segmentation algorithm 
to segment images in most of applications; the new focus topic is the fusion of different 
image segmentation techniques or algorithms. To do this kind of tests, we have developed 
some algorithms based on edge detection and region based (Fig. 14), the developed 
algorithms are useful for fracture tracing in some cases, the fusion procedure maybe next 
step development. In the next section, we will introduce our edge based segmentation idea. 

3.2 Edge based segmentation algorithm 
We here use gray-scale information (a color band) to trace the fracture curves. To develop 
the algorithm, several aspects must, generally speaking, be considered: (a) gray flatness or 
smoothness; (b) curvature variation; (c) magnitude strength; (d) computational searching 
costs; and (e) distance linking etc.  
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Fig. 14. Example of region based algorithm. Fracture tracing possibility for BIP images: Blue 
One is segmented based on image shrink, similarity (12, 80), and green one is segmented 
based on smoothing and similarity (7, 80). These are examples, for real segmentation, it need 
to modify the segmented fracture curves, e.g. to use triangle signal information, curve 
smoothing, small region merge and gap links. All these are post-processing, if the primary 
segmentation results can be like in the images, remaining tasks will be fixed anyway. 
On the surface of rock mass, the objects of fracture often appear as step edges or ridge edges. 
The aim of image processing and image segmentation is to auto-tracing rock fractures, 
which is one of the most difficult tasks in image processing and image segmentation, due to 
the complicated properties on the rock surface. 
Segmentation algorithms for monochrome images are generally based on one of two basic 
properties of gray-level values: discontinuity and similarity. In the first category, the 
approach is to partition an image based on abrupt changes in gray level.  
An edge, in the image analysis literature, is a jump in intensity. The cross section of a so-
called ideal edge has the shape of a ramp: infinite slope and flat portions on either side of 
the discontinuity. In smoother versions of the ideal edges, the first derivative (in appropriate 
direction) assumes a local maximum at a so-called edge point or edge pixel. A well-known 
edge detector of this type is the Canny edge detector, locating local maxima in gradient 
magnitude (=steepest slope). However, in our case we are more interested in another class 
of detectors, for example, those known as ridge detectors in the image analysis literature. A 
ridge can be simply thought of as a double edge (a bar edge). Between the step parts there is 
a narrow plateau or peak. 
Sometimes, ridge detectors are expressed as follows: a bright (dark) ridge point is defined a 
point for which the intensity assumes a local maximum in the main principal curvature 
direction. 

3.2.1 Ridge detection 
The reported valley-edge detection algorithm in Wang and Bergholm (2003)/34/, may be 
used as a ridge detector. A valley-edge detector tries to detect the lowest valley point in a 
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certain direction. If it is, the pixel is used as the valley-edge candidate, and its direction and 
location are marked, for further processing to form a valley-edge, by thinning and tracing 
procedures. 
In Fig. 15a-b, when examining a pixel p, check the four different directions shown in the 
figure, to determine whether p is the valley-edge point or not. As an example, a small kernel 
valley-edge detection function runs as follows:  
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 15. The diagram for valley-edge detection algorithm, Wang and Bergholm (2003). 

In the 0o direction:   
If ( ) ( ), 1,f x y f x y< − , then ( ) ( )0

1 1, ,F f x y f x y= − − , 

If ( ) ( ), 1,f x y f x y< + , then ( ) ( )0
2 1, ,F f x y f x y= + − , 

If ( ) ( ) ( ) ( )1, 2, 1 2, 2, 1f x y f x y f x y f x yα β γ− < − − + − + − + , then 

( ) ( ) ( ) ( )0
3 2, 1 2, 2, 1 1,F f x y f x y f x y f x yα β γ= − − + − + − + − − , 

If ( ) ( ) ( ) ( )1, 2, 1 2, 2, 1f x y f x y f x y f x yα β γ+ < + − + + + + + , then 

( ) ( ) ( ) ( )0
4 2, 1 2, 2, 1 1,F f x y f x y f x y f x yα β γ= + − + + + + + − + ;  

And similar expressions in the 450, 900 and 1350 directions. 
In the directionθ, calculate the following sum:   

  1 1 2 2 3 3 4 4T w F w F w F w Fϑ ϑ ϑ ϑ
ϑ = + + +  

θ=00, 450, 900 and 1350  ; wi(i=1,2,3,4) are weights, e.g. w1 = w2 = 1.2, w3 = w4 = 0.8. 
Tmax =max(TO, T45, T90, T135 ).  If Tmax is greater than a threshold T, the detected point will be 
marked as a valley-edge candidate.  
The distance L (in the above formula, L = (i+1)-i = (j+1)-j=1)) is pre-determined based on 
image resolution and quality, and smoothing is done prior to valley-edge detection.  
The details of the algorithm can be found in Wang et al. (2003)/34/, here we merely stress 
that for each direction two values are calculated, and two values are obtained, f1 and f2 
(=two 2nd differences at two scales). A weighted sum of these (in e.g. the 135 degree 
direction) is: 
After valley-edge detection, a post-processing subroutine must be added. In the post-
processing subroutine, several functions are used, such as thinning, bridging of small gaps, 
and removal of short curves or lines (refer to Figs. 16-17). 
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Fig. 16. Example 1 of fracture tracing by the new algorithm. The top-left image is original 
image, the top-right image is inverted and enhanced image, the bottom-left image is a 
magnitude image by Robert edge detector, and the bottom-right image is the result image. 
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Fig. 16. Example 1 of fracture tracing by the new algorithm. The top-left image is original 
image, the top-right image is inverted and enhanced image, the bottom-left image is a 
magnitude image by Robert edge detector, and the bottom-right image is the result image. 
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Fig. 17. Example 2 of fracture tracing by the new algorithm. The left image is original image, 
the middle image is a magnitude image, and the right image is the result image. 

3.2.2 Multiple scales 
Multi-scale representations are more or less related to scale-space theory, notably the 
theories of pyramids, wavelets and multi-grid methods. We will not describe and discuss the 
theory, the detailed information can be found in /35-37/. For the complicated rock fracture 
images, the methodology is very useful as we tested. 
If most fractures in an image are very thin, the fine-detail information in the image is very 
important for fracture tracing, and the algorithm must avoid destroying the information. On 
the contrary, if fractures are thick, it is necessary to remove the detailed information on the 
rock surface, because it may produce a lot of fault fractures. In general, it is an image 
processing tool that the multiple scale technique makes image structures at coarse scales 
corresponding to simplifications of corresponding structures at fine scales. 
By using the knowledge of multiple scales, we combine the valley edge detection results of 
different scale images, and have a promising fracture tracing result which is difficult to be 
obtained by using other methods. A gray scale fracture image of 734x596 pixels is presented 
in Fig. 18(a); its fracture tracing result is in Fig. 18(b). In Fig. 18(a), the noise edges randomly 
distributed on the whole image surface, and thick fracture cannot be detected properly by 
 

  
                                       (a)                                                                               (b) 

Fig. 18. One example of rock fracture images: (a) Original image of resolution 734x596; and 
(b) Fracture tracing result. 
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using just valley edge detection. The fracture mapping result is processed based on the 
combination of multiple scales and our valley edge detection methods. The question is how 
to scale the image into different scale levels here, in the following; we will give a brief 
description of the question. 
The image scale is reduced. Let 1,...,x n= , 1,...,y m= , and ( ),f x y  is the original image. 
Then 
( ),k kf x y , 1,..., / 2k

kx n= , 1,..., / 2k
ky m= , k = 1, 2, 3, 4,… 

where, k K≤ , 2Km ≥ , 2Kn ≥   
 

     
             (a)                           (b)                             (c)                            (d)                             (e) 

Fig. 19. Shrink image three times on the image in Fig. 18(a): (a) Maximum filter; (b) Odd 
lines; (c) Average filter; (d) Middle filter; and (e) Minimum filter. 

To obtain valuable scaled ( ),k kf x y , we tried several image shrink methods (e.g. used 
Gaussian, average, medium, adaptive, maximum and minimum etc. filters). The figure 6 is 
one of the examples to show the differences among the rock fracture image shrink methods. 
In figure 19, since fractures in Fig. 18(a) have low gray values, Maximum filter (in original 
image, choose maximum gray value pixel, of four neighboring pixels, as a new pixel in the 
shrink image) eras thin fractures, on the contrast, Minimum filter make fractures sharpen, 
but the noise are sharp too. In our case, we use Minimum filter to shrink image for three 
times, then smooth the scaled image by a Gaussian filter. 
One of typical examples is shown in Fig. 20. The original image has a rough surface with 
thick fractures, if the developed ridge detection and fracture tracing algorithms are directly 
used without image scale operations, the detection result will include a lot of fault fractures. 
When we shrink the original image one time, the detection result will be better. The best 
detection result is in Fig. 20(d), where, we shrink the image for three times before ridge 
detection and fracture tracing. 

3.2.3 In conclusion 
For this study, we have developed a number of algorithms for image processing and 
segmentation, especially for rock fracture images. The presented fracture detection algorithm 
is the robust for ridge edge detection and fracture tracing, but for the rough surface with thick 
cracks or fractures, using multi-scale technology can allevate producing noise fractures. The 
next step of work is to use nural network and statistics /38-41/ to calssify images into different 
classes, then use pyramid methods to divide original image into several scale levels, to use the 
detection algorithm with different parameters to detect fractures. 

3.3 Fractional differential algorithms 
It is a new research topic that fractional differential theory is used into image processing. We 
a new type of algdeveloped new algorithms to improve the fractional differential Tiansi  
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Fig. 17. Example 2 of fracture tracing by the new algorithm. The left image is original image, 
the middle image is a magnitude image, and the right image is the result image. 
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Fig. 18. One example of rock fracture images: (a) Original image of resolution 734x596; and 
(b) Fracture tracing result. 
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using just valley edge detection. The fracture mapping result is processed based on the 
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Then 
( ),k kf x y , 1,..., / 2k

kx n= , 1,..., / 2k
ky m= , k = 1, 2, 3, 4,… 

where, k K≤ , 2Km ≥ , 2Kn ≥   
 

     
             (a)                           (b)                             (c)                            (d)                             (e) 

Fig. 19. Shrink image three times on the image in Fig. 18(a): (a) Maximum filter; (b) Odd 
lines; (c) Average filter; (d) Middle filter; and (e) Minimum filter. 
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Fig. 20. Valley edge detection result: (a) Image of resolution 734x596; (b) Image of resolution 
367x298; (c) Image of resolution 183x149; and (d) Image of resolution 91x74. 
 
operator, which can significantly enhance the edge information. The studied algorithms are 
based on the enhancement ability of fractional differential to rock fracture image details, and 
they can be used to analyze the mechanism of fractional differential. The general procedure of 
the algorithms is as follows: Firstly, Tiansi template is divided into eight sub-templates with 
different directions around the detecting pixel, and then eight weight sum values for the eight 
sub-templates are obtained. Furthermore, those eight weights are classified into different 
groups. In this way, the three improved algorithms with different enhancing ranges are 
obtained. Finally, the experiments of edge enhancement show that the improve algorithms can 
enhance edge information more effectively and can show much more detailed information 
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than traditional edge detection operators especially for the image segmentation of complicated 
rock fracture images. The detailed information can be found in reference [42]. 

3.4 Rock fracture detection based on quaternion convolution by scale multiplication 
In order to suppress the noise, the dot product is computed at adjacent scales. At the same 
time, we apply gray-level difference to obtain the monochromatic edges. To merge the 
merits of the quaternion convolution and the gray-level difference, the two results are used 
at the same time. Finally, the thinned edges can be obtained by using modulus maximum 
suppression. Experimental results show that the algorithm is efficient and robust for rock 
fracture edge detection. 
In this study, we firstly presented the rock fracture image acquisition method. Since the 
width and color of the fracture vary much, it is usual that there are many gaps on one crack 
or fracture. This study use quaternion convolution for rock fracture edge detection. When 
the pixels are chromatic, the quaternion convolution is more efficient than other methods. At 
the same time, we use the gray-level image to obtain the monochromatic edge points. Then 
thinned edges can be obtained by using modulus maximum suppression. Experiment 
results show that the method is both efficient and robust. The detailed information is in 
reference [43]. 

3.5 Rock fracture edge detection based on Wavelet Analysis 
Wavelet analysis is internationally recognized up to minute tool for analyzing time 
frequency. This study discusses the technique of image processing based on wavelet 
transform. 
There are many methods to obtain the rock fracture images. The inner fractures image can 
be obtain using ultraviolet and the external fractures image can be obtain using visible light. 
The methods are efficient and low cost. 
To detect the ultraviolet image fractures, we presented an algorithm based on multiscale 
wavelet transform. After obtain the gray scale images, the image can be split to three types 
of area: the black, the white and the transitional area. The edge detection can be enhanced 
and the noise can be reduced by scale multiplication. The method is useful not only for rock 
fractures detection but for other images edge detection. 
The color images are acquired using visible light and the fractures are more complicated. 
This paper presents the fracture detection algorithm based on quaternion convolution. After 
the color image is convoluted using different scale quaternion operators, the dot product is 
applied. At last, the edge map is obtained using modulus maxima suppressed. 
Because of the color image is noisy and the ultraviolet image is clear edge, the better idea is 
fuse the two types of images. After the color image is transformed to IHS color space, the 
edge information is fused in different areas. The fused image is more using for image 
processing. The interested readers can refer to [44]. 

3.6 Rock fracture tracing based on image processing and SVM 
This study presented a new methodology for automated rock fracture trace detection, 
description and classification based on automated image processing techniques and support 
vector machine (SVM). The developed procedure uses a series of photographs of a rock face 
which were taken by sophisticated CCD cameras. All digital image are be processing by the 
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Fig. 20. Valley edge detection result: (a) Image of resolution 734x596; (b) Image of resolution 
367x298; (c) Image of resolution 183x149; and (d) Image of resolution 91x74. 
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of area: the black, the white and the transitional area. The edge detection can be enhanced 
and the noise can be reduced by scale multiplication. The method is useful not only for rock 
fractures detection but for other images edge detection. 
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applied. At last, the edge map is obtained using modulus maxima suppressed. 
Because of the color image is noisy and the ultraviolet image is clear edge, the better idea is 
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edge information is fused in different areas. The fused image is more using for image 
processing. The interested readers can refer to [44]. 

3.6 Rock fracture tracing based on image processing and SVM 
This study presented a new methodology for automated rock fracture trace detection, 
description and classification based on automated image processing techniques and support 
vector machine (SVM). The developed procedure uses a series of photographs of a rock face 
which were taken by sophisticated CCD cameras. All digital image are be processing by the 
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developed algorithm, and fracture traces extracted from the processed image are then 
identified and categorized by SVM. The proposed procedure has been tested by detecting 
fracture and classifying the fracture traces. Results show that the approach is useful and 
robust... 
The aim of this study is to present a novel, automated and robust methods for rock fracture 
tracing. Image processing technology is used to get high quality of image segments for 
recognition. Support vector machine is introduced into the rock fracture classification for the 
first time in this field. Although the methods didn’t achieve the expect performances, there 
are a lot of advantages compared with the current technology. 
SVM is very promising to tackle complicated problems in rock fracture trace recognition 
and it could be enlarged to more complex structures in future research. As a reliable 
technique to identify fracture traces in practice, this method should be tested in more 
real measurement cases. And for further work, a SVM image segment and recognition 
system can be constructed. The detailed description for this study can be found in 
reference [45]. 

4. Conclusions and suggestions  
1. For this study, we have developed and collected a number of algorithms for rock 

fracture image processing and segmentation.  
2. A number image preprocessing algorithms have been discussed and compared. 
3. Several auto-thresholding algorithms have been studied and compared, and the BCV or 

OPT algorithms are considered satisfactory for the rock fracture images in this testing 
stage roughly analysis of rock fracture network properties). 

4. Except for the thresholding algorithms, a region based segmentation algorithm is also 
tested for BIPS images. 

5. The developed edge detection algorithms are robust for ridge edge detection and 
fracture tracing. It has been tested for the images of single fracture and fracture 
network, it is promising, and it may need more tests further. 

6. For difficult images (where cracks and fractures are difficult to distinguish due to either 
minerals or shadows etc.) and images with wide fracture apertures, using multi-scale 
technology can alleviate producing noise fractures.  

7. The next step of work needs to create an auto preprocessing procedure to all the rock 
fracture images first, then, to modify the developed threhsolding, region based and 
edge based image segmentation algorithms, make them to fit for our rock fracture 
images respectively. 

8. Finally to use neural network, fuzzy logic, wavelet/38-41/ and artificial intelligence 
technologies to classify images into different classes, then use pyramid methods to 
divide original image into several scale levels, to use the fusion of the different 
detection algorithms to setup a fracture image segmentation procedure, and to auto-
detect rock fractures. 

Anyhow, the different rock fracture images need different image segmentation 
algorithms. Since rock fracture images are so different that they cannot be segmented by 
only one image segmentation algorithm. In this chapter, eight different image 
segmentation algorithms are studied and developed for rock fracture images, one of the 
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algorithms is suitable for one or several types of rock fracture images, but not for all the 
types of images. In the future work, the algorithms will be further studied and tested, 
then, one image segmentation system will be constructed by several image segmentation 
algorithms that are selected based on a neural network system, for a processing image of 
rock fractures.  
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1. Introduction 
Image segmentation is a long standing problem in computer vision, and it is found to be 
difficult and challenging for two reasons.  
The first challenge is the difficulty of modeling the vast amount of visual patterns that 
appear in generic images. The second challenge is the intrinsic ambiguities in image 
perception, especially when there is no specific task to guide the attention. Furthermore, an 
image often demonstrates details at multiple scales. Therefore, it must be wrong to think 
that a segmentation algorithm outputs only one result. It should output multiple distinct 
solutions dynamically so that solutions “best preserve” the intrinsic ambiguity. In our 
opinion, image segmentation should be considered a computing process not a vision task. 
Motivated by the above two observations, we present a stochastic computing method for 
image segmentation. We define image partition to be the task of decomposing an image I 
into its constituent visual patterns. The output is represented by a hierarchical graph. Firstly, 
we formulate the problem as Bayesian inference, and the solution space is decomposed into 
union of many subspaces of varying dimensions. The goal is to optimize the Bayesian 
posterior probability. Secondly, top-down generative models are used to describe how 
objects and generic region models (e.g. texture and shading) generate the image intensities. 
The goal of image partition is to invert this process and represent an input image by the 
parameters of the generative models that best describe it together with the boundaries of the 
regions and objects. Thirdly, in order to estimate these parameters we use bottom-up 
proposals, based on low-level cues, to guide the search through the parameter space. 
We test the algorithm on a wide variety of grey level and color images, and some results are 
shown in the paper.  

2. The Bayesian formulation for segmentation 

Let ( ){ }, : 1 ,1i j i L j HΛ = ≤ ≤ ≤ ≤ be an image lattice, and IΛ an image defined onΛ . For any 
point , {0, , }vv I G∈Λ ∈  is the pixel intensity for a grey level image, or { , , }v v v vI L U V=  for 
a color image. The problem of image segmentation refers to partitioning the lattice into an 
unknown number of K  disjoint regions. 
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 1 , ,K
i i i jR R R i j=Λ = = ∅ ≠∪ ∩  (2.1) 

Each image region RI is assumed to be coherent in the sense that RI is a realization from a 
probabilistic model ( ; )Rp I Θ . Θ represents a stochastic process whose model type is indexed 
by i� . 
Thus segmentation is denoted by a vector of hidden variables W, which describes the world 
state for generating the image I. 

 { }( ), ( , , ); 1,2,i i iW K R i K= Θ =� �  (2.2) 

In a Bayesian framework, we make the inference about W from I over a solution spaceΩ . 

 ( ) ( ) ( )~ ,W p W I p I W p W W∝ ∈Ω  (2.3) 

The likelihood ( )p I W  specifies the image generating processes from W to I, and the prior 
probability ( )p W  represents our prior knowledge of the world. The goal is to estimate the 
most probable interpretation of an input image I. This require computing the W ∗  that 
maximized a posteriori probability overΩ , the solution space of W, 
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( )

arg max

arg max ( )
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W p W I

p I W p W
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=

=
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3. Stochastic grammar of image 
One fundamental difficulty that we encounter in vision is to represent the enormous 
amount of visual knowledge needed for making robust inference from real world images. 
The origin of image grammar is that certain elements of the image tend to occur together 
more frequently than by chance. These elements are then composed recursively to form 
increasingly larger units which can share some “reusable” parts.   
Our production rules are graph operators and thus the image grammar is an attributed 
graph grammar. The graph grammar can be embedded in an And-Or graph representation 
,where each Or-mode points to alternative choices of sub-configuration, and an And-node is 
decomposed into a number of parts. Each non-terminal node generates child nodes starting 
with the scene label at the root and proceeds to objects, object parts, and ends with pixels as 
the leaves (terminal nodes). This hierarchical representation includes a dictionary genΔ  of 
generative image features used in the generative models. A special choice of the Or-nodes 
produces a configuration. The virtue of the grammar lies in its expressive power of 
generating a very large set of configurations through a relatively much smaller vocabulary.  
Figure 1 shows the grammar graph for an input image. Each node of the graph has an 
attribute variable for the labels and model parameters. The top node 0 is the scene label, and 
the nodes at the bottom are the image pixels. Three types of objects with different entropies 
are shown in nodes 1, 2, and 3. 
To formulate this representation, we denote the graph by ,N TG V V E=< >∪ . The scene 
descriptions (attributes) W are defined on the non-terminal nodes NV , and the image I is 
defined on the terminal nodes TV  (pixels). 
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Fig. 1. The stochastic grammar for an input image 

On each non-terminal node Nv V∈ , we define attribute variables ( )w v W∈  for the labels 
and model parameters. Each non-terminal node v  contains a list of children nodes 

1( ) ( , , )v v
kchild v u u v= �  which can be expanded for more specific representations of the object. 

These children nodes form a subgraph vG . The leaf nodes at the bottom are the image pixels 
which form a lattice Λ . The attributes defined on the leaf nodes (lattice) are the image 
intensity values J . Depending on the visual patterns, J  can be determined by W either 
deterministically ( )J g W= or probabilistically ( )J p J W∼ . The correctness of a scene 
description W will depend on how well the synthesized image J  matches the input image I.  
The full generative model allows the 30 different visual patterns to compete to explain the 
input intensity. The generative model is expressed as:  
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Where the conditional probability at v  is a MRF defined on the graph vG  and captures the 
spatial relationship between the parts. vΔ  is a generative image dictionary for ( )w v , such as 
PCA, image patches, or textons. We will have a collection of generative image vocabularies 
for the 30 types of objects �  over scale σ  

 { }, : 1,2, 30, 1,2,3gen σ σΔ = Δ = =� � � �  (2.6) 

Then we formulate image partition as Bayesian inference where the goal is to compute the 
partition graph W from the input image I and, or verification, to synthesize J sampled from 
the likelihood, 
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 ( ) ( ) ( )~ ; ; ,gen genW p W I p I W p WΔ ∝ Δ  , ( )W J p J W∈Ω ∼  (2.7) 

Our algorithm must achieve the difficult task of (1). constructing the stochastic grammar, 
whose structure, like parse trees in natural language, is not pre-determined but depend on 
the input image; (2). estimating the attributes of graph nodes (labels and model parameters); 
and (3). computing the spatial relations between sibling nodes. 
The framework in the paper integrates two computing paradigms in vision –discriminative 
methods for fast speed and generative methods for generality and robustness. 

4. Generative and discriminative methods 

Generative methods specify how the image I is generated from the scene representation   . it 
combines a prior  ( ; )genp W Δ and a likelihood function ( )p I W  to give a joint posterior 
probability ( ); genp W I Δ . To perform inference using generative methods requires 
estimating ( )arg max ; genW p W I∗ = Δ . This is often computationally demanding because 
there are usually no know efficient inference algorithm. 
By contrast, discriminative methods are very fast to compute. They do not specify models 
for how the image is generated. Instead they give discriminative probabilities ( ( ))j jq w Tst I  
for components ( )jw  of W based on a sequence of bottom-up tests ( )jTst I  performed on the 
image. The tests are based on local image features { }, ( )j nF I  which can be computed from the 
image in a cascade manner, 

 ( ),1 ,2 ,( )) ( ), ( ), ( ) ,j j j j nTst I F I F I F I= �   1,2,j K= �  (2.8) 

These tests are selected from a dictionary of discriminative features disΨ . In correspondence 
to the generative dictionary genΔ  in eqn.(2.7), we denote it by  

 { }, : 1,2, ,30, 1,2,dis σ σΨ = Ψ = =� � � �  (2.9) 

The bottom-up tests generate two types of hypotheses. 
i. The what-is-what hypothesis for some node v in the partition graph W, which are 

marginal posterior probabilities ( ( ) ( ))v vq q w v F I= for the attributes ( )w v  (object label 
and model parameters) of v. ( )vF I  denote the features used (in this paper we use 
Adaboost). 

ii. The what-go-with-what hypotheses for some horizontal edge ,e s t=< >  in the partition 
graph, which are posterior probabilities ( ( ))e eq q e off f I= =  for whether the two 
elements s, t belong to the same pattern. Equivalently it is the probability ratio 
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( ) e
q e on I

f I
q e off I

=
=

i  denotes the feature for measuring the dis-similarity between s, t. It has 

been proved that with sufficient number of tests ( ( ) ( ))vq w v F I  can approach  ( ( ) )p w v I  

asymptotically, and so
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These two set of discriminative probabilities are then composed on-the-fly to generate 
hypotheses which are represented by importance proposal kernel,  

' '( , ( )) ( , ( ))a t tQ W W Tst I q W W Tst I=     Generative methods optimizes the joint Bayesian 

posterior ( ); genp W I Δ   by a set A of reversible jumps, such as death-birth, spit-merge, 

model switching, etc. these jumps construct the partition graph and in combination they 
simulate an ergodic  Markov chain search in the solution space of W. each type of jump 
a A∈   is represented by a Markov kernel '( , )a W Wκ , which is a conditional probability for 

moving from partition graph W to a new partition graph 'W . 
The kernels are “informed” by proposal kernels computed by discriminative method, and 
are realized by the Metropolis-Hastings method, 

 

'

' '
'

'
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( , ( ))min(1, ,
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a t

a t
a t

a t

W W Tst I

Q W W Tst I p W I
Q W W Tst I

p W IQ W W Tst I

κ =

i
' ,for W W a A≠ ∈  (2.10) 

The metropolis-Hastings step compares the discriminative probability ratio with the true 
Bayesian posterior probability ratio, and can be considered as a probabilistic version of 
hypothesis-and-test. 

5. Experiments 
The image segmentation algorithm is applied on a number of outdoor/indoor images. The 
speed in PCs is comparable to segmentation methods such as normalized cuts. It typically 
runs around 10-20 min. the main portion of the computing time is spent in segmenting the 
generic patterns and by boundary diffusion. Figure 3 and 4 show some example. We present 
the results in two parts. One shows the segmentation boundaries for generic region and 
objects, and the other shows the labelmap for generic region and objects to indicate objects 
recognition. From the segmentation results we can see high-level knowledge helps 
segmentation to overcome problem of oversegmentation. 
 
 
 
 

 
(a) Input image (b) segmentation (c) labelmap of 

segmentation 
 

Fig. 2. Results of segmentation on an outdoor image  
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The metropolis-Hastings step compares the discriminative probability ratio with the true 
Bayesian posterior probability ratio, and can be considered as a probabilistic version of 
hypothesis-and-test. 

5. Experiments 
The image segmentation algorithm is applied on a number of outdoor/indoor images. The 
speed in PCs is comparable to segmentation methods such as normalized cuts. It typically 
runs around 10-20 min. the main portion of the computing time is spent in segmenting the 
generic patterns and by boundary diffusion. Figure 3 and 4 show some example. We present 
the results in two parts. One shows the segmentation boundaries for generic region and 
objects, and the other shows the labelmap for generic region and objects to indicate objects 
recognition. From the segmentation results we can see high-level knowledge helps 
segmentation to overcome problem of oversegmentation. 
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Fig. 2. Results of segmentation on an outdoor image  
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Fig. 3. Results of segmentation on an indoor image  
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1. Introduction 
The pixon concept was introduced by Pina and Puetter in 1993. The pixon they introduced 
was a set of disjoint regions with constant shapes and variable sizes. Their pixon 
definition scheme was a local convolution between a kernel function and a pseudo image. 
The drawback of this scheme was that after selecting the kernel function, the shape of the 
pixons could not vary. Yang and Jiang presented a new pixon definition scheme, whose 
shape and size can vary simultaneously. They also used the anisotropic diffusion equation 
to form the pixons and finally they have combined the pixon concept and MRF for 
segmentation of the images. Recently, another well-behaved pixon-based image 
representation is proposed [Lei Lin et al., 2008]. In their presented scheme the pixons 
combined with their attributes and adjacencies construct a graph, which represents the 
observed image. They used a Fast QuadTree Combination (FQTC) algorithm to extract the 
good pixon-representation. These techniques integrated into MRF model. The main 
disadvantage of MRF-based methods is that in these algorithms the minimization 
problem of objective function is very time consuming. The most novel method which uses 
pixon concept to segment the images is introduced by Hassanpour et al. In this method, 
first a pre-processing step is performed which applies the wavelet thresholding technique. 
This step is suitable for image smoothing due to the noise reduction property of wavelet 
thresholding. To avoid over-smoothed problem, the value of the threshold must be 
assigned properly. Then, the pixon-based algorithm is used to form and extract the 
pixons. Finally, the Fuzzy C-Means (FCM) algorithm is applied to segment the image. The 
advantage of using pixons is that after forming the pixons the decision level changes from 
pixels to pixons and this decreases the computational time, because of the fewer number 
of pixons compared to number of pixels. This is the key aspect of pixon-based algorithms 
in image segmentation. 

2. Pixon-based methods 
2.1 Traditional Pixon-Based method (TPB) 
The TPB method is known as one of the simplest pixon-based approaches applied for image 
segmentation. The method is mainly composed of two following steps: (1) form the pixons, 
and (2) segment the image.  
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The pixon concept was introduced by Pina and Puetter in 1993. The pixon they introduced 
was a set of disjoint regions with constant shapes and variable sizes. Their pixon 
definition scheme was a local convolution between a kernel function and a pseudo image. 
The drawback of this scheme was that after selecting the kernel function, the shape of the 
pixons could not vary. Yang and Jiang presented a new pixon definition scheme, whose 
shape and size can vary simultaneously. They also used the anisotropic diffusion equation 
to form the pixons and finally they have combined the pixon concept and MRF for 
segmentation of the images. Recently, another well-behaved pixon-based image 
representation is proposed [Lei Lin et al., 2008]. In their presented scheme the pixons 
combined with their attributes and adjacencies construct a graph, which represents the 
observed image. They used a Fast QuadTree Combination (FQTC) algorithm to extract the 
good pixon-representation. These techniques integrated into MRF model. The main 
disadvantage of MRF-based methods is that in these algorithms the minimization 
problem of objective function is very time consuming. The most novel method which uses 
pixon concept to segment the images is introduced by Hassanpour et al. In this method, 
first a pre-processing step is performed which applies the wavelet thresholding technique. 
This step is suitable for image smoothing due to the noise reduction property of wavelet 
thresholding. To avoid over-smoothed problem, the value of the threshold must be 
assigned properly. Then, the pixon-based algorithm is used to form and extract the 
pixons. Finally, the Fuzzy C-Means (FCM) algorithm is applied to segment the image. The 
advantage of using pixons is that after forming the pixons the decision level changes from 
pixels to pixons and this decreases the computational time, because of the fewer number 
of pixons compared to number of pixels. This is the key aspect of pixon-based algorithms 
in image segmentation. 

2. Pixon-based methods 
2.1 Traditional Pixon-Based method (TPB) 
The TPB method is known as one of the simplest pixon-based approaches applied for image 
segmentation. The method is mainly composed of two following steps: (1) form the pixons, 
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2.1.1 Description of pixon model 
In any pixon definition scheme, the ability to control the number of degrees of freedom used 
to model the image is the key aspect. In other word, the pixon definition scheme should 
yield an optimum scale description of the observed image. The pixon definition scheme 
which is used in this method can be described as follows:         
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where IP is the pixon-based image model; m is the number of pixons; Pj is a given pixon, 
which is made up of a set of connected pixels, a single pixel or even a sub-pixel. The mean 
value of the connected pixels making up of the pixon is defined as the pixon intensity. Both 
the shape and size of each pixon vary according to the observed image. After the pixon-
based image model is defined, the image segmentation problem is transformed into a 
problem of labeling pixons. The procedure to determine the set of pixons, i. e. their shape 
and size, can be divided into three steps: 1) obtain a pseudo image, which has at least the 
same resolution as the observed image; 2) use an anisotropic diffusion filter to form the 
pixons; and 3) use a simple hierarchical clustering algorithm to extract the pixons. 
Obtaining the Pseudo Image; The pseudo image is a basic image to form the pixons and to 
obtain a segmented image, which is derived from the observed image. Suppose the 
dimension of the observed image is  DM × DN, then the dimension of the pseudo image can 
be lDM × lDN , where l = 2n. When n = 0, the pseudo image is the observed image itself. 
When 1n ≥ , the pseudo image can be obtained by the following iterative process 
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Where   0 , 1 ,  , 2 1M
Mi D= … × −  and  0 , 1 ,  , 2 1N

Nj D= … × − . 
In the above iterative process, 1I  corresponds to the observed image. The essence of the 
process is increasing the resolution through interpolation to describe the image parts, which 
have a lot of details. 
Parameter n is of great importance. If n 1≥ , then the resolution of the pseudo image is 
larger than the original image and the finally pixons formed are probable to be a sub-pixel. 
So, it determines the smallest size of the pixons. In the image parts, where the intensities of 
nearing pixels are similar, which means having little information, the intensity of newly 
inserted pixels will be similar with the intensities of the pixels in the observed image, from 
which the new pixels are obtained through interpolation. 
So there is a little difference whether the pixons are derived from the original observed 
image or interpolated pseudo image. However, in the image parts, where have a lot of 
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details, it will be better to derive the pixons from the interpolated pseudo image than from 
the original observed image. So, it is probable that a pixon is a sub-pixel to fully model the 
corresponding image parts. Therefore, if the image has many details, it should be large, 
otherwise it should be small. In current implementation, we let  n 0= . 
Formulation of Pixon; To form the pixons based on the pseudo image, let us consider the 
following anisotropic diffusion equation [Perona & Malik, 1990]: 
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where C(x,y,t)is the diffusion coefficient, which controls the diffusion strength. 
The partial differential equation is used to model the heat diffusion process. In regions with 
a large diffusion coefficient, the temperature tends to be uniform. While temperature 
differences will be retained in regions with small diffusion coefficients. We can view the 
pseudo image intensity as the temperature of the temperature field and the transformation 
of the gradient as the diffusion coefficient. The transformation function is 
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where K  is a constant. 
To be convenient, the solution of the diffusion equation is called solution image. In the 
solution image, the intensity of the regions having less information (having fewer edges) 
will tend to be uniform and vice versa. So, the “regions” having similar intensity in the 
solution image can be regarded as the pixons in our image model. The diffusion equation 
can be approximately solved by the following discrete formulation:  
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To ensure the convergence of the above iteration process, the parameter tΔ  should not be 
too large (here,   t 0.25Δ =  ). Larger values of K  increase the pixon size. To describe the 
details of the image, K  could not be too large (here K 5= ) 
Extraction of the Pixons; After forming the pixons according to the pseudo image, a 
segmentation method is applied based on hierarchical clustering to extract them. For this 
purpose, initially each pixel represents a cluster. Then the clusters are merged according to 
their intensities and made greater pixons. The mean value of the connected pixels making 
up of the pixon is defined as the pixon intensity. Both the shape and size of each pixon can 
vary according to the observed image. 
To stop the algorithm, a threshold value, T, is assigned and the mergence process iterates 
until the difference between intensities of two adjacent pixons would be smaller than the 
threshold value (here, T = 10).  
The pixon-based image model is represented by a graph structure G = (Q,E)  , where Q is the 
finite set of vertices of the graph and E is the set of edges of the graph (Figure 1). 
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Fig. 1. (a) Pixon model of image, and (b) the corresponding graph structure 

After the pixon-based image model is defined, the image segmentation problem is 
transformed into a problem of labeling pixons. 
While the pixons are extracted, the image is divided into a set of disjoint regions. The 
extraction of pixons can be considered as a primary segmentation. In TPB method, to obtain 
the final segmented image, the combination of pixons is continued until the end condition of 
process occurs. This condition is the number of segments in final segmentation purpose. 

2.2 MPB method 
Pixon-based image segmentation using Markov Random Field (MRF) model is presented by 
(Lei Lin, et al 2008). In this method, first an image is expressed as a pixon-based model. As 
we said before, pixons are a set of disjoint regions with variable shape and size. These 
pixons are combined with their attributes and adjacencies construct a graph which 
represents the observed images. Then using this pixon-representation, a Markov Random 
Field (MRF) model is presented to segment the images.  
In current procedure, a set of significant attributes of pixons and edges are introduced into 
the pixon-representation. These attributes are integrated into the MRF model and the 
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Bayesian framework to obtain a weighted pixon-based algorithm. Also, a Fast Quad Tree 
Combination (FQTC) algorithm is used to extract the good pixon representation. 

2.2.1 Definition of pixon representation 
Definition 1. Let { }i

M
X X

i 1
=

=
  be the set of all the image pixels. A subset of X is a pixon if 

and only if all the pixels in it are connected. A pixon is then denoted by { } i
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An attribute vector of the pixon is extracted from the observed image 
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where in  is the number of pixels in iP , ib  is the perimeter of iP  , namely the length of the 
boundary between iP  and the other part of the observed image, i imax ,  min , iμ  and 2
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respectively. Let ijI(x )  denotes the image intensity on the pixel ijx . The attributes of the 
pixon intensity can be obtained by  
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Definition 2. A set of pixons, { }i
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 , is a pixon-representation if and only if 
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The above definition shows that the pixon-representation segments the image into a set of 
disjoint regions. A set of edges, E , can be acquired from these regions, 

 { }  | ,      ,     ij i j i jE E P P P and P P are adjacent= ∈  (9) 

 
where iP  and jP  are adjacent if ik iX  P∃ ∈  and ji jX  P∈ , which are neighboring pixels to 
each other in the image. 
The strength of an edge can be defined as the length of the boundary between the two 
adjacent pixons, which is denoted by ijb , so i ij

j
b b=∑ . An attribute vector, ije

�
, is used to 

denote all the attributes of an edge. 
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To ensure the convergence of the above iteration process, the parameter tΔ  should not be 
too large (here,   t 0.25Δ =  ). Larger values of K  increase the pixon size. To describe the 
details of the image, K  could not be too large (here K 5= ) 
Extraction of the Pixons; After forming the pixons according to the pseudo image, a 
segmentation method is applied based on hierarchical clustering to extract them. For this 
purpose, initially each pixel represents a cluster. Then the clusters are merged according to 
their intensities and made greater pixons. The mean value of the connected pixels making 
up of the pixon is defined as the pixon intensity. Both the shape and size of each pixon can 
vary according to the observed image. 
To stop the algorithm, a threshold value, T, is assigned and the mergence process iterates 
until the difference between intensities of two adjacent pixons would be smaller than the 
threshold value (here, T = 10).  
The pixon-based image model is represented by a graph structure G = (Q,E)  , where Q is the 
finite set of vertices of the graph and E is the set of edges of the graph (Figure 1). 
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Fig. 1. (a) Pixon model of image, and (b) the corresponding graph structure 

After the pixon-based image model is defined, the image segmentation problem is 
transformed into a problem of labeling pixons. 
While the pixons are extracted, the image is divided into a set of disjoint regions. The 
extraction of pixons can be considered as a primary segmentation. In TPB method, to obtain 
the final segmented image, the combination of pixons is continued until the end condition of 
process occurs. This condition is the number of segments in final segmentation purpose. 

2.2 MPB method 
Pixon-based image segmentation using Markov Random Field (MRF) model is presented by 
(Lei Lin, et al 2008). In this method, first an image is expressed as a pixon-based model. As 
we said before, pixons are a set of disjoint regions with variable shape and size. These 
pixons are combined with their attributes and adjacencies construct a graph which 
represents the observed images. Then using this pixon-representation, a Markov Random 
Field (MRF) model is presented to segment the images.  
In current procedure, a set of significant attributes of pixons and edges are introduced into 
the pixon-representation. These attributes are integrated into the MRF model and the 
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Bayesian framework to obtain a weighted pixon-based algorithm. Also, a Fast Quad Tree 
Combination (FQTC) algorithm is used to extract the good pixon representation. 

2.2.1 Definition of pixon representation 
Definition 1. Let { }i
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X X

i 1
=

=
  be the set of all the image pixels. A subset of X is a pixon if 
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i ij
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=
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An attribute vector of the pixon is extracted from the observed image 
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The above definition shows that the pixon-representation segments the image into a set of 
disjoint regions. A set of edges, E , can be acquired from these regions, 
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The pixons and edges, combined with their attribute vectors, construct a graph, { }G P,  E= , 
which represents the observed image, as shown in Fig. 2.  

2.2.2 Shortest pixon-representation with respect to a discriminant 
There are two trivial pixon-representations, { }0P X=  and { }{ }1 i iP x |x X= ∈ . The former 
takes all the image pixels as one pixon; the latter takes each pixel as a pixon, which is a 
lossless representation. In order to represent the image using as few pixons as possible while 
limiting the representation error, the shortest pixon-representation with respect to a 
discriminant is defined. 
 

                         
                                     (a)                                                                               (b) 
Fig. 2. An example of Pixon-Representation. (a) The Pixon map, in which the boundaries 
between adjacent Pixons are shown; and (b) The corresponding graph, which combines the 
attribute vectors of Pixons and edges to represent the observed image. 

Definition 3. A function ( )f p 0≥  of pixons is a pixon error function if and only if 
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Definition 4. For a given pixon error function, ( )f . ,  and a non-negative constant, T,  the 

inequality, ( )f . T≤ , defines a pixon discriminant. 
Definition 5. A pixon-representation is called the shortest pixon representation with respect 
to a given discriminant, ( )f . T≤ , if its number of pixons is least among all the pixon-

representation satisfying ( )i iP   P ,  f P T. ∀ ∈ ≤  
In general, using the pixon attribute vector to describe the region of the observed image will 
loss some information, so a pixon error function is used to denote the error between the 
pixon and the region of the observed image. In this method error function is defined as 
( )i i i f P  max min= − . With a given discriminant ( )f . T≤  the shortest pixon-representation 

use the least number of pixons to represent the image, so we consider it the best pixon-
representation whose pixons’ errors do not exceed the threshold, T . 
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2.2.3 Extraction of pixon-representation 
The shortest pixon-representation with respect to a discriminant is not unique, as shown in 
Fig. 3. And it is hard to extract the shortest one from a large and complex image. In this 
section, an approach to extract a GOOD pixon-representation is presented, which combines 
the adjacent pixons of the lossless pixon-representation, { }{ }1 i iP x |x X= ∈  , iteratively, until 
no pixons can be combined considering the given discriminant. The obtained good pixon-
representation is dependent on the order of combination besides the discriminant. 
 

 
(a) (b) (c) (d) 

Fig. 3. The non-uniqueness of the Shortest Pixon-Representation. (a) Observed image, whose 
pixel intensities are among 100, 150, and 200; (b), (c) and (d) are three of its shortest Pixon-
Representations when ( )i i if P  max min   50= − ≤   is given as a discriminant. The black lines 
overlapping on the image are the boundaries of Pixons. 
2.2.3.1 Combination of adjacent pixons 

The adjacent pixons in a pixon-representation, { }G P,  E= , can be combined to form a new 
pixon, denoted by new i jP  P    P  = ⊕ , whose attribute vector, newP , can be obtained from iP  
and jP , 
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where ijb  is the edge strength, i.e. the length of the boundary between iP  and jP . 
It can be proved that { }i jP   P  ,  P−  + { }newP   is still a pixon-representation. And the edge set 
of the new pixon-representation can be obtained from E  by combining the edges connecting 
the same two pixons after the pixon combination. 
2.2.3.2 Combination-based extraction of pixon-representation 

Given a discriminant, ( )f . T≤ , the edge error function is defined as ( )E ij i jf E f(P P )= ⊕ . 

Since { }{ }1 i iP x |x X= ∈  satisfies all the discriminants, the shortest pixon-representation 
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where ijb  is the edge strength, i.e. the length of the boundary between iP  and jP . 
It can be proved that { }i jP   P  ,  P−  + { }newP   is still a pixon-representation. And the edge set 
of the new pixon-representation can be obtained from E  by combining the edges connecting 
the same two pixons after the pixon combination. 
2.2.3.2 Combination-based extraction of pixon-representation 

Given a discriminant, ( )f . T≤ , the edge error function is defined as ( )E ij i jf E f(P P )= ⊕ . 

Since { }{ }1 i iP x |x X= ∈  satisfies all the discriminants, the shortest pixon-representation 
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with respect to ( )f . T≤  can be extracted by combining the pixons of 1P , the lossless 
representation, until all error function values of the edges are larger than T . 
In fact, the pixon-representation obtained by combination scheme may not always be the 
shortest, which is dependent on the order of combinations. However, it is a substitute to the 
shortest, for the number of pixons has been sharply cut down. 

2.2.3.3 Fast Quad Tree Combination algorithm 

A fast Quad Tree combination algorithm is used to extract the shortest pixon-representation 
here. Firstly, a QuadTree-based multi-resolution pixon-representation is constructed, as 
shown in Fig. 4.  
 

 
(a) (b) (c) (d) 

Fig. 4. The QuadTree-based multi-resolution Pixon-Representation. (a) Coarsest scale Pixon-
Representation which uses the whole image as one Pixon; (b), (c), (d) is the followed scale  
pixon-Representation, which are obtained by subdividing each square of the coarser scale 
into four equal squares. The square in the finest scale only includes one pixel. 

Then a initial pixon-representation with respect to ( ) qt qt f . T ,  T [0,T]≤ ∈ , is extracted by 
coarse-to-fine selecting a set of disjoint squares from the multi-resolution pixon-
representation, which satisfy ( ) qtf . T≤ . Finally, the pixons connected by the edge with the 
minimal edge error are combined iteratively, until the minimal edge error is larger than  T . 
If the image region is not a square whose edge length is the power of 2, the multi-resolution 
pixon-representation can be constructed as follows. Firstly, the image is put into a large 
enough square like (a) in Fig. 4. For each scale, the pixon is then defined as the set of pixels 
falling into a square of this scale; the squares including no pixel are ignored. An example 
using the fast Quad Tree combination algorithm is given in Fig. 5, where the error function 
is defined as 

 ( )  i i if P max min= −  (12) 

2.2.4 Image segmentation based on pixon-representation 
In this method, a Markov random field model-based image segmentation approach under 
Bayesian framework is used based on pixon-representation. The noise model of the Bayesian 
framework in this approach is based on the pixel intensity. 
2.2.4.1 Bayesian framework 

Let I be the observed image and S be the segmented image. In the Bayesian segmentation 
framework, the segmented image is obtained by maximizing the posterior probability, 
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(a) (b) (c) (d) 

Fig. 5. The fast QuadTree Combination Algorithm. (a) Observed image (13689 Pixels); (b) 
Initial Pixon-Representation (2115 Pixons). (c) Final Pixon-Representation (493 Pixons) after 
iterative Pixon combination; (d) The Pixon size map of the final Pixon-Representation, 
where the image intensity denotes the local Pixon size. The green lines in (b) and (c) are the 
boundaries between adjacent Pixons 
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S arg  maxP(S|I)=  (13) 

where 

 ( ) ( ) ( )P S|I PI|S P S .∝  (14) 

We assume I   S     N= + , where N  is independent Gaussian white noise. Then the 
conditional probability is 
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where K  is the number of classes, KΓ  is the set of pixels segmented into the Kth  class, and 
ku  is the intensity mean of pixels in KΓ . Let { } G P,  E=  be a pixon-representation of  I . 

Since the characteristics of pixels in each pixon are similar, we assume that the pixels in one 
pixon will be segmented into the same class.  So using (7) and (15), we get 
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The computation of ( )P I|S  is simplified since the number of pixons is far less than that of 
pixels. ( ) P S  is the prior probability. In this method, the MRF model based on the pixon-
representation is adopted to define the prior probability distribution as follows. 
2.2.4.2 MRF model based on pixon-representation 

A neighborhood system of the graph, { } G P,  E= , is defined as 
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where K  is the number of classes, KΓ  is the set of pixels segmented into the Kth  class, and 
ku  is the intensity mean of pixels in KΓ . Let { } G P,  E=  be a pixon-representation of  I . 
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The computation of ( )P I|S  is simplified since the number of pixons is far less than that of 
pixels. ( ) P S  is the prior probability. In this method, the MRF model based on the pixon-
representation is adopted to define the prior probability distribution as follows. 
2.2.4.2 MRF model based on pixon-representation 

A neighborhood system of the graph, { } G P,  E= , is defined as 
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 ( ) ( ){ }i iN P N P |P P= ∈  (17) 

where 

 ( ) { }i j ijN P P | e E  ,  1 i  N= ∃ ∈ ≤ ≤  (18) 

is the neighborhood of each pixon. 
Let { }1 KΛ λ ,   ,  λ= …  be the set of possible labels denoting the classes in the segmented 
image and { }1 KL l ,   ,  l= …  be a family of random variables where 1l Λ ∈  denotes the label 
of ith pixon and N  is the number of pixons. The segmented image S  can then be described 
by the event,  L ω= , since we assume that the pixels in one pixon will be segmented into the 
same class. 
Let Ω be the set of all possible configurations, ( ){ }1 N iΩ   ω ω ,   ,  ω |ω Λ . L= = … ∈  is a MRF 
with respect to the neighborhood, N(P) , if 

 ( ) P L ω 0 ,  ω= > ∀ ∈Ω  (19) 

 ( ) ( )i i j j i j i i j j j i i P l ω|l ω  ,  P P P l ω|l ω  ,  P N(P ) ,    P P and ω Ω = = ≠ = = = ∈ ∀ ∈ ∈  (20) 

where P(.)  and P(.|.)  are the joint and conditional probability density functions, 
respectively. 
The configurations of MRF obey a Gibbs distribution [Hammersley & Clifford, 1971] 

 ( )P ω 1 /Z.exp( U(ω) /T)= −  (21) 

where Z  is a normalizing constant and T is a constant called temperature.  U(ω)  is the 
energy function, which is a sum of clique potentials cV (ω)  on all possible cliques, i.e. 
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In this method, the set of cliques is defined as 

 { } ( ){ }| , i i i i iC c c P N P P P= = ∈∪  (23) 

where each pixon in { } G P,  E=  defines one clique. And the clique potential is defined by 
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where ijη  is a binary variable which has the value 1 if iP  and jP  have the same label and 

the value 0 otherwise; ic iw P n⎛ ⎞
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⎝ ⎠
 is the clique weight; ( )e ij i j ij iw b ,  b ,  b b / b=  is the 
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 is the pixon distance weight that 

denotes the difference of image characteristics between two pixons. 
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In all, the prior probability is defined as 
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2.2.4.3 Optimization 
From (13) and (14), the optimal segmented image can be written as 
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Using (16) and (25), the objective function is then obtained, 
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where α 1 / T=  is a weight of MRF model, which denotes the tradeoff between the fidelity 
to the observed image and the smoothness of the segmented image. The constant term has 
been removed from the objective function. 
The class number K  and the weight α  are given before optimization. The initial segmented 
image is obtained using Fuzzy C-Means (FCM) clustering, and the initial parameters of each 
class are estimated from the initial segmented image, i.e. the means ku  and variances k σ . 
Then the threshold T  is computed, the value of T  should not be too large, otherwise the 
pixon will contain many pixels which actually belong to two different classes. So we using 
follow empirical function: 
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< ≤ ≠
= − − −  (28) 

Finally, the segmented image and the parameters are optimized, simultaneously. 
Let i ,newF(ω,  I )  denote the objective function value when the ith label of ω  is changed into 

i ,newI  and i,newΔF(ω,  I )  denote ( )i ,new  F ω,  I F(ω)− . The optimization is described as 
follows 
1. Initialize the number of classes K ; the total number of iteration NUM ; 1 ku ,   ,  u… and 

1 kσ ,   ,  σ…  according to an initial segmentation, which is obtained using FCM method; 
compute the threshold T ; and the iteration index j   0= ; 

2. Extraction of pixon-representation, then initialize the pixon-based image model: assign 
a label kλ  to each pixon P , which minimizes the expression 

lP k|μ u |−  
3. Find the best label for each pixon, i ,bestl ,  1 i N≤ ≤ , which minimizes i ,newΔF(ω,  I ) . 

4. Find the min,bestΔF(ω,  I ) , satisfying ( ) ( )min,best i ,bestΔF ω,  I ΔF ω,  I ,  1 i N≤ ≤ ≤  

5. If ( )min,bestΔF ω,  I 0<  and j   NUM< , go to step 4, otherwise stop iteration. 
6. Update the best label of each pixon and re-estimate k ku ,  σ  using new ω . 
7.  j   j   1= + , Go to step 3. 
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where 
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where P(.)  and P(.|.)  are the joint and conditional probability density functions, 
respectively. 
The configurations of MRF obey a Gibbs distribution [Hammersley & Clifford, 1971] 
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where Z  is a normalizing constant and T is a constant called temperature.  U(ω)  is the 
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In this method, the set of cliques is defined as 

 { } ( ){ }| , i i i i iC c c P N P P P= = ∈∪  (23) 

where each pixon in { } G P,  E=  defines one clique. And the clique potential is defined by 

 ( ) ( )
( )

,  ,  ,  
i

ij i

ic c e ij i j p i j ij
P N P

V w P w b b b w P Pω η
∈

⎛ ⎞ ⎛ ⎞
= ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑  (24) 

where ijη  is a binary variable which has the value 1 if iP  and jP  have the same label and 
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follow empirical function: 

 
0 ,  , 

min ( )i j i ji k K i j
T u u σ σ

< ≤ ≠
= − − −  (28) 

Finally, the segmented image and the parameters are optimized, simultaneously. 
Let i ,newF(ω,  I )  denote the objective function value when the ith label of ω  is changed into 

i ,newI  and i,newΔF(ω,  I )  denote ( )i ,new  F ω,  I F(ω)− . The optimization is described as 
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1 kσ ,   ,  σ…  according to an initial segmentation, which is obtained using FCM method; 
compute the threshold T ; and the iteration index j   0= ; 

2. Extraction of pixon-representation, then initialize the pixon-based image model: assign 
a label kλ  to each pixon P , which minimizes the expression 
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In fact, ( )i ,bestΔF ω,  I  can be calculated using the correlative terms with the ith label in  F(x) , 
i.e. 
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2.3 WPB method 
Pixon-based approach using wavelet thresholding is a recently developed image 
segmentation method [Hassanpour et al, 2009]. In this method, a wavelet thresholding 
technique is initially applied on the image to reduce noise and to slightly smooth the image. 
This technique causes an image not to be oversegmented when the pixon-based method is 
used. Indeed, the wavelet thresholding, as a pre-processing step, eliminates the unnecessary 
details of the image and results in a fewer pixon number, faster performance and more 
robustness against unwanted environmental noises. The image is then considered as a 
pixonal model with a new structure. The obtained image is segmented using the hierarchical 
clustering method (Fuzzy C-Means algorithm). 

2.3.1 Pre-Processing step 
As mentioned above, the wavelet thresholding technique is used as a pre-processing step in 
order to smooth the image. For this purpose, by choosing an optimal wavelet level and an 
appropriate mother wavelet, the image is decomposed into different channels, namely low-
low, low-high, high-low and high-high (LL, LH, HL, HH respectively) channels and their 
coefficients are extracted in each level. The decomposition process can be recursively 
applied to the low frequency channel (LL) to generate decomposition at the next level. The 
suitable threshold is achieved using one of the different thresholding methods and then 
details coefficients cut with this threshold. Then, inverse wavelet transform is performed 
and smoothed image is reconstructed. 
2.3.1.1 Wavelet thresholding technique 
Thresholding is a simple non-linear technique which operates on the wavelet coefficients. In 
this technique, each coefficient is cut by comparing to a value as the threshold. The 
coefficients which are smaller than the threshold are set to zero and the others are kept or 
modified by considering the thresholding method. Whereas the wavelet transform is good 
for energy compaction, the small coefficients are considered as noise and large coefficients 
indicate important signal features [Gupta & kaur, 2002]. Therefore, these small coefficients 
can be cut with no effect on the significant features of the image. 
Let i , jX   {X ,   i,  j   1,  2 M}= = …  denotes the M M×  matrix of the original image. The two 
dimensional orthogonal Discrete Wavelet Transform (DWT) matrix and its inverse are 
implied by W  and 1  W− , respectively. After applying the wavelet transform to the image 
matrix X, this matrix is subdivided into four sub-bands namely LL, HL, LH and HH [Burrus 
et al., 1998]. 
Whereas the LL channel possesses the main information of the image signal, we apply the 
hard or soft thresholding technique to the other three sub-bands which contain the details 
coefficients. The outcome matrix which is produced after utilizing the thresholding level is 
denoted as L̂  matrix. Finally, the smoothed image matrix can be obtained as follows:  
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 1ˆ ˆX W L−=  (30) 

The brief description of the hard thresholding is as follows: 

 ( )                         
 

0                    
Y if Y T

Y
otherrwise

γ
⎧ >⎪=⎨
⎪⎩

 (31) 

where Y  is an arbitrary input matrix, ( )γ Y  is the hard thresholding function which is 
applied on Y , and T  indicates the threshold value. Using this function, all coefficients less 
than the threshold are replaced with zero and other coefficients are kept unchanged.  
 The soft thresholding acts similar to the hard one, except that in this method the values 
above the threshold are reduced by the amount of the threshold. The following equation 
implies the soft thresholding function: 

 ( ) ( )( )                        
 

0                                            
sign Y Y T if Y T

Y
otherrwise

η
⎧ − >⎪=⎨
⎪⎩

 (32) 

where Y  is the arbitrary input matrix, ( )η Y  is the soft thresholding function and T  
indicates the threshold value. The researchs indicates that the soft thresholding method is 
more desirable in comparison with the hard one because of its better visual performance. 
The hard thresholding method may cause some discontinuous points in the image and this 
event may be a discouraging factor for the performance of our segmentation. 
Three methods are presented to calculate the threshold value, namely Visushrink, 
Bayesshrink and Sureshrink. The method Visushrink is based on applying the universal 
threshold [Donoho & Johnstone, 1994]. This thresholding is given by  σ 2logM   where  σ   
is standard deviation of noise and M  is the number of pixels in the image. This threshold 
does not adapt well with discontinuities in the image. Sureshrink is also a practical wavelet 
procedure, but it uses a local threshold estimated adaptively for each level [Jansen, 2001]. 
The Bayesshrink rule uses a Bayesian mathematical framework for images to derive 
subband-dependent thresholds. These thresholds are nearly optimal for soft thresholding, 
because the wavelet coefficients in each subband of a natural image can be summarized 
adequately by a Generalized Gaussian Distribution (GGD) [Chang et al., 2000]. 
2.3.1.2 Algorithm and results 
Our implementations on several different types of images show that "Daubechies" is one of 
the most suitable wavelet filters for this purpose. An image is decomposed, in our case, up 
to 2 levels using 8-tap Daubechies wavelet filter. The amount of the threshold is assigned by 
the Bayesshrink rule and this value may be different for each image. This algorithm can be 
expressed as follows. First image is decomposed into four different channels, namely LL, 
LH, HL and HH. Then the soft thresholding function is applied on these channels, except on 
LL. Finally the smoothed image is reconstructed by inverse wavelet transform. Figure 6 
shows the result of applying wavelet thresholding on the Baboon image. It can be inferred 
from this figure that the resulted image has fewer discontinuities than the original image 
and its smoothing degree increased and will be resulted in a fewer number of pixons. 
In order to obtain a better view about pixonal image, we indicate the effect of pixon forming 
stage on an arbitrary image. As illustrated in Fig. 7, the boundaries between the adjacent 
pixons are sketched so that the image segments are more proper. 
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because the wavelet coefficients in each subband of a natural image can be summarized 
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Our implementations on several different types of images show that "Daubechies" is one of 
the most suitable wavelet filters for this purpose. An image is decomposed, in our case, up 
to 2 levels using 8-tap Daubechies wavelet filter. The amount of the threshold is assigned by 
the Bayesshrink rule and this value may be different for each image. This algorithm can be 
expressed as follows. First image is decomposed into four different channels, namely LL, 
LH, HL and HH. Then the soft thresholding function is applied on these channels, except on 
LL. Finally the smoothed image is reconstructed by inverse wavelet transform. Figure 6 
shows the result of applying wavelet thresholding on the Baboon image. It can be inferred 
from this figure that the resulted image has fewer discontinuities than the original image 
and its smoothing degree increased and will be resulted in a fewer number of pixons. 
In order to obtain a better view about pixonal image, we indicate the effect of pixon forming 
stage on an arbitrary image. As illustrated in Fig. 7, the boundaries between the adjacent 
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(a) (b) 

Fig. 6. Result of applying wavelet thresholding technique on Baboon image: (a) Original 
image, and (b) smoothed image 
 

  
(a) (b) 

Fig. 7. The effect of applying the pixon forming algorithm to the baboon image: (a) The 
original image, (b) the output image with boundaries between pixons  

2.3.2 Image Segmentation using pixon method 
In this approach the wavelet thresholding technique is used as a pre-processing step to 
make the image smoothed. This technique is applied on the wavelet transform coefficients 
of image using the soft thresholding function. The output of pre-processing step is then used 
in the pixon formulation stage. In TPB algorithm, after obtaining the pseudo image, the 
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anisotropic diffusion equation was used to form the pixons. In WPB algorithm, utilizing the 
wavelet thresholding method as a pre-processing stage eliminates the necessity of using the 
diffusion equations. After forming and extracting the pixons, the Fuzzy C-Means (FCM) 
algorithm is used to segment the image. The FCM algorithm is an iterative procedure 
described in the following [Fauzi & Lewis, 2003].  
Given M  input data m {x ;m 1,  ...,M}= , the number of clusters C (2 C  )M≤ < , and the fuzzy 
weighting exponent w,  1       w ∞< < , initialize the fuzzy membership functions (0)

c,mu  with 
c   1,  ...,C=  and m   1,  ...,M=  which are the entry of a C M×  matrix (0)U . The following 
procedure is performed for iteration  l   1,2,  ... = : 

1. Calculate the fuzzy cluster centers l
cv  with  

M M
w w

c c,m m c,m
m 1 m 1

v (u ) x  /    (u )    
= =

= ∑ ∑  

2. Update (l)U  with  
2C

c,m w 1
c,m

i,mi 1

d
u 1 / ( )

d
−

=

= ∑   where 2 2
i ,m m i(d ) x v= −  and  .  is any inner 

product induced norm. 
3. Compare  (l)U   with  (l 1) U +  in a convenient matrix norm. If  (l 1) (l)U  U  ε+ − ≤   stop; 

otherwise return to step 1. 
The value of the weighting exponent, w determines the fuzziness of the clustering decision. 
A smaller value of w, i.e. w is close to unity, will give the zero/one hard decision 
membership function, and a larger w corresponds to a fuzzier output. Our experimental 
results suggest that w = 2 is a good choice. 
Figure 8 illustrates this method block diagram. 

3. Evaluation of the pixon-based methods 
In this section the pixon-based image segmentation methods are applied on several standard 
images and the results of these implementations are extracted. For this purpose, commonly 
used images such as baboon, pepper and cortex are selected and the performance of 
applying the mentioned methods on them is compared. In order to evaluate these methods 
numerically, several experiments have been carried out on different standard images and 
some criteria such as number of the pixons in image, pixon to pixel ratio, normalized 
variance and computational time are used which are introduced in following. 

3.1 Measurements 
Computational time; In most applications, the time which is consumed to perform 
algorithms is an important parameter to evaluate them. So, researchers always seek to 
decrease the computational time. 
Number of pixons and pixon to pixel ratio; As expressed previously, after forming the 
pixons, the image segmentation problem transformed to labeling the pixons. So, decrement 
in the number of pixons and related pixon to pixel ratio results in a decrement in 
computational time. Certainly it should be noted that the details of the image do not 
eliminate in this way. 
Variance and Normalized Variance; One of the most important parameters used to 
evaluate the performance of image segmentation methods is the variance of each segment. 
The smaller value of this parameter implies the more homogeneity of the region and 
consequently the better segmentation results. Assume that after the segmentation process, 
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anisotropic diffusion equation was used to form the pixons. In WPB algorithm, utilizing the 
wavelet thresholding method as a pre-processing stage eliminates the necessity of using the 
diffusion equations. After forming and extracting the pixons, the Fuzzy C-Means (FCM) 
algorithm is used to segment the image. The FCM algorithm is an iterative procedure 
described in the following [Fauzi & Lewis, 2003].  
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A smaller value of w, i.e. w is close to unity, will give the zero/one hard decision 
membership function, and a larger w corresponds to a fuzzier output. Our experimental 
results suggest that w = 2 is a good choice. 
Figure 8 illustrates this method block diagram. 

3. Evaluation of the pixon-based methods 
In this section the pixon-based image segmentation methods are applied on several standard 
images and the results of these implementations are extracted. For this purpose, commonly 
used images such as baboon, pepper and cortex are selected and the performance of 
applying the mentioned methods on them is compared. In order to evaluate these methods 
numerically, several experiments have been carried out on different standard images and 
some criteria such as number of the pixons in image, pixon to pixel ratio, normalized 
variance and computational time are used which are introduced in following. 
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pixons, the image segmentation problem transformed to labeling the pixons. So, decrement 
in the number of pixons and related pixon to pixel ratio results in a decrement in 
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Variance and Normalized Variance; One of the most important parameters used to 
evaluate the performance of image segmentation methods is the variance of each segment. 
The smaller value of this parameter implies the more homogeneity of the region and 
consequently the better segmentation results. Assume that after the segmentation process, 
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Fig. 8. The block diagram of the proposed method 

the images are divided into K  segments with different average values which we have 
called these segments as “Classes”. In addition to the typical variance, the normalized 
variance of each image can be calculated. If  kN  and V(k)  denotes the number of the pixels 
and the variance of each class respectively, the normalized variance of each image can be 
determined as below: 
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In the above equations, k  denotes the number of classes, ( )I x,y  is the gray level intensity, 
M and N  are the averaged value and the number of pixels in each image respectively. 

3.2 Experimental results    
In this section, results of applying the TPB, MPB and WPB methods on several standard 
images are considered. Figs. 9(a), 10(a) and 11(a) are the Baboon, Pepper and Cortex images 
used in this experiment. Figs. 9(b), 10(b), 11(b) and 9(c), 10(c), 11(c) show the segmentation 
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results of TPB and PMB methods, respectively. The segmentation results of WPB method are 
illustrated in Figs. 9(d), 10(d) and 11(d). As shown in these figures, the homogeneity of 
regions and the discontinuity between adjacent regions, which are two main criteria in 
image segmentation, are enhanced in WPB method. 
 

  
(a) (b) 

  
(c) (d) 

Fig. 9. Segmentation results of the Baboon image: (a) Original image, (b) TPB's method, (c) 
WPB's method, and (d) WPB's method 
In addition, several experiments have been carried out on the different images and the 
average results are drawn in several tables. In Table 1, the number of pixons and the ratio of 
Pixon-Pixel in the three methods are shown. As can be seen from this table we can find that 
these parameters are decreased significantly in WPB method in comparison with two other 
methods which resulted from applying wavelet thresholding technique before forming 
pixons. Table 2 shows the computational time required of the three methods (Intel(R) 
Core(TM)2 Duo CPU 2.20 GHz processor, with MATLAB 7.4). By using pixon concept with 
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wavelet thresholding technique in the WPB method, the computational cost is sharply 
reduced. Since the MRF technique, because of its complicated mathematical equations, is a 
time consuming process, the MPB method expends much time compared to TPB method. 
In this experience, after the segmentation process, the images are divided into three 
segments or Classes. The variance and average of each class are listed in Tables 3-5, for 
mentioned images. In most cases, the variance values of the classes of different images in 
WPB method are smaller in comparison with the other methods. In order to investigate the 
performance of methods more exact, the normalized variance of each image after applying the  
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(c) (d) 

 

Fig. 10. Segmentation results of the Pepper image: (a) Original image, (b) TPB's method, (c) 
MPB's method, and (d) WPB's method 
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(c) (d) 

Fig. 11. Segmentation results of the Cortex image: (a) Original image, (b) TPB's method, (c) 
MPB's method, and (d) WPB's method 

three methods are calculated too. The normalized variance results illustrated in the tables 
demonstrate that in the pixon-based approach which used wavelet (WPB method), the 
amount of pixels in each cluster is closer to each other and the areas of images are more 
homogenous.  
 

The number of pixons The ratio between the number of 
pixons and pixels Images 

(Size) 
The number 

of pixels TPB's 
method 

MPB's 
method 

WPB's 
method 

TPB's 
method 

MPB's 
method 

WPB's 
method 

Baboon 
(256×256) 262144 83362 61341 25652 31.8 % 23.4 % 9.79 % 

Pepper 
(256×256) 262144 31981 24720 13221 12.2 % 9.43 % 5.04 % 

Cortex 
(128×128) 16384 1819 1687 1523 11.1 % 10.2 % 9.3 % 

 

Table 1. Comparison of the number of pixons and the ratio between the number of pixons 
and pixels, among the three methods 
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Images TPB's method (ms) MPB's method (ms) WPB's method(ms) 

Baboon 18549 19431 15316 

Pepper 15143 17034 13066 
Cortex 702 697 633 

Table 2. Comparison of the computational time, between the three methods 

 
Method Parameter class 1 class 2 class 3 

average 168.06 127.28 84.25 
variance 12.18 11.06 17.36 TPB's 

method 
Normalized Variance 0.0279 

average 167.86 126.45 82.18 
variance 12.05 11.55 16.67 MPB's 

method 
Normalized Variance 0.0259 

average 170.40 128.36 83.95 
variance 11.34 11.46 16.96 WPB method 

Normalized Variance 0.0212 

Table 3. Comparison of variance values of each class, for the three algorithms (Baboon). 

 
Method Parameter class 1 class 2 class 3 

average 190.59 123.29 35.47 
variance 16.64 21.89 21.79 TPB's 

method 
Normalized Variance 0.0263 

average 191.68 125.27 34.39 
variance 16.28 22.66 22.30 MPB's 

method 
Normalized Variance 0.0251 

average 189.75 122.56 37.17 
variance 15.87 22.86 20.30 

WPB's 
method 

Normalized Variance 0.0217 

Table 4. Comparison of variance values of each class, for the three algorithms (Pepper). 
 

Method Parameter class 1 class 2 class 3 
average 22.44 93.71 197.23 
variance 12.59 11.67 14.11 TPB's method 

Normalized Variance 0.0131 
average 21.34 91.65 199.50 
variance 12.75 10.33 13.93 MPB's 

method 
Normalized Variance 0.0119 

average 24.25 92.49 196.72 
variance 11.37 10.51 12.81 WPB's 

method 
Normalized Variance 0.0101 

Table 5. Comparison of variance values of each class, for the three algorithms (Cortex). 
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4. Conclusion 
This chapter provided an introduction to the pixon-based image segmentation methods. The 
pixon is a set of disjoint regions with variable shapes and sizes. Different algorithms were 
introduced to form and extract the pixons. Pixon-based methods were divided into three 
classes: TPB method, which used from the traditional pixon definition to segment the image; 
MPB method, which combined the pixon concept and MRF to obtain the segmented image; 
and WPB method, which segmented the image by a pixon-based approach utilizing the 
wavelet thresholding algorithm. The chapter was concluded with illustration of 
experimental results of applying these methods on different standard images.   
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Hardware Implementation of a Real-Time Image 
Segmentation Circuit based on Fuzzy Logic for 

Edge Detection Application  
Angel Barriga  

Instituto de Microelectrónica de Sevilla (CNM/CSIC)/Univ. Sevilla 
Spain    

1. Introduction    
Edge detection algorithms in images make it possible to extract information from the image 
and reduce the amount of required stored information. An edge is defined as a sharp change 
in luminosity intensity between two adjacent pixels. Most edge detection techniques can be 
grouped into two categories: gradient based techniques and Laplacian based methods. 
Techniques based on gradient use the first derivative of the image and look for the 
maximum and the minimum of this derivative. Examples of this type of strategies are: the 
Canny method (Canny, 1986), Sobel method, Roberts method (Roberts, 1965), Prewitt 
method (Prewitt, 1970), etc. On the other hand the techniques based on Laplacian look for 
the cross by zero of the second derivative of the image. An example of this type of 
techniques is the zero-crossing method (Marr & Hildreth, 1980). 
Normally edge extraction mechanisms are implemented by executing the corresponding 
software realisation on a processor. Nevertheless in applications that demand constrained 
response times (real time applications) the specific hardware implementation is required. 
The main drawback of implementing edge detection techniques in hardware is the high 
complexity of the existing algorithms.  The process of edge detection in an image consists of 
a sequence of stages. Image segmentation is one step in the edge detection process. By 
means of the segmentation the image is divided in parts or objects that constitutes it. In the 
case of considering only one region the image is divided in object and background. The level 
at which this subdivision is made depends on the application. The segmentation will finish 
when all the objects of interest for the application have been detected.  
The image segmentation algorithms are based generally on two basic properties of the image 
grey levels: discontinuity and similarity. Inside the first category the techniques tries to divide 
the image by means of the sharp changes on the grey level. In the second category there are 
applied thresholds techniques, growth of regions, and division and fusion techniques. 
The simplest segmentation problem appears when the image is formed by only one object 
that has homogenous light intensity on a background with a different level of luminosity. In 
this case the image can be segmented in two regions using a technique based on a threshold 
parameter. Thresholding then becomes a simple but effective tool to separate objects from 
the background. Most of thresholding algorithms are initially meant for binary thresholding. 
This binary thresholding procedure may be extended to a multi-level one with the help of 
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multiple thresholds T1, T2,…,Tn to segment the image into n+1 regions (Liao et al., 2001), 
(Cao et al., 2002), (Oh & Kim, 2006). Multi-level thresholding based on a multi-dimensional 
histogram resembles the image segmentation algorithms based on pattern clustering. 
Binary thresholding techniques classify the pixels of the image into two categories (black and 
white). This transformation is made to establish a distinction between the objects of the image 
and the background. This binary image is generated by comparing the values of the pixels 
with a threshold T. That is to say, any value lower than the threshold value is considered to be 
an object whereas values greater than the threshold belong to the background.  

 
0

1
ij

ij
ij

if x T
y

L if x T
<⎧⎪= ⎨ − >⎪⎩

 (1) 

where xij is a pixel of the original image and yij is the pixel corresponding to the binary 
image. In the case of a monochrome image in which the pixels are encoded with 8 bits the 
range of values adopted by the pixels corresponds to the range between 0 and 255 (L=256). It 
is usual to express the above mentioned range with normalized values between 0 and 1. 

2. Thresholding techniques 
A basic technique for threshold calculation is based on the frequency of grey level. In this 
case the threshold T is calculated by means of the following expression: 
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where i is the grey level, pi represents the grey level frequency (also known as the 
probability of the grey level). For an image with n pixels and ni pixels with the grey level i: 
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Otsu's technique (Otsu, 1978) calculates the optimal threshold maximizing the variance 
between classes. For that it realizes an exhaustive search to evaluate the criterion of 
maximizing the variance between classes. One drawback of Otsu's method is the time 
required to select the value of the threshold. 
In the case of two-level thresholding the pixels are classified into two classes: C1, with gray 
levels [1, ..., t], and C2, with gray levels [t+1, ..., L]. The distributions of probability of gray 
levels for the two classes are: 
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The mean values for C1 and C2 classes are 
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Let μT be the average intensity of whole image, so that: 
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Using discriminant analysis the variance between classes can be defined as 
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For a two-level thresholding the optimal threshold t* is chosen so that σ2B is maximum, ie 
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Otsu's method can be easily applied to multiple thresholds. Assuming there are M-1 
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ωk is known as zero-order cumulative moment of the k-th class Ck, and the numerator of the 
last expression is known as first-order cumulative moment of the k-th class Ck, ie 
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Regardless of the number of classes that are considered during the thresholding process the 
sum of the cumulative probability functions of the M classes are equal to 1 and the mean of 
the image is equal to the sum of the means of the M classes weighted by their corresponding 
cumulative probabilities, ie 
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Using (16) the variance between classes in equation (13) can be rewritten as follows 
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Since the second term in equation (17) depends on the choice of thresholds {t1, t2, ..., tM-1}, the 
optimal thresholds {t1*, t2*, ..., tM-1*} can be chosen maximizing a modified variance between 
classes (σB’)2, defined as the sum of the terms of the right side of equation (17). That is, the 
optimal threshold values {t1*, t2*, ..., tM-1*} are chosen by 
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According to the criterion of expression (12) for σB2 and equation (18) for (σB’)2, in order to 
find optimal thresholds, the search region for the maximum σB2 and for the maximum (σB’)2 

is 1<t1<L-M+1, t1+1<t2<L-M+2, …, tM-1+1< tM-1<L-1. 
This exhaustive search involves (L-M+1)M-1 possible combinations. Furthermore, equation 
(19) is simpler than (13) because it don’t requires the subtractions. 
In 1965 Zadeh proposed fuzzy logic as a reasoning mechanism that uses linguistic terms 
(Zadeh, 1965). Fuzzy logic is based on the fuzzy set theory in which an element can belong 
to several sets with different degrees of membership. This contrasts with the classic set 
theory in which an element either belongs or does not belong to a certain set. Thus a fuzzy 
set A is defined as 

 ( ){ }, ( )A x x x Xμ= ∈  (20) 

where x is an object of the set of objects X and μ(x) is the membership degree of element x to 
set A. In the classic set theory μ(x) takes values 0 or 1 whereas in the fuzzy set theory μ(x) 
belongs to the range of values between 0 and 1. 
Techniques that apply fuzzy logic to threshold calculation are based mainly on three types 
of measures of fuzziness (Forero-Vargas & Rojas-Camacho, 2000): entropy, Kaufmann`s 
measure, and Yager's measure. 
The technique based on entropy consists of minimizing the dispersion of the system. This way 
the pixels of the image are grouped into two classes corresponding to the objects and to the 
background. Huang and Wang (Huang & Wang, 1995) consider that the averages of the data 
corresponding to each class are μ0 and μ1. The membership function of each class is defined as: 
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The calculation of the threshold T is based on the entropy of a fuzzy set that is calculated 
using the function of Shannon: 
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The threshold will be that which minimizes the entropy of the data: 
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Kaufmann’s measure of fuzziness is defined as (Kaufmann, 1975): 
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This method is based on using the distance metric to set A. When w=1 Hamming's distance 
is used whereas if w=2 it is the Euclidean distance.  
Yager’s method (Yager, 1979) is based on the distance between a fuzzy set and its 
complementary, and basically entails minimizing the following function: 
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where ( ) 1 ( )xx i iμ μ= − . 
(Barriga & Hussein, 2008) proposed a technique that, from a formal point of view, is based 
on calculating the average of the histogram of the image. One advantage of this technique is 
that the calculation mechanism improves the processing time since the image only needs to 
be processed once and the value of the threshold can be calculated directly. From the point 
of view of hardware implementation that enables low-cost circuit for fuzzy processing 
module as discussed in a later section 
The fuzzy system receives the input pixel and generates an output that corresponds to the 
result of the fuzzy inference. Once the image has been read the output shows the value of 
threshold T. Basically the operation carried out by the fuzzy system is that of calculating the 
centre of gravity of the image histogram with the following expression: 
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where T is the threshold, M is the number of pixels of the image, R is the number of rules of 
the fuzzy system, c is the consequent of each rule and α is the activation degree of the rule. 
In order to produce the fuzzy inference the universe of discourse of the histogram is divided 
into a set of N equally distributed membership functions. Figure 1 shows a partition 
example for N=9. Triangular membership functions have been used since they are easier for 
hardware implementation. These functions have an overlapping degree of 2 in order to limit 
the number of active rules. The membership functions of the consequent are singletons 
equally distributed in the universe of discourse of the histogram. The use of singleton-type 
membership functions for the consequent allows the application of simplified 
defuzzification methods such as the Fuzzy Mean. This defuzzification method can be 
interpreted as one in which each rule proposes a conclusion with a “strength” defined by its 
grade of activation. The overall action of several rules is obtained by calculating the average 
of the different conclusions weighted by their grades of activation. This type of processing, 
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The technique based on entropy consists of minimizing the dispersion of the system. This way 
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The calculation of the threshold T is based on the entropy of a fuzzy set that is calculated 
using the function of Shannon: 
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This method is based on using the distance metric to set A. When w=1 Hamming's distance 
is used whereas if w=2 it is the Euclidean distance.  
Yager’s method (Yager, 1979) is based on the distance between a fuzzy set and its 
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be processed once and the value of the threshold can be calculated directly. From the point 
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The fuzzy system receives the input pixel and generates an output that corresponds to the 
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centre of gravity of the image histogram with the following expression: 
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where T is the threshold, M is the number of pixels of the image, R is the number of rules of 
the fuzzy system, c is the consequent of each rule and α is the activation degree of the rule. 
In order to produce the fuzzy inference the universe of discourse of the histogram is divided 
into a set of N equally distributed membership functions. Figure 1 shows a partition 
example for N=9. Triangular membership functions have been used since they are easier for 
hardware implementation. These functions have an overlapping degree of 2 in order to limit 
the number of active rules. The membership functions of the consequent are singletons 
equally distributed in the universe of discourse of the histogram. The use of singleton-type 
membership functions for the consequent allows the application of simplified 
defuzzification methods such as the Fuzzy Mean. This defuzzification method can be 
interpreted as one in which each rule proposes a conclusion with a “strength” defined by its 
grade of activation. The overall action of several rules is obtained by calculating the average 
of the different conclusions weighted by their grades of activation. This type of processing, 



 Image Segmentation 

 

524 

based on active rules and a simplified defuzzification method, allows low cost and high 
speed hardware implementation. 
 

L2 L3 L4 L5 L6 L7 L9L1 

0 255

L8 C2C1 C3 C4 C5 C6 C7 C8 

0 255 

C9 

 
  a)      b) 

Fig. 1. Membership functions for N=9, a) antecedent, b) consequent. 

The rule base of the system in figure 2 use the membership functions defined in figure 1. 
The knowledge base (membership functions and rule base) is common for any images, and 
the values can therefore be stored in a ROM memory. 
 

if x is L1 then c is C1; 
if x is L2 then c is C2; 
if x is L3 then c is C3; 
if x is L4 then c is C4; 
if x is L5 then c is C5; 
if x is L6 then c is C6; 
if x is L7 then c is C7; 
if x is L8 then c is C8; 
if x is L9 then c is C9; 

Fig. 2. Rulebase for N=9. 

It is possible to optimize the expression shown in equation (26) if the system is normalized. 
In this case the sum extending to the rule base of the grades of activation of the consequent 
takes value 1: 

 
1

1
R

ij
i
α

=
=∑  (27) 

Then (26) transforms in: 
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For each pixel the system makes the inference in agreement with the rule base of figure 2. 
The output of the system accumulates the result corresponding to the numerator of (28). The 
final output is generated with the last pixel of the image after division by M. 

3. Image segmentation 
The technique presented in (Barriga & Hussein, 2008) has the disadvantage that the rule 
base is predetermined and therefore the threshold does not fit to the characteristics of the 
image. It is a linear approximation. A mechanism to adjust the threshold to the 
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characteristics of the image is to perform a nonlinear approximation. Figure 3 shows some 
examples of knowledge bases that give place to non-linear approximations. The figure 
shows five fuzzy systems (figure 3a to figure 3e). For each system there have been 
represented the membership functions for antecedents, the output function and the result of 
segmentation using the threshold generated in each case. In all cases the membership 
functions of antecedents constitute a family of functions. This family consists of triangular 
functions with an overlapping degree of two. This structure is determined by the hardware 
implementation requirements of the system as we will discuss in a later section. It may be 
noted that the base and the position of the membership functions change from one system to 
another giving rise to a nonlinear behavior. 
This approach allows to obtain thresholds adapted to the characteristics of the image or the 
requirements of the application. Table 1 shows the thresholds obtained in different images 
using the Otsu method, the grey level frequency method and usign the fuzzy systems of 
figures 3a to 3e. 

4. Hardware implementation 
4.1 Architecture description 
The design goals of the fuzzy inference module (FIM) for calculating the threshold are: a low 
cost system and high processing speed. The architecture of the FIM circuit is based on the 
proposal described in (Baturone et al., 2000) shown in Figure 4. The module consists of three 
stages: fuzzifier, inference and defuzzifier. The inference mechanism is based on active 
rules. This allows to process only those rules that are active and avoids to analyze the whole 
rulebase. This way the processing time is reduced. For it the overlapping degree of the 
membership functions is limited. Another architecture feature is the use of singleton 
consequents. This allows to apply simplified defuzzification methods which supposes a 
reduction of hardware resources.  
The first stage of the architecture corresponds to the fuzzificación stage. This stage receives the 
input data and generates for each input the pair (Label, membership degree) = (L, μ). MFC 
blocks (Membership Function Circuit) perform this task. There are several alternatives to the 
design of MFC blocks (Baturone et al., 2000). One solution is to design the block as an 
arithmetic circuit that interpolates the right output for each input. This solution gives place to a 
simple and fast circuit. However it has as counterpart that limits the type of membership 
functions to triangular and trapezoidal functions. A more flexible solution is based on the use 
of a memory. In this case the input acts as a pointer to a memory location. This memory 
location stores the output values. This allows to have membership functions of any form. The 
shape of the membership function has no restrictions other than the selected precision and has 
no influence on the computational load. As opposed to this advantage, in situations of high 
resolution, memory requirements can become very large since the number of rows in the 
antecedents memory depends exponentially on the number of bits of the input. In the case of 
N membership functions, with P bits of precision for the input, and J bits of precision for the 
membership degree, the size of the required memory is given by the equation (29). 

 2PT N J= ⋅ ⋅  (29) 

Since the overlapping degree of the membership functions is fixed, the number of output 
values of the fuzzification stage is limited. For example, in the case of limiting the 
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based on active rules and a simplified defuzzification method, allows low cost and high 
speed hardware implementation. 
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Fig. 1. Membership functions for N=9, a) antecedent, b) consequent. 

The rule base of the system in figure 2 use the membership functions defined in figure 1. 
The knowledge base (membership functions and rule base) is common for any images, and 
the values can therefore be stored in a ROM memory. 
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Fig. 2. Rulebase for N=9. 

It is possible to optimize the expression shown in equation (26) if the system is normalized. 
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Then (26) transforms in: 
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For each pixel the system makes the inference in agreement with the rule base of figure 2. 
The output of the system accumulates the result corresponding to the numerator of (28). The 
final output is generated with the last pixel of the image after division by M. 

3. Image segmentation 
The technique presented in (Barriga & Hussein, 2008) has the disadvantage that the rule 
base is predetermined and therefore the threshold does not fit to the characteristics of the 
image. It is a linear approximation. A mechanism to adjust the threshold to the 
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Fig. 3. Examples of fuzzy systems for image thresholding. For each subfigure there are: i) 
Membership functions for antecedent. ii) Output of the fuzzy system. iii) image 
segmentation sample. 
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 Otsu Freq Fuzz-a Fuzz-b Fuzz-c Fuzz-d Fuzz-e 
Lena 116 123 126 124 126 152 96 
Barbara 112 112 114 105 105 134 78 
Cameraman 87 118 120 135 138 154 106 
Peppers 101 104 106 103 105 123 80 

Table 1. Thresholds obtained using different methods on sample images 

 

 
Fig. 4. Architecture of fuzzy inference module (FIM). 

overlapping degree of the membership functions to 2, and in the case of a system of 2  
inputs, only 4 couples of values (Label, degree) exist, i.e. only 4 rules are activated. 
Therefore the inference stage is constituted by the block that selects each one of the 
antecedents of the active rules. A set of multiplexers controlled by a counter allows to select 
sequentially the different combinations of antecedents of the active rules. In each counter 
cycle the membership degrees are processed through the conjunction operator to calculate 
the rule activation degree, while the labels of the antecedents address the memory position 
that contains its corresponding consequent. The output of the inference stage corresponds to 
the pair of values (Consequent, activation degree) = (c, α).  for each rule. 
The last stage performs the defuzzification. On having used singleton consequents, the 
defuzzification algorithm only requires operations on the rules. The hardware resources 
required for implementing the Fuzzy Mean defuzzification method are: a multiplier, two 
accumulators and a divisor. This defuzzification method corresponds to the following 
operation: 

 /i i i

r r
Out cα α=∑ ∑  (30) 

where the summations are extended to active rules, ci is the consequent of each rule and αi is 
the rule activation degree. 
In the case of having normalized membership functions and applying the product as T-
norm the denominator of the previous equation is 1. This means that a divisor is not needed 
and defuzzification operation is simplified according to the following expression: 
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Out cα=∑  (31) 

4.2 Design and implementation 
From the general characteristics of the FIM architecture it is possible to specify a set of 
simplification options that allow a reduction of hardware resources and increased 
parallelism (and thus the processing speed). Regarding the design of the different blocks of 
figure 4 and according to the knowledge base of the threshold system the memory 
requirements are: a) the MFC memory requires 256x10 bits; b) the rule memory requires 7x8 
bits. 
Figure 5 shows the system architecture. The FIM module receives input x corresponding to 
one pixel. MFC memory stores the data of the antecedent membership functions according 
to the scheme shown in figure 6a. Since the overlapping degree is fixed to 2, each row of 
memory only stores the value of a linguistic label and a membership degree (Label, 
degree)=(L, μ). The other label can be calculated increasing in a unit the stored value, since 
always the linguistic labels of both membership functions that are active are consecutive 
(L2=L1+1). While the other membership degree is calculated taking into account that the 
membership functions are normalized, by the operation μ2=1-μ1. 
 

 
Fig. 5. FIM circuit for calculating the threshold 

The rule memory is a dual-port memory. This way it is possible to access simultaneously to 
two active rules. This memory is addressed by the linguistic label that provides the MFC. 
This allows to eliminate the multiplexers and the counter of figure 4. 
The defuzzification stage receives both the consequents (c1 and c2) and the activation 
degrees of the active rules (μ1 and μ2). The last stage makes the accumulation of the result 
generated by each pixel and the division by the number of pixels of the image. In agreement 
with the described FIM scheme it is possible to make an inference in each clock cycle. 
In order to increase the operation speed of the system it is possible to process two pixels in 
parallel as shown in Figure 7. For it the blocks of higher cost (the MFC memory and the 
divisor) are shared by both inputs. The MFC memory is a dual-port memory. This allows to 
reduce by the half the time required to calculate the threshold. 
The circuit of figure 7 has been implemented on a low cost FPGA Spartan3 device XC3S200 
of Xilinx. The results of the required hardware resources on the Spartan3 FPGA circuit are 
shown in Table 2. The table shows the resources needed in the case of the circuit with and 
without the divisor. This division block is that of major cost of the system. 
The circuit implemented on the Spartan3 FPGA operates at a frequency of 50MHz. In each 
clock cycle it allows to process two pixels. Thus the processing time of an SVGA image of 
 

Hardware Implementation of a Real-Time Image 
Segmentation Circuit based on Fuzzy Logic for Edge Detection Application   

 

529 

 
Fig. 6. a) Storage scheme in the antecedent memory. b) MFC circuit based on memory 

 

 
Fig. 7. Circuit that allows to process two pixels in parallel 

  

Resources without DIV with DIV 

slices 82 407 
8x8 bit multiplier 4 4 
Flip-flops 84 654 
256x10 bit dual-port RAM 1 1 
7x8  bit dual-port RAM 2 2 

Table 2. Hardware resources on XC3S200 FPGA  
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800x600 pixels is 4.8 msec. This allows to make a processing of 208 frames per second. In the 
case of an HD image (1920x1080 pixels) it is possible to process 48 frames per second. 

5. Edge detection 
This section presents an application of image segmentation to edge detection. The method is 
applied to the luminosity of the image. An image is a bidimensional matrix of pixels whose 
values belong to certain range of values. In this section each pixel is codified with 8 bits, 
which gives rise to 256 possible values of grey tones. An image is therefore a function of two 
variables (dimensions) in the range from 0 to 255. 
The process of edge detection in an image consists of the sequence of stages shown in figure 8. 
The first stage receives the input image and applies a filter to eliminate noise. The second step 
applies a threshold in order to classify the pixels of the image under two categories, black and 
white. The resulting image is a binary image. Finally, in the last stage the edges are detected. 
 

Filter 

Segmentation 

Edge 
Detection 

 
Fig. 8. Diagram flow for edge detection. 

5.1 The filter stage 
The filter stage makes it possible to improve details of edges in images and reduce or 
eliminate noise patterns. The aim of the filter step is to eliminate all those points that do not 
provide any type of information of interest. The noise corresponds to undesired information 
appearing in the image. It comes principally from the capture sensor (quantisation noise) 
and from the transmission of the image (fault in transmitting the information bits). Basically 
we consider two types of noise: Gaussian and impulsive (salt&peppers). Gaussian noise has 
its origin in differences of gains in the sensor, noise in digitalization, etc. Impulsive noise is 
characterized by arbitrary pixel values that are detectable because they are very different 
from their neighbours. A way to eliminate these types of noise is by means of a low pass 
filter, a filter which smoothens out the image replacing high and low values by average 
values. 
The filter used in the proposed edge detection system is based on the bounded sum 
Lukasiewicz operator which is defined as: 

 ( , ) min(1, )BoundedSum x y x y= +  (32) 

The behaviour of the bounded-sum is shown in figure 9. It consists of a normalized function 
in the [0,1] range. An advantage of applying this operator lies in the simplicity of the 
hardware realisation. 
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Fig. 9. Bounded sum graphical representation. 

The Lukasiewicz bounded sum filter smoothens out the image and is suitable for both 
salt&peppers and Gaussian noise. Figure 10 shows the effect of applying this type of filter. 
 

 
Fig. 10. a) Input image with salt&peppers noise, b) Lukasiewicz's bounded sum filter 
output. 

The filter has been applied using a mask based on a 3x3 array. For pixel xij the weighted 
mask is applied to obtain the new value yij, as is shown in the following expression:  
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5.2 The segmentation stage 
Techniques based on thresholding an image allow pixels to de divided into two categories 
(black and white). This transformation is made to establish a distinction between the objects 
of the image and the background. This binary image is generated by comparing the values 
of the pixels with a threshold T. That is to say, any value lower than the threshold value is 
considered to be an object whereas values greater than the threshold belong to the 
background. In this stage there is applied the previously calculated threshold T in order to 
obtain the binary image. 

a) b)
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5.3 Edge detection stage 
The next step is the edge detection. The input image for the edge detection is a binary image 
in which pixels take value 0 (black) or 1 (white). In this case the edges appear when a change 
between black and white takes place between two consecutive pixels. 

 
0 0
1 0edge

if x y
x

if x y
− ≠⎧

= ⎨ − =⎩
 (34) 

where x and y are consecutive pixels, and xedge is the resulting pixel. 
Edge generation consists of determining if each pixel has neighbours with different values. 
Since the image is binary every pixel is encoded with a bit (black=0 and white=1). This edge 
detection operation is obtained by calculating the xor logic operation between neighbouring 
pixels using a 3x3 mask. Figure 11 shows an example of applying the xor operator on the 
binary image. 
 

 
Fig. 11. a) Lena`s image, b) binary image, c) edge detection. 

Using the 3x3 mask it is possible to refine the edge generation by detecting the orientation of 
the edges. To this end the four orientations shown in figure 12 can be considered. This 
enables calculation of the xor operation on 3 pixels. For a horizontal orientation we will 
therefore have 

 , , 1 , , 1i j i j i j i jy x x x− += ⊕ ⊕  (35) 

Whereas for an orientation of 45º it will be 

 , 1, 1 , 1, 1i j i j i j i jy x x x+ − − += ⊕ ⊕  (36) 
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Fig. 12. Orientations for the edges generation 
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Figure 13 shows the results obtained when edge detection was carried out on a set of test 
images.  

 
Fig. 13. Test images and edge detection results. 

5.4 Hardware implementation 
The edge detection circuit has been implemented on a low cost FPGA device of the Xilinx 
Spartan3 family. Figure 14 shows the block diagram for the system. The image is stored in a 
double port RAM memory. The data memory width is 32 bits. This makes it possible to read 
two words simultaneously.  
In the first phase there is realized the calculation of the value of the threshold T. Later the 
edge detection circuit initiates its operation reading eight pixels from the memory in each 
clock cycle (2 words of 32 bits). The edge detection circuit is thus able to provide four 
parallel output data which are stored in the external memory. Each data corresponds to a 
pixel of the edge image. This image is binary, and only one bit is therefore needed to 
represent the value of the pixel (0 if edge or 1 if background). The new image of the edges is 
stored in the above mentioned memory. 
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Fig. 14. Block diagram of the system. 

The edge detection algorithm basically comprises three stages as shown in figure 8 (Hussein 
& Barriga, 2008, 2009). In the first stage the Lukasiewicz bounded-sum is performed. After 
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the filter stage a thresholding step is applied producing a black and white monochrome 
image. The value of the threshold is obtained by means of a fuzzy system that calculates the 
threshold related to the image. 
In the third stage the edges of the image are obtained. For it the final value of each pixel is 
evaluated. Only those pixels that are around the target pixel are of interest (a 3x3 mask). 
Therefore if in the surroundings of a pixel the value is the same (all white or all black) this 
indicates no edge and the output value associates the above mentioned pixel with the 
background of the image. If a change is detected in any value of the surroundings of the 
pixel this indicates that the pixel at issue is in an edge, and it is therefore assigned the black 
value. 
Figure 15 shows the system processing scheme. Pixels 1 to 9 correspond to the 3x3 mask that 
moves through the image. The Functional Unit (FU) processes the data stored in the mask 
registers. 
 

pixel 1 pixel 2 pixel 3 

pixel 4 pixel 5 pixel 6 

pixel 7 pixel 8 pixel 9 
Functional 
Unit (FU) 

 
Fig. 15. System schema. 

To improve image processing time the mask was spread to an 8x3 matrix as shown in figure 
16a. Each Functional Unit (FU) operates on a 3x3 mask in agreement with the scheme shown 
in figure 15. The data are stored in the input registers (R3, R6, R9, …) and in each clock cycle 
they move to their interconnected neighbours registers. In the third clock cycle the mask 
registers contain the data of the corresponding image pixels. The functional units then 
operate with the mask data and generate the outputs. In each clock cycle the mask advances 
one column in the image. Pixels enter on the right and shift from one stage to another 
outgoing on the left hand side. It is a systolic architecture with linear topology and it allows 
several pixels to be processed in parallel. 
Figure 16b shows the input/output ports in the symbol of the system. The system receives 
two input data of 32 bits (D1 and D2). These data come from a double port memory that 
stores the image. The memory access time makes it possible to read 8 pixels (each of 8 bits) 
in a clock cycle. The circuit also receives the previously calculated threshold (T) as input 
data. The input control signals are the following: the clock (CLK), the synchronous clear 
(Clear), and chip select signal (CS). The circuit generates as output the 4 bits (Dout) 
corresponding to the output values of the processed pixels stored in R5, R8, R11 and R14. 
The address of the pixel stored in R5 is also generated by means of the buses Row and 
Column. The output control signals Dvalid and EndImage respectively indicate the validity of 
the outputs and the completion of the image processing. 
The functional unit operates on the 3x3 mask and generates the output value corresponding 
to the centered element of the mask (pixel 5 in figure 15). A block diagram of a functional 
unit is shown in figure 17. The circuit consists of two pipeline stages so that the data has a 
latency of two clock cycles. The first stage is the image filter. Then threshold T is applied. 
The edge detector, in the output stage, operates on the binary mask (black and white image). 

Hardware Implementation of a Real-Time Image 
Segmentation Circuit based on Fuzzy Logic for Edge Detection Application   

 

535 

 

R1 R2 R3 

R4 R5 R6 

R7 R8 R9 

R10 R11 R12 

R13 R14 R15 

R16 R17 R18 

R19 R20 R21 

R22 R23 R24 

FU1

FU2

FU3

FU4

FU5

FU6

           
                                                  a)                                                        b) 
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the filter stage a thresholding step is applied producing a black and white monochrome 
image. The value of the threshold is obtained by means of a fuzzy system that calculates the 
threshold related to the image. 
In the third stage the edges of the image are obtained. For it the final value of each pixel is 
evaluated. Only those pixels that are around the target pixel are of interest (a 3x3 mask). 
Therefore if in the surroundings of a pixel the value is the same (all white or all black) this 
indicates no edge and the output value associates the above mentioned pixel with the 
background of the image. If a change is detected in any value of the surroundings of the 
pixel this indicates that the pixel at issue is in an edge, and it is therefore assigned the black 
value. 
Figure 15 shows the system processing scheme. Pixels 1 to 9 correspond to the 3x3 mask that 
moves through the image. The Functional Unit (FU) processes the data stored in the mask 
registers. 
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Figure 16b shows the input/output ports in the symbol of the system. The system receives 
two input data of 32 bits (D1 and D2). These data come from a double port memory that 
stores the image. The memory access time makes it possible to read 8 pixels (each of 8 bits) 
in a clock cycle. The circuit also receives the previously calculated threshold (T) as input 
data. The input control signals are the following: the clock (CLK), the synchronous clear 
(Clear), and chip select signal (CS). The circuit generates as output the 4 bits (Dout) 
corresponding to the output values of the processed pixels stored in R5, R8, R11 and R14. 
The address of the pixel stored in R5 is also generated by means of the buses Row and 
Column. The output control signals Dvalid and EndImage respectively indicate the validity of 
the outputs and the completion of the image processing. 
The functional unit operates on the 3x3 mask and generates the output value corresponding 
to the centered element of the mask (pixel 5 in figure 15). A block diagram of a functional 
unit is shown in figure 17. The circuit consists of two pipeline stages so that the data has a 
latency of two clock cycles. The first stage is the image filter. Then threshold T is applied. 
The edge detector, in the output stage, operates on the binary mask (black and white image). 
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Figure 18 shows the circuits corresponding to the different blocks of the functional unit (FU). 
As we can observe in figure 18a the filter based on Lukasiewicz's bounded sum receives the 
data stored in registers R1 to R9. These data are scaled by the factor 0,125 entailing division by 
8, which signify a displacement of three places to the left. The sum of the data is compared 
(using the carry as control signal) with value 1. The segmentation circuit (figure 18b) compares 
the pixel with the threshold value. The output is a binary image (black and white) and only 
therefore requires one bit. Finally, the output stage receives a 3x3 binary image. It carries out 
the xor operation of the bits. If all the bits of the mask are equal the output pixel is in the 
background, whereas if some bit is different the output is an edge pixel.  
The state machine that controls the system is shown in figure 19. This machine has four 
states. The mask moves through the image by columns. Whenever a row begins two clock 
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Fig. 18. Lukasiewicz filter, b) Segmentation circuit, c) output stage. 
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cycles are needed to initialize the mask registers (CYCLE1 and CYCLE2 states). In the next 
cycle (PROCESSING state) the data is processed and the data of the following columns 
being processed in successive cycles. 
Figure 20 shows the chronogram of the circuit. It can be observed that the operation of the 
system begins with the falling edge of signal CS. In the third clock cycle Dvalid signal take 
value 1, indicating a valid output. Input data are provided in each clock cycle. Once Dvalid 
has been activated the output data in the following cycles is also valid (since Dvalid=1). 
The system has been implemented on an FPGA of the Spartan3 Xilinx family. The circuit for 
edge detection occupies an area of 318 slices. The resources needed for the full system 
(which includes the thresholding circuit and the edge detection circuit) occupies 735 slides 
which mean a 38% of the selected FPGA device. Regarding processing speed, the system 
required 7.2 msec to generate the edge image of a SVGA (800x600 pixels) using a 50 MHz 
clock cycle. This mean it is possible to process 132 frames per second. For a HD image 
(1920x1080 pixels) it is possible to process 32 frames per second. 
 

 
Fig. 20. Chronogram of the edge detection circuit 
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7. Conclusion 
In this chapter there has been described a mechanism for binary image segmentation based 
on the application of fuzzy logic to calculate the threshold. The described thresholding 
method allows to adjust the threshold value to the characteristics of the image. The main 
advantage of this technique is that it allows very efficient hardware implementation in 
terms of cost and speed. This makes it especially suitable for applications which require real 
time processing. This technique has been applied for edge detection in images. The designed 
circuit has been implemented on an FPGA device. 
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