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Preface

Proportional–integral–derivative (PID) control, because of its simplicity in 
structure and its robustness with the uncertainties and disturbances, is such a 
popular control technology even today and has been widely used in many indus-
trial processes. Furthermore, from a philosophical viewpoint, PID control is the 
embodiment of such a control idea that the control input can be determined based 
on the combination of the information at the present (P), the past (I), and the 
future (D), which is exactly the representation of the human being’s wisdom, idea, 
and method to problem-solving.

Due to the popularity of PID control, a ton of content addressing this topic has 
already been made available by various publishers. At the same time, countless 
optimization opportunities have emerged with the development of science and tech-
nology, such as big data, artificial intelligence, machine learning, etc. There are also 
plenty of new fields that can leverage the power of control technologies. Some of the 
great examples include biological engineering, medical technologies, and financial 
technologies. The list is even extended to applications for social management and/or 
regulations, etc.

Therefore, PID control will continue to embrace new opportunities and face new 
challenges at the same time. This book highlights some of the new aspects of this 
subject and its related applications. Generally speaking, the better the cognition, the 
easier the realization of control. Yet, the relationship between cognition and control 
of complex systems can go both ways. We also know that the proper control method 
may be helpful for the improvement of the cognition of systems. That is to say, there 
is a mutual promotion between control and identification of complex systems that 
happens to reflect the law of the spiral rise in independent cognitive processes.

The main topics of this book include the improvement of PID controller, intel-
ligent PID controller, optimization of PID controller, new forms of PID controller, 
development of PID controller, new application fields, etc. On the other hand, this 
book will also reveal that the proper control with a PID framework can also improve 
the cognition or identification for complex systems.

We intend to not only summarize the advance of science and technology on PID 
control but also extend the connotation and its extensions. We would like to bring 
more inspiration and benefits to the new fellows.

Based on the previous considerations, we present the book with the following 
chapters.

In Chapter 1, for some complex systems, the novelty method of the variable, 
fractional order PID controller is proposed. The main idea is to apply the split 
orders to discrete differentiation and summation functions, such that in the final 
time interval, the variable, fractional order PID controller must transform itself 
to the classical one that preserves the well-known stability conditions and zero 
steady-state error signal.
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Chapter 2 focuses on the design and simulation of a hybrid LQR-PID controller 
used to stabilize the elevation, pitch, and travel axes of a helicopter system. An 
improvement in the performance of the hybrid LQR-PID controller is achieved by 
using a genetic algorithm (GA), which is adopted to obtain the best values of gain 
parameters for the LQR-PID controller. The strategy of the hybrid controller is 
based on the idea that the parameters of the PID controller are calculated using gain 
elements of the LQR optimal controller. 

Chapter 3 presents the alternative optimized tuning approach of the PID control-
ler. First, the PID controller parameters are optimized for the tracking response. 
Then, a simple disturbance estimator is introduced to substantially increase the 
disturbance-rejection performance. The proposed approach can still be used on 
the process data given either in parametric or nonparametric form. It will be shown 
how to achieve the best trade-off between performance and noise attenuation.

To solve the tuning problem in highly complex industrial processes, Chapter 4 
concerns a controller adjustment method based on the internal product of PID 
terms. A propagation matrix (PM) is generated by the numerator coefficients of 
the plant transfer function (TF). In the proposed method, each term of the PID 
controller is influenced by each of the numerator and the denominator coefficients. 
Mathematical models of practical plants were employed to evaluate the proposed 
method. The obtained results demonstrated an assertive improvement in the 
adjustment gains from PID actions, thereby validating it as a promising alternative 
to conventional methods.

In Chapter 5, an application to the magnetic levitation (maglev) system is consid-
ered. To account for the complexity in the design procedure, this chapter presents a 
practical controller for the high-positioning performance of a magnetic levitation 
system. Three strategies of the proposed controller are the PI-PD controller is to 
enhance transient response, the model-based feedforward (FF) control is incorpo-
rated with the PI-PD controller to enhance the overshoot reduction characteristic in 
attaining a better transient response, and lastly, the disturbance compensator (Kz) 
is integrated as an additional feedback element to reduce the sensitivity function 
magnitude for robustness enhancement. 

In Chapter 6, the estimation of multiparameters of complex systems based on the 
extended PID controllers is considered. Based on the results, with the introduction 
of a binary control mechanism, the integral item of the nonlinear PID controller 
could deal with the uncertain part of the complex system, which can also be called 
the new stripping principle (NSP), the new multiparameter estimation methods 
are given. Such kind of effort will improve the identification or cognition for 
certain kinds of complex systems, and it will also provide a completely different 
and effective way for the estimation methods in mathematical statistics.

Ever since the idea of publishing this book has been issued, we have received more 
than ten proposals and suggestions on the relevant chapters, given the current 
pandemic situation. We have accepted six of them to be included in this book. The 
intention of this book is to provide an active spur that will hopefully induce some-
one to come forward with his/her valuable contributions and to offer more relevant 
achievements in the future.

As this book is about to be published, I would like to express my deepest gratitude 
to all the authors of this book for their tremendous efforts in submitting their own 

V

chapters. I would like to give my sincere appreciation for the support from the 
IntechOpen publishing working team, and Miss Sara Debeuc in particular, for their 
kind support throughout the entire publishing process.

Wei Wang
School of Mathematics, 

Renmin University of China, 
Beijing, China
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Chapter 1

Variable, Fractional-Order PID
Controller Synthesis Novelty
Method
Piotr Ostalczyk and Piotr Duch

Abstract

The novelty method of the discrete variable, fractional order PID controller is
proposed. The PID controllers are known for years. Many tuning continuous time
PID controller methods are invented. Due to different performance criteria there
are optimized three parameters: proportional, integral and differentiation gains. In
the fractional order PID controllers there are two additional parameters: fractional
order integration and differentiation. In the variable, fractional order PID controller
fractional orders are generalized to functions. Nowadays all PID controllers are
realized by microcontrollers in a discrete time version. Hence, the order functions
are discrete variable bounded ones. Such controllers offer better transient charac-
teristics of the closed loop systems. The choice of the order functions is still the open
problem. In this Section a novelty intuitive idea is proposed. As the order functions
one applies two spline functions with bounded functions defined for every time
subinterval. The main idea is that in the final time interval the variable, fractional
order PID controller transforms itself to the classical one preserving the stability
conditions and zero steady-state error signal. This means that in the last time
interval the discrete integration order is �1 and differentiation is 1.

Keywords: fractional-Calculus, PID controller, discrete system

1. Introduction

A continuous-time proportional–integral–derivative controller (PID controller)
[1] invented almost 100 years ago is one of the most widely applied controllers in
the closed-loop systems [2] with many industrial applications [3–5]. Currently the
continuous-time control is successively replaced by discrete-time one in which the
integration is replaced by a summation and differentiation by a difference evalua-
tion. So, in the discrete PID controller the classical integral is replaced by a sum and
the derivative by a backward difference, [6]. The discrete controller’s PID algorithm
is mainly realized by micro-controllers [7].

At 70s of the 20-th Century the Fractional Calculus [8] with a great success
started a considerable attention in mathematics and engineering [9–12]. Now, the
fractional-order backward-difference (FOBD) and the fractional-order backward
sum (FOBS) [6, 13] are applied in the dynamical system modeling [14] and discrete
control algorithms. The continuous-time FOPID controllers are more difficult in a
practical realization [15–18].
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There are numerous continuous and discrete-time PID and FOPID controller
synthesis methods [16, 19–31]. One should mention that the optimisation of the
closed-loop system in this case is more complicated because of the controller optimi-
zation. Apart from the three classical gains there are two additional parameters,
namely, a fractional order of differentiation and summation [32]. The FOPID control
characterizes by slow achieving the steady state and growing calculation “tail” [12].

In the paper a novelty variable, the fractional-order PID (VFOPID) [6, 28, 33–41]
controller synthesis is proposed. It consists of dividing the closed-loop system
discrete-transient time division into the finite time intervals over which are defined
fractional orders summation and differentiation functions. The main idea is that for
the final infinite interval kL,þ∞½ Þ the difference order equals 0 and the summation is
�! preserving quick reaching the zero steady state value. Thus, in the VFOPID control
the disadvantages of FOPID are extracted. One should admit that in the FOPID or
VFOPID control the microcontrollers are numerically loaded.

Fractional-orders systems are characterized by the so called system “memory”.
This, in practice, means that in every step the FOPID controller computes its output
signals taking into account step-by-step linearly computed number of samples. This
causes in practice the micro-controllers realization problems. It is known as “Finite
memory principle” [12].

The paper is organized as follows. In Section 2 the basic information related to the
fractional calculus and variable, fractional order Grünwald-Letnikov backward differ-
ence is given. The main result of the paper includes Section 3. It contains the proposed
VFOPID controller synthesis method with the proposal of the order functions form.
The brief description of the controller parameters evaluation algorithm is given. The
investigations are supported by a numerical example presented in Chapter 4.

2. Mathematical preliminaries

In the paper the following notation will be used. 0 ¼ 0, 1, 2, 3, …f g, l ¼
l, lþ 1, lþ 2, …f g þ ¼ 0,þ∞½ Þ. 0k will denote the zero column vector of dimen-

sions kþ 1ð Þ � 1 whereas 0k,k is kþ 1ð Þ � kþ 1ð Þ zero matrix. Similarly will be
denoted a kþ 1ð Þ � kþ 1ð Þ unit matrix 1k.

In general, a fractional-order functions will be denoted byGreek letters ν �ð Þ : 0 !
 ν �ð Þwhereas the integer orders will be denoted by Latin ones n∈þ. In practice, for
l∈0: 0< ν lð Þ≤ 1. For k, l∈0 and a given order function ν lð Þ the function of two
discrete variables k, l∈0 is defined by the following formula: a ν lð Þ½ � kð Þ as follows:

Definition 2.1. For k, l∈0 and a given order function ν �ð Þ one defines the
coefficients function of two 13 discrete variables as

a ν lð Þ½ � kð Þ ¼
1 for k ¼ 0

�1ð Þk ν lð Þ ν lð Þ � 1ð Þ⋯ ν lð Þ � kþ 1ð Þ
k!

for k∈1

8<
: (1)

One should mention that function (1) for ν lð Þ ¼ n lð Þ ¼ const∈0

a n½ � kð Þ ¼

1 for k ¼ 0
n n� 1ð Þ⋯ n� kþ 1ð Þ

�1ð Þk!
for k∈ 1, n½ �

0 for k∈nþ1

8>>><
>>>:

(2)

The above function will be named as: the “oblivion function” or “decay function”.
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2.1 Variable, fractional-order backward difference

Next one defines the Grünwald–Letnikov variable, fractional-order backward
difference (VFOBD). For a discrete-variable bounded real-valued function f �ð Þ
defined over a discrete interval 0, k½ � the VFOBD is defined as a sum (see for
instance [6, 9]).

Definition 2.2. The VFOBD with an order function ν, with values ν kð Þ∈ 0, 1½ �, is
defined as a finite sum, provided that the series is convergent

k0Δ
ν kð Þ
k f kð Þ ¼

Xk�k0

i¼0

aν kð Þ ið Þf k� ið Þ

¼ 1 aν kð Þ 1ð Þ aν kð Þ 2ð Þ ⋯ aν kð Þ k0ð Þ
h i

f kð Þ
f k� 1ð Þ

⋮

f k� k0ð Þ

2
666664

3
777775

(3)

Relating to (2) as the first special case of the defined above VFOBD and a
constant order function ν kð Þ ¼ ν ¼ const from (2.1) one gets the fractional-order
backward difference (FOBD). The second special case is for a constant integer order
function ν kð Þ ¼ ν ¼ n ¼ const where the integer-order backward difference
(IOBD) is a classical one.

Equality (3) is valid for k, k� 1, k� 2, … , k0 þ 1, k0. Hence, one gets a finite set
of equations. Collecting them in a vector matrix form one gets

GL
k0 Δ

ν kð Þ½ �
k f kð Þ¼k0A

ν kð Þ½ �
k f kð Þ, (4)

where

k0A
ν kð Þ½ �
k ¼

1 a ν kð Þ½ � 1ð Þ ⋯ a ν kð Þ½ � k� k0ð Þ

0 1 ⋯ a ν k�1ð Þ½ � k� k0 � 1ð Þ

⋮ ⋮ ⋮

0 0 ⋯ a ν k0þ1ð Þ½ � 1ð Þ

0 0 ⋯ 1

2
666666666664

3
777777777775

(5)

f kð Þ ¼

f kð Þ

f k� 1ð Þ

⋮

f k0ð Þ

2
666666664

3
777777775
,

GL
k0 Δ

n kð Þ½ �
k f kð Þ ¼

GL
k0 Δ

ν kð Þ½ �
k f kð Þ

⋮

GL
k0 Δ

ν k0ð Þ½ �
k0

f k0ð Þ

2
66664

3
77775
:

(6)
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synthesis methods [16, 19–31]. One should mention that the optimisation of the
closed-loop system in this case is more complicated because of the controller optimi-
zation. Apart from the three classical gains there are two additional parameters,
namely, a fractional order of differentiation and summation [32]. The FOPID control
characterizes by slow achieving the steady state and growing calculation “tail” [12].

In the paper a novelty variable, the fractional-order PID (VFOPID) [6, 28, 33–41]
controller synthesis is proposed. It consists of dividing the closed-loop system
discrete-transient time division into the finite time intervals over which are defined
fractional orders summation and differentiation functions. The main idea is that for
the final infinite interval kL,þ∞½ Þ the difference order equals 0 and the summation is
�! preserving quick reaching the zero steady state value. Thus, in the VFOPID control
the disadvantages of FOPID are extracted. One should admit that in the FOPID or
VFOPID control the microcontrollers are numerically loaded.

Fractional-orders systems are characterized by the so called system “memory”.
This, in practice, means that in every step the FOPID controller computes its output
signals taking into account step-by-step linearly computed number of samples. This
causes in practice the micro-controllers realization problems. It is known as “Finite
memory principle” [12].

The paper is organized as follows. In Section 2 the basic information related to the
fractional calculus and variable, fractional order Grünwald-Letnikov backward differ-
ence is given. The main result of the paper includes Section 3. It contains the proposed
VFOPID controller synthesis method with the proposal of the order functions form.
The brief description of the controller parameters evaluation algorithm is given. The
investigations are supported by a numerical example presented in Chapter 4.

2. Mathematical preliminaries

In the paper the following notation will be used. 0 ¼ 0, 1, 2, 3, …f g, l ¼
l, lþ 1, lþ 2, …f g þ ¼ 0,þ∞½ Þ. 0k will denote the zero column vector of dimen-

sions kþ 1ð Þ � 1 whereas 0k,k is kþ 1ð Þ � kþ 1ð Þ zero matrix. Similarly will be
denoted a kþ 1ð Þ � kþ 1ð Þ unit matrix 1k.

In general, a fractional-order functions will be denoted byGreek letters ν �ð Þ : 0 !
 ν �ð Þwhereas the integer orders will be denoted by Latin ones n∈þ. In practice, for
l∈0: 0< ν lð Þ≤ 1. For k, l∈0 and a given order function ν lð Þ the function of two
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a ν lð Þ½ � kð Þ ¼
1 for k ¼ 0

�1ð Þk ν lð Þ ν lð Þ � 1ð Þ⋯ ν lð Þ � kþ 1ð Þ
k!

for k∈1

8<
: (1)

One should mention that function (1) for ν lð Þ ¼ n lð Þ ¼ const∈0

a n½ � kð Þ ¼

1 for k ¼ 0
n n� 1ð Þ⋯ n� kþ 1ð Þ

�1ð Þk!
for k∈ 1, n½ �

0 for k∈nþ1

8>>><
>>>:

(2)

The above function will be named as: the “oblivion function” or “decay function”.
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2.1 Variable, fractional-order backward difference

Next one defines the Grünwald–Letnikov variable, fractional-order backward
difference (VFOBD). For a discrete-variable bounded real-valued function f �ð Þ
defined over a discrete interval 0, k½ � the VFOBD is defined as a sum (see for
instance [6, 9]).

Definition 2.2. The VFOBD with an order function ν, with values ν kð Þ∈ 0, 1½ �, is
defined as a finite sum, provided that the series is convergent

k0Δ
ν kð Þ
k f kð Þ ¼

Xk�k0

i¼0

aν kð Þ ið Þf k� ið Þ

¼ 1 aν kð Þ 1ð Þ aν kð Þ 2ð Þ ⋯ aν kð Þ k0ð Þ
h i

f kð Þ
f k� 1ð Þ

⋮

f k� k0ð Þ

2
666664

3
777775

(3)

Relating to (2) as the first special case of the defined above VFOBD and a
constant order function ν kð Þ ¼ ν ¼ const from (2.1) one gets the fractional-order
backward difference (FOBD). The second special case is for a constant integer order
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GL
k0 Δ

ν kð Þ½ �
k f kð Þ¼k0A

ν kð Þ½ �
k f kð Þ, (4)
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2.2 Variable, fractional-order linear time-invariant difference equations

On the base of the Grünwald-Letnikov variable, fractional-order linear time-
invariant backward-difference the difference Eqs. (GL-VFOBE) for i ¼ 1, 2,⋯, p
and j ¼ 1, 2,⋯, q representing discrete models of real dynamical systems or discrete
control strategies are defined by the variable, fractional-order linear time-invariant
difference equation (VFODE). h>0 denotes the sampling time.

Xni
l¼0

ai,lGLk0 Δ
νi,l kð Þ½ �
k y khð Þ ¼

Xmi

l¼0

bi,l
GL
k0 Δ

μi,l kð Þ½ �
k u khð Þ (7)

where mi ≤ ni, νni,l kð Þ≥ νni,l�1 kð Þ≥⋯νi,1 kð Þ≥ νi,0 kð Þ ¼ 0, μmi,l
kð Þ≥ μmi,l�1�1 kð Þ≥⋯

μi,1 kð Þ≥ μi,0 kð Þ≥0, ai,l and bi,l are constant coefficients for l ¼ 0, 1,⋯, ni and l ¼
0, 1,⋯,mi, respectively. It is assumed that a0,n0 ¼ 1.

According to the notation (5) Eq. (7) takes the form

Xni
l¼0

ai,lk0A
νi,l kð Þ½ �
k y kð Þ ¼

Xmi

l¼0

ai,lk0A
μi,l kð Þ½ �
k u kð Þ (8)

The vector u j kð Þ satisfies the condition u j kð Þ ¼ 0k for k< k0. In the general solution

of (8) to the assumed u j kð Þ and initial conditions vector yi,k0�1 ¼ yi,k0�1 yi,k0�2 ⋯
h iT

(T denotes the transposition)must be taken into account with�∞ ¼ k00 <0≤ k0 ≤ k.
Then, the infinite number of initial conditions (8) are formed in the following vector

yi,k0�1 ¼
yi,k0�1

yi,k0�2

⋮

2
64

3
75 (9)

and the combined Eq. (8) is of the form

Pni
l¼0

aij,lk0A
νi,l kð Þ½ �
k

Pni
l¼0

ai,l�∞A
νi,l kð Þ½ �
k0�1

� �

�
yi khð Þ
yi,k0�1

" #
¼
Xmi

l¼0

bij,lk0A
μi,l kð Þ½ �
k u khð Þ

(10)

or after simple transformation

Xni
l¼0

ai,lk0A
νi,l kð Þ½ �
k y khð Þ ¼

Xmi

l¼0

bi,lk0A
μi,l kð Þ½ �
k u khð Þ

�
Xni
l¼0

ai,l�∞A
νi,l kð Þ½ �
k0�1 yi,k0�1

(11)

2.3 Main assumptions

To preserve the VFOBDE order one assumes that

1þ
Xni�1

l¼0

ai,l 6¼ 0 for i ¼ 1, 2,⋯, p (12)
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In the transfer functions defined by the one-sided Z transform one assumes zero
initial conditions. Following this assumption equality (11) simplifies to

Xni
l¼0

aik0A
νi kð Þ½ �
k y kð Þ ¼

Xmi

l¼0

bik0A
μi kð Þ½ �
k u kð Þ (13)

Defining matrices

k0D
νP kð Þ½ �
k ¼

Xni
l¼0

aik0A
νi kð Þ½ �
k (14)

k0N
μP kð Þ½ �
k ¼

Xmi

l¼0

bik0A
μi kð Þ½ �
k (15)

one gets

k0D
νP kð Þ½ �
k y khð Þ¼k0N

μP kð Þ½ �
k u khð Þ (16)

Under assumption (12) k0D
ν kð Þ½ �
k is invertible, so for k0 ¼ 0 one can write

y khð Þ ¼ 0D νP kð Þ½ �k
h i�1

0
N μP kð Þ½ �ku khð Þ (17)

Denoting

0G
νP kð Þ½ �
k ¼ 0D

νP kð Þ½ �
k

h i
0
N μ kð Þ½ �

k (18)

one gets similar to the transfer function description

y khð Þ¼0G
νP kð Þ,μP kð Þ½ �
k u khð Þ (19)

or for simplicity

Go khð Þ¼0G
νP kð Þ,μP kð Þ½ �
k (20)

Remark 2.1. Though the relation (19) looks similar to the classical discrete trans-
fer function it is different by the real discrete variables. It relates discrete SISO
systems by vectors and matrices related to its dimensions kþ 1∈0.

2.4 VFO linear system description

One considers a closed-loop system illustrated in Figure 1. Where a plant is
described by (19) where e khð Þ and u khð Þ.

2.4.1 VFO_PID

The classical PID controller output is desribed by three terms

u khð Þ ¼ KPe khð Þ þ KI0Δ
�μ kð Þ
k e khð Þ þ KD0Δ

ν kð Þ
k e khð Þ (21)
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Remark 2.1. Though the relation (19) looks similar to the classical discrete trans-
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2.4 VFO linear system description

One considers a closed-loop system illustrated in Figure 1. Where a plant is
described by (19) where e khð Þ and u khð Þ.

2.4.1 VFO_PID

The classical PID controller output is desribed by three terms
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and in the convention proposed above as

u khð Þ ¼ KP1ke khð Þ þ KD0G
νC kð Þ½ �
k e khð Þ þ KI0G

�μC kð Þ½ �
k e khð Þ (22)

which may be expressed as

u khð Þ ¼ KP1k þ KD0G
νC kð Þ½ �
k þ KI0G

�μC kð Þ½ �
k

h i
e khð Þ (23)

where νC kð Þ, μC kð Þ≥0 and controlling and error signals are denoted as u kð Þ and
e kð Þ, respectively. Then, denoting.

Remark 2.2. The plant may be described by classical integer order, fractional or
even variable, fractional - order difference equations. The matrix - vector descrip-
tion used makes it possible.

C khð Þ ¼ KP1k þ KD0G
νC kð Þ½ �
k þ KI0G

�μC kð Þ½ �
k (24)

one gets a VFOPID controller transfer function-like description

u khð Þ ¼ C khð Þe khð Þ (25)

To simplify the description one assumes a sensor matrix as

H khð Þ ¼ 1k (26)

The closed-loop system is presented in Figure 1 from which one gets the fol-
lowing relations

y khð Þ ¼ 1k þGo khð ÞC khð ÞH khð Þ½ ��1Go khð ÞC khð Þr khð Þ
þ 1k þGo khð ÞC khð ÞH khð Þ½ ��1d khð Þ

(27)

where

• r khð Þ - a reference signal vector,

• d khð Þ - an external disturbance signal vector,

Figure 1.
Closed-loop system.
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• yo khð Þ - a plant output signal vector,

• y khð Þ - a closed-loop system output signal vector,

• e khð Þ - a closed-loop system error signal,

A system error is evaluated by the formula

e khð Þ ¼ 1k þGo khð ÞC khð ÞH khð Þ½ ��1r khð Þ
� 1k þGo khð ÞC khð ÞH khð Þ½ ��1H khð Þd khð Þ (28)

3. Variable, fractional-order PID controller synthesis

In the synthesis of the classical PID controller there are three parameters to evalu-
ate. Namely,K,KI,KD known as the proportional, integral and differential gains. In the
fractional-order PID controllers there are two additional parameters: the differentia-
tion order ν khð Þ∈þ and the integration one�μ khð Þ∈þ. In the variable, fractional-
order PID controller the mentioned orders are generalized to functions. This means
that there are three constant coefficients and two discrete variable functions to find

KP,KI,KD, ν khð Þ, μ khð Þ (29)

In the rejection of the external disturbation one can assume that r khð Þ ¼ 0 so
Eq. (29) simplifies to

e khð Þ ¼ � 1k þGo khð ÞC khð ÞH khð Þ½ ��1H khð Þd khð Þ (30)

Usually the sensor matrixH khð Þ is treated as constant, by assumption that sensors
do not introduce its own dynamics to the system. Hence, H khð Þ ¼ H ¼ const. It may
be assumed that H ¼ h01k or further, for h0 ¼ 1, formula (30) takes a form

e khð Þ ¼ � 1k þGo khð ÞC khð Þ½ ��1d khð Þ (31)

The optimal parameters (29) are evaluated due to the assumed optymality cri-
terion. The most popular is so called ISE one (Integral of the Squared Error) or in
the discrete-system case: Sum of the Squared Error (SSE).

SSE KP,KI,KD, ν khð Þ, μ khð Þ½ � ¼
Xkmax

i¼0

e ihð Þ2h ¼ e khð ÞTe khð Þh (32)

Substitution of (31) into (32) gives

SSE KP,KI,KD, ν khð Þ, μ khð Þ½ �
¼ d khð ÞT 1k þGo khð ÞC khð Þ½ ��T 1k þGo khð ÞC khð Þ½ ��1d khð Þ (33)

In the proposed VFOPID controller synthesis method with partially intuitive and
supported by closed-loop systems synthesis experience the classical optimisation
due to the performance criterion (32) is performed. The pre-defined differentiation
and integration order functions orders are as follows

ν khð Þ≥0 (34)
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• yo khð Þ - a plant output signal vector,

• y khð Þ - a closed-loop system output signal vector,

• e khð Þ - a closed-loop system error signal,

A system error is evaluated by the formula
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3. Variable, fractional-order PID controller synthesis

In the synthesis of the classical PID controller there are three parameters to evalu-
ate. Namely,K,KI,KD known as the proportional, integral and differential gains. In the
fractional-order PID controllers there are two additional parameters: the differentia-
tion order ν khð Þ∈þ and the integration one�μ khð Þ∈þ. In the variable, fractional-
order PID controller the mentioned orders are generalized to functions. This means
that there are three constant coefficients and two discrete variable functions to find

KP,KI,KD, ν khð Þ, μ khð Þ (29)

In the rejection of the external disturbation one can assume that r khð Þ ¼ 0 so
Eq. (29) simplifies to

e khð Þ ¼ � 1k þGo khð ÞC khð ÞH khð Þ½ ��1H khð Þd khð Þ (30)

Usually the sensor matrixH khð Þ is treated as constant, by assumption that sensors
do not introduce its own dynamics to the system. Hence, H khð Þ ¼ H ¼ const. It may
be assumed that H ¼ h01k or further, for h0 ¼ 1, formula (30) takes a form

e khð Þ ¼ � 1k þGo khð ÞC khð Þ½ ��1d khð Þ (31)

The optimal parameters (29) are evaluated due to the assumed optymality cri-
terion. The most popular is so called ISE one (Integral of the Squared Error) or in
the discrete-system case: Sum of the Squared Error (SSE).
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ν khð Þ ¼

ν1 khð Þ for k∈ 0, kN1½ Þ
ν2 khð Þ for k∈ kN1, kN2½ Þ

⋮
νN khð Þ for k∈ kNN�1, kNN½ Þ

0 for k∈ kNN,þ∞½ Þ

8>>>>>><
>>>>>>:

(35)

and

μ khð Þ≤0 (36)

μ khð Þ ¼

μ1 khð Þ for k∈ 0, kM1½ Þ
μ2 khð Þ for k∈ kM1, kM2½ Þ

⋮
μN khð Þ for k∈ kMM�1, kMM½ Þ
�1 for k∈ kMM,þ∞½ Þ

8>>>>>><
>>>>>>:

(37)

Every function νi khð Þ for i ¼ 1, 2,⋯,N and μi khð Þ for i ¼ 1, 2,⋯,M is character-
ized by a sets of parameters cij and dij, respectively.

In the classical closed-loop system with PID controller there is introduced the
integration part preserving the steady - state error signal tending to zero. So, in (38)
there is a constant order �1 for k≥ KMM,þ∞½ Þ.

Now, for initially assumed order functions one applies the following algorithm
based on well known Gauss method.

1.Chose a starting set of coefficients KP,K � I,KD, c11,⋯ and d11,⋯,

2.Applying the classical Gauss algorithm find a minimal SSE performance index
value alongside the first variable (eg. K_P),

3.Repeat step 2 for the next parameter,

4. If the SSE value is satisfactory stop else return to step 2.

Remark 3.1. Algorithm described above can be applied also to the classical dis-
crete PID controller with three parameters.

4. Numerical example

One considers a closed-loop system depicted in Figure 1.
A plant is described by a transfer function

Go sð Þ ¼ b0
s2 þ a1sþ a0

(38)

where

• a1 ¼ 0:5

• a0 ¼ 0:1

• b0 ¼ a0
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The plant is discretized with the sampling time h ¼ 0:5 and a VFOPID controller
is applied

ν khð Þ ¼
ν1 khð Þ ¼ 1 for k ¼ 0

0 for k∈ 1,þ∞½ Þ

(
(39)

μ khð Þ ¼
μ1 khð Þ ¼ �1þ d1ed2 kh�1hð Þ for k ¼ 0, 10½ �

�1 for k∈ 10,þ∞ð Þ

(
(40)

and controller gains KP, kI,KD and order function parameters d1, d2.
Hence, there are 5 parameters to evaluate. Due to the performance index (33)

the optimal parameters are as follows

• KP ¼ 1:000

• Ki ¼ 0:514

• KD ¼ 0:890
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• d1 ¼ �0:35

• d2 ¼ �0:5

The VFOPID controller order functions are plotted in Figure 2 whereas the PID
and VFOPID controllers unite step responses are given in Figure 3.

The achieved VFOPID controller synthesis result is compared with the classical
discrete-time PID controller optimized due to criterion (30). The optimal
parameters are

• KP ¼ 1:00

• Ki ¼ 0:81

• KD ¼ 0:90

Figure 4 contains the closed - loop systems with PID (in blue) and VFOPID (in
red) controllers unit step responses. There is included a plant unit step response of
the plant (in black.)

In Figure 5 the controlling signals are presented (PID - in black, VFOPID - in
red). The controlling signals have typical shapes: first differentiation action and
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VFOPID (in red) and IOPID (in black) controller unit step response.
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finally the classical integration preserving zero steady - state closed - loop system
error.

Remark 4.1. In the Numerical example proposed here the VFOPID and the
classical PID controllers maximal control signal values are the same reaching
assumed bounding value max uI klð Þ½ �, max uF khð Þ½ � ¼ 2.

Remark 4.2. In the Numerical example

SSE KP,KI,KD, 1,�1Þ½ � ¼ 1:3312

SSE KP,KI,KD, ν khð Þ, μ khð Þ½ � ¼ 1:2899
(41)

5. Conclusions

One should emphasize that the proposed solution of the VFOPID controller do
not guarantee the absolute optimum of the closed-loop control system synthesis. It
proves that the proposal of a physically realizable VFOPID controller by micro-
controller (with finite memory) leads to better results due to the assumed perfor-
mance criterion.

The main idea of the proposed method is to assume a priori the order functions
with unknown parameters. In the VFOPID controller synthesis essential is an
assumption that the summation order equals 1 One can express the action as the
assumption of skeleton order functions with unknown parameters evaluated fur-
ther in an SSE optimization algorithm.

Here, it is worth mentioning that there are still open problems of the VFOPID
controllers tuning.

• One should define a program evaluating the order functions.

• For evaluation of the VFOPID controller parameters one can apply another
optimization methods. It seems that optimization methods based on the
artificial intelligence will be very effective.

• Another performance index may be applied. Some penalty functions may be
introduced to SSE as well a term taking into account the minimal value of the
error signal.
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Chapter 2

A Hybrid Control Approach Based
on the Combination of PID
Control with LQR Optimal Control
Ibrahim K. Mohammed

Abstract

Proportional Integral Derivative (PID) is the most popular controller that is
commonly used in wide industrial applications due to its simplicity to realize and
performance characteristics. This technique can be successfully applied to control
the behavior of single-input single-output (SISO) systems. Extending the using of
PID controller for complex dynamical systems has attracted the attention of control
engineers. In the last decade, hybrid control strategies are developed by researchers
using conventional PID controllers with other controller techniques such as Linear
Quadratic Regulator (LQR) controllers. The strategy of the hybrid controller is
based on the idea that the parameters of the PID controller are calculated using gain
elements of LQR optimal controller. This chapter focuses on design and simulation a
hybrid LQR-PID controller used to stabilize elevation, pitch and travel axes of
helicopter system. An improvement in the performance of the hybrid LQR-PID
controller is achieved by using Genetic Algorithm (GA) which, is adopted to obtain
best values of gain parameters for LQR-PID controller.

Keywords: proportional integral derivative (PID), fractional order proportional
integral derivative (FOPID), linear quadratic regulator (LQR), hybrid control
system, genetic algorithm (GA)

1. Introduction

PID is regarded as the standard control structure of classical control theory. PID
controllers are used successfully for single-input single-output (SISO) and linear
systems due to their good performance and can be easily implemented. The control
of complex dynamic systems using classic PID controllers is considered as a big
challenge, where the stabilization of these systems requires applying a more robust
controller technique. Many studies have proposed to develop a new hybrid PID
controller with ability to provide better and more robust system performance in
terms of transient and steady-state responses over the standard PID controllers.
Lotfollahzade et al. [1] proposed a new LQR-PID controller to obtain an optimal
load sharing of an electrical grid. The presented hybrid controller is optimized by
Particle Swarm Optimization (PSO) to compute the gain parameters of the PID
controller. A new hybrid control algorithm was presented by Lindiya et al. for
power converters [2]. They adopted a conventional multi-variable PID and LQR
algorithm for reducing cross-regulation in DC-to-DC converters. Sen et al.
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Chapter 2

A Hybrid Control Approach Based
on the Combination of PID
Control with LQR Optimal Control
Ibrahim K. Mohammed

Abstract

Proportional Integral Derivative (PID) is the most popular controller that is
commonly used in wide industrial applications due to its simplicity to realize and
performance characteristics. This technique can be successfully applied to control
the behavior of single-input single-output (SISO) systems. Extending the using of
PID controller for complex dynamical systems has attracted the attention of control
engineers. In the last decade, hybrid control strategies are developed by researchers
using conventional PID controllers with other controller techniques such as Linear
Quadratic Regulator (LQR) controllers. The strategy of the hybrid controller is
based on the idea that the parameters of the PID controller are calculated using gain
elements of LQR optimal controller. This chapter focuses on design and simulation a
hybrid LQR-PID controller used to stabilize elevation, pitch and travel axes of
helicopter system. An improvement in the performance of the hybrid LQR-PID
controller is achieved by using Genetic Algorithm (GA) which, is adopted to obtain
best values of gain parameters for LQR-PID controller.
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1. Introduction

PID is regarded as the standard control structure of classical control theory. PID
controllers are used successfully for single-input single-output (SISO) and linear
systems due to their good performance and can be easily implemented. The control
of complex dynamic systems using classic PID controllers is considered as a big
challenge, where the stabilization of these systems requires applying a more robust
controller technique. Many studies have proposed to develop a new hybrid PID
controller with ability to provide better and more robust system performance in
terms of transient and steady-state responses over the standard PID controllers.
Lotfollahzade et al. [1] proposed a new LQR-PID controller to obtain an optimal
load sharing of an electrical grid. The presented hybrid controller is optimized by
Particle Swarm Optimization (PSO) to compute the gain parameters of the PID
controller. A new hybrid control algorithm was presented by Lindiya et al. for
power converters [2]. They adopted a conventional multi-variable PID and LQR
algorithm for reducing cross-regulation in DC-to-DC converters. Sen et al.
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introduced a hybrid LQR-PID controller to regulate and monitor the locomotion of
a quadruped robot. The gain parameters of the hybrid controller is tuned using the
Grey-Wolf Optimizer (GWO) [3]. In [4] a new PID and LQR control system was
proposed to improve a nonlinear quarter car suspension system.

The intent of this study is to design a new hybrid PID controller based on an
optimal LQR state feedback controller for stabilization of 3DOF helicopter system.
To this end an improvement in the system performance has been achieved in both
the transient and steady-state responses. In the proposed system the classical PID
and optimal LQR controller have been combined to formulate a hybrid controller
system. Simulations were implemented utilizing Matlab programming environment
to verify the efficiency and effectiveness of the proposed hybrid control method.

2. Controller theory

In this section, basics and theory of integer and fractional order PID controllers
are presented. Theory of an intelligent LQR controller, which is used with PID
controller to combine a hybrid control system, is also introduced.

2.1 Calssical PID controller

A PID is the most popular controller technique that is widely used in industrial
applications due to the simplicity of its structure and can be realized easily for
various control problems as the gain parameters of the controller are relatively
independent [5, 6]. Basically, the controller provides control command signals u tð Þ
based on the error e tð Þ between the demand input and the actual output of the
system. The continuous time structure of the classical PID controller is as follows:

u tð Þ ¼ Kpe tð Þ þ Ki

ðt

0

e τð Þdτ þ Kd
de tð Þ
dt

(1)

where Kp,Ki and Kd are the proportional, integral and differential components
of the controller gain. These controller gain parameters should be tuned properly to
enable the output states of the system to efficiently follow the desired input.

2.2 FOPID controller

FOPID is a special category of PID controller with fractional order derivatives
and integrals. Its concept was introduced by Podlubany in 1997. During the last
decade, this controller approach has attracted the attention of control engineers in
both academic and industrial fields. Compared with the classical PID controller, it
offers flexibility in dynamic systems design and more robustness.

2.2.1 Fractional order calculus

Fractional order calculus is an environment of calculus that generates the deriv-
atives or integrals of problem functions to non-integer (fractional) order. This
fractional order mathematical operation allows to establish a more accurate and
concise model than the classical integer-order method. Moreover, the fractional
order calculus can also produce an effective tool for describing dynamic behavior
for control systems [7].
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aDα
t ¼

dα

dtα
α>0

1 α ¼ 1
Ðt
α

dtð Þ�α α<0

8>>>><
>>>>:

(2)

Fractional order calculus is a generalization of differentiation and integration to
non-integer order fundamental operator which is denoted by aDα

t where a and t are
the operation limits and α α∈Rð Þ is the order of the operation. The formula of
continuous differ-integral operator (aDα

t ) is defined as in Eq. (2) [8]. There are two
commonly used definitions for general fractional differ-integral aDα

t

� �
, which are

used for realization of control problem algorithm:
Grunwald – Letnikov (GL) definition:

aDα
t f tð Þ ¼ dαf tð Þ

dtα
¼ lim

h!0
h�α

Xx½ �

j¼0

�1ð Þ j α

j

� �
f t� jhð Þ (3)

where x½ � is integer part of x, x ¼ t�a
h , h is time step and

α

j

� �
is binomial

coefficients, its expression is given by:

α

j

� �
¼ α α� 1ð Þ… … :: α� jþ 1ð Þ

j!
(4)

Riemann-Liouville definition:

aDα
t f tð Þ ¼ 1

Γ n� αð Þ
dn

dtn

ðt

a

f τð Þ
t� τð Þα�nþ1 dτ (5)

where n∈þ. The condition for above equation is n� 1< α< n,Γ :ð Þ is called
Gamma function, which its defination is given by:

Γ Xð Þ ¼
ð∞

0

zX�1e�zdz (6)

Laplace transform of differ-integral operator aDα
t

� �
is given by expected form:

L aDα
t f tð Þ� � ¼

ð∞
0
e�staDα

t f tð Þdt (7)

L aDα
t f tð Þ� � ¼ sαF sð Þ �

Xn�1

m¼0

s �1ð Þ j0Dα�m�1
t f tð Þ (8)

Where F sð Þ ¼ L f tð Þf g is the normal Laplace transformation and n is an integer
number that satisfies n� 1< α≤ n and s ¼ jw denotes the Laplace transform variable.

2.2.2 Fractional order controller

Fractional order PID controller denoted by PIλDμ was proposed by Igor
Podlubny [9] in 1997. It is an extension of traditional PID controller where λ and μ
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introduced a hybrid LQR-PID controller to regulate and monitor the locomotion of
a quadruped robot. The gain parameters of the hybrid controller is tuned using the
Grey-Wolf Optimizer (GWO) [3]. In [4] a new PID and LQR control system was
proposed to improve a nonlinear quarter car suspension system.

The intent of this study is to design a new hybrid PID controller based on an
optimal LQR state feedback controller for stabilization of 3DOF helicopter system.
To this end an improvement in the system performance has been achieved in both
the transient and steady-state responses. In the proposed system the classical PID
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system. Simulations were implemented utilizing Matlab programming environment
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have non-integer fractional values. Figure 1 shows the block diagram of the frac-
tional order PID controller. The integer-differential equation defining the control
action of a fractional order PID controller is given by:

u tð Þ ¼ Kpe tð Þ þ KiD�λe tð Þ þ KdD�μe tð Þ (9)

Based on the above equation, it can be expected that the FOPID controller can
enhance the performance of the control system due to more tuning knobs intro-
duced. Taking the Laplace transform of Eq. (9), the system transfer function of the
FOPID controller is given by:

GFOPID sð Þ ¼ Kp þ Ki

sλ
þ Kdsμ (10)

Where λ and μ are arbitrary real numbers. Taking λ ¼ 1 and μ ¼ 1 a classical PID
controller is obtained. Thus, FOPID controller generalizes the classical PID control-
ler and expands it from point to plane as shown in Figure 2(b). This expansion
provides the designer much more flexibility in designing PID controller and gives
an opportunity to better adjust the dynamics of the control system. This increases
robustness to the system and makes it more stable [10]. A number of optimization
techniques can be implemented for getting the best values of the gain parameters of
the controller.

2.3 LQR controller

Linear quadratic regulator is a common optimal control technique, which has
been widely utilized in various manipulating systems due to its high precision in
movement applications [11]. This technique seeks basically a tradoff betwwen a
stable performance and acceptable control input [12]. Using the LQR controller in
the design control system requires all the plant states to be measurable as it bases on

Figure 1.
The block diagram of a FOPID structure.

Figure 2.
PID controllers with fraction orders. (a) Classical. (b) Fractional order.
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the full state feedback concept. Therefore, using the LQR controller to stabilize the
3DOF helicopter system based on the assumption that the system states are consid-
ered measurable. LQR approach includes applying the optimal control effort:

u tð Þ ¼ �Kx tð Þ (11)

Where K is the state feedback gain matrix, that will enable the output states of
the system to follow the trajectories of reference input, while minimizing the
following the cost function:

J ¼
ð∞

0

xT tð ÞQx tð Þ � uT tð ÞRu tð Þ� �
dt (12)

Where Q and R are referred to as weighting state and control matrices.
The controller feedback gain matrix can be determined by using below equation:

K ¼ R�1BTP (13)

Where P is (nxn) matrix deterrmined from the solution of the following Riccati
matrix equation:

ATPþ PA� PBR�1BTPþQ ¼ 0 (14)

For nth order systemwith mth input, the gain matrix and control input are given by:

K ¼

k11 k12 k13 … k1n
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km1 km2 km3 … kmn
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6664

3
7775 and u tð Þ ¼

u1
u2
u3
:

um

2
6666664

3
7777775

Based on the above expression, the control effort u tð Þ of the system stated in
Eq. (11) can be written as in Eq. (15). For the purpose of simplicity of control
problem the weighting matrices Q and R are chosen as the diagonal matrices:

Q ¼ blkdig q11, q22, q33, … … … , qnnÞ,R ¼ blkdig r11, r22, r33, … , rmmð Þ�

so that the cost function Eq. (12) can be reformulated as in Eq. (16).
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J ¼
ð∞

0
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dt (16)

Where q11, q22, q33, … ::, qnn and r11, r22, r33, … ::, rmm denote the weighting
elements of Q and R matrices respectively. The optimal control approach LQR is
highly recommended for stabilizing complex dynamic systems as it basically looks
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have non-integer fractional values. Figure 1 shows the block diagram of the frac-
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Based on the above equation, it can be expected that the FOPID controller can
enhance the performance of the control system due to more tuning knobs intro-
duced. Taking the Laplace transform of Eq. (9), the system transfer function of the
FOPID controller is given by:

GFOPID sð Þ ¼ Kp þ Ki

sλ
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Figure 1.
The block diagram of a FOPID structure.

Figure 2.
PID controllers with fraction orders. (a) Classical. (b) Fractional order.
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for a compromise between the best control performance and minimum control
input effort. Based on the LQR controller an optimum tracking performance can be
investigated by a proper setting of the feedback gain matrix. To achieve this, the
LQR controller is optimised by using GA tuning method which is adopted to obtain
optimum elements values for of Q and R weighting matrices.

3. Tuning method

In this study, GA tuning approach has been invoked to tune the gain matrix of
LQR controller used to approximate the gain parameters of PID controller for 3DOF
helicopter system. GA is a global search optimization technique bases on the strat-
egy of natural selection. This optimization method is utilized to obtain an optimum
global solution for more control and manipulating problems. The procedure of GA
approach includes three basic steps: selection, crossover and mutation, that consti-
tute the main core of GA with powerful searching ability.

Selection: This step includes choosing individual genomes with high adaptive
value from the current population to create mating pool. At present, there mainly
are: sequencing choice, adaptive value proportional choice, tournament choice and
so on. In order to avoid the best individuals of current population missing in the
next generation due to destruction influence of crossover and mutation or selection
error, De Jong put forward to the cream choice strategy [3xxx];

Crossover: This operation is the process of mimicking gene recombination of
natural sexual reproduction, through combining the genetic information of two
gens to create a new offspring contining more complicated gene structur. Repro-
duction may proceed in three stages as follows: (1) two newly reproduced strings
are randomly selected from a Mating Pool; (2) a number of crossover positions
along each string are uniformly selected at random and (3) two new strings are
created and copied to the next generation by swapping string characters between
the crossover positions defined before.

Mutation: In this process one or more indivisual values in a chromosome are
altered from its initial state. This can result in entirely new gene values being added
to the gene pool. This stage is also important by the view of preventing the genes
local optimal points.

Applying these main operations creates new individuals which could be better
than their parents. Based on the requirements of desired response, the sequence of
GA optimization technique is repeated for many iterations and finally stops at
generating optimum solution elements for the application problems. The sequence
of the GA tuning method is presented in Figure 3 [13, 14]. The steps of the GA loop
are defined as follows:

1.Initial set of population.

2.Choose individuals for mating.

Figure 3.
Process loop of GA optimization method.
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3.Mating the population to create progeny.

4.Mutate progeny.

5.Inserting new generated individuals into populations.

6.Are the system fitness function satisfied?

7.End search process for solution.

In this study, the aim of using GA optimization method is to tune the elements
of the state weighting matrix Q and input weighting matrix R of the optimal LQR
controller based on a selected fitness function which, should be minimised to a
smallest value. The fitness function should be formulated based on the required
performance characteristics. These optimized LQR elements are then employed to
calculate the optimum values for PID controller gain parameters, which are used to
stabilize the control system. The implementation procedure of the GA tuning
method begins with the definition step of the chromosome representation. Each
chromosome is represented by a strip of cells. Each cell corresponds to an element
of the controller gain parameters. These cells are formed by real positive numbers
and characterize the individual to be evaluated [13].

4. Hybrid PID control approaches

PID controller is a simple manipulating technique that can be successfully
implemented for one dimension control systems. For multi dimensions systems
it can use a multi channel PID controller system to control the dynamic behavior
of these systems. Currently, there is a considerable interest by many researchers
in development new control approaches using PID controller. Xiong and Fan [15]
proposed a new adaptive PID controller based on model reference adaptive
control (MRAC) concept for control of the DC electromotor drive. They
presented an autotuning algorithm that combines PID control scheme and
MRAC based on MIT rule to tune the controller parameters. Modified PI and
PID controllers are introduced to regulate output voltage of DC-DC converters
using MRAC manipulating technique [16, 17]. The parameters of the controllers
are adapted effectively using MIT rule. Based on the adapted controllers
parameters an improvement in the regulation behavior of the converters has been
investigated.

Further improvement in the performance of the standard PID controller is also
achieved by involving an integrator of order λ and differentiator of order μ to the
controller structure based on Fractional Calculus and it is known as fractional order
(FO) PID controller [7]. This extension could provide more flexibility in PID con-
troller design and makes the system more robust, thus, enhancing its dynamic
performance compared to its integer counterpart. In FOPID controller the manipu-
lating parameters become five that provides more flexibility in the controller design
and robust in the performance.

In the last decades, a new hybrid controller scheme using PID technology is
proposed in [18–20] for different applications. The structure of the presented
hybrid controller system is constructed by combination between conventional PID
controller and state feedback LQR optimal controller. The gain parameters of the
PID controller used to achieve desired output response are determined based on
optimal LQR theory.
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for a compromise between the best control performance and minimum control
input effort. Based on the LQR controller an optimum tracking performance can be
investigated by a proper setting of the feedback gain matrix. To achieve this, the
LQR controller is optimised by using GA tuning method which is adopted to obtain
optimum elements values for of Q and R weighting matrices.

3. Tuning method

In this study, GA tuning approach has been invoked to tune the gain matrix of
LQR controller used to approximate the gain parameters of PID controller for 3DOF
helicopter system. GA is a global search optimization technique bases on the strat-
egy of natural selection. This optimization method is utilized to obtain an optimum
global solution for more control and manipulating problems. The procedure of GA
approach includes three basic steps: selection, crossover and mutation, that consti-
tute the main core of GA with powerful searching ability.

Selection: This step includes choosing individual genomes with high adaptive
value from the current population to create mating pool. At present, there mainly
are: sequencing choice, adaptive value proportional choice, tournament choice and
so on. In order to avoid the best individuals of current population missing in the
next generation due to destruction influence of crossover and mutation or selection
error, De Jong put forward to the cream choice strategy [3xxx];

Crossover: This operation is the process of mimicking gene recombination of
natural sexual reproduction, through combining the genetic information of two
gens to create a new offspring contining more complicated gene structur. Repro-
duction may proceed in three stages as follows: (1) two newly reproduced strings
are randomly selected from a Mating Pool; (2) a number of crossover positions
along each string are uniformly selected at random and (3) two new strings are
created and copied to the next generation by swapping string characters between
the crossover positions defined before.

Mutation: In this process one or more indivisual values in a chromosome are
altered from its initial state. This can result in entirely new gene values being added
to the gene pool. This stage is also important by the view of preventing the genes
local optimal points.

Applying these main operations creates new individuals which could be better
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generating optimum solution elements for the application problems. The sequence
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3.Mating the population to create progeny.

4.Mutate progeny.

5.Inserting new generated individuals into populations.

6.Are the system fitness function satisfied?

7.End search process for solution.

In this study, the aim of using GA optimization method is to tune the elements
of the state weighting matrix Q and input weighting matrix R of the optimal LQR
controller based on a selected fitness function which, should be minimised to a
smallest value. The fitness function should be formulated based on the required
performance characteristics. These optimized LQR elements are then employed to
calculate the optimum values for PID controller gain parameters, which are used to
stabilize the control system. The implementation procedure of the GA tuning
method begins with the definition step of the chromosome representation. Each
chromosome is represented by a strip of cells. Each cell corresponds to an element
of the controller gain parameters. These cells are formed by real positive numbers
and characterize the individual to be evaluated [13].

4. Hybrid PID control approaches

PID controller is a simple manipulating technique that can be successfully
implemented for one dimension control systems. For multi dimensions systems
it can use a multi channel PID controller system to control the dynamic behavior
of these systems. Currently, there is a considerable interest by many researchers
in development new control approaches using PID controller. Xiong and Fan [15]
proposed a new adaptive PID controller based on model reference adaptive
control (MRAC) concept for control of the DC electromotor drive. They
presented an autotuning algorithm that combines PID control scheme and
MRAC based on MIT rule to tune the controller parameters. Modified PI and
PID controllers are introduced to regulate output voltage of DC-DC converters
using MRAC manipulating technique [16, 17]. The parameters of the controllers
are adapted effectively using MIT rule. Based on the adapted controllers
parameters an improvement in the regulation behavior of the converters has been
investigated.

Further improvement in the performance of the standard PID controller is also
achieved by involving an integrator of order λ and differentiator of order μ to the
controller structure based on Fractional Calculus and it is known as fractional order
(FO) PID controller [7]. This extension could provide more flexibility in PID con-
troller design and makes the system more robust, thus, enhancing its dynamic
performance compared to its integer counterpart. In FOPID controller the manipu-
lating parameters become five that provides more flexibility in the controller design
and robust in the performance.

In the last decades, a new hybrid controller scheme using PID technology is
proposed in [18–20] for different applications. The structure of the presented
hybrid controller system is constructed by combination between conventional PID
controller and state feedback LQR optimal controller. The gain parameters of the
PID controller used to achieve desired output response are determined based on
optimal LQR theory.
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In this chapter, a hybrid PID controller based on LQR optimal technique is
designed to stabilize 3DOF helicopter system. The proposed hybrid LQR-PID con-
troller is optimized using GA optimization method, which is used to tune its gain
parameters.

5. Case study: helicopter control system

5.1 Helicopter structure and modeling

The conceptual platform of 3DOF helicopter scheme is presented in Figure 4. It
consists of an arm mounted on a base. The main body of the helicopter constructed
of propellers driven by two motors mounted are the either ends of a short balance
bar. The whole helicopter body is fixed on one end of the arm and a balance block
installed at the other end.

The balance arm can rotate about the travel axis as well as slope on an elevation
axis. The body of the helicopter is free to roll about the pitch axis. The system is
provided by encoders mounted on these axes used to measure the travel motion of
the arm and its elevation and pitch angle. The propellers with motors can generate
an elevation mechanical force proportional to the voltage power supplied to the
motors. This force can cause the helicopter body to lift off the ground. It is worth
considering that the purpose of using a balance block is to reduce the voltage power
supplied to the propellers motors. In this study, the nonlinear dynamics of 3DOF
helicopter system is modelled mathematically based on developing the model of the
system behavior for each of the axes.

5.1.1 Elevation axis model

The free body diagram of 3DOF helicopter system based on elevation axis is
shown in Figure 5. The movement of the elevation axis is governed by the following
differential equations:

Jϵ€ϵ ¼ Jp � Jτ
� �

_τ2 cos ϵð Þ sin ϵð Þ þ l1Fm cos ρð Þ � l1Fm �MG �Mf ,ϵ (17)

Figure 4.
Prototype model of 3DOF helicopter system.
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Where Fm is the thrust force of propeller motor and Mf ,ϵ represents the torque
component generated from combining the joint friction and air resistance. But the
rotation angle of the pitch axis ρ ¼ 0, if the elevation angle ϵ ¼ 0, then the torque
exerted on the elevation axis will be zero. Eq. (17) based on Euler’s second law
becomes:

Jϵ€ϵ ¼ l1Fm �Mw,ϵ þMf ,ϵ (18)

Jϵ€ϵ ¼ l1 F f þ Fb
� ��Mw,ϵ þMf ,ϵ (19)

Fi ¼ KcVi i ¼ f , b (20)

Jϵ€ϵ ¼ Kcl1 V f þ Vb
� ��Mw,ϵ þMf ,ϵ (21)

Jϵ€ϵ ¼ Kcl1Vs �Mw,ϵ þMf ,ϵ (22)

5.1.2 Pitch axis model

Consider the pitch schematic diagram of the system in Figure 6. It can be seen
from the figure that the main torque acting on the system pitch axis is produced
from the thrust force generated by the propeller motors. When ρ 6¼ 0, the gravita-
tional force will also generate a torque Mw,ρ acts on the helicopter pitch axis. The
dynamics of the pitch axis can be modeled mathematically as follows:

Jρ€ρ ¼ F f lρ � Fblρ �Mw,ρ �Mf ,ρ (23)

Where Mf ,ρ is the friction moment exerted on the pitch axis.

Mw,ρ ¼ mhglh sin ρð Þ cos ϵð Þ (24)

Based on the assumption that the pitch angle ρ ¼ 0, Mw,ρ ¼ 0, then Eq. (23)
becomes as follows:

Jρ€ρ ¼ lρ F f � Fb
� ��M f ,ρ (25)

Figure 5.
Schematic diagram of elevation axis model for 3DOF helicopter system.
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Where Fm is the thrust force of propeller motor and Mf ,ϵ represents the torque
component generated from combining the joint friction and air resistance. But the
rotation angle of the pitch axis ρ ¼ 0, if the elevation angle ϵ ¼ 0, then the torque
exerted on the elevation axis will be zero. Eq. (17) based on Euler’s second law
becomes:

Jϵ€ϵ ¼ l1Fm �Mw,ϵ þMf ,ϵ (18)
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Fi ¼ KcVi i ¼ f , b (20)

Jϵ€ϵ ¼ Kcl1 V f þ Vb
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Jϵ€ϵ ¼ Kcl1Vs �Mw,ϵ þMf ,ϵ (22)

5.1.2 Pitch axis model

Consider the pitch schematic diagram of the system in Figure 6. It can be seen
from the figure that the main torque acting on the system pitch axis is produced
from the thrust force generated by the propeller motors. When ρ 6¼ 0, the gravita-
tional force will also generate a torque Mw,ρ acts on the helicopter pitch axis. The
dynamics of the pitch axis can be modeled mathematically as follows:

Jρ€ρ ¼ F f lρ � Fblρ �Mw,ρ �Mf ,ρ (23)

Where Mf ,ρ is the friction moment exerted on the pitch axis.

Mw,ρ ¼ mhglh sin ρð Þ cos ϵð Þ (24)

Based on the assumption that the pitch angle ρ ¼ 0, Mw,ρ ¼ 0, then Eq. (23)
becomes as follows:
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Jρ€ρ ¼ Kclρ V f � Vb
� ��M f ,ρ (26)

Jρ€ρ ¼ KclρVd �M f ,ρ (27)

5.1.3 Travel axis model

The free body diagram of the helicopter system dynamics based on the travel
axis is presented in Figure 7. In this model, when ρ 6¼ 0, the main forces acting on
the helicopter dynamics are the thrust forces of propeller motors (F f ,Fb). These
forces have a component that generates a torque on the travel axis. Assume that the
helicopter body has roll up by an angle ρ as shown in Figure 7. Then the dynamics
of travel axis for 3DOF helicopter system is modeled as follows:

Jr _r ¼ � F f þ Fb
� �

sin ρð Þl1 �M f ,r (28)

Figure 6.
Schematic diagram of the pitch axis model for 3DOF helicopter scheme.

Figure 7.
Schematic diagram of the travel rate axis model for 3DOF helicopter scheme.
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The thrust forces of the two propeller motors F f þ Fb
� �

are required to keep the
helicopter in flight case and is approximately W:

Jr _r ¼ �Wsin ρð Þl1 �M f ,r (29)

WhereM f ,r is the friction moment exerted on the travel axis. As ρ approaches to
zero, based on sinc function, sin ρð Þ ¼ ρ, the above equation becomes as follows:

Jr _r ¼ �Wρl1 �M f ,r (30)

Based on the assumption that the coupling dynamics, gravitational torque (Mw,ϵ)
and friction moment exerted on elevation, pitch and travel axis are neglected, then
the dynamics modeling equations Eqs. (22), (27) and (30) for 3DOF helicopter
system can be simplified as in Eqs. (31), (32) and (33) respectively [21].

€ϵ ¼ Kcl1
Jϵ

Vs (31)

€ρ ¼ Kclρ
Jρ

Vd (32)

_r ¼ Wl1
Jr

ρ (33)

5.2 Helicopter state space model

In order to design a state feedback controller based on LQR technique for 3DOF
helicopter system, the dynamics model of the system should be formulated in state
space form. In this study, the proposed hybrid control algorithm is investigated for
the purpose of control of pitch angle, elevation angle and travel rate of 3DOF
helicopter scheme by regulating the voltage supplies to the front and back motors.

Let x nx1ð Þ ¼ x1,x2, x3,x4, x5,x6, x7½ �T ¼ ϵ, ρ, _ϵ, _ρ, r, ʓ , γ
� �T be the state vector of the

system, the state variables are chosen as the angles and rate and their corresponding
angular velocities, and _ʓ ¼ ϵ, _γ ¼ r . The voltages supplied to the front and back

propellers motors are considered the input’s vector such that, u tð Þ mx1ð Þ ¼
u1,u2½ �T ¼ V f ,Vb

� �T and the elevation angle, pitch angle and travel rate are assumed

the output’s vector such that, y tð Þ px1ð Þ ¼ ϵ, ρ, r½ �T .
Based on Eqs. (31)-(33), choosing these state variables yields the following

system state space model:

_x1 ¼ ρ ¼ x2

_x2 ¼ _ϵ ¼ x3

_x3 ¼ €ϵ ¼ Kcl1
Jϵ

V f þ Vb
� �

_x4 ¼ €ρ ¼ Kclρ
Jρ

V f � Vb
� �

_x5 ¼ _r ¼ Wl1
Jr

x2

_x6 ¼ _ʓ ¼ x1

_x7 ¼ _γ ¼ x4

(34)
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Jρ€ρ ¼ Kclρ V f � Vb
� ��M f ,ρ (26)

Jρ€ρ ¼ KclρVd �M f ,ρ (27)

5.1.3 Travel axis model

The free body diagram of the helicopter system dynamics based on the travel
axis is presented in Figure 7. In this model, when ρ 6¼ 0, the main forces acting on
the helicopter dynamics are the thrust forces of propeller motors (F f ,Fb). These
forces have a component that generates a torque on the travel axis. Assume that the
helicopter body has roll up by an angle ρ as shown in Figure 7. Then the dynamics
of travel axis for 3DOF helicopter system is modeled as follows:

Jr _r ¼ � F f þ Fb
� �

sin ρð Þl1 �M f ,r (28)

Figure 6.
Schematic diagram of the pitch axis model for 3DOF helicopter scheme.

Figure 7.
Schematic diagram of the travel rate axis model for 3DOF helicopter scheme.
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The thrust forces of the two propeller motors F f þ Fb
� �

are required to keep the
helicopter in flight case and is approximately W:

Jr _r ¼ �Wsin ρð Þl1 �M f ,r (29)

WhereM f ,r is the friction moment exerted on the travel axis. As ρ approaches to
zero, based on sinc function, sin ρð Þ ¼ ρ, the above equation becomes as follows:

Jr _r ¼ �Wρl1 �M f ,r (30)

Based on the assumption that the coupling dynamics, gravitational torque (Mw,ϵ)
and friction moment exerted on elevation, pitch and travel axis are neglected, then
the dynamics modeling equations Eqs. (22), (27) and (30) for 3DOF helicopter
system can be simplified as in Eqs. (31), (32) and (33) respectively [21].

€ϵ ¼ Kcl1
Jϵ

Vs (31)

€ρ ¼ Kclρ
Jρ

Vd (32)

_r ¼ Wl1
Jr

ρ (33)

5.2 Helicopter state space model

In order to design a state feedback controller based on LQR technique for 3DOF
helicopter system, the dynamics model of the system should be formulated in state
space form. In this study, the proposed hybrid control algorithm is investigated for
the purpose of control of pitch angle, elevation angle and travel rate of 3DOF
helicopter scheme by regulating the voltage supplies to the front and back motors.

Let x nx1ð Þ ¼ x1,x2, x3,x4, x5,x6, x7½ �T ¼ ϵ, ρ, _ϵ, _ρ, r, ʓ , γ
� �T be the state vector of the

system, the state variables are chosen as the angles and rate and their corresponding
angular velocities, and _ʓ ¼ ϵ, _γ ¼ r . The voltages supplied to the front and back

propellers motors are considered the input’s vector such that, u tð Þ mx1ð Þ ¼
u1,u2½ �T ¼ V f ,Vb

� �T and the elevation angle, pitch angle and travel rate are assumed

the output’s vector such that, y tð Þ px1ð Þ ¼ ϵ, ρ, r½ �T .
Based on Eqs. (31)-(33), choosing these state variables yields the following

system state space model:

_x1 ¼ ρ ¼ x2

_x2 ¼ _ϵ ¼ x3

_x3 ¼ €ϵ ¼ Kcl1
Jϵ

V f þ Vb
� �

_x4 ¼ €ρ ¼ Kclρ
Jρ

V f � Vb
� �

_x5 ¼ _r ¼ Wl1
Jr

x2

_x6 ¼ _ʓ ¼ x1

_x7 ¼ _γ ¼ x4

(34)
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The general state and output matrix equations describing the dynamic behavior
of the linear-time-invariant helicopter system in state space form are as follows:

_x tð Þ ¼ Ax tð Þ þ Bu tð Þ (35)

y tð Þ ¼ Cx tð Þ þDu tð Þ (36)

Where A nxnð Þ is the system matrix, B nxmð Þ is the input matrix, C pxmð Þ is the
output matrix, and D mxpð Þ is feed forward matrix, for the designed system. Based
on Eqs. (34)–(36) are rewritten as follows [21].
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V f

Vb

� �
(37)

In this study, for the purpose of control system design, the model of the system
is formulated in state space form using the physical parameters values listed in
Table 1 [21]. Based on Eq. (37) and using the parameters values in Table 1, the state
equation of the system is given by Eq. (39):
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_ϵ

_ρ

€ϵ

€ρ

_r
_ʓ

_γ

2
666666666664

3
777777777775

¼

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 2:065 0 0 0 0 0

1 0 0 0 0 0 0

0 0 0 0 1 0 0

2
666666666664

3
777777777775

ϵ

ρ

_ϵ

_ρ

r
ʓ

γ

2
666666666664

3
777777777775

þ

0 0

0 0

5:8197 5:8197

63:949 �63:949

0 0

0 0

0 0

2
666666666664

3
777777777775

V f

Vb

� �

(39)

5.3 Helicopter control system design

Based on step input, a hybrid controller is designed for the following desired
performance parameters: rise time (tr) less than 10 ms, settling time (ts) less than 30
ms, maximum overshoot percentage, (MO) less than 5%.

Under the assumption that the desired system states are zero the block diagram
of the proposed helicopter control system based on the LQR controller is shown in
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Figure 8. The control system is analysed mathematically and then simulated using
Matlab software tool to validate the proposed hybrid controller. Based on the
desired performance parameters, which include rise and settling time, overshoot
and error steady state, the fitness function of the control problem is formulated as
follows:

F ¼ 0:3S:tr þ 0:3S:ts þ 0:2S:Oþ 0:2S:ess (40)

where, S is closed loop transfer function of the helicopter system, S:tr, ts,O, ess
are the rise time, settling time, maximum overshoot and error steady state of the
closed-loop control system. It is worth considering that the control input effort is
considered in the evaluation process of the proposed stabilizing helicopter system.
In this study, the design of the controller is effectively optimized by using GA
tuning method which is adopted to obtain optimum elements values for LQR
weighting matrices Q and R. These optimized matrices are used to calculate the
optimum controller gain matrix by using Eqs. (13) and (14). However, in this study,
the LQR gain matrix is determined by using the Matlab command ‘lqr’.

5.3.1 PID approximation

In this subsection, the gain parameters Kp,Ki,Kd of the PID controller are
calculated approximately from the feedback gain K of LQR controller based on

GA tuning method. For this application, analyzing Eq. (15) yields the following
control effort [22]:

u1
u2

� �
¼ � k11 k12 k13 k14 k15 k16 k17

k11 �k12 k13 �k14 �k15 k16 �k17

� �
xT (41)

where xT ¼ ϵ, ρ, _ϵ, _ρ, r, ʓ , γ
� �T.

If ϵd, ρd and rd are the desired pitch angle, elevation angle and travel rate of the
helicopter system, it can express the form of PID controllers used to meet the
desired output states as follows: [7, 8].

In this study, for elevation angle, the control equation is based on the following
PID control equation:

Vs ¼ Kϵpeϵ þ Kϵd _eϵ þ Kϵi

ð
eϵdt (42)

Symbol Physical unit Numerical values

Jϵ kg m2 1.8145

Jr kg m2 1.8145

Jρ kg m2 0.0319

W N 4.2591

lm m 0.88

lb m 0.35

lρ m 0.17

Kc N/V 12

Table 1.
Values of physical parameters of 3DOF helicopter system.
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In this study, for the purpose of control system design, the model of the system
is formulated in state space form using the physical parameters values listed in
Table 1 [21]. Based on Eq. (37) and using the parameters values in Table 1, the state
equation of the system is given by Eq. (39):
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5.3 Helicopter control system design

Based on step input, a hybrid controller is designed for the following desired
performance parameters: rise time (tr) less than 10 ms, settling time (ts) less than 30
ms, maximum overshoot percentage, (MO) less than 5%.

Under the assumption that the desired system states are zero the block diagram
of the proposed helicopter control system based on the LQR controller is shown in
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Figure 8. The control system is analysed mathematically and then simulated using
Matlab software tool to validate the proposed hybrid controller. Based on the
desired performance parameters, which include rise and settling time, overshoot
and error steady state, the fitness function of the control problem is formulated as
follows:

F ¼ 0:3S:tr þ 0:3S:ts þ 0:2S:Oþ 0:2S:ess (40)

where, S is closed loop transfer function of the helicopter system, S:tr, ts,O, ess
are the rise time, settling time, maximum overshoot and error steady state of the
closed-loop control system. It is worth considering that the control input effort is
considered in the evaluation process of the proposed stabilizing helicopter system.
In this study, the design of the controller is effectively optimized by using GA
tuning method which is adopted to obtain optimum elements values for LQR
weighting matrices Q and R. These optimized matrices are used to calculate the
optimum controller gain matrix by using Eqs. (13) and (14). However, in this study,
the LQR gain matrix is determined by using the Matlab command ‘lqr’.

5.3.1 PID approximation

In this subsection, the gain parameters Kp,Ki,Kd of the PID controller are
calculated approximately from the feedback gain K of LQR controller based on

GA tuning method. For this application, analyzing Eq. (15) yields the following
control effort [22]:
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where xT ¼ ϵ, ρ, _ϵ, _ρ, r, ʓ , γ
� �T.

If ϵd, ρd and rd are the desired pitch angle, elevation angle and travel rate of the
helicopter system, it can express the form of PID controllers used to meet the
desired output states as follows: [7, 8].

In this study, for elevation angle, the control equation is based on the following
PID control equation:

Vs ¼ Kϵpeϵ þ Kϵd _eϵ þ Kϵi

ð
eϵdt (42)
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Vs ¼ Kϵp ϵd � ϵð Þ � Kϵd _ϵþ Kϵi

ð
ϵd � ϵð Þdt (43)

While the pitch angle is controlled by the following PD control equation:

Vd ¼ Kρpeρ þ Kρd _eρ (44)

Vd ¼ Kρp ρd � ρð Þ � Kρd _ρ (45)

The travel rate is gonverned by the following PI control equation:

ρd ¼ Krper þ Kri

ð
erdt (46)

ρd ¼ Krp rd � rð Þ þ Kri

ð
rd � rð Þdt (47)

Where eϵ ¼ ϵd � ϵ, eρ ¼ ρd � ρ, er ¼ rd � r, _eϵ ¼ � _ϵ and _eρ ¼ � _ρ .

5.3.2 Elevation control using PID controller

Summing the rows of (41) results the following [21]:

Figure 8.
LQR controller based on GA for 3DOF helicopter system.
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u1 þ u2 ¼ � 2k11ϵþ 2k13 _ϵþ 2k16ξð Þ ¼ � 2k11ϵþ 2k13 _ϵþ 2k16
ð
ϵdt

� �
(48)

The above equation can be written as

Vs ¼ 2k11 ϵd � ϵð Þ � 2k13 _ϵþ 2k16
ð
ϵd � ϵð Þdt (49)

It is obvious that Eqs. (43) and (49) have the same structure, this means that the
gain parameters of the pitch PID controller can be obtained from the gain elements
of the LQR controller. Thus, comparing Eq. (43) with Eq. (49), yields the following
gain relationships:

Kϵp ¼ 2k11

Kϵd ¼ 2k13

Kϵi ¼ 2k16

(50)

The block diagram of closed-loop control system for 3DOF helicopter system
based on hybrid LQR-PID controller is shown in Figure 9. Taking Laplace trans-
form for elevation axis model Eq. (31) yields the following equation:

Jeϵ sð Þ:s2 ¼ Kcl1Vs sð Þ (51)

The transfer function of the elevation axis plant is given by:

ϵ sð Þ
Vs sð Þ ¼

Kcl1
Jes2

(52)

The transfer function of the PID controller is as follows:

Vs sð Þ
Eϵ sð Þ ¼

Kϵds2 þ Kϵpsþ Kϵi

s
(53)

where Eϵ sð Þ ¼ ϵd sð Þ � ϵ sð Þ, the open loop transfer function of the elevation axis
control Gϵ sð Þ is given by:

Gϵ sð Þ ¼ ϵ sð Þ
Eϵ sð Þ ¼

Vs sð Þ
Eϵ sð Þ

ϵ sð Þ
Vs sð Þ (54)

Based on Eqs. (52) and (53), the open loop elevation transfer function becomes:

Gϵ sð Þ ¼ Kcl1
Jes2

Kϵds2 þ Kϵpsþ Kϵi

s
(55)

The closed loop transfer function for elevation angle control is as follows:

ϵ sð Þ
ϵc sð Þ ¼

Gϵ sð Þ
1þGϵ sð Þ ¼

Kcl1Kϵds2 þ Kcl1Kϵpsþ Kcl1Kϵi

Jes3 þ Kϵds2 þ Kϵpsþ Kϵi
(56)

5.3.3 Pitch control using PD controller

Similarly, the difference of the rows of Eq. (41) results in
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It is obvious that Eqs. (43) and (49) have the same structure, this means that the
gain parameters of the pitch PID controller can be obtained from the gain elements
of the LQR controller. Thus, comparing Eq. (43) with Eq. (49), yields the following
gain relationships:

Kϵp ¼ 2k11

Kϵd ¼ 2k13
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form for elevation axis model Eq. (31) yields the following equation:
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The transfer function of the elevation axis plant is given by:
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Based on Eqs. (52) and (53), the open loop elevation transfer function becomes:
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Jes2
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Similarly, the difference of the rows of Eq. (41) results in
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u1 � u2 ¼ �2k12ρ� 2k14 _ρ� 2k15 r� rdð Þ � 2k17γ (57)

Vd ¼ �2k12ρ� 2k14 _ρ� 2k15 r� rdð Þ � 2k17
ð
r� rdð Þdt (58)

Substitution Eq. (47) in Eq. (45) results,

Vd ¼ �Kρpρ� Kρd _ρþ KρpKrp rd � rð Þ þ KρpKri

ð
rd � rð Þdt (59)

It is clear that Eqs. (58) and (59) have exactly the same structure. Then, by
comparing these equations, it can obtain the feedback gains for the PID controller
from the LQR gains parameters as follows:

Kρp ¼ 2k12

Kρd ¼ 2k14

Krp ¼ k15
k12

Kri ¼ k17
k12

(60)

Taking Laplace transform for pitch axis model Eq. (32) yields:

Jρρ sð Þs2 ¼ KclρVd sð Þ (61)

The transfer function for pitch axis model is given by:

ρ sð Þ
Vd sð Þ ¼

Kclρ
Jρs2

(62)

The transfer function of the PD controller is as follows:

Vd sð Þ
Eρ sð Þ ¼ Kρdsþ Kρp (63)

Figure 9.
Control system block diagram for helicopter elevation, pitch and travel axis using PID controller.
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where Eρ sð Þ ¼ ρd sð Þ � ρ sð Þ, based on Eqs. (62) and (63) the open loop transfer
function of the pitch axis control is given by:

Gp sð Þ ¼ ρ sð Þ
Eρ sð Þ ¼

ρ sð Þ
Vd sð Þ

Vd sð Þ
Eρ sð Þ ¼ Kclρ Kρdsþ Kρp

� �
Jes2

(64)

The closed loop transfer function of pitch angle is given by:

ρ sð Þ
ρc sð Þ

¼ � KclρKρdsþ KclρKρp

Jρs2 þ KclρKρdsþ lρKρp
(65)

5.3.4 Travel control using PI controller

Taking Laplace transform for travel axis model Eq. (33) results:

r sð Þs ¼ Wl1
Jr

ρd sð Þ (66)

The transfer function for travel axis model is given by:

r sð Þ
ρd sð Þ ¼

Wl1
Jr s

(67)

The transfer function of the PI controller is as follows:

ρρ sð Þ
Er sð Þ ¼ Krp þ Kri

s
(68)

where E sð Þ ¼ ρd sð Þ � ρ sð Þ, the open loop transfer function of the travel axis
control is given by:

Gr sð Þ ¼ r sð Þ
ρd sð Þ

ρρ sð Þ
Er sð Þ ¼

Wl1 Krpsþ Kri
� �
Jrs2

(69)

The closed loop transfer function for travel angle is as follows:

r sð Þ
rd sð Þ ¼

Gl1KrpsþGl1Kri

Jts2 þ Gl1KrpsþGl1Kri
(70)

5.4 Controller simulation and results

5.4.1 GA-LQR controller

In order to validate the proposed helicopter stabilizing system, the LQR control-
ler is analysed mathematically using Matlab tool. Based on objective function (J)
and using the Matlab command “lqr” the elements of the LQR weighting matrices
Q, R are tuned using GA optimization method. For this application, each chromo-
some in GA tuning approach is represented by nine cells which correspond to the
weight matrices elements of the LQR controller as shown in Figure 10. By this
representation it can adjust the LQR elements in order to achieve the required
performance. The parameters of the GA optimization approach chosen for the
tuning process of the helicopter control system are listed in Table 2. Converging
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Control system block diagram for helicopter elevation, pitch and travel axis using PID controller.
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where Eρ sð Þ ¼ ρd sð Þ � ρ sð Þ, based on Eqs. (62) and (63) the open loop transfer
function of the pitch axis control is given by:

Gp sð Þ ¼ ρ sð Þ
Eρ sð Þ ¼

ρ sð Þ
Vd sð Þ

Vd sð Þ
Eρ sð Þ ¼ Kclρ Kρdsþ Kρp

� �
Jes2

(64)

The closed loop transfer function of pitch angle is given by:

ρ sð Þ
ρc sð Þ

¼ � KclρKρdsþ KclρKρp

Jρs2 þ KclρKρdsþ lρKρp
(65)

5.3.4 Travel control using PI controller

Taking Laplace transform for travel axis model Eq. (33) results:

r sð Þs ¼ Wl1
Jr

ρd sð Þ (66)

The transfer function for travel axis model is given by:

r sð Þ
ρd sð Þ ¼

Wl1
Jr s

(67)

The transfer function of the PI controller is as follows:

ρρ sð Þ
Er sð Þ ¼ Krp þ Kri

s
(68)

where E sð Þ ¼ ρd sð Þ � ρ sð Þ, the open loop transfer function of the travel axis
control is given by:

Gr sð Þ ¼ r sð Þ
ρd sð Þ

ρρ sð Þ
Er sð Þ ¼

Wl1 Krpsþ Kri
� �
Jrs2

(69)

The closed loop transfer function for travel angle is as follows:

r sð Þ
rd sð Þ ¼

Gl1KrpsþGl1Kri

Jts2 þ Gl1KrpsþGl1Kri
(70)

5.4 Controller simulation and results

5.4.1 GA-LQR controller

In order to validate the proposed helicopter stabilizing system, the LQR control-
ler is analysed mathematically using Matlab tool. Based on objective function (J)
and using the Matlab command “lqr” the elements of the LQR weighting matrices
Q, R are tuned using GA optimization method. For this application, each chromo-
some in GA tuning approach is represented by nine cells which correspond to the
weight matrices elements of the LQR controller as shown in Figure 10. By this
representation it can adjust the LQR elements in order to achieve the required
performance. The parameters of the GA optimization approach chosen for the
tuning process of the helicopter control system are listed in Table 2. Converging
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elements of the LQR weight matrices Q and R through iteration based on GA
optimization method are presented in Figure 11.

Based on the proposed fitness function stated in Eq. (40), the LQR weighting
matrices Q and R obtained based on the GA tuning approach are given by:

Q ¼ blkdig 26:258, 0:869, 0:431, 0:475, 1:87, 0:026, 0:705ð Þ,
R ¼ blkdig 0:469, 0:469ð Þ,

The feedback gain matrix of the LQR controller can be mathematically
calculated using Eq. (13), where P matrix is the stabilizing solution of the Riccati
equation stated in Eq. (14).

In this application, by using the state matrix Að Þ, input matrix Bð Þ and the tuned
weighting matrices (Q,RÞ, the optimized feedback gain matrix K stated below is
determined using the Matlab software instruction:

K ¼ lqr A,B,Q,Rð Þ

K ¼ 5:3232 2:6817 1:1719 0:7399 2:0590 0:1651 0:8661

5:3232 �2:6817 1:1719 �0:7399 �2:0590 0:1651 �0:8661

� �

Based on the feedback gain matrix and using Eq. (11), the LQR control effort
vector for the 3DOF helicopter system is dertermined as follows:

u1
u2

� �
¼ � 5:323 2:682 1:172 0:739 2:059 0:165 0:866

5:323 �2:682 1:172 �0:739 �2:059 0:165 �0:866

� �
xT

(71)

5.4.2 GA-PID controller

Based on Eqs. (50), (60) and (71), the absolute values of PID, PD and PI gain
parameters for elevation, pitch and travel axis model respectively for helicopter

system are listed in Table 3 [21]. Using the values in Tables 1 and 3, the closed-
loop transfer function of elevation, pitch and travel axis Eqs. (56), (65) and (70)
become as in Eqs. (72), (73) and (74) respectively:

ϵ sð Þ
ϵc sð Þ ¼

1445s3 þ 247 sþ 674:9
1:8145s3 þ 1445s2 þ 2474sþ 674:9

(72)

Figure 10.
Definition of GA chromosome.

GA property Value/Method

Population Size 20

Max No. of Gen. 100

Selection Method Normalized Geo. Selection

Crossover Method Scattering

Mutation Method Uniform Mutation

Table 2.
Parameters of GA tuning method.
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p sð Þ
pc sð Þ

¼ 69:08 sþ 269:3
0:0319s2 þ 69:08 sþ 269:3

(73)

r sð Þ
rc sð Þ ¼

2:878 sþ 1:634
1:815 s2 þ 2:878 sþ 1:634

(74)

Based on bounded input signal, the elevation, pitch and travel axis model of
3DOF helicopter system are unstable as they give unbounded outputs. The output
responses for elevation, pitch and travel angle are illustrated in the Figure 12. It can
be say that the open loop helicopter system without control action is unable to
provide a stable output response.

Figure 11.
Number of generation of GA-LQR parameters Q and R.

PID parameters Relationship Absolute Value

Kϵp 2k11 10.6463

Kϵd 2k13 2.3438

Kϵi 2k16 0.3302

Kρp 2k12 5.3634

Kρd k14 1.4799

Krp k15
k12

0.7678

Kri k17
k12

0.3230

Table 3.
Values of gain parameters for PID, PD and PI controllers.
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In this study, in order to achieve a stable output, a hybrid control system using
LQR based PID controller for 3DOF helicopter system is proposed to control the
dynamic behaviour of the system. To validate the proposed helicopter stabilization
system, the controller is simulated using Matlab programming tool. Three axis,
elevation, pitch, travel rate, are considered in the simulation process of the control
system. The performance of the helicopter balancing system is evaluated under unit
step reference input using rise, settling time overshoot and steady state error
parameters for the elevation, pitch and travel angles to simulate the desired
command given by the pilot.

5.4.2.1 Elevation LQR-PID controller

This section deals with the simulation of LQR based PID controller used to
control the position of helicopter elevation model. The parameters of the hybrid
controller are tuned using GA optimization method. Figure 13 presents a tracking
control curve of the demand input based on the PID controller using optimized gain
parameters listed in Table 3 for helicopter elevation angle.

The simulation results show that the controller successed to guide the system
output through the desired input trajectory effectively with negligible overshoot,
short rise and settling time of 0.1 ms and 0.3 ms respectively.

5.4.2.2 Pitch LQR-PD controller

In this section, an optimized LQR-PD controller based on GA tuning approach is
designed to control the dynamic model of helicopter pitch angle. Based on the
optimized PD parameters stated in Table 3, the output response of the proposed
helicopter tracking system is illustrated in Figure 14. It is obvious from the
minifigure of the system response that the LQR-PD controller succeeded to force the
pitch angle state of the helicopter system to follow the desired trajectory effectively
without overshoot, shorter rise and settling time and zero steady state tracking error.

5.4.2.3 Travel LQR-PI controller

The control of the travel rate for the 3DOF helicopter system is governed by a
GA-LQR based PI controller. The time response of the optimized PI tracking system

Figure 12.
Open loop response of Helicopter system.
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using optimum gain parameters which are listed in Table 3. is shown in Figure 15.
It can be noted from the miniplot of the system response that the optimised hybrid
LQR-PI controller enabled the system output state to track the desired input trajec-
tory without overshoot, and shorter rise and settling time with minimal steady state
tracking error.

The control inputs supplied to the propellers motors of the proposed 3DOF
helicopter system are shown in Figure 16. Consequently, it can say that the control
performance of optimised GA-LQR based PID, PD and PI controllers for helicopter
elevation, pitch and travel axis model respectively was acceptable through tracking
the system output states for the reference input efficiently. Based on the minifigures
of Figures 13 and 14 and Figure 15, the performance parameters of PID, PD and PI
controller for helicopter elevation, pitch and travel axis are listed in Table 4. From
the response data of the controlled helicopter system in Table 4 it can be said that
the hybrid controllers were able to provide robust and good tracking performance
in both the transient and steady state responses.

Figure 13.
Closed-loop response of the elevation model system.

Figure 14.
Closed-loop response of the pitch model system.
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6. Conclusions

In this study, a new hybrid control methodology has been developed for com-
plex dynamical systems through combinig the LQR optimal technique with tradi-
tional PID controller. An efficient hybrid control system has been designed to
stabilize 3DOF helicopter systems. The dynamics of elevation, pitch and travel axis

Figure 15.
Closed-loop response of the travel model system.

Figure 16.
Conrol input of 3DOF helicopter control system.

Controller tr(s) ts(s) Mo %

Elevation PID 0.343 0.535 1.1

Pitch PD 0.582 1.05 0

Travel PI 1.17 12.4 5.29

Table 4.
Values of performance elements s of controllers.
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for a helicopter system is modeled mathematically and then formulated in state
space form to enable utilizing state feedback controller technique. In the proposed
helicopter stabilizing scheme, a combination of a conventional PID control with
LQR state feedback controller is adopted to stabilize the elevation, pitch and travel
axis of the helicopter scheme. The gain parameters of the traditional PID controller
are determined from the gain matrix of state feedback LQR controller. In this
research, the LQR controller is optimized by using GA tuning technique. The GA
optimization method has been adopted to find optimum values for LQR gain matrix
elements which are utilized to find best PID gain parameters. The output response
of the optimized helicopter control system has been evaluated based on rise time,
setting time, overshoot and steady state error parameters. The simulation results
have shown the effectiveness of the proposed GA-LQR based PID controller to
stabilize the helicopter system at desired values of the elevation and pitch angle and
travel parameters.
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Chapter 3

Improving Disturbance-Rejection
by Using Disturbance Estimator
Damir Vrančić and Mikuláš Huba

Abstract

The main tasks of control in various industries are either tracking the setpoint
changes or rejecting the process disturbances. While both aim at maintaining the
process output at the desired setpoint, the controller parameters optimised for
setpoint tracking are generally not suitable for optimal disturbance rejection. The
overall control performance can be improved to some extent by using simpler 2-
DOF PID controllers. Such a controller structure allows the disturbance rejection to
be optimised, while it also improves the setpoint tracking performance with addi-
tional controller parameters (usually through the setpoint weighting factors). Since
such 2-DOF structures are usually relatively simple, the optimization of tracking
performance is usually limited to the reduction of process overshoots instead of
achieving an optimal (fast) tracking response. In this chapter, an alternative
approach is presented in which the parameters of the PID controller are optimised
for reference tracking, while the performance of the disturbance rejection is sub-
stantially increased by introducing a simple disturbance estimator approach. The
mentioned estimator requires adding two simple blocks to the PID controller. The
blocks are the second-order transfer functions whose parameters, including the PID
controller parameters, can be calculated analytically from the process characteristic
areas (also called process moments). The advantage of such an approach is that the
mentioned areas can be analytically calculated directly from the process transfer
function (of any order with time delay) or from the time response of the process
when the steady state of the process is changed. Both of the above calculations are
absolutely equivalent. Moreover, the output noise of the controller is under control
as it is considered in the design of the controller and compensator. The closed loop
results on several process models show that the proposed method with disturbance
estimator has excellent tracking and disturbance rejection performance. The pro-
posed controller structure and tuning method also compare favourably with some
existing methods based on non-parametric description of the process.

Keywords: tuning method, disturbance rejection, disturbance estimator,
multi-objective design

1. Introduction

The control of industrial processes requires efficient control loops. A majority
of the control loops in various industries are implemented by the Proportional-
Integrative-Derivative (PID) control algorithms. For efficient control, the PID
controllers require proper tuning of the PID controller parameters. The parameters
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can be calculated to optimise various performance criteria such as integral of error
(IE), integral of absolute error (IAE), integral of squared error (ISE) and similar
[1–4]. However, the most important decision that should be made in advance is the
choice of the main purpose of the closed-loop system. Namely, the user should
choose between the optimal closed-loop responses to reference changes (so-called
tracking responses) or the optimal response to process disturbances. While there are
many industrial processes that require optimal reference tracking responses, such as
robot manipulation, welding, and batch processes, the majority of industrial
processes require optimal disturbance rejection.

The history of tuning rules is long, originating in the 1940s with the famous
Ziegler-Nichols tuning rules. In the following decades, many other tuning rules
have been developed [1, 2, 4–10]. The rules can be generally categorised according
to the required data of the process. The process can be described either in paramet-
ric form, e.g., as a process model (transfer function), or in nonparametric form,
e.g., as a process time-response.

A relatively new tuning method that optimises either closed-loop tracking or
disturbance rejection is the Magnitude-Optimum-Multiple-Integration (MOMI)
method [7, 9, 11, 12]. The MOMI method is based on the Magnitude Optimum
method, which aims to optimise the frequency response of the closed loop to
achieve fast and stable closed loop time response [10, 13–15]. An interesting
feature of the MOMI method is that it works either on the process given by its
transfer function (of arbitrary order with time delay) or directly on the time
response of the process during the steady state change. It is worth noting that
both the parametric and non-parametric process data give exactly the same PID
tuning results.

Many tuning methods for PID controllers provide different sets of controller
parameters for tracking and disturbance rejection response. Similarly, the MOMI
method primarily optimises the tracking response, while its modification, the
Disturbance-Rejection-Magnitude-Optimum (DRMO) method, aims at optimising
the disturbance rejection response. The latter significantly improves the disturbance
rejection response, while the tracking response slows down due to the implemented
reference-weighting gain or reference signal filter [9, 16, 17].

The main approach presented in this chapter is the alternative approach. First,
the parameters of the PID controller are optimised for tracking performance. Then,
a simple disturbance estimator is introduced to significantly increase the distur-
bance rejection performance [18, 19]. The advantages of the above approach are
twofold. First, the disturbance rejection performance can significantly outperform
that obtained by the DRMO method. Second, the parameters of the disturbance
estimator can also be obtained directly from the non-parametric process data in the
time domain. Therefore, the proposed approach can still be applied to the process
data which is either in parametric or non-parametric form.

However, in practice, the process output noise is always present. If the
controller or estimator gains are too high, the process input signals may be too
noisy for practical applications. Therefore, noise attenuation should already be
taken into account when calculating the controller and estimator parameters.
This chapter shows how to achieve the best trade-off between performance and
noise attenuation.

2. Process and controller description

The classic 1-degree-of-freedom (1-DOF) control loop configuration of the
process and the controller is shown in Figure 1, where the signals r, e, u, d and y
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represent the reference, the control error, the controller output, the process input
disturbance, and the process output, respectively.

A process model (1) can be described by the following process transfer function:

GP sð Þ ¼ KPR 1þ b1sþ b2s2 þ⋯þ bmsmð Þ
1þ a1sþ a2s2 þ⋯þ ansn

e�sTdel (1)

where a1 to an are the denominator coefficients, b1 to bm are the numerator
coefficients, KPR is the process gain, and Tdel is the process time delay. Note that
n > m represents a strictly proper process transfer function and that the process is
stable.

The PID controller is described by the following expression:

GC sð Þ ¼ KI þ KPsþ KDs2

s 1þ sTFð Þ (2)

where KI is the integrating gain, KP is the proportional gain, and KD is the
derivative gain. Note that all three controller terms are filtered by the first-order
filter with time constant TF.

The closed-loop transfer function GCL between the reference (r) and the process
output (y) is as follows:

GCL ¼ GCGP

1þ GCGP
(3)

Since the structure of a 1-DOF PID controller does not provide optimal tracking
and disturbance rejection at the same time, the 2-degrees-of-freedom (2-DOF)
controller can be used instead [1, 2, 4, 8, 16, 20], where GCR and GCY denote the
controller transfer function from the reference and the process output, respectively:

Figure 1.
The 1-DOF PID controller and the process in the closed-loop configuration.

Figure 2.
The 2-DOF PID controller and process in the closed-loop configuration.
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u ¼ GCR sð Þr� GCY sð Þy

GCR ¼ KI þ bKPsþ cKDs2

s 1þ sTFð Þ

GCY ¼ KI þ KPsþ KDs2

s 1þ sTFð Þ , (4)

as shown in Figure 2, where parameters b and c are reference-weighting
parameters for the proportional and derivative terms, respectively.

3. MOMI and DRMO tuning methods

The MOMI and DRMO methods, as mentioned earlier, are based on the Magni-
tude Optimum (MO) method, which goes back to Whitley in 1946 [10]. The MO
method shapes the closed-loop amplitude frequency response equal to one in a wide
frequency range [6, 7, 10, 12–14, 21]. Such a closed-loop frequency response is
usually “mirrored” into a fast and stable closed-loop time response.

The calculation of controller parameters has been simplified when using the MO
method by determining the process characteristic areas or moments, which can be
measured directly from the time responses during the change of the process steady-
state [12, 15, 21, 22]. The mentioned areas or moments (A1 to Ak) can also be
calculated from the process model:

A0 ¼ KPR

A1 ¼ KPR a1 � b1 þ Tdelð Þ

A2 ¼ KPR b2 � a2 � b1Tdel þ T2
del

2!

� �
þ A1a1

⋮

Ak ¼ KPR �1ð Þkþ1 ak � bkð Þ þ
Xk
i¼1

�1ð Þkþi T
i
delbk�i

i!

" #
þ
Xk�1

i¼1

�1ð Þkþi�1Aiak�i (5)

The controller parameters, for a given filter time constant TF, are then calculated
as follows:
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where the modified areas A0* to A5* are:

A ∗
0 ¼ A0

A ∗
1 ¼ A1 þ A0TF

A ∗
2 ¼ A2 þ A1TF þ A0T2

F

⋮ (7)

The reference-weighting factors are b = c = 1. Note that the areas (moments) in
expression (6) apply areas of the process including the controller filter GF with time
constant TF (4):
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GF ¼ 1
1þ sTFð Þ (8)

by using expression (7) [9]. The aforementioned modification of the method,
referred to as the MOMI method, allowed the controller parameters to be computed
directly from the process time response [12, 21] or from the process transfer
function.

Since the MOMI method aims at optimising the tracking performance, the
disturbance rejection performance may be degraded for some types of processes.

To improve the disturbance-rejection performance, the optimisation criteria of
the MOMI method were modified accordingly. The new method, referred to as
the DRMO (Disturbance-Rejection-Magnitude-Optimum) method, achieved
significantly improved disturbance rejection performance [9, 16, 17].

Similar to the MOMI method, the controller parameters in the DRMO method
are also based on characteristic areas or moments. Therefore, the controller param-
eters can be calculated either from the process time-response or from the process
transfer function.

The PID controller parameters are calculated according to the following expres-
sions when using the DRMO method [9, 16, 17]:

KP ¼ β �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 � αγ

p

α
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1þ KPA ∗

0

� �2
2 KDA ∗ 2

0 þ A ∗
1

� � (9)

where

α ¼ A ∗ 3
1 þ A ∗ 2

0 A ∗
3 � 2A ∗

0 A
∗
1 A

∗
2

β ¼ A ∗
1 A

∗
2 � A ∗

0 A
∗
3 þ 2KD A ∗

0 A
∗ 2
1 � A ∗ 2

0 A ∗
2

� �

γ ¼ K3
DA

∗4
0 þ 3K2

DA
∗ 2
0 A ∗

1 þ KD 2A ∗
0 A

∗
2 þ A ∗ 2

1

� �þ A ∗
3 (10)

and the derivative gain KD is calculated directly from expression (6). The
reference-weighting factors are b = c = 0.

The DRMO tuning method significantly improved the disturbance rejection
performance, especially for the lower-order processes. However, the reference
tracking becomes slower due to the reference-weighting factors b = c = 0 in the
2-DOF control structure (4). The problem can be circumvented by including a
simple disturbance estimator in the control scheme. Such a solution is denoted as
DE-MOMI method.

4. DE-MOMI tuning method

In order to improve the disturbance rejection response, while retaining the
tracking response obtained by the MOMI method, a disturbance estimator has been
added to the PID controller GC(s) (2), as depicted in Figure 3.

The disturbance estimator consists of the process model GM, the inverse process
model GMI and the filter GFD. In hypothetical case, when the process model is ideal
representation of the bi-proper process without time-delay, and the filter GFD = 1:
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The reference-weighting factors are b = c = 1. Note that the areas (moments) in
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constant TF (4):
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The DRMO tuning method significantly improved the disturbance rejection
performance, especially for the lower-order processes. However, the reference
tracking becomes slower due to the reference-weighting factors b = c = 0 in the
2-DOF control structure (4). The problem can be circumvented by including a
simple disturbance estimator in the control scheme. Such a solution is denoted as
DE-MOMI method.

4. DE-MOMI tuning method

In order to improve the disturbance rejection response, while retaining the
tracking response obtained by the MOMI method, a disturbance estimator has been
added to the PID controller GC(s) (2), as depicted in Figure 3.

The disturbance estimator consists of the process model GM, the inverse process
model GMI and the filter GFD. In hypothetical case, when the process model is ideal
representation of the bi-proper process without time-delay, and the filter GFD = 1:
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GM ¼ GP,GMI ¼ G�1
M ,GFD ¼ 1, (11)

the estimated disturbance df equals to the actual disturbance d:

d f ¼ d: (12)

In this case the ideal disturbance compensation is achieved. However, in practice,
model mismatch may occur (due to changing process characteristics in time or work-
ing point, lower-order process model or the process non-linearity), and the inverse of
the process usually cannot be obtained, since majority of the actual processes are
either strictly proper or they have time delays. Therefore, another strategy is required.

For practical applications, the solution has to be as simple as possible. In this
manner we decided to use the following process model, the inverse process model
and the disturbance estimator filter:

GM ¼ KPRMe�sTdelm

1þ a1msþ a2ms2

GMI ¼ 1þ a1msþ a2ms2

KPRM

GFD ¼ KFD

1þ sTFDð Þ3 (13)

where KPRM and Tdelm are the process model gain and time delay and a1m and a2m
are the process model dynamic parameters. Parameters KFD and TFD are the distur-
bance filter gain and time constant, respectively.

The remaining question is how to obtain the process model if the actual process
is of the higher order or if the actual process is not known (e.g. the areas (moments)
were calculated directly from the process time-response)? Fortunately, the process
model can be calculated directly from the obtained areas (5), as derived in [23]:
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Figure 3.
The PID controller with disturbance estimator.
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a1m ¼ A1

A0
� Tdelm

a2m ¼ �A2

A0
þ a1mA1

A0
þ T2

delm

2
(14)

The process model delay Tdelm is calculated from the third-order equation in
(14). The solution is the smallest real positive result [23].

Now, all the model parameters are known and the disturbance filter GFD

parameters should be derived. Before continuing the derivation we should be aware
of the fact that GMI(s) is not proper, so it cannot be realised in practice without the
accompanied filter GFD(s). Multiplication of both is strictly proper, so the entire
block can be easily implemented inside the controller.

Derivation of disturbance filter parameters depends mainly on desired distur-
bance rejection performance. It is natural that the disturbance signal reconstruction
(df) is faster if the filter time constant TFD is smaller. In hypothetical case, if
GM = GP, the reconstructed disturbance signal df becomes:

d f ¼ KFD
e�sTdelm

1þ sTFDð Þ3 d (15)

With sufficiently small time constant (TFD! 0), where the disturbance filter gain
KFD = 1, and there is no process time delay, df ≈ d. In this case the reconstructed
disturbance signal df perfectly compensates the disturbance d. On the other hand,
smaller disturbance filter time constant significantly increases the process output
noise present in the measurements and forwards it to the controller output. There-
fore, the TFD should be selected according to the tolerated noise gain of the distur-
bance estimator, as will be discussed in detail in the next sub-chapter.

One remaining parameter of the disturbance filter GFD (13) is the gain KFD. One
would, naturally, expect that the most optimal value should be KFD = 1, since only in
this case, after some time, df becomes the same to d (15). Therefore, the process input
disturbance d is eliminated by the reconstructed disturbance df. However, as will be
shown below, the optimal disturbance response is obtained with lower values of the
gain KFD. Namely, due to the disturbance compensator, the external process input
signal d generates the delayed reconstructed disturbance signal df (15). Combined
together, the actual process input u, due to disturbance d, is d-df. The step-like signal
d, therefore, generates pulse-like actual process input disturbance signal d-df. Since
the PID controller is present in the loop, and it contains the integrating term, the
process output (y) deviation in one direction (e.g. above the reference) should be
compensated by the process output deviation in the opposite direction (e.g. below the
reference). Namely, when using KFD = 1, the integral of the control error must be:

ð∞
t¼0

e tð Þdt ¼ 0: (16)

It means that, by applying KFD = 1, the additional process undershoot, after the
initial process overshoot due to the disturbance d, is inevitable.

Figure 4 shows an example on delayed second-order process, when applying the
step-wise external process input disturbance signal d, and when using KFD = 1
(upper figure) and KFD = 0.44 (lower figure). The process output undershoot in the
upper figure is clearly seen. By appropriately reducing the filter gain to KFD = 0.44,
the disturbance rejection response is improved (lower figure).
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The remaining question is how to find the most appropriate filter gain KFD.
Certainly, the KFD should be chosen so as that the disturbance rejection is optimised.
Here we can use the same optimisation criteria as in the DRMO tuning method.
Therefore, the transfer function GCLD(s) between the external disturbance (d) and
the process output (y):

GCLD sð Þ ¼ Y sð Þ
D sð Þ ¼

GM 1�GFDe�sTdelm
� �
1þ GMGP

(17)

should be optimised according to the modified MO criterion [9, 16]. Note that
expression (17) holds when the process and the model transfer functions are equiv-
alent. Since the disturbance filter time constant is defined, and all of the controller
and the model parameters are calculated, the only optimisation parameter is the
gain KFD. By using similar derivation as in [9, 16], the optimal filter gain KFD is
calculated as:

KFD ¼
�b0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b20 � 4a0c0

q

2a0
(18)

where

a0 ¼ �d0 þ 2 f 0KIP þ K2
IP T2

F � 3T2
FD

� �

b0 ¼ 2d0 � 4 f 0KIP þ K2
IP �2T2

F þ 12T2
FD þ 6TFDTdelm þ T2

delm

� �

c0 ¼ �d0 þ 2 f 0KIP þ K2
IPT

2
F

Figure 4.
The closed-loop signals when applying step-wise external process input disturbance signal with disturbance
filter gains KFD = 1 (upper figure) and KFD = 0.44 (lower figure).
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KIP ¼ KIKPRM

KPP ¼ KPKPRM

KDP ¼ KDKPRM

d0 ¼ 1þ KPPð Þ2

f 0 ¼ a1m þ KDP þ TF þ Tdelm (19)

For the given controller filter (TF) and the disturbance filter (TFD) time con-
stants (note that the calculation of both time constants, according to the desired
level of noise, will be derived in the next sub-chapter), the calculation of remaining
controller, model and disturbance filter parameters proceeds as given in Figure 5.

Illustrative example 1
To illustrate the proposed design of DE-MOMI method, according to control

structure in Figure 5, let us calculate the controller, model and disturbance filter
parameters for the following processes:

GP1 ¼ e�0:5s

1þ sð Þ2

GP2 ¼ e�0:2s

1þ sð Þ3 (20)

The a-priori chosen filter time constants were:

TF ¼ TFD ¼ 0:1 (21)

The characteristic areas, calculated from (5) and (7), are given in Table 1.
Next, the PID controller parameters are calculated from (6) and from (9), since

we are going to compare the proposed DE-MOMI method with MOMI and DRMO
methods. The calculated controller parameters are given in Table 2.

The process models GM and inverse process models GMI are then calculated from
(14), where GMI is the inverse of GM without time-delay:

1.     Calculate the characteristic areas or moments from the process time-response [9,12]
        or from (5) if the process transfer function is known in advance.
2.     Calculate modified areas according to the chosen TF from (7).
3.     Calculate PID controller parameters from (6).
4.     Calculate process model parameters from (14).
5.     Calculate the disturbance filter gain KFD from (18).

Figure 5.
Calculation of the controller, model and filter parameters.

A0 A1 A2 A3 A4 A5

Areas GP1 1 2.50 4.13 5.77 7.42 9.07

Areas GP1 with controller filter 1 2.60 4.39 6.21 8.04 9.87

Areas GP2 1 3.20 6.62 11.26 17.12 24.21

Areas GP2 with controller filter 1 3.30 6.95 11.96 18.32 26.04

Table 1.
The calculated areas for the processes (20) without and with the controller filter.
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GM1 ¼ e�0:5s

1þ 2sþ s2

GMI1 ¼ 1þ 2sþ s2

GM2 ¼ e�0:616s

1þ 2:58sþ 1:84s2
(22)

GMI2 ¼ 1þ 2:58sþ 1:84s2

Finally, the disturbance filter gain KFD, when taking into account the chosen
TFD = 0.1, is then calculated from (18):

KFD1 ¼ 0:57

KFD2 ¼ 0:59 (23)

Therefore, the complete inverse of the models with accompanying disturbance
filters (see Figure 3) are the following:

GMI1GFD1 ¼ 0:57 1þ 2sþ s2ð Þ
1þ 0:1sð Þ3

GMI2GFD2 ¼ 0:59 1þ 2:58sþ 1:84s2ð Þ
1þ 0:1sð Þ3 (24)

The closed-loop responses, obtained with the calculated controller, model and
filter parameters, for the MOMI, DRMO and the proposed DE-MOMI method, are
given in Figures 6 and 7. At t = 0 s, the reference value (r) was changed from 0 to 1
and at half of experiment time the process input disturbance (d) was changed from
0 to 1. It is obvious that the disturbance rejection performance of the DE-MOMI
method is the best. Note that when applying the DE-MOMI method, due to the
difference between the actual process and the process model in the second example
(GP2), the process input signal, during the reference change, is not smooth. This is
expected, since the inverse process model with filter is amplifying the difference
between the actual process and the process model. In this case, the response can be
made smoother by increasing the disturbance filter time constant (TFD). Note that a
possible limitation of the control signal can also help to smooth out the oscillations
after the reference step [24].

The disturbance rejection performance of the DE-MOMI method can be
increased by decreasing the disturbance filter time constant TFD. However, as
already mentioned above, the process input signal can become oscillatory when the
actual process and the process model differ. In this case, too small TFD can even
render the closed-loop system unstable. Besides that, the process noise (signal n in

Controller parameters KP KI KD

MOMI controller for GP1 1.81 0.89 0.93

DRMO controller for GP1 2.25 1.49 0.93

MOMI controller for GP2 1.61 0.64 1.08

DRMO controller for GP2 1.93 0.98 1.08

Table 2.
The calculated controller parameters for the processes (20) for MOMI (6) and DRMO (9) method, taking into
account the chosen controller filter TF = 0.1.
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Figure 6.
The closed-loop responses on the process GP1, when using the MOMI, DRMO and DE-MOMI method.

Figure 7.
The closed-loop responses on the process GP2, when using the MOMI, DRMO and DE-MOMI method.
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Figure 3) is also amplified via block GMIGFD, so small TFD can cause excessive noise
of signal dF. The selection of TFD is, therefore, important in practical realisation of
the DE-MOMI method.

Calculating the controller and DE parameters is a relatively simple process.
However, to simplify it even further, all Matlab/Octave scripts are available on the
OctaveOnline Bucket website [25]. The layout of the website is shown in Figure 8.
To calculate the controller and DE parameters, the user must 1) change the process
and filter parameters, 2) press the “Save” button, and 3) press the “Run” button.
The script will be executed and on the right side of the web screen all calculated
parameters will be displayed. Note that users can change the content of the script
only temporarily.

5. Noise attenuation of DE-MOMI method

As already mentioned in the previous sub-chapter, the output noise of distur-
bance estimator (dF) depends on the selection of disturbance filter TFD. However,
according to Figure 3, some noise is also present at the output of the PID controller
block (signal uC). In this sub-chapter we will give some guidelines regarding the
noise attenuation in practical realisation of DE-MOMI controller.

In practice, it is important to keep the controller output noise within some limits.
Namely, if the controller’s and the estimator’s filter time constants are too low, the
DE-MOMI controller output noise can be so high that the controller would be
useless in practice.

The controller noise is mainly caused by the process output noise n (see
Figure 3). The noise power at the controller output (u) depends on the power of

Figure 8.
The website layout for the calculation of the controller and the DE parameters.
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measurement noise n and the frequency properties of noise, PID controller and
disturbance estimator. The relation between the filters (TF and TFD) time constants
and the controller output noise is rather complex, but can be calculated according to
Parseval’s theorem if the measurement noise frequency characteristics are known.
However, this relation is higher-order and non-linear. Therefore, the search for
adequate filter time constants TF and TFD would require optimisation procedure,
which would significantly complicate the otherwise simple method.

In practice, on the other side, it is enough to keep the noise sufficiently low at
some sufficiently high frequency. The definition of “high frequency” is arguable. In
discrete-realisation of the controller, the sampling frequency is

f S ¼
1
TS

(25)

where TS is the controller’s sampling time. The highest signal, which may be sent
to discrete function is, due to Shannon’s theorem, fS/2. Therefore, any frequency
close to fS/2 can be considered as high frequency. In this research we have arbi-
trarily decided that the “high frequency” fHF is the quarter of controller’s sampling
frequency fS:

f HF ¼ 0:25 f S

ωHF ¼ 2π f HF ¼ 0:5π
TS

(26)

As already mentioned above, the source of controller noise is the process output
noise n (Figure 3). In DE-MOMI controller, the overall high-frequency control
noise consists of the PID controller (uPIDn) and the disturbance estimator (uDEn)
high-frequency noise:

uPIDn ωHFð Þ ¼ KPIDnn ωHFð Þ
uDEn ωHFð Þ ¼ KDEnn ωHFð Þ, (27)

where KPIDn and KDEn are the high-frequency gains (around frequency ωHF) of
the PID controller and the disturbance estimator, respectively.

In practical applications of the DE-MOMI method, the noise specifications (lim-
itations) should be given in as simple form as possible for the user (operator). We
decided that the actual parameters, given by the user should be the high-frequency
gains of the controller (KPIDn) and the disturbance estimator (KDEn). Therefore, in
practice, by selecting the mentioned two gains, the user would limit the amount of
controller noise at high frequencies.

The actual gain of the PID controller around the chosen high frequency ωHF can
be calculated from the controller transfer function (2):
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The controller filter time constant can then be calculated as:
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Figure 3) is also amplified via block GMIGFD, so small TFD can cause excessive noise
of signal dF. The selection of TFD is, therefore, important in practical realisation of
the DE-MOMI method.

Calculating the controller and DE parameters is a relatively simple process.
However, to simplify it even further, all Matlab/Octave scripts are available on the
OctaveOnline Bucket website [25]. The layout of the website is shown in Figure 8.
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and filter parameters, 2) press the “Save” button, and 3) press the “Run” button.
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Figure 8.
The website layout for the calculation of the controller and the DE parameters.
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measurement noise n and the frequency properties of noise, PID controller and
disturbance estimator. The relation between the filters (TF and TFD) time constants
and the controller output noise is rather complex, but can be calculated according to
Parseval’s theorem if the measurement noise frequency characteristics are known.
However, this relation is higher-order and non-linear. Therefore, the search for
adequate filter time constants TF and TFD would require optimisation procedure,
which would significantly complicate the otherwise simple method.

In practice, on the other side, it is enough to keep the noise sufficiently low at
some sufficiently high frequency. The definition of “high frequency” is arguable. In
discrete-realisation of the controller, the sampling frequency is

f S ¼
1
TS

(25)

where TS is the controller’s sampling time. The highest signal, which may be sent
to discrete function is, due to Shannon’s theorem, fS/2. Therefore, any frequency
close to fS/2 can be considered as high frequency. In this research we have arbi-
trarily decided that the “high frequency” fHF is the quarter of controller’s sampling
frequency fS:

f HF ¼ 0:25 f S

ωHF ¼ 2π f HF ¼ 0:5π
TS

(26)
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Since the PID controller parameters depend on the filter time constant TF, the TF

should be calculated by an iterative procedure given in Figure 9.
The calculation of the disturbance filter high-frequency gain KDEn is similar as

for the PID controller:

KDEn ¼
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In a similar manner, the disturbance filter time constant can be derived as:

TFD ¼ 1
ωHF
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Since the calculated filter gain KFD depends on the filter time constant TFD (see
expression (18)), the calculation of expression (31) is iterative as well, as given in
Figure 10.

Illustrative example 2
Let us illustrate the calculation procedure for the following processes:

GP3 ¼ e�0:2s

1þ 0:2sð Þ 1þ sð Þ

GP4 ¼ e�s

1þ sð Þ4 (32)

Note that other process models were chosen as in the previous case (20) in order
to test different types of processes. The chosen high-frequency gains of the PID
controller and the disturbance filter are KPIDn = 4 and KDEn = 4, respectively. The
chosen closed-loop sampling time was TS = 0.01 s. Therefore, the chosen high-
frequency is:

ωHF ¼ 0:5π
TS

¼ 157:1 s�1 (33)

Figure 9.
Calculation of the filter and controller parameters according to the desired controller high-frequency gain KPIDn.

Figure 10.
Calculation of the disturbance filter parameters according to the desired disturbance filter high-frequency gain
KDEn.
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The initially chosen filter time constants were (the values are not critical):

TF ¼ TFD ¼ 0:1 s (34)

The characteristic areas are calculated from (5). For the given high-frequency
gain KPIDn = 4, the filter and controller parameters are calculated according to
procedure given in Figure 9. The calculated filter time constants (after 2 iterations)
were

TF3 ¼ 0:119 s

TF4 ¼ 0:192 s (35)

Note that indexes 3 and 4 in above filter time constants stand for the processes
GP3 and GP4, respectively.

The areas are given in Table 3 and the controller parameters are given in
Table 4.

The process models GM and inversed process models GMI are then calculated
from (14):

GM3 ¼ e�0:2s

1þ 1:2sþ 0:2s2

GMI3 ¼ 1þ 1:2sþ 0:2s2

GM4 ¼ e�1:94s

1þ 3:06sþ 2:69s2

GMI4 ¼ 1þ 3:06sþ 2:69s2 (36)

According to the chosen high-frequency gain KDEn = 4, the TFD and KFD were
calculated according to the procedure given in Figure 10 (2 iterations were
sufficient):

TFD3 ¼ 0:06

TFD4 ¼ 0:116

KFD3 ¼ 0:69

KFD4 ¼ 0:36 (37)

Therefore, the complete inverse of the models with accompanying disturbance
filters (see Figure 3) are the following:

GMI3GFD3 ¼ 0:69 1þ 1:2sþ 0:2s2ð Þ
1þ 0:06sð Þ3

A0 A1 A2 A3 A4 A5

Areas GP3 1 1.40 1.50 1.52 1.53 1.53

Areas GP3 with controller filter 1 1.52 1.68 1.72 1.73 1.73

Areas GP4 1 5.00 14.50 32.17 60.71 102.8

Areas GP4 with controller filter 1 5.19 15.50 35.14 67.45 115.8

Table 3.
The calculated areas for the processes (32) without and with the controller filter.
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Since the calculated filter gain KFD depends on the filter time constant TFD (see
expression (18)), the calculation of expression (31) is iterative as well, as given in
Figure 10.
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Let us illustrate the calculation procedure for the following processes:
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Note that other process models were chosen as in the previous case (20) in order
to test different types of processes. The chosen high-frequency gains of the PID
controller and the disturbance filter are KPIDn = 4 and KDEn = 4, respectively. The
chosen closed-loop sampling time was TS = 0.01 s. Therefore, the chosen high-
frequency is:

ωHF ¼ 0:5π
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Figure 9.
Calculation of the filter and controller parameters according to the desired controller high-frequency gain KPIDn.
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Calculation of the disturbance filter parameters according to the desired disturbance filter high-frequency gain
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The initially chosen filter time constants were (the values are not critical):

TF ¼ TFD ¼ 0:1 s (34)

The characteristic areas are calculated from (5). For the given high-frequency
gain KPIDn = 4, the filter and controller parameters are calculated according to
procedure given in Figure 9. The calculated filter time constants (after 2 iterations)
were

TF3 ¼ 0:119 s

TF4 ¼ 0:192 s (35)

Note that indexes 3 and 4 in above filter time constants stand for the processes
GP3 and GP4, respectively.

The areas are given in Table 3 and the controller parameters are given in
Table 4.

The process models GM and inversed process models GMI are then calculated
from (14):

GM3 ¼ e�0:2s

1þ 1:2sþ 0:2s2

GMI3 ¼ 1þ 1:2sþ 0:2s2

GM4 ¼ e�1:94s

1þ 3:06sþ 2:69s2

GMI4 ¼ 1þ 3:06sþ 2:69s2 (36)

According to the chosen high-frequency gain KDEn = 4, the TFD and KFD were
calculated according to the procedure given in Figure 10 (2 iterations were
sufficient):

TFD3 ¼ 0:06

TFD4 ¼ 0:116

KFD3 ¼ 0:69

KFD4 ¼ 0:36 (37)

Therefore, the complete inverse of the models with accompanying disturbance
filters (see Figure 3) are the following:

GMI3GFD3 ¼ 0:69 1þ 1:2sþ 0:2s2ð Þ
1þ 0:06sð Þ3

A0 A1 A2 A3 A4 A5

Areas GP3 1 1.40 1.50 1.52 1.53 1.53

Areas GP3 with controller filter 1 1.52 1.68 1.72 1.73 1.73

Areas GP4 1 5.00 14.50 32.17 60.71 102.8

Areas GP4 with controller filter 1 5.19 15.50 35.14 67.45 115.8
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The calculated areas for the processes (32) without and with the controller filter.
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GMI4GFD4 ¼ 0:36 1þ 3:06sþ 2:69s2ð Þ
1þ 0:116sð Þ3 (38)

The closed-loop responses for the MOMI, DRMO and the proposed DE-MOMI
method, are given in Figures 11 and 12. Again, the disturbance rejection perfor-
mance of the DE-MOMI method is the best (note that the unity-step process input
disturbance signal was applied at the half of experiment time). The level of con-
troller output (u) noise is close to the expected one taken into account that both, the
PID controller (uC) and the disturbance estimator output (dF) noise should be 4-
times higher than the measurement noise at high frequencies.

The disturbance rejection performance of the DE-MOMI method can be addi-
tionally improved by increasing the high-frequency gain KDEn. However, increased
gain is associated with higher controller output noise and decreased closed-loop
stability if the actual process and the process model differ.

The computation of the controller and the DE parameters can be performed
similarly as before on another OctaveOnline Bucket website [26]. The calculation of

Figure 11.
The closed-loop responses on the process GP3, when using the MOMI, DRMO and DE-MOMI method.

Controller parameters KP KI KD

MOMI controller for GP3 2.35 1.88 0.48

DRMO controller for GP3 2.91 3.83 0.48

MOMI controller for GP4 0.84 0.26 0.77

DRMO controller for GP4 0.94 0.32 0.77

Table 4.
The calculated controller parameters for the processes (20) for MOMI (6) and DRMO (9) method, taking into
account the calculated controller filters.

58

Control Based on PID Framework - The Mutual Promotion of Control and Identification…

the parameters can be performed similarly as shown in Figure 8, with the difference
that the name of the script is now Octave_Calc_GC_GF_Noise.m. To calculate the
controller and DE parameters, the user must 1) change the process and noise gain
parameters, 2) press the “Save” button, and then 3) press the “Run” button. The
script will run and the right side of the web screen will display all the calculated
parameters. Note that users can only temporarily change the contents of the script.

6. Comparison to some other methods

In this sub-chapter the proposed method will be compared to some other tuning
methods based on non-parametric description of the process. Besides the already
introduced MOMI and DRMO methods, the DE-MOMI method will be compared
to Åström and Hägglund’s tuning method [1] (denoted as “AH”) and to ADRC
method [27].

The AHmethod [1] is based on the calculation of the maximum sensitivity index
MS, which is the inverse of the smallest open-loop Nyquist curve distance to the
critical point (�1,0i). The method was developed for valuesMS = 1.4 andMS = 2. In
this comparison we will use MS = 2, since it gives better disturbance-rejection
performance. However, even though the process transfer function does not need to
be derived, the method requires the identification of the process steady-state gain
and the inflexion point along with maximum slope of the process output signal
during the step-change of the process input signal. Note that those parameters
usually require manual measurements and cannot be easily performed by using
automatic calculation. The AH method is using the PID controller structure with
adjustable reference-weighting factor b, and by fixing factor c = 0 (Figure 2).

Figure 12.
The closed-loop responses on the process GP4, when using the MOMI, DRMO and DE-MOMI method.
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to Åström and Hägglund’s tuning method [1] (denoted as “AH”) and to ADRC
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performance. However, even though the process transfer function does not need to
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and the inflexion point along with maximum slope of the process output signal
during the step-change of the process input signal. Note that those parameters
usually require manual measurements and cannot be easily performed by using
automatic calculation. The AH method is using the PID controller structure with
adjustable reference-weighting factor b, and by fixing factor c = 0 (Figure 2).
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The ADRC method [27–31] is based on a simple controller with three gains
associated with extended state-observer (ESO), as shown in Figure 13.

The method does not require the process transfer function. However, few user-
defined parameters, like the observer speed, the desired settling time and the main
controller gain KC, should be defined by the user before calculating the rest of
ADRC parameters. As shown in Figure 13, the ADRC method is using control
structure which consists of an extended state observer (ESO) with three gains (β1,
β2 and β3) and three controller gains (KC, KP and KD) [27].

Since ADRC method depends on three user-defined parameters, which, in great
extent, determine the closed-loop performance, we were limited to the set of pro-
cesses tested in [27]. Someone would argue that, by limiting our choice to the
mentioned processes, we are favouring the ADRC method. However, it should be
noted that in [27], the ADRC method was tested on 8 different processes, so the
choice of processes was actually not significantly limited. In this regard, the follow-
ing two processes have been selected:

GP5 ¼ 1
1þ sð Þ 1þ 0:2sð Þ 1þ 0:04sð Þ 1þ 0:008sð Þ

GP6 ¼ e�5s

1þ sð Þ3 (39)

The PID controller parameters for the MOMI, DRMO, DE-MOMI and AH
methods are given in Tables 5 and 6. The ADRC controller parameters are given in
Table 7. The chosen high frequency gains for the PID controller and disturbance
estimator are KPIDn = KDEn = 20 for GP5 and KPIDn = KDEn = 4 for GP6. The higher
gains were chosen for GP5, since the closed-loop tracking and control performance
was substantially improved when using higher gains. Increasing the gains for GP6

above 4 did not significantly improve the performance.
The sampling time for GP5 is chosen as TS = 0.001 s and for GP6 as TS = 0.01 s.
The closed-loop process responses are given in Figures 14 and 15. In both

experiments the unity-step process input disturbance signal was applied at the half
of experiment time.

Figure 13.
The ADRC control structure with the controller gains (up) and the extended state observer (down).
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It can be seen that the proposed DE-MOMI method, when compared to some
other methods, gives quite good responses. The AH method for process GP5 gives
somehow oscillatory response. For the same process, the ADRC method gives
slightly oscillatory response during the reference change (see the process input
signal). While DE_MOMI and MOMI methods clearly give the best tracking
responses on process GP6, all of the methods have similar disturbance-rejection
performance. Only slightly oscillatory response can be observed for ADRC method.

For more objective comparison between the methods, the integral of absolute
error (IAE) measure is used. The IAE value has been measured on tracking response
(unity step-change of the reference r) and on disturbance rejection response (unity
step-change of the process input disturbance d). The results are given in Table 8. It
can be seen that the best values (marked with greyed colour) were obtained with
DE-MOMI method.

The DE-MOMI method, therefore, compares favourably with few other
methods, based on the non-parametric description of the process.

The process closed-loop responses for all the process models tested in this chap-
ter (GP1 to GP6) revealed that the proposed method can significantly improve the
disturbance-rejection performance of the lower-order processes with smaller
delays, while the improvement of the higher-order processes and/or processes with
higher delays is not so significant. Therefore, the application of the method for
lower-order processes with smaller delays might be beneficial in practice.

Process Tuning method KP KI KD TF b c

GP5 MOMI 6.45 5.35 1.108 0.055 1 1

DRMO 9.69 23.71 1.108 0.055 0 0

DE-MOMI 6.45 5.35 1.108 0.055 1 1

AH 21.35 53.05 2.22 0.055 0.24 0

GP6 MOMI 0.53 0.126 0.66 0.165 1 1

DRMO 0.57 0.140 0.66 0.165 0 0

DE-MOMI 0.53 0.126 0.66 0.165 1 1

AH 0.52 0.136 0.52 0.165 0.36 0

Table 5.
The calculated controller parameters for the processes (39) for MOMI, DRMO, DE-MOMI and AH method.

Process KPRM a1m a2m Tdelm TFD KFD

GP5 1 1.205 0.205 0.043 0.018 0.909

GP6 1 2.58 1.84 5.42 0.077 0.159

Table 6.
The calculated disturbance estimator’s parameters for the processes (39) for DE-MOMI method.

Process KC KP KD β1 β2 β3

GP5 1/5 100 20 120 4800 19200

GP6 1/3 0.16 0.8 4.8 7.68 30.72

Table 7.
The calculated ADRC controller parameters for the processes (39).
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The PID controller parameters for the MOMI, DRMO, DE-MOMI and AH
methods are given in Tables 5 and 6. The ADRC controller parameters are given in
Table 7. The chosen high frequency gains for the PID controller and disturbance
estimator are KPIDn = KDEn = 20 for GP5 and KPIDn = KDEn = 4 for GP6. The higher
gains were chosen for GP5, since the closed-loop tracking and control performance
was substantially improved when using higher gains. Increasing the gains for GP6

above 4 did not significantly improve the performance.
The sampling time for GP5 is chosen as TS = 0.001 s and for GP6 as TS = 0.01 s.
The closed-loop process responses are given in Figures 14 and 15. In both

experiments the unity-step process input disturbance signal was applied at the half
of experiment time.

Figure 13.
The ADRC control structure with the controller gains (up) and the extended state observer (down).
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It can be seen that the proposed DE-MOMI method, when compared to some
other methods, gives quite good responses. The AH method for process GP5 gives
somehow oscillatory response. For the same process, the ADRC method gives
slightly oscillatory response during the reference change (see the process input
signal). While DE_MOMI and MOMI methods clearly give the best tracking
responses on process GP6, all of the methods have similar disturbance-rejection
performance. Only slightly oscillatory response can be observed for ADRC method.

For more objective comparison between the methods, the integral of absolute
error (IAE) measure is used. The IAE value has been measured on tracking response
(unity step-change of the reference r) and on disturbance rejection response (unity
step-change of the process input disturbance d). The results are given in Table 8. It
can be seen that the best values (marked with greyed colour) were obtained with
DE-MOMI method.

The DE-MOMI method, therefore, compares favourably with few other
methods, based on the non-parametric description of the process.

The process closed-loop responses for all the process models tested in this chap-
ter (GP1 to GP6) revealed that the proposed method can significantly improve the
disturbance-rejection performance of the lower-order processes with smaller
delays, while the improvement of the higher-order processes and/or processes with
higher delays is not so significant. Therefore, the application of the method for
lower-order processes with smaller delays might be beneficial in practice.

Process Tuning method KP KI KD TF b c

GP5 MOMI 6.45 5.35 1.108 0.055 1 1

DRMO 9.69 23.71 1.108 0.055 0 0

DE-MOMI 6.45 5.35 1.108 0.055 1 1

AH 21.35 53.05 2.22 0.055 0.24 0

GP6 MOMI 0.53 0.126 0.66 0.165 1 1

DRMO 0.57 0.140 0.66 0.165 0 0

DE-MOMI 0.53 0.126 0.66 0.165 1 1

AH 0.52 0.136 0.52 0.165 0.36 0

Table 5.
The calculated controller parameters for the processes (39) for MOMI, DRMO, DE-MOMI and AH method.

Process KPRM a1m a2m Tdelm TFD KFD

GP5 1 1.205 0.205 0.043 0.018 0.909

GP6 1 2.58 1.84 5.42 0.077 0.159

Table 6.
The calculated disturbance estimator’s parameters for the processes (39) for DE-MOMI method.

Process KC KP KD β1 β2 β3

GP5 1/5 100 20 120 4800 19200

GP6 1/3 0.16 0.8 4.8 7.68 30.72

Table 7.
The calculated ADRC controller parameters for the processes (39).
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Figure 14.
The closed-loop responses on the process GP5, when using the MOMI, DRMO and DE-MOMI method.

Figure 15.
The closed-loop responses on the process GP6, when using the MOMI, DRMO and DE-MOMI method.
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7. Conclusions

In the chapter, it was shown that the disturbance rejection performance of the
PID controller can be improved by adding a simple disturbance estimator (DE). The
disturbance estimator consists of the process model and the inverse process model
with DE filter. The advantage of the proposed approach is that the DE parameters
can also be obtained directly from the nonparametric process data (time response of
the process) without prior process identification. The same is true for the PID
controller parameters, which are obtained using the MOMI tuning method. Of
course, all PID and DE parameters can also be calculated from the process transfer
function if it is known.

The proposed solution, called DE-MOMI method, has been tested on several
different process models. It was shown that the control performance of the DE-
MOMI method was significantly improved compared to similar MOMI and DRMO
methods, especially for lower order processes with smaller time delays. In contrast,
the improvements were noticeable but not as significant for higher order processes
or processes with larger time delays. The additional advantage of the proposed
method was that the tracking performance remained similar to that of the MOMI
method.

The controller noise was controlled by the high frequency noise factors KPIDn
and KDEn. The advantage of using these factors is that they can be easily under-
stood and defined by the user.

The DE-MOMI method was also compared with some other non-parametric
disturbance-rejection methods including the ADRC method. The results showed
that the DE-MOMI method has either comparable or better control and tracking
performance than the other tested methods. Nevertheless, it should be mentioned
that the ADRC method uses a somewhat simpler control structure.

Future research activities could therefore focus on combining the advantages of
the DE-MOMI and ADRC methods.
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Process experiment DE-MOMI MOMI DRMO AH ADRC
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Chapter 4

Adjustment of the PID Gains
Vector Due to Parametric
Variations in the Plant Model in
Terms of Internal Product
José Pinheiro de Moura and João Viana da Fonseca Neto

Abstract

The tuning of the gains of a controller with proportional-integral-derivative
(PID) actions has been prevalent in the industry. The adjustment of these gains in
PID controllers is often determined by classical methods, such as Ziegler-Nichols,
and trial and error. However, these methods fail to deliver satisfactory performance
and often do not meet specific project demands because of the inherent complexity
of industrial processes, such as plant parameter variations. To solve the tuning
problem in highly complex industrial processes, a controller adjustment method
based on the internal product of PID terms is proposed, and a propagation matrix
(PM) is generated by the numerator coefficients of the plant transfer function (TF).
In the proposed method, each term of the PID controller is influenced by each of the
numerator and the denominator coefficients. Mathematical models of practical
plants, such as unloading and resumption of bulk solids by car dumpers and bucket
wheel resumption, were employed to evaluate the proposed method. The obtained
results demonstrated an assertive improvement in the adjustment gains from PID
actions, thereby validating it as a promising alternative to conventional methods.

Keywords: parameter variations, industrial processes, internal product,
propagation matrix, PID actions

1. Introduction

The tuning of the parameters of PID controllers is challenging and requires
expertise to achieve superior performance [1]. PID controllers are extensively used
in the industries. However, the controllers are often implemented without a deriv-
ative action because of the highly sensitive tuning of parameters, which affects the
efficiency of the controller [2]. This study presents a methodology for tuning three
terms of the PID controller simultaneously to ensure overall efficiency of the
controller [3].

The advantage of the PID controller tuning methodology, which is based on the
internal product of the PID terms that generates the propagation matrix (PM), is
that a vector of the specified parameters of a characteristic polynomial can be
projected, and an error vector is obtained on comparison with the parameters of the
characteristic plant polynomial [4, 5]. The method minimizes the error from the
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of industrial processes, such as plant parameter variations. To solve the tuning
problem in highly complex industrial processes, a controller adjustment method
based on the internal product of PID terms is proposed, and a propagation matrix
(PM) is generated by the numerator coefficients of the plant transfer function (TF).
In the proposed method, each term of the PID controller is influenced by each of the
numerator and the denominator coefficients. Mathematical models of practical
plants, such as unloading and resumption of bulk solids by car dumpers and bucket
wheel resumption, were employed to evaluate the proposed method. The obtained
results demonstrated an assertive improvement in the adjustment gains from PID
actions, thereby validating it as a promising alternative to conventional methods.

Keywords: parameter variations, industrial processes, internal product,
propagation matrix, PID actions

1. Introduction

The tuning of the parameters of PID controllers is challenging and requires
expertise to achieve superior performance [1]. PID controllers are extensively used
in the industries. However, the controllers are often implemented without a deriv-
ative action because of the highly sensitive tuning of parameters, which affects the
efficiency of the controller [2]. This study presents a methodology for tuning three
terms of the PID controller simultaneously to ensure overall efficiency of the
controller [3].

The advantage of the PID controller tuning methodology, which is based on the
internal product of the PID terms that generates the propagation matrix (PM), is
that a vector of the specified parameters of a characteristic polynomial can be
projected, and an error vector is obtained on comparison with the parameters of the
characteristic plant polynomial [4, 5]. The method minimizes the error from the
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specified parameters, thereby facilitating the design of a high-performance PID
controller. The method also enables the allocation of the poles by direct replacement
using specified parameters, thereby ensuring the desired operating point of the
control system.

This chapter presents a formulation proposal to resolve the PID controller tuning
problem. The proposal is based on the dot product of the gain vector parameters of
the controller and the rows of the propagation matrix. The dot product represents
the changes in the behavior of the plant that are determined by the parametric
variations in the coefficients of the TF polynomial characteristic.

The following topics and proposal development are presented in the remainder
of this chapter. In Section 2, a preliminary on the transfer functions of the plant and
PID controller are presented. In terms of internal product, the main properties of
PID controllers and the development of proposed method are presented in Section
3. Taking into account three industrial plants of the mining sector, computational
evaluation experiments of the PID tuning proposal are presented in Section 4.
Finally, the conclusion of the work is presented in Section 5.

2. Preliminaries

Adjusting the PID controller gain parameters is not a trivial task and requires in-
depth knowledge from the experts. In this work, the problem of tuning PID con-
trollers is based on original studies regarding polynomial compensators and prob-
lems strongly related to the specification of parameters to meet operational
constraints in plant dynamics, presented as a particular form of compensators in the
s domain [6, 7].

2.1 Mathematical model of the plant in terms of transfer function

The plant’s dynamic system is represented by ordinary differential equations
(ODE), described by TFs in the s domain (Laplace transform). The ODE concept in
terms of TFs established in this chapter is in accordance with the block diagram
shown in Figure 1, where the closed loop system relates the input and output
signals: R sð Þ is reference input, W sð Þ is disturbance signal and V sð Þ is noise signal,
Y sð Þ is plant output and Ym sð Þ is plant output measured by the sensor, U(s) and E(s)
are the control effort and closed loop error, respectively, that are internal control
system performance variables.

Applying the Laplace transforms to the control elements of Figure 1, the gener-
alized TF with a polynomial structure in the s domain is obtained that is given by

Figure 1.
Canonical block diagram of the closed-loop control system.
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Gg sð Þ ¼ bosm þ b1sm�1 þ…þ bm�1sþ bm
aosn þ a1sn�1 þ…þ an�1 þ an

, (1)

where Gg sð Þ is the general TF of the control system blocks diagram, related to
Figure 1, n is the order of the plant model and the number of poles that are entered
into the system and m is the number of zeros, which is associated with the PID
actions of the controller. As an imposition of the controller gains values, the coeffi-
cients ai and bk are the adjustable parameters to compensate for the parametric
variations of the plant. In the proposed formulation, the bk coefficients are kept
constant and adjustment are made only to the ai parameters.

2.2 PID controller model

The controller model associated with the TF given in Eq. (1) is customized to
perform the actions of the controller’s PID terms, where n ¼ 1, m ¼ 2, a0 ¼ 1, the
PID actions are represented by the transfer function that is given by

CKpid sð Þ ¼ KDs2 þ KPsþ KI

s
, (2)

where CKpid sð Þ is the controller model associated with the TF given in Eq. (1).
Adjustments of parameters that meet the project specifications, can be found in

a large number of scientific and technical publications in controle specialized books,
conferences and high quality journals [8]. The importance of developing methods
for adjusting parameters of PID controllers and systematizing applications in
industrial processes of real-world plants, has the objective of meeting the project
specifications contained in technological advances, in order to guarantee the opti-
mal adjustment of the parameters of the PID term of the controller [9, 10]. The
challenge of tuning with optimal performance of the parameters of a PID controller,
started around 1920 and continues to the present days [11–13].

The parameters of the PID controllers are adjusted to adapt to the tuning needs
in a combination of proportionality associated with the proportional action, lead
associated with the derivative action, and delay associated with the integral action
of the error signal. However, there are still many problems that can be solved with
computational intelligence-based algorithms. The purpose of this work is to con-
tribute with a method of tuning PID controllers, which can support the develop-
ment of electronic devices that contribute to technological advancement and the
evolution of industry 4.0 with logical planning units, for optimal, robust decision-
making and adaptability [14, 15]. Such units must be based on digital control
technologies and embedded systems [16] in real time [17], to be reliably deployed in
real-world systems [18].

To meet the demands of design specitifications, the proposed solution contrib-
utes to the evolution in approaches of optimal and adaptive control, providing the
optimization of the figures of merit [19], ensuring a solution with satisfactory
performance, meeting the requirements specified in projects, in a way that mini-
mizes efforts of computational cost and control.

TF is specified in the factored form, that is, by the roots of the numerator and
denominator polynomials associated with Eq. (1). TF in the factored form is
represented in terms of product, where the designer inserts the specified or desired
parameters. TF in the form of a product is given by

Gg sð Þ ¼ K
Qm

k¼1 s� szkð ÞQn
i¼1 s� spi
� � , (3)
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where spi ¼ ωdi are the poles and szk ¼ σkωdk are the zeros of the dynamic
system. The poles and zeros of the system are represented by the pair (ζ, ωn), the
first component is the damping factor and the second is the undamped natural

frequency, σi ¼ ζiωni, and ωdi ¼ ωni

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ζ2i

q
.

3. PID adjustment problem

The PID controller adjustment problem is formulated based on the parametric
difference between the specified coefficients and the original coefficients of the TF
denominator polynomial. This formulation is based on the references [20, 21].
Where the authors present the development of models for optimized online opti-
mization that is based on computational intelligence approaches.

The formulation of the proposed PID controller adjustment problem is presented
in this section and is illustrated by the block diagram of Figure 1. Thus, in the
context of the proposal, the performance matrix of the control system provides the
means to determine the values of the parameters of the gain vector of the PID
controller Kpid.

The models are represented in the form of internal produc <,>, which is a
notation widely used in this text as the product of two vectors (internal product)
and the models are called internal product models of the plant. The internal product
is the appropriate form for analysis, allowing the designer to observe the impact of
the earnings vector parameters Kpid (KD, KP and KI), in the output of the dynamic
system associated with the polynomial coefficients of the TF denominator.

The PID controller model, in terms of the ODE equations and the Laplace
transform, obtains the TF of the PID controller in terms of the dot product, which is
given by

CKpid sð Þ ¼ Kpid, spid
� �

s
, (4)

Kpid ¼ KD KP KI½ �T, (5)

and spid is vector-powered in s of the PID gains associated with transfer function
numerator that is given by

spid ¼ s2 s1 s0
� �T

: (6)

3.1 PID model in the form of internal product

Inserting the characteristics of the plant, through the values of the coefficients of
the polynomials of the numerator and the denominator (poles and zeros), associ-
ated with the mathematical models in terms of TFs given in Eq. (1) in internal
product form �h i and in Eq. (3) in generic form, which is given by

Gp sð Þ ¼ K
bk, smh i

sn þ ai, sn�1h i , (7)

where Gp sð Þ is the TF in the form of internal product and the coefficients ai with
i ¼ 1,…, n and bk with k ¼ 0,…,m are a combination of the spi poles and szk zeros.
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3.2 Open-loop transfer function

The open-loop FT or direct branch of the control system is given by

GOL
p sð Þ ¼ K

Kpid, spid
� �

bk, smh i
snþ1 þ s ai, sn�1h i , (8)

where GOL
p sð Þ is the TF of the plant in the open loop and K the gain of the plant

and n>m.
The structure of TF is determined by the relationship nþ 1≥ 2þm. For nþ 1 ¼

2þm, the system is proper and for nþ 1< 2þm the system is strictly proper,
thereby establishing a general relationship between the order of the PID controller
and the order of plant dynamics. This relationship ensures that the system structure
is adequate, not allowing the system to present a nonpractical structure. In this way,
it establishes that the relationship of the closed loop system is given by

ncl ¼ mPID þ n, (9)

where mPID can only assume 0 (zero) or 1 (one) values. The PID is observed to
impose a proper TF, if the closed-loop system is of order nþ 1 and the numerator is
of order mPID þm

� �
.

According to the block diagram of Figure 1, the TFs Y sð Þ=R sð Þ, W sð Þ ¼ 0, and
V sð Þ ¼ 0 are given by

GCL
p sð Þ ¼ CKpid sð ÞG sð Þ

1þ CKpid sð ÞG sð ÞH sð Þ : (10)

3.3 Propagation of PID terms x bk coefficients

The development of the polynomials of the numerator (zeros) and the denomi-
nator (poles) consists of the propagation of the gain vector Kpid of the controller by
the numerator coefficients (bk) associated with the coefficients of the denominated
(ai) TF of the plant. The equationing of the problem is given in the form of an
internal product that weights the coefficients of the polynomial of zeros in the
closed-loop and additive to the dynamics of the closed-loop transfer function.

3.3.1 Polynomial of zeros

When replacing Eqs. (1) and (2) in Eq. (10), the numerator polynomial of the
closed-loop TF is obtained, which is given by

NCL sð Þ ¼ CKpid sð ÞG sð Þ: (11)

Expanding and ordering Eq. (11), one obtains

NCL sð Þ ¼   b0KD þ b�1KP þ b�2KIð Þsmþmpid

þ b1KD þ b0KP þ b�1KIð Þsmþmpid�1

þ b2KD þ b1KP þ b0KIð Þsm

þ b3KD þ b2KP þ b1KIð Þsm�1

: (12)

71

Adjustment of the PID Gains Vector Due to Parametric Variations in the Plant Model…
DOI: http://dx.doi.org/10.5772/intechopen.95051



where spi ¼ ωdi are the poles and szk ¼ σkωdk are the zeros of the dynamic
system. The poles and zeros of the system are represented by the pair (ζ, ωn), the
first component is the damping factor and the second is the undamped natural

frequency, σi ¼ ζiωni, and ωdi ¼ ωni

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ζ2i

q
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The open-loop FT or direct branch of the control system is given by

GOL
p sð Þ ¼ K

Kpid, spid
� �

bk, smh i
snþ1 þ s ai, sn�1h i , (8)

where GOL
p sð Þ is the TF of the plant in the open loop and K the gain of the plant

and n>m.
The structure of TF is determined by the relationship nþ 1≥ 2þm. For nþ 1 ¼

2þm, the system is proper and for nþ 1< 2þm the system is strictly proper,
thereby establishing a general relationship between the order of the PID controller
and the order of plant dynamics. This relationship ensures that the system structure
is adequate, not allowing the system to present a nonpractical structure. In this way,
it establishes that the relationship of the closed loop system is given by

ncl ¼ mPID þ n, (9)

where mPID can only assume 0 (zero) or 1 (one) values. The PID is observed to
impose a proper TF, if the closed-loop system is of order nþ 1 and the numerator is
of order mPID þm

� �
.

According to the block diagram of Figure 1, the TFs Y sð Þ=R sð Þ, W sð Þ ¼ 0, and
V sð Þ ¼ 0 are given by

GCL
p sð Þ ¼ CKpid sð ÞG sð Þ

1þ CKpid sð ÞG sð ÞH sð Þ : (10)

3.3 Propagation of PID terms x bk coefficients

The development of the polynomials of the numerator (zeros) and the denomi-
nator (poles) consists of the propagation of the gain vector Kpid of the controller by
the numerator coefficients (bk) associated with the coefficients of the denominated
(ai) TF of the plant. The equationing of the problem is given in the form of an
internal product that weights the coefficients of the polynomial of zeros in the
closed-loop and additive to the dynamics of the closed-loop transfer function.

3.3.1 Polynomial of zeros

When replacing Eqs. (1) and (2) in Eq. (10), the numerator polynomial of the
closed-loop TF is obtained, which is given by

NCL sð Þ ¼ CKpid sð ÞG sð Þ: (11)

Expanding and ordering Eq. (11), one obtains

NCL sð Þ ¼   b0KD þ b�1KP þ b�2KIð Þsmþmpid

þ b1KD þ b0KP þ b�1KIð Þsmþmpid�1

þ b2KD þ b1KP þ b0KIð Þsm

þ b3KD þ b2KP þ b1KIð Þsm�1

: (12)

71

Adjustment of the PID Gains Vector Due to Parametric Variations in the Plant Model…
DOI: http://dx.doi.org/10.5772/intechopen.95051



…………………………:

þ bmKD þ bm�1KP þ bm�2KIð Þs2

þ bmþ1KD þ bmKP þ bm�1KIð Þs1

þ bmþ2KD þ bmþ1KP þ bmKIð Þs0

:

In terms of inner product, the general polynomial form of the closed-loop
numerator polynomial is given by

NCL sð Þ ¼
Xmcl

i¼0

Kpid, bk�1
� �

smcl�i, (13)

wheremcl ¼ mþmpid and vector bk of the polynomial of zeros of the closed-loop
system is given by

bk ¼ bk bk�1 bk�2½ �: (14)

In similar way Eq. (13), one obtains the closed-loop denominator polynomial is
given by

DCL sð Þ ¼ snþnD�pid

þ
XnþnD�pid�1

i¼0

bkKD þ bk�1KP þ bk�2KI þ aiþ1ð Þ,
(15)

where nD�pid ¼ 0 or 1. When nD�pid ¼ 0, the PID controller structure have the
terms derivative and proportional. When nD�pid ¼ 1, the structure of the PID
controller has an integrator term that increases the order of the system by 1, starting
with the three terms: proportional, derivative and integrative [21]. In this work,
when nD�pid ¼ 0, the proposal is to specify an additional asi coefficient., to ensure
that the PID controller has the three terms.

3.3.2 Characteristic polynomial

The general form of the closed-loop denominator polynomial is given by

PCL sð Þ ¼ sncl þ
Xncl�1

i¼1

ai þ Kpid, bk�1
� �� �

sncl�i, (16)

where PCL sð Þ is the general form of the characteristic polynomial of the
closed-loop plant and ncl is the order of referred polynomial.

the characteristic closed-loop polynomial for unit feedback (H sð Þ ¼ 1) is
obtained in a similar way and given by

PCL
p sð Þ ¼ 1þ CKpid sð ÞG sð Þ: (17)

PCL
p sð Þ is the characteristic polynomial of the closed loop. The representation of

the problem in the form of an internal product that relates the coefficients of the
zero polynomial with the coefficients of the closed plant dynamics is the basis for
obtaining the characteristic closed-loop polynomial.
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3.4 Proposed method

The problem is formulated based on the propagation matrix generated from the
dot product between the terms of the earnings vector Kpid with the coefficients of
the numerator bk associated with the coefficients of the denominator ai of the TF of
plant. The propagation matrix product associated with the TF numerator coeffi-
cients of the plant, give rise to a new characteristic polynomial based on new
specified operating points, which are imposed by new zeros and new poles.

3.4.1 Propagation matrix of PID design

The design is based on the propagation matrix, allowing the designer to specify
new points of operation that improve the performance of the controller acting on
the plant dynamics, where changes in the order and coefficients of the characteristic
polynomial can be observed through the internal product of the zero and gain
coefficients of PID controllers.

The problem is formulated based on the propagation matrix B, which is a
consequence of the interaction between the parameters of the gain vector Kpid

(KD, KP, KI) with the coefficients of the plant TF numerator, this matrix is
represented by

B ¼

b0 0 0

b1 b0 0

b2 b1 b0
b3 b2 b1
⋯ ⋯ ⋯
bm bm�1 bm�2

0 bm bm�1

0 0 bm

2
66666666666664

3
77777777777775

: (18)

One case notice in [20] that the diagonals are not repeated, and they vary
according to the order n of the system’s characteristic polynomial. The propagation
of the gains is weighted by the coefficients of the numerator polynomial. The
closed-loop TF of the plant is given in terms of the product of the gains KD, KP, and
KI with the coefficients bk, bk�1, and bk�2 of the closed-loop TF.

The law of formation of the propagation Matrix (18) is ruled by mþ 2 rows and
3 columns. The rows represent the order of the system, starting with the propaga-
tion in the dynamics of order sncl and ending in the dynamics of order s0 zero. The
columns represent the gains of the controller in the poles and zeros of the plant
dynamics.

3.4.2 Proposed characteristic polynomial

The proposed characteristic polynomial based on propagation matrix of PID
controller gains idea is presented. From the system of equations that represents the
actions of the PID controller in the plant dynamics, the formulation of the adjust-
ment problem is established from the perspective of the inner product of the gains
and the coefficients of the polynomials of the zeros of the closed-loop TF. In the
case of the characteristic polynomial, the inner product is added to its coefficients.
This way, the mechanism of gain adjustment is represented for allocations of zeros
or poles.
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when nD�pid ¼ 0, the proposal is to specify an additional asi coefficient., to ensure
that the PID controller has the three terms.

3.3.2 Characteristic polynomial

The general form of the closed-loop denominator polynomial is given by

PCL sð Þ ¼ sncl þ
Xncl�1

i¼1

ai þ Kpid, bk�1
� �� �

sncl�i, (16)

where PCL sð Þ is the general form of the characteristic polynomial of the
closed-loop plant and ncl is the order of referred polynomial.

the characteristic closed-loop polynomial for unit feedback (H sð Þ ¼ 1) is
obtained in a similar way and given by

PCL
p sð Þ ¼ 1þ CKpid sð ÞG sð Þ: (17)

PCL
p sð Þ is the characteristic polynomial of the closed loop. The representation of

the problem in the form of an internal product that relates the coefficients of the
zero polynomial with the coefficients of the closed plant dynamics is the basis for
obtaining the characteristic closed-loop polynomial.
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3.4 Proposed method

The problem is formulated based on the propagation matrix generated from the
dot product between the terms of the earnings vector Kpid with the coefficients of
the numerator bk associated with the coefficients of the denominator ai of the TF of
plant. The propagation matrix product associated with the TF numerator coeffi-
cients of the plant, give rise to a new characteristic polynomial based on new
specified operating points, which are imposed by new zeros and new poles.

3.4.1 Propagation matrix of PID design

The design is based on the propagation matrix, allowing the designer to specify
new points of operation that improve the performance of the controller acting on
the plant dynamics, where changes in the order and coefficients of the characteristic
polynomial can be observed through the internal product of the zero and gain
coefficients of PID controllers.

The problem is formulated based on the propagation matrix B, which is a
consequence of the interaction between the parameters of the gain vector Kpid

(KD, KP, KI) with the coefficients of the plant TF numerator, this matrix is
represented by

B ¼

b0 0 0

b1 b0 0

b2 b1 b0
b3 b2 b1
⋯ ⋯ ⋯
bm bm�1 bm�2

0 bm bm�1

0 0 bm

2
66666666666664

3
77777777777775

: (18)

One case notice in [20] that the diagonals are not repeated, and they vary
according to the order n of the system’s characteristic polynomial. The propagation
of the gains is weighted by the coefficients of the numerator polynomial. The
closed-loop TF of the plant is given in terms of the product of the gains KD, KP, and
KI with the coefficients bk, bk�1, and bk�2 of the closed-loop TF.

The law of formation of the propagation Matrix (18) is ruled by mþ 2 rows and
3 columns. The rows represent the order of the system, starting with the propaga-
tion in the dynamics of order sncl and ending in the dynamics of order s0 zero. The
columns represent the gains of the controller in the poles and zeros of the plant
dynamics.

3.4.2 Proposed characteristic polynomial

The proposed characteristic polynomial based on propagation matrix of PID
controller gains idea is presented. From the system of equations that represents the
actions of the PID controller in the plant dynamics, the formulation of the adjust-
ment problem is established from the perspective of the inner product of the gains
and the coefficients of the polynomials of the zeros of the closed-loop TF. In the
case of the characteristic polynomial, the inner product is added to its coefficients.
This way, the mechanism of gain adjustment is represented for allocations of zeros
or poles.
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From Eq. (17), the equation system that has an unknown vector Kpid and design
specifications asi, i ¼ 1, 2,…, nþ 1 is assembled. In scalar form, this system of
equations is represented by

ai þ Kpid, bk
� � ¼ asi ) Kpid, bk

� � ¼ asi � ai ) Kpid, bk
� � ¼ aei : (19)

where bk vector is assembled with the rows of the B matrix.
Expanding the scalar representation of Eq. (19), the system of equations to be

solved is given by

Kpid, bk
� � ¼ aei )

KDb0 þ KP0 þ KI0 ¼ ae1
KDb1 þ KPb0 þ KI0 ¼ ae2
KDb2 þ KPb1 þ KIb0 ¼ ae3
KDbm þ KPbm�1 þ KIbm�2 ¼ ae4
KDb0 þ KPbm þ KIbm�1 ¼ ae5
⋮ þ ⋮ þ ⋮ ¼ ⋮

KD0 þ KP0 þ KIb0 ¼ aen

8>>>>>>>>>>><
>>>>>>>>>>>:

(20)

The formulation of the problem presented in Eq. (19) and expanded in Eq. (20)
is the starting point for the development of forms of parametric variation problems
of TFs, as well as, for the establishment of operational points.

To determine the numerical values of the parameters Kpid, the following rules
are presented: rule-1) the B matrix is assembled via Eq. (18), where bk is the
coefficients of TF numerator polynomial; rule-2) the new asi parameters of the
characteristic polynomial are specified; rule-3) the dot product of the parameters of
the gain vector Kpid is made with the rows of the matrix B, associated with the
original ai parameters of the characteristic polynomial and with the specified asi
parameters; rule-4) the system of equations given in Eq. (20) and rule-5 the system
of equations given in rule-4 (Eq. (20)) is solved to determine the numerical values
of the parameters of the gains vector Kpid.

4. Experiments

The experimental results are evaluated in three plants with mathematical models
in terms of TF obtained with real data, being: Plant I of second order, with a zero;
Third order plan II, with two zeros and fourth order plant III, with three zeros.

4.1 Plant I

Plant I, is a car dumper, which is used to unload solids in bulk, this equipment
has the capacity to move up to 4,000 tons per hour (t/h). The general mathematical
model of Plant I in TF is given by

GG
PI

sð Þ ¼ b0
s2 þ a1sþ a2

, (21)

where, GG
PI

sð Þ is the TF of Plant I, it is a second order plant with zero at infinity.
The product of the TF numerator of Plant I given in Eq. (21) associated with the

TF numerator of the controller given in Eq. (2) is given by
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CKpid

PI
sð ÞGG

PI
sð Þ

h i
N
¼ KDs2 þ KPsþ KI
� �

b0 ¼ KDb0s2 þ KPb0sþ KIb0: (22)

The product of the TF denominator of Plant I given in Eq. (21) associated with
the TF denominator of the controller given in Eq. (2) is given by

CKpid

PI
sð ÞGPI sð Þ

h i
D
¼ s s2 þ a1s2 þ a2s
� � ¼ s3 þ a1s2 þ a2s: (23)

The characteristic polynomial of Plant I is given by

PI sð Þ ¼ s3 þ a1 þ KDb0ð Þs2 þ a2 þ KPb0ð Þsþ KIb0: (24)

System equations of Plant I related to Eq. (19) in the form Ax ¼ b is given by

Kpid, bi
� � ¼ aei )

a1 þ KDb0 ¼ as1;

a2 þ KDb0 ¼ as2;

a3 þ KDb0 ¼ as3;

8>><
>>:

)
KDb0 ¼ as1 � a1;

KPb0 ¼ as2 � a2;

KIb0 ¼ as3 � a3;

8>><
>>:

)
1ÞKDb0 ¼ ae1;

2ÞKPb0 ¼ ae2;

3ÞKIb0 ¼ ae3:

8>><
>>:

(25)

Placing the systems of equations given in (25) in matrix form, we have

Kpid,B
� � ¼ aei )

b0 0 0

0 b0 0

0 0 b0

2
64

3
75�

KD

KP

KI

2
64

3
75 ¼

ae1
ae2
ae3

2
64

3
75: (26)

The transfer function of Plant I related to Eq. (21) is given by

GPI sð Þ ¼
0:438

1s2 þ 0:0861sþ 0:0421s
: (27)

The ai coefficients of the transfer function of the Plant - I related to Eq. (27) are
given by

ai )
a1 ¼ 0:0861;

a2 ¼ 0:0421;

a3 ¼ 0:

8><
>:

(28)

The specified coefficients asi of Plant I are given by

asi )
as1 ¼ 0:8604;

as2 ¼ 0:421;

as3 ¼ 0:0641:

8><
>:

(29)
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From Eq. (17), the equation system that has an unknown vector Kpid and design
specifications asi, i ¼ 1, 2,…, nþ 1 is assembled. In scalar form, this system of
equations is represented by

ai þ Kpid, bk
� � ¼ asi ) Kpid, bk

� � ¼ asi � ai ) Kpid, bk
� � ¼ aei : (19)

where bk vector is assembled with the rows of the B matrix.
Expanding the scalar representation of Eq. (19), the system of equations to be

solved is given by

Kpid, bk
� � ¼ aei )

KDb0 þ KP0 þ KI0 ¼ ae1
KDb1 þ KPb0 þ KI0 ¼ ae2
KDb2 þ KPb1 þ KIb0 ¼ ae3
KDbm þ KPbm�1 þ KIbm�2 ¼ ae4
KDb0 þ KPbm þ KIbm�1 ¼ ae5
⋮ þ ⋮ þ ⋮ ¼ ⋮

KD0 þ KP0 þ KIb0 ¼ aen

8>>>>>>>>>>><
>>>>>>>>>>>:

(20)

The formulation of the problem presented in Eq. (19) and expanded in Eq. (20)
is the starting point for the development of forms of parametric variation problems
of TFs, as well as, for the establishment of operational points.

To determine the numerical values of the parameters Kpid, the following rules
are presented: rule-1) the B matrix is assembled via Eq. (18), where bk is the
coefficients of TF numerator polynomial; rule-2) the new asi parameters of the
characteristic polynomial are specified; rule-3) the dot product of the parameters of
the gain vector Kpid is made with the rows of the matrix B, associated with the
original ai parameters of the characteristic polynomial and with the specified asi
parameters; rule-4) the system of equations given in Eq. (20) and rule-5 the system
of equations given in rule-4 (Eq. (20)) is solved to determine the numerical values
of the parameters of the gains vector Kpid.

4. Experiments

The experimental results are evaluated in three plants with mathematical models
in terms of TF obtained with real data, being: Plant I of second order, with a zero;
Third order plan II, with two zeros and fourth order plant III, with three zeros.

4.1 Plant I

Plant I, is a car dumper, which is used to unload solids in bulk, this equipment
has the capacity to move up to 4,000 tons per hour (t/h). The general mathematical
model of Plant I in TF is given by

GG
PI

sð Þ ¼ b0
s2 þ a1sþ a2

, (21)

where, GG
PI

sð Þ is the TF of Plant I, it is a second order plant with zero at infinity.
The product of the TF numerator of Plant I given in Eq. (21) associated with the

TF numerator of the controller given in Eq. (2) is given by
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CKpid

PI
sð ÞGG

PI
sð Þ

h i
N
¼ KDs2 þ KPsþ KI
� �

b0 ¼ KDb0s2 þ KPb0sþ KIb0: (22)

The product of the TF denominator of Plant I given in Eq. (21) associated with
the TF denominator of the controller given in Eq. (2) is given by

CKpid

PI
sð ÞGPI sð Þ

h i
D
¼ s s2 þ a1s2 þ a2s
� � ¼ s3 þ a1s2 þ a2s: (23)

The characteristic polynomial of Plant I is given by

PI sð Þ ¼ s3 þ a1 þ KDb0ð Þs2 þ a2 þ KPb0ð Þsþ KIb0: (24)

System equations of Plant I related to Eq. (19) in the form Ax ¼ b is given by

Kpid, bi
� � ¼ aei )

a1 þ KDb0 ¼ as1;

a2 þ KDb0 ¼ as2;

a3 þ KDb0 ¼ as3;

8>><
>>:

)
KDb0 ¼ as1 � a1;

KPb0 ¼ as2 � a2;

KIb0 ¼ as3 � a3;

8>><
>>:

)
1ÞKDb0 ¼ ae1;

2ÞKPb0 ¼ ae2;

3ÞKIb0 ¼ ae3:

8>><
>>:

(25)

Placing the systems of equations given in (25) in matrix form, we have

Kpid,B
� � ¼ aei )

b0 0 0

0 b0 0

0 0 b0

2
64

3
75�

KD

KP

KI

2
64

3
75 ¼

ae1
ae2
ae3

2
64

3
75: (26)

The transfer function of Plant I related to Eq. (21) is given by

GPI sð Þ ¼
0:438

1s2 þ 0:0861sþ 0:0421s
: (27)

The ai coefficients of the transfer function of the Plant - I related to Eq. (27) are
given by

ai )
a1 ¼ 0:0861;

a2 ¼ 0:0421;

a3 ¼ 0:

8><
>:

(28)

The specified coefficients asi of Plant I are given by

asi )
as1 ¼ 0:8604;

as2 ¼ 0:421;

as3 ¼ 0:0641:

8><
>:

(29)
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The error calculation aei for Plant I associated with the coefficients asi given in
(29) and with the coefficients ai given in (28) is given by

aei )
as1 � a1 ¼ ae1 ¼ 0:8604� 0:0861 ¼ 0:7743;

as2 � a2 ¼ ae2 ¼ 0:421� 0:0421 ¼ 0:3789;

as3 � a3 ¼ ae3 ¼ 0:0641� 0 ¼ 0:0641:

8><
>:

(30)

The calculation of the Kpid gains vector of Plant I, is done by replacing the
numerical values of Eq. (27) in the system of equations given in (25) and (26), is
given by.

0:438 0 0

0 0:438 0

0 0 0:438

2
64

3
75�

KD

KP

KI

2
64

3
75 ¼

0:7743

0:3789

0:0641

2
64

3
75 : (31)

The Plant I given in Eq. (21) related to Eq. (21) has only the coefficient b0, with
that, the system of equations generated, related to the system of equations given in
(25), has three equations and three unknowns.

Kpid )
iÞ 0:438KD ¼ 0:7749 ) KD ¼ 0:7749=0:431 ) KD ¼ 1:78;

iiÞ 0:438KP ¼ 0:3789 ) KP ¼ 0:3789=0:431 ) KP ¼ 0:87;

iiiÞ 0:438KI ¼ 0:0641 ) KI ¼ 0:0641=0:438 ) KI ¼ 0:15:

8><
>:

(32)

Solving the system of equations given in (32), you can start with any of the
equations to find the numerical values of KD, KP and KI, since they are indepen-
dent. With the numerical values of the earnings KD, KP and KI, it replaces in the
simulator developed in the MATLAB/SIMULINK software to monitor the perfor-
mance of the proposed method.

Figure 2 shows the performance of the PID-Specified controller, which has the

transfer function parameters specified by the designer and the Kpid
Specified gain vector

determined by the internal product of the vector of gains with the propagation
matrix in purchase with the controller with the gains determined by the second
method of ZN.

4.2 Plant II

Plant II, is a solid bulk reclaimer, which is used to recover bulk for ship loading,
this equipment has the capacity to move up to 8,000 tons per hour (t/h).

GPII sð Þ ¼
b1sþ b0

s3 þ a1s2 þ a2sþ a3
, (33)

where GG
PII

sð Þ is the TF of Plant II, it is a third order plant with zero at infinity.
The product of the TF numerator of Plant II given in Eq. (33) associated with the

TF numerator of the controller given in Eq. (2) is given by

Cpid
PII

sð ÞGPII sð Þ
h i

N
¼ KDs2 þ KPsþ KI
� �

b1 þ b0ð Þ
¼ KDb1s3 þ KDb0 þ KIb1ð Þs2 þ KIb0:

(34)

The product of the TF denominator of Plant II given in Eq. (33) associated with
the TF denominator of the controller given in Eq. (2) is given by
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Cpid
PII

sð ÞGPII sð Þ
h i

D
¼ s s3 þ a1s2 þ a2sþ a3
� � ¼ s4 þ a1s3 þ a2s2 þ a3s: (35)

The characteristic polynomial of Plant II is given by

PPII sð Þ ¼ s4 þ a1 þ KDb1ð Þs3
þ a2 þ KDb0 þ KPb1ð Þs2

þ ða3 þ KPb0 þ KIb1ð Þs
þ KIb0:

(36)

System equations of Plant II related to Eq. (19) in the form Ax ¼ b is given by

Kpid, bi
� � ¼ aei )

a1 þ KDb1 ¼ as1;

a2 þ KDb0 þ KPb1 ¼ as2;

a3 þ KPb0 þ KIb1 ¼ as3;

a4 þ KIb0 ¼ as4;

8>>>>><
>>>>>:

)

KDb1 ¼ as1 � a1;

KDb0 þ KPb1 ¼ as2 � a2;

KPb0 þ KIb1 ¼ as3 � a3;

KIb0 ¼ as4 � a4;

8>>>>><
>>>>>:

)

1ÞKDb1 ¼ ae1;

2ÞKDb0 þ KPb1 ¼ ae2;

3ÞKPb0 þ KIb1 ¼ ae3;

4ÞKIb0 ¼ ae4:

8>>>>><
>>>>>:

(37)

Figure 2.
Plant I - PID-ZN x PID-specified.
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The error calculation aei for Plant I associated with the coefficients asi given in
(29) and with the coefficients ai given in (28) is given by

aei )
as1 � a1 ¼ ae1 ¼ 0:8604� 0:0861 ¼ 0:7743;

as2 � a2 ¼ ae2 ¼ 0:421� 0:0421 ¼ 0:3789;

as3 � a3 ¼ ae3 ¼ 0:0641� 0 ¼ 0:0641:

8><
>:

(30)

The calculation of the Kpid gains vector of Plant I, is done by replacing the
numerical values of Eq. (27) in the system of equations given in (25) and (26), is
given by.

0:438 0 0

0 0:438 0

0 0 0:438

2
64

3
75�

KD

KP

KI

2
64

3
75 ¼

0:7743

0:3789

0:0641

2
64

3
75 : (31)

The Plant I given in Eq. (21) related to Eq. (21) has only the coefficient b0, with
that, the system of equations generated, related to the system of equations given in
(25), has three equations and three unknowns.

Kpid )
iÞ 0:438KD ¼ 0:7749 ) KD ¼ 0:7749=0:431 ) KD ¼ 1:78;

iiÞ 0:438KP ¼ 0:3789 ) KP ¼ 0:3789=0:431 ) KP ¼ 0:87;

iiiÞ 0:438KI ¼ 0:0641 ) KI ¼ 0:0641=0:438 ) KI ¼ 0:15:

8><
>:

(32)

Solving the system of equations given in (32), you can start with any of the
equations to find the numerical values of KD, KP and KI, since they are indepen-
dent. With the numerical values of the earnings KD, KP and KI, it replaces in the
simulator developed in the MATLAB/SIMULINK software to monitor the perfor-
mance of the proposed method.

Figure 2 shows the performance of the PID-Specified controller, which has the

transfer function parameters specified by the designer and the Kpid
Specified gain vector

determined by the internal product of the vector of gains with the propagation
matrix in purchase with the controller with the gains determined by the second
method of ZN.

4.2 Plant II

Plant II, is a solid bulk reclaimer, which is used to recover bulk for ship loading,
this equipment has the capacity to move up to 8,000 tons per hour (t/h).

GPII sð Þ ¼
b1sþ b0

s3 þ a1s2 þ a2sþ a3
, (33)

where GG
PII

sð Þ is the TF of Plant II, it is a third order plant with zero at infinity.
The product of the TF numerator of Plant II given in Eq. (33) associated with the

TF numerator of the controller given in Eq. (2) is given by

Cpid
PII

sð ÞGPII sð Þ
h i

N
¼ KDs2 þ KPsþ KI
� �

b1 þ b0ð Þ
¼ KDb1s3 þ KDb0 þ KIb1ð Þs2 þ KIb0:

(34)

The product of the TF denominator of Plant II given in Eq. (33) associated with
the TF denominator of the controller given in Eq. (2) is given by
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Cpid
PII

sð ÞGPII sð Þ
h i

D
¼ s s3 þ a1s2 þ a2sþ a3
� � ¼ s4 þ a1s3 þ a2s2 þ a3s: (35)

The characteristic polynomial of Plant II is given by

PPII sð Þ ¼ s4 þ a1 þ KDb1ð Þs3
þ a2 þ KDb0 þ KPb1ð Þs2

þ ða3 þ KPb0 þ KIb1ð Þs
þ KIb0:

(36)

System equations of Plant II related to Eq. (19) in the form Ax ¼ b is given by

Kpid, bi
� � ¼ aei )

a1 þ KDb1 ¼ as1;

a2 þ KDb0 þ KPb1 ¼ as2;

a3 þ KPb0 þ KIb1 ¼ as3;

a4 þ KIb0 ¼ as4;

8>>>>><
>>>>>:

)

KDb1 ¼ as1 � a1;

KDb0 þ KPb1 ¼ as2 � a2;

KPb0 þ KIb1 ¼ as3 � a3;

KIb0 ¼ as4 � a4;

8>>>>><
>>>>>:

)

1ÞKDb1 ¼ ae1;

2ÞKDb0 þ KPb1 ¼ ae2;

3ÞKPb0 þ KIb1 ¼ ae3;

4ÞKIb0 ¼ ae4:

8>>>>><
>>>>>:

(37)

Figure 2.
Plant I - PID-ZN x PID-specified.
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Placing the systems of equations given in (37) in the matrix form, we have

Kpid,B
� � ¼ aei )

b0 0 0

b1 b0 0

0 b1 b0
0 0 b1

2
6664

3
7775�

KD

KP

KI

2
64

3
75 ¼

ae1
ae2
ae3
ae4

2
6664

3
7775: (38)

The transfer function of Plant II related to Eq. (33) is given by

GPII sð Þ ¼
0:1812sþ 0:087

s3 þ 0:3853s2 þ 0:117sþ 0:01567
: (39)

The ai coefficients of the Plant TF - II related to Eq. (39) are given by

ai )

a1 ¼ 0:3853;

a2 ¼ 0:117;

a3 ¼ 0:01567;

a4 ¼ 0:

8>>><
>>>:

(40)

The specified coefficients asi of Plant II are given by

ae4
s
i )

as1 ¼ 1:7133;

as2 ¼ 0:8542;

as3 ¼ 0:2670;

as4 ¼ 0:0478:

8>>><
>>>:

(41)

The error calculation aei for Plant II associated with the coefficients asi given in
(41) and with the coefficients ai given in (40) is given by

ae4
e
i )

ae1 ¼ as1 � a1 ¼ 1:7133� 0:3853 ¼ 1:328;

ae2 ¼ as2 � a2 ¼ 0:7372� 0:117 ¼ 0:6202;

ae3 ¼ as3 � a3 ¼ 0:2514� 0:01567 ¼ 0:2358;

ae4 ¼ as4 � a4 ¼ 0:0478� 0 ¼ 0:0478:

8>>><
>>>:

(42)

The calculation of the Kpid gains vector is performed by replacing the numerical
values of Eq. (39) in the system of equations given in (37) and (38).

0:087 0 0

0:1812 0:087 0

0 0:1812 0:087

0 0 0:1812

2
6664

3
7775�

KD

KP

KI

2
64

3
75 ¼

1:3280

0:9538

0:0996

0:0478

2
6664

3
7775: (43)

The plant II given in Eq. (39) related to Eq. (33) has the b0 coefficients and b1,
with this, the system of equations generated, for the system of equations related to
the system of equations given in (37), has four equations and three unknowns.

Kpid )

iÞKDb1 ¼ ae1 ) KD ¼ 1:328=0:1812 ) KD ¼ 7:329;

iiÞKDb0 þ KPb1 ¼ ae2 ) KP ¼ 0:9538� 0:6376ð Þ=0:1812 ) KP ¼ 1:745;

iiiÞKPb0 þ KIb1 ¼ ae3 ) KI ¼ 2514� 0:1518ð Þ=0:1812 ) KI ¼ 0:549;

ivÞKIb0 ¼ ae4 ) KI ¼ 0:0478=0:087 ) KI ¼ 0:549:

8>>><
>>>:

(44)
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Solving the system of equations given in (44), first, solve Equation i) to
find the numerical value of KD. Then, replace the numerical value of KD in
Equation ii) and find the numerical value of KP. To find the numerical value of
KI, solve equation iv) or replace the values of KP in equation iii). With the
numerical values of the gains KD, KP and KI, it replaces in the simulator developed
in the MATLAB/SIMULINK software to monitor the performance of the proposed
method.

Figure 3 shows the performance of the PID-Specified controller, which has the

transfer function parameters specified by the designer and the Kpid
Specified gain vector

determined by the internal product of the vector of gains with the propagation
matrix in purchase with the controller with the gains determined by the second
method of ZN.

4.3 Plant III

Plant III, is a car dumper with two feeders, which is used to unload solids in
bulk, this equipment has the capacity to move up to 8,000 tons per hour (t/h). The
general mathematical model of Plant III in TF is given by

GG
PIII

sð Þ ¼ b2s2 þ b1sþ b0
s4 þ a1s3 þ a2s2 þ a3sþ a4

: (45)

where, GG
PIII

sð Þ is the TF of Plant III, it is a fourth order plant with zero at infinity.
The product of the TF numerator of Plant III given in Eq. (45) associated with

the TF numerator of the controller given in Eq. (2) is given by

Figure 3.
Plant II - PID-ZN x PID-specified.
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Placing the systems of equations given in (37) in the matrix form, we have

Kpid,B
� � ¼ aei )

b0 0 0

b1 b0 0

0 b1 b0
0 0 b1

2
6664

3
7775�

KD

KP

KI

2
64

3
75 ¼

ae1
ae2
ae3
ae4

2
6664

3
7775: (38)

The transfer function of Plant II related to Eq. (33) is given by

GPII sð Þ ¼
0:1812sþ 0:087

s3 þ 0:3853s2 þ 0:117sþ 0:01567
: (39)

The ai coefficients of the Plant TF - II related to Eq. (39) are given by

ai )

a1 ¼ 0:3853;

a2 ¼ 0:117;

a3 ¼ 0:01567;

a4 ¼ 0:

8>>><
>>>:

(40)

The specified coefficients asi of Plant II are given by

ae4
s
i )

as1 ¼ 1:7133;

as2 ¼ 0:8542;

as3 ¼ 0:2670;

as4 ¼ 0:0478:

8>>><
>>>:

(41)

The error calculation aei for Plant II associated with the coefficients asi given in
(41) and with the coefficients ai given in (40) is given by

ae4
e
i )

ae1 ¼ as1 � a1 ¼ 1:7133� 0:3853 ¼ 1:328;

ae2 ¼ as2 � a2 ¼ 0:7372� 0:117 ¼ 0:6202;

ae3 ¼ as3 � a3 ¼ 0:2514� 0:01567 ¼ 0:2358;

ae4 ¼ as4 � a4 ¼ 0:0478� 0 ¼ 0:0478:

8>>><
>>>:

(42)

The calculation of the Kpid gains vector is performed by replacing the numerical
values of Eq. (39) in the system of equations given in (37) and (38).

0:087 0 0

0:1812 0:087 0

0 0:1812 0:087

0 0 0:1812

2
6664

3
7775�

KD

KP

KI

2
64

3
75 ¼

1:3280

0:9538

0:0996

0:0478

2
6664

3
7775: (43)

The plant II given in Eq. (39) related to Eq. (33) has the b0 coefficients and b1,
with this, the system of equations generated, for the system of equations related to
the system of equations given in (37), has four equations and three unknowns.

Kpid )

iÞKDb1 ¼ ae1 ) KD ¼ 1:328=0:1812 ) KD ¼ 7:329;

iiÞKDb0 þ KPb1 ¼ ae2 ) KP ¼ 0:9538� 0:6376ð Þ=0:1812 ) KP ¼ 1:745;

iiiÞKPb0 þ KIb1 ¼ ae3 ) KI ¼ 2514� 0:1518ð Þ=0:1812 ) KI ¼ 0:549;

ivÞKIb0 ¼ ae4 ) KI ¼ 0:0478=0:087 ) KI ¼ 0:549:

8>>><
>>>:

(44)
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Solving the system of equations given in (44), first, solve Equation i) to
find the numerical value of KD. Then, replace the numerical value of KD in
Equation ii) and find the numerical value of KP. To find the numerical value of
KI, solve equation iv) or replace the values of KP in equation iii). With the
numerical values of the gains KD, KP and KI, it replaces in the simulator developed
in the MATLAB/SIMULINK software to monitor the performance of the proposed
method.

Figure 3 shows the performance of the PID-Specified controller, which has the

transfer function parameters specified by the designer and the Kpid
Specified gain vector

determined by the internal product of the vector of gains with the propagation
matrix in purchase with the controller with the gains determined by the second
method of ZN.

4.3 Plant III
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bulk, this equipment has the capacity to move up to 8,000 tons per hour (t/h). The
general mathematical model of Plant III in TF is given by

GG
PIII

sð Þ ¼ b2s2 þ b1sþ b0
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where, GG
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Cpid
PIII

sð ÞGPIII sð Þ
h i

N
¼ KDs2 þ KPsþ KI
� �

b2s2 þ b1sþ b0
� �

¼ KDb2s4 þ KDb1 þ KPb2ð Þs3
: (46)

þ KDb0 þ KPb1 þ KIð Þs2
þ KPb0 þ KIb1ð Þs

þKIb0:

The product of the TF denominator of Plant III given in Eq. (45) associated with
the TF numerator of the controller given in Eq. (2) is given by

Cpid
PIII

sð ÞGPIII sð Þ
h i

D
¼ s s4 þ a1s3 þ a2s2 þ a3sþ a4
� �

¼ s5 þ a1s4 þ a2s3 þ a3s2 þ a4s:
(47)

The characteristic polynomial of Plant III is given by

PPIII sð Þ ¼ s5 þ a1 þ KDb2s4

þa2 þ KDb1 þ KPb2ð Þs3
þa3 þ KDb0 þ KPb1 þ KIb2ð Þs2

þa4 þ KPb0 þ KIb1ð Þs
þKIb0:

(48)

System equations da Planta III related to Eq. (19) in the form Ax ¼ b is given by

Kpid, bi
� � ¼ aei )

a1 þ KDb2 ¼ as1;

a2 þ KDb1 þ KPb2 ¼ as2;

a3 þ KDb0 þ KPb1 þ KIb2 ¼ as3;

a4 þ KPb0 þ KIb1 ¼ as4;

a5 þ KIb0 ¼ as5:

8>>>>>><
>>>>>>:

)

KDb2 ¼ as1 � a1;

KDb1 þ KPb2 ¼ as2 � a2;

KDb0 þ KPb1 þ KIb2 ¼ as3 � a3;

KPb0 þ KIb1 ¼ as4 � a4;

KIb0 ¼ as5 � a5:

8>>>>>><
>>>>>>:

)

1ÞKDb2 ¼ ae1;

2ÞKDb1 þ KPb2 ¼ ae2;

3ÞKDb0 þ KPb1 þ KIb2 ¼ ae3;

4ÞKPb0 þ KIb1 ¼ ae4;

5ÞKIb0 ¼ ae5:

8>>>>>><
>>>>>>:

(49)

Placing the systems of equations given in (49) in the matrix form, we have

Kpid,B
� � ¼ aei )

b0 0 0

b1 b0 0

b2 b1 b0
0 b2 b1
0 0 b2

2
6666664

3
7777775
�

KD

KP

KI

2
64

3
75 ¼

ae1
ae2
ae3
ae4
ae5

2
6666664

3
7777775
: (50)
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The transfer function of Plant III related to Eq. (45) is given by

GPIII sð Þ ¼
0:959s2 þ 0:1698sþ 0:1593

s4 þ 0:1767s3 þ 0:3463s2 þ 0:029sþ 0:02331
: (51)

The ai coefficients of the Plant TF - III related to Eq. (51) are given by

ai )

a1 ¼ 0:1767;

a2 ¼ 0:3463;

a3 ¼ 0:029;

a4 ¼ 0:2331;

a5 ¼ 0:

8>>>>>><
>>>>>>:

(52)

The specified coefficients asi of Plant III are given by

asi )

as1 ¼ 1:8358;

as2 ¼ 8:619;

as3 ¼ 8:9947;

as4 ¼ 1:4277;

as5 ¼ 1, 3254:

8>>>>>><
>>>>>>:

(53)

The error calculation aei for Plant III associated with the coefficients asi given in
(53) and with the coefficients ai given in (52) is given by

aei )

ae1 ¼ as1 � a1 ¼ 1:8358� 0:1767 ¼ 1:659;

ae2 ¼ as2 � a2 ¼ 8:619� 0:3463 ¼ 4:9066;

ae3 ¼ as3 � a3 ¼ 8:9947 � 0:029 ¼ 8:9657;

ae4 ¼ as4 � a4 ¼ 1:4277 � 0:0233 ¼ 1:4044;

ae5 ¼ as5 � a5 ¼ 1:3254� 0 ¼ 1:3254:

8>>>>>><
>>>>>>:

(54)

The calculation of the gain vector Kpid is done by replacing the numerical values
of Eq. (51) in the system of equations given in (49) and (50).

0:1593 0 0

0:1698 0:1593 0

0:959 0:1698 0:1593

0 0:959 0:1698

0 0 0:959

2
6666664

3
7777775
�

KD

KP

KI

2
64

3
75 ¼

1:6591

4:9066

9:0712

2:7381

1:3254

2
6666664

3
7777775
: (55)

The Plant III given in Eq. (51) related to Eq. (45), has the coefficients b0, b1 and
b2, with that, the generated system of equations, for the system of equations related
to the system of equations given in (49), has five equations and three unknowns.

Kpid )

iÞKDb2 ¼ ae1 ) KD ¼ 1:6591=959 ) KD ¼ 1:73;

iiÞKDb1 þ KPb2 ¼ ae2 ) KP ¼ 4:6128=0:959 ) KP ¼ 4:81;

iiiÞKDb0 þ KPb1 þ KIb2 ¼ ae3 ) KI ¼ 7:978=0:959 ) KI ¼ 8:32;

ivÞKPb0 þ KIb1 ¼ ae4 ) KI ¼ 1:4127=0:1698 ) KI ¼ 8:32;

vÞKIb0 ¼ ae5 ) KI ¼ 1:3254=0:1593 ) KI ¼ 8:32:

8>>>>>><
>>>>>>:

(56)
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Cpid
PIII

sð ÞGPIII sð Þ
h i

N
¼ KDs2 þ KPsþ KI
� �

b2s2 þ b1sþ b0
� �

¼ KDb2s4 þ KDb1 þ KPb2ð Þs3
: (46)

þ KDb0 þ KPb1 þ KIð Þs2
þ KPb0 þ KIb1ð Þs

þKIb0:

The product of the TF denominator of Plant III given in Eq. (45) associated with
the TF numerator of the controller given in Eq. (2) is given by

Cpid
PIII

sð ÞGPIII sð Þ
h i

D
¼ s s4 þ a1s3 þ a2s2 þ a3sþ a4
� �

¼ s5 þ a1s4 þ a2s3 þ a3s2 þ a4s:
(47)

The characteristic polynomial of Plant III is given by

PPIII sð Þ ¼ s5 þ a1 þ KDb2s4

þa2 þ KDb1 þ KPb2ð Þs3
þa3 þ KDb0 þ KPb1 þ KIb2ð Þs2

þa4 þ KPb0 þ KIb1ð Þs
þKIb0:

(48)

System equations da Planta III related to Eq. (19) in the form Ax ¼ b is given by

Kpid, bi
� � ¼ aei )

a1 þ KDb2 ¼ as1;

a2 þ KDb1 þ KPb2 ¼ as2;

a3 þ KDb0 þ KPb1 þ KIb2 ¼ as3;

a4 þ KPb0 þ KIb1 ¼ as4;

a5 þ KIb0 ¼ as5:

8>>>>>><
>>>>>>:

)

KDb2 ¼ as1 � a1;

KDb1 þ KPb2 ¼ as2 � a2;

KDb0 þ KPb1 þ KIb2 ¼ as3 � a3;

KPb0 þ KIb1 ¼ as4 � a4;

KIb0 ¼ as5 � a5:

8>>>>>><
>>>>>>:

)

1ÞKDb2 ¼ ae1;

2ÞKDb1 þ KPb2 ¼ ae2;

3ÞKDb0 þ KPb1 þ KIb2 ¼ ae3;

4ÞKPb0 þ KIb1 ¼ ae4;

5ÞKIb0 ¼ ae5:

8>>>>>><
>>>>>>:

(49)

Placing the systems of equations given in (49) in the matrix form, we have

Kpid,B
� � ¼ aei )

b0 0 0

b1 b0 0

b2 b1 b0
0 b2 b1
0 0 b2

2
6666664

3
7777775
�

KD

KP

KI

2
64

3
75 ¼

ae1
ae2
ae3
ae4
ae5

2
6666664

3
7777775
: (50)
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The transfer function of Plant III related to Eq. (45) is given by

GPIII sð Þ ¼
0:959s2 þ 0:1698sþ 0:1593

s4 þ 0:1767s3 þ 0:3463s2 þ 0:029sþ 0:02331
: (51)

The ai coefficients of the Plant TF - III related to Eq. (51) are given by

ai )

a1 ¼ 0:1767;

a2 ¼ 0:3463;

a3 ¼ 0:029;

a4 ¼ 0:2331;

a5 ¼ 0:

8>>>>>><
>>>>>>:

(52)

The specified coefficients asi of Plant III are given by

asi )

as1 ¼ 1:8358;

as2 ¼ 8:619;

as3 ¼ 8:9947;

as4 ¼ 1:4277;

as5 ¼ 1, 3254:

8>>>>>><
>>>>>>:

(53)

The error calculation aei for Plant III associated with the coefficients asi given in
(53) and with the coefficients ai given in (52) is given by

aei )

ae1 ¼ as1 � a1 ¼ 1:8358� 0:1767 ¼ 1:659;

ae2 ¼ as2 � a2 ¼ 8:619� 0:3463 ¼ 4:9066;

ae3 ¼ as3 � a3 ¼ 8:9947 � 0:029 ¼ 8:9657;

ae4 ¼ as4 � a4 ¼ 1:4277 � 0:0233 ¼ 1:4044;

ae5 ¼ as5 � a5 ¼ 1:3254� 0 ¼ 1:3254:

8>>>>>><
>>>>>>:

(54)

The calculation of the gain vector Kpid is done by replacing the numerical values
of Eq. (51) in the system of equations given in (49) and (50).

0:1593 0 0

0:1698 0:1593 0

0:959 0:1698 0:1593

0 0:959 0:1698

0 0 0:959

2
6666664

3
7777775
�

KD

KP

KI

2
64

3
75 ¼

1:6591

4:9066

9:0712

2:7381

1:3254

2
6666664

3
7777775
: (55)

The Plant III given in Eq. (51) related to Eq. (45), has the coefficients b0, b1 and
b2, with that, the generated system of equations, for the system of equations related
to the system of equations given in (49), has five equations and three unknowns.

Kpid )

iÞKDb2 ¼ ae1 ) KD ¼ 1:6591=959 ) KD ¼ 1:73;

iiÞKDb1 þ KPb2 ¼ ae2 ) KP ¼ 4:6128=0:959 ) KP ¼ 4:81;

iiiÞKDb0 þ KPb1 þ KIb2 ¼ ae3 ) KI ¼ 7:978=0:959 ) KI ¼ 8:32;

ivÞKPb0 þ KIb1 ¼ ae4 ) KI ¼ 1:4127=0:1698 ) KI ¼ 8:32;

vÞKIb0 ¼ ae5 ) KI ¼ 1:3254=0:1593 ) KI ¼ 8:32:

8>>>>>><
>>>>>>:

(56)
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Solving the system of equations given in (56), first, solve Equation i) to find the
numerical value of KD. Then, replace the numerical value of KD in Equation ii) and
find the numerical value of KP. To find the numerical value of KI, solve Equation v)
or replace the values of KD and KP in Equation iii) or you can substitute the value of
KP in Equation iv). With the numerical values of the gains KD, KP and KI, it replaces
in the simulator developed in the MATLAB/SIMULINK software to monitor the
performance of the proposed method.

Figure 4 shows the performance of the PID-Specified controller, which has the
transfer function parameters specified by the designer and the Kpid

Specified gain vector
determined by the internal product of the vector of gains with the propagation matrix
in purchase with the controller with the gains determined by the secondmethod of ZN.

5. Conclusions

The study presented a methodology for adjusting the gains of a PID controller in
terms of the internal product of the gains and the propagation matrix. In addition,
the relevance of the matrix was shown, which enabled impact assessment of the PID
actions associated with the plant parameters. The proposed methodology complied
with the project specifications and ensured high controller efficiency without
suppressing the PID terms caused by the adjustments. The three PID controller
terms were adjusted. Therefore, this methodology can be considered as an
alternative to conventional methods for the computation of KD, KP, and KI gains
parameters in practical applications and highly complex control plants.
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Chapter 5

Enhanced Nonlinear PID
Controller for Positioning Control
of Maglev System
Shin-Horng Chong, Roong-Soon Allan Chan and
Norhaslinda Hasim

Abstract

Magnetic levitation (maglev) is a way of using electromagnetic fields to levitate
objects without any noise or the need for petrol or air. Due to its highly nonlinear
and unstable behavior, numerous control solutions have been proposed to over-
come it. However, most of them still acquire precise dynamic model parameters, or
deep understanding of control theory. To account the complexity in the design
procedure, a practical controller consists of classical and modern control approaches
are proposed. This chapter presents a practical controller for high positioning per-
formance of a magnetic levitation system. Three strategies of the proposed control-
ler where the PI-PD controller is to enhance transient response, the model-based
feedforward control (FF) is incorporated with the PI-PD controller to enhance the
overshoot reduction characteristic in attaining a better transient response, and lastly
the disturbance compensator (Kz) is integrated as an additional feedback element to
reduce the sensitivity function magnitude for robustness enhancement. The pro-
posed controller - FF PI-PD + Kz has a simple and straightforward design procedure.
The usefulness of the proposed controller is evaluated experimentally.

Keywords: maglev system, disturbance compensator, model-based feedforward
control, PI-PD control, robustness

1. Introduction

Magnetic levitation (maglev) system produces an electromagnetic force as the
electric current flow through the coils to support a levitated object. This indicates
that the maglev system eliminates the mechanical contact and friction between the
moving and stationary parts. Due to the advantages, the maglev system has been
successfully and widely implemented for many high-speed motion applications
such as the high-speed maglev passenger trains, magnetic bearing system, flywheel
energy storage system and vibration isolation system [1]. However, the maglev
system is open loop instability and inherent nonlinearities. In addition, it is a non-
damping system which has fast response, yet sensitive to vibration. Therefore, it
remains a challenging task to design a feedback controller for attaining a good
positioning performance in the maglev system.

Although a lot of advanced control strategy has been proposed for controlling
maglev system, the classical controllers such as proportional integral derivative
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(PID) and lead–lag compensators still are regularly employed in the industrial
applications due to their simple structure, straightforward design procedure and
easy to implement. In the past, a lead compensator [2] and cascaded lead compensa-
tion scheme [3] were designed to stabilize the maglev system. However, the classical
controllers can only perform well in limited operating range and failed to demon-
strate a satisfactory robustness performance. Thus, many advanced controllers such
as feedback linearization [4], sliding mode control [5], H∞ control technique [6],
disturbance observer control approach [7], adaptive robust backstepping method [8]
and model predictive control [9–11] as well as intelligent controllers which include
fuzzy logic control [12] and neural network [13] have been dedicated to procure the
high positioning and robustness performances in the maglev system. Despite the good
positioning and robustness performances of the advanced controllers, sufficient
knowledge of control theory is strictly needed in the design procedure. Furthermore,
the intelligent controllers consist of complex architecture require a high computa-
tional effort. Often, the intelligent controllers do not have any systematic design
procedure. These drawbacks depict barrier to their practical use.

Due to the above-mentioned reason, researchers kept devoting their effort in
enhancing control performance of classic control in maglev system. The problem
associated with 1-DOF PID control was overcome with the proposed of modified
PID control and/or 2-DOF PID control. In 2007, Leva and Bascetta in [14] have
realized a model-based feedforward control to the PID controller to improve the
tracking performance of a maglev system. Unfortunately, it still demonstrated huge
spike occurrence when the ball started moving at the initial position. After few
years, Ghosh et al. has proposed a 2-DOF PID controller to improve the system
transient response with zero percentage of overshoot. However, the proposed con-
troller suffered from long settling time which was around 2 s. Besides, its position-
ing accuracy was recorded poor due to the derivative action on the reference signal
[15]. In order to solve the positioning accuracy, Allan et al. has introduced the 2-
DOF Lead-plus-PI controller [16]. The experimental evidence reported the
improvement in the positioning accuracy, yet to point-to-point motion perfor-
mance was deteriorated as the levitation height was increased.

Thus, in this research, a proportional integral-proportional derivative control
with feedforward and disturbance compensations (FF PI-PD + Kz) control approach
is proposed to stabilize the maglev system and enhance the positioning performance
as well as its robustness. The proposed controller consists of a PI-PD controller, a
model-based feedforward control and a disturbance compensator. The PI-PD con-
troller is designed by using the pole-placement method; the model-based
feedforward control is constructed based on the system driving characteristic in
open loop; the disturbance compensator is developed via the system current
dynamics in closed loop. The derivative action of the PI-PD control amplified the
measurement noise that affected the positioning accuracy. Hence, a low pass filter is
featured with the PI-PD control to suppress the bad influence of the derivative
action. Besides, a model-based feedforward control is incorporated with the PI-PD
controller to further improve the following characteristic of the mechanism in
attaining a better overshoot reduction characteristic. At the same time, the
positioning time is greatly reduced. Lastly, a disturbance compensator is integrated
as an additional feedback element for robustness enhancement via lowering the
sensitivity function magnitude. The effectiveness of the FF PI-PD + Kz controller is
validated experimentally through two types of motion control that are point-to-
point and tracking motions. In this present paper, the robustness of the FF PI-
PD + Kz controller is examined via applying an impulse disturbance and varying
the mass. The positioning and robustness performances of the FF PI-PD + Kz

controller are compared with the FF PI-PD and the full state feedback (FSF)
controllers.
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The remainder of this chapter is outlined as follow. In Section 2, the experimen-
tal setup and mathematical modeling of the maglev system are represented. Section
3 explains the control structure, design procedure and stability analysis of the FF
PI-PD + Kz controller. In Section 4, the experimental results are discussed. Lastly,
the conclusion is drawn in Section 5.

2. Experimental setup and dynamic modeling

This section presents the experimental setup and dynamic modeling of the
maglev system.

2.1 Experimental setup

The single-axis maglev mechanism (Googoltech GML 2001), as shown in
Figure 1 is used as a testbed to clarify the usefulness of the proposed controller. The
maglev system is only able to control object to move up and down. The control
purpose is to keep the magnetic levitation ball stable in a given position or to make
the ball track a desired trajectory.

The maglev mechanism consists of an electromagnet (number of windings,
Nw = 1000 turns) to exert a tractive force across the air gap to levitate a steel ball
(mass, M = 94 g). Besides, it is a voltage-controlled (control signal, u = 0–10 V)
maglev mechanism, which is comprised of a power amplifier to actuate the electro-
magnet. The maximum electrical power consumption is around 16 W. The maxi-
mum levitation height of the maglev system is 15 mm. In the experiments, the initial
position is set at 10.5 mm and the operating range is within �2.5 mm. A laser
position sensor (Panasonic laser distance sensor HG-C1050) with resolution of
1.83 μm is used to measure the levitation displacement. As experimentally exam-
ined, the resolution of the laser sensor output in open loop is recorded at 15 μm.
To measure the controlled current of the mechanism, a hall effect current sensor

Figure 1.
Maglev system.
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(Magnelab hall effect current sensor HCT-0010-005) with resolution of 0.38 mA is
used. The controller is implemented at a sampling rate of 1 kHz.

2.2 Dynamic modeling

Figure 2 illustrates the principle diagram of maglev system. The dynamic equa-
tion of the maglev system is

M
d2x
dt2

¼ �Fm i, xð Þ þ Fg (1)

where M, Fm, Fg, i and x denote the steel ball mass, electromagnetic force,
gravitational force, current and levitation height respectively.

The Fm (i, x) is in negative sign indicates that it always functioning in opposite
direction against the gravitational force, Fg.

The electromagnetic force, Fm(i, x) is described as

Fm i, xð Þ ¼ K
i2

x2
(2)

where K represents the electromagnetic constant.
The gravitational force, Fg is denoted as

Fg ¼ Mg (3)

where g represents the gravitational acceleration.
Substitute Eqs (2) and (3) into Eq. (1), the dynamic equation of the maglev

system can be accordingly rewritten as

d2x
dt2

¼ � K
M

i2

x2
þ g (4)

The Eq. (2) shows the inherent nonlinearities characteristic of the Fm (i, x)
which can be linearized by using the Taylor Series approximation at the equilibrium
position where

Figure 2.
The principal diagrams of the maglev system.
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Fm i, xð Þ≈Fm io, xoð Þ þ ∂Fm i, xð Þ
∂i

i tð Þ þ ∂Fm i, xð Þ
∂x

x tð Þ (5)

During levitating, the relationship between the Fm (i, x) and the Fg is
governed by

Mg ¼ Fm io, xoð Þ (6)

where io and xo denote the nominal current and nominal displacement,
respectively.

Substitute Eqs (5) and (6) into Eq. (1), and undergoes Laplace transform on
Eq. (1), the linear transfer function is

X sð Þ
I sð Þ ¼ � Kc

M

s2 � Kx
M

� � (7)

where Kc and Kx represent the current and position coefficient, while X(s) and
I(s) denote the levitation height and current, respectively, where Kc = 2Kio/ xo

2 and
Kx = 2Kio

2/xo
3.

Rewrite Eq. (7) by involving power amplifier gain, Ka and sensor sensitivity
gain, Ks, it becomes

Gp sð Þ ¼ Vs sð Þ
Vi sð Þ ¼

� Ks
Ka

Kc
M

s2 � Kx
M

� � (8)

The Eq. (8) is amplified to

Gp sð Þ ¼ β

s2 � γ2
(9)

where β = -KsKc/KaM and γ2 = Kx/M.
As shown in Eq. (9), it proves that the uncompensated system is unstable in

open loop because it comprises of one pole located at the right half s-plane. Thus, a
feedback control system is a vital need to stabilize the system. The system parame-
ter values are shown in Table 1.

3. Proportional integral-proportional derivative control with
feedforward and disturbance compensations (FF PI-PD + Kz) control
system framework

This section is devoted to explaining the formulation of FF PI-PD + Kz control
approach for the maglev system. Next, the control strategy of FF PI-PD + Kz con-
troller is discussed and followed by the design procedure of the proposed control.
Lastly, the stability of the proposed control is examined.

3.1 Control structure

The block diagram of FF PI-PD + Kz control system for positioning and robust
control of 1-DOF maglev system is depicted in Figure 3. The feedback loop consists
of PI-PD control and disturbance compensation scheme, whereas the feedforward
loop contains a model-based feedforward control. The FF PI-PD + Kz control system
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is designed under the following considerations: (i) the PI-PD control is designed to
improve the transient response of the conventional PID controller, (ii) the model-
based feedforward control is integrated to obtain a better overshoot reduction
characteristic and (iii) the disturbance compensation control is employed for
robustness enhancement.

To design the FF PI-PD + Kz controller, the PI-PD control is designed at the first
place. The PI-PD controller is proposed to improve the positioning performance of
the conventional PID controller [17]. By moving the derivative action and some
portion of the proportional gain to the feedback path, the resonance peak of con-
ventional PID controller in the closed-loop frequency response can be reduced.
Thus, it explains that the PI-PD controller demonstrates a better transient response
than the conventional PID controller. Then, a low pass filter is adopted to improve
the positioning accuracy by attenuating the amplification of the measurement noise.
However, the PI-PD control transient response is unsatisfied because the overshoot
remains high. To solve this problem, a model-based feedforward control is

Symbol Description, unit Value

M Steel ball mass, Kg 9.40 � 10�2

xo Nominal displacement, m 1.00 � 10�2

io Nnominal current, A 3.94 � 10�1

K Electromagnetic constant, Nm2/A2 2.31 � 10�4

Ka Power amplifier gain, V/A 6.51

Ks Sensor sensitivity, V/m 1.67 � 102

g Gravitational acceleration, m/s2 9.81

Table 1.
Model parameters.

Figure 3.
Block diagram of the FF PI-PD + Kz control system.
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incorporated with the PI-PD control to enhance the system following characteristic.
This improvement leads to a better overshoot reduction characteristic and shorten
the positioning time. Lastly, a disturbance compensator is introduced for robustness
enhancement of the FF PI-PD control. The proposed disturbance compensator
estimates the disturbances and imparts an adequate voltage to compensate them.
Overall, the proposed FF PI-PD + Kz control system provides the advantages which
are: (i) a better overshoot reduction characteristic; and (ii) low sensitivity to exter-
nal disturbance and parameter variation.

The control law of the FF PI-PD + Kz control system is

U sð Þ ¼ Kp þ Ki

s

� �
E sð Þ � Kpb þ Kd

sωc

sþ ωc

� �
X sð Þ þ KffXr sð Þ þ Kff KzI sð Þ � Xr sð Þ½ �

(10)

where Kp, Ki, Kpb, Kd, Kff, Kz, ωc, and Xr denote the proportional gain, integral
gain, feedback proportional gain, derivative gain, linearized feedforward gain, lin-
earized disturbance compensator gain, system cut-off frequency and reference
input, respectively.

3.2 Design procedure

There are three (3) major parts in the design procedure of the FF PI-PD + Kz
control system.

3.2.1 PI-PD controller

The PI-PD controller is a modified PID controller, where it consists of derivative
gain, Kd and some portion of the proportional gain, Kpb at the feedback path. Both
are evidenced to have an approximately similar closed loop characteristic equation,
as proved in Eqs (11) and (12).

δPID sð Þ ¼ s3 þ βKds2 þ Kpβ � γ2
� �

sþ Kiβ (11)

δPI�PD sð Þ ¼ s3 þ βKds2 þ Kp þ Kpb
� �

β � γ2
� �

sþ Kiβ (12)

The desired characteristic equation of a general second-order system is denoted as

δdesired sð Þ ¼ sþ αζωnð Þ s2 þ 2ζωnsþ ωn
2� �

(13)

where β, γ, α, ζ and ωn represent the open loop gain, open loop pole, third pole
location, desired damping ratio and desired natural frequency, respectively.

By comparing Eqs (11) and (13), the PID parameters (Kp, Ki and Kd) are

Kp ¼ 2αωn
2ζ2 þ ωn

2 þ γ2

β
(14)

Ki ¼ αωn
3ζ

β
(15)

Kd ¼ 2ζωn þ αζωn

β
(16)

To achieve a fast positioning with low overshoot performance, the design specifi-
cations are set as: settling time, ts = 0.5 s, percentage of overshoot,%OS < 10% and
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Symbol Description, unit Value

M Steel ball mass, Kg 9.40 � 10�2

xo Nominal displacement, m 1.00 � 10�2

io Nnominal current, A 3.94 � 10�1

K Electromagnetic constant, Nm2/A2 2.31 � 10�4

Ka Power amplifier gain, V/A 6.51

Ks Sensor sensitivity, V/m 1.67 � 102

g Gravitational acceleration, m/s2 9.81

Table 1.
Model parameters.

Figure 3.
Block diagram of the FF PI-PD + Kz control system.
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incorporated with the PI-PD control to enhance the system following characteristic.
This improvement leads to a better overshoot reduction characteristic and shorten
the positioning time. Lastly, a disturbance compensator is introduced for robustness
enhancement of the FF PI-PD control. The proposed disturbance compensator
estimates the disturbances and imparts an adequate voltage to compensate them.
Overall, the proposed FF PI-PD + Kz control system provides the advantages which
are: (i) a better overshoot reduction characteristic; and (ii) low sensitivity to exter-
nal disturbance and parameter variation.
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third pole location, α = 10. After calculated the PID controller parameters, the deriva-
tive gain, Kd and some portion of the proportional gain, Kp are moved to the feedback
path for acquiring the PI-PD control in enhancing the transient response. Even though
both PI-PD and conventional PID controllers show an approximately similar closed
loop characteristic equation, both of them comprised of different control law

UPID sð Þ ¼ Kp þ Ki

s
þ Kds

� �
E sð Þ (17)

UPI�PD sð Þ ¼ Kp þ Ki

s

� �
E sð Þ � Kpb þ Kds

� �
X sð Þ (18)

Based on Eqs (17) and (18), the conventional PID controller is functioned based
on the error signal, E(s) only, whereas the PI-PD controller is operated based on the
error signal, E(s) and the output signal X(s). Hence, the PI-PD controller tends to
act faster than the conventional PID controller to compensate the error.

3.2.2 Model-based feedforward control

The model-based feedforward control is employed to improve the overshoot
reduction characteristic of the PI-PD control. The control law of the model-based
feedforward control is expressed as

Uff sð Þ ¼ KffXr sð Þ (19)

where Kff and Xr sð Þ represent the linearized feedforward gain and reference input.
From Eq. (19), the model-based feedforward control is acted based on the

desired output or reference input. Hence, by using the feedforward control, the
desired output is known in advance and it can synthesize an adequate control signal
to the closed loop system for moving the mechanism to the targeted output. Thus,
the model-based feedforward control is used to enhance the system following
characteristic and provide a better overshoot reduction characteristic. It also leads
to a faster positioning time.

To design the model-based feedforward control, the relationship between the
controlled voltage and the levitation displacement is obtained via experiments.
First, a ramp input voltage with gradient, m = 0.1 V/t is applied to the system at
different levitation displacement from 0 mm to 15 mm with every 1 mm incremen-
tal displacement. Then, the minimum voltage to levitate the steel ball at various
displacements is determined. The quantitative comparisons of ten (10) repeatability

Figure 4.
The maglev system driving characteristic in open loop.
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tests are carried out at various levitation displacements. Figure 4 depicts the system
driving characteristic that is measured and adopted as a model-based feedforward
control in the proposed controller.

Figure 5 shows the step responses of the PI-PD and FF PI-PD controllers at
0.5 mm and 1.0 mm step inputs. In contrast to the PI-PD controller, the FF PI-PD
controller demonstrates a better overshoot reduction characteristic. Besides, the FF
PI-PD controller positioning time is shorter than the PI-PD controller. The compar-
ative experimental performances show that the model-based feedforward control
improves the overshoot reduction characteristic.

3.2.3 Disturbance compensator

In order to enhance the disturbance rejection characteristic of the proposed
controller, a disturbance compensator is designed and incorporated with the FF PI-
PD control, via lowering the magnitude of sensitivity function. In practical, the
external disturbance and parameter uncertainties are lumped as an equivalent dis-
turbance. A simple way to attenuate the equivalent disturbance is through intro-
ducing a cancelation term to it. The proposed disturbance compensator considers
the difference between the actual output and the reference input as an equivalent
disturbance. Then, an adequate voltage is applied to suppress the equivalent distur-
bance. The control law of the disturbance compensator is expressed as

Uz sð Þ ¼ X sð Þ � Xr sð Þ½ �Kff (20)

where X(s) = KzI(s), Kff, Kz, X(s) and Xr sð Þ represent the linearized feedforward
gain, linearized disturbance compensator gain, levitation height and reference input.

Figure 5.
Experimental step responses of the FF PI-PD and PI-PD control system. (a) Responses to a 0.5 mm step input.
(b) Responses to a 1.0 mm step input.
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displacements is determined. The quantitative comparisons of ten (10) repeatability
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tests are carried out at various levitation displacements. Figure 4 depicts the system
driving characteristic that is measured and adopted as a model-based feedforward
control in the proposed controller.

Figure 5 shows the step responses of the PI-PD and FF PI-PD controllers at
0.5 mm and 1.0 mm step inputs. In contrast to the PI-PD controller, the FF PI-PD
controller demonstrates a better overshoot reduction characteristic. Besides, the FF
PI-PD controller positioning time is shorter than the PI-PD controller. The compar-
ative experimental performances show that the model-based feedforward control
improves the overshoot reduction characteristic.

3.2.3 Disturbance compensator

In order to enhance the disturbance rejection characteristic of the proposed
controller, a disturbance compensator is designed and incorporated with the FF PI-
PD control, via lowering the magnitude of sensitivity function. In practical, the
external disturbance and parameter uncertainties are lumped as an equivalent dis-
turbance. A simple way to attenuate the equivalent disturbance is through intro-
ducing a cancelation term to it. The proposed disturbance compensator considers
the difference between the actual output and the reference input as an equivalent
disturbance. Then, an adequate voltage is applied to suppress the equivalent distur-
bance. The control law of the disturbance compensator is expressed as

Uz sð Þ ¼ X sð Þ � Xr sð Þ½ �Kff (20)

where X(s) = KzI(s), Kff, Kz, X(s) and Xr sð Þ represent the linearized feedforward
gain, linearized disturbance compensator gain, levitation height and reference input.

Figure 5.
Experimental step responses of the FF PI-PD and PI-PD control system. (a) Responses to a 0.5 mm step input.
(b) Responses to a 1.0 mm step input.
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From Eq. (20), the difference between the actual output and the reference input
is considered as an estimated disturbance. Then, a sufficient voltage is applied to the
control signal to attenuate the estimated disturbance.

To design the disturbance compensator, the relationship between the controlled
current and the levitation displacement is attained experimentally. First, the mech-
anism is stabilized by a control system. Next, the required current to levitate the
steel ball at different levitation displacement from �2.5 mm to 2.5 mm with every
0.5 mm interval displacement is measured. The quantitative comparisons of ten
(10) repeatability tests are conducted at various levitation displacements. Figure 6
shows the system current dynamic where 0 mm denotes the system datum or initial
position which is at 10.5 mm. The system current dynamic is employed as a distur-
bance compensator in the proposed controller.

Figure 7 depicts the experimental impulse disturbance rejection performance of
the FF PI-PD and FF PI-PD + Kz controllers. It can be seen clearly that the FF PI-
PD + Kz controller is less sensitive to the external disturbance. The disturbance
rejection characteristic of the FF PI-PD + Kz controller is proven theoretically by
using the closed loop sensitivity function. The sensitivity functions of the FF PI-PD
and FF PI-PD + Kz controllers are

SFFPI�PD sð Þ ¼ 1

1þ Kp þ Ki
s þ Kpb þ Kd

sωc
sþωc

� �
Gp sð Þ

(21)

SFFPI�PDþKz sð Þ ¼ 1

Ka � KffKz
� �þ Kp þ Ki

s þ Kpb þ Kd
sωc
sþωc

� �
Gp sð Þ

(22)

From Eqs (21) and (22), the proposed controller consists of the additional ele-
ments to reduce sensitivity of the system and hence to accomplish better robustness
to disturbance. Figure 8 presents the frequency responses of the FF PI-PD and FF
PI-PD + Kz from the disturbance to the displacement. To decrease the effect of
disturbance, the sensitivity functions of the closed-loop system must have suffi-
ciently low magnitude. As can be seen clearly in Figure 8, the proposed controller
consists of lower sensitivity magnitude than the FF PI-PD controller up to the range
of 70 Hz. Thus, it can be expressed that the disturbance compensation control
scheme of the proposed controller tends to improve the system disturbance rejec-
tion characteristic. In short, the FF PI-PD + Kz control system is less sensitive to the
external disturbance and parameter variation in comparison to the FF PI-PD
controller.

Figure 6.
The maglev system current dynamic in closed loop.
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3.3 Stability analysis

Basically, digital control systems are used for motion control. Thus, the stability of
the FF PI-PD + Kz control system is discussed in discrete-time. The nonlinear ele-
ments of the controller are undergone linearization and the linearized gains are used
for the stability analysis. After linearized, the feedforward and disturbance compen-
sator gains are 0.26 V/mm and 30.67 mm/A, respectively. The stability analysis using
the linearized model is adequate to provide the important knowledge of stability. The
discrete-time FF PI-PD + Kz control system is illustrated in Figure 9.

Using backward difference rule, the pulse transfer function of the FF PI-PD + Kz

control system is expressed as

Figure 7.
Experimental impulse disturbance rejection performance.

Figure 8.
Simulated frequency response for sensitivity of FF PI-PD and FF PI-PD + Kz controllers.
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3.3 Stability analysis
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the FF PI-PD + Kz control system is discussed in discrete-time. The nonlinear ele-
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for the stability analysis. After linearized, the feedforward and disturbance compen-
sator gains are 0.26 V/mm and 30.67 mm/A, respectively. The stability analysis using
the linearized model is adequate to provide the important knowledge of stability. The
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T zð Þ ¼ X zð Þ
R zð Þ ¼

z�1Gp zð ÞGc zð Þ
1þ z�1Gp zð ÞGc zð Þ (23)

where

Gp zð Þ ¼ μ2zþ μ3
z2 � μ4zþ 1

Gc zð Þ ¼ μ5z2 þ μ6zþ μ7
μ8z2 � μ9zþ μ10

μ1 ¼ β=γ2, μ2 ¼ μ1 eγT þ e�γT
� �� μ1 � μ1

2 eγT þ e�γT
� �

, μ3 ¼ �μ1 þ μ1
2 e

γT þ μ1
2 e

�γT,
μ4 ¼ eγT þ e�γT, μ5 ¼ KiT2 þ Kp � Kpb þ KffKz

� �
T þ Kp � Kpb þ KffKz

� �
Td þ

KiTTd � Kd, μ6 ¼ Kpb � KffKz � Kp
� �

T þ 2Kpb � 2KffKz � 2Kp
� �

Td � KiTTd þ
2Kd, μ7 ¼ Kp þ KffKz � Kpb

� �
Td � Kd, μ8 ¼ T þ Tdð Þ, μ9 ¼ T þ 2Td, μ10 ¼ Td and

Td = 1.60 � 10�3 s.

Figure 9.
Discrete-time of FF PI-PD + Kz control system.

Figure 10.
b-coefficient of mass parameter variation.
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The Jury stability test is used to examine the stability limit of the FF PI-PD + Kz

control system. The characteristic in Eq. (23) is used to identify the stability limit of
the FF PI-PD + Kz control system. Figures 10 and 11 show the minimum and
maximum values of the mass parameter variation, respectively. The results show that
the parameter that influences the stability of the control system is the object mass,M.
To maintain the system stable, the object mass,M must be kept between 3.9 g < M
< 190 g. In short, the Jury test proves that the FF PI-PD + Kz control system remains
stable with the increment of mass weight to two times of its default one.

4. Experimental performance

Experiments are conducted to evaluate the effectiveness of the FF PI-PD + Kz

control system. Two types of motion control that are positioning and tracking
controls are experimentally examined. The full-state feedback (FSF) controller is
designed and compared with the proposed control. FSF control is chosen for the
comparison purpose is because it is an advanced controller that has been regularly
applied to the nonlinear applications such as maglev system [18, 19], inverted
pendulum system [20] and others. Besides, the FF PI-PD control is compared with
the proposed one in order to prove the usefulness of the disturbance compensator.
The robust performance of the proposed control is examined by injecting an
impulse disturbance to the system, and followed by increasing the mass of the ball
by 25%.

Figure 12 illustrates the block diagram of the FSF controller. An integral action is
added into the FSF controller to eliminate the steady state error by increasing the
transfer function to type one system. From Figure 12, the system state-space model
is written as

_x tð Þ
_e tð Þ

� �
¼ A 0

�C 0

� �
x tð Þ
e tð Þ

� �
þ B

0

� �
u tð Þ þ 0

1

� �
r tð Þ (24)

where.

A ¼
0 1 0

Kx=M 0 �Kc=M
0 0 0

2
64

3
75, B ¼

0

0

1=Ka

2
64

3
75 and C ¼ Ks 0 0½ �

Figure 11.
d-coefficient of mass parameter variation.
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The Jury stability test is used to examine the stability limit of the FF PI-PD + Kz

control system. The characteristic in Eq. (23) is used to identify the stability limit of
the FF PI-PD + Kz control system. Figures 10 and 11 show the minimum and
maximum values of the mass parameter variation, respectively. The results show that
the parameter that influences the stability of the control system is the object mass,M.
To maintain the system stable, the object mass,M must be kept between 3.9 g < M
< 190 g. In short, the Jury test proves that the FF PI-PD + Kz control system remains
stable with the increment of mass weight to two times of its default one.
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transfer function to type one system. From Figure 12, the system state-space model
is written as
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Figure 11.
d-coefficient of mass parameter variation.
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Based on Eq. (24), the state feedback control law, ufsf (t) is defined as

ufsf tð Þ ¼ �Kx tð Þ þ Kie tð Þ (25)

where K, Ki, x(t) and e(t) represent the state feedback gain matrix, integral gain,
levitation displacement and error, accordingly.

Ackermann’s formula is used to determine the state feedback gain matrix, K and
the integral gain, Ki. For comparative purpose, the design specifications of FSF con-
troller are set as: settling time, ts = 0.5 s, percentage of overshoot,%OS < 10% as well
as third and fourth poles location, α = 10. The frequency of first-order low-pass filter,
ωc is selected based on the system cut-off frequency at around 600 rad/s. The FSF
controller parameters are tuned to have the best positioning performance at 1.0 mm
step response as similar to the FF PI-PD + Kz controller (see Figure 13).Table 2 shows
the controller parameters for FSF, FF PI-PD and FF PI-PD + Kz control systems.

4.1 Positioning performance

In this experiment, the initial position is set at 10.5 mm and the working range is
within�2.5 mm. Figures 14 and 15 show the experimental positioning performance
of the FSF, FF PI-PD and FF PI-PD + Kz control systems to 0.5 mm, 1.0 mm,
�0.5 mm and � 1.0 mm step inputs, respectively. As observed clearly, the FF PI-
PD + Kz controller shows almost identical positioning performance, with no over-
shoot as the FF PI-PD and FSF control systems. However, the FSF control system

Figure 12.
Block diagram of the full-state feedback (FSF) controller.

Figure 13.
Experimental step responses of controllers at 1.0 mm reference input.
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takes longer settling time than the FF PI-PD and FF PI-PD + Kz controllers to reach
steady-state that less than �100 μ m. Figure 16 presents the simulated closed-loop
frequency response for the three control systems. As can be seen in Figure 16, the FF
PI-PD and FF PI-PD + Kz controls demonstrate wider bandwidth as compared to the
FSF control. Therefore, it can be explained that the both FF PI-PD and FF PI-PD + Kz

controllers could perform shorter settling time than the FSF controller.
Table 3 shows the quantitative comparison of twenty (20) repeatability experi-

mental results for the point-to-point motion of the three controllers. The settling
time, ts is determined as the time where the system is stabilized within�100 μm. All
three controllers demonstrate zero overshoot at every step input. Although FSF
performs zero overshoot in all the step input, it takes long settling time to reach
steady state that of less than �100 μm. The settling time of the FF PI-PD + Kz is
65.6% shorter than the FSF controller.

4.2 Tracking performance

For tracking motion, periodic trapezoidal reference input is utilized to command
the maglev system. The maximal tracking error is stated as Emax = max |xr - x| where

Controller K1 K2 K3 Kp Ki Kpb Kd

FSF 0.80 0.02 0.01 — 2.36 — —

FF PI-PD — — — 0.45 1.20 0.15 0.03

FF PI-PD + Kz — — — 0.45 1.20 0.15 0.03

Table 2.
Controller parameters.

Figure 14.
Experimental step responses of the three control systems at positive side direction. (a) Responses to a 0.5 mm step
input (default mass). (b) Responses to a 1.0 mm step input (default mass).
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takes longer settling time than the FF PI-PD and FF PI-PD + Kz controllers to reach
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xr is the reference input and x is the levitation height. In addition, the root mean

square error, Erms is calculated as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=N

PN
k¼1e2

q
where N represents the number of

data samples and e is the tracking error.
Figure 17 illustrates the trapezoidal tracking performance of the FSF, FF PI-PD

and FF PI-PD + Kz control systems to 0.5 mm and 1.0 mm amplitudes. Both FF PI-
PD and FF PI-PD + Kz controllers demonstrate almost identical tracking perfor-
mance. The tracking error difference between them is insignificant. On the other
hand, the FSF controller demonstrates the worst tracking performance with the
largest tracking error among the compared controllers. The maximum tracking

Figure 15.
Experimental step responses of the three control systems at negative side direction. (a) Responses to a � 0.5 mm
step input (default mass). (b) Responses to a �1.0 mm step input (default mass).

Figure 16.
Simulated closed-loop frequency response.
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error of the FSF controller at 0.5 mm amplitude is around 1.5 times larger than the
FF PI-PD + Kz controller. Meanwhile, as the amplitude increased to 1.0 mm, the FSF
controller maximum tracking error is about 2 times larger than the FF PI-PD + Kz

controller (see error signal in Figure 17(b)). The maximum tracking error occurred
at the slope of the trapezoidal signal where the velocity changes. Thus, the experi-
mental results proved that the FSF controller has low adaptability to the velocity
change. The FSF controller comprised of narrow bandwidth (see Figure 16). Hence,
it can explain that the FSF controller does not have sufficient speed to cope with the
variation of velocity effectively. The average of Emax and Erms values of twenty (20)
experiments for the tracking motion is summarized in Table 4. At amplitude
0.5 mm, the Emax and Erms values of the FSF controller are 48.2% and 46.7% larger
than the FF PI-PD + Kz controller. Besides, the Emax and Erms values of the FF PI-
PD + Kz controller are 47.1% and 58.9% smaller than the FSF controller at 1.0 mm
amplitude. On the other hand, the difference of Emax and Erms values between the
FF PI-PD and the FF PI-PD + Kz controllers are insignificant. Overview, the FF
PI-PD and FF PI-PD + Kz control systems track the trapezoidal signal more accu-
rately and precisely with the smaller Emax and Erms values as compared to the FSF
controller.

4.3 Robustness performance

The robust performance of the proposed controller is evaluated in the presence
of mass variation. The 25% extra load is added to the default load of the mechanism.
In this experiment, the control performance is examined in two type of motions:
point-to-point and tracking motions. The robust performance of the FF PI-PD + Kz

controller is then compared with the FF PI-PD and FSF controllers.

Step height Performance index FF PI-PD + Kz FF PI-PD FSF

0.5 mm OS, % Average 0.00 0.00 0.00

Standard deviation 0.00 0.00 0.00

ts, s Average 1.45 � 10�1 1.17 � 10�1 4.35 � 10�1

Standard deviation 3.01 � 10�2 1.91 � 10�2 6.37 � 10�2

1.0 mm OS, % Average 0.00 0.00 0.00

standard deviation 0.00 0.00 0.00

ts, s Average 2.02 � 10�1 1.60 � 10�1 5.48 � 10�1

Standard deviation 3.82 � 10�2 1.19 � 10�2 5.45 � 10�2

�0.5 mm OS, % Average 0.00 0.00 0.00

Standard deviation 0.00 0.00 0.00

ts, s Average 1.25 � 10�1 1.90 � 10�1 3.83 � 10�1

Standard deviation 3.22 � 10�2 1.19 � 10�1 8.64 � 10�2

�1.0 mm OS, % Average 0.00 0.00 0.00

Standard deviation 0.00 0.00 0.00

ts, s Average 1.77 � 10�1 2.03 � 10�1 5.06 � 10�1

Standard deviation 2.35 � 10�2 6.07 � 10�2 5.36 � 10�2

OS: overshoot, ts: settling time.

Table 3.
Experimental positioning performances of twenty (20) experiments for three controllers (default mass).
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error of the FSF controller at 0.5 mm amplitude is around 1.5 times larger than the
FF PI-PD + Kz controller. Meanwhile, as the amplitude increased to 1.0 mm, the FSF
controller maximum tracking error is about 2 times larger than the FF PI-PD + Kz

controller (see error signal in Figure 17(b)). The maximum tracking error occurred
at the slope of the trapezoidal signal where the velocity changes. Thus, the experi-
mental results proved that the FSF controller has low adaptability to the velocity
change. The FSF controller comprised of narrow bandwidth (see Figure 16). Hence,
it can explain that the FSF controller does not have sufficient speed to cope with the
variation of velocity effectively. The average of Emax and Erms values of twenty (20)
experiments for the tracking motion is summarized in Table 4. At amplitude
0.5 mm, the Emax and Erms values of the FSF controller are 48.2% and 46.7% larger
than the FF PI-PD + Kz controller. Besides, the Emax and Erms values of the FF PI-
PD + Kz controller are 47.1% and 58.9% smaller than the FSF controller at 1.0 mm
amplitude. On the other hand, the difference of Emax and Erms values between the
FF PI-PD and the FF PI-PD + Kz controllers are insignificant. Overview, the FF
PI-PD and FF PI-PD + Kz control systems track the trapezoidal signal more accu-
rately and precisely with the smaller Emax and Erms values as compared to the FSF
controller.

4.3 Robustness performance

The robust performance of the proposed controller is evaluated in the presence
of mass variation. The 25% extra load is added to the default load of the mechanism.
In this experiment, the control performance is examined in two type of motions:
point-to-point and tracking motions. The robust performance of the FF PI-PD + Kz

controller is then compared with the FF PI-PD and FSF controllers.
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OS: overshoot, ts: settling time.

Table 3.
Experimental positioning performances of twenty (20) experiments for three controllers (default mass).
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4.3.1 Point-to-point motion

The positioning responses with the increasedmass are shown in Figures 18 and 19.
As the mass is increased, the FF PI-PD controller shows overshoot occurrence at both
positive and negative directions. Thus, the FF PI-PD controller fails to demonstrate its
robust performance. On the other hand, the FF PI-PD + Kz controller demonstrates
high robustness via demonstrating zero overshoot at all the step responses regardless
of the variation of mass. Hence, the experimental positioning results proved that the
disturbance compensation control scheme is comprised in the FF PI-PD + Kz control-
ler and it has led to the less sensitive to parameter variation characteristic of the
controller. Although the FSF controller performs its good robustness through showing

Figure 17.
Comparative experimental trapezoidal tracking responses of the three controllers. (a) Responses to a
trapezoidal input: 0.5 mm (default mass). (b) Responses to a trapezoidal input: 1.0 mm (default mass).

Reference input Controller Emax Erms

Average, mm Average, mm

Trapezoidal, 0.5 mm FSF 2.28 � 10�1 5.72 � 10�2

FF PI-PD 1.21 � 10�1 3.04 � 10�2

FF PI-PD + Kz 1.18 � 10�1 3.05 � 10�2

Trapezoidal, 1.0 mm FSF 2.95 � 10�1 1.04 � 10�1

FF PI-PD 1.51 � 10�1 4.24 � 10�2

FF PI-PD + Kz 1.56 � 10�1 4.27 � 10�2

Table 4.
Average of twenty (20) experiments trapezoidal motion for the three controllers (default mass).
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Figure 18.
Experimental step responses of the three control systems at positive side direction. (a) Responses to a 0.5 mm step
input (increased mass). (b) Responses to a 1.0 mm step input (increased mass).

Figure 19.
Experimental step responses of the three control systems at negative side direction. (a) Responses to a �0.5 mm
step input (increased mass). (b) Responses to a �1.0 mm step input (increased mass).
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Figure 18.
Experimental step responses of the three control systems at positive side direction. (a) Responses to a 0.5 mm step
input (increased mass). (b) Responses to a 1.0 mm step input (increased mass).
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Experimental step responses of the three control systems at negative side direction. (a) Responses to a �0.5 mm
step input (increased mass). (b) Responses to a �1.0 mm step input (increased mass).
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zero overshoot at all the step responses, it takes longer positioning time than the FF
PI-PD + Kz controller to reach the steady-state (Table 5).

Table 6 shows the quantitative comparison of twenty (20) repeatability tests for
the point-to-point motion in the presence of mass variation. As can be seen from
Table 6, when the mass of table is increased, the FF PI-PD controller fails to
demonstrate its robustness by producing a large overshoot. The change of mass has
caused the overshoot of the FF PI-PD controller is increased by 20% of the default
mass condition and the settling time of the FF PI-PD controller is 47.9% longer than
the FF PI-PD + Kz controller. In contrast, the FF PI-PD + Kz controller has success-
fully remained its high robust performance via demonstrating zero overshoot at all
the step responses. It is evident that the FF PI-PD + Kz controller enhances the
robustness of the FF PI-PD controller via introducing the disturbance compensation

Step height Performance index FF PI-PD + Kz FF PI-PD FSF

0.5 mm OS, % Average 0.00 0.00 0.00

Standard deviation 0.00 0.00 0.00

ts, s Average 1.13 � 10�1 1.77 � 10�1 3.92 � 10�1

Standard deviation 1.60 � 10�2 1.05 � 10�1 1.28 � 10�1

1.0 mm OS, % Average 0.00 1.40 � 101 0.00

Standard deviation 0.00 2.52 � 10�2 0.00

ts, s Average 1.50 � 10�1 2.95 � 10�1 5.08 � 10�1

Standard deviation 1.47 � 10�2 9.75 � 10�2 8.60 � 10�2

�0.5 mm OS, % Average 0.00 2.80 � 101 0.00

Standard deviation 0.00 2.85 � 10�2 0.00

ts, s Average 1.15 � 10�1 2.77 � 10�1 3.59 � 10�1

Standard deviation 5.40 � 10�2 1.93 � 10�1 8.42 � 10�2

�1.0 mm OS, % Average 0.00 1.75 � 101 0.00

Standard deviation 0.00 3.66 � 10�2 0.00

ts, s Average 2.27 � 10�1 4.32 � 10�1 4.57 � 10�1

Standard deviation 1.17 � 10�2 4.67 � 10�2 6.87 � 10�2

OS: overshoot, ts: settling time.

Table 5.
Experimental positioning performances of twenty (20) experiments for three controllers (increased mass).

Reference input Controller Emax Erms

Average, mm Average, mm

Trapezoidal, 0.5 mm FSF 1.92 � 10�1 5.33 � 10�2

FF PI-PD 1.53 � 10�1 3.50 � 10�2

FF PI-PD + Kz 1.26 � 10�1 3.05 � 10�2

Trapezoidal, 1.0 mm FSF 2.99 � 10�1 9.87 � 10�2

FF PI-PD 1.72 � 10�1 4.04 � 10�2

FF PI-PD + Kz 1.57 � 10�1 3.84 � 10�2

Table 6.
Average of twenty (20) experiments trapezoidal tracking motion for three controllers (increased mass).
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control scheme. On the other hand, the FF PI-PD + Kz achieves approximately three
(3) times shorter settling time than the FSF controller when the mass increased. In
short, the FF PI-PD + Kz controller demonstrates the best positioning performance
among the compared controllers regardless of the mass variation.

As referred to the Figure 20, the FF PI-PD + Kz controller performs smaller
sensitivity function magnitude than the FF PI-PD controller. Hence, it is less sensi-
tive to parameter variation. In short, despite the variation of mass and amplitude,
the FF PI-PD + Kz controller demonstrates a superior tracking performance than the
FF PI-PD and FSF controllers, where it tracks the trapezoidal command accurately
and precisely via illustrating the lowest Emax and Erms values.

5. Conclusions

In this chapter, the architecture of the FF PI-PD + Kz control system for enhanc-
ing the positioning, tracking and robust performances of the maglev system is
presented. Initially, a two-degree-of-freedom (2 DOF) PID control – PI-PD, is used
to improve the transient response of the conventional PID controller by minimizing
the resonance peak. However, the PI-PD control has not sufficiently performed
promising positioning responses. A as solution, a model-based feedforward (FF)
control is integrated to the PI-PD control for further improving the following char-
acteristic and overshoot reduction capabilities of the mechanism. Lastly, a distur-
bance compensator (Kz) is served to enhance the system robustness via lowering the
sensitivity function magnitude. Although the framework of proposed controller - FF
PI-PD + Kz control system is slightly complex than the conventional PID controller,
but the design procedure of FF PI-PD + Kz control system remains simple, straight-
forward, and ease to understand. This advantageous highlight the applicability of
the FF PI-PD + Kz control system in the industrial applications. The effectiveness of
the proposed controller is evaluated experimentally in point-to-point and tracking
motions in comparison to the FF PI-PD and Full State Feedback (FSF) controllers.
The robust performance of the controllers is examined in the presence of the mass
variations. As an overview, the FF PI-PD + Kz control system performs well in the
positioning and robustness performances as compared to the FF PI-PD and FSF
controllers. The comparative experimental results are sufficient to prove the contri-
bution of the FF PI-PD + Kz control system in overshoot reduction and robustness
enhancement. As for future work, the robustness performance, and the positioning
accuracy of the FF PI-PD + Kz control system will be improved.

Figure 20.
Sensitivity response of the FF PI-PD + Kz and the FSP controllers.
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zero overshoot at all the step responses, it takes longer positioning time than the FF
PI-PD + Kz controller to reach the steady-state (Table 5).
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the step responses. It is evident that the FF PI-PD + Kz controller enhances the
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Table 5.
Experimental positioning performances of twenty (20) experiments for three controllers (increased mass).

Reference input Controller Emax Erms

Average, mm Average, mm

Trapezoidal, 0.5 mm FSF 1.92 � 10�1 5.33 � 10�2

FF PI-PD 1.53 � 10�1 3.50 � 10�2

FF PI-PD + Kz 1.26 � 10�1 3.05 � 10�2

Trapezoidal, 1.0 mm FSF 2.99 � 10�1 9.87 � 10�2

FF PI-PD 1.72 � 10�1 4.04 � 10�2

FF PI-PD + Kz 1.57 � 10�1 3.84 � 10�2

Table 6.
Average of twenty (20) experiments trapezoidal tracking motion for three controllers (increased mass).
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control scheme. On the other hand, the FF PI-PD + Kz achieves approximately three
(3) times shorter settling time than the FSF controller when the mass increased. In
short, the FF PI-PD + Kz controller demonstrates the best positioning performance
among the compared controllers regardless of the mass variation.

As referred to the Figure 20, the FF PI-PD + Kz controller performs smaller
sensitivity function magnitude than the FF PI-PD controller. Hence, it is less sensi-
tive to parameter variation. In short, despite the variation of mass and amplitude,
the FF PI-PD + Kz controller demonstrates a superior tracking performance than the
FF PI-PD and FSF controllers, where it tracks the trapezoidal command accurately
and precisely via illustrating the lowest Emax and Erms values.

5. Conclusions

In this chapter, the architecture of the FF PI-PD + Kz control system for enhanc-
ing the positioning, tracking and robust performances of the maglev system is
presented. Initially, a two-degree-of-freedom (2 DOF) PID control – PI-PD, is used
to improve the transient response of the conventional PID controller by minimizing
the resonance peak. However, the PI-PD control has not sufficiently performed
promising positioning responses. A as solution, a model-based feedforward (FF)
control is integrated to the PI-PD control for further improving the following char-
acteristic and overshoot reduction capabilities of the mechanism. Lastly, a distur-
bance compensator (Kz) is served to enhance the system robustness via lowering the
sensitivity function magnitude. Although the framework of proposed controller - FF
PI-PD + Kz control system is slightly complex than the conventional PID controller,
but the design procedure of FF PI-PD + Kz control system remains simple, straight-
forward, and ease to understand. This advantageous highlight the applicability of
the FF PI-PD + Kz control system in the industrial applications. The effectiveness of
the proposed controller is evaluated experimentally in point-to-point and tracking
motions in comparison to the FF PI-PD and Full State Feedback (FSF) controllers.
The robust performance of the controllers is examined in the presence of the mass
variations. As an overview, the FF PI-PD + Kz control system performs well in the
positioning and robustness performances as compared to the FF PI-PD and FSF
controllers. The comparative experimental results are sufficient to prove the contri-
bution of the FF PI-PD + Kz control system in overshoot reduction and robustness
enhancement. As for future work, the robustness performance, and the positioning
accuracy of the FF PI-PD + Kz control system will be improved.

Figure 20.
Sensitivity response of the FF PI-PD + Kz and the FSP controllers.
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M steel ball mass
Nw number of windings
xo nominal displacement
io nominal current
K electromagnetic constant
Ka power amplifier
Ks sensor sensitivity
g gravitational acceleration
Fm electromagnetic force
Fg gravitational force
i current
x displacement
g gravitational acceleration
Kc current coefficient
Kx position coefficient
β open loop gain
γ open loop pole
α third pole location
ζ desired damping ratio
ωn desired natural frequency
Kp proportional gain
Ki integral gain
Kd derivative gain
Kpb feedback proportional gain
Kff linearized feedforward gain
Kz linearized disturbance compensation gain
δPID closed loop PID control characteristic equation
δPI-PD closed loop PI-PD control characteristic equation
δdesired desired characteristic equation
Gp plant model
Gff model-based feedforward control
GPI-PD PI-PD control
Gz disturbance compensator
T sampling time
Td time constant of derivative elements with filter
ωc system cutoff frequency
K state feedback gain matrix
ufb feedback control signal
uff feedforward control signal
u summation signals of ufb and uff
N number of data sample
e tracking error
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xr reference input
Emax maximal error
Erms root mean square error
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Chapter 6

Multi-Parameter Estimation of
Uncertain Systems Based on the
Extended PID Control Method
Jinping Feng and Wei Wang

Abstract

Parameter estimation is an important step in the identification of systems. With
the extension of systems, there needs the multi-parameter estimation of systems.
The estimation of multi parameters of complex systems based on the extended PID
controllers is considered in this chapter. As the related references proved that the
integral item of the nonlinear PID controller could deal with the uncertain part of
the complex system (which can also be called new stripping principle, simple notes
as NSP). Based on this theory, new multi-parameter estimation method is given.
Firstly, the unknown parameters are expanded to new states of the system. Two
cases, parameters are constant or changing with time, are separately analyzed. In
the time-variant case, the unknown parameters are extended to functions which
actual forms are uncertain. Secondly the method NSP could be applied to cope with
the uncertain part, and then reconstruction state observation to estimate the states.
If the states are observed, the unknown parameters are obtained at the same time.
Finally the convergence analysis of the error systems and some simulations will be
given in this chapter to indicate the effectiveness of the proposed method.

Keywords: multi-parameter, parameter estimation, complex system,
extended PID control, convergence analysis

1. Introduction

Dynamic process model is the basis to study the uncertain systems. Generally
speaking, the establishment of dynamic process model for the research object is the
first step to solve the problem, and the parameter estimation of the established
dynamic process model is the next key procedure to solve the problem. So the
identification of dynamic processes is of great significance.

The design of the state observer in the control theory is to construct a dynamic
system artificially, to make it approximate the real state of the dynamic system by
selecting a certain form of the observer. The criterion for designing the state
observer is to make the error system asymptotically converge to the origin, that is to
say, as time goes by, the error will asymptotically converge to zero. It is based on
this design idea we use in the parameter estimation problem. In the identification of
the model, the dynamic process model is often accompanied with unknown distur-
bances. In the analysis of the estimation of multiple time-varying parameters, when
the parameters are expanded to the states, there are also unknown parts in the
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dynamic process model. So this chapter will study a method for estimating multiple
time-varying parameters based on the combination of disturbance stripping
principle with state observer.

The reference [1] proposed a general form of establishing the state observer
of the nonlinear system, and gave a direct method to deal with the nonlinear
control system [2]. On the basis of the references [1–3], several specific state
observers was provided to realize the estimation of a single time invariant
parameter, and appropriate design parameters were selected according to the
relevant results in the book [4]. By analyzing the stability the error system, a design
method that made the error system asymptotically converge to zero was obtained.
The simulation results showed that this method can estimate the parameters
effectively [3].

For the estimation of time-varying parameters, the article [5] analyzed a system
with one time-varying parameter. The design of the state observer in this article
used the combination of binary control with PID control, which can handle the
unknown items in the extended states. Although there was no rigorous theoretical
proof in this article, the effect of parameter estimation did have excellent charac-
teristics of fast convergence with less chatter. The reference [6] gave a method of
combining binary control with nonlinear PID controller, and conducted a rigorous
theoretical proof. Then it was extended to the regulation of high-level systems, and
the principle of disturbance stripping [7] for the regulation of complex network
systems. This laid the foundation for the theoretical analysis of the estimation
methods of multiple time-varying parameters below. So this chapter is based on
[5–7] and other references. The method of estimating a time-varying parameter in
the nonlinear system in [5] is extended to the estimation of multiple time-varying
parameters in a dynamic system by using the principle of disturbance stripping in
the article [7]. The simulation studies showed that this method was also suitable for
the estimation of time-invariant parameters.

The content of this chapter is arranged as follows: The Section 2 simply intro-
duces the main idea of NSP and gives detail proof of it. The Section 3 puts forward
an estimation method that contains multiple time-varying parameters in a nonlinear
system. It describes the applicable objects of this kind of parameter estimation
method, and gives a design of a specific state observer. Theoretical analysis and
simulation research verifies the feasibility of the method. Section 4 summarizes the
research methods and results presented in this chapter.

2. The main idea of NSP

The PID control method applies the error E tð Þ between the reference input and
observation. The PID control is the linear combination of the error, its differential
and its integration. That is

u tð Þ ¼ kPE tð Þ þ kI
ðt
t0
E τð Þdτ þ kD _E tð Þ (1)

where kP, kI, kD are design parameters, E tð Þ is the error, _E tð Þ is the differential of
the error,

Ð t
t0
E τð Þdτ is the integration of the error, t0 is the intial time.

The theory analysis and large applications showed that the PID control u often
had the conflict in fast and overshoot. Luckily, the nonlinear PID could solve this
problem [8], which used the nonliner function such as sat funtion, fal function.
It was the nonlinear combination of the error, its difference and its integration. At
the same time, it also applied the nonlinear tracking-differentiator to filter the noise
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of the observation, and got the differential of the signal which may be not differen-
tiable. The detail of this nonlinear PID controller can be seen in [8].

Basd on the idea of the extended PID controller, the NSP thought was proposed
[6, 10, 12, 13]. They found that the integration of the error in the extended PID
controller could stripping the unknown item in the complex systems. So we could
use the NSP to deal with the system with unknown parts. The basic conclusion to be
used in the following analysis, which is the most important thought in NSP involved
in [6, 10, 12, 13]. The core idea will be simplified here, given in the form of a
lemma, and with detailed proof.

Lemma 1 If the dynamic process μ tð Þ takes the following form:

_μ tð Þ ¼ �γsign σ tð Þð Þ, ∣μ tð Þ∣ ≤ 1, ∣μ t0ð Þ∣ ≤ 1

�ωμ tð Þ, ∣μ tð Þ∣> 1

�
(2)

where σ tð Þ ¼ g tð Þ þ kμ tð ÞÐ tt0 ∣e τð Þ∣dτ, e tð Þ is the difference between the state
observer system and the original system (which is x as mentioned below), g tð Þ is the
unknown quantity with the known variation range, γ >0, ω>0 is the undetermined
constant. When the condition

k> sup
t≥ t0

g tð ÞÐ t
t0
∣e τð Þ∣dτ

�����

����� (3)

is satisfied, there will be a finite time t0, if t> t0, then σ tð Þ � 0. ■
Proof: Let us prove it by contradiction method. It is supposed that when t> t0,

σ tð Þ is not always 0.
Assuming that there is a certain moment σ tð Þ 6¼ 0, we might set σ tð Þ>0 by the

local scope. From the formula (2), there is _μ tð Þ ¼ �γ. The integral on both sides
about time t is calculated, and we obtained:

ðt
t0
_μ τð Þdτ ¼

ðt
t0
�γð Þdτ

μ tð Þ � μ t0ð Þ ¼ �γ t� t0ð Þ
μ tð Þ ¼ μ t0ð Þ � γ t� t0ð Þ

(4)

Figure 1.
Local changes of μ tð Þ over time.
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teristics of fast convergence with less chatter. The reference [6] gave a method of
combining binary control with nonlinear PID controller, and conducted a rigorous
theoretical proof. Then it was extended to the regulation of high-level systems, and
the principle of disturbance stripping [7] for the regulation of complex network
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methods of multiple time-varying parameters below. So this chapter is based on
[5–7] and other references. The method of estimating a time-varying parameter in
the nonlinear system in [5] is extended to the estimation of multiple time-varying
parameters in a dynamic system by using the principle of disturbance stripping in
the article [7]. The simulation studies showed that this method was also suitable for
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The content of this chapter is arranged as follows: The Section 2 simply intro-
duces the main idea of NSP and gives detail proof of it. The Section 3 puts forward
an estimation method that contains multiple time-varying parameters in a nonlinear
system. It describes the applicable objects of this kind of parameter estimation
method, and gives a design of a specific state observer. Theoretical analysis and
simulation research verifies the feasibility of the method. Section 4 summarizes the
research methods and results presented in this chapter.

2. The main idea of NSP

The PID control method applies the error E tð Þ between the reference input and
observation. The PID control is the linear combination of the error, its differential
and its integration. That is

u tð Þ ¼ kPE tð Þ þ kI
ðt
t0
E τð Þdτ þ kD _E tð Þ (1)

where kP, kI, kD are design parameters, E tð Þ is the error, _E tð Þ is the differential of
the error,

Ð t
t0
E τð Þdτ is the integration of the error, t0 is the intial time.

The theory analysis and large applications showed that the PID control u often
had the conflict in fast and overshoot. Luckily, the nonlinear PID could solve this
problem [8], which used the nonliner function such as sat funtion, fal function.
It was the nonlinear combination of the error, its difference and its integration. At
the same time, it also applied the nonlinear tracking-differentiator to filter the noise

114

Control Based on PID Framework - The Mutual Promotion of Control and Identification…

of the observation, and got the differential of the signal which may be not differen-
tiable. The detail of this nonlinear PID controller can be seen in [8].

Basd on the idea of the extended PID controller, the NSP thought was proposed
[6, 10, 12, 13]. They found that the integration of the error in the extended PID
controller could stripping the unknown item in the complex systems. So we could
use the NSP to deal with the system with unknown parts. The basic conclusion to be
used in the following analysis, which is the most important thought in NSP involved
in [6, 10, 12, 13]. The core idea will be simplified here, given in the form of a
lemma, and with detailed proof.

Lemma 1 If the dynamic process μ tð Þ takes the following form:

_μ tð Þ ¼ �γsign σ tð Þð Þ, ∣μ tð Þ∣ ≤ 1, ∣μ t0ð Þ∣ ≤ 1

�ωμ tð Þ, ∣μ tð Þ∣> 1

�
(2)

where σ tð Þ ¼ g tð Þ þ kμ tð ÞÐ tt0 ∣e τð Þ∣dτ, e tð Þ is the difference between the state
observer system and the original system (which is x as mentioned below), g tð Þ is the
unknown quantity with the known variation range, γ >0, ω>0 is the undetermined
constant. When the condition

k> sup
t≥ t0

g tð ÞÐ t
t0
∣e τð Þ∣dτ

�����

����� (3)

is satisfied, there will be a finite time t0, if t> t0, then σ tð Þ � 0. ■
Proof: Let us prove it by contradiction method. It is supposed that when t> t0,

σ tð Þ is not always 0.
Assuming that there is a certain moment σ tð Þ 6¼ 0, we might set σ tð Þ>0 by the

local scope. From the formula (2), there is _μ tð Þ ¼ �γ. The integral on both sides
about time t is calculated, and we obtained:

ðt
t0
_μ τð Þdτ ¼

ðt
t0
�γð Þdτ

μ tð Þ � μ t0ð Þ ¼ �γ t� t0ð Þ
μ tð Þ ¼ μ t0ð Þ � γ t� t0ð Þ

(4)

Figure 1.
Local changes of μ tð Þ over time.
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Knowing from the definition of μ tð Þ that ∣μ tð Þ∣ ≤ 1, and _μ tð Þ ¼ �γ≤0, so at a
certain moment t1, as shown in the Figure 1, once μ tð Þ reaches the value �sign σ tð Þð Þ,
there is μ tð Þ � �sign σ tð Þð Þ (i.e. _μ tð Þ ¼ 0). Otherwise, it contradicts _μ tð Þ≤0.

Here, t1 is found in the following method. Let t ¼ t1, we have

μ t1ð Þ ¼ μ t0ð Þ � γ t1 � t0ð Þ ¼ �1 (5)

Then there is

t1 ¼ t0 þ 1þ μ t0ð Þ
γ

≤ t0 þ 2
γ

(6)

So when t> t0 þ 2
γ, there is t> t1, there must be μ tð Þ � �sign σ tð Þð Þ. By σ tð Þ ¼

g tð Þ þ kμ tð ÞÐ tt0 ∣e τð Þ∣dτ, then

σ tð Þ ¼ g tð Þ þ kμ tð Þ
ðt
t0
∣e τð Þ∣dτ

¼ g tð Þ � ksign σ tð Þð Þ
ðt
t0
∣e τð Þ∣dτ

(7)

Then,

σ2 tð Þ ¼ σ tð Þ g tð Þ � ksign σ tð Þð Þ
ðt
t0
je τð Þjdτ

� �

¼ σ tð Þg tð Þ � k∣σ tð Þ∣
ðt
t0
∣e τð Þ∣dτ

≤ ∣σ tð Þkg tð Þ∣� k∣σ tð Þ∣
ðt
t0
∣e τð Þ∣dτ

(8)

Figure 2.
Overall changes of μ tð Þ over time.
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From the condition (3), we know that σ tð Þ2 <0, it leads a contradictory. When
σ tð Þ<0, the contradiction can be derived in the same way, and the overall change of
μ tð Þ will be shown in Figure 2. In summary, the conclusion is established. ■

3. Estimation of multiple time-varying parameters based on the new
stripping principle

The new stripping principle (NSP) in control theory can be effectively to deal
with the interactive influence of nodes in complex network systems. Based on this,
we use it to strip the unknown disturbance problem in the extended state observer
in the time-varying parameter estimation. Therefore, this section proposes an
estimation method for multiple time-varying parameters based on the combination
of the NSP with the state observer.

3.1 The statement of the problem

The following system with multiple parameters, and the system itself is highly
coupled, as shown in the following system:

_x1 ¼ f 1 x1, x2, … , xn, θ1ð Þ
_x2 ¼ f 2 x1, x2, … , xn, θ2ð Þ

⋮
_xn ¼ f n x1, x2, … , xn, θnð Þ
y ¼ x ¼ x1, x2, … , xn½ �T

8>>>>>><
>>>>>>:

(9)

where _x means the derivate function of x with respect to time t. For this type of
coupling problem, the method of NSP was proposed ([7, 9–11]). If xi i ¼ 1, 2,⋯, nð Þ
is regarded as the interconnected nodes in the network, then the system (9) repre-
sents each different network node and the relationship among them. This kind of
problems are common in real life, such as WeChat, QQ, Sina Weibo etc. in social
networking tools. For example, a complex social system is formed through mutual
attention and friendship between people, so here the individual xi is one of them,
f i x1, x2, … , xn, θið Þ is the interaction (such as relations or research works) among xi,
there are also other network problems like this.

There are always more or less unknowns in the modeling of such problems,
which need to be estimated by using known information, which is the multi-
parameter estimation problem to be analyzed in this section.

Assuming that ∂ f i
∂θi

6¼ 0, the following subsection uses the method of combining
state observer with NSP to study the parameter estimation method. Specific
parameter estimation methods, the convergence analysis and simulation research
are described in detail in the following subsections respectively.

3.2 Parameter estimation method

This subsection discusses the parameter estimation method based on the
combination of the state observer with the new stripping principle. We need to
use the state observer to solve the parameter estimation problem, and we consider
the time-varying parameters and time-invariant parameters as well.

Firstly, we extend the unknown parameters in the system (9) to states:
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From the condition (3), we know that σ tð Þ2 <0, it leads a contradictory. When
σ tð Þ<0, the contradiction can be derived in the same way, and the overall change of
μ tð Þ will be shown in Figure 2. In summary, the conclusion is established. ■

3. Estimation of multiple time-varying parameters based on the new
stripping principle

The new stripping principle (NSP) in control theory can be effectively to deal
with the interactive influence of nodes in complex network systems. Based on this,
we use it to strip the unknown disturbance problem in the extended state observer
in the time-varying parameter estimation. Therefore, this section proposes an
estimation method for multiple time-varying parameters based on the combination
of the NSP with the state observer.

3.1 The statement of the problem

The following system with multiple parameters, and the system itself is highly
coupled, as shown in the following system:

_x1 ¼ f 1 x1, x2, … , xn, θ1ð Þ
_x2 ¼ f 2 x1, x2, … , xn, θ2ð Þ

⋮
_xn ¼ f n x1, x2, … , xn, θnð Þ
y ¼ x ¼ x1, x2, … , xn½ �T

8>>>>>><
>>>>>>:

(9)

where _x means the derivate function of x with respect to time t. For this type of
coupling problem, the method of NSP was proposed ([7, 9–11]). If xi i ¼ 1, 2,⋯, nð Þ
is regarded as the interconnected nodes in the network, then the system (9) repre-
sents each different network node and the relationship among them. This kind of
problems are common in real life, such as WeChat, QQ, Sina Weibo etc. in social
networking tools. For example, a complex social system is formed through mutual
attention and friendship between people, so here the individual xi is one of them,
f i x1, x2, … , xn, θið Þ is the interaction (such as relations or research works) among xi,
there are also other network problems like this.

There are always more or less unknowns in the modeling of such problems,
which need to be estimated by using known information, which is the multi-
parameter estimation problem to be analyzed in this section.

Assuming that ∂ f i
∂θi

6¼ 0, the following subsection uses the method of combining
state observer with NSP to study the parameter estimation method. Specific
parameter estimation methods, the convergence analysis and simulation research
are described in detail in the following subsections respectively.

3.2 Parameter estimation method

This subsection discusses the parameter estimation method based on the
combination of the state observer with the new stripping principle. We need to
use the state observer to solve the parameter estimation problem, and we consider
the time-varying parameters and time-invariant parameters as well.

Firstly, we extend the unknown parameters in the system (9) to states:
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_xi ¼ f 1 x1, x2, … , xn, xnþið Þ
_xnþi ¼ gi tð Þ, i ¼ 1, … , nð Þ

�
(10)

That is to say, the parameter θi is extended to the system state xnþi, i ¼ 1, … , n.
Then a state observer is built for the extended system (10):

_̂xi ¼ f 1 x̂1, x̂2, … , x̂n, x̂nþið Þ þ li tð Þ
_̂xnþi ¼ lnþi tð Þ, i ¼ 1, … , nð Þ

(
(11)

where li tð Þ i ¼ 1, … , nð Þ is the function to be designed. Let the error x ¼ x� x̂,
then the error system of the established state observer is as follows:

_xi ¼ f 1 x1, x2, … , xn, xnþið Þ � f 1 x̂1, x̂2, … , x̂n, x̂nþið Þ � li tð Þ
_xnþi ¼ gi tð Þ � lnþi tð Þ, i ¼ 1, … , nð Þ

(
(12)

Next, we need to design li tð Þ to make the error system (12) asymptotically stable.
The choice of li tð Þ equivalents to the control problem of the uncertain system (12).
We design the control items li tð Þ i ¼ 1, … , 2nð ) according to the error of the states,
so that the error system (12) is asymptotically stable to zero.

Regarding the relevant conclusions of the estimation problem with multiple
time-varying parameters in a nonlinear system, we present it in the form of the
following theorem and give a stability analysis.

Theorem 1 If the system (10) satisfies f i (i=1,2,...,n) is differentiable, and
∂ f i
∂xnþi

6¼ 0 (i=1,2,...,n), take the error feedback li tð Þ in the following form:

li tð Þ ¼
Pn
j¼1

kijsign x j
� �

lnþi tð Þ ¼ lnþi,1 tð Þ þ lnþi,2 tð Þ
lnþi,1 tð Þ ¼ kiμ1i tð Þ

Ð t
t0
∣xi τð Þ∣dτ

lnþi,2 tð Þ ¼ knþi,i∣ui tð Þ∣xisign ∂ f i
∂xnþi

� �

i ¼ 1, … , n

8>>>>>>>>>><
>>>>>>>>>>:

(13)

where ui tð Þ ¼ μi tð Þ b1i Ei1 tð Þj jαi þ b2i Ei2 tð Þj jαið Þ, μ1i tð Þ is determined by binary
control as follows:

_μ1i tð Þ ¼
�γ1isign σ1i tð Þð Þ, ∣μ1i tð Þ∣ ≤ 1, ∣μ1i t0ð Þ∣ ≤ 1

�ω1iμ1i tð Þ, ∣μ1i tð Þ∣> 1

�
(14)

where σ1i tð Þ ¼ gi tð Þ � lnþi,1 tð Þ ¼ _xnþi tð Þ þ lnþi,2 tð Þ≐ kdi€xi tð Þ þ lnþi,2 tð Þ. μi tð Þ is
determined by binary control as follows:

_μi tð Þ ¼
�γisign σi tð Þð Þ, ∣μi tð Þ∣ ≤ 1, ∣μi t0ð Þ∣ ≤ 1

�ωiμi tð Þ, ∣μi tð Þ∣> 1

�
(15)

where σi tð Þ ¼ Ei1 tð Þ þ ciEi2 tð Þ, k nþið Þ,i is greater than 0, so here it is set that the

upper bound of k nþið Þ,i∣ui∣=
∂ f i
∂xnþi

� �
is Km. kdi, kij, ω1i, ωi, ci are all greater than 0, γi, b1i

and b2i are design parameters in the formula (5.16) and formula (5.17) in Ref. [6],
0< αi ≤ 1, i, j ¼ 1, … , n. The design parameters ki, γ1i respectively satisfy:
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ki > sup
t≥ t0

gi tð ÞÐ t
t0
∣xi τð Þ∣dτ

�����

����� i ¼ 1, 2, … , n (16)

γ1i > sup
t≥ t0

ki∣xi tð Þ∣þ _g tð Þ
ki
Ð t
t0
∣xi τð Þ∣dτ

�����

����� i ¼ 1, 2, … , n (17)

Then the system (11) can be used as an observer of the extended system (10),
and there is the results as follows:

lim
t!∞

x̂i tð Þ ¼ xi tð Þ, i ¼ 1, … , 2n: (18)

■
Now we prove the theorem 1 according to the lemma 1.
If f i x1, x2, … , xn, xnþið Þ � f i x̂1, x̂2, … , x̂n, x̂nþið Þ can be approximately expanded

to
Pn

j¼1
∂ f i
∂x j

x j þ ∂ f i
∂xnþi

xnþi by Taylor expansion. Select proper li tð Þ i ¼ 1, … , nð Þ to
restrain the main part of ∂ f i

∂x j
x j j ¼ 1, … , nð Þ. Then the error system (12) will become

the following ones:

_xi ¼
Pn
j¼1

∂ f i
∂x j

x j þ ∂ f i
∂xnþi

xnþi � li tð Þ

_xnþi ¼ gi tð Þ � lnþi tð Þ, i ¼ 1, … , nð Þ

8><
>:

(19)

At this point, the problem is transformed into a control problem of the system (19).
Known from the conditions that σ1i tð Þ ¼ gi tð Þ � lnþi,1 tð Þ ¼ _xnþi þ lnþi,2 tð Þ

(i=1,2,...,n). Because the actual value of the parameter θi i ¼ 1, 2, … , nð Þ is unknown,
so _xnþi i ¼ 1, 2, … , nð Þ are also unknown. In order to estimate unknown parameters,
it is necessary to find the equivalent or related quantities of _xnþi. From the formula

(19), xnþi is related to _xi, And
∂ f i
∂xnþi

is bounded, the observer designed here with kdi€xi
instead of _xnþiin σ1i tð Þ, where kdi is a design parameter. _xnþi can also be replaced
with other function forms of €xi.

According to the lemma 1, when the conditions (16) and (17) are satisfied, it can
be obtained that gi tð Þ � lnþi,1 tð Þ � 0 i ¼ 1, … , nð Þ when the time reaches a certain
moment, so the error system (12) is approximately equivalent to the following
system without unknown g tð Þ:

_xi ¼ ∂ f i
∂xnþj

xnþj

_xnþi ¼ �lnþi,2 tð Þ, i ¼ 1, … , nð Þ

8><
>:

(20)

Since σi tð Þ ¼ Ei1 tð Þ þ ciEi2 tð Þ (i=1,2,...,n), according to the lemma 1, when the
design parameters b1i, b2i, γi (i=1,2,...,n) satisfied the conditions that the formula
(5.16) and formula (5.17) in Ref. [6], and the time is greater than a certain moment,
there will be σi tð Þ ¼ Ei1 tð Þ þ ciEi2 tð Þ ¼ 0, namely:

xi þ ci _xi ¼ 0 i ¼ 1, … , nð Þ (21)

For analyzing the stability of the error systems, the following Lyapunov function
for the system (20) were constructed:
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8>>>>>>>>>><
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�����
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�����
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8><
>:

(19)

At this point, the problem is transformed into a control problem of the system (19).
Known from the conditions that σ1i tð Þ ¼ gi tð Þ � lnþi,1 tð Þ ¼ _xnþi þ lnþi,2 tð Þ

(i=1,2,...,n). Because the actual value of the parameter θi i ¼ 1, 2, … , nð Þ is unknown,
so _xnþi i ¼ 1, 2, … , nð Þ are also unknown. In order to estimate unknown parameters,
it is necessary to find the equivalent or related quantities of _xnþi. From the formula

(19), xnþi is related to _xi, And
∂ f i
∂xnþi

is bounded, the observer designed here with kdi€xi
instead of _xnþiin σ1i tð Þ, where kdi is a design parameter. _xnþi can also be replaced
with other function forms of €xi.
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be obtained that gi tð Þ � lnþi,1 tð Þ � 0 i ¼ 1, … , nð Þ when the time reaches a certain
moment, so the error system (12) is approximately equivalent to the following
system without unknown g tð Þ:

_xi ¼ ∂ f i
∂xnþj

xnþj

_xnþi ¼ �lnþi,2 tð Þ, i ¼ 1, … , nð Þ

8><
>:

(20)

Since σi tð Þ ¼ Ei1 tð Þ þ ciEi2 tð Þ (i=1,2,...,n), according to the lemma 1, when the
design parameters b1i, b2i, γi (i=1,2,...,n) satisfied the conditions that the formula
(5.16) and formula (5.17) in Ref. [6], and the time is greater than a certain moment,
there will be σi tð Þ ¼ Ei1 tð Þ þ ciEi2 tð Þ ¼ 0, namely:

xi þ ci _xi ¼ 0 i ¼ 1, … , nð Þ (21)

For analyzing the stability of the error systems, the following Lyapunov function
for the system (20) were constructed:
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Vi ¼ 1
2

Kmx2i þ x2nþi

� �
i ¼ 1, … , nð Þ (22)

It is easy to know that, except for the origin, Vi >0 i ¼ 1, … , nð Þ. Let us analyze
the derivative function of Vi with respect to time,

_Vi ¼ Kmxi _xi þ xnþi _xnþi

¼ Kmxi _xi þ knþi,i∣ui∣xisign
∂ f i
∂xnþi

� �
xnþi

¼ Kmxi _xi þ knþi,i∣ui∣xi _xi= j∂ f i=∂xnþij
� �

¼ Km � knþi,ijuij= j∂ f i=∂xnþij
� �� �

xi _xi
i ¼ 1, … , nð Þ

(23)

From the formula (21),

_Vi ¼ �ci Km � knþi,ijuij=j ∂ f i
∂xnþi

j
� �

_x
2
i i ¼ 1, … , nð Þ (24)

Known by the condition knþi,i∣ui∣=
∂ f i
∂xnþi

has an upper bound Km, then
_Vi <0 i ¼ 1, … , nð Þ.

In summary, when the time is greater than a certain moment, x̂i, x̂nþi can be
used as the estimation of xi, θi i ¼ 1, … , nð Þ respectively. During this progress, there
is nothing to do with the specific form of g tð Þ. ■

Remark 1 When the parameter is a time-invariant parameter, it is easy to prove
that the theorem 1 still works. Because at this time the expanded states gi tð Þ ¼
0 i ¼ 1, … , nð Þ in the (10), then we can take lnþi,1 tð Þ ¼ 0 i ¼ 1, … , nð Þ in our control
law.■

The subsection focuses on the estimation problem of multiple time-varying
parameters in general nonlinear systems. A parameter estimation method based on
the combination of the state observer with the new stripping principle is given.
Stability analysis is also carried out. The following simulation studies further verify
the effectiveness of the parameter estimation method proposed in this subsection.

3.3 Simulation analysis

This subsection simulates the parameter estimation method proposed in the
previous subsection. We have studied the estimation of a single time-varying and
time-invariant parameter, and the estimation of multiple time-varying and time-
invariant parameters in a dynamic system respectively. We also consider whether
the observation contains observation noise or not. Further verify the robustness of
the parameter estimation method.

3.3.1 Single parameter estimation simulation analysis

Example 1 We choose the nonlinear system as follow (that is, example 2
in Ref. [5]):

_x ¼ �∣x∣θ þ xþ cosθ (25)

Here, we assume that the true value of the unknown parameter changes with
time θ ¼ 1þ sin 2tð Þ, and the initial state of the system is x 0ð Þ ¼ 2.
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According to the system (25), there is ∂f
∂θ ¼ �∣x∣� sinθ. The situation that x and θ

are both 0 almost never exists, so it can be considered that the condition ∂f
∂θ 6¼ 0 is

established.
Next, the extended state system based on the parameter estimation method is

described as below:

_x1 ¼ �∣x1∣x2 þ x1 þ cosx2 ¼ f x1, x2, tð Þ
_x2 ¼ g1 tð Þ

�
(26)

We design its observer as follows:

_̂x1 ¼ f x̂1, x̂2, tð Þ þ k11sign y� x̂1ð Þ
_̂x2 ¼ k1μ11

Ð t
t0
∣x1 τð Þ∣dτ þ k21∣u1∣x1sign

∂f
∂x2

���
x̂1,x̂2

��
8><
>:

(27)

The design of μ11 and u1 is shown in the theorem 1, here we will not repeat them
again.

Firstly, we consider the case where the observation does not contain noise.
Set the design parameters in the simulation analysis as k1 ¼ 0:1, kd1 ¼ 0:1, k11 ¼ 40,
k21 ¼ 10, b11 ¼ 1, b12 ¼ 10, α1 ¼ 0:5, c1 ¼ 1, ω11 ¼ ω1 ¼ 3, γ11 ¼ γ1 ¼ 10, μ11 0ð Þ ¼
μ1 0ð Þ ¼ 0. Suppose that the initial state of the state observer is 0, 0ð Þ. We get the
estimation of the states and parameters and the estimation errors are shown in the
Figure 3, the estimation results are satisfied. And after a certain period of time
(for example, this simulation is about 7 seconds), the estimated errors of the states
and parameters can be controlled within 10�2.

Figure 3.
The case with single parameter and the observation without noise: states, time-varying parameters estimation
and estimation errors based on NSP.
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Here, we assume that the true value of the unknown parameter changes with
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∂θ ¼ �∣x∣� sinθ. The situation that x and θ

are both 0 almost never exists, so it can be considered that the condition ∂f
∂θ 6¼ 0 is
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described as below:
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�
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We design its observer as follows:
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8><
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μ1 0ð Þ ¼ 0. Suppose that the initial state of the state observer is 0, 0ð Þ. We get the
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Figure 3, the estimation results are satisfied. And after a certain period of time
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Consider when the observation of the system (25) contains noise, for example,
there is noise in the observation that obeys uniformly distributed in �0:001, 0:001½ �,
that is, y tð Þ ¼ x tð Þ þ E tð Þ, where E tð Þ � U �0:001, 0:001½ �. Under these circumstances,
design parameters are still taken as k1 ¼ 0:001, kd1 ¼ 0:01, k11 ¼ 40, k21 ¼ 10, b11 ¼
1, b12 ¼ 10, α1 ¼ 0:5, c1 ¼ 1, ω11 ¼ ω1 ¼ 3, γ11 ¼ γ1 ¼ 10, μ11 0ð Þ ¼ μ1 0ð Þ ¼ 0, and
suppose that the initial state of the state observer is 0, 0ð Þ. The estimation errors of
the state and parameter are shown in the Figure 4. Where the estimation error of the
state is 10�3, which is larger than the estimation error without noise. The parameter
estimation error controlled within 2� 10�2 is larger than the parameter estimation
error without noise as well.

Previously, we studied the estimation problem based on the principle of distur-
bance stripping for the estimation of a single time-varying parameter, and then we
will analyze the situation that the unknown parameter does not change with time.

Example 2 This example is still focusing on the nonlinear system of the
system (25):

_x ¼ �∣x∣θ þ xþ cosθ (28)

It is assumed here that the true value of θ is a constant θ ¼ 1 that does not change
with time, and the initial state value is x 0ð Þ ¼ 2.

In the simulation analysis, the parameters are time-invariant, so g1 tð Þ ¼ 0,
the feedback item l21 can be ignored, and the design parameters k1 ¼ 0, kd1 ¼ 0,
k11 ¼ 40, k21 ¼ 10, b11 ¼ 1, b12 ¼ 10, α1 ¼ 0:5, c1 ¼ 1, ω11 ¼ ω1 ¼ 3, γ11 ¼ γ1 ¼ 10,
μ11 0ð Þ ¼ μ1 0ð Þ ¼ 0. Suppose that the initial state of the state observer is 0, 0ð Þ.
The state and parameter estimation and estimation errors are shown in the Figure 5.

Figure 4.
The case with single parameter and the observation with noise: states, time-varying parameters estimation and
estimation errors based on NSP.
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The simulation shows that the state and parameters have close to the true value
within 1 second, the estimation error can be controlled within 10�2 within 5 sec-
onds, and the state estimation converges to the true state value faster due to the
effect of error feedback.

When there is noise in the observation of the system (25), for example, the
observation contains uniformly distributed noise that obeys �0:001, 0:001½ �. That
is, y tð Þ ¼ x tð Þ þ E tð Þ, where E tð Þ � U �0:001, 0:001½ �. Under these circumstances,
the design parameters in simulation analysis are still taken as k1 ¼ 0, kd1 ¼ 0, k11 ¼
40, k21 ¼ 10, b11 ¼ 1, b12 ¼ 10, α1 ¼ 0:5, c1 ¼ 1, ω11 ¼ ω1 ¼ 3, γ11 ¼ γ1 ¼ 10,
μ11 0ð Þ ¼ μ1 0ð Þ ¼ 0. Suppose the initial state of the state observer is 0, 0ð Þ. The
estimated errors of the parameters and states are shown in Figure 6, the estimation
error of the state is 10�3, which is more than the estimation error without noise.
However, the parameter estimation error is larger than the parameter estimation
without noise, but the estimation error can still be controlled within 2� 10�2.

In summary, this subsection studies the application of parameter estimation
methods based on the combination of NSP with state observer in the estimation of
single parameters of nonlinear systems. This subsection not only analyzed the two
cases of time-invariant and time-varying parameters through simulation, but also
analyzed the situation that the observations of the system include observation noise.
In these simulation studies, based on the preliminary adjusted design parameters,
when analyzing the time-varying and time-invariant parameters, and the presence
or absence of observation noise, the design parameters were basically not changed,
but the simulation results show that the state and parameters in the observer (27)
can asymptotically converge to the true value. These studies show the feasibility and
robustness of the combination of the state observer with the stripping principle in
the single parameter estimation of nonlinear systems.

Figure 5.
The case with single parameter and the observation without noise: states, time-varying parameters estimation
and estimation errors based on NSP.
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The simulation shows that the state and parameters have close to the true value
within 1 second, the estimation error can be controlled within 10�2 within 5 sec-
onds, and the state estimation converges to the true state value faster due to the
effect of error feedback.

When there is noise in the observation of the system (25), for example, the
observation contains uniformly distributed noise that obeys �0:001, 0:001½ �. That
is, y tð Þ ¼ x tð Þ þ E tð Þ, where E tð Þ � U �0:001, 0:001½ �. Under these circumstances,
the design parameters in simulation analysis are still taken as k1 ¼ 0, kd1 ¼ 0, k11 ¼
40, k21 ¼ 10, b11 ¼ 1, b12 ¼ 10, α1 ¼ 0:5, c1 ¼ 1, ω11 ¼ ω1 ¼ 3, γ11 ¼ γ1 ¼ 10,
μ11 0ð Þ ¼ μ1 0ð Þ ¼ 0. Suppose the initial state of the state observer is 0, 0ð Þ. The
estimated errors of the parameters and states are shown in Figure 6, the estimation
error of the state is 10�3, which is more than the estimation error without noise.
However, the parameter estimation error is larger than the parameter estimation
without noise, but the estimation error can still be controlled within 2� 10�2.

In summary, this subsection studies the application of parameter estimation
methods based on the combination of NSP with state observer in the estimation of
single parameters of nonlinear systems. This subsection not only analyzed the two
cases of time-invariant and time-varying parameters through simulation, but also
analyzed the situation that the observations of the system include observation noise.
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when analyzing the time-varying and time-invariant parameters, and the presence
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3.3.2 Multiple parameter estimation simulation analysis

This subsection will study the simulation results with multiple parameter
estimates in the dynamic process.

Example 3 Consider the following nonlinear system with two unknown
parameters:

_x1 ¼ 5θ1x2
_x2 ¼ �θ2cosx22 � 3x1
y1 ¼ x1
y2 ¼ x2

8>>><
>>>:

(29)

Here, we assume that the true value of the unknown parameter changes with
time θ1 ¼ sin 2tð Þ, θ2 ¼ cos 2tð Þ, and θ1 0ð Þ ¼ 1, θ2 0ð Þ ¼ 1, the initial state of the
system is x 0ð Þ ¼ 5:4,�1:4ð Þ. In this example, θ1, θ2 are unknown parameters.
According to the parameter estimation method, the unknown parameters are
extended to the state, and we obtain the following extended state system:

_x1 ¼ 5x3x2
_x2 ¼ �x4cosx22 � 3x1
_x3 ¼ g1 tð Þ
_x4 ¼ g2 tð Þ

8>>><
>>>:

(30)

where g1 tð Þ, g2 tð Þ are unknown functions of time t.
The state observer of the above system is established as follows:

Figure 6.
The observation contains noise: Statse, time-invariant parameters estimation and estimation errors based on
NSP.
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_̂x1 ¼ 5x̂3x̂2 þ l1
_̂x2 ¼ �x̂4 cos x̂22 � 3x̂1 þ l2
_̂x3 ¼ l3 ¼ l31 þ l32
_̂x4 ¼ l4 ¼ l41 þ l42

8>>>>><
>>>>>:

(31)

Let x1 ¼ y1 � x̂1, x2 ¼ y2 � x̂2, where li is set as follows:

l1 ¼ k11sign x1ð Þ þ k12sign x2ð Þ
l2 ¼ k21sign x1ð Þ þ k22sign x2ð Þ
l31 ¼ k1μ11

Ð t
0∣x1 τð Þ∣dτ

l32 ¼ k31∣u1∣x1sign
∂ f 1
∂x3

� �

l41 ¼ k2μ12
Ð t
0∣x2 τð Þ∣dτ

l42 ¼ k42∣u2∣x2sign
∂ f 2
∂x4

� �

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

(32)

The design of μ11, μ12, u1 and u2 is shown in the theorem 1.
We consider the case that the observation does not contain noise first. By using

the design of the aforementioned observer (31), design parameters in simulation
analysis are as k1 ¼ k2 ¼ 0:01, kd1 ¼ kd2 ¼ 0:1, ω11 ¼ ω12 ¼ 3, γ11 ¼ γ12 ¼ 10,
k11 ¼ 15, k21 ¼ 0:1, k12 ¼ 0:1, k22 ¼ 1, k31 ¼ 50, k42 ¼ 50, b11 ¼ b21 ¼ 15,
b12 ¼ b22 ¼ 25, α1 ¼ α2 ¼ 0:5, c1 ¼ c2 ¼ 5, ω1 ¼ 5, ω2 ¼ 0:55, γ1 ¼ 10, γ2 ¼ 150,
μ1 0ð Þ ¼ μ2 0ð Þ ¼ 0. Suppose the initial state of the state observer is 0, 0ð Þ. We obtain
the following states, parameters estimation and estimation errors as shown in
Figure 7.

When the observation of the system (29) contains noise, for example, the
observation contains noise that obeys uniformly distribute in �0:001, 0:001½ �,
namely y tð Þ ¼ x tð Þ þ E tð Þ, where E tð Þ � U �0:001, 0:001½ �. In this case, the design
parameters are the same as the above, and the estimated error of the states and
parameters are shown in Figure 8.

Simulation results in Figures 7 and 8 show that the observer designed in this
section is applicable to the estimation of time-varying parameters and it has certain
robustness to noise. The estimation error of the state is similar either with or
without observation noise. For parameter estimation, when there is no noise in the
observation, the parameter estimation error is controlled within 5� 10�2, but when
there is noise in the observation, the parameter estimation effect of θ2 is not ideal,
and the design parameters need to be adjusted appropriately to obtain the more
accurate estimation value.

We have studied the estimation of multiple time-varying parameters based on
the principle of disturbance stripping above. The following will analyze the situa-
tion where the unknown parameters do not change with time.

Example 4 This example is still researching the system (29):

_x1 ¼ 5θ1x2

_x2 ¼ �θ2cosx22 � 3x1

y1 ¼ x1

y2 ¼ x2

8>>>><
>>>>:

(33)
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The design of μ11, μ12, u1 and u2 is shown in the theorem 1.
We consider the case that the observation does not contain noise first. By using
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k11 ¼ 15, k21 ¼ 0:1, k12 ¼ 0:1, k22 ¼ 1, k31 ¼ 50, k42 ¼ 50, b11 ¼ b21 ¼ 15,
b12 ¼ b22 ¼ 25, α1 ¼ α2 ¼ 0:5, c1 ¼ c2 ¼ 5, ω1 ¼ 5, ω2 ¼ 0:55, γ1 ¼ 10, γ2 ¼ 150,
μ1 0ð Þ ¼ μ2 0ð Þ ¼ 0. Suppose the initial state of the state observer is 0, 0ð Þ. We obtain
the following states, parameters estimation and estimation errors as shown in
Figure 7.

When the observation of the system (29) contains noise, for example, the
observation contains noise that obeys uniformly distribute in �0:001, 0:001½ �,
namely y tð Þ ¼ x tð Þ þ E tð Þ, where E tð Þ � U �0:001, 0:001½ �. In this case, the design
parameters are the same as the above, and the estimated error of the states and
parameters are shown in Figure 8.

Simulation results in Figures 7 and 8 show that the observer designed in this
section is applicable to the estimation of time-varying parameters and it has certain
robustness to noise. The estimation error of the state is similar either with or
without observation noise. For parameter estimation, when there is no noise in the
observation, the parameter estimation error is controlled within 5� 10�2, but when
there is noise in the observation, the parameter estimation effect of θ2 is not ideal,
and the design parameters need to be adjusted appropriately to obtain the more
accurate estimation value.

We have studied the estimation of multiple time-varying parameters based on
the principle of disturbance stripping above. The following will analyze the situa-
tion where the unknown parameters do not change with time.

Example 4 This example is still researching the system (29):

_x1 ¼ 5θ1x2

_x2 ¼ �θ2cosx22 � 3x1

y1 ¼ x1

y2 ¼ x2

8>>>><
>>>>:

(33)
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Here we assume that the true value of the unknown parameter does not change
with time. Suppose that θ1 ¼ 1:4, θ2 ¼ �1:4, the initial state of the system is x 0ð Þ ¼
5:4,�1:4ð Þ.

Figure 7.
The case with two parameters and the observation without noise: states, time-varying parameters estimation
and estimation errors based on NSP.

Figure 8.
The case with two parameters and the observation with noise: states, time-varying parameters estimation and
estimation errors based on NSP.
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Figure 9.
The case with two parameters and the observation with noise: states, time-varying parameters estimation and
estimation errors based on NSP.

Figure 10.
The observation with noise: The states, time-invariant parameters estimation and estimation errors based on
NSP.
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For the estimation of time-invariant parameters, g1 tð Þ ¼ g2 tð Þ ¼ 0, so take l31 ¼
l41 ¼ 0. Take design parameters in simulation analysis k1 ¼ k2 ¼ 0, kd1 ¼ kd1 ¼ 0,
ω11 ¼ ω12 ¼ 0:35, γ11 ¼ γ12 ¼ 10, k11 ¼ k21 ¼ 10, k12 ¼ k22 ¼ 5, k31 ¼ k32 ¼ 15,
k41 ¼ k42 ¼ 10, b11 ¼ b21 ¼ 1, b12 ¼ b22 ¼ 25, α1 ¼ α2 ¼ 0:1, c1 ¼ c2 ¼ 6, ω1 ¼ ω2 ¼
0:35, γ1 ¼ 10, γ2 ¼ 15, μ1 0ð Þ ¼ mu2 0ð Þ ¼ 0. Suppose the initial state of the state
observer is 0, 0ð Þ. The state and parameter estimation, and estimation error
obtained by simulation are shown in Figure 9. The simulation result in Figure 9
shows that the above parameter method is still applicable to the estimation of
time-invariant parameters. We can see from the simulation results that the estima-
tion error of the state is controlled within 5� 10�3, and the estimation error of the
parameter estimation is controlled within 2� 10�2, or even better (see Figure 9
θ1 � θ̂1). If we tune the design parameters properly, we can get a more accurate
estimate.

When the observation of the system (29) contains noise, for example, there is
noise that obeys uniformly distribute in �0:001, 0:001½ �, that is, y tð Þ ¼ x tð Þ þ E tð Þ,
where E tð Þ � U �0:001, 0:001½ �. In this case, the design parameters are the same
as above, and the estimated errors of the states and parameters are shown in
Figure 10, where the estimated error of the states are controlled within 5� 10�3.
The parameter estimation error is larger than the parameter estimation error with-
out noise, but the parameter estimation error can still be controlled within 5� 10�2.

In summary, this section analyzes the estimation problem of multiple time-
varying parameters in nonlinear systems based on the parameter estimation method
combined the observer with the new stripping principle. Simulation research shows
that the parameter estimation method proposed this chapter can estimate multiple
time-varying parameters (this section only considers the estimation of two param-
eters), and the time-invariant and time-varying conditions of the parameters in the
analysis both illustrate the applicability of the parameter estimation method. In
addition, the simulation research on whether there is observation noise in the
observations verifies the robustness and feasibility of the parameter estimation
method proposed in this section.

4. Conclusions

This chapter studies the state observer method of nonlinear system parameter
estimation. When the unknown parameters have explicit expressions, we can use
the nonlinear tracking-differentiator-based method to estimate the parameters. The
unknown parameters which is relatively non-linear system in nonlinear form or is
not easy to express by explicit are main considered in this chapter. According to the
different characteristics of the parameters contained in the dynamic process, based
on the research of the existing literatures, this chapter proposes a new parameter
estimation method based on the state observer and NSP. The parameter estimation
method based on the combination of state observer with new stripping principle for
dynamic systems containing multiple time-varying parameters. This chapter not
only proves the feasibility of the method in theory, but also do the simulations. The
simulation results show that the design method can approximate the true value of
the parameter within a certain error range. The simulations also consider the pres-
ence or absence of observation noise. The simulation results not only show that the
parameter estimation method introduced in this chapter is robust to noise, but also
show the adaptability of the design parameters. Because it is found in the design
parameter adjustment that: adjusting the design parameters within a certain range
has little effect on the accuracy of parameter estimation, so in the adjustment of
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design parameters, according to the characteristics of the error system, the thought
and method of control system design can be used to give an approximate value to
make the state and the parameter converge, and it can also make fine adjustments to
make the estimated error meet the actual demand.
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