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Preface

Fractal analysis is becoming more and more common in all walks of life. This
includes biomedical engineering, steganography and art. Writing one book on all
these topics is a very difficult task. For this reason, this book covers only selected
topics. Interested readers will find in this book the topics of image compression,
groundwater quality, establishing the downscaling and spatio-temporal scale con-
version models of NDVI, modelling and optimization of 3T fractional nonlinear
generalized magneto-thermoelastic multi-material, algebraic fractals in steganogra-
phy, strain induced microstructures in metals and much more.

For example, one of the chapters covers the application of fractals to steganography.
As is well known, steganography includes the technology of hiding watermarks in
multimedia files. This technology is important in the field of copyright protection,
secret communication and the form of information exchange. Contemporary image
analysis and processing methods allow the determination of the presence of
embedded watermarks in a stegoimage on the basis of the original image and its
statistical features. In this chapter, the authors propose the use of algebraic fractals
for steganographic embedding of watermarks in colour images. The authors pro-
pose the use of algebraic fractals for an image serving as a secret key, which,
according to the authors, allows for more resistant deposition to computer attacks,
including compression.

In another chapter, the author describes the use of fractals to analyze the terrain
surface using remote sensing. The author created the downscaling models using
fractal theory for the parameters of the earth’s surface in quantitative remote sens-
ing. Additionally, it is still a hotspot for creating space-time conversion model
parameters of the land surface in quantitative remote sensing in the future and
marked in this connection, the author developed a multifractal scaling methodology
and its availability is proposed.

This book brings together a small collection of chapters covering specific aspects of
the fractal field. I would like to thank the publishers (IntechOpen) for their help in
preparing this book and the authors of the accepted manuscripts for their work and
patience. For interested readers, I would like to suggest that they pay attention to
the annual conferences on fractals and their use in various areas of life.

The book will definitely be of interest to scientists dealing with fractal analysis, as well
as biomedical engineers or IT engineers. I encourage you to view individual chapters.

Robert Koprowski
Faculty of Science and Technology,

University of Silesia,
Sosnowiec, Poland
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Chapter 1

Optimization of Fractal Image
Compression
Rafik Menassel

Abstract

Fractal encoding is a promising method of image compression. It is built on the
basis of the forms found in the image and the generation of repetitive blocks based
on mathematical translations. The technique seems to be moved theoretically and
practically, but it requires enormous programming time due to the excessive
resources required when compressing large volumes of data. On the other hand,
metaheuristics represent all of the methods used to solve difficult optimization
problems with less consumption of resources. They are marked by their rapid
convergence and their lessening in research difficulties. In this chapter, we have
tried to apply a new experience around the performance of organic metaheuristics
inspired by nature, which are, respectively, the wolf pack algorithm (WPA) and the
bat-inspired algorithm (BIA), as bioinspired techniques to optimize the fractal
image compression (FIC). Experiments show the enhancement of diverse charac-
teristics (coding time, compression rate (CR), peak signal-to-noise ratio (PSNR),
and mean square error (MSE)). In addition, an assessment of the proposed
approaches via many other approaches highlights this improvement.

Keywords: fractal image compression (FIC), metaheuristics, wolf pack algorithm
(WPA), bat-inspired algorithm (BIA), image quality

1. Introduction

Nowadays, a significant size of information is managed and transmitted, and
mainly, images have involved prodigious status, particularly in recognition field.
Thus, it is important to decrease the size of the data via compression algorithms
which can allow their storage and their transmission while using limited resources.
Compression is employed to overcome this problem and keep more files. Mainly
multimedia files need more storage space than other types of files. Images represent
the largest part of the most used multimedia files in almost all fields. Unlike other
types of files, a huge amount of image data requires more resources for storage and
transmission on computer networks, and compression is therefore presented as an
inevitable tool with the aim of more maneuverability of this data. Today, several
compression formats exist while presenting their limits (degradations, size, dura-
tion, etc.) on somewhat particular images (text images and background areas).

To overcome this difficulty, scientists are constantly developing new techniques
to compress images in order to find a perfectionist compression method that can
largely conserve storage space and preserve the quality of the source file.

The compression methods that exist tend to introduce the theory of fractals,
which appears to be a strong instrument for boosting image quality and reducing
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the resources required. Nowadays, the image files intricated in several specific pro-
grams are characterized bymassive data, pixel correlation, and similarity. Under such
conditions, the old compression methods appear to be unsuitable for this mission
because of their need for significant encoding time. On the other hand, the recently
developed fractal image compression techniques offer better compression qualities
[1–3]. These methods are built on the principle that shapes (fractals) can better
represent usual scenes than traditional geometric forms. A number of fractal image
compression techniques are presented in a lot of works; they include an image coding
agreeing to more security and less degradation (Jeng et al. [4], Li [5], and Han [6]).
These methods have revealed an important in information, reduced statistical char-
acteristics of chaotic patterns, and weakness in statistical cryptanalysis. In addition,
metaheuristics are likewise employed to optimize compression, like genetic algo-
rithms [7], ant colonies [8], and optimization by particle swarms [9]. These methods
have ability to create a partition constructed on a region which improves the com-
pression ratio and maintains better the decompressed image quality.

In this chapter, we try for the first time to apply natural metaheuristics on fractal
compression, by suggesting new methods which associate, both the bat-inspired
algorithm (BIA) and the wolf pack algorithm (WPA) with fractal image compres-
sion (FIC) to speed up encoding and optimize both file size and image quality. The
main objective of using these algorithms is its property of search for global solution
and its capacity to generate very satisfactory results quickly and for less means
compared to similar techniques. The algorithms also use fewer parameters and
without initial approximation of the unidentified parameters. This document is
organized as follows; Section 1 presents an introduction in the study context. Next,
a summary of the fractal image compression is detailed in Section 2. Section 3
summarizes the natural metaheuristics and presents those used in this work,
namely, the WPA and the BIA. In Section 4, we give a review of some related
works. After that, we present our proposed methods in Sections 5 and 6. Experi-
ments are explained in Section 7. Finally, the conclusion appears in Section 8.

2. Fractal encoding

Fractal compression is a new method of irreversible image compression [10].
It was adapted by Hutchinson [11] and Barnsley and Demko [12]. It searches for self-
similarities among the diverse image blocks [13] and only keeps the parameters of
the contractual transformation in place of the pixels of the image. Like this, we can
build an estimate as close as possible to the source image by detecting the redun-
dancy of forms at several scales and try to eliminate these redundancies in the
original image so that the result is precise enough to be accepted.

The FIC is founded on an iterated function system f, a limited group of contrac-
tions defined on a metrical space Rn by the relation:

fi : Rn ! Rn; i<N (1)

This contraction can be in several shapes depending on technical constraints.
It can be done several points of the original image and carry them nearer to the
compressed one. This reflection is named “affine transformation”; then, each sub-
block of the original image will be submitted either a rotation at an angle, a scale, or
a translation (transformed using eight isometries) according to Equation 2:

w xð Þ ¼ T xð Þ þ b (2)
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where T is a linear transformation, Rn! Rn is a vector, and b ∈ Rn is a vector.
Practically, the general principle of fractal compression is to try to find the finest
matching domain blocks for each range block in order to minimize the distance
metric. The code that follows illustrates this idea well:

• Enter the original image

• Create a partitioning of Range Blocks R

• Create a partitioning of Domain figures

• For all figures Destination Make

◦ For all figures Sources Make

• For all the defined transformations Make

◦ Apply the transformation to the Range Blocks

◦ Adjust the average of the pixel colors

◦ Apply the reduction from the Range Blocks to the Domain Blocks

◦ Calculate the error between the result and the Domain Blocks

◦ If the error is minimal for the destination figure Then

• Save the modifications made

◦ End if

• End For

• Write the saved values in the output file

◦ End For

• End For

This process is realized following the relation:

Bi ¼ v Dið Þ (3)

where v () is the function of the contraction which aims to modify Di.
Thereafter, the nearest block Bi is sought for all Ri blocks by calculating the error
between Bi and Ri, and we can use, for example, the Hausdorff distance defined by
Equation 4:

H Bi, Rið Þ ¼ max d Bi, Rið Þ, d Ri, Bið Þð Þ (4)

where d(B, R) = max b ϵ A min r ϵ B ||b-r||.
Or using the Euclidean distance described by the equation:

3
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d2 R, Bð Þ ¼
Xn

ri, bið Þ2 (5)

where n represents the pixel’s number in Ri and Bi blocks. d should be as
minimum as possible for blocks that look alike.

Fractal decompression consists of the reconstruction of Ri from the blocks Bi

which appear identical the most by practicing the contraction used in compression.
In recent years, several studies have concentrated on the development of

accelerated decryption procedures [14–16] with the aim of preserving image
quality. Their principle is to choose a random image as the original one and execute
an affine transformation like defined in Equations (6) and (7), founded on the
fractal ciphers obtained by itself. This act is repeated recursively till the
reconstructed image were satisfactory:

Ri ¼ Si:Dþ Oi:I (6)

S ¼ U Ri (7)

where I is a contractive or isometric spatial transformation, D is a domain block,
R is a range block, and S is the reconstructed image.

In fact, FIC is becoming among the most promising methods for image com-
pression for its significant compression ratio (CR) and preservation of quality. Its
beginnings date from the 1990s when Jacquin [17, 18] introduced the first method
of image compression; its principle is partitioning the image into two tiling blocks:
the range and domain blocks.

The domain blocks are double the size of the range blocks and overlap such that a
new domain block starts at each pixel. The main idea of this compression is to find the
nearest domain block in concordance with each range block, to determine the right
contractual transformation, and to store all these parameters. This principle was
exciting; however it remained limited to local applications because it consumes a lot
of CPU time. Since then, researchers have constantly presented new techniques to
reduce the compression time; Thomas and Deravi [19] link range blocks and brand
them more adaptive with image content by using the region-growing method. Cardi-
nal [20] presented an alike principle; it is founded on a geometrical partition of the
grayscale image block feature space. The experimental evaluations with earlier
published methods illustrate an important enhancement in encoding time with prac-
tically better quality. He et al. [21] have used the normalized block with the aim to
evade the extreme search in corresponding block. Chong and Pi [22] proposed a new
adaptive search method to decrease the calculation complexity of fractal encoding to
discard a big number of unqualified domain blocks so as to speed up FIC.

Other studies have been presented on new aspects to improve the way of research
like the encoding via the Fourier transform [23], special image features [24], and
discrete cosine transform inner product [25]. The majority of existing methods rely
on a corresponding error threshold to limit the search. Lately, Lin and Wu [26] have
defined another way of search built on image block edge property, which proves
suitable results. Furthermore, many research articles have been published over the
past decade; they increased the quality of the compressed image through the use of
metaheuristics without resorting to more resources in the coding process.

3. Natural heuristics

Heuristics refer to the set of techniques that can solve several problems by
maximizing gains and decreasing the resource’s consumption; however, the optimal
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solution cannot be certain if, in the investigation space, there is an intersection
between the local and global solution [27]. Natural heuristics represent a large
family of heuristics which are inspired from communal conduct of animals existing
in societies like assemblages of birds, ant colonies, or grouping of fish. They are
founded on the principle of populations of entities who cooperate and develop
rendering to reciprocal precepts. These techniques allow the invention of proce-
dures which can resolve hard problems by dividing control. These approaches form
a famous prototype which is effectively employed as a prodigious tool for resolving
difficult problems [28] with less resource consumption. Several researches [29, 30]
illustrate that these systems have an effective potential to manage various situations
and could be adapted to bring solutions to diversified optimization problems.

3.1 The wolf pack algorithm (WPA)

The wolf pack algorithm (WPA) [31] belongs to the family of bioinspired tech-
niques which can be used to estimate resolutions for numerous optimization prob-
lems. WPA is a metaheuristic built on the population invoked by the social hunting
behavior of wolves. It basically involves hunting wolves, tracking down prey, and
capturing it under the orders of a leader wolf. The wolf pack includes the strongest
and most intelligent wolf chef. He is responsible for controlling the pack. Its deci-
sions are always based on the surrounding environment: prey, pack wolves, and
other hunters. The pack is divided into two families of wolves: scoot and ferocious.

The scoot wolves move autonomously in the milieu and adjust its way according
to the concentration of the odor of the prey. When a prey is found, scoot wolves cry
and transmit info by sound to the leading wolf who guesses the distance to reach
this prey; it calls the furious wolves and quickly displaces towards the cry. The prey
is then caught and is shared conferring to the nature of each wolf: from the sturdiest
to the feeblest. Subsequently, feeble wolves could die from absence of nutrition. In
this manner the pack ensures a certain dynamic and robustness at all times.

WPA is performed as follows:
In a search environment ℝn, any wolf i denotes an elementary solution to the

problem, at a location xi.
Initially, wolves are distributed chaotically in the environment.
At any instant t, the wolf i passes from the location xti to the location xt + 1

i. The
choice of the following location is updated by rendering the following equation:

xi tþ1ð Þ ¼ xit þ λ ∣xgt � xit ∣ (8)

where λ represents a vector randomly distributed in the interval [�1,1] and xg
designates the location of the chief wolf. After a static sum of repetitions, which
corresponds to a research stage, the wolf of the finest result gets converted to a
leader one; feeble wolves (bad solutions) will be wiped out and substituted with a
novel group of wolves in an arbitrary manner.

3.2 The bat-inspired algorithm

The bat-inspired algorithm (BIA) [32] belongs to the family of metaheuristics
inspired by nature, introduced by Yang and founded on the echolocation comport-
ment of bats. Bats have a system identical to radar except that radars use electro-
magnetic waves while bats use ultrasonic waves (of frequency inaudible to
humans). Bats move and hunt with high-performance sonar. By another way, bats
are distinguished by an extraordinary steering mechanism allowing them to
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d2 R, Bð Þ ¼
Xn

ri, bið Þ2 (5)
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differentiate between an obstacle and a prey, which allows them to hunt even all.
The impulses produced by bats can be linked almost to the hunting plans of bats.
Often, the pulses are between 25 and 150 kHz at a static frequency; they only persist
for 8–10 ms. Bats generate between 10 and 20 ultrasonic sound eruptions every
second, each of them stays between 5 and 20 ms. However, when bats seek their
prey and feel so close, they can increase the rate of emission of sound eruptions up
to 200/s. This proves the extraordinary ability of bats to process signals. Assuming
that the speed of sound in air is v = 340 m/s, the wavelength λ of the ultrasonic
sound therefore manifests with a continuous frequency f:

λ ¼ v=f (9)

The wavelengths vary between 2 and 14 mm and are equivalent to the size of the
bat’s prey, for a representative frequency between 25 and 150 kHz. The pulses
produced by bats can spread an imposing sound intensity of 110 dB, but quite
favorably, these pulses remain in the ultrasonic domain. The intensity of the pulse
can take different stages, such as very strong when bats are chasing and weak at a
quiet sound when they mark their prey. These short pulsations usually have a
wandering range of a few meters which depends on the frequency.

In reality, bats combine all of their senses to effectively detect prey and navigate
more easily. Here, we are only interested in echolocation and the behaviors that
accompany it. To create new optimization techniques, the echolocation of bats can
be transformed into an optimized objective function.

In a search space Ri, the bats fly randomly using the speed Vi in location
(solution) Xi using velocity Vi. They produce pulses at a static wavelength λ with a
variable frequency f and an intensity A (differs from a big positive A0 to a smallest
constant value Amin) to hunt for prey. When the bats choice the finest results, they
choose a local result from the best selected ones.

4. Introducing bioinspired approaches in the FIC

In 2005, Dervis Karaboga proposed a new iterative optimization method based
on artificial bee colonies (ABC). This technique is based on three different classes of
bees, (a) bee used, (b) spectator bee, and (c) scout bee. The spectator bees waiting
in the store obtain data concerning the sources of nectar revealed earlier from the
employees. Then they choose a usable nutrition source built on the received infor-
mation. Scout bees arbitrarily search for nutriment in the area for [33].

In 2006, Cristian Martinez presented an enhanced image compression using
the ant colony technique. The basic idea is that ants always seek and find the
shortest path from nest to food source using the pheromone. For fractal com-
pression, the pheromone is positioned on the range block i and the domain block
j. The pheromone matrix is rectangular (not symmetrical) where the lines desig-
nate range blocks (image blocks) and the columns indicate domain blocks
(blocks to transform). Then, the ants build routes by choosing a block of domain
j for each block of range i. the solution will be found on the basis of updating the
pheromone and heuristic information [34]. The result proposes similar image
quality to that obtained with a deterministic way while minimizing the
calculation time by 34%.

In 2009, many of studies were focalized on FIC: Chakrapani and Soundara Rajan
[35] have created a new fractal image compression founded on a genetic algorithm
in the intention of optimizing the encoding time for an acceptable image quality.
The results give improved performance over exhaustive search.
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In the work of Xing-yuan, Fan-ping, and Shu-guo [36], a spatial correlation
hybrid genetic algorithm that uses the features of the fractal and divided iterative
function system is proposed. It consists of two stages. The first uses spatial correla-
tion in the images for the range and the domain blocks in order to exploit the local
optima. The second one is based on a genetic-simulated annealing algorithm
(SAGA) to find the global optima if the local optima is not satisfied. In order to
escape early convergence, the algorithm approves that the dyadic mutation operator
takes place in place of the traditional operator.

In 2010, Chakrapani et al. have enhanced the fractal image compression using
particle swarm optimization (PSO) technique [37]. PSO is used to speed up the
search of the nearest finest match block for a definite block to be encoded. This
method illustrates that the recovered image quality can be conserved when in
comparison with the full-search FIC.

In 2016, Shaimaa S. Al-Bundi et al. [38] use an upgraded genetic algorithm to
enhance the exploration space in the target image by good estimation to the global
optimum in an only execution.

In 2017, Al-Saidi N.M.G et al. [39] optimize the fractal image compression by
introducing the harmony search algorithm. This strategy searches for the best
solution through singing a song; this proposed technique offers splendid perfor-
mances in terms of image quality, reduced computation time, and storage space
when compared to other methods.

In 2018, we [40] used the wolf pack algorithm to improve the FIC; the idea is to
take the entire image for the search space where this space is divided into blocks;
scooters wolves roam the environment to find other smaller and similar blocks.
They examine the entire space and select the blocks with the best physical shape. By
this method, the encoding time was considerably reduced, and we also obtained a
better compression rate.

In 2019, we have [41] chosen to improve the FIC by using the bat-inspired
algorithm. Our tow proposed methods are detailed and well explained in Sections 5
and 6, respectively.

5. Wolf pack algorithm to optimize fractal image compression

We assume an image of m x n pixels as exploration space, represented by an
array P where each pixel is considered as a cell and on a byte (gray pixel). The
resulting image C of m/2 � n/2 pixels is reached by following the steps:

• Divide the entire image into tiny nonoverlapping ri blocks of size s � s (with s
<< m). More simply, we will proceed with blocks of square size of b x b; this
partition called range block will be represented by RN = {r1, r2,… , rN}.

• For all the blocks ri, the scooting wolves roam the space in order to find a di of
size 2b � 2b similar with ri while respecting the parameters mentioned above.
A fitness value f (di) will be assigned for each block di according to Eq. (6). The
block di is taken for prey.

• After the hunting wolves have inspected the entire space and for all ri blocks, di
blocks with the best physical form are selected. It will be mapped according to
Eqs. (4) and (5).

If no improvement is made to the wolf chef solution, the process will be stopped
after a fixed number of iterations.
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The adapted WPA algorithm for FIC is showed as:

Algorithm 1. FIC-WPA

Initialization:
Generate ri, (i = 1 … N)
For each ri, f(ri) 0, (i = 1 … N)

While not (stopping criteria)
it 0

While not (Iter-scoot < It)
Pick random numbers: λ ϵ [�1,1]

For each ri do
xi xi + λ|xg � xi|
If (f(bxi) < f(g)) g i
Endif

Endfor
ri v(di)
Update It
EndWhile

EndWhile
End For.

6. BAT-inspired algorithm introduced in FIC

The similar idea employed in the wolf pack algorithm and the BAT algorithm for
FIC is completed through the succeeding phases:

1.The whole image is scouted randomly by bats with the use of loudness L and
frequency F.

2.Each block is compared to all of its neighboring blocks by bats for its degree
of homogeneity as a function of volume and frequency. If they meet a
criterion (color_level_block - neighboring color level ≤ frequency), we
create a domain block of size L * L whose value is only the mean of the
domain block.

3.When the bats roam the whole picture. The iteration will be stopped.

4.After decomposing the image into domain blocks, the bats’ position
themselves at xi, and the size of the blksz block will be saved in a sparse S.

5.By eliminating the solution with the smaller block, we try to find the best
solution in this step.

6.In order to calculate the compression ratio, we will use Huffman encoding to
store all information (locations, block sizes, and values).

7.Finally, and to reconstruct the image, we will use Huffman decoding to
regenerate the image data of the compressed image.

8
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Algorithm 2. Proposed FIC-BAT

Initialization: Generate bats (Number_bats = 1..N) //
Begin
Loudness L;
Frequency F;
While not (stopping criteria)

For each bat
If similarity (distance) = 1

Create domain block;
Store location in vectors I,J;
Store block sizes in vector blksz;

Else
Store location in vectors I,J;
Store block sizes in vector blksz;

End-if
End For

End-while
Search for best solutions;
Store the locations and block sizes in a sparse S;
End.

7. Experimentations

7.1 Fractal image compression with WPA

The resolution presents an aspect that should not be ignored when trying to test
the efficiency of an approach. For our circumstance, we will take into consideration
the three test images (Lena, Barbara, and cameraman) with different resolutions
(16 * 16, 32 * 32, 64 * 64, 128 * 128, 256 * 256) so that we can see the impact of this
factor on the quality quantities (compression ratio, compression time, EQM, PSNR)
(Figures 1 and 2).

From the test images with a reconstructed resolution of 256 * 256, it can be seen
that the quality of the images is acceptable to a very good degree. And to be more
exact, we must refer to calculable measures.

The table below presents the results obtained by applying our approach to the
above images with different resolutions:

Figure 1.
Tested images (before compression). (a) Cameraman, (b) Lena, and (c) Barbara.
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The results obtained (detailed in Table 1) illustrate firstly the agreement
between image resolution and encoding time, which demonstrates that our pro-
posed method is significantly responsive to image resolution; it is also clear that the
image quality is in contrast linked to it (image quality degrades quickly as resolution
increases). This is clearly shown by the amplitudes of the PSNR and the MSE.

The compression ratio remains relative to the resolution where we indicate that
our method interferes in this measurement. Wolves appear when the quantity of
blocks is very huge (higher resolution) by contributing a higher compression rate
than that existing in lesser resolutions.

Decompression time stays optimized and is similar for almost all methods. This
is due to the decompression process which is not complex compared to the
compression process.

We will now focus on comparing our proposed method with some other tech-
niques. The following table (Table 2) shows the notable alteration between our
method and the others:

Tested
image

Resolution Compression
time (s)

Decompression
time (s)

Compression
ratio

MSE PSNR
(dB)

Cameraman 16*16 0.184 0.818 1.098 2.617 37.999

32*32 0.446 0.802 1.174 4.079 36.173

64*64 2.451 0.816 1.420 6.853 31.509

128*128 41.284 0.810 1.653 8.931 30.096

256*256 774.438 0.897 1.741 9.152 31.605

Lena 16*16 0.185 0.832 1.095 7.730 33.616

32*32 0.507 0.801 1.125 5.861 34.451

64*64 2.290 0.791 1.287 8.401 33.550

128*128 34.257 0.821 1.480 9.547 32.641

256*256 668.810 0.850 1.596 9.282 33.305

Barbara 16*16 0.225 0.812 1.019 1.352 38.070

32*32 0.607 0.763 1.055 4.064 36.067

64*64 1.868 0.781 1.152 6.259 35.060

128*128 22.713 0.793 1.310 11.093 32.348

256*256 509.406 0.861 1.447 11.115 33.288

Table 1.
Variation in image resolution.

Figure 2.
Decompressed tested images (after WPA compression). (a) Cameraman, (b) Lena, and (c) Barbara.
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7.2 Using bat-inspired algorithm to enhance fractal image compression

Bat’s number: In Table 3, we will examine the images of the cameraman and
Lena in order to extract the adequate number of bats that will be used in our
approach.

Loudness: Table 4 presents some tests carried out on an additional stress which is
loudness, with the objective of taking into consideration the good value for the test.

Frequency: The last test table (Table 5) is made to pick up the best frequencies
that will be used in our algorithm.

Images de test Methods PSNR (dB) Time (s) Ratio (CR)

Lena 128*128 FIC-WPA 32.641 34.257 1.480

Suman K. Mitra et al.’s works [7] 30.22 / 1.059

Vishvas V. Kalunge et al.’s works [42] / 67 /

Lena 256*256 FIC-WPA 33.305 668.810 1.596

Y. Chakrapani et al.’s works [37] 26.22 2370 1.3

Exhaustive search 32.69 8400 1.3

DWSR [31] 25.8212 56.4247 1.56355

PSO-RCQP [43] 27.089 6.453 1.6392

Cameraman 256*256 FIC-WPA 31.605 774.438 1.741

PSO-RCQP [43] 26.686 268 1.8212

Barbara 128*128 FIC-WPA 32.348 22.713 1.310

Vishvas V. Kalunge et al.’s works [42] / 66 /

Barbara 256*256 FIC-WPA 33.288 509.406 1.447

Y. Chakrapani et al works [37] 28.34 2500 1.2

Exhaustive search 32.84 8400 1.2

Table 2.
Comparison of the FIC-WPA with other techniques.

Images Number of
bats

Compression
time

Decompression
time

Compression
ratio

PSNR MSE
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32 0.509 0.843 1.355 29.827 10.045

64 0.472 0.919 1.365 30.412 10.405

128 0.478 0.749 1.348 31.895 9.663

256 0.475 0.883 1.335 30.989 8.899

512 0.457 0.750 1.392 29.997 9.870

Lena 2 0.518 0.739 1.303 30.629 14.440

4 0.548 0.727 1.315 30.083 15.612

8 0.505 0.716 1.311 30.071 14.929
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Table 1.
Variation in image resolution.

Figure 2.
Decompressed tested images (after WPA compression). (a) Cameraman, (b) Lena, and (c) Barbara.
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7.2 Using bat-inspired algorithm to enhance fractal image compression
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As we can see from the previous tables, the best choices are given by 8 for the
number of bats, 8 for the intensity, and 30 for the frequency, so the treatment
parameters are as follows:

The number of iterations is in the interval of [10,100].
The number of bats is fixed at 8.
Loudness 8, Frequency 30.

We experienced the proposed approach on five images through diverse resolu-
tions. Table 6 illustrates certain quality measurement liable on the resolutions.

Image Loudness Compression
time

Decompression
time

Compression
ratio

PSNR MSE

Cameraman 2 0.453 0.720 1.267 33.788 6.531

3 0.452 0.729 1.372 31.216 9.417

4 0.458 0.721 1.376 33.022 7.807

5 0.469 0.702 1.355 30.220 9.375

6 0.438 0.727 1.359 30.119 9.027

7 0.460 0.723 1.348 28.971 9.130

8 0.442 0.727 1.279 34.284 5.600

9 0.455 0.736 1.220 30.813 6.962

10 0.468 0.757 1.205 33.859 5.012

11 0.472 0.755 1.187 33.548 4.362

Lena 2 0.530 0.735 1.248 31.781 14.848

3 0.505 0.716 1.311 30.071 14.929

4 0.537 0.726 1.324 29.230 16.853

5 0.586 0.751 1.299 30.536 14.382

6 0.519 0.713 1.244 30.812 13.766

7 0.516 0.715 1.223 31.290 12.190

8 0.503 0.756 1.228 31.032 11.917

9 0.495 0.740 1.204 32.213 9.056

10 0.492 0.761 1.194 31.873 8.372

11 0.488 0.737 1.192 32.050 9.695

Table 4.
Testing the values of loudness.

Images Number of
bats

Compression
time

Decompression
time

Compression
ratio

PSNR MSE

16 0.514 0.713 1.306 29.984 15.348

32 0.563 0.784 1.299 30.452 15.037

64 0.562 0.779 1.298 31.228 13.887

128 0.512 0.715 1.306 30.669 15.603

256 0.518 0.709 1.320 30.389 16.118

512 0.520 0.702 1.321 29.856 14.710

Table 3.
Testing the number of bats.
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Image Frequency Compression
time

Decompression
Time

Compression
ratio

PSNR MSE

Cameraman 20 0.490 0.714 1.118 40.341 1.526

30 0.458 0.698 1.209 33.576 4.4806

40 0.442 0.727 1.279 34.284 5.600

50 0.460 0.738 1.357 29.463 11.990

60 0.435 0.706 1.422 26.887 15.954

70 0.453 0.716 1.586 23.701 22.989

80 0.467 0.702 1.722 23.769 33.415

Lena 20 0.495 0.755 1.066 42.199 1.904

30 0.512 0.735 1.099 35.522 4.947

40 0.503 0.756 1.228 31.032 11.917

50 0.514 0.718 1.359 27.649 23.370

60 0.549 0.745 1.590 23.577 39.059

70 0.521 0.717 1.850 22.204 50.050

80 0.646 0.720 2.064 20.869 58.349

Table 5.
Testing different values of frequency.

Test image Resolution Compression
time (s)

Decompression
time (s)

Compression
ratio

MSE PSNR
(dB)

Blonde
women

32*32 0.455 0.692 1.223 9.643 32.645

64*64 2.581 0.698 1.430 13.100 31.678

128*128 34.634 0.712 1.712 14.165 30.853

256*256 811.291 0.763 1.741 13.150 32.065

Lena 32*32 0.522 0.704 1.109 5.651 34.695

64*64 2.193 0.704 1.282 8.722 33.380

128*128 33.376 0.720 1.486 9.799 32.909

256*256 732.345 0.763 1.604 9.660 33.115

Cameraman 32*32 0.467 0.832 1.211 3.628 36.328

64*64 2.608 0.719 1.440 7.743 30.258

128*128 43.854 0.691 1.658 9.086 31.078

256*256 732.011 0.977 1.678 9.626 31.095

Living
room

32*32 0.558 0.687 1.219 13.475 31.210

64*64 2.092 0.692 1.355 14.584 31.414

128*128 26.347 0.710 1.487 14.584 31.322

256*256 478.219 0.767 1.555 14.138 31.599

Mandrill 32*32 0.598 0.554 1.211 11.936 31.674

64*64 2.376 0.889 1.422 18.377 30.555

128*128 22.190 0.732 1.419 18.435 30.582

256*256 334.636 0.795 1.368 16.404 30.737

Table 6.
Testing the image resolutions.
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Figure 3 shows the image of blonde women before and after proposed
compression.

In Figure 4, we show a cameraman image before and after proposed
compression,

Figures 5 and 6 describe separately Lena and living room images before and
after applying the proposed compression.

Finally, we conclude our sequence of assessments with mandrill image before
and after proposed compression, in Figure 7.

As we can observe, the images’ quality is very suitable.
And to approve this effect, Table 6 explores additional quality measure.

Figure 3.
An image of Compressed and decompressed blond women.

Figure 5.
An image of compressed and decompressed Lena.

Figure 4.
An image of compressed and decompressed cameramen.
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The table shows that our approach is significantly sensitive to changing
resolutions. It is also clear that the quality of the images is inversely linked to the
resolution (as soon as the resolution increases, the quality of the images degrades)
which is well proven by the MSE and PSNR measurements.

Figure 7.
An image of compressed and decompressed Mandrill.

Figure 6.
An image of compressed and decompressed living room.

Test image Methods PSNR
(dB)

Compression time
(s)

Compression
ratio

Lena 128*128 BIA 32.909 33.376 1.486

Suman K. Mitra et al works [7] 30.22 / 1.059

Vishvas V. Kalunge et al works
[42]

/ 67 /

Lena 256*256 BIA 33.115 732.345 1.604

Y. Chakrapani et al.’s works
[37]

26.22 2370 1.3

Exhaustive search 32.69 8400 1.3

DWSR [44] 25.8212 56.4247 1.56355

PSO-RCQP [43] 27.089 6.453 1.6392

Cameraman
256*256

BIA 31.095 732.011 1.678

PSO-RCQP [43] 26.686 268 1.8212

Barbara 128*128 BIA 32.176 21.478 1.312

Vishvas V. Kalunge et al.’s
works [42]

/ 66 /

Table 7.
Proposed approach versus other methods.
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We note that our proposed method has a remarkable effect on compression ratio
and remains relative to the resolution; the bats then show themselves, when the
number of blocks is greater (more resolution) by offering a compression ratio
greater than that present in the lower resolutions.

On the other hand, the decompression process does not include any complexity
compared to the compression process which gives us a decompression time which
remains optimized and similar for almost all resolutions.

Finally, and to be in the set of techniques which try to optimize fractal
compression, we will draw up a comparison of our approach with certain existing
methods. Table 7 clearly shows the remarkable difference between our method and
the others.

At first glance, our proposed method represents new work which has led to
satisfactory results. It proportionally retains the quality offered after compression.
Reduced time remains very satisfactory, and the compression rate is better than that
offered by most of the methods below.

8. Conclusion

In this chapter, we explained the possibility of optimizing fractal image com-
pression using bioinspired metaheuristics. We focused on the application and, for
the first time, recent metaheuristics which are, respectively, the wolf pack algo-
rithm and the bat-inspired algorithm in order to improve the performance of fractal
image compression. The results demonstrate the efficiency of the algorithms
considered.

Compared to other optimization metaheuristics, our approaches offer better
results in many aspects, mainly the encoding and decoding time, the size, and the
quality.

In addition, proposed approaches demonstrate the ability of these techniques to
manage image compression.
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Chapter 2

Fractal Analysis for Time Series
Datasets: A Case Study of
Groundwater Quality
Sanjeev Kimothi, Asha Thapliyal and Narendra Singh

Abstract

Fractal dimension (FD) is a highly used mathematical tool to measure long-term
memory of time series dataset in various research areas and also applied in chaos
theory and fractal and spectral analysis. FD analysis has been applied in various
disciplines, e.g., from biophysics, hydrology to computer networking. In developing
countries like India, the water quality parameter characterization is very much chal-
lenging due to the increase of the contaminated substances in groundwater. In view
of health issues and drinking water standards, water quality assurance is a requisite
on the region basis. In order to quantify the same, a numerical index known as water
quality index (WQI) well adopted by worldwide researchers has been recognized for
its significance and applicability for water characterization. Further, the water quality
parameters, such as turbidity, chloride, ferrous (Fe), nitrate, pH, calcium (Ca),
magnesium (Mg) fluoride (Fl), total dissolved salts (TDS), alkalinity, hardness, and
sulfate, could significantly improve the understanding through statistical and fractal
modeling. Especially in the high mountainous regions of the Himalayas where there is
scarcity of observed dataset, the predictability estimation will be highly applicable in
WQI modeling. In the current study, statistical relationship among the sample
datasets is obtained by regression equation, coefficient of correlation, Hurst expo-
nent, and FD and probability index between water parameters for Tehri District. It is
concluded that the fractal analysis is a better statistical and mathematical tool to
calculate water quality indices. Fractal analysis among the various parameters
suggested that the water samples are good for drinking and the health.

Keywords: water quality index, fractals, Hurst exponent, Himalayan region

1. Introduction

The Himalayan region has large river basins, and this categorizes it as having a
dynamic hydrology which required scientific approaches to study the water
resource management and planning at regional basis. Due to large-scale develop-
mental activities along the river basin, the hydrology of the region is affected and
hence the water quality. These development activities impact overall water balance
of the region, which has a negative effect on various environmental factors like
flora, fauna, soil, air, drinking water, and ultimately the human health. Water is a
valuable natural resource which contains various suspended substances of organic
matter and minerals.
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mental activities along the river basin, the hydrology of the region is affected and
hence the water quality. These development activities impact overall water balance
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valuable natural resource which contains various suspended substances of organic
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Huge urbanization and drilling activities affect the land transformation, and
hence surface water pollution impacts the quality of drinking water [1, 2]. In the
indication of the water quality standards and the estimations of constituent con-
centrations, the laboratory processes and statistical methods are required, and
worldwide researchers used the statistical analysis such as multiple linear regres-
sions methods [3–6]. Researches emphasize to examine the physical properties of
surface water, and the constituent concentrations can be used for the assessment of
water quality situation or water balance with analyzing the parameter deviation and
water quality standards [7–11]. Modeling of surface water quality is carried out that
assesses numerical indices using earth observation datasets and laboratory methods
such as X-ray diffraction technique over Allahabad district, India [12]. It is observed
that the statistical methods are capable of comparing the numerical indices. Con-
taminated quantity separation in the groundwater samples were also studied with
numerical index approach and found to be significant for water parameter charac-
terization [13, 14]. Remote sensing and GIS-based approaches along with ground-
based dataset have also been applied to study the water quality parameters [15, 16].

Fractal dimension (FD) and laboratory methods together have been used to study
the water quality, and the indices are calculated as the weighted average of all
observations of interest [17]. Fractal theory has been widely applied on diverse types
of datasets in hydrology, geophysics, and climate as well as in other research areas to
identify the patterns in time series datasets for describing the irregular and complex
behaviors of dynamic systems [18–21]. The rainfall spatiotemporal variations are
analyzed for flood seasons in China during 1958–2013 using Hurst exponent and
concluded that the rainfall trends will persist in the future also having implications
for the ecological restoration and farming operations [22]. Fractal approach has been
applied to estimate the climatic indices for climatic variables (pressure, temperature,
and rainfall) in the Himalayan foothill region [23]. Fractal dimension demonstrated
significant variations from station to station with the values relatively closer to unity
at high-altitude sites indicating better climate predictability than that of those over
the low-altitude stations in the Himalayan foothills.

In this investigation fractal and statistical analysis is carried out to establish rela-
tionships among water parameters such as turbidity, chloride, ferrous, nitrate, pH,
calcium, magnesium, fluoride, total dissolved salts (TDS), alkalinity, hardness, and
sulfate and to get the significant understanding ofWQI. Fractal analysis improves the
understanding of WQI especially in the mountainous regions of the Himalayas where
3Dmodels show limitations in resolving the highly complex geographical topography.
Despite the advantage with statistical modeling to inherit the effects of terrain and
correlated variations among various meteorological parameters, comprehensive
investigations of such statistical relationships among observed water quality parame-
ters are lacking over the Himalayan foothills and needs to be studied in detail.

This study intends to carry out the statistical and fractal analysis of groundwater
parameters to establish the relationship among the various indices and to under-
stand the behavior of water quality indices (WQI) with the predictability index
(PI), Hurst exponent (H), and fractal dimension (D). This study may offer the basic
understanding of the WQI of different water parameters regarding the regional
hydrogeochemical processes with the laboratory testing methods.

2. Study region and observational dataset

The state of Uttarakhand located in the lap of the central Himalayan region has
been identified as a hotspot of anthropogenic stress and one of the most vulnerable
regions for climate-mediated risks. The region provides water resources supporting

22

Fractal Analysis - Selected Examples

millions of people in South Asia. During the last few decades, the central Himalayan
region is observing the cascading effects of the climate change including rise in
temperature, receding of glaciers, erratic precipitation patterns, etc. [24]. In the
aforementioned scenario, the Himalayan region is receiving global scientific atten-
tion for glacier and water resource studies. However, available climate models often
have limitation in resolving the highly complex geographical topography in this
region which directly or indirectly impacts the water balance over the region.
Hence, timely and accurate relationship of water indices using statistical methods
inheriting the relationship among water parameters complements the understand-
ing of the available water in the fragile ecosystem of the state of Uttarakhand.

The present study is carried out over the Tehri District of Uttarakhand. The
detailed study area map (Figure 1) shows the location of the main rivers and
drainages along the water quality parameters collected. The observations of water

Figure 1.
(a) Data collection points and (b) drainage map of study area.

Figure 2.
Box plot showing the water quality parameters over the study site.
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quality parameters used for the analysis are obtained through the website of the
Ministry of Drinking Water & Sanitation, New Delhi, India.

In this study, we compute the Hurst exponent, fractal dimensions, and the
predictability index (PI) of water quality parameters such as (1) turbidity,
(2) chloride, (3) ferrous, (4) nitrate, (5) pH, (6) calcium, (7) magnesium,
(8) fluoride, (9) total dissolved salts (TDS), (10) alkalinity, (11) hardness, and
(12) sulfate, at high-altitude Tehri stations in the Himalayan foothills using the
fractal theory. Figure 2 shows the box plot of all the aforementioned 12 water
parameters obtained for the study site. The irregular pattern in theWQI can be used
in prediction purposes by analyzing its dynamic flow (i.e., chaotic, random, or
deterministic structural pattern). Proper identification, classification, and mapping
of water parameters of high-intensive and complex nature require frequent moni-
toring of these datasets especially in the context of drinking water.

3. Methodology

3.1 Statistical analysis

Water quality parameters have been analyzed using the numerical index, multi-
variate statistics, and earth observation datasets [25]. The average value, positional
average, and the maximum frequency values in the series datasets are estimated
with mean, median, and mode correspondingly. Variability of the sample datasets is
measured with standard deviation, and peakedness is estimated by kurtosis. The
symmetry between data points is estimated with skewness approaches. Coefficient
of variation gives the extent of variability of data in a sample.

3.1.1 Regression analysis

This analysis examines the influence of one or more independent variables on a
dependent variable. The regression equation with dependent variable Y and inde-
pendent variable X is represented as:

Y ¼ myxX þ C

where C is a constant of integration [5]:

Regression coefficient ¼ myx ¼ r ∗ σy=σx

� �

Correlation coefficient ¼ r ¼ Ψ XYð Þ �Ψ Xð ÞE Yð Þ½ �
Ψ X2� ��Ψ Xð Þ2

� �
Ψ Y2� ��Ψ Yð Þ2

� �h i1=2

¼ COV X,Yð Þ
σYσX

� �

where σy and σx are standard deviation of variables Y and X, respectively, and
Ψ(X), Ψ(Y), and Ψ(XY) are the expected value of variables X, Y, and XY,
respectively.

3.2 Fractal dimension (FD)

The term fractal comes from the Latin word fractus means “fraction or
broken”; the basic concept lies in the fact that fractals have a large degree of
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self-similarity within themselves which was coined by Benot Mandelbrot in 1975.
Fractals are characterized by self-similarity property having similar characteris-
tics when analyzed over a large range of scales, and individually a single entity
will have similar characteristics to that of the whole fractal [26, 27]. Fractal
dimension estimation from a fractal set has various methods due its simplicity
and automatic computability. The box counting is one of the major categories of
fractal analysis and the most used technique to analyze image features such as
texture segmentation, shape classification, and graphic analysis in many fields
[28, 29]. The variance and spectral methods are two other major categories of
fractal dimension analysis of a time series that recognize the determinism and
randomness in data [30]. To study the naturally complex features such as
coastlines, river boundaries, mountains, and clouds, the fractal dimension analy-
sis has also provided a mathematical model as a fractal geometry [31, 32]. The
glacial and fluvial morphologies are distinguished by using an automated
approach (i.e., multifractal). In previous study, a multifractal detrended fluctua-
tion analysis (MFDFA) has been carried out to estimate the variation of elevation
profile of glacial and fluvial landscapes [33]. It has been observed that glacial
landscapes reveal more complex structure than that of the fluvial landscapes as
indicated by fractal parameters, such as degree of multifractality, asymmetry
index, etc. The basic definition of fractal dimension is the Hausdorff dimension;
however, box counting or box dimension is another popular definition which is
easy to calculate.

3.3 The Hurst exponent

Hurst exponent (H) is used as a measure of long-termmemory of time series and
a real-valued time series defined as the exponent in the asymptotic scaling relation
[30, 34]. The Hurst exponent and fractal dimension are also directly related to each
other and indicate the roughness of a surface. The Hurst exponent’s value lies in a
time series as persistent (0.5 < H ≤ 1) or anti-persistent (0 ≤ H < 0.5), and when
the data are not intercorrelated, then H = 0.5 which implies that the series is
unpredictable. This approach is used in various complex engineering fields as it
provides statistical self-similarity relationship.

In terms of asymptotic scaling relation, the Hurst exponent of real-valued time
series is defined as:

R nð Þ
S nð Þ

� �
¼ CnH, as'n'approaches to infinity (1)

where C is a constant, angular brackets ⋯h i denote expected value, S(n) is the
standard deviation of the first “n” data of the series X1,X2,⋯,Xnf g, and R(n) is
their range:

R nð Þ ¼ max X1,X2,⋯,Xnf g � min X1,X2,⋯,Xnf g

The Hurst exponent H is calculated from rescaled range technique and can also
be computed from wavelet method for the time series X1,X2,⋯,Xnf g.

3.3.1 Estimate of the Hurst exponent: Wavelet approach

If f(t) is a self-affine random process, “t” a position parameter (time or dis-
tance), a > 0 is a scale (dilatation) parameter, w(t) is a mother wavelet, and
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wt,a t0ð Þ ¼ 1ffiffiffi
a
p w

t0 � t
a

� �

is its shifted, dilatated, and scaled version, then the continuous wavelet
transform of f(t) is defined as:

W t, að Þ ¼ 1ffiffiffi
a
p

ð∞

�∞
wt,a t0ð Þf t0ð Þdt0 (2)

If the time series f(t) is self-affine, the variance of W t, að Þ will scale with the
dilatation parameter asymptotically as:

V að Þ ¼ W2� �� Wh i2∝aδ (3)

When the exponent “δ” is between �1 and 3 (i.e., �1 ≤ δ ≤ 3), the Hurst
exponent is defined as:

Hw ¼
δþ 1
2

if �1≤ δ< 1 FGNð Þ
δ� 1
2

if 1≤ δ≤ 3 FBMð Þ

8><
>:

(4)

where FGN is the fractal Gaussian noise and FBM is the fractional Brownian
motion. The Hurst exponent is linked with fractal dimension (D) and defined as:

H ¼ 2�D (5)

Now the climate predictability index is given as:

PI ¼ 2 D� 1:5j j ¼ 2 0:5�Hj j (6)

If PI is close to zero, climate is unpredictable. The closer the PI to 1, the more
predictable the climate is.

4. Results and discussion

To distinguish the fresh and contaminated water and establish relationship
between the parameters have become a major concern for environmentalists and
health workers. And due to increased levels pollutants, it is very challenging for
municipal authorities to make availability of clean drinking water especially in
developing countries. The statistical relationship of water models depends on the
dynamics of climatic as well as soil parameters and thermodynamic processes
among the surface water parameters. The established statistical relationship among
the various water quality parameters is shown in Table 1, which suggested that the
variation among these parameters occurs due to variability in the originating envi-
ronment and is affected by terrain conditions by which it flows down. In dynamic
systems, this kind of response generates irregularity, which may show a random
pattern of certain type. Figure 1 shows the box plot of the 12 water quality param-
eters over the study area. Table 2 shows the Hurst exponent (H) estimated through
standard wavelet techniques and compared with regression equation, and coeffi-
cient of each water parameters shows whether they have Brownian time series (or
true random walk) behavior with the other related parameters or not. The summary
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Sr. No Parameters Mean Median Mode SD Skewness Kurtosis Coefficient of
variation

1 Turbidity 1.619 1.135 1.000 1.504 1.747 3.134 0.929

2 Chloride 3.114 0.000 3.983 5.009 1.528 1.387 1.609

3 Ferrous 0.266 0.190 0.000 1.031 11.713 150.451 3.881

4 Nitrate 2.663 2.200 0.000 2.097 1.011 1.165 0.787

5 pH 7.189 7.200 0.251 0.691 �7.377 74.926 0.096

6 Calcium 40.656 33.100 0.000 39.952 2.841 11.549 0.983

7 Magnesium 30.725 22.000 0.000 50.368 9.567 127.310 1.639

8 Fluoride 0.283 0.240 0.000 0.266 0.768 �0.157 0.941

9 TDS 107.008 80.150 55.000 116.571 1.781 3.376 1.089

10 Alkalinity 115.239 110.000 1.272 63.728 0.331 �0.683 0.553

11 Hardness 136.661 144.500 95.000 102.589 1.494 8.679 0.751

12 Sulfate 14.564 8.800 0.000 17.161 2.400 7.224 1.178

Table 1.
Statistical analysis of groundwater parameters at Tehri District, Uttarakhand.

Y Parameters-
X

Regression equation r2 H D
(Fractal)

PI

Turbidity Chloride y = �0.39645*x + 3.7212 0.014385 0.83198 1.168 0.66396

Ferrous y = 0.12408*x + 0.065435 0.032746 1.5146 0.48536 2.0293

Nitrate y = 0.22208*x + 2.3121 0.02548 0.84779 1.1522 0.69558

pH y = 0.010597*x + 7.1721 0.000532 1.2259 0.77415 1.4517

Calcium y = 3.6487*x + 34.8722 0.018921 1.2706 0.72942 1.5412

Magnesium y = 2.8703*x + 26.1718 0.007351 1.2307 0.76928 1.4614

Fluoride y = 0.054962*x + 0.19432 0.097003 0.93987 1.0601 0.87973

TDS y = 15.5427*x + 81.9829 0.040221 0.85579 1.1442 0.71158

Alkalinity y = 13.4538*x + 93.5935 0.10097 0.82012 1.1799 0.64025

Hardness y = 12.7963*x + 116.0534 0.035196 1.2005 0.7995 1.401

Sulfate y = 0.8647*x + 13.2096 0.005754 0.90684 1.0932 0.81367

Chloride Turbidity y = �0.036284*x + 1.7326 0.014385 0.99887 1.0011 0.99774

Ferrous y = 0.0073198*x + 0.2440 0.001245 1.6072 0.39276 2.2145

Nitrate y = �0.094225*x + 2.9621 0.050117 0.98909 1.0109 0.97818

pH y = 0.017067*x + 7.1368 0.015072 1.1173 0.88266 1.2347

Calcium y = �0.18703*x + 41.362 0.000543 1.3236 0.6764 1.6472

Magnesium y = �1.4045*x + 35.148 0.019231 1.3891 0.61086 1.7783

Fluoride y = 0.0032535*x + 0.2733 0.003714 1.0405 0.95945 1.0811

TDS y = 5.7221*x + 89.5595 0.059563 0.9857 1.0143 0.9714

Alkalinity y = 3.5154*x + 104.5777 0.075324 0.92132 1.0787 0.84263

Hardness y = 3.3113*x + 126.6005 0.02575 1.3457 0.65428 1.6914

Sulfate y = 1.5794*x + 9.7489 0.20972 1.0341 0.96585 1.0683
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Y Parameters-
X

Regression equation r2 H D
(Fractal)

PI

Ferrous Turbidity y = 0.2639*x + 1.5505 0.032746 0.40358 1.5964 0.19285

Chloride y = 0.1701*x + 3.0332 0.001245 0.3567 1.6433 0.2866

Nitrate y = 0.21107*x + 2.6158 0.010822 0.52792 1.4721 0.055837

pH y = 0.018421*x + 7.1844 0.000756 0.80777 1.1922 0.61553

Calcium y = 4.7305*x + 39.5253 0.014954 0.66518 1.3348 0.33036

Magnesium y = 1.1981*x + 30.5048 0.000602 0.63682 1.3632 0.27364

Fluoride y = 0.012348*x + 0.28012 0.002302 0.50357 1.4964 0.007137

TDS y = �1.9056*x + 107.6835 0.000284 0.34176 1.6582 0.31647

Alkalinity y = 4.7751*x + 114.1275 0.005981 0.32296 1.677 0.35407

Hardness y = 5.5291*x + 135.3207 0.00309 0.50895 1.491 0.017901

Sulfate y = 2.2747*x + 14.0048 0.018721 0.42956 1.5704 0.14088

Nitrate Turbidity y = 0.11474*x + 1.3143 0.02548 0.68125 1.3188 0.3625

Chloride y = �0.53189*x + 4.4998 0.050117 0.662 1.338 0.324

Ferrous y = 0.051273*x + 0.12956 0.010822 1.5921 0.40791 2.1842

pH y = 0.049051*x + 7.0583 0.022056 1.3583 0.64173 1.7165

Calcium y = 5.7087*x + 25.5324 0.089649 1.1608 0.83923 1.3215

Magnesium y = 7.2362*x + 11.4886 0.090436 1.2002 0.7998 1.4004

Fluoride y = 0.033377*x + 0.19422 0.069242 0.92495 1.0751 0.84989

TDS y = �12.2844*x + 140.0001 0.048631 0.62589 1.3741 0.25179

Alkalinity y = 0.37421*x + 114.4004 0.000151 0.58893 1.4111 0.17786

Hardness y = 3.2928*x + 127.996 0.004511 0.91075 1.0892 0.82151

Sulfate y = �0.41289*x + 15.7144 0.002539 0.80191 1.1981 0.60382

pH Turbidity y = 0.050188*x + 1.2601 0.000532 0.37731 1.6227 0.24538

Chloride y = 0.88314*x + �3.2706 0.015072 0.28645 1.7135 0.4271

Ferrous y = 0.041021*x + �0.02835 0.000756 0.9331 1.0669 0.8662

Nitrate y = 0.44965*x + �0.56059 0.022056 0.52027 1.4797 0.040543

Calcium y = 4.7201*x + 6.8518 0.006686 0.66003 1.34 0.32006

Magnesium y = 4.6756*x + �2.7902 0.004119 0.65269 1.3473 0.30538

Fluoride y = 0.029938*x + 0.068174 0.006077 0.5019 1.5008 0.001615

TDS y = 1.682*x + 95.0834 9.95E-05 0.2787 1.7213 0.4426

Alkalinity y = 3.1687*x + 92.6195 0.001183 0.2732 1.7268 0.4536

Hardness y = 2.6385*x + 117.8255 0.000316 0.46067 1.5393 0.078657

Sulfate y = 2.1465*x + �0.82098 0.007486 0.39596 1.604 0.20807

Calcium Turbidity y = 0.0051856*x + 1.4094 0.018921 0.65827 1.3417 0.31654

Chloride y = �0.0029044*x + 3.197 0.000543 0.57117 1.4288 0.14234

Ferrous y = 0.0031612*x + 0.13763 0.014954 1.2934 0.70663 1.5867

Nitrate y = 0.015704*x + 2.0315 0.089649 0.7484 1.2516 0.4968

pH y = 0.0014165*x + 7.1316 0.006686 1.111 0.88902 1.222

Magnesium y = 0.69708*x + 2.3928 0.30508 0.97651 1.0235 0.95303

Fluoride y = 0.00093543*x + 0.24526 0.019771 0.74791 1.2521 0.49582
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Y Parameters-
X

Regression equation r2 H D
(Fractal)

PI

TDS y = �0.038294*x + 108.737 0.000172 0.56384 1.4362 0.12768

Alkalinity y = 0.62046*x + 90.0942 0.1511 0.53726 1.4627 0.074521

Hardness y = 0.67582*x + 109.2303 0.069075 0.82607 1.1739 0.65214

Sulfate y = 0.089831*x + 10.9473 0.043691 0.67248 1.3275 0.34495

Magnesium Turbidity y = 0.0025611*x + 1.5419 0.007351 0.57726 1.4227 0.15451

Chloride y = �0.013693*x + 3.5007 0.019231 0.5427 1.4573 0.0854

Ferrous y = 0.0005026*x + 0.2510 0.000602 1.121 0.87899 1.242

Nitrate y = 0.012498*x + 2.2868 0.090436 0.70056 1.2994 0.40112

pH y = 0.0008809*x + 7.1622 0.004119 1.01946 1.0054 0.98923

Calcium y = 0.43765*x + 27.2961 0.30508 0.88407 1.1159 0.76813

Fluoride y = 0.0011794*x + 0.2470 0.050062 0.69593 1.3041 0.39186

TDS y = �0.16172*x + 112.1606 0.00488 0.52529 1.4747 0.050579

Alkalinity y = 0.16349*x + 110.361 0.01671 0.5019 1.5041 0.008196

Hardness y = 0.94027*x + 107.8115 0.21297 0.8051 1.1949 0.61019

Sulfate y = 0.009879*x + 14.3066 0.000842 0.62993 1.3701 0.25985

Fluoride Turbidity y = 1.7649*x + 1.1207 0.097003 0.82823 1.1718 0.65646

Chloride y = 1.1415*x + 2.7551 0.003714 0.76375 1.2362 0.5275

Ferrous y = 0.18644*x + 0.21372 0.002302 1.6654 0.33457 2.3309

Nitrate y = 2.0745*x + 2.0841 0.069242 1.0143 0.98566 1.0287

pH y = 0.20299*x + 7.1318 0.006077 1.4292 0.5708 1.8584

Calcium y = 21.1354*x + 34.7963 0.019771 1.2721 0.72787 1.5443

Magnesium y = 42.446*x + 18.7946 0.050062 1.3075 0.6925 1.615

TDS y = �77.0811*x + 129.021 0.030805 0.74411 1.2559 0.48822

Alkalinity y = 63.845*x + 97.3061 0.070809 0.7059 1.2941 0.41179

Hardness y = 43.9117*x + 124.3496 0.012907 1.0748 0.92515 1.1497

Sulfate y = 20.7924*x + 8.7184 0.1036 0.89597 1.104 0.79193

TDS Turbidity y = 0.0025877*x + 1.3435 0.040221 1.0328 0.96716 1.0657

Chloride y = 0.010409*x + 1.963 0.059563 1.0908 1.0091 0.98171

Ferrous y = �0.0001491*x + 0.28255 0.000284 1.548 0.452 2.096

Nitrate y = �0.0039588*x + 3.0963 0.048631 0.94004 1.06 0.88008

pH y = 5.9129e-05*x + 7.183 9.95E-05 1.0928 0.9072 1.1856

Calcium y = �0.004486*x + 41.267 0.000172 1.3135 0.68655 1.6269

Magnesium y = �0.030176*x + 34.0583 0.00488 1.3516 0.64839 1.7032

Fluoride y = �0.0003996*x + 0.32624 0.030805 1.0191 0.98091 1.0382

Alkalinity y = 0.20175*x + 93.7774 0.13638 0.93687 1.0631 0.87375

Hardness y = 0.26534*x + 108.3566 0.090894 1.3517 0.64832 1.7034

Sulfate y = 0.037752*x + 10.565 0.06587 1.0279 0.97206 1.0559

Alkalinity Turbidity y = 0.0075049*x + 0.75479 0.10097 1.1155 0.88449 1.231

Chloride y = 0.021427*x + 0.60594 0.075324 1.0438 0.95622 1.0876

Ferrous y = 0.0012524*x + 0.12203 0.005981 1.6487 0.35134 2.2973
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Y Parameters-
X

Regression equation r2 H D
(Fractal)

PI

Ferrous Turbidity y = 0.2639*x + 1.5505 0.032746 0.40358 1.5964 0.19285

Chloride y = 0.1701*x + 3.0332 0.001245 0.3567 1.6433 0.2866

Nitrate y = 0.21107*x + 2.6158 0.010822 0.52792 1.4721 0.055837

pH y = 0.018421*x + 7.1844 0.000756 0.80777 1.1922 0.61553

Calcium y = 4.7305*x + 39.5253 0.014954 0.66518 1.3348 0.33036

Magnesium y = 1.1981*x + 30.5048 0.000602 0.63682 1.3632 0.27364

Fluoride y = 0.012348*x + 0.28012 0.002302 0.50357 1.4964 0.007137

TDS y = �1.9056*x + 107.6835 0.000284 0.34176 1.6582 0.31647

Alkalinity y = 4.7751*x + 114.1275 0.005981 0.32296 1.677 0.35407

Hardness y = 5.5291*x + 135.3207 0.00309 0.50895 1.491 0.017901

Sulfate y = 2.2747*x + 14.0048 0.018721 0.42956 1.5704 0.14088

Nitrate Turbidity y = 0.11474*x + 1.3143 0.02548 0.68125 1.3188 0.3625

Chloride y = �0.53189*x + 4.4998 0.050117 0.662 1.338 0.324

Ferrous y = 0.051273*x + 0.12956 0.010822 1.5921 0.40791 2.1842

pH y = 0.049051*x + 7.0583 0.022056 1.3583 0.64173 1.7165

Calcium y = 5.7087*x + 25.5324 0.089649 1.1608 0.83923 1.3215

Magnesium y = 7.2362*x + 11.4886 0.090436 1.2002 0.7998 1.4004

Fluoride y = 0.033377*x + 0.19422 0.069242 0.92495 1.0751 0.84989

TDS y = �12.2844*x + 140.0001 0.048631 0.62589 1.3741 0.25179

Alkalinity y = 0.37421*x + 114.4004 0.000151 0.58893 1.4111 0.17786

Hardness y = 3.2928*x + 127.996 0.004511 0.91075 1.0892 0.82151

Sulfate y = �0.41289*x + 15.7144 0.002539 0.80191 1.1981 0.60382

pH Turbidity y = 0.050188*x + 1.2601 0.000532 0.37731 1.6227 0.24538

Chloride y = 0.88314*x + �3.2706 0.015072 0.28645 1.7135 0.4271

Ferrous y = 0.041021*x + �0.02835 0.000756 0.9331 1.0669 0.8662

Nitrate y = 0.44965*x + �0.56059 0.022056 0.52027 1.4797 0.040543

Calcium y = 4.7201*x + 6.8518 0.006686 0.66003 1.34 0.32006

Magnesium y = 4.6756*x + �2.7902 0.004119 0.65269 1.3473 0.30538

Fluoride y = 0.029938*x + 0.068174 0.006077 0.5019 1.5008 0.001615

TDS y = 1.682*x + 95.0834 9.95E-05 0.2787 1.7213 0.4426

Alkalinity y = 3.1687*x + 92.6195 0.001183 0.2732 1.7268 0.4536

Hardness y = 2.6385*x + 117.8255 0.000316 0.46067 1.5393 0.078657

Sulfate y = 2.1465*x + �0.82098 0.007486 0.39596 1.604 0.20807

Calcium Turbidity y = 0.0051856*x + 1.4094 0.018921 0.65827 1.3417 0.31654

Chloride y = �0.0029044*x + 3.197 0.000543 0.57117 1.4288 0.14234

Ferrous y = 0.0031612*x + 0.13763 0.014954 1.2934 0.70663 1.5867

Nitrate y = 0.015704*x + 2.0315 0.089649 0.7484 1.2516 0.4968

pH y = 0.0014165*x + 7.1316 0.006686 1.111 0.88902 1.222

Magnesium y = 0.69708*x + 2.3928 0.30508 0.97651 1.0235 0.95303

Fluoride y = 0.00093543*x + 0.24526 0.019771 0.74791 1.2521 0.49582
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Y Parameters-
X

Regression equation r2 H D
(Fractal)

PI

TDS y = �0.038294*x + 108.737 0.000172 0.56384 1.4362 0.12768

Alkalinity y = 0.62046*x + 90.0942 0.1511 0.53726 1.4627 0.074521

Hardness y = 0.67582*x + 109.2303 0.069075 0.82607 1.1739 0.65214

Sulfate y = 0.089831*x + 10.9473 0.043691 0.67248 1.3275 0.34495

Magnesium Turbidity y = 0.0025611*x + 1.5419 0.007351 0.57726 1.4227 0.15451

Chloride y = �0.013693*x + 3.5007 0.019231 0.5427 1.4573 0.0854

Ferrous y = 0.0005026*x + 0.2510 0.000602 1.121 0.87899 1.242

Nitrate y = 0.012498*x + 2.2868 0.090436 0.70056 1.2994 0.40112

pH y = 0.0008809*x + 7.1622 0.004119 1.01946 1.0054 0.98923

Calcium y = 0.43765*x + 27.2961 0.30508 0.88407 1.1159 0.76813

Fluoride y = 0.0011794*x + 0.2470 0.050062 0.69593 1.3041 0.39186

TDS y = �0.16172*x + 112.1606 0.00488 0.52529 1.4747 0.050579

Alkalinity y = 0.16349*x + 110.361 0.01671 0.5019 1.5041 0.008196

Hardness y = 0.94027*x + 107.8115 0.21297 0.8051 1.1949 0.61019

Sulfate y = 0.009879*x + 14.3066 0.000842 0.62993 1.3701 0.25985

Fluoride Turbidity y = 1.7649*x + 1.1207 0.097003 0.82823 1.1718 0.65646

Chloride y = 1.1415*x + 2.7551 0.003714 0.76375 1.2362 0.5275

Ferrous y = 0.18644*x + 0.21372 0.002302 1.6654 0.33457 2.3309

Nitrate y = 2.0745*x + 2.0841 0.069242 1.0143 0.98566 1.0287

pH y = 0.20299*x + 7.1318 0.006077 1.4292 0.5708 1.8584

Calcium y = 21.1354*x + 34.7963 0.019771 1.2721 0.72787 1.5443

Magnesium y = 42.446*x + 18.7946 0.050062 1.3075 0.6925 1.615

TDS y = �77.0811*x + 129.021 0.030805 0.74411 1.2559 0.48822

Alkalinity y = 63.845*x + 97.3061 0.070809 0.7059 1.2941 0.41179

Hardness y = 43.9117*x + 124.3496 0.012907 1.0748 0.92515 1.1497

Sulfate y = 20.7924*x + 8.7184 0.1036 0.89597 1.104 0.79193

TDS Turbidity y = 0.0025877*x + 1.3435 0.040221 1.0328 0.96716 1.0657

Chloride y = 0.010409*x + 1.963 0.059563 1.0908 1.0091 0.98171

Ferrous y = �0.0001491*x + 0.28255 0.000284 1.548 0.452 2.096

Nitrate y = �0.0039588*x + 3.0963 0.048631 0.94004 1.06 0.88008

pH y = 5.9129e-05*x + 7.183 9.95E-05 1.0928 0.9072 1.1856

Calcium y = �0.004486*x + 41.267 0.000172 1.3135 0.68655 1.6269

Magnesium y = �0.030176*x + 34.0583 0.00488 1.3516 0.64839 1.7032

Fluoride y = �0.0003996*x + 0.32624 0.030805 1.0191 0.98091 1.0382

Alkalinity y = 0.20175*x + 93.7774 0.13638 0.93687 1.0631 0.87375

Hardness y = 0.26534*x + 108.3566 0.090894 1.3517 0.64832 1.7034

Sulfate y = 0.037752*x + 10.565 0.06587 1.0279 0.97206 1.0559

Alkalinity Turbidity y = 0.0075049*x + 0.75479 0.10097 1.1155 0.88449 1.231

Chloride y = 0.021427*x + 0.60594 0.075324 1.0438 0.95622 1.0876

Ferrous y = 0.0012524*x + 0.12203 0.005981 1.6487 0.35134 2.2973

29

Fractal Analysis for Time Series Datasets: A Case Study of Groundwater Quality
DOI: http://dx.doi.org/10.5772/intechopen.92865



of the statistical and fractal analysis is shown in Table 2, and each WQI analysis is
discussed subsequently.

4.1 Turbidity

The turbidity sample datasets exhibit normal behavior as the mean, median, and
mode values are approximately equal. Standard deviation is found to be 1.5 and

Y Parameters-
X

Regression equation r2 H D
(Fractal)

PI

Nitrate y = 0.00040404*x + 2.6254 0.000151 0.98687 1.0031

pH y = 0.0003732*x + 7.1463 0.001183 1.2073 0.79271 1.4146

Calcium y = 0.24353*x + 12.683 0.1511 1.4105 0.58949 1.821

Magnesium y = 0.10221*x + 19.0295 0.01671 1.4381 0.56193 1.8761

Fluoride y = 0.0011091*x + 0.1554 0.070809 1.0896 0.91044 1.1791

TDS y = 0.67597*x + 29.1685 0.13638 1.0559 0.94412 1.1118

Hardness y = 0.53406*x + 75.1633 0.1099 1.4326 0.56739 1.8652

Sulfate y = 0.12922*x + �0.30058 0.23032 1.0907 0.9093 1.1814

Hardness Turbidity y = 0.0027505*x + 1.2446 0.035196 0.73752 1.2625 0.47503

Chloride y = 0.0077766*x + 2.0148 0.02575 0.6886 1.3114 0.37721

Ferrous y = 0.0005587*x + 0.19012 0.00309 1.1735 0.82654 1.3469

Nitrate y = 0.0013699*x + 2.4847 0.004511 0.69629 1.3037 0.39259

pH y = 0.0001197*x + 7.1729 0.000316 0.91947 1.0805 0.83895

Calcium y = 0.10221*x + 26.8046 0.069075 0.97954 1.0205 0.95908

Magnesium y = 0.2265*x + �0.15996 0.21297 1.0545 0.9455 1.109

Fluoride y = 0.0002939*x + 0.2432 0.012907 0.74932 1.2507 0.49865

TDS y = 0.34256*x + 60.3158 0.090894 0.68805 1.312 0.3761

Alkalinity y = 0.20579*x + 87.25 0.1099 0.64706 1.3529 0.29411

Sulfate y = 0.044992*x + 8.4565 0.072467 0.73569 1.2643 0.47139

Sulfate Turbidity y = 0.0066538*x + 1.5236 0.005754 0.93736 1.0626 0.87472

Chloride y = 0.13279*x + 1.1384 0.20972 0.89036 1.1096 0.78071

Ferrous y = 0.00823*x + 0.14631 0.018721 1.6664 0.33359 2.3328

Nitrate y = �0.0061497*x + 2.7619 0.002539 1.0315 0.96846 1.0631

pH y = 0.0034876*x + 7.1384 0.007486 1.3298 0.67025 1.6595

Calcium y = 0.48637*x + 33.6799 0.043691 1.3417 0.65832 1.6834

Magnesium y = 0.085194*x + 29.5794 0.000842 1.3882 0.61179 1.7764

Fluoride y = 0.004982*x + 0.21061 0.1036 1.051 0.94905 1.1019

TDS y = 1.7448*x + 81.682 0.06587 0.8804 1.1196 0.76081

Alkalinity y = 1.7825*x + 89.3566 0.23032 0.82887 1.1711 0.65774

Hardness y = 1.6107*x + 113.2606 0.072467 1.2378 0.76216 1.4757

Table 2.
Regression equation, coefficient of correlation, Hurst exponent, fractal dimension, and probability index
between water parameters at Tehri District.
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suggests that the sample data points are close together. The positive skewness
(1.747) of data points reveals that the curve is not symmetrical, and the kurtosis
value 3.13 shows that the sample datasets are platykurtic. Turbidity has persistent
behavior with chloride, nitrate, fluoride, TDS, alkalinity, and sulfate and anti-
persistent behavior with ferrous, PH, Ca, Mg, and hardness parameters.

4.2 Chloride

Mean and mode values are in the order of �0.5, and thus the data show normal
behavior even though the median is 0. High standard deviation (5.009) is observed
between sample points. Skewness value (1.52) suggests that the curve is not sym-
metrical, and the kurtosis value (1.3) is less than 3. Chloride has the Brownian time
series (true random walk) behavior with Fl, sulfate, and turbidity parameters. Thus,
the curve is platykurtic. Chloride has persistent behavior with turbidity, nitrate,
TDS, and alkalinity and anti-persistent behavior with Fe, PH, Ca, Mg, and hardness
parameters.

4.3 Ferrous (Fe)

Average, median, and mode values are approximately equal, and thus the data
show normal behavior. Standard deviation value (1.031) exhibits that the sample
points are close to each other. Skewness value (11.713) suggests that the curve is not
symmetrical, and kurtosis value is very large; thus, the curve is not platykurtic. The
sample dataset containing heavier outliers and Fe has Brownian time series (True
random walk) behavior with nitrate, fluoride, and hardness parameters. It has
persistent behavior with pH, Ca, and Mg and anti-persistent behavior with chloride,
TDS, alkalinity, and sulfate parameters.

4.4 Nitrate

Mean and median values and standard deviation are approximately equal; thus
data exhibit normal behavior. This suggests that the sample data are close to each
other. The skewness value (1.011) and kurtosis are less than 3; hence the curve is
not symmetrical and platykurtic. Nitrate has persistent behavior with turbidity,
chloride, fluoride, TDS, alkalinity, hardness, and sulfate and anti-persistent behav-
ior with Ca, Mg, Fe, and PH parameters.

4.4.1 pH

Average and median are almost same, i.e., 7.189 and 7.20, respectively, whereas
the mode of pH is 0.25. These values are approximately equal and hence exhibit the
normal behavior. Standard deviation (SD) is 0.691, and skewness is close to 0, and
all values are also close to each other; thus pH is symmetrical. The curve is not
platykurtic, as kurtosis is very large 74.92. It shows the Brownian time series
behavior with fluoride (Fl) parameter; persistent behavior with Ca, Mg, Fe, and
nitrate; and anti-persistent performance with different parameters, i.e., turbidity,
chloride, TDS, alkalinity, hardness, and sulfate.

4.4.2 Calcium

Mean, median, and mode values are not close to each other; thus the curve does
not show normal behavior. High standard deviation (�40) indicates that the Ca
values are very much distributed from each other. It is positively skewed, and the
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of the statistical and fractal analysis is shown in Table 2, and each WQI analysis is
discussed subsequently.

4.1 Turbidity

The turbidity sample datasets exhibit normal behavior as the mean, median, and
mode values are approximately equal. Standard deviation is found to be 1.5 and

Y Parameters-
X

Regression equation r2 H D
(Fractal)

PI

Nitrate y = 0.00040404*x + 2.6254 0.000151 0.98687 1.0031

pH y = 0.0003732*x + 7.1463 0.001183 1.2073 0.79271 1.4146

Calcium y = 0.24353*x + 12.683 0.1511 1.4105 0.58949 1.821

Magnesium y = 0.10221*x + 19.0295 0.01671 1.4381 0.56193 1.8761

Fluoride y = 0.0011091*x + 0.1554 0.070809 1.0896 0.91044 1.1791

TDS y = 0.67597*x + 29.1685 0.13638 1.0559 0.94412 1.1118

Hardness y = 0.53406*x + 75.1633 0.1099 1.4326 0.56739 1.8652

Sulfate y = 0.12922*x + �0.30058 0.23032 1.0907 0.9093 1.1814

Hardness Turbidity y = 0.0027505*x + 1.2446 0.035196 0.73752 1.2625 0.47503

Chloride y = 0.0077766*x + 2.0148 0.02575 0.6886 1.3114 0.37721

Ferrous y = 0.0005587*x + 0.19012 0.00309 1.1735 0.82654 1.3469

Nitrate y = 0.0013699*x + 2.4847 0.004511 0.69629 1.3037 0.39259

pH y = 0.0001197*x + 7.1729 0.000316 0.91947 1.0805 0.83895

Calcium y = 0.10221*x + 26.8046 0.069075 0.97954 1.0205 0.95908

Magnesium y = 0.2265*x + �0.15996 0.21297 1.0545 0.9455 1.109

Fluoride y = 0.0002939*x + 0.2432 0.012907 0.74932 1.2507 0.49865

TDS y = 0.34256*x + 60.3158 0.090894 0.68805 1.312 0.3761

Alkalinity y = 0.20579*x + 87.25 0.1099 0.64706 1.3529 0.29411

Sulfate y = 0.044992*x + 8.4565 0.072467 0.73569 1.2643 0.47139

Sulfate Turbidity y = 0.0066538*x + 1.5236 0.005754 0.93736 1.0626 0.87472

Chloride y = 0.13279*x + 1.1384 0.20972 0.89036 1.1096 0.78071

Ferrous y = 0.00823*x + 0.14631 0.018721 1.6664 0.33359 2.3328

Nitrate y = �0.0061497*x + 2.7619 0.002539 1.0315 0.96846 1.0631

pH y = 0.0034876*x + 7.1384 0.007486 1.3298 0.67025 1.6595

Calcium y = 0.48637*x + 33.6799 0.043691 1.3417 0.65832 1.6834

Magnesium y = 0.085194*x + 29.5794 0.000842 1.3882 0.61179 1.7764

Fluoride y = 0.004982*x + 0.21061 0.1036 1.051 0.94905 1.1019

TDS y = 1.7448*x + 81.682 0.06587 0.8804 1.1196 0.76081

Alkalinity y = 1.7825*x + 89.3566 0.23032 0.82887 1.1711 0.65774

Hardness y = 1.6107*x + 113.2606 0.072467 1.2378 0.76216 1.4757

Table 2.
Regression equation, coefficient of correlation, Hurst exponent, fractal dimension, and probability index
between water parameters at Tehri District.
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suggests that the sample data points are close together. The positive skewness
(1.747) of data points reveals that the curve is not symmetrical, and the kurtosis
value 3.13 shows that the sample datasets are platykurtic. Turbidity has persistent
behavior with chloride, nitrate, fluoride, TDS, alkalinity, and sulfate and anti-
persistent behavior with ferrous, PH, Ca, Mg, and hardness parameters.

4.2 Chloride

Mean and mode values are in the order of �0.5, and thus the data show normal
behavior even though the median is 0. High standard deviation (5.009) is observed
between sample points. Skewness value (1.52) suggests that the curve is not sym-
metrical, and the kurtosis value (1.3) is less than 3. Chloride has the Brownian time
series (true random walk) behavior with Fl, sulfate, and turbidity parameters. Thus,
the curve is platykurtic. Chloride has persistent behavior with turbidity, nitrate,
TDS, and alkalinity and anti-persistent behavior with Fe, PH, Ca, Mg, and hardness
parameters.

4.3 Ferrous (Fe)

Average, median, and mode values are approximately equal, and thus the data
show normal behavior. Standard deviation value (1.031) exhibits that the sample
points are close to each other. Skewness value (11.713) suggests that the curve is not
symmetrical, and kurtosis value is very large; thus, the curve is not platykurtic. The
sample dataset containing heavier outliers and Fe has Brownian time series (True
random walk) behavior with nitrate, fluoride, and hardness parameters. It has
persistent behavior with pH, Ca, and Mg and anti-persistent behavior with chloride,
TDS, alkalinity, and sulfate parameters.

4.4 Nitrate

Mean and median values and standard deviation are approximately equal; thus
data exhibit normal behavior. This suggests that the sample data are close to each
other. The skewness value (1.011) and kurtosis are less than 3; hence the curve is
not symmetrical and platykurtic. Nitrate has persistent behavior with turbidity,
chloride, fluoride, TDS, alkalinity, hardness, and sulfate and anti-persistent behav-
ior with Ca, Mg, Fe, and PH parameters.

4.4.1 pH

Average and median are almost same, i.e., 7.189 and 7.20, respectively, whereas
the mode of pH is 0.25. These values are approximately equal and hence exhibit the
normal behavior. Standard deviation (SD) is 0.691, and skewness is close to 0, and
all values are also close to each other; thus pH is symmetrical. The curve is not
platykurtic, as kurtosis is very large 74.92. It shows the Brownian time series
behavior with fluoride (Fl) parameter; persistent behavior with Ca, Mg, Fe, and
nitrate; and anti-persistent performance with different parameters, i.e., turbidity,
chloride, TDS, alkalinity, hardness, and sulfate.

4.4.2 Calcium

Mean, median, and mode values are not close to each other; thus the curve does
not show normal behavior. High standard deviation (�40) indicates that the Ca
values are very much distributed from each other. It is positively skewed, and the
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curve is not platykurtic. With few parameters, i.e., turbidity, chloride, TDS, alka-
linity, hardness, Mg, Fl, TDS, and sulfate, it shows persistent behavior and anti-
persistent behavior with Fe and pH parameters.

4.4.3 Magnesium

Mean and mode values are 30.75 and 22.0, respectively, and median is 0, so the
sample dataset are not same, and thus the curve does not show normal behavior.
Standard deviation value is high (50.368); thus, the values of Mg are very much
distributed with each other. It is positively skewed, and the curve is not platykurtic.
Mg has Brownian time series (true random walk) behavior with pH and alkalinity
parameters. Mg has persistent behavior with turbidity, chloride, nitrate, Ca, TDS,
hardness, Fl, and sulfate and anti-persistent behavior with Fe parameters.

4.4.4 Fluoride

Mean and median values are approximately equal, and thus the curve shows
normal behavior. Standard deviation value (0) suggests that the sample data are
close to each other, and the skewness and kurtosis value suggest that curve is
platykurtic. Fl has Brownian time series (true random walk) behavior with nitrate
and hardness parameters. Fl has persistent behavior with turbidity, chloride, TDS,
alkalinity, and sulfate and anti-persistent behavior with Fe, pH, Ca, and Mg
parameters.

4.4.5 Total dissolved salts (TDS)

Mean, median, and mode values are different; thus, the curve does not follow
normal behavior. Standard deviation value is high (116.57); thus the values of TDS
are not close to each other. TDS has Brownian time series (true random walk)
behavior with turbidity, chloride, pH, Fl, and sulfate parameters. It is negatively
skewed and the curve is platykurtic. TDS has persistent behavior with alkalinity,
nitrate, and chloride and anti-persistent behavior with Fe, Ca, Mg, and hardness
parameters.

4.4.6 Alkalinity

Average, median, and mode (1.27) values are nearly equal to each other, and
sample data exhibit normal behavior. High standard deviation (63.72) is observed
between the datasets, with the skewness value (0.331) which is close to 0. The
kurtosis value is less than 3; thus the curve is symmetrical and platykurtic. It has
Brownian time series behavior with chloride, Fl, TDS, and sulfate parameters.
Alkalinity has persistent behavior with nitrate and anti-persistent behavior with
turbidity, Fe, pH, Ca, Mg, and hardness parameters.

4.4.7 Hardness

The data series does not exhibit normal behavior as the mean and median values
are a having large difference with the mode value (95.0). Standard deviation value
(102.5) suggests that data are spread out, and skewness values observed to be 1.49;
hence the curve is platykurtic. Only with Mg parameter, it has Brownian time series
flow. Hardness has persistent behavior with turbidity, chloride, nitrate, PH, Ca, Fl,
TDS, alkalinity, and sulfate and anti-persistent behavior with Fe parameters.
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4.4.8 Sulfate

Mean and median values are different and mode value is 0. Standard deviation
(17.16) reveals that the dataset has distributed form. The skewness value is equal to
2.40 with larger kurtosis value, i.e., 7.22, which indicates that the curve is not
symmetrical. It has true random walk flow with Fl and nitrate parameters. Sulfate
has persistent behavior with turbidity, chloride, TDS, and alkalinity and anti-
persistent behavior with hardness, Fe, PH, Ca, and Mg parameters.

5. Conclusion

The water parameters from different sources in the Tehri District of
Uttarakhand have shown the non-platykurtic curve. The analysis of most of the
water parameter combinations has shown the Brownian time series behavior with
each other. The irregular pattern in the WQI can be used for prediction purposes by
deciding if its dynamic follows a chaotic, random, or deterministic structural pat-
tern. Mostly all groundwater variables like turbidity, chloride, iron, nitrate, pH,
calcium, magnesium, fluoride, TDS, alkalinity, hardness, sulfate, etc. are affected
by each other. The pH of the sample datasets shows the Brownian time series
behavior with fluoride (Fl) parameter; persistent behavior with Ca, Mg, Fe, and
nitrate; and anti-persistent performance with turbidity, chloride, TDS, alkalinity,
hardness, and sulfate. Turbidity, chloride, nitrate, fluoride, TDS, alkalinity, sulfate,
and chloride have shown persistent behavior with each other. Fe has persistent
behavior with pH, Ca, and Mg, and nitrate has persistent behavior with turbidity,
chloride, fluoride, TDS, alkalinity, hardness, and sulfate. pH has persistent behavior
with Ca, Mg, Fe, and nitrate. Turbidity, chloride, TDS, alkalinity, hardness, Mg, Fl,
TDS, sulfate, and Ca show persistent behavior. Mg has persistent behavior with
turbidity, chloride, nitrate, Ca, TDS, hardness, Fl, and sulfate. Fl has persistent
behavior with turbidity, chloride, TDS, alkalinity, and sulfate. TDS has persistent
behavior with alkalinity, nitrate, and chloride. Alkalinity has persistent behavior
with nitrate only. Hardness has persistent behavior with turbidity, chloride, nitrate,
pH, Ca, Fl, TDS, alkalinity, and sulfate. Sulfate has persistent behavior with turbid-
ity, chloride, TDS, and alkalinity.

Turbidity and chloride have anti-persistent behavior with Fe, pH, Ca, Mg, and
hardness parameters. Fe has anti-persistent behavior with chloride, TDS, alkalinity,
and sulfate parameters. Nitrate has anti-persistent behavior with Ca, Mg, Fe, and
pH parameters. pH has anti-persistent performance with different parameters, i.e.,
turbidity, chloride, TDS, alkalinity, hardness, and sulfate. Mg has anti-persistent
behavior with Fe parameters only and Ca with Fe and pH parameters. Fl has anti-
persistent behavior with Fe, pH, Ca, and Mg parameters. TDS has anti-persistent
behavior with Fe, Ca, Mg, and hardness parameters. Alkalinity has anti-persistent
behavior with turbidity, Fe, pH, Ca, Mg, and hardness parameters. Hardness has
anti-persistent behavior with Fe parameter only, and sulfate has anti-persistent
behavior with hardness, Fe, PH, Ca, and Mg parameters.

The persistent behavior is observed among the various indices which reveal that
the variations of the water quality parameters are under an acceptable range with
each other. This study is focused on the utility of the Hurst exponent, fractal
dimension as an analysis tool, and predictability indices (PI) along with regression
and coefficient of correlation among the water quality time series data points. It is
concluded that the fractal analysis is a better statistical and mathematical tool to
calculate water quality indices. Fractal analysis among the various parameters
suggested that the water samples are good for drinking and the health.
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curve is not platykurtic. With few parameters, i.e., turbidity, chloride, TDS, alka-
linity, hardness, Mg, Fl, TDS, and sulfate, it shows persistent behavior and anti-
persistent behavior with Fe and pH parameters.

4.4.3 Magnesium

Mean and mode values are 30.75 and 22.0, respectively, and median is 0, so the
sample dataset are not same, and thus the curve does not show normal behavior.
Standard deviation value is high (50.368); thus, the values of Mg are very much
distributed with each other. It is positively skewed, and the curve is not platykurtic.
Mg has Brownian time series (true random walk) behavior with pH and alkalinity
parameters. Mg has persistent behavior with turbidity, chloride, nitrate, Ca, TDS,
hardness, Fl, and sulfate and anti-persistent behavior with Fe parameters.

4.4.4 Fluoride

Mean and median values are approximately equal, and thus the curve shows
normal behavior. Standard deviation value (0) suggests that the sample data are
close to each other, and the skewness and kurtosis value suggest that curve is
platykurtic. Fl has Brownian time series (true random walk) behavior with nitrate
and hardness parameters. Fl has persistent behavior with turbidity, chloride, TDS,
alkalinity, and sulfate and anti-persistent behavior with Fe, pH, Ca, and Mg
parameters.

4.4.5 Total dissolved salts (TDS)

Mean, median, and mode values are different; thus, the curve does not follow
normal behavior. Standard deviation value is high (116.57); thus the values of TDS
are not close to each other. TDS has Brownian time series (true random walk)
behavior with turbidity, chloride, pH, Fl, and sulfate parameters. It is negatively
skewed and the curve is platykurtic. TDS has persistent behavior with alkalinity,
nitrate, and chloride and anti-persistent behavior with Fe, Ca, Mg, and hardness
parameters.

4.4.6 Alkalinity

Average, median, and mode (1.27) values are nearly equal to each other, and
sample data exhibit normal behavior. High standard deviation (63.72) is observed
between the datasets, with the skewness value (0.331) which is close to 0. The
kurtosis value is less than 3; thus the curve is symmetrical and platykurtic. It has
Brownian time series behavior with chloride, Fl, TDS, and sulfate parameters.
Alkalinity has persistent behavior with nitrate and anti-persistent behavior with
turbidity, Fe, pH, Ca, Mg, and hardness parameters.

4.4.7 Hardness

The data series does not exhibit normal behavior as the mean and median values
are a having large difference with the mode value (95.0). Standard deviation value
(102.5) suggests that data are spread out, and skewness values observed to be 1.49;
hence the curve is platykurtic. Only with Mg parameter, it has Brownian time series
flow. Hardness has persistent behavior with turbidity, chloride, nitrate, PH, Ca, Fl,
TDS, alkalinity, and sulfate and anti-persistent behavior with Fe parameters.
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4.4.8 Sulfate

Mean and median values are different and mode value is 0. Standard deviation
(17.16) reveals that the dataset has distributed form. The skewness value is equal to
2.40 with larger kurtosis value, i.e., 7.22, which indicates that the curve is not
symmetrical. It has true random walk flow with Fl and nitrate parameters. Sulfate
has persistent behavior with turbidity, chloride, TDS, and alkalinity and anti-
persistent behavior with hardness, Fe, PH, Ca, and Mg parameters.

5. Conclusion

The water parameters from different sources in the Tehri District of
Uttarakhand have shown the non-platykurtic curve. The analysis of most of the
water parameter combinations has shown the Brownian time series behavior with
each other. The irregular pattern in the WQI can be used for prediction purposes by
deciding if its dynamic follows a chaotic, random, or deterministic structural pat-
tern. Mostly all groundwater variables like turbidity, chloride, iron, nitrate, pH,
calcium, magnesium, fluoride, TDS, alkalinity, hardness, sulfate, etc. are affected
by each other. The pH of the sample datasets shows the Brownian time series
behavior with fluoride (Fl) parameter; persistent behavior with Ca, Mg, Fe, and
nitrate; and anti-persistent performance with turbidity, chloride, TDS, alkalinity,
hardness, and sulfate. Turbidity, chloride, nitrate, fluoride, TDS, alkalinity, sulfate,
and chloride have shown persistent behavior with each other. Fe has persistent
behavior with pH, Ca, and Mg, and nitrate has persistent behavior with turbidity,
chloride, fluoride, TDS, alkalinity, hardness, and sulfate. pH has persistent behavior
with Ca, Mg, Fe, and nitrate. Turbidity, chloride, TDS, alkalinity, hardness, Mg, Fl,
TDS, sulfate, and Ca show persistent behavior. Mg has persistent behavior with
turbidity, chloride, nitrate, Ca, TDS, hardness, Fl, and sulfate. Fl has persistent
behavior with turbidity, chloride, TDS, alkalinity, and sulfate. TDS has persistent
behavior with alkalinity, nitrate, and chloride. Alkalinity has persistent behavior
with nitrate only. Hardness has persistent behavior with turbidity, chloride, nitrate,
pH, Ca, Fl, TDS, alkalinity, and sulfate. Sulfate has persistent behavior with turbid-
ity, chloride, TDS, and alkalinity.

Turbidity and chloride have anti-persistent behavior with Fe, pH, Ca, Mg, and
hardness parameters. Fe has anti-persistent behavior with chloride, TDS, alkalinity,
and sulfate parameters. Nitrate has anti-persistent behavior with Ca, Mg, Fe, and
pH parameters. pH has anti-persistent performance with different parameters, i.e.,
turbidity, chloride, TDS, alkalinity, hardness, and sulfate. Mg has anti-persistent
behavior with Fe parameters only and Ca with Fe and pH parameters. Fl has anti-
persistent behavior with Fe, pH, Ca, and Mg parameters. TDS has anti-persistent
behavior with Fe, Ca, Mg, and hardness parameters. Alkalinity has anti-persistent
behavior with turbidity, Fe, pH, Ca, Mg, and hardness parameters. Hardness has
anti-persistent behavior with Fe parameter only, and sulfate has anti-persistent
behavior with hardness, Fe, PH, Ca, and Mg parameters.

The persistent behavior is observed among the various indices which reveal that
the variations of the water quality parameters are under an acceptable range with
each other. This study is focused on the utility of the Hurst exponent, fractal
dimension as an analysis tool, and predictability indices (PI) along with regression
and coefficient of correlation among the water quality time series data points. It is
concluded that the fractal analysis is a better statistical and mathematical tool to
calculate water quality indices. Fractal analysis among the various parameters
suggested that the water samples are good for drinking and the health.
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Chapter 3

Establishing the Downscaling and
Spatiotemporal Scale Conversion
Models of NDVI Based on Fractal
Methodology
Haijun Luan

Abstract

Scale effect is a crucial scientific problem in quantitative remote sensing (RS),
and scholars attempt to solve it with scale conversion models, which can character-
ize the numerical relationship of RS land surface parameters at different resolutions
(scales). As a significant land surface parameter, scale conversion of normalized
difference vegetation index (NDVI) has been studied for a long time. Therefore,
taking NDVI as an example, the development of scaling research is described and
analyzed in the paper, and based on fractal theory, the development trends are
discussed for land surface parameters in quantitative remote sensing. These are our
conclusions: it will be the new trend to establish downscaling models based on
fractal theory for land surface parameters in quantitative remote sensing; addition-
ally, it still is the hotspot to establish spatiotemporal scale conversion models for
land surface parameters in quantitative remote sensing in the future, and addressed
on that, the multi-fractal scaling methodology is proposed, and its availability is
analyzed in the paper, which presents significant potential.

Keywords: remote sensing (RS), normalized difference vegetation index (NDVI),
scaling, fractal, iterated function system (IFS), multi-fractal

1. Introduction

The scale problem is one of the important and fundamental problems of quanti-
tative remote sensing [1–3]. Scholars have studied the scale effects of different
remote sensing (RS) land surface parameters. The study of scale effect is conducive
to the synergistic use of RS data of different spatial and temporal resolutions
(scales) to solve the problem that “massive” RS images cannot be fully utilized and
has important application potential and scientific research value [3]. In view of the
spatiotemporal characteristics of the ground objects, the RS land surface parameters
not only have spatial scale effects but also have temporal scale effects. Scholars have
conducted extensive and in-depth research on the scale effect of land surface
parameters, which includes the mechanism, manifestation, effect analysis, and
solution of scale effects. The author has previously discussed it in detail [4]. Based
on the above research aspects, scale conversion as a solution to scale effects has
received attention. The scale conversion model can characterize the numerical or
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physical relationship of RS land surface parameter images at different resolutions
(scales) and can quantitatively describe scale effects. This paper will also focus on
the research progress of the spatial down-scaling and the spatiotemporal scaling.

2. Downscaling of NDVI based on fractal IFS

2.1 Review of downscaling of RS land surface parameters

Liang [1] has reviewed several current downscaling methods, including linear
decomposition methods and nonlinear statistical decomposition methods, methods
for generating continuous regions, normalized difference vegetation index (NDVI)
time series decomposition, multi-resolution data fusion, the statistical downscaling
method of global climate model products (GCM), etc. Further, Gao et al. [5], Zhu
et al. [6], and Huang et al. [7, 8] have done systematic and effective work in the
spatiotemporal fusion downscaling of land surface reflectance, which has become a
research hot topic. The spectral-spatial feature fusion by Wang et al. [9–12] and Shi
and Wang [13] also achieved good results for subpixel mapping. These studies,
however, scarcely considered the scale conversion process from the perspective of
dynamics, which studies of surface parameter downscaling based on the fractal
iterated function system (IFS) have paid attention to.

As a fractal branch of mathematics, because of its complete and rigorous theo-
retical system, it can systematically study the performance, nature, and causes of
multi-scale characteristics of natural phenomena. In the fractal geometry theory
system, in addition to the familiar fractal phenomenon description and fractal
measurement, the internal causes or dynamic processes of mathematical fractals
(interaction, feedback, and iteration, represented by IFS-iteration function system)
and the physical causes of statistical fractals (such as critical or abrupt changes) are
also important research contents of fractal geometry, and fractal geometry has
become a part of nonlinear dynamics research [14]. Although the current research
on fractal dynamics has just started, there are still many problems waiting to be
solved, but its potential value and significance in dynamics research cannot be
denied.

In quantitative remote sensing research, fractal methods are mostly used in the
mapping of surface morphology (spatial structure) such as active radar imagery and
snow and ocean imagery [15], but it also has important applications in scale con-
version research and is further deepened and expanded. The use of fractals for
surface parameter scale conversion modeling usually contains two important
research components:

1.The performance of fractal features, that is, fractal metrics, and also the fractal
dimension of the research object. For example, Zhang et al. [16, 17] used the
information dimension method to describe the fractal dimension of leaf area
index (LAI) scale conversion. Luan et al. [18, 19] and Wu et al. [20] used the
similar dimension method to measure the fractal dimension of NDVI and LAI
scale-up conversion, respectively.

2.The intrinsic nature of the fractal phenomenon, that is, the dynamics
produced, which is the combined effect of multifactor surface effects.

The mathematical basis of fractal generation is IFS. Kim and Barros [21] first
constructed the r function from the dynamic factors (soil sediment content,
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vegetation water content) of soil moisture scale conversion and then established the
IFS to describe the soil moisture downscaling, and the conversion effect was good.
The model can describe the dynamic process of soil moisture scale conversion,
which has physical significance and demonstrates the advantages of downscaling
surface parameters based on fractal IFS. In general, there is currently little research
into the causes of fractal dynamics. In mathematics, the fractal IFS is a continuously
iterative calculation based on the whole research object [14], and the RS land
surface parameter image is created in units of local pixels. This ensures that the
mathematical IFS vertical conversion factor (r function) is usually constant [21],
while the vertical conversion factor of RS land surface parameters (such as soil
moisture) is based on the physical elements of each pixel (such as sandy soil). The
amount of space and the vegetation water content varies dynamically and tempo-
rally [21]. This is why the IFS function can describe the scale switching dynamics of
surface parameters and why the model has certain physical meanings. The vertical
conversion factor is used to describe the interscale conversion of surface parameter
values and is the key to determining the IFS function. Different surface parameters
have different values due to the spatial distribution and scale conversion factors (or
dynamic factors), and the vertical conversion factor (r function) contains different
types of variables and function forms. How to determine the r function is the
difficulty in determining the IFS function, which is also an important reason why
the latter is less frequently applied in descriptions of quantitative RS land surface
parameter scale conversion. Therefore, the NDVI downscaling model based on the
fractal IFS function can be considered to describe the dynamic process of scale
conversion. This research covers a wide area and is of great significance. The
following is a description of a preliminary implementation [22].

2.2 Methodology

How does one build an NDVI downscaling model based on the fractal IFS
function? The following points need to be considered: first, how to identify the
sensitive factors affecting the spatial distribution and scale effect of NDVI for
NDVI; second, how to use this sensitive factor to establish the vertical scale con-
version factor r function in the IFS and then determine the IFS function to achieve
NDVI downscaling; and finally, how to evaluate the downscaled conversion results.
The solution incorporating these considerations is described below.

2.2.1 Identify sensitive factors

According to the above description, water body is an important parameter
affecting the spatial distribution and scale effect of NDVI; thus it can be determined
that the pixel water parameter is one of the important dynamic factors of NDVI
scale conversion. In addition, Wen et al. [23] gave a method for albedo conversion
from small-scale to large-scale images and used the pixel topographical influencing
factors to correct the converted results, which demonstrated that the method was
effective for albedo scale conversion of rugged terrain. Considering the close rela-
tionship between the surface reflectivity and the surface albedo, and that the sur-
face reflectance is the basic parameter for calculating NDVI, the topographic factor
parameter can be determined as one of the important kinetic factors for NDVI scale
conversion. Therefore, the important dynamic factors in NDVI spatial distribution
and scale conversion are determined to be the pixel water parameters and
topographic factors.
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vegetation water content) of soil moisture scale conversion and then established the
IFS to describe the soil moisture downscaling, and the conversion effect was good.
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into the causes of fractal dynamics. In mathematics, the fractal IFS is a continuously
iterative calculation based on the whole research object [14], and the RS land
surface parameter image is created in units of local pixels. This ensures that the
mathematical IFS vertical conversion factor (r function) is usually constant [21],
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moisture) is based on the physical elements of each pixel (such as sandy soil). The
amount of space and the vegetation water content varies dynamically and tempo-
rally [21]. This is why the IFS function can describe the scale switching dynamics of
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values and is the key to determining the IFS function. Different surface parameters
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2.2 Methodology
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NDVI; second, how to use this sensitive factor to establish the vertical scale con-
version factor r function in the IFS and then determine the IFS function to achieve
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The solution incorporating these considerations is described below.
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According to the above description, water body is an important parameter
affecting the spatial distribution and scale effect of NDVI; thus it can be determined
that the pixel water parameter is one of the important dynamic factors of NDVI
scale conversion. In addition, Wen et al. [23] gave a method for albedo conversion
from small-scale to large-scale images and used the pixel topographical influencing
factors to correct the converted results, which demonstrated that the method was
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2.2.2 Determine the vertical conversion factor r function and establish the IFS function

Referring to Kim [21], IFS formula (1), horizontal transformation formula (2),
and vertical transformation formula (3) for large-scale surface parameter pixel
downscaling are obtained as follows. The IFS formula is calculated by pixel-by-pixel
sliding. Get the full image downscaling results:

IFS i,j
��
n,m xi, y j, sij

� � ¼ pn xi
� �

, qm yj
� �

, In,m xi, y j, sij
� �� �

, (1)

( pn xi
� � ¼ xin�1 þ α xi � xi0

� �

qm yi
� � ¼ y j

m�1 þ α y j � y j
0

� � , (2)

In,m xi, y j, sij
� � ¼ en,mxi þ f n,my

j þ gn,mx
iy j þ r1 xi, y j

� �
sij þ kn,m

� �
� r2 xi, y j

� �
, (3)

where IFSi,j
��
n,m xi, y j, sij

� �
represents the surface parameter of the pixel at the i, jð Þ

location when the large-scale pixel of the surface parameter is downscaled to the
small-scale image of the n�m dimension; xi, y j, and sij correspond, respectively, to
the x-direction coordinate pn xi

� �
, the y-direction coordinate qm y j

� �
, and the surface

parameter values In,m xi, y j, sij
� �

of the three-dimensional data of the pixel; xin�1 and
xi0 represent, respectively, the x-direction starting coordinate of the i, jð Þ pixel in
the n�m dimensional small-scale image and the x-direction starting coordinate of
the large-scale pixel; α represents the downscaling ratio (small-scale/large-scale,
which is less than or equal to 1); en,m, f n,m, gn,m, and kn,m are, respectively, functions
of the x and y coordinates of the lower left corner and upper right corner of the
large-scale pixel, the downscaled surface parameter data, and the vertical scale
conversion surface function; and r1 xi, y j

� �
and r2 xi, y j

� �
represent, respectively,

the two different vertical conversion factors in the vertical scale conversion surface
function. Reference [21] should be consulted for the parameters or factors not
represented in the formula, which will not be explained here. Generally, the pn xi

� �
and qm yj

� �
coordinates of the i, jð Þ pixel are obtained by dividing the large-scale

pixel equally into 1/α parts, and the In,m xi, y j, sij
� �

calculation is the key. In formula
(3), r2 xi, y j

� �
is the same as the r1 xi, y j

� �
function, but their argument coefficients

are different.
For NDVI, gn,m, en,m, f n,m, and kn,m represent the functions of the n,mð Þ pixel of the

downscaled NDVI image. Based on the special downscaled NDVI 3D values of the
four corner pixels, gn,m, en,m, f n,m, and kn,m can be calculated as formulas (4)–(11):

gn,m ¼ sn�1,m�1 � sn�1,m � sn,m�1 þ sn,m � Rg
1

x0y0 � xNy0 � x0yM þ xNyM
, (4)

en,m ¼ sn�1,m�1 � sn,m�1 � gn,m x0y0 � xNy0
� �� Re

1

x0 � xN
, (5)

f n,m ¼ sn�1,m�1 � sn�1,m � gn,m x0y0 � x0yM
� �� R f

1

y0 � yM
, (6)

kn,m ¼ sn,m � en,mxN � f n,m yM � gn,mxNyM � Rk
1 : (7)
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Furthermore,

R g
1 ¼ r1 xin�1, y

j
m�1

� �
sij0,0 � r1 xin, y

j
m�1

� �
sijN,0 � r1 xin�1, y

j
m

� �
sij0,M þ r1 xin, y

j
m

� �
sijN,M,

(8)

Re
1 ¼ r1 xin�1, y

j
m�1

� �
sij0,0 � r1 xin, y

j
m�1

� �
sijN,0, (9)

R f
1 ¼ r1 xin�1, y

j
m�1

� �
sij0,0 � r1 xin�1, y

j
m

� �
sij0,M, (10)

Rk
1 ¼ r1 xin, y

j
m

� �
sijN,M: (11)

Therefore, the calculation of the r1ðxi, y jÞ function is significant, and r1 n,mð Þ
(0≤ r1 ≤ 1) is used to adjust the NDVI surface roughness. The following treatment
focuses on establishing the vertical transformation formula for NDVI, that is, the
determination of the r function (containing r1 xi, y j

� �
and r2 xi, y j

� �
).

Based on the above sensitivity factors, a vertical conversion factor r function can
be constructed:

r ¼ γ � Swater þ β � sþ δ, (12)

where Swater represents the pixel water parameter; s represents the topographic
information, taking into account the magnitude of the r function; the normalized
difference water index (NDWI) and slope (calculated from the digital elevation
model (DEM) image) represent, respectively, the water body effect and the topo-
graphic influence in the pixel; γ and β are the coefficients of the two parameters,
respectively; and δ represents the adjustment constant. Two different orders of
magnitude of r are calculated as follows:

r1 ¼ γ1 � Swater þ β1 � sþ δ1, (13)

r2 ¼ γ2 � Swater þ β2 � sþ δ2: (14)

For NDVI, the γ, β, and δ coefficients can be calculated by linear regression
between the high-resolution NDVI image and its NDWI/slope images.

Following construction of the r function, formulas (1)–(3) can be solved in
combination with other known conditions, and NDVI downscaling can be achieved.

2.2.3 Evaluation of downscaling results

In order to obtain more accurate downscaling results, if the resolution of the low
resolution image is too different from the resolution of the target resolution image
(such as downscaling from 250 m MODIS NDVI to 30 m NDVI), a hierarchical
downscaling method will be adopted. First, the low-resolution surface parameter
image is downscaled to an intermediate resolution image, and then the intermediate
resolution image is further downscaled to the target resolution image, which can
largely guarantee the accuracy of the result.

Referring to the study by Kim and Barros [21], the accuracy of the downscaled
results can be evaluated using statistical indicators such as the maximum, minimum,
variance, and standard deviation (compared to high-resolution NDVI images).
Moreover, the histograms of the downscaled NDVI and true NDVI images were
drawn and compared, and their correlation coefficient was calculated. With those
indexes, the accuracy of the downscaled images and methodology could be validated.
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Furthermore,

R g
1 ¼ r1 xin�1, y

j
m�1

� �
sij0,0 � r1 xin, y

j
m�1

� �
sijN,0 � r1 xin�1, y

j
m

� �
sij0,M þ r1 xin, y

j
m

� �
sijN,M,

(8)

Re
1 ¼ r1 xin�1, y

j
m�1

� �
sij0,0 � r1 xin, y

j
m�1

� �
sijN,0, (9)

R f
1 ¼ r1 xin�1, y

j
m�1

� �
sij0,0 � r1 xin�1, y

j
m

� �
sij0,M, (10)

Rk
1 ¼ r1 xin, y

j
m

� �
sijN,M: (11)

Therefore, the calculation of the r1ðxi, y jÞ function is significant, and r1 n,mð Þ
(0≤ r1 ≤ 1) is used to adjust the NDVI surface roughness. The following treatment
focuses on establishing the vertical transformation formula for NDVI, that is, the
determination of the r function (containing r1 xi, y j

� �
and r2 xi, y j

� �
).

Based on the above sensitivity factors, a vertical conversion factor r function can
be constructed:

r ¼ γ � Swater þ β � sþ δ, (12)

where Swater represents the pixel water parameter; s represents the topographic
information, taking into account the magnitude of the r function; the normalized
difference water index (NDWI) and slope (calculated from the digital elevation
model (DEM) image) represent, respectively, the water body effect and the topo-
graphic influence in the pixel; γ and β are the coefficients of the two parameters,
respectively; and δ represents the adjustment constant. Two different orders of
magnitude of r are calculated as follows:
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r2 ¼ γ2 � Swater þ β2 � sþ δ2: (14)

For NDVI, the γ, β, and δ coefficients can be calculated by linear regression
between the high-resolution NDVI image and its NDWI/slope images.

Following construction of the r function, formulas (1)–(3) can be solved in
combination with other known conditions, and NDVI downscaling can be achieved.

2.2.3 Evaluation of downscaling results

In order to obtain more accurate downscaling results, if the resolution of the low
resolution image is too different from the resolution of the target resolution image
(such as downscaling from 250 m MODIS NDVI to 30 m NDVI), a hierarchical
downscaling method will be adopted. First, the low-resolution surface parameter
image is downscaled to an intermediate resolution image, and then the intermediate
resolution image is further downscaled to the target resolution image, which can
largely guarantee the accuracy of the result.

Referring to the study by Kim and Barros [21], the accuracy of the downscaled
results can be evaluated using statistical indicators such as the maximum, minimum,
variance, and standard deviation (compared to high-resolution NDVI images).
Moreover, the histograms of the downscaled NDVI and true NDVI images were
drawn and compared, and their correlation coefficient was calculated. With those
indexes, the accuracy of the downscaled images and methodology could be validated.
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2.3 Experiment and result analysis

2.3.1 Experiment

As the best indicator of the status of vegetation growth and vegetation coverage,
the normalized difference vegetation index is widely used in the study of environ-
mental (climate) changes, crop yield estimation, and other fields. Among existing
vegetation index products, the moderate resolution imaging spectroradiometer

Figure 1.
30 m OLI NDVI image.

Figure 2.
240 m MOD13 Q1 image.
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(MODIS) vegetation index products are highly valued for their ease of use, ready
availability, global coverage, and continuous phase. They have been widely used in
studies of forest fires [24, 25], grassland vegetation growth [26, 27], drought
[28, 29], land desertification [30], and other studies involving ecological environ-
ment monitoring. The maximum spatial resolution of MODIS vegetation index
products, however, is only 250 m. The validation of this remote sensing land surface
parameter is an important issue that cannot be avoided [31–33] and needs to be
carried out by means of scale conversion. The most representative MODIS NDVI
product, namely, MOD13 Q1, will be studied in this paper, which will also focus on
establishing a downscaled model of NDVI and validating the MOD13 Q1 product
based on it.

This is the experiment. A Landsat8 OLI NDVI image (Figure 1) was utilized to
validate a MODIS NDVI image (MOD13 Q1, Figure 2) with nearest imaging time in
Xiamen, China. Based on the downscaling formulas in Section 2.2, the MOD13 Q1
image of Xiamen was directly downscaled by⅛multiples, and the 30 m downscaled
NDVI was obtained as Figure 3. The histograms of the original and processed NDVI
images are drawn as Figure 4, and the statistics and correlation coefficients of the
NDVI images are presented in Table 1. Based on these data, the downscaled results
were evaluated and the MOD13 Q1 image was validated.

2.3.2 Result analysis

By analyzing Figures 1–4 and Table 1, it is found that:

1.Compared with the real 30 m OLI NDVI image, the 30 m downscaled MOD13
Q1 image has smaller differences in maximum value, minimum value, mean
value, and variance. The correlation coefficient between the two images is
0.93, which is highly correlated. The overall quality of the NDVI image
obtained by downscaling the MOD13 Q1 image is considered to be good,
indicating that the overall quality of MOD13 Q1 is good.

Figure 3.
30 m downscaled image of MOD13 Q.

45

Establishing the Downscaling and Spatiotemporal Scale Conversion Models of NDVI Based on…
DOI: http://dx.doi.org/10.5772/intechopen.91359



2.3 Experiment and result analysis

2.3.1 Experiment

As the best indicator of the status of vegetation growth and vegetation coverage,
the normalized difference vegetation index is widely used in the study of environ-
mental (climate) changes, crop yield estimation, and other fields. Among existing
vegetation index products, the moderate resolution imaging spectroradiometer

Figure 1.
30 m OLI NDVI image.

Figure 2.
240 m MOD13 Q1 image.

44

Fractal Analysis - Selected Examples

(MODIS) vegetation index products are highly valued for their ease of use, ready
availability, global coverage, and continuous phase. They have been widely used in
studies of forest fires [24, 25], grassland vegetation growth [26, 27], drought
[28, 29], land desertification [30], and other studies involving ecological environ-
ment monitoring. The maximum spatial resolution of MODIS vegetation index
products, however, is only 250 m. The validation of this remote sensing land surface
parameter is an important issue that cannot be avoided [31–33] and needs to be
carried out by means of scale conversion. The most representative MODIS NDVI
product, namely, MOD13 Q1, will be studied in this paper, which will also focus on
establishing a downscaled model of NDVI and validating the MOD13 Q1 product
based on it.

This is the experiment. A Landsat8 OLI NDVI image (Figure 1) was utilized to
validate a MODIS NDVI image (MOD13 Q1, Figure 2) with nearest imaging time in
Xiamen, China. Based on the downscaling formulas in Section 2.2, the MOD13 Q1
image of Xiamen was directly downscaled by⅛multiples, and the 30 m downscaled
NDVI was obtained as Figure 3. The histograms of the original and processed NDVI
images are drawn as Figure 4, and the statistics and correlation coefficients of the
NDVI images are presented in Table 1. Based on these data, the downscaled results
were evaluated and the MOD13 Q1 image was validated.

2.3.2 Result analysis

By analyzing Figures 1–4 and Table 1, it is found that:

1.Compared with the real 30 m OLI NDVI image, the 30 m downscaled MOD13
Q1 image has smaller differences in maximum value, minimum value, mean
value, and variance. The correlation coefficient between the two images is
0.93, which is highly correlated. The overall quality of the NDVI image
obtained by downscaling the MOD13 Q1 image is considered to be good,
indicating that the overall quality of MOD13 Q1 is good.

Figure 3.
30 m downscaled image of MOD13 Q.

45

Establishing the Downscaling and Spatiotemporal Scale Conversion Models of NDVI Based on…
DOI: http://dx.doi.org/10.5772/intechopen.91359



Comparing Figure 4(a) and (b), there is a certain similarity between the
distribution patterns of the two images, which indicates that the downscaled
image retains the spatial distribution structure of the original image to a good
degree, which proves to some extent that the original MOD13 Q1 image is of
good quality. In addition, comparing Figure 4(b) and (c), it is found that the
downscaled NDVI image has a higher proportion in the vicinity of the zero
value (mainly artificial features) than the real image. In the range of 0.2–0.6,
the difference is greater. The downscaled image generally has a higher
proportion in this range of values, and the histogram is smoother, indicating
that the image recognition of the NDVI difference is not high. Referring to the
correlation between Figure 4(b) and (a), it is known that MOD13 Q1 also has
these problems within the abovementioned range of values. Analysis of the
original MOD13 Q1 image shows that it is a 16-day NDVI composite product,
and each pixel takes the maximum value of NDVI within 16 days as the result

Figure 4.
Histograms of original and processed NDVI images. (a) MOD13 Q1, (b) 30 m downscaled MOD13 Q1,
(c) OLI NDVI, (d) difference image between Figures 3 and 1 (Figure 3�Figure 1).

NDVI images Maximum Minimum Mean Variance Correlation
coefficient

MOD13 Q1 0.999100 �0.561500 0.397400 0.001100 —

30 m downscaled MOD13 Q1 0.999950 �0.999793 0.326412 0.206495 0.937449

OLI NDVI 0.984436 �0.961210 0.299418 0.227313

Difference image
(Figure 3�Figure 1)

1.672050 �1.088930 �0.029594 0.027916 —

Note: The correlation coefficient is the one between the downscaled MOD13 Q1 and the OLI NDVI.

Table 1.
Statistics of original and processed NDVI images.
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of the product release. Therefore, the histogram is reasonable to a certain
degree in the larger value area. At the same time, the histogram distribution of
the difference image indicates that the pixel values are distributed in the range
[�1, 1] and the distribution pattern is low on both sides and high in the middle
(approximately a value of 0), which also indicates that the downscaled image
and the real image are highly consistent.

2.Further, the analysis of Table 1 shows that the maximum value of the
difference image exceeds the range of [�1, 1]. This may be due to a certain
error which is caused by the MOD13 Q1 and OLI image during preprocessing
process (atmospheric correction, geometric correction, etc.), which causes a
large difference in pixel values between the MOD13 Q1 downscale image and
the OLI NDVI image. However, the analysis of Table 1 shows that the mean
and variance of the difference image are small, so the above abnormal situation
only occupies a small space and does not affect the overall evaluation
conclusion.

According to the above analysis, the overall quality of the MOD13 Q1 down-
scaled image is good, indicating that the overall quality of MOD13 Q1 is good. In the
NDVI range of values from 0.2 to 0.6, MOD13 Q1 is overestimated, and its dis-
crimination ability of NDVI difference is low, which should be taken into account in
practical applications.

2.4 Discussion

Based on the fractal iterated function system, downscaling models of remote
sensing land surface parameters can be established. The models can then be merged
with more ancillary data, which relate to the scale effects of land surface parame-
ters. Therefore, the models are of benefit for obtaining accurate downscaled results.

In summary, although the breadth and depth of the fractal IFS application in
establishing RS land surface parameters downscaling models is still insufficient, the
inherent physical meaning and the advantages of the dynamic process expression of
this method confer great potential on it, which needs further investigation. It is
expected to become a new universal method for quantitative downscaling of RS
land surface parameters and lead to the discovery of new research methods.

3. Establishing spatiotemporal scale conversion models of RS land
surface parameters based on multi-fractal theory and method

3.1 Review of establishing spatiotemporal scale conversion models of RS land
surface parameters

The phase is an important feature of RS images. When the phase changes, the
spectrum of the objects in the image changes accordingly. Then, the parameters
calculated based on the spectral information will also change, such as surface
reflectivity, NDVI, and so on. The temporal response of RS land surface parameters
will be further reflected in the variation of its spatial scale conversion model, i.e.,
the phase characteristics of spatial scale effects.

In order to quantitatively characterize the phase characteristics of spatial scale
effects, that is, to establish a spatiotemporal scale conversion model (also called a
spatiotemporal scaling fusion model), scholars combined the advantages of
higher temporal-resolution feature of low spatial-resolution images and higher

47

Establishing the Downscaling and Spatiotemporal Scale Conversion Models of NDVI Based on…
DOI: http://dx.doi.org/10.5772/intechopen.91359



Comparing Figure 4(a) and (b), there is a certain similarity between the
distribution patterns of the two images, which indicates that the downscaled
image retains the spatial distribution structure of the original image to a good
degree, which proves to some extent that the original MOD13 Q1 image is of
good quality. In addition, comparing Figure 4(b) and (c), it is found that the
downscaled NDVI image has a higher proportion in the vicinity of the zero
value (mainly artificial features) than the real image. In the range of 0.2–0.6,
the difference is greater. The downscaled image generally has a higher
proportion in this range of values, and the histogram is smoother, indicating
that the image recognition of the NDVI difference is not high. Referring to the
correlation between Figure 4(b) and (a), it is known that MOD13 Q1 also has
these problems within the abovementioned range of values. Analysis of the
original MOD13 Q1 image shows that it is a 16-day NDVI composite product,
and each pixel takes the maximum value of NDVI within 16 days as the result

Figure 4.
Histograms of original and processed NDVI images. (a) MOD13 Q1, (b) 30 m downscaled MOD13 Q1,
(c) OLI NDVI, (d) difference image between Figures 3 and 1 (Figure 3�Figure 1).

NDVI images Maximum Minimum Mean Variance Correlation
coefficient

MOD13 Q1 0.999100 �0.561500 0.397400 0.001100 —

30 m downscaled MOD13 Q1 0.999950 �0.999793 0.326412 0.206495 0.937449

OLI NDVI 0.984436 �0.961210 0.299418 0.227313

Difference image
(Figure 3�Figure 1)

1.672050 �1.088930 �0.029594 0.027916 —

Note: The correlation coefficient is the one between the downscaled MOD13 Q1 and the OLI NDVI.

Table 1.
Statistics of original and processed NDVI images.

46

Fractal Analysis - Selected Examples
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large difference in pixel values between the MOD13 Q1 downscale image and
the OLI NDVI image. However, the analysis of Table 1 shows that the mean
and variance of the difference image are small, so the above abnormal situation
only occupies a small space and does not affect the overall evaluation
conclusion.

According to the above analysis, the overall quality of the MOD13 Q1 down-
scaled image is good, indicating that the overall quality of MOD13 Q1 is good. In the
NDVI range of values from 0.2 to 0.6, MOD13 Q1 is overestimated, and its dis-
crimination ability of NDVI difference is low, which should be taken into account in
practical applications.
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sensing land surface parameters can be established. The models can then be merged
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ters. Therefore, the models are of benefit for obtaining accurate downscaled results.

In summary, although the breadth and depth of the fractal IFS application in
establishing RS land surface parameters downscaling models is still insufficient, the
inherent physical meaning and the advantages of the dynamic process expression of
this method confer great potential on it, which needs further investigation. It is
expected to become a new universal method for quantitative downscaling of RS
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spatial-resolution feature of medium spatial-resolution images, and carried out a
series of studies on spatiotemporal fusion of remotely sensed surface parameters
such as surface reflectance [34], land surface temperature [35, 36], vegetation
indexes [37], leaf area index [38], and so on. And then Huang et al. [39] reviewed
this and presented the systematic achievements in theory and application. From the
theoretical basis of spatiotemporal scale conversion fusion (the spatial scale consis-
tency of the time-phase variation model and the time consistency of the spatial
downscaling model) to the type division of the spatiotemporal scale conversion
fusion algorithms (the algorithms based on features’ components, the algorithms
based on surface spatial information, the algorithms based on features’ temporal
change, and the combination algorithms of the ones above), and then to the key
problems and challenges encountered in existing research (the imaging geometry
and radiation characteristics, differences between multi-source RS images, the
complexity of subpixel unmixing models, the complexity of features’ temporal
change models, etc.), and the possible development trend in future (improvement
in the versatility and robustness of the algorithms), he made a detailed and in-depth
explanation, so that we have a more comprehensive understanding of the develop-
ment of spatiotemporal scale conversion fusion research. In fact, in addition to this
method, the multi-fractal method has important potential to solve the above prob-
lems [21, 40]. The following is an example of NDVI analysis and how to establish a
spatiotemporal scale conversion model (or spatiotemporal scaling fusion model)
based on multi-fractal theory and method.

3.2 Spatiotemporal scale conversion models of NDVI based on multi-fractal
theory and method

As the best indicator of vegetation growth status and vegetation coverage, NDVI
has typical phenological characteristics. This means that in the same area where the
surface cover type is unchanged, the physiological characteristics and external
forms of the plant can change significantly in different growth stages, and this
change will be directly reflected in the changes in image spectrum and NDVI of the
surface. Furthermore, the NDVI spatial scale conversion model based on RS images
of different growth periods (i.e., different phases) will also change. How to effec-
tively reflect the influence of the phase characteristics of RS images on the con-
struction of this model and then construct a more universal NDVI spatial scale
conversion model that can be integrated with surface phenological features,
namely, NDVI spatiotemporal scale conversion model? This issue has important
research value. Kim and Barros [21] proposed the idea of multi-fractal method for
multi-temporal remote sensing soil moisture spatial down-scaling model to describe
the phase characteristics of soil moisture spatial down-scaling, but did not do
specific research.

Referring to the existing knowledge, the specific method of establishing the
NDVI spatiotemporal scale conversion model is given here: first, analyze the surface
condition of the study area, determine the type of the main cover of the study area,
and based on its phenological knowledge, select enough low and medium-high
spatial resolution images finely corresponding to important “nodes” of vegetation
throughout the growing season; secondly, the NDVI spatial downscaling models for
different growing stages “nodes” are constructed based on the down-scaling
methods such as fractal IFS; third, according to multi-fractal theory and method,
using the time phase as a factor in the fractal dimension calculation method, the
models corresponding to each growth stages are “fused” to obtain a unified and full
growth period NDVI scale conversion model (i.e., NDVI spatiotemporal scale con-
version model). At this time, the time phase (i.e., different growth stages) has been
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embodied as a parameter in the model. This model is more universal than the
downscaling model based on the single phase image. To obtain a medium to high
spatial resolution NDVI image of a certain phase during vegetation growth, the
corresponding phase and the low spatial resolution NDVI image of the phase are
brought into the model calculation. Of course, this method requires the research
object to have a more significant phase or time periodicity, and the established
spatiotemporal scale conversion model is more accurate.

Besides, there is another method of multi-fractal modeling of NDVI spatiotem-
poral scaling. The implementation idea is similar with Section 2.2, while the r
function changes. The r functional parameters may need to be recalibrated when
the spatial distribution of vegetation cover changes obviously with time (e.g., sow-
ing stage, heading stage, maturity stage, etc.). Therefore, r function will be merged
with temporal parameters of NDVI distribution, such as LAI. And the multi-fractal
model of NDVI spatiotemporal scaling should be a function of NDVI to capture
temporal changes in relation to ancillary data such as LAI.

Although the multi-fractal theory and method has advantages in constructing a
spatiotemporal scale conversion model of RS land surface parameters, the theory
and implementation of this method are more complicated, and few research cases
are currently seen. However, this method is expected to become a new method for
the construction of spatiotemporal scale conversion model of RS land surface
parameters, which is worthy of further study.

4. Conclusions

Taking normalized difference vegetation index (NDVI) as an example, the
establishment of scaling models based on fractal theory was described and analyzed
in the paper. It was concluded that fractal iterated function system was an effective
methodology to establish downscaling models for remote sensing land surface
parameters such as NDVI and multi-fractal modeling may be a novel methodology
to establish spatiotemporal scale conversion models for land surface parameters
such as NDVI in the future.
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Chapter 4

A New BEM for Modeling and
Optimization of 3T Fractional
Nonlinear Generalized
Magneto-Thermoelastic
Multi-Material ISMFGA
Structures Subjected to Moving
Heat Source
Mohamed Abdelsabour Fahmy

Abstract

The main purpose of this chapter, which represents one of the chapters of a
fractal analysis book, is to propose a new boundary element method (BEM) formu-
lation based on time fractional order theory of thermoelasticity for modeling and
optimization of three temperature (3T) multi-material initially stressed multilay-
ered functionally graded anisotropic (ISMFGA) structures subjected to moving heat
source. Fractional order derivative considered in the current chapter has been found
to be an accurate mathematical tool for solving the difficulty of our physical and
numerical modeling. Furthermore, this chapter shed light on the practical applica-
tion aspects of boundary element method analysis and topology optimization of
fractional order thermoelastic ISMFGA structures. Numerical examples based on
the multi-material topology optimization algorithm and bi-evolutionary structural
optimization method (BESO) are presented to study the effects of fractional order
parameter on the optimal design of thermoelastic ISMFGA structures. The
numerical results are depicted graphically to show the effects of fractional order
parameter on the sensitivities of total temperature, displacement components and
thermal stress components. The numerical results also show the effects of fractional
order parameter on the final topology of the ISMFGA structures and demonstrate
the validity and accuracy of our proposed technique.

Keywords: boundary element method, modeling and optimization, time fractional
order, three-temperature, nonlinear generalized thermoelasticity, initially stressed
multilayered functionally graded anisotropic structures, moving heat source

1. Introduction

The fractional calculus has recently been widely used to study the theory and
applications of derivatives and integrals of arbitrary non-integer order. This branch
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of mathematical analysis has emerged in recent years as an effective and powerful
tool for the mathematical modeling of various engineering, industrial, and materials
science applications [1–3]. The fractional-order operators are useful in describing
the memory and hereditary properties of various materials and processes, due to
their nonlocal nature. It clearly reflects from the related literature produced by
leading fractional calculus journals that the primary focus of the investigation had
shifted from classical integer-order models to fractional order models [4, 5]. Frac-
tional calculus has important applications in hereditary solid mechanics, fluid
dynamics, viscoelasticity, heat conduction modeling and identification, biology,
food engineering, econophysics, biophysics, biochemistry, robotics and control
theory, signal and image processing, electronics, electric circuits, wave propagation,
nanotechnology, etc. [6–8].

Numerous mathematicians have contributed to the history of fractional
calculus, where Euler mentioned interpolating between integral orders of a
derivative in 1730. Then, Laplace defined a fractional derivative by means of an
integral in 1812.

Lacroix introduced the first fractional order derivative which appeared in a
calculus in 1819, where he expressed the nth derivative of the function y ¼ xm as
follows:

dn

dxn
¼ Γ mþ 1ð Þ

Γ m‐nþ 1ð Þ x
m‐n (1)

Liouville assumed that dv
dxv eaxð Þ ¼ aveax for v>0 to obtain the following

fractional order derivative:

dvx‐a

dxv
¼ ‐1ð Þv Γ aþ vð Þ

Γ að Þ x‐a‐v (2)

Laurent has been using the Cauchy’s integral formula for complex valued ana-
lytical functions to define the integration of arbitrary order v>0 as follows:

cDv
xf xð Þ ¼ cDm‐ρ

x f xð Þ ¼ dm

dxm
1

Γ ρð Þ
ðx
c
x� tð Þρ�1f tð Þdt

� �
, 0< ρ≤ 1 (3)

where cDv
x denotes differentiation of order v of the function f along the x‐axis.

Cauchy introduced the following fractional order derivative:

f αð Þ
þ ¼

ð
f τð Þ t‐τð Þα‐1

Γ ‐αð Þ dτ (4)

Caputo introduced his fractional derivative of order α<0 to be defined as follows:

Dα
∗ f tð Þ ¼ 1

Γ m‐αð Þ
ðt
0

f mð Þ τð Þ
t‐τð Þαþ1‐m dτ,m� 1< α<m, α>0 (5)

Recently, research on nonlinear generalized magneto-thermoelastic problems
has received wide attention due to its practical applications in various fields such as
geomechanics, geophysics, petroleum and mineral prospecting, earthquake engi-
neering, astronautics, oceanology, aeronautics, materials science, fiber-optic com-
munication, fluid mechanics, automobile industries, aircraft, space vehicles, plasma
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physics, nuclear reactors, and other industrial applications. Due to computational
difficulties in solving nonlinear generalized magneto-thermoelastic problems in
general analytically, many numerical techniques have been developed and
implemented for solving such problems [9–17]. The boundary element method
(BEM) [18–31] has been recognized as an attractive alternative numerical method
to domain methods [32–36] like finite difference method (FDM), finite element
method (FEM), and finite volume method (FVM) in engineering applications.
The superior feature of BEM over domain methods is that only the boundary of the
domain needs to be discretized, which often leads to fewer elements and easier to
use. This advantage of BEM over other domain methods has significant importance
for modeling and optimization of thermoelastic problems which can be imple-
mented using BEM with little cost and less input data. Nowadays, the BEM has
emerged as an accurate and efficient computational technique for solving
complicated inhomogeneous and non-linear problems in physical and engineering
applications [37–69].

In the present chapter, we introduce a practical engineering application of frac-
tal analysis in the field of thermoelasticity, where the thermal field is described by
time fractional three-temperature radiative heat conduction equations. Fractional
order derivative considered in the current chapter has high ability to remove the
difficulty of our numerical modeling. A new boundary element method for model-
ing and optimization of 3T fractional order nonlinear generalized thermoelastic
multi-material initially stressed multilayered functionally graded anisotropic
(ISMFGA) structures subjected to moving heat source is investigated. Numerical
results show that the fractional order parameter has a significant effect on the
sensitivities of displacements, total three-temperature, and thermal stresses.
Numerical examples show that the fractional order parameter has a significant
effect on the final topology of ISMFGA structures. Numerical results of the pro-
posed model confirm the validity and accuracy of the proposed technique, and
numerical examples results demonstrate the validity of the BESO multi-material
topology optimization method.

A brief summary of the chapter is as follows: Section 1 introduces the back-
ground and provides the readers with the necessary information to books and
articles for a better understanding of fractional order problems and their applica-
tions. Section 2 describes the physical modeling of fractional order problems in
three-temperature nonlinear generalized magneto-thermoelastic ISMFGA struc-
tures. Section 3 outlines the BEM implementation for modeling of 3T fractional
nonlinear generalized magneto-thermoelastic problems of multi-material ISMFGA
structures subjected to moving heat source. Section 4 introduces an illustration of
the mechanisms of solving design sensitivities and optimization problem of the
current chapter. Section 5 presents the new numerical results that describe the
effects of fractional order parameter on the problem’s field variations and on the
final topology of multi-material ISMFGA structures.

2. Formulation of the problem

Consider a multilayered structure with n functionally graded layers in the
xy‐plane of a Cartesian coordinate. The x‐axis is the common normal to all layers as
shown in Figure 1. The thickness of the layer is denoted by h. The considered
multilayered structure has been placed in a primary magnetic field H0 acting in the
direction of the y‐axis.
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physics, nuclear reactors, and other industrial applications. Due to computational
difficulties in solving nonlinear generalized magneto-thermoelastic problems in
general analytically, many numerical techniques have been developed and
implemented for solving such problems [9–17]. The boundary element method
(BEM) [18–31] has been recognized as an attractive alternative numerical method
to domain methods [32–36] like finite difference method (FDM), finite element
method (FEM), and finite volume method (FVM) in engineering applications.
The superior feature of BEM over domain methods is that only the boundary of the
domain needs to be discretized, which often leads to fewer elements and easier to
use. This advantage of BEM over other domain methods has significant importance
for modeling and optimization of thermoelastic problems which can be imple-
mented using BEM with little cost and less input data. Nowadays, the BEM has
emerged as an accurate and efficient computational technique for solving
complicated inhomogeneous and non-linear problems in physical and engineering
applications [37–69].

In the present chapter, we introduce a practical engineering application of frac-
tal analysis in the field of thermoelasticity, where the thermal field is described by
time fractional three-temperature radiative heat conduction equations. Fractional
order derivative considered in the current chapter has high ability to remove the
difficulty of our numerical modeling. A new boundary element method for model-
ing and optimization of 3T fractional order nonlinear generalized thermoelastic
multi-material initially stressed multilayered functionally graded anisotropic
(ISMFGA) structures subjected to moving heat source is investigated. Numerical
results show that the fractional order parameter has a significant effect on the
sensitivities of displacements, total three-temperature, and thermal stresses.
Numerical examples show that the fractional order parameter has a significant
effect on the final topology of ISMFGA structures. Numerical results of the pro-
posed model confirm the validity and accuracy of the proposed technique, and
numerical examples results demonstrate the validity of the BESO multi-material
topology optimization method.

A brief summary of the chapter is as follows: Section 1 introduces the back-
ground and provides the readers with the necessary information to books and
articles for a better understanding of fractional order problems and their applica-
tions. Section 2 describes the physical modeling of fractional order problems in
three-temperature nonlinear generalized magneto-thermoelastic ISMFGA struc-
tures. Section 3 outlines the BEM implementation for modeling of 3T fractional
nonlinear generalized magneto-thermoelastic problems of multi-material ISMFGA
structures subjected to moving heat source. Section 4 introduces an illustration of
the mechanisms of solving design sensitivities and optimization problem of the
current chapter. Section 5 presents the new numerical results that describe the
effects of fractional order parameter on the problem’s field variations and on the
final topology of multi-material ISMFGA structures.

2. Formulation of the problem

Consider a multilayered structure with n functionally graded layers in the
xy‐plane of a Cartesian coordinate. The x‐axis is the common normal to all layers as
shown in Figure 1. The thickness of the layer is denoted by h. The considered
multilayered structure has been placed in a primary magnetic field H0 acting in the
direction of the y‐axis.
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According to the three-temperature theory, the governing equations of
nonlinear generalized magneto-thermoelasticity in an initially stressed multilayered
functionally graded anisotropic (ISMFGA) structure for the ith layer can be written
in the following form:

σab,b þ τab,b � Γab ¼ ρi xþ 1ð Þm€uia (6)

σab ¼ xþ 1ð Þm Ci
abfgu

i
f ,g � βiab Ti

α � Ti
α0 þ τ1 _T

1
α

� �h i
(7)

τab ¼ μi xþ 1ð Þm ~haHb þ ~hbHa � δba ~h fH f

� �� �
(8)

Γab ¼ Pi xþ 1ð Þm ∂uia
∂xb
� ∂uib

∂xa

� �
(9)

According to Fahmy [10], the time fractional order two-dimensional three-
temperature (2D-3 T) radiative heat conduction equations in nondimensionless
form can be expressed as follows:

Da
τT

i
α r, τð Þ ¼ ξ∇ i

α∇T
i
α r, τð Þ� �þ ξ r, τð Þ, ξ ¼ 1

cisα ρiδ1
(10)

where

 r, τð Þ ¼
�ρieI Ti

e � Ti
I

� �� ρier Ti
e � Ti

p

� �
þ, α ¼ e, δ1 ¼ 1

ρieI Ti
e � Ti

I

� �þ, α ¼ I, δ1 ¼ 1

ρier Ti
e � Ti

p

� �
þ, α ¼ p, δ1 ¼ T3

p

8>>>><
>>>>:

(11)

in which

 r, τð Þ ¼ �i
α
_T
i
α,ab þ βiabT

i
a0τ0€u

i
a,b þ ρicisατ0€T

i
α �Q x, τð Þ (12)

eI ¼ ρieIT
i �2

3ð Þ
e ,er ¼ ρierT

i �1
2ð Þ

e ,α ¼ αT
i 5

2ð Þ
α , α ¼ e, I,p ¼ pTi 3þð Þ

p (13)

Figure 1.
Geometry of the considered problem.
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The total energy of unit mass can be described by

P ¼ Pe þ PI þ pp,Pe ¼ ceTi
e,PI ¼ cITi

I,Pp ¼ 1
4
cpT4i

p (14)

where σab, τab, and uik are mechanical stress tensor, Maxwell’s electromagnetic
stress tensor, and displacement vector in the ith layer, respectively, cα(α = c, I, p)
are constant Ti

α0, T
i
α, C

i
abfg, and βiab are, respectively, reference temperature,

temperature, constant elastic moduli, and stress-temperature coefficients in the ith
layer: μi, ~h, Pi, ρi, and cisα are, respectively, magnetic permeability, perturbed
magnetic field, initial stress, density, isochore specific heat coefficients in the ith
layer; τ is the time; τ0 and τ1 are the relaxation times; i ¼ 1, 2, … , n represents the
parameters in multilayered structure; and m is a functionally graded parameter.
Also, we considered in the current study that the medium is subjected to a moving
heat source of constant strength moving along x‐axis with a constant velocity v. This
moving heat source is assumed to have the following form:

Q x, τð Þ ¼ Q0δ x� vτð Þ (15)

where, Q0 is the heat source strength and δ is the delta function.

3. BEM numerical implementation

By using Eqs. (7)–(9), we can write (6) as

Lgbuif ¼ ρi€uia � DaTi
α � Pi ∂uib

∂xa
� ∂uia
∂xb

� �� �
¼ f gb (16)

where inertia term, temperature gradient, and initial stress terms are treated as
the body forces.

In this section, we are interested in using a boundary element method for
modeling the two-dimensional three-temperature radiation heat conduction equa-
tions coupled with electron, ion, and phonon temperatures.

According to finite difference scheme of Caputo at times f þ 1ð ÞΔt and fΔτ, we
obtain [1].

Da
τT

i fþ1ð Þ
α þDa

τT
i fð Þ
α ≈

Xk
j¼0

Wa,j Ti fþ1�jð Þ
α rð Þ � Ti f�jð Þ

α rð Þ
� �

(17)

where

Wa,0 ¼ Δτð Þ�a
Γ 2� að Þ ,Wa,j ¼Wa,0 jþ 1ð Þ1�a � j� 1ð Þ1�a

� �
(18)

Based on Eq. (17), the fractional order heat Eq. (10) can be replaced by the
following system:

Wa,0Ti fþ1ð Þ
α rð Þ �α xð ÞTi fþ1ð Þ

α,II rð Þ �α,I xð ÞTi fþ1ð Þ
α,I rð Þ ¼Wa,0Ti fð Þ

α rð Þ �α xð ÞTi fð Þ
α,II rð Þ

�α,I xð ÞTi fð Þ
α,J rð Þ �

Xf

j¼1
Wa,j Ti fþ1�jð Þ

α rð Þ � Ti f�jð Þ
α rð Þ

� �
þ

i fþ1ð Þ
m x, τð Þ þ

i fð Þ
m x, τð Þ

(19)
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The total energy of unit mass can be described by

P ¼ Pe þ PI þ pp,Pe ¼ ceTi
e,PI ¼ cITi

I,Pp ¼ 1
4
cpT4i

p (14)

where σab, τab, and uik are mechanical stress tensor, Maxwell’s electromagnetic
stress tensor, and displacement vector in the ith layer, respectively, cα(α = c, I, p)
are constant Ti

α0, T
i
α, C

i
abfg, and βiab are, respectively, reference temperature,

temperature, constant elastic moduli, and stress-temperature coefficients in the ith
layer: μi, ~h, Pi, ρi, and cisα are, respectively, magnetic permeability, perturbed
magnetic field, initial stress, density, isochore specific heat coefficients in the ith
layer; τ is the time; τ0 and τ1 are the relaxation times; i ¼ 1, 2, … , n represents the
parameters in multilayered structure; and m is a functionally graded parameter.
Also, we considered in the current study that the medium is subjected to a moving
heat source of constant strength moving along x‐axis with a constant velocity v. This
moving heat source is assumed to have the following form:

Q x, τð Þ ¼ Q0δ x� vτð Þ (15)

where, Q0 is the heat source strength and δ is the delta function.

3. BEM numerical implementation

By using Eqs. (7)–(9), we can write (6) as

Lgbuif ¼ ρi€uia � DaTi
α � Pi ∂uib

∂xa
� ∂uia
∂xb

� �� �
¼ f gb (16)

where inertia term, temperature gradient, and initial stress terms are treated as
the body forces.

In this section, we are interested in using a boundary element method for
modeling the two-dimensional three-temperature radiation heat conduction equa-
tions coupled with electron, ion, and phonon temperatures.

According to finite difference scheme of Caputo at times f þ 1ð ÞΔt and fΔτ, we
obtain [1].

Da
τT

i fþ1ð Þ
α þDa

τT
i fð Þ
α ≈

Xk
j¼0

Wa,j Ti fþ1�jð Þ
α rð Þ � Ti f�jð Þ

α rð Þ
� �

(17)

where

Wa,0 ¼ Δτð Þ�a
Γ 2� að Þ ,Wa,j ¼Wa,0 jþ 1ð Þ1�a � j� 1ð Þ1�a

� �
(18)

Based on Eq. (17), the fractional order heat Eq. (10) can be replaced by the
following system:

Wa,0Ti fþ1ð Þ
α rð Þ �α xð ÞTi fþ1ð Þ

α,II rð Þ �α,I xð ÞTi fþ1ð Þ
α,I rð Þ ¼Wa,0Ti fð Þ

α rð Þ �α xð ÞTi fð Þ
α,II rð Þ

�α,I xð ÞTi fð Þ
α,J rð Þ �

Xf

j¼1
Wa,j Ti fþ1�jð Þ

α rð Þ � Ti f�jð Þ
α rð Þ

� �
þ

i fþ1ð Þ
m x, τð Þ þ

i fð Þ
m x, τð Þ

(19)
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where j ¼ 1, 2, … :, F, f ¼ 0, 1, 2, … , F.
Now, according to Fahmy [10], and applying the fundamental solution which

satisfies (19), the boundary integral equations corresponding to (10) without heat
sources can be expressed as

Ti
α ξð Þ ¼

ð

S
Ti
αq

i ∗ � Ti ∗
α qi

� �
dC�

ð

R
f ab T

i ∗
α dR (20)

Thus, the governing equations can be written in operator form as follows:

Lgbuif ¼ f gb, (21)

LabTi
α ¼ f ab (22)

where the operators Lgb, f gb, Lab, and f ab are as follows:

LgbDabf
∂

∂xb
þDaf þ ΛDa1f , Lab ¼ Da

τ (23)

f gb ¼ ρi€uia � DaTi
α � Pi ∂uib

∂xa
� ∂uia
∂xb

� �� �
(24)

f ab ¼
α

D
Ti
α

∂

∂τ
(25)

where

Dabf ¼ Cabfgε, ε ¼ ∂

∂xg
, Daf ¼ μH2

0
∂

∂xa
þ δa1Λ

� �
∂

∂x f
,

Da ¼ �βiab
∂

∂xb
þ δb1Λþ τ1

∂

∂xb
þ Λ

� �
∂

∂τ

� �
, Λ ¼ m

xþ 1
:

The differential Eq. (21) can be solved using the weighted residual method
(WRM) to obtain the following integral equation:

ð

R

Lgbuif � f gb
� �

ui ∗dadR ¼ 0 (26)

Now, the fundamental solution ui ∗df and traction vectors ti ∗da and tia can be written
as follows:

Lgbui ∗df ¼ �δadδ x, ξð Þ (27)

ti ∗da ¼ Cabfgui ∗df , gnb (28)

tia ¼
tia

xþ 1ð Þm ¼ Cabfgui f ,g � βiab Ti
α þ τ1Ti

α

� �� �
nb (29)

Using integration by parts and sifting property of the Dirac distribution for (26),
then using Eqs. (27) and (29), we can write the following elastic integral represen-
tation formula:

uid ξð Þ ¼
ð

C

ui ∗da t
i
a � ti ∗dau

i
a þ ui ∗daβ

i
abT

i
αnb

� �
dC�

ð

R

f gbu
i ∗
dadR (30)
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The fundamental solution Ti ∗ can be defined as

LabTi ∗
α ¼ �δ x, ξð Þ (31)

By using WRM and integration by parts, we can write (23) as follows:

ð

R

LabTi
αT

i ∗
α � LabTi ∗

α Ti
α

� �
dR ¼

ð

C

qi ∗Ti
α � qiTi ∗

α

� �
dC (32)

where

qi ¼ �i
αT

i
α,bna (33)

qi ∗ ¼ �i
αT

i ∗
α,bna (34)

By the use of sifting property, we obtain from (32) the thermal integral repre-
sentation formula

Ti
α ξð Þ ¼

ð

C

qi ∗Ti
α � qiTi ∗

α

� �
dC�

ð

C

f abT
i ∗
α dR (35)

By combining (30) and (35), we obtain

uid ξð Þ
Ti
α ξð Þ

" #
¼

ð

C

� ti ∗da �ui ∗daβabnb
0 �qi ∗

" #
uia
Ti
α

" #
þ ui ∗da 0

0 �Ti ∗
α

" #
tia
qi

" #( )
dC

�
ð

R

ui ∗da 0

0 �Ti ∗
α

" #
f gb
� f ab

" #
dR (36)

The nonlinear generalized magneto-thermoelastic vectors can be written in
contracted notation form as

Ui
A ¼

uia a ¼ A ¼ 1, 2, 3

Ti
α A ¼ 4

(
(37)

Ti
αA ¼

tia a ¼ A ¼ 1, 2, 3

qi A ¼ 4

(
(38)

Ui ∗
DA ¼

ui ∗da d ¼ D ¼ 1, 2, 3; a ¼ A ¼ 1, 2, 3

0 d ¼ D ¼ 1, 2, 3;A ¼ 4

0 D ¼ 4; a ¼ A ¼ 1, 2, 3

�Ti ∗
α D ¼ 4;A ¼ 4

8>>>>><
>>>>>:

(39)

~T
i ∗
αDA ¼

ti ∗da d ¼ D ¼ 1, 2, 3; a ¼ A ¼ 1, 2, 3

�~ui ∗d d ¼ D ¼ 1, 2, 3;A ¼ 4

0 D ¼ 4; a ¼ A ¼ 1, 2, 3

�qi ∗ D ¼ 4;A ¼ 4

8>>>><
>>>>:

(40)

~ui ∗d ¼ ui ∗daβaf n f (41)
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where j ¼ 1, 2, … :, F, f ¼ 0, 1, 2, … , F.
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∂xb
þDaf þ ΛDa1f , Lab ¼ Da

τ (23)

f gb ¼ ρi€uia � DaTi
α � Pi ∂uib

∂xa
� ∂uia
∂xb

� �� �
(24)

f ab ¼
α

D
Ti
α

∂

∂τ
(25)

where

Dabf ¼ Cabfgε, ε ¼ ∂

∂xg
, Daf ¼ μH2

0
∂

∂xa
þ δa1Λ

� �
∂

∂x f
,

Da ¼ �βiab
∂

∂xb
þ δb1Λþ τ1

∂

∂xb
þ Λ

� �
∂

∂τ

� �
, Λ ¼ m

xþ 1
:

The differential Eq. (21) can be solved using the weighted residual method
(WRM) to obtain the following integral equation:

ð

R

Lgbuif � f gb
� �

ui ∗dadR ¼ 0 (26)

Now, the fundamental solution ui ∗df and traction vectors ti ∗da and tia can be written
as follows:

Lgbui ∗df ¼ �δadδ x, ξð Þ (27)

ti ∗da ¼ Cabfgui ∗df , gnb (28)

tia ¼
tia

xþ 1ð Þm ¼ Cabfgui f ,g � βiab Ti
α þ τ1Ti

α

� �� �
nb (29)

Using integration by parts and sifting property of the Dirac distribution for (26),
then using Eqs. (27) and (29), we can write the following elastic integral represen-
tation formula:

uid ξð Þ ¼
ð

C

ui ∗da t
i
a � ti ∗dau

i
a þ ui ∗daβ

i
abT

i
αnb

� �
dC�

ð

R

f gbu
i ∗
dadR (30)
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The fundamental solution Ti ∗ can be defined as

LabTi ∗
α ¼ �δ x, ξð Þ (31)

By using WRM and integration by parts, we can write (23) as follows:

ð

R

LabTi
αT

i ∗
α � LabTi ∗

α Ti
α

� �
dR ¼

ð

C

qi ∗Ti
α � qiTi ∗

α

� �
dC (32)

where

qi ¼ �i
αT

i
α,bna (33)

qi ∗ ¼ �i
αT

i ∗
α,bna (34)

By the use of sifting property, we obtain from (32) the thermal integral repre-
sentation formula

Ti
α ξð Þ ¼

ð

C

qi ∗Ti
α � qiTi ∗

α

� �
dC�

ð

C

f abT
i ∗
α dR (35)

By combining (30) and (35), we obtain

uid ξð Þ
Ti
α ξð Þ

" #
¼

ð

C

� ti ∗da �ui ∗daβabnb
0 �qi ∗

" #
uia
Ti
α

" #
þ ui ∗da 0

0 �Ti ∗
α

" #
tia
qi

" #( )
dC

�
ð

R

ui ∗da 0

0 �Ti ∗
α

" #
f gb
� f ab

" #
dR (36)

The nonlinear generalized magneto-thermoelastic vectors can be written in
contracted notation form as

Ui
A ¼

uia a ¼ A ¼ 1, 2, 3

Ti
α A ¼ 4

(
(37)

Ti
αA ¼

tia a ¼ A ¼ 1, 2, 3

qi A ¼ 4

(
(38)

Ui ∗
DA ¼

ui ∗da d ¼ D ¼ 1, 2, 3; a ¼ A ¼ 1, 2, 3

0 d ¼ D ¼ 1, 2, 3;A ¼ 4

0 D ¼ 4; a ¼ A ¼ 1, 2, 3

�Ti ∗
α D ¼ 4;A ¼ 4

8>>>>><
>>>>>:

(39)

~T
i ∗
αDA ¼

ti ∗da d ¼ D ¼ 1, 2, 3; a ¼ A ¼ 1, 2, 3

�~ui ∗d d ¼ D ¼ 1, 2, 3;A ¼ 4

0 D ¼ 4; a ¼ A ¼ 1, 2, 3

�qi ∗ D ¼ 4;A ¼ 4

8>>>><
>>>>:

(40)

~ui ∗d ¼ ui ∗daβaf n f (41)
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By using the above vectors, we can express (36) as

Ui
D ξð Þ ¼

ð

C

Ui ∗
DAT

i
αA � ~T

i
αDAU

i
A

� �
dC�

ð

R

Ui ∗
DASAdR (42)

The source vector SA can be divided as

SA ¼ S0A þ STA þ SuA þ S _T
A þ S€T

A þ S€uA (43)

where

S0A ¼
0 A ¼ 1, 2, 3

Q0δ x� vτð Þ A ¼ 4

�
(44)

STA ¼ ωAFUi
F with ωAF ¼

�Da A ¼ 1, 2, 3; F ¼ 4

ξ∇ i
α∇

� �
otherwise

�
(45)

SuA ¼ ψUi
F with ψ ¼ Pi ∂

∂xb
� ∂

∂xa

� �
A ¼ 1, 2, 3; F ¼ 1, 2, 3,

0 A ¼ 4; F ¼ 4

8<
: (46)

S _T
A ¼ ΓAF _U

i
F with ΓAF ¼

�βiabτ1
∂

∂xb
þ Λ

� �
∂

∂τ
A ¼ 4;F ¼ 4

�i
α otherwise

8><
>:

(47)

S€T
A ¼ δAF €U

i
F with δAF ¼

0 A ¼ 4;F ¼ 4

ρicisατ0 otherwise

�
(48)

S€uA ¼ Ⅎ€U
i
F with Ⅎ ¼ ρi A ¼ 1, 2, 3; F ¼ 1, 2, 3,

βiabT
i
α0τ0 A ¼ 4;F ¼ 4

(
(49)

The representation formula (36) can also be written in matrix form as follows:

SA½ � ¼ �
0

Q0δ x� vτð Þ

� �
þ �DaTi

α

ξ∇ i
α∇T

i
α r, τð Þ� �

" #
þ Pi uib,a � uia,b

� �

0

" #

þ
�βiabτ1

∂

∂xb
þ Λ

� �
_T
i
α

�i
α
_T
i
α

2
64

3
75þ ρicisατ0

0
€T
i
α

� �
þ ρi€uia

βiabT
i
α0τ0€u

i
f , g

" #
(50)

In order to convert the domain integral in (42) into the boundary, we approxi-
mate the source vector SA by a series of known functions f qAE and unknown
coefficients αqE as

SA ≈
XE
q¼1

f qAEα
q
E (51)

Thus, the representation formula (42) can be written as follows:

UD ξð Þ ¼
ð

C

Ui ∗
DAT

i
αA � ~T

i ∗
αDAU

i
A

� �
dC�

XN
q¼1

ð

R

Ui ∗
DA f

q
AEdRα

q
E (52)

62

Fractal Analysis - Selected Examples

By implementing the WRM to the following equations

Lgbu
iq
fe ¼ f qae (53)

LabTiq
α ¼ f qpj (54)

Then the elastic and thermal representation formulae are given as follows
(Fahmy [46]):

uiqde ξð Þ ¼
ð

C

ui ∗da t
iq
ae � ti ∗dau

iq
ae

� �
dC�

ð

R

ui ∗da f
q
aedR (55)

Tiq
α ξð Þ ¼

ð

C

qi ∗Tiq
α � qiqTi ∗

α

� �
dC�

ð

R

f qTi ∗
α dR (56)

The representation formulae (55) and (56) can be combined into the following
single equation:

Uiq
DE ξð Þ ¼

ð

C

Ui ∗
DAT

iq
αAE � Ti ∗

αDAU
iq
AE

� �
dC�

ð

R

Ui ∗
DA f

iq
AEdR (57)

By substituting from Eq. (57) into Eq. (52), we obtain the following BEM
coupled thermoelasticity formula:

Ui
D ξð Þ ¼

ð

C

Ui ∗
DAT

i
αA � T

^ i ∗
αDAU

i
A

� �
dC

þ
XE
q¼1

Uiq
DE ξð Þ þ

ð

C

Ti ∗
αDAU

iq
AE �Ui ∗

DAT
iq
αAE

� �
dC

0
B@

1
CAα

q
E (58)

In order to compute the displacement sensitivity, Eq. (58) is differentiated with
respect to ξl as follows:

∂Ui
D ξð Þ
∂ξl

¼ �
ð

C

Ui ∗
DA,lT

i
αA � T

^ i ∗
αDA,lU

i
A

� �
dC

þ
XE
q¼1

∂Uiq
DE ξð Þ
∂ξl

�
ð

C

Ti ∗
αDA,lU

iq
αAE � Ui ∗

DA,lT
iq
αAE

� �
dC

0
B@

1
CAα

q
E (59)

According to the procedure of Fahmy [44], we can write (58) in the following
form:

�ζU � ηTα ¼ ζ �U � η �℘
� �

α (60)

The generalized displacements and velocities are approximated in terms of
known tensor functions f qFD and unknown coefficients γqD and ~γ

q
D:

Ui
F ≈

XN
q¼1

f qFD xð ÞγqD (61)
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By using the above vectors, we can express (36) as

Ui
D ξð Þ ¼

ð

C

Ui ∗
DAT

i
αA � ~T

i
αDAU

i
A

� �
dC�

ð

R

Ui ∗
DASAdR (42)

The source vector SA can be divided as

SA ¼ S0A þ STA þ SuA þ S _T
A þ S€T

A þ S€uA (43)

where

S0A ¼
0 A ¼ 1, 2, 3

Q0δ x� vτð Þ A ¼ 4

�
(44)

STA ¼ ωAFUi
F with ωAF ¼

�Da A ¼ 1, 2, 3; F ¼ 4

ξ∇ i
α∇

� �
otherwise

�
(45)

SuA ¼ ψUi
F with ψ ¼ Pi ∂

∂xb
� ∂

∂xa

� �
A ¼ 1, 2, 3; F ¼ 1, 2, 3,

0 A ¼ 4; F ¼ 4

8<
: (46)

S _T
A ¼ ΓAF _U

i
F with ΓAF ¼

�βiabτ1
∂

∂xb
þ Λ

� �
∂

∂τ
A ¼ 4;F ¼ 4

�i
α otherwise

8><
>:

(47)

S€T
A ¼ δAF €U

i
F with δAF ¼

0 A ¼ 4;F ¼ 4

ρicisατ0 otherwise

�
(48)

S€uA ¼ Ⅎ€U
i
F with Ⅎ ¼ ρi A ¼ 1, 2, 3; F ¼ 1, 2, 3,

βiabT
i
α0τ0 A ¼ 4;F ¼ 4

(
(49)

The representation formula (36) can also be written in matrix form as follows:

SA½ � ¼ �
0

Q0δ x� vτð Þ

� �
þ �DaTi

α

ξ∇ i
α∇T

i
α r, τð Þ� �

" #
þ Pi uib,a � uia,b

� �

0

" #

þ
�βiabτ1

∂

∂xb
þ Λ

� �
_T
i
α

�i
α
_T
i
α

2
64

3
75þ ρicisατ0

0
€T
i
α

� �
þ ρi€uia

βiabT
i
α0τ0€u

i
f , g

" #
(50)

In order to convert the domain integral in (42) into the boundary, we approxi-
mate the source vector SA by a series of known functions f qAE and unknown
coefficients αqE as

SA ≈
XE
q¼1

f qAEα
q
E (51)

Thus, the representation formula (42) can be written as follows:

UD ξð Þ ¼
ð

C

Ui ∗
DAT

i
αA � ~T

i ∗
αDAU

i
A

� �
dC�

XN
q¼1

ð

R

Ui ∗
DA f

q
AEdRα

q
E (52)
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By implementing the WRM to the following equations

Lgbu
iq
fe ¼ f qae (53)

LabTiq
α ¼ f qpj (54)

Then the elastic and thermal representation formulae are given as follows
(Fahmy [46]):

uiqde ξð Þ ¼
ð

C

ui ∗da t
iq
ae � ti ∗dau

iq
ae

� �
dC�

ð

R

ui ∗da f
q
aedR (55)

Tiq
α ξð Þ ¼

ð

C

qi ∗Tiq
α � qiqTi ∗

α

� �
dC�

ð

R

f qTi ∗
α dR (56)

The representation formulae (55) and (56) can be combined into the following
single equation:

Uiq
DE ξð Þ ¼

ð

C

Ui ∗
DAT

iq
αAE � Ti ∗

αDAU
iq
AE

� �
dC�

ð

R

Ui ∗
DA f

iq
AEdR (57)

By substituting from Eq. (57) into Eq. (52), we obtain the following BEM
coupled thermoelasticity formula:

Ui
D ξð Þ ¼

ð

C

Ui ∗
DAT

i
αA � T

^ i ∗
αDAU

i
A

� �
dC

þ
XE
q¼1

Uiq
DE ξð Þ þ

ð

C

Ti ∗
αDAU

iq
AE �Ui ∗

DAT
iq
αAE

� �
dC

0
B@

1
CAα

q
E (58)

In order to compute the displacement sensitivity, Eq. (58) is differentiated with
respect to ξl as follows:

∂Ui
D ξð Þ
∂ξl

¼ �
ð

C

Ui ∗
DA,lT

i
αA � T

^ i ∗
αDA,lU

i
A

� �
dC

þ
XE
q¼1

∂Uiq
DE ξð Þ
∂ξl

�
ð

C

Ti ∗
αDA,lU

iq
αAE � Ui ∗

DA,lT
iq
αAE

� �
dC

0
B@

1
CAα

q
E (59)

According to the procedure of Fahmy [44], we can write (58) in the following
form:

�ζU � ηTα ¼ ζ �U � η �℘
� �

α (60)

The generalized displacements and velocities are approximated in terms of
known tensor functions f qFD and unknown coefficients γqD and ~γ

q
D:

Ui
F ≈

XN
q¼1

f qFD xð ÞγqD (61)
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where

f qFD ¼
f qfd f ¼ F ¼ 1, 2, 3; d ¼ D ¼ 1, 2, 3

f q F ¼ 4;D ¼ 4

0 otherwise

8>>><
>>>:

(62)

Now, the gradients of the generalized displacements and velocities can also be
approximated in terms of the tensor function derivatives as

Ui
F,g ≈

XN
q¼1

f qFD,g xð ÞγqK (63)

By substituting (63) into Eq. (45), we get

STA ¼
XN
q¼1

SAF f
q
FD,gγ

q
D (64)

By applying the point collocation procedure of Gaul et al. [43] to Eqs. (51) and
(61), we obtain

�S ¼ Jα, Ui ¼ J0γ, (65)

Similarly, applying the same point collocation procedure to Eqs. (64), (46),
(47), (48), and (49) yields

�S
Ti
α ¼ BTγ (66)

SuA ¼ ψUi (67)

�S
T_ι
α ¼ ΓAF _U

i
(68)

�S
T€ι
α ¼ δAF €U

i
(69)

�S
€u ¼ Ⅎ€U

i
(70)

where ψ , ΓAF, δAF, and Ⅎ are assembled using the submatrices ψ½ �, ΓAF½ �, δAF½ �,
and Ⅎ½ �, respectively.

Solving the system (65) for α and γ yields

α ¼ J�1�S, γ ¼ J0�1Ui (71)

Now, the coefficient α can be written in terms of the unknown displacements Ui,

velocities _U
i
, and accelerations €U

i
as

α ¼ J�1 �S
0 þ BTJ0�1 þ ψ

� �
Ui þ ΓAF _U

i þ Ⅎþ δAF
� �

€U
i

� �
(72)

An implicit-implicit staggered algorithm has been implemented for use with the
BEM to solve the governing equations which can now be written in a suitable form
after substitution of Eq. (72) into Eq. (60) as
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M
z}|{

€U
i þ Γ

z}|{
_U
i þ K

z}|{
Ui ¼ 

z}|{i
(73)

X
z}|{

€T
i
α þ A

z}|{
_T
i
α þ B

z}|{
Ti
α ¼ 

z}|{
€U
i þ 

z}|{
(74)

where V ¼ η �℘� ζ �U
� �

J�1, M
z}|{

¼ V Ⅎþ δAF
� �

, Γ
z}|{

¼ VΓAF,

K
z}|{

¼ ��ζ þ V BTJ0�1 þ ψ
� �

, 
z}|{i

¼ �η�T þ V�S
0
, X
z}|{

¼ �ρicisατ0, A
z}|{

¼ �i
α,

B
z}|{

¼ ξ∇ i
α ∇

� �
, 
z}|{

¼ βiabT
i
α0τ0, 

z}|{
¼ �Q0δ x� vτð Þ.

where €U
i
, _U

i
,Ui,Ti and 

z}|{i
are, respectively, acceleration, velocity, displace-

ment, temperature, and external force vectors, and V, M
z}|{

, Γ
z}|{

, K
z}|{

, A
z}|{

, and B
z}|{

are, respectively, volume, mass, damping, stiffness, capacity, and conductivity
matrices.

In many applications, the coupling term 
z}|{

€U
i
nþ1 that appear in the heat con-

duction equation is negligible. Therefore, it is easier to predict the temperature than
the displacement.

Hence Eqs. (73) and (74) lead to the following coupled system of differential-
algebraic equations (DAEs):

M
z}|{

€U
i
nþ1 þ Γ

z}|{
_U
i
nþ1 þ K

z}|{
Ui

nþ1 ¼ 
z}|{ip

nþ1 (75)

X
z}|{

€T
i
α nþ1ð Þ þ A

z}|{
_T
i
α nþ1ð Þ þ B

z}|{
Ti
α nþ1ð Þ ¼ 

z}|{
€U
i
nþ1 þ 

z}|{
(76)

where 
z}|{ip

nþ1 ¼ ηTip
α nþ1ð Þ þ V�S

0
and Tip

α nþ1ð Þ is the predicted temperature.
By integrating Eq. (73) and using Eq. (75), we get

_U
i
nþ1 ¼ _U

i
n þ

Δτ
2

€U
i
nþ1 þ €U

i
n

� �

¼ _U
i
n þ

Δτ
2

€U
i
n þ M

z}|{�1


z}|{ip
nþ1 � Γ

z}|{
_U
i
nþ1 � K

z}|{
Ui

nþ1

� �� � (77)

Ui
nþ1 ¼ Ui

n þ
Δτ
2

_U
i
nþ1 þ _U

i
n

� �

¼ Ui
n þ Δτ _Ui

n þ
Δτ2

4
€U
i
n þ M

z}|{�1


z}|{ip
nþ1 � Γ

z}|{
_U
i
nþ1 � K

z}|{
Ui

nþ1

� �� �

(78)

From Eq. (77) we have

_U
i
nþ1 ¼ γ�1 _U

i
n þ

Δτ
2

€U
i
n þ M

z}|{�1


z}|{ip
nþ1 � K

z}|{
Ui

nþ1

� �� �� �
(79)

where γ ¼ I þ Δτ
2 M
z}|{�1

Γ
z}|{� �

.
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where

f qFD ¼
f qfd f ¼ F ¼ 1, 2, 3; d ¼ D ¼ 1, 2, 3

f q F ¼ 4;D ¼ 4

0 otherwise

8>>><
>>>:

(62)

Now, the gradients of the generalized displacements and velocities can also be
approximated in terms of the tensor function derivatives as

Ui
F,g ≈

XN
q¼1

f qFD,g xð ÞγqK (63)

By substituting (63) into Eq. (45), we get

STA ¼
XN
q¼1

SAF f
q
FD,gγ

q
D (64)

By applying the point collocation procedure of Gaul et al. [43] to Eqs. (51) and
(61), we obtain

�S ¼ Jα, Ui ¼ J0γ, (65)

Similarly, applying the same point collocation procedure to Eqs. (64), (46),
(47), (48), and (49) yields

�S
Ti
α ¼ BTγ (66)

SuA ¼ ψUi (67)

�S
T_ι
α ¼ ΓAF _U

i
(68)

�S
T€ι
α ¼ δAF €U

i
(69)

�S
€u ¼ Ⅎ€U

i
(70)

where ψ , ΓAF, δAF, and Ⅎ are assembled using the submatrices ψ½ �, ΓAF½ �, δAF½ �,
and Ⅎ½ �, respectively.

Solving the system (65) for α and γ yields

α ¼ J�1�S, γ ¼ J0�1Ui (71)

Now, the coefficient α can be written in terms of the unknown displacements Ui,

velocities _U
i
, and accelerations €U

i
as

α ¼ J�1 �S
0 þ BTJ0�1 þ ψ

� �
Ui þ ΓAF _U

i þ Ⅎþ δAF
� �

€U
i

� �
(72)

An implicit-implicit staggered algorithm has been implemented for use with the
BEM to solve the governing equations which can now be written in a suitable form
after substitution of Eq. (72) into Eq. (60) as
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M
z}|{

€U
i þ Γ

z}|{
_U
i þ K

z}|{
Ui ¼ 

z}|{i
(73)

X
z}|{

€T
i
α þ A

z}|{
_T
i
α þ B

z}|{
Ti
α ¼ 

z}|{
€U
i þ 

z}|{
(74)

where V ¼ η �℘� ζ �U
� �

J�1, M
z}|{

¼ V Ⅎþ δAF
� �

, Γ
z}|{

¼ VΓAF,

K
z}|{

¼ ��ζ þ V BTJ0�1 þ ψ
� �

, 
z}|{i

¼ �η�T þ V�S
0
, X
z}|{

¼ �ρicisατ0, A
z}|{

¼ �i
α,

B
z}|{

¼ ξ∇ i
α ∇

� �
, 
z}|{

¼ βiabT
i
α0τ0, 

z}|{
¼ �Q0δ x� vτð Þ.

where €U
i
, _U

i
,Ui,Ti and 

z}|{i
are, respectively, acceleration, velocity, displace-

ment, temperature, and external force vectors, and V, M
z}|{

, Γ
z}|{

, K
z}|{

, A
z}|{

, and B
z}|{

are, respectively, volume, mass, damping, stiffness, capacity, and conductivity
matrices.

In many applications, the coupling term 
z}|{

€U
i
nþ1 that appear in the heat con-

duction equation is negligible. Therefore, it is easier to predict the temperature than
the displacement.

Hence Eqs. (73) and (74) lead to the following coupled system of differential-
algebraic equations (DAEs):

M
z}|{

€U
i
nþ1 þ Γ

z}|{
_U
i
nþ1 þ K

z}|{
Ui

nþ1 ¼ 
z}|{ip

nþ1 (75)

X
z}|{

€T
i
α nþ1ð Þ þ A

z}|{
_T
i
α nþ1ð Þ þ B

z}|{
Ti
α nþ1ð Þ ¼ 

z}|{
€U
i
nþ1 þ 

z}|{
(76)

where 
z}|{ip

nþ1 ¼ ηTip
α nþ1ð Þ þ V�S

0
and Tip

α nþ1ð Þ is the predicted temperature.
By integrating Eq. (73) and using Eq. (75), we get

_U
i
nþ1 ¼ _U

i
n þ

Δτ
2

€U
i
nþ1 þ €U

i
n

� �

¼ _U
i
n þ

Δτ
2

€U
i
n þ M

z}|{�1


z}|{ip
nþ1 � Γ

z}|{
_U
i
nþ1 � K

z}|{
Ui

nþ1

� �� � (77)

Ui
nþ1 ¼ Ui

n þ
Δτ
2

_U
i
nþ1 þ _U

i
n

� �

¼ Ui
n þ Δτ _Ui

n þ
Δτ2

4
€U
i
n þ M

z}|{�1


z}|{ip
nþ1 � Γ

z}|{
_U
i
nþ1 � K

z}|{
Ui

nþ1

� �� �

(78)

From Eq. (77) we have

_U
i
nþ1 ¼ γ�1 _U

i
n þ

Δτ
2

€U
i
n þ M

z}|{�1


z}|{ip
nþ1 � K

z}|{
Ui

nþ1

� �� �� �
(79)

where γ ¼ I þ Δτ
2 M
z}|{�1

Γ
z}|{� �

.
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Substituting Eq. (79) into Eq. (78), we derive

Ui
nþ1 ¼ Ui

n þ Δτ _Ui
n

þ Δτ2

4
€U
i
n þ M

z}|{�1


z}|{ip
nþ1 � Γ

z}|{
γ�1 _U

i
n þ

Δτ
2

€U
i
n þ M

z}|{�1


z}|{ip
nþ1 � K

z}|{
Ui

nþ1

� �� �� �
� K
z}|{

Ui
nþ1

� �� �

(80)

Substituting _U
i
nþ1 from Eq. (79) into Eq. (75), we obtain

€U
i
nþ1 ¼ M

z}|{�1


z}|{ip
nþ1 � Γ

z}|{
γ�1 _U

i
n þ

Δτ
2

€U
i
n þ M

z}|{�1


z}|{ip
nþ1 � K

z}|{
Ui

nþ1

� �� �� �� �
� K
z}|{

Ui
nþ1

� �

(81)

By integrating the heat Eq. (74) and using Eq. (76), we obtain

_T
i
α nþ1ð Þ ¼ _T

i
n þ

Δτ
2

€T
i
α nþ1ð Þ þ €T

i
αn

� �

¼ _T
i
αn þ

Δτ
2

X
z}|{�1


z}|{

€U
i
nþ1 þ 

z}|{
� A
z}|{

_T
i
α nþ1ð Þ � B

z}|{
Ti
α nþ1ð Þ

� �
þ €T

i
αn

� �

(82)

Ti
α nþ1ð Þ ¼ Ti

αn þ
Δτ
2

_T
i
α nþ1ð Þ þ _T

i
αn

� �

¼ Ti
αn þ Δτ _Ti

αn þ
Δτ2

4
€T
i
αn þ X

z}|{�1


z}|{
€U
i
nþ1 þ 

z}|{
� A
z}|{

_T
i
α nþ1ð Þ � B

z}|{
Ti
α nþ1ð Þ

� �� �

(83)

From Eq. (82) we get

_T
i
α nþ1ð Þ ¼ γ�1 _T

i
αn þ

Δτ
2

X
z}|{�1


z}|{

€U
i
nþ1 þ 

z}|{
� B
z}|{

Ti
α nþ1ð Þ

� �
þ €T

i
αn

� �� �
(84)

where γ ¼ I þ 1
2 A
z}|{

Δτ X
z}|{�1� �

.

Substituting Eq. (84) into Eq. (83), we obtain

Ti
α nþ1ð Þ ¼ Ti

αn þ Δτ _Ti
αn þ

Δτ2

4
€T
i
αn þ X

z}|{�1


z}|{
€U
i
nþ1 þ 

z}|{
� A
z}|{

γ�1 _T
i
αn

h���

þΔτ
2

X
z}|{�1


z}|{

€U
i
nþ1 þ 

z}|{
� B
z}|{

Ti
α nþ1ð Þ

� �
þ €T

i
αn

� ���
� B
z}|{

Ti
α nþ1ð Þ

��

(85)

Substituting _T
i
nþ1 from Eq. (84) into Eq. (76), we get

€T
i
α nþ1ð Þ ¼ X

z}|{�1


z}|{
€U
i
nþ1 þ 

z}|{
� A
z}|{

γ�1 _T
i
αn þ

Δτ
2

X
z}|{�1


z}|{

€U
i
nþ1

�����
þ 
z}|{

� B
z}|{

Ti
α nþ1ð Þ

�
þ €T

i
α nþ1ð Þ

���
� B
z}|{

Ti
α nþ1ð Þ

�

(86)
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Now, a displacement predicted staggered procedure for the solution of (80) and
(85) is as follows:

The first step is to predict the propagation of the displacement wave field:

Uip
nþ1 ¼ Ui

n. The second step is to substitute for _U
i
nþ1 and €U

i
nþ1 from Eqs. (77) and

(75), respectively, in Eq. (85) and solve the resulted equation for the three-
temperature fields. The third step is to correct the displacement using the computed

three-temperature fields for the Eq. (80). The fourth step is to compute _U
i
nþ1, €U

i
nþ1,

_T
i
α nþ1ð Þ, and €T

i
α nþ1ð Þ from Eqs. (79), (81), (82), and (86), respectively.

The continuity conditions for temperature, heat flux, displacement, and traction
that have been considered in the current chapter can be expressed as

Ti
α x, z, τð Þ��x¼hi ¼ T iþ1ð Þ

α x, z, τð Þ��x¼hi (87)

qi x, z, τð Þ��x¼hi ¼ q iþ1ð Þ x, z, τð Þ��x¼hi (88)

uif x, z, τð Þ
���
x¼hi
¼ u iþ1ð Þ

f x, z, τð Þ
���
x¼hi

(89)

tia x, z, τð Þ
���
x¼hi
¼ t iþ1ð Þ

a x, z, τð Þ
���
x¼hi

(90)

where n is the total number of layers, ta are the tractions which is defined by
ta ¼ σabnb, and i ¼ 1, 2, … , n� 1.

The initial and boundary conditions of the present study are

uif x, z, 0ð Þ ¼ _uif x, z, 0ð Þ ¼ 0 for x, zð Þ∈R∪C (91)

uif x, z, τð Þ ¼ Ψ f x, z, τð Þ for x, zð Þ∈C3 (92)

tia x, z, τð Þ ¼ Φ f x, z, τð Þ for x, zð Þ∈C4, τ>0 (93)

Ti
α x, z, 0ð Þ ¼ Ti

α x, z, 0ð Þ ¼ 0 for x, zð Þ∈R∪C (94)

Ti
α x, z, τð Þ ¼ f x, z, τð Þ for x, zð Þ∈C1, τ>0 (95)

qi x, z, τð Þ ¼ h x, z, τð Þ for x, zð Þ∈C2, τ>0 (96)

where Ψ f , Φ f , f, and h are prescribed functions, C ¼ C1 ∪C2 ¼ C3 ∪C4, and
C1 ∩C2 ¼ C3 ∩C4 ¼ �0.

4. Design sensitivity and optimization

According to Fahmy [58, 60], the design sensitivities of displacements compo-
nents and total 3T can be performed by implicit differentiation of (75) and (76),
respectively, which describe the structural response with respect to the design vari-
ables, and then we can compute thermal stresses sensitivities.

The bi-directional evolutionary structural optimization (BESO) is the evolution-
ary topology optimization method that allows modification of the structure by
either adding or removing material to or from the structure design. This addition or
removal depends on the sensitivity analysis. Sensitivity analysis is the estimation of
the response of the structure to the modification of design variables and is depen-
dent on the calculation of derivatives [70–80].
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Substituting Eq. (79) into Eq. (78), we derive

Ui
nþ1 ¼ Ui

n þ Δτ _Ui
n

þ Δτ2

4
€U
i
n þ M

z}|{�1


z}|{ip
nþ1 � Γ

z}|{
γ�1 _U

i
n þ

Δτ
2

€U
i
n þ M

z}|{�1


z}|{ip
nþ1 � K

z}|{
Ui

nþ1

� �� �� �
� K
z}|{

Ui
nþ1

� �� �

(80)

Substituting _U
i
nþ1 from Eq. (79) into Eq. (75), we obtain

€U
i
nþ1 ¼ M

z}|{�1


z}|{ip
nþ1 � Γ

z}|{
γ�1 _U

i
n þ

Δτ
2

€U
i
n þ M

z}|{�1


z}|{ip
nþ1 � K

z}|{
Ui

nþ1

� �� �� �� �
� K
z}|{

Ui
nþ1

� �

(81)

By integrating the heat Eq. (74) and using Eq. (76), we obtain

_T
i
α nþ1ð Þ ¼ _T

i
n þ

Δτ
2

€T
i
α nþ1ð Þ þ €T

i
αn

� �

¼ _T
i
αn þ

Δτ
2

X
z}|{�1


z}|{

€U
i
nþ1 þ 

z}|{
� A
z}|{

_T
i
α nþ1ð Þ � B

z}|{
Ti
α nþ1ð Þ

� �
þ €T

i
αn

� �

(82)

Ti
α nþ1ð Þ ¼ Ti

αn þ
Δτ
2

_T
i
α nþ1ð Þ þ _T

i
αn

� �

¼ Ti
αn þ Δτ _Ti

αn þ
Δτ2

4
€T
i
αn þ X

z}|{�1


z}|{
€U
i
nþ1 þ 

z}|{
� A
z}|{

_T
i
α nþ1ð Þ � B

z}|{
Ti
α nþ1ð Þ

� �� �

(83)

From Eq. (82) we get

_T
i
α nþ1ð Þ ¼ γ�1 _T

i
αn þ

Δτ
2

X
z}|{�1


z}|{

€U
i
nþ1 þ 

z}|{
� B
z}|{

Ti
α nþ1ð Þ

� �
þ €T

i
αn

� �� �
(84)

where γ ¼ I þ 1
2 A
z}|{

Δτ X
z}|{�1� �

.

Substituting Eq. (84) into Eq. (83), we obtain

Ti
α nþ1ð Þ ¼ Ti

αn þ Δτ _Ti
αn þ

Δτ2

4
€T
i
αn þ X

z}|{�1


z}|{
€U
i
nþ1 þ 

z}|{
� A
z}|{

γ�1 _T
i
αn

h���

þΔτ
2

X
z}|{�1


z}|{

€U
i
nþ1 þ 

z}|{
� B
z}|{

Ti
α nþ1ð Þ

� �
þ €T

i
αn

� ���
� B
z}|{

Ti
α nþ1ð Þ

��

(85)

Substituting _T
i
nþ1 from Eq. (84) into Eq. (76), we get

€T
i
α nþ1ð Þ ¼ X

z}|{�1


z}|{
€U
i
nþ1 þ 

z}|{
� A
z}|{

γ�1 _T
i
αn þ

Δτ
2

X
z}|{�1


z}|{

€U
i
nþ1

�����
þ 
z}|{

� B
z}|{

Ti
α nþ1ð Þ

�
þ €T

i
α nþ1ð Þ

���
� B
z}|{

Ti
α nþ1ð Þ

�

(86)
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Now, a displacement predicted staggered procedure for the solution of (80) and
(85) is as follows:

The first step is to predict the propagation of the displacement wave field:

Uip
nþ1 ¼ Ui

n. The second step is to substitute for _U
i
nþ1 and €U

i
nþ1 from Eqs. (77) and

(75), respectively, in Eq. (85) and solve the resulted equation for the three-
temperature fields. The third step is to correct the displacement using the computed

three-temperature fields for the Eq. (80). The fourth step is to compute _U
i
nþ1, €U

i
nþ1,

_T
i
α nþ1ð Þ, and €T

i
α nþ1ð Þ from Eqs. (79), (81), (82), and (86), respectively.

The continuity conditions for temperature, heat flux, displacement, and traction
that have been considered in the current chapter can be expressed as

Ti
α x, z, τð Þ��x¼hi ¼ T iþ1ð Þ

α x, z, τð Þ��x¼hi (87)

qi x, z, τð Þ��x¼hi ¼ q iþ1ð Þ x, z, τð Þ��x¼hi (88)

uif x, z, τð Þ
���
x¼hi
¼ u iþ1ð Þ

f x, z, τð Þ
���
x¼hi

(89)

tia x, z, τð Þ
���
x¼hi
¼ t iþ1ð Þ

a x, z, τð Þ
���
x¼hi

(90)

where n is the total number of layers, ta are the tractions which is defined by
ta ¼ σabnb, and i ¼ 1, 2, … , n� 1.

The initial and boundary conditions of the present study are

uif x, z, 0ð Þ ¼ _uif x, z, 0ð Þ ¼ 0 for x, zð Þ∈R∪C (91)

uif x, z, τð Þ ¼ Ψ f x, z, τð Þ for x, zð Þ∈C3 (92)

tia x, z, τð Þ ¼ Φ f x, z, τð Þ for x, zð Þ∈C4, τ>0 (93)

Ti
α x, z, 0ð Þ ¼ Ti

α x, z, 0ð Þ ¼ 0 for x, zð Þ∈R∪C (94)

Ti
α x, z, τð Þ ¼ f x, z, τð Þ for x, zð Þ∈C1, τ>0 (95)

qi x, z, τð Þ ¼ h x, z, τð Þ for x, zð Þ∈C2, τ>0 (96)

where Ψ f , Φ f , f, and h are prescribed functions, C ¼ C1 ∪C2 ¼ C3 ∪C4, and
C1 ∩C2 ¼ C3 ∩C4 ¼ �0.

4. Design sensitivity and optimization

According to Fahmy [58, 60], the design sensitivities of displacements compo-
nents and total 3T can be performed by implicit differentiation of (75) and (76),
respectively, which describe the structural response with respect to the design vari-
ables, and then we can compute thermal stresses sensitivities.

The bi-directional evolutionary structural optimization (BESO) is the evolution-
ary topology optimization method that allows modification of the structure by
either adding or removing material to or from the structure design. This addition or
removal depends on the sensitivity analysis. Sensitivity analysis is the estimation of
the response of the structure to the modification of design variables and is depen-
dent on the calculation of derivatives [70–80].
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The homogenized vector of thermal expansion coefficients αH can be written in
terms of the homogenized elasticity matrix DH and the homogenized vector of
stress-temperature coefficients βH as follows:

αH ¼ DH� ��1
βH (97)

For the material design, the derivative of the homogenized vector of thermal
expansion coefficients can be written as

∂αH

∂Xm
kl
¼ DH� ��1 ∂βH

∂Xm
kl
� ∂DH

∂Xm
kl
αH

� �
(98)

where ∂DH

∂Xm
kl
and ∂βH

∂Xm
kl
for any lth material phase can be calculated using the adjoint

variable method [73] as

∂DH

∂Xm
kl
¼ 1

Ωj j
ð

Y
I � BmUmð ÞT ∂D

m

∂Xm
kl

I � BmUmð Þdy (99)

and

∂βH

∂Xm
kl
¼ 1

Yj j
ð

Y
I � BmUmð ÞT ∂D

m

∂Xm
kl

αm � Bmφmð Þdyþ 1
Ωj j

ð

Y
I � BmUmð ÞT ∂αm

∂Xm
kl
dy

(100)

where Ωj j is the volume of the base cell.

5. Numerical examples, results, and discussion

In order to show the numerical results of this study, we consider a monoclinic
graphite-epoxy as an anisotropic thermoelastic material which has the following
physical constants [57].

The elasticity tensor is expressed as

Cpjkl ¼

430:1 130:4 18:2 0 0 201:3

130:4 116:7 21:0 0 0 70:1

18:2 21:0 73:6 0 0 2:4

0 0 0 19:8 �8:0 0

0 0 0 �8:0 29:1 0

201:3 70:1 2:4 0 0 147:3

2
6666666666664

3
7777777777775

GPa (101)

The mechanical temperature coefficient is

βpj ¼
1:01 2:00 0

2:00 1:48 0

0 0 7:52

2
664

3
775 � 106 N

Km2 (102)
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The thermal conductivity tensor is

kpj ¼
5:2 0 0

0 7:6 0

0 0 38:3

2
64

3
75W=Km (103)

Mass density ρ ¼ 7820kg=m3 and heat capacity c = 461 J/kg K.
The proposed technique that has been utilized in the present chapter can be

applicable to a wide range of three-temperature nonlinear generalized thermoelastic
problems of ISMFGA structures. The main aim of this chapter was to assess the
impact of fractional order parameter on the sensitivities of total three-temperature,
displacement components, and thermal stress components.

Figure 2 shows the variation of the total temperature sensitivity along the x‐axis.
It was shown from this figure that the fraction order parameter has great effects on
the total three-temperature sensitivity.

Figures 3 and 4 show the variation of the displacement components u1 and u2
along the x‐axis for different values of fractional order parameter. It was noticed
from these figures that the fractional order parameter has great effects on the
displacement sensitivities.

Figures 5–7 show the variation of the thermal stress components σ11, σ12, and σ22,
respectively, along the x‐axis for different values of fractional order parameter. It was
noted from these figures that the fractional order parameter has great influences on
the thermal stress sensitivities.

Since there are no available results for the three-temperature thermoelastic prob-
lems, except for Fahmy’s research [10–14]. For comparison purposes with the special
cases of other methods treated by other authors, we only considered one-dimensional
numerical results of the considered problem. In the special case under consideration,

Figure 2.
Variation of the total 3T sensitivity along x-axis.
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The homogenized vector of thermal expansion coefficients αH can be written in
terms of the homogenized elasticity matrix DH and the homogenized vector of
stress-temperature coefficients βH as follows:

αH ¼ DH� ��1
βH (97)

For the material design, the derivative of the homogenized vector of thermal
expansion coefficients can be written as
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(100)

where Ωj j is the volume of the base cell.

5. Numerical examples, results, and discussion

In order to show the numerical results of this study, we consider a monoclinic
graphite-epoxy as an anisotropic thermoelastic material which has the following
physical constants [57].

The elasticity tensor is expressed as

Cpjkl ¼

430:1 130:4 18:2 0 0 201:3

130:4 116:7 21:0 0 0 70:1

18:2 21:0 73:6 0 0 2:4

0 0 0 19:8 �8:0 0

0 0 0 �8:0 29:1 0
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The thermal conductivity tensor is

kpj ¼
5:2 0 0

0 7:6 0

0 0 38:3

2
64

3
75W=Km (103)

Mass density ρ ¼ 7820kg=m3 and heat capacity c = 461 J/kg K.
The proposed technique that has been utilized in the present chapter can be

applicable to a wide range of three-temperature nonlinear generalized thermoelastic
problems of ISMFGA structures. The main aim of this chapter was to assess the
impact of fractional order parameter on the sensitivities of total three-temperature,
displacement components, and thermal stress components.

Figure 2 shows the variation of the total temperature sensitivity along the x‐axis.
It was shown from this figure that the fraction order parameter has great effects on
the total three-temperature sensitivity.

Figures 3 and 4 show the variation of the displacement components u1 and u2
along the x‐axis for different values of fractional order parameter. It was noticed
from these figures that the fractional order parameter has great effects on the
displacement sensitivities.

Figures 5–7 show the variation of the thermal stress components σ11, σ12, and σ22,
respectively, along the x‐axis for different values of fractional order parameter. It was
noted from these figures that the fractional order parameter has great influences on
the thermal stress sensitivities.

Since there are no available results for the three-temperature thermoelastic prob-
lems, except for Fahmy’s research [10–14]. For comparison purposes with the special
cases of other methods treated by other authors, we only considered one-dimensional
numerical results of the considered problem. In the special case under consideration,

Figure 2.
Variation of the total 3T sensitivity along x-axis.
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the displacement u1 and thermal stress σ11 results are plotted in Figures 8 and 9. The
validity and accuracy of our proposed BEM technique were demonstrated by com-
paring our BEM results with the FEM results of Xiong and Tian [81], it can be noticed
that the BEM results are found to agree very well with the FEM results.

Example 1. Short cantilever beam.
The mean compliance has been minimized, to obtain the maximum stiffness,

when the structure is subjected to moving heat source. In this example, we consider
a short cantilever beam shown in Figure 10, where the BESO final topology of
considered short cantilever beam shown in Figure 11a for α ¼ 0:5 and shown in
Figure 11b for α ¼ 1:0. It is noticed from this figure that the fractional order
parameter has a significant effect on the final topology of the multi-material
ISMFGA structure.

Figure 3.
Variation of the displacement u1 sensitivity along x-axis.

Figure 4.
Variation of the displacement u2 sensitivity along x-axis.
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Example 2. MBB beam.
It is known that extraordinary thermo-mechanical properties can be accom-

plished by combining more than two materials phases with conventional materials
[75]. For this reason, it is essential that the topology optimization strategy permits
more than two materials phases within the design domain. In this example, we
consider a MBB beam shown in Figure 12, where the BESO final topology of MBB
beam has been shown in Figure 13a for α ¼ 0:5 and shown in Figure 13b for α ¼ 1:0
to show the effect of fractional order parameter on the final topology of the multi-
material ISMFGA structure.

Example 3. Roller-supported beam.

Figure 5.
Variation of the thermal stress σ11 sensitivity along x-axis.

Figure 6.
Variation of the thermal stress σ12 sensitivity along x-axis.
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the displacement u1 and thermal stress σ11 results are plotted in Figures 8 and 9. The
validity and accuracy of our proposed BEM technique were demonstrated by com-
paring our BEM results with the FEM results of Xiong and Tian [81], it can be noticed
that the BEM results are found to agree very well with the FEM results.

Example 1. Short cantilever beam.
The mean compliance has been minimized, to obtain the maximum stiffness,

when the structure is subjected to moving heat source. In this example, we consider
a short cantilever beam shown in Figure 10, where the BESO final topology of
considered short cantilever beam shown in Figure 11a for α ¼ 0:5 and shown in
Figure 11b for α ¼ 1:0. It is noticed from this figure that the fractional order
parameter has a significant effect on the final topology of the multi-material
ISMFGA structure.

Figure 3.
Variation of the displacement u1 sensitivity along x-axis.

Figure 4.
Variation of the displacement u2 sensitivity along x-axis.
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Example 2. MBB beam.
It is known that extraordinary thermo-mechanical properties can be accom-

plished by combining more than two materials phases with conventional materials
[75]. For this reason, it is essential that the topology optimization strategy permits
more than two materials phases within the design domain. In this example, we
consider a MBB beam shown in Figure 12, where the BESO final topology of MBB
beam has been shown in Figure 13a for α ¼ 0:5 and shown in Figure 13b for α ¼ 1:0
to show the effect of fractional order parameter on the final topology of the multi-
material ISMFGA structure.

Example 3. Roller-supported beam.

Figure 5.
Variation of the thermal stress σ11 sensitivity along x-axis.

Figure 6.
Variation of the thermal stress σ12 sensitivity along x-axis.
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In this example, we consider a roller-supported beam shown in Figure 14, where
the BESO final topology of a roller-supported beam shown in Figure 15a for α ¼ 0:5
and shown in Figure 15b for α ¼ 1:0.

Example 4. Cantilever beam (validation example).
In order to demonstrate the validity of our implemented BESO topology optimi-

zation technique, we consider isotropic case of a cantilever beam shown in Figure 16
as a special case of our anisotropic study to interpolate the elasticity matrix and the
stress-temperature coefficients using the design variables XM, then we compare our

Figure 8.
Variation of the displacement u1 sensitivity along x-axis.

Figure 7.
Variation of the thermal stress σ22 sensitivity along x-axis.
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Figure 10.
Design domain of a short cantilever beam.

Figure 9.
Variation of the thermal stress σ11 waves along x-axis.

Figure 11.
The final topology of a short cantilever beam: (a) α = 0.5 and (b) α = 1.0.

Figure 12.
Design domain of a MBB beam.
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BESO final topology shown in Figure 17a with the material interpolation scheme of
the solid isotropic material with penalization (SIMP) shown in Figure 17b.

The BESO topology optimization problem implemented in Examples 1 and 4, to
find the distribution of the M material phases, with the volume constraint can be
stated as

Figure 13.
The final topology of MBB beam: (a) α = 0.5 and (b) α = 1.0.

Figure 14.
Design domain of a roller-supported beam.

Figure 15.
The final topology of a multi-material roller-supported beam: (a) α = 0.5 and (b) α = 1.0.

Figure 16.
Design domain of a cantilever beam.
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Find XM

That minimize CM ¼ 1
2 PM� �T

uM ¼ 1
2 fM,ter þ fM,mec
� �T

uM

Subject to VM ∗
, �PN

i¼1V
M
i X

M
i ¼ 0

KMuM ¼ PM

XM
i ¼ xminV1

where XM is the design variable; CM is the mean compliance; P is the total load
on the structure, which is the sum of mechanical and thermal loads; uM is the
displacement vector; VM ∗

, is the volume of the solid material; N is the total number
of elements; KM is the global stiffness matrix; xmin is a small value (e.g., 0.0001),
which it guarantee that none of the elements will be removed completely from
design domain; fM,mec is the mechanical load vector; and fM,ter is the thermal load
vector. Also, the BESO parameters considered in Examples 1–4 can be seen in
Tables 1–4, respectively.

The BESO topology optimization problem implemented in Examples 2 and 3, to
find the distribution of the two materials in the design domain, which minimize the
compliance of the structure, subject to a volume constraint in both phases can be
stated as.

Find XM

That minimize CM ¼ 1
2 PM� �T

uM ¼ 1
2 fM,ter þ fM,mec
� �T

uM

Subject to V
M ∗

,
j �

PN
i¼1V

M
i X

M
ij �

P j�1
i¼1 V

M ∗
,

i ¼ 0; j ¼ 1, 2

KMuM ¼ PM

XM
i ¼ xminV1; j ¼ 1, 2

Figure 17.
The final topology of a cantilever beam: (a) MMA and (b) BESO.

Variable name Variable description Variable value

VM
f Final volume fraction 0.5

ERM Evolutionary ratio 1%

ARM
max Volume addition ratio 5%

rMmin Filter ratio 3 mm

τ Convergence tolerance 0.1%

N Convergence parameter 5

Table 1.
BESO parameters for minimization of a short cantilever beam.
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BESO final topology shown in Figure 17a with the material interpolation scheme of
the solid isotropic material with penalization (SIMP) shown in Figure 17b.

The BESO topology optimization problem implemented in Examples 1 and 4, to
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The final topology of a multi-material roller-supported beam: (a) α = 0.5 and (b) α = 1.0.
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Design domain of a cantilever beam.

74

Fractal Analysis - Selected Examples

Find XM

That minimize CM ¼ 1
2 PM� �T

uM ¼ 1
2 fM,ter þ fM,mec
� �T

uM

Subject to VM ∗
, �PN

i¼1V
M
i X

M
i ¼ 0

KMuM ¼ PM

XM
i ¼ xminV1

where XM is the design variable; CM is the mean compliance; P is the total load
on the structure, which is the sum of mechanical and thermal loads; uM is the
displacement vector; VM ∗

, is the volume of the solid material; N is the total number
of elements; KM is the global stiffness matrix; xmin is a small value (e.g., 0.0001),
which it guarantee that none of the elements will be removed completely from
design domain; fM,mec is the mechanical load vector; and fM,ter is the thermal load
vector. Also, the BESO parameters considered in Examples 1–4 can be seen in
Tables 1–4, respectively.

The BESO topology optimization problem implemented in Examples 2 and 3, to
find the distribution of the two materials in the design domain, which minimize the
compliance of the structure, subject to a volume constraint in both phases can be
stated as.

Find XM

That minimize CM ¼ 1
2 PM� �T

uM ¼ 1
2 fM,ter þ fM,mec
� �T

uM

Subject to V
M ∗

,
j �

PN
i¼1V

M
i X

M
ij �

P j�1
i¼1 V

M ∗
,

i ¼ 0; j ¼ 1, 2

KMuM ¼ PM

XM
i ¼ xminV1; j ¼ 1, 2

Figure 17.
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Variable name Variable description Variable value

VM
f Final volume fraction 0.5

ERM Evolutionary ratio 1%

ARM
max Volume addition ratio 5%

rMmin Filter ratio 3 mm

τ Convergence tolerance 0.1%

N Convergence parameter 5

Table 1.
BESO parameters for minimization of a short cantilever beam.
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Variable name Variable description Variable value

VM
f 1 Final volume fraction of the material 1 for both interpolations 0.10

VM
f2 Final volume fraction of the material 2 for both interpolations 0.20

ERM Evolutionary ratio for interpolation 1 2%

ERM Evolutionary ratio for interpolation 2 3%

ARM
max Volume addition ratio for interpolation 1 3%

ARM
max Volume addition ratio for interpolation 2 2%

rMmin Filter ratio for interpolation 1 4 mm

rMmin Filter ratio for interpolation 2 3 mm

τ Convergence tolerance for both interpolations 0.01%

N Convergence parameter for both interpolations 5

Table 2.
Multi-material BESO parameters for minimization of a MBB beam.

Variable name Variable description Variable value

VM
f 1 Final volume fraction of the material 1 for both interpolations 0.25

VM
f 1 Final volume fraction of the material 2 for both interpolations 0.25

ERM Evolutionary ratio for interpolation 1 3%

ERM Evolutionary ratio for interpolation 2 3%

ARM
max Volume addition ratio for interpolation 1 1%

ARM
max Volume addition ratio for interpolation 2 1%

rMmin Filter ratio for interpolation 1 4 mm

rMmin Filter ratio for interpolation 2 4 mm

τ Convergence tolerance for both interpolations 0.5 %

N Convergence parameter for both interpolations 5

Table 3.
Multi-material BESO parameters for minimization of a roller-supported beam.

Variable name Variable description Variable value

VM
f Final volume fraction 0.4

ERM Evolutionary ratio 1.2%

ARM
max Volume addition ratio 3%

rMmin Filter ratio 0.19 mm

τ Convergence tolerance 0.1%

N Convergence parameter 5

Table 4.
BESO parameters for minimization of a cantilever beam.
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where V
M ∗

,
j is the volume of jth material phase and i and j denote the element ith

which is made of jth material.

6. Conclusion

The main purpose of this chapter is to describe a new boundary element formu-
lation for modeling and optimization of 3T time fractional order nonlinear general-
ized thermoelastic multi-material ISMFGA structures subjected to moving heat
source, where we used the three-temperature nonlinear radiative heat conduction
equations combined with electron, ion, and phonon temperatures.

Numerical results show the influence of fractional order parameter on the sen-
sitivities of the study’s fields. The validity of the present method is examined and
demonstrated by comparing the obtained outcomes with those known in the litera-
ture. Because there are no available data to confirm the validity and accuracy of our
proposed technique, we replace the three-temperature radiative heat conduction
with one-temperature heat conduction as a special case from our current general
study of three-temperature nonlinear generalized thermoelasticity. In the consid-
ered special case of 3T time fractional order nonlinear generalized thermoelastic
multi-material ISMFGA structures, the BEM results have been compared graphi-
cally with the FEM results; it can be noticed that the BEM results are in excellent
agreement with the FEM results. These results thus demonstrate the validity and
accuracy of our proposed technique. Numerical examples are solved using the
multi-material topology optimization algorithm based on the bi-evolutionary struc-
tural optimization method (BESO). Numerical results of these examples show that
the fractional order parameter affects the final result of optimization. The
implemented optimization algorithm has proven to be an appropriate computa-
tional tool for material design.

Nowadays, the knowledge of 3T fractional order optimization of multi-material
ISMFGA structures, can be utilized by mechanical engineers for designing heat
exchangers, semiconductor nano materials, thermoelastic actuators, shape memory
actuators, bimetallic valves and boiler tubes. As well as for chemists to observe the
chemical processes such as bond breaking and bond forming.
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Variable name Variable description Variable value
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Chapter 5

Using Algebraic Fractals
in Steganography
Oleg Sheluhin and Dzhennet Magomedova

Abstract

Steganography is a technology for hiding watermarks inside media files, which is
relevant in the field of copyright protection, secret communication, etc. The effec-
tiveness of modern methods of digital image processing allows determining the
presence of embedded watermarks in a stegoimage using the original image and its
statistical characteristics, as well as a priori information about the method and
algorithm of embedding. In contrast to the known approaches, it is proposed to use
algebraic fractals for steganographic embedding of watermarks in color images. It is
proposed to use algebraic fractals in the form of medium cover image acting as a
secret key, which allows the embedding to be more resistant to computer attacks,
including JPEG compression. The main advantage of such use of fractals is an
increase in the level of secrecy in which the attacker must know the parameters of
the fractal image. Without knowledge of these parameters, it will not be enough to
have the original stegoimage and a priori information about the embedding method
to extract secret data. This chapter analyzes the methods and provides examples of
generating algebraic fractals in the form of the Julia set using the escape time
algorithm.

Keywords: steganography, watermarks, color images, copyright protection,
Julia set, escape time algorithm

1. Introduction

The digital form of audio, image, and video has become a commercial standard
in the past decade. Digitized multimedia files can be easily created, copied,
processed, saved, and distributed using commercial and free software. Unfortu-
nately, the digitization of multimedia files leads to the fact that these files are
subject to digital piracy: illegal copying, use, and distribution of copyrighted digital
data. In order to combat digital piracy, various copyright protection mechanisms
have been developed for many years. However, most of these mechanisms were
found to be erroneous and unsafe.

One of the tools to protect multimedia data from copyright infringement is
digital watermarks. Into digital watermarks, an imperceptible “mark” signal is
embedded in the original image. This label uniquely identifies the owner. After
embedding the watermark in the original image (container) there should be no
noticeable distortion. Embedded watermarks should not be removed by an incom-
plete person and must be resistant to intentional and unintentional attacks.
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increase in the level of secrecy in which the attacker must know the parameters of
the fractal image. Without knowledge of these parameters, it will not be enough to
have the original stegoimage and a priori information about the embedding method
to extract secret data. This chapter analyzes the methods and provides examples of
generating algebraic fractals in the form of the Julia set using the escape time
algorithm.

Keywords: steganography, watermarks, color images, copyright protection,
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1. Introduction

The digital form of audio, image, and video has become a commercial standard
in the past decade. Digitized multimedia files can be easily created, copied,
processed, saved, and distributed using commercial and free software. Unfortu-
nately, the digitization of multimedia files leads to the fact that these files are
subject to digital piracy: illegal copying, use, and distribution of copyrighted digital
data. In order to combat digital piracy, various copyright protection mechanisms
have been developed for many years. However, most of these mechanisms were
found to be erroneous and unsafe.

One of the tools to protect multimedia data from copyright infringement is
digital watermarks. Into digital watermarks, an imperceptible “mark” signal is
embedded in the original image. This label uniquely identifies the owner. After
embedding the watermark in the original image (container) there should be no
noticeable distortion. Embedded watermarks should not be removed by an incom-
plete person and must be resistant to intentional and unintentional attacks.
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One of the ways to protect copyright, which currently exists, is steganography,
the art of hiding information in electronic media. Methods of steganography vary in
their approach to hiding information. As a rule, the hidden data in electronic means
will change some of their properties, which can lead to degradation or unusual
characteristics.

The paper deals with the introduction of watermark into a still color image of
JPEG format using steganography methods. A feature of the proposed method is the
use of a fractal image as a secret key, in which a two-dimensional fractal of algebraic
type in the form of a Julia set is used. As a result, an evil intentional person will not
be able to generate an identical fractal image without the exact value of a certain
complex number, which is agreed in advance between the sender and the recipient,
which makes the proposed method resistant to attacks.

Algorithms for creating a fractal image are considered, into which a digital
watermark is then embedded.

To embed the fractal image in the container, the algorithm that performs a
three-level expansion using the Haar transform was chosen and implemented in the
MATLAB. In order to optimize the quality of extraction and the amount of embed-
ded information, an algorithm for calculating thresholds has been proposed, with
the help of which the necessary number of wavelet decomposition coefficients
suitable for embedding has been selected.

To assess the possibility of detecting the fact of embedding the watermark in the
stegoimage, the method of estimating the fractal dimension (FR) can be used before
and after the mark has been embedded. With numerous examples of parameters of
algebraic fractals and the hidden algorithms used, it is shown that the introduction
of a watermark slightly changes the fractal dimension of the stegoimage, which
corresponds to the high stability of the method to possible steganographic attacks.

To assess the quality of the results obtained, the quality was estimated based on
the following metrics: mean square error (MSE) and signal-to-noise ratio (SNR),
expressed in decibels. The results of the original container and the container in
which the watermark with the key in the form of a fractal are embedded, as well as
the original and extracted watermark, are given.

Analysis of the results of the quality assessment of the original container and the
container with the embedded watermark and the key in the form of a fractal, as well
as the original and extracted watermark showed that the proposed algorithm pro-
vides a high quality of hiding confidential information.

2. Algorithm development and software implementation of the
generation of a fractal image of Julia set

The fractal image of a Julia sets will form using an algorithm of time escape
(Escape time algorithm) [1, 2]. The algorithm is based on the use of complex maps
when one complex number zn ¼ xn þ iyn is matched by another complex number
znþ1 ¼ xnþ1 þ iynþ1 according to the iterative rule znþ1 ¼ f znð Þ, where f(z) is some
nonlinear function of the argument z, and n is the iteration number.

The algorithm uses a quadratic complex polynomial: f zð Þ ¼ z2 þ c where c ¼
xþ iy is the starting point on the complex plane on the basis of which the Julia set is
constructed.

If point c belongs to the Mandelbrot set, the Julia set constructed on it is
connected [3]. If c does not belong to the Mandelbrot set, the constructed sets are
scattered into an infinite number of isolated points (Fatu dust). If the point c lies
near the boundary of the Mandelbrot set, such sets form fractal figures figuratively
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called the “seahorse valley” in the vicinity of zo = 0, which have the property of
self-similarity with chaotic dynamics.

Thus, the algorithm for constructing the Julia set takes the form of [4]:

1.Select point c to set polynomial f zð Þ ¼ z2 þ c;

2.Calculate the radius R for a given polynomial f zð Þ ¼ z2 þ c;

3.Select the maxstep parameter to indicate the maximum iteration. The higher it
is, the higher the accuracy and the slower the algorithm;

4.Generate an array of colors from less bright to brighter. We will denote the
color dependence of the removal of points from a variety of Julia sets;

5.For each point, we calculate whether it is part of the filled Julia set or not, as
well as the iteration number at which the threshold has exceeded. If |z| > R
then use the first color, then use the color palette on which the iteration
number was exceeded a threshold.

The implementation of the algorithm begins with the construction of the rect-
angle L � L, within which the Julia set will be constructed. By changing its param-
eters, we can “bring closer” the concentrations of interest to a set with high
accuracy. The resulting rectangle is divided into parts with coordinates zi,j
depending on the number of pixels of the image M �M.

Each point zi,j enters an iterative loop f zð Þ ¼ z2 þ c. The number of iterations
depends on the maxstep parameter. If after a given number of iterations a point
does not go to infinity, then such a point belongs to the Julia set.

Depending on which area of the Julia set will be generated (L � L), a certain
number of points will go to infinity, without reaching the maximum iteration.

To optimize the algorithm and significantly reduce the generation time of the
Julia set, the following approach was adopted: for a complex number, the radius

R ¼ 1
2þ

ffiffiffiffiffiffiffiffiffiffi
1þ4∣c∣
p

2 is calculated, and at each iteration, the test zi,j >R occurs, for points
satisfying this condition, iterations are no longer performed.

The points zi,j extending beyond this radius will go to infinity through a certain
number of iterations; since their attractor is an infinitely distant point (points
zi,j >R enter the pool of the attractor A (∞)). The basin of an attractor of a point z of
a function f is a subset of points from a neighborhood of z (denoted as A (z)), that
any trajectory starting at one of these points converges to a point z.

Such an approach can significantly reduce the number of calculations, especially
with the general form of the Julia set (2 � 2). However, with an increase in the
approximation to the level (0.005 � 0.005) the number of calculations will tend to
the initial ones, as more and more points will belong to the Julia Set. The color in the
implementation of the algorithm was chosen so that the absolute red color (with a
brightness level of 255) has points (belonging to the Julia set) that do not go to
infinity with the maximum number of iterations maxstep. The brightness of the
“red component” of the rest of the check depends on the number of iterations that
the point passed, going to infinity (points not belonging to the Julia set, but rather
close to its boundary). For the green channel, an inverse relationship was used: the
smaller the iterations, the greater the brightness of the green component up to the
level of 255, if the point was originally outside the radius. The blue channel changes
depending on the distance of the point from the origin and is minimal at z = 0.
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The implementation of the above method in the MATLAB math package is
shown in Listing 1:
clear;
cx=0;
cy=0;
l=0.005;
maxstep=300;
m=600;
max=0;
C=-0.74543 + 0.11301i;
r=0.5+sqrt(1+4*abs(C))/2;

for i=1:m
for j=1:m
z(i,j)=-l+j*2*l/(m-1)+(-l+i*2*l/(m-1))*1i;
for k=1:maxstep
w((i-1)*m+j)=maxstep;
if (abs(z(i,j))>r)
w((i-1)*m+j)=k;
break;
end
z(i,j)=power(z(i,j),2)+C;

Figure 1.
Generated fractals with various parameters: (a) с = �0.74543 + 0.11301i, maxstep = 300, l = 1.5, m = 1024;
(b) с = �0.74543 + 0.11301i, maxstep = 300, l = 0.5, m = 1024; (c) с = �0.77780781 + 0.13164510i,
maxstep = 300, l = 1.5, m = 1024; and (d) с =�0.77780781 + 0.13164510i, maxstep = 300, l = 0.5, m = 1024.
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if w((i-1)*m+j)>max
max=w((i-1)*m+j);
end
end
Red(i,j)=uint8(255*w((i-1)*m+j)/max);
Green(i,j)=uint8(255-255*w((i-1)*m+j)/max);
if (abs(z(i,j))/r)>1
Blue(i,j)=255;
else
Blue(i,j)=uint8(255*(abs(z(i,j)/r)));
end
end
end
img=Red;
img(:,:,2)=Green;
img(:,:,3)=Blue;
imwrite(img,'fractal.bmp');
User-defined initial conditions:
maxstep - the maximum number of iterations, which determines the detailing of

the Julia set;
l - the dimension of the rectangle (determines the scale of the approximation);
cx, cy- coordinates of the center of the rectangle (determine the coordinates of the
approximation);
m is the size of the container (the number of pixels of the image mxm).
The results of the developed program module are presented in Figure 1.

3. Embedding a watermark in a stegoimage using a “fractal key”

The created fractal image based on Julia’s set can be used as an intermediate
cover image (key) for embedding a digital watermark into it by one of the well-
known methods [5–7]. So, for example, when using the least significant bit method
when embedding, a fractal is converted into a one-dimensional binary array and
every eighth bit of the given array (that is, every least significant bit of the next
fractal byte) is replaced with a watermark bit.

After the watermark is fully integrated into the created fractal image, the step of
embedding the filled fractal key into the original image begins [8–10].

As an example, consider embedding a watermark in a container using a 2D
wavelet algorithm. To embed a watermark (in our case, a fractal image containing a
watermark) in a cover image using 2D fiberboard, the algorithm [11–13] was used
as a basis, which uses a three-level wavelet decomposition using the Haar trans-
form. The decomposition of the container in the area of coefficients of detail of the
first level LH1, HH1, HL1 is as follows:

A horizontal Haar transform is applied (across all rows) to the source container
(Eqs. (1) and (2)).

C1 i, jj½ � ¼ Cont i, j½ � þ Cont i, jþ 1½ �
2

(1)

C2 i, jj½ � ¼ Cont i, j½ � � Cont i, jþ 1½ �
2

(2)

where i ¼ 1, … ,M; j ¼ 1, … ,N; jj ¼ j, … , N
2 .
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if w((i-1)*m+j)>max
max=w((i-1)*m+j);
end
end
Red(i,j)=uint8(255*w((i-1)*m+j)/max);
Green(i,j)=uint8(255-255*w((i-1)*m+j)/max);
if (abs(z(i,j))/r)>1
Blue(i,j)=255;
else
Blue(i,j)=uint8(255*(abs(z(i,j)/r)));
end
end
end
img=Red;
img(:,:,2)=Green;
img(:,:,3)=Blue;
imwrite(img,'fractal.bmp');
User-defined initial conditions:
maxstep - the maximum number of iterations, which determines the detailing of

the Julia set;
l - the dimension of the rectangle (determines the scale of the approximation);
cx, cy- coordinates of the center of the rectangle (determine the coordinates of the
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m is the size of the container (the number of pixels of the image mxm).
The results of the developed program module are presented in Figure 1.

3. Embedding a watermark in a stegoimage using a “fractal key”

The created fractal image based on Julia’s set can be used as an intermediate
cover image (key) for embedding a digital watermark into it by one of the well-
known methods [5–7]. So, for example, when using the least significant bit method
when embedding, a fractal is converted into a one-dimensional binary array and
every eighth bit of the given array (that is, every least significant bit of the next
fractal byte) is replaced with a watermark bit.

After the watermark is fully integrated into the created fractal image, the step of
embedding the filled fractal key into the original image begins [8–10].

As an example, consider embedding a watermark in a container using a 2D
wavelet algorithm. To embed a watermark (in our case, a fractal image containing a
watermark) in a cover image using 2D fiberboard, the algorithm [11–13] was used
as a basis, which uses a three-level wavelet decomposition using the Haar trans-
form. The decomposition of the container in the area of coefficients of detail of the
first level LH1, HH1, HL1 is as follows:

A horizontal Haar transform is applied (across all rows) to the source container
(Eqs. (1) and (2)).

C1 i, jj½ � ¼ Cont i, j½ � þ Cont i, jþ 1½ �
2

(1)

C2 i, jj½ � ¼ Cont i, j½ � � Cont i, jþ 1½ �
2

(2)

where i ¼ 1, … ,M; j ¼ 1, … ,N; jj ¼ j, … , N
2 .
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In Eqs. (1) and (2), the following notation is used: Сont is an array of pixels of
the original image; C1 is the half-sum matrix of pixels in the original image; C2 is
the half-difference matrix of the pixels of the original image; M is the number of
rows of the original image; and N is the number of columns of the original image.

The resulting matrices C1 and C2 will have the same dimension [i, jj], which
means that the number of columns will be two times less relative to the Сont matrix
of the original image. Then, using the values of the matrices C1 and C2, we calculate
the coefficients of approximation (LL1) and details (HL1, LH1, HH1) for level 1 of
the decomposition.

LL1 ii, jj½ � ¼ C1 i, jj½ � þ C1 iþ 1, jj½ � (3)

HL1 ii, jj½ � ¼ C1 i, jj½ � � C1 iþ 1, jj½ � (4)

LH1 ii, jj½ � ¼ C2 i, jj½ � þ C2 iþ 1, jj½ � (5)

HH1 ii, jj½ � ¼ C2 i, jj½ � � C2 iþ 1, jj½ � (6)

where i ¼ 1, … ,M; j ¼ 1, … ,N; jj ¼ j, … , N
2 ; ii ¼ i, … , M

2 .
In Eqs. (3)–(6), the following notation is used: LL1 [ii, jj]—an array of

approximation coefficients; HL1 [ii, jj]—an array of horizontal detail coefficients;
LH1 [ii, jj]—an array of vertical detail coefficients; and HH1 [ii, jj]—an array of
diagonal detail coefficients.

The arrays of coefficients of approximation and detailing of level 1 obtained
using 2D DVP have the same dimension [ii, jj], which means that each of these
arrays is two times smaller than the array of the original image.

To get the arrays of coefficients for the second level of decomposition: LL2, HL2,
LH2, HH2, you need to perform similar actions, while taking the array of approxima-
tion coefficients LL1 obtained at the first level of decomposition for the original image.

At each decomposition level, coefficients exceeding the threshold values are
selected. The threshold Ti for the decomposition of level i depends on the maximum
absolute coefficient Ci over all ranges of coefficients of level i, thus [14]:

Ti ¼ 2 log 2Ci½ ��1 (7)

The watermark is embedded in all coefficients exceeding the threshold value Ti

for the corresponding decomposition level obtained from Eq. (7). Used additive
algorithm for embedding watermark:

v0i x, yð Þ ¼ vi x, yð Þ þ α ∗ vi x, yð Þ ∗ xi x, yð Þ (8)

where v0i x, yð Þ is a modified coefficient with coordinates (x, y); vi x, yð Þ is a
coefficient chosen for implementation with coordinates (x, y), for example, for
level 1: LH1 (x, y), HH1 (x, y), HL1 (x, y)); xi x, yð Þ—bit of watermark with
coordinates (x, y); α—the scaling factor is adjusted for each level of decomposition.
So for the range of coefficients of approximation of the third level α = 0.02, since
the coefficients of this range have large values. Scaling factors of 0.1, 0.2, and 0.4
are used for the third, second, and first levels of decomposition, respectively. The
fractal image is first embedded in the wavelet coefficients of the third level, then, if
the coefficients of the third level were not enough to fully embed the watermark,
the coefficients of the second level are used, etc. To extract the watermark, the
inverse of the implementation equation (Eq. (9)) is used, but the adaptive-level
scale factor α is taken into account.
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x0i x, yð Þ ¼ v0i x, yð Þ � vi x, yð Þ
α ∗ vi x, yð Þ (9)

A fractal image, in which a watermark is embedded, acts as a watermark.

4. Experimental results

Figure 2a shows the original unfilled image with a size of 6400 � 4096 pixels in
JPEG format. The image containing the embedded key is shown in Figure 2b.

Figure 3 shows the results of extracting the secret fractal key from the filled
image. Figure 3a shows the original fractal image, in Figure 3b is the image
obtained after extraction.

Figure 2.
(a) Original cover image; (b) stegoimage with embedded fractal key.

Figure 3.
(a) Generated fractal with watermark; (b) extracted from stegoimage fractal image with watermark.

Figure 4.
(a) Original watermark; (b) watermark extracted from fractal key.
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absolute coefficient Ci over all ranges of coefficients of level i, thus [14]:

Ti ¼ 2 log 2Ci½ ��1 (7)

The watermark is embedded in all coefficients exceeding the threshold value Ti

for the corresponding decomposition level obtained from Eq. (7). Used additive
algorithm for embedding watermark:

v0i x, yð Þ ¼ vi x, yð Þ þ α ∗ vi x, yð Þ ∗ xi x, yð Þ (8)

where v0i x, yð Þ is a modified coefficient with coordinates (x, y); vi x, yð Þ is a
coefficient chosen for implementation with coordinates (x, y), for example, for
level 1: LH1 (x, y), HH1 (x, y), HL1 (x, y)); xi x, yð Þ—bit of watermark with
coordinates (x, y); α—the scaling factor is adjusted for each level of decomposition.
So for the range of coefficients of approximation of the third level α = 0.02, since
the coefficients of this range have large values. Scaling factors of 0.1, 0.2, and 0.4
are used for the third, second, and first levels of decomposition, respectively. The
fractal image is first embedded in the wavelet coefficients of the third level, then, if
the coefficients of the third level were not enough to fully embed the watermark,
the coefficients of the second level are used, etc. To extract the watermark, the
inverse of the implementation equation (Eq. (9)) is used, but the adaptive-level
scale factor α is taken into account.
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x0i x, yð Þ ¼ v0i x, yð Þ � vi x, yð Þ
α ∗ vi x, yð Þ (9)

A fractal image, in which a watermark is embedded, acts as a watermark.

4. Experimental results

Figure 2a shows the original unfilled image with a size of 6400 � 4096 pixels in
JPEG format. The image containing the embedded key is shown in Figure 2b.

Figure 3 shows the results of extracting the secret fractal key from the filled
image. Figure 3a shows the original fractal image, in Figure 3b is the image
obtained after extraction.

Figure 2.
(a) Original cover image; (b) stegoimage with embedded fractal key.

Figure 3.
(a) Generated fractal with watermark; (b) extracted from stegoimage fractal image with watermark.

Figure 4.
(a) Original watermark; (b) watermark extracted from fractal key.

91

Using Algebraic Fractals in Steganography
DOI: http://dx.doi.org/10.5772/intechopen.92018



Figure 4 shows the results of extracting a digital watermark from the selected
fractal. Figure 4a contains the original watermark and Figure 4b shows watermark
extracted from the key.

As a result of the algorithm, a watermark was extracted with high quality.
Despite the fact that you can observe small pixel distortions in the extracted secret
key, the received watermark as a QR code is completely identical to the original one.

5. Evaluation of the quality of the algorithm

The quality assessment of the visual distortion of the fractal cover image was
performed on the basis of the following metrics: normalized mean square error
(NMSE) and peak signal-to-noise ratio (PSNR) (Eqs. (10) and (11)):

NMSE ¼
X
x, y

Cx,y � Sx,y
� �2
P

x,y Cx,y
� �2 (10)

PSNR ¼ XY � max x,y
Cx,y
� �2

P
x,y Cx,y � Sx,y
� �2 (11)

In the relations presented, Cx,y denotes a pixel with the coordinates (x, y) of the
empty cover image, and Sx,y denotes the corresponding pixel of the filled image.

The calculation of the metrics was carried out with different sizes of the
implemented secret key and digital watermark. The results are presented in Table 1.

To assess the secrecy of the developed system, a situation was simulated in
which the attacker took possession of a secret key with an embedded watermark,
and he also knows some parameters of the generated fractal, namely, the size of the
rectangle l, the maximum number of iterations k and the image size m. The only
unknown parameter is the starting point c. As an example, four fractals were
generated with different values of the parameter c (Figure 5) and the watermark
was extracted using the obtained images and the secret key containing the water-
mark presented in Figure 4b.

The results of the extraction of watermark are shown in Figure 6.
As can be seen from the figures, all the images obtained as a result of the

experiment are so significantly different from the original OT. As a result, the
extraction of information from the QR code becomes impossible. From the experi-
ment, it is clear that to obtain the information it is necessary to know the parame-
ters of the fractal key with high accuracy. The developed method makes it possible
to reduce the probability of the substitution or theft of secret information in similar
steganographic systems to almost zero.

Size of watermark, pixels Fractal key size, pixels NMSE PSNR

30 � 30 85 � 85 0.0021 31,1922

35 � 35 100 � 100 0.0031 29,4217

40 � 40 115 � 115 0.0056 26,7753

45 � 45 130 � 130 0.006 26,5334

50 � 50 150 � 150 0.0067 26,3538

Table 1.
Values of NMSE and PSNR with different sizes of embedded data.
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6. Analysis of the possibility of steganalysis by measuring the fractal
dimension of the secret key before and after embedding

The importance of steganographic watermark embedding is their steganographic
attacks resistance. In this case, the problem arises of detecting the very fact of the
introduction of the watermark into the cover image. For this purpose, the method of
estimating the fractal dimension of the image before and after embedding the
watermark can be used. Consider the problem of measuring the fractal dimension of
color or black and white images after embedding the watermark into them [15].

As is known, a fractal is defined as a collection of objects for which the
Hausdorff dimension is strictly greater than the topological dimension. The concept
of self-similarity is used to estimate the fractal dimension.

A bounded fractal set in a Euclidean n-space will be self-similar if it is a union of
different N (disjoint) reduced copies that can be scaled using a special scaling factor
r. In accordance with the entered scaling factor, the fractal dimension D of set A can
be obtained using Eq. (12).

D ¼ log Nð Þ
log 1=rð Þ (12)

where N is the total number of boxes L needed to cover the fractal set; 1/r is the
scaling factor of the box in relation to the image.

As a result, D is a dimension relative to the size of the box used to measure the
fractal image. It can be said that the fractal dimension is a measure of how
“complex” a self-similar figure is.

Let us consider the two most common methods for measuring dimension:
differential box-counting and triangulation method.

Figure 5.
Fractal images with different starting point c. (а) �0.73949 + 0.16498*i; (b) �0.74549 + 0.37841*i; (c)
�0.80939 + 0.12388*i; (d) �0.63949 + 0.19098*i.

Figure 6.
Watermarks obtained during extraction using fractals shown in Figure 5.
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Figure 4 shows the results of extracting a digital watermark from the selected
fractal. Figure 4a contains the original watermark and Figure 4b shows watermark
extracted from the key.

As a result of the algorithm, a watermark was extracted with high quality.
Despite the fact that you can observe small pixel distortions in the extracted secret
key, the received watermark as a QR code is completely identical to the original one.

5. Evaluation of the quality of the algorithm

The quality assessment of the visual distortion of the fractal cover image was
performed on the basis of the following metrics: normalized mean square error
(NMSE) and peak signal-to-noise ratio (PSNR) (Eqs. (10) and (11)):
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In the relations presented, Cx,y denotes a pixel with the coordinates (x, y) of the
empty cover image, and Sx,y denotes the corresponding pixel of the filled image.

The calculation of the metrics was carried out with different sizes of the
implemented secret key and digital watermark. The results are presented in Table 1.

To assess the secrecy of the developed system, a situation was simulated in
which the attacker took possession of a secret key with an embedded watermark,
and he also knows some parameters of the generated fractal, namely, the size of the
rectangle l, the maximum number of iterations k and the image size m. The only
unknown parameter is the starting point c. As an example, four fractals were
generated with different values of the parameter c (Figure 5) and the watermark
was extracted using the obtained images and the secret key containing the water-
mark presented in Figure 4b.

The results of the extraction of watermark are shown in Figure 6.
As can be seen from the figures, all the images obtained as a result of the

experiment are so significantly different from the original OT. As a result, the
extraction of information from the QR code becomes impossible. From the experi-
ment, it is clear that to obtain the information it is necessary to know the parame-
ters of the fractal key with high accuracy. The developed method makes it possible
to reduce the probability of the substitution or theft of secret information in similar
steganographic systems to almost zero.

Size of watermark, pixels Fractal key size, pixels NMSE PSNR

30 � 30 85 � 85 0.0021 31,1922

35 � 35 100 � 100 0.0031 29,4217

40 � 40 115 � 115 0.0056 26,7753

45 � 45 130 � 130 0.006 26,5334

50 � 50 150 � 150 0.0067 26,3538
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Values of NMSE and PSNR with different sizes of embedded data.
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6. Analysis of the possibility of steganalysis by measuring the fractal
dimension of the secret key before and after embedding

The importance of steganographic watermark embedding is their steganographic
attacks resistance. In this case, the problem arises of detecting the very fact of the
introduction of the watermark into the cover image. For this purpose, the method of
estimating the fractal dimension of the image before and after embedding the
watermark can be used. Consider the problem of measuring the fractal dimension of
color or black and white images after embedding the watermark into them [15].

As is known, a fractal is defined as a collection of objects for which the
Hausdorff dimension is strictly greater than the topological dimension. The concept
of self-similarity is used to estimate the fractal dimension.

A bounded fractal set in a Euclidean n-space will be self-similar if it is a union of
different N (disjoint) reduced copies that can be scaled using a special scaling factor
r. In accordance with the entered scaling factor, the fractal dimension D of set A can
be obtained using Eq. (12).

D ¼ log Nð Þ
log 1=rð Þ (12)

where N is the total number of boxes L needed to cover the fractal set; 1/r is the
scaling factor of the box in relation to the image.

As a result, D is a dimension relative to the size of the box used to measure the
fractal image. It can be said that the fractal dimension is a measure of how
“complex” a self-similar figure is.

Let us consider the two most common methods for measuring dimension:
differential box-counting and triangulation method.
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Fractal images with different starting point c. (а) �0.73949 + 0.16498*i; (b) �0.74549 + 0.37841*i; (c)
�0.80939 + 0.12388*i; (d) �0.63949 + 0.19098*i.
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Watermarks obtained during extraction using fractals shown in Figure 5.
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The differential box-counting (DBC) method takes into account the difference
between the maximum and minimum intensity values of the brightness of the
image. Let an image be given with the size M �M, which is divided into “boxes”
with the size L � L � L0 (Figure 7). The height of the box L0 divides the third
coordinate of the image, which is the intensity value.

Space (x, y) of the image containing the values of the coordinates of the peak-
mudflows is divided into cells of size L � L, after which the maximum and mini-
mum intensity values of (i, j) cell equal to l and k are found, respectively. The next
step for each cell is the sum of the differences between the values found (Eq. (13)).

nr i,jð Þ ¼ l� kþ 1ð Þ=L0 (13)

where r = L/M is the reduction factor.
After calculating the amount in all cells is the total amount of differences for the

entire image (Eq. (14)).

Nr ¼
X
i, j

nr i, jð Þ (14)

The regression curve of log dependence log
P

Nrð Þ on log (1/R) is constructed
on the basis of the calculations. Fractal dimension D is defined as the tangent of the
slope angle of the curve.

When using the triangulation method (TM), the image is divided into identical
cells ε of size s � s. Four heights equal to the intensities of pixels in the corners of
the cells (a–d) are considered. At the intersection of the diagonals of the cell, the
point (e) is set, the value of which is equal to the arithmetic average of four heights.
If we represent a cell in the form of a triangular prism, as shown in Figure 9, then it
is necessary to calculate the area of the projected upper surface, shown in Figure 8.

First of all, the values of the sides of the four triangles, obtained by connecting
the diagonals of the cell, are calculated (Eqs. (15) and (16)).

Figure 7.
Three-dimensional representation of the image with its gray levels [15].
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Then, using the Heron formula, the semi-perimeters and areas of all triangles are
calculated (Eqs. (17) and (18)).

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sa sa� wð Þ sa� pð Þ sa� oð Þ

q
;B ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sb sb� xð Þ sb� pð Þ sb� qð Þ

q
;

C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sc sc� yð Þ sc� qð Þ sc� rð Þ

q
;D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sd sd� zð Þ sd� oð Þ sd� rð Þ

p
: (17)

sa ¼ 1
2

wþ pþ oð Þ; sb ¼ 1
2

xþ pþ oð Þ;

sc ¼ 1
2

yþ qþ rð Þ; sd ¼ 1
2

zþ oþ rð Þ: (18)

The total surface area is equal to the sum of the areas of individual triangles
(Eq. (19)).

Figure 9.
Representation of a cell of the image in the form of a triangular prism.

Figure 8.
The projected top surface of a triangular prism.
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The differential box-counting (DBC) method takes into account the difference
between the maximum and minimum intensity values of the brightness of the
image. Let an image be given with the size M �M, which is divided into “boxes”
with the size L � L � L0 (Figure 7). The height of the box L0 divides the third
coordinate of the image, which is the intensity value.

Space (x, y) of the image containing the values of the coordinates of the peak-
mudflows is divided into cells of size L � L, after which the maximum and mini-
mum intensity values of (i, j) cell equal to l and k are found, respectively. The next
step for each cell is the sum of the differences between the values found (Eq. (13)).

nr i,jð Þ ¼ l� kþ 1ð Þ=L0 (13)

where r = L/M is the reduction factor.
After calculating the amount in all cells is the total amount of differences for the

entire image (Eq. (14)).
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The regression curve of log dependence log
P

Nrð Þ on log (1/R) is constructed
on the basis of the calculations. Fractal dimension D is defined as the tangent of the
slope angle of the curve.

When using the triangulation method (TM), the image is divided into identical
cells ε of size s � s. Four heights equal to the intensities of pixels in the corners of
the cells (a–d) are considered. At the intersection of the diagonals of the cell, the
point (e) is set, the value of which is equal to the arithmetic average of four heights.
If we represent a cell in the form of a triangular prism, as shown in Figure 9, then it
is necessary to calculate the area of the projected upper surface, shown in Figure 8.

First of all, the values of the sides of the four triangles, obtained by connecting
the diagonals of the cell, are calculated (Eqs. (15) and (16)).

Figure 7.
Three-dimensional representation of the image with its gray levels [15].
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Then, using the Heron formula, the semi-perimeters and areas of all triangles are
calculated (Eqs. (17) and (18)).
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The total surface area is equal to the sum of the areas of individual triangles
(Eq. (19)).

Figure 9.
Representation of a cell of the image in the form of a triangular prism.

Figure 8.
The projected top surface of a triangular prism.
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SABCD ¼ Aþ Bþ CþD (19)

This procedure is repeated for all cell sizes. Then a regression line is constructed,
which determines the dependence of the logarithm of the total area of all the tri-
angles log (S) on the logarithm of the cell size log (ε) (Figure 10).

To calculate the fractal dimension, it is necessary to find the tangent of the angle
of inclination of the constructed curve B. It can be calculated using Eq. (20).

B ¼ r ∗ Ss
Sε

r ¼ cov ε, Sð Þ
SεSS

; cov ε, Sð Þ ¼
P

εi � εð Þ Si � S
� �

N
;

Sε ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

εi � εð Þ
N

r
; SS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
Si � S
� �
N

s
: (20)

ε, S are the average values of the corresponding parameters.
The desired value of the fractal dimension D is calculated by Eq. (21).

D ¼ 2� B (21)

In grayscale images, there is only one brightness level of each pixel of the image,
while in a color image there are three color values (red, green, and blue) for each
pixel of the image. As a result, to estimate the fractal dimension of color images, it is
necessary to calculate the dimension for three different color levels. Using the
estimation methods of calculating the fractal dimension for images in grayscale, one
can calculate the dimension of a color image.

To calculate the dimension of a color image using the DBC method, the same
method of calculating dimensions is used as in the grayscale images. In the color
image, the dimension is calculated for the red R, green G, and blue B components.
According to the DBC technique for each stage (red, green, and blue), you can
apply the technique to images in shades of gray. After finding the results of each
step, the results of different color levels are combined. As a result, you can get the
dimension of the color image:

R: nrr(i,j) = l-k + 1 for red values;
G: nrg(i,j) = l-k + 1 for green values;
B: nrb(i,j) = l-k + 1 for blue values.

Figure 10.
Regression line.
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According to the above, you can find the fractal dimension of the color image
Nr{r,g,b} (Eq. (22)).

Nr r,g,bf g ¼
P

i,jnrr i, jð Þ þ
P

i,jnrg i, jð Þ þP
i,jnrb i, jð Þ

3
(22)

When calculating the dimension of color images by the triangulation method,
first of all, the particular values of the fractal dimension for each color component
are determined, and then their average value is calculated.

7. Testing methods for estimating fractal dimension

To test the methods for evaluating the fractal dimension, two methods triangu-
lation and DBC were considered. Testing was carried out with the help of fractal
objects for which the dimension is known. Table 2 presents the results of testing the
above assessment methods using fractals with a known dimension value.

In Table 2, the following designations are made:

ΔTM% ¼ D̂TM�D
D � 100% is the absolute error in estimating the dimension between

the measured and the true value of the fractal dimension by the triangulation
method.

ΔDBC% ¼ D̂DBC�D
D � 100% is the absolute error in estimating the dimension

between the measured and the true value of the fractal dimension by the DBC
method.

ΔAV% ¼ D�D
D � 100% is the absolute error of the average estimate of the fractal

dimension obtained by two methods.

Name of fractal Illustration D Testing results

TM ΔTM,% DBC ΔDBC,% D ΔAV,%

Dodecahedron
fractal

2.3296 2.2276 4.378 2.4203 3.893 2.3239 0.243

Fractal pyramid 2.3219 2.2641 2.489 2.5524 9.03 2.4083 3.719

Jerusalem cube 2.529 2.3218 8.193 2.5830 2.135 2.4524 3.029

3D quadratic Koch
surface

2.3347 2.2260 4.656 2.4068 3.088 2.3164 0.784

3D quadratic Koch
surface (type 2)

2.5 2.3879 4.484 2.5705 2.82 2.4792 0.832

Table 2.
Results of testing methods for measuring the fractal dimension.
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which determines the dependence of the logarithm of the total area of all the tri-
angles log (S) on the logarithm of the cell size log (ε) (Figure 10).

To calculate the fractal dimension, it is necessary to find the tangent of the angle
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while in a color image there are three color values (red, green, and blue) for each
pixel of the image. As a result, to estimate the fractal dimension of color images, it is
necessary to calculate the dimension for three different color levels. Using the
estimation methods of calculating the fractal dimension for images in grayscale, one
can calculate the dimension of a color image.

To calculate the dimension of a color image using the DBC method, the same
method of calculating dimensions is used as in the grayscale images. In the color
image, the dimension is calculated for the red R, green G, and blue B components.
According to the DBC technique for each stage (red, green, and blue), you can
apply the technique to images in shades of gray. After finding the results of each
step, the results of different color levels are combined. As a result, you can get the
dimension of the color image:

R: nrr(i,j) = l-k + 1 for red values;
G: nrg(i,j) = l-k + 1 for green values;
B: nrb(i,j) = l-k + 1 for blue values.

Figure 10.
Regression line.
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According to the above, you can find the fractal dimension of the color image
Nr{r,g,b} (Eq. (22)).

Nr r,g,bf g ¼
P

i,jnrr i, jð Þ þ
P

i,jnrg i, jð Þ þP
i,jnrb i, jð Þ

3
(22)

When calculating the dimension of color images by the triangulation method,
first of all, the particular values of the fractal dimension for each color component
are determined, and then their average value is calculated.

7. Testing methods for estimating fractal dimension

To test the methods for evaluating the fractal dimension, two methods triangu-
lation and DBC were considered. Testing was carried out with the help of fractal
objects for which the dimension is known. Table 2 presents the results of testing the
above assessment methods using fractals with a known dimension value.

In Table 2, the following designations are made:

ΔTM% ¼ D̂TM�D
D � 100% is the absolute error in estimating the dimension between

the measured and the true value of the fractal dimension by the triangulation
method.

ΔDBC% ¼ D̂DBC�D
D � 100% is the absolute error in estimating the dimension

between the measured and the true value of the fractal dimension by the DBC
method.

ΔAV% ¼ D�D
D � 100% is the absolute error of the average estimate of the fractal

dimension obtained by two methods.

Name of fractal Illustration D Testing results

TM ΔTM,% DBC ΔDBC,% D ΔAV,%

Dodecahedron
fractal

2.3296 2.2276 4.378 2.4203 3.893 2.3239 0.243

Fractal pyramid 2.3219 2.2641 2.489 2.5524 9.03 2.4083 3.719

Jerusalem cube 2.529 2.3218 8.193 2.5830 2.135 2.4524 3.029

3D quadratic Koch
surface

2.3347 2.2260 4.656 2.4068 3.088 2.3164 0.784

3D quadratic Koch
surface (type 2)

2.5 2.3879 4.484 2.5705 2.82 2.4792 0.832

Table 2.
Results of testing methods for measuring the fractal dimension.
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The numerical data of the absolute errors of measurement of the dimension
with the help of triangulation and DBC methods show that they give comparable
results. The error of calculations for both methods does not exceed 5%. For prac-
tical use, it is advisable to use both methods, and the dimension values to find by
averaging the results of both methods. In this case, the total error of calculations
does not exceed 3%.

8. The measurement results of the fractal dimension of fractal keys

To illustrate the possibility of detecting an embedded watermark in images, we
consider the experimental results of the evaluation of the fractal dimension after
embedding the watermark in a fractal image based on Julia set.

Table 3 shows the results of measuring the fractal dimension of color fractal
images in the form of a Julia set when embedding watermark by various known
steganographic methods.

The results show that the steganographic introduction of data does not actually
affect the value of the fractal dimension, which makes it impossible to illegally
extract the watermark.

Starting
point c

Number of
iterations

Size of
rectangle

Embedding
method

Image
size

D of original
fractal

D of fractal with
watermark

�0.7778+
0.1316i

300 1.5 LSB 1024 2.318 2.318

Block based 2.318 2.317

Koch R 2.318 2.316

Koch G 2.318 2.316

Koch B 2.318 2.318

�0.74543
+0.11301i

LSB 2.438 2.438

Block based 2.438 2.437

Koch R 2.438 2.436

Koch G 2.438 2.436

Koch B 2.438 2.438

3000 LSB 2.109 2.109

Block based 2.109 2.115

Koch R 2.109 2.136

Koch G 2.109 2.097

Koch B 2.109 2.112

0.5 LSB 2.192 2.192

Block based 2.192 2.194

Koch R 2.192 2.208

Koch G 2.192 2.178

Koch B 2.192 2.195

0.0005 LSB 2.172 2.172

Block based 2.172 2.179

Koch R 2.172 2.186
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9. Conclusions

The secrecy of steganographic systems is based on the assumption that the
attacker is not aware of the fact of the information being introduced. In the event
that this fact becomes publicly available, it will not be difficult for an unauthorized
user to extract secret data or delete a given watermark. To solve this problem, it was
proposed to use an additional container in the form of an algebraic fractal in the
form of a Julia set.

Fractal generation is carried out using predefined secret parameters using the
escape time algorithm (Escape time algorithm).

Embedding a digital watermark in a container was carried out in two stages. At
the first stage, the watermark is added to the generated fractal. The resulting image
is embedded in the original container in JPEG format. As a result, the original image
has almost no visual distortion. The measurement of the values of the NMSE and
PSNR metrics confirmed the high level of embedding quality and extraction of the
watermark in the form of a QR code.

To confirm the high level of secrecy, an experiment was conducted, during
which an attempt was made to replace the original secret key. The experiment

Starting
point c

Number of
iterations

Size of
rectangle

Embedding
method

Image
size

D of original
fractal

D of fractal with
watermark

Koch G 2.172 2.165

Koch B 2.172 2.359

300 1.5 LSB 512 2.449 2.449

Block based 2.449 2.442

Koch R 2.449 2.427

Koch G 2.449 2.425

Koch B 2.449 2.450

0.5 LSB 2.541 2.541

Block based 2.541 2.546

Koch R 2.541 2.523

Koch G 2.541 2.523

Koch B 2.541 2.537

0.0005 LSB 2.396 2.396

Block based 2.396 2.383

Koch R 2.396 2.474

Koch G 2.396 2.423

Koch B 2.396 2.487

3000 LSB 2.183 2.183

Block based 2.183 2.183

Koch R 2.183 2.221

Koch G 2.183 2.323

Koch B 2.183 2.122

Table 3.
Changing the value of the fractal dimension of images during steganographic embedding.
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confirmed that it is impossible to extract the watermark without knowing the true
parameters of the fractals.

To assess the possibility of detecting the fact of embedding a watermark on the
basis of fractals, the fractal dimension of intermediate containers was measured on
the basis of the Julia set. Measurement of the dimension value was carried out
before and after steganographic embedding. The results showed that the fractal
dimension varies slightly, within the limits of the method error, and cannot be a
sign that characterizes the presence of an integrated watermark.

The proposed technique allows for steganographic embedding with a high level
of visual quality, as well as resistance to various steganographic attacks. As a result,
it is possible to increase the level of secrecy of the watermark embedding algorithms
and significantly reduce the likelihood of data theft.
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Chapter 6

Fractal Analysis of Strain-Induced
Microstructures in Metals
Ricardo Fernández, Gaspar González-Doncel and
Gerardo Garcés

Abstract

The deformation of materials is a key topic for different industrial sectors. The
correlation between specific thermomechanical processes, like extrusion, rolling or
additive manufacturing, and the resultant material’s microstructure, is particularly
interesting. In these thermomechanical processes, the microstructure of the materials
depends mainly on the applied stress, the magnitude of strain achieved in a given
time period, and the temperature. In the case of metals and alloys, plastic deforma-
tion can be described microscopically based on the dynamics of a huge population of
moving dislocations. Plasticity is characterized at the mesoscale by the avalanche-like
collective behavior of dislocations, which is a typical case of self-organized systems.
Dislocations are organized into cells named grains or subgrains that greatly influence
the mechanical behavior of metals and alloys. The existence of these fractal structures
of dislocations in metals is well established. However, it is very complex to conduct a
fractal analysis of these microstructures. This is actually done by looking for a com-
promise between a detailed description of the complex fractal microstructure and the
development of a practical procedure that avoids unaffordable extensive characteri-
zation in a different time and spatial scales. Several cases will be described consider-
ing different alloys and experimental conditions.

Keywords: fractal, metal, strain, dislocations, mesoscale

1. Introduction

The concept of fractal refers to structures whose appearance is independent of
the scale at which it is observed. In these geometrical objects, the same pattern
appears regardless of whether we move away to have a more global vision of the
observed structure or if we approach to expand a particular detail of it. Fractals are
very common in many aspects of nature. They appear, for example, in the crystal-
line structure that develops in snowflakes or in the crystals that form frost during
cold and wet sunrises. The rough, superficial structure of broccoli is another recur-
ring example in living beings where a fractal nature is revealed. The structure of the
veins through which the sage passes on the leaves of the trees is another very clear
example of a fractal. The coastline can be described, in some cases, in the frame of a
fractal object. Fractals appear not only in nature and are not restricted to physical
objects, but they are also present in other fields, such in financial markets; the
repeated and cyclic behavior of the stock market also falls in a fractal patter. Music
is other field in which fractals have been reported, for example, when shorter
passages are reflected in expanded form in longer passages. It is surprising that,
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being fractals so common objects and present in so many fields, the concept of
fractal was initially proposed as late as in 1975 [1]. This “self-similarity” of fractal
geometry was proposed by the IBM mathematician Benoît Mandelbrot (the term
fractal derives from the Latin word fractus).

The widespread appearance of the concept of fractal in many areas is also
observed in different microstructural features of materials. In fact, the appearance
of fractal structures in metals is widely accepted [2]. Solid state metals have an
orderly crystalline structure that provides their physical properties. The strongest
metal bond is formed when the metallic atoms are ordered as close as possible,
usually in cubic or hexagonal lattices. These lattices are described by the unit
elemental cell characterized by the lattice parameter, dimension measured in nm
and their symmetry typically represented by cubic or hexagonal unit cells. Most of
the metals we find in our daily lives are polycrystals. This means that not all the unit
elemental cells of the material have got the same orientation with respect each
other. Actually, there are domains of atoms/unit cells where their orientation is the
same. These domains, which are present in millions in a metallic component, are
called grains. These grains are separated from each other by grain boundaries. All
this microstructural complexity is a fertile breeding ground for fractal structure
appearance. One example is the presence of fractals in the solidification/crystalliza-
tion structure generated in the manufacturing process of polycrystalline metals
during cooling [3]. Another example of fractal structures in metals is provided by
the distribution of reinforcement in discontinuously reinforced composite mate-
rials. The physical properties of these composite materials are governed by the
properties of the clusters that are formed when contacts are established among the
reinforcing particles. The percolation of the system greatly modifies its properties.
The formation of these clusters depends on the fractional content of the composite
material [4]. Another classic example of fractal structures in metals is the fracture
surface [5]. These fracture surfaces are generated from the interaction of macro-
scopic defects, mainly cracks due to the application of mechanical stresses that
generate a progressive deformation of the material until its breakage. These surfaces
are formed by facets of different sizes and heights that can be accurately described
by a fractal. The knowledge of the fractal nature of fracture surfaces has allowed the
design of fractal surfaces to achieve certain properties such as a better air flow
avoiding turbulence [6].

The fractal nature of the fracture surfaces is an indication that the deformation
process generates fractal structures in the deformed microstructure, which ulti-
mately give rise to the fractal fracture surface. In the case of metals, the deforma-
tion process begins with an elastic deformation that occurs in small intervals
typically smaller well below 0.2% strain. The stress value achieved at this point is
known as the yield stress, and it has been agreed that it reflects the beginning of
plastic deformation of metals in the macroscale (homogeneous deformation).
From this strain/stress value, the deformation is mainly caused by the movement
of dislocations. The main defects in metals are vacancies and dislocations.
These defects correspond to the lack of a semi-plane of atoms in its crystalline
structure, respectively. When the temperature is high and the applied stress is low,
this movement can be controlled by the motion of vacancies (diffusion). Disloca-
tions are found not only inside the polycrystalline grains but also at the grain
boundaries. A characteristic of dislocations, the fundamental element in metal
deformation, is that their collective arrangement has a fractal nature. Sevillano et al.
[7] were the first to recognize the possibility of fractal geometry of the cell structure
based on the measurement of the fractal dimension of the microstructure of cold
worked Cu. These dislocations are organized during the deformation process and
form cell structures that have a fractal nature [8]. Moreover, the tangled
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arrangement of dislocations in metals has been proposed to be associated with a
fractal structure. Examples are found in various usual metal forming processes such
as rolling [9].

It is important to understand the role of the collective motion and interaction of
a large number of dislocations in the generation of fractal structures [10]. The
sample size is one of the features that determine the fractal dimension of these
dislocation structures [11]. In that study, carried out in iron micropillars, it has been
observed that the fractal dimension of the dislocation structure changes approxi-
mately 40%, from 1.1 to 1.5, when the sample diameter increases from 300 to
1500 nm. This reveals the strong size effect on fractal substructures of dislocations
in metals.

2. Origin of fractal structures in metals: stochastic vs. thermodynamic
approach

Materials, in particular metals, can be considered complex systems from the
mechanical point of view, considering that they contain a large number of elements
and dislocations that interact with each other. A complex system has properties that
arise from the interaction between its elements and the system itself with the
environment. In particular, one of these properties is the emergency. The emer-
gency can be defined as the generation of spontaneous patterns resulting from the
self-organization of the elements of the system. Classic examples of an emergency
in nature are snowflakes. These patterns have different geometries with a high
degree of symmetry indicating the ability to organize the system. Surprisingly, a
similar behavior has been found in the case of gallium-based liquid metals. By
applying an electric potential to this liquid metal, snowflake-shaped fractals have
been found [12]. These structures have encouraged the introduction of the term
fractalized metals. It has been proposed that this concept defines a new state in
which metals can be found. In this state, all positions in the metal lattice are
coordinated granting properties such as chiral transport [13].

Metal microstructures have a great amount of defects. Dislocations, linear
defects, are the most important ones from the point of view of plastic deformation
and mechanical behavior. An individual, isolated, dislocation has an associated
elastic stress field. For an edge dislocation, is described, in Cartesian coordinates, by
a tensor where the components, σij, are given by Eq. (1) [14].

σxx ¼ � Gby 3x2 þ y2ð Þ
2π 1� νð Þ x2 þ y2ð Þ2 ; σyy ¼ � Gby x2 þ y2ð Þ

2π 1� νð Þ x2 þ y2ð Þ2 ; σxy ¼ σyx

¼ Gbx x2 � y2ð Þ
2π 1� νð Þ x2 þ y2ð Þ2 ; σzz ¼ ν σxx þ σyy

� �
; σxz ¼ σzx ¼ σzy ¼ σyz ¼ 0 (1)

where G is the shear modulus, b is the Burgers vector, ν is Poisson’s ratio, and x,
y, and z are the coordinates, perpendicular in-plane, perpendicular out-of-plane,
and parallel directions, with respect to the dislocation line, respectively, in the
reference system of the dislocation.

The specific stress field depends on the character of the dislocation, i.e., screw or
edge. The stress fields of a huge amount of dislocations, in combination with the
external applied stress, play a relevant role in the formation of fractal deformation
patterns in metals. Through these stress fields, interactions occur with other dislo-
cations or with second phases of the material, such as precipitates. The interaction
among typically 1010–1014 m�2 dislocations generates fractal patterns in the
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being fractals so common objects and present in so many fields, the concept of
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boundaries. A characteristic of dislocations, the fundamental element in metal
deformation, is that their collective arrangement has a fractal nature. Sevillano et al.
[7] were the first to recognize the possibility of fractal geometry of the cell structure
based on the measurement of the fractal dimension of the microstructure of cold
worked Cu. These dislocations are organized during the deformation process and
form cell structures that have a fractal nature [8]. Moreover, the tangled
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degree of symmetry indicating the ability to organize the system. Surprisingly, a
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mesoscale. The formation of these fractals follows the same fundamental rules as any
other physical system which develops a fractal structure. Here, it is particularized to
the specific characteristics of metals. The formation of fractals in physical systems can
be explained from a stochastic or a thermodynamic point of view. The concept that
represents the susceptibility of uniform systems to spontaneously develop patterns in
uniform nonlinear systems is known as Turing instability [15]. These patterns are
found in reaction–diffusion systems describing, for example, the transformation of
substances by chemical reactions in which the substances are transformed among
each other and spread out over by diffusion. In the case of metals, a reaction–
diffusion model of coupled nonlinear equations has been used to describe the forma-
tion of forest (immobile) and gliding (mobile) dislocation densities in the presence of
cyclic loading [16]. This description is done assuming that a metal undergoing both
an internal and external stress is far from equilibrium. The second law of thermody-
namics, states that any physical system can spontaneously increases its entropy, i.e.,
from order to disorder. The apparent conflict between this postulate and the genera-
tion of ordered fractal patterns is dismissed by considering that the accompanying
decrease in entropy (i.e., ordering) is compensated by a corresponding increase
somewhere else, so that the net entropy always increases. However, very recent
theories [17] postulate that the apparent conflict between the second law of thermo-
dynamics and ordered systems evolution is due to the consideration that the Universe
is near equilibrium. This new theory postulates that there is an energy/matter flow
comprising the whole Universe that evolves from disorder to order via self-
organization. This process must be described by the empirical laws of non-
equilibrium thermodynamics [18]. In this situation, a stress gradient in relatively
simple non-equilibrium systems, as deformed metals, causes a flux of energy/matter
in the system. As a consequence, it emerges a countervailing gradient. These conju-
gated processes result in spatio-temporal macroscopic order that spontaneously
emerges provided that system is driven far away enough from equilibrium [19, 20].
Some authors have recently accepted that the contribution of the macroscopic (or
mesoscopic) order, described by the entropy, must be considered for a rigorous
description of the mechanical behavior of metals at high temperature [21].

Stochastics models have been also used to justify the appearance of fractal
patterns developed during strain of metals. The necessity of a stochastic treatment,
specific for fractal structures, for the characterization of mesoscopic dislocation
network distributions in metals was established at the very end of the twentieth
century [22]. At temperatures below 0.5 Tmelt (with Tmelt, the melting tempera-
ture), it is considered that there is no time-dependent plasticity (creep). In this
range of temperatures, plasticity is explained by the avalanche-like collective
behavior of dislocations [23]. The self-organized structures of dislocations gener-
ated by this phenomenon are developed at the grain size scale. This can be described
as the mesoscale in metals. Natural nondeterministic fractals are self-similar in a
statistical sense over a wide range of scales [1]. The localization of the plastic
deformation of metals and alloys into slip bands has been investigated for a long
time [24]. One example of dislocation patterns developed under uniaxial tensile
tests appears with the Lüders band formation in some steels. The appearance of
these patterns under uniaxial stress conditions reveals the great importance of
dislocations interaction in their formation.

3. Experimental characterization of fractal structures

There are different parameters that can be used to describe a fractal. The most
common one is the fractal dimension. Fractal dimensionality is considered a
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measure of complexity for systems that do not present integer dimensions [25].
However, there are different fractals that have the same fractal dimension. There-
fore, other parameters have been proposed to describe some characteristics of
fractals. One of the most important characteristics of fractal structures of disloca-
tions generated during metal deformation is their connectivity. Dislocations are
usually arranged in grain and subgrain boundaries. These boundaries maintain their
integrity, while the deformation increases due to the stress fields of dislocations that
lock them in low-energy configurations. The connectivity of these structures can be
described in this context by the distance to next dislocation neighbors. In particular,
lacunarity is one of the most used parameters to characterize the connectivity
among different parts of a fractal structure. Lacunarity is a measure of spatial
heterogeneity, and it is used to differentiate images with similar fractal dimension
but different appearances [26]. The local connected fractal dimension represents
the connectivity of the different parts of the system by a color map that indicates
the proximity of the neighbor pixels in a given image.

3.1 Image analysis

All parameters that describe a fractal structure of dislocations can be calculated
from images obtained from the microstructure. In the deformation of metals, the
most interesting images are related with the observation of dislocations that can be
homogeneously distributed or rearranged to form subgrains or grain boundaries.
These dislocation structures have been described in a very detailed manner from
decades thanks to transmission electron microscopy (TEM). However, there are
some aspects that must be taken into account when analyzing the fractal parameters
of dislocation microstructures. The first one is the quality of the images. Normally,
metallographical images have a gray range. In the case of a TEM image, moreover,
there is a great contrast evolution depending on the interaction between the elec-
trons and defects (dislocations, stacking faults, etc.), the relative orientation of the
crystal, and the mode in which the images are obtained (bright field vs. dark field).

Figure 1 shows a TEM bright field image of the microstructure of a magnesium
alloy which was deformed at intermediate temperatures. The presence of disloca-
tions is clearly observed. The fractal dimension is typically measured from this kind
of images using the box counting method.

The “box counting” is a method for analyzing complex patterns by splitting an
image into smaller and smaller pieces, typically “box”-shaped. The fractal dimen-
sion is calculated considering the number of boxes containing part of the micro-
structure vs. the number of empty boxes. The ratio of full vs. empty boxes is
considered for at least 4/5 box sizes for the analysis of the fractal dimension.
Computer-based box counting algorithms have been applied to patterns in one-,
two-, and three-dimensional spaces [27, 28]. The technique is usually implemented
in specialized software to analyze patterns extracted from digital images. This
software also has application in the determination of related parameters such as
lacunarity and multifractal analysis [29].

The TEM photos must be treated to obtain a binary image. However, in this
process, TEM images cannot be completely clean of artifacts such as shadows or
dots. The presence of these artifacts introduces an overestimation of the fractal
dimension.

Figure 2 shows several idealized examples presenting this situation. Figure 2(a)
shows an idealized grain before deformation. Therefore, no dislocations or subgrain
boundaries appear. After deformation, we can calculate the fractal dimension, DF,
of, as an exercise, one or two dislocations within this grain (Figure 2(b) and (c),
respectively). For these two ideal examples, the fractal dimension calculated with
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mesoscopic) order, described by the entropy, must be considered for a rigorous
description of the mechanical behavior of metals at high temperature [21].

Stochastics models have been also used to justify the appearance of fractal
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measure of complexity for systems that do not present integer dimensions [25].
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among different parts of a fractal structure. Lacunarity is a measure of spatial
heterogeneity, and it is used to differentiate images with similar fractal dimension
but different appearances [26]. The local connected fractal dimension represents
the connectivity of the different parts of the system by a color map that indicates
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3.1 Image analysis

All parameters that describe a fractal structure of dislocations can be calculated
from images obtained from the microstructure. In the deformation of metals, the
most interesting images are related with the observation of dislocations that can be
homogeneously distributed or rearranged to form subgrains or grain boundaries.
These dislocation structures have been described in a very detailed manner from
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trons and defects (dislocations, stacking faults, etc.), the relative orientation of the
crystal, and the mode in which the images are obtained (bright field vs. dark field).
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alloy which was deformed at intermediate temperatures. The presence of disloca-
tions is clearly observed. The fractal dimension is typically measured from this kind
of images using the box counting method.

The “box counting” is a method for analyzing complex patterns by splitting an
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sion is calculated considering the number of boxes containing part of the micro-
structure vs. the number of empty boxes. The ratio of full vs. empty boxes is
considered for at least 4/5 box sizes for the analysis of the fractal dimension.
Computer-based box counting algorithms have been applied to patterns in one-,
two-, and three-dimensional spaces [27, 28]. The technique is usually implemented
in specialized software to analyze patterns extracted from digital images. This
software also has application in the determination of related parameters such as
lacunarity and multifractal analysis [29].

The TEM photos must be treated to obtain a binary image. However, in this
process, TEM images cannot be completely clean of artifacts such as shadows or
dots. The presence of these artifacts introduces an overestimation of the fractal
dimension.

Figure 2 shows several idealized examples presenting this situation. Figure 2(a)
shows an idealized grain before deformation. Therefore, no dislocations or subgrain
boundaries appear. After deformation, we can calculate the fractal dimension, DF,
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the plugin FracLac [30] used in FIJI software is very similar (0.96 and 0.99, respec-
tively). Since dislocations are line defects, these values are very reasonable. As the
macroscopic strain increases, new dislocations are generated, or, even, subgrains

Figure 2.
(a) Idealized microstructure of a completely dislocation-free grain before plastic deformation. (b–d)
Subgrain formation during the deformation process. (e) Subgrain coarsening during deformation process.
(f) Microstructure shown in (c) with an artifact.

Figure 1.
Bright field image of a magnesium alloy deformed around 2% in tensile mode at a temperature of 200°C and a
strain rate of 10�3 s�1. Zone axis [1120] g = [1100].
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can be developed. This increase in dislocation density results in an additional
increase in the fractal dimension (Figure 2(d) and (e)). As it is shown in Figure 2
(b)–(e), the fractal dimension of dislocation substructures is related to the area
covered by dislocations/substructure. Then, the fractal dimension of the structure
shown in Figure 2(e) formed by thick lines is 10% greater than the structure shown
in Figure 2(b). However, there are some elements, mainly dots, which greatly
influence the fractal dimension calculated by the box counting technique. As an
example, Figure 2(f) shows the same structure as Figure 2(c), as far as it is
assumed that during the binarization process, the dusty dots are part of the image.
These dusty dots are considered as an artifact. As a result of the consideration of the
dusty points in the image, the fractal dimension increases around 25%.

There are other aspects that must be taken into account when the fractal dimen-
sion of a dislocation structure in a deformed metal is calculated using TEM images.
The first one is related to the fact that TEM images of the dislocations can be taken
under several 3D orientations of the crystal and/or using different diffraction vec-
tors. Dislocations can be visible only when the scalar product g � b (where g is the
diffraction vector of the crystal that is excited, i.e., Bragg’s conditions are attained)
is different from zero. Figure 3 shows an example of a magnesium alloy deformed
at room temperature. The Burgers vector in magnesium is [1120]. Dislocations are
invisible when g = [0002] (a) is excited and visible with g = [1011] (b).

The second one is that TEM images can be obtained in different modes known as
bright and dark fields. Figure 4 shows the image of a deformed sample of a mag-
nesium alloy obtained in the same area, using the same crystal orientation
B = [1120] and the same diffraction vector g = [1011]. The difference between both
images is that image in Figure 4(a) was obtained in dark field mode (image is
generated with a diffracted spot) (weak beam), while image in Figure 4(b) was
obtained in bright field mode (image is generated with the transmitted spot).

Within the magnesium grain, different defects have been created during plastic
deformation: dislocations, twins, and subgrains. Twins are clearly observed in
bright field mode (Figure 4b), and dislocations and subgrains are clearly observed
in dark field mode. Therefore, the fractal dimension of the complete deformed
substructure changes depending on the TEM mode selected. In general, a combina-
tion of images must be used for a complete description of the microstructure.
However, there are mechanical tests conducted under specific experimental

Figure 3.
TEM image of a magnesium alloy deformed at 3% at room temperature and a strain rate of 10�3 s�1. Zone axis
[1120] (a) [0002] and (b) g = [1101].
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images is that image in Figure 4(a) was obtained in dark field mode (image is
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conditions where images from one single mode, bright or dark, are enough for a
complete description of the microstructure. In particular, after mechanical testing
conducted at high temperature, the dislocation substructure is easily observed in
bright field mode because the lattice distortion is almost eliminated.

Finally, it is interesting to point out that TEM images have a 2D nature, whereas
dislocations, twins, subgrains, and, in general, the crystal structure have a 3D nature.
Cui and Ghoniem [13] studied the influence of size on the fractal dimension of
dislocation structure throughout dislocation dynamics simulations. The analysis
showed that the DF of the 3D structure is significantly smaller than the DF of the 2D
corresponding to the projected dislocations in all considered sizes. Figure 5 shows
two images of a 3% deformed magnesium alloy at room temperature of the same area

Figure 4.
TEM image of a magnesium alloy deformed at 3% at room temperature and a strain rate of 10�3 s�1. Zone axis
[1120] g = [1101]. (a) Dark field and (b) bright field.

Figure 5.
Bright field image of a magnesium alloy deformed at 3% of plastic strain at room temperature. (a) Sample fully
parallel to the beam and (b) sample tilted with respect to the previous condition.
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tilted at two different angles. In the first case (Figure 5a), a staking fault is observed,
and it is fully parallel to the beam. Therefore, atomic lines are clearly observed. When
the sample is tilted (Figure 5b), it is possible to distinguish the stacking fault
throughout the thickness of the TEM sample. Again, the fractal dimension changes.

4. Temperature effect on dislocation fractal structures

The mechanical properties of metals are highly influenced by temperature. In
general, the mechanical strength decreases significantly, and the ductility and plastic
deformation increases with temperature. In addition to these effects, when
T > 0.5Tmelt, time-dependent plasticity becomes dominant [31]. This time-dependent
deformation is also called creep. In this temperature range, the dislocations increase
their mobility due to the activation of the climbing mechanism, in particular when
the staking fault energy is high. The activation of dislocation climbing is revealed in
the appearance of well-ordered dislocation structures generated during deformation.

In the following section, some examples of dislocation structures generated at
room temperature and high temperature (573 K) will be shown. In the second case,
the temperature effect on the arrangement of dislocations to form subgrain bound-
aries will be observed.

Figure 6.
Bright field image of tangled dislocations in pure aluminum deformed up to 22.3% of plastic strain at room
temperature at 104�s�1.
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4.1 Low-temperature dislocation structures

In Figure 6, a bright field TEM image of a commercially pure aluminum single
crystal strained up to 22.3% at room temperature at 104�s�1 strain rate is shown.
This figure corresponds to a perpendicular section of the sample with respect to the
tensile axis. Dislocations are arranged in a messy way. The subgrain size developed
by deformation of this pure metal at room temperature is around 1 micron.

4.2 High-temperature dislocation structures

In Figure 7, a detail of a subgrain boundary shows a bright field TEM image of a
commercially pure polycrystalline aluminum strained around 2% at 573 K and
29 MPa. Figure 7 corresponds also to a perpendicular section of the sample with
respect to the tensile axis. The dislocations are well-ordered in the subgrain bound-
ary. The subgrain size developed by deformation of this pure metal at room 573 K
and 29 MPa is around 5 microns.

4.3 Age-hardenable alloys

A very important family of metals is that formed by age-hardenable alloys. Their
properties can be tuned by means of heat treatments that usually start with a
quenching process of the sample from above the solution temperature. The
quenching step is followed by an isothermal annealing that typically lasts for some
hours. The variation of mechanical properties is related with the precipitation state
developed by the heat treatment. Therefore, deformation that takes place at high
temperature is accompanied by an evolution of the precipitation state. The two
phenomena are coupled. The deformation slows down due to the presence of atoms
in solid solution and coherent precipitates, and the precipitation kinetics is modified

Figure 7.
Bright field image of a subgrain boundary of polycrystalline pure aluminum deformed around 2% at 573 K and
29 MPa.
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by the presence of the dislocation structure [32]. Figure 8 shows the structure of
precipitates in aged AA2014.

5. Conclusions

The formation of dislocation fractal structures with plastic deformation is, as in
many others aspects of nature, a widespread phenomenon. It is, in fact, observed
under different tensing conditions and metal alloys. This is because metal plasticity
occurs on several temporal and spatial scales.

On the temporal scale, the dislocations can move at speeds greater than that of
the sound when the dislocation density is low, leading to rapid plastic deformation
events (e.g., car accident). On the contrary, deformation under creep conditions
can occur in much longer time periods, as long as days, months, or even years (e.g.,
motion of glaciers). The same concept can be applied to the spatial scale as defor-
mation phenomenon involves entities as small as dislocations and vacancies in the
crystal lattice, and, on the other side, this phenomenon takes place at a macroscopic
scale, meters in size in large components.

The behavior of dislocations during strain of metals is very rich and complex
because the plasticity phenomenon covers different spatial and temporal scales and
there is a very broad range of experimental conditions and alloys. Nonetheless, the
existence of fractal structures of dislocations is ubiquitously found when a metal is
deformed. This fact greatly encourages the use of fractals to fully describe the
phenomenon of plasticity in metals.

The determination of the fractal dimension of dislocation structures, DF, is
conducted from images obtained by different microstructural characterization
methods, typically, by TEM. These images must, then, be carefully treated to
minimize inaccuracies in the determination of DF. The box counting technique is
revealed to be a very suitable and reliable method to determine DF. Although the
process is automated in some image analysis applications, the presence of elements
different from dislocations (e.g., dots related with other microstructural features)
can greatly modify the fractal dimension.

Figure 8.
Back scattered image of a AA2014 powder particle showing the precipitate structure after quenching from
800 K, followed by aging at 523 K for 10 h.
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scientists dealing with fractal analysis, as well as biomedical engineers or IT engineers. 
I encourage you to view individual chapters.
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