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Pulmonary infections are notorious in causing considerable morbidity and mortality. 
Caused by bacteria, viruses or fungi, respiratory infections require distinct 

knowledge of recent advances in pathogenesis. Progress in the understanding 
of immunopathogenesis of Acinetobacter baumannii infection will explain how 

an atypical organism establishes infection. The chapter regarding pulmonary 
nontuberculous mycobacterial infections in the State of Para depicts a unique 

study in an endemic region for tuberculosis in North of Brazil. The diagnosis and 
treatment of latent tuberculosis is a formidable challenge. Thus, new developments in 
diagnosis and treatment of latent tuberculosis are included in this book. Challenging 

in their diagnosis, nontuberculous mycobacterial pulmonary diseases require 
special education for management. The problems of respiratory infections in the 

immunocompromised host are increasing in numbers and in resilience to treatment. 
Therefore, the chapter describing the host immune responses against pulmonary 

fungal pathogens comes as a necessary section in this book. The insight brought forth 
from this book can be valuable for both clinicians and scientists.
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Preface 

Clinical symptoms imply the ubiquity of respiratory infections, however pathogenesis
and hence management maybe unique. The aim of this book is to present the recent 
findings in the pathogenesis of infectious respiratory diseases.  Certain chapters depict
a quick overview of respiratory infections caused by bacteria, viruses and fungi.
Several chapters describe modes of infection, clinical symptoms, diagnosis and 
treatments for different respiratory infections. Special emphasis was given to
tuberculous and non-tuberculous mycobacterial infections in a number of chapters. 
The insight brought forth from this book can be valuable for both clinicians and
scientists.

Asst. Prof. Dr. Amal Amer, MD, PhD
Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, 

Center for Microbial Interface Biology and The Department of Internal Medicine, 
Ohio State University, Columbus Ohio

USA
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Latent Tuberculosis:  
Advances in Diagnosis and Treatment 

Dimitrios Basoulis, Georgia Vrioni, Violetta Kapsimali,  
Aristeidis Vaiopoulos and Athanasios Tsakris 

Medical School of the National and Kapodistrian University of Athens 
Greece 

1. Introduction 
Tuberculosis (TB) is one of the oldest diseases known to affect humans. It is caused by 
bacteria belonging to the Mycobacterium tuberculosis complex and strains of these bacteria 
have been found in human bones dated from the Neolithic era. It was known to the ancient 
Greeks, Indians and the Inca, making it a disease with a global distribution even from 
ancient times. Latent tuberculosis infection refers to a time period where the host has been 
exposed and infected by the bacteria yet does not exhibit any signs or symptoms of 
infection. It is estimated that one third of the world, almost 2 billion people suffer from 
latent tuberculosis infection. 

2. Epidemiology 
Tuberculosis is a multisystemic infection with myriad presentations and manifestations. 
According to the World Health Organization (WHO) it is estimated that one third of the 
world's population is currently infected by the bacillus and out of those people 5-10% will 
exhibit symptoms at some point during their life. WHO estimates that the largest number of 
new TB cases in 2008 occurred in the South-East Asia Region, which accounted for 35% of 
incident cases globally. However, the estimated incidence rate in sub-Saharan Africa is 
nearly twice that of the South-East Asia Region with over 350 cases per 100 000 population 
(WHO, 2011). Tuberculosis remains the most common cause of infectious disease related 
mortality worldwide. It is evident by this alone that latent tuberculosis is a serious public 
health problem, not only due to the possibility of the patients themselves eventually 
developing active tuberculosis, but also because of the public health risk that they impose. 

M. tuberculosis is most commonly transmitted from a patient with infectious pulmonary 
tuberculosis via droplet nuclei, aerosolised by coughing, sneezing or even speaking. The 
tiny droplets dry rapidly, but the smallest of them (<10μm in diameter) can remain 
suspended in the atmosphere for several hours. When inhaled, these droplets can reach the 
terminal airspaces of the lung. Risk factors for transmission include the proximity of contact, 
the duration of contact, the degree of infectiousness of the case and the shared environment 
of the contact. It needs to be noted that patients that have sputum smear negative and 
culture positive tuberculosis are less infectious, whereas patients with culture negative 
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sputum pose essentially no risk for transmission. It is estimated that up to 20 people can be 
infected by a single patient before tuberculosis can be identified in high prevalence 
countries. Transmission is more common in tightly packed populations (i.e. overpopulated 
areas, military personnel etc.) in countries with a higher incidence.  

It has been demonstrated that large clusters of TB are associated with an increased number 
of tuberculin skin test-positive contacts, even after adjusting for other risk factors for 
transmission. The number of positive contacts was significantly lower for cases with 
isoniazid-resistant TB compared with cases with fully-susceptible TB. This result has been 
interpreted to imply some connection between isoniazid resistance and mycobacterial 
virulence (Verhagen et al., 2011). 

After exposure to the bacteria, the patient has a 5-10% chance of developing active 
tuberculosis. Risk factors that determine this progression include age, the individual's innate 
susceptibility to disease and level of function of cell-mediated immunity. Clinical illness 
directly following infection is classified as primary tuberculosis and is more common in 
children. The majority of patients infected will develop disease within a year while the rest 
will develop latent tuberculosis. Activation of tuberculosis bacilli at any point thereafter is 
termed secondary tuberculosis. Several diseases predispose the patient to develop active 
tuberculosis with chief amongst them HIV co-infection. It is estimated that nearly all of 
infected individuals that are HIV positive will at some point develop active tuberculosis; 
this risk depends on the level of immunosuppression and the CD4+ cell count of the 
infected patient. Patients with diabetes have 2-5 times increased risk for developing active 
disease, whereas the relative risk for patients with chronic renal failure climbs to 10-25. 

3. Pathophysiology of tuberculosis infection 
Two models for the pathophysiology of tuberculosis infection and the formation of 
granulomas have been suggested. The first one is the static model and it is considered to be 
the traditional one. The second was suggested a few years ago and it is the dynamic model 
of infection. 

3.1 The static model 

Mycobacteria belong to the family Mycobacteriaceae and the order Actinomycetales. The 
most important member of the Mycobacterium tuberculosis complex is the namesake 
organism, Mycobacterium tuberculosis. The complex also includes M. bovis (the bovine 
tubercle bacillus), M. africanum (isolated from cases in West, Central and East Africa), M. 
microti (a less virulent rarer bacillus), M. pinnipedii and M. canettii (very rare isolates). M. 
tuberculosis is a slow-growing, obligate aerobe and obligate pathogen. Most often, it is 
neutral on Gram's staining, however, once stained, the bacilli cannot be de-colorised by acid 
alcohol, hence the characterization as acid-fast and the reason they are best seen using the 
Ziehl-Neelsen stain. This ability of mycobacteria is derived from the high content of mycolic 
acids, long chain fatty acids and other lipids found in abundance in the cell wall of 
mycobacteria (Harada, 1976; Harada et al, 1977). In the mycobacterial cell wall, lipids are 
linked to underlying arabinolactan and peptidoglycan, which confers a high resistance to 
antibiotics due to low permeability of this structure. Another element of the cell wall 
structure is the lipoarabinomannan which is crucial to the mycobacterium's survival within 
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the host's macrophages. All of these proteins, characteristic of M. tuberculosis are included in 
the purified protein derivative (PPD, a precipitate of non-species-specific antigens obtained 
from filtrates of heat-sterilised, concentrated broth cultures. 

The majority of inhaled bacilli are trapped at the level of the upper airways and expelled. A 
small fraction (<10%) will descend further down the bronchial tree. When the inhaled 
droplet nuclei reach the terminal airspaces of the lung, the bacilli, transported with the 
droplets, begin to grow for 2-12 weeks before any immune response from the host can be 
elicited. The host's immune system responds when the bacillary load reaches 1000-10,000 
cells. Non-specifically activated alveolar macrophages will eventually begin to ingest the 
bacilli and sequester them from the host.  

Phagocytes have 2 methods of dealing with the mycobacteria. Fusing the phagosomes 
containing the mycobacteria with lysosomes they create phagolysosomes. Phagolysosomes 
are the product of a fusion-fission process between the lysosomes, the phagosomes and 
other intracellular vesicles. The Ca+2 signalling pathway and recruitment of vacuolar-proton 
transporting ATPase (vH+-ATPase) lead to a decrease in the pH of the phagolysosome, that 
in turn allows acid hydrolases to function efficiently for their microbicidal effect. Another 
way that phagocytes deal with the mycobacteria is through ubiquitination of mycobacterial 
cell wall and membrane components, which in turn leads to increased susceptibility to nitric 
oxide produced by the phagocytes. This process leads to phagocyte apoptosis (Beisiegel et al 
2009; Bermudez & Goodman, 1996; Chan & Flynn, 2004; Cooper, 2009; Pieters, 2008; Ahmad, 
2010). 

This form of defence, however, proves inefficient as the bacilli have the ability to survive 
inside the macrophages by modulating the behaviour of its phagosome, preventing its 
fusion with acidic, hydrolytically-active lysosomes (Pieters, 2008; Russel et al 2009) The 
escape of M. tuberculosis from macrophage destruction is dependent on the 6-kDa early 
secreted antigenic target (ESAT-6) protein and ESX-1 protein secretion system encoded by 
the region of difference 1 (RD1). The ESAT-6 protein associates with liposomes containing 
dimyristoylphosphatidylcholine and cholesterol and causes destabilization and lysis of 
liposomes. It can also infiltrate the phagosome's membrane and cause lysis of the 
phagosome, enabling the mycobacteria to escape (Brodin et al, 2004; de Jonge et al, 2007; 
Derrick & Morris, 2007; Kinhikar et al, 2010). 

In this initial stage of interaction, either the macrophages manage to contain the bacillary 
reproduction through sequestration and production of cytokines and proteolytic enzymes, 
or the bacilli manage to survive and multiply, leading to macrophage lysis. Through 
chemotaxis, monocytes arrive at the site of infection to ingest the bacilli after the 
macrophage lysis. Either through lysis or apoptosis the mycobacterial antigens are exposed 
and presented to T lymphocytes that will carry out the burden of the host's immune 
response orchestration. 

Following these events, the host's immune system activates two more mechanisms to battle 
the invading bacteria: a tissue damaging response and a macrophage activating response. 
The tissue damaging response is a delayed-type hypersensitivity reaction to bacillary 
antigens leading to the destruction of “infected” macrophages. The macrophage activation 
focuses on activating specific macrophages to ingest and destroy the bacteria. Local 
macrophages are activated when the non-specific macrophages present bacillary antigens to 
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T lymphocytes, stimulating them to release lymphokines. Depending on which one of the 
two mechanisms is predominant, the subsequent form of tuberculosis is determined. 

If the macrophage activation predominates, large numbers of activated macrophages arrive 
at the site of infection and granulomatous lesions begin to form. During this early stage and 
under the influence of a vascular endothelial growth factor (VEGF), the granuloma becomes 
highly vascularised which in turn will provide the pathway for the lymphocytes and 
macrophages to arrive at the site (Alatas F et al, 2004) Once there, the macrophages will 
further differentiate into different cells such as multi-nucleated giant cells, epitheliod cells 
and foamy macrophages. These cells will form the outer wall of the granuloma, now dubbed 
tubercle. The structure becomes much more stratified and a fibrous cuff forms outside the 
macrophage layer. Lymphocytes move away from the centre and aggregate outside this 
fibrous layer (Cáceres et al 2009).  

The tissue damaging response on the other hand leads to destruction of macrophages that 
fail to contain the bacilli and in turn creates a necrotic area at the centre of the tubercle with 
dead macrophages. Due to low oxygen, presence of nitric oxide, nutrient deficiency and 
very acidic pH the mycobacteria cannot continue to multiply inside the tubercle centres, yet 
they can survive and remain dormant (Ahmad, 2010; Ohno et al, 2003; Voskuil et al, 2003). 
The central necrotic region resembles cheese in texture and has granted the name caseous 
necrosis to this process. At this point, some of the tubercles calcify and heal while others 
evolve further.  

Two distinct types of granulomas have been identified. The classic caseous granulomas are 
composed of epithelial macrophages, neutrophils, and other immune cells surrounded by 
fibroblasts. M. tuberculosis resides inside macrophages in the central caseous necrotic region. 
The second type of granulomas (fibrotic lesions) is composed of mainly fibroblasts and 
contains very few macrophages. The exact location of viable M. tuberculosis in these lesions 
is not known (Barry et al, 2009). It needs to be noted that even the healed, fibrotic tubercles 
can still contain mycobacteria in a dormant state.  

It has been suggested that the caseating centre of the granuloma is not the site where the 
host's immune response is organized and maintained, but rather that site is at the outer 
layers of the tubercle, where the macrophages can present their antigens to the lymphocytic 
population of the tubercle. This formation resembles a secondary lymphoid organ and is 
theorised to be better suited to orchestrate the host's immune response, as suggested by the 
high proliferative activity only observed in peripheral follicle-like structures (Ulrichs et al, 
2004). 

If the tissue damaging response predominates, due to a week response from the 
macrophages, the initial lesion cannot be contained and continues to grow at the expense of 
the surrounding tissue. Bronchial walls and blood vessels are destroyed in this process 
(hence why haemoptysis is a chief symptom in rampant tuberculosis) and cavities are 
gradually formed (Zvi et al, 2008). 

The mycobacterial cell wall components are recognized by host receptors that include toll-
like receptors (TLRs), nucleotide-binding oligomerisation domain (NOD)-like receptors 
(NLRs), and C-type lectins, including mannose receptor (MR), the dendritic cell-specific 
intercellular adhesion molecule grabbing nonintegrin (DC-SIGN), macrophage inducible C-
type lectin (Mincle) and dendritic cell-associated C-type lectin-1 (Dectin-1). The TLR 
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signalling is the main arm of the innate immune response and M. tuberculosis phagocyted 
through different receptors may have a different fate (Harding & Boom, 2010; Ishikawa E et 
al, 2009; Jo, 2008; Jo et al, 2007; Noss et al, 2001). 

Cell mediated immunity, more specifically macrophages and CD4+ T lymphocytes, plays a 
very important role in the above process. The infected macrophages produce a host of 
cytokines: Interleukin 1 (IL1) which leads to the development of fever, interleukin 6 (IL6) 
which leads to hyperglobulinemia and tumour necrosis factor α (TNF-α) that contributes to 
the killing of mycobacteria, the formation of caseating granulomas, fever and weight loss. 
As mentioned earlier, non-specific macrophages are also responsible for presenting the 
bacillary antigens to the T cells and eliciting their response (Khader & Cooper, 2008; Kursar 
et al 2007). Activated T helper Type 1 lymphocytes participate in the destruction of infected 
cells through an MHC class II restricted process. They also produce interferon γ (IFN-γ) and 
interleukin 2 (IL2) and promote cell-mediated immunity. Once the bacillary growth is 
stabilized, the presence of CD8+ T cells appears to gain importance, both for the production 
of IFN-γ and an increase in the cytotoxic activity. This is a period of stalemate where the 
bacillary load remains relatively constant and the infection is in a state of latency (Bodnar et 
al, 2001; Russel et al, 2009).  

More recently, it was demonstrated that IL1-beta, a subset of interleukin 1, which plays an 
important part as mediator in the host’s immune response, is induced when ESAT-6 is 
secreted from the bacilli. IL1-beta is activated through the inflammasome, a caspase 
activating protein complex. Caspases are cysteine-aspartic proteases that play a part in 
inflammation response and apoptosis. Mycobacteria have developed the ability to halt the 
inflammasome’s formation by secreting a Zn+2 metalloprotease, encoded by the zmp1 gene. 
Mycobacteria genetically modified for zmp1 deletion and through the secretion of ESAT-6 
lead to IL1-beta activation and elicit a stronger immune response from the host leading to 
improved mycobacterial clearance by macrophages, and lower bacterial burden in the lungs 
of aerosol-infected mice (Danelishvili, 2010; Lalor, 2011; Master 2008; Mishra, 2010). 
Mycobacteria secrete their own enzymes (Rv3654c and Rv3655c) within the macrophage 
cytoplasm with the ability to cleave caspase-8. In this manner, the bacilli prevent 
macrophage apoptosis by preventing the inflammasome’s formation and promote cellular 
lysis (Danelishvili, 2010). It has been demonstrated that it is more beneficial to bacterial 
growth if the macrophages are steered towards lysis as opposed to apoptosis. Necrosis was 
correlated with Caspase 3 activity and bacterial growth, whereas activation of calcium, TNF-
alpha and Caspase 8 was associated with apoptosis and decreased bacterial load (Arcila et 
al, 2007). 

Humoral immunity seems to play a much lesser role if any. The evidence that B-cells and M. 
tuberculosis-specific antibodies can mediate protection against extracellular M. tuberculosis 
is highly controversial as their contribution is probably of minor importance (TBNET, 2009). 

The host's immune response can eventually cause more problems through tissue destruction 
and uncontrolled activation of macrophages and lymphocytes. For this reason there is a 
negative feedback mechanism in place, to control the extent of the response. A family of 
receptor tyrosine kinases provide this negative feedback mechanism to both, TLR-mediated 
and cytokine-driven proinflammatory immune responses (Liew, 2005). Again, the 
mycobacteria have developed mechanisms to take advantage of this process in order to halt 
the immune response to their benefit. Several M. tuberculosis cell wall components or protein 
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products such as 19-kDa lipoprotein, glycolipids (particularly Man-LAM), trehalose 
dimycolate (cord factor) can modulate antigen-processing pathways by MHC class I, MHC 
class II and CD1 molecules, phagolysosome formation and other macrophage intracellular 
signalling pathways (Ahmad, 2010; Bowdish et al, 2009; Gehring et al, 2004; Harding & 
Boom, 2010; Jo et al, 2007; Nigou et al, 2001; Noss et al, 2001; Pecora et al; 2006). This results 
in a subset of macrophages that are unable to present mycobacterial antigens to T 
lymphocytes  

It is hypothesized that the infection sustains itself not through replicating bacilli forming 
equilibrium with those being destroyed by the host's immune system, but through a 
population of non-replicating bacilli that can withstand the immune response. The 
evidence to this is indirect, suggested by the lack of cellular debris in the granuloma 
centres of infected mice (Rees & Hart, 1961). It is believed that the host's immune response 
is driven by antigens produced during active multiplication of the bacilli and thus, those 
that remain dormant would not sustain that response to its maximum potential 
(Andersen, 1997). 

3.2 The dynamic model 

More recently a dynamic model of infection was proposed able to give some logical 
explanations to some short-comings of the static model. The first question posed was how it 
is possible for the mycobacteria to remain dormant in the tubercle environment when the 
host is trying to re-structure the damaged tissues. The alveolar macrophages have a lifespan 
of 3 months, yet according to the static model, they exist in stalemate with the mycobacteria 
for a much longer period of time, whether as part of the middle layer of the granuloma or as 
part of the caseous centre having phagocyted bacilli and sustaining them in their dormant 
state (Cardona, 2009).  

The second question was how did the bacilli reactivate themselves from their dormant state, 
as it has been demonstrated that the resuscitation factors necessary for this are only 
produced by active bacilli (Cardona, 2009; Shleeva et al, 2002). 

The third question posed seeks an explanation based on a physiological model regarding the 
ability of isoniazid to treat latent tuberculosis when it is known that isoniazid can only take 
effect on actively multiplying bacilli (Cardona, 2009; TBNET, 2009). 

According to the dynamic model that has been suggested, the granulomas are not static 
formations but rather, inside the granuloma, there exists a balance between inactive 
dormant bacilli, rapidly multiplicating ones, dying bacilli and cellular debris constantly 
being removed from the site (TBNET, 2009). The exact nature of the metabolic state of 
mycobacteria within the macrophages in the granuloma is a matter of great debate and 
investigation. 

The size of the actively multiplicating mycobacterial load in the granuloma determines the 
antigen-specific re-stimulation of memory T lymphocytes. On the other hand, if the 
mycobacteria are mostly contained within macrophages in their dormant state, it is more 
likely that T cell immunity will begin to decline. This in turn would explain why a 
tuberculin skin test can revert to negative after exposure at a rate of about 5% per year 
(TBNET, 2009). 
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Perhaps the most important element in this proposed model is the role of the foamy cell, i.e. 
alveolar macrophages at the end of their life cycle and filled with lipids, due to phagocytosis 
of extracellular debris, mostly consisting of lipid-rich cellular membrane remains. The 
mycobacteria phagocyted by these cells can survive through the mechanisms explained 
earlier. The dynamic model suggests that the mycobacteria can continue to grow albeit at 
very slow rates instead of becoming dormant. The slower metabolic rate provides resistance 
to stress and reduces the nutritional needs of the bacilli, thus allowing their survival 
(Cardona, 2009; Muñoz-Elias et al, 2005). It has not been fully researched but evidence 
suggests that mycobacteria can escape the phagosomes of the foamy cells and reach the 
bronchial tree and become aerosolised.  

Foamy cells provide a stressful environment that conditions the bacilli to become more 
resistant. This in turn, confers them the ability to better survive in the open air and 
according to some studies explains why they are more virulent. Moreover, the high lipid 
content of the foamy cells also provides triglycerides to the bacilli that will in turn provide 
them with nutrients in new infection sites in the event of starvation. In fact the highly 
aggressive Beijing strains have also been found to contain large amounts of lipids, which 
would at least partly account for the greater virulence (Garton et al, 2002; Neyrolles et al, 
2006; Peyron et al, 2008). Finally the high lipid content of foamy cells when exposed to the 
alveolar spaces will contribute to increased surfactant concentration and thus will make 
aerosolisation of the bacteria easier (Cardona, 2009). 

Growing bacteria are easy to combat since they cannot survive in stressful environments. 
The dynamic model offers a different explanation of the mechanism, with which the host's 
immune system focuses on the non-replicating bacteria. The phagocyted bacilli, as explained 
in the static model, will eventually lead to lysis or apoptosis of the macrophages. This 
cellular debris and the extracellular bacteria will form the population of the non-replicating 
bacteria at the caseous centre. The attraction of specific macrophages and neutrophils will 
provide a new breeding ground for the active bacteria and also material for the formation of 
the foamy cells, as they will phagocyte cellular membrane remnants to clear the debris from 
the caseous centre of the granuloma. The bacilli, inside the foamy cells, under these 
circumstances, will eventually find themselves within the bronchial spaces and after they 
are aerosolised they will reinfect the host at new sites. Due to their higher virulence they 
will manage to overcome the initial immune response and form a new granuloma to repeat 
the same sequence of events (Cardona, 2009). At the new site of infection the bacilli are 
actively multiplying again and thus are susceptible to isoniazid. This would explain why a 
single-drug nine month treatment is effective in most cases of latent tuberculosis. 

4. Latent tuberculosis and reactivation 
Mycobacteria are completely eradicated only in about 10% of the cases, while in the 
remaining, the bacilli survive for years to come, through the processes explained. This state 
has been termed latent tuberculosis infection. In any event where the host's immune 
response dwindles, there is a risk for the bacilli to reactivate themselves and lead to active 
tuberculosis infection. Most of the new cases of tuberculosis in low incidence countries are 
the result of such reactivation of latent tuberculosis infections. It is of interest to note that 
expression of DosR-regulated dormancy antigens continues even in this latent stage of 
infection, providing a promising new target for vaccines that would help battle latent TB 
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infections in the future (Leyten et al, 2006; Lin & Ottenhoff, 2008). It is also probable that M. 
tuberculosis, during the latent stage of infection can form spore-like structures, typically seen 
with other mycobacteria, in response to prolonged stationary phase or nutrient starvation, 
for its survival (Ghosh et al, 2009). 

The reactivation of latent infection requires M. tuberculosis to exit dormancy. This is mainly 
achieved through the effects of a family of five proteins, dubbed resuscitation promoting 
factors (Rpfs), that have the effect of a lytic transglycosylase. These molecules were found to 
be able to cause degradation to cell wall components of the mycobacteria. It is not exactly 
known how this activity relates to the resuscitation process, it is however theorised that the 
end result of this enzymatic activity is changes to the mycobacterial cell-wall, overcoming 
the environmental restraints to the bacterial multiplication. Another theory states that the 
changes brought to the cell wall, lead to production and secretion of peptidoglycans with 
the ability to modulate the environment and the host's immune response (Hett et al, 2007; 
Tufariello et al, 2006). It needs be noted that M. tuberculosis bacilli found in the sputum of 
patients with latent infection and after deletion of the Rpfs encoding genes, can only be 
cultured when Rpfs are introduced to the growth material and thus resuscitation is possible 
(Mukamolova et al, 2010), however for non-dormant mycobacteria it seems that the Rpfs are 
not important for their multiplication (Kana et al, 2008).  
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It has also been demonstrated that amongst the Rpfs, those that seem to be the most 
important are RpfA and RpfB. Infected mice with strains of mycobacteria with deletion of 
the genes encoding these specific Rpfs, were found to be more resistant to TB reactivation 
and also their macrophages were found to produce larger quantities of TNF-α and IL6 
(Russel-Goldman et al, 2008). These resuscitation factors are another possible target for 
future vaccines against latent TB (Zvi et al, 2008). 

5. Latent tuberculosis diagnosis 
Diagnosis of latent tuberculosis is a matter of active current research due to the difficulties 
presented in identifying patients with latent infection. There is no question that controlling 
contacts and identifying people who are carrying the bacilli would be the best prevention 
plan. However, due to the lack of any physical signs or symptoms and the fact that all or 
most of the bacilli during this state remain dormant, it is very difficult to elicit an immune 
system response that would be evident to the observer. This in turn means that it is difficult 
to identify individuals with latent infection. An ideal test for latent tuberculosis infection 
diagnosis should meet the following criteria: 

 High sensitivity in all populations at risk. 
 High specificity regardless of BCG vaccination and infection with environmental 

mycobacteria. 
 Reliability and stability over time. 
 Objective criteria for positive result, affordability and easy administration. 
 Ability to distinguish recently infected individuals with increased risk of progression to 

active tuberculosis. 

There are currently two groups of tests for latent tuberculosis infection diagnosis: tuberculin 
skin tests (TST) and interferon-γ release assays (IGRA). 

5.1 The tuberculin skin test 

Historically, the most accurate method for detecting if an individual had come in contact 
with M. tuberculosis was the tuberculin skin test (TST). This test measures the hosts' in vivo 
immune response in the form of a cell-mediated delayed hypersensitivity reaction to a 
mixture of more than 200 M. tuberculosis antigens, termed as purified protein derivative 
(PPD). The PPD is a crude mixture of antigens, not specific to M. tuberculosis, but also 
found in other mycobacteria such as the BCG bacillus, M. bovis and even non-tuberculous 
mycobacteria. This mixture is intradermally injected, usually at the inner side of the forearm 
and the test result is read as an induration on the site of injection after 48-72 hours (Huebner 
et al 1993). This reaction may last for up to 1 month, depending on the quality and quantity 
of the initial reaction. Strong reactions may result in tissue necrosis, which is the only 
absolute contraindication to the TST (TBNET, 2009). The induration is caused due to the 
introduction of the antigens that causes non-specific neutrophils and antigen-specific T 
lymphocytes to arrive at the site and sparkle an inflammatory cascade of cytokine 
production. The migration of immune cells to the site seems to have a biphasic distribution: 
an initial nonspecific infiltration where the neutrophils arrive at the site, taking place in the 
first 4-6 hours and which is an event that also occurs in nonsensitised subjects and a second 
specific peak, where the specific T cells arrive at the site (Kenney et al, 1987; Platt et al, 1983; 
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 Ability to distinguish recently infected individuals with increased risk of progression to 

active tuberculosis. 
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immune response in the form of a cell-mediated delayed hypersensitivity reaction to a 
mixture of more than 200 M. tuberculosis antigens, termed as purified protein derivative 
(PPD). The PPD is a crude mixture of antigens, not specific to M. tuberculosis, but also 
found in other mycobacteria such as the BCG bacillus, M. bovis and even non-tuberculous 
mycobacteria. This mixture is intradermally injected, usually at the inner side of the forearm 
and the test result is read as an induration on the site of injection after 48-72 hours (Huebner 
et al 1993). This reaction may last for up to 1 month, depending on the quality and quantity 
of the initial reaction. Strong reactions may result in tissue necrosis, which is the only 
absolute contraindication to the TST (TBNET, 2009). The induration is caused due to the 
introduction of the antigens that causes non-specific neutrophils and antigen-specific T 
lymphocytes to arrive at the site and sparkle an inflammatory cascade of cytokine 
production. The migration of immune cells to the site seems to have a biphasic distribution: 
an initial nonspecific infiltration where the neutrophils arrive at the site, taking place in the 
first 4-6 hours and which is an event that also occurs in nonsensitised subjects and a second 
specific peak, where the specific T cells arrive at the site (Kenney et al, 1987; Platt et al, 1983; 
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Poulter et al, 1982; TBNET, 2009). The lymphocyte population is a mix of CD4+ and CD8+ 
cells with the former being always greater in number (Gibbs et al, 1984). The lymphocytic 
infiltration is at first perivascular and under the influence of early cytokines, such as IFN-γ, 
TNF-α and TNF-β, the endothelium is stimulating into expressing adhesion molecules (E-
selectin), increasing the permeability of the vascular walls and enabling the cells to migrate 
to the dermis. Regulatory T-cells influence the size of the induration of the tuberculin skin 
test. Cutaneous CD4 T-cells accumulating after tuberculin PPD stimulation in the skin are 
predominantly of a CD45 RO memory phenotype (Sarrazin et al, 2009). The criteria for the 
test's interpretation vary considerably and depend on the nature of the population being 
tested. They are arbitrary and the result of international consensus. 

In the United States, according to the Center for Disease Control (CDC), 5 tuberculin units 
(TUs) are used and a test is considered positive for the general population with no known 
TB contacts when the induration measures 15mm or more. An induration of 10 or more 
millimetres is considered positive in recent immigrants (< 5 years) from high-prevalence 
countries, injection drug users, residents and employees of high-risk congregate settings, 
mycobacteriology laboratory personnel, persons with clinical conditions that place them at 
high risk, children < 4 years of age, infants, children, and adolescents exposed to adults in 
high-risk categories. Finally, an induration of 5 or more millimetres is considered positive in 
HIV-infected persons, a recent contact of a person with TB disease, persons with fibrotic 
changes on chest radiograph consistent with prior TB, patients with organ transplants, 
persons who are immunosuppressed for other reasons (e.g., taking the equivalent of >15 
mg/day of prednisone for 1 month or longer, taking TNF-α antagonists, etc.) (CDC, 2011). 

In Europe, the situation differs from country to country depending on the incidence and 
prevalence of TB. In countries with high incidence, such as former Soviet Union countries, a 
10mm induration is considered positive. In most European countries 2 TUs are used and 
interpretation of the results follows the same guidelines as in the US (ECDC, 2011). 

As with every screening test, TST has a chance of false positive and false negative results. 
Possible false positive reactions are caused due to infections with non-tuberculous 
mycobacteria, previous vaccination with BCG, incorrect method of TST administration 
(including wrong amount of PPD injected as well as injecting it subcutaneously rather than 
intradermally), incorrect interpretation of reaction (more often than many would assume, 
doctors and/or nurses measure the erythema caused by the immune response rather than 
the induration leading to overestimation of the reaction caused), incorrect bottle of antigen 
used. False negative results are caused by cutaneous anergy (anergy is the inability to react 
to skin tests because of a weakened immune system, such as in HIV patients or patients 
under immunosuppression, particularly those taking anti-TNF-α medications for 
autoimmune conditions), recent TB infection (within 8-10 weeks of exposure), very old TB 
infection (many years), very young age (less than 6 months old), recent live-virus 
vaccination (e.g., measles and smallpox), overwhelming TB disease (tuberculosis by itself is 
thought to cause a degree of immunosuppression to the host in these advanced cases), some 
viral illnesses (e.g., measles and chicken pox), incorrect method of TST administration, 
incorrect interpretation of reaction (ECDC, 2011; CDC, 2011). 

Of special consideration is the so-called booster effect after TST testing. In certain people, 
who have been exposed to M. tuberculosis, the ability of their immune system to react to the 
PPD antigens might have diminished over the course of time. These patients when tested 
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with the TST would have a negative reading. However, reintroducing the tuberculosis 
antigens to their immune system by the test itself stimulates their immune system to react 
more fiercely to these antigens. Subsequent tests in these individuals would result as 
positive even though they haven't been exposed to the bacilli in the time between the two 
tests. In a sense, the first TST “boosted” the results of the second one. In certain populations, 
the CDC suggests performing a two-step test in order to identify possible false negative first 
tests and prevent unnecessary treatment. Such populations include health-care workers, 
doctors, nurses or nursing home residents, whose status with regards to tuberculosis 
exposure and/or infection is important to know. 

It is evident that the TST has several limitations to its use, which in turn sparked the interest 
in developing new diagnostic tools such as the IGRAs. Such limitations include a high 
proportion of false positive and false negative results, difficulty in separating true infection 
from the effects of BCG vaccination and NTM infection, technical problems in 
administration, immune response boosting after repeated TST, complicated and subjective 
interpretation and a need for a second visit for the interpretation of the test's result. 

5.2 The interferon-γ release assays 

Interferon-γ release assay kit tests were developed the past decade as an alternative to the 
TST. They are whole-blood tests that can aid in diagnosing M. tuberculosis infection, 
including both latent tuberculosis infection and active disease. They are indirect in vitro, ex 
vivo tests that measure the production of interferon-γ by a patient's T lymphocytes after the 
latter are incubated with specific M. tuberculosis antigens in vitro (Andersen et al, 2000; 
Harboe et al, 1996; Mahairas et al, 1996). To conduct the test, fresh blood sample from the 
patient is mixed with the antigens and the response is measured either by measuring the 
produced interferon through enzyme-linked immunosorbent assay (ELISA), rapid enzyme-
linked immunospot assay or by measuring the number of activated T cells through flow 
cytometry. The difference in method used is what distinguishes the two commercially 
available kits. QuantiFERON-TB Gold In-Tube (QFT-GIT, by Cellestis Limited, Carnegie, 
Victoria, Australia) uses the ELISA method and the T-SPOT (by Oxford Immunotec Limited, 
Abingdon, UK) uses the ELISPOT. It is interesting to mention that initially IGRAs would use 
the PPD as antigen but still follow the same principle and in an interesting twist of fate, it 
has been suggested to use the specific IGRA antigens for TST, as these antigens have been 
found to elicit a distinctive immune response with induration on animals. IGRAs are 
performed on fresh blood specimens.  

The antigens used in these methods are peptides derived from ESAT-6, CFP-10 and for the 
Quantiferon method TB7.7 proteins of the mycobacteria. The first two are encoded at the 
region of difference (RD) 1 genetic locum whereas the third at the RD11, regions that are 
deleted from the M. bovis BCG genome and are absent in most environmental mycobacteria, 
with the exception of M. kansasii, M. szulgai and M. marinum (TBNET, 2009). During earlier 
stages of the method's development, the entire protein product was used. The early 
secretory antigenic target (ESAT) is a 6kDa protein and the culture filtrate protein (CFP-10) 
is a 10kDa protein. Together they form an heterodimeric complex and depend on each other 
for stability. They are secreted through the ESX1 secretion system and are considered to be 
an indication of virulence. Their role is not fully understood but they seem to induce lysis 
through integration on the macrophage cellular membrane (Brodin et al, 2004; de Jonge et al, 
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more fiercely to these antigens. Subsequent tests in these individuals would result as 
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tests. In a sense, the first TST “boosted” the results of the second one. In certain populations, 
the CDC suggests performing a two-step test in order to identify possible false negative first 
tests and prevent unnecessary treatment. Such populations include health-care workers, 
doctors, nurses or nursing home residents, whose status with regards to tuberculosis 
exposure and/or infection is important to know. 

It is evident that the TST has several limitations to its use, which in turn sparked the interest 
in developing new diagnostic tools such as the IGRAs. Such limitations include a high 
proportion of false positive and false negative results, difficulty in separating true infection 
from the effects of BCG vaccination and NTM infection, technical problems in 
administration, immune response boosting after repeated TST, complicated and subjective 
interpretation and a need for a second visit for the interpretation of the test's result. 
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linked immunospot assay or by measuring the number of activated T cells through flow 
cytometry. The difference in method used is what distinguishes the two commercially 
available kits. QuantiFERON-TB Gold In-Tube (QFT-GIT, by Cellestis Limited, Carnegie, 
Victoria, Australia) uses the ELISA method and the T-SPOT (by Oxford Immunotec Limited, 
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the PPD as antigen but still follow the same principle and in an interesting twist of fate, it 
has been suggested to use the specific IGRA antigens for TST, as these antigens have been 
found to elicit a distinctive immune response with induration on animals. IGRAs are 
performed on fresh blood specimens.  

The antigens used in these methods are peptides derived from ESAT-6, CFP-10 and for the 
Quantiferon method TB7.7 proteins of the mycobacteria. The first two are encoded at the 
region of difference (RD) 1 genetic locum whereas the third at the RD11, regions that are 
deleted from the M. bovis BCG genome and are absent in most environmental mycobacteria, 
with the exception of M. kansasii, M. szulgai and M. marinum (TBNET, 2009). During earlier 
stages of the method's development, the entire protein product was used. The early 
secretory antigenic target (ESAT) is a 6kDa protein and the culture filtrate protein (CFP-10) 
is a 10kDa protein. Together they form an heterodimeric complex and depend on each other 
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2007; Derrick & Morris, 2007; Kinhikar et al, 2010; Renshaw et al, 2005). Even less is known 
regarding TB7.7. IGRA techniques support the dynamic model for latent TB since they 
detect IFN-γ produced by T cells, with a short lifespan that have been activated by 
macrophages that presented to them the tuberculosis antigens (Cardona, 2009). 

For the QFT-GIT (Table 1), 1 ml of blood is drawn into one of each of three special testing 
tubes. These are precoated and heparinised by the manufacturer. Within 16 hours the tubes 
must be incubated for another 16 to 24 hours at 37 °C. After centrifugation, the plasma is 
harvested to be further processed. QFT-GIT collection tubes contain a gel plug that separates 
the plasma from the cells when centrifuged. The plasma can be used immediately or at a 
later point in time. Results are interpreted according to the manufacturer’s 
recommendations (ECDC, 2011).  

 

Result 
IFN-γ concentration (International Units per ml, IU/ml) 

M. tuberculosis antigens Nil PHA 

Positive ≥ 0.35 IU/ml and ≥ 25% over nil ≤ 8.0 IU/ml Any 

Negative < 0.35 IU/ml or < 25% over nil ≤ 8.0 IU/ml ≥ 0.5 IU/ml 

Indeterminate 
< 0.35 IU/ml or < 25% over nil ≤ 8.0 IU/ml < 0.5 IU/ml 

Any > 8.0 IU/ml Any 

Table 1. Quantiferon results interpretation, adapted from ECDC, 2011 

For the T-SPOT assay (Table 2), 8 ml of blood are required and the assay must be performed 
within eight hours of blood collection. Alternatively, the manufacturer also provides a 
reagent (T-Cell Xtend) which extends processing time to 32 hours after blood collection. The 
T-cell-containing peripheral blood mononuclear cell fraction is separated from whole blood 
and distributed to the microtitre plate wells (250,000 cells/well) provided in the assay kit. 
Following 16 to 20 hours incubation, the number of IFN-γ-secreting T-cells (represented as 
spot-forming units) can be detected by ELISPOT assay. As with QFT-GIT the test's results 
are interpreted according to the manufacturer's recommendations (ECDC, 2011). 

 

Result 

Spot count 

M. tuberculosis antigens 
Nil PHA 

ESAT-6 CFP-10 

Positive ≥ 6 over nil and/or ≥ 6 over nil ≤ 10 Any 

Negative ≤ 5 over nil and/or ≤ 5 over nil ≤ 10 ≥ 20 

Borderline If for any antigen highest is 5 - 7 over nil < 10 ≥ 20 

Indeterminate 
≤ 6 over nil and ≤ 6 over nil ≤ 10 < 20 

Any > 10 Any 

Table 2. T-Spot results interpretation, adapted from ECDC, 2011 
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The presence of negative and positive controls ensures that IGRAs are correctly performed. 
The three testing tubes contain the mycobacteria antigens (Mtb), no antigens (Nil) and 
phytohaemagglutinin A (PHA), a T-cell activating mitogen. The Nil vial serves as the 
negative control for the process whereas the PHA as the positive one. If there is IFN-γ 
production in the Mtb tube, none in the Nil and any amount in the PHA, it means that the 
result is a positive one because it would imply that the sample's lymphocytes reacted to the 
antigens as expected and did not react to any other antigens that might have contaminated 
the sample. If on the other hand there is no IFN-γ production in the Mtb tube and the Nil 
tube but there is in the PHA one, it implies that the lymphocytes react normally to the PHA 
antigen yet they do not react when exposed to the bacilli antigens and therefore these 
lymphocytes haven't met these antigens before. Finally, the results are indeterminate if at 
any point there is IFN-γ production in the Nil tube, which might imply contamination or 
there is increased baseline interferon production or if there is no sufficient production in the 
PHA tube, which might imply anergy. Technical factors (sample collection, storage and 
transportation) might also contribute to returning indeterminate results (ECDC, 2011). 

There is a lot of debate on whether IGRAs are indeed more reliable than the traditional TST. 
In Germany, Denmark and Switzerland, IGRAs have substituted TST when screening 
populations receiving anti-TNF-α therapies. The US, Australia, France and Denmark use 
either TST or IGRAs, whereas Canada, the United Kingdom, Italy, Spain, Australia and 
Slovakia to name a few, support a 2-step approach using both TST and IGRAs in an attempt 
to increase sensitivity and specificity of both methods. The two-step approach seems to be 
the most favoured strategy for IGRA use, especially in BCG vaccinated contacts. 

IGRAs have some distinct advantages over TST with regards to diagnosing latent 
tuberculosis infection. IGRA testing requires a single patient visit to conduct the test and 
results can be available within the day. Moreover there is no “booster” effect associated with 
IGRAs since they are ex vivo, in vitro tests. Finally, due to the specificity of the M. tuberculosis 
antigens used, BCG vaccination does not cause false positive results. Due to the positive 
control, IGRAs are able to differentiate between immunocompromised hosts and negative 
results with more accuracy. In the TBNET/ECDC systematic review and meta-analysis 
(Sester et al. 2010) IGRAs were also found to have greater sensitivity in diagnosing active TB 
infection compared to the TST, 80% for QFT-GIT, 81% for T-Spot compared to only 65% for 
the TST. In the same review, specificity was found to be 79% (75-82%) for QFT-GIT, 59% (56-
62%) for T-spot and 75% (72-78%) for TST. Sensitivity to diagnose latent TB infection was 
found 67%, 87% and 71% for QFT-GTI, T-Spot and TST respectively, whereas specificity for 
latent TB infection was 99%, 98% and 88% respectively (Diel et al, 2011; Menzies et al, 2007; 
Pai et al, 2008; Sester et al, 2010). 

Current consensus amongst the European countries is that IGRAs can be included in 
screening for latent TB infection, albeit there is not enough evidence yet to provide a clear 
picture. Nonetheless it can provide an extra step in establishing a diagnosis. On the other 
hand, due to their high negative predictive value for immunocompetent patients, negative 
IGRA results can safely exclude progression to active disease, albeit it does not rule out the 
possibility of latent infection (Diel et al, 2011). Applying the IGRAs to specimens from 
possible infection sites (i.e. Bronchoalveolar Lavage) as opposed to blood samples, 
especially in immunodeficient individuals can help distinguish between active and latent TB 
(Jafari et al, 2009). In diagnosing active tuberculosis we mention for completeness, that 
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current consensus is that IGRAs do not have a place in routine screening, yet in certain cases 
when there is a strong clinical suspicion yet no laboratory proof, they can contribute. 
Neither IGRAs nor TST can replace the standard laboratory tools for diagnosing active 
tuberculosis (ECDC, 2011). 

As with the TST, IGRAs also have some shortcomings. Perhaps most importantly IGRAs, 
just like TST are unable to distinguish between latent and active infection when limited to 
blood testing. Moreover, blood samples need to be processed within 8-30 hours after 
collection; otherwise the white blood cells will gradually become non-responsive to the 
antigenic stimulation. Errors in collecting or transporting blood specimens or in running 
and interpreting the assay can decrease the accuracy of IGRAs. Since these techniques are 
relatively new, there is still limited data on the use of IGRAs in certain population groups 
such as children younger than 5 years of age, HIV patients, anti-TNF-α treated patients or in 
general immunocompromised patients. Finally there is a significant cost to this process as 
opposed to the fairly cheap TST method. 

Finally, another method is being developed for use that employs flow cytometry for the 
detection of interferon producing lymphocytes. This method is not yet commercially 
available and due to the high cost of the process it is not known yet if it will contribute to 
latent tuberculosis diagnosis (Fuhrmann et all 2008). There are experimental methods 
detecting antibodies against tuberculosis antigens, but as mentioned already humoral 
immunity plays a small part in tuberculosis if any at all and thus these methods so far have 
no clinical application (El-Shazly, 2007). Most recently the WHO issued a statement asking 
countries to ban antibodies based tests for the diagnosis of tuberculosis (WHO, 2011). 

6. Latent tuberculosis treatment 
Individuals with known contacts with patients suffering from active tuberculosis and who 
test positive with the aforementioned methods are considered, given reasonable clinical 
suspicion, to have latent infection. They are eligible to receive treatment in order to prevent 
them from developing an active infection. In some cases (i.e. children, HIV patients) even 
without TST or IGRAs supporting, clinical suspicion alone is enough to start treatment and 
re-test the patient at a later time to verify the result of the diagnostic tests. Treatment for 
latent tuberculosis is less expensive than for active and preventing the disease provides 
overall a great economic benefit for the health-care system. 

Current guidelines (American Thoracic Society & CDC, 2000, revised 2005) in the US, 
suggest a 9-month daily treatment with isoniazid (INH) 5mg/kg up to 300mg. This can be 
reduced to only 6 months, for adults seronegative for HIV co-infection. In most cases the 9 
month treatment plan is followed since it has been show to achieve better results (70% 
complete remission vs. 60% for the 6 month regimen). In very few cases a 12-month regimen 
is recommended, particularly for populations with a higher incidence of active tuberculosis 
(TBNET, 2009).  

As is the problem with most tuberculosis therapies there is a high amount of non-compliant 
patients contributing to failure of treatment. One solution would be to enforce Directly 
Observed Treatment (DOT) for patients taking isoniazid for latent tuberculosis, but such a 
decision comes with a high financial cost. Under these circumstances, treatment can be 
modified to a 2/week regimen at a dose of 15mg/kg up to 900mg. Isoniazid side-effects 
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include polyneuropathy, preventable with administration of B6 vitamin and hepatic toxicity 
that remains a prime reason for discontinuation of treatment. Studies have shown that 10-
20% of patients will have an increase in liver transaminases and about 2% will have 
clinically significant hepatitis, with that percentage increasing in the present of co-morbidity 
factors (Nolan et al, 1999). 

Due to these problems the ATS and CDC have suggested alternative treatment options. One 
such option is a daily dose of rifampicin (RMP) 4-month single-drug regimen or a daily dose 
of pyrazinamide (PZA)-rifampicin 4-month regimen. The RMP treatment is not 
recommended for HIV positive patients due to interactions with HAART treatment, but 
otherwise it has shown promising results for patients intolerant of INH or for those cases 
where INH resistance is verified or suspected. Benefits of this shorter regimen include a 
lower cost and also higher degrees of compliance (Jasmer et al, 2002; Menzies et al, 2004, 
2008; Polesky et al, 1996; Reichman et al, 2004; Villarino et al, 1997).  

Initially the PZA-RMP regimen was designed to be administered for 2 months, but due to 
adverse effects (serious hepatotoxicity and death) it is no longer recommended, but for some 
rare cases (CDC, 2001; Lecoeur, 1989; Gao, 2006) Other possible regimens that are under 
evaluation include a 3 month daily treatment with INH-RMP and a 3 month weekly INH-
rifapentin regimen. The former has been tested in the UK and exhibits satisfactory results in 
terms of adverse effects and success of treatment (Ena & Valls, 2005). The latter is under 
study in the US, the CDC recently made public that patients on this regimen have higher 
compliance, satisfactory remission results compared to INH but it seems that they have 
increased adverse effects and also the cost of treatment is higher than the RMP regimen. 

7. Conclusion 
Latent tuberculosis is a field of great scientific interest and research possibilities. We have 
investigated the granuloma and its formation and 2 theories exist, a lot of the secrets still 
remain hidden and more evidence is needed to support either theory. In the field of 
diagnosis new tools are available and it remains to be seen how they will fare when tested 
against special populations (i.e. HIV patients which is the field of our own research as well). 
New guidelines for treatment are issued and those are under evaluation. Latent tuberculosis 
is an important public health issue, an insidious infection that can persist for years; above 
all, clinical suspicion is paramount for its diagnosis. 
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1. Introduction 
Organisms belonging to the species Acinetobacter baumannii are capsulated coccobacillary, 
gram-negative bacteria. They can be found in the environment, will colonize various body 
tissues and food products and can persist on inanimate objects for a prolonged time period. 
Among the genus Acinetobacter, A. baumannii is the best described and most often associated 
with human disease and casualties. It is regarded as an opportunistic pathogen (1) and 
mostly targets susceptible hosts where it causes pneumonia, urinary tract infections, wound 
infections and meningitis. Over the last decade, we have witnessed a significant rise in the 
number and severity of cases of A. baumannii infections from hospital outbreaks as well as 
sporadic community-associated and wound-associated cases (2).  

It is believed that the ability of A. baumannii to persist in the environment, notably by 
forming protective biofilms, as well as its remarkable spectrum of antibiotic resistance have 
allowed it to emerge as a particularly problematic human pathogen (3, 4). Although these 
attributes appear to explain the resilience of this microbe, one must remember that a large 
array of innocuous bacterial species, including non-pathogenic members of the Acinetobacter 
genus, can resist antibiotics and form biofilms. Hence, the question of why A. baumannii is 
such a successful and lethal pathogen becomes more pertinent. Does it display additional 
unique features in its interactions with the host that favour successful colonization or 
infection? This chapter will bring together recent research in an attempt to answer these 
questions. It will strive to be both informative and perhaps inspire new strategies to better 
control this pathogen.  

2. Clinical manifestations of A. baumannii pneumonia 
The major risk factor for infection with A. baumannii, also seen as the one that increases the 
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ventilation during intensive care (5). Patients first become infected following colonization 
from the environment. Sources of contamination include surgical equipment, endotracheal 
or nasogastric tubes, catheters and previously colonized health care staff. The length of stay 
at the ICU has repeatedly been associated with increased risk of colonization and infection 
(5-7). Colonization is usually asymptomatic but will increase the likelihood of subsequent 
infection, which may proceed when the host natural barriers are weakened by trauma, 
surgery or other invasive procedures.  

Respiratory tract infections constitute a major portal of entry leading to A. baumannii 
bacteremia and are almost always hospital-acquired (8). Positive blood cultures are not 
commonly recognized in patients with nosocomial pneumonia (8). However, pneumonia 
caused by this organism are significantly more frequently associated with bacteremia and 
result in higher mortality rates (up to 50% of cases) (8). The clinical manifestations of A. 
baumannii lung infection, both in patients and in animal models, match those of the typical 
bacterial pneumonia, with alveolar congestion, edema and leukocytic infiltrations. 
Extracellular bacteria can be readily identified and cultured from lung biopsies and post-
mortem samples (8). Hence, it is alleged that bacteremia and sepsis are in most cases the 
final causes of death, not asphyxia and hypoxemia caused by pneumonia per se, although co-
morbidity significantly contributes to mortality (9). 

3. Multidrug resistance and antibiotic treatment 
Acinetobacter baumannii has acquired resistance to many antibiotics over the last two decades 
(10) and the incidence of infections caused by multi-drug resistant strains of A. baumannii 
have significantly increased worldwide. This has coincided with the appearance of 
carbapenem-resistant A. baumannii strains in North America, Asia, South America, South 
Africa and Australia. The global dissemination of carbapenem-resistant strains of A. 
baumannii demonstrates the success of this pathogen to cause epidemic outbreaks (11). A. 
baumannii appears able to acquire antibiotic resistance through multiple mechanisms such as 
over-expression of bacterial efflux pumps, changes in cell wall channels (porins), acquisition 
of extended-spectrum -lactamases, gene mutations and expression of certain enzymes that 
modify the metabolism of the antibiotic (reviewed in (12-17)). In addition, it is reported that 
the A. baumannii genome contains a “resistance island” with 45 resistance genes (18). A. 
baumannii can also rapidly acquire genetic entities for resistance, including some genes 
derived from other bacterial species (19). To date, A. baumannii strains have demonstrated 
resistance not only to β-lactams, aminoglycosides, fluoroquinolones, chloramphenicol, 
tetracycline, and rifampicin, but also to some relatively new antibiotics such as tigecycline, a 
novel broad-spectrum glycylcycline (20).  

The emergence of multi- and pan-drug resistant A. baumannii strains clearly presents 
significant challenges to the clinical management of the infection. The antibiotic selection for 
those A. baumannii strains is very limited. Despite its potential toxicity, polymyxin B and E 
(colistin) are probably the most commonly used and effective antibiotics for the treatment of 
resistant strains of A. baumannii at present (12, 14-16, 21-23). Other antibiotic candidates are 
tigecycline and imipenem (14, 21-24) but, as discussed above, resistance to tigecycline has 
developed in some A. baumannii strains (20). To combat the multidrug resistance of A. 
baumannii, it is also a common clinical practice to prescribe several antibiotics as a 
combination therapy although such practice remains controversial among the medical 
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profession (12, 24). Although antibiotic resistance and clinical treatment are the most 
important aspects of the management of A. baumannii infection, this topic is out of the main 
scope of this chapter. Readers are referred to some recent excellent review articles on the 
details of antibiotic resistance mechanisms and the advances and challenges in the 
development of new therapeutics for the treatment of A. baumannii infections (12-17, 21-23).  

4. Experimental models of A. baumannii pneumonia 
Many clinical cases of A. baumannii have been rigorously described and are very informative 
about the disease course, risk factors and the prevalence of antibiotic resistance and other 
genetic traits in the isolates. However, these studies are not experimental in nature and are 
based on retrospective analysis of hospital-based cases. Thus, they generally fail to establish 
a causal relationship between the attributes of a given isolate and disease transmissibility, 
severity and clinical course, which define virulence. Knowledge of virulence factors can help 
both identify potentially dangerous pathogens before they strike and help develop new 
methods of control or treatments. Unfortunately, to date, aside from antibiotic-resistance 
genes, few virulence factors have been identified in A. baumannii (Table 1), despite wide 
variation in the ability of different laboratory strains and clinical isolates to cause disease in 
experimental models (25, 26). In addition, although a number of host factors have been 
examined for their potential involvement in the control of A. baumannii, only a few have 
been shown to play a role in resistance to infection (Table 2).  
 

Contributing factors Model Route of infection Readout Reference 
LPS Serum sensitivity in vitro Resistance to normal 

human serum 
(38) 

LPS Rat soft tissue 
Human serum 

Subcutaneous  
in vitro 

Bacterial 
growth/survival 

(39) 

Many genes and loci 
including urease 

Caenorhabditis 
elegans 
Dictyostelium 
discoideum 

in vitro Killing, egg count 
Plaque assay 

(34) 

OmpA A549 epithelial cells in vitro Adherence, apoptosis (42) 
OmpA A549 epithelial cells

Mouse 
in vitro
Intratracheal 

Invasion 
Blood counts 

(43) 

PBP-7/8 Rat soft tissue 
Rat pneumonia 
Human serum 

Subcutaneous 
Intratracheal 
in vitro 

Bacterial 
growth/survival 

(46) 

Phospholipase D Human serum 
Epithelial cells 
Mouse 

in vitro
in vitro 
Intranasal 

Growth 
Invasion 
Blood counts 

(47) 

pmrB Mouse Intraperitoneal Survival, microbial 
growth in spleen 

(35) 

ptk, epsA, capsule Human ascites fluid 
Rat soft tissue 

in vitro
Subcutaneous 

Bacterial 
growth/survival 

(40) 

RecA Macrophages 
Mouse 

in vitro
Intraperitoneal 

Bacterial survival 
Mortality 

(50) 

Table 1. Identified virulence factors of A. baumannii 
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ventilation during intensive care (5). Patients first become infected following colonization 
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(5-7). Colonization is usually asymptomatic but will increase the likelihood of subsequent 
infection, which may proceed when the host natural barriers are weakened by trauma, 
surgery or other invasive procedures.  
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bacteremia and are almost always hospital-acquired (8). Positive blood cultures are not 
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caused by this organism are significantly more frequently associated with bacteremia and 
result in higher mortality rates (up to 50% of cases) (8). The clinical manifestations of A. 
baumannii lung infection, both in patients and in animal models, match those of the typical 
bacterial pneumonia, with alveolar congestion, edema and leukocytic infiltrations. 
Extracellular bacteria can be readily identified and cultured from lung biopsies and post-
mortem samples (8). Hence, it is alleged that bacteremia and sepsis are in most cases the 
final causes of death, not asphyxia and hypoxemia caused by pneumonia per se, although co-
morbidity significantly contributes to mortality (9). 
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(10) and the incidence of infections caused by multi-drug resistant strains of A. baumannii 
have significantly increased worldwide. This has coincided with the appearance of 
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Africa and Australia. The global dissemination of carbapenem-resistant strains of A. 
baumannii demonstrates the success of this pathogen to cause epidemic outbreaks (11). A. 
baumannii appears able to acquire antibiotic resistance through multiple mechanisms such as 
over-expression of bacterial efflux pumps, changes in cell wall channels (porins), acquisition 
of extended-spectrum -lactamases, gene mutations and expression of certain enzymes that 
modify the metabolism of the antibiotic (reviewed in (12-17)). In addition, it is reported that 
the A. baumannii genome contains a “resistance island” with 45 resistance genes (18). A. 
baumannii can also rapidly acquire genetic entities for resistance, including some genes 
derived from other bacterial species (19). To date, A. baumannii strains have demonstrated 
resistance not only to β-lactams, aminoglycosides, fluoroquinolones, chloramphenicol, 
tetracycline, and rifampicin, but also to some relatively new antibiotics such as tigecycline, a 
novel broad-spectrum glycylcycline (20).  

The emergence of multi- and pan-drug resistant A. baumannii strains clearly presents 
significant challenges to the clinical management of the infection. The antibiotic selection for 
those A. baumannii strains is very limited. Despite its potential toxicity, polymyxin B and E 
(colistin) are probably the most commonly used and effective antibiotics for the treatment of 
resistant strains of A. baumannii at present (12, 14-16, 21-23). Other antibiotic candidates are 
tigecycline and imipenem (14, 21-24) but, as discussed above, resistance to tigecycline has 
developed in some A. baumannii strains (20). To combat the multidrug resistance of A. 
baumannii, it is also a common clinical practice to prescribe several antibiotics as a 
combination therapy although such practice remains controversial among the medical 
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profession (12, 24). Although antibiotic resistance and clinical treatment are the most 
important aspects of the management of A. baumannii infection, this topic is out of the main 
scope of this chapter. Readers are referred to some recent excellent review articles on the 
details of antibiotic resistance mechanisms and the advances and challenges in the 
development of new therapeutics for the treatment of A. baumannii infections (12-17, 21-23).  

4. Experimental models of A. baumannii pneumonia 
Many clinical cases of A. baumannii have been rigorously described and are very informative 
about the disease course, risk factors and the prevalence of antibiotic resistance and other 
genetic traits in the isolates. However, these studies are not experimental in nature and are 
based on retrospective analysis of hospital-based cases. Thus, they generally fail to establish 
a causal relationship between the attributes of a given isolate and disease transmissibility, 
severity and clinical course, which define virulence. Knowledge of virulence factors can help 
both identify potentially dangerous pathogens before they strike and help develop new 
methods of control or treatments. Unfortunately, to date, aside from antibiotic-resistance 
genes, few virulence factors have been identified in A. baumannii (Table 1), despite wide 
variation in the ability of different laboratory strains and clinical isolates to cause disease in 
experimental models (25, 26). In addition, although a number of host factors have been 
examined for their potential involvement in the control of A. baumannii, only a few have 
been shown to play a role in resistance to infection (Table 2).  
 

Contributing factors Model Route of infection Readout Reference 
LPS Serum sensitivity in vitro Resistance to normal 

human serum 
(38) 

LPS Rat soft tissue 
Human serum 

Subcutaneous  
in vitro 

Bacterial 
growth/survival 

(39) 

Many genes and loci 
including urease 

Caenorhabditis 
elegans 
Dictyostelium 
discoideum 

in vitro Killing, egg count 
Plaque assay 

(34) 

OmpA A549 epithelial cells in vitro Adherence, apoptosis (42) 
OmpA A549 epithelial cells

Mouse 
in vitro
Intratracheal 

Invasion 
Blood counts 

(43) 

PBP-7/8 Rat soft tissue 
Rat pneumonia 
Human serum 

Subcutaneous 
Intratracheal 
in vitro 

Bacterial 
growth/survival 

(46) 

Phospholipase D Human serum 
Epithelial cells 
Mouse 

in vitro
in vitro 
Intranasal 

Growth 
Invasion 
Blood counts 

(47) 

pmrB Mouse Intraperitoneal Survival, microbial 
growth in spleen 

(35) 

ptk, epsA, capsule Human ascites fluid 
Rat soft tissue 

in vitro
Subcutaneous 

Bacterial 
growth/survival 

(40) 

RecA Macrophages 
Mouse 

in vitro
Intraperitoneal 

Bacterial survival 
Mortality 

(50) 

Table 1. Identified virulence factors of A. baumannii 



 
Pulmonary Infection 

 

26

Resistance 
factors 

Model Route of 
infection 

Readout Noncontributing 
factors 

Reference 

Acute-phase 
response and 
serum amyloid 
A (negative 
effect) 

Mouse, 
turpentine 
acute phase 
model 

Intranasal Lung bacterial 
burdens 

TNF-α (69) 

CD14, TLR4 Mouse Intranasal Bacterial growth TLR2 (65) 
Complement Human 

serum 
in vitro Bacterial 

growth/survival 
N/A (29, 45) 

NADPH 
oxidase 

Mouse Intranasal Lung and spleen 
bacterial burdens 

NOS2 (71) 

Neutrophils Mouse, 
systemic 

Intraperitoneal Survival, bacterial 
burden in organs 

Sex, strain, IL-17A, 
KC 

(25) 

Neutrophils, 
MIP-2 

Mouse, two 
strains 

Intranasal Lung and spleen 
bacterial burdens 

N/A (28, 70) 

Table 2. Identified host factors that are important in resistance to A. baumannii infection 

The most widely used model for the study of A. baumannii virulence and host responses is 
based on the mouse (26-28). It has been exploited to study pneumonia as well as septicaemia 
caused by A. baumannii and was successful in identifying or validating both microbial 
virulence and host resistance factors. Overall, conventional mice (such as C57BL/6 and 
BALB/c) show relatively high resistance to respiratory infection with A. baumannii. Mice 
inoculated intranasally with up to 108 viable A. baumannii develop an acute, self-limiting 
bronchopneumonia and infected mice generally clear the infection by 96 hours after 
inoculation (28). Moreover, the infection is usually limited to the respiratory tract with 
minimal systemic dissemination. As expected, treatment of mice with immunosuppressive 
drugs (such as cyclophosphamide) greatly exacerbate the infection and can convert an 
otherwise self-limiting infection into a lethal one (27). In addition, a rat model has been 
established and used to study both pneumonia and soft tissue injury (29). Human studies 
are so far limited to bactericidal assays using serum or ascites fluid and the use of human 
peripheral blood mononuclear cells and various epithelial cell lines (29-33). More basic in 
vivo models involving inhibition of Caenorhabditis elegans and Dictyostelium discoideum were 
employed for screening the virulence of multiple A. baumannii transposon insertional 
mutants (34). In many studies, more than one aspect of virulence was explored to generate a 
more complete picture. 

5. Virulence factors of A. baumannii 
One of the defining attributes of A. baumannii, both biologically and clinically, is its ability to 
resist a number of antibiotic classes. It is often debated whether antibiotic resistance genes 
can be considered virulence factors. On the one hand, they do contribute to the capacity of 
the pathogen to cause disease by resisting treatment. On the other hand, they do not directly 
affect the natural course of the infection and only play a role when an exogenous 
chemotherapeutic compound is administered. However, this distinction is blurred when 
that resistance to antibiotics impacts on virulence in the absence of the antibiotic. For 
instance it was reported that colistin-resistant A. baumannii isolates show a general lower 
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fitness as assessed by animal mortality and bacterial burdens in organs (35). The mutation 
conferring antibiotic resistance was mapped to the pmrB gene. The pmrABC operon mediates 
resistance to colistin and other polymyxins through modification of the lipid A portion of 
LPS (36). Polymyxins bind to LPS; resistance can occur by the complete loss of lipid A 
through disruption of the biosynthetic genes, yielding LPS-deficient, Gram-negative bacteria 
(37). LPS was identified in at least two independent studies as contributing to bacterial 
virulence. It was first found to be important for serum resistance whereas capsular 
polysaccharide was dispensable (38). This was recently reproduced and further investigated 
in a wound infection model where LPS was found to be important for bacterial growth and 
survival (39). Hence, it is not surprising that downregulation of LPS as a means to resist 
polymyxins will significantly impact the virulence of the organism and might explain the 
low prevalence of colistin resistance in clinical isolates (21). 

While capsular polysaccharides may not be required for serum resistance, the capsule was 
shown to be a major contributor to virulence since the growth of capsule-deficient variants 
of A. baumannii was attenuated in human ascites fluid and in a wound infection model (40). 
Hence, it is evident that different virulence factors may be manifest at distinct stages and 
physiological locations of the infection. Another iteration of that concept is found with outer 
membrane protein A (AbOmpA), a porin-like protein of A. baumannii which appears to 
mediate multiple functions. This protein is homologous to OmpA proteins from 
Enterobacteria and outer membrane protein F (OprF) of Pseudomonas sp. (41). AbOmpA was 
reported to mediate cytotoxicity in human HEp-2 cells (32) and dendritic cells (33). It also 
mediates interaction and invasion of lung epithelial cells as wells as biofilm formation on 
abiotic surfaces (42, 43). Whether these in vitro events (attachment, invasion and apoptosis) 
are important for in vivo virulence is still uncertain. Moreover, AbOmpA was recently 
shown to play a role in iron metabolism, another feature that may impact virulence (44). In 
this regard, blood dissemination of OmpA-deficient bacteria was less pronounced in the 
mouse pneumonia model (43), suggesting that this protein influences virulence at one or 
many of the steps leading to bacteremia. One of these steps could be resistance to 
complement-mediated lysis (45). 

Random transposon mutagenesis has the potential to provide a large amount of unbiased 
information about microbial virulence. In the last few years, this approach has been adapted 
for the study of A. baumannii physiology and pathogenesis. The first study reported by 
Michael G. Smith and colleagues (2007) combined high-density pyrosequencing with 
transposon mutagenesis and identified a number of putative pathogenicity loci (34). Their 
screen was based on inhibition of Dictyostelium and Caenorhabditis elegans by A. baumannii 
mutants. They reported that a large proportion of the pathogen’s genome consisted of 
foreign DNA and found six islands associated with virulence. This underlined once more 
the ability of this pathogen to adapt and evolve by acquiring genetic material for antibiotic 
resistance and virulence. While informative, this screen was only a first step since the 
mutants were not complemented nor were they tested in a mammalian model. More 
recently, Russo et al. (2009) identified a putative low-molecular-mass penicillin-binding 
protein 7/8 (PBP-7/8) as a virulence gene based on serum sensitivity and validated it in the 
rat models of pneumonia and soft tissue infection (46). PBP-7/8 affects cell morphology and 
is suspected to play a role in peptidoglycan synthesis and cell wall structure. A similar 
mutagenesis study using serum sensitivity as the readout and pneumonia as the validation 
step identified phospholipase D (PLD) as a bona fide virulence factor (47). Interestingly, PLD 
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resistance to colistin and other polymyxins through modification of the lipid A portion of 
LPS (36). Polymyxins bind to LPS; resistance can occur by the complete loss of lipid A 
through disruption of the biosynthetic genes, yielding LPS-deficient, Gram-negative bacteria 
(37). LPS was identified in at least two independent studies as contributing to bacterial 
virulence. It was first found to be important for serum resistance whereas capsular 
polysaccharide was dispensable (38). This was recently reproduced and further investigated 
in a wound infection model where LPS was found to be important for bacterial growth and 
survival (39). Hence, it is not surprising that downregulation of LPS as a means to resist 
polymyxins will significantly impact the virulence of the organism and might explain the 
low prevalence of colistin resistance in clinical isolates (21). 

While capsular polysaccharides may not be required for serum resistance, the capsule was 
shown to be a major contributor to virulence since the growth of capsule-deficient variants 
of A. baumannii was attenuated in human ascites fluid and in a wound infection model (40). 
Hence, it is evident that different virulence factors may be manifest at distinct stages and 
physiological locations of the infection. Another iteration of that concept is found with outer 
membrane protein A (AbOmpA), a porin-like protein of A. baumannii which appears to 
mediate multiple functions. This protein is homologous to OmpA proteins from 
Enterobacteria and outer membrane protein F (OprF) of Pseudomonas sp. (41). AbOmpA was 
reported to mediate cytotoxicity in human HEp-2 cells (32) and dendritic cells (33). It also 
mediates interaction and invasion of lung epithelial cells as wells as biofilm formation on 
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are important for in vivo virulence is still uncertain. Moreover, AbOmpA was recently 
shown to play a role in iron metabolism, another feature that may impact virulence (44). In 
this regard, blood dissemination of OmpA-deficient bacteria was less pronounced in the 
mouse pneumonia model (43), suggesting that this protein influences virulence at one or 
many of the steps leading to bacteremia. One of these steps could be resistance to 
complement-mediated lysis (45). 

Random transposon mutagenesis has the potential to provide a large amount of unbiased 
information about microbial virulence. In the last few years, this approach has been adapted 
for the study of A. baumannii physiology and pathogenesis. The first study reported by 
Michael G. Smith and colleagues (2007) combined high-density pyrosequencing with 
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mutants. They reported that a large proportion of the pathogen’s genome consisted of 
foreign DNA and found six islands associated with virulence. This underlined once more 
the ability of this pathogen to adapt and evolve by acquiring genetic material for antibiotic 
resistance and virulence. While informative, this screen was only a first step since the 
mutants were not complemented nor were they tested in a mammalian model. More 
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is also associated with virulence in Neisseria gonorrhoeae (48) and Corynebacterium 
pseudotuberculosis (49). Hence this enzyme could be used as a drug target for the design of 
novel antimicrobials. 

Another bacterial enzyme that was recently shown to play a role in virulence is recA (50). This 
protein was found not only to mediate DNA repair in A. baumannii but also played a role in 
desiccation resistance, prevented killing inside macrophages as well as contributed to mouse 
lethality. It may be argued that such a pleotropic protein may not qualify as an authentic 
virulence factor, for which the defining function is to ensure development inside a live host 
independently of in vitro or environmental fitness. Nevertheless, recA shows promise as a 
specific antimicrobial target and its implication in virulence underscores the importance of a 
microorganism’s DNA repair pathway in the battle between host and pathogen. 

6. Biofilm formation 
One of the hallmark features of the Acinetobacter genus is the ability to form biofilms on 
animate and inanimate surfaces. Biofilm formation is associated with bacterial persistence in 
chronic diseases and in the environment; however, it is not yet clear whether production of 
biofilms by A. baumannii is involved in virulence. A high level of heterogeneity has been 
observed between isolates with respect to biofilm formation, which could not be correlated 
with virulence or disease severity (51-53). Moreover, biofilm production and adherence to 
airway epithelial cells is also observed at similar frequencies in low virulence species of 
Acinetobacters (30). Nevertheless, biofilm formation may contribute to disease transmissibility 
by promoting survival of A. baumannii on surgical instruments, catheters and external body 
surfaces and enabling colonization. It is likely that a combination of features, including the 
various virulence factors, resistance to multiple antibiotics and general hospital infection 
management etc., make A. baumannii a successful clinical pathogen.  

7. Iron acquisition 
One last feature that is under scrutiny is the role of iron in A. baumannii pathogenesis. Iron is a 
redox metal essential to most life forms; it is a component of many enzymes and factors such 
as ribonucelotide reductase (54) and the cytochromes of the aerobic electron transport chain 
(55). Although abundant inside the body, iron is usually found in association with host 
macromolecules like heme and transferrin and, thus, is not readily available to bacteria. As a 
result, A. baumannii must develop strategies to capture and retain iron for its survival and 
growth. Using a proteomics-based approach, 58 proteins were found to be differentially 
expressed in A. baumannii in response to iron modulation, including AbOmpA (44). Although 
the importance of iron acquisition in pathogenesis has not been experimentally established, 
this suggests that A. baumannii has evolved sophisticated regulatory mechanisms to respond to 
iron deprivation which are meant to ensure survival in the host, where this metal is scarce.  

The production of siderophores is one strategy used by the pathogen to grow under iron-
limiting conditions (56, 57). Siderophores are small secreted molecules that bind iron with high 
affinity and can be taken up by bacteria as a way to scavenge trace iron from their 
surroundings. The siderophore produced by the A. baumannii type strain 19606 was termed 
“acinetobactin” (58). It is structurally related to the siderophore produced by Vibrio anguillarum 
and resembles catechol-type siderophores such as the enterobactins (59). Of note, A. baumannii 
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isolates often differ in the structure of the siderophores and other iron acquisition factors they 
express (60). Another way that A. baumannii can acquire iron in the circulation is by utilizing 
hemin, a salt of heme generated from the breakdown of hemoglobin (61). Conversely, A. 
baumannii cannot use hemoglobin itself (61) and does not bind the iron transporter transferrin 
(57), unlike other gram-negative bacteria such as Neisseria and Moraxella (62).  

The importance of iron metabolism was also supported by the discovery that a novel 
monobactam-class antibiotic, BAL30072, is particularly active against A. baumannii when 
tested against a panel of pathogenic gram-negative species (63, 64). BAL30072 is a catecholic 
β-lactam that binds iron and acts as a siderophore (63). Under iron-restricted conditions 
such as those encountered in vivo, the molecule would be taken up efficiently by the 
bacteria’s siderophore capture machinery, acting as a Trojan horse to deliver the antibiotic 
inside the cell. Hence it is possible that a microorganism with a high avidity for iron and 
siderophores, such as A. baumannii, might be more easily targeted and killed by antibiotics 
of this class. As a bonus, resistance might appear by downregulating siderophore uptake 
but only at the expense of in vivo fitness. 

8. Host resistance factors 
Like A. baumannii virulence factors, host factors important for protection against A. 
baumannii infection are still largely unexplored. It is generally recognized that 
immunocompromised individuals are much more likely to become infected by A. baumannii, 
an opportunistic pathogen by most definitions (1). As such, the host innate immune system 
is generally successful in controlling the pathogen and that only when it fails does the 
infection progress, such as upon barrier disruption, severe stress or immunosuppressive 
drug treatment. Identification of host immune cells and molecules that are critical for 
resistance could help us better deal with these deadly infections by monitoring those factors 
and boosting or supplementing them as the need arises. 

Infections with A. baumannii are characterised by an acute, rapid progression. The host 
appears to either control the infection or becomes overwhelmed by it. This implies that 
innate immunity plays a major role in the control of this pathogen. Indeed, CD14 and TLR4, 
members of the innate immune system and the LPS sensing pathway, have been shown to 
be essential for resistance to A. baumannii infection in a knockout mouse model, while TLR2 
appeared to counteract the robustness of the induced innate immunity (65).  

The importance of LPS sensing would be consistent with a strong, protective pro-
inflammatory reaction against the pathogen. Paradoxically, trauma and postsurgical patients 
mounting a strong systemic acute-phase response are more susceptible to A. baumannii 
infections (66-68). Experimentally, an acute-phase response elicited in mice with turpentine or 
by direct injection of exogenous serum amyloid A protein reduced pulmonary inflammation 
and neutrophil migration during A. baumannii pneumonia (69). This treatment ultimately led 
to enhanced susceptibility in the mice. This phenomenon might explain part of the 
immunosuppression that permits the microbe to successfully infect hospital patients. Hence, 
control of A. baumannii probably requires a targeted and self-limiting inflammatory response. 

Major effectors of the innate inflammatory response, neutrophils play a critical role in the 
control of A. baumannii infection, as would be expected when dealing with extracellular 
bacteria. They are rapidly recruited to the lungs after infection and contribute to its 
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is also associated with virulence in Neisseria gonorrhoeae (48) and Corynebacterium 
pseudotuberculosis (49). Hence this enzyme could be used as a drug target for the design of 
novel antimicrobials. 
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with virulence or disease severity (51-53). Moreover, biofilm production and adherence to 
airway epithelial cells is also observed at similar frequencies in low virulence species of 
Acinetobacters (30). Nevertheless, biofilm formation may contribute to disease transmissibility 
by promoting survival of A. baumannii on surgical instruments, catheters and external body 
surfaces and enabling colonization. It is likely that a combination of features, including the 
various virulence factors, resistance to multiple antibiotics and general hospital infection 
management etc., make A. baumannii a successful clinical pathogen.  

7. Iron acquisition 
One last feature that is under scrutiny is the role of iron in A. baumannii pathogenesis. Iron is a 
redox metal essential to most life forms; it is a component of many enzymes and factors such 
as ribonucelotide reductase (54) and the cytochromes of the aerobic electron transport chain 
(55). Although abundant inside the body, iron is usually found in association with host 
macromolecules like heme and transferrin and, thus, is not readily available to bacteria. As a 
result, A. baumannii must develop strategies to capture and retain iron for its survival and 
growth. Using a proteomics-based approach, 58 proteins were found to be differentially 
expressed in A. baumannii in response to iron modulation, including AbOmpA (44). Although 
the importance of iron acquisition in pathogenesis has not been experimentally established, 
this suggests that A. baumannii has evolved sophisticated regulatory mechanisms to respond to 
iron deprivation which are meant to ensure survival in the host, where this metal is scarce.  

The production of siderophores is one strategy used by the pathogen to grow under iron-
limiting conditions (56, 57). Siderophores are small secreted molecules that bind iron with high 
affinity and can be taken up by bacteria as a way to scavenge trace iron from their 
surroundings. The siderophore produced by the A. baumannii type strain 19606 was termed 
“acinetobactin” (58). It is structurally related to the siderophore produced by Vibrio anguillarum 
and resembles catechol-type siderophores such as the enterobactins (59). Of note, A. baumannii 
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isolates often differ in the structure of the siderophores and other iron acquisition factors they 
express (60). Another way that A. baumannii can acquire iron in the circulation is by utilizing 
hemin, a salt of heme generated from the breakdown of hemoglobin (61). Conversely, A. 
baumannii cannot use hemoglobin itself (61) and does not bind the iron transporter transferrin 
(57), unlike other gram-negative bacteria such as Neisseria and Moraxella (62).  

The importance of iron metabolism was also supported by the discovery that a novel 
monobactam-class antibiotic, BAL30072, is particularly active against A. baumannii when 
tested against a panel of pathogenic gram-negative species (63, 64). BAL30072 is a catecholic 
β-lactam that binds iron and acts as a siderophore (63). Under iron-restricted conditions 
such as those encountered in vivo, the molecule would be taken up efficiently by the 
bacteria’s siderophore capture machinery, acting as a Trojan horse to deliver the antibiotic 
inside the cell. Hence it is possible that a microorganism with a high avidity for iron and 
siderophores, such as A. baumannii, might be more easily targeted and killed by antibiotics 
of this class. As a bonus, resistance might appear by downregulating siderophore uptake 
but only at the expense of in vivo fitness. 

8. Host resistance factors 
Like A. baumannii virulence factors, host factors important for protection against A. 
baumannii infection are still largely unexplored. It is generally recognized that 
immunocompromised individuals are much more likely to become infected by A. baumannii, 
an opportunistic pathogen by most definitions (1). As such, the host innate immune system 
is generally successful in controlling the pathogen and that only when it fails does the 
infection progress, such as upon barrier disruption, severe stress or immunosuppressive 
drug treatment. Identification of host immune cells and molecules that are critical for 
resistance could help us better deal with these deadly infections by monitoring those factors 
and boosting or supplementing them as the need arises. 

Infections with A. baumannii are characterised by an acute, rapid progression. The host 
appears to either control the infection or becomes overwhelmed by it. This implies that 
innate immunity plays a major role in the control of this pathogen. Indeed, CD14 and TLR4, 
members of the innate immune system and the LPS sensing pathway, have been shown to 
be essential for resistance to A. baumannii infection in a knockout mouse model, while TLR2 
appeared to counteract the robustness of the induced innate immunity (65).  

The importance of LPS sensing would be consistent with a strong, protective pro-
inflammatory reaction against the pathogen. Paradoxically, trauma and postsurgical patients 
mounting a strong systemic acute-phase response are more susceptible to A. baumannii 
infections (66-68). Experimentally, an acute-phase response elicited in mice with turpentine or 
by direct injection of exogenous serum amyloid A protein reduced pulmonary inflammation 
and neutrophil migration during A. baumannii pneumonia (69). This treatment ultimately led 
to enhanced susceptibility in the mice. This phenomenon might explain part of the 
immunosuppression that permits the microbe to successfully infect hospital patients. Hence, 
control of A. baumannii probably requires a targeted and self-limiting inflammatory response. 

Major effectors of the innate inflammatory response, neutrophils play a critical role in the 
control of A. baumannii infection, as would be expected when dealing with extracellular 
bacteria. They are rapidly recruited to the lungs after infection and contribute to its 
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resolution. Early animal models of A. baumannii pneumonia used cyclophosphamide to 
render mice neutropenic (24, 27) which might have increased the magnitude of bacterial 
replication in vivo, although this was not addressed directly. The role of neutrophils was not 
formally investigated until much later when it was found that antibody-mediated depletion 
of neutrophils resulted in an acute lethal infection in mice that was associated with 
enhanced bacterial burdens in the lung and extrapulmonary dissemination to the spleen 
(28). Conversely, enhanced pulmonary recruitment of neutrophils by intranasal 
supplementation of the chemoattractant MIP-2 promoted clearance of the pathogen (28). 

The importance of neutrophils and of the regulation of their trafficking was reinforced when 
it was shown that A/J mice are more susceptible to A. baumannii compared to C57BL/6 mice 
due to a delayed and weaker neutrophil recruitment (70). Strain differences in host 
responses are common and may lead to genetic studies uncovering novel resistance factors. 
However, the choice of strains, route of infection and measurements might be of prime 
importance since another study did not report differences between their experimental 
mouse strains when doing Intraperitoneal injections (25) while a third found differences in 
mortality but not in lung bacteriology when comparing three murine strains (27). 

The role of neutrophils was further investigated at the molecular level to determine what 
effector functions were required for clearance of A. baumannii. It was found that NADPH 
phagocyte oxidase expressed in neutrophils played a major role in extrapulmonary 
dissemination of A. baumannii whereas the contribution of inducible nitric oxide synthase 
(NOS2) was minor (71). This is consistent with evidence that NOS2 may be predominantly 
restricted to the control of intracellular pathogens (72). Other factors suspected to play a role 
such as sex, IL-17A and the chemokine KC (CXCL1) were also ruled out (25). Still 
unresolved is the role of the lung macrophages and epithelial cells in the initial recognition 
of the pathogen and subsequent recruitment of neutrophils. Are these cell types and others 
involved in recruiting neutrophils to the site of infection? Is infection of epithelial cells 
essential for the translocation of the pathogen into the circulation? Many of the initial steps 
of A. baumannii infection remain unexplored. 

In the bloodstream, A. baumannii would encounter other hurdles to infection and 
dissemination. Blood contains a number of innate immune components that can restrict 
bacterial growth and even kill a large proportion of infecting microorganisms. Human 
serum is bactericidal or bacteriostatic to most strains of A. baumannii and this was shown to 
be mediated by complement (29, 45). The alternative complement pathway is responsible for 
killing the bacteria (45, 51). Interestingly, serum resistance in some strains was explained by 
the binding of Factor H, an inhibitor of this pathway, to A. baumannii outer membrane 
proteins, including AbOmpA (45). However, this is not a universal phenomenon since 
binding to Factor H was not observed in another set of serum-resistant isolates (51).  

There is clearly a substantial amount of variability in both the serum sensitivity of the 
pathogen and the bactericidal activity of sera from different individuals (38, 73). This could 
be due to past exposures and the presence of circulating antibodies. Lifelong exposure to 
Acinetobacter species from the environment might confer some low level of immunity to the 
pathogen. Indeed, both active and passive immunization using an inactivated whole cell 
vaccine are very effective at preventing A. baumannii infection in mice (74). This could 
explain why blood from naïve mice does not show any inhibitory activity towards A. 
baumannii (unpublished observations) and would suggest that blood does not contain 
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significant natural defences against the pathogen, a state that could prove detrimental to the 
susceptible, naïve host. 

9. Conclusion 
Acinetobacter baumannii presents an array of features that make it a particularly troublesome 
pathogen. Similar to other emerging gram-negative bacilli like Pseudomonas aeruginosa and 
Klebsiella pneumonia, its quick rise in the past decades is probably the result of an ability to 
rapidly evolve and acquire new genetic material for virulence and antibiotic resistance. The 
multidrug resistance of several isolates of A. baumannii can be traced back to multiple events 
including downregulation of porins, expression of drug-inactivating enzymes and target 
alterations (75). Furthermore, the ability of A. baumannii to form biofilms allows it to persist 
on abiotic surfaces, a first step in disease transmission. When it finds an appropriate niche, 
such as the lung, it rapidly multiplies and creates a localized infection or colonization. If this 
infection is not contained effectively because of treatment failure or ineffective host defense 
mechanism, bacteremia will rapidly progress which may prove fatal. 

Fast-growing in nature and able to overwhelm host defences, A. baumannii has a limited but 
effective set of virulence factors. One of them, AbOmpA, appears to simultaneously mediate 
host cell invasion, serum resistance and iron uptake, three potential prerequisites to 
virulence. This protein could therefore be a prime candidate for therapies targeting 
virulence mechanisms. Phospholipase D and recA are other candidates with an even wider 
spectrum that could benefit treatments of other infections. Other strategies targeting iron 
acquisition by the microbe could also prove successful. On the host side, boosting the 
activity of innate immunity such as neutrophils, or at least maintaining their proper 
numbers and function, could help slow or halt the progress of the pathogen.  

Given the wide variation in the clinical success, biofilm formation, disease pathogenesis and 
antibiotic resistance profiles of A. baumannii isolates, it is currently difficult to pinpoint 
which steps and factors are really essential for virulence and which merely modulate it. 
More research needs to be conducted to better understand pathogenesis, preferably in 
experimentally controlled conditions involving characterised hosts and bacteria. Given 
enough information, the ultimate goal would be to predict the course and outcome of the 
disease when encountering an unknown isolate, in order to take appropriate measures. 
Another benefit would be to identify new therapeutic targets to supplement and perhaps 
replace the shrinking arsenal of chemotherapeutic agents at our disposal. 
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resolution. Early animal models of A. baumannii pneumonia used cyclophosphamide to 
render mice neutropenic (24, 27) which might have increased the magnitude of bacterial 
replication in vivo, although this was not addressed directly. The role of neutrophils was not 
formally investigated until much later when it was found that antibody-mediated depletion 
of neutrophils resulted in an acute lethal infection in mice that was associated with 
enhanced bacterial burdens in the lung and extrapulmonary dissemination to the spleen 
(28). Conversely, enhanced pulmonary recruitment of neutrophils by intranasal 
supplementation of the chemoattractant MIP-2 promoted clearance of the pathogen (28). 

The importance of neutrophils and of the regulation of their trafficking was reinforced when 
it was shown that A/J mice are more susceptible to A. baumannii compared to C57BL/6 mice 
due to a delayed and weaker neutrophil recruitment (70). Strain differences in host 
responses are common and may lead to genetic studies uncovering novel resistance factors. 
However, the choice of strains, route of infection and measurements might be of prime 
importance since another study did not report differences between their experimental 
mouse strains when doing Intraperitoneal injections (25) while a third found differences in 
mortality but not in lung bacteriology when comparing three murine strains (27). 

The role of neutrophils was further investigated at the molecular level to determine what 
effector functions were required for clearance of A. baumannii. It was found that NADPH 
phagocyte oxidase expressed in neutrophils played a major role in extrapulmonary 
dissemination of A. baumannii whereas the contribution of inducible nitric oxide synthase 
(NOS2) was minor (71). This is consistent with evidence that NOS2 may be predominantly 
restricted to the control of intracellular pathogens (72). Other factors suspected to play a role 
such as sex, IL-17A and the chemokine KC (CXCL1) were also ruled out (25). Still 
unresolved is the role of the lung macrophages and epithelial cells in the initial recognition 
of the pathogen and subsequent recruitment of neutrophils. Are these cell types and others 
involved in recruiting neutrophils to the site of infection? Is infection of epithelial cells 
essential for the translocation of the pathogen into the circulation? Many of the initial steps 
of A. baumannii infection remain unexplored. 

In the bloodstream, A. baumannii would encounter other hurdles to infection and 
dissemination. Blood contains a number of innate immune components that can restrict 
bacterial growth and even kill a large proportion of infecting microorganisms. Human 
serum is bactericidal or bacteriostatic to most strains of A. baumannii and this was shown to 
be mediated by complement (29, 45). The alternative complement pathway is responsible for 
killing the bacteria (45, 51). Interestingly, serum resistance in some strains was explained by 
the binding of Factor H, an inhibitor of this pathway, to A. baumannii outer membrane 
proteins, including AbOmpA (45). However, this is not a universal phenomenon since 
binding to Factor H was not observed in another set of serum-resistant isolates (51).  

There is clearly a substantial amount of variability in both the serum sensitivity of the 
pathogen and the bactericidal activity of sera from different individuals (38, 73). This could 
be due to past exposures and the presence of circulating antibodies. Lifelong exposure to 
Acinetobacter species from the environment might confer some low level of immunity to the 
pathogen. Indeed, both active and passive immunization using an inactivated whole cell 
vaccine are very effective at preventing A. baumannii infection in mice (74). This could 
explain why blood from naïve mice does not show any inhibitory activity towards A. 
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significant natural defences against the pathogen, a state that could prove detrimental to the 
susceptible, naïve host. 
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Klebsiella pneumonia, its quick rise in the past decades is probably the result of an ability to 
rapidly evolve and acquire new genetic material for virulence and antibiotic resistance. The 
multidrug resistance of several isolates of A. baumannii can be traced back to multiple events 
including downregulation of porins, expression of drug-inactivating enzymes and target 
alterations (75). Furthermore, the ability of A. baumannii to form biofilms allows it to persist 
on abiotic surfaces, a first step in disease transmission. When it finds an appropriate niche, 
such as the lung, it rapidly multiplies and creates a localized infection or colonization. If this 
infection is not contained effectively because of treatment failure or ineffective host defense 
mechanism, bacteremia will rapidly progress which may prove fatal. 

Fast-growing in nature and able to overwhelm host defences, A. baumannii has a limited but 
effective set of virulence factors. One of them, AbOmpA, appears to simultaneously mediate 
host cell invasion, serum resistance and iron uptake, three potential prerequisites to 
virulence. This protein could therefore be a prime candidate for therapies targeting 
virulence mechanisms. Phospholipase D and recA are other candidates with an even wider 
spectrum that could benefit treatments of other infections. Other strategies targeting iron 
acquisition by the microbe could also prove successful. On the host side, boosting the 
activity of innate immunity such as neutrophils, or at least maintaining their proper 
numbers and function, could help slow or halt the progress of the pathogen.  

Given the wide variation in the clinical success, biofilm formation, disease pathogenesis and 
antibiotic resistance profiles of A. baumannii isolates, it is currently difficult to pinpoint 
which steps and factors are really essential for virulence and which merely modulate it. 
More research needs to be conducted to better understand pathogenesis, preferably in 
experimentally controlled conditions involving characterised hosts and bacteria. Given 
enough information, the ultimate goal would be to predict the course and outcome of the 
disease when encountering an unknown isolate, in order to take appropriate measures. 
Another benefit would be to identify new therapeutic targets to supplement and perhaps 
replace the shrinking arsenal of chemotherapeutic agents at our disposal. 
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1. Introduction 
Traditionally, Mycobacterium species are divided in those belonging to the Mycobacterium 
tuberculosis complex (MTBC), M. leprae and the nontuberculous or atypical mycobacteria 
(NTM), the latter consisting of either rapid (RGM) or slow growing (SGM) species, 
forming colonies, respectively, within seven days of culture or requiring longer 
incubation time (Runyon, 1959). Among the RGM are the M. chelonae complex, including 
M. chelonae, M. abscessus, M. mucogenicum, M. salmoniphilum, M. bolletii and M. massiliense 
(Brown-Elliot & Wallace, 2002; Whipps et al., 2007) and the M. fortuitum complex, 
including M. fortuitum, M. peregrinum,  M. septicum, M. mageritense, M. houstonense and M. 
boenikei (Adékambi & Drancourt, 2004), containing the NTM commonly encountered in 
human specimens. Clinically important SGM are the M. avium complex (MAC), which 
include M. avium, M. intracellulare, M. colombiense and M. chimaera (Tortoli, 2003; Tortoli et 
al., 2004). 

Until now, 130 Mycobacterium species, with a considerable variability in pathogenicity have 
been described, being isolated from natural water reservoirs and drinking water distribution 
systems in buildings, hospitals, household plumbing, hot tubs, spas, building aerosols, 
boreal forest soils and peats, acidic, brown-waters swamps, potting soils and metal removal 
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1. Introduction 
Traditionally, Mycobacterium species are divided in those belonging to the Mycobacterium 
tuberculosis complex (MTBC), M. leprae and the nontuberculous or atypical mycobacteria 
(NTM), the latter consisting of either rapid (RGM) or slow growing (SGM) species, 
forming colonies, respectively, within seven days of culture or requiring longer 
incubation time (Runyon, 1959). Among the RGM are the M. chelonae complex, including 
M. chelonae, M. abscessus, M. mucogenicum, M. salmoniphilum, M. bolletii and M. massiliense 
(Brown-Elliot & Wallace, 2002; Whipps et al., 2007) and the M. fortuitum complex, 
including M. fortuitum, M. peregrinum,  M. septicum, M. mageritense, M. houstonense and M. 
boenikei (Adékambi & Drancourt, 2004), containing the NTM commonly encountered in 
human specimens. Clinically important SGM are the M. avium complex (MAC), which 
include M. avium, M. intracellulare, M. colombiense and M. chimaera (Tortoli, 2003; Tortoli et 
al., 2004). 

Until now, 130 Mycobacterium species, with a considerable variability in pathogenicity have 
been described, being isolated from natural water reservoirs and drinking water distribution 
systems in buildings, hospitals, household plumbing, hot tubs, spas, building aerosols, 
boreal forest soils and peats, acidic, brown-waters swamps, potting soils and metal removal 
fluid systems (Tortoli, 2009; Euzéby, 2011, Falkinham, 2009). The lack of evidence for 
person-to-person transmission suggests that the environment is the most likely source of 
NTM infection (Marra & Daley, 2002). 

Unlike the bacterial species that belong to the MTBC, NTM are commonly present in the 
environment and when isolated from human specimens, may either be (i) contaminants 
during preparation of sputum cultures in the laboratory, (ii) colonizing organisms of the 
airways without causing disease or (iii) infectious organisms and causing disease and it is 
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not always easy to distinguish between these situations (Griffith et al., 2007). In the case of 
real infection with NTM, clinical syndromes are either lymphadenitis, pulmonary or 
cutaneous infection or disseminated disease, chronic pulmonary infection being the most 
common (Katoch, 2004; Piersimoni & Scarparo, 2009; Tortoli, 2009). Such NMT infections are 
frequently observed in immune-compromised patients in developed nations but also in 
immune-competent individuals with pre-existing structural pulmonary diseases (Griffith et 
al., 2007; Jeong et al., 2004; Jarzembowski & Young, 2008; Bodle et al., 2008; Glassroth, 2008; 
Sexton & Harrison, 2008; Griffith, 2010). 

The diagnosis of NTM pulmonary disease is often difficult due to the overwhelming 
presence of environmental organisms, to the indolent nature of disease and the diversity of, 
mostly, nonspecific clinical symptoms. Therefore, guidelines and criteria for diagnosis of 
NTM pulmonary disease have been published (American Thoracic Society, 1997; British 
Thoracic Society, 2000) followed by the publication of a recent update of more lenient 
criteria (Griffith et al., 2007). Even so, these recommendations do not seem to be satisfactory 
as most patients with pulmonary disease due to NTM do not match these criteria (Marras et 
al., 2007; van Ingen et al., 2009). Also, in endemic countries for tuberculosis (TB), the 
pulmonary disease form is caused also by infection with organisms of the MTBC, presenting 
similar clinical symptoms. In addition, diagnostic procedures for pulmonary TB are sputum 
smear microscopy for acid-fast bacilli (AFB) and X-ray, not differentiating between 
Mycobacterium to the species level. Nonetheless, several case reports and studies on the 
prevalence of pulmonary disease caused by NTM in North America, Europe and Japan have 
been published during the last years (Good, 1980; Tsukamura et al., 1988; von Reyn et al., 
1993; Falkinham, 2002; Kobashi & Matsushima, 2007; Iseman & Marras, 2008; Billinger et al., 
2009; Thomson, 2010; Kendall et al., 2011).  

The impact, magnitude and regional dimension of NTM infections in countries where TB is 
endemic is hardly known (Gopinath & Singh, 2010), such as the case in Brazil, where most 
cases of infectious NTM have been reported in the southeastern region and, more 
specifically, in São Paulo (Barreto & Campos, 2000; Ueki et al., 2005; Zamarioli et al., 2008; 
Pedro et al., 2008). In the Amazon region, North of Brazil, little epidemiological information 
on this matter is available (da Costa et al., 2009). 

We therefore studied the frequency and diversity of NTM isolates, obtained from 
pulmonary specimens from residents of the Pará State, during a twelve year period. 

2. Material and methods 
2.1 Study setting and patients 

All Mycobacterium isolates evaluated were obtained from sputum samples (n = 119) and 
bronchial washings (n = 9) from individuals with clinical symptoms of pulmonary TB and 
residents of the State of Pará, North Brazil (Fig. 1). The study included samples of patients 
from whom NTM was isolated from at least once, and this between January 1999 and 
December 2010, at the Evandro Chagas Institute, a reference center for the diagnosis of 
infections with Mycobacterium. Patient records were reviewed to assess the frequency of 
isolation and clinical relevance of the presence of NTM and the diagnosis for NTM lung 
infection was based on the diagnostic criteria published by the American Thoracic Society 
(Griffith et al., 2007) (Table 1). 
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Fig. 1. Geographic localization of the Pará State, Amazon Region of Brazil. 

 
Clinical and radiographic analysis 
- Pulmonary symptoms that include nodular or cavitary opacities on chest radiograph; 
multifocal bronchiectasis with multiple small nodules on a high resolution computed 
tomography (HRCT) scan; lack of abnormalities suggestive for other disease. 
Microbiologic analysis 
- Positive culture from at least two separate expectorated sputum samples, when initial 
sputum samples are AFB negative, consider repeated sputum AFB smears and cultures or 
positive culture results from at least one bronchial wash or lavage 
Histopathologic analysis 
- Transbronchial or other lung biopsy with mycobacterial histopathologic features 
(granulomatous inammation or AFB) and positive culture for NTM. 

Table 1. American Thoracic Society diagnostic criteria on NTM pulmonary disease (Griffith 
ei al., 2007). 

2.2 Mycobacterium cultures and isolates 

Pulmonary specimens were decontaminated using the N-acetyl-L-cysteine-sodium 
hydroxide procedure (Webb, 1962; Brasil, 2008), inoculated into Lowenstein-Jensen (LJ) 
medium (Difco, France) and incubated at 35 to 37°C in the absence of light for at least six 
weeks or until colonies appeared. Conventional procedures for distinguishing between 
organisms of the MTBC and of the NTM group included macroscopic analysis of aspect of 
colonies, which MTBC have a rough aspect resemble breadcrumbs or cauliflowers, detection 
of cord factor from MTBC by Ziehl-Neelsen stain, and the growth inhibition test in medium 
containing 0.5 mg/mL para-nitrobenzoic acid, a specific inhibitor of MTBC, all according to 
Kubica (1973). 
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2.3 Sequence analysis and phylogenetic analysis 

Sequencing of part of the 16S ribosomal RNA (16S rRNA) and 65-kilodalton heat shock 
protein (hsp65) genes was performed as described by previous publications (Kim et al., 2005; 
Shin et al., 2006). After verification of PCR products on agarose gel Seakem LE 1% 
(Cambrex, United Kingdom), these were purified using the SNAP TM gel purification kit 
(Invitrogen). The amplified products were direct sequenced by using both forward and 
reverse primers of each system and the BigDye Terminator v3.1 cycle sequencing kits 
(Applied Biosystems, Foster City, CA) and analyzed on an ABI3130 sequencer (Applied 
Biosystems, Tokyo, Japan). 

The 16S rRNA and hsp65 sequences were aligned using the multiple-alignment algorithm of 
the Bioedit software (version 7.0.9; Tom Hall [http://www.mbio.ncsu.edu/BioEdit/ 
bioedit.html]) with the closest relatives retrieved from the GenBank database across of the 
Basic Local Alignment Search Tool (BLAST, URL: http://www.ncbi.nlm.nih.gov/ BLAST/) 
and the Ribosomal Differentiation of Medical Microorganisms RIDOM database (RIDOM, 
URL: http://rdna.ridom.de/). Phylogenetic trees were constructed from the presently-defined 
16S rRNA or hsp65 sequences separately using the neighbor-joining algorithm, including 
sequences of a selection of NTM-type strains, retrieved from GenBank (accession numbers in 
parenthesis next to the species names in Figs.3 and 4). For this, we used the Kimura's 2-
parameter distance correction model and MEGA software (Version 4.0; Tamura et al. 
[http://www.megasoftware.net/]). Bootstrap analysis (1,000 repeats) was applied using the 
Tsukamurela paurometabola (KCTC 9821) sequences as an out-group. The GenBank accession 
numbers for the Mycobacterium sequences determined in this study included the following: 
FJ590454-FJ590472, HM056080- HM056113 for the 16S rRNA, and FJ536235- FJ536253, 
HM056114- HM056147 for the hsp65 gene. 

2.4 Statistical analysis 

Statistical data were derived by using the nonparametric chi-square test and the Fisher exact 
test, where appropriate. P values less than 0.05 was considered significant. Statistical 
analysis was performed with the BioEstat software (version 5.0; Ayres et al. [http: 
www.mamiraua.org.br]).  

3. Results 
3.1 Patients and NTM isolates 

Between 1999 and 2010, Mycobacterium isolates were recovered from respiratory specimens 
of 1,580 patients, that were suspected of having pulmonary TB. Among these, 92% (1,453 
cases) were infected with MTBC; from the rest (8%, 128 patients) we obtained 249 NTM 
isolates. Among the NTM-positive patients studied, 57.5% (n=73) presented at least two 
positive sputum cultures for the same species, or presented at least one bronchial wash 
positive culture and suffered therefore from infections as defined by the criteria of ATS 
(Griffith et al., 2007). The clinical significance of NTM pulmonary isolation among 1999-2010 
is shown in Fig.2.  

The remaining 55 patients could not be confirmed to suffer from NMT infection because (i) 
only a single sputum sample was collected and delivered to the laboratory (47 patients); (ii)  
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Fig. 2. Frequency of NTM isolation from clinical pulmonary specimens of patients from Pará 
State, Brazil, 1999-2010. 

one sample was culture-positive and the others were culture-negative (five cases) or (iii) 
NTM were found in some patients who were also TB-positive (three patients). Distribution 
of species according clinical relevance and years of isolation is show in Tab.2 and Fig.3. 
 

Species 
Clinical relevant Not relevant Total 

Patients Isolates Patients Isolates Patients Isolates 
M. massiliense 20 39 8 8 28 47 
M. simiae complex 14 44 5 5 19 49 
M. intracellulare 11 32 6 6 17 38 
M. avium 10 28 12 12 22 40 
M. bolletii 4 14 0 0 4 14 
M. abscessus 3 8 1 1 4 9 
M. colombiense 3 9 2 2 5 11 
M. kansasii 2 3 0 0 2 3 
M. simiae 2 4 1 1 3 5 
M. fortuitum 1 6 18 18 19 24 
M. scrofulaceum 1 3 0 0 1 3 
M. szulgai 1 2 0 0 1 2 
M. terrae 1 2 0 0 1 2 
M. parascrofulaceum 0 0 1 1 1 1 
M. smegmatis 0 0 1 1 1 1 

Total 73 194 55 55 128 249 

Table 2. Clinical significance of NTM isolated in Pará State, Brazil, 1999-2010. 
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Fig. 3. Frequency of isolation of nontuberculous Mycobacterium species between the 1999-
2003 and 2004-2010 periods in Pará State, Brazil. 

Among the 73 patients with bacteriological ATS criteria for NMT infection, 64.4% (n=47; p = 
0,03) were females and more detailed analysis of their treatment history revealed that 72 had 
previously been unsuccessfully treated for TB, using the first-line multidrug therapy 
scheme; one patient had been diagnosed as suffering from allergic bronchitis and therefore 
submitted to corticosteroid therapy. After confirmation of NTM infection, 70 patients were 
submitted to a daily regimen of clarithromycin (500-1,000 mg) and ethambutol (25 mg/kg) 
for 12 months. No therapy information was available for the patient infected with M. 
fortuitum and for the two cases with M. kansasii. Treatment outcome was not available for all 
cases but patients infected with members of the M. simiae complex did not present clinical 
improvement and at the end of our study period, one had died due to progression of 
disease. 

All of the patients described above presented respiratory complaints consistent with TB 
while additional symptoms were observed (Table 3). Bronchiectasis sequelae occasionally 
associated with hemoptysis in patients infected with M. abscessus (n=1), M. bolletii (n=2), M.  
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Species 
Gender

Clinical characteristics Total 
Male Female

M. massiliense 6 14 chronic cough (20); sputum (20); chest pain 
(20); hemoptysis (5); dyspnea; loss weight (3) 20 

M. simiae complex 4 10 

chronic cough (14); sputum (14); chest pain 
(14) weight loss (14); fever (3); hemoptysis (10); 
malaise (14); dyspnea (3); down syndrome (1); 
fatigue (2) 

14 

M. intracellulare 5 6 chronic cough (11); sputum (11); chest pain (3) 11 

M. avium 2 8 
chronic cough (10); sputum (10); chest pain 
(10); HIV (1); gastroesophageal reflux disease 
(1) 

10 

M. bolletii 3 1 chronic cough (4); hemoptysis (2); decreased 
lung volume (1); fever (1); loss weight (1) 4 

M. abscessus 1 2 
chronic cough (3); sputum (3); hemoptysis (1); 
dyspnea (1); corticosteroid-
immunosuppressed (1) 

3 

M. colombiense 2 1 chronic cough (3); chest pain (3) 3 

M. kansasii 1 1 chronic cough (2); chest pain (2) 2 

M. simiae 0 2 chronic cough (2); chest pain (2) 2 

M. fortuitum 1 0 chronic cough (1); chest pain (1) 1 

M. scrofulaceum 0 1 chronic cough (1); chest pain (1) 1 

M. szulgai 0 1 chronic cough (1); chest pain (1) 1 

M. terrae 1 0 chronic cough (1); chest pain (1) 1 

Table 3. Clinical characteristics of patients with NTM pulmonary infection from Pará State, 
Brazil, 1999-2010. 

massiliense (n=5) and M. simiae complex (n=10) while chronic cough was observed among 
patients, independent of the infecting Mycobacterium species. The interval between the onset 
of signs and symptoms and a definitive diagnosis of NTM infection was greater than 12 
months, being more pronounced in cases with M. simiae complex isolates, reporting the 
presence of symptoms for at least 24 months. 

3.2 NTM Identification on the genetic level 

Based on 16S rRNA gene analysis, the majority of the NTM species isolated from patients 
could be grouped into three clades, containing sequences from either M. avium, M. chelonae 
or M. simiae complexes (Fig. 4). 
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fortuitum and for the two cases with M. kansasii. Treatment outcome was not available for all 
cases but patients infected with members of the M. simiae complex did not present clinical 
improvement and at the end of our study period, one had died due to progression of 
disease. 

All of the patients described above presented respiratory complaints consistent with TB 
while additional symptoms were observed (Table 3). Bronchiectasis sequelae occasionally 
associated with hemoptysis in patients infected with M. abscessus (n=1), M. bolletii (n=2), M.  
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Species 
Gender

Clinical characteristics Total 
Male Female

M. massiliense 6 14 chronic cough (20); sputum (20); chest pain 
(20); hemoptysis (5); dyspnea; loss weight (3) 20 

M. simiae complex 4 10 

chronic cough (14); sputum (14); chest pain 
(14) weight loss (14); fever (3); hemoptysis (10); 
malaise (14); dyspnea (3); down syndrome (1); 
fatigue (2) 

14 

M. intracellulare 5 6 chronic cough (11); sputum (11); chest pain (3) 11 

M. avium 2 8 
chronic cough (10); sputum (10); chest pain 
(10); HIV (1); gastroesophageal reflux disease 
(1) 

10 

M. bolletii 3 1 chronic cough (4); hemoptysis (2); decreased 
lung volume (1); fever (1); loss weight (1) 4 

M. abscessus 1 2 
chronic cough (3); sputum (3); hemoptysis (1); 
dyspnea (1); corticosteroid-
immunosuppressed (1) 

3 

M. colombiense 2 1 chronic cough (3); chest pain (3) 3 

M. kansasii 1 1 chronic cough (2); chest pain (2) 2 

M. simiae 0 2 chronic cough (2); chest pain (2) 2 

M. fortuitum 1 0 chronic cough (1); chest pain (1) 1 

M. scrofulaceum 0 1 chronic cough (1); chest pain (1) 1 

M. szulgai 0 1 chronic cough (1); chest pain (1) 1 

M. terrae 1 0 chronic cough (1); chest pain (1) 1 

Table 3. Clinical characteristics of patients with NTM pulmonary infection from Pará State, 
Brazil, 1999-2010. 

massiliense (n=5) and M. simiae complex (n=10) while chronic cough was observed among 
patients, independent of the infecting Mycobacterium species. The interval between the onset 
of signs and symptoms and a definitive diagnosis of NTM infection was greater than 12 
months, being more pronounced in cases with M. simiae complex isolates, reporting the 
presence of symptoms for at least 24 months. 

3.2 NTM Identification on the genetic level 

Based on 16S rRNA gene analysis, the majority of the NTM species isolated from patients 
could be grouped into three clades, containing sequences from either M. avium, M. chelonae 
or M. simiae complexes (Fig. 4). 
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Fig. 4. Relationships between sequences from the type strains and the NTM isolated 
presently, inferred from partial 16S rRNA gene. Phylogenetic tree was constructed by 
neighbor-joining method and Kimura's 2-parameter distance correction model. The support 
of each branch, as determined from 1000 bootstrap samples, is indicated by the value at each 
node (as a percentage). T. paurometabola KCTC 9821 was used as outgroup. 

Upon sequence analysis of part of the hsp65 gene, we observed a higher genetic diversity 
than that of the 16S rRNA gene; nonetheless, the phylogenetic tree based on hsp65 gene 
sequence analysis had the same global topology as that based on 16S rRNA gene (Fig. 5).  

Pulmonary Nontuberculous Mycobacterial Infections in the  
State of Para, an Endemic Region for Tuberculosis in North of Brazil 

 

45 

 M. colombiense (EU239785)
 IEC17

 IEC19
 IEC20

 IEC15
 IEC18

 IEC38
 IEC13 IEC14

 M. avium (DQ284768)
 IEC16

 IEC7
 IEC37
 IEC11

 M. intracellulare (DQ284774)
 IEC6
 IEC8
 IEC9 IEC10

M. avium complex

 IEC30
 IEC29

 IEC26 IEC27
 IEC25

 IEC28 IEC31
 IEC32

 IEC33
 IEC34

M. simiae complex

 IEC5
 M. scrofulaceum (AY299138)

 IEC23
 M. szulgai (AY299141)

 IEC36
 IEC12

 M. simiae (DI090710)
 IEC4

M. simiae complex

 M. kansasii (AY299189)
 IEC1 IEC2

 M. terrae (AY299142)
 IEC35

 P16
 P18
 P17

 P19
 M. fortuitum (AY373455)

M. fortuitum complex

 M. abscessus (EF486338)
 P02

 P01
 M. massiliense (EF486339)
 P07 P08 P09 P10 P11 P12 P13 P14 P15

 P06
 M. bolletii (FJ607778)
 P03 P04 P05

M. chelonae complex

 T. paurometabola (AY299165)

48

32

100

100

77

95

88

93

76
82

100

100

50

100

29

31

91
100

76
97

99

99

94

75
90

99

95

55

77

73

45

77

97

89

52
81

65

52

27

28

37

99

52

48
59

27

10

6

0.01  
Fig. 5. Relationships between sequences from the type strains and the NMT isolated 
presentlty, as inferred from partial hsp65 sequences. Phylogenetic tree was constructed as 
described above. 
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Among the 249 infectious isolates, 200 NMT sequences, derived from 108 patients, had 
already been described elsewhere and characteristic for 14 NMT species, the other 49 
sequences derived from 19 cases were unpublished in public databases and all 
phylogenetically classified into the M. simiae complex. 

4. Discussion 
This study demonstrates that among 1,453 cases that were diagnosed between 1999 and 2010 
as suffering from pulmonary TB, presence of NTM was observed in 128 (8%) of these and 
infection with such species proven to cause disease in 73 cases (5%). It was observed a 
steady increase in the number of NTM isolates during the study period, which was more 
pronounced from 2004 on, when an increase in the demand of culture for AFB at the 
Evandro Chagas Institute was the case. This latter could be due either to the increase of the 
physicians’ sensitivity to occurrence of NTM infections in this region and/or to an increase 
of infection with NMT of the population. 

In this study, significantly more females were infected with NTM, and this is contrary to 
most published data, presenting males as the major risk group for pulmonary NMT disease 
(Marras & Daley, 2002). However, some recent reports also demonstrated a female 
predominance (Freeman et al., 2007; Cassid et al., 2009; Prevot et al., 2010; Wintrop et al., 
2010), in concordance with the recent data of Chan & Iseman (2010), describe a higher 
immune susceptibility of women to NTM pulmonary disease. In addition, when stratifying 
to the NMT species level, it was observed that gender associated infection was even more 
pronounced in the case of M. massiliense (70% females), M. simiae complex (71%) and M. 
avium (66%). Griffith et al. (2003) found a predominance of females (65%) among 154 cases of 
pulmonary disease by RGM, while descriptions of particular forms of pulmonary disease 
caused by MAC in women have been reported (Wallace, 1994; Reich & Johnson, 1995). 
Further studies are needed to elucidate the reasons for female susceptibility. Roughly 40% 
(n=55) of the patients with NTM-positive cultures did not meet the diagnostic criteria for 
NTM pulmonary infection but this does not necessarily mean that the presence of NMT is 
not the cause of disease. Unfortunately, due to lack of follow-up of patients, it cannot 
confirm this presently. There is little known about the pathophysiology of NTM-related 
lung disease what makes it difficult to be certain that colonization is not an indolent or even 
a slowly-progressive infection. Therefore, such cases need to remain under observation and 
seek expert consultation (Griffith et al., 2007). 

Among the cases with confirmation of NMT infection as a cause of disease, mostly, previous 
diagnosis and treatment of TB was observed, none demonstrating improvement following 
treatment. Misdiagnosis of NTM infections as caused by members of the MTBC leads to 
unsuccessful treatment with anti-TB drugs and because clinicians experiment with various 
TB therapies without considering a culture-based test, there is a considerable delay in 
detection of NTM. This is even more a matter of concern in high prevalence countries of TB 
such as Brazil, where mostly, symptomatic patients with sputum smear positive for acid-fast 
bacilli are treated with anti-TB drugs without being testing for NTM-related disease, except 
when co-infected with HIV (Brasil, 2005). 

In Brazil, it was common until 2009, to start second line treatment without performing 
culture test for NTM, when no improvement during the first round of TB treatment was 
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observed. The high level of pulmonary NTM that was misdiagnosed as TB strongly suggests 
the need for a different strategy of TB control in the state of Para.  

In most countries, NTM-related disease, unlike TB, do not need to be reported unless they 
are healthcare-associated infections. Therefore, information on the frequency and diversity 
of NTM infections are usually obtained from laboratory records and surveillance studies 
(Marras et al., 2007; Parrish et al., 2008). To determine the true epidemiological status of 
NTM pulmonary disease, well designed population-based studies are needed. However, the 
financial burden on public health care system in developing countries makes it difficult to 
perform such surveillance studies. Therefore, laboratory procedures such as the 
introduction of both liquid and solid culture systems and use of molecular methods such as 
PCR restriction analysis (PRA) in reference laboratories could be an alternative for more 
knowledge and improvement of diagnose accuracy in those regions.  

Sequence analysis has contributed to the recent description of several new Mycobacterium 
species and more precise identification and taxonomy of members of this genus. Genotypic 
taxonomy is typically based on the detection of highly conserved regions within the genome 
that harbor hypervariable sequences in which species-specific deletions, insertions, or 
replacements of single nucleotides are present in 16S rRNA, hsp65 gene and more recently 
on a fragment of the gene coding for the beta sub-unit of RNA polymerase (rpoB) are also 
contributing to this field, mostly for RGM (da Costa et al., 2009; da Costa et al, 2010). Several 
amplification molecular methods, have been proposed to correct NTM identification, 
including specific DNA probes (AccuProbe: GenProbe, Inc., San Diego, CA, U.S.A) and PRA 
method based on 16S rRNA (Domenech et al., 1994), 16S-23S rRNA internal transcribed 
spacer (ITS) (Roth et al., 1998), hsp65 (Telenti et al., 1993), rpoB (Lee et al., 2000), cold-shock 
protein gene (dnaJ) (Takewaki et al., 1994), DNA repair protein gene (recA) (Blackwood et 
al., 2000) and elongation factor Tu gene (tuf) (Shin et al., 2009), but all have limitations as the 
variety of mycobacteria to be identified (da Costa et al., 2010a, b). 

Based on the 16S rRNA and hsp65 nucleotide sequences, we observed that the most frequent 
NTM isolates from our pulmonary samples were those of the M. avium, M. chelonae and M. 
simiae complexes. The most common NTM were M. massiliense, M. intracellulare, followed by 
Mycobacterium sp. from M. simiae complex. When compared with reports on NMT infections 
observed in other studies reported on Brazilian NTM cases, the species diversity and 
frequency is quite particular to the Para State, suggesting that environmental characteristics 
as temperature, pH and substrate composition may influence the geographical distribution 
of species. Our findings are in concordance with the fact that isolates of the M. simiae 
complex are rarely observed in other regions of Brazil. 

There are few publications describing NTM in the Amazon region or Brazil. Barreto and 
Campos (2000) found 35 patients with NTM and showed that isolates of the M. avium 
complex, M. terrae and M. fortuitum were most common in samples collected between 1994 
and 1999 in North of Brazil. A study that evaluated respiratory samples of non-indigenous 
and indigenous patients from Amazonas State with suspected pulmonary TB identified 19 
patients with NTM infection, but the study did not report the identity of the isolates at the 
species level (Santos et al., 2006). A recent study by da Costa et al. (2009), showed that the M. 
chelonae complex, which includes the M. massiliense species, is the most frequent cause of 
pulmonary infections by RGM in Pará State, Amazon region of Brazil, similar to our 
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Among the 249 infectious isolates, 200 NMT sequences, derived from 108 patients, had 
already been described elsewhere and characteristic for 14 NMT species, the other 49 
sequences derived from 19 cases were unpublished in public databases and all 
phylogenetically classified into the M. simiae complex. 

4. Discussion 
This study demonstrates that among 1,453 cases that were diagnosed between 1999 and 2010 
as suffering from pulmonary TB, presence of NTM was observed in 128 (8%) of these and 
infection with such species proven to cause disease in 73 cases (5%). It was observed a 
steady increase in the number of NTM isolates during the study period, which was more 
pronounced from 2004 on, when an increase in the demand of culture for AFB at the 
Evandro Chagas Institute was the case. This latter could be due either to the increase of the 
physicians’ sensitivity to occurrence of NTM infections in this region and/or to an increase 
of infection with NMT of the population. 

In this study, significantly more females were infected with NTM, and this is contrary to 
most published data, presenting males as the major risk group for pulmonary NMT disease 
(Marras & Daley, 2002). However, some recent reports also demonstrated a female 
predominance (Freeman et al., 2007; Cassid et al., 2009; Prevot et al., 2010; Wintrop et al., 
2010), in concordance with the recent data of Chan & Iseman (2010), describe a higher 
immune susceptibility of women to NTM pulmonary disease. In addition, when stratifying 
to the NMT species level, it was observed that gender associated infection was even more 
pronounced in the case of M. massiliense (70% females), M. simiae complex (71%) and M. 
avium (66%). Griffith et al. (2003) found a predominance of females (65%) among 154 cases of 
pulmonary disease by RGM, while descriptions of particular forms of pulmonary disease 
caused by MAC in women have been reported (Wallace, 1994; Reich & Johnson, 1995). 
Further studies are needed to elucidate the reasons for female susceptibility. Roughly 40% 
(n=55) of the patients with NTM-positive cultures did not meet the diagnostic criteria for 
NTM pulmonary infection but this does not necessarily mean that the presence of NMT is 
not the cause of disease. Unfortunately, due to lack of follow-up of patients, it cannot 
confirm this presently. There is little known about the pathophysiology of NTM-related 
lung disease what makes it difficult to be certain that colonization is not an indolent or even 
a slowly-progressive infection. Therefore, such cases need to remain under observation and 
seek expert consultation (Griffith et al., 2007). 

Among the cases with confirmation of NMT infection as a cause of disease, mostly, previous 
diagnosis and treatment of TB was observed, none demonstrating improvement following 
treatment. Misdiagnosis of NTM infections as caused by members of the MTBC leads to 
unsuccessful treatment with anti-TB drugs and because clinicians experiment with various 
TB therapies without considering a culture-based test, there is a considerable delay in 
detection of NTM. This is even more a matter of concern in high prevalence countries of TB 
such as Brazil, where mostly, symptomatic patients with sputum smear positive for acid-fast 
bacilli are treated with anti-TB drugs without being testing for NTM-related disease, except 
when co-infected with HIV (Brasil, 2005). 

In Brazil, it was common until 2009, to start second line treatment without performing 
culture test for NTM, when no improvement during the first round of TB treatment was 
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observed. The high level of pulmonary NTM that was misdiagnosed as TB strongly suggests 
the need for a different strategy of TB control in the state of Para.  

In most countries, NTM-related disease, unlike TB, do not need to be reported unless they 
are healthcare-associated infections. Therefore, information on the frequency and diversity 
of NTM infections are usually obtained from laboratory records and surveillance studies 
(Marras et al., 2007; Parrish et al., 2008). To determine the true epidemiological status of 
NTM pulmonary disease, well designed population-based studies are needed. However, the 
financial burden on public health care system in developing countries makes it difficult to 
perform such surveillance studies. Therefore, laboratory procedures such as the 
introduction of both liquid and solid culture systems and use of molecular methods such as 
PCR restriction analysis (PRA) in reference laboratories could be an alternative for more 
knowledge and improvement of diagnose accuracy in those regions.  

Sequence analysis has contributed to the recent description of several new Mycobacterium 
species and more precise identification and taxonomy of members of this genus. Genotypic 
taxonomy is typically based on the detection of highly conserved regions within the genome 
that harbor hypervariable sequences in which species-specific deletions, insertions, or 
replacements of single nucleotides are present in 16S rRNA, hsp65 gene and more recently 
on a fragment of the gene coding for the beta sub-unit of RNA polymerase (rpoB) are also 
contributing to this field, mostly for RGM (da Costa et al., 2009; da Costa et al, 2010). Several 
amplification molecular methods, have been proposed to correct NTM identification, 
including specific DNA probes (AccuProbe: GenProbe, Inc., San Diego, CA, U.S.A) and PRA 
method based on 16S rRNA (Domenech et al., 1994), 16S-23S rRNA internal transcribed 
spacer (ITS) (Roth et al., 1998), hsp65 (Telenti et al., 1993), rpoB (Lee et al., 2000), cold-shock 
protein gene (dnaJ) (Takewaki et al., 1994), DNA repair protein gene (recA) (Blackwood et 
al., 2000) and elongation factor Tu gene (tuf) (Shin et al., 2009), but all have limitations as the 
variety of mycobacteria to be identified (da Costa et al., 2010a, b). 

Based on the 16S rRNA and hsp65 nucleotide sequences, we observed that the most frequent 
NTM isolates from our pulmonary samples were those of the M. avium, M. chelonae and M. 
simiae complexes. The most common NTM were M. massiliense, M. intracellulare, followed by 
Mycobacterium sp. from M. simiae complex. When compared with reports on NMT infections 
observed in other studies reported on Brazilian NTM cases, the species diversity and 
frequency is quite particular to the Para State, suggesting that environmental characteristics 
as temperature, pH and substrate composition may influence the geographical distribution 
of species. Our findings are in concordance with the fact that isolates of the M. simiae 
complex are rarely observed in other regions of Brazil. 

There are few publications describing NTM in the Amazon region or Brazil. Barreto and 
Campos (2000) found 35 patients with NTM and showed that isolates of the M. avium 
complex, M. terrae and M. fortuitum were most common in samples collected between 1994 
and 1999 in North of Brazil. A study that evaluated respiratory samples of non-indigenous 
and indigenous patients from Amazonas State with suspected pulmonary TB identified 19 
patients with NTM infection, but the study did not report the identity of the isolates at the 
species level (Santos et al., 2006). A recent study by da Costa et al. (2009), showed that the M. 
chelonae complex, which includes the M. massiliense species, is the most frequent cause of 
pulmonary infections by RGM in Pará State, Amazon region of Brazil, similar to our 
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observations. Unlikely, in Brazilian southeast, M. kansasii and M. avium represented the most 
frequent type of NTM associated with pulmonary infections between 1991 and 1997 in the 
state of São Paulo (Ueki et al., 2005; Zamarioli et al. 2008; Pedro et al., 2008). 

In contrast to other parts of the world, the species variability found in the present study is 
different. In countries from Latin America like Colombia, MAC, M. chelonae and M. fortuitum 
were the NTM isolated with more frequency (León, 1998), while MAC was most frequently 
isolated from argentinian HIV patients (Di Lonardo, 1995). MAC and M. kansasii were 
predominant in North America, some countries of Europe and South Africa (Griffith et al., 
2007). In Asia, MAC, M. abscessus and M. chelonae were frequently isolated from pulmonary 
samples (Simons et al., 2011). The knowledge on diversity and epidemiology of species 
NTM associated to pulmonary in specific region is important because either: (i) it allows the 
adequate choice of laboratory methods for diagnosis (ii) it allows to recognize the species 
associated to disease; and (iii) it supplies information that will serve to improve the 
organization of health service net to attend these patients. 

Perhaps the most important finding of this study was the identification of M. simiae complex 
members as the predominant cause of pulmonary infections. In fact, roughly 20% (n=16) of 
the pulmonary infections were caused by members of the M. simiae complex and among 
these, 14 belonged to an unidentified taxon (n=14). Currently, this taxonomic group is made 
up of 17 species including M. simiae, M. genavense, M. intermedium, M. interjectum, M. 
lentiflavum, M. triplex, M. heidelbergense, M. kubicae, M. palustre, M. montefiorense, M. 
florentinum, M. sherrisii, M. parmense, M. parascrofulaceum, M. saskatchewanense, M. stomatepiae 
and M. europaeum (Tortoli, 2003, 2006; Tortoli et al., 2010). However, among these species, 
only M. simiae is recognized as a real cause of pulmonary infections, as reported in areas 
such as the Southwest of the United States, Israel and Cuba (Griffith et al., 2007). It is 
estimated that 9 to 21% of the M. simiae isolates from pulmonary specimens have clinical 
relevance (Rynkiewicz et al. 1998). The findings of this study suggest that members of this 
group may have pathogenic potential, but further studies are required to assess the 
characteristics of these isolates, including details on predisposing conditions from patients, 
as well as the drug susceptibility these NTM. 

5. Conclusion 
In conclusion, although our study is not necessarily representative for the whole Amazon 
region, it clearly demonstrates the importance of NTM pulmonary infections in this region. 
Our data also show that a variety of NTM species are involved, and that there is need for 
bacteriologic diagnosis in patients with TB, especially in patients who have failed TB 
treatment. We have shown that the lack of species identification in a significant subset 
(8.0%) of patients with a presumptive diagnosis of TB in a regional reference center can lead 
to misdiagnosis and may be followed by inadequate treatment. 
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observations. Unlikely, in Brazilian southeast, M. kansasii and M. avium represented the most 
frequent type of NTM associated with pulmonary infections between 1991 and 1997 in the 
state of São Paulo (Ueki et al., 2005; Zamarioli et al. 2008; Pedro et al., 2008). 

In contrast to other parts of the world, the species variability found in the present study is 
different. In countries from Latin America like Colombia, MAC, M. chelonae and M. fortuitum 
were the NTM isolated with more frequency (León, 1998), while MAC was most frequently 
isolated from argentinian HIV patients (Di Lonardo, 1995). MAC and M. kansasii were 
predominant in North America, some countries of Europe and South Africa (Griffith et al., 
2007). In Asia, MAC, M. abscessus and M. chelonae were frequently isolated from pulmonary 
samples (Simons et al., 2011). The knowledge on diversity and epidemiology of species 
NTM associated to pulmonary in specific region is important because either: (i) it allows the 
adequate choice of laboratory methods for diagnosis (ii) it allows to recognize the species 
associated to disease; and (iii) it supplies information that will serve to improve the 
organization of health service net to attend these patients. 

Perhaps the most important finding of this study was the identification of M. simiae complex 
members as the predominant cause of pulmonary infections. In fact, roughly 20% (n=16) of 
the pulmonary infections were caused by members of the M. simiae complex and among 
these, 14 belonged to an unidentified taxon (n=14). Currently, this taxonomic group is made 
up of 17 species including M. simiae, M. genavense, M. intermedium, M. interjectum, M. 
lentiflavum, M. triplex, M. heidelbergense, M. kubicae, M. palustre, M. montefiorense, M. 
florentinum, M. sherrisii, M. parmense, M. parascrofulaceum, M. saskatchewanense, M. stomatepiae 
and M. europaeum (Tortoli, 2003, 2006; Tortoli et al., 2010). However, among these species, 
only M. simiae is recognized as a real cause of pulmonary infections, as reported in areas 
such as the Southwest of the United States, Israel and Cuba (Griffith et al., 2007). It is 
estimated that 9 to 21% of the M. simiae isolates from pulmonary specimens have clinical 
relevance (Rynkiewicz et al. 1998). The findings of this study suggest that members of this 
group may have pathogenic potential, but further studies are required to assess the 
characteristics of these isolates, including details on predisposing conditions from patients, 
as well as the drug susceptibility these NTM. 

5. Conclusion 
In conclusion, although our study is not necessarily representative for the whole Amazon 
region, it clearly demonstrates the importance of NTM pulmonary infections in this region. 
Our data also show that a variety of NTM species are involved, and that there is need for 
bacteriologic diagnosis in patients with TB, especially in patients who have failed TB 
treatment. We have shown that the lack of species identification in a significant subset 
(8.0%) of patients with a presumptive diagnosis of TB in a regional reference center can lead 
to misdiagnosis and may be followed by inadequate treatment. 
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1. Introduction 
Tuberculosis (TB) is an infectious and transmissible disease caused by Mycobacterium 
tuberculosis and closely related mycobacterial species (M. bovis, M. africanum, and M. microti). 
These species, obligate pathogens, compose what is known as the M. tuberculosis complex. 
Nontuberculous mycobacterial (NTM) species are mycobacterial species other than those 
belonging to the Mycobacterium tuberculosis complex. Nontuberculous mycobacteria are 
generally free-living organisms that are ubiquitous in the environment. There have been 
more than 140 NTM species identified. In 1959, Runyon proposed a classification of NTM 
into four major groups, based on growth rate and colony pigmentation (Runyon EH , 1959). 

There is an increasing number of clinical isolates of NTM in many countries and growing 
awareness of their ability to cause disease (American Thoracic Society [ATS], 2007). 
Nontuberculous mycobacteria are capable of causing a wide range of infections in humans 
with pulmonary NTM disease being the most common, especially in patients with pre-
existent pulmonary disease (ATS, 2007). They are mainly opportunistic pathogens that can 
occasionally cause severe disseminated diseases, especially in patients with systemic 
impairment of immunity. Identification of specific species of NTM is important because of 
the variation in antimicrobial susceptibility and treatment options.  

Nontuberculous mycobacteria can be divided into slowly growing and rapidly growing 
mycobacteria (RGM). The former constitute members of the Runyon group I to group III, 
whereas the latter are equivalent to the members of Runyon group IV. (Table 1) (Runyon 
E, 1965) Pulmonary disease is primarily caused by M. avium complex (MAC) and M. 
kansasii (ATS, 2007). Other species include M. abscessus, M. fortuitum, M. xenopi, M. 
malmoense, M. szulgai, and M. simiae. In contrast to M. tuberculosis, isolation of NTM does 
not necessarily mean that patient has the disease though it can be isolated transiently 
from respiratory specimens. In order to assist clinicians with the difficult task of trying to 
determine if a given NTM species is causing disease to a patient, a set of criteria utilizing 
clinical, radiographic, and microbiologic parameters has been developed. Furthermore, 
the degree of evidence to support the choice of treatment is limited because a few clinical 
trials have been conducted, especially for disease due to less prevalent NTM species.  
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Mycobacterium tuberculosis complex

                 M. tuberculosis

                 M. bovis

                 M. africanum

                 M. microti

Slowly growing mycobacteria

     Runyon Group I, Photochromogenes

                 M. kansasii

                 M. marinum

     Runyon Group II, Scotochromogenes

                 M. gordonae

                 M. scrofulaceum

     Runyon Group III, Non-chromogenes

                 M. avium complex – M. avium, M. intracellulare

                 M. terrae complex

                 M. ulcerans

                 M. xenopi

                 M. simiae

                 M. malmoense

                 M. szulgai

                 M. asiaticum

Rapidly growing mycobacteria

     Runyon group IV

                 M. fortuitum

                 M. chelonae

                 M. abscesus

Table 1. Classification of mycobacterial species commonly causing human disease 

Current guidelines are mainly based on case reports and clinical experience (ATS 2007, 
British thoracic society [BTS], 1999) 

2. Epidemiology and prevalence 
Tuberculosis still remains an important public health problem worldwide, with more than 9 
million new cases of tuberculosis reported every year and decrease of incidence of less than 
1% per year. On the other hand, in the industrialized world, the incidence of M. tuberculosis 

 
Nontuberculous Mycobacterial Pulmonary Disease 

 

57 

infections has been decreasing, while the incidence of NTM pulmonary infections is 
increasing. 

Although both M. tuberculosis and NTM cause chronic lung infections, only M. tuberculosis 
spreads from person to person by inhalation of organisms expectorated into the air. 
Nontuberculous mycobacteria infections are not considered contagious. Since reporting 
NTM pulmonary disease to public health departments is not obligatory, the exact number of 
the infected remains unknown. An increase in the frequency of NTM infections and NTM 
pulmonary disease has been indicated in a number of worldwide surveys and population-
based studies during the last few decades (AST, 2007; Maras et al, 2007; Iseman & Marras, 
2008; Henry et al, 2004; Thomson & Yew, 2009).  

Postulated reasons for this increase include a rise in prevalence of HIV infections and other 
acquired immunocompromised states, increased awareness of these organisms as potential 
pathogens, a better understanding of clinical-pathological relationship between host and 
pathogen, advances in methods of detection of the organisms, an aging population (as this is 
often a disease of the elderly), increased survival of patients with predisposing conditions 
such as cystic fibrosis and COPD, and increased environmental exposure (ATS, 2007; 
Thomson & Yew, 2009). 

Nontuberculous mycobacteria disease is not a reportable condition in most countries 
because it is not considered a public health concern on account of unknown or non-existing 
evidence of human-to-human transmission (ATS, 2007). However, the organisms are 
ubiquitous in the environment, oligotrophic  and many NTM pathogens have been isolated 
from potable water where they can be found forming biofilms (Falkingham et al, 2001). 
Mycobacterium avium complex (MAC), Mycobacterium kansasii and RGM such as M. abscessus 
and M. fortuitum constitute the main species associated with human pulmonary disease. 
(ATS, 2007; Thomsen et al, 2002; Martin-Casabona et al, 2004). It has been shown in multiple 
already published studies that geography has a prominent role in the epidemiology of NTM 
pulmonary disease. Thus, M. xenopi is relatively more common in the south-east and in the 
west of Europe (Marusic et al, 2009; van Ingen et al, 2008; Hanry et al, 2004; Dailloux et al, 
2006) and in Canada (Varadi & Marras, 2009), while M. malmoense is relatively more 
common in the north of Europe (Abgueguen et al, 2010; Petrini, 2006; Thomsen et al, 2002; 
Henry et al, 2004). 

3. Pulmonary disease characteristics and population at risk 
The symptoms of NTM pulmonary disease are variable and nonspecific. Common 
symptoms are chronic or recurring cough, while others such as sputum production, fatigue, 
malaise, dyspnea, fever, hemoptysis and weight loss become more prevalent with advanced 
NTM lung disease.  

Pulmonary NTM disease has three distinct presentations: cavitary disease (resembling 
conventional tuberculosis) (Figure 1) (Moore, 1993; Patz et al, 1995; Jeong et al, 2004), 
nodular-bronchiectatic disease (Figure 2) commonly affecting the right middle lobe and 
lingula (Moore, 1993; Patz et al, 1995; Jeong et al 2004; Reich & Johnson, 1992) and the rarest 
form - hypersensitivity pneumonitis. There are mixed disease forms with infiltrates, nodes, 
bronchiectasis and interstitial changes (Figure 3).  
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Fig. 1. Extensive infiltrate with cavitation in the left lung 

 
Fig. 2. Nodular-bronchiectatic disease in the middle lobe and lingula 

 
Fig. 3. Mixed disease form; infiltrate, nodes, bronchiectasis, “ground glass” interstitial 
pattern and tiny centrilobular nodes in left lower lobe 

HIV-positive and other immunodeficient patients, on the other hand, often have hilar and 
mediastinal lymphadenopathy with systemic spread but without pulmonary infiltrate (dos 
Santos et al, 2008). Patients with NTM pulmonary disease often have predisposing 
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structural lung disease, i.e. chronic obstructive pulmonary disease, cystic fibrosis, 
bronchiectasis, pneumoconiosis, prior tuberculosis, alveolar proteinosis, or chronic 
aspiration (ATS, 2007; Field & Cowie, 2006).  

Among women with pulmonary disease, there is often constellation of physical findings 
such as bronchiectasis, thin body habitus and mitral valve prolapse (Prince et al, 1989; Kim 
et al, 2008). The reason for this association has not been determined and no significant 
immunological abnormality has been identified.  

4. Diagnosis of NTM pulmonary infections 
Patients seeking treatment who have respiratory samples positive for acid-fast bacilli 
(AFB) present a public health dilemma. Although Mycobacterium tuberculosis and NTM 
cause chronic lung infections, only tuberculosis (TB) spreads from person to person by 
inhalation of organisms expectorated into the air, while NTM infections are acquired 
directly from the environment. Diagnosing mycobacterial infections is often quite a 
challenge. Under the microscope, NTM and M. tuberculosis appear similar. Careful 
laboratory investigations must be performed to differentiate them. The definitive 
identification of mycobacterial species, which can take several weeks, and the inability to 
quickly distinguish NTM from TB on clinical grounds makes it difficult for public health 
officials to make decisions regarding contact investigations and isolation. Mycobacterial 
pulmonary disease usually progresses slowly, and clinical diagnosis starts with the 
exclusion of other possible causes. Differential diagnosis includes tuberculosis and fungal 
infection, especially the classical form of NTM infection which mimics M. tuberculosis 
infection. The development and use of molecular techniques to differentiate between the 
mycobacteria strains made it possible to solve some of these problems. The first step in 
diagnosing an NTM infection is suspecting an underlying cause of the symptoms or 
radiographic findings. Chronic cough (lasting >3 weeks), fatigue, night sweats, and 
weight loss should make clinicians consider mycobacterial infections. Even though 
dyspnoea is usually more related to underlying lung disease, occasionally patients with 
the nodular/bronchiectatic disease can have bronchiolitis and air trapping associated 
with dyspnoea. Haemoptysis occurs in more advanced lung disease, especially with 
cavitations and advanced bronchiectasis. A chest radiograph, or more likely, high 
resolution computed tomography (HRCT), could show some radiomorphologic changes 
to be the first sign of presence of an NTM infection. Respiratory specimens should be 
obtained and sent for mycobacterial culture.  

4.1 Imaging of NTM pulmonary infections 

A chest radiograph is the first method to be used when suspecting an NTM pulmonary 
disease but it may be adequate for evaluating only patients with fibrocavitary disease. It is 
widely available and convenient and exposes patient to a very low irradiation dose. On the 
other hand, chest radiograph is far less sensitive and specific than HRCT, especially in 
detection of bronchiectasis, small nodules and other interstitial lung changes. Since 
nodular/bronchiectatic form of pulmonary NTM infection is not rare, HRCT should be used 
in patients with high clinical suspicion even if chest x-ray finding is normal. In case of 
clinical suspicion of hypersensitivity pneumonitis, HRCT is definitively the only method of 
choice. Even though some differences have been reported, it is impossible to differentiate 
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the nodular/bronchiectatic disease can have bronchiolitis and air trapping associated 
with dyspnoea. Haemoptysis occurs in more advanced lung disease, especially with 
cavitations and advanced bronchiectasis. A chest radiograph, or more likely, high 
resolution computed tomography (HRCT), could show some radiomorphologic changes 
to be the first sign of presence of an NTM infection. Respiratory specimens should be 
obtained and sent for mycobacterial culture.  

4.1 Imaging of NTM pulmonary infections 

A chest radiograph is the first method to be used when suspecting an NTM pulmonary 
disease but it may be adequate for evaluating only patients with fibrocavitary disease. It is 
widely available and convenient and exposes patient to a very low irradiation dose. On the 
other hand, chest radiograph is far less sensitive and specific than HRCT, especially in 
detection of bronchiectasis, small nodules and other interstitial lung changes. Since 
nodular/bronchiectatic form of pulmonary NTM infection is not rare, HRCT should be used 
in patients with high clinical suspicion even if chest x-ray finding is normal. In case of 
clinical suspicion of hypersensitivity pneumonitis, HRCT is definitively the only method of 
choice. Even though some differences have been reported, it is impossible to differentiate 
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NTM pulmonary disease from TB pulmonary disease relying on radiographic appearance 
alone. Compared with radiographic findings in TB, patients with NTM disease and 
predominantly fibrocavitary radiographic changes tend to have following characteristics: 
thin-walled cavities with less surrounding parenchymal opacity, more contiguous spread of 
disease, and production of more marked involvement of pleura over the involved area of 
the lungs (ATS, 2007). Basal pleural disease is not often found and pleural effusion is rare 
(ATS, 2007). At patients with predominantly nodular/bronchiectatic disease, the 
abnormalities on chest radiograph and HRCT are primarily found in the mid and lower 
lung field. Radiographic follow-up during the treatment should be performed using either 
chest radiograph in patients with predominantly cavitary disease, or HRCT in those with 
interstitial form of the disease. Confirmation of complete resolution and an insight into 
possible residual scarring can be done only by using HRCT. 

4.2 Laboratory features of NTM 

Using modern microbiology laboratory methods, including liquid culture media, NTM 
growth can be detected by culture from a patient’s specimens 1-3 weeks after the incubation. 
(Leitritz et al, 2001) Most rapid growing NTM will grow in 7-10 days. Slow growers can 
grow in 1-3 weeks, but may take much longer. Therefore, cultures are usually kept for 6-8 
weeks before being regarded as negative. At patients colonized with Pseudomonas aeruginosa 
or other bacterial pathogens, sputum specimens can be overgrown before NTM growth 
appears. Special decontamination methods are often necessary to reduce this overgrowth, 
but decontamination also reduces the yield of mycobacteria and persistence is required if 
there is a high clinical suspicion of NTM disease with these patients. With the recovery of an 
organism by culture, DNA probes are commercially available to identify some of the NTM 
(Tortoli et al, 2010).  

Other organisms have traditionally been identified by combination of biochemical testing, 
high-performance liquid chromatography (HPLC) and genetic sequencing of conserved 
regions. Partial sequencing of a segment of 16S ribosomal RNA has been used to identify 
those species not identified by other means. (Cloud et al, 2002, 2005) Current guidelines of 
American Thoracic Society/Infectious Diseases Society of America (ATS/IDSA) (ATS, 2007) 
state that routine testing of MAC species for antimicrobial susceptibility (other than 
clarithromycin) is generally not recommended because of the paucity evidence correlating in 
vitro and in vivo results (ATS, 2007). They do recommend clarithromycin susceptibility 
testing for new, previously untreated MAC isolates as macrolide resistance has been 
associated with a poorer outcome. It should also be performed for MAC isolates from 
patients who have relapsed from apparently successful treatment or those who have failed 
macrolide treatment (ATS, 2007). Previously untreated M. kansasii strains should be tested in 
vitro to rimfapicin only (ATS 2007) and against a panel of secondary agents if shown to be 
resistant to rimfapicin. RGM should be tested against a panel of eight antimicrobials, 
including clarithromycin, amikacin, cefoxitin, ciprofloxacin, doxycicline, linezolid, 
sulphamethoxazole and tobramycin.  

4.3 Diagnostic criteria 

Even after an NTM has been isolated and identified, the patient may still not have the 
disease because NTM can be isolated transiently from respiratory specimens. In order to 

 
Nontuberculous Mycobacterial Pulmonary Disease 

 

61 

help clinicians with the difficult task of trying to determine if a given NTM species is 
causing disease in a patient the ATS/IDSA developed a set of criteria that utilized clinical, 
radiographic, and microbiologic parameters (ATS, 2007) (Table 2).  
 

Clinical criteria 
          Compatible respiratory symptoms 
          Appropriate exclusion of other diagnoses, especially tuberculosis and mycosis 
AND 
Radiographic criteria 
          Nodular or cavity opacities on chest radiograph, or  
          a HRCT scan that shows multifocal bronchiectasis with or without 
          multiple small nodules 
AND 
Microbiological criteria  
          Positive culture results from at least two or three separately expectorated 
          sputum samples with positive or negative AFB smear, respectively 
OR 
          Positive culture results from at least one bronchial wash or lavage 
OR 
          Transbronchial or other lung biopsy with mycobacterial histopatological 
          features and one positive sputum culture for NTM  

Table 2. Summary of the ATS/IDSA criteria for diagnosis of pulmonary NTM diseases 

The significance of an isolate also varies with the species of mycobacteria. Isolation of 
mycobacteria like M. gordonae, M. flavescens, M. terrae complex or M. triviale usually indicates 
transient colonization or possible contamination of the sample. However, M. szulgai is rarely 
isolated from the environment and a single positive culture provides pathological 
significance (ATS, 2007).  

5. Treatment and prognosis of NTM pulmonary infections 
The currently used regimen for TB treatment consists of four drugs:  rifampin (RIF), 
isoniazid (INH), pyrazinamide (PZA), and ethambutol (EMB), for the duration of six to nine 
months. Treatment of pulmonary NTM infections is usually more complicated than 
treatment of tuberculosis. Drugs, administration frequency, and duration of therapy will 
vary depending on species of NTM causing the disease, extent and the site of infection. 
Some antituberculosis drugs are also active against some NTM species. However, treatment 
of most NTM species also requires administration of antibiotics that are not typically used to 
treat tuberculosis. The prognosis for NTM pulmonary disease depends on specific species 
and subspecies involved and their drugs susceptibility pattern, presence of other medical 
problems and whether or not patient can tolerate the treatment regimen. Cure rate for the 
disease caused by M. kansasii is similar to M. tuberculosis round 90%, while that for the 
disease caused by M. avium is 30-85%. Complete recovery is seldom achieved in patients 
with pulmonary M. abscessus infection (ATS, 2007).  
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help clinicians with the difficult task of trying to determine if a given NTM species is 
causing disease in a patient the ATS/IDSA developed a set of criteria that utilized clinical, 
radiographic, and microbiologic parameters (ATS, 2007) (Table 2).  
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          Compatible respiratory symptoms 
          Appropriate exclusion of other diagnoses, especially tuberculosis and mycosis 
AND 
Radiographic criteria 
          Nodular or cavity opacities on chest radiograph, or  
          a HRCT scan that shows multifocal bronchiectasis with or without 
          multiple small nodules 
AND 
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          Positive culture results from at least two or three separately expectorated 
          sputum samples with positive or negative AFB smear, respectively 
OR 
          Positive culture results from at least one bronchial wash or lavage 
OR 
          Transbronchial or other lung biopsy with mycobacterial histopatological 
          features and one positive sputum culture for NTM  
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The significance of an isolate also varies with the species of mycobacteria. Isolation of 
mycobacteria like M. gordonae, M. flavescens, M. terrae complex or M. triviale usually indicates 
transient colonization or possible contamination of the sample. However, M. szulgai is rarely 
isolated from the environment and a single positive culture provides pathological 
significance (ATS, 2007).  

5. Treatment and prognosis of NTM pulmonary infections 
The currently used regimen for TB treatment consists of four drugs:  rifampin (RIF), 
isoniazid (INH), pyrazinamide (PZA), and ethambutol (EMB), for the duration of six to nine 
months. Treatment of pulmonary NTM infections is usually more complicated than 
treatment of tuberculosis. Drugs, administration frequency, and duration of therapy will 
vary depending on species of NTM causing the disease, extent and the site of infection. 
Some antituberculosis drugs are also active against some NTM species. However, treatment 
of most NTM species also requires administration of antibiotics that are not typically used to 
treat tuberculosis. The prognosis for NTM pulmonary disease depends on specific species 
and subspecies involved and their drugs susceptibility pattern, presence of other medical 
problems and whether or not patient can tolerate the treatment regimen. Cure rate for the 
disease caused by M. kansasii is similar to M. tuberculosis round 90%, while that for the 
disease caused by M. avium is 30-85%. Complete recovery is seldom achieved in patients 
with pulmonary M. abscessus infection (ATS, 2007).  
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Diagnosing pulmonary NTM infection/disease does not equate the need for immediate 
treatment since treatment usually involves combination antibiotic therapy for 12-24 months 
and constitutes an important undertaking for the patient. Lung involvement may range in 
severity from mild clinical (indolent) infection to disease associated with extensive invasion 
or destruction of the lungs. In some cases the disease remits spontaneously. Most of the 
early studies on NTM covered MAC, M. kansasii and M. abscessus and developed diagnostic 
criteria and treatment regimens best suitable for these species. There is not enough 
knowledge about most other NTM to be certain that the diagnostic criteria are universally 
applicable for all NTM respiratory pathogens (ATS, 2007). Generally, patients respond best 
to NTM treatment first time it is administered. Therefore, it is important that patients 
initially receive a recommended multi-drug regimen (ATS, 2007).  

The British Thoracic Society (BTS) and ATS/IDSA have published guidelines for the 
management of the disease caused by NTM. Guidelines published by ATS/IDSA have been 
updated in 2007 providing an extensive review of the available literature on NTM disease 
combined with expert opinion. The recommended criteria are thus based on several smaller 
prospective non-randomized controlled studies at the US patients.  

It is very difficult to compare many different studies in pulmonary NTM disease 
considering the geographic differences in patient populations, mixture of disease types, 
severity of disease, differing species of NTM, drugs and therapy protocols used and 
different study design and analysis. The BTS guidelines are predominantly based on two 
large randomized controlled trials performed in patients of the UK and Europe (BTS, 2001). 
All of the mentioned differences are factors contributing to the significant heterogeneity of 
findings and hence the recommendations made by the Societies.  

Treatment of pulmonary disease should be considered in patients who meet clinical, 
radiological, and microbiologic criteria for NTM disease. Two main factors to consider 
regarding initiation of therapy should be pathogenicity of species and rate of disease 
progression. Therapy for NTM requires prolonged administration of multiple drugs and is 
associated with significant side effects. The decision to institute treatment in patients with 
non-cavitary disease who do not have clearly progressive pulmonary disease should be 
made carefully, after a period of clinical and radiological follow-up. The aim of therapy is a 
12-month period of negative sputum cultures.  

5.1 Specific antimicrobial treatment guidelines 

5.1.1 MAC lung disease 

Recommended treatment regimens for MAC lung disease are summarized in Table 3. There 
are still a number of controversies and unresolved questions regarding the management of 
MAC lung disease.  

First, there is no demonstrated superiority of one macrolide among the two agents 
regarding efficacy or risk of resistance. It seems that macrolides have helped improving 
treatment of MAC lung disease (Kobashi YMT, 2004) though not all studies have supported 
this (Jenkins et al, 2008).  

Second, there has also been no demonstrated superiority of one rifamycin (rifabutin or 
rifampicin) in the treatment of MAC lung disease, but because of frequent adverse events,  
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Nodular/bronchiectatic disease  

All given 3 times weekly 

Clarithromycin (1000 mg) or azithromycin 
(500 mg) + 

Rifampin (600 mg) + 

Ethambutol (25 mg/kg) 

Fibrocavitary MAC lung disease or severe 
nodular/bronchiectatic disease  

All given daily 

Clarithromycin (500–1000 mg) or 
azithromycin (250 mg) + 

Rifampin (600 mg) or  
rifabutin (150–300 mg) + 

Ethambutol (15 mg/kg) 

 
Consider adding 3-times-weekly amikacin or 
streptomycin early in therapy (e.g., for the 
first 8 weeks) 

Duration: Treat until cultures have been negative on 
therapy for 1 year. 

Table 3. Recommended treatment regimens for MAC pulmonary disease 

most experts recommend the use of rifampicin (Griffith et al, 1995) Regarding the use of 
an amynoglicoside in the initial phase of treatment, the majority of early macrolides 
studies performed in the USA included 2- to 3-month period of intermittent 
amynoglicoside. Furthermore, Kobashi has shown that sputum conversion rates, relapse 
rates and overall outcomes were better in the cohort that received amynoglicoside 
(Kobashi YMT, 2004).  

For hypersensitivity pneumonitis due to MAC, removal from environmental exposure is 
mandatory. Corticosteroids and/or anti-microbial drugs might be required in some cases 
and usually a shorter regimen of 3-6 months may be appropriate. (Hanak et al, 2006) 

5.1.2 M. kansasii lung disease 

Recommended treatment regimen for M. kansasii lung disease is summarized in Table 4. For 
susceptible strains, rifampin is the foundation of a multiple-drug regimen. Resistance to 
rifampin may develop, in which case a 3-drug regimen should be chosen on the basis of in 
vitro susceptibility testing (e.g., clarithromycin or azithromycin, moxifloxacin, ethambutol, 
sulphamethoxazole, or streptomycin) (ATS 2007). 
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Recommended treatment regimen for M. kansasii lung disease is summarized in Table 4. For 
susceptible strains, rifampin is the foundation of a multiple-drug regimen. Resistance to 
rifampin may develop, in which case a 3-drug regimen should be chosen on the basis of in 
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sulphamethoxazole, or streptomycin) (ATS 2007). 
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5.1.3 M. xenopi, M. malmoense and M. szulgai lung disease 

M. xenopi has variable drug susceptibility testing results, especially regarding the first-line 
antituberculotic agents (ATS, 2007). The clinical response to treatment does not always 
correlate well with drug susceptibility testing results. The ATS proposed regimen is a 
combination of ethambutol, rifampicin, isoniasid and clarithromycin with or without an 
initial course of streptomycin. M. malmoense can be difficult to treat. A combination of 
rifampicin and ethambutol with or without isoniasid has shown some effectiveness (BTS 
2001). M. szulgai is susceptible in vitro to most antituberculosis drugs, as well as to 
floroquinolones and macrolides (Sanchez-Alarcos et al, 2003) and a 3- or 4-drug regimen 
that includes 12 months of negative sputum cultures while on therapy is recommended 
(ATS, 2007) 
 

Rifampin 600 mg/d, + 

Isoniazid 300 mg/d, + 

Ethambutol 15 mg/kg/d 

Duration: at least 12 months after the last positive sputum culture 

Table 4. Recommended treatment regimens for rifampicin-susceptible Mycobacterium kansasii 
pulmonary disease 

5.1.4 Lung disease caused by rapidly growing mycobacteria 

Three main species of RGM causing pulmonary disease are M. abscessus, M. chelonae and M. 
fortuitum. The choice of treatment relies on guidance from susceptibility testing as there are 
no results from large-scale clinical studies available. M. abscessus pulmonary disease can be 
especially difficult to treat.  

The treatment usually involves combination of amikacin, cefoxitin/imipenem and 
clarithromycin. The summary of proposed treatment for RGM lung disease is shown in 
Table 5. For many patients, realistic objectives of treatment are to help controlling symptoms 
and disease progression rather than curing the infection. Surgery can be considered for 
localized disease. 

5.1.5 Surgical treatment 

Surgical resection of limited (focal) pulmonary NTM disease in a patient with an adequate 
cardiopulmonary reserve can be successful in combination with multi-drug treatment 
regimens for MAC and M. abscessus disease (ATS, 2007). In addition, in an extensive disease, 
the excision of large cavitary mycobacterial foci might assist medical management of 
remaining lesions. However, according to ATS guidelines, surgery should only be 
performed in medical centres with considerable medical and surgical expertise in 
management of patients with NTM disease.  
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M. abscessus 

Active drugs Surgery 
Clarithromycin 

++ 
Amikacin 
Cefoxitin 
Imipenem 

M. chelonae 

Tobramycin 

+ 

Clarithromycin 
Linezolid 
Imipenem 
Amikacin 
Doxycycline 
Ciprofloxacin 

M. fortuitum 

Amikacin 

+ 

Ofloxacin/Ciprofloxacin 
Imipenem 
Sulphonamides 
Clarithromycin 
Doxycycline 

Table 5. Treatment of lung disease due to rapidly growing mycobacteria 

6. Where do we go from here? 
Given the recent worldwide increase in NTM infections and in comparison to other lung 
diseases, relatively little progress has been made in understanding, preventing or treating 
pulmonary NTM disease. It is still not clear why some people develop infections while most 
do not. Even though information is provided from basic research and a few clinical trials, 
better understanding of the pathogenesis of these infections is needed in order to improve 
prevention of harm from these ubiquitous environmental bacteria. As NTM lung diseases 
are generally difficult to treat, new drugs are needed to advance therapy. Furthermore, 
randomized controlled trials in well-described patients would provide stronger evidence-
based data to guide therapy of NTM lung diseases. Elucidation of the mechanism behind 
host susceptibility will also add invaluable information so that therapy could be directed 
towards the underlying cause for the establishment of infection. Finally, environmental 
factors contributing to the increased prevalence of infection should also be explored in order 
to reduce infection and re-infection of susceptible patients.  
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5.1.3 M. xenopi, M. malmoense and M. szulgai lung disease 

M. xenopi has variable drug susceptibility testing results, especially regarding the first-line 
antituberculotic agents (ATS, 2007). The clinical response to treatment does not always 
correlate well with drug susceptibility testing results. The ATS proposed regimen is a 
combination of ethambutol, rifampicin, isoniasid and clarithromycin with or without an 
initial course of streptomycin. M. malmoense can be difficult to treat. A combination of 
rifampicin and ethambutol with or without isoniasid has shown some effectiveness (BTS 
2001). M. szulgai is susceptible in vitro to most antituberculosis drugs, as well as to 
floroquinolones and macrolides (Sanchez-Alarcos et al, 2003) and a 3- or 4-drug regimen 
that includes 12 months of negative sputum cultures while on therapy is recommended 
(ATS, 2007) 
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Ethambutol 15 mg/kg/d 

Duration: at least 12 months after the last positive sputum culture 

Table 4. Recommended treatment regimens for rifampicin-susceptible Mycobacterium kansasii 
pulmonary disease 

5.1.4 Lung disease caused by rapidly growing mycobacteria 

Three main species of RGM causing pulmonary disease are M. abscessus, M. chelonae and M. 
fortuitum. The choice of treatment relies on guidance from susceptibility testing as there are 
no results from large-scale clinical studies available. M. abscessus pulmonary disease can be 
especially difficult to treat.  

The treatment usually involves combination of amikacin, cefoxitin/imipenem and 
clarithromycin. The summary of proposed treatment for RGM lung disease is shown in 
Table 5. For many patients, realistic objectives of treatment are to help controlling symptoms 
and disease progression rather than curing the infection. Surgery can be considered for 
localized disease. 

5.1.5 Surgical treatment 

Surgical resection of limited (focal) pulmonary NTM disease in a patient with an adequate 
cardiopulmonary reserve can be successful in combination with multi-drug treatment 
regimens for MAC and M. abscessus disease (ATS, 2007). In addition, in an extensive disease, 
the excision of large cavitary mycobacterial foci might assist medical management of 
remaining lesions. However, according to ATS guidelines, surgery should only be 
performed in medical centres with considerable medical and surgical expertise in 
management of patients with NTM disease.  
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M. abscessus 

Active drugs Surgery 
Clarithromycin 

++ 
Amikacin 
Cefoxitin 
Imipenem 

M. chelonae 

Tobramycin 

+ 

Clarithromycin 
Linezolid 
Imipenem 
Amikacin 
Doxycycline 
Ciprofloxacin 

M. fortuitum 

Amikacin 

+ 

Ofloxacin/Ciprofloxacin 
Imipenem 
Sulphonamides 
Clarithromycin 
Doxycycline 

Table 5. Treatment of lung disease due to rapidly growing mycobacteria 

6. Where do we go from here? 
Given the recent worldwide increase in NTM infections and in comparison to other lung 
diseases, relatively little progress has been made in understanding, preventing or treating 
pulmonary NTM disease. It is still not clear why some people develop infections while most 
do not. Even though information is provided from basic research and a few clinical trials, 
better understanding of the pathogenesis of these infections is needed in order to improve 
prevention of harm from these ubiquitous environmental bacteria. As NTM lung diseases 
are generally difficult to treat, new drugs are needed to advance therapy. Furthermore, 
randomized controlled trials in well-described patients would provide stronger evidence-
based data to guide therapy of NTM lung diseases. Elucidation of the mechanism behind 
host susceptibility will also add invaluable information so that therapy could be directed 
towards the underlying cause for the establishment of infection. Finally, environmental 
factors contributing to the increased prevalence of infection should also be explored in order 
to reduce infection and re-infection of susceptible patients.  
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1. Introduction 
Infections in the respiratory tract are very common but majority involve the upper 
respiratory system. Pneumonia is usually caused by inhalation of infecting organisms or the 
same may reach the lung via bloodstream. Pulmonary pathogens can cause tissue damage 
by a direct invasive cytolytic process or by releasing toxins (endotoxins and/or exotoxins). 
Acute inflammation may lead to complete resolution, destructive pneumonia with abscess 
formation, healing by fibrosis or chronic inflammation. Various infective agents causing 
pneumonia include viruses, bacteria, Mycobacteria, fungi, Chlamydiae, Mycoplasmas or 
parasites. 

The diagnosis of various pulmonary infections is initially based on radiological evaluation 
depending upon chest X-ray, CT scan or MRI (magnetic resonance imaging). Cytological 
techniques used for detection of pulmonary infections include sputum examination, 
bronchial washing & brushing, bronchoalveolar lavage, transbronchial/ transthoracic fine 
needle aspiration (FNA) and EUS (endoscopic ultrasonography) guided FNA. 
Transbronchial lung biopsies are performed for histopathological detection of various 
infections and for histological evidence of invasion. Tissue can be obtained by these 
techniques for culture or other molecular diagnostic techniques such as polymerase chain 
reaction (PCR). Special stain most commonly used for bacteria is Gram’s stain and for fungi 
are Gomori's methenamine silver (GMS), Gridley's fungus (GF), and periodic acid-Schiff 
(PAS) stains.  

2. Viral infection 
Various viruses implicated in viral pneumonia include influenza, parainflenza, adenovirus, 
coxsackie, echovirus, varicella, vaccinia and measles. Most viral pneumonias are mild, but may 
be more severe or may be complicated by secondary bacterial infection.1 Microscopically, 
there may be a diffuse pan-lobular pneumonia characterised by extensive proteinaceous 
exudative material in alveoli with alveolar wall thickening and infiltration by lymphocytes. 
Hyaline membranes can be formed lining the alveoli. There may be focal interstitial 
pneumonia. Cytomegalovirus infection is characterised by cytomegaly with a large 
eosinophilic intranuclear inclusion surrounded by a pale halo giving an owl’s eye 
appearance.2 Herpes Simplex Virus (HSV) pneumonia is characterized by intranuclear 
inclusions with nucleomegaly and basophilic ground-glass alterations in the nucleoplasm.3 
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3. Bacterial infection 
The bacterial infection in lung usually starts with the introduction of organisms into the 
airways. The routes by which bacteria can reach air spaces are inhalation of an aerosol, 
aspiration of respiratory or gastrointestinal secretions, or bacteraemic spread.4,5 The 
common bacilli include Streptococcus pneumoniae, Haemophilus influenzae, anaerobic bacteria, 
Staphylococcus aureus, enteric gram-negative bacilli, Pseudomonas spp., Acinetobacter spp., 
Mycobacterium tuberculosis and Legionelia spp.  

This usually leads to acute inflammation characterized by sheets of polymorphonuclear 
neutrophils (figure 1), histiocytes, nuclear debris and necrosis which results in tissue 
destruction in the form of extensive necrotizing pneumonia with lung abscesses. Long- 
standing infection can lead to nonspecific chronic inflammation predominated by 
lymphocytes and histiocytes. Chronic pneumonia is most commonly caused by 
Mycobacteria and fungi. Actinomyces spp., Nocardia spp., and Pseudomonas pseudomallei can 
produce such infections. Legionnaire’s disease is an acute respiratory infection caused by 
Legionella pneumophila, which stains best in tissue with a silver-based Dieterle stain rather 
than a Gram stain. Organising pneumonia is characterised by intra-alveolar proliferation of 
fibroblasts producing nodular structures called Masson bodies. 

 
Fig. 1. Sheets of acute inflammatory cells in suppurative inflammation (MGG, 10X) 

3.1 Granulomatous inflammation 

Granulomatous Inflammation is characterized by collection of epithelioid histiocytes and 
multinucleated giant cells. These epithelioid cells may have an elongated cone like shapes or 
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may look like tiny carrots in sputum. These need to be differentiated from bronchial 
epithelial cells as these are elongated columnar cells which can mimic epithelioid cells.6  

Tuberculosis (TB) 

TB can involve various organs but the most common organ involved is lung. TB is more 
common in the Third World/ developing countries and is much rarer in Western Europe 
and North America. Primary pulmonary TB usually affects the lower lobes of lung or the 
anterior segment of an upper lobe, known as the Ghon focus. Microscopically, there are 
caseating epithelioid granulomas with Langhan’s type of multinucleated giant cells and 
lymphocytes (figure 2 & 3).7 In tuberculosis, epithelioid histiocytes may be found in about 
25% to 50% of sputum specimens.8 Mycobacteria are identified as elongated beaded acid-
fast bacilli (AFB) by Ziehl-Neelsen staining. Auramine-rhodamine stain is another 
fluorescent dye used to identify these bacilli. Microbiological culture is done using 
Lowenstein-Jensen medium or Bactec culture. The necrotizing granulomas may be seen in 
fungal infections or Wegener’s granulomatosis. Sarcoidosis is characterised by non-
caseating epithelioid granulomas. Secondary pulmonary TB is usually due to re-infection 
and the lesion is almost always found in the subapical region of an upper lobe. Miliary TB 
results from seeding of the bacilli via the bloodstream.  

 
 

 
 
Fig. 2. Epithelioid cell collection and lymphocytes forming a granuloma (MGG, 40X) 
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Fig. 2. Epithelioid cell collection and lymphocytes forming a granuloma (MGG, 40X) 
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Fig. 3. Epithelioid cell collections in a case of tuberculosis (H&E, 40X) 

4. Fungal infections 
Fungi are eukaryotic, unicellular to multicellular, or filamentous organisms, that are 
ubiquitous in nature. The incidence of fungal infections is increased over the last two 
decades mostly because of increase in immunocompromised patients.9 The incidence of 
fungal infections in solid organ transplant recipients is between 5-42% and in bone marrow 
transplant recipients, the incidence ranges between 15-25% with Aspergillus, Cryptococcus 
and Candida being the most common fungal infections in these patients.10,11 

Fungi can elicit various types of tissue reactions such as acute inflammatory, necrosis, 
granulomatous inflammation. The ability to cause disease depends upon the virulence and 
the dose of the fungus, the route of infection, immunological status of the host and the organ 
affected. Lung is one of the most commonly affected organs by opportunistic fungal 
infections. Majority of the lung infections begin by inhalation of aerosolized fungi from the 
surrounding environment.12 The fungi causing invasive pulmonary infection can be primary 
and opportunistic type of fungi. The primary fungal infection occurs in healthy 
immunocompetent individuals and the opportunistic fungal infections are common in 
immunocompromised hosts.  

4.1 Aspergillosis 

The range of disease caused by fungi of the genus Aspergillus include- allergic 
bronchopulmonary disease, colonization of lung cavities/ intracavitory aspergilloma, 
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chronic necrotizing bronchial aspergillosis (CNBA), chronic necrotizing pulmonary 
aspergillosis (CNPA) in mildly immunocompromised individuals and fulminant invasive 
pulmonary aspergillosis (IPA) with systemic involvement in severely immunocompromised 
patients.13,14 A fumigatus (most common), A flavus, A niger, and other Aspergillus spp. are the 
common species causing pulmonary infections.15  

Allergic pulmonary reactions occur due to hypersensitivity to Aspergillus antigens 
especially in patients of bronchial asthma. These include allergic bronchopulmonary 
aspergillosis, chronic eosinophillic pneumonia, eosinophillic bronchiolitis, mucoid 
impaction of proximal bronchi or bronchocentric granulomatosis.16,17 On microscopy, there 
is an excess of eosinophillic infiltration with Charcot-Leyden crystals, mucus hypersecretion 
and destructive granulomatous inflammation with degenerated fungal hyphae.16 

Pulmonary aspergilloma or fungal/ mycotic ball is a compact mass of fungal hyphae 
colonizing pre-existing pulmonary cavity.14 The cavity may be due to tuberculosis, 
sarcoidosis, necrotic pulmonary malignancy, bronchiectasis or a bronchial cyst.18 Majority of 
the patients develop hemoptysis and the diagnosis is suspected after radiologic detection of 
thick walled pulmonary cavity with intracavitory mass and a positive serum precipitin 
reaction to Aspergillus antigen.19   

Chronic necrotizing bronchial aspergillosis (CNBA) includes superficial extensive 
infection of mucosal surface of bronchi resulting in mucosal erosion and ulceration with 
formation of pseudo-membranes. The patients usually present with wheezing, non-
productive cough and dyspnea. 

Chronic necrotizing pulmonary aspergillosis (CNPA) is a progressive and destructive 
lesion in mildly immunocompromised individuals with non-cavitary structural lung disease 
such as sarcoidosis, chronic pulmonary obstructive disease, postradiation fibrosis, diabetes 
mellitus, tuberculosis, and pneumoconiosis etc. Majority of these patients have history of 
treatment with low-dose corticosteroids.20 Treatment includes surgical resection or 
antifungal therapy with drainage of the pulmonary cavity. 

Invasive pulmonary aspergillosis (IPA) is a fulminant infection in severely 
immunocompromised hosts. Vascular invasion is the hallmark of this condition and leads to 
thrombotic occlusion of arteries and veins. Chest X-ray shows patchy, multifocal or diffuse 
areas of consolidation, or wedge shaped pleura based infarct like infiltrates or miliary 
nodules.21 On microscopy, the nodular infarcts are composed of central ischemic necrosis, 
surrounded by fibrinous exudates and a peripheral zone of hemorrhage forming a target 
lesion. Fungal hyphae invade by radial growth and extend from a central occluded vessel. 
Occlusion of larger vessels lead to formation of wedge shaped pleura-based haemorrhagic 
infarcts. Disseminated systemic infection occurs in a quarter of patients with IPA involving 
gastrointestinal tract, central nervous system, kidneys, heart, liver, spleen and thyroid 
gland.22    

On microscopic examination, the hyphae of the Aspergillus spp. are uniform, narrow (3-6µm 
in width), septate with regular, progressive and dichotomous branching usually at acute 
angles (45º angle) from the parent hyphae (figure 4). Conidiophores (fruiting bodies) are 
seen in lesions exposed to air such as pulmonary/ bronchial lesions. The fungal infection 
may result in necrotizing or granulomatous inflammation (figure 5) and sometimes is 
associated with Splendore- Hoeppli phenomenon.  
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Fig. 3. Epithelioid cell collections in a case of tuberculosis (H&E, 40X) 

4. Fungal infections 
Fungi are eukaryotic, unicellular to multicellular, or filamentous organisms, that are 
ubiquitous in nature. The incidence of fungal infections is increased over the last two 
decades mostly because of increase in immunocompromised patients.9 The incidence of 
fungal infections in solid organ transplant recipients is between 5-42% and in bone marrow 
transplant recipients, the incidence ranges between 15-25% with Aspergillus, Cryptococcus 
and Candida being the most common fungal infections in these patients.10,11 

Fungi can elicit various types of tissue reactions such as acute inflammatory, necrosis, 
granulomatous inflammation. The ability to cause disease depends upon the virulence and 
the dose of the fungus, the route of infection, immunological status of the host and the organ 
affected. Lung is one of the most commonly affected organs by opportunistic fungal 
infections. Majority of the lung infections begin by inhalation of aerosolized fungi from the 
surrounding environment.12 The fungi causing invasive pulmonary infection can be primary 
and opportunistic type of fungi. The primary fungal infection occurs in healthy 
immunocompetent individuals and the opportunistic fungal infections are common in 
immunocompromised hosts.  

4.1 Aspergillosis 

The range of disease caused by fungi of the genus Aspergillus include- allergic 
bronchopulmonary disease, colonization of lung cavities/ intracavitory aspergilloma, 
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chronic necrotizing bronchial aspergillosis (CNBA), chronic necrotizing pulmonary 
aspergillosis (CNPA) in mildly immunocompromised individuals and fulminant invasive 
pulmonary aspergillosis (IPA) with systemic involvement in severely immunocompromised 
patients.13,14 A fumigatus (most common), A flavus, A niger, and other Aspergillus spp. are the 
common species causing pulmonary infections.15  

Allergic pulmonary reactions occur due to hypersensitivity to Aspergillus antigens 
especially in patients of bronchial asthma. These include allergic bronchopulmonary 
aspergillosis, chronic eosinophillic pneumonia, eosinophillic bronchiolitis, mucoid 
impaction of proximal bronchi or bronchocentric granulomatosis.16,17 On microscopy, there 
is an excess of eosinophillic infiltration with Charcot-Leyden crystals, mucus hypersecretion 
and destructive granulomatous inflammation with degenerated fungal hyphae.16 

Pulmonary aspergilloma or fungal/ mycotic ball is a compact mass of fungal hyphae 
colonizing pre-existing pulmonary cavity.14 The cavity may be due to tuberculosis, 
sarcoidosis, necrotic pulmonary malignancy, bronchiectasis or a bronchial cyst.18 Majority of 
the patients develop hemoptysis and the diagnosis is suspected after radiologic detection of 
thick walled pulmonary cavity with intracavitory mass and a positive serum precipitin 
reaction to Aspergillus antigen.19   

Chronic necrotizing bronchial aspergillosis (CNBA) includes superficial extensive 
infection of mucosal surface of bronchi resulting in mucosal erosion and ulceration with 
formation of pseudo-membranes. The patients usually present with wheezing, non-
productive cough and dyspnea. 

Chronic necrotizing pulmonary aspergillosis (CNPA) is a progressive and destructive 
lesion in mildly immunocompromised individuals with non-cavitary structural lung disease 
such as sarcoidosis, chronic pulmonary obstructive disease, postradiation fibrosis, diabetes 
mellitus, tuberculosis, and pneumoconiosis etc. Majority of these patients have history of 
treatment with low-dose corticosteroids.20 Treatment includes surgical resection or 
antifungal therapy with drainage of the pulmonary cavity. 

Invasive pulmonary aspergillosis (IPA) is a fulminant infection in severely 
immunocompromised hosts. Vascular invasion is the hallmark of this condition and leads to 
thrombotic occlusion of arteries and veins. Chest X-ray shows patchy, multifocal or diffuse 
areas of consolidation, or wedge shaped pleura based infarct like infiltrates or miliary 
nodules.21 On microscopy, the nodular infarcts are composed of central ischemic necrosis, 
surrounded by fibrinous exudates and a peripheral zone of hemorrhage forming a target 
lesion. Fungal hyphae invade by radial growth and extend from a central occluded vessel. 
Occlusion of larger vessels lead to formation of wedge shaped pleura-based haemorrhagic 
infarcts. Disseminated systemic infection occurs in a quarter of patients with IPA involving 
gastrointestinal tract, central nervous system, kidneys, heart, liver, spleen and thyroid 
gland.22    

On microscopic examination, the hyphae of the Aspergillus spp. are uniform, narrow (3-6µm 
in width), septate with regular, progressive and dichotomous branching usually at acute 
angles (45º angle) from the parent hyphae (figure 4). Conidiophores (fruiting bodies) are 
seen in lesions exposed to air such as pulmonary/ bronchial lesions. The fungal infection 
may result in necrotizing or granulomatous inflammation (figure 5) and sometimes is 
associated with Splendore- Hoeppli phenomenon.  
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Fig. 4. A long septate hyphae with parallel cell walls of aspergillus in a necrotic background 
(MGG, 40X) 

 
Fig. 5. Occasional hyphae of aspergillus in the multinucleated giant cell (MGG, 40X) 
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Differential diagnosis- The main differential diagnosis of Aspergillus includes zygomycetes, 
Pseudoallescheria boydii, the Fusarium spp. and occasionally Candida spp. 

Treatment- Amphotericin B is the drug of choice followed by Itraconazole or Voriconazole. 
Localized infections or aspergilloma may be subjected to surgical excision. 

4.2 Mucormycosis (Zygomycosis) 

Mucormycosis is an opportunistic infection that occurs in immunocompromised hosts 
especially in patients with acute leukemia or lymphoma, patients treated with 
corticosteroids, cytotoxic drugs or antibiotic therapy or patients with relapse of an 
underlying pulmonary disease.23,24 The agents of mucormycosis include species within the 
genera Rhizopus, Absidia, Mucor, Rhizomucor, Saksenaea, Cunninghamella, Mortierella, 
Syncephalastrum, and Apophysomyces. These fungi are widely distributed and the infection is 
acquired by exposure to their sporangiospores. The patients usually present with fever and 
progressive pulmonary infiltrates. Chest X-ray usually shows patchy infiltrates, and single 
or multiple foci of consolidation.25 

On microscopic examination, the hyphae of mucormycosis are broad (6-25µm or more wide), 
delicate thin-walled, aseptate, pleomorphic with irregular non-parallel contours. The branching 
is often irregular arising at right angles to the parent hyphae. The hyphae are often wrinkled 
and folded upon themselves. The fungal infection is characterized by coagulative necrosis, 
neutrophilic infiltration and rarely granulomatous reaction. Angioinvasion leads to 
disseminated infection and ischemic necrotic lesions and infarcts. Amphotericin B is the drug of 
choice. 

4.3 Cryptococcosis 

Cryptococcosis starts as lung infection acquired by inhalation of the soil-inhabiting yeast, 
Crytococcus neoformans.26,27 The fungus is ubiquitous and is especially abundant in aviun, 
particularly pigeon excreta.28,29 Although the disease occurs in apparently healthy 
individuals, it is more often seen as an opportunistic infection especially in patients with 
haematologic malignancies, AIDS or patients with defective cellular immunity.30 

The pulmonary lesions include diffuse miliary lesions or patchy consolidation of mucoid 
nature, which is appreciable in freshly sectioned lungs. On microscopy, cryptococci are of 
variable size (5-15 m in diameter) present both intra as well as extracellularly. These are 
ovoid, thin-walled, encapsulated organisms surrounded by a wide, clear capsule and have 
narrow-based budding (figure 6). This infection may be accompanied by little or no 
inflammation, a mixed inflammatory response or a granulomatous reaction. The capsule 
of these organisms is highlighted on PAS-AB (PAS- Alcain blue) or mucicarmine stains.31 
Autofluorescence microscopy in Papanicolaou-stained smears gives auto fluorescence, 
which helps in rapid diagnosis of cryptococosis.32 Cryptococci should be differentiated 
from Blastomycosis, Histoplasma capsulatum, and Coccidiodes immitis. The combination of 
amphotericin B and 5-fluorocytosine is used for progressive pulmonary cryptococcosis. 

4.4 Histoplasmosis 

Histoplasmosis is a pulmonary disease caused by inhalation of airborne infectious conidia of 
the dimorphic fungus, Histoplasma capsulatum var. capsulatum.33 Avian habitat like chicken  
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Differential diagnosis- The main differential diagnosis of Aspergillus includes zygomycetes, 
Pseudoallescheria boydii, the Fusarium spp. and occasionally Candida spp. 

Treatment- Amphotericin B is the drug of choice followed by Itraconazole or Voriconazole. 
Localized infections or aspergilloma may be subjected to surgical excision. 

4.2 Mucormycosis (Zygomycosis) 

Mucormycosis is an opportunistic infection that occurs in immunocompromised hosts 
especially in patients with acute leukemia or lymphoma, patients treated with 
corticosteroids, cytotoxic drugs or antibiotic therapy or patients with relapse of an 
underlying pulmonary disease.23,24 The agents of mucormycosis include species within the 
genera Rhizopus, Absidia, Mucor, Rhizomucor, Saksenaea, Cunninghamella, Mortierella, 
Syncephalastrum, and Apophysomyces. These fungi are widely distributed and the infection is 
acquired by exposure to their sporangiospores. The patients usually present with fever and 
progressive pulmonary infiltrates. Chest X-ray usually shows patchy infiltrates, and single 
or multiple foci of consolidation.25 

On microscopic examination, the hyphae of mucormycosis are broad (6-25µm or more wide), 
delicate thin-walled, aseptate, pleomorphic with irregular non-parallel contours. The branching 
is often irregular arising at right angles to the parent hyphae. The hyphae are often wrinkled 
and folded upon themselves. The fungal infection is characterized by coagulative necrosis, 
neutrophilic infiltration and rarely granulomatous reaction. Angioinvasion leads to 
disseminated infection and ischemic necrotic lesions and infarcts. Amphotericin B is the drug of 
choice. 

4.3 Cryptococcosis 

Cryptococcosis starts as lung infection acquired by inhalation of the soil-inhabiting yeast, 
Crytococcus neoformans.26,27 The fungus is ubiquitous and is especially abundant in aviun, 
particularly pigeon excreta.28,29 Although the disease occurs in apparently healthy 
individuals, it is more often seen as an opportunistic infection especially in patients with 
haematologic malignancies, AIDS or patients with defective cellular immunity.30 

The pulmonary lesions include diffuse miliary lesions or patchy consolidation of mucoid 
nature, which is appreciable in freshly sectioned lungs. On microscopy, cryptococci are of 
variable size (5-15 m in diameter) present both intra as well as extracellularly. These are 
ovoid, thin-walled, encapsulated organisms surrounded by a wide, clear capsule and have 
narrow-based budding (figure 6). This infection may be accompanied by little or no 
inflammation, a mixed inflammatory response or a granulomatous reaction. The capsule 
of these organisms is highlighted on PAS-AB (PAS- Alcain blue) or mucicarmine stains.31 
Autofluorescence microscopy in Papanicolaou-stained smears gives auto fluorescence, 
which helps in rapid diagnosis of cryptococosis.32 Cryptococci should be differentiated 
from Blastomycosis, Histoplasma capsulatum, and Coccidiodes immitis. The combination of 
amphotericin B and 5-fluorocytosine is used for progressive pulmonary cryptococcosis. 

4.4 Histoplasmosis 

Histoplasmosis is a pulmonary disease caused by inhalation of airborne infectious conidia of 
the dimorphic fungus, Histoplasma capsulatum var. capsulatum.33 Avian habitat like chicken  
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Fig. 6. Extra cellular organisms of Cryptococcus; about 5-15 m in diameter with budding 
(MGG, 100X) 

coops, blackbird roosts, and caves, favor growth and multiplication of the fungus in soil rich 
in faecal matter. The clinical presentation depends upon the extent of exposure, presence of 
underlying pulmonary disease and the host immune status. Majority of the infections are 
asymptomatic. Symptomatic infection occurs in about 10-25% cases and these can be acute 
pulmonary disease, disseminated disease, chronic pulmonary disease and fibrosing 
mediastinitis. The confirmation of the recent or past infection is done by a positive reaction 
to the cutaneous test antigen histoplasmin.  

Acute pulmonary disease 

The patients may be asymptomatic or develop influenza-like symptoms after an incubation 
period of about 15 days. Pathologically, the lesion shows bronchopneumonia with 
neutrophilic infiltration, along with macrophages, lymphocytes, and plasma cells. 
Granulomatous reaction with multinucleated giant cells occurs after two weeks followed by 
caseous necrosis.34 

Disseminated disease 

Disseminated Histoplasmosis occurs in patients with defective cell mediated immunity and 
it leads to spread to infection to multiple organs.  The patients present with fever with chills, 
productive cough, hemoptysis, dyspnea, weight loss, headache, drowsiness, diarrhea, 
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generalized lymphadenopathy, hepatosplenomegaly, purpura, and intestinal ulcerations. 
Chest X-ray usually reveals diffuse pulmonary interstitial infiltrates.35 The fungi may be 
associated with granulomatous reaction and the necrotic lesions may calcify. 

Chronic pulmonary Histoplasmosis 

Radiologically, the lesions can be infiltrative, cavitary, fibrosis with emphysema, and the 
residual solitary nodule or histoplasmoma (coin lesion).35 Other findings can be military 
calcification, pleural thickening, and enlarged hilar nodes. 

Fibrosing mediastinitis 

It is a benign condition comprising of fibrosis/ collagenization in mediastinum.36 The 
patients present with cough, dyspnea, hemoptysis, and pleurisy. Extensive fibrosis may lead 
to entrapment of heart or great vessels rarely. 

The organisms are yeast like spherical or oval, uniform, 2- 4µm in diameter organisms, 
which reproduce by single budding (figure 7).37 The basophilic cytoplasm of the organism is 
retracted from rigid, thin, poorly stained cell wall, creating a halo/ clear space. The 
organisms are seen mainly within the macrophages. This may be associated with intense 
granulomatous reaction with caseation necrosis or calcification, which can mimic 
tuberculosis. The cell wall intensely stains with special stains especially Gomori 
methenamine silver stain. Gridley, PAS and Haematoxylin & Eosin stains do not reliably 
demonstrate these organisms. 

 
Fig. 7. Extracellular as well as intracellular round to oval, 2-4µm in size, budding yeasts of 
Histoplasma (MGG, 100X) 
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in faecal matter. The clinical presentation depends upon the extent of exposure, presence of 
underlying pulmonary disease and the host immune status. Majority of the infections are 
asymptomatic. Symptomatic infection occurs in about 10-25% cases and these can be acute 
pulmonary disease, disseminated disease, chronic pulmonary disease and fibrosing 
mediastinitis. The confirmation of the recent or past infection is done by a positive reaction 
to the cutaneous test antigen histoplasmin.  
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The patients may be asymptomatic or develop influenza-like symptoms after an incubation 
period of about 15 days. Pathologically, the lesion shows bronchopneumonia with 
neutrophilic infiltration, along with macrophages, lymphocytes, and plasma cells. 
Granulomatous reaction with multinucleated giant cells occurs after two weeks followed by 
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Disseminated disease 

Disseminated Histoplasmosis occurs in patients with defective cell mediated immunity and 
it leads to spread to infection to multiple organs.  The patients present with fever with chills, 
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generalized lymphadenopathy, hepatosplenomegaly, purpura, and intestinal ulcerations. 
Chest X-ray usually reveals diffuse pulmonary interstitial infiltrates.35 The fungi may be 
associated with granulomatous reaction and the necrotic lesions may calcify. 

Chronic pulmonary Histoplasmosis 

Radiologically, the lesions can be infiltrative, cavitary, fibrosis with emphysema, and the 
residual solitary nodule or histoplasmoma (coin lesion).35 Other findings can be military 
calcification, pleural thickening, and enlarged hilar nodes. 

Fibrosing mediastinitis 

It is a benign condition comprising of fibrosis/ collagenization in mediastinum.36 The 
patients present with cough, dyspnea, hemoptysis, and pleurisy. Extensive fibrosis may lead 
to entrapment of heart or great vessels rarely. 

The organisms are yeast like spherical or oval, uniform, 2- 4µm in diameter organisms, 
which reproduce by single budding (figure 7).37 The basophilic cytoplasm of the organism is 
retracted from rigid, thin, poorly stained cell wall, creating a halo/ clear space. The 
organisms are seen mainly within the macrophages. This may be associated with intense 
granulomatous reaction with caseation necrosis or calcification, which can mimic 
tuberculosis. The cell wall intensely stains with special stains especially Gomori 
methenamine silver stain. Gridley, PAS and Haematoxylin & Eosin stains do not reliably 
demonstrate these organisms. 

 
Fig. 7. Extracellular as well as intracellular round to oval, 2-4µm in size, budding yeasts of 
Histoplasma (MGG, 100X) 
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Differential diagnosis- The differential diagnosis of Histoplasma capsulatum includes 
Cryptococcus neoformans, Candida glabrata, Coccidiodes immitis, Blastomycosis dermatitidis and 
Leishmania amastigotes.37 

4.5 Blastomycosis 

Blastomycosis is a systemic infection caused by the dimorphic fungus, Blastomyces dermatitidis. 
The infection is acquired by inhalation of airborne conidia of the mycelial form forming a 
pulmonary focus of infection. The pulmonary involvement can be acute or chronic. Acute 
pulmonary blastomycosis is usually a self-limited illness and the patient may remain 
asymptomatic or have non-specific symptoms varying from mild influenza-like symptoms to 
pneumonia. Chest X-ray shows patchy areas of consolidation with involvement of posterior 
segments of lower lobes of lungs in majority of the cases. The patients with chronic 
blastomycosis present with chronic respiratory symptoms such as chronic cough and chest 
pain persisting for weeks or months.38 Chest X-ray show linear lung infiltrates, mediastinal 
lymphadenopathy and pulmonary nodules with cavitation mimicking tuberculosis.39 Multiple 
organ involvement occurs involving skin, bone and genitourinary tract. 

The infection is acquired by inhalation of conidia from woody plant matter. The mold form 
is transformed into the yeast form in distal airways. In smears or tissue sections, the yeast is 
seen intra as well as extracellularly in macrophages and polymorphs. The organism may 
elicit acute abscess like reaction with neutrophilic infiltration to granulomatous reaction 
with epithelioid granulomas and multinucleated giant cells. The organisms are round to 
oval, 8-15µm in diameter with thick refractile double contoured walls and single broad 
based budding. The differential diagnosis includes H. capsulatum, Cryptococcus and 
Coccidioides immitis. 

4.6 Coccidioidomycosis 

It is caused by the dimorphic fungus, Coccidioides immitis. It is endemic in the southwest 
United States40 and north and central Mexico. Pulmonary infection is acquired by inhalation 
of airborne arthroconidia. The patients may remain asymptomatic or develop influenza-like 
illness, which is self-limiting. Chronic pneumonia, destructive fibro-cavitary disease or 
disseminated infection occurs in minority of the patients. Pulmonary lesions can be 
pneumonic, cavitary, nodulo-caesous and bronchiectatic.41 Pulmonary lesions are usually 
associated with acute suppurative or granulomatous inflammation. The organisms are thin-
walled, mature spherules, 30-200µm in diameter (figure 8). Rupture of the spherules releases 
endospores into the surrounding tissue. The differential diagnosis includes sporangia of 
Rhinosporidium seeberi, budding yeast of Blastomyces dermatitidis or Histoplasma capsulatum. 

4.7 Paracoccidioidomycosis (South American blastomycosis) 

It is a chronic progressive lung infection caused by Paracoccidioides brasiliensis and is endemic 
in South America. Pulmonary infection may be acute progressive with acute suppurative 
pneumonia or chronic progressive infection with granulomatous inflammation. The 
organisms are pleomorphic yeast like, 5-60µm in diameter, reproducing by budding. Yeast 
cells with fractured walls called mosaic cells are seen in chronic pulmonary lesions. The 
characteristic multiple budding cells give the appearance of a ship’s steering wheel. The  
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Fig. 8. Thin- walled (30-200µm in diameter) mature spherule of coccidiomycosis (MGG 
x20X) 

blastoconidia produced by these cells can have an oval, tubular appearance or tear-drop 
blastoconidia attached to the parent cell by narrow necks. This needs to be differentiated 
from Histoplasma capsulatum. 

4.8 Candidiasis 

Candidiasis comprises of superficial, mucocutaneous, or systemic fungal infection caused by 
yeast like fungi of the genus Candida. Candida albicans is the most common type. Pulmonary 
involvement can be a) endobronchial/ primary pulmonary candidiasis acquired by 
aspiration of Candida spp. from oral cavity or upper respiratory tract, b) hematogenous 
pulmonary candidiasis and c) embolic pulmonary candidiasis in children with indwelling 
venous catheters.42,43 The lesions contain yeast forms and mycelial forms of Candida. The 
yeast-like cells are round to oval, 2-6µm in diameter, and have budding. The mycelia forms 
have both pseudohyphae and true septate branched hyphae. Pseudohyphae have periodic 
constrictions at the point where budding yeast cells are joined end to end. The inflammatory 
response to candida may vary from minimal inflammation to acute suppuration to 
granulomatous inflammation in chronic infections. The differential diagnosis includes B. 
dermatitidis, C. neoformans, H. capsulatum, and S. schenckii, the tissue forms of these consist of 
yeast forms. 

4.9 Pneumocystis jeroveci 

This is commonly seen in AIDS patients.44 Microscopically, the alveoli are usually filled with 
frothy, eosinophilic, PAS-positive coagulum in which the shadows of the non-staining cysts 
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Differential diagnosis- The differential diagnosis of Histoplasma capsulatum includes 
Cryptococcus neoformans, Candida glabrata, Coccidiodes immitis, Blastomycosis dermatitidis and 
Leishmania amastigotes.37 

4.5 Blastomycosis 

Blastomycosis is a systemic infection caused by the dimorphic fungus, Blastomyces dermatitidis. 
The infection is acquired by inhalation of airborne conidia of the mycelial form forming a 
pulmonary focus of infection. The pulmonary involvement can be acute or chronic. Acute 
pulmonary blastomycosis is usually a self-limited illness and the patient may remain 
asymptomatic or have non-specific symptoms varying from mild influenza-like symptoms to 
pneumonia. Chest X-ray shows patchy areas of consolidation with involvement of posterior 
segments of lower lobes of lungs in majority of the cases. The patients with chronic 
blastomycosis present with chronic respiratory symptoms such as chronic cough and chest 
pain persisting for weeks or months.38 Chest X-ray show linear lung infiltrates, mediastinal 
lymphadenopathy and pulmonary nodules with cavitation mimicking tuberculosis.39 Multiple 
organ involvement occurs involving skin, bone and genitourinary tract. 

The infection is acquired by inhalation of conidia from woody plant matter. The mold form 
is transformed into the yeast form in distal airways. In smears or tissue sections, the yeast is 
seen intra as well as extracellularly in macrophages and polymorphs. The organism may 
elicit acute abscess like reaction with neutrophilic infiltration to granulomatous reaction 
with epithelioid granulomas and multinucleated giant cells. The organisms are round to 
oval, 8-15µm in diameter with thick refractile double contoured walls and single broad 
based budding. The differential diagnosis includes H. capsulatum, Cryptococcus and 
Coccidioides immitis. 

4.6 Coccidioidomycosis 

It is caused by the dimorphic fungus, Coccidioides immitis. It is endemic in the southwest 
United States40 and north and central Mexico. Pulmonary infection is acquired by inhalation 
of airborne arthroconidia. The patients may remain asymptomatic or develop influenza-like 
illness, which is self-limiting. Chronic pneumonia, destructive fibro-cavitary disease or 
disseminated infection occurs in minority of the patients. Pulmonary lesions can be 
pneumonic, cavitary, nodulo-caesous and bronchiectatic.41 Pulmonary lesions are usually 
associated with acute suppurative or granulomatous inflammation. The organisms are thin-
walled, mature spherules, 30-200µm in diameter (figure 8). Rupture of the spherules releases 
endospores into the surrounding tissue. The differential diagnosis includes sporangia of 
Rhinosporidium seeberi, budding yeast of Blastomyces dermatitidis or Histoplasma capsulatum. 

4.7 Paracoccidioidomycosis (South American blastomycosis) 

It is a chronic progressive lung infection caused by Paracoccidioides brasiliensis and is endemic 
in South America. Pulmonary infection may be acute progressive with acute suppurative 
pneumonia or chronic progressive infection with granulomatous inflammation. The 
organisms are pleomorphic yeast like, 5-60µm in diameter, reproducing by budding. Yeast 
cells with fractured walls called mosaic cells are seen in chronic pulmonary lesions. The 
characteristic multiple budding cells give the appearance of a ship’s steering wheel. The  
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blastoconidia produced by these cells can have an oval, tubular appearance or tear-drop 
blastoconidia attached to the parent cell by narrow necks. This needs to be differentiated 
from Histoplasma capsulatum. 

4.8 Candidiasis 

Candidiasis comprises of superficial, mucocutaneous, or systemic fungal infection caused by 
yeast like fungi of the genus Candida. Candida albicans is the most common type. Pulmonary 
involvement can be a) endobronchial/ primary pulmonary candidiasis acquired by 
aspiration of Candida spp. from oral cavity or upper respiratory tract, b) hematogenous 
pulmonary candidiasis and c) embolic pulmonary candidiasis in children with indwelling 
venous catheters.42,43 The lesions contain yeast forms and mycelial forms of Candida. The 
yeast-like cells are round to oval, 2-6µm in diameter, and have budding. The mycelia forms 
have both pseudohyphae and true septate branched hyphae. Pseudohyphae have periodic 
constrictions at the point where budding yeast cells are joined end to end. The inflammatory 
response to candida may vary from minimal inflammation to acute suppuration to 
granulomatous inflammation in chronic infections. The differential diagnosis includes B. 
dermatitidis, C. neoformans, H. capsulatum, and S. schenckii, the tissue forms of these consist of 
yeast forms. 

4.9 Pneumocystis jeroveci 

This is commonly seen in AIDS patients.44 Microscopically, the alveoli are usually filled with 
frothy, eosinophilic, PAS-positive coagulum in which the shadows of the non-staining cysts 
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are seen. Grocott’s Methenamine Silver (GMS) stain is used and the cell wall of the cyst 
stains black, often with a central dark dot. The cysts are 4 to 6 μm in diameter and spherical 
or cup/ sickle-shaped. Trophozoites may be up to 8 per cyst, are about 0.5 to 1.0μm in 
diameter and stain in Romanowsky (tiny purple dots). The diagnosis may be made on 
sputum or bronchoalveolar lavage fluid by demonstrating the cysts. 

5. Bacterial infections that resemble fungal infections 
5.1 Nocardiosis 

Nocardiosis is a localized or disseminated infection caused by aerobic, filamentous, 
branching gram-positive bacteria.45 It is an uncommon infection in immunocompetent 
hosts. Pulmonary lesions may be large cavitating abscesses or diffuse fibrino-suppurative 
pneumonia. The smears or tissue sections show thin (about 1µm wide), filamentous, 
beaded bacilli branching at approximately right angles (figure 9).46 These are usually 
obscured by an intense acute necrotizing inflammation as they remain unstained on May-
Grünwald Geimsa (MGG) stain, Haematoxylin or Eosin (H&E) or PAS stains. The special 
stain used for its confirmation is a modified Ziehl- Neelsen stain using a weak 
decolorizing agent.47 The main differential diagnosis is Mycobacterium tuberculosis and 
Actinomycosis (figure 10).  

 
Fig. 9. Multiple long thin filamentous structures (Nocardia) in an inflammatory background 
(Modified Ziehl- Neelsen stain, 100X). 
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Fig. 10. Filamentous bacilli positive on Gram’s stain of Actinomycosis (MGG x40X; Inset- 
Gram stain- 40X). 

5.2 Botryomycosis (Bacterial pseudomycosis) 

It is a chronic, localized infection of the skin and subcutaneous tissue or various organs 
including lung and brain.48 It is caused by non-filamentous bacilli that form granules which 
include Pseudomonas aeruginosa, Staphylococcus aureus, Escherichia coli or Streptococci. 
Pulmonary lesions lead to acute suppurative abscesses with multiple granules which are 
bordered by eosinophillic, club-like Splendore-Hoeppli material. The differential diagnosis 
includes nocardiosis and actinomycosis.  

6. Primary atypical pneumonia 
Mycoplasma pneumoniae & Chlamydiae are the important causes of primary atypical 
pneumonia. Mycoplasma can be stained by Giemsa but not by Gram’s stain and the 
diagnosis is usually confirmed serologically. Microscopically, a prominent interstitial 
infiltrate of lymphocytes, histiocytes and plasma cells is seen with interstitial oedema.  
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1. Introduction 
The lungs are a gateway for numerous airborne pathogens that are ubiquitous in our 
environment. Among these potential pathogens are fungi that can be found in the soil, bird 
excreta, air ducts, and many other places where their contact is unavoidable. Exposure to 
these fungal pathogens oftentimes goes unnoticed due to the activation of our robust 
immune systems which sequester and control these microbes before significant damage 
occurs. Still, there are many situations in which host immunity becomes compromised 
providing an opportunity for typically innocuous fungal organisms to become established 
and cause disease or for dormant infections to reawaken. Also, in certain cases disease may 
be exacerbated due to an over exuberant immune response. In this chapter, we will review 
the main aspects of innate and adaptive immune responses against pulmonary fungal 
pathogens. We will also discuss the potential for vaccines to prevent pulmonary fungal 
infections. 

2. Introduction to pulmonary fungal infections 
Pulmonary fungal infections can be grouped into primary fungal pathogens and 
opportunistic fungal pathogens. Those organisms that can cause disease in immune 
competent hosts are considered primary pathogens including Histoplasma capsulatum, 
Coccidioides immitis, Paracoccidioides brasilensis, and Blastomyces dermatiditis. All of the primary 
pulmonary fungal pathogens are endemic to the United States and/or Central & South 
America. Histoplasma and Blastomyces are endemic to the Ohio River & Mississippi River 
Valleys of the United States and also to certain regions of Central and South America (Klein 
et al., 1986; Deepe, 2000). Coccidioides is prevalent in the desert southwest United States 
(Fisher et al., 2007), and Paracoccidioides is endemic in Central and South America, 
particularly in Brazil (Franco, 1987; Franco et al., 1989; Brummer et al., 1993). These 
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infections are acquired by inhalation of fungi from contaminated soil, and severity of 
disease generally correlates with the amount of exposure to the pathogen. 

Examples of organisms that are opportunistic pulmonary fungal pathogens include 
Cryptococcus neoformans, Aspergillus fumigatus, Pneumocystis, and Rhizopus. C. neoformans is 
found ubiquitously in the soil, usually in soil contaminated with pigeon guano (Perfect and 
Casadevall, 2002). These fungi primarily cause disease in individuals with compromised 
immune systems. Most cryptococcal infections are asymptomatic, and the organism 
typically causes disease in immune compromised patients, such as AIDS patients, solid 
organ transplant patients on immune-suppressive drugs, or patients receiving 
chemotherapy (Levitz, 1991; Mitchell and Perfect, 1995; Singh et al., 1997; Shoham and 
Levitz, 2005). A. fumigatus is ubiquitously found in the environment, and is normally found 
in association with decaying wood and plant matter (Deacon et al., 2009). However, A. 
fumigatus can cause severe respiratory infections in cases of massive exposure or immune 
deficiency, such as neutropenia, due to chemotherapy, AIDS, or bone marrow transplant 
therapy (Denning, 1996; Almyroudis et al., 2005; Magill et al., 2008). Pneumocystis infection is 
acquired by inhalation of organisms from a yet unknown source (Keely et al., 1995; 
reviewed in Kelly and Shellito, 2010). Most Pneumocystis infections occur in 
immunosuppressed individuals due to either HIV or chronic obstructive pulmonary disease 
(Leigh et al., 1993; Nevez et al., 1999; Huang et al., 2003; Calderon et al., 1996; Morris et al., 
2004; Norris et al., 2006; Davis et al., 2008; Morris et al., 2008a; Morris et al., 2008b; Kling et 
al., 2009). Similarly, infection with Rhizopus typically occurs in individuals who are immune 
compromised, such as organ transplant recipients (Kontoyiannis, 2010; Pappas et al., 2010). 

3. Innate immune responses against pulmonary fungal pathogens 
3.1 Phagocyte interactions with pulmonary fungal pathogens 

Cells of the innate immune system such as dendritic cells (DCs) and macrophages residing in 
the lungs/airways are the first line of defense against pulmonary fungal pathogens. Although 
these innate cells cannot completely eliminate many fungal pathogens, they are involved in 
uptake and degradation of fungi and processing of antigens derived from these pathogens. In 
contrast, neutrophils which are also phagocytic and can be fungistatic are unable to present 
antigen. Based on the subset of receptors involved and signaling pathways triggered by these 
receptors, the innate immune system will trigger different types of early responses and 
subsequently translate these signals to mount different types of adaptive responses. 

H. capsulatum can initially be engulfed by macrophages, DCs, and neutrophils (reviewed in 
(Deepe, 2005)), however, H. capsulatum recognition by different receptors results in different 
fates (Gomez et al., 2008). DCs recognize H. capsulatum by VLA-5, by interaction with an 
unknown receptor, which results in uptake, killing, and antigen presentation (Gildea et al., 
2001; Gomez et al., 2008). Human DCs exert their antifungal activity via phagolysosomal 
fusion. The addition of suramin (which blocks phagolysosomal fusion) inhibits DC 
fungicidal activity, but inhibition of lysosomal acidification and inhibition of respiratory 
burst has no effect (Gildea et al., 2005). In contrast to DCs, macrophages recognize the H. 
capsulatum surface molecule heat-shock protein 60 (HSP 60) by LFA-1 (CD11a/CD18), 
complement receptor 3 (CD11b/CD18), and complement receptor 4 (CD11c/CD18) and this 
recognition leads to uptake and intracellular replication (Kimberlin et al., 1981; Bullock and 
Wright, 1987; Long et al., 2003; Gomez et al., 2008; Lin et al., 2010). However, activated 
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macrophages can halt intracellular replication (Wu-Hsieh and Howard, 1984; Wu-Hsieh et 
al., 1984). H. capsulatum can avoid the macrophage lysosomal environment by preventing 
phagolysosomal fusion (Newman et al., 1997; Strasser et al., 1999) or by alkalinizing the pH 
of the phagolysosome (Eissenberg and Goldman, 1988; Eissenberg et al., 1988; Eissenberg et 
al., 1993). Macrophages infected with H. capsulatum and activated with GM-CSF decrease 
available iron and zinc, while infected macrophages without GM-CSF do not. Further, 
chelation of zinc inhibits yeast replication; therefore zinc deprivation may be used by 
macrophages in host defense against H. capsulatum (Winters et al., 2010). Neutrophil 
phagocytosis of H. capsulatum requires opsonization with either antibody or complement 
(Brummer et al., 1991; Kurita et al., 1991a; Kurita et al., 1991b; Newman et al., 1993). 
Neutrophil uptake of H. capsulatum is fungistatic, as opposed to macrophages (permissive 
growth & replication) and DCs (fungicidal) (reviewed in Deepe, 2005). A lack of neutrophils 
causes a non-lethal infection to become a lethal infection (Zhou et al., 1998).  

Immature DCs bind spherules of Coccidioides in a time and temperature-dependent manner, 
and binding is blocked by mannan, suggesting that mannose receptor (MR) is involved in this 
interaction (Dionne et al., 2006). Spherules of Coccidioides stimulate DC functional maturation, 
evidenced by decreased endocytic capacity and stimulation of allogeneic peripheral blood 
mononuclear cell activation (Dionne et al., 2006). Further studies showed that a DC-based 
Coccidioides vaccine had adjuvant properties and activated protective immune responses in 
mice (Awasthi, 2007). Although macrophages can ingest Coccidioides; earlier studies suggested 
that they are not able to kill the arthroconidia (Kashkin et al., 1977; Beaman et al., 1981, 1983; 
Beaman and Holmberg, 1980b, 1980a). Studies demonstrated that monocytes derived from 
human peripheral blood were able to kill Coccidioides (Ampel and Galgiani, 1991). Neutrophils 
are the earliest cell type to infiltrate upon pulmonary infection with Coccidioides arthroconidia 
(Savage and Madin, 1968). Phagocytosis by neutrophils is enhanced by the addition of 
immune serum (Drutz and Huppert, 1983; Wegner et al., 1972; Frey and Drutz, 1986). Uptake 
of Coccidioides arthroconidia by neutrophils induces a respiratory burst (Frey and Drutz, 1986), 
but less than 20% of the arthroconidia are killed (Frey and Drutz, 1986; Beaman and 
Holmberg, 1980b; Drutz and Huppert, 1983). The spherule form of Coccidioides cannot be 
phagocytosed by or killed by neutrophils (Frey and Drutz, 1986; Galgiani, 1986), but rupture of 
the spherule leads to an influx of neutrophils (Frey and Drutz, 1986). 

P. brasiliensis can be phagocytosed by immature DCs, and uptake is significantly decreased 
with the addition of mannan, suggesting that MR is the primary receptor for P. brasiliensis 
on DCs (Ferreira et al., 2004). After DC uptake of P. brasiliensis, the fungal organisms survive 
and multiply intracellularly rather than being killed (Ferreira et al., 2004). Following in vitro 
culture of P. brasiliensis or the major surface antigen gp43 with DCs, major 
histocompatibility complex (MHC) II is downregulated as is the production of interleukin 
(IL)-12 and tumor necrosis factor (TNF)- (Ferreira et al., 2004). However, in vivo studies 
showed that DC interaction with P. brasiliensis results in modification of DC receptor 
expression, including upregulation of CCR7, CD103, and MHC II and also induces 
migration of both pulmonary and bone marrow-derived DCs. DCs are also able to activate T 
helper cell responses in the draining lymph nodes following interaction with P. brasiliensis 
(Silvana dos Santos et al., 2011). Alveolar macrophages adhere to and internalize 
Paracoccidioides using the organism’s phospholipase B, which also serves to downregulate 
macrophage activation (Soares et al., 2010). During pulmonary infection with P. brasiliensis, a 
shift in macrophage activation occurs, which is characterized by an increase in IL-1, TNF-, 
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infections are acquired by inhalation of fungi from contaminated soil, and severity of 
disease generally correlates with the amount of exposure to the pathogen. 

Examples of organisms that are opportunistic pulmonary fungal pathogens include 
Cryptococcus neoformans, Aspergillus fumigatus, Pneumocystis, and Rhizopus. C. neoformans is 
found ubiquitously in the soil, usually in soil contaminated with pigeon guano (Perfect and 
Casadevall, 2002). These fungi primarily cause disease in individuals with compromised 
immune systems. Most cryptococcal infections are asymptomatic, and the organism 
typically causes disease in immune compromised patients, such as AIDS patients, solid 
organ transplant patients on immune-suppressive drugs, or patients receiving 
chemotherapy (Levitz, 1991; Mitchell and Perfect, 1995; Singh et al., 1997; Shoham and 
Levitz, 2005). A. fumigatus is ubiquitously found in the environment, and is normally found 
in association with decaying wood and plant matter (Deacon et al., 2009). However, A. 
fumigatus can cause severe respiratory infections in cases of massive exposure or immune 
deficiency, such as neutropenia, due to chemotherapy, AIDS, or bone marrow transplant 
therapy (Denning, 1996; Almyroudis et al., 2005; Magill et al., 2008). Pneumocystis infection is 
acquired by inhalation of organisms from a yet unknown source (Keely et al., 1995; 
reviewed in Kelly and Shellito, 2010). Most Pneumocystis infections occur in 
immunosuppressed individuals due to either HIV or chronic obstructive pulmonary disease 
(Leigh et al., 1993; Nevez et al., 1999; Huang et al., 2003; Calderon et al., 1996; Morris et al., 
2004; Norris et al., 2006; Davis et al., 2008; Morris et al., 2008a; Morris et al., 2008b; Kling et 
al., 2009). Similarly, infection with Rhizopus typically occurs in individuals who are immune 
compromised, such as organ transplant recipients (Kontoyiannis, 2010; Pappas et al., 2010). 

3. Innate immune responses against pulmonary fungal pathogens 
3.1 Phagocyte interactions with pulmonary fungal pathogens 

Cells of the innate immune system such as dendritic cells (DCs) and macrophages residing in 
the lungs/airways are the first line of defense against pulmonary fungal pathogens. Although 
these innate cells cannot completely eliminate many fungal pathogens, they are involved in 
uptake and degradation of fungi and processing of antigens derived from these pathogens. In 
contrast, neutrophils which are also phagocytic and can be fungistatic are unable to present 
antigen. Based on the subset of receptors involved and signaling pathways triggered by these 
receptors, the innate immune system will trigger different types of early responses and 
subsequently translate these signals to mount different types of adaptive responses. 

H. capsulatum can initially be engulfed by macrophages, DCs, and neutrophils (reviewed in 
(Deepe, 2005)), however, H. capsulatum recognition by different receptors results in different 
fates (Gomez et al., 2008). DCs recognize H. capsulatum by VLA-5, by interaction with an 
unknown receptor, which results in uptake, killing, and antigen presentation (Gildea et al., 
2001; Gomez et al., 2008). Human DCs exert their antifungal activity via phagolysosomal 
fusion. The addition of suramin (which blocks phagolysosomal fusion) inhibits DC 
fungicidal activity, but inhibition of lysosomal acidification and inhibition of respiratory 
burst has no effect (Gildea et al., 2005). In contrast to DCs, macrophages recognize the H. 
capsulatum surface molecule heat-shock protein 60 (HSP 60) by LFA-1 (CD11a/CD18), 
complement receptor 3 (CD11b/CD18), and complement receptor 4 (CD11c/CD18) and this 
recognition leads to uptake and intracellular replication (Kimberlin et al., 1981; Bullock and 
Wright, 1987; Long et al., 2003; Gomez et al., 2008; Lin et al., 2010). However, activated 
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macrophages can halt intracellular replication (Wu-Hsieh and Howard, 1984; Wu-Hsieh et 
al., 1984). H. capsulatum can avoid the macrophage lysosomal environment by preventing 
phagolysosomal fusion (Newman et al., 1997; Strasser et al., 1999) or by alkalinizing the pH 
of the phagolysosome (Eissenberg and Goldman, 1988; Eissenberg et al., 1988; Eissenberg et 
al., 1993). Macrophages infected with H. capsulatum and activated with GM-CSF decrease 
available iron and zinc, while infected macrophages without GM-CSF do not. Further, 
chelation of zinc inhibits yeast replication; therefore zinc deprivation may be used by 
macrophages in host defense against H. capsulatum (Winters et al., 2010). Neutrophil 
phagocytosis of H. capsulatum requires opsonization with either antibody or complement 
(Brummer et al., 1991; Kurita et al., 1991a; Kurita et al., 1991b; Newman et al., 1993). 
Neutrophil uptake of H. capsulatum is fungistatic, as opposed to macrophages (permissive 
growth & replication) and DCs (fungicidal) (reviewed in Deepe, 2005). A lack of neutrophils 
causes a non-lethal infection to become a lethal infection (Zhou et al., 1998).  

Immature DCs bind spherules of Coccidioides in a time and temperature-dependent manner, 
and binding is blocked by mannan, suggesting that mannose receptor (MR) is involved in this 
interaction (Dionne et al., 2006). Spherules of Coccidioides stimulate DC functional maturation, 
evidenced by decreased endocytic capacity and stimulation of allogeneic peripheral blood 
mononuclear cell activation (Dionne et al., 2006). Further studies showed that a DC-based 
Coccidioides vaccine had adjuvant properties and activated protective immune responses in 
mice (Awasthi, 2007). Although macrophages can ingest Coccidioides; earlier studies suggested 
that they are not able to kill the arthroconidia (Kashkin et al., 1977; Beaman et al., 1981, 1983; 
Beaman and Holmberg, 1980b, 1980a). Studies demonstrated that monocytes derived from 
human peripheral blood were able to kill Coccidioides (Ampel and Galgiani, 1991). Neutrophils 
are the earliest cell type to infiltrate upon pulmonary infection with Coccidioides arthroconidia 
(Savage and Madin, 1968). Phagocytosis by neutrophils is enhanced by the addition of 
immune serum (Drutz and Huppert, 1983; Wegner et al., 1972; Frey and Drutz, 1986). Uptake 
of Coccidioides arthroconidia by neutrophils induces a respiratory burst (Frey and Drutz, 1986), 
but less than 20% of the arthroconidia are killed (Frey and Drutz, 1986; Beaman and 
Holmberg, 1980b; Drutz and Huppert, 1983). The spherule form of Coccidioides cannot be 
phagocytosed by or killed by neutrophils (Frey and Drutz, 1986; Galgiani, 1986), but rupture of 
the spherule leads to an influx of neutrophils (Frey and Drutz, 1986). 

P. brasiliensis can be phagocytosed by immature DCs, and uptake is significantly decreased 
with the addition of mannan, suggesting that MR is the primary receptor for P. brasiliensis 
on DCs (Ferreira et al., 2004). After DC uptake of P. brasiliensis, the fungal organisms survive 
and multiply intracellularly rather than being killed (Ferreira et al., 2004). Following in vitro 
culture of P. brasiliensis or the major surface antigen gp43 with DCs, major 
histocompatibility complex (MHC) II is downregulated as is the production of interleukin 
(IL)-12 and tumor necrosis factor (TNF)- (Ferreira et al., 2004). However, in vivo studies 
showed that DC interaction with P. brasiliensis results in modification of DC receptor 
expression, including upregulation of CCR7, CD103, and MHC II and also induces 
migration of both pulmonary and bone marrow-derived DCs. DCs are also able to activate T 
helper cell responses in the draining lymph nodes following interaction with P. brasiliensis 
(Silvana dos Santos et al., 2011). Alveolar macrophages adhere to and internalize 
Paracoccidioides using the organism’s phospholipase B, which also serves to downregulate 
macrophage activation (Soares et al., 2010). During pulmonary infection with P. brasiliensis, a 
shift in macrophage activation occurs, which is characterized by an increase in IL-1, TNF-, 
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and IL-6 (Silva et al., 2011). P. brasilensis can proliferate within macrophages, but 
macrophage activation inhibits its growth (Brummer et al., 1988; Cano et al., 1994). Further, 
macrophages activated by interferon (IFN)- can kill P. brasiliensis (Cano et al., 1994; 
Gonzalez et al., 2000). In vitro stimulation of human monocytes and neutrophils with 
Paracoccidiodes yeast showed downregulation of toll-like receptor (TLR)2, TLR4, and dectin-1 
on the surface of these cells. In addition, yeast cells induced the production of pro-
inflammatory cytokines such as TNF- (Bonfim et al., 2009). Mice lacking TLR2 had a less 
severe pulmonary infection than wild-type (WT) mice and had decreased nitric oxide (NO) 
production. However, despite the differences in infection, both TLR2-/- mice and WT mice 
had similar rates of survival and similar pulmonary inflammatory responses (Loures et al., 
2009). Further, TLR2 deficiency skewed the adaptive response towards a T helper (Th)17 
phenotype and caused a decrease in T regulatory cells. Increased neutrophils and 
eosinophils migrate to the lungs of mice susceptible to P. brasiliensis, (Cano et al., 1995), and 
this influx affects the disease outcome and the adaptive response induced to infection. In 
susceptible individuals recovered from Paracoccidiodes, neutrophils are able to phagocytose 
the organism, but this leads to degeneration of the neutrophils. These data suggest that 
susceptible individuals have an inherent neutrophil deficiency (Dias et al., 2008). Further, 
neutrophils from patients with P. brasiliensis have a digestive defect against the fungus 
(Goihman-Yahr et al., 1980), and also have a killing defect against the fungus (Goihman-
Yahr et al., 1985; Goihman-Yahr et al., 1992).  

B. dermatiditis interaction with DCs causes efficient upregulation of antigen presentation and 
costimulatory molecules and induces production of IL-12 and TNF- (Wuthrich et al., 2006). 
DCs can activate CD8+ T cells in the absence of CD4+ T cells, and the yeast alone is a 
sufficient inflammatory stimulus that can directly induce maturation of DCs and can induce 
production of TNF-, IL-1, and IL-12 (Wuthrich et al., 2006). Monocyte-derived dendritic 
cells can associate with yeast in the lung and transport them to the draining lymph nodes, 
but fail to present antigen to CD4+ T cells, however dermal DCs are capable of antigen 
presentation (Ersland et al., 2010). During B. dermatiditis infection, alveolar macrophages are 
only modestly able to ingest and kill the yeast form of the organism (Bradsher et al., 1987). 
Murine macrophages are only able to kill less than 5% of yeast (Brummer and Stevens, 1987; 
Brummer et al., 1988), and had a 25-30% reduction in respiratory burst compared to the 
respiratory burst induced by zymosan. The Blastomyces adhesion 1 (BAD1) molecule on the 
Blastomyces yeast surface is responsible for binding to CD11b/CD18 and CD14 on the 
macrophage surface and subsequent entry (Klein et al., 1993; Newman et al., 1995). 
Neutrophils rapidly infiltrate to pulmonary tissues following infection, and are responsible 
for the formation of pyogranulomatous lesions. Conidia are rapidly phagocytosed by 
neutrophils, but killing of conidia is inefficient. Similar to macrophages, the neutrophil 
respiratory burst induced by conidia is only 70% of that induced by zymosan (Drutz and 
Frey, 1985). In addition, yeasts are even more difficult for the neutrophils to phagocytose & 
kill than conidia (Drutz and Frey, 1985).  

Pneumocystis interacts with DCs in vitro by MR, (Kobayashi et al., 2007) but the interaction 
does not lead to an increase in maturation markers such as MHC II, CD40, CD54, CD80, or 
CD86. Additionally, this interaction induces the production of IL-4 but not IL-12p40, IL-10, 
TNF-, or IL-6 (Kobayashi et al., 2007). However, Pneumocystis cell wall -glucans have the 
ability to induce costimulatory molecule upregulation on DCs, such as MHC II, CD80, 
CD86, and CD40. These DCs interacted with -glucans from Pneumocystis via dectin-1, and 
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co-stimulatory molecule expression and Th1-type cytokine secretion by β-glucan stimulated 
DCs was regulated by Fas-Fas ligand interaction (Carmona et al., 2006). In vivo 
administration of DCs pulsed with Pneumocystis induced specific T cell responses and 
release of IL-4 as well as specific IgG1, IgG2a, and IgG2b production (Kobayashi et al., 2007). 
Alveolar macrophages have been shown to directly kill both Pneumocystis trophozoites and 
cysts (Fleury et al., 1985; reviewed in Kelly and Shellito, 2010). Specifically, alternatively-
activated macrophages (aaMac) are important effector cells against Pneumocystis, and aaMac 
is enhanced by IL-33 (Nelson et al., 2011). In addition, Pneumocystis infection causes changes 
in gene expression of alveolar macrophages that included upregulation of genes involved in 
antigen presentation and antimicrobial peptides, but downregulation of genes involved in 
phagocytosis and uptake (Cheng et al., 2010). Pneumocystis major surface glycoprotein 
(MSG), which is a heavily glycosylated surface antigen, is recognized by MR on alveolar 
macrophages (Ezekowitz et al., 1991). Pneumocystis infection in HIV+ patients induces 
shedding of the MR, which results in reduced alveolar macrophage phagocytosis of the 
microbe (Koziel et al., 1998; Fraser et al., 2000). Neutrophils can also interact with 
Pneumocystis, but the presence of neutrophils is correlated with inflammation and increased 
severity of disease (reviewed in Kelly and Shellito, 2010). 

Inhaled A. fumigatus conidia are first encountered by alveolar macrophages and neutrophils 
(reviewed in Hasenberg et al., 2011). Following uptake of Aspergillus by phagocytes, the 
organism enters the phagosome and killing occurs following phagosomal fusion with 
lysosomes, (Ibrahim-Granet et al., 2003). In the absence or impairment of phagocytic cells, 
there are dramatic increases in invasive Aspergillus infections (Latge, 1999). -1,3 glucans of 
Aspergillus swollen conidia and hyphae are recognized by dectin-1 on the surface of alveolar 
macrophages, monocytes, and neutrophils (Taylor et al., 2002; Taylor et al., 2007). This 
recognition of Aspergillus leads to phagocytosis and the production of cytokines such as 
TNF-, IL-6, and IL-18 (Gersuk et al., 2006). In addition, Aspergillus can be recognized by 
TLRs, predominantly TLR2 and TLR4 (Wang et al., 2001; Mambula et al., 2002; Netea et al., 
2002; Meier et al., 2003; Netea et al., 2003; Bellocchio et al., 2004; Bochud et al., 2008), but 
phagocytosis and uptake are not due to recognition by TLR2, TLR4, TLR9, or MyD88 
(Bellocchio et al., 2004). More recent data also points to recognition of Aspergillus 
unmethylated DNA by TLR9 (Ramirez-Ortiz et al., 2008; Ramaprakash et al., 2009). Further, 
TLR9 is actively recruited to the Aspergillus phagosome and requires the N-terminal 
proteolytic cleavage domain for proper intracellular trafficking (Kasperkovitz et al., 2010).  

DCs bind and internalize A. fumigatus through DC-SIGN, and this binding triggers DC 
maturation (Serrano-Gomez et al., 2004). Mouse DCs can internalize conidia of A. fumigatus 
using MR and a C-type lectin receptor as well as FcR (Bozza et al., 2002). Upon exposure of 
DCs to A. fumigatus, DCs upregulate HLA-DR, CD80 and CD86 (Grazziutti et al., 2001; 
Bozza et al., 2002). Following A. fumigatus infection, DCs can release the chemokine CXCL8, 
which promotes migration of PMNs, can  upregulate CCL19, which is important in 
migration of CCR7+ naïve T cells and mature DCs to lymph nodes, and can release soluble 
factors that increase CD11b and CD18 on PMNs (Gafa et al., 2007). DC phagocytosis of A. 
fumigatus conidia and hyphae occur by different means and through different receptors; 
conidia are phagocytosed by coiling phagocytosis and hyphae are phagocytosed by zipper-
type phagocytosis (Bozza et al., 2002). A. fumigatus killing by DCs is dependent on 
phagolysosomal fusion and a reduction in pH (Ibrahim-Granet et al., 2003). Plasmacytoid 
DCs (pDCs) have the ability to spread over A. fumigatus hyphae and inhibit their growth 
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and IL-6 (Silva et al., 2011). P. brasilensis can proliferate within macrophages, but 
macrophage activation inhibits its growth (Brummer et al., 1988; Cano et al., 1994). Further, 
macrophages activated by interferon (IFN)- can kill P. brasiliensis (Cano et al., 1994; 
Gonzalez et al., 2000). In vitro stimulation of human monocytes and neutrophils with 
Paracoccidiodes yeast showed downregulation of toll-like receptor (TLR)2, TLR4, and dectin-1 
on the surface of these cells. In addition, yeast cells induced the production of pro-
inflammatory cytokines such as TNF- (Bonfim et al., 2009). Mice lacking TLR2 had a less 
severe pulmonary infection than wild-type (WT) mice and had decreased nitric oxide (NO) 
production. However, despite the differences in infection, both TLR2-/- mice and WT mice 
had similar rates of survival and similar pulmonary inflammatory responses (Loures et al., 
2009). Further, TLR2 deficiency skewed the adaptive response towards a T helper (Th)17 
phenotype and caused a decrease in T regulatory cells. Increased neutrophils and 
eosinophils migrate to the lungs of mice susceptible to P. brasiliensis, (Cano et al., 1995), and 
this influx affects the disease outcome and the adaptive response induced to infection. In 
susceptible individuals recovered from Paracoccidiodes, neutrophils are able to phagocytose 
the organism, but this leads to degeneration of the neutrophils. These data suggest that 
susceptible individuals have an inherent neutrophil deficiency (Dias et al., 2008). Further, 
neutrophils from patients with P. brasiliensis have a digestive defect against the fungus 
(Goihman-Yahr et al., 1980), and also have a killing defect against the fungus (Goihman-
Yahr et al., 1985; Goihman-Yahr et al., 1992).  

B. dermatiditis interaction with DCs causes efficient upregulation of antigen presentation and 
costimulatory molecules and induces production of IL-12 and TNF- (Wuthrich et al., 2006). 
DCs can activate CD8+ T cells in the absence of CD4+ T cells, and the yeast alone is a 
sufficient inflammatory stimulus that can directly induce maturation of DCs and can induce 
production of TNF-, IL-1, and IL-12 (Wuthrich et al., 2006). Monocyte-derived dendritic 
cells can associate with yeast in the lung and transport them to the draining lymph nodes, 
but fail to present antigen to CD4+ T cells, however dermal DCs are capable of antigen 
presentation (Ersland et al., 2010). During B. dermatiditis infection, alveolar macrophages are 
only modestly able to ingest and kill the yeast form of the organism (Bradsher et al., 1987). 
Murine macrophages are only able to kill less than 5% of yeast (Brummer and Stevens, 1987; 
Brummer et al., 1988), and had a 25-30% reduction in respiratory burst compared to the 
respiratory burst induced by zymosan. The Blastomyces adhesion 1 (BAD1) molecule on the 
Blastomyces yeast surface is responsible for binding to CD11b/CD18 and CD14 on the 
macrophage surface and subsequent entry (Klein et al., 1993; Newman et al., 1995). 
Neutrophils rapidly infiltrate to pulmonary tissues following infection, and are responsible 
for the formation of pyogranulomatous lesions. Conidia are rapidly phagocytosed by 
neutrophils, but killing of conidia is inefficient. Similar to macrophages, the neutrophil 
respiratory burst induced by conidia is only 70% of that induced by zymosan (Drutz and 
Frey, 1985). In addition, yeasts are even more difficult for the neutrophils to phagocytose & 
kill than conidia (Drutz and Frey, 1985).  

Pneumocystis interacts with DCs in vitro by MR, (Kobayashi et al., 2007) but the interaction 
does not lead to an increase in maturation markers such as MHC II, CD40, CD54, CD80, or 
CD86. Additionally, this interaction induces the production of IL-4 but not IL-12p40, IL-10, 
TNF-, or IL-6 (Kobayashi et al., 2007). However, Pneumocystis cell wall -glucans have the 
ability to induce costimulatory molecule upregulation on DCs, such as MHC II, CD80, 
CD86, and CD40. These DCs interacted with -glucans from Pneumocystis via dectin-1, and 
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co-stimulatory molecule expression and Th1-type cytokine secretion by β-glucan stimulated 
DCs was regulated by Fas-Fas ligand interaction (Carmona et al., 2006). In vivo 
administration of DCs pulsed with Pneumocystis induced specific T cell responses and 
release of IL-4 as well as specific IgG1, IgG2a, and IgG2b production (Kobayashi et al., 2007). 
Alveolar macrophages have been shown to directly kill both Pneumocystis trophozoites and 
cysts (Fleury et al., 1985; reviewed in Kelly and Shellito, 2010). Specifically, alternatively-
activated macrophages (aaMac) are important effector cells against Pneumocystis, and aaMac 
is enhanced by IL-33 (Nelson et al., 2011). In addition, Pneumocystis infection causes changes 
in gene expression of alveolar macrophages that included upregulation of genes involved in 
antigen presentation and antimicrobial peptides, but downregulation of genes involved in 
phagocytosis and uptake (Cheng et al., 2010). Pneumocystis major surface glycoprotein 
(MSG), which is a heavily glycosylated surface antigen, is recognized by MR on alveolar 
macrophages (Ezekowitz et al., 1991). Pneumocystis infection in HIV+ patients induces 
shedding of the MR, which results in reduced alveolar macrophage phagocytosis of the 
microbe (Koziel et al., 1998; Fraser et al., 2000). Neutrophils can also interact with 
Pneumocystis, but the presence of neutrophils is correlated with inflammation and increased 
severity of disease (reviewed in Kelly and Shellito, 2010). 

Inhaled A. fumigatus conidia are first encountered by alveolar macrophages and neutrophils 
(reviewed in Hasenberg et al., 2011). Following uptake of Aspergillus by phagocytes, the 
organism enters the phagosome and killing occurs following phagosomal fusion with 
lysosomes, (Ibrahim-Granet et al., 2003). In the absence or impairment of phagocytic cells, 
there are dramatic increases in invasive Aspergillus infections (Latge, 1999). -1,3 glucans of 
Aspergillus swollen conidia and hyphae are recognized by dectin-1 on the surface of alveolar 
macrophages, monocytes, and neutrophils (Taylor et al., 2002; Taylor et al., 2007). This 
recognition of Aspergillus leads to phagocytosis and the production of cytokines such as 
TNF-, IL-6, and IL-18 (Gersuk et al., 2006). In addition, Aspergillus can be recognized by 
TLRs, predominantly TLR2 and TLR4 (Wang et al., 2001; Mambula et al., 2002; Netea et al., 
2002; Meier et al., 2003; Netea et al., 2003; Bellocchio et al., 2004; Bochud et al., 2008), but 
phagocytosis and uptake are not due to recognition by TLR2, TLR4, TLR9, or MyD88 
(Bellocchio et al., 2004). More recent data also points to recognition of Aspergillus 
unmethylated DNA by TLR9 (Ramirez-Ortiz et al., 2008; Ramaprakash et al., 2009). Further, 
TLR9 is actively recruited to the Aspergillus phagosome and requires the N-terminal 
proteolytic cleavage domain for proper intracellular trafficking (Kasperkovitz et al., 2010).  

DCs bind and internalize A. fumigatus through DC-SIGN, and this binding triggers DC 
maturation (Serrano-Gomez et al., 2004). Mouse DCs can internalize conidia of A. fumigatus 
using MR and a C-type lectin receptor as well as FcR (Bozza et al., 2002). Upon exposure of 
DCs to A. fumigatus, DCs upregulate HLA-DR, CD80 and CD86 (Grazziutti et al., 2001; 
Bozza et al., 2002). Following A. fumigatus infection, DCs can release the chemokine CXCL8, 
which promotes migration of PMNs, can  upregulate CCL19, which is important in 
migration of CCR7+ naïve T cells and mature DCs to lymph nodes, and can release soluble 
factors that increase CD11b and CD18 on PMNs (Gafa et al., 2007). DC phagocytosis of A. 
fumigatus conidia and hyphae occur by different means and through different receptors; 
conidia are phagocytosed by coiling phagocytosis and hyphae are phagocytosed by zipper-
type phagocytosis (Bozza et al., 2002). A. fumigatus killing by DCs is dependent on 
phagolysosomal fusion and a reduction in pH (Ibrahim-Granet et al., 2003). Plasmacytoid 
DCs (pDCs) have the ability to spread over A. fumigatus hyphae and inhibit their growth 
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(Ramirez-Ortiz et al., 2011), and antifungal activity does not require direct cell contact. 
Following interaction of pDCs with Aspergillus, pDCs release pro-inflammatory cytokines, 
such as IFN- and TNF-, and these are produced via a TLR9-independent mechanism 
(Ramirez-Ortiz et al., 2011). During the early stages of Aspergillus infection, alternatively 
activated macrophages are recruited to the lung and are important in host defense (Bhatia et 
al., 2011). Studies examining the interaction of Aspergillus conidia with alveolar 
macrophages showed that infectivity and inhibition of macrophage killing by the fungus 
were due to the presence of a siderophore system that allows the fungus to acquire iron 
(Schrettl et al., 2010). In neutropenic mice, inflammatory DCs are recruited to the lungs 
during Aspergillus infection, and this recruitment is dependent on the absence of neutrophils 
(Park et al., 2010). This accumulation led to increased TNF-α, CCL2, and CCL20, which 
resulted in further recruitment of inflammatory DCs. Neutrophils, when incubated with A. 
fumigatus hyphae, form neutrophil extracellular traps (NETs), which are antifungal, but 
mostly act in a fungistatic manner to limit spread of the hyphae (Bruns et al., 2010; 
Hasenberg et al., 2011).    

In vitro studies of DCs with C. neoformans have shown that DCs are involved in detection, 
binding, phagocytosis, processing, antigen presentation, T cell activation, and killing of the 
organism (Bauman et al., 2000; Bauman et al., 2003; Wozniak et al., 2006; Wozniak and 
Levitz, 2008). DCs isolated from infected lungs presented cryptococcal mannoprotein (MP) 
to MP-specific T cells and induced T cell activation ex vivo (Wozniak et al., 2006). Depletion 
of DCs abrogated the T cell response (Mansour et al., 2006). Furthermore, DC phagocytosis 
of mannoprotein (MP) in the presence of the appropriate adjuvant induces production of 
Th1-type cytokines (Dan et al., 2008). Additional studies revealed that the interaction of C. 
neoformans with DCs, but not macrophages, induced the production of IL-12 and IL-23, two 
cytokines associated with protection against cryptococcosis (Kleinschek et al., 2010). 
Phagocytosis of encapsulated C. neoformans by DCs requires opsonization with either anti-
capsular antibody or complement, and the combination of these has an additive effect (Kelly 
et al., 2005). Also, both murine and human DCs are able to kill C. neoformans, by both 
oxidative and non-oxidative mechanisms (Kelly et al., 2005). Recognition and uptake of 
acapsular C. neoformans strains by DCs requires MR and FcR II (Syme et al., 2002). TLR2 
and TLR4 are not important in uptake of C. neoformans or activation of DCs by the fungus 
(Nakamura et al., 2006). DCs stimulated with DNA from C. neoformans release IL-12p40 and 
express CD40, a costimulatory molecule associated with DC maturation, and thus was tied 
to recognition by TLR9 (Nakamura et al., 2008). Upon infection with C. neoformans, CCR2-
deficient mice, which are impaired in trafficking of monocyte-derived DCs, developed a 
non-protective Th2-type immune response and persistent infection, and had reduced DC 
recruitment, bronchovascular collagen deposition, and increased IL-4 production 
(Osterholzer et al., 2008). C. neoformans can also be phagocytosed by macrophages (Levitz et 
al., 1999; Del Poeta, 2004). Macrophage phenotypes are associated with differential immune 
responses against C. neoformans. Protection against infection is associated with the presence 
of classically-activated macrophages (caMac) (Zhang et al., 2009; Hardison et al., 2010a; 
Hardison et al., 2010b), while disease progression is associated with the presence of 
alternatively activated macrophages (aaMac) (Arora et al., 2005; Muller et al., 2007; Arora et 
al., 2011; Chen et al., 2007; Guerrero et al., 2010). Also, macrophages can serve as a site of 
replication of C. neoformans (Tucker and Casadevall, 2002). Intracellular replication rates 
within macrophages correlated to virulence for C. neoformans strains (Voelz et al., 2009). In 
addition to replication, yeasts can be expulsed from macrophages by a non-lytic mechanism 
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that leaves both C. neoformans and macrophages intact and capable of replication and 
growth (Alvarez and Casadevall, 2006; Ma et al., 2006; Alvarez and Casadevall, 2007; 
Johnston and May, 2010). C. neoformans can also be phagocytosed by activated neutrophils 
(Kozel et al., 1987). The capsule of C. neoformans induces neutrophils to release 
proinflammatory cytokines, such as IL-1, IL-6, IL-8 and TNF- (Retini et al., 1996). 
Neutrophils can kill C. neoformans by non-oxidative mechanisms, including neutrophil 
defensins and calprotectin (Mambula et al., 2000). Interestingly, induction of neutropenia in 
mouse models of infection reduces their susceptibility to infection (Mednick et al., 2003). 

Although innate immune responses against Rhizopus, the main causative agent of 
mucormycosis, have not yet been fully characterized, recent work has shown that Rhizopus 
can trigger a common innate sensing pathway in DCs that leads to the production of IL-23 
and drives Th17-type responses (Chamilos et al., 2010). This is due to interaction of dectin -1 
with -glucans on the surface of Rhizopus hyphae.  

3.2 NK cell activity 

Another innate immune response to pulmonary fungal pathogens is due to recognition and 
action by natural killer (NK) cells. NK cells were thought to act primarily against viruses 
and tumors, but more recent studies have shown that NK cells have a wide variety of 
functions against bacteria, fungi, and parasites (Newman and Riley, 2007).  

In H. capsulatum infection, there is little evidence of a protective role for NK cells. While beige 
mice (lacking functional NK cells) are more susceptible to H. capsulatum infection, T cells play a 
greater role in controlling infection (Patino et al., 1987). In studies evaluating both beige mice 
and mice depleted of NK cells, beige mice were still more susceptible to infection, while mice 
depleted of NK cells were no more susceptible to infection than WT mice, therefore indicating 
no major role for NK cells in protection (Suchyta et al., 1988). However, mice deficient in 
perforin, a major component of NK cell anti-microbial activity, had accelerated mortality and 
increased fungal burden (Zhou et al., 2001). Infection with Coccidioides during depletion of NK 
cells leads to increased susceptibility to infection (Petkus and Baum, 1987). Furthermore, NK 
cells have a direct cytotoxic effect on Coccidioides young spherule and endospore cells (Petkus 
and Baum, 1987). In Paracoccidioides, studies have shown increased NK cell activity in infected 
hamsters compared to uninfected controls. Impaired NK cell activity was associated with a 
decrease in cell-mediated immunity (CMI) and an increase in histopathologic lesions. 
However, after initial activation, NK cells alone were not able to control dissemination of 
Paracoccidiodes (Peracoli et al., 1995). In vitro NK cell activity correlated with growth inhibition 
of Paracoccidiodes yeast (Jimenez and Murphy, 1984). 

In neutropenic mice with A. fumigatus infection, NK cells are the major cell type responsible 
for the production of IFN- early in the infection. Additionally, depletion of NK cells 
reduces IFN- levels and caused increased pulmonary fungal load (Park et al., 2009). NK 
cells have direct anti-fungal activity against hyphae but not against resting conidia (Schmidt 
et al., 2011). Killing is due to production of mediators by NK cells, including perforin. 
However, A. fumigatus can also down-regulate some cytokines induced by the NK cells, 
including IFN- and GM-CSF (Schmidt et al., 2011). In addition, recruitment of NK cells to 
the lung during A. fumigatus infection by the chemokine MCP-1 is required for optimal 
clearance of the organism from the lungs (Morrison et al., 2003). During Pneumocystis 
infection in  SCID mice (lacking T and B cells), NK cells were responsible for production of 
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(Ramirez-Ortiz et al., 2011), and antifungal activity does not require direct cell contact. 
Following interaction of pDCs with Aspergillus, pDCs release pro-inflammatory cytokines, 
such as IFN- and TNF-, and these are produced via a TLR9-independent mechanism 
(Ramirez-Ortiz et al., 2011). During the early stages of Aspergillus infection, alternatively 
activated macrophages are recruited to the lung and are important in host defense (Bhatia et 
al., 2011). Studies examining the interaction of Aspergillus conidia with alveolar 
macrophages showed that infectivity and inhibition of macrophage killing by the fungus 
were due to the presence of a siderophore system that allows the fungus to acquire iron 
(Schrettl et al., 2010). In neutropenic mice, inflammatory DCs are recruited to the lungs 
during Aspergillus infection, and this recruitment is dependent on the absence of neutrophils 
(Park et al., 2010). This accumulation led to increased TNF-α, CCL2, and CCL20, which 
resulted in further recruitment of inflammatory DCs. Neutrophils, when incubated with A. 
fumigatus hyphae, form neutrophil extracellular traps (NETs), which are antifungal, but 
mostly act in a fungistatic manner to limit spread of the hyphae (Bruns et al., 2010; 
Hasenberg et al., 2011).    

In vitro studies of DCs with C. neoformans have shown that DCs are involved in detection, 
binding, phagocytosis, processing, antigen presentation, T cell activation, and killing of the 
organism (Bauman et al., 2000; Bauman et al., 2003; Wozniak et al., 2006; Wozniak and 
Levitz, 2008). DCs isolated from infected lungs presented cryptococcal mannoprotein (MP) 
to MP-specific T cells and induced T cell activation ex vivo (Wozniak et al., 2006). Depletion 
of DCs abrogated the T cell response (Mansour et al., 2006). Furthermore, DC phagocytosis 
of mannoprotein (MP) in the presence of the appropriate adjuvant induces production of 
Th1-type cytokines (Dan et al., 2008). Additional studies revealed that the interaction of C. 
neoformans with DCs, but not macrophages, induced the production of IL-12 and IL-23, two 
cytokines associated with protection against cryptococcosis (Kleinschek et al., 2010). 
Phagocytosis of encapsulated C. neoformans by DCs requires opsonization with either anti-
capsular antibody or complement, and the combination of these has an additive effect (Kelly 
et al., 2005). Also, both murine and human DCs are able to kill C. neoformans, by both 
oxidative and non-oxidative mechanisms (Kelly et al., 2005). Recognition and uptake of 
acapsular C. neoformans strains by DCs requires MR and FcR II (Syme et al., 2002). TLR2 
and TLR4 are not important in uptake of C. neoformans or activation of DCs by the fungus 
(Nakamura et al., 2006). DCs stimulated with DNA from C. neoformans release IL-12p40 and 
express CD40, a costimulatory molecule associated with DC maturation, and thus was tied 
to recognition by TLR9 (Nakamura et al., 2008). Upon infection with C. neoformans, CCR2-
deficient mice, which are impaired in trafficking of monocyte-derived DCs, developed a 
non-protective Th2-type immune response and persistent infection, and had reduced DC 
recruitment, bronchovascular collagen deposition, and increased IL-4 production 
(Osterholzer et al., 2008). C. neoformans can also be phagocytosed by macrophages (Levitz et 
al., 1999; Del Poeta, 2004). Macrophage phenotypes are associated with differential immune 
responses against C. neoformans. Protection against infection is associated with the presence 
of classically-activated macrophages (caMac) (Zhang et al., 2009; Hardison et al., 2010a; 
Hardison et al., 2010b), while disease progression is associated with the presence of 
alternatively activated macrophages (aaMac) (Arora et al., 2005; Muller et al., 2007; Arora et 
al., 2011; Chen et al., 2007; Guerrero et al., 2010). Also, macrophages can serve as a site of 
replication of C. neoformans (Tucker and Casadevall, 2002). Intracellular replication rates 
within macrophages correlated to virulence for C. neoformans strains (Voelz et al., 2009). In 
addition to replication, yeasts can be expulsed from macrophages by a non-lytic mechanism 
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that leaves both C. neoformans and macrophages intact and capable of replication and 
growth (Alvarez and Casadevall, 2006; Ma et al., 2006; Alvarez and Casadevall, 2007; 
Johnston and May, 2010). C. neoformans can also be phagocytosed by activated neutrophils 
(Kozel et al., 1987). The capsule of C. neoformans induces neutrophils to release 
proinflammatory cytokines, such as IL-1, IL-6, IL-8 and TNF- (Retini et al., 1996). 
Neutrophils can kill C. neoformans by non-oxidative mechanisms, including neutrophil 
defensins and calprotectin (Mambula et al., 2000). Interestingly, induction of neutropenia in 
mouse models of infection reduces their susceptibility to infection (Mednick et al., 2003). 

Although innate immune responses against Rhizopus, the main causative agent of 
mucormycosis, have not yet been fully characterized, recent work has shown that Rhizopus 
can trigger a common innate sensing pathway in DCs that leads to the production of IL-23 
and drives Th17-type responses (Chamilos et al., 2010). This is due to interaction of dectin -1 
with -glucans on the surface of Rhizopus hyphae.  

3.2 NK cell activity 

Another innate immune response to pulmonary fungal pathogens is due to recognition and 
action by natural killer (NK) cells. NK cells were thought to act primarily against viruses 
and tumors, but more recent studies have shown that NK cells have a wide variety of 
functions against bacteria, fungi, and parasites (Newman and Riley, 2007).  

In H. capsulatum infection, there is little evidence of a protective role for NK cells. While beige 
mice (lacking functional NK cells) are more susceptible to H. capsulatum infection, T cells play a 
greater role in controlling infection (Patino et al., 1987). In studies evaluating both beige mice 
and mice depleted of NK cells, beige mice were still more susceptible to infection, while mice 
depleted of NK cells were no more susceptible to infection than WT mice, therefore indicating 
no major role for NK cells in protection (Suchyta et al., 1988). However, mice deficient in 
perforin, a major component of NK cell anti-microbial activity, had accelerated mortality and 
increased fungal burden (Zhou et al., 2001). Infection with Coccidioides during depletion of NK 
cells leads to increased susceptibility to infection (Petkus and Baum, 1987). Furthermore, NK 
cells have a direct cytotoxic effect on Coccidioides young spherule and endospore cells (Petkus 
and Baum, 1987). In Paracoccidioides, studies have shown increased NK cell activity in infected 
hamsters compared to uninfected controls. Impaired NK cell activity was associated with a 
decrease in cell-mediated immunity (CMI) and an increase in histopathologic lesions. 
However, after initial activation, NK cells alone were not able to control dissemination of 
Paracoccidiodes (Peracoli et al., 1995). In vitro NK cell activity correlated with growth inhibition 
of Paracoccidiodes yeast (Jimenez and Murphy, 1984). 

In neutropenic mice with A. fumigatus infection, NK cells are the major cell type responsible 
for the production of IFN- early in the infection. Additionally, depletion of NK cells 
reduces IFN- levels and caused increased pulmonary fungal load (Park et al., 2009). NK 
cells have direct anti-fungal activity against hyphae but not against resting conidia (Schmidt 
et al., 2011). Killing is due to production of mediators by NK cells, including perforin. 
However, A. fumigatus can also down-regulate some cytokines induced by the NK cells, 
including IFN- and GM-CSF (Schmidt et al., 2011). In addition, recruitment of NK cells to 
the lung during A. fumigatus infection by the chemokine MCP-1 is required for optimal 
clearance of the organism from the lungs (Morrison et al., 2003). During Pneumocystis 
infection in  SCID mice (lacking T and B cells), NK cells were responsible for production of 



 
Pulmonary Infection 92

cytokines such as IFN-, TNF-, TNF-, IL-10, and IL-12 (Warschkau et al., 1998). Recent 
studies have shown that NK cells are recruited to the lung during Pneumocystis infection and 
are important in fungal clearance of murine PCP (M. Kelly and J. Shellito, personal 
communication). Further, combined depletion of NK and CD4+ T cells resulted in increased 
pulmonary fungal burden compared to individual depletion of each subset. In vitro, NK 
cells have direct microbicidal activity against Pneumocystis, and this anti-fungal activity is 
significantly enhanced in the presence of CD4+ T cells, suggesting that both cell types are 
necessary for a protective response against Pneumocystis infection (M. Kelly and J. Shellito, 
personal communication). Early studies showed that NK cells can directly kill C. neoformans 
(Murphy and McDaniel, 1982). Further, IFN- production by NK cells enhances elimination 
of the fungus in murine models (Kawakami et al., 2001a; Kawakami et al., 2001b; Kawakami 
et al., 2001c). Depletion of NK cells using anti-asialo GM antibody resulted in increased 
fungal burden in mice (Hidore et al., 1991a; Hidore et al., 1991b). Increased fungal burden 
was seen in beige mice compared to wild-type mice, and in mice depleted of NK1.1+ NK 
cells, fungal burden was also increased compared to controls (Lipscomb et al., 1987; 
Salkowski and Balish, 1991). Human NK cells kill C. neoformans (Levitz and Dupont, 1993), 
and this killing is enhanced in the presence of anti-cryptococcal antibodies (Miller et al., 
1990). Binding of NK cells is required for cryptococcal killing, and requires disulfide bonds 
and is dependent on magnesium (Nabavi and Murphy, 1985; Hidore and Murphy, 1989; 
Murphy et al., 1991). Killing of C. neoformans is due to perforin interaction with the organism 
(Ma et al., 2004; Marr et al., 2009). In summary, NK cells act as accessory cells in antifungal 
host defenses contributing to clearance of fungi by a variety of mechanisms.  

3.3 Gamma/delta T cell activity 

The role of gamma delta () T cells during the immune response to pulmonary fungal 
pathogens is diverse. During infection with Cryptococcus, mice genetically deficient or 
depleted in  T cells have reduced fungal burden compared to controls. Further, mice 
lacking T cells had increased levels of IFN- and decreased levels of TGF- compared to 
controls, therefore suggesting that T cells are detrimental to protective immunity during 
cryptococcal infection (Uezu et al., 2004). In Pneumocystis pneumonia, CD4+ T cells are 
necessary for protection against infection, but  cells are known to infiltrate into the lung 
during pneumonia (Kagi et al., 1993; Agostini et al., 1995; Steele et al., 2002). However, 
resolution of pulmonary Pneumocystis infection is augmented in  T cell–deficient mice, 
(Steele et al., 2002), suggesting that these cells are detrimental to clearance of the organism. 
Further, the absence of  T cells led to an increase in recruitment of CD8+ T cells and 
production of cytokines such as IFN-. Complete lack of all T cell subsets ( and ) during 
Pneumocystis infection led to lethal consequences (Hanano and Kaufmann, 1999). Thus, 
cells haveeither a limited role in antifungal protection or are detrimental to antifungal 
host defenses.  

3.4 Innate anti-fungal defenses by non-immune cells 

While innate immune cells and components of the innate immune system are the 
predominant innate immune defenses, it has also been shown that unconventional cells, 
such as epithelial cells can also play a role in anti-fungal innate host responses. Airway 
epithelial cells are capable of uptake and processing of antigens and initiation of Th-type 
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immune responses (Gereke et al., 2009). P. brasiliensis interacts with and can be internalized 
by bronchial epithelial cells (Mendes-Giannini et al., 1994, and this internalization is due to 
activation of a tyrosine kinase pathway (Monteiro da Silva et al., 2007; Hanna et al., 2000). In 
addition, uptake of P. brasiliensis causes both cytoskeletal rearrangements as well as 
apoptosis of the epithelial cells (Mendes-Giannini et al., 2004). C. neoformans can bind to 
pulmonary epithelial cells by a mechanism believed to be due to carbohydrate moieties that 
can be a ligand for the yeast (Merkel and Scofield, 1997). C. neoformans interaction with 
bronchial epithelial cells causes the production of IL-8, but epithelial cells are also 
susceptible to damage by the organism (Guillot et al., 2008a). In A. fumigatus infection, 
conidia can be taken up by tracheal epithelial cells, alveolar type II cells, and endothelial 
cells (Paris et al., 1997). Further, cytokines such as IL-6 and IL-8 are released by epithelial 
cells in vitro following stimulation with A. fumigatus proteases (Borger et al., 1999) or by A. 
fumigatus hyphal fragments (Zhang et al., 2005)  and nasal epithelium. And nasal epithelium 
can engulf A. fumigatus conidia (Botterel et al., 2008). Epithelial cells can also release 
antimicrobial peptides following stimulation with fungal organisms. Epithelial cells in vitro 
cultured with A. fumigatus conidia, swollen conidia, or hyphae produced large amounts of 
beta defensins (Alekseeva et al., 2009). Airway epithelial cells internalize A. fumigatus 
conidia, and a genome-wide analysis revealed differential gene expression in epithelial cells 
with conidia compared to cells without conidia. Genes that were upregulated with conidia 
included genes involved in repair and inflammation, such as matrix metalloproteinases and 
chemokines (Gomez et al., 2010). In Pneumocystis, several studies have shown that the 
organism interacts with pulmonary epithelial cells. The interaction of Pneumocystis with 
epithelial cells was shown to be one of the initial steps in infection (Lanken et al., 1980; 
Yoneda and Walzer, 1980; Long et al., 1986; Millard et al., 1990). The -glucan from the 
Pneumocystis cell wall can stimulate pulmonary epithelial cells to produce IL-8, and the 
organism can induce the production of MCP-1 and ICAM -1 (Yu and Limper, 1997; Evans et 
al., 2005; Wang et al., 2007; Carmona et al., 2010). Interaction of Pneumocystis and alveolar 
epithelial cells also leads to the production of the chemokine MIP-2 following NF-B 
signaling (Evans et al., 2005; Wang et al., 2005). These studies show that non-immune cells, 
such as epithelial cells, play a role in pulmonary anti-fungal immunity. 

4. T cell and antibody mediated immune responses to fungal infections 
4.1 Adaptive responses against pulmonary fungal pathogens 

When challenged with pathogenic fungi, the adaptive immune system is capable of 
mounting an effective response against most fungal species to eliminate fungal infections 
and maintain immunological memory that prevents their reoccurrence. However, fungi are 
ubiquitous in the host’s environment including the saprophytes and opportunists that 
survive on the host’s body surfaces and thus, the adaptive immune system is constantly 
challenged by fungal antigens. Excessive response to these antigens could lead to allergic 
responses or other types of immunopathological reactions. The balance between day-to-day 
fungal antigen exposure and the immune system is thought to lead to a homeostatic state 
defined as protective tolerance. Protective tolerance allows the host to keep possible fungal 
pathogens ”in check” while preserving integrity of the natural barriers, which are potential 
portals for fungal infections (Romani and Puccetti, 2008; de Luca et al., 2010a; Littman and 
Rudensky, 2010).  



 
Pulmonary Infection 92

cytokines such as IFN-, TNF-, TNF-, IL-10, and IL-12 (Warschkau et al., 1998). Recent 
studies have shown that NK cells are recruited to the lung during Pneumocystis infection and 
are important in fungal clearance of murine PCP (M. Kelly and J. Shellito, personal 
communication). Further, combined depletion of NK and CD4+ T cells resulted in increased 
pulmonary fungal burden compared to individual depletion of each subset. In vitro, NK 
cells have direct microbicidal activity against Pneumocystis, and this anti-fungal activity is 
significantly enhanced in the presence of CD4+ T cells, suggesting that both cell types are 
necessary for a protective response against Pneumocystis infection (M. Kelly and J. Shellito, 
personal communication). Early studies showed that NK cells can directly kill C. neoformans 
(Murphy and McDaniel, 1982). Further, IFN- production by NK cells enhances elimination 
of the fungus in murine models (Kawakami et al., 2001a; Kawakami et al., 2001b; Kawakami 
et al., 2001c). Depletion of NK cells using anti-asialo GM antibody resulted in increased 
fungal burden in mice (Hidore et al., 1991a; Hidore et al., 1991b). Increased fungal burden 
was seen in beige mice compared to wild-type mice, and in mice depleted of NK1.1+ NK 
cells, fungal burden was also increased compared to controls (Lipscomb et al., 1987; 
Salkowski and Balish, 1991). Human NK cells kill C. neoformans (Levitz and Dupont, 1993), 
and this killing is enhanced in the presence of anti-cryptococcal antibodies (Miller et al., 
1990). Binding of NK cells is required for cryptococcal killing, and requires disulfide bonds 
and is dependent on magnesium (Nabavi and Murphy, 1985; Hidore and Murphy, 1989; 
Murphy et al., 1991). Killing of C. neoformans is due to perforin interaction with the organism 
(Ma et al., 2004; Marr et al., 2009). In summary, NK cells act as accessory cells in antifungal 
host defenses contributing to clearance of fungi by a variety of mechanisms.  

3.3 Gamma/delta T cell activity 

The role of gamma delta () T cells during the immune response to pulmonary fungal 
pathogens is diverse. During infection with Cryptococcus, mice genetically deficient or 
depleted in  T cells have reduced fungal burden compared to controls. Further, mice 
lacking T cells had increased levels of IFN- and decreased levels of TGF- compared to 
controls, therefore suggesting that T cells are detrimental to protective immunity during 
cryptococcal infection (Uezu et al., 2004). In Pneumocystis pneumonia, CD4+ T cells are 
necessary for protection against infection, but  cells are known to infiltrate into the lung 
during pneumonia (Kagi et al., 1993; Agostini et al., 1995; Steele et al., 2002). However, 
resolution of pulmonary Pneumocystis infection is augmented in  T cell–deficient mice, 
(Steele et al., 2002), suggesting that these cells are detrimental to clearance of the organism. 
Further, the absence of  T cells led to an increase in recruitment of CD8+ T cells and 
production of cytokines such as IFN-. Complete lack of all T cell subsets ( and ) during 
Pneumocystis infection led to lethal consequences (Hanano and Kaufmann, 1999). Thus, 
cells haveeither a limited role in antifungal protection or are detrimental to antifungal 
host defenses.  

3.4 Innate anti-fungal defenses by non-immune cells 

While innate immune cells and components of the innate immune system are the 
predominant innate immune defenses, it has also been shown that unconventional cells, 
such as epithelial cells can also play a role in anti-fungal innate host responses. Airway 
epithelial cells are capable of uptake and processing of antigens and initiation of Th-type 
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immune responses (Gereke et al., 2009). P. brasiliensis interacts with and can be internalized 
by bronchial epithelial cells (Mendes-Giannini et al., 1994, and this internalization is due to 
activation of a tyrosine kinase pathway (Monteiro da Silva et al., 2007; Hanna et al., 2000). In 
addition, uptake of P. brasiliensis causes both cytoskeletal rearrangements as well as 
apoptosis of the epithelial cells (Mendes-Giannini et al., 2004). C. neoformans can bind to 
pulmonary epithelial cells by a mechanism believed to be due to carbohydrate moieties that 
can be a ligand for the yeast (Merkel and Scofield, 1997). C. neoformans interaction with 
bronchial epithelial cells causes the production of IL-8, but epithelial cells are also 
susceptible to damage by the organism (Guillot et al., 2008a). In A. fumigatus infection, 
conidia can be taken up by tracheal epithelial cells, alveolar type II cells, and endothelial 
cells (Paris et al., 1997). Further, cytokines such as IL-6 and IL-8 are released by epithelial 
cells in vitro following stimulation with A. fumigatus proteases (Borger et al., 1999) or by A. 
fumigatus hyphal fragments (Zhang et al., 2005)  and nasal epithelium. And nasal epithelium 
can engulf A. fumigatus conidia (Botterel et al., 2008). Epithelial cells can also release 
antimicrobial peptides following stimulation with fungal organisms. Epithelial cells in vitro 
cultured with A. fumigatus conidia, swollen conidia, or hyphae produced large amounts of 
beta defensins (Alekseeva et al., 2009). Airway epithelial cells internalize A. fumigatus 
conidia, and a genome-wide analysis revealed differential gene expression in epithelial cells 
with conidia compared to cells without conidia. Genes that were upregulated with conidia 
included genes involved in repair and inflammation, such as matrix metalloproteinases and 
chemokines (Gomez et al., 2010). In Pneumocystis, several studies have shown that the 
organism interacts with pulmonary epithelial cells. The interaction of Pneumocystis with 
epithelial cells was shown to be one of the initial steps in infection (Lanken et al., 1980; 
Yoneda and Walzer, 1980; Long et al., 1986; Millard et al., 1990). The -glucan from the 
Pneumocystis cell wall can stimulate pulmonary epithelial cells to produce IL-8, and the 
organism can induce the production of MCP-1 and ICAM -1 (Yu and Limper, 1997; Evans et 
al., 2005; Wang et al., 2007; Carmona et al., 2010). Interaction of Pneumocystis and alveolar 
epithelial cells also leads to the production of the chemokine MIP-2 following NF-B 
signaling (Evans et al., 2005; Wang et al., 2005). These studies show that non-immune cells, 
such as epithelial cells, play a role in pulmonary anti-fungal immunity. 

4. T cell and antibody mediated immune responses to fungal infections 
4.1 Adaptive responses against pulmonary fungal pathogens 

When challenged with pathogenic fungi, the adaptive immune system is capable of 
mounting an effective response against most fungal species to eliminate fungal infections 
and maintain immunological memory that prevents their reoccurrence. However, fungi are 
ubiquitous in the host’s environment including the saprophytes and opportunists that 
survive on the host’s body surfaces and thus, the adaptive immune system is constantly 
challenged by fungal antigens. Excessive response to these antigens could lead to allergic 
responses or other types of immunopathological reactions. The balance between day-to-day 
fungal antigen exposure and the immune system is thought to lead to a homeostatic state 
defined as protective tolerance. Protective tolerance allows the host to keep possible fungal 
pathogens ”in check” while preserving integrity of the natural barriers, which are potential 
portals for fungal infections (Romani and Puccetti, 2008; de Luca et al., 2010a; Littman and 
Rudensky, 2010).  
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T cells are responsible for orchestration of adaptive immune responses and T cell derived 
signals produced in response to specific antigens lead to targeted expansion, recruitment, 
activation of leukocytes, and regulation of B cell antibody responses. T cells also serve as a 
pool of immunological memory. Additionally, T cells have been shown to directly act as the 
fungicidal effector cells and serve as regulators of inflammatory responses, contributing to 
the development and maintenance of the protective tolerance. These regulatory mechanisms 
are designed to limit the damage that the host immune system can inflict on host tissues 
during incorrect and/or excessive host responses. Thus, properly functioning T cells are 
responsible for building up protective immunity against fungal pathogens and play an 
essential role in maintaining normal homeostasis of the immune system in the context of 
normal presence of fungal antigens. 

4.2 CD4+ and CD8+ T cell mediated immunity 

The importance of T cells in antifungal protection is well documented. T-cell deficient 
individuals show diminished resistance to fungal infections including coccidiomycosis (Kappe 
et al., 1998) cryptococcosis (Kovacs et al., 1985; Chuck and Sande, 1989; Spitzer et al., 1993; 
Jarvis and Harrison, 2007), histoplamosis (Odio et al., 1999), pneumocystis pneumonia (Kelly 
and Shellito), Paracoccidioides (Bava et al., 1991; Brummer et al., 1993), as well as pulmonary 
aspergillosis (Mylonakis et al., 1998). Likewise, laboratory studies have shown a strong 
contribution and/or requirement of T cells for protection against most pathogenic fungi such 
as Coccidioides (Fierer et al., 2006), Cryptococcus (Lim and Murphy, 1980; Mody et al., 1990; 
Huffnagle et al., 1991; Huffnagle and Lipscomb, 1992; Mody et al., 1994), Pneumocystis 
(Harmsen and Stankiewicz, 1990), Histoplasma (Deepe et al., 1984), Paracoccidioides (Cano et al., 
2000) and Aspergillus (Cenci et al., 1997). These epidemiological and experimental studies have 
established that T cells are an important component of the antifungal host resistance.  

Both subsets of T lymphocytes, CD4+ and CD8+ cells, are involved in antifungal host 
defenses. CD4+ T cells classically represent the T helper cell population. The T helper 
function was defined by MHC II restricted antigen specific activation of B-cell clones needed 
for the generation of specific antibodies. The CD4+ cell function in cell-mediated immunity 
(CMI) likewise requires antigen presenting cells and MHC II restricted antigen presentation. 
Presentation of antigen to the reactive T cells by dendritic cells and/or macrophages results 
in cytokine production. Through generation of different cytokine spectra, CD4+ T cells 
orchestrate recruitment and activation of various leukocyte subsets. The cytokines produced 
by the effector T cells are essential for macrophage fungicidal function and granuloma 
formation, but also may support chronic inflammation and immunopathology (Arora et al., 
2005; Chen et al., 2008; Jain et al., 2009; Zhang et al., 2009). Thus, cytokine induction by 
differentially polarized T-cell lineages is the major determinant for fungicidal potential of 
distal effector cells. Although the effector CD4+ cell function relies predominantly on 
cytokine production, CD4+ T-cells are capable of fungal killing via direct cell contact. At 
least in some biological circumstances, the direct fungicidal effect of CD4+ T cells relies on 
granulysin as the fungicidal mediator (Zheng et al., 2007; Zheng et al., 2008).  

In contrast with CD4+ T cells, CD8+ T cells are classically viewed as cytotoxic lymphocytes. 
These cells respond to antigen presentation in the context of MHC I, to enable their cytotoxic 
machinery. Such cytotoxic responses are particularly crucial in responses to viral infection 
and tumor cells, leading to elimination of the virally infected or tumor-transformed cells by 
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cytotoxic lymphocytes. CD8+ cells also play an important role in host defenses to bacterial, 
parasitic and fungal infections (Oykhman and Mody, 2010). Numerous studies showed that 
CD8+ T cells significantly contribute to protection against Cryptococcus, Pneumocystis, 
Histoplasma and Blastomyces, even in the absence of CD4+ T cells. Depending on the type and 
virulence of the fungal pathogen, CD8+ cells could afford either partial or a complete 
protection against the major fungal pathogens in experimental models. In this context, CD8+ 
T cells could induce all the protective effector functions of CD4+ T cells including production 
of protective cytokines. Another important aspect of CD8+ T cell effector function is the 
direct fungicidal effect of CD8+ T cells. Such direct fungicidal activity of CD8+ T cells have 
been demonstrated for C. neoformans (Ma et al., 2002). The killing of C. neoformans requires 
direct cell contact; it is enhanced by IL-15 and is thought to be mediated by granulysin. The 
direct cytotoxic effects are most pronounced when lymphocytes from fungus-immunized 
mice are used, however, a relatively high rate of binding of T cells to the fungus suggests 
that these cytotoxic mechanisms are innate rather than adaptive.  

4.3 Immune polarization in antifungal host defenses 

T helper cell subsets characterized by differential cytokine production by differentially 
programmed T-cell lineages were initially defined as Th1 and Th2 (Mosmann et al., 1986; 
Cherwinski et al., 1987). The types of immune responses driven by each of these cell lineages 
are described as Th1 and Th2 immune responses, generate different types of immune effector 
responses, and show different spectra of effectiveness against different classes of pathogens. 
For effective control/clearance of the majority of fungal pathogens, Th1 is the required type 
of the immune response. The Th1 response is promoted by IL-12, IFN-γ, and TNF-α. The two 
latter cytokines are also the major products of Th1 helper T cells (Cherwinski et al., 1987). 
Th1-type T-cells are responsible for the delayed-type hypersensitivity (DTH) reactions and 
CMI associated with vigorous proinflammatory responses and granuloma formation (Cher 
and Mosmann, 1987) and induction of IgG2a class antibodies in B cells (Stevens et al., 1988). 
The Th2 immune response is characterized by T-cell production of IL-4, IL-5, IL-9, IL-10, and 
IL-13 (Cherwinski et al., 1987), IgG1 and IgE antibody production by B cells (Stevens et al., 
1988) and the presence of eosinophilic inflammation (Huffnagle et al., 1994; Cenci et al., 1999; 
Olszewski et al., 2001). The Th1 and Th2 responses counter-regulate each other 
predominantly via an IL-4/IFN-γ negative feedback loop (Fernandez-Botran et al., 1988; 
Gajewski and Fitch, 1988); however other cytokines can be also involved in Th1/Th2 
regulation. The oversimplified Th1/Th2 paradigm has further evolved as new T cell lineages 
were defined. Th17 and regulatory type T cells (Treg), are T-cell lineages that are distinct 
from Th1 and Th2 cells that possess distinct functions in host defenses. Th17 cells are 
generated following the priming with IL-6 and TGF-β and sustained by the presence of IL-23. 
Th17 cells classically produce IL-17 and IL-22, however, a subset of Th17 cells can produce 
IFN-γ. Regulatory T-cells are thought to be responsible for tolerance that prevents auto-
immune diseases and to contribute to resolution of inflammatory responses. These effects of 
Tregs are thought to be mediated by anti-inflammatory cytokines IL-10 and TGF-β, which are 
signature cytokines for Treg cells. New Th-cell lineages continue to be described including 
Th22 (Eyerich et al., 2009; Fujita et al., 2009) and Th9 (Soroosh and Doherty, 2009). Just like 
CD4+ effector T-cells, CD8+ T cells can also display a polarization pattern and thus can be an 
important source of the polarizing cytokines. Thus, both CD4+ and CD8+ T cells contribute to 
the cytokine balance during the immune response (Huffnagle et al., 1994).  
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T cells are responsible for orchestration of adaptive immune responses and T cell derived 
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2005; Chen et al., 2008; Jain et al., 2009; Zhang et al., 2009). Thus, cytokine induction by 
differentially polarized T-cell lineages is the major determinant for fungicidal potential of 
distal effector cells. Although the effector CD4+ cell function relies predominantly on 
cytokine production, CD4+ T-cells are capable of fungal killing via direct cell contact. At 
least in some biological circumstances, the direct fungicidal effect of CD4+ T cells relies on 
granulysin as the fungicidal mediator (Zheng et al., 2007; Zheng et al., 2008).  
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cytotoxic lymphocytes. CD8+ cells also play an important role in host defenses to bacterial, 
parasitic and fungal infections (Oykhman and Mody, 2010). Numerous studies showed that 
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Histoplasma and Blastomyces, even in the absence of CD4+ T cells. Depending on the type and 
virulence of the fungal pathogen, CD8+ cells could afford either partial or a complete 
protection against the major fungal pathogens in experimental models. In this context, CD8+ 
T cells could induce all the protective effector functions of CD4+ T cells including production 
of protective cytokines. Another important aspect of CD8+ T cell effector function is the 
direct fungicidal effect of CD8+ T cells. Such direct fungicidal activity of CD8+ T cells have 
been demonstrated for C. neoformans (Ma et al., 2002). The killing of C. neoformans requires 
direct cell contact; it is enhanced by IL-15 and is thought to be mediated by granulysin. The 
direct cytotoxic effects are most pronounced when lymphocytes from fungus-immunized 
mice are used, however, a relatively high rate of binding of T cells to the fungus suggests 
that these cytotoxic mechanisms are innate rather than adaptive.  

4.3 Immune polarization in antifungal host defenses 

T helper cell subsets characterized by differential cytokine production by differentially 
programmed T-cell lineages were initially defined as Th1 and Th2 (Mosmann et al., 1986; 
Cherwinski et al., 1987). The types of immune responses driven by each of these cell lineages 
are described as Th1 and Th2 immune responses, generate different types of immune effector 
responses, and show different spectra of effectiveness against different classes of pathogens. 
For effective control/clearance of the majority of fungal pathogens, Th1 is the required type 
of the immune response. The Th1 response is promoted by IL-12, IFN-γ, and TNF-α. The two 
latter cytokines are also the major products of Th1 helper T cells (Cherwinski et al., 1987). 
Th1-type T-cells are responsible for the delayed-type hypersensitivity (DTH) reactions and 
CMI associated with vigorous proinflammatory responses and granuloma formation (Cher 
and Mosmann, 1987) and induction of IgG2a class antibodies in B cells (Stevens et al., 1988). 
The Th2 immune response is characterized by T-cell production of IL-4, IL-5, IL-9, IL-10, and 
IL-13 (Cherwinski et al., 1987), IgG1 and IgE antibody production by B cells (Stevens et al., 
1988) and the presence of eosinophilic inflammation (Huffnagle et al., 1994; Cenci et al., 1999; 
Olszewski et al., 2001). The Th1 and Th2 responses counter-regulate each other 
predominantly via an IL-4/IFN-γ negative feedback loop (Fernandez-Botran et al., 1988; 
Gajewski and Fitch, 1988); however other cytokines can be also involved in Th1/Th2 
regulation. The oversimplified Th1/Th2 paradigm has further evolved as new T cell lineages 
were defined. Th17 and regulatory type T cells (Treg), are T-cell lineages that are distinct 
from Th1 and Th2 cells that possess distinct functions in host defenses. Th17 cells are 
generated following the priming with IL-6 and TGF-β and sustained by the presence of IL-23. 
Th17 cells classically produce IL-17 and IL-22, however, a subset of Th17 cells can produce 
IFN-γ. Regulatory T-cells are thought to be responsible for tolerance that prevents auto-
immune diseases and to contribute to resolution of inflammatory responses. These effects of 
Tregs are thought to be mediated by anti-inflammatory cytokines IL-10 and TGF-β, which are 
signature cytokines for Treg cells. New Th-cell lineages continue to be described including 
Th22 (Eyerich et al., 2009; Fujita et al., 2009) and Th9 (Soroosh and Doherty, 2009). Just like 
CD4+ effector T-cells, CD8+ T cells can also display a polarization pattern and thus can be an 
important source of the polarizing cytokines. Thus, both CD4+ and CD8+ T cells contribute to 
the cytokine balance during the immune response (Huffnagle et al., 1994).  
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4.4 Th1/2/17/22 cytokine responses 

The protective role of Th1 along with the requirement of type 1 cytokines for fungal 
clearance have been demonstrated in models of cryptococcosis (Huffnagle et al., 1994; 
Kawakami et al., 1997; Blackstock et al., 1999; Abe et al., 2000; Traynor et al., 2000; Olszewski 
et al., 2001; Herring et al., 2002; Arora et al., 2005; Hernandez et al., 2005; Lindell et al., 2006; 
Wormley et al., 2007; Chen et al., 2008; Guillot et al., 2008b; Jain et al., 2009; Wozniak et al., 
2009; Zhang et al., 2009), Coccidioides (Silva and Benitez, 2005), Paracocidioides (Cano et al., 
1998), Histoplama (Zhou et al., 1995; Deepe and Gibbons, 2006) and Blastomyces (Brummer et 
al., 2006) infections. Th1 skewing is beneficial for clearance of Aspergillus (Cenci et al., 1997), 
although clearance of the filamentous fungi is mainly a domain of the innate immune 
system. The Th1 cytokine environment promotes clearance of fungi by supporting the 
classical activation of macrophages (Mantovani et al., 2001). Pathogenic fungi possess 
mechanisms that interfere with their recognition by macrophages. These fungi can survive 
within macrophage unless additional “external” stimulation occurs to activate fungicidal 
mechanisms. Such stimulation can be provided by Th1-type cytokines, especially IFN-γ 
(Arora et al., 2005; Hardison et al.). In the context of a Th1 immune response, macrophages 
become classically activated and abundantly generate fungicidal molecules such as nitric 
oxide produced by nitric oxide synthase, an enzyme that utilizes L-arginine. Importance of 
classical macrophage activation and production of nitric oxide for fungal clearance has been 
demonstrated for Blastomyces (Brummer et al., 2005; Kethineni et al., 2006), Cryptococcus 
(Granger et al., 1990; Alspaugh and Granger, 1991; Rivera et al., 2002; Arora et al., 2005; 
Zhang et al.; Hardison et al.), Histoplasma (Zhou et al., 1995; Allendoerfer and Deepe, 1998; 
Allen and Deepe, 2006) and Paracocidiodes (Moreira et al.; Pinzan et al.) infections. The 
deficiencies in cytokines that support classical activation of macrophages GM-CSF, IFN-γ, 
TNF-α, IL-12 are generally associated with the development of progressive fungal infection 
(Romani et al., 1994; Kawakami et al., 1999; Rayhane et al., 1999; Herring et al., 2005; Deepe 
and Gibbons, 2006) consistent with the general conclusion that Th1-type immune responses 
and type 1 cytokines are most optimal for resistance against fungal infections.  

Unlike Th1-type responses, the Th2 response is non-protective and frequently results in 
pathological responses to fungal challenges. For most fungal species, Th2 responses and 
type 2 cytokines decrease clearance of fungus. This is attributed to: 1) a suppression of 
protective Th1 responses due to a mutual counterregulatory feedback loop (Cenci et al., 
1999) and 2) a generation of alternatively activated macrophages that can harbor fungal 
organisms (Arora et al., 2005; Jain et al., 2009; Osterholzer et al., 2009a; Zhang et al., 2009). 
Th2 cytokines such as IL-4, IL-13 are the major trigger of alternative activation of 
macrophages (Arora et al., 2005; Jain et al., 2009; Zhang et al., 2009). These alternatively 
activated macrophages do not express nitric oxide synthase but induce arginase which 
metabolizes L-arginine without yielding fungicidal nitric oxide. In the Th2 biased 
experimental models of fungal infections, intracellular survival of fungus within 
macrophages parallels high induction of alternatively activated macrophage markers (Arora 
et al., 2005; Zhang et al., 2009; Hardison et al.).  

Increased production of Th2-type cytokines has been associated with increased 
susceptibility to Cryptococcus (Arora et al., 2005; Zhang et al., 2009; Hardison et al.) and 
Paracoccidioides (Ruas et al., 2009) infections and to invasive pulmonary aspergillosis (Cenci 
et al., 1997; Cenci et al., 1999). Fungus-triggered Th2-type responses in the respiratory 
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system may also lead to allergic diseases such rhinitis/sinusitis, asthma, allergic 
bronchopulmonary mycosis. Th2 type responses are highly detrimental to the respiratory 
system by promoting mucus hypersecretion/goblet cell metaplasia, eosinophilic 
inflammation, and peribronchial fibrosis all of which contribute to impaired airway 
function. Cytokines IL-4, IL-5 and IL-13 are the major triggers of these pathologies as 
increased expression of these cytokines can be reproduced along with the allergic symptoms 
in the lungs challenged with fungi or their antigenic components (Blease et al., 2000; Arora 
et al., 2005; Jain et al., 2009; Zhang et al., 2009). Some of the fungal antigens can directly 
promote Th2 skewing. The secreted protein fraction from Aspergillus fumigatus promotes 
Th2 bias of the immune response (Bozza et al., 2009). Th2 pathologies are also found in 
mouse models of C. neoformans infections (Abe et al., 2000; Jain et al., 2009; Osterholzer et al., 
2009b) (Figure 1). Expression of enzymes phospholipase B and urease by C. neoformans 
promote Th2 bias in the infected mice (Noverr et al., 2003; Osterholzer et al., 2009b). While 
Th2-biased responses are clearly undesirable in most types of fungal infections the exception 
is Pneumocystis infection, in which the Th2 response can contribute to fungal clearance 
(Shellito et al., 2000; McKinley et al., 2006; Hu et al., 2009).  

 
Fig. 1. Classical versus alternative activation of macrophages during  pulmonary infection 
with C. neoformans. A) Classically activated macrophages upregulate fungicidal mechanisms 
that eliminate ingested fungi. Note that ingested intracellular organisms show signs of 
degradation. B) Alternatively activated macrophages (AAM) harbor the ingested fungi. 
Note the abundant capsule formation (evidence of fungal metabolic activity) and dividing 
organisms (evidence of intracellular growth) within AAM. Alternative activation of 
macrophages is associated with crystallization of chitinase family proteins YM1 and YM2, a 
hallmark of AAM-induced pathology. V-vacuoles with the remnants of destroyed 
organisms, YM- YM1/YM2 crystals, C.n. – intact cryptococcal organisms.  

The effects of Th17 responses and the IL-17 cytokine family in anti-fungal host responses 
may be protective or non-protective depending on fungal species and sites of infection 
(Figure 2). Thus, Th17 responses may be beneficial for some types of fungal infections or  
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system may also lead to allergic diseases such rhinitis/sinusitis, asthma, allergic 
bronchopulmonary mycosis. Th2 type responses are highly detrimental to the respiratory 
system by promoting mucus hypersecretion/goblet cell metaplasia, eosinophilic 
inflammation, and peribronchial fibrosis all of which contribute to impaired airway 
function. Cytokines IL-4, IL-5 and IL-13 are the major triggers of these pathologies as 
increased expression of these cytokines can be reproduced along with the allergic symptoms 
in the lungs challenged with fungi or their antigenic components (Blease et al., 2000; Arora 
et al., 2005; Jain et al., 2009; Zhang et al., 2009). Some of the fungal antigens can directly 
promote Th2 skewing. The secreted protein fraction from Aspergillus fumigatus promotes 
Th2 bias of the immune response (Bozza et al., 2009). Th2 pathologies are also found in 
mouse models of C. neoformans infections (Abe et al., 2000; Jain et al., 2009; Osterholzer et al., 
2009b) (Figure 1). Expression of enzymes phospholipase B and urease by C. neoformans 
promote Th2 bias in the infected mice (Noverr et al., 2003; Osterholzer et al., 2009b). While 
Th2-biased responses are clearly undesirable in most types of fungal infections the exception 
is Pneumocystis infection, in which the Th2 response can contribute to fungal clearance 
(Shellito et al., 2000; McKinley et al., 2006; Hu et al., 2009).  

 
Fig. 1. Classical versus alternative activation of macrophages during  pulmonary infection 
with C. neoformans. A) Classically activated macrophages upregulate fungicidal mechanisms 
that eliminate ingested fungi. Note that ingested intracellular organisms show signs of 
degradation. B) Alternatively activated macrophages (AAM) harbor the ingested fungi. 
Note the abundant capsule formation (evidence of fungal metabolic activity) and dividing 
organisms (evidence of intracellular growth) within AAM. Alternative activation of 
macrophages is associated with crystallization of chitinase family proteins YM1 and YM2, a 
hallmark of AAM-induced pathology. V-vacuoles with the remnants of destroyed 
organisms, YM- YM1/YM2 crystals, C.n. – intact cryptococcal organisms.  

The effects of Th17 responses and the IL-17 cytokine family in anti-fungal host responses 
may be protective or non-protective depending on fungal species and sites of infection 
(Figure 2). Thus, Th17 responses may be beneficial for some types of fungal infections or  



 
Pulmonary Infection 98

 
Fig. 2. Th polarization in antifungal host defenses. The outcome of Th1, Th2, Th17, and Treg 
polarization results from balance between Th lineages which can mutually regulate each 
other via cytokine feedback loops. Resultant outcome can either promote clearance of the 
fungal infection or result in persistent infection and limited or severe pathology. Th1 
response promotes control of most fungal infections; Th2 leads to severe pathology and 
fungal persistence; Th17 may support clearance or persistence of different fungal infections, 
but may promote chronic neutrophilic inflammation. Treg may limit pathology by 
promoting resolution of the inflammatory response, but may increase the risk of persistence. 
Correct balance between Th1 and Treg is thought to support protective tolerance. 

exhibit detrimental effects. In the H. capsulatum infection model, IL-17 neutralization 
increases pulmonary fungal burden in connection with increased Treg numbers, suggesting 
that Th17 is beneficial for clearance of Histoplasma (Kroetz and Deepe, 2010). Th17 responses 
also contribute to anticryptococcal protection and the development of the protective 
inflammatory response in C. neoformans infected lungs (Zhang et al., 2009; Hardison et al., 
2010b; Wozniak et al., 2011a).  

The IL-23/IL-17 axis contributes to clearance of Pneumocystis (Rudner et al., 2007). However, 
in IFN-γ deficient mice infected with Pneumocystis the development of strong Th17 response 
is detrimental, suggesting that a balance between IFN-γ and IL-17 is needed for optimal 
clearance of Pneumocystis (Hu et al., 2009). At other mucosal sites, the effects of Th17 are 
variable. Th17 cells and IL-17 receptor signaling are required for mucosal host defenses in 
oral candidiasis (Conti et al., 2009); whereas Th17 impairs antifungal resistance and 
promotes inflammation in gastric infection model (Zelante et al., 2007). Th17 responses 
impair antifungal resistance and promotes inflammatory damage in the lungs of mice 
infected with Aspergillus (Zelante et al., 2007; Bozza et al., 2009; D'Angelo et al., 2009). 
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Overall, the Th17 response may have beneficial effects for clearance of some fungal 
pathogens; however it also has high potential to produce undesirable effects, including 
inflammatory damage. 

Excessive immune reaction and uncontrolled inflammation can result in serious damage of 
the inflicted organs and tissues. Anti-inflammatory or regulatory cytokines such as IL-10 
and TGF-β are an important part of the balance which prevents over exuberant 
inflammation during acute responses. These cytokines are also thought to be important 
components of resolution and tissue repair that occurs after elimination of the pathogen. 
Regulatory T cells are important sources of these cytokines and their role in inflammatory 
diseases and in the maintenance of healthy tissue homeostasis becomes increasingly 
appreciated (Romani and Puccetti, 2008; De Luca et al., 2010b; Littman and Rudensky, 2010). 
The importance of balance between pro-inflammatory processes and Treg cell regulation has 
recently been demonstrated in models of Pneumocystis (McKinley et al., 2006) and 
Histoplasma infections (Kroetz and Deepe). The excessive/damaging inflammatory reaction 
can be exemplified by immune reconstitution inflammatory syndrome (IRIS). IRIS is 
characterized by uncontrolled inflammatory responses with high induction of IFN-γ, TNF-α 
and other pro-inflammatory cytokines (Mori and Levin, 2009). Overproduction of these 
cytokines, rather than having protective effects, contributes to tissue injury that leads to 
worsening of the patient condition and high mortality (Mori and Levin, 2009). Interestingly, 
occurrence of IRIS in HIV patients who undergo antiretroviral therapy is particularly high in 
patients with Cryptococcus and Pneumocystis infections (Singh et al., 2005; Singh and Perfect, 
2007; Murdoch et al., 2008). The mechanism of inadequate inflammatory response in IRIS is 
not understood, however it has been proposed that the regulatory mechanisms that control 
the inflammation, including Tregs are not sufficiently mobilized to put a break on this 
inflammatory response (McKinley et al., 2006; Shankar et al., 2008). In fact, patients with 
IRIS showed reduced suppressor function and diminished secretion of anti-inflammatory 
IL-10 by Tregs in one of the studies (Seddiki et al., 2009). Tregs are critical for maintaining 
the proper homeostasis in the GI track, and such mechanisms of protective tolerance are 
likely to be critical in the respiratory tract which is constantly exposed to inhaled fungal 
antigens. Insufficiency of the regulatory mechanisms most likely contributes to the 
development of allergic diseases. Thus, Tregs cells are important for maintaining balance 
between appropriate clearance rate and the inflammatory tissue damage. Such balance can 
be disturbed and the excessive Treg function may promote fungal persistence. A 
detrimental role of IL-10 has been demonstrated in cryptococcal infection models 
(Blackstock et al., 1999; Arora et al., 2005). Future studies will be needed to evaluate the 
possible role of Tregs in fungal infections, especially in the patients who develop mycoses 
without apparent immunodeficiency.  

The polarization of T cells to Th1, Th2, Th17 and Treg lineages is important for the 
development of protective immunity, protective tolerance, chronic/allergic syndromes, or 
overwhelming allergic reactions. The proper balance maintained by the mutual regulation 
between these arms of the immune system is necessary to optimize clearance and minimize 
inflammatory damage to the infected tissues in the context of fungal infection. Our present 
understanding of these responses evolved from an oversimplified polarized Th1/Th2 
paradigm to a broader understanding of mutual regulation ongoing during the immune 
process. Recent studies show that the Th1, Th2, Th17 responses co-exist in a fungus infected 
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Fig. 2. Th polarization in antifungal host defenses. The outcome of Th1, Th2, Th17, and Treg 
polarization results from balance between Th lineages which can mutually regulate each 
other via cytokine feedback loops. Resultant outcome can either promote clearance of the 
fungal infection or result in persistent infection and limited or severe pathology. Th1 
response promotes control of most fungal infections; Th2 leads to severe pathology and 
fungal persistence; Th17 may support clearance or persistence of different fungal infections, 
but may promote chronic neutrophilic inflammation. Treg may limit pathology by 
promoting resolution of the inflammatory response, but may increase the risk of persistence. 
Correct balance between Th1 and Treg is thought to support protective tolerance. 

exhibit detrimental effects. In the H. capsulatum infection model, IL-17 neutralization 
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promotes inflammation in gastric infection model (Zelante et al., 2007). Th17 responses 
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Overall, the Th17 response may have beneficial effects for clearance of some fungal 
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inflammatory damage. 
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worsening of the patient condition and high mortality (Mori and Levin, 2009). Interestingly, 
occurrence of IRIS in HIV patients who undergo antiretroviral therapy is particularly high in 
patients with Cryptococcus and Pneumocystis infections (Singh et al., 2005; Singh and Perfect, 
2007; Murdoch et al., 2008). The mechanism of inadequate inflammatory response in IRIS is 
not understood, however it has been proposed that the regulatory mechanisms that control 
the inflammation, including Tregs are not sufficiently mobilized to put a break on this 
inflammatory response (McKinley et al., 2006; Shankar et al., 2008). In fact, patients with 
IRIS showed reduced suppressor function and diminished secretion of anti-inflammatory 
IL-10 by Tregs in one of the studies (Seddiki et al., 2009). Tregs are critical for maintaining 
the proper homeostasis in the GI track, and such mechanisms of protective tolerance are 
likely to be critical in the respiratory tract which is constantly exposed to inhaled fungal 
antigens. Insufficiency of the regulatory mechanisms most likely contributes to the 
development of allergic diseases. Thus, Tregs cells are important for maintaining balance 
between appropriate clearance rate and the inflammatory tissue damage. Such balance can 
be disturbed and the excessive Treg function may promote fungal persistence. A 
detrimental role of IL-10 has been demonstrated in cryptococcal infection models 
(Blackstock et al., 1999; Arora et al., 2005). Future studies will be needed to evaluate the 
possible role of Tregs in fungal infections, especially in the patients who develop mycoses 
without apparent immunodeficiency.  

The polarization of T cells to Th1, Th2, Th17 and Treg lineages is important for the 
development of protective immunity, protective tolerance, chronic/allergic syndromes, or 
overwhelming allergic reactions. The proper balance maintained by the mutual regulation 
between these arms of the immune system is necessary to optimize clearance and minimize 
inflammatory damage to the infected tissues in the context of fungal infection. Our present 
understanding of these responses evolved from an oversimplified polarized Th1/Th2 
paradigm to a broader understanding of mutual regulation ongoing during the immune 
process. Recent studies show that the Th1, Th2, Th17 responses co-exist in a fungus infected 
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lungs and the balance of cytokine production alters during different time points in a chronic 
fungal infection (Arora et al., 2011). Modulation of these responses can be achieved 
experimentally and therapeutically by use of cytokines and vaccination with different 
fractions of fungal antigens resulting in the induction of the proper and protective Th-cell 
polarization. 

4.5 Vaccine-induced therapies targeting cellular mediated immunity 

Currently, there are no standardized vaccines available for the prevention of fungal diseases 
in humans (as discussed earlier). A preponderance of evidence points to the development of 
cell-mediated immune responses, principally by Th1–type CD4+ T cells, as the predominant 
host defense mechanism against primary and opportunistic pulmonary fungal pathogens 
(Cutler et al., 2007). Further, ablation or neutralization of several Th1-type cytokines renders 
mice more susceptible to experimental infection with a number of fungal pathogens. 
Consequently, there has been great interest in identifying antigens that elicit protective CMI 
against fungal infections; some of which will be discussed herein.  

Vaccination with native or recombinant Hsp60 from H. capsulatum or a domain within 
Hsp60 conferred protection in mice given a sub-lethal challenge with yeast cells and 
prolonged survival in mice given a lethal challenge (Gomez et al., 1995; Deepe and Gibbons, 
2002). Protection was CD4+ T cell dependent and associated with the induction of IFN-γ, IL-
12 and, surprisingly, the Th2-type cytokine IL-10 (Deepe and Gibbons, 2002; Scheckelhoff 
and Deepe, 2005). A similar vaccination strategy in mice using Hsp70 did not induce robust 
IL-12 or IFN-γ responses and protection against subsequent challenge with live yeast. 
Neutralization of IL-12 or IFN-γ abolished the protective efficacy of the Hsp60 vaccine in 
mice further highlighting the importance of these Th1-type cytokines in the induction of 
protection against H. capsulatum.  

Similarly, vaccination of mice with recombinant Hsp60 derived from P. brasiliensis elicited 
protection against a lethal intranasal challenge with yeast (de Bastos Ascenco Soares et al., 
2008). The protective effect of P. basiliensis Hsp60 was abrogated following the depletion of 
CD4+ T cells or neutralization of IFN-γ; similar to that observed for Hsp60 from H. 
capsulatum (Scheckelhoff and Deepe, 2005; de Bastos Ascenco Soares et al., 2008). However, 
IL-10 was not produced following antigen stimulation of splenocytes obtained from P. 
basiliensis Hsp60 immunized mice. While the efficacy of vaccination with forms of Hsp60 
from H. capsulatum and P. brasiliensis are encouraging, immunization with recombinant 
Hsp60 derived from C. immitis resulted in predominantly Th2 cytokine responses and little 
protection against a subsequent intraperitoneal challenge (Li et al., 2001). Thus, the 
induction of Th1-type immune responses in the lungs appears critical for the development 
of protection following immunization with Hsp60. 

Evaluation of live attenuated, recombinant, and DNA vaccines of C. immitis in murine 
models have also highlighted the importance of Th1-type cytokine production, particularly 
IFN-γ, in protection against this microbe (reviewed in (Cole et al., 2004; Cox and Magee, 
2004; Xue et al., 2009)). Mice immunized with recombinant aspartyl protease (Pep1), alpha-
mannosidase (Amn1), or phospholipase B (Plb) individually or together as amultivalent 
vaccine experienced a significant reduction in fungal burden and prolonged survival against 
a lethal pulmonary challenge with C. posadasii arthroconidia compared to controls (Tarcha et 
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al., 2006). Approximately 85% of mice immunized with the multivalent recombinant vaccine 
survived to day 90 post-inoculation. Similarly, immunization of mice with two recombinant 
antigens, Coccidiodes-specific antigen (CSA) and the proline-rich cell wall protein Ag2/PRA, 
either as a mixture of two separately expressed proteins or as a single chimeric expression 
product was shown to protect mice from a lethal intranasal infection with C. posadasii 
(Shubitz et al., 2006). The protection observed with each vaccination strategy was associated 
with robust IFN-γ responses in protected mice, again showing the importance of Th1-type 
cytokines during protective host responses. Further, these studies highlighted the utility of a 
multivalent vaccination strategy that potentially evokes protective responses towards a 
broader set of T-cell epitopes.  

The importance of CD4+ T cells and the generation of Th1-type responses towards eliciting 
protection against pulmonary fungal pathogens are also observed in vaccination models 
using a live C. neoformans strain engineered to express IFN-γ (Wormley et al., 2007) 
(Wozniak et al., 2009) (Young et al., 2009), a live attenuated strain of B. dermatitidis 
(Wuthrich et al., 2000), and recombinant A. fumigatus protein Asp f3 (Diaz-Arevalo et al., 
2011). Immunization with recombinant Asp f3 of A. fumigatus protected cortisone acetate 
immune suppressed mice from an experimental pulmonary infection with A. fumigatus 
conidia (Diaz-Arevalo et al., 2011). The protection was dependent on CD4+ T cells as their 
depletion reduced the survival of vaccinated mice and adoptive transfer of Aspf3 primed 
CD4+ T cells into non-vaccinated mice enhanced their survival against experimentally 
induced pulmonary aspergillosis. Generation of sterilizing immunity in mice following 
pulmonary immunization with a C. neoformans strain engineered to express murine IFN-γ, 
designated H99γ, was shown to require the induction of Th1-type cell-mediated immune 
responses (Wozniak et al., 2009). Interestingly, B-cell deficient mice immunized with H99γ 
were protected from a subsequent lethal pulmonary challenge with WT C. neoformans 
(Wozniak et al., 2009; Young et al., 2009; Wozniak et al., 2011b). Also, vaccination of mice 
with an attenuated strain of B. dermatitidis containing a targeted deletion in the BAD1 locus 
resulted in prolonged survival that was chiefly mediated by IFN-γ and TNF-α production 
by CD4+ T cells (Wuthrich et al., 2000; Wuthrich et al., 2002). Although these studies show 
that Th1-type CD4+ T cell responses are required for optimal host responses against these 
pulmonary pathogens, studies in H. capsulatum, B. dermititidis, and C. neoformans highlight 
the inherent plasticity of the host response against pulmonary fungal pathogens. That is that 
some elements of the immune response can compensate for the loss of other components.  

Vaccine-induced immunity against B. dermatitidis was shown be mediated by CD4+ α/β T 
cell production of TNF-α and IFN-γ (Wuthrich et al., 2002). Moreover, the initiation, but not 
maintenance, of protective memory responses to B dermatitidis required IL-12 production 
(Wuthrich et al., 2005). However, vaccine-induced immunity could be elicited and expressed 
in IFN-γ and TNF-α deficient mice. The reciprocal cytokine or the presence of GM-CSF was 
shown to compensate for the loss of  IFN-γ and TNF-α showing some plasticity in the 
vaccine-induced host response to Blastomyces (Wuthrich et al., 2002). Furthermore, a role for 
Th17 cells in vaccine-induced protection against multiple pulmonary fungal pathogens has 
been shown (Wuthrich et al., 2011). Specifically, protection afforded by vaccination against 
C. posadassi, H. capsulatum, and B. dermatitidis was observed to be dependent on IL-17. In 
fact, IL-17 was shown to be indispensable since vaccinated IL-17A or IL-17RA deficient mice 
showed impaired anti-fungal resistance despite having normal Th1-type cytokine 
expression. In contrast, IL-17A was shown to contribute to but ultimately be dispensable for 
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lungs and the balance of cytokine production alters during different time points in a chronic 
fungal infection (Arora et al., 2011). Modulation of these responses can be achieved 
experimentally and therapeutically by use of cytokines and vaccination with different 
fractions of fungal antigens resulting in the induction of the proper and protective Th-cell 
polarization. 

4.5 Vaccine-induced therapies targeting cellular mediated immunity 

Currently, there are no standardized vaccines available for the prevention of fungal diseases 
in humans (as discussed earlier). A preponderance of evidence points to the development of 
cell-mediated immune responses, principally by Th1–type CD4+ T cells, as the predominant 
host defense mechanism against primary and opportunistic pulmonary fungal pathogens 
(Cutler et al., 2007). Further, ablation or neutralization of several Th1-type cytokines renders 
mice more susceptible to experimental infection with a number of fungal pathogens. 
Consequently, there has been great interest in identifying antigens that elicit protective CMI 
against fungal infections; some of which will be discussed herein.  

Vaccination with native or recombinant Hsp60 from H. capsulatum or a domain within 
Hsp60 conferred protection in mice given a sub-lethal challenge with yeast cells and 
prolonged survival in mice given a lethal challenge (Gomez et al., 1995; Deepe and Gibbons, 
2002). Protection was CD4+ T cell dependent and associated with the induction of IFN-γ, IL-
12 and, surprisingly, the Th2-type cytokine IL-10 (Deepe and Gibbons, 2002; Scheckelhoff 
and Deepe, 2005). A similar vaccination strategy in mice using Hsp70 did not induce robust 
IL-12 or IFN-γ responses and protection against subsequent challenge with live yeast. 
Neutralization of IL-12 or IFN-γ abolished the protective efficacy of the Hsp60 vaccine in 
mice further highlighting the importance of these Th1-type cytokines in the induction of 
protection against H. capsulatum.  

Similarly, vaccination of mice with recombinant Hsp60 derived from P. brasiliensis elicited 
protection against a lethal intranasal challenge with yeast (de Bastos Ascenco Soares et al., 
2008). The protective effect of P. basiliensis Hsp60 was abrogated following the depletion of 
CD4+ T cells or neutralization of IFN-γ; similar to that observed for Hsp60 from H. 
capsulatum (Scheckelhoff and Deepe, 2005; de Bastos Ascenco Soares et al., 2008). However, 
IL-10 was not produced following antigen stimulation of splenocytes obtained from P. 
basiliensis Hsp60 immunized mice. While the efficacy of vaccination with forms of Hsp60 
from H. capsulatum and P. brasiliensis are encouraging, immunization with recombinant 
Hsp60 derived from C. immitis resulted in predominantly Th2 cytokine responses and little 
protection against a subsequent intraperitoneal challenge (Li et al., 2001). Thus, the 
induction of Th1-type immune responses in the lungs appears critical for the development 
of protection following immunization with Hsp60. 

Evaluation of live attenuated, recombinant, and DNA vaccines of C. immitis in murine 
models have also highlighted the importance of Th1-type cytokine production, particularly 
IFN-γ, in protection against this microbe (reviewed in (Cole et al., 2004; Cox and Magee, 
2004; Xue et al., 2009)). Mice immunized with recombinant aspartyl protease (Pep1), alpha-
mannosidase (Amn1), or phospholipase B (Plb) individually or together as amultivalent 
vaccine experienced a significant reduction in fungal burden and prolonged survival against 
a lethal pulmonary challenge with C. posadasii arthroconidia compared to controls (Tarcha et 
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al., 2006). Approximately 85% of mice immunized with the multivalent recombinant vaccine 
survived to day 90 post-inoculation. Similarly, immunization of mice with two recombinant 
antigens, Coccidiodes-specific antigen (CSA) and the proline-rich cell wall protein Ag2/PRA, 
either as a mixture of two separately expressed proteins or as a single chimeric expression 
product was shown to protect mice from a lethal intranasal infection with C. posadasii 
(Shubitz et al., 2006). The protection observed with each vaccination strategy was associated 
with robust IFN-γ responses in protected mice, again showing the importance of Th1-type 
cytokines during protective host responses. Further, these studies highlighted the utility of a 
multivalent vaccination strategy that potentially evokes protective responses towards a 
broader set of T-cell epitopes.  

The importance of CD4+ T cells and the generation of Th1-type responses towards eliciting 
protection against pulmonary fungal pathogens are also observed in vaccination models 
using a live C. neoformans strain engineered to express IFN-γ (Wormley et al., 2007) 
(Wozniak et al., 2009) (Young et al., 2009), a live attenuated strain of B. dermatitidis 
(Wuthrich et al., 2000), and recombinant A. fumigatus protein Asp f3 (Diaz-Arevalo et al., 
2011). Immunization with recombinant Asp f3 of A. fumigatus protected cortisone acetate 
immune suppressed mice from an experimental pulmonary infection with A. fumigatus 
conidia (Diaz-Arevalo et al., 2011). The protection was dependent on CD4+ T cells as their 
depletion reduced the survival of vaccinated mice and adoptive transfer of Aspf3 primed 
CD4+ T cells into non-vaccinated mice enhanced their survival against experimentally 
induced pulmonary aspergillosis. Generation of sterilizing immunity in mice following 
pulmonary immunization with a C. neoformans strain engineered to express murine IFN-γ, 
designated H99γ, was shown to require the induction of Th1-type cell-mediated immune 
responses (Wozniak et al., 2009). Interestingly, B-cell deficient mice immunized with H99γ 
were protected from a subsequent lethal pulmonary challenge with WT C. neoformans 
(Wozniak et al., 2009; Young et al., 2009; Wozniak et al., 2011b). Also, vaccination of mice 
with an attenuated strain of B. dermatitidis containing a targeted deletion in the BAD1 locus 
resulted in prolonged survival that was chiefly mediated by IFN-γ and TNF-α production 
by CD4+ T cells (Wuthrich et al., 2000; Wuthrich et al., 2002). Although these studies show 
that Th1-type CD4+ T cell responses are required for optimal host responses against these 
pulmonary pathogens, studies in H. capsulatum, B. dermititidis, and C. neoformans highlight 
the inherent plasticity of the host response against pulmonary fungal pathogens. That is that 
some elements of the immune response can compensate for the loss of other components.  

Vaccine-induced immunity against B. dermatitidis was shown be mediated by CD4+ α/β T 
cell production of TNF-α and IFN-γ (Wuthrich et al., 2002). Moreover, the initiation, but not 
maintenance, of protective memory responses to B dermatitidis required IL-12 production 
(Wuthrich et al., 2005). However, vaccine-induced immunity could be elicited and expressed 
in IFN-γ and TNF-α deficient mice. The reciprocal cytokine or the presence of GM-CSF was 
shown to compensate for the loss of  IFN-γ and TNF-α showing some plasticity in the 
vaccine-induced host response to Blastomyces (Wuthrich et al., 2002). Furthermore, a role for 
Th17 cells in vaccine-induced protection against multiple pulmonary fungal pathogens has 
been shown (Wuthrich et al., 2011). Specifically, protection afforded by vaccination against 
C. posadassi, H. capsulatum, and B. dermatitidis was observed to be dependent on IL-17. In 
fact, IL-17 was shown to be indispensable since vaccinated IL-17A or IL-17RA deficient mice 
showed impaired anti-fungal resistance despite having normal Th1-type cytokine 
expression. In contrast, IL-17A was shown to contribute to but ultimately be dispensable for 
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protection against experimental pulmonary cryptococcosis in C. neoformans strain H99γ 
vaccinated mice (Hardison et al., 2010b; Wozniak et al., 2011a). Still, it appears imperative 
that vaccines strategies to prevent pulmonary mycoses be evaluated for their capacity to 
induce Th1 and Th17-type cytokine responses. 

The induction of T cell-mediated immune responses is critical for optimal protection against 
pulmonary fungal pathogens (Cutler et al., 2007). Consequently, it may seem 
counterintuitive to suggest that vaccines designed to prevent fungal infections in patients 
with T cell deficiencies is possible. Nonetheless, vaccination studies using experimental 
models of H. capsulatum (Deepe and Gibbons, 2002), P. brasiliensis (de Bastos Ascenco Soares 
et al., 2008), H. capsulatum (Wuthrich et al., 2003), B. dermatitidis (Wuthrich et al., 2002; 
Wuthrich et al., 2003), C. immitis (Fierer et al., 2006), and C. neoformans (Wozniak et al., 2011b) 
have indicated that vaccine-induced protective immune responses can be elicited in immune 
deficient hosts. Cumulatively, the studies show that the presence of CD4+ or CD8+ T cells is 
essential for the induction (the period following vaccination) and expression (immune 
response following challenge) phases of the protective immune response. Protection is not 
induced in mice that are T cell deficient or depleted of both CD4+ and CD8+ T cell 
populations. Further, protection is lost in vaccinated mice following deletion of both T cell 
subsets. Interestingly, 80% of mice vaccinated with C. neoformans strain H99γ and 
subsequently depleted of both CD4+ and CD8+ T cells were protected from a lethal 
pulmonary challenge with WT C. neoformans (Wozniak et al., 2011b). These studies highlight 
dynamic compensatory mechanisms that mediate vaccine-induced protection during both 
the induction and expression phases of the anti-fungal immune response. Altogether, the 
results demonstrating the plasticity of the vaccine-induced immune response to pulmonary 
fungal pathogens are particularly exciting as they highlight the potential for inducing 
protection in immune competent and immune compromised hosts. 

4.6 Antibody-mediated immunity and therapeutics 

The contribution of antibody mediated immunity (AMI) towards protecting individuals 
against pulmonary fungal infections remains uncertain. Individuals with humoral deficiencies 
such as autosomal hyper-IgM syndrome and IgA deficiency do not exhibit an increased 
susceptibility to fungal infections (reviewed in Antachopoulos, 2007, 2010). In contrast, 
patients with X-linked hyper IgM syndrome and common-variable immunodeficiency which 
are often accompanied by defects in T CMI have a higher risk of developing pulmonary and 
invasive fungal infections like cryptococcosis and histoplasmosis. The efficacious role for 
antibodies during the host immune responses against fungi is like that observed against 
bacterial and viral pathogens. Antibodies produced in response to fungal infection serve as 
opsonins to promote phagocytosis, participate in antibody-dependent cellular cytotoxicity, 
augment Th1-type polarization, help to eliminate immunosuppressive polysaccharide antigen 
from serum and tissues, inhibit biofilm formation, have direct antifungal activity, and 
modulate the immune response to prevent host damage (reviewed in Alvarez and Casadevall, 
2007; reviewed in Zaragoza and Casadevall, 2004).  

Most studies showing the efficacy of AMI against pulmonary fungal pathogens has 
involved experimental models of PcP and cryptocococcosis. The polysaccharide capsule of 
Cryptococcus, its main virulence determinant, is predominantly comprised of the 
polysaccharides glucuronoxylomannan (GXM) and galactoxylomannan (GalXM) and to a 
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much lesser extent, <1%, mannoproteins (MP) (reviewed in Zaragoza et al., 2009). Conjugate 
vaccines consisting of GXM combined to either tetanus toxoid (TT) or Pseudomonas 
aeruginosa exoprotein A (rEPA) induce high antibody titers (Devi et al., 1991; Casadevall et 
al., 1992), enhanced antifungal activity of murine and human phagocytes (Mukherjee et al., 
1995c; Zhong and Pirofski, 1996, 1998) and conferred some protection against cryptococcosis 
in mice (Devi, 1996; Fleuridor et al., 1998; Nussbaum et al., 1999). Unfortunately, the 
profound suppressive effects on immune responses induced by cryptococcal 
polysaccharides and the highly variable immune responses observed in response to the 
intact GXM portion of the conjugate vaccine renders it an unlikely choice for future vaccine 
development (reviewed in Zaragoza et al., 2009; reviewed in Pirofski, 2001). A strategy 
using small peptide mimotopes (peptides which are able to induce antibodies that are 
capable of binding to the native antigen when administered as an immunogen) that mimic 
defined GXM epitopes was attempted to elicit protective antibody responses where using 
total GXM was unsuccessful. Zhang et al. described a peptide mimetic (P13) of GXM that 
was recognized by human anti-GXM antibodies (Zhang et al., 1997) and showed that 
vaccination with P13-protein conjugates in mice resulted in prolonged survival after a lethal 
C. neoformans challenge compared to controls (Fleuridor et al., 2001) or following 
establishment of a chronic infection (Datta et al., 2008).  

Casadevall et al. developed a murine monoclonal antibody (MAb), 18B7, to C. neoformans 
polysaccharide that underwent phase I clinical studies in HIV+ patients with cryptococcal 
antigenemia (Casadevall et al., 1998). A modest reduction in serum cryptococcal antigen 
titers was observed in patients receiving singular doses of 1 and 2 mg/kg up to 10 weeks 
post-treatment before returning to baseline (Casadevall et al., 1998). To date, no follow-up 
clinical studies have been published. A new approach using MAb 18B7 currently being 
investigated in mice involves conjugation of the MAb to the therapeutic radioisotopes 
188Rhenium or 213Bismuth (Dadachova et al., 2003; Bryan et al., 2010). Studies have shown 
that administration of radiolabeled MAb 18B7 to lethally infected mice results in prolonged 
survival, reduced organ fungal burden, and was a more effective therapy compared to mice 
treated with amphotericin B. Radioimmunotherapy can be applied using MAb derived 
against multiple pulmonary fungal pathogens and thus may evolve into an attractive option 
for the treatment of other pulmonary mycoses. Lastly, while most studies have examined 
passive administration with antibodies targeting C. neoformans polysaccharide, other 
cryptococcal targets for passive antibody therapy under experimental investigation include 
melanin (Rosas et al., 2001), β-glucan (Rachini et al., 2007), heat shock protein (HSP) 90 
(Nooney et al., 2005) and glucosylceramide (Rodrigues et al., 2007). 

Mice deficient in B cells, either due to a targeted disruption of the IgM constant region (µMT 
mice) or using depletion antibodies, are more susceptible to PcP infection (Harmsen and 
Stankiewicz, 1991; Marcotte et al., 1996) (Lund et al., 2003; Lund et al., 2006). These studies 
showed that B cells were able to provide protection against PcP not only by producing Ab 
but also by amplifying the CD4+ T cell-mediated immune response. Passive administration 
of an IgM mAb shown to be directed against a surface antigen present on rat-, rabbit-, ferret-
, and human-derived P. carinii induced partial protection against PcP in animal models 
(Gigliotti and Hughes, 1988). Subsequent studies showed that the passive administration of 
mAbs recognizing kexin-like molecule (KEX1) via the intranasal route prior to 
experimentally induced PcP resulted in a significant reduction in pulmonary fungal burden 
(~99%) (Gigliotti et al., 2002).  
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protection against experimental pulmonary cryptococcosis in C. neoformans strain H99γ 
vaccinated mice (Hardison et al., 2010b; Wozniak et al., 2011a). Still, it appears imperative 
that vaccines strategies to prevent pulmonary mycoses be evaluated for their capacity to 
induce Th1 and Th17-type cytokine responses. 

The induction of T cell-mediated immune responses is critical for optimal protection against 
pulmonary fungal pathogens (Cutler et al., 2007). Consequently, it may seem 
counterintuitive to suggest that vaccines designed to prevent fungal infections in patients 
with T cell deficiencies is possible. Nonetheless, vaccination studies using experimental 
models of H. capsulatum (Deepe and Gibbons, 2002), P. brasiliensis (de Bastos Ascenco Soares 
et al., 2008), H. capsulatum (Wuthrich et al., 2003), B. dermatitidis (Wuthrich et al., 2002; 
Wuthrich et al., 2003), C. immitis (Fierer et al., 2006), and C. neoformans (Wozniak et al., 2011b) 
have indicated that vaccine-induced protective immune responses can be elicited in immune 
deficient hosts. Cumulatively, the studies show that the presence of CD4+ or CD8+ T cells is 
essential for the induction (the period following vaccination) and expression (immune 
response following challenge) phases of the protective immune response. Protection is not 
induced in mice that are T cell deficient or depleted of both CD4+ and CD8+ T cell 
populations. Further, protection is lost in vaccinated mice following deletion of both T cell 
subsets. Interestingly, 80% of mice vaccinated with C. neoformans strain H99γ and 
subsequently depleted of both CD4+ and CD8+ T cells were protected from a lethal 
pulmonary challenge with WT C. neoformans (Wozniak et al., 2011b). These studies highlight 
dynamic compensatory mechanisms that mediate vaccine-induced protection during both 
the induction and expression phases of the anti-fungal immune response. Altogether, the 
results demonstrating the plasticity of the vaccine-induced immune response to pulmonary 
fungal pathogens are particularly exciting as they highlight the potential for inducing 
protection in immune competent and immune compromised hosts. 

4.6 Antibody-mediated immunity and therapeutics 

The contribution of antibody mediated immunity (AMI) towards protecting individuals 
against pulmonary fungal infections remains uncertain. Individuals with humoral deficiencies 
such as autosomal hyper-IgM syndrome and IgA deficiency do not exhibit an increased 
susceptibility to fungal infections (reviewed in Antachopoulos, 2007, 2010). In contrast, 
patients with X-linked hyper IgM syndrome and common-variable immunodeficiency which 
are often accompanied by defects in T CMI have a higher risk of developing pulmonary and 
invasive fungal infections like cryptococcosis and histoplasmosis. The efficacious role for 
antibodies during the host immune responses against fungi is like that observed against 
bacterial and viral pathogens. Antibodies produced in response to fungal infection serve as 
opsonins to promote phagocytosis, participate in antibody-dependent cellular cytotoxicity, 
augment Th1-type polarization, help to eliminate immunosuppressive polysaccharide antigen 
from serum and tissues, inhibit biofilm formation, have direct antifungal activity, and 
modulate the immune response to prevent host damage (reviewed in Alvarez and Casadevall, 
2007; reviewed in Zaragoza and Casadevall, 2004).  

Most studies showing the efficacy of AMI against pulmonary fungal pathogens has 
involved experimental models of PcP and cryptocococcosis. The polysaccharide capsule of 
Cryptococcus, its main virulence determinant, is predominantly comprised of the 
polysaccharides glucuronoxylomannan (GXM) and galactoxylomannan (GalXM) and to a 
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much lesser extent, <1%, mannoproteins (MP) (reviewed in Zaragoza et al., 2009). Conjugate 
vaccines consisting of GXM combined to either tetanus toxoid (TT) or Pseudomonas 
aeruginosa exoprotein A (rEPA) induce high antibody titers (Devi et al., 1991; Casadevall et 
al., 1992), enhanced antifungal activity of murine and human phagocytes (Mukherjee et al., 
1995c; Zhong and Pirofski, 1996, 1998) and conferred some protection against cryptococcosis 
in mice (Devi, 1996; Fleuridor et al., 1998; Nussbaum et al., 1999). Unfortunately, the 
profound suppressive effects on immune responses induced by cryptococcal 
polysaccharides and the highly variable immune responses observed in response to the 
intact GXM portion of the conjugate vaccine renders it an unlikely choice for future vaccine 
development (reviewed in Zaragoza et al., 2009; reviewed in Pirofski, 2001). A strategy 
using small peptide mimotopes (peptides which are able to induce antibodies that are 
capable of binding to the native antigen when administered as an immunogen) that mimic 
defined GXM epitopes was attempted to elicit protective antibody responses where using 
total GXM was unsuccessful. Zhang et al. described a peptide mimetic (P13) of GXM that 
was recognized by human anti-GXM antibodies (Zhang et al., 1997) and showed that 
vaccination with P13-protein conjugates in mice resulted in prolonged survival after a lethal 
C. neoformans challenge compared to controls (Fleuridor et al., 2001) or following 
establishment of a chronic infection (Datta et al., 2008).  

Casadevall et al. developed a murine monoclonal antibody (MAb), 18B7, to C. neoformans 
polysaccharide that underwent phase I clinical studies in HIV+ patients with cryptococcal 
antigenemia (Casadevall et al., 1998). A modest reduction in serum cryptococcal antigen 
titers was observed in patients receiving singular doses of 1 and 2 mg/kg up to 10 weeks 
post-treatment before returning to baseline (Casadevall et al., 1998). To date, no follow-up 
clinical studies have been published. A new approach using MAb 18B7 currently being 
investigated in mice involves conjugation of the MAb to the therapeutic radioisotopes 
188Rhenium or 213Bismuth (Dadachova et al., 2003; Bryan et al., 2010). Studies have shown 
that administration of radiolabeled MAb 18B7 to lethally infected mice results in prolonged 
survival, reduced organ fungal burden, and was a more effective therapy compared to mice 
treated with amphotericin B. Radioimmunotherapy can be applied using MAb derived 
against multiple pulmonary fungal pathogens and thus may evolve into an attractive option 
for the treatment of other pulmonary mycoses. Lastly, while most studies have examined 
passive administration with antibodies targeting C. neoformans polysaccharide, other 
cryptococcal targets for passive antibody therapy under experimental investigation include 
melanin (Rosas et al., 2001), β-glucan (Rachini et al., 2007), heat shock protein (HSP) 90 
(Nooney et al., 2005) and glucosylceramide (Rodrigues et al., 2007). 

Mice deficient in B cells, either due to a targeted disruption of the IgM constant region (µMT 
mice) or using depletion antibodies, are more susceptible to PcP infection (Harmsen and 
Stankiewicz, 1991; Marcotte et al., 1996) (Lund et al., 2003; Lund et al., 2006). These studies 
showed that B cells were able to provide protection against PcP not only by producing Ab 
but also by amplifying the CD4+ T cell-mediated immune response. Passive administration 
of an IgM mAb shown to be directed against a surface antigen present on rat-, rabbit-, ferret-
, and human-derived P. carinii induced partial protection against PcP in animal models 
(Gigliotti and Hughes, 1988). Subsequent studies showed that the passive administration of 
mAbs recognizing kexin-like molecule (KEX1) via the intranasal route prior to 
experimentally induced PcP resulted in a significant reduction in pulmonary fungal burden 
(~99%) (Gigliotti et al., 2002).  
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Contrasting studies have shown that B cell deficient µMT mice have lower pulmonary 
fungal burden following intranasal infection with A. fumigatus (Montagnoli et al., 2003) or B. 
dermatitidis (Wuthrich et al., 2000) and are not more susceptible to experimental pulmonary 
histoplasmosis infection (Allendorfer et al., 1999) compared to WT controls. Also, passive 
transfer of polyclonal serum or MAbs obtained from A. fumigatus, B. dermatitidis, or  
C. immttis vaccinated mice did not enhance protection against a subsequent intranasal 
challenge with these pathogens (Kong et al., 1965; Beaman et al., 1977; Frosco et al., 1994; 
Wuthrich et al., 2000; Beaman et al., 1979). The role of antibodies in the host defense against 
fungal infection remains controversial because of its complexity. The current consensus is 
that antifungal antibodies can mediate protective, nonprotective, or disease-enhancing 
effects on host defenses during infection (Mukherjee et al., 1995a; Mukherjee et al., 1995b; 
Yuan et al., 1998a). Thus, resistance to disease may depend upon the proportion of 
protective antifungal antibodies produced during infection. In support of this concept, non-
protective and protective MAbs to C. neoformans has been described (Mukherjee et al., 1995a; 
Maitta et al., 2004). Also, Nosanchuk et al. demonstrated that mice passively administered 
MAbs targeting a histone H2B-like protein on the surface of H. capsulatum before infection 
experienced a reduction in fungal burden and prolonged survival (Nosanchuk et al., 2003). 
These studies were somewhat surprising in light of previous studies showing no increased 
susceptibility to experimental histoplasmosis infection in B cell deficient mice (Allendorfer 
et al., 1999). Studies in C. neoformans has shown that the efficacy of MAbs appears to be 
dependent on several variables including host genetics (Rivera and Casadevall, 2005), Ab 
isotype (Yuan et al., 1995; Yuan et al., 1998b), T cell function (Yuan et al., 1997), and the 
presence of Th1- and Th2-related cytokines (Beenhouwer et al., 2001). AMI during the 
protective response to pulmonary fungal pathogens is broad and divergent, but it is clear 
that specific antibodies are efficacious for the host in the resolution of infection.  

Studies also support the potential of using antibodies that target antigens common among 
multiple fungi to mediate cross-protection. Passive immunization using anti β-glucan MAbs 
or vaccination with β-glucan (laminarin) conjugated with the genetically-inactivated 
diphtheria toxin CRM197 (Lam-CRM vaccine) has been shown to confer protection against 
C. neoformans, C. albicans and A. fumigatus (Torosantucci et al., 2005; Rachini et al., 2007). 
Since β-glucans are found in the cell wall of fungi, the efficacy of anti-β-glucan antibodies 
can be very broad. Cenci et al. used a killer anti-idiotype MAb reacting to a yeast killer toxin 
to protect mice from a lethal A. fumigatus challenge during experimental bone marrow 
transplantation (Cenci and Romani and 2375). Killer toxin is also expressed by multiple 
fungal species. Mycograb (NeuTec Pharman plc.), a recombinant antibody targeting an 
epitope within the HSP90 of Candida albicans that is conserved with the corresponding 
protein in C. neoformans, has been shown to act in adjunct with amphotericin B against 
multiple Candida species and C. neoformans. Altogether, these studies highlight the 
possibility that antibodies targeting “universal’ antigens common to multiple fungal species 
such as β-glucans, killer toxins, or Hsps may extend protection to multiple disparate fungal 
pathogens. Casadevall and Pirofski has published an elegant commentary on the emergence 
of cross-protective targets for fungi (Casadevall and Pirofski, 2007). 

5. Conclusion 
The principal route of entry for several of the primary and opportunistic fungal pathogens is 
via inhalation of infectious propagules into the lungs. Consequently, exposure to these fungi 
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is unavoidable. Nevertheless, most encounters are asymptomatic due to the quick resolution 
of the fungi by resident effector cells within the lung. On those occasions that the fungal 
insult cannot be quickly eradicated, T cells, predominantly CD4+ T cells, preside over 
orchestrating the adaptive responses and provide help for antibody production. T cell 
responses are also influenced by cytokine production by innate effector cells. Nonetheless, T 
cells mediate various cellular responses at the sites of infection and are ultimately 
responsible for either resolution or pathological reactions associated with these infections.  
Furthermore, T cells are important players in homeostasis and protecting integrity of natural 
barriers. Recent advances in experimental animal models support the premise that anti-
fungal vaccines may be effective in immune compromised hosts. The efficacy of anti-fungal 
vaccines in immune compromised populations is undoubtedly due to the inherent plasticity 
of host immunity. Altogether, it is clear that immune responses to pulmonary fungal 
infections are as diverse as the fungi themselves but that significant ground has been made 
towards its understanding. 
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