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Preface

Energy consumption across the world is increasing, and according to International 
Energy Agency (IEA) reports, humanity will require much more energy in the 
upcoming decades. Therefore, the world will be faced with an imminent energy 
dilemma in the 21st century.

The energy transition is a pathway toward the transformation of the global energy 
sector from fossil-based fuels to zero-carbon emissions. All energy scenarios project 
that global energy generation and consumption will increase by more than 50% by 
2050. This means the global energy sectors face greater uncertainty and challenges 
in both the short and long term. The decarbonization of the energy sector requires 
urgent action on a global scale to reduce carbon emissions and mitigate the effects 
of climate change.

To overcome these challenges, humankind needs to harness the power of the sun 
as an infinite source to supply additional energy as well as increase the share of 
renewable energy around the world. Solar radiation is radiant energy originating 
from the sun in the form of electromagnetic radiation at various wavelengths. 
Almost all renewable energy comes from the sun either directly or indirectly. 
A vast amount of solar energy (173,000 terawatts) reaches the atmosphere and 
surface of the Earth, which is more than 10,000 times greater than the total energy 
used in the world. Today, photovoltaic (PV) solar energy has become the cheapest 
source for electrical power generation. At the beginning of 2022, PV installation 
exceeded 1 TW, which was an impressive milestone in the solar energy sector. In 
2021, the world installed at least 183 GW, and PV capacity reached 788 GW at the 
end of 2020.

This book provides detailed information about solar radiation as the source of PV 
solar energy. It addresses various technical and practical aspects, including fun-
damental principles, measurement, modeling, and forecasting of solar radiation 
for PV solar energy technologies and applications. Most of this book describes the 
basic, modern, and contemporary knowledge and technology of extraterrestrial and 
terrestrial solar irradiance for PV solar energy. The contents contribute to energy 
transition and the United Nations’ Sustainable Development Goals (SDGs) directly 
(SDG7: Affordable and Clean Energy; SDG13: Climate Action) and indirectly 
(SDG8: Decent Work and Economic Growth; SDG9: Industry, Innovation, and 
Infrastructure; SDG11: Sustainable Cities and Communities).

The book includes eleven chapters categorized into four sections: (I) “Introduction,” 
(II) “Fundamentals, Measurements and Modeling of Solar Radiation”, (III) 
“Forecasting and Characterization of Solar Radiation,” and (IV) “Solar Photovoltaic 
Technologies and Applications.”

Section I includes Chapter 1, which introduces the concept of energy transition 
and presents the background of solar radiation and solar energy as well as provides 

XII
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an overview of technologies, applications, and trends of solar photovoltaics. As 
an introductory chapter, it also reports statistical information on the status of 
photovoltaics from global installation, recent developments, and pioneer countries 
to the largest installed PV plants and future perspectives.

Section II includes Chapters 2 and 3, which present detailed information on the 
measurement and modeling of solar irradiance for solar PV energy. Chapter 2, 
“Measuring Solar Irradiance for Photovoltaics”, discusses the characteristics and 
different components of solar irradiance and the instruments for measurement 
of these components. It gives detailed information on the physics involved in the 
measurement instruments and their calibration and corresponding uncertainty. 
Chapter 3, “Modelling of Solar Radiation for Photovoltaic Applications”, quanti-
fies different models in which solar radiation can be used in PV applications. It 
also presents various linear and non-linear solar radiation models that incorporate 
different combinations of parameters, namely, clearness index, the sunshine 
fraction, cloud cover, and air mass. The given models aim to estimate the direct 
and diffuse components of global solar radiation on both the horizontal and 
tilted surfaces to determine the optimal tilt and azimuthal angles for solar PV 
applications.

Section III consists of Chapters 4 and 5, which summarize forecasting and 
characterization methods for solar radiation to improve the performance of PV 
systems. Chapter 4, “Forecasting and Modelling of Solar Radiation for Photovoltaic 
(PV) Systems”, presents a time series method for the prediction of solar radiation 
using the Auto-Regressive and Moving model, resulting in PV power forecasting. 
Chapter 5, “Temporal Fluctuations Scaling Analysis: Power Law of Ramp Rate’s 
Variance for PV Power Output”, focuses on the quantification of ramp rate’s 
variance at different short time scales for tropical measurement sites that exhibit 
high irradiance variability due to complex microclimatic context. The outcome 
of this study is based on a statistical perspective in the solar PV energy area that 
introduces the multifractality analysis of variability of PV power output during 
the daytime.

Section IV contains Chapters 6–11, which cover solar PV technologies and applica-
tions ranging from solar cells, reliability assessment, outdoor characterization, and 
conventional and emerging PV technologies to bifacial PV technology, PV power 
prediction, concentrator PV system, and novel control methods for maximizing 
the PV system output. Chapter 6, “Assessing the Impact of Spectral Irradiance 
on the Performance of Different Photovoltaic Technologies”, discusses different 
commercially available technologies of PV cells including crystalline silicon (c-Si), 
polycrystalline silicon (pc-Si), cadmium telluride (CdTe), and copper indium 
gallium selenide (CIGS). It presents a correlation study on the spectral response or 
the photocurrent of different PV cells with the variations of the solar spectrum, 
environmental conditions, and the material properties and construction of PV 
cells. Chapter 7, “Outdoor Performance and Stability Assessment of Dye-Sensitized 
Solar Cells (DSSCs)”, discusses the principle of dye-sensitized solar cells and 
studies the outdoor performance and long-term stability of dye-sensitized solar 
cell devices. Chapter 8, “Bifacial Photovoltaic Technology: Recent Advancements, 
Simulation and Performance Measurement”, introduces the physic principle and 
applications of bifacial PV technology. This chapter presents different bifacial PV 
cell and module technologies as well as the advantages of using bifacial PV tech-
nology in the field. It discusses the advanced techniques for the characterization 
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of bifacial PV modules and albedo as one of the important factors for the energy 
yield of bifacial PV technology. It also presents several simulation models and 
experimental measurements by varying the sensor positions on the rear side of the 
PV modules, different places, different albedo numbers, mounting heights, and 
different geographical locations with various tilts, seasons, and weather types. 
Chapter 9, “Photovoltaic Power Forecasting Methods”, gives different physical, 
heuristic, statistical, and machine learning-based methods for PV power forecast-
ing with several examples of their applications and related uncertainty. It also 
assesses the effect of degradation on lifetime PV energy forecast using linear and 
nonlinear degradation scenarios. Chapter 10, “Concentrator Photovoltaic System 
(CPV): Maximum Power Point Techniques (MPPT) Design and Performance”, 
studies the performance of MPPT techniques applied to the CPV system for 
the research and the pursuit of the maximum power point (MPP). This chapter 
presents modeling and simulation of the CPV system including a PV module 
located in the focal area of a parabolic concentrator, a DC / DC converter (Boost), 
two MPPT controls (P&O and FL), and a resistive load. Finally, Chapter 11, 
“Model Reference Adaptive Control of Solar Photovoltaic Systems: Application 
to a Water Desalination System”, deals with a new mathematic development of 
tracking control technique based on Variable Structure Model Reference Adaptive 
Following (VSMRAF) control applied to systems coupled with solar sources. This 
chapter provides a new theoretical analysis validated by simulation and experi-
mental results to assure optimum operating conditions for solar PV systems with 
 application in a water desalination system.

During my academic journey, I had the good fortune and privilege to be involved 
in numerous stimulating, provocative, and engaging classes, conversations, discus-
sions, debates, workshops, seminars, and lectures on the energy sector at leading 
universities, industries, and institutions across the world. There are therefore so 
many people who have influenced my experience and expertise that led to numer-
ous outcomes in the field of energy systems, renewables, PV solar energy, and 
integrated photovoltaics. This book is one of my latest publications, after two 
years of endeavor, and I hope it will be beneficial for readers ranging from energy 
industries, energy stakeholders, and energy policymakers to undergraduate and 
postgraduate students, young or experienced researchers, and engineers.

I would like to acknowledge all the authors who contributed to this book by propos-
ing several interesting relevant topics. I am deeply indebted to colleagues, past and 
present, at Politecnico di Milano, Fraunhofer Institute for Solar Energy Systems 
(ISE), University of Freiburg, Helmholtz-Zentrum Berlin (HZB), Eindhoven 
University of Technology (TU/e), Amirkabir University of Technology (AUT), 
Universidade Federal de Santa Catarina (UFSC), and Norwegian University of 
Science and Technology (NTNU).

I want to express gratitude to my wife Shima and my lovely daughter Sana for their 
support and patience. My greatest debt is to my family, my parents (Naser and 
Horiyeh), my brother and sister (Ali and Zahra), my parents-in-law (Hussain and 
Masoumeh), and my sister- and brother-in-law (Mahsa and Amin).

I would like to offer special thanks to my uncle, Dr. Ebrahim Aghaei, who, although 
no longer with us, continues to inspire me with his great support and dedication 
in the past. He always believed in my ability to be successful in the academic arena 
(‘’You are gone but your belief in me has made this journey possible’’).

XIV
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In the end, praise be to Allah who bestowed me with patience to accomplish editing 
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who will rise one day and make the world full of peace and justice.
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Chapter 1

Introductory Chapter: Solar 
Photovoltaic Energy
Mohammadreza Aghaei, Amir Nedaei, Aref Eskandari  
and Jafar Milimonfared

1. Introduction

The concept of energy transition is defined as a transformation of fossil-based 
energy resources to non-carbonated during the upcoming years [1]. Hence, sup-
plying energy through renewable resources that can be naturally replenished on a 
human timescale is being of great importance. This form of energy is named renew-
able energy and is mostly sustainable and environmentally friendly. Renewable 
energy can be easily converted into different types of energy (e.g., electricity, heat) 
via recent technologies.

Accordingly, in 2015, the international community set the Sustainable 
Development Goals (SDGs) as a part of the UN 2030 Agenda for Sustainable 
Development [2]. The goals include pledges to eliminate poverty, starvation, etc. Of 
all the goals set by the international community, some goals such as to supply clean 
energy, to protect the climate, and so on were energy-related. It is mentioned that 
the seventh goal (known as SDG7) attempts to provide services for clean, afford-
able, and modern energy all over the world and increase the portion of renewable 
energy among the other types by 2030. Also, since all countries in the world are 
prone to suffer from climate change, SDG13 tries to increase the immunity by either 
enhancing the resilience of different countries or educating people and raising 
awareness.

2. Solar radiation

The main source of energy to move the atmosphere is the sun. This energy is 
radiated in the form of electromagnetic waves with a wavelength between 0.2 and 
4 μm (see Figure 1). The smallest measurable amount of an electromagnetic field 
is called a photon. The modernized definition of photon is derived from research 
(which were based on those carried out by the German physicist Max Planck) done 
by Albert Einstein from 1900s to 1920s. In 1926, the term “photon” was popularized 
by Gilbert Lewis in his letter written to the Nature magazine.

The power that is received from the sun in the form of solar electromagnetic 
radiation per unit area over a given time period is named solar irradiance and is 
measured in W/m2 in SI units. Irradiance can be measured in space or at the Earth’s 
surface after it has partially been absorbed by the atmosphere as well as scattered. 
On the Earth’s surface, the amount of irradiance is a function of the tilt of the mea-
suring surface, the height of the sun above the horizon, and also the atmospheric 
conditions. Figure 2 depicts the irradiance of the sun at the Earth’s surface in both a 
direct normal irradiation (DNI) and a global horizontal irradiation (GHI).
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Figure 2. 
(a) The world’s map of the direct normal solar irradiation (DNI) at the Earth’s surface and (b) the world’s 
map of the global horizontal irradiation (GHI) at the Earth’s surface according to Global Solar Atlas 2.0 [4].

Figure 1. 
The Earth’s radiation budget [3].



5

Introductory Chapter: Solar Photovoltaic Energy
DOI: http://dx.doi.org/10.5772/intechopen.106259

3. Solar energy

The light and heat that are radiated from the sun are often named solar energy 
and are one of the most significant sources of renewable energy. Solar energy can 
be harnessed through some technologies that are categorized into two main classes 
namely active solar technologies such as photovoltaic systems and passive solar 
technologies that include a wide variety of techniques such as orienting a building to 
the sun.

3.1 Solar photovoltaics

The history of photovoltaics (PV) dates back to 1800s when Alexandre Edmond 
Becquerel observed PV effect. This was followed by testing the first solar cell with 
the efficiency of less than 1% in 1883. It was then in the first two decades of the 
twentieth century when Albert Einstein published his paper on photoelectric effect 
that resulted in his first and only Noble Prize in 1921. A decade later, in 1931, the 
first pure semiconductor was developed. At first, in 1950s, solar cells were utilized 
for space applications. In 1957, solar cells with around 8% of efficiency were devel-
oped, a record that was soon broken by Hoffman Electronics to a high of 10 and 
14% in 1959 and 1960, respectively. Soon after, the first amorphous silicon PV cell 
was developed and the global PV capacity rose to 500 kW. This amount grew even 
further and reached a high of 21.3 MW in 1983. In about 20 years, in 2002, 175-kW 
high-concentrating PV plant was installed in Arizona, United States. Four years 
later, the world witnessed a new record of 40% efficiency for PV technology. With 
the increase in the global PV capacity to 100 GW in 2012, the manufacturing costs 
reduced significantly to $1.25 per watt. In 2016, the first solar-powered plane flew 
around the world [5]. Figure 3 depicts the PV power potential in the world.

Solar photovoltaic generation has broken the record of 156 GWh (23%) in 
2020 to reach 821 GWh, which proved the second largest growth of all renewable 
technologies in 2020, slightly behind wind and ahead of hydropower. In China, 
the United States, and Vietnam, an unprecedented surge (a record of 134 GW) in 
PV capacity additions took place. Solar PV is undeniably becoming the lowest cost 
option for electricity generation all around the world and is expected to attract a 
vast amount of investment in the coming years [6].

Figure 3. 
The world’s map of photovoltaic power potential [4].
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Figure 4. 
The solar spectral irradiance at air mass 0 (AM0) and global air mass 1.5 (AM1.5G) and the cutoff 
wavelength of semiconductor materials for common solar cell applications [11].

Furthermore, solar energy is predicted to play a key role in the future global 
energy system owing to the scale of the solar resource. The installed solar photo-
voltaic (PV) throughout the world exceeded 1 TW at the beginning of 2022. This 
brought the world into the era of TW-scale PV [7]. This will definitely be fortified 
by the rapid expansion of PV industry as well as everyday cost decreases. The world 
envisions a future with nearly 10 TW of PV by 2030 and 30–70 TW by 2050, which 
can provide a majority of global energy [8].

3.2 Solar cells

The term “solar cell” was previously mentioned in the history of photovoltaics. 
In fact, solar cell is attributed to any device that directly converts the energy of light 
into electrical energy through the photovoltaic effect. The vast majority of solar 
cells are fabricated from silicon with rising efficiency and decreasing cost as the 
materials range from amorphous (non-crystalline) to polycrystalline and mono-
crystalline (single crystal) silicon forms. Solar cells, in comparison with batteries 
or fuel cells, do not utilize chemical reactions or require fuel to produce electricity, 
and, compared with electric generators, they do not have any moving parts [9].

As previously mentioned, solar cells are usually categorized into four main 
classes including the following:

(1) Monocrystalline solar cells that are also known as single crystalline cells and 
are very easy to identify due to their dark black color. They are made from a very pure 
form of silicon that has made them become the most efficient material for the process 
of sunlight conversion into electricity, (2) polycrystalline cells (multi-silicon cells) that 
were the first solar cells to be developed in the industry in the beginning of 1980s, (3) 
amorphous solar cells that, as the word “amorphous” meaning “shapeless” suggests, 
are not structured or crystallized on a molecular level and were commonly used for 
small-scale applications, and (4) thin film solar cells that are manufactured by placing 
several thin layers of photovoltaic on top of each other to create the module [10].

Another important concept in this area is named “the spectral response.” A solar 
cell’s spectral response to light of a single wavelength is its response at that specific 
wavelength multiplied by the intensity of the light. If the actual irradiance and 
device spectral response profiles are symmetrical around the center wavelength, 
then the currents generated from light on each side of the center are equal, and their 
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sum is equivalent to the current that the device would generate if illuminated by a 
single-wavelength source of the same intensity (see Figure 4) [12].

On the other hand, efficiency is the most commonly used parameter to compare 
the performance of one solar cell to another. It is defined as the ratio of the output 
energy from a solar cell to the input energy from the sun. Moreover, the efficiency 
also depends on the spectrum and intensity of the sunlight and the temperature of 
the solar cell. Therefore, conditions under which efficiency is measured must be 
carefully controlled in order to properly compare the performance of one device 
to another. Terrestrial solar cells are measured under AM1.5 conditions and at an 
ambient temperature of 25°C. Whereas for space uses, solar cells are measured 
under AM0 conditions. A comprehensive report on the past, and recent and 
projected solar cell efficiency results is provided in Figure 5 [13].

3.3 Solar photovoltaic systems

Solar cells are arranged into large groupings, which are called solar arrays. These 
arrays, composed of thousands of solar cells, can be considered as central electric 

Figure 5. 
Solar cell efficiencies throughout the history [13].

Figure 6. 
An PV power plant located in Hungary [14].
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power stations which convert sunlight into electrical energy to be distributed to 
industrial, commercial, and residential consumption. On the other hand, in a 
smaller scale, the configuration is commonly referred to as solar modules, which 
are mostly installed by homeowners on their rooftops to replace their conventional 
electric supply. Solar modules are also used to provide electric power in many 
remote areas where conventional electric power sources are either unavailable or 
prohibitively expensive to install. Solar cells also provide power for most space 
installs, from communications and weather satellites to space stations owing to the 
fact that they do not have any moving parts; therefore, there is no need for mainte-
nance or any fuels that would require replenishment. Solar cells (as will be dis-
cussed further ahead) have also been used in consumer products, such as electronic 
toys, calculators, and radios [9]. However, in a large-scale version, in solar PV plants 
(see Figure 6), thermal energy from the sun is utilized and further transformed 
into electrical energy using photovoltaic modules installed in an optimal configura-
tion. The thermal energy is abundant, easy to access, and cheap. Another type of 
solar power plant (which does not seem to be as common as the previous type) is 
the concentrated solar power plant, which contains plenty of mirrors or lenses that 
are carefully placed in an organized way to concentrate on collected heat to one 
specific position, which is further utilized to supply power for a steam turbine that 
generates electricity [15].

3.4 Current global status of photovoltaics

According to Feldman et al. [16], from 2010 to 2020, the addition to global PV 
capacity grew from 17 to 139 GWDC in a way that the global PV installations reached 
760 GWDC at the end of 2020. In 2020, approximately 100 MW of concentrated solar 
power was added in China. At the end of that year, 57% of cumulative PV installa-
tions were in Asia, 22% were in Europe, and 15% were in the Americas. The United 
States is now the country with the second largest cumulative installed PV capacity.

Also, China, the United States, Japan, Germany, and India were the leading five 
markets in cumulative PV installations at the end of 2020. However, Vietnam, with 
more than 11 GW of installations in 2020, took India away from the top five for 
annual deployment.

Figure 7. 
Current and projected installations throughout the world [17].
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According to IEA estimation, in 2020, PV was the main source of 3.7% of global 
electricity generation. Although the United States was a leading PV market, it was 
below the average and other leading markets concerning PV generation as a per-
centage of total country electricity generation, with 3.4%.

Figure 8. 
Installation growth from 2020 to 2021 [18].

Location Capacity 
(MWp)

Area 
(km2)

Year of 
installation

Photograph

1 Gonghe 
County, China

2200 50 2021

2 Abu Dhabi, the 
UAE

1177 8 2019
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Location Capacity 
(MWp)

Area 
(km2)

Year of 
installation

Photograph

3 Yanchi, China 820 — 2016

4 Datong, China 800 — —

5 Zaragoza, Spain 730 31.7 2020

6 Villanueva, 
Mexico

828 27.5
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Location Capacity 
(MWp)

Area 
(km2)

Year of 
installation

Photograph

7 Nevada’s 
Eldorado Valley, 

USA

816 16.2 2010

8 California, USA 747 13 —

9 Kamuthi, India 648 10.1 2016

10 Jaisalmer, India 600 — —
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Location Capacity 
(MWp)

Area 
(km2)

Year of 
installation

Photograph

11 Hongshagang, 
China

574 — —

12 Topaz, USA 550 19 2014

13 Sao Goncalo, 
Brazil

549 13 —

14 Yinchuan, 
China

500 — 2018

Table 1. 
The world largest solar power plants [19].
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From Q1 2020 to Q1 2021, installations in China, the United States, and Germany 
increased from 35 to 45%, and specifically those in India rose 89% although ana-
lysts argued that India’s large increase was due to developers finishing delayed 2020 
projects. Despite the growth in installations, it was not necessarily indicative of 
2021 as a whole. A significant portion of deployment often comes toward the end of 
the year. Significant supply constraints, increased costs, and resurgent waves of the 
pandemic (particularly in India) might suppress installations, see Figure 7.

Analysts also predict continued growth in annual global PV installations, with 
a median estimate of 209 GWDC in 2022 and 231 GWDC in 2023. China, Europe, 
the United States, and India are anticipated to involve in about two-thirds of global 
PV installations over this period. Analysts note that these projections come despite 
many projects in 2022 risking delay or cancelation because of increasing mate-
rial and shipping costs, see Figure 8 [11]. Table 1 lists the top 14 PV power plants 
around the world.

4. Trends and applications of photovoltaics

Photovoltaic technology has many applications to improve human life. To date, 
many applications of this technology have been utilized in industry as well as by ordi-
nary users (see Figure 9). However, the advances in this technology do not certainly 
end with its current applications, and therefore, it sees many bright horizons ahead. 
Numerous examples of new applications of photovoltaic technology are as follows.

4.1 Building-attached photovoltaic (BAPV)

BAPV is the classic arrangement of photovoltaic systems and solar cells mounted 
on the roofs or building surfaces. Although it is probable to be aesthetically prob-
lematic, this is to avoid any sort of shading as much as possible. Moreover, in this 

Figure 9. 
Various examples of novel applications of photovoltaic technology are as the follows: (a) BAPV [20], (b) BIPV 
[21], (c) LSC PV [22], (d) VIPV [23], (e) solar street lights [24], (f) PV charging stations [25], (g) PV bike 
path [26], (h) PV windrail [27], (i) solar-powered pavement [28], (j) PV tree [29], (k) floating PV systems 
[30], and (l) agri-voltaic system [31].
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application, the installer is required to utilize several pieces of equipment such as 
those needed for the mounting system.

4.2 Building-integrated photovoltaic (BIPV)

In comparison with BAPV, BIPV is an innovative design in which solar cell 
and in general the photovoltaic system are integrated with the construction itself, 
either the façade (e.g., walls, windows) or the roofs as skylights, shingles, etc. [32]. 
Therefore, it is targeted to be practiced as a phase of aesthetics with any utilitar-
ian views.

4.3 Luminescent solar concentrator photovoltaic (LSC PV)

LSC PV devices consist of transparent optical light guides typically made of a 
polymer or glass containing luminophores with one or more photovoltaic (PV) solar 
cells mounted on one or more edges and sometimes rear of the light guide [33, 34]. 
The sunlight is then intercepted by small photovoltaic cells and sequently con-
verted into electricity. The main advantage of LSC is that it is capable of producing 
electricity even in low-light conditions and can be incorporated into architectural 
structures particularly as transparent elements. LSC’s outstanding versatility is 
undeniable since it can be integrated either with houses and buildings as a colored 
window, a leaf roof, a smart window, etc., or with urban facilities as a noise barrier, 
a parking shed, etc.

Recently, Aghaei et al. have developed attractive mosaic LSC PV devices made 
by miniaturizing cubical light guides and mounting bifacial solar cells to the edges 
of neighboring light guides, as well as optionally attaching monofacial PV to the 
bottom sides. These mosaic LSC PV devices could be applied to make solar energy 
ubiquitous to the urban setting where it requires making visually appealing devices 
that can function in the challenging lighting conditions found in cities. Thus, by 
developing such colorful, visually appealing mosaic LSC PV devices, one can accel-
erate the general acceptance of solar energy in the built environment, even with the 
modest efficiency devices [35].

4.4 Vehicle-integrated photovoltaic (VIPV)

Although photovoltaic technology is mostly utilized in grid-connected applica-
tions, a new application could be the integration of photovoltaic into battery electric 
vehicles, creating a VIPV. Photovoltaic can help recharging the vehicle battery, 
without being connected to a charging station. VIPV can make transport more 
sustainable and seems to be cost-efficient. Accompanied with a systematic appro-
priate installation, it can also appear in solar cars, buses, spacecrafts, boats, UAVs 
(unmanned aerial vehicles), trains, hybrid airships, AUVs (autonomous undersea 
vehicles), bikes, etc.

4.5 Solar street lights

Another impactful application of solar cells is to be installed especially on top of 
street or roadway lights as a power supply. The installment is usually accompanied 
with an oversized battery not only to power the system at nights or in low-light 
conditions but also to enable an autonomous performance in aforementioned condi-
tions up to even five days [36]. Furthermore, the autonomy helps the system to 
remain needless to be constantly connected to the grid so that the whole system will 
be able to work properly for a specific period of time even off-grid.
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4.6 Photovoltaic charging stations

Slightly different from VIPVs, charging stations are usually roof-mounted and 
much simpler in terms of power electronic devices. These stations, therefore, are 
lighter in weight and smaller in the area they occupy. As a result, the stations are 
often cheaper and easier to be maintained for a long time.

4.7 Photovoltaic bike path

A tremendous amount of sunlight scatters regularly all over the ground, which 
can be harvested with the aid of specifically designed machines, vehicles, and 
equipment. An example of these vehicles is a bike ridden along a solar-cell-covered 
path and is known as a PV bike path. The bike is designed in a way that the wheels 
are in a high level of friction with the path [37]. This might be the point of entry 
into the maximization of land utilization along with power generation.

4.8 Photovoltaic-integrated zero/low-energy buildings

Zero-energy buildings (ZEBs) generally refer to a category of buildings with 
very high energy performance, characterized by a very low or approximately zero 
annual energy requirement. The required amount of energy is entirely or signifi-
cantly covered by renewable energy, including energy from renewable sources 
produced on-site or nearby [38]. This renewable energy can be comprised of PV 
systems being used to supply electric energy demand, etc.

4.9 Photovoltaic-powered air conditioners

Air conditioning has always been an important issue either in industrial, com-
mercial, or residual consumption. The use of PV systems in this area can produce a 
noticeable reduction in energy costs and bring about economic benefits. Also, using 
a PV-powered air conditioner has proved to conserve nearly 67 and 77% of the grid 
energy in summer during the day and at night, respectively [39].

4.10 Photovoltaic windrail

Owing to the great flexibility of PV technology, PV windrails are a novel combi-
nation of both wind and solar energy. The device is mostly installed on the rooftop 
of a building to obtain the maximum speed of the blowing wind. The wind then 
heads toward a channel to generate electricity using turbine generators.

4.11 Photovoltaic trees

PV trees are one of the most intriguing applications, which can be achieved from 
PV systems. The problem of land shortage or even the urban aesthetics can cause the 
system to be lifted and mounted on top of steel stems, which physically resembles a 
tree with PV modules as the leaves on top. The system can bring numerous advantages 
from simply charging small handy gadgets to supplying the power needed for street 
lights and electric vehicles. The future of PV trees seems to be extremely promising.

4.12 Photovoltaic pavements

Pavements have covered 30–40% of the urban surface [40] and are considered 
as enormous potential for PV installments and energy generation through solar PV 
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modules. Surprisingly, studies have shown that even the temperature on the surface 
of walkable PV pavements or cycling tracks is proved to be lower than that on 
conventional pavements.

4.13 Landscape-integrated photovoltaic

A novel idea in PV systems installation is to integrate the natural landscape with 
solar PV modules. The idea is developed in a way that bifacial PV modules can be 
utilized vertically to avoid using flat spacious surfaces, rooftops, etc., and therefore 
taking advantage of more installation space to increase the amount of power gener-
ated by the system.

4.14 Product-integrated photovoltaic (PIPV)

Integrated with several products, solar photovoltaic energy can be exploited to 
yield grid-independent, battery saving, and wasteless devices. Many calculators 
and watches have been utilizing solar energy for ages to supply power. Moreover, 
the area of usage can be (and even is in some cases) expanded to lamps, chargers, 
scales, etc., even though the design is definitely under development and progression 
for further utilizations [41].

4.15 Floating photovoltaic systems

In areas suffering from land limitation, the concept of floating photovoltaic sys-
tems and utilizing the area on the surface of water can be highly advantageous. The 
system is even capable of being integrated with hydropower electricity transmission 
system to end up a higher efficiency [30].

4.16 Submerged photovoltaic

Another novel idea that can be achieved through the flexibility of PV technology 
is to use the spacious area underwater to locate the PV arrays and to take advantage 
of the natural cooling system. One appropriate space is a swimming pool where the 
modules can be installed both on the edges and on the pool floor.

4.17 Agri-voltaic system

The term “Agri-voltaic system” refers to a combined production of photovoltaic 
power and agricultural products on the same area of land. Solar modules and 
crops share light and radiation so that modules that are located above part of the 
crops generate shade and create a kind of microclimate over the mentioned area. 
Therefore, the result will be more fresh products, less water requirement for the 
plants, and lower losses due to evaporation [42].

5. Summary

To wrap up, the world has long been transitioning from fossil fuels to renew-
ables. Not only does this help preserve the environment, but it also brings about 
other benefits under the sustainable development goals (SDGs) by the international 
community, including the fight against poverty and hunger. Moreover, photovoltaic 
technology has been facilitating people’s lives for many years. Over 183 GW of 
photovoltaic systems was installed worldwide, which is nearly 40 GW more than 
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2020. Many countries, including China, the United States, and India, have paid 
special attention to photovoltaic technology to meet their electrical and thermal 
needs, both in industry and in the field of home consumption. As of 2020, cumula-
tive installed solar power capacity in China that leads the whole world in this field 
had reached almost 253 GW. Also, as mentioned, with the increase in progress in 
the photovoltaic industry and also the daily increasing reduction of prices in this 
field, the solar resources will reach the level of Terawatt-scale in the coming years. 
Moreover, areas of photovoltaic use are transitioning from conventional to more 
advanced areas such as PV pavements, BIPV, agri-voltaic systems. Undoubtedly, due 
to the increasing advances in photovoltaic technology, its use in the future will be 
much wider and more common than today.

© 2022 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 
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Measuring Solar Irradiance
for Photovoltaics
Marc A.N. Korevaar

Abstract

In recent years, solar energy technology has emerged as one of the leading
renewable energy technologies currently available. Solar energy is enabled by the
solar irradiance reaching the earth. Here we describe the characteristics of solar
irradiance as well as the sources of variation. The different components of the solar
irradiance and the instruments for measurement of these components are
presented. In photovoltaics, the measurement of solar irradiance components is
essential for research, quality control, feasibility studies, investment decisions,
plant monitoring of the performance ratio, site comparison, and as input for short-
term irradiance forecasting. Some more details are also provided related to physics
of measuring instruments, their calibration, and associated uncertainty.

Keywords: OCIS codes: (350.6050) solar energy, (010.5630) radiometry,
(120.0120) instrumentation, measurement, and metrology

1. Introduction

1.1 The sun

The sun provides 99.97% of the energy at the earth’s surface (the rest is
geothermal), and it is responsible, directly or indirectly, for the existence of life on
earth. The energy, generated by nuclear fusion of hydrogen, emitted by the sun, is
approximately 63 MW for every m2 of its surface, about 3.72 � 1020 MW in total.
The surface of the sun is very hot, and the layer emitting most of the radiation, the
photosphere, is at about 5770 Kelvin. This means that there is a lot of short-wave
radiation, ultraviolet and visible, and it takes approximately 8.3 minutes to reach
the earth.

The unit for the measurement of irradiance (radiative flux [1]) is watts per
square meter (W/m2). At the mean distance between the earth and sun of 150
million kilometers (1 astronomical unit (AU)), the total solar irradiance (TSI)
reaching the Earth’s atmosphere is 1,360.8� 0.5W/m2 at a solar minimum [2] (over
all wavelengths and perpendicularly). This quantity is named the “Solar Constant”
[3]. However, it is not actually constant as is shown in Figure 1. The solar activity
[3] varies with an 11-year cycle by � 0.1% [2, 5]. This variation coincides with the
number of sunspots. More sunspots mean more solar activity (solar flares and
coronal mass ejection) and therefore a slightly larger amount of solar irradiance
reaching the earth. Additionally, there is a larger variation of the solar irradiance
reaching the top of the atmosphere by the sun to earth distance variation. This
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variation is due to the earth orbit eccentricity. At the perihelion (in January), the
earth is close to the sun (147 million km), and at the aphelion (in July), the earth is
further from the sun (152 million km).

This results in a variation of � 3% in solar irradiance, described in [5], which can
be approximated with the following equation [6]:

I nð Þ ¼ I0 1þ 0:034 � cos 2π � n
365:25

� �� �
(1)

Where n is the day of the year, and I0 is the solar constant. Interestingly enough
the temperature is actually higher during the aphelion when the sun is further away.
This is due to the tilt and land distribution; the land is distributed more in the
northern hemisphere. During the northern summer, the North Pole is tiled more
toward the sun, and more land is irradiated. The land heats up easily compared with
oceans, and this leads to a higher temperature on earth when the earth is further
away from the sun. When passing through the atmosphere, some solar radiation
reaches the earth’s surface as a direct beam, and some is scattered or absorbed by
the atmosphere [5], aerosols (fine solid particles and liquid droplets), and clouds.
Gaseous molecules, aerosols, and clouds cause most of the absorption, which heats
up the atmosphere. All of the UV-C and most of the UV-B are absorbed by oxygen
and ozone in the stratosphere.

1.2 Scattering

The amount of scattering of light is influenced by the length the light travels
through the atmosphere. This length can be defined as the air mass:

AM ¼ L
L0

≈
1

cos θzð Þ (2)

Where L is the length through the atmosphere, Lo the length at perpendicular
incidence, and θz the solar zenith angle [7].

The scattering processes can be described by two different processes: Mie scat-
tering and Rayleigh scattering. The scattering process is determined by the particle
diameter in relation to the wavelength of the light. For water droplets and ice
crystals, the particle diameter is typically of the same order as the wavelength, and
therefore, Mie scattering applies. Mie scattering is equal for all wavelengths and

Figure 1.
Total solar irradiance (integrated over all wavelengths), or alternatively called “solar constant” [3], data over
the last 45 years [4].
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tends to give the scattering particles a white appearance, such as for clouds. An
example of this phenomenon in nature is shown in Figure 2a.

For gas molecules in the atmosphere, the particle diameter is much smaller than
the solar wavelength, and therefore, Rayleigh scattering applies. The scattering
cross section for Rayleigh scattering is given by:

σs ¼ 2π5

3
d6

λ4
n2 � 1
n2 þ 2

� �2

(3)

Where n is the particle refractive index, d the particle diameter, λ the light
wavelength. The scattered fraction is given by:

σs �N (4)

Where N is the number of particles. What we can conclude from Eqs. (3) and
(4) is that the shorter the wavelength is, the more scattering occurs. Additionally, a
longer path through the atmosphere (air mass), which will increase N, will result in
more scattering. A diagram depicting the effect of Rayleigh scattering is shown in
Figure 2c. What the phenomenon can look like in nature is shown in Figure 2b.

Figure 2.
Measuring the components of solar irradiance: (a) natural appearance of Mie scattering with white clouds as
the Mie scattering scatters light of different wavelengths equally [8, 9]. (b) Natural appearance of Rayleigh
scattering. (c) Schematic of Rayleigh scattering with colors with long wavelengths (red, yellow, and green)
scattering little and the short wavelengths (blue and UV) scattering more [10].
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1.3 Zenith angle effect

However, the largest influence on the irradiance that is received at a horizontal
surface is the angle at which it hits the earth surface. The irradiance on the surface is
proportional to cos(θz) where θz is the solar zenith angle [7], which is defined as the
angle between the zenith and the sun. A diagram depicting this effect [11] is shown
in Figure 3.

The solar zenith angle is a.o. dependent on the location, time of day and season,
and can be calculated using SOLPOS [13].

1.4 Solar spectrum

The solar spectrum at the top of the atmosphere is very similar to the Planck’s
curve (black body radiation), as shown in Figure 4. The atmosphere influences the
irradiance, and absorptions occur due to gaseous molecules such as O2, H2O, O3,
and CO2, which are also depicted in the same figure.

The regions of the spectra can be subdivided in: UV: 200–400 nm, visible:
400–780 nm, and near infrared: 780–3000 nm [14].

Figure 3.
Diagram [12] depicting the solar zenith angle effect, which has the largest effect on the amount of solar
irradiance that is received on a horizontal surface on the earth. Shown here is a case on the equator (b) and a
case close to the North Pole (a).

Figure 4.
The spectrum of solar radiation on earth (with slight adjustment) from: “Spectrum of Solar Radiation,” by
Tuvalkin is licensed under CC BY-SA 3.0.
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With changing air mass (in other words, the solar zenith angle), the amount of
scattering and absorption changes, and therefore, the spectrum does as well. An
example of this is shown in Figure 5 where solar spectrum curves have been
calculated using the Dr. Christian Gueymard’s SMARTS software [15–17]. This
software allows for setting various clear sky atmospheric parameters for calculating
clear sky solar spectra.

Additionally, also the cloudiness influences the spectrum that is visible on the
earth surface. Three examples, for clear, cloudy, and hazy sky conditions are shown
in Figure 6. Generally, there can be said that increase of cloudiness, just as increase
of air mass (or solar zenith angle), generates a shift (in the relative spectrum)
toward the red part. There will be relatively less blue and more (infra) red for more
cloudy conditions than for clear sky.

1.5 Components of solar radiation

The irradiance from the sun interacts with the atmosphere, and when it arrives
on the earth, it can be detected as different components (shown in Figure 7). These
components are: direct normal irradiance (DNI), solar irradiance from the direction
of the sun on a surface perpendicular to the solar rays. Diffuse horizontal irradiance
(DHI) is scattered solar irradiance from the sky (except the sun) measured hori-
zontally. Global horizontal irradiance (GHI) is the solar irradiance from the

Figure 5.
The spectrum of solar radiation on earth for different air mass calculated using smarts software [15].

Figure 6.
The spectrum of solar radiation on earth for different sky conditions [14].
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hemisphere above on a horizontal surface, and plane of array (POA) or global tilted
irradiance (GTI) is solar irradiance incident on a tilted plane (PV panel) including
radiation reflected from ground and shadowing. POArear is the solar irradiance
incident on the back of the tilted plane, which is relevant for bifacial modules that
can generate power from rear side irradiance.

For concentrated solar power (CSP) [19], generation of DNI is of most interest
and for PV panels POA, POArear, and GHI are of interest.

The three solar components as measured on a clear day are as shown in Figure 8.
The direct irradiance shows a typical parabola, and the diffuse is more or less
constant sufficiently after sunrise or before sunset. The global irradiance is less than
the direct component and is less peaked due to the solar zenith effect.

These different components can be measured with pyranometers, pyrheliome-
ters, and solar trackers as shown in the next paragraph.

2. Measurement of solar irradiance

Solar irradiance is measured with many different radiometers depending on the
desired measurement. For the UV region, radiometers are available that measure
the UV-B, UV-A, total UV, or UV erythema (irradiance that causes sunburn). There
are thermopile radiometers, also called pyranometers, that measure from 280 to
roughly 2800 nm. Also, there are photodiode variants of the pyranometer that

Figure 7.
The components of solar radiation: direct, diffuse, and GHI (global); and the components relevant for PV
modules: POA and POArear [18].

Figure 8.
On a clear day, the three components, global, direct, and diffuse, can look like this.
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typically measure from 300 to 1000 nm. And there are pyrgeometers that measure
in the infrared.

For PV applications, the most relevant radiometers are the thermopile and
silicon pyranometers as well as the pyrheliometers.

A pyranometer, its name derived fromGreek ( Πυρά – ἄνω – μετρ-έω, pyra – ano –
metreo, fire – heaven – measure), is a thermopile-based instrument, with broadband
black coating, which measures the net radiation coming from a 180° half dome above
the instrument, allowing measurement of GHI, POA, or DHI. The pyrheliometer, its
name derived also from Greek (Πυρά – ἥλιος – μετρ-έω, pyra – helios –metreo, fire –
sun – measure) consists of a collimation tube with an opening angle of 5° and slope
angle of 1°, which blocks the light not coming from the direction of the sun, allowing
a measurement of the solar beam (or DNI) when pointed at the sun.

Examples of these instruments measuring the different solar components are given
in Figure 9, where it is shown that pyranometers can be used to measure GHI, POA,
and DHI. For measuring DHI, both a shadow ring and a solar tracker with shading ball
can be used. The shadow ring is a smaller investment but would have to be adjusted
manually depending on the change of the sun elevation, which changes over the year.
The solar tracker tracks the sun automatically without manual adjustment. For mea-
suring the DNI also a solar tracker is used to point the pyrheliometer at the sun.

Solar irradiance measurement is important in many fields such as meteorology,
climatology, building automation, and material research. However, the fastest
growing application is in solar energy.

Solar energy applications are both in concentrated solar and in photovoltaic
energy generation. For concentrated solar, the sunlight is concentrated to heat a
small area, which generates electricity as a conventional power plant. The

Figure 9.
Measuring the components of solar irradiance: (a) GHI with pyranometer, (b) POA and POArear with a tilted
pyranometer next to bifacial modules, (c) DHI with shadow ring and pyranometer, (d) DHI with shading ball
on tracker, (e) DNI with pyrheliometer on a tracker, (f) SOLYS gear drive sun tracker with shading balls,
pyrheliometer, and ventilated pyranometers [14].
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measurements of importance for concentrated solar are the three solar components
with an emphasis on the DNI.

For photovoltaic energy generation, the sunlight is used for direct conversion to
electricity in themodules. Themeasurements of importance for photovoltaics are POA
and POArear for the calculation of performance ratio. Additionally, other components
can also be importance, such as GHI for comparison of data to local meteorological
stations or satellite observations and also albedo measurements for bifacial plants.

2.1 Solar monitoring using IEC 61724-1

From the IEC 61724-1 [18], there are a number of classes of solar monitoring:
class A and B (going from high to low accuracy). Requirements regarding the
sampling and recording intervals for irradiance measurements are as follows:

Class A Class B

Max. sampling interval 5 s 1 min

Max. recording interval 5 min (1 min recommended) 15 min

The data have to be storedwith a date and timestamp in either local or universal time.
The number of POA or GHI sensors recommended depends on the size of het

power plant as well as the desired class of the monitoring system. For example,
5–40 MW would require two sensors and 500–700 MW six sensors.

Depending on the desired accuracy class, there are three possible choices of
sensors: irradiance sensors such as thermopile or photodiode pyranometers,
matched irradiance sensors such as reference cells.

Before using the measurement data in performance ratio calculations, a data
quality check needs to be done where invalid data are identified and filtered out.
Additionally, missing data will have to be treated in a certain way such as: taking the
data from before and after the missing data, using a predefined method from a
contract, or leaving the interval out of the analysis.

2.2 Application in photovoltaics

In photovoltaics, there are many applications for measuring solar irradiance with
one of the first fields where measurements are important in the technology research
(see Figure 10) [20].

Figure 10.
(a) GHI and (b) POA technology research using pyranometers and pyrheliometers.
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Improvements in mass-produced PV technologies, such as crystalline silicon
cells, are incremental; each step is small, but the total gain can be large. For exam-
ple, two different solutions may show efficiencies of 20% and 22% (10% improve-
ment) under controlled laboratory test conditions. However, the irradiance needs to
be measured with an uncertainty of better than 2% to be sure that the efficiency
improvement is genuine. Laboratory testing under indoor conditions is not enough.
The performance of cells and modules needs to be verified in the real-world settings
under varying meteorological and sky conditions compared with “reference” qual-
ity solar radiation measurements. Therefore, research institutes are equipped with
scientific-level pyranometers, and in many cases, a complete solar monitoring
station.

Apart from research, irradiance measurements are also used for quality control if
a manufacturer or a supplier wants to know if the performance of their PV cells or
modules does not vary by more than (for example) 5%, they need to test samples
from production batches and measure the solar radiation with a significantly lower
uncertainty. Verification of published specifications of equipment the manufacturer
or an independent test laboratory, needs reference quality measurements.

2.3 Performance ratios

There are many stages in the development of a utility-scale solar power plant,
and throughout its operational life and in all of them, the performance ratio (PR) is
of key importance. In the early stages, this is an estimation or prediction but, in the
later stages, it uses real plant monitoring data. PR is the ratio between the final
(actual) yield of a solar power generating system and its reference (design) yield
over a defined period of time. For PV systems, the actual yield of the generated AC
power is easily measured accurately at the grid connection. The reference yield is
the expected power produced by irradiance on the PV modules; the solar energy
received by the panels multiplied by the efficiency of the conversion to electrical
energy and which should include the inverter efficiency, cabling, and connection
losses. Performance ratios (if defined and monitored in the same way) can be used
to compare solar plants at any locations: a well-designed, -installed, and –

maintained solar park in the northern latitudes could have a better PR than an
averagely designed and installed solar park near the Equator (although the latter
receives far more energy from the sun). How to calculate the performance ratio is
defined in IEC 61724-1 [18] (of which a new version has come out in the summer of
2021):

PR ¼
X

k
Pout,k � τk

� �
=
X

k

P0 �Gi,k � τk
Gi,ref

 !
(5)

Where Pout is the power out, tk is the time period, Po is the power out under
reference conditions, Gi,k is the in-plane irradiance (POA) during time period k,
and Gi,ref is the POA during reference conditions. For reduction of variation in this
PR for the different seasons, a temperature-corrected formula is also provided in
IEC-61724-1.

2.4 Site prospecting

A solar energy project starts with site prospecting—finding the optimal location
for the plant. Solar energy resource maps are widely available and are often used to
derive the potential for solar electricity in a particular region. These are usually

31

Measuring Solar Irradiance for Photovoltaics
DOI: http://dx.doi.org/10.5772/intechopen.105580



generated from models using up to 10 years of satellite data and ground-based
meteorological observations (often widely spaced and not very accurate) and inter-
polation. However, the map data are not good enough quality, and the spatial scale
too large, to provide a reliable basis on which to make technology and investment
decisions for a power plant. Due to local climate and topographical differences,
relatively small changes in location can result in a gain, or loss, of hundreds of
annual sunshine hours per year, particularly in mountainous and coastal areas and
for islands. Other meteorological factors also have to be taken into account such as
cloud, fog, and rain that reduce the amount of energy produced. Local infrastruc-
ture issues also play an important part, site access for construction and mainte-
nance, and proximity to a grid to feed in the generated power.

The information above would allow potential sites to be short-listed. However,
in order to decide on which are the most economically attractive, and to select the
optimum power generation technology for a site, high-quality ground-based irradi-
ance measurements over at least a year are required. Meteorological measurements
by an automatic weather station are also needed and allow comparison with histor-
ical data to ascertain if it is a typical year. The parameters are usually wind speed
and direction, precipitation, air temperature, and relative humidity, GHI measure-
ments by pyranometers can be used to validate and “train” for that specific location
the GHI estimates derived from satellite data models. POA irradiance cannot be
accurately derived with a model at a suitable level of uncertainty in order to make
investment decisions, this needs local tilted pyranometers.

Experienced investors want the lowest uncertainty of the on-site solar resource
data, generating equipment performance and proven reliability, before making
decisions on the locations for solar energy plants and on the most effective PV
system types to use. Errors in the solar radiation measurements can significantly
impact upon the difference between predicted and achieved return on investment.

The estimated performance ratio indicates the potential profitability of a PV
plant, and high-quality, reliable local solar radiation data are critical to the bank-
ability of projects. See Figure 11 for an example of prospecting.

2.5 Plant design

Good solar plant design optimizes yield and reduces losses, resulting in a high PR
[21]. The design and the equipment selected are heavily influenced by the environ-
ment surrounding a solar energy plant in terms of irradiation, sun elevation paths,
shading (by mountains, trees, buildings, clouds), temperature ranges, precipitation,
wind, pollutants, and soiling.

These environmental factors are important information retrieved during the site
prospecting phase: most are naturally occurring and cannot be easily changed, and

Figure 11.
Solar prospecting of GHI and tilted GHI or POA.
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they influence the mechanical and electrical design but also the expected mainte-
nance required during plant operation. Often, stakeholders have a preferred list of
suppliers; companies and products with good quality, performance, reliability, and
cost over the lifetime. Higher quality and performance instruments will in general
provide a more reliable long-term performance ratio, with lower uncertainty. By
using accurately measured solar irradiance and the back panel temperature-
corrected performance ratio, two critical environmental parameters for PV systems
are taken into account, both for the reference and final yields. A mean annual
temperature 2°C higher than the value used in the reference calculations can drop
the PR by 1%. Accurate local measurements also enable PR to be used over shorter
time periods, for instance, monthly.

2.6 Installation and commissioning

Following the design scheme as closely as possible during construction and
installation is key to reaching the projected reference PR. An initial period of
operation, from several weeks to months, is used to calculate the commissioning PR.
From this a target PR is derived. The contractually agreed target performance ratio
(sometimes called the guaranteed performance ratio) is often slightly lower than
the final PR, to allow O&M parties to correct faults and restore interrupted opera-
tion. A checklist for this is provided by the 2015 International Finance Corporation
Project Developer’s Guide, Utility-Scale Solar Photovoltaic Power Plants [22]. By
showing a high performance ratio after the initial building, commissioning, and
operation time periods, EPCs can show their ability make well-performing PV
plants. Plants like these will generate a higher selling price on the secondary market
and reduce the future risk for the buyers. But, to do this requires suitably quality
irradiance data.

2.7 Plant operation

The monitoring of a solar power plant [20, 21] is a complex process with many
stages, from solar energy input to grid electrical power output. For all these stages,
separate instruments and associated software are available to monitor the process.
During the first few years, the final performance ratio of the plant is determined,
operating efficiency is maximized, and the true O&M costs can be assessed, leading
to an overview of the financial return on the investment. Of course, this includes
the quality of the solar irradiance data. By maintaining yield and availability at high
levels at modest costs, O&M parties can show their added value in optimized
operating and maintenance policies. A high performance ratio shows the quality of
their work. Gradual changes in efficiency compared with the local irradiance mea-
surements may indicate dirty panels, so cleaning actions can be scheduled. More
sudden changes may indicate a defective section, a cable and connection problem,
or an inverter issue, so further service actions are required to find the problem. See
Figure 12 for examples of operational monitoring.

2.7.1 Output forecasting

Using high-quality solar radiation monitoring at the plant, a dataset of perfor-
mance can be built up, allowing more accurate forecasting of the future energy yield
and financial returns [22, 23]. Real-time measurements and a historical database can
be used in conjunction with satellite data and weather forecasts as inputs to now-
casting models for the output of the plant in the coming hours. This is of particular
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interest to grid operators, as other power generation sources cannot be switched
instantly when clouds pass over the solar energy plant.

2.7.2 Reinvestment

Over time, the plant PR will degrade and a business case for refurbishing can be
made involving investment in new equipment: replacement panels, inverters,
transformers, cabling, etc. Studies such as the Compendium of Photovoltaic Degra-
dation Rates from NREL [24] show that the performance of PV panels commonly
reduces by 0.5–1% per annum. A refurbishment might take place after 20 years of
operation, or when a power plant is sold on, and the replacement will normally have
better specifications and performance than the original equipment.

PV panels have a wide field of view and must be positioned in such a way as to
receive the maximum amount of solar radiation at the desired time of year.
Depending on the local conditions, as well as the land price per area, a cost/benefit
decision can be made whereby they are usually installed at a fixed angle. In this
case, a pyranometer is required, tilted in the plane of array of the fixed panels to
measure the solar radiation received by the modules. As this pyranometer is part of
the plant performance monitoring system, a second POA unit is often fitted for
redundancy and back-up in case of recalibration of one of the units. If the panels
vary significantly in their azimuth and/or zenith angles, for example, where the
plant is across a valley or an undulating hillside, additional pyranometers are
needed. As the plant size increases, it takes time for clouds to move across, and
some parts will be in shadow, and others will be in sunshine, requiring more
irradiation measurement points. To maximize the use of the available solar energy,
PV panels are often installed on mountings that move to follow the sun during the
day, either by rocking about a single axis or on a two-axis sun tracker. POA
pyranometers can then be mounted to the module frames (Figure 12).

3. Pyranometer measurement principles

Both instruments consist of a thermal element (either a thermopile or Peltier)
built into a metal body [25, 26]. A thermopile consists of multiple thermocouples,
consisting of two different metals connected at a “hot” and “cold” junction that
generate a voltage when subjected to a temperature difference. Solar irradiance
heats the black coating of the instrument, which also results in a temperature
increase of the “hot” junctions of the thermopile. The “cold” junctions of the
thermopile are in contact with the colder metal body. The resulting temperature
difference between the hot and cold junctions generates a voltage through the

Figure 12.
Operational monitoring of (a) concentrated photovoltaics (CPV) where a pyrheliometer is used to measure the
DNI (inset) and (b) PV in Italy with POA and GHI monitoring.
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Seebeck effect. This effect is linear with the temperature difference and the magni-
tude determined by the Seebeck constant of the materials of the thermopile. With
either an external datalogger or an onboard ADC for digital sensors (e.g., the Kipp
& Zonen SMP pyranometers), the voltage is measured, and the irradiance can be
obtained.

Figure 13 shows the basis of a thermopile pyranometer with a thermocouple
diagram (a) and the combination of multiple of these thermocouples to form a
thermopile as shown in photograph (b). The physical effect that generates a voltage
across the thermocouple (and thermopile) is the Seebeck effect:

VSeebeck ¼ α ∙ΔT (6)

Where VSeebeck is the Seebeck voltage, α the Seebeck coefficient, and ΔT the
temperature difference. How the thermopile functions within a pyranometer to
measure solar irradiance is shown in Figure 14.

Where the sunlight is transmitted by the dome onto the black coating on top of
the thermopile (or in some cases, a Peltier showing the same voltage effect). The
black coating heats up as does the underlying thermopile hot side. The thermopile
cold side is connected to the heat sink and remains at ambient temperature, and this
generates a temperature gradient over the thermopile. Because of this temperature
gradient, the Seebeck effect generates a voltage difference at the thermopile output.

Figure 13.
(a) Measurement principle of a thermocouple measuring a temperature difference and (b) layout of multiple
thermocouples as used in a pyranometer.

Figure 14.
Depiction of a pyranometer with the dome, black coating, thermopile, and heat sink, with sunlight incident on
the pyranometer.
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The measurement of the voltage allows for a measurement of the irradiance onto
the pyranometer.

3.1 Pyranometer classification

Pyranometers are classified according to ISO 9060:2018 (in order of increasing
quality: “class C,” “class B,” and “Class A”). The higher the instrument class, the
better the time response, zero offsets, nonstability, nonlinearity, directional
response, clear sky global horizontal irradiance spectral error, temperature
response, tilt response, and additional signal processing errors. Two other additional

Figure 15.
(a) Kipp & Zonen thermopile pyranometer and silicon pyranometer spectral response plotted with the solar
spectrum; (b) recalibration data of a CM22 Kipp & Zonen pyranometer located at NREL over 20 years [27];
and (c) nonlinearity of a class A pyranometer.
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classifications are spectrally flat, for a constant spectral response from 350 nm to
1500 nm, and fast response, for a response time of less than 0.5 seconds.

The stability of a Kipp & Zonen CM22 pyranometer is shown in Figure 15b and
shows a very stable instrument over nearly 20 years at NREL in Golden USA, based
on publicly available data of recalibrations [27]. The nonlinearity of a class A Kipp
& Zonen pyranometer is shown in Figure 15c and shows a nonlinearity very of
approximately 0.13% at 1000 W/m2.

Both thermopile pyranometers and silicon pyranometers can be classified using
the ISO 9060 standard. The most significant difference between the two is the
spectral response as shown in Figure 15a, with the thermopile pyranometer having
a spectral response, combined from measured black coating absorptance, glass
transmission, and Fresnel reflections,) that is very flat from 0.3 to 2.7 μm,
encompassing 99.8% of the solar spectrum. The silicon pyranometer has a varying
response over a smaller range of the solar spectrum, which results in a somewhat
higher spectral error for clear sky global horizontal irradiance.

3.2 Pyranometer calibration and uncertainty

The pyranometers and pyrheliometers are calibrated to the World Radiometric
Reference (WRR). This reference is recognized by SI as a conventional standard for
solar radiation measurements and is maintained by the World Standard Group
(WSG) consisting of absolute cavity pyrheliometers (Figure 16). At Kipp & Zonen,
we use an absolute cavity pyrheliometer (PMO-6) and a pyrheliometer (CHP1)
calibrated against the WSG at the International Pyrheliometer Comparisons (IPC)
every 5 years and checked at the National Pyrheliometer Comparison (NPC) at the
National Renewable Energy Laboratory (NREL) in Golden Colorado annually.

With these pyrheliometers, we calibrate the reference pyranometers according
to the Alternating Sun Shade (ASS) in ISO 9846. The ASS method as compared with
the Continuous Sun Shade (CSS) method has the advantage of a lower calibration
uncertainty, as well as a lower influence during calibration by offsets varying with
atmospheric conditions [29]. The setup for ASS, which alternatingly exposes and
shades pyranometers and simultaneously measures the DNI with an absolute cavity
pyrheliometer, is shown in Figure 17a. To transfer the calibration of the reference
to the production instruments, the ISO 9847 is followed using the direct beam
Kipp & Zonen method with a lamp as a light source (see Figure 17b).

Figure 16.
World standard group (WSG) of absolute cavity pyrheliometers at WRC PMOD in Davos Switzerland [28].
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The uncertainty of pyranometers in the field is a combination of the calibration
uncertainty and the interaction of the pyranometer parameters with the site
conditions.

The calibration uncertainty is stated on a calibration certificate and consists
usually of a combination of the uncertainty of the reference pyranometer combined
with the uncertainty of transferring the calibration from the reference to the
pyranometer to be calibrated. Calibration uncertainties (with a coverage factor of k
= 2, 95% confidence interval) of pyranometers can be as low as below 1% depending
on the pyranometer parameters as well as the calibration process.

The uncertainty of a pyranometer in the field is dependent not only on the
calibration uncertainty and instrument quality, but also on the site conditions such
as location, time, sky conditions, and instrument maintenance. This can be calcu-
lated with the help of the Suncertainty app for different Kipp & Zonen
pyranometers as a function of site conditions [30].

4. Alternative measurement methods

Alternative methods for measuring irradiance are reference cells or satellites.
Reference cells, if completely identical to the PV panel, allow one to determine the
energy the PV panel collects. However, to measure the broadband irradiance, their
accuracy is less good than that of pyranometers. Furthermore, some research ques-
tions the stability of non-monocrystalline silicon reference cells [31]. Satellite-
derived irradiance data have generally a lower accuracy, especially for short time
frames, but can be complementary to ground measurement. Satellites perform
better under clear sky conditions than cloudy conditions [32], and for longer time-
scales, the uncertainty is reduced [33].

5. Conclusions

Solar irradiance is of utmost importance for PV energy generation and can be
affected in different ways. To a lesser extent, it is the variation of sunlight reaching
the top of the atmosphere due to the sun cycle as well as the variation in sun-earth
distance. To a larger extent, the atmosphere creates a variation by scattering at

Figure 17.
(a) rotatable shading disc setup for alternating sun shade (ASS) calibration setup and (b) diagram of indoor
calibration of test pyranometer next to reference pyranometer according to ISO 9847.
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particles or clouds. Additionally, the solar zenith angle, varying with season and
solar time, is of large influence.

POA solar irradiance can be measured with pyranometers, silicon pyranometers,
and reference cells. These measurements are necessary for PV site prospecting,
design, and operation.

For solar energy applications, pyranometers have the lowest uncertainty for GHI
and POA broadband irradiance measurements, and aside from absolute cavities,
pyrheliometers are the most accurate way to measure DNI.
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Chapter 3

Modelling of Solar Radiation for
Photovoltaic Applications
David Afungchui, Joseph Ebobenow, Ali Helali
and Nkongho Ayuketang Arreyndip

Abstract

This chapter explores the different ways in which solar radiation (SR) can be quanti-
fied for use in photovoltaic applications. Some solar radiationmodels that incorporate
different combinations of parameters are presented. The parametersmostly used
include the clearness index (Kt), the sunshine fraction (SF), cloud cover (CC) and air
mass (m). Some of themodels are linearwhile others are nonlinear. Thesemodelswill be
developed for the estimation of the direct (Hb) and diffuse (Hd) components of global
solar radiation (H) on both the horizontal and tilted surfaces. Models to determine the
optimal tilt and azimuthal angles for solar photovoltaic (PV) collectors in terms of
geographical parameters are equally presented. The applicable, statistical evaluation
models that ascertain the validity of the SRmathematical models are also highlighted.

Keywords: Global, Direct, Diffuse, Solar Radiation, Modelling, Linear models,
Nonlinear models, Least square method, statistical evaluation models

1. Introduction

Solar radiation is essentially a flux of photons originating from the sun and
radiating in all directions of space. These photons exhibit electromagnetic wave
properties and travel at the speed of light over an average distance of about 149.4
million km to reach the earth’s surface while suffering diverse attenuations from the
components of space and the earth’s atmosphere.

Many devices are being employed to measure SR but the scope of such mea-
surements over space and time is limited. As a consequence, it is mandatory to
develop alternative heuristic models to qualify and quantify solar radiation.

Data on global solar radiation (GSR) is readily available in most meteorological
stations around the world but data on the diffuse and beam components of SR is
rare and needs to be estimated by alternative means. Measurements of SR are
mostly done on horizontal surfaces while real-time solar PV receivers require tilting
from the horizontal position for optimal harvesting of the SR [1]. Information on
both the direct and diffuse components of SR is necessary to accurately characterise
the irradiance intercepting a solar collector or receiver.

GSR is short wavelength radiation that can characteristically be either broad-
band or spectral. From this premise, SR is modelled using either broadband or
spectral models. Besides, satellite-based models have also been developed. The
broadband models are suitable for ground-based measurements. A plethora of sub-
models, with varying levels of complexity, now exist and will be presented in the
subsections that follow.
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The general trend over the past decades pioneering with the work of John K.
Page [2], is the development of models which have been severally tested and
improved upon. The common approach in the models is to predict either the diffuse
and/or the direct SR components from measured GSR data. Alternatively, some
models use meteorological parameters like temperature, sunshine hours and relative
humidity, together with the GSR data to predict the direct or diffuse components.

Except in the subsection(s) where we treat the aspect of tilt angle, every occur-
rence of radiation henceforth will be considered to mean radiation measured (or
predicted) regarding a horizontal surface.

To ascertain the accuracy of themodels, some statistical tools for the evaluation of
themodels have been presented. These include themean bias error (MBE), the root
mean square error (RMSE) and t-statistics [3–5]. A. S. Angstrom [3] disclosed that these
statistical tools collectively combine to establish the consistency of themodels.

This chapter will be organised as follows: After this introduction, we will present
in the next section the statistical tools applicable for testing of the model’s perfor-
mance. This is followed in Section 3 by an exploration of the different approaches
used in modelling solar radiation. Given that our emphasis is on photovoltaic tech-
nology, we present in the last section the modelling of tilt and azimuth angles in
connection with solar photovoltaic energy applications. This is followed by the
concluding remarks on the chapter.

2. Statistical evaluation methods for photovoltaic solar radiation
models

The prediction efficiency of the models being presented in this chapter needs
testing to ensure their validity and reliability. This is achieved using some statistical
tools. These include: the mean bias error (MBE), the mean relative error (MRE), the
root mean square error (RMSE) and the t-statistic (t-stat) error [5].

2.1 Mean bias error

The MBE is expressed as [6, 7]:

MBE ¼ 1
k

Xk
i¼1

yi � xi
� �

(1)

where xi is the i
th observed value, yi the i

th predicted value and k the total
number of observations.

The mean bias error (MBE) is a pointer of the long-term performance of a
correlation. This is achieved by calculating the real deviation between the predicted
and measured values term wise. Ideally, an MBE value of zero is the best indicator.
A positive MBE indicates an over-estimation while a negative MBE indicates under-
estimation. Under practical conditions, vanishingly small MBE values are desirable
for a good model’s performance.

2.2 Root mean square error (RMSE)

The RMSE is expressed as [5–7]:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
k

Xk

i¼1
yi � xi
� �2

r
(2)
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The root mean square error (RMSE) is determinant for the short-term perfor-
mance of a regression model. The RMSE estimates the differences between
observed and predicted results of some quantity being modelled, which in this case
is the solar radiation. RMSE is a good measure of precision and its value is always
positive, representing zero in the ideal case [6].

2.3 Mean relative error

The mean relative error (MRE) tests the linearity between the measured and the
estimated values. It is expressed in the form [8];

MRE ¼ 1
k

Xk
i¼1

yi � xi
xi

����
���� (3)

The MRE is always positive, approaching zero in the ideal case.
Each statistical assessment tool considered alonemight not be a sufficient pointer of a

model’s validity. It is likely to have a large RMSE value and at the same time a smallMBE
(a large scatter about the line of estimation). It is also possible to have a relatively small
RMSE and a relatively largeMBE (consistent over-estimation or underestimation).

Although these statistical indicators generally provide a reasonable tool for model
performance, they do not objectively indicate whether the model’s estimates are
statistically significant. An additional statistical indicator, the t-statistic can be used.

2.4 The t-statistical method

Stone [9] demonstrated that the MBE and the RMSE separately do not represent a
reliable assessment of the model’s performance and can lead to the false selection of
the best model from a set of candidates. To determine whether or not the equation
estimates are statistically significant, Stone [9] proposed the t-stat expressed as:

t� stat ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n� 1ð ÞMBE2

RMSE2 �MBE2

s
(4)

T-stat values are always positive and vanishingly small values indicate a better
model’s performance. The parameter, n, represents the numbers of observations and
corresponds to the twelvemonths (n = 12) of theyear if averagemonthlymeasurements
are used. This statistical indicator compares models and at the same time indicates
whether themodel’s estimates are statistically significant at a particular confidence level
[9, 10]. Consequently, the t-statistic is used in combination with the RMSE andMBE to
give amore reliable prediction [11]. After the estimation of a coefficient, the t-statistic
for that coefficient expresses the ratio of the coefficient to its standard error.

3. Approaches in solar radiation modelling

3.1 Introduction

Before reaching the earth’s surface, SR suffers some of the attenuations from air
particles, aerosols, water vapour and clouds. This causes the GSR to be split into
three components: the reflected, the direct (or beam) and the diffuse SR
components.
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Several forms of SR data exist, which could be used for a variety of purposes in
the design and development of solar PV systems. Daily data is often available and
hourly radiation data can be estimated from available daily data.

The monthly average daily extraterrestrial radiation on a horizontal surface is
expressed as [12, 13]:

H0 ¼ 24ð Þ 3600ð Þ
π

G0 cosφ cosδ sinωs þ π

180
ωs sinφ sinδ

� �
(5)

Here, G0, is the extraterrestrial radiation (SR incident on the outside of the
earth’s atmosphere) given by:

G0 ¼ Isc 1þ 0:034 cos
360 nday
365:25

� �� �
(6)

Where Isc is the solar constant and has a value of 1.367kWm�2 [14], φ is the
latitude of the site, δ is the solar declination angle, ωs is the sunshine hour angle for
the month and nday is the number of days of the year starting from January 1st.
Figure 1 presents the variation of H0 for Bamenda (latitude 5.96°N and longitude
10.15°E).

The solar declination (δ), the mean sunshine hour angle for the month (ωs) and
the maximum possible sunshine duration (S0) may be calculated from the Cooper
[16] formula [13, 16, 17]:

δ ¼ 23:45 sin
360 nday þ 284

� �
365

� �
(7)

ωs ¼ cos �1 �tanδ tanφð Þ (8)

S0 ¼ 2
15

ωs (9)

A calculation of these parameters for Bamenda (latitude 5.96°N and longitude
10.15°E) is presented in Table 1 below.

Figure 1.
Correlation between the estimated and observed values of the monthly mean daily diffuse solar radiation using a
twenty-year (1985–2005) monthly mean daily clearance index for the area of Yokadouma, Cameroon [15].
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3.2 Modelling of the direct and diffuse components of solar radiation from GSR
measurements, a.k.a. decomposition models

The input parameters for these models are diffuse ratio (K), the clearness index
(Kt), the diffuse transmittance index (Kd), and the beam transmittance index (Kb).
These parameters are expressed as follows: [18]

K ¼ Hd

H
(10)

Kt ¼ H
H0

(11)

Kd ¼ Hd

H0
(12)

Kb ¼ Hb

H0
(13)

Where: H is the monthly average daily GSR, Hd is the Monthly average daily
diffuse component of GSR, Hb is the Monthly average daily direct component of
GSR, H0 is the Monthly average daily extraterrestrial radiation; Hd is the monthly
average daily diffuse radiation received on a horizontal surface, H is the monthly
average daily total (direct plus diffuse) radiation received on a horizontal surface,
and Ho is the extraterrestrial daily insolation received on a horizontal surface.

3.2.1 Models based on the diffuse ratio- clearness index regressions

The diffuse component of SR can be predicted using GSR data as initially done
by Liu and Jordan [19]. The time scales used in this class of models range from
monthly average to daily and hourly averages. For monthly average SR, John K.
Page [2], estimated the monthly mean values of daily total short wave radiation on
vertical and inclined surfaces from sunshine records for latitudes 40° N - 40° S. It
consisted of a linear model relating K and Kt. Other similar models have been

Parameter Value

Average sunshine hours per day 6.7 hours

Solar constant, Isc 1367Wm�2

Latitude of site, φ 5.960N

Longitude of site 10.15°E

Linear regression Constants a and b 0.19 and 0.52

Declination, δ from (Eq. (7)) 23.180

Sunshine hour angle, ωs from (Eq. (8)) 92.560

Day length (mean sunshine hour), from (Eq. (9)) 12.34 hours

H0 from (Eq. (5)) 35.6068 MJ/m2/day

The estimated value of global solar radiation, H, for Bamenda for the month of
June 2005

16.7756 MJ/m2/day

The measured value of global solar radiation, H, for Bamenda for the month of
June 2005

16.452 MJ/m2/day

Table 1.
Solar radiation parameters for Bamenda, Cameroon [10].
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developed relating K and Kt ranging from quadratic to higher-order polynomial
models [20].

For the choice of time scale, some models relate the daily clearness index and
daily diffuse SR ratio, for different geographical locations [18, 21, 22]. The approach
here consists of developing a piece-wise fit between K and Kt. This is done for
overcast, partly-cloudy and clear skies.

For overcast skies, the regression equation is linear and expressed as.

K ¼ a0 þ a1Kt for Kt <Kta (14)

Where Kta is some critical value beyond which partly-cloudy conditions
dominate.

Other models assume a constant value of K in the event of overcast skies, i.e.:

K ¼ a0 for Kt <Kta (15)

In the situation of partly cloudy skies, a polynomial fit in Kt of order three or
four is used, expressed as:

K ¼ b0 þ b1Kt þ b2Kt
2 þ b3Kt

3 for Kta <Kt <Ktb (16)

Lastly, for a clear sky situation, K takes a constant value, expressed as:

K ¼ c0 for Kt >Ktb (17)

Instead of the piecewise regression as outlined above, a single polynomial
regression equation can be chosen that can adequately fit the available data. A
nonlinear empirical expression has also been used [23], and given as:

K ¼ aþ 1� að Þ exp �bKt
c= 1� Ktð Þ½ � (18)

where, for the location of Macerata the constants take values: a = 0.154, b = 1.062
and c = 0.861.

It should be mentioned that seasonal models in which seasonal variations for
daily regressions are treated exist [18, 20, 22].

The third variant consists of the models based on hourly SR measurements. Here
the procedure of Liu and Jordan [19], is used with the exception that the correlation
between K and Kt is done on an hourly basis [20].

For the performance of these models, Figure 1 presents the correlation
between the estimated and observed values of the monthly mean daily diffuse
solar radiation using a twenty-year (1985–2005) monthly mean daily clearance
index for the area of Yokadouma, Cameroon, (Latitude 3.15°, longitude 15.050°
and at an altitude of 488 m) [15]. For this caption, the correlation equations are
expressed in the linear and quadratic forms as: (Hd ¼ H 1:265� 1:463Ktð Þ and
Hd ¼ H 1:282� 1:53Kt þ 0:063K2

t

� �
) [15].

Figure 1 demonstrates a coefficient of determination between the estimated and
the observed values close to one (0.92–0.99), which indicates an excellent agree-
ment between the estimated and the observed diffuse fraction. Figure 2 further
shows the correlation between the estimated and observed values of the diffuse
fraction for the same location; Yokadouma. Even though the results of the different
models follow the same trend, we notice that the predictions of Lealea T. et al. [15]
are closest to the observed data. This suggests that these models are location-
dependent, performing well in some locations and not in others.
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An evaluation of these models based on the statistical indicators for Yokadouma,
(Cameroon) is presented in Table 2.

The RMSE values here reveal that the model of Lealea T. et al. [15] is best for
short-term performance. Meanwhile, the MBE and the RMSE cannot adequately
account for the validity of a model, the t-statistics evaluation here indicates that the
results of Lealea T. et al. [15] are the most statistically significant for the study
location.

3.2.2 Correlation between diffuse transmittance index and clearness index regression

The hourly diffuse SR was predicted from measured hourly GSR on a horizontal
surface by Iqbal [25]. It consisted of a correlation between the hourly diffuse
transmittance index, kd, (ratio of diffuse to extraterrestrial radiation), and hourly
clearness index, k, (ratio of global to extraterrestrial radiation). The results indi-
cated that the models depend on particular geographical sites.

3.2.3 Correlation between direct transmittance index and clearness index regressions

This approach was spearheaded by Maxwell [26] in an attempt to improve the
findings of several investigations which have shown that the use of a single regres-
sion function does not sufficiently portray the connection between direct beam
transmittance (Kb) and the actual global horizontal transmittance (Kt). The Direct

Figure 2.
Comparison of the observed and estimated values of monthly mean diffuse solar radiation predicted by some
existing models for Yokadouma, (Cameroon). Modified from [15].

Reference MBE (Wh/m2/day) RMSE (Wh/m2/day) t-statistics

Lealea T. et al. [15] (Linear) 37.8 2615.4 0.228

Lealea T. et al. [15] (Quadratic) �29.73 2613 0.18

J.K. Page [2] �13,781 14,261 59.37

Liu and Jordan [24] �21,751 22,612 55.63

Iqbal [12] �8092 9824 22.91

Erbs et al. [20] �19,039 19,737 57.84

Table 2.
Performance of the diffuse ratio- clearness index models using the statistical indicators for Yokadouma,
Cameroon [15].
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Insolation Simulation Code (DISC) that uses an exponential relationship between
Kb and air mass with parameter Kt, was developed [26]. This procedure acceptably
relates Kb with Kt for a variety of stations around the globe and seasons. The
validation of the DISC Model exhibited considerable improvements in the correct-
ness of hourly values, substantial decreases in monthly RMS errors, and the
corresponding monthly MBE. Further modification of the DISC model integrated
the effects of cloud-cover, water vapour, and albedo. Perez et al. [27] adopted and
improved on Maxwell’s model. The method comprised primarily in using a zenith-
angle independent clearness index and by employing a time-varying GSR. Conse-
quently, the diffuse irradiance can be gotten from the difference between the GSR
and the beam component once the beam component is known. These components
are related by the equation:

H ¼ Hd þHb sin θh (19)

Where θh is the solar height or solar altitude.
Hence Perez et al. [27] improved on the two main shortcomings related to the

reliance of the clearness index on solar height and also its slow response to sudden
changes in hourly sky conditions.

3.3 Prediction of diffuse solar radiation from the beam or direct component of
solar radiation

3.3.1 ASHRAE model

The ASHRAE model considers only clear cloudless days [28]. It proceeds in two
steps: the first consists of calculating the intensity of the direct normal solar radia-
tion component and next it computes the hourly direct and diffuse solar radiation
on both the horizontal and slanted surfaces. The model equations are:

Hbn ¼ Aexp �B= cos θzð Þ (20)

Hd ¼ CHbn (21)

where Hbn is the normal beam component of SR, Hd is the diffuse component of
SR, θz is the zenith angle and A, B, C are monthly mean values of empirically chosen
constants.

Extensions of the ASHRAE model where the model coefficients were
re-determined using cloudless data at different locations exist [29].

3.3.2 Regression models using the direct transmittance index and the diffuse transmittance
index

These models are formulated using an empirical monthly regression equation
between the ratio of the daily diffuse SR to the daily extraterrestrial radiation (Kd)
and the ratio of the daily beam SR to the daily extraterrestrial radiation (Kb). An
implementation in the localities of Beer Sheva and Sde Boker (Israel), is expressed
as [30]:

Kd ¼ a exp bKb þ cK2
b

� �� �
(22)

where, the constants a, band c, are monthly values of empirically determined
coefficients. For the month of January at Beer Sheva: a = 0.2155, b = 3.1713 and
c = �8.1261.
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3.4 Prediction of solar radiation from meteorological input parameters

These models are formulated using the clearness index, kt with the input
parameter being the GSR. They present a shortcoming in that the clearness index
alone cannot account for changes in the diffuse component of the SR. Extensions of
the model exist that can address the associated drawback that will be explored in the
following subsections.

3.4.1 Prediction of solar radiation from the sunshine fraction

The first attempt that expresses SR in terms of the sunshine fraction is the linear
equation [3]:

H
H0

¼ aþ b
S
S0

� �
(23)

where a and b are the two constants, H is the monthly average daily SR, Ho is the
monthly average daily extra-terrestrial radiation, S is the monthly average daily
measured sunshine duration.

As an extension of this equation and to improve the accuracy, the nonlinear
polynomial models, were derived. This form is given as follows [7]:

H
H0

¼ aþ b
S
S0

� �
þ c

S
S0

� �2

þ d
S
S0

� �3

þ … (24)

The values of a, b, c and d, vary depending on location and month of observa-
tion. Their values may be affected by atmospheric air pollution. As the daily total
amount of SR and sunshine duration vary widely, daily totals averaged over a
month are used to derive the values of a, b, c and d. This can be done by the least
square regression analysis.

These models have been very popular all the time because of the abundance of
data on sunshine duration in most locations on earth. This eases the prediction of
GSR even where measurements are absent. The mostly used equation is that pro-
posed by John K. Page [2], expressed as:

H ¼ H0 aþ b
n
N

� �
(25)

where H and H0 are the monthly-average daily terrestrial and extraterrestrial
radiation, n is the average daily hours of bright sunshine and N is the day length.
Variants of these models are linear, quadratic, third-degree polynomial, exponential
and logarithmic (Figures 3 and 4).

To test these models, we present results for both the linear, the quadratic, and
the third-degree polynomial models for the city of Bamenda in Cameroon whose
parameters have been presented in Table 1.

3.4.2 Cloud cover radiation models (CRM)

For cloud cover radiation models, the choice parameters used are the monthly
mean values of the fraction of the sky covered by clouds, Ne, and duration of bright
sunshine hours, N. The sunshine duration is calculated from the cloud cover data
and the cloud derived sunshine data, monthly mean values of global and diffuse SR
are calculated. The model equations are expressed as [31]:
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Gt,0 ¼ W sin θh � X (26)

Gt

Gt,0
¼ 1� Y

Ne

8

� �Z

(27)

Where, Gt,0 is the global irradiance for a cloudless sky in W=m2, Gt is the hourly
global irradiance for any given cloud amount (Ne, in eighths) in W=m2, θh is the
solar height in (°), and W, X, Y and Z are empirical regression constants.

A linear model equation that correlates monthly average diffuse transmittance
index, Kd, to monthly average daily cloud cover (Ne, in eighths), is given by [32]:

Figure 3.
Linear relationships between the monthly average values (H/H0 versus S/S0) for the city of Bamenda,
Cameroon [10].

Figure 4.
Comparison of the estimated and observed monthly average daily horizontal GSR data for Bamenda using the
linear, quadratic and cubic models.
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Kd ¼ a7 þ b7
Ne

8
(28)

Kd ¼ a8 þ b8 1�Ne

8

� �
(29)

Where a7, b7, a8 and b8 are regression constants.
As an extension, several empirical models for the prediction of GSR from the

daily mean of cloud cover, temperature extremes (minimum and maximum) and
extraterrestrial SR have been proposed [33].

3.4.3 Models based on atmospheric transmittance (ATM)

Constituents that affect the transmittance of the atmosphere include scatterers,
which consist of air molecules responsible for Rayleigh scattering, aerosols causing
Mie scattering and absorbers like water vapour, atmospheric gases, dust and clouds.
The atmospheric transmittance models attempt to establish some parametric rela-
tionships between these parameters. These models can either be classified as
broadband or spectral based/ radiative transfer models [34].

3.4.3.1 Meteorological radiation model (MRM)

The most popular broadband ATM is the Meteorological Radiation Model
(MRM). The input data for this model consist of the dry- and wet- bulb tempera-
ture and a sunshine fraction (used to generate hourly SR components for all-sky
conditions like overcast and clear skies) [31].

The model equations for MRM in the case of non-overcast skies are given by

DBR ¼ 0:285k�1:00648
b (30)

Gb ¼ SFð ÞG0τrτατgτoτw (31)

Where: DBR is the hourly diffuse to beam ratio, kb is the direct transmittance
index, Gb is the beam/direct irradiance, SF is the hourly sunshine fraction, τr, τα, τg,
τo, τw are the transmittances respectively due to Rayleigh and Mie scattering, mixed
gases, ozone and water vapour. Empirical equations are used to determine the
transmittance indices and the coefficients are obtained through data fitting.

The proposed model exists for overcast skies where the diffuse irradiance is
assumed to be equal to GSR [35]. Gueymard [36] proposed another similar model
referred to as the Reference Evaluation of Solar Transmittance (REST). Though
similar to the other models, the particularity of REST is that it introduces an
additional transmittance term τn to account for the total absorption of NO2.

3.4.3.2 Spectral models

The measurement of the solar spectrum is quite challenging necessitating models
that can accurately provide the solar radiation incident at different parts of the
earth’s surface.

Spectral models are particularly suitable for such applications that are prone to
small changes in wavelength. These models are spurred on the one hand by the
challenges encountered in measurements of the electromagnetic spectrum. On the
other hand, there is a need for models capable of accurately reproducing the inci-
dent radiation at the earth’s surface. This aim is achieved by solving the radiative
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transfer equations as a function of the wavelength intervals as well as unit atmo-
spheric layer intervals [37, 38]. The first of these models are the SPECTRAL and the
Simple Model of the Atmospheric Radiative Transfer of Sunshine (SMARTS)
developed by Bird [37]. The second is a modified version of SPECTRAL to SPEC-
TRAL2 developed eventually by Bird and by Riordan [38]. These models apply
simple mathematical expressions on tabulated look-up tables to generate the
direct-normal and diffuse horizontal irradiance.

The SPECTRAL2 determines the beam component of solar radiation perpendic-
ular to the earth surface for some wavelength λ through the equation:

Hbλ ¼ HoλDTrλTaλTwλToλTuλ (32)

Where for some given wavelength λ and for some mean earth-sun distance: Hoλ
is the extraterrestrial irradiance; D is a correction factor; and Trλ, Taλ, Twλ, Toλ, and
Tuλ are functions expressing the transmittance of the atmosphere for molecular
Rayleigh scattering, attenuation by aerosols, absorption by water vapour, absorp-
tion by ozone, and absorption by uniformly mixed gases, respectively. The beam
component of solar irradiation on a horizontal surface is given by the product of
(Eq. (32)) and the cosine of the solar zenith angle, θz.

The parameter, D in (Eq. (32)) is expressed as

D ¼ 1:00011þ 0:034221 cos ωd þ 0:00128 sin ωd þ 0:000719 cos 2ωd
þ 0:000077 sin 2ωd (33)

Where ωd the day angle in radians given by

ωd ¼ 2n nday � l
� �

=365 (34)

Three components make up diffuse solar radiation on a horizontal surface. The
first Hrλ results from the Rayleigh scattering, the second Haλ is caused by the aerosol
scattering and the third Hgλ originates from multiple reflections of solar radiation
between the earth surface and the atmosphere. The resultant solar radiation caused
by scattering is expressed as:

Hsλ ¼ Hrλ þHaλ þHgλ (35)

Obtaining the spectral solar radiation on inclined surfaces is a straight forward
process achieved by combining the spectral beam and diffuse radiation components
calculations as presented above. The spectral global solar radiation on a slanted
surface is then given by

HTλ tð Þ ¼ Hbλ cos θþHsλ Hbλ cos θ=HoλD cos θzð Þ þ 0:5 1þ cos βð Þ 1�Hbλ= HoλDð Þð Þ½ �
þ 0:5HTλrgλ 1þ cos βð Þ

(36)

where θ is the angle of incidence of the beam component on the tilted surface, β
is the angle of tilt of the slanted surface relative to the horizontal surface and θz is
the solar zenith angle. The following expression holds for the spectral global solar
radiation on a horizontal surface:

HTλ ¼ Hbλ cos θz þHsλ (37)

The first term in (Eq. (36)), is the direct component on the inclined surface. The
second term has two components: the first is circumsolar and the second is a diffuse
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component. The last term represents the radiation reflected from the earth surface
which is distributed isotropically. A component that is missing from this model is
the horizon-brightening radiation.

Gueymard [39] improved the SMARTS model to the SMARTS2. The spectral
transmittance is expressed as a function of the processes responsible for radiation
extinction in the atmosphere such as water vapour, Rayleigh scattering, uniformly
mixed gases, absorption by ozone, aerosol extinction and Nitrogen dioxide. These
functions are then used to calculate the beam component of the radiation in the
shortwave range. Data obtained from spectroscopic measurements have been used
to calculate coefficients for the extinction processes due to absorption by gases that
depend on both temperature and pressure. The coefficient of absorption resulting
from the dependence in temperature is captured in the modelling of the extinction
caused by nitrogen dioxide, both in the visible and UV regions of the electromag-
netic spectrum. The two-tier Angstrom methodology is used to compute the
extinction resulting from absorption by aerosols. Data of visibility measured at the
airport and further refined based on a prototype of the Shettle and Fenn [40]
function is used to evaluate the turbidity effect of aerosols. A further improvement
is introduced by expressing the wavelength exponent and some coefficients that
characterise the individual aerosol components as a multivariable parametric func-
tion of the relative humidity and the wavelength. SMARTS2 is also equipped with
an optional function that corrects the circumsolar radiation which together with
two functions that smoothen and filter the spectral solar radiation equip it with the
possibility to mimic real-time spectro-radiometers. As a result, confronting the
results of modelling with observed data becomes easy. An initial evaluation of the
validity of SMARTS2 revealed considerable agreement for the direct component of
solar radiation obtained both from thorough and standard solar radiation schemes
and from spectro-radiometric measurements. The possibility of incorporating into
SMARTS2 the ability to estimate solar spectra under the canopy of clouds is further
suggested in a later work by Gueymard et al. [41].

3.5 Satellite-based models

Geographical and climate parameters vary widely across the globe and conse-
quently impute differences in the amount of SR intercepting the earth’s surface. To
capture all these differences would require an infinite number of ground measuring
stations. This difficulty is alleviated by the use of meteorological satellites which
provide SR data over a wide geographical coverage with high spatial resolution.
Models based on such data have been developed to take advantage of such ubiqui-
tous data. The models range from: subjective, empirical (statistical and physical
based), objective and theoretical (broadband and spectral) [42].

3.5.1 Subjective methods

Methods that involve some subjective interpretation of the satellite data fall under
this category. For the method to provide some quantitative measure for solar radiation,
it has to be associated with other methods. This method has been applied manually to
estimate cloud cover from hard-copy images using a gridded overlay [43].

3.5.2 Empirical methods

Here functional relations are developed using simultaneous and co-located sat-
ellite and SR data. The methods permit some level of transferability in which the
derived equations can be applied to other geographical locations, but as pointed out
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in [42], such a process may be uncertain due to the empirical parameters involved
in the equations. In the subsequent development of these methods, two approaches
are followed: the first is a statistical approach and the second is a physical approach.

The statistical approach relies upon choosing the independent variable merely
based on their facility to capture the trend in the SR based on the geographical
location of interest. In what follows, the physical-based approach will be prioritized
and developed.

3.5.2.1 Physical based methods

These methods originate from an attempt to achieve a radiation balance between
the earth and its surrounding atmosphere. A formulation presented in [42],
expresses the balance as follows:

E0↓� E0↑� Ea � Eg↓ 1� ρð Þ ¼ 0 (38)

Where E0↓ is the extraterrestrial solar irradiance, E0↑ is the SR reflected back
to space, Ea is the SR absorbed by the earth’s atmosphere, Eg↓ is the solar irradiance
at the earth’s surface, and ρ is the surface albedo.

Dividing by E0↓ and rearranging terms results in:

ρp ¼ 1� qa � qt 1� ρð Þ (39)

where ρp is the planetary albedo (the fraction of the incident SR reflected to
space); qa is the portion of the incident SR absorbed by the atmospheric constitu-
ents; qt is the transmitted portion of the incident SR through the atmosphere. Using
an argument whereby qt and the spatially averaged values of ρp are highly corre-
lated, enables the use here of a statistical equation of the form

ρp ¼ aþ bqa (40)

where a and b are some empirical coefficients equal to 0.63 and �0.64,
respectively [44].

It can be deduced from (Eq. (39)) that,

a ¼ 1� qa (41)

and

b ¼ � 1� ρð Þ (42)

This results in average values of 0.37 and 0.36 for qa and ρ, respectively.
However, it was shown in [44] that the satellite data could have undervalued ρp
resulting in an overestimation of the atmospheric absorption values inferred.

Eq. (39) can be alternatively expressed in the form

qt ¼ 1� ρp � qa
� �

= 1� ρð Þ (43)

If all the quantities in this equation are obtained from appropriate measure-
ments, then qt can be calculated.

An alternative approach was followed in [45] to develop a model in which there
is a very high correlation between the planetary albedo and the SR absorbed at the
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earth’s surface, thereby implying that the column integrated atmospheric absorp-
tion is highly conservative. On this basis, the model is expressed as:

qt 1� ρð Þ ¼ aþ bρp (44)

Where it can be deduced from equation (Eq. (39)), that:

a ¼ 1� qa (45)

and

b ¼ �1 (46)

The conservative aspect of the regression parameters was revealed by using data
from different geographical locations. This was further substantiated theoretically
leading to the conclusion that even clouds cannot severely change the atmospheric
absorption.

Other empirical models have been developed based on the radiation balance
between the earth and its surrounding atmosphere [46, 47]. One approach followed
in [48] and [49] consists of rearranging Eq. (39) in the form:

qt ¼ 1� ρp � qa
� �

= 1� ρð Þ (47)

This equation can be rewritten in the form:

qt ¼ aþ bρp (48)

Where,

a ¼ 1� qa
� �

= 1� ρð Þ (49)

and

b ¼ �1= 1� ρð Þ (50)

A comprehensive analysis in [50] and [51] led to expressing the parameters, a
and b as multivariable functions given by:

a ¼ f qa, ρp, ρ
0
p, ρ

0
c, ρ

0
� �

(51)

b ¼ f qa, q
0
aρp, ρ

0
p, ρc, ρ

0
c, ρ, ρ

0
� �

(52)

where: ρc is cloud reflectivity and the primes indicate that the variable is calcu-
lated when the satellite sensor is in some spectral interval (typically 0.55–0.75 μm).
They revealed that b is less conservative than a, as a consequence of the relatively
strong reliance on aerosol absorptivity which is one component of qa and q0a. The
other two most important parameters (cloud reflectivity and water vapour absorp-
tivity) neutralize each other. Hence, the combined effect of these latter variables
may be very inconsequential.

Cano et al. [52] developed a model that deviates from the previous ones and can
serve as a transition between the empirical and theoretical models. In their
approach, the cloudless sky albedo is computed iteratively by a procedure that
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minimizes the variance in the difference between the satellite inferred value of Eg↑

and a calculated value obtained from:

Eg↑ ¼ ρp0IT cos θzð Þ1:15 (53)

In this approach, ρp0, is the planetary albedo for a cloudless target. IT is the solar
constant corrected for actual sun-earth distance. A cloud cover index (ns) is com-
puted for high surface albedo (e.g., with snow cover) and for infrared radiances for
wavelengths in the interval between 10.5 and 12.5 μm as

ns ¼ I� I0
Ic � I0

(54)

Where I is the observed infrared radiance, I0 is the observed infrared radiance
for cloudless sky conditions and.

Ic is the observed infrared radiance for overcast sky conditions.
The atmospheric transmission was assumed to be a linear combination of the

respective values for cloudless and overcast skies resulting in

qt ¼ 1� nsð Þqt0 þ nsqtc ¼ qt0 þ ns qtc � qt0
� �

(55)

In a similar regression model

qt ¼ aþ b ns (56)

with

a ¼ qt0 (57)

and

b ¼ qtc � qt0 (58)

According to Cano et al. [52], if data were stratified hourly, absolute values of
the correlation coefficients are typically greater than 0.80, thereby supporting their
use of the preceding model. Although the parameters, a and b could be calculated
analytically, values were determined empirically. This is in line with the fact that
the regression parameters also account for many other effects, including those
resulting from the characteristic response of the satellite sensors.

3.5.3 Theoretical methods

These models endeavour to simulate explicitly solar radiant energy exchanges
occurring between the earth and the atmosphere. Unlike the statistical counterpart,
they do no incorporate an empirical calibration of the model parameters resulting in
location free models. The models however need to be provided with additional
environmental data which are time and location dependent. As a short cut to this
limitation, climatological and standard atmosphere data are sometimes used, often
without seriously impacting negatively on model performance.

Based on the degree of simplification and realism, two general classes of models
can be distinguished: broadband models formulated based on the earth’s radiation
balance and spectral models which rely on results generated by the solution of the
radiative transfer equation.
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3.5.3.1 Broadband models

One of the pioneers in this approach is Gautier et al. [53], who developed a
model that has been widely used and makes it a reference for broadband models. In
their model, the solar flux that exits the earth’s atmosphere and is measured by the
satellite is given by:

E0↑ ¼ E0↓� Ea � Eg↓ 1� ρð Þ (59)

By starting with a cloudless sky and minimizing the effects of multiple reflec-
tions down to first-order and assuming that scattering occurs before absorption,
Gautier et al. rewrote Eq. (59) in terms of broadband absorption and scattering
coefficients to give

E0↑ ¼ E0↓ ρ0 þ 1� ρ0ð Þ 1� a1ð Þ 1� a2ð Þ 1� ρ ∗ ρð Þð Þ (60)

The only unknown is the surface albedo, ρ. E0↑ can be inferred from the
satellite measurements, ρ0 and ρ ∗ are obtainable from Coulson [42] and a1 and a2
can be calculated given an estimate of atmospheric water vapour content (com-
monly climatological data or relationships involving surface humidity are used).
Making ρ the subject in the last equation gives:

ρ ¼ E0↑� E0↓

E0↓ 1� ρ0ð Þ 1� a1ð Þ 1� a2ð Þ 1� ρ ∗ð Þ (61)

A rearranged and expanded version of (Eq. (60)) was then used to express the
solar irradiance at the earth’s surface (assuming cloudless skies) in terms of known
variables

Eg↓0 ¼ E0↓ 1� ρ0ð Þ 1� a1ð Þ 1� a2ð Þ 1þ ρ ∗ ρð Þ (62)

This model was revised by Diak and Gautier [54], where they included the
effects of ozone absorption while Gautier and Frouin [55] also incorporated the
effects of both aerosol and all orders of multiple reflections. Additional revisions
investigated the consequences of ignoring spectral dependencies in both atmo-
spheric attenuation and satellite radiometers.

Diak and Gautier [54] recognized that: (1) the Rayleigh scattering optical depth
is wavelength dependent and therefore values of ρ0and ρ ∗ must be evaluated for
both the entire solar spectrum and the wavelengths covered by the visible sensors.
(2) Ozone absorption must be considered, especially given its significance in the
visible part of the spectrum. These considerations are captured in the calculations of
both the albedos and surface irradiances. Gautier and Frouin [55] provided the
following equation for the surface irradiance during cloudless skies:

Eg↓0 ¼ E0↓ exp � c2
cos θz

� �
1� a01ð Þ 1� a03ð Þ 1� a1ð Þ= 1� c3ρð Þ (63)

Gautier et al. [53] revised and extended their model to include the effects of
clouds by assuming a plane-parallel atmosphere composed of three layers. Thirty per
cent of the water vapour and all the Rayleigh scattering were assumed confined to the
top cloud layer. Similar procedures to those considered in the clear sky model pro-
vided estimates of the cloud top albedo (ρ0) with which the cloud absorption (a0)
was parameterized using a linear function ranging from zero for no cloud to 20%
absorption for maximum target brightness.
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Multiple reflections were not considered in the derivation of the following
equation for the irradiance at the surface under overcast conditions [53]

Eg↓c ¼ E0↓ 1� ρ0ð Þ 1� a1að Þ 1� ρcð Þ 1� acð Þ 1� a1bð Þ (64)

We notice a striking similarity with (Eq. (62)) (for clear skies) except that the
first order of multiple reflections was included in that formulation. Note also that to
be consistent with the definition of ρc and ac, the term 1� ρcð Þ 1� acð Þ should be
replaced by 1� ρc � acð Þ.

A revised equation for Eg↓c [54] captured the effects of ozone – zone absorption
and revised the formulation of cloud attenuation to render it consistent with the
definition of the absorption and reflection coefficients

Eg↓c ¼ E0↓ 1� a01ð Þ 1� a03ð Þ 1� ρ0ð Þ 1� a1að Þ 1� ρc � acð Þ 1� a1bð Þ (65)

Further attempts were made to approach reality in the parameterization of
absorption by cloud, primarily to incorporate the occurrence of both finite and sub-
field-of-view clouds. A decision to limit ρc to values greater than 7% was arrived at
based on comparisons between measured and calculated surface irradiances. For
analogous reasons, the maximum value of ac was set to 7%. The basis for these
decisions to an extent weakens the claim of zero empiricism in physically-based
models.

Gautier and Frouin [55] upgraded their analysis to capture the effects of both
aerosols and multiple reflections resulting in

E0↓c ¼ c1E0↓ exp � c2
cos θz

� �
1� ρc � acð Þ 1� a01ð Þ 1� a03ð Þ 1� a1ð Þ= 1� c3ρð Þ 1� c4ρð Þ

(66)

Gautier et al. [53] have described the procedures for deciding whether to imple-
ment the clear or overcast sky routines when calculating Eg↓, for a given location
(pixel) and the technique for combining these estimates for partly cloudy conditions.

From the foundational investigations of Gautier et al. [53], other works have
followed and revised their models to address some of the shortcomings associated
with their approach such as the investigations in [56].

3.5.3.2 Spectral models

The conceptual basis for modelling SR by a spectral model of radiative transfer is
best captured in the technique developed by Halpern [57]. The solution of the
radiative transfer equation for an atmosphere tending to be absorbing and scatter-
ing requires some simplifying assumptions. Dave and Braslau [58] used a direct
numerical solution of the spherical harmonics approximation for the axially sym-
metric but highly anisotropic phase functions which describe the scattering proper-
ties of liquid water drops (cloud) and aerosol. Halpern [57] used Dave and Braslau
[58] results to construct tables of the downward ground-level flux and the upward
flux at the top of the atmosphere. These initial attempts have been refined in two
main aspects. The limitations imposed by the discrete nature of the Halpern
approach are avoided, through the use of parameterizations based on data provided
by explicit solutions of the radiative transfer equation for a wide range of atmo-
spheric conditions. The algorithms are typically independent of conventional data
sources, with all site and time-specific environmental data being abstracted from
the digital imagery.
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Moser and Raschke [59] also using a radiative transfer model developed the
following parameterizations for several model atmospheres and a wide range of
boundary conditions

Eg↓0 ¼ f θzð Þ (67)

E0↑c ¼ f θz, hcð Þ (68)
Eg↓

Eg↓0
¼ 1� f θz, Lnð Þ (69)

The cloud height (hc) was determined using simultaneous satellite measure-
ments in the infrared (10.5–12.5) μm while Ln (the normalized reflected radiance)
was determined from

Eg↓ ¼ E0↑ 1� f θz, Lnð Þ½ � (70)

3.6 Classification and comparative study of the models

We summarise here the models presented in the previous sections aiming to show
the interrelationship amongst the models and the input and output parameters of each
(Table 3).

3.6.1 Classification of the models

See Figure 5.

Figure 5.
Classification of solar radiation models. Modified from [60].
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3.6.2 Comparative study of the models

4. Tilt and azimuth angles in solar photovoltaics energy applications

4.1 Introduction

The aims in this section is to present the optimum tilt angles calculation methods
required for the optimal and best design of solar PV systems. Some techniques
applicable for solar tilt calculations have been elaborated in [61, 62]. Some valuable
excerpts from these references are considered in this section.

4.2 Optimal tilt angles for global solar radiation components

Like on horizontal surfaces, the total daily radiation falling on tilted surfaces (GT)
is the sum of three components: the direct (GBt), diffuse (GDt) and ground reflected
(GRt). This is expressed as [62] (Figure 6)

GT ¼ GBt þ GDt þ GRt (71)

These three components are respectively related to direct, diffuse and total
radiation on horizontal surfaces through the three expressions

GBt ¼ RbGB (72)

Model References Input
parameters

Output parameters Linearity

Models based on the diffuse
ratio- clearness index
regressions

[2, 15, 18–
20]

Clearness index
(Kt)

Diffuse ratio (K) Linear
and
Nonlinear

Models based on diffuse
transmittance index and
clearness index regression

[25] Hourly clearness
index, k

Hourly diffuse
transmittance index, kd

Linear

Models based on direct
transmittance index and
clearness index

[26, 27]. Clearness Index
(Kt)

Direct beam transmittance
(Kb), air mass, cloud-cover,
water vapour, and albedo

Nonlinear

ASHRAE model [28, 29] Zenith angle, θz Diffuse radiation, Hd Nonlinear

Models using the direct
transmittance index and
the diffuse transmittance
index

[30] Diffuse
transmittance
index (Kd)

Beam transmittance index
(Kb)

Nonlinear

Models based on the
sunshine fraction

[2, 3, 10] Solar fraction, S/
S0

Clearness Index (Kt) Linear
and
Nonlinear

Cloud cover radiation
models (CRM)

[32, 33] Monthly average
daily cloud cover
(Ne, in eighths)

Monthly average diffuse
transmittance index, Kd ¼
Hd=H,

Linear

Meteorological Radiation
Model (MRM)

[31, 35, 36] SF, τr, τα, τg, τo,
τw, kb

DBR, Gb Nonlinear

Table 3.
Comparative study of the Solar radiation models.
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GDt ¼ RdGD (73)

GRt ¼ RrG (74)

Rb, Rd and Rr are the quotients of the daily solar radiation incident on a slanted
surface to that incident on a horizontal surface for the beam, the diffuse and the
reflected components respectively. GB, GD and G are the beam, diffuse and total
daily SR on a horizontal surface. (Eq. (71)) then asumes the expression:

GT ¼ RbGB þ RdGD þ RrG (75)

The calculation of the direct and diffuse components of GSR needed for the
estimation of GSR on slanted surfaces was well elaborated in subSection 3.1.

In terms of the albedo, ρ, and the tilt angle of the horizontal surface β, Rr is
expressed as:

Rr ¼ ρ
1� cos β

2

� �
(76)

Here Rb depends on the transmittance of the atmosphere which is in turn
affected by the atmospheric cloud cover, water vapour and concentration of
atmospheric particles.

Rb for fixed slope surfaces oriented towards the equator in the northern
hemisphere is expressed in [61, 64] as

Rb ¼ cos φ� βð Þ cos δ sinωst þ ωst sin φ� βð Þ sin δ
cosφ cos δ sinωst þ ωst sinφ sin δ

(77)

Figure 6.
Zenith angle (θz), slope (β), surface azimuth angle (γ) and solar azimuth angle (γs) for a tilted surface.
Modified from [63].
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Where ωst is the sunset hour angle for the tilted surface, for the mean day of the
month, which is given by

ωst ¼ min cos �1 � tanφ tan δð Þ, cos �1 � tan φ� βð Þ tan δð Þ� �
(78)

For surfaces in the southern hemisphere sloped towards the equator, the
equations are [61, 65]:

Rb ¼ cos φþ βð Þ cos δ sinωst þ ωst sin φþ βð Þ sin δ
cosφ cos δ sinωst þ ωst sinφ sin δ

(79)

ωst ¼ min cos �1 � tanφ tan δð Þ, cos �1 � tan φþ βð Þ tan δð Þ� �
(80)

It is possible to alternatively estimate Rb as the quotient of the daily extraterres-
trial radiation on the slanted surface to that on a horizontal surface, G0 [24]. As a
consequence the following relation has been proposed for Rb [62, 66]:

Rb ¼
ðωst

ωrt

cos θ ωð Þdω=
ðωs

ωr

cos α ωð Þdω

¼ cos β sin δ sinϕð Þ π

180

� �
ωst � ωrtð Þ � sin δ cosϕ sin β cos αtð Þ π=180ð Þ ωst � ωrtð Þ

þ cosϕ cos δ cos βð Þ sinωst � sinωrtð Þ þ cos δ cos αt sinϕ sin βð Þ sinωst � sinωrtð Þ
þ cos δ sin β sin αtð Þ cosωst � cosωrtð ÞÞ= 2 cosϕ cos δ sinωs þ π

180

� �
ωs sinϕ sin δ

� �� �

(81)

Where ωr and ωs are the sunrise and sunset hour angles over the horizon
respectively in degrees. Also, ωrt and ωst are sunrise and sunset hour angles over
tilted plane surface calculated as follows:

if αt <0,

ωrt ¼ �min ωs, cos �1 PQ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 �Q2 þ 1

p

P2 þ 1

 ! !
(82)

ωst ¼ min ωs, cos �1 PQ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 � Q2 þ 1

p

P2 þ 1

 ! !
(83)

else

ωrt ¼ �min ωs, cos �1 PQ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 �Q2 þ 1

p

P2 þ 1

 ! !
(84)

ωst ¼ min ωs, cos �1 PQ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 � Q2 þ 1

p

P2 þ 1

 ! !
(85)

Where,

P ¼ cosϕ= sin αt tan βð Þ þ sinϕ= tan αt (86)

Q ¼ tan δ cosϕ= tan αt � sinϕ= sin αt tan βð Þð Þ (87)

4.3 Diffuse radiation models on tilted surfaces

Both isotropic and anisotropic models exist for estimating the ratio of diffuse SR
on a tilted surface to that on a horizontal surface. The isotropic models assume the
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intensity of diffuse sky radiation to be uniform over the skydome. As a conse-
quence, the diffuse radiation incident on a tilted surface is a function of the fraction
of the skydome it sees. The anisotropic models on the other hand assume the
anisotropy of the diffuse sky radiation in the circumsolar region (portion of sky
near the solar disk) plus and isotropically distributed diffuse component from the
rest of the skydome. Some of these models are summarised in Table 4.

4.4 Optimization of Tilt angle techniques

For PV modules to furnish maximum output power, there is a need to optimize
the tilt angle. We present here (Table 5) a non-exhaustive summary of some
optimal tilt angle equations while the details are obtainable from the indicated
references. Taking into consideration the functional relationship of the solar decli-
nation, δ, with the day of the year through (Eq. (7)), we also include the optimum
tilt angle data (monthly, seasonally and yearly) as applicable alongside the models
(Tables 4 and 5).

5. Conclusion

In this chapter, we have presented the different models of SR geared towards
photovoltaic applications. Solar radiation models can be distinguished based on the
type of measurement of input data used. Based on this we have models that use
ground measured data and models that use satellite measured data. These models
can be further sub-classified as either broadband or spectral models according as
they are based on the earth’s radiation balance or on results generated by the

Reference Optimum Tilt Angle expressed in terms of altitude

Isotropic models

[65] Rd ¼ 3� cos 2β
4

[67] Rd ¼ 1� β
180

[68] Rd ¼ 2þ cos β
3

[24] Rd ¼ 1þ cos β
2

Anisotropic models

[69] Rd ¼ GB
GBn

RB þ 1� GB
GBn

� �
1þ cos β

2

� �
1þ

ffiffiffiffiffiffi
GB
GBt

q
sin 3 β

2

� �� �

[70] Rd ¼ GB
GBn

RB þ Ωcosβ þ 1� GB
GBn

� �
1þ cos β

2

� �
1þ

ffiffiffiffiffiffi
GB
GBt

q
sin 3 β

2

� �� �
,

Where Ω ¼ max 0, 0:3� 2 GB
GBn

� �h i

[71] Rd ¼ 0:51Rb þ 1þ cos β
2 � 1:74

1:26π sin β � β π
180

� �
cosβ � π sin 2 β

2

� �� �

[72] Rd ¼ GB
GBn

RB þ 1� GB
GBn

� �
1þ cos β

2

� �

[73] Rd ¼ 1þ cos β
2

� �
1þ F sin 3 β

2

� �� �
1þ F cos 2θ sin 2θz
� �

Where, F ¼ 1� GDt
GB

� �2
,

cos θ ¼ sin δ sin φ� βð Þ þ cos δ cos φ� βð Þcosωsinθz
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin δ sinφþ cos δ cosφcosωð Þ2

q

ω ¼ cos �1 �tanφ tanδð Þ

Table 4.
Solar radiation diffuse factor, Rd, expressed in terms of the tilt angle, β. Modified from [61].
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solution of the radiative transfer equation. The baseline objective of the SR models
presented is to predict the three components of GSR (the beam, the diffuse and the
reflected components) incident on some PV collector surface at the ground level.
Consequently, in the models presented, careful attention was given to show how we
could quantify these three components. Results for some geographical locations
have been given to show the correlation of equations for the models based on the
diffuse ratio- clearness index regressions as well as for those based on sunshine
fraction.

The broadband models were prioritized in the presentation given the ubiquitous
occurrence of the input data for such models. Space restrictions conditioned the
presentation of the models to be summarised to the strict minimum so our readers
are encouraged to consult the cited literature in addition. A comparison of the
models has been presented to highlight the input and the output parameters. In
addition, a flow chart to show the interrelatedness of the models has been
presented.

The approaches for getting the optimal tilt and azimuthal angles of the PV panel
are summarized. Based on literature sources, the optimal tilt angles for some global
geographical locations have been presented.

The statistical procedures to ascertain the validity of the regression analyses are
summarily treated and applied in some cases where results have been presented.

We expect this chapter to be a valuable tool for scientist and engineers special-
ized in solar PV research and applications.
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Chapter 4

Forecasting and Modelling of Solar
Radiation for Photovoltaic (PV)
Systems
Ines Sansa and Najiba Mrabet Bellaaj

Abstract

Solar radiation is characterized by its fluctuation because it depends to different
factors such as the day hour, the speed wind, the cloud cover and some other
weather conditions. Certainly, this fluctuation can affect the PV power production
and then its integration on the electrical micro grid. An accurate forecasting of solar
radiation is so important to avoid these problems. In this chapter, the solar radiation
is treated as time series and it is predicted using the Auto Regressive and Moving
Average (ARMA) model. Based on the solar radiation forecasting results, the pho-
tovoltaic (PV) power is then forecasted. The choice of ARMA model has been
carried out in order to exploit its own strength. This model is characterized by its
flexibility and its ability to extract the useful statistical properties, for time series
predictions, it is among the most used models. In this work, ARMA model is used to
forecast the solar radiation one year in advance considering the weekly radiation
averages. Simulation results have proven the effectiveness of ARMA model to
forecast the small solar radiation fluctuations.

Keywords: solar radiation, PV power, forecasting, ARMA, fluctuation

1. Introduction

Solar energy is a renewable energy source, clean and inexhaustible. It is based on
the photovoltaic effect to convert solar energy into electricity through solar cells.
PV panels was mainly installing in isolated areas to provide them the electricity but
in the last few years a considerable amount of electricity has been generated from
solar energy in different countries in the world. In 2019, the global installed solar
energy capacity has reached 586.42 GW [1]. This significant growth will may be
continuing in the future due to its several technological, environmental and eco-
nomic benefits.

Like some other renewable energies, solar energy is intermittent. Its production
is so related to the solar radiation received on the earth. Therefore, it is possible to
forecast solar energy from a relevant forecasting of solar radiation. Different tech-
niques have been developed in the literature to forecast solar radiation. Most of
them treat it as time series. These techniques are based on the historical solar
radiation data, they treated and followed the solar radiation evolution on the past.
Based on the historical data, a model is created to characterize the solar radiation
behavior in the past. Therefore, the forecasting of solar radiation on a given time
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interval is based on this created model. The aim of this chapter is the forecasting of
solar radiation using ARMA model. Based on these results and taking into account
some other parameters, the PV power is then modeled. A general overview of solar
radiation and its different propagation forms is presented in the first part of this
chapter. Then, a brief literature review on solar radiation forecasting techniques
will be the subject of the next part. After that, the ARMA model will be used to
forecast the annual solar radiation corresponds to an industrial company by consid-
ering the weekly radiation averages. PV power is modeled in the following section
and based on the forecasting solar radiation results, it is presented for different PV
panels number. The end section concludes and summarizes this chapter.

2. General presentation of solar radiation

The sun is a vital element, necessary for photosynthesis, important for plants
and fundamental for the thermal balance of different component of the crop. 75% of
its composition is Hydrogen and the rest is Helium [2]. The sun is the primary
source of electromagnetic radiation in Earth. It emits energy in the form of electro-
magnetic waves called solar radiation which mainly composed of visible light, ultra
violet and infrared radiation. Visible light is the part of electromagnetic spectrum
visible with the naked eye, its wavelength is depended to the individual. The ultra
violet radiation is characterized by a wavelength greater than 800 nm, it is also
called black light. This type of radiation is not visible with the naked eye. The
infrared is a radiation with a wavelength less than 400 nm. It is greater than that of
visible light but shorter than that of micro wave. When the solar radiation passes
through the atmosphere, it is reduced due to its molecular scattering and its
absorption by gas molecules. Ultra violet and infrared radiations are the two most
absorbed. The amount of energy received on earth is depended to the atmosphere
thickness and to some other factors such as the seasonal and cloud variations.

2.1 Propagation of solar radiation in the atmosphere

By propagating in the atmosphere, solar radiation can be diffused, absorbed or
reflected,

• Reflected radiation: the radiation is reflected by the earth’s surface and the soil
reflects the radiation in a diffuse and anisotropic manner.

• Diffused radiation: the radiation is diffused in all direction, this phenomenon is
occurred in a medium containing fine molecules and it strongly depends to
these molecules size.

• Absorbed radiation: the radiation is absorbed by gas molecules that it
encounters in atmosphere, this absorption is mainly due to water vapor, carbon
dioxide and ozone.

These different interaction of solar radiation with atmosphere are recapitulated
in the Figure 1 [3].

2.2 Modeling of solar radiation

Several theories are developed in the literature to model solar radiation [4–6].
Therefore, at a specific moment and in a given location, the solar radiation cannot
be modeled without requiring some factors such as the sky nature and the sun
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position. As mentioned previously, solar radiation has three different components,
reflected, diffused and absorbed. All these components are modeled by the global or
total solar radiation as presented in the Eq. (1).

Rtot ¼ Rdir þ Rdif þ Rref (1)

With Rtot represents the total solar radiation, Rdir, Rdif and Rref are respectively the
directed, diffused and reflected solar radiation. Each of these radiations is sensitive to
certain parameters and are calculated as presented in the following equations,

Rdir ¼ Sh:Rout:τM: cos ið Þ (2)

Rdiff ¼ Rout: 0:271� 0:294:τM
� �

: sin αð Þ (3)

Rref ¼ r:Sc: 0:271þ 0:706:τM
� �

: sin αð Þ: sin 2 x
2

� �
(4)

With Sh is a binary umbrage value, it is computed for each hour in day. Sh is
assigned to 0 when the solar radiation is projected to the neighboring mountain
umbrage, else it is assigned to 1. r represents the soil reflectance; it is also called the
reflection factor. Sc is the constant solar equal to 1367 W/m2. To define the other
parameters, a recourse to the geometry between sun and earth as well as to the charac-
teristics of the solar flux are needed. Indeed, the position of the sun in the sky depends
to the time and latitude. It is defined by two angles which characterized the altitude and
the solar azimuth. The altitude angle α is defined as presented in the below Eq. [7].

sin α ¼ sinφ: sin δð Þ þ cos φð Þ: cos ηð Þ (5)

With φ and η are respectively the latitude for each cell and the solar time. δ
represents the solar declinaition, this parameter depends to the year day j and
expressed as written in Eq. (6),

δ ¼ 23:45: sin 360:
284þ j
365

� �
(6)

The azimuth angle β is defined as presented in the Eq. (7)

Figure 1.
Interaction between solar radiation and the atmosphere [3].
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cos β ¼ sin δ:cosφ� cosδ: sinφ: cos ηð Þ=cosα (7)

Rout represents the solar flux, it depends to the solar constant Sc and the year
day j, it is written as indicated in the Eq. (8),

Rout ¼ Sc: 1þ 0:034: cos
360j
365

� �� �
(8)

τM represents the transmissivity coefficient, it is defined as the fraction of the
solar radiation incident on the atmosphere surface that reaches the soil along a
vertical trajectory. In the mountain area, a correlation factor linked to the atmo-
spheric pressure p/p0 must be used. The path length is presented by the lettre M
and written as shown in the Eq. (9),

M ¼ M0:
P
P0

(9)

M0 is calculated following the Eq. (10) and the p/p0 represents the correlation
factor of atmospheric pressure, it is calculated as defined in the Eq. (11).

M0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1229þ 614: sin αð Þ2

q
� 614: sin αð Þ (10)

P
P0

¼ 288� 0:0065:h
288

� �5:256

(11)

An incidence angle i between the sun ray and the soil surface must be taken into
account when the solar radiation is converged to sloping areas. This angle is
depended to the sun position and to the topography and it is written as described
the below equation,

cos i ¼ cos α: sin x: cos β� βsð Þ þ sin α: cos x (12)

With x and βs represent respectively the slope and the exposure, they are taken
in degrees. It should be noted that the Eq. (1) describes the solar radiation without
taking into account the clouds effects. To take them into account, a coefficient Kc
must be added. So the expression of solar radiation in the presence of clouds Rtotc

will be written as presented in the Eq. (13).

Rtotc ¼ Kc:Rtot (13)

The Kc coefficient is depended to the cloudiness N and calculated as described in
the Eq. (14).

Kc ¼ 1� 0:75:
N
8

� �3:4
 !

(14)

3. Forecasting of solar radiation

3.1 Forecast horizon

Before forecasting, it must specify firstly the horizon forecasting. The choice of
this horizon is relative to the problem to be treated. They are four forecasting
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horizon categories which are the very short term, the short term, the medium term
and the long term. Each of these horizons is characterized by a time interval as
described in the following paragraph,

• Very short term: the time horizon of this forecasting category does not exceed a
few hours, usually it is used for the intra-day market.

• Short term: the time horizon of this category is between 48 hours and 72 hours.
This type of forecasting horizon is useful for the daily dispatching electrical
power.

• Medium term: the time horizon of this forecasting term is done for more than
one week to one month. It intervenes in the planning of the power system. It is
also used for the dispatching of the conventional power plants.

• Long term: the time horizon of this type is done from one month to one year. It
is useful for long term planning operations such as expansion projects for
power generation units.

3.2 Solar radiation forecasting techniques

In the literature, different techniques are proposed to the forecasting of solar
radiation [7]. It is possible to classify them into four groups, the naïve models, the
conditional probability models, the reference models and the connectionist models.
A description of each of these techniques is described in the following sub sections.

3.2.1 Naïve model

They are the smallest techniques for time series forecasting. For a given horizon,
the forecasting is based on the last observed variable [8]. The mean, the persistence
and the k nearest neighbors are registered under these models.

3.2.1.1 Mean forecasting method

The mean forecasting method consists to substitute the variable to be forecasted
by the mean available data assigned to this variable. It is a simple technique to apply
but it is so expensive in terms of history [7]. If N corresponds to the number of
historical data, the forecasting of a variable x at a given horizon h is described as
presented in the Eq. (15).

x̂tþh ¼ 1
N

XN
i¼1

xi (15)

3.2.1.2 The persistence

This technique is based on the repetition of a measurement from time t to time
t+h [7]. If the considered horizon h is 1, the forecasting of a variable data at time
time t+1 is defined as written in the Eq. (16).

x̂ tþ 1ð Þ ¼ x tð Þ (16)
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This predictor type is often used in time series forecasting because it is so easy to
implement and it does not require a large historical data base. On the other hand, it
is imprecise and it does not lead to an improvement in time series.

3.2.1.3 The k nearest neighbors

This technique is derived from the artificial intelligence, it consists to find in
time series, a set of k data similar to those that to be predicted [9]. The determina-
tion of k is done by different algorithm [7]. This technique is, in general, efficient in
the time series forecasting, however, it is sensitive to the dimensionality and to the
irrelevant variables.

3.2.2 Conditional probability models

We cite as an example for these types of models those of Marcov chains and
Bayesian inferences.

3.2.2.1 Marcov chain

This technique is rarely used for the forecasting of solar radiation [10]. It is a
stochastic process that has the Markovian property [11]. A future state is modeled
by a probabilistic process which depends only to the present states. Following
Markov chain, the forecasting of a variable at a given horizon h is defined as
presented in the Eq. (17).

Xtþh ¼ Xt:Rh
M (17)

With RM represents the transition matrix of Markov chain, its dimension
depends to several factors such as the number of available data and the precision
nature [12].

3.2.2.2 Bayesian inferences

This method is mainly based on the conditional probability; it is rarely used for
the forecasting of solar radiation. This method is very difficult to handle and it
requires several parameters. The estimation of the probability of a series at a given
horizon can be done by Bayes theorem as described in the Eq. (18).

p A=Bð Þ ¼ p B=Að Þ:p Að Þ
p Bð Þ (18)

3.2.3 Connectionist models

The first artificial neuron was created by Warren McCulloch and Walter Pitts in
1943 [13]. The structure of this neuron is imitated from the biological neuron as
presented in the Figure 2 [14]. An artificial neural network (ANN), is an assembly
strongly connected of formal neurons. It is characterized by an excellent capacity of
learning and generalization as well as a speed of processing. Its ability to learn and
generalize makes it a very powerful tools. It has proven, in recent years, its effec-
tiveness in various research fields. ANNs are subdivided into two large families,
static and dynamic neural network. The choice of the one or the other of these two
networks depends to the application to be processed, the available information and
the complexity model [15].
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3.2.4 Conditional probability models

These are models from the large family of Auto Regressive and Moving Average
(ARMA). ARMA is the combination of two models, the Auto Regressive (AR) and
Moving Average (MA). It is characterized by its ability to extract useful statistical
properties. Thus, it is among the most widely used models for time series forecasting.
Its effectiveness to forecast solar radiation is well proven in certain research work
[16]. AR model assumes that each point can be forecasted by the sum of p previous
points plus a random error term. The expression of AR model with an order p (AR
(p)) is written as presented in the Eq. (19),

x tð Þ ¼ α1:x t� 1ð Þ þ α2:x t� 2ð Þ þ … αp:x t� pð Þ þ εt (19)

with αi represent the AR coefficients and εt is a white noise.
The moving average process assumes that each point is the sum of q previous

errors plus its own error. The expression of MA model with an order q (MA(q)) is
written as presented in the Eq. (20).

x tð Þ ¼ β1:e t� 1ð Þ þ β2:e t� 2ð Þ þ … βq:e t� qð Þ (20)

With βi are the MA coefficients. A combination of these two models forms the
ARMA model with order p and q, its expression is described in the Eq. (21).

x tð Þ ¼ α1:x t� 1ð Þ þ α2:x t� 2ð Þ þ … αp:x t� pð Þ þ β1:e t� 1ð Þ
þ β2:e t� 2ð Þ… βq:e t� qð Þ þ εt (21)

The major requirement of ARMA model is that the time series studied must be
stationary. A series is considered stationary when its statistical properties such the
mean and the variance are constant over time [17]. The distribution of a stationary
series at time t is identical to that at time t-1. The unit root is among the stationarity
tests. Autos-correlations and partial autos-correlations diagrams can be used also to
prove the stationarity of time series.

If the time series is proved stationary, an approach must be followed to define
the p and q orders. Box and Jenkins methodology is used to determine them, it
contains four steps, identification of the model, estimation of the parameters, the
validation of the selected model and finally the use of this model for forecasting.

Figure 2.
Schematic diagram of an ANN structure neuron model [14].
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• Identification: this is the most important step, it aims to identify the p and q
orders. This is done by examining the auto correlation and the partial auto
correlation diagrams of the time series.

• Estimation of parameters: the determination of p and q orders does not reflect
the validation of this model. It is necessary to estimate the ARMA(p,q)
selected. This estimation can be made by the student test.

• Validation model: this validation is carried out by applying two tests on the
residues, the Ljung-Box test and homoscedasticity test to ensure that the
residuals are white noises.

• The use of model: the selected ARMA model can be used in forecasting.
However, in order to ensure the validity of this model, it must be tested on a
data base already known. It should find good forecasting performances by
comparing the data forecasted by this model and those already known.

3.3 Solar radiation forecasting using ARMA model

The objective of this section is to forecast the solar radiation using ARMAmodel.
The data base solar radiation considered for the forecasting is the set of solar
radiation measurements corresponds to an industrial company located in Barcelona
north [18]. The time interval of these measurements is five minutes, they are taken
every day for a whole year as presented in the Figure 3.

To refine the representative curve, just the weekly solar radiation averages are
taken into account as presented in the Figure 4.

To apply ARMA model, it must study the stationarity of this series.
Correlograms corresponding to the auto-correlations and to the partial auto-
correlation to this series are presented in the Figure 5.

The auto-correlation coefficient of order 1 is close to 1 and the correlogram
shows a slow regression which is typical of non-stationary series. Dickey Fuller test
is thus applied using EViews software; it proves the weak stationary of this series as
shows in the Figure 6.

Figure 3.
Annual solar radiation evolution.
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Figure 4.
Weekly solar radiation averages.

Figure 5.
(a) Auto-correlation and partial auto-correlation (b) correlograms of annual solar radiation.

Figure 6.
Dickey fuller test results for weekly solar radiation series.
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The differentiation of this series is necessary in order to make it stationary. The
following Figure 7 shows the evolution of the differentiated weekly solar radiation.

The Dickey Fuller is thus applied and it proves the stationary of this series as
shown in the Figure 8. Thereafter, the different Box and Jenkins methodology steps
are followed to obtain finally the optimal ARMA model that reproduces the best the
behavior of this series. Orders p and q, coefficients α1, α2 and β1 of the ARMAmodel
are recapitulated in the Table 1.

Figure 7.
Differentiated weekly solar radiation evolution.

Figure 8.
Dickey fuller test results for the differentiated weekly solar radiation series.

ARMA (p,q)

Order Coefficients

p = 2 α1 = �1.0342; α2 = �0.4023

q = 1 β1 = 0.7483

Table 1.
Orders and coefficients of ARMA (2,1).
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In this paragraph, ARMA (2,1) model is used to forecast the differentiated
weekly solar radiation averages. The real solar radiation curve and the forecasted
one are presented in the Figure 9. It is clear that an approximation is observed
between the two curves for certain time intervals, especially when the solar radia-
tion does not present large fluctuations. For other moments time, the forecasted
solar radiation curve diverges from the real one. This is particularly observed when
the solar radiation presents large fluctuations. To confirm these results, the ARMA
model errors are presented in Figure 10.

Following the Figure 10b, it is clear that the relative error is small, it does not
exceed 15%. It is thus observed two peaks, the first one corresponds to the 16th
week of the year and the second is in the 36th week. Therefore, when we refer to the
real annual solar radiation curve, we observe a sudden fluctuation during these two
weeks. Indeed, 16th and 17th weeks correspond respectively to the last week of
April month and the first week of May. A considerable decrease of temperature is

Figure 9.
Solar radiation modeled by ARMA (2,1).

Figure 10.
Error (a) and relative error (b) of solar radiation modeled by ARMA (2,1).
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observed during this period; this is may be the main reason to the sudden decrease
of radiation. On the other hand, 37th and 38th weeks correspond to the two first
weeks of September month. At the end of this period, it is observed also a sudden
decrease of the temperature which affects considerably the solar radiation. Fur-
thermore, as the weekly solar radiation averages are considered for the forecasting,
it is obvious to have these large solar radiation variations especially in the switching
periods from one season to another one. The influence of temperature on solar
radiation evolution for April, May, September and October months are presented in
the Figure 11.

After forecasting solar radiation or any other parameters, a forecasting error
should always be calculated. An error in the forecasting context does not indicate a
fault or an anomaly as it is known in several other fields but rather a criterion to
evaluate the forecasting performances. In this study, Mean Square Error (MSE),
Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) are calculated as
written in the Eqs. (22)–(24) [19]. ei (i=1… .n) represents the error measured between
the actual value and the forecasted one for sample i and n is the total number of
samples. Results are recapitulated in the Table 2, the MSE presents the lowest one
(0.2182), it is a small value which reflects the performances of ARMA (2,1) model
to forecast the solar radiation.

MSE ¼ 1
n

Xn
i¼1

e2i (22)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i¼1
e2i

r
(23)

MAE ¼ 1
n

Xn

i¼1
∣ei∣ (24)

Figure 11.
Influence of temperature on solar radiation (a) April and may weeks (b) September and October weeks.

Errors Performances

MSE 0.2182

MAE 0.2999

RMSE 0.4671

Table 2.
Errors of solar radiation forecasting using ARMA (2,1).
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4. Modeling and forecasting of PV power

The forecasting of PV power has a great importance to the best management of
grid connected PV systems as well as to the isolated micro grid which include PV
system as renewable energy source. Based on the literature, it is possible to forecast
the PV power by direct or indirect methods [20]. Direct methods consist to describe
models to directly forecast the amount of PV power or forecast the PV power
without using other metrological data. In this context, different approaches are
suggested which mainly the ANN and the machine learning techniques [20–22]. On
the other hand, the indirect methods consist to forecast the PV power based on the
forecasting of another meteorological data such as the solar radiation or the tem-
perature [20, 23]. Different physical and statistical approaches are proposed in this
field. The choice for the one or the other method is depended to the available data
and the forecast horizon term. In physical approaches, the PV power forecasting is
based on weather variables predicted by numerical weather prediction (NWP)
models and they are more suitable for the long term horizon. The statistical
approaches are based on past measured time data series and generally they are
appropriate for short term horizon. Moreover, the statistical approaches are simpler
than the physical approaches since they require less input data and lower
computation [24].

Figure 12.
PV power forecasting for different PV panels number (a) N=5 (b) N=20 (c) N=50 (d) N=100.
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In the following section, the PV power will be modeled and forecasted based on
the results of solar radiation forecasting, presented in the precedent section. Indeed,
the PV power generators are very often operating with a maximum power called
Maximum Power Point Tracker (MPPT) [25]. The maximum power PPV delivered
by a PV generator composed of N PV panels can be expressed as indicated in the
Eq. (25) [26].

PPV ¼ ηg:N:A:G (25)

With A represents the area of a single PV panel, it is expressed in m2. G is the
solar radiation measured in w/m2. ηg is the PV generator efficiency and it is
described as written in the Eq. (26) [27].

ηg ¼ ηr:ηpt: 1� βt: Tc � Trð Þ½ � (26)

ηr represents the reference efficiency of PV generator, it depends to the PV cells
materials. ηpt is the efficiency of power tracking equipment, it is equal to 1 if the
MPPT is perfectly used, βt is the temperature coefficient, it is expressed in °C. The
typical value of this coefficient varies between 0.004 and 0.006, usually, it is taken
in the range of 0.005°C [26]. Tc and Tr represent respectively the tcemperature
measured in the PV cells and the reference temperature. Tc depends to the ambient
temperature Ta and the radiation G as presented in the Eq. (27) [26].

Tc ¼ Ta þ G:
NOCT� 20

800
(27)

The typical NOCT value for polycrystalline cells is around 45°C. Taking into
account Eq. (26) and Eq. (27), the PV power is described as presented in the
Eq. (28).

PPV ¼ ηr:ηpt: 1� βt: Ta þG:
NOCT� 20

800
� Tr

� �� �
:N:A:G (28)

As shown in the Eq. (28), the evolution of PV power depends to several param-
eters such as the temperature, the solar radiation and the PV panels number.
Therefore, it is possible to forecast the PV power from the solar radiation forecast-
ing. So, if the PV cells used is the pollicrystalline and the area of a single PV panel is
2.25m2, the evolution of PV power for different PV panels number and based on the
solar radiation forecasting results is described as presented in the Figure 12.

5. Conclusion

This chapter focuses to model and to forecast the PV power based on the solar
radiation forecasting results. Some physical equations are presented firstly to define
in general the three different forms of solar radiation. They are explained taking
into account some topographical factors and geometric relations.

For solar radiation forecasting, a set of solar radiation measurements corre-
sponds to an industrial company is considered as data base. ARMA model is used to
forecast the weekly solar radiation averages. The simulation results obtained are
proven the effectiveness of this model to forecast the small variation of solar
radiation. On the other hand, it is observed the deterioration of ARMA model with
the large solar radiation fluctuations. The forecasting of PV power is carried out
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based on the obtained solar radiation forecasting results and taking into account
some other parameters such as the temperature, the PV cells materials and the PV
panels number.
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Chapter 5

Temporal Fluctuations Scaling
Analysis: Power Law of Ramp
Rate’s Variance for PV Power
Output
Maina André and Rudy Calif

Abstract

The characterization of irradiance variability needs tools to describe and
quantify variability at different time scales in order to optimally integrate PV onto
electrical grids. Recently in the literature, a metric called nominal variability defines
the intradaily variability by the ramp rate’s variance. Here we will concentrate on
the quantification of this parameter at different short time scales for tropical mea-
surement sites which particularly exhibit high irradiance variability due to complex
microclimatic context. By analogy with Taylor law performed on several complex
processes, an analysis of temporal fluctuations scaling properties is proposed. The
results showed that the process of intradaily variability obeys Taylor’s power law for
every short time scales and several insolation conditions. The Taylor power law for
simulated PV power output has been verified for very short time scale (30s sampled
data) and short time scale (10 min sampled data). The exponent λ presents values
between 0.5 and 0.8. Consequently, the results showed a consistency of Taylor
power law for simulated PV power output. These results are a statistical perspective
in solar energy area and introduce intradaily variability PV power output which are
key properties of this characterization, enabling its high penetration.

Keywords: nominal variability, power Taylor law, intradaily variability,
temporal fluctuations scaling, PV power output

1. Introduction

Solar energy is an environmental process composed of a stochastic component,
source of this intermittent nature and a deterministic component depending on
solar geometry and time/location parameters. The stochastic component is complex
to define due to significant fluctuations, particularly at intradaily time scales or
short time scales. This component is the result of several factors of clouds motion
and weather systems and is the main source of limited penetration onto electrical
grids of systems exploiting solar energy such as photovoltaic panels (PV systems).
Recently in literature, irradiance short-term variability attracted the interest of
many studies. Indeed, the variability of irradiance particularly at short time scales is
a very complex process that needs tools to characterize it to optimally integrate it
onto electrical grids. The dynamic of fluctuations remains a challenging parameter
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to define. Several works defined this dynamic by metrics. In [1], a scoring method,
termed an Intra-Hour Variability Score (IHVS), quantified variability characteris-
tics into a single metric which represents an hour of irradiance. In [2], the one-
minute intra-hourly solar variability based upon hourly inputs has defined four
metrics characterizing intra-hourly variability, such as the standard deviation of the
global irradiance clear sky index, the mean index change from one-time interval to
the next, the maximum and the standard deviation of the latter. Other metrics
defining intradaily of irradiance are described in the literature such as VI index
(variability index) with the daily clear sky index in [3], the daily probability of
persistence (POPD) in [4], the nominal variability which is the ramp rate standard
deviation calculated from the change in the clear sky index developed in [5], MAD
metric which is defined by the median absolute deviation of the change in the clear
sky index in [6].

Analysis of variability was also applied to PV power output such as [7] who
defined a frequency domain of PV output variability analysis, or [8] describing the
frequency of a given fluctuation from PV power output for a certain day by an
analytic model and [9] which demonstrated rapid ramps observed in point mea-
surements would be smoothed by large PV plants and the aggregation of multiple
PV plants with [5] who completed and strengthened this result. In [10], a quantita-
tive metric called the Daily Aggregate Ramp Rate (DARR) is proposed to quantify,
categorize, and compare daily variability from power output, across multiple sites.

In this chapter, we examine a temporal scaling fluctuation modeling namely
power Taylor law applied to irradiance intradaily variability and PV power output
intradaily variability. The influence of parameters such as increment, data sampling
on this modeling is also assessed in order to reinforce the quantification and char-
acterization of this complex process which is ramp rate’s variance. This study is a
supplementary results to works about intradaily variability quantification but also
showed evidence to the universality of power Taylor for environmental complex
processes.

2. Data set for the study

2.1 Context of study

In this work, the sites under study are located in tropical islands (Guadeloupe,
La Reunion and Hawaii). These exhibit high variability irradiance due to a large
diversity of microclimates. This complex process evolves on different time and
spatial scales. Table 1 summarizes the description of sites under study and Figure 1

Reunion Hawaii Guadeloupe

Saint-pierre Tampon Kalaeloa Oahu Pointe-à-pitre (Fouillole)

Data provider PIMENT PIMENT NREL LARGE

GHI measurement time step 10 min 10 min 3 seconds 1 second

Period of record 2 years 2 years 2 years 2 years

Longitude (∘) 55.491 55.506 �158.084 �61.517

Latitude (∘) �21.34 �21.269 21.3120 16.217

Elevation (m) 75 550 11 6

Table 1.
Description of sites under study.
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presents the geographical location of measurement sites under study. Measure-
ments are available on a basis of two years of data. The study of temporal irradiance
fluctuations scaling is therefore analyzed for different locations.

2.1.1 Case of Oahu

Kalaeloa Oahu is located in a tropical zone, at the West of the Hawaii island. This
station is affected by clouds formation during summer due to the trade winds effect
and are generated by the local topography (located inland with medium orography
with an elevation of about 11 m). This dataset is provided on the NREL (National
Renewable Energy Laboratory) website. The procedure of data acquisition is
described on the website. GHI is measured by using a LICOR LI-200 Pyranometer
mounted on an Irradiance Inc. Rotating Shadowband Radiometer (RSR). RSR
mounted on the ground and the LI-200 sensor height is approx. The uncorrected
value is for testing and troubleshooting purposes only. Voltage is measured across a
100 Ohm precision resistor in parallel to the sensor output.

2.1.2 Case of Fouillole

Fouillole site is located at the campus of the French West Indies University
situated in the West of Grande-Terre island in coastal topography and also located
in an urban area. This context generates a complex microclimatic context. The
clouds are generated by land/sea contrast and the local topography (elevation lower
than 10 m, Table 1). Data are measured by a pyranometer CM22 from Kipp and
Zonen whose response time is less than one second. The precision of pyranometer is
þ=� 3:0% for the daily sun of GHI. Measurements are provided by LARGE labo-
ratory from Université des Antilles on a 1 second basis data.

2.1.3 Case of Saint-Pierre and Le tampon

Concerning Reunion island, two locations at the West of the island are under our
study: Saint-Pierre which is a coastal site, and Le Tampon an inland site. According
to [11, 12], these two sites exhibit very different sky conditions. Concerning Le

Figure 1.
Geographical location of measurement sites under study: Oahu, Fouillole campus, tampon and Saint-Pierre.
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Tampon, the inland site orographic clouds are mainly generated by the local topog-
raphy. This site is located in a mountainous orography (elevation about 550 m) in an
urban zone. It presents higher variability irradiance than Saint-Pierre site which is
in a climate tropical ocean with an urban coastal topography. The irradiance data is
measured with a secondary standard pyranometer CMP11 from Kipp and Zonen.
The precision of the pyranometer is þ=� 3:0% for the daily sun of GHI.
Measurements provided by PIMENT are available on a 10 min basis and two years
of data.

2.2 Data preprocessing

The profile of GHI that is due to solar geometry is predictable by several models
[13–15]. In our study, we will focus on intra-daily variability induced by cloud mass
passage that is stochastic in nature [5].

In order to study this variability component, the solar-geometry effects must be
first removed. The parameter usually considered in the solar energy area is the clear
sky index Kt ∗ (ratio of measured GHI to theoretical clear sky GHI) defined as
Eq. (1).

Kt ∗ ¼ GHIm
GHIclear

(1)

where GHI is the Global Horizontal Irradiance, index m refers to the measured
GHI and index clear refers to theoretical clear sky irradiance.

In order to better consider variability for a time scale, we investigate in the
temporal increment for a given time scale Δt. The temporal increment of Kt ∗

corresponding to the selected time scale Δt is noted ΔK ∗ t,Δtð Þ and is defined
Eq.(2) such as in [5]. A sequence of ΔK ∗ t,Δtð Þ for each measurement sites with
Δt ¼ 20min from original Kt ∗ time series at 10 min, is presented in Figure 2.

This change is often referred to as the ramp rate [5].

ΔK ∗ t,Δtð Þ ¼ K ∗ tþ Δtð Þ � K ∗ tð Þ (2)

Figure 2.
Signals of ΔK ∗ t,Δtð Þ for each measurement sites with Δt ¼ 20min from original time series of Kt ∗ at 10min.
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Figure 3 presents Kt ∗ time series for 1 week sequence obtained from 1 week GHI
data at 10 minutes time scales and Figure 2 presents ΔK ∗ t,Δtð Þ time series for five
other days sequences.

Recently in the literature [5, 6], a metric is defined to characterize the intradaily
variability of the change in the clear sky index over the considered day i.e. the ramp
rate’s variance, or its square root. This metric is the ramp rate standard deviation
called nominal variability defined by this equation:

Nominal variability ¼ σ ΔK ∗ t,Δtð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var ΔK ∗ t,Δtð Þð �½

p�
(3)

This metric can clearly distinguish two extremum cases of insolation conditions,
namely perfectly clear conditions (i.e., no variability) and heavily overcast condi-
tions (i.e., again, no variability), contrary to other metric proposed such as σ Ktð Þ
[5, 16]. Nominal variability σ ΔK ∗ t,Δtð Þð is a metric such a measure of the
variability of the dimensionless clear sky index Kt ∗ .

3. Taylor power law, a statistical perspective in solar energy

3.1 Definition of the Taylor power law

Many fields exhibit complex process such as biology, ecology and, engineering
sciences. The analysis of these complex process exhibited the universality of the
Taylor power law defined by [17] by a scaling relationship more precisely described
as” temporal fluctuation scaling” [18]. The Taylor power law (or temporal
fluctuations scaling), is a scaling relationship between the standard deviation

Figure 3.
(a) 1 week GHI data and b) the corresponding Kt ∗ signal obtained for Fouillole site. The latter signal exhibits
the high variability of solar flux.
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σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN
i¼1 xi tð Þ � < x>ð Þ2

q
of a signal x tð Þ and its mean value < x> ¼ 1

N

PN
i¼1xi tð Þ

estimated over a sequence of length N of the considered signal x(t) defined as in
[19] and described by equation Eq.(4):

σΔt ¼ C0 < x> λ (4)

with < :> defining the statistical average, and Δt is the increment
corresponding to the time scales explored, C0 is a constant and λ the Taylor
exponent. The Taylor law is therefore a power law and a scaling relationship
between the standard deviation of a phenomenon and its mean value.

3.2 Taylor law in solar energy data

Solar energy is a complex process. Particularly for insular context, this energy
resource exhibits high fluctuations at all temporal and spatial short time scales. The
analysis of the stochastic nature of this resource is in growing in the literature and
have shown evidence of scaling properties despite its complexity [3, 5, 6, 20]. In this
paper, an analysis of scaling properties of irradiance fluctuations is proposed. By
analogy with Taylor law performed on several complex processes, we investigate in
the study of Taylor power law performed on the intradaily variability of irradiance
field, specifically on the ∣ΔK ∗ t,Δtð Þ∣. The metric ∣ΔK ∗ t,Δtð Þ∣ exposes directly the
fluctuations’magnitude. Thus, we verify a scaling relationship between the nominal
variability σ∣ΔK ∗ t,Δtð Þ∣ and the mean value μ∣ΔK ∗ t,Δtð Þ∣. Therefore, the process of
intradaily variability irradiance will obey power Taylor law if the equation Eq. (5) is
verified:

σ jΔK ∗ t,Δtð Þjð Þ ¼ C0μ ΔK ∗ t,ΔtÞð jλ
���
�

(5)

with λ for a given time scale Δt.
The four sites previously mentioned, characterized by tropical insular context

hence exhibiting high variability, were chosen to test the consistency of this tem-
poral fluctuation scaling method.

3.3 Criterion of the temporal limit of Δt

The time increment Δt or resolution of the irradiance data is a parameter that
affects the magnitude. Moreover, the increment affects the length of daily data
sampling. This is an important parameter to consider. In order to justify the choice
of Δt threshold for our study, the Pearson coefficient is assessed between
log σ jΔK ∗ t,Δtð Þjð Þð and log μ jΔK ∗ t,Δtð Þjð Þð Þ as a function of Δt. The threshold of
Δt is considered as being the value of Δt when the Pearson coefficient is lower than
0.6. The Pearson coefficient is analyzed for several data sampling and for each site
under the study. The results are exposed in Figure 4. According to the Figure 4, the
Pearson coefficient is lower than 0.6 from Δt ¼ 3h for Tampon site but increases for
Δt ¼ 4h. We consequently considered that the threshold of Δt for our study would
be Δt ¼ 4h which corresponds to a differentiation on a quasi half day since the
daylight sequences are from 7 am to 5 pm (10 hours). Moreover, taking account of
the length of daily data for Δt higher than 4 hours, we can deduce that is not
representative for our study. Indeed, an average or a standard deviation on a small
length of time series is not representative for our study and can give absurd results
for our analysis of intradaily variability.
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4. Verification of the existence of power Taylor law

4.1 Verification of the existence of power Taylor law for very short time scales
dataset

The existence of power Taylor law is first verified for sampled data at very short
time scales, i.e. 3 s, for the whole of dataset (2 years). This time scale of data
sampling is available for Fouillole and Oahu measurement sites. The increment Δt
ranges from 3 s until to the limit of 4 h as previously mentioned. The normalization
of σ jΔK ∗ t,Δtð Þjð Þ by C0 was done to remove the influence of specificities due to
locations. Here, the goal is to highlight the existence of Taylor’s law on irradiance
data. Figure 5 illustrates the evolution of the variance as a function of the average in
log–log scale for an example of time scale Δt ¼ 30s. We observe the existence of a
power law between σ jΔK ∗ t,Δtð Þjð Þ an μ jΔK ∗ t,Δtð Þjð Þ represented by weighted

Figure 5.
Evolution of σ

C0
versus the mean μ for several Δt ¼ 30s with 3s sampled data.

Figure 4.
Evolution of Pearson coefficient between log σ jΔK ∗ t,Δtð Þjð Þð Þ and log μ jΔK ∗ t,Δtjð Þð Þð as a function of Δt
conditionned to the data sampling.
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least squares function [21, 22] in log–log scale plot. This power law is in accordance
with the Taylor power law. The results showed that the process of intradaily vari-
ability irradiance obeys power Taylor law for sampled 3 s dataset and each Δt from
Δt ¼ 3s to Δt ¼ 4hTable 2 presents the values of λ as a function of time scales Δt for
the two sites. The exponent λ of power Taylor law varies between 0.4 and 0.8 for
Δt ¼ 30s to Δt ¼ 4h. The majority of values are higher than 0.5. According to [23],
Taylor’s fluctuation scaling results from the ubiquitous second law of thermody-
namics called the maximum entropy principle and the number of states, a concept
borrowed from physics.

This power Taylor law verifies that:

σ jΔK ∗ t,Δtð Þjð Þ
C0

¼ μ jΔK ∗ t,Δtð Þjð Þλ (6)

4.2 Verification of the existence of power Taylor law for short time scales
dataset

The temporal fluctuation scaling is analyzed by assessing power Taylor law on
10 min sampled data which is available on the whole of sites under study (Tampon,
Saint-Pierre, Fouillole, Oahu).

The result of this analysis for Δt ¼ 1h over all measurements sites is presented in
Figure 6. In Table 3, the results are described for each Δt and each measurement
sites. Two comments can be given. Firstly, the results showed the consistency of
power Taylor law for 10 min sampled data for every increment (Δt ¼ 10min from
Δt ¼ 4h). The result for Δt ¼ 1h and each measurements site is illustrated in
Figure 6. Secondly, the λ coefficients exhibit a different trend from a site to another
with particularity for Saint-Pierre site presenting the lowest values of this coeffi-
cient (λ lower than 0.5 for each Δt). This can highlight a particularity of factors
governing the process of intradaily variability irradiance at this measurement site
clearly different from the other locations.

The same analysis is also done for sampled data at 30s, 1 min, 2 min, 5 min and
showed the consistency of power Taylor law for intradaily variability irradiance
process. The results are presented in Section 5, Figure 7 for the study of the
evolution of λ as a function of data sampling.

Δt λFouillole λOahu Δt λFouillole λOahu

3 s 0.78 0.84 10mn 0.62 0.68

15 s 0.74 0.74 20mn 0.57 0.68

30s 0.71 0.70 30mn 0.55 0.73

45 s 0.70 0.69 40mn 0.54 0.76

1mn 0.68 0.68 50mn 0.55 0.79

2mn 0.65 0.67 1 h 0.55 0.83

4mn 0.62 0.68 2 h 0.56 0.85

6mn 0.60 0.69 3 h 0.61 1.02

8mn 0.58 0.68 4 h 0.68 1.10

Table 2.
Table of evolution of λ as a function of Δt.
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Δt λFouillole λOahu λSaint�pierre λTampon

10 min 0.70 0.80 0.41 0.63

20 min 0.71 0.84 0.36 0.63

30 min 0.72 0.89 0.33 0.64

40 min 0.71 0.93 0.31 0.67

50 min 0.72 0.97 0.29 0.71

1 h 0.72 1.02 0.26 0.74

2 h 0.74 1.16 0.30 0.81

3 h 0.77 1.14 0.36 0.76

4 h 0.78 1.12 0.31 0.68

Table 3.
Table of evolution of λ as a function of Δt.

Figure 6.
Evolution of σ

C0
versus the mean μ for Δt ¼ 1h for 10min sampled data.

Figure 7.
Evolution of λ as a function of Δt conditioned to the data sampling.
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5. Illustration of λ as a function of temporal parameters

This analysis allows assessing if there is a dependence between λ and temporal
parameters such as the increment Δt and the time scale data sampling, conditioned
to the measurement sites.

5.1 Evolution of coefficient λ as a function of increment Δt parameter
conditioned to data sampling

The first study assessing the evolution of λ as a function of Δt showed that λ
coefficients increase until to about Δt ¼ 2h excepted for Saint-Pierre site where λ
coefficients decrease until to Δt ¼ 1h. Moreover, it is observed that λ coefficients
become quasi constant from Δt ¼ 2h (Figure 8). The time increment is a parameter
that affects the magnitude, hence we can suppose that from Δt ¼ 2h until to Δt ¼
4h the consistency of λ coefficient characterizes ramp rate as being quasi invariant.
Moreover, the increment affecting the length of data sampling can alter the accu-
racy of λ value.

The profile of evolution of coefficients λ as a function of Δt does not vary a lot
from a time scale of sampling to an other (Figure 7). This highlights the non
dependence of coefficients λ to time scale of data sampling. Consequently, there is a
consistency of evolution trend of λ as a function of Δt, in particular, an averaged
trend of λwhatever the data sampling available but specific to a site. Thus, synthetic
time series data at high frequency which are not commonly available would be
produced from lower frequency by using nominal variability modeling from power
Taylor law. This may be useful for inefficient forecasting model at very short time
scale for example Numerical Weather prediction (NWP) models such as in [6].

5.2 Verification of the Taylor law stationarity

The evolution of coefficients λ as a function of Δt is assessed for several years
available in our data set for Fouillole and Oahu. This coefficient λ is computed for a
database of two years. This analysis is performed for several data sampling.
Figure 9 represents the results. From a year to another, the profile is substantially
the same. This highlights the yearly stationarity of the evolution of λ as a function of
Δt. We can deduce that for an analysis of λ, the user needs only one year data set to
generalize his results. Nevertheless, to support this result and extend this analysis,
more available years data are needed.

Figure 8.
Evolution of λ as a function of Δt.
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6. Temporal fluctuations scaling analysis for PV power output

6.1 Characteristics of photovoltaics panels and PV power output modeling

In order to verify the consistency of Taylor power law for PV power output
(power production from photovoltaic panel), the PV power output time series is
simulated and obtained by a theoretical model for a first approach. The PV power
output modeling is calculated by the following equation Eq. (7) such described in
[24]. We have chosen arbitrarily a classic panel of monocrystalline technology for
the simulation. The characteristics of the photovoltaic panel are described in
Table 4. The required parameters for this modeling are the number of panels set at
1, the panel area, and the panel’s efficiency according to the theoretical model
equation Eq. (7).

Ps ¼ NP ∗GHI ∗AP ∗ ηP (7)

where, GHI is the measured irradiance in W:m�2, AP is the panel area, NP is the
number of panels, and ηP is the panels’ efficiency.

Figure 9.
Evolution of λ as a function of Δt conditioned to the data sampling.

Technology Monocrystalline

Nominal power Pc ¼ 185Wc

Voltage for maximal power VMPP ¼ 33:7V

Current for maximal power IMPP ¼ 5:49A

Voltage of open circuit Voc ¼ 40V

Current of short circuit Isc ¼ 5:8A

Dimension of photovoltaic cells (mm) AP 125 ∗ 125

Number of cells 5 ∗ 10 50ð Þ
PV module dimension (mm) 1600 ∗ 900 ∗ 35

Panels’ efficiency ηP ¼ 15%

Table 4.
Characteristics of photovoltaic panel parameters.
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The data in Table 4 are based on measurements under the standards conditions
SRC (Standard Reporting Conditions, knowledge also: STC or Standard Test
Conditions) which: an illumination of 1 kW=m2 (1 sun) to a spectrum AM 1.5; a
temperature of cell of 25°C.

The aim here is to obtain an output power profile to evaluate the existence of the
Taylor power law. Considering the transfer function between the GHI and the
power output of the panel, one should expect the same results found for irradiance.
We decided on a first approach to verify Taylor’s law on simulated data which
should be a good approximation of the real case. To reinforce this study in perspec-
tive, we will need real data from PV power output. An example of a sequence of PV
power output time series is presented in Figure 10.

The stochastic component of PV power output is obtained by removing the
solar-geometry effects. Similarly to the clear sky index Kt ∗ (ratio of measured GHI
to theoretical clear sky GHI) defined as Eq. (1), the detrending of PV output is
described by the equation Eq. (8).

P ∗ ¼ Pm

Pclear
(8)

Figure 10.
Time series of GHI and the theoretical ouput PV power corresponding.

Figure 11.
Evolution of σ

C0
versus the mean μ for Δt ¼ 2min for 30s sampled data and Δt ¼ 30min for 10min sampled

data.
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where Pm is the PV output estimated from measured irradiance for index m and
index clear refers to PV output estimated from theoretical clear sky irradiance. For
this analysis, we used the data from Fouillole measurement site. In [5], a metric called
power variability is defined by σ ΔPΔtð Þ. As the previous study, we define the metric
of the ramp rate standard deviation from PV output power by this equation Eq. (9).

σ ΔP ∗ t,Δtð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var ΔP ∗ t,Δtð Þ½ �

p�
(9)

By analogy with power Taylor law performed for irradiance, we verify a scaling
relationship between σ∣ΔP ∗ t,Δtð Þ∣ and the mean value μ∣P ∗ t,Δtð Þ∣ for several increments
from Δt (Figure 11).

6.2 Power Taylor law consistency for PV ouput area

The power Taylor law for PV power output has been verified for very short time
scale (30s sampled data) and short time scale (10 min sampled data). The results
showed a consistency of Taylor power law for PV area output (Figure 12) which is
an expected result due to the relation between irradiance and PV power output
modeling. Therefore, there is no changing of the inherent cause of variability. The
results have shown evidence for the existence of temporal fluctuation scaling for PV
power output data. Hence, the ramp rate standard deviation of power PV can be
modelized by this equation Eq. (10):

σ jΔP ∗ t,Δtð Þjð Þ ¼ C0μ
λ
∣ΔP ∗ t,Δtð Þ∣ (10)

The λ power coefficients show significant similarities both in the values and in
the evolution profile of the λ as a function of increment Δt between power PV field
and irradiance field. We can deduce from this first approach that irradiance data are
sufficient to model the ramp rate standard deviation of PV ooutput by power Taylor
law without having to use P ∗ . Hence, the modeling ramp rate standard deviation of
PV output can be described by this following equation:

σ∣ΔP ∗ t,Δtð Þ∣ ¼ C0μ ∣ΔP ∗ t,Δtð Þλ
�

(11)

Figure 12.
Evolution of λ as a function of Δt conditioned to the data sampling from GHI data and from estimated PV
power ouput data.
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Consequently, theoretically, the user does not need to have available PV output
data set to characterize ramp rate standard deviation of PV output. To reinforce this
study in perspective, we will need real data from PV output.

7. Discussion

The development of installed photovoltaic (PV) power increases problems
related to the underlying variability of PV power production. Characterizing the
underlying spatiotemporal volatility of solar radiation is a key ingredient to the
successful outlining and stable operation of future power grids [25]. In literature,
scientifics attention and studies related to the understanding of weather-induced
PV power output variability are in full development.

Each time scale interval of solar generation is associated with a specific problem
of load management challenges. In [5], a characterization of how solar energy’s
resource variability impacts energy systems and a definition of the temporal or the
spatial scales context are given. In our study context that concerns very short time
scales fluctuations, voltage control issues are a specific problem [5, 26]. This obser-
vation implies an understanding of the ramp’s variance at very short time scales.

As PV power variability is mainly determined by irradiance variability, irradi-
ance variability quantifications are essential to the successful outlining and stable
operation of future power grids [27]. Variability in irradiance itself as interesting as
variability in irradiance increments. Indeed, irradiance increments are transitions
from one point in time to another, namely ramp rates. Irradiance variability and
irradiance increments impact the system PV differently. Irradiance variability
mainly impacts a PV system’s yield and the proper dimensioning of energy storage,
while increment variability affects power quality as well as the maintenance of the
generation load balance [25]. Therefore, our study is firstly focused on increment
variability in irradiance. Then, this analysis is applied to PV power output time
series.

The works in this article bring a complementary understanding of underlying
variability. The results highlighted a new modelization of ramp rate’s variance of
irradiance and PV power output based on the fluctuations’ magnitude from Taylor
power law. This model makes it possible to extrapolate the resulting variability of
PV power output. Moreover, a synthetic time series data at high frequency which
are not commonly available would be produced from lower frequency by using
nominal variability modeling from power Taylor law. This new model fills a gap in
temporal scales. This may be useful for inefficient PV power output and irradiance
forecasting model at very short time scale for example Numerical Weather
prediction (NWP) models.

Analysis of λ exponent has shown that the user needs only one year data set to
generalize his results. Nevertheless, to support this result and extend this analysis,
more available years of data are needed.

8. Conclusion

This chapter presented a characterization of the irradiance and PV power output
intradaily variability describing a temporal fluctuation scaling. By analogy of envi-
ronmental complex process, the works have demonstrated that power Taylor law is
verified for the ramp rate’s variance of irradiance named nominal variability,
namely the standard deviation of the changes in the clear sky index σ ΔjP ∗ t,Δtð Þð Þ
even for very short time scales. Hence, this study allowed to model this metric by a
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power law based on μ ΔP ∗ t,Δtð Þð Þ. The exponent seems to depend on the location of
sites. This can be due to different factors causing cloudy formation specific to a site
which is the source of the ramp rate’s variance particularities. The invariance of λ
evolution profile as a function of Δt conditioned to the sampling of data highlight-
ing the possibility to approximately model ramp rate variance at high frequency
from lower frequency data. The stationarity of λ evolution profile as a function of Δt
from a year to another showed that the user does not need a long dataset to establish
this power law describing ramp rate’s variance. Moreover, the study showed evi-
dence that this modeling also applies to PV power output. For all increments Δt of
this study from 30s sampled and 10 min sampled data, the exponent values of
Taylor power law λ are between 0.5 and 0.8. The results of these works are a
statistical perspective in PV power output area and introduce the multifractility
analysis of intradaily variability PV power output which is a prerequisite of this
characterization, enabling its high penetration.
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Chapter 6

Assessing the Impact of Spectral
Irradiance on the Performance of
Different Photovoltaic
Technologies
Mohammad Aminul Islam, Nabilah M. Kassim,
Ammar Ahmed Alkahtani and Nowshad Amin

Abstract

The performance of photovoltaic (PV) solar cells is influenced by solar irradi-
ance as well as temperature. Particularly, the average photon energy of the solar
spectrum is different for low and high light intensity, which influences the photo-
current generation by the PV cells. Even if the irradiance level and the operating
temperature remain constant, the efficiency will still depend on the technological
parameters of the PV cell, which in turn depends on the used PV material’s absorp-
tion quality and the spectral responsivity and cell structure. This study is devoted to
the review of different commercially available technologies of PV cells include
crystalline silicon (c-Si), polycrystalline silicon (pc-Si), cadmium telluride (CdTe),
and copper indium gallium selenide (CIGS). We tried to correlate the spectral
response or the photocurrent of different PV cells with the variations of the solar
spectrum, environmental conditions, and the material properties and construction
of PV cells.

Keywords: photovoltaics technology, average photon energy, spectral irradiance,
spectral effect, photovoltaic performance

1. Introduction

The energy demand is increasing concurrently with the increase of the world’s
population and meeting the increasing energy demands including managing social,
economic, and ultimate environmental issues are one of the greatest challenges of
the present time. Solar energy, as one of the promising renewable energy sources, is
becoming an important source of energy all over the world. Its huge development
potential has attracted a lot of attention and the photovoltaic (PV) industry has been
experiencing a large-scale development to replace traditional energy. Also, a signif-
icant increase in energy conversion efficiency and the decrease in the price of the
solar panels along with various national policies over the world enhanced the solar
PV-based energy generation with the least Levelized-cost-of-energy (LCOE). How-
ever, for getting optimum output, proper resource estimation is necessary to assess
the feasibility of solar PV systems in any area. The output of any PV system’s output
indeed depends on the weather of its surroundings will be elaborated in this chapter.
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In contrast, there are several types including different technologies of photovol-
taic modules in the market. However, the technological choices are very critical in the
sense of the lack of guide and forecasting tools suited to the climates and environment
of the installation sites. There have been many PV system projects going to fail due to
the bad choice of PV technology where failure causes are influenced by the environ-
mental parameters, such as heat, humidity, shadow, and dust, etc. Manufacturers
provide a characteristic of PV modules measured in standard test conditions (STC),
however, the performance cannot reach that level in real operating conditions.
Besides, the PV module’s performances and aging strongly depend on the climate and
the surrounding environment of the installation site.

The investigation of PV performance under real external conditions became an
important factor as a result of increasing trends of PV capacity over the world.
Particularly, the performance of the PV module influence by the number of differ-
ent external issues, such as, (i) spectral irradiance, i.e., the wavelength of incident
light and light intensity, the efficiency of PV certainly varied with the variations in
the spectrum of sunlight [1–4] and light intensity directly affect the short circuit
current [5]; (ii) reflectivity of the module surface, however, the reflectivity that
occurred in the module surface depends on the angle between the module surface
and the incident angle [6]; and (iii) module temperature, particularly temperature
of the module surface increases to 60-80 °C at noon and cause of the reduction in
open-circuit voltage which also depend on the light intensity and airflow [7]. Thus,
in each PV field, the factors that contribute to solar cell efficiency are different and
the important considerations applied in each area are different. On the other hand,
some types of PV modules show the degradation of power conversion efficiency
under the long-term light exposer in the field and/or elevated temperatures. Partic-
ularly, due to the above-mentioned effects, the module efficiency and/or electrical
parameters are observed to deviate from the nameplate value measured under
Standard Test Conditions (STC) [8] in the real external condition. Besides, there are
some other causes for which the energy production capability of a PV module is
affected, such as installation angle; possible shadow, dust or snow deposition, etc.
However, these mostly depend more on the details of the installation, not inherent
to the module type and the physical properties of the module. It could be mention
that the power output could vary as an impact of the above-listed causes while
different types of the module installed in the same way; alternatively, similar types
of module generate different power output due to the installation in a different way
or different places. The variation of PV performance has been investigated by
several authors in terms of geographical variability and technology. Some authors
only focused on the effect of solar irradiation while other authors consider some of
the above-mentioned factors. In this study, we also only reviewed the study that
focuses on the effect of solar irradiance on the different PV technology.

2. Spectrum irradiance on earth surface

Solar irradiance on different locations of the earth is shown in Figure 1 [9]. The
maps highlight the global horizontal irradiation (GHI) which means that the overall
irradiance from the sun reaches the earth’s horizontal surface. It is related to the diffuse
horizontal irradiance (DHI) and direct normal irradiance (DNI) as follows [10],

GHI ¼ DHIþ DNI x cosθ (1)

Where θ is the solar zenith angle. Areas with a high proportion of GHI include
South-East China, Northern Europe, and the tropical belt around the equator.
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Since the electrical performance of PV devices is greatly affected by the incident
light spectrum, hence, significant efforts have given by the PV community to
develop methods and evaluate the impact of the spectral variations on the PV device
performance over the last three decades. The parameters that have the highest
impact on the spectrum distribution as well as on the PV module performance are
(i) the air mass (AM), (ii) the perceptible water (PW), and (iii) the aerosols optical
depth (AOD) [11].

The AM is a measure of the atmospheric absorption that affects the spectral
content and the intensity of the solar radiation coming to the earth’s surface. The
impact of AM on the solar spectral distribution is shown in Figure 2 [11]. Particu-
larly, the solar spectral distribution just above the Earth’s atmosphere-in the relative
vacuum of space is commonly referred to as an air mass zero (AM0). And the
AM = 1.0 at sea level when the sun is directly overhead (zenith angle, θz = 0). As the
θz increases, the path passes by the sun spectrum through the atmosphere become

Figure 1.
Global horizontal irradiation (GHI) over the world [9].

Figure 2.
Impact on the direct spectral irradiance of air mass (AM) simulated with the SMARTS model [11].
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longer, and AM increases. The AM could estimate simply using a trigonometric
function of the zenith angle:

AM ¼ 1
cos θz

¼ sec θz (2)

where θz is the angle of incidence or solar zenith angle.
The above equation is quite accurate for θz ≤80 degrees, however, more com-

plex and precise models are necessary when the sun goes near the horizon. More-
over, the distribution of the outdoor solar spectrum varied during the day due to the
presence of water vapors and aerosol in the air. Thus, the real spectrum at the
earth’s surface is infrequent to fit with the AM1.5 standard solar spectrum as
defined in standard IEC 60904–3 and/or ASTM GE173–03 [12]. Specifically, the
spectral power distribution observed in the sun at an angle of about 48.2o is speci-
fied as AM 1.5 spectrums (as in Figure 3(a)). The power density of AM1.5 light is
about 1,000W/m2. The standard AM 1.5 spectrum is known as solar constant and is
normally used in solar cell analysis. Figure 3(b) shows the spectral distribution of
sunlight under the different air masses.

Another important parameter that needs to be considered for understanding
solar irradiance on the earth’s surface is the clearness index (KT). Particularly, KT is
defined by the ratios of the solar radiation for a particular day and the extraterres-
trial solar radiation for that day. It could also be defined by hourly as shown below:

KT ¼ H
Ho

dailyð Þ and kT ¼ I
Io

hourlyð Þ (3)

Where H and I represent the total measured and Ho and Io are represent the
extra-terrestrial solar radiation which could be calculated using several approaches
[14]. This value of KT or kT lies between zero and one which contingent on atmo-
spheric conditions. For clear sky conditions, KT is near 1 and if the sky is very
cloudy and/or turbid and/or heavily overcast, KT becomes less than 0.4. Several
laboratories have been developed computational models considering spectral direct
beam during the clear sky and hemispherical diffused irradiances on a surface either
horizontal or tilted condition for a certain location and time [15]. Other than the
above parameters, the outdoor energy yield and performance of the PV modules
further depend on a large number of on-site factors or local factors such as ambient
temperature, wind, and rain. These undefined factors may also influence signifi-
cantly amount of solar radiation that arrives on the surface of the PV module.

Figure 3.
(a) The path length (in units of air mass) changes with the zenith angle (b) spectral distribution of solar
energy [13].
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Certainly, it is important to analyze the influences of all the above on-site environ-
mental factors on the outdoor performance of different types of PV modules, for
finding out the best-suited technology for a specific location and enabling more
widespread deployment.

3. PV performance parameters and spectrum

3.1 PV performance parameters

The electrical power generated in a solar cell or PV device can be modeled with a
well-known equivalent circuit as shown in Figure 4 which includes a shunt resis-
tance parallel with a diode and a series resistance [16].

This equivalent circuit can be used for either an individual cell, a multi-cell
module, or an array consisting of multiple modules. Using this model and consider-
ing constant temperature and solar radiation, the current–voltage equation for a
solar cell or module could be expressed as shown in Eq. (4).

I ¼ I0 exp
qV
A

� �
� 1

� �
� IL þ V � IRs

Rsh
(4)

Where, IL is the light generated current, Io is the dark saturation current, Rs is
the series resistance, Rsh is the shunt resistance, A is the modified cell or module
ideality factor that can be expressed as:

A � NsniKT
qe

(5)

where Ns is the number of cells or modules that are connected in series, ni is the
diode ideality factor for a cell, K is the Boltzmann constant, qe is the electron charge,
T is the cell or module temperature.

Figure 5 shows the current–voltage (I-V) characteristic curves of a solar cell or a
module. Particularly, the power generated by the solar cell or module is the product
of the current (Imp) and voltage (Vmp). It should be noted that five parameters,
such as IL, Io, Rs, Rsh, and A, determine the current and voltage generated in a cell or
module, thus the impact of external factors, such as solar radiation and temperature
could be analyzed from the change of these values. In general, the FF is directly
affected by series resistance, and it is found that the fill factor of a solar cell
decreases by about 2.5% for each 0.1 Ω increase in series resistance [17]. On the

Figure 4.
Equivalent circuits for a solar cell in a single diode model, including series and shunt resistance [16].

119

Assessing the Impact of Spectral Irradiance on the Performance of Different Photovoltaic…
DOI: http://dx.doi.org/10.5772/intechopen.96697



other hand, Rsh is reduced if the leakage current is increased in a solar cell. If there
any light and temperature-activated defects available in a solar cell, then leakage
current could be increased, alternatively Rsh could be reduced as the increase of
irradiance intensity or temperature. Finally, FF and Voc will be reduced. For an
ideal case, Rs = 0, Rsh = ∞ and ni = 1, the open-circuit voltage, Voc could be
expressed as,

Voc ≈
KT
qe

ln
IL þ Io

Io

� �
(6)

For a very small applied voltage (V ≈ 0), the diode current, Io is negligible or
zero, then from Eq. (6), we can find,

I≈ IL ≈ Isc (7)

Where Isc is a short circuit current. Now Eq. (9) becomes,

Voc ≈
KT
qe

ln
Isc þ Io

Io

� �
(8)

The Voc and Isc rectangle description as shown in Figure 5 offers a useful means
for characterizing the maximum power point [18]. The fill factor (FF) is defined as
the ratio of the maximum power to the product of Voc and Isc and is less than one at
all times. FF indicates the squareness of the I-V curves and can be defined from the
ratios of two rectangles (Figure 5) as,

FF ¼ Pmp

ISCVOC
¼ ImpVmp

ISCVOC
(9)

Where Pmp denotes the maximum power of the solar cell or module, Imp and
Vmp are the current and the voltage values at the maximum power point, respec-
tively. Moreover, the most significant Figure of merit for a solar cell or PVmodule is
its power conversion efficiency, η, which is specified as,

Figure 5.
Typical current–voltage (I-V) and power-voltage characteristic curves of a solar cell.
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η ¼ VOCISC
Pin

FF (10)

Where Pin denoted the power of incident light that is determined by the char-
acteristics of the light spectrum incident onto the solar cell or PV module. The
power of the incident light spectrum, Pin can be express as,

Pin ¼ G x A (11)

Where A is the surface area of the solar cell or PV module and G is the total
spectral irradiance, which could be defined as [19],

G ¼
ð∞
0
ελf λð Þdλ (12)

Where, f(λ) is the flux density (number of incident photon per unit area
and unit time) for a specific wavelength of the photon with energy, ελ and
wavelength, λ.

3.2 Spectral response and quantum efficiency

Particularly, the light to the electrical power conversion efficiency of a solar cell
or a module is an inherent property that depends on the type of semiconductor
material and the manufacturing process. However, this efficiency also depends on
the environment of the installation site, especially on the hours of equivalent peak
spectral irradiance in a day and/or temperature. The PV module characteristics that
we find in the nameplate are typically measured at standard testing conditions
(STC), the irradiance of 1000Wm�2 at AM 1.5 and 25 °C of cell temperature. In
fact, these conditions hardly exist because the outdoor spectrum is far different
from the STC condition, which also varied by location and season. The response to
the spectral variation by different types of PV modules vastly depends on its mate-
rial properties and structure. This response is primarily determined by the bandgap
of the materials used in fabrication, which sets the upper wavelength limit of the
spectral response (SR). More specifically, SR is depending on the PV material’s
bandgap, cell thickness, and carrier transport mechanisms in the device. Secondly,
device structure, means the position of the absorber material and other supporting
layers has a significant effect on the spectral response. Also, the variation of elec-
trical parameters of different types of PV module/device as an impact of various
environmental factors depends on the technology (device structure and materials).
On the whole, the PV device performance and SR is proportional for specific PV
devices, where SR is defined as:

SR λð Þ ¼ JL λð Þ=G λð Þ (13)

Where JL(λ) represents the light-generated current density for a specific wave-
length “λ” and G(λ) is the spectral irradiance of the incident light measured in W/
m2-nm. However, in state-of-the-art solar cell or PV modules, the spectral response
is defined as the short-circuit current, Isc(λ), resulting from a single wavelength of
light normalized by the maximum possible current [20–23].

SR λð Þ ¼ ISC λð Þ
qAf λð Þ (14)
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Where, q is the electronic charge 1.6 x 10–19 C, A is the surface area of the PV
device and f(λ) is the incident photon flux (number of photons incident per unit
area per second per wavelength). Besides, the SR of the PV devices is also estimated
in terms of quantum efficiency (QE), which indicates that how efficiently a PV
device converts the incident light to a charge carrier that flows through the external
circuit [24], details on QE has been discussed next section. In that case,

SR λð Þ ¼ QE λð Þ q:λ
h:c

(15)

In the case of PV modules, JL is approximately the same in value as the short-
circuit current density (Jsc) [25]. Thus, with the help of the above equations, Jsc can
be expressed as,

Isc λð Þ ¼ q
h:c

ð
SR λð Þ:G λð Þ:λ:dλ (16)

It could be seen in Eq. (16) that Jsc can be estimated by the SR for PV modules
which certainly have prime importance in evaluating PV materials and device
characteristics. Particularly, the degree to which the SR and the incident irradiance
spectrum varies gives rise to a spectral effect on the device current and efficiency.
The SR of different types of the module at AM1.5G spectrum (up to 1300 nm) is
shown in Figure 6 to confirm the response is different for different technologies
[10]. As seen in Eq. (16), Isc is affected by the spectrum. Particularly, the spectrum
variations are also influenced the other PV output parameters, viz. FF, Voc, and η.
To determine the magnitudes of these effects on different technology-based PV
devices, various performance review studies were carried out [26–31].

Particularly, The SR shows represent the current produced by a solar cell for per
watt of irradiance at each wavelength of the photon. As seen in Figure 7 that SR
towards the higher wavelength region is lower because photons in this region have
energy less than the material bandgap threshold. As a result, the effect of spectral
variation on the output of PV devices is most pronounced in narrow SR technologies
such as a-Si and CdTe. Especially narrowest SR is seen for the a-Si that is also
discussed in the literature [32–35]. For simplification of SR and PV performance,

Figure 6.
Spectral response characteristics of different solar module technologies, modified from [26–35].
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research is commonly used one-dimensional terms, such as spectral mismatch fac-
tor (MMF) [32–34, 36], the useful fraction (UF) [37], average photon energy (APE)
[38, 39]. In the case of MMF and UF, their values should be a known factor for a
specific module understudy, however, the SR data is not available publicly and
analysis complexity arises. Besides, APE is denoted by the unit of an electron volt
(eV) which signifies the average incoming photon energy. The equation for calcu-
lating is as follow:

APE ¼
Ð qλ
pλE λð Þdλ

qe
Ð qλ
pλ f λð Þdλ

(17)

Where, E(λ) represents the energy of the incident photon and f(λ) is the inci-
dent photon flux at wavelength λ, and pλ and qλ are the integration limits indicate
the lower and higher absorption wavelength, which are 300 and 1200 nm as shown
in Figure 7. Particularly, APE varies on a daily and seasonal basis due to the increase
of air mass at sunrise and sunset compared to noon and in winter compared to
summer. For example, when the sun is above the horizon, the spectral irradiance is
red-shifted and the APE becomes low. APE rises again to a high around noon during
the day. Moreover, the APE is higher in the summer months than in winter because
the zenith angle of the sun is higher in summer. Besides, the atmospheric water,
cloud cover, and/or aerosol content affect the APE due to light absorption and
scattering. For most of the PV modules, the APE effect on performance seems to be
linear. The spectral photon flux density denoted in joules can be expressed as below
for a specific wavelength λ:

f λð Þ ¼ G λð Þ
Eλ

¼ G λð Þ
hc
λ

(18)

where ‘h’ is the Planck constant and ‘c’ is the light velocity in vacuum.
The SR and QE are conceptually similar to each other. Particularly, SR is the ratio

of the generated current in a solar cell per unit incident power, while QE denoted
the ratio of the number of generated carriers and the number of the incident photon
on the solar cell. In another way, the QE of a solar cell represents the amount of
current the cell produces for a particular wavelength of an incident photon. Know-
ing the QE of a particular PV technology is important because by integrating QE for
the whole solar spectrum, the current generation capability of PV solar cells could
be realized. Interestingly, the QE value could exceed 100% for a PV solar cell in the
case of multiple excitation and generation (MEG). In that case, one incident photon

Figure 7.
(a) variation of EQE, IQE, and reflectance with the wavelength of a c-Si solar cell (collected and modified from
Wikipedia), (b) EQE of different PV solar cell technology [41].

123

Assessing the Impact of Spectral Irradiance on the Performance of Different Photovoltaic…
DOI: http://dx.doi.org/10.5772/intechopen.96697



could generate several electron–hole pairs as an impact of multiple excitations. The
MEG properties are typically seen in quantum-dot solar cells [40]. However, all the
incident photons on the cell surface cannot be absorbed due to surface optical
properties, such as absorption and reflection. Thus, QE is divided into two terms,
(i) external QE (EQE) and (ii) internal QE (IQE) which simply differ by the
photons reflection properties of a PV solar cell. In the case of EQE, all photons that
impinge on the cell surface are taken into account, while in the case of IQE, only
photons that are absorbed (not reflected) by the solar cell are considered. The
graphical representation of EQE and IQE is shown in Figure 7.

High EQE is a precondition for high-power PV applications, which depends on
the absorption coefficient of the absorber material of a PV solar cell, the carrier
excitation quality, and carrier recombination rate or the amount of electron trans-
port to the electrodes. The mentioned QE in Eq. (15) is typically EQE, which is
directly related to the current generation by a solar cell [41]:

Jsc ¼ q
ð∞
0
φλ λð Þ:EQE λð Þ:dλ (19)

Where, with q is the charge of electron and φλ(λ) the incident spectral flux
density, indicating the incident number of photons of wavelength λ on the cell
surface per unit of area, per unit of time and EQE could be defined as:

EQE ¼ electron=s
photon=s

¼ current=e
total photon power=hν

(20)

The relation between IQE and EQE could be defined as:

IQE ¼ EQE
1� L

¼ EQE
1� R� T

(21)

Where L is the total optical loss that occurred in a solar cell either through
reflection or transmission or both. Particularly, for maximizing EQE, the optical loss
should be minimized. To reduce the optical loss, anti-reflection coating, and back-
reflection coating is applied in the current PV technologies.

3.3 Spectral irradiance and temperature

Solar irradiance and surface air temperature are two key factors for investigating
the PV module performance. Particularly, the increase in solar irradiation is a cause
of the increase in air temperature and vice versa. On the other hand, the increase in
solar irradiance is proportionally increased the power output of the PV module,
however, module output decrease with the increase of temperature [42]. Usually,
the output and temperature of the PV modules are considered to be linear. The
effect of temperature mostly depends on the absorber material and its quality. From
the module electrical properties, the temperature effect could be realized by
observing the variation of the device parameters:

Pmpp ¼ IscVocFF (22)

In the case of Isc and FF, there is very little change that occurred with temper-
ature for crystalline silicon and thin-film devices. Alternatively, the Voc is highly
dependent on the temperature variation, which can be described via the Voc as
calculated from the one diode model as shown below:
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d
dt

Voc ¼ d
dt

n VT ln
Isc
Io

� �
(23)

And,

VT ¼ kT
q

(24)

Where VT is known as thermal voltage, T is the solar cell temperature, k is the
Boltzmann constant, q is the elemental charge q, n is the ideality factor and I0 is the
diode saturation current. From the above diode equation, it could seem that the Voc is
positively changing with the temperature, because the above-simplified diode equa-
tion typically overlooked the parasitic factors, such as solar cell series and shunt
resistance. Particularly, this parasitic resistance is changed significantly over thermal
variation [43] and greatly impacts the voltage and diode saturation current as
reported elsewhere [44]. For understanding the impact of temperature on Voc, we
have to consider the temperature-dependent diode saturation current, which in turn:

I0 ¼ B Tγ exp
Eg

kT

� �
(25)

Where B is a temperature-independent empirical factor but controlled by the
quality of absorber material, γ is also an empirical factor that relies on the specific
carrier loss mechanism and Eg is the absorber material bandgap. The influence of
irradiance and module temperature can be explored by combining the data
according to these dependencies. The resulting matrix can then be used to model
the annual yield for various technologies at different locations [45]. The main
uncertainties, in this case, are kWp standardization and input irradiance [46].

3.4 Solar spectrum distribution model

As there are several uncertainty factors are involving, for the easy and efficient
deployment of PV solar cell system, it is essential to measure and develop a model
for the spectral distribution of solar radiation. Colle et al. [47] have shown that there
has a linear relationship between the uncertainty of solar irradiation and the uncer-
tainty of solar thermal and PV systems. This is a big challenge in the 21st century to
develop a more efficient and robust model that could reduce the solar radiation
misprint include will need fewer input parameters, will have smaller residual and
can be used in a wide variety of conditions.

Indeed, the solar spectrum depends on the place, time, and condition of the atmo-
sphere. The global solar spectrummay be divided into two spectrummodels, one for
direct beam radiation and the other for diffuse radiation. Particularly, the spectrum of
solar incident radiationwavelengths on the PVmodules corresponds to the appropriate
spectral response range of the PV cells. Several reports on the effect of spectral irradi-
ance variation and PV solar cell performance can be found elsewhere [48, 49]. The
longer irradiation hours provided the better annual average electricity outputs [50].
The effect of solar spectral irradiation on the yield of several PV technologies has been
documented byNann and Emery at four separate locations [51]. Eke et al., on the other
hand, found that the spectrum variance had a very limited effect on the low bandgap
absorber content in PV solar cells [52]. Figures 6 and 7 shows the spectral response
characteristics and EQE of different PV technologies which indicate that how the
performance of PVmodule could change upon the variation spectral distribution.
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Several solar spectrum models, including SPECTRAL2 [53], LOWTRAN2 [54],
REST2 [55], and SMARTS2 [56], have been developed yet to date over time for clear
skies. These models are usually computer programs developed to evaluate the
shortwave spectrum components of surface solar irradiance in the range of 280 to
4000 nm. Some of them have high spectral resolutions, however, they need very
complex calculations making them less efficient. In the case of LOWTRAN(2),
detailed inputs are needed, which increases the execution time and creates some
performance limitations, that’s why the use of this model is limited in engineering
applications [57]. On the other hand, even a low number of parameters are needed
for SPECTRAL2, however, the mean deviation associated with different aerosol
models is higher than SMART2 [58]. On the other hand, transmittance parameter-
izations based on the SMARTS spectral model are used to build the high-
performance REST2 model [57]. Particularly, more updated parametric functions
and constants are used in the SMARTS2 model, for which it has a higher resolution
and is showing lower deviation in the spectral analysis. SMARTS program is written
in FORTRAN and depends on simplifications of the radiative transfer equation
which allow very quick calculations of the irradiance of the surface. The newest
versions, such as SMARTS2.9.2 and SMARTS 2.9.5 are hosted by NREL.

The SMARTmodel uses different inputs to define the conditions of the atmosphere
under which the irradiance spectra are to be measured. Ideal conditions can also be
selected by the user, based on various potential model atmospheres and aerosol
models. Moreover, it is also possible to determine practical conditions as inputs, based,
for example, on aerosol and water vapor data supplied by a sun photometer [59].
Besides, the spectrally integrated (or ‘broadband’) irradiance values are given by this
model, which can later be compared with measurements from a pyranometer (for
diffuse or global radiation) or pyrheliometer (for direct radiation). Solar geometry is
another vital input in this model in addition to the atmospheric condition, which is
typically specified by the position of the sun (zenith angle and azimuth), the location,
the air mass (AM), or by specific time and date. More details on the usage of the

Figure 8.
Direct normal irradiance spectra calculated with SMARTS 2.9.5 for increasing air mass (0 to 10), using the
same atmospheric conditions as the ASTM G173 standard. Air mass 0 corresponds to the extraterrestrial
spectrum, marked as top of atmosphere (TOA), modified from [67].
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SMARTS model for PV applications can be found elsewhere [60–63]. Particularly, this
model is frequently employed to evaluate PV modules’ efficiency and mismatch
factors in real-world conditions [64–66]. Figure 8 shows the direct normal irradiance
spectra with SMART 2.9.5 for different air mass.

4. Performance of PV modules by technologies

Crystalline silicon (c-Si) is the most prevalent PV technology on the market (c-
Si). In considering crystal size and crystallinity, c-Si can be divided into two major
categories, mono or single-crystalline Si (sc-S) and multi or polycrystalline Si (mc-
Si). The power conversion efficiency of sc-Si is higher than mc-Si solar cells, alter-
natively, sc-Si is costly than mc-Si. The typical efficiency of commercial c-Si mod-
ules is between 11% and 20% which power generation varies by temperature
(temperature coefficients) in the range of 0.3–0.5%/K [68]. Commercial c-Si mod-
ules consisting of 200–500 μm thick PV cells that are connected in series and/or
parallel for attaining expected voltage and current. It is important to note that c-Si
solar cells or PV modules can generate electrical energy for a wide range of the
spectrum (350–1200 nm) as illustrated in Figure 9 [69]. However, the absorption
coefficient of c-Si is below 104 cm�1 for all wavelengths larger than 500 nm as
shown in Figure 9. This means that all the potential photons below 500 nm are
absorbed close to the surface of the cell. Thus, it is important for the c-Si solar cell
that the active region has to be located near the cell surface for absorbing all
potential photons and achieving optimum efficiency. Also, it could be seen in
Figure 9 that the absorption coefficient is below 2.0 x 104 for wavelength above
650 nm. As the absorption coefficient of c-Si is below 103 for wavelengths above
700 nm which indicates that photons in this range can penetrate the bulk and
generate electron–hole pairs. However, their contribution to the photocurrent is
very hard in the case of conventional c-Si solar cells. Thus, for collecting these bulk
carriers, the configuration of conventional c-Si structure modified, by names they

Figure 9.
Absorption spectrum of Si, CdTe, and CIGS solar cells, modified from [69].
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are passivated emitter and rear contact (PERC) [70], passivated emitter and rear
locally-diffused PERL [71], interdigitated back-contact (IBC) c-Si [72] solar cells.

As it has been mentioned earlier that the response to spectral variation by
different types of PV modules vastly depends on its material properties and struc-
ture, c-Si solar cells also showed different characteristics depending on the irradia-
tion properties. Several studies have been reported on the in-field energy output
analysis of c-Si PV systems by Panchula et al. [73] based in Ontario, Canada; Dolara
et al. [74] based in Tuscania, Italy; Fiances et al. [75] Based on a different place in
Peru, Kazem et al. [76] based on the desert area of Sohar, Oman, Fuentes et al. [77]
and Muñoz et al. [78] under warm climate of Spain, Bahaidarah et al. [79] based on
Dhahran, Saudi Arabia and Edalati et al. [80] based on Kerman, Iran. In the above
reports, they typically estimate the performance of the system based only on aver-
age monthly or yearly insolation and performance ratio varied by the location
ranging from around 0.7 to 0.85. Fiances et al. [75] studied different Si technology
includes sc-Si, mc-Si, a-Si, and μc-Si PV modules in the climate of Peru, and finalize
that a-Si/μc-Si PV modules perform much better than others with an annual per-
formance ratio of 0.97. Ahmed Ghitas [81] reported the effects of the spectral
variations on the mc-Si module performance based on outdoor measurements in
daily irradiation changes. They only consider cloud-free days in Helwan, Egypt in
their measurements and also did not consider the temperature effect. The variation
of Voc, Jsc, and power concerning radiation intensity is shown in Figure 10. It is
evident from Figure 10 that the most affected device parameter is Isc, and output
power in the case of the mc-Si PV module.

Eke and Demircan [82] have been studied mc-Si PV module performance based
on winter (January) and Summer (August) for Mugla, Turkey. The operating tem-
perature at this location is 50.5 °C in January and 80.5 °C on August 16. The power
generation of the module is 30% lesser in summer than winter because of the
significant difference in operating temperature. The power generation every day in
January and August is shown in Figure 11. Bora et al. [83] also studied the pc-Si PV
module along with a-Si, HIT-Si PV modules under the climate condition of the
different parts of India. They find that all these three types of Si-based PV modules
produce the highest energy yield in the cold and sunny zone.

Figure 10.
(a) Daily profile of the measured solar module short circuit current, open-circuit voltage, and electrical output
power, (b) daily profile of incident solar radiation along with module output power, and (c) spectral
irradiance variation versus time (a.ms) on a clear sky measurement day [81].
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It is important to mention that the energy yield analysis of a PV system is
incomplete if their low light condition analysis is missing. Reich et al. [84] have
reported the performance of c-Si at low light conditions, however, the impact of
temperature is missing as they conducted the study focusing on indoor perfor-
mance. The finalized that the obtained efficiency via indoor measurement and rated
efficiency has a significant difference. Certainly, temperature is a dominant factor
in the performance of the PV system in outdoor conditions. It should be noted that
solar irradiance and ambient temperature are proportional. Chander et al. [85], and
Atsu and Dhaundiyal [86] studied output yield using a detailed model that includes
temperature and wind speed variation. Chander et al. [85] reported that the perfor-
mance parameters of the sc-Si module such as Voc, Pmax, FF, and efficiency are
decreased with temperature while the Jsc is increased. Bahaidarah et al. [73] also
suggested that for achieving the highest PV performance yield in Saudi Arabia, a
suitable and uniform cooling system is necessary due to the climatic conditions. A
detailed study on performance variation by low light conditions along with the
temperature variation effect has been presented by Pervaiz and Khan [87]. In their

Figure 11.
PV module performance in January (a) and august (b) 2008 for Mugla,Turkey environment [82].

Figure 12.
Energy difference (D) in percent for Washington, Seattle, and Austin for years 2000–2003 [78].
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modeling, they used various insulation profiles for a different location in the US
collected from NREL. They reported that the energy harvesting of a PV system for a
specific location depends on the average peak sunlight hours of that location as
shown in Figure 12. The use of the following equation for calculating energy
difference concerning the variation of Equivalent Peak Sunlight Hours (EPSH).

Energy difference, D ¼ Ei� Ecð Þ=Ei½ � x 100 (26)

Where Ei is the energy harvested during one year considering a constant effi-
ciency and Ec is the energy harvested incorporating a change in efficiency. The
finalized that the reduction in energy yield is reliant on the EPSH of a region where
reduction factor could range from 1.5 to 5% for various regions concerning the value
of the EPSH.

Cotfas and Cotfas [88] have been studied details on the performance of sc-Si and
a-Si PV modules under the natural condition via years of observation, in Brasov,
Romania. They reported that the average Pmax of the sc-Si module is two times
greater than the a-Si module, however, on clear winter days, the values even
increase near to three times greater. Also, at low irradiance, under 100 W/m2, the
power gain is of sc-Si is 1.9 times greater than a-Si. The gain is over 1.9 times even
for very low irradiance, under 100 W/m2. The detailed performance of the a-Si PV
module including other thin-film modules as an impact of irradiance and tempera-
ture are covered in the next section. Under the Mediterranean climatic conditions of
the north of Athens, Greece [89], the performance of the p-Si photovoltaic system
has been investigated. There is a linear relationship between the module surface
temperature and the irradiance where the average temperature about 49.9 °C in
summer and 16.8 °C in winter. The efficiency of the p-Si module has been signifi-
cantly dropped in summer where it ranging from 6.2% to 10.4% concerning the
module temperature.

The SR of PV cells depends on the absorption coefficient and/or bandgap of the
absorber materials. Similarly, the performance variation by increase or decrease of
temperature also depends on the bandgap [90]. The semiconductor material with a
wider bandgap, such as 1.04–1.68 eV for CIGS [91], 1.45–1.5 eV for CdTe [92, 93],
and (1.7–1.9 eV for a-Si [94] shows higher temperature resistance to the increase of

Figure 13.
Calculated spectral effects for the devices under test in the UK environment. The graph compares the normalized
ISC divided by the irradiance measured with the pyrometer [86].
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module temperature. As a consequence, they have a lower temperature coefficient
than sc-Si and pc-Si PV modules [95], and thus, device performance is significantly
affected by the temperature. The details on the effects of irradiance, spectrum, and
temperature on thin-film PV modules were investigated by Gottschalk et al. [96]
under the UK environment. It has been reported that the performance of a-Si is
highly spectral dependent as shown in Figure 13. The relative change in short
circuit current (Isc) is +10% to �20% observed for a-Si whereas the change is only
�3% for c-Si and CIGS. Environmental effects have also been shown to cause up to
15% of losses to the annual PV production. The spectral impact on different PV
technologies for all single months has been investigated under the German climate
condition [32]. Similar to the other reports, the spectral impact changes more for
bigger bandgap a-Si PV modules as shown in Table 1. The average gains over the
year are 3.4% for a-Si, 1.1% for c-Si, 0.6% for CIGS, and 2.4% for CdTe. It has been
reported that CIGS and c-Si modules exhibit high gains in winter and a-Si and CdTe
shows an advantage in summer attributed mostly to spectrum variation [32]. The
study carried in the Netherlands [97] showed that low irradiance caused a decrease
in annual energy yield of 1.2% for the CIGS modules and 1% for CdTe. This
experimental study also indicated a strong effect of spectral variation on the
performance of the a-Si modules.

The detail on performance variation by the influence of temperature of the
different types of PV modules has been conducted by Gutkowski et al. under the
low insolation climate of Poland [95]. They observed a significant difference in
performance by different PV modules at temperatures 15-48 °C as shown in
Figure 14(a). It is clear from Figure 14(a) that under real conditions of the high-
temperature region, the power generated by CIGS thin-film technologies is higher
compare to the pc-Si PV modules. Ozden et al. [98] also experimentally investigate
the a-Si and CdTe thin-film PV module performance under the Turkey climate zone
along with sc-Si and mc-Si. They found a significant difference in performance in
that module for the sunny and cloudy days as shown in Figure 14(b). The output
performance of sc-Si and mc-Si is found to be the same, but the output difference

i Gi [kWh] average
monthly irradiation from

the reference period

Average, relative monthly spectral impact

a-Si (%) CdTe (%) c-Si (%) High-eff. c-Si (%) CIGS (%)

1 38 �2.0 1 1.9 2.4 2.6

2 65 �1.3 0.1 1 1.4 1.6

3 122 0.1 0.6 0.7 0.8 0.9

4 141 3.5 1.9 1.2 0.9 0.4

5 166 4.2 2.3 1.5 0.9 0.3

6 166 5.1 2.8 1.4 0.8 0

7 184 5.3 3.4 1.5 0.8 0

8 168 5.3 3.5 1.6 0.9 0.1

9 136 4.3 3.1 1.5 1 0.4

10 91 2.8 3 1.9 1.7 1.3

11 43 0.8 2.3 2.1 2.2 2.1

12 35 �2.2 1.8 2.4 3 3.3

Table 1.
Calculation of annual spectral impact based on the monthly sums of irradiance of a reference year and the
determined average monthly spectral impact assessed in Germany [32].
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between CdTe and sc-Si modules is 60% for a sunny day and which reduces to 35%
for a cloudy day indicating the impact of irradiance as well as temperature on these
technologies. Moreover, the performance ratio (PR) of sc-Si is in the range of 70%–

90%, a-Si is about 70% and CdTe is only 42%–72%. Alternatively, Kesler et al. [99]
also conducted a performance analysis between the c-Si and thin film for another
location, Antalya, Turkey, and reported that performance of the both technology is
very close to each other. Even they specified the reason is the high ambient tem-
perature of that area, however, the rated efficiency of that technologies may play an
important role in this case, which means that if the rated efficiency is almost the
same, their performance will be close to each other.

Sharma et al. [100] studied three different PV technologies, such as a-Si, pc-Si,
and HIT under the tropical climate of India. They found that the best-suited PV
technology for this climate is HIT and a-Si. The overall performance ratio for a-Si is
90% and for pc-Si is 83% in this region as shown in Figure 15. Interestingly, the
energy yield of a-Si is 14% greater during summer, but 6% lower in winter. The
effect of seasonal which in turn the effect of irradiance and temperature on the
performance of a-Si may be related to its thermal annealing process [101]. The HIT
modules have consistently performed better (≥ 4–12%) than p-Si over the year.

Figure 14.
(a) Normalized DC power generated by the PV systems of each studied technology [95], and (b) maximum
irradiance and temperature recorded for that day were 1000 W/m2 and 55 °C [78].

Figure 15.
Comparison of measured monthly and yearly performance ratio of each technology array tested in Indian
climate condition [100].
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Aste et al. [102] investigate PV module performance under temperate climatic
conditions (Italy) where the more distinct seasonal change and/or wide tempera-
ture variation have occurred. They found that a-Si is much more sensitive to the
seasonal solar spectrum rather than c-Si and HIT technology. The highest 93% of
performance ratio has been reported for c-Si in this study. However, the c-Si
technology has also shown seasonal variation as an exceptional case [75] and the
performance ratio found 20% lower in summer than in winter as a role of temper-
ature variation. In summer, the a-Si/mc-Si stack cell showed higher performance
than the other technologies tested in this study, which may be due to its low-
temperature coefficient and thermal annealing.

The assessment carried in the Netherlands [103] showed that the CIGS modules
are strongly affected by irradiance and temperature variations with a decrease in
annual energy yield of 1.2%. Moreover, CdTe modules also exhibited a decrease in
energy yield of about 1.0%. This experimental study also showed a significant
influence of spectral variation on the efficiency of a-Si modules. Zdyb and
Gutkowski studied four different types of PV modules, such as pc-Si, a-Si, CIGS,
and CdTe at high latitude under East Poland climate conditions [104]. In their
study, a-Si and CIGS shows the gain in performance ratio (about to 73.4% for a-Si
and 90.7% for CIGS) during summer sunny and warm environment. The increase
of performance ratio of a-Si PV modules has also been reported by Makrides et al.
[101] studied under the Cyprus environment. On the other hand, the performance
ratio of pc-Si PV modules exhibited over 80% except for December and always
remain the highest among the investigated PV modules over the year as shown in
Figure 16.

The effect of spectral irradiance distribution on the performance of a-Si/mc-Si
stacked photovoltaic modules has been analyzed by Minemoto et al. [105] installed
at Kusatsu-city (Japan). Their study revealed that these stacked PV modules are
extremely spectrally sensitive compared to pc-Si PV modules installed on the same
site. Akhmad et al. [106] have been compared the performance of poly-silicon
(pc-Si) and amorphous silicon (a-Si) at Kobe, Japan, and found a-Si modules are
better for this region. K. Nishioka et al. [107] compared sc-Si, pc-Si module, and
heterojunction silicon at Nara Institute of Science and Technology (NAIST) under
Japanese climate. They reported that the HIT technology is better suited for this
region due to its low-temperature dependency. Poissant [108] has evaluated four

Figure 16.
Performance ratio for each studied PV technology investigated in East Poland (data collected in 2018) [104].
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different novels PV module technologies, (i) H-Si, (ii) IBC, (iii) a-Si/uc-Si, and (iv)
c-Si under the climate of Canada. His study confirmed that the heterojunction
silicon and a-Si/uc-Si technologies are less affected by temperature than the other
two crystalline silicon technologies. Canete et al. [109] also performed a compara-
tive study of four different photovoltaic module technologies, (i) amorphous silicon
(a-Si), (ii) tandem structure of amorphous silicon- microcrystalline silicon (a-Si/-
mc-Si), (iii) polycrystalline silicon module (pc-Si) and (iv) cadmium telluride
(CdTe). Their results show that the performance of thin-film modules is better than
that of pc-Si modules for the location of Southern Spain. The performances of c-Si

Author(s) Location Environmental Parameters Tested
Technologies

Best
Perform
Technology

Dirnberger
et al., 2015
[32]

Breisgau, Germany Maritime climate, 5-25 °C,
1,117 kW/m2/year (approx.)

a- Si, sc-Si, CIGS
and CdTe

a-Si

Francis et al.,
2019 [75]

i. Arequipa, Peru
Tacna, Peru Lima,
Peru

i. Diverse climates 2380 kW/
m2, 3.81-32 °C 2280 kW/
m2, 13.4–31.5 °C 1740 kW/
m2, 18.8–18.9 °C

i. sc-Si ps-Si a-
Si/uc-Si

a-Si/μc-Si

Edalati et al.,
2015 [81]

Kerman, Iran Dry climate 68.64–
198.72 kW/m2, 20 °C

sc-Si, and pc-Si pc-Si

Bora et al.,
2018 [83]

Different parts of
India

0.82–0.87 kW/m2/day not
mentioned

a-Si, HIT, and
pc- Si

All (cold
and sunny
zone)

Cotfas and
Cotfas, 2019
[88]

Brasov, Romania Temperate-continental
climate, 2.1–1.82 Wh/m2/
day, �4.0 – 24 °C

sc-Si and a-Si sc-Si

Louwen
et al., 2016
[89]

Utrecht, Netherlands Oceanic climate, 20.5–29.5 °
C, 950–1050 W/m2

SHJ, a- Si, sc-Si,
pc-Si, CIGS, CIS
and CdTe

sc-Si and
SHJ

Gulkowski
et al., 2019
[95]

Lublin, Poland Temperate climate, 950–1250
(kWh/m2)/year, 15–48 °C

CdTe, CIGS, and
pc-Si

CIGS

Aste et al.,
2014 [94]

Milan, Italy Temperate climatic,
1270 kW/m2/year, �5-32 °C

c-Si, a-Si/uc-Si,
HIT

HIT

Zdyb and
Gulkowski,
2020 [103]

Lublin, Poland Temperate climate, 950–1250
(kWh/m2)/year, 15–48 °C

pc-Si, a-Si, CIGS,
and CdTe

pc-Si and
CIGS

Makrides
et al., 2018
[104]

Cyprus Mediterranean climate, 1988–
2054 kWh/m2, 10-40 °C

sc-Si, pc-Si, a-Si,
CIGS and CdTe

a-Si

Minemoto
et al., 2007
[105]

Kusatsu-city, Japan Subtropical climate, 200 kW/
m2, 9-33 °C

pc-Si, and a-Si pc-Si

Poissant,
2009 [108]

Montreal, Canada Continental climate, 950–
1050 W/m2, max. 20 to
22 °C

SHJ, IBC, a-
Si/uc-Si, and c-Si

a-Si/uc-Si

Cañete et al.,
2014 [109]

Southern Spain Dry Mediterranean climate,
3.7–7.4 kWh/m2/day,
15–30 °C

a-Si, a-Si/μc-Si
CdTe, and pc-Si

a-Si and
CdTe

Table 2.
Summary of few reported works for finding out the best PV technology by location and climate.
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and a-Si PV modules under South Africa climate conditions have been evaluated by
Maluta and Sankaran [110]. They found that both technologies give a similar and
suitable performance for the climate of this region. Three different PV technologies
(monocrystalline, polycrystalline, and amorphous silicon) have been evaluated
under the desert climate by M. Shaltout et al. [111]. They reported that the poly-
crystalline silicon cells are more suitable in such a climate. All these above-
mentioned studies indicate the difficulty when it comes to choosing the appropriate
PV technology for a given site. Thus, the prediction of PV energy potentials before
installation helps us to understand the economic advantages associated with it and
for policy regulation for electric utilities.

Table 2 shows the summary of a few reported works for finding out the best PV
technology by location and its climate. It should be noticed that the results reported
by the various researcher as mentioned above are very difficult to compare because
the work has been conducted focusing on different locations and various time scales
(instantaneous, monthly, annual), different energy effects, and even the works are
different by used metrics and calculation. However, it is well agreed that the impact
of spectral irradiance variations on PV device performance mostly depends on its
spectral response, which in turn depends on its absorber material properties and
quality. Moreover, the influence of spectral irradiance on PV performance is
dependent on installation sites, for instance, the spectral distribution, climate,
environment, latitude, longitude, albedo, etc. of the location. Besides, the spectral
distribution of specific sites again depends on the cloudiness, water-vapor and
aerosol content in the sky of that sites. The analysis considering all the above factors
certainly will be too difficult, thus, the researcher considers only some of the factors
for simplifying their work.

5. Conclusion

The weather and/or solar irradiance of the earth is significantly different from
one location to another. Again, solar irradiance varies for a specific location by
season and/or common weather phenomenon, such as dust, rain, wind, cloud, fog,
and snow, etc. Thus, every year solar irradiance also not the same in amount and as
an impact of the above factors, the energy yield of different PV technology is
affected differently and prediction is very complicated. However, numerous studies
could help us to predict which PV technology is better suited for a certain location.
It should be noticed that all the incident solar radiations absorbed by PV cells are
not able to convert into electricity, some of them are increase temperature, thus the
performance varied. As discussed in this book chapter, most of the study showed
that summer months when irradiation becomes high that leads to an increase of
module temperature, a-Si technology show better performance than c-Si PV mod-
ules. It may be due to the metastable defects generated during the dangling bond
compensation are decreased upon module temperature increase and as a result, the
module performs better in elevated temperature. Also, CIGS PV modules show
similar behavior to the a-Si PV modules. The performance gain observed in CIGS
technology in summer or at elevated temperatures may be related to the larger
bandgap and lower temperature coefficient. Particularly, the optical bandgap of
CIGS thin film is higher than a-Si and the higher bandgap has a lower temperature
coefficient. Also, CIGS modules can convert the blue light part of the solar spectrum
due to a larger bandgap that may assist to perform better in hot summer. Alterna-
tively, c-Si have a narrow bandgap, as the defect density increases upon high
irradiance and high temperature in hot summer, the dark saturation current and/or
leakage current is increased. Consequently, the performance decrease in summer.
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However, it has been seen that c-Si perform very in high irradiance with cold
weather. It should be noticed that the module with a higher leakage current is highly
affected by low irradiance. Since a-Si solar cells inherently have high defect density
and/or high leakage current than c-Si solar cells, thus the power gain by c-Si at very
low irradiance is significantly higher than a-Si as discussed in the above section.
Overall, CdTe modules are performed much poorer than others probably due to the
consequence of early degradation of the module as reported in the previous section.
All these above-mentioned studies specify the difficulty of choosing an appropriate
PV technology for a given site. Thus, the prediction of PV energy potentials before
installation is very important concerning the economic advantages and for policy
regulation for electric utilities.
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Abstract

In this era the requirement for energy is enhancing, therefore, many energy 
resources are developed among them the emerging third-generation dye-sensitized 
solar cell is one of the environment-friendly solar cell-based technology. Generally, 
dye-sensitized solar cells consist of a nanomaterial-based photoanode, dye molecules 
as an absorber, electrolyte, and counter electrode. In the case of indoor application, 
this solar cell works easily so this is the characteristics of a dye-sensitized solar cell. 
Moreover, the outdoor performance of DSSC degrades on exposure to sunlight. 
Exposure to sunlight increases the temperature of the internal component of DSSC 
and consequently degradation in device performance. Long-term stability is obtained 
by the choice of such material where degradation takes place slowly and plastic covers 
are also coated over DSSC to prevent degradation. The solar response of DSSC towards 
dye was also mentioned, the higher the percentage of EQE higher the efficiency of the 
device. In this chapter, the authors discuss the introduction of a solar cell, the working 
principle of DSSC, and the available research background for outdoor performance 
and long-term stability with a solar response of device i.e. EQE or IPCE.

Keywords: DSSC, Solar energy, Outdoor, Stability, IPCE

1. Introduction

Climate change in the 21st century influences the water resources and food 
which pattern disease and impact greatly the mankind livelihood. Thus, an efficient 
mechanism is mandatory to control the emission of hazardous gases. The reduction 
in carbon emission will also help greatly for the environment, most of the nations are 
seriously working to mitigate this problem. The utilization of available low Carbon 
energy resources such as solar and wind will be a milestone to cater to the energy 
necessities of the globe without harming the environment. After the oil crisis in the 
year 1973, the alternative sources for energy harvesting are derived by many scientists 
and still, research is going on [1]. The rising population and higher living standards are 
influencing climate change significantly. Industrialization, the technologically driven 
changing landscape of cities have increased the energy demand hugely. The resources 
of energy are commercial and non-commercial where the commercial resources 
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mainly include fossil fuels like coal or natural gas whereas the non-commercial 
resources include wood and animal and agriculture wastes as well. Fossil fuel resources 
are non-renewable, limited in stocks, and creates pollution in the environment, as 
well as these, are fastly depleting. Therefore, research on the development of new 
energy resources is extremely needed to cater to the energy demand of the revolution-
ized world. Renewable energy resources are eco-friendly, abundant, and practically 
inexhaustible. Sun is one of the renewable resources for green and free energy which 
provides a tremendous amount of energy without any expenditure. The sun irradiates 
more energy per hour vis-à-vis the total energy consumed globally during one year. 
Solar energy is non-depletable, pollution-free, and available in abundance on the sur-
face of Earth planet throughout the year. The Bloomberg New Energy Finance (BNEF) 
research organization made research on the current scenario of energy consumption 
and production and concluded that 50 percent of the world’s energy would come from 
solar cells and wind by the end of 2050 [2]. Therefore, the use of solar energy could 
increase the economic growth of any country without affecting the environment.

The solar cell is a device that transforms solar or light into electrical energy, it is 
just a p-n junction or a diode. The Silicon-based solar cells were firstly used to convert 
sunlight into electricity, therefore, these solar cells are also recognized as traditional or 
conventional solar cells. The solar cells are classified into three generations. The first 
generation or crystalline Silicon solar cells are widely used as these have been shown 
higher power conversion efficiency (ɳ ) about 26% [3, 4] and dominated the solar 
cell market ever since its invention, but fabrication of crystalline Silicon solar cells 
suffers from high module cost and a significant amount of by-products. The second 
generation comprises thin-film-based solar cells which reduced materials consump-
tion and consequently cost of the device. This generation includes amorphous silicon 
solar cells, cadmium telluride (CdTe) thin-film solar cells, and copper indium gallium 
diselenide (CIGS) thin-film solar cells [5–7]. The materials to the second generation 
solar cells are rare elements (e.g. Tellurium) and hazardous (e.g. Cadmium). Due to 
the high cost of first-generation solar cells, and toxicity, and limited availability of 
materials for second-generation solar cells, a new generation of solar cells emerges 
as third generation [8]. The third-generation solar cells comprise a variety of new 
materials besides the evergreen and champion Silicon which include nanomaterials 
and Silicon wires. The third-generation solar cells are designed to trim down the cost 
and are based on the simple, cheap, and easy fabrication process. This generation 
includes dye-sensitized, polymer, quantum dot, perovskite solar cells. Given cost-
effectiveness, efficiency, and easy fabrication process, the dye-sensitized solar cells 
(DSSC) could be one of the best promising alternatives to the Silicon solar cells [9].

The configuration of dye-sensitized solar cells (DSSCs) comprises a glass 
substrate (conductive substrate), nanostructure semiconductor (photo-anode), 
sensitizer (dye), electrolyte, and catalyst counter electrode [10]. Nowadays, the 
DSSC devices are developed to have such a photo-anode that could efficiently 
harvest the energy, increase the dye pickup, light scattering ability, reduce recom-
bination reaction and improve charge transferability [11]. The prototype DSSC 
was reported by Michael Gratzel in 1991. The DSSCs are one of the most efficient 
photo-to-electron conversion devices under indoor and low-level outdoor lighting 
for integrating green buildings. For a DSSC device, the highest achieved efficiency 
is 14.30% (practically) to the date where the Co (II/III) based electrolyte was used 
with the co-sensitization of organic dyes [12]. The theoretically predicted maxi-
mum efficiency for DSSC is 32% which is estimated and limited by the Shockley-
Queisser limit based upon the principle of detailed balance [13]. In the architecture 
of dye-sensitized solar cells, usually, TiO2 (titanium dioxide) is preferred because 
of its photoactive, low cost, and abundant availability [14]. The most used dye 
for DSSC is N719 (Cis-Di-(thiocyanato) bis (2,2′-bipyridyl)-4,4′-dicarboxylate) 
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ruthenium (II)) owing to its good light absorber and charge transfer properties 
vis-à-vis to any other dyes [15]. A volatile electrolyte such as iodide/triiodide 
is commonly used which has a highly corrosive nature and good reaction with 
Platinum (Pt) based counter electrode [16, 17]. The photo-anode of DSSC is usu-
ally coated employing chemical route-based techniques like doctor blade and spin 
coating followed by high-temperature heat treatment [18–20].

DSSC can be useful for portable electronic devices, iPods, and solar lamps that 
work on the outdoor light source. The outdoor performance of the DSSC device was 
observed by many scientists in terms of the commercialization of DSSC. But the 
main factor that affects solar efficiency is a temperature that decreases the long-
term stability of the device. To increases the stability of DSSC it was covered by 
plastic but appropriate results are not obtained. DSSC can easily work in a low-light 
condition or cloudy condition so these cells are a good option for building inte-
grated photovoltaic cells (BIPV). However, DSSC also exhibits photoresponse/EQE 
concerning dye and electrolyte. Higher the EQE/IPCE means the photon absorbed 
by dye molecule is high therefore regeneration of electrolyte takes place and high 
efficiency of the respected device is observed. This chapter comprises a basic intro-
duction to solar cells viz. principle of solar cells, and description of dye-sensitized 
solar cells as well the outdoor performance and stability along with photoresponse 
external quantum efficiency of the solar cell (EQE).

A solar cell directly converts solar energy into electrical energy by a physical 
process termed as “photovoltaic effect”. The conversion of energy occurs without 
any intermediate process in certain semiconductor materials. In the photovoltaic 
effect, a semiconducting material generates charge carriers (electrons in conduction 
band and corresponding holes in valence band) when it is exposed by light where 
the light or solar energy and optical energy band gap of the exposed material are 
the important parameters. In the photoelectric effect, charge carriers are electrons 
while in the photovoltaic effect, charge carriers are both the electrons and holes. 
The photovoltaic effect was firstly discovered in 1839 by French Physicist Edmond 
Becquerel. During experimentation with wet cells, Becquerel noted that the voltage 
of the cell increased when its silver plates were exposed to the sunlight [21]. The 
solar cells are composed of different types of semiconductors where p-type and 
n-type layers are joined together to form a p-n junction (Figure 1). The junction 
between two types of semiconductors promotes an electrical field which is formed 
in the region of the junction as electrons move towards the positive p-side and holes 
towards the negative n-side. This generated field causes negatively charged carriers 
to move in one direction and positively charged carriers in opposite direction. On 
connecting it with the load, an electric current is produced in the circuit.

The sunlight is composed of photons which are the smallest energy bundles 
of electromagnetic radiation or energy. These photons can be absorbed by the 
absorber layer of the photovoltaic cell if the photons have energy (hυ) equal or 
greater than Eg and less than 2 Eg where Eg is the band gap of the layer concerned. 
When the light of a suitable wavelength is incident on these cells, energy from the 
photon is transferred to an atom of the semiconducting material in the p-n junction. 
Specifically, energy is transferred to the electrons in the material. This causes the 
electrons to jump to a higher energy level which is known as the conduction band. 
This leaves behind a “hole” in the valance band from which an electron is jumped 
up. This movement of the electron as a result of added energy creates two charge 
carriers viz. electrons in the conduction band and holes in the valence band. The 
asymmetric junction of different natures of semiconducting materials in the solar 
cell leads to the separation of these charge carriers (electron and holes) and estab-
lishes the built-in potential which impels these charge carriers towards the respec-
tive electrodes to contribute to electric current in the circuit.
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2. Dye-sensitized solar cells

As stated in the introduction part that the energy demand has increased the 
depletion of fossil fuels, therefore, the development of new skills which are based 
on renewable energy resources are spurred by world-leading scientists so that the 
upcoming new generation does not face any crisis related to the energy. Photovoltaic 
technology is eco-friendly and attractive among all renewable energy technologies. 
It directly converts sunlight into electrical energy, thus, it is broadly used for har-
vesting solar energy. The conventional Silicon-based solar cells are quite restricted 
because of their high cost, hence inexpensive, environmentally friendly, and simple 
fabrication process-based solar cells such as dye-sensitized solar cells (DSSCs) are 
used [23]. The dye-sensitized solar cells are comprised of a semiconducting mate-
rial photo-anode, a counter electrode, an electrolyte, and a sensitizer (dye). DSSC 
can work in dark and cloudy conditions so it is an excellent candidate for indoor 
applications. O’Regan and Gratzel developed the first dye-sensitized solar in 1991 by 
colloidal nanoparticles of TiO2 thin films which had an efficiency of 7.1%. The main 
aim of the present chapter is to introduce DSSC therefore, it is discussed in detail.

2.1 Device structure and working principle of dye-sensitized solar cell

A typical dye-sensitized solar cell is assembled in a sandwich-type structure. 
Generally, transparent conductive glass is used as a substrate for the deposition 
of nanocrystalline thin films of metal oxide. The metal oxide films are sensitized 
by absorbing dye molecules where dye is covalently attached to the surface of the 
photo-anode for generating the photoelectrons. An organic electrolyte solution that 
contains redox couple is used for collecting electrons at the surface of the counter 
electrode and regenerating dye molecules. A catalyst deposited on a conductive 
substrate is used as a counter electrode for the development of dye-sensitized solar 
cells [24]. The schematic representation of the device structure to a typical DSSC is 
shown in Figure 2.

Figure 1. 
A systematic presentation of the photovoltaic effect [22].
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Figure 2. 
Schematic device structure of a typical dye-sensitized solar cell (DSSC).

Figure 3. 
A pictorial view of the operational principle of a typical dye-sensitized solar cell [26].
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The absorption of irradiance and charge separation is quite different in the 
dye-sensitized solar cell as compared to the classical p-n junction solar cell [25]. An 
electron transfer process of sandwich-type dye-sensitized solar cells is systemati-
cally represented in Figure 3. The whole working process of the dye-sensitized 
solar cell is explained in three steps (1) Photo-excitation, (2) Transportation, and 
(3) Regeneration.

When the sunlight falls on a dye-sensitized solar cell device, then the present dye 
molecules on the surface of the TiO2 layer (behaves like electron transport layer) 
absorb the incident photons and consequently excite the electrons. The excited 
electrons of dye which present above the conduction band of TiO2 are immediately 
injected into the conduction band of TiO2 and dye molecules get oxidized. At this 
stage, an electrochemical potential difference is generated between semiconduc-
tor oxide and electrolyte, and the electron density of TiO2 also is increased due to 
charge carrier transfer from dye molecules to metal oxide.

Now, these electrons transfer from metal oxide to counter electrode through 
the external load where these electrons further transfer to the electrolyte. Herein, 
reduction of the electrolyte takes place by converting tri-iodide (I3

−) into iodide 
(I−). Regeneration of dye molecules is occurred by receiving electrons from iodide 
and simultaneous oxidation of iodide to tri-iodide happens. Regeneration of I− is 
taken place by counter electrode so the whole cycle is regenerated. The flow of 
electrons through the external circuit generates electrical energy [27–29].

The chemical reactions that took place in the mechanism are given as below 
[30–33]:

2.1.1 The chemical reaction of dye-sensitized solar cell

 ( )Dye hv Dye Photoexcitation+ → ∗  (1)

 ( ) ( )CBDye TiO Dye e TiO Electron injection+ −∗+ → +2 2  (2)

 ( )2Dye 3I 2Dye I Dye regeneration+ − −+ → + 3  (3)

 ( )catalystI 2e 3I Electrolyte regeneration− − −+ →3  (4)

 ( ) ( )CBDye e TiO Dye TiO Recombination+ −+ → +2 2  (5)

 ( ) ( )CBI 2e TiO 3I TiO Back reaction− − −+ → +3 2 2  (6)

 Dye Dye∗→  (7)

2.2 Components of dye-sensitized solar cell

a. Substrate: Generally, a transparent conductive glass substrate is used for the 
fabrication of thin-film layers which could be employed as transparent con-
ducting oxide substrates to develop a device. The transparent conducting oxide 
can be either Fluorine doped Tin oxide (FTO) or Indium doped Tin oxide 
(ITO) [34]. FTO substrate is usually applied for DSSC owing to good conduc-
tion property, stability, durability, and low toxicity. Besides the conductive 
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glass substrates, the plastic materials, metal sheets, Ti foils are also useful sub-
strates for DSSCs and according to the device, architecture may be designed.

b. Photo-anode: In DSSC, the photo-anode is a wide bandgap semiconducting 
material e.g. TiO2, ZnO, SnO2, ZrO2, Nb2O5, Al2O3 are used as photo-anode for 
device development [35–41]. The main goal of these semiconductor materials is 
to absorb dye molecules and collection of the photo-excited electrons. Photo-
anode materials should have a high surface area so absorption of dye molecules 
could be increased which eventually enhanced the power conversion efficiency 
of the solar cell device concerned. The crystallite size, porosity, microstructure, 
etc. play an important role to develop an efficient device for maximum harvest-
ing of the incident irradiance. Typically, the DSSC photo-anode is prepared by 
conventional technique i.e. doctor blade but nowadays, many techniques are 
available which could be applied as per need and device architecture [42–46]. 
Doping of semiconductor material with suitable cation or anion also alters its 
optical energy bandgap, and post-deposition treatments like annealing affect 
the electrical, structural, and other relevant properties [47–49].

c. Counter electrode: The counter electrode (cathode) plays an important role 
in the regeneration of electrolytes by transporting electrons to the electrolyte 
which arrived externally from the circuit. Thus, the counter electrode should 
have good conductivity and catalytic activity. Platinum (Pt) is normally pre-
ferred to choose as a counter electrode for dye-sensitized solar cells [50]. The 
high cost and corrosion of Platinum limit its use and therefore, alternative 
options could be undertaken for counter electrodes. Carbon and conducting 
polymers (PEDOT) are also suitable materials due to their low cost, abundance, 
and adequate conductivity but their catalytic activity is lower as compared to the 
Platinum [51, 52]. Besides these, NiS/rGO, polypyrrole (PPy), Co0.5Ni0.5Se/GN, 
and WO2 are utilized as counter electrodes for dye-sensitized solar cells [53–56].

d. Electrolyte: The function of electrolyte is to regenerate dye molecules and 
to work as conducting medium. Electrolyte plays important role in achieving 
higher efficiency of a solar cell. Based on the physical state, the electrolytes 
are classified into three main categories as a liquid electrolyte, quasi-solid 
electrolyte, and solid electrolyte [57]. As a liquid, triiodide/iodide (I3

−/I−) is 
mostly used as a redox couple because of the fast regeneration of the dye and 
slow recombination process in the dye-sensitized solar cell. Other electrolytes 
are also available like Br−/Br3

−, SeCN−/(SeCN)2, SCN−/(SCN)2, Co (II)/(III), 
Cu (I/II) etc. [58–60]. To overcome the problem of volatilization and leakage 
of liquid electrolytes, the quasi-solid and solid electrolytes are explored. Quasi 
solid electrolytes are organic liquid polymers that are converted into gel form 
by chemical and physical reactions that have cohesive nature and diffusive 
transport properties [61]. As solid electrolytes, mainly hole-transporting 
materials (HTM) are used viz. spiro-OMeTAD, CuSCN, CuI, P3HT, PEDOT, 
CsSnI3 which can overcome the issue of leakage, corrosion, and salvation for 
DSSCs [62]. In HTM or semiconductors, charge transportation takes place via 
electrons or holes while in electrolytes, it takes place through ions.

e. Sensitizer: Dyes play the important role of photo-sensitizer in DSSCs where a 
self-assembled layer of dye is anchored on the surface of the photo-anode. When 
sunlight strikes on dye molecules then these dye molecules absorb photons and 
consequently, the photoexcitation of electrons occurs which injects electrons 
into the conduction band of the photo-anode. Based on the composition used 
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in dye, it is classified into three main categories viz. metal complex, metal-free 
organic complex, and natural sensitizer [63]. Ruthenium-based sensitizers are 
remarkable for achieving higher efficiency in dye-sensitized solar cells [64, 65].

3. Outdoor performance and stability of dye-sensitized solar cell

In outdoor conditions the main factor that affects efficiency is temperature. 
In this section different solar radiation illumination was discussed. The stability 
of dye-sensitized solar cell is mainly influenced by electrolyte, liquid electrolyte 
exhibit higher efficiency but the volatile nature of liquid electrolyte degrades solar 
cell and therefore stability of the cell reduces.

Yuan et al. [66] tested outdoor application of DSSC for Building Integrated 
Photovoltaics (BIPV) application where a time duration of four years was taken into 
consideration. Here dye Z991 and Z907 were used for cell fabrication where the first 
one harnesses 15% more electricity over the later one for two years. Given the stabil-
ity of the device, the efficiency of dye Z991 based solar cell decreases to 17% for the 
initial two years thereafter efficiency remains stable for the remaining two years. 
Moreover, the Z907 based DSSC device is out of the use or degrade after four years 
in outdoor application. The stability of Z991 over Z907 is due to the presence of 
thiophene moieties in Z991 i.e. responsible for better energy harvesting and thermal 
stability. When the solar irradiance increase there is no linearly incremented in 
electricity generation for irradiance of lower than 20 Wh.

Kato et al. [67] synthesized dye-sensitized solar cells with N719 dye, TiO2, and 
carbon counter electrode and tested durability test in the outdoor working condition 
for a time duration of 2.5 years. The DSSC modules were developed monolithically 
series interconnected on the TCO substrate and covered by a waterproof cover. Before 
the exposure to sunlight, the device reveals 0.32 and 0.71 suns from the current–volt-
age curve and power-voltage curve. During the stability test voltage was approxi-
mately kept around 1.6 V. The solar parameters such as JSC fall for 5 months thereafter 
it remains constant for left years and efficiency decreases/degrades subsequently 
decrement in VOC and FF. Additionally, EIS reveals exposure of cell in outdoor 
increases the Nernst impedance of triiodide and Raman spectra also reveals increment 
in luminescent ingredients of electrolyte, therefore, VOC and FF decreases in outdoor 
condition. Berginc et al. [68] outdoor exposed ionic liquid-based dye-sensitized 
solar cell for 7 months in solar radiation of 906kWh/m2. In the summers maximum 
VOC is obtained in the early morning and on an autumn day when days are shorter 
and temperature is lower that time JSC of cell increases. Park et al. [69] observed the 
change in film thickness effects J-V curve (Figure 4) of TiO2 based solar cell under 1 
sunlight intensity. On increasing the thickness, the JSC of the cell increases from 6.6 
to 10.7 mA/cm2 i.e. about 62% whereas the fall down in VOC is 759 to 727 mV due to 
increases in surface area that accounts for more dye molecule absorbing.

Asghar et al. [70] developed dye-sensitized solar cell and tested in outdoor 
condition as well comparison with silicon cell was carried out. Here the lower 
irradiance and higher temperature are suitable for DSSC, at these parameter DSSC 
harvest more energy instead of silicon solar cell. The efficiency of DSSC decreases 
as time duration increases. Moreover, the device that was fabricated by employing 
MPN as an electrolyte degrades fast whereas ionic liquid-based devices are more 
stable and constant efficiency was observed for two months then degradation 
initiates. The thermal influence of dye-sensitized solar cells was studied by Matsui 
et al. [71] where the current collecting study was done. When the temperature was 
maintained at around 85° C leakage of ionic liquid does not occur but the long-term 
stability of the device is strongly affected by moisture. Therefore double-sealed 
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package for the device was invented and a test on substrate size of 50 mm × 50 mm 
was used where 85° C temperature was maintained for 1000 hours and stability 
was observed. Bella et al. [72] designed fluoropolymer and rare elements-free 
light shifting coating systems for dye-sensitized solar cell devices. The introduc-
tion of fluorescent species in DSSC downshifts UV photons into visible light that 
significantly improves PV efficiency by 60%. The improvement in efficiency is 

Figure 4. 
The effect of film thickness on the J-V curve of DSSC. Reprinted with permission from ref. [69] copyright 
(2000) American Chemical Society.

Figure 5. 
The J-V curve for DSSC with the different counter electrodes. Reprinted with permission from ref. [73] 
copyright (2012) John Wiley and Sons.
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accountable for improvement in photon flux i.e. caused by the introduction of 
luminescent agent that results from nanometric light shifting in organic dyes. Now 
the outdoor long-term stability was measured for 3 months where the introduction 
of a light shifting agent preserves the power conversion efficiency of the solar cell.

Freitag et al. [74] demonstrated dye-sensitized solar cells with dye D35 and 
XY1 were copper-based redox electrolyte is used. At the AM of 1.5 G, the observed 
PCE is 11.3% and under 1000 lux indoor condition it achieves 28.9%. The obtained 
results point out DSSC are suitable for ambient light condition. Mehmood et al. 
[75] constructed DSSC with an organic photosensitizer. The PCE of the cell was 
2.58% at 25°C in air mass of 1.5 G and illumination of 100 mW/cm2. The increment 
in temperature falls down the efficiency of this solar cell it is stable up to 35°C. 
Wu et al. [73] demonstrated dye-sensitized solar cells with an area of 100 cm2 and 
lightweight based on Ti substrates. Here PEDOT counter electrode is used which 
is having good transparency and electrocatalytic activity. The J-V curve (Figure 5) 
reveals the current density (ISC) of PEDOT-Pt/Ti is higher. The photoconversion 
efficiency was achieved about 6.69% and in an outdoor condition of solar radiation 
of 55 mW cm−2 0.368 W power output was observed.

4.  Spectral response/external quantum efficiency (EQE) response/
incident photon-to-current conversion efficiency (IPCE)

Generally, dye-sensitized solar cell photoresponse for a given incident 
wavelength of light and the result is depicted in form of varying wavelength 
and percentage of IPCE. When the current is generated through the response of 
photon that time characteristics peak appears at a particular wavelength. It is the 
ratio of generated electrons to the incident photons. Moreover, IPCE depends 
upon the yield of electron transfer and light-harvesting efficiency that causes 
quantum charge injection and electron quantum efficiency in the present external 
circuit of the device. In the case of DSSC, the measurement of IPCE clears that dye 
is well linked to photoanode and electrolyte. When incident photons are exposed 
on DSSC that time dye uptake electrons from photoanode and create electron–hole 
pair and holes are transmitted to the electrolyte.

The generation of photocurrent i.e. dependent on wavelength is known as 
external quantum efficiency (EQE) where AC and DC mode is used for the genera-
tion of the beam. In the case of DC mode irradiation of monochromatic beam on 
a sample is continuously carried out for 3 sec so electrons reach to steady-state. In 
AC mode monochromatic light is chopped by shutter and illumination of bias light 
on a sample is carried out. Jeong et al. [76] measured EQE of DSSC and tandem 
cell (DSSC/CIGS) in DC mode. The EQE spectra reveal in the wavelength range 
of 300–800 nm EQE of DSSC was observed and for tandem cells, EQE spectra are 
almost similar to DSSC. When Berginc et al. [68] DSSC was exposed to outdoor 
conditions for seven months, the EQE of the solar cell was measured. The peak at 
360 nm is accountable for absorption in the TiO2 layer, 380 nm for change in I3- and 
at 450 nm for dye molecules degradation.

Kubo et al. [77] developed a tandem structure-based solar cell that improves 
the photocurrent of dye-sensitized solar cells. The IPCE of tandem solar cells is 
relatively outstanding to single cells. Tandem solar cell has elevated solar response 
(good external quantum efficiency), photocurrent and conversion efficiency from 
single-cell as well lower VOC and higher FF was also observed. Park et al. [69] 
prepared homogeneous, crack-free, and rod-shaped rutile TiO2 thin films with 
having a thickness of 12 μm. The measurement of IPCE (incident photon-to-current 
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efficiency) till 600 nm wavelength indicated that a significant amount of light was 
absorbed very fast in few microns but at higher wavelength, the increment in IPCE 
was directly proportional to the film thickness see Figure 6. Rutile and anatase 
films were compared having similar thickness where photocurrent of rutile based 
solar cell was 30% lower vis-a-vis to the anatase phase owing to the less amount of 
absorbed dye, small surface area, and transportation of electrons was also slow for 
rutile thin film-based solar cells. Lepikko et al. [78] tested outdoor performance of 
DSSC for 1000 h in 1 sun. The efficiency and fill factor of cell rise in outdoor condi-
tion i.e. just double of indoor condition well-remaining of solar irradiance. The 
IPCE decreases about 30% during testing of the cell this is due to photodegradation 
of electrolyte see Figure 7.

Figure 6. 
The effect of a film thickness of TiO2 on IPCE value of a solar cell. Reprinted with permission from ref. [69] 
copyright (2000) American Chemical Society.

Figure 7. 
The IPCE curve of DSSC in harsh northern outdoor conditions. Reprinted with permission from ref. [78] 
copyright (2018) John Wiley and Sons.
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Roy et al. [79] studied the annealing of TiO2 nanotubes at 450°C for 30 minutes 
where the amorphous phase was converted into anatase. Post annealing and the 
TiCl4 treatments were carried in a closed vessel at 70°C for 30 min. SEM image 
of TiO2 nanotubes treated with TiCl4 confirmed uniform decoration with TiO2 
nanoparticles and IPCE of the decorated samples was found 66% with a conversion 
efficiency of 3.8%. The ultrathin nanosheets of SnO2 were introduced as photo-
anode in dye-sensitized solar cells for improvement in photoconversion efficiency 
by Xing et al. [80]. The nanosheets were developed by hydrothermal method and 
screen printed over FTO substrates, then a coating of TiO2 on SnO2 was performed 
to solve the problem of lower open-circuit voltage. The diffraction peak in XRD 
patterns revealed to the tetragonal rutile like SnO2 and FESEM images displayed a 
3D flowerlike structure. HRTEM images of nanosheets showed lattice fringes over 
the entire surface. The efficiency of the devices using SnO2 NSs-TiO2 was 1.79% 
and IPCE was 35% which was much higher vis-a-vis the devices made up of SnO2 
nanoparticles i.e. revealed by Figure 8.

Kumara et al. [81] employed natural dyes obtained from Ixora sp. (IX) and 
Canarium odontophyllum (CMB) which mainly contained anthocyanin that was 
used to improve the performance of DSSCs. The layered co-sensitization of dyes 
was carried out by firstly immersing TiO2 electrode in CMB extract followed by 
de-adsorption and then again immersed in second sensitizer IX for adsorption. The 
absorption spectrum of the co-sensitized electrode was increased as compared to 
the individual and mixture sensitized and similar results were obtained in IPCE 
measurement. The photovoltaic properties of the co-sensitized electrode were 
obtained under irradiance of 1000 W/m2 with a short circuit current density of 
9.80 mA/cm2, VOC of 343 mV, fill factor of 0.46, and photoconversion efficiency of 
1.55%. Gupta et al. [82] developed Cu/S co-doped TiO2 as a photoanode for dye-
sensitized solar cells. Here undoped TiO2 exhibits about 70.02% of IPCE whereas it 
increases further on codoping with Cu/S. 0.1% Cu/S exhibits 73.65% of IPCE and 
on increment, the 0.3% Cu/S exhibits 82.98% of IPCE at a wavelength of 530 nm. 

Figure 8. 
IPCE curve of DSSC with different photoelectrode. Reprinted with permission from ref. [80] copyright (2012) 
American Chemical Society.



157

Outdoor Performance and Stability Assessment of Dye-Sensitized Solar Cells (DSSCs)
DOI: http://dx.doi.org/10.5772/intechopen.98621

The improvement in IPCE is accountable due to the small size of particles and 
enhancement in short circuit current density (JSC).

Patni et al. [83] fabricated dye-sensitized solar cells with natural dyes. The 
natural dyes were used are anthocyanin, betalain, and chlorophyll obtained from 
the extracts of Roselle spinach beetroot respectively. At the wavelength of 430 nm 
6.21% IPCE was observed for anthocyanin dye and at 530 nm 9.9% of IPCE was 
measured for betalain and 6.1% IPCE was observed for chlorophyll-based dye at a 
wavelength of 660 nm. The blending or mixing of dye improves the IPCE. Wood 
et al. [84] reported the IPCE for different dye i.e. The cationic 1-hexyl-2,3,3-3H 
indolium acceptor dye (CAD3) dye exhibit IPCE of 50% and bodipy dye, it is 53% 
and for P1 54% was observed where the p-type dye-sensitized solar cell was fabri-
cated. This chapter comprised literature on the solar response of DSSC on exposure 
of induced photons. Different dyes exhibit a variation in photon-to-current conver-
sion efficiency. The higher the IPCE means the efficiency of the cell is a good and 
better amount of energy can be harvested by solar cell.

5. Conclusion

The dye-sensitized solar cell technology has an impact on the PV market owing 
to easy fabrication, cost, chemical stability, availability of chemicals, and good 
power conversion efficiency. In this chapter, we discussed the introduction of solar 
cells with working principles, complete elaboration of dye-sensitized solar cells, 
and outdoor performance and stability in different solar irradiations. Outdoor 
performance is affected by the temperature because on exposure to sunlight the 
temperature raise degrades the electrolyte and therefore stability and performance 
of the device decreases. Moreover, on rainy days the chances of degradation are 
increasing due to water or moisture, therefore, coating/layer of a suitable mate-
rial is carried out over the solar cell this also increases the long-term stability of 
the device. The IPCE of solar cells initially is higher but with time duration it falls 
due to cell degradation or leaking and for a long time it stabilizes without so many 
changes. This chapter emphasizes the efficiency of DSSC when it exposes the 
outdoor and solar response of DSSC.
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Abstract

In this chapter, we introduce the physic principle and applications of bifacial PV
technology. We present different bifacial PV cell and module technologies as well as
investigate the advantages of using bifacial PV technology in the field. We describe the
measurement and modeling of Albedo, which is one of the important factors for the
energy yield of bifacial PV technology. For an accurate assessment of the performance
ratio of bifacial PV strings, it is necessary to measure the albedo irradiance using an
albedometer or the front- and rear-side plane of array (POA) irradiance. We also
discuss the advanced techniques for the characterization of bifacial PV modules. By
means of simulation, we give insight into what boundary conditions result in new
bifacial technology gains and the influence of the mounting position of irradiance
sensors. We executed several simulations by varying the sensor positions on the rear
side of the PV modules, different places, different albedo numbers, mounting heights,
different geographical locations with various tilts, seasons, and weather types. To
validate the simulation results, we performed various experiments in the field under
different conditions. The results prove that the bifacial gain is highly dependent on the
mounting heights of PVmodules, tilt angles, weather conditions, latitude, and location.

Keywords: bifacial photovoltaics (PV) technology, bifacial solar cell, bifacial PV
module, bifaciality factor, solar radiation, Albedo

1. Introduction

In recent decades, photovoltaics (PV) technology has received more attention and
PV installation is being dramatically deployed. The PV capacity has been exceeded from
one Tera Watt (TW) in the world, which was an impressive milestone in solar energy
sector [1]. A novel development is the advent of bifacial PV modules that enhance
energy production by converting incident irradiance on the rear side of the module into
electricity.

Bifacial solar photovoltaics (PV) cells as a promising technology convert the
photons from albedo and incident irradiance into electricity [2]. The bifacial solar
PV cell collects the photons simultaneously from both its front and rear sides,
whereas the monofacial solar cells can only convert the incident irradiance on the
front side [3–5]. The bifacial PV technology as a novel approach to generating
electricity with higher performance was investigated by many research groups over
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five decades [6, 7]. This technology was first applied to the satellites by Russia [2]. In
1970s, Mexican and Spanish researchers released their progress results of bifacial solar
cells [8, 9]. Other Spanish research groups obtained the high efficiency and power gain
for bifacial PV cells in 1980s [10–12]. In 2000s, the bifaciality concept was introduced
for several applications, namely, noise barrier fences and shades [13]. In recent
decades, bifacial PV technology has been more considered commercially. In this
regard, various companies, such as Yingli Solar, bSolar, Sanyo, and PVG solutions, have
produced the bifacial PV modules [14] with different crystalline silicon (c-Si) bifacial
PV cell structures, such as PERC (passivated emitter rear contact), PERL (passivated
emitter rear locally diffused), PERT (passivated emitter rear totally diffused), IBC
(interdigitated back contact), and HIT (heterojunction with intrinsic thin layer).

Bifacial PV modules aim to improve the energy output of PV systems. This is
because of doubling the power output of PV through collecting both direct and
albedo radiation. Therefore, the bifacial solar cells increase the power density of PV
modules [15]. As a result, the PV module and balance of system (BOS) costs and
levelized cost of energy (LCOE) are reduced [16].

To date, several large-scale PV power plants were developed using the bifacial c-Si
PV modules. For example, a bifacial PV power plant with a capacity of 1.35 MWp was
installed in Hokuto city, Japan. The performance data of this plant demonstrated a
21.9% gain compared to a monofacial PV plant with an identical capacity [17].Table 1
summarizes the details of some bifacial PV power plants installed around the world.

The cell working temperature is decreased in bifacial solar cells compared to
monofacial ones resulting in maximizing the power output [18, 19]. However, the
combination of irradiance effect on both front and rear sides of bifacial PV cells
resulting a complexity to characterize both sides simultaneously under standard
test conditions (STC 1000 W/m2, AM 1.5 spectrum, and ambient temperature of
25°C). Figure 1 depicts a scheme of standard bifacial crystalline silicon solar cells.
As illustrated in Figure 1, an open metallization grid is printed on the front and
rear sides of the bifacial structure to be able to collect the incident irradiance
from both sides. In n-type bifacial cells, the back surface field (BSF) is nþ,
whereas the pþ diffused layer serves as the emitter, contrary to the p-type
bifacial solar cells. The texturized wafers and passivizing anti-reflective coatings
(ARC) are partially covered by screen-printed metallic contacts to achieve the
open metallization grid [19].

Location Module technology PV Plant
capacity (MWp)

Annual energy
production (GW h)

San Felipe, Chile Megacell, n-type BiSoN module
(BiSoN cell)

2.48 5.78

Eastern US Sunpreme, GxB370W (Hybrid Cell
Technology—HCT)

12.8 8

Hokuto, Japan PVG Solutions, EarthON 60
(EarthON cell)

1.35 1.47

Datong City,
Shanxi, China

Yingli Solar, n-type PANDA module
(n-Pasha cell)

50 80

Golmud, China LONGI Solar 20 —

Golmud, China Trina Solar 20 —

Golmud, China Jinzhou Yangguang Energy 20 —

Golmud, China JA Solar 11 —

Table 1.
The list of bifacial PV power plants using crystalline silicon (c-Si) bifacial modules [8].
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Table 2 summarizes different c-Si bifacial PV cell technologies, including the
cross-sectional schematics of each bifacial PV cell structure as well as the efficiency
and bifaciality of some cell technologies.

Figure 1.
Standard n-type and p-type bifacial crystalline silicon solar cells [2].

c-Si cell
technology

Description Schematic of the cell structure

Bifacial
PERC

• Acronym for passivated
emitter rear contact

• Efficiency: 19.4–21.2% (front),
16.7–18.1% (rear) [20, 21]

• Bifaciality: 80%[20]
• Mainly based on p-type

crystalline silicon (c-Si) wafer
• The cell structure was used for

studying the Shockley–Read–
Hall recombination velocity at
the Si–SiO2 interface [22]
between 1988 and 1991

• It was introduced as a new
bifacial PV cell in 1996 [21]

• ISF Hamelin [20] and
SolarWorld [23] demonstrated
the industrial bifacial PERC (or
PERC+) design for mass
production

PERL • Acronym for passivated
emitter rear locally diffused

• Efficiency: 19.8% (front) [24]
• Bifaciality: ≥89% [24]
• Mainly based on p-type c-Si

wafer
• Boron is locally diffused into

contact areas at the rear side
[25]

PERT • Acronym for passivated
emitter rear totally diffused

• Efficiency: 19.5–22% (front),
17–19% (rear) [26–28]

• Bifaciality: ≥85% [26, 29]
• Commercialized based on the

n-type c-Si wafer; also based
on p-type

• PVGS developed n-type
EarthOn cell in 2009 [29]
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c-Si cell
technology

Description Schematic of the cell structure

• ECN developed n-Pasha
(passivated all-sides H-
pattern) cell to reduce yield
loss; it was commercialized by
Yingli Solar as PANDA [26]

• N-MWT (Metal Wrap
Through) was also proposed
by ECN to narrow down
busbars and reduce metal
coverage

• ISC Konstanz developed BiSoN
cell and commercialized by
MegaCell

IBC • Acronym for interdigitated
back contact

• Efficiency: 23.2% [30]
• Bifaciality: 75%
• Mainly based on n-type c-Si

wafer
• No metal grid contact at the

front side, first introduced by
Bell Labs in 1954 [31]

• ISC Konstanz perfected the
production process and
introduced ZEBRA cell [32, 33]

• ECN proposed Mercury cell
with a front floating emitter
(FFE) [34, 35]

HIT • Acronym for heterojunction
with intrinsic thin-layer

• Efficiency: 24.7% [36]
• Bifaciality: ≥95% [37]
• Mainly based on n-type c-Si

wafer
• Introduced by Sanyo (now

Panasonic) in 1997 and entered
into the serial production
under the brand name HITs
[36, 38]

• Bifacial HITs cell was
introduced by Sanyo (now
Panasonic) in 2000 and
entered the serial production

• Basic technology patent was
discontinued and opened to
the public in 2010; Meyer
Burger adopted the cell
Technology [39]

DSBCSC • Acronym for double-sided
buried contact solar cell

• Efficiency: 22% [40, 41]
• Bifaciality: 74% [42]
• Plated metal contact is

entrenched in the laser-formed
grove

• Low resistance and low
shading losses, due to high
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In recent years, the bifacial module technology gets more attention in the PV
market and numerous attempts have been devoted to the standardization, niche
applications, characterization techniques as well as industrial production and costs.
The worldwide growth of c-Si bifacial PV cells and modules is predicted by the
International Technology Roadmap for Photovoltaic (ITRPV) and it is expected that
the bifacial PV technology (c-Si) will be increased by more than 35% by 2028 [46].

2. Albedo: measurement and modeling

Albedo as an important input for the surface energy balance equation [47], thus
affects the surface temperature. The speed of chemical and biological reactions is
increased due to heat. To overcome this, soil (as a surface) temperature is used to
predict the rate at which processes such as seed germination occur. Furthermore,
erosion rate and the water content of the soil depend on the ground albedo [48, 49].
This makes albedo utter importance for different environmental processes (e.g., food
production) [49]. The local albedo is an influential factor in the heat-island formation
that affects public health, namely, air quality and greenhouse gas concentration [50].
Moreover, the energy usage during warm seasons by occupants is related to the value
of local albedo [49]. Furthermore, albedo directly influences the electric energy
generated by the PV system. Therefore, knowledge about albedo is significant for
accurate yield predictions for PV systems, resulting in minimizing technical risks and

c-Si cell
technology

Description Schematic of the cell structure

metal aspect ratios and lightly
diffused emitter [40]

Silver • Developed at the Centre for
Sustainable Energy Systems,
Australian National University
[43]

• Efficiency: 19.4% [43]
• Narrow grooves are created via

conventional micro-machining
technique, forming a series of
thin silicon strips [44]

• Reduces silicon consumption
by up to a factor of 10 [44]

BICONTY • Acronym for bifacial
concentrator n-type

• Efficiency: 17.6% (front),
16.7% (rear) [45]

• Based on the laminated grid n-
type solar cell [45]

• Silver free—uses copper wire
coated with low-temperature
solder, resulting in very low
shadow loss and resistance loss
[45]

Table 2.
Summary of c-Si bifacial PV cell technologies [8].
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cost as well as enhancing service life. However, albedo has received less attention so
far due to its complexity and minor share in irradiation stroked on a surface of a
monofacial PVmodule. In this regard, albedo is either neglected [51] or assumed to be
a constant value [52] in the modeling of PV systems. However, nowadays there are
increasing trends of bifacial PV installations and urban PV integration [53], where
albedo’s contribution to electrical yield becomes more significant [54, 55]. Therefore,
better understanding, precise measurements, and accurate estimation of albedo are of
utter importance and should be further considered.

2.1 Albedo

Surface albedo1 is a unitless variable defined as the ratio of the solar radiation at
a certain wavelength range reflected from a particular surface (upwelling) to the
solar incident upon it.

α ¼ Φdownward
S

Φ
upward
S

(1)

where α is surface albedo, Φdown
S and Φ

up
S are the incoming global radiant fluxes

(W) on the down-facing and up-facing sides of the surface S, respectively. Albedo
and reflectance are not the same, although often interchangeably used or even
misinterpreted. Surface albedo is an angular and spectral integrated value of the
spectral bidirectional reflectance distribution function (BRDF):

BRDFλ ¼ ρ θi,ϕi, θr,ϕr, λð Þ ¼ L θi,ϕi, θr,ϕr, λð Þ
E θi,ϕi, θr,ϕr, λð Þ (2)

where BRDF is the ratio of observed radiance L to incident irradiance E at a
wavelength λ under certain viewing geometry (θi and φi are, respectively, zenith
and azimuth angles at the incident direction; θr and φr represent zenith and azimuth
angles, respectively, at the observing direction). Albedo (as a measure used in
energy calculations) is normally shown with the Greek letter α, while reflectance (as
a property of a material) function is shown by ρ.

Albedo becomes important in the surface energy balance since radiation contains
energy. Therefore, it plays a key role in the regulation of earth’s surface energy budget
[56]. For a piece of land, surface albedo is highly variable, both spatially and tempo-
rally. Variations in land coverage and surface conditions, such as snow [57], vegetation
[58], urbanization [59], soil moisture [60], sky condition, and position of the Sun,
(such as cloudiness [61]), change surface albedo significantly. Thus, surface albedo not
only depends on the surface features but also on almost everything that forms the
surrounding of surface. In simple terms, at every instant of time, albedo depends on
three key factors, namely, material, light source features, and geometry2 [62].

2.2 Albedo measurement (in situ and satellite)

Albedometer consists of two back-to-back mounted pyranometers and is used
for in situ measurements of local albedo. The upper sensor measures the incident
global solar radiation and the sensor at the bottom side measures the solar radiation
reflected from the surface (s) below. Dividing the obtained value from the bottom

1 Albedo in Latin means whiteness, introduced by Johann Heinrich Lambert in 1760.
2 Here means arrangement of the surrounding objects in a three-dimensional space.
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sensor by that from the upper one gives the value of the albedo at a certain location
and time [63]. Figure 2a depicts a real albedometer and its schematic is illustrated
in Figure 2b. The view factor from the albedometer to the target surface makes an
influence on the measurement result; hence, the correct distance from the target
surface should be opted. Besides, one instant measurement usually does not give the
correct average value of albedo, since albedo changes over time. Therefore, long-
term measurements of albedo are required. Moreover, the shadow casted by the
albedometer itself can reduce the accuracy of the measurement due to the irradi-
ance impinging on the target surface will be different from the incident irradiance
on the top pyranometer. The influence of the albedometer shadow on the measure-
ment accuracy depends on the view factor from the albedometer to its shadow [64].
Typically, it is suggested to run albedo measurements during cloudy days to reduce
this effect [62]. However, while assessing albedo for larger areas and broader scales
is of interest, satellite data are often processed, namely, MODIS (Moderate Resolu-
tion Imaging Spectroradiometer) instrument on EOS Terra satellite is used to
remotely sense the land albedo of regions on earth.

Satellite albedo data usually have high resolution (in a range of Km). The satel-
lite scans a region on earth once every one or two days [65]. Since albedo is changed
over time, hence by the time that a satellite passes over a region on earth and
records the albedo, the recorded value may not represent the mean land albedo of
the targeted region. However, repeating this procedure for decades gives vital
indications of albedo trends for a specific region on earth.

Satellites observe a combined result of the atmosphere and land surface interac-
tions. Therefore, surface albedo is typically retrieved from multispectral optical
data considering the viewing geometries. There are common approaches and algo-
rithms used for estimating land surface albedo from satellite optical data. This
comprises three following steps—(i) atmospheric correction to filter out the effect
of the atmosphere, (ii) BRDF modeling to account for the reflectance anisotropy
effect of the land surfaces, and (iii) narrowband to broadband conversion to obtain
broadband albedo from spectral albedos, which is available only at certain satellite
measurement channels [66].

2.3 Local Albedo models

Most of the local albedo models have been developed between 60’s and 90’s.
The local albedo models rely on empirical coefficients based on long-term data
measurements. By the end of 90’s, first albedo observing satellites that were orbiting

Figure 2.
(a) A real albedometer installed on a grass field during landscape survey for photovoltaic installation, and (b)
simple schematic of albedometer placement. If the albedo surface A1 is of interest, surface A2 will also make an
influence on the measurement.
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the earth shifted the attention of researchers to the development of algorithms for
albedo retrieval from satellite data [67]. However, satellite-derived albedos do not
offer enough resolution for complex topography with highly spatial variations, such
as in urban areas, where micro-climates and sustainable energies are hot topics
[68, 69]. Here, we have reviewed the main local albedo models.

The simplest albedo models are the constant albedo assumption and mean mea-
sured albedo, which, respectively, suggest that constant albedo of α = 0.2 and
α = αsite can be applied to all the sites [70, 71]. The constant albedo model may
include a considerable error in different situations. The mean measured albedo
model demands long-term monitoring of albedo for each site, which is practically
impossible.

Another albedo model is the zonal albedo model, which works based on polyno-
mial expressions for the latitude range of 20° < φ ≤ 60° in North America: α ¼Pi¼3

i¼1αiφi , (φ is in degrees). The empirical coefficients (αi) are determined monthly
and have been presented in ref. [72]. The drawback of this model is that it cannot be
used for local albedo estimation and only is valid for North America. Next model is
the Nkemdirim model [73], which describes albedo as a function of solar elevation: α
= α0 exp (b�θz), where θz is the solar zenith angle in degrees, and α0 and b are site-
dependent coefficients based on the ground characteristics that should be measured
for each location. For this model, the accuracy is dependent on the in situ estimated
coefficients. Beam/diffuse albedo as a more advanced model separates albedo into its
beam (αb) and diffuse components (αd), as: α= f(αb, αd). This modeling approach
requires site-dependent coefficients, which must be determined experimentally for
every site [74].

One of the most widely used albedo models is based on the isotropy assumption.
This model theoretically outputs the albedo using: α = 0.5�α1(1�cosβ), where α1
denotes the albedo coefficient of the site and β is the tilt angle of the surface [75].
This model cannot distinguish the albedo difference for times with equal amounts
of global horizontal irradiance and only can consider different values of direct and
diffuse components. In this model, the empirical factor of [1+sin2(Z/2)](|cos θ|)] is
applied as a correction factor for anisotropy of the surface reflection [76], which is
called Temps and Coulson model.

A more sophisticated model that does not need empirical coefficients has been
developed based on the roughness of the surface and the geometry of the sur-
rounding, reflectivity of the materials, and the sky condition. All these parameters
are fed into one coherent equation: α =

P
Ri [Ci�FS!Ai1 + (1/(H+1))(Ci

’�FS!Ai1 +
FS!Ai2)], where R is the spectral reflectivity of the materials forming the surface,
FS!Ai1 and FS!Ai2 are, respectively, the view factors from the albedometer to the
sunny and shaded parts of the target surface. H is a coefficient dependent on the
position of the Sun and the beam and diffuse components of the sunlight. Ci and
Ci

’ are probability-based coefficients calculated by knowing the roughness of
the target surface. This model provides better accuracy compared to other local
albedo models. This model does not require an empirical coefficient, and also
mathematically proves albedo of a surface is always lower than or equal to its
reflectivity (α ≤ R) [62].

3. Indoor characterization of bifacial PV module

For the characterization of bifacial PV modules, the definition and regulation of
Standard Test Conditions (STC; 1000 W/m2 Global irradiance, AM1.5G spectral
irradiance, and cell temperature at 25°C) should be extended to consider the
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spectral and irradiance on rear and front sides of PV modules. In 2019, IEC TS-
60904-1-2 was prepared to address the requirements for the characterization of
bifacial PV modules [77].

3.1 Single-light source

The single-sided (separate) measurement under STC is a method for indoor
characterization of bifacial PV modules, as described by the following equations.
In the first step, BiFiIsc is computed according to Eq. (3) [78]:

BiFiIsc ¼
Isc,rear
Isc,front

(3)

This equation represents the ratio of the short-circuit currents for the front and
rear sides of bifacial PV modules. Then BiFiIsc is applied in Eq. (4) to calculate the
bifacial equivalent irradiance, GE:

GE ¼ 1000Wm�2 þ BiFiIsc �Grear (4)

GE considers the additional contribution of rear-side irradiance on top of the one
Sun front irradiance. Subsequently, the front side of the bifacial PV module is
flashed with the higher irradiance level of GE to obtain the bifacial maximum power
and efficiency [78]. In this method, the unintended current contribution from the
non-illuminated side, which is associated with the reflected irradiance from the
surroundings to the optical properties of the module, and to the geometrical dispo-
sition of the cells, must be avoided. A common practice involves covering the non-
illuminated side of the bifacial module with a black mask [79, 80]. The contribution
of unintended illumination could still result in 15% increase in maximum power
when using the setup with a black curtain as the background and the rear side of the
bifacial PV module covered by a black mask. G. Razongles et al. [81] have derived
equations to extrapolate the maximum power rating of bifacial PV modules
corresponding to the front- and rear-side illumination. The main equations are
given as:

Pmax Sð Þ ¼ S� f � Pmax (5)

S ¼ Gfront

1000
(6)

f ¼ 1þ a� S� 1ð Þ þ b� lnSþ c� S� 1ð Þ2 þ d� lnSð Þ2 (7)

Eqs. (4) and (5) were taken from the PV method. The number of Suns, S, refers
to the ratio between frontside irradiance and the STC value (1000Wm2). Eq. (7) is
the polynomial function of the Neperian logarithm; a, b, c, and d are constants. The
parameter f represents the “irradiance coefficient.” Pmax is maximum power,
which was measured by flashing the front side at an equivalent irradiance, as
described in Eq. (8):

GE ¼ Gfront þ Gback � Isc,STC,Back
Isc,STC,front

(8)

Alternatively, Corbellini et al. [82] calculated the bifaciality factor using the STC
power of the front and rear sides, which is expressed in Eq. (9):

175

Bifacial Photovoltaic Technology: Recent Advancements, Simulation and Performance…
DOI: http://dx.doi.org/10.5772/intechopen.105152



BiFiPmax ¼ Pmax ,rear

I max ,front
(9)

Accordingly, the unintended irradiance on the non-illuminated side has been
quantified that is included in the single-sided power measurements (STC). It was
measured repeatedly using a reference cell at several positions on the non-
illuminated side. The irradiance ratio on the positions concerning the irradiance on
the illuminated side was calculated. This was also measured by a reference cell. The
lowest ratio was taken to correct the power measurements (STC) for both the front
and rear sides. Moreover, Singh et al. proposed other equations based on the one-
diode equivalent model [83] to calculate the power and efficiency of bifacial PV
modules.

3.2 A single-light source with reflector or mirrors

Using a reflector that can be located closely behind the rear side of the module, it
is possible to obtain the bifaciality of bifacial PV modules. However, a reflective
white sheet or background yields irreproducible results. The rear-side illumination
condition mostly depends on the reflector properties and light source geometry.
Moreover, it depends on the transmittance of the PV cell and module. This
probably led to possible difficulties in the quantification of these effects and their
standardization [84].

Razongles et al. [81] have used a similar setup (see Figure 3) to the Bifacial Cell
Tester (BCT) [85]. Soria et al. [86] have conducted bifacial PV mini-module (of
four cells) characterization using an identical setup. As shown in Figure 3, to reduce
the influence of angle, it is possible to optimize the angle between the bifacial PV
module and the mirrors (e.g., 44.1° instead of 45°) [86]. Hitherto, this setup has not
been scaled up for full-size bifacial PV module characterization.

3.3 Double-light source

For the characterization of full-size bifacial PV modules, new setups with two
light sources have been proposed by industrial partners. For instance, Eternal Sun
has proposed a setup including two identical units of the solar simulator (see
Figure 4a) [81]. In this method, a full-size bifacial PV module is sandwiched
between both solar simulators for characterization. In another method, an inte-
grated setup (see Figure 4b) with two independently controlled xenon flashers
(solar simulators) was proposed by h.a.l.m. elektronik [84]. In this technique, the
full-size bifacial PV module (under characterization) is secured inside a test

Figure 3.
Two-mirror setup for bifacial PV module characterization [81].
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chamber. Theoretically, both solar simulators are controlled simultaneously by a
single control system to avoid systematic error due to lagging or mismatch between
the flashing sequence of the simulators. It is also possible that illumination on one
side of the bifacial PV module will interfere (constructively or destructively) with
the illumination on the other side of the module through transmittance and reflec-
tion of irradiance between and through cells, thereby introducing irradiance non-
uniformity and inconsistencies. A commercial double-light source solution has been
proposed by Swiss company Pasan SA (subsidiary of Meyer-Burger Technology
AG) by merely doubling its existing multi-lamp Xenon module simulator. In this
method, the distance between the two light sources is approximately 16 meters.
This helps to reduce the interferences between them.

However, replacing the xenon lamp with LED light led to enabling variation of
spectral irradiances [87, 88]. This aims to enhance the prediction of real-world
performance or simulate the rear-side irradiance conditions that are probably closer
to the diffuse component of AM1.5G than AM1.5G itself (the standard reference
irradiance for both front and rear sides of the module, according to the draft version
of IEC TS 60904-1-2). The LED-based solar simulator achieving Class AAA has
been made commercially available but is yet to be adapted for simultaneous
illumination (double-light sources). In summary, the main fundamental challenges
would be related to the spatial requirement and the cost of deploying two solar
simulators. Therefore, for justification of the measurement results’ accuracy, it is
recommended to conduct a cost-benefit analysis for the required setup cost.

4. Simulation of bifacial gain for latitude, tilt, and weather

The bifacial gain defines as an additional amount of power generated by a
bifacial PV module over a similar monofacial PV module. The amount of bifacial
gain depends on many factors, namely, ground albedo, the height of mounted PV
module, the ground coverage ratio, the bifaciality factor of the PV module, and the
angular distribution of the incident light. This angular distribution changes with the
solar position, influenced by the time of day, season, and location on the earth, as

Figure 4.
(a) A bifacial illumination setup using two identical solar simulators, proposed by Eternal Sun [81], and (b)
A bifacial illumination setup proposed by h.a.l.m elektronik [84].
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well as by the weather (diffuse cloudy sky as opposed to clear sky). Here, we
investigate how big the influence of these factors is on the bifacial gain.

The performance ratio of PV plants with bifacial PV module technology is
determined by measuring the plane of array (POA) irradiance and also the irradi-
ance due to ground albedo. Some albedometers (e.g., produced by Kipp & Zonen)
can measure either the albedo or the front and rear sides POA, see Figure 5a.

Now, the question is that “to what extent does the position of the rear side POA
sensor influence the irradiance measurement?” To come to insight into what extent
the measurement position influences the irradiance measurement, we have
performed a simulation study using “Bifacial Radiance” software [89] on a bifacial
PV plant, as sketched in Figure 5b. The measurement position has been investi-
gated when it comes to the position on the rear side of fixed PV modules. Addi-
tionally, the measurement position for different albedos, locations (and
corresponding tilt), the heights of PV module, intra-plant positions as well as month
of the year and weather were investigated by several studies [90–92]. The main
simulation results of the sensor position are reported in the following sections.

4.1 Simulation method

In this study, the simulations have been executed using “Bifacial Radiance”
toolkit that was developed by NREL [89]. This toolkit uses ray-tracing technique to
simulate a set of bifacial modules that are either installed on a fixed or a tracking
mounting structure. The simulation was run starting at the settings reported in
Table 3. The general layout is shown in Figure 5b to yield the bifacial gain as a
function of albedo, height, and location of the site, impacting the tilt angle (here we
assumed the tilt angle is equal to the latitude) [93]. The simulation was run to yield
the cumulative yearly results. Moreover, the seasonal effect was investigated by
selecting certain days and months of the year with different weather conditions.
We have imported TMY weather data for the simulation [94].

The simulation was run to yield a distribution of POArear over the rear of the
bifacial PV module and to evaluate optimal positions for measuring irradiance.
Subsequently, it was investigated how robust is this value by first varying the
position within the PV plant. The position was moved from the edge of the PV
module toward the center of the row in a set of steps. Secondly the clearance height,
albedo was varied over a large range of values. Later, we assessed the effect of the
site location and tilt angle [93].

Figure 5.
(a) Kipp & Zonen Albedometer mounted above a white surface, and (b) Sketch of bifacial Modules mounted
on a fixed mounting structure in seven rows as used in the simulation.
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4.2 Results

4.2.1 Bifacial gain simulation results

Figure 6a and b shows the simulation results of albedo and clearance height.
With an increase in albedo, the bifacial gain is linearly increased. For small clear-
ance heights (i.e., modules mounted close to the ground), the bifacial gain also
linearly is increased. However, for larger heights, the changes of bifacial gain would
be more constant.

Figure 7a and b depicts the bifacial gain for a certain time, less than a year for
different seasons (1 month) and weather conditions (1 day). The results of bifacial
gain for different seasons show that the bifacial gain in summer is significantly
higher compared to the bifacial gain in fall or winter.

The weather condition influences the bifacial gain, namely, when the weather is
more cloudy then the bifacial gain is increased and vice versa. The seasonal

Setting Value Setting Value

Clearance height 0.8 m Albedo 0.3

No. of sensors 20 Orientation Landscape

Tilt 25° Rows 7

Azimuth 180° No. Modules stacked 4

Plant type fixed Modules per row 80

GCR 0.35 Location Riyadh S.A.

Table 3.
Simulation settings and parameters of the PV plant in bifacial radiance.

Figure 6.
Bifacial gain as a function of (a) the albedo and (b) the clearance height.

Figure 7.
Bifacial gain as a function of (a) the season and (b) the weather.
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conditions also influence the angular distribution of the irradiance incident on the
front and rear sides of the bifacial PV modules.

The bifacial gain as a function of location on the earth and the corresponding tilt
angle is shown in Figure 8. The higher tilt angles of PV module located at a higher
latitude resulted in a higher bifacial gain.

4.2.2 Sensor position simulation results

The cumulative yearly average irradiance on the rear side of the PV modules was
calculated using “Bifacial Radiance.” Figure 9a shows the results of located bifacial
PV modules in the center of the PV plant using the same input listed in Table 3.

The results from selected points in Figure 9a are summarized in Table 4.
As observed in Table 4, the pyranometer reading at the 68% position is matched with
the average incident irradiance on the PV module. An additional point close to the
bottom of the PV module would also be matched, but this point was not chosen since
the curve shown in Figure 9b is much steeper, whichmay lead to greater uncertainty.

The results of position effects are shown in Figure 9b, where the POArear was
plotted at the edge of a row of PV modules and at a set of positions closer to the
center of the row. As shown in Figure 9b, at the 4th module in the row there is
practically the same amount of irradiance on the rear of the PV module compared to
the modules located at the center. Figure 10 shows the position dependence of rear

Figure 8.
Bifacial gain as a function of the location with a certain latitude and a tilt angle equal to the latitude.

Figure 9.
(a) Position dependence of rear side irradiance, where the 0-meter position corresponds to the bottom of 4
modules and the 4-meter position to the top of 4 modules. The red line corresponds to the average incident
irradiance on the PV module and the green line corresponds to the 68% position, and (b) Position dependence of
rear side irradiance as a function of PV plant position (edge, 2nd, 4th, and center-mounted bifacial PV
modules).
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side irradiance as a function of clearance and albedo. As observed in Figure 10, the
best position for measuring POArear irradiance (using a pyranometer) is to be placed
sufficiently away from the edge of a row. In this context, when excluding the PV
module on the edge side, the shape of POArear only is slightly changed for different
positions in the PV plant. Therefore, we considered a 68% position given a value
corresponding to the irradiance average of the rear side of the bifacial PV module.

The variation of POArear irradiance for different clearance heights is shown in
Figure 10a, from a higher clearance height that led to a larger amount of irradiance
on the rear side of the PV module. As illustrated in Figure 10a, the POArear

irradiance is considerably changed when the clearance height is increased from
0.4 meters to 2 meters.

The variation of POArear irradiance for different albedos is shown in Figure 10b.
As expected, a higher albedo led to a greater irradiance on the rear side of the PV
module. The POArear irradiance does not change noticeably over the range of albe-
dos from 0.2 to 0.9. However, the results show that 68% position gives a reasonable
average.

The results for tilt, location, and different positions in the PV plant are shown in
Figure 11. We have considered different locations, namely, Amsterdam in the
Netherlands, Yinchuan in China, Salvador in Brazil, and Riyadh in Saudi Arabia. PV
strings have been located in different tilt angles in the selected locations, hence
there is a moderate variation in the rear side irradiance magnitude, and also in the
shape of the distribution. Therefore, the optimum position of the irradiance sensor
should not be strongly dependent on the location of the PV plants.

Figure 12 shows the results for a particular period of the year, certain weather
conditions, and different seasons. The results show that the influence of different
weather conditions is mostly in the magnitude of the POArear irradiance and less in
the shape of the irradiance distribution (see Figure 12a). For cloudy and semi-
cloudy weather conditions, there is more diffuse and less global irradiance in

Position [%] Epyranometer-Ē [%] Position [%] Epyranometer-Ē [%]

3 + 30 68 0

23 �18 83 +18

48 �19 98 +38

Table 4.
Results of the effect of pyranometer position on measured yearly average POArear.

Figure 10.
(a) Position dependence of rear-side irradiance as a function of clearance height (0.4, 1.2, and 2), and (b)
Position dependence of rear-side irradiance as a function of albedo (0.2, 0.5, and 0.9).
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comparison with a clear sky, which explains the difference in magnitude of POArear

irradiance.
As shown in Figure 12b, different seasons significantly influence the shape of

POArear irradiance. For April and July, there is the same amount of irradiance on the
rear side of the PV module compared to other ones. However, for higher positions,
greater POArear irradiance on the rear side of the PV module in July and April
compared to October and January. This is most likely influenced by the change in
solar zenith angle for these months, and to a lesser extent by the change in weather
conditions for the months of April and July. Furthermore, when looking at the
seasonal data as shown in Figure 12b, the irradiance is changed with the season
variations. This will have an impact on the optimal mounting position based on the
monthly data.

Table 5 presents the results of the difference between measuring at a position of
68% from the rear side and the average irradiance on the PV module for variation of
the different parameters. In other words, this would be the average POArear irradi-
ance difference measured by a pyranometer mounted on the bottom side at the
position of 68%. This scores well for changing albedo, height, interplant position,
and tilt. For changes in weather and season that are only for a particular period of
the year, the 68% position is less representative. This is due to only a particular
zenith angle range over a certain (short) period. Strategies for handling this situa-
tion can be accepted for a higher measurement uncertainty when looking at the
smaller time periods than a year, or alternatively by placing multiple pyranometers
at different positions on the rear side of PV modules.

Figure 11.
Position dependence of rear-side irradiance as a function of location and corresponding optimal tilt angles.

Figure 12.
(a) Position dependence of rear-side irradiance as a function of weather conditions, (b) Position dependence of
rear-side irradiance as a function of season.
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5. Performance measurement of bifacial PV modules

We performed some experimental measurements for validation of the irradiance
distribution on the back of a bifacial PV module at the Kipp & Zonen roof. To be
able to choose the optimal sensor(s) and their position(s) for the POArear irradiance
measurement, the simulations need to be compared to data from a real-world
measurement setup. This setup needs to provide POArear sensor data at multiple
module height positions as well as the irradiance contribution from the backside of
the bifacial module from the total measured module signal. A setup of three rows
was constructed where the first row was made of dummy modules for shading, the
second middle row contained the modules and sensors, and the third row consisted
entirely of modules to simulate proper reflection (as shown in Figure 13a). To
measure the position-dependent POArear, there are 6 Kipp & Zonen CMP11 and 6
SPLite 2 pyranometers mounted next to the rear of one of three bifacial modules
(Figure 13b).

The collected data from the six sensors were compared to simulations done in
the Bifacial Radiance software. In Figure 14, the simulation model fits well with the
measured data from the experimental setup.

The sensor output needs to be compared to the contribution from the POArear

signal of the bifacial PV module. Separating the rear side contribution from the total
incident irradiance on the PV module was achieved using different methods, each
having various following challenges:

Varied parameter |E68%-Ē| Varied parameter |E68%-Ē|

Interplant position 1.3 % tilt/location 5.3%

Albedo 2.8 % Weather 13%

Height 5.6 % Season 16%

Table 5.
Results of difference between irradiance measured at 68% position and average irradiance for parameter
variation.

Figure 13
(a) Top view of Kipp & Zonen module set up in three rows with two types of bifacial modules above a white
albedo surface, and (b) row of six CMP11 pyranometers for position-dependent irradiance measurements on
the rear module (red dot in (a)).
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1.Covering the front side of the bifacial PV module—module logs only POArear

irradiance.

2.Covering the rear side of one bifacial PV module—module logs only POA
irradiance. Subtracting the measured POA irradiance on the first module from
the second uncovered module.

3.Using a monofacial PV module with oriented POArear irradiance.

4.Measuring the POA and POArear ratio with irradiance sensors and applying it
to the PV module output.

It needs to be noted that the PV module output was measured as short-circuit
current.

5.1 Bifacial PV module: POArear signal separation methods

5.1.1 Front side of bifacial PV module (POA irradiance) covered

This method allows for an easy cut-out of the POA signal, the realization is
observed in Figure 15a. The major drawback is that it casts a uniform shadow on the
ground without light leaking through the solar cells. The difference between a
uniform and representative shadow was measured by placing two irradiance sen-
sors on the ground in the shadow and measuring with the covered and uncovered
PV module. The difference is 26–29% less irradiance in case of the uniform shadow.
This illustrates the effect of a representative shadow, the influence on the POArear

sensors that would be less than on the ground. This impact is more profound on the
measured POArear compared to the closer setup in the ground (0.5 m tested) and the
higher the albedo, as depicted in Figure 15b.

5.1.2 Rear side of bifacial PV module (POArear irradiance) covered

As shown in Figure 15b, we have covered the rear side of the bifacial PV
module. The idea behind this concept was to measure the POA irradiance from one
module by covering its rear side. This POA irradiance data were then subtracted
from the adjacent module, giving the POArear irradiance This method assumes the
POA is the same in both modules, although uncertainty may arise from imperfect
rear side covering, differences between modules, and slight differences in module
mounting angle, which led to acquiring different POA irradiance signal.

Figure 14.
Measured experimental data from six pyranometers are compared to the simulated model in Bifacial
Irradiance software as a function of height along the module.
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Furthermore, one module is still covered, which casts a uniform shadow. During the
day, this shadow extends under another module (from which POArear will be
extracted), reducing the amount of irradiance on its rear side would be absorbed in
comparison with the situation of the uncovered PV module.

5.1.3 Monofacial PV module with oriented POArear irradiance

This method is like the previous method, the advantage being the simplicity of
the experiment and set up to get the POArear irradiance. The monofacial module
needs to be a glass-glass module to let light pass through the solar cells to create a
representative shadow and similar heating of the module as in case of a bifacial one.

5.1.4 POA and POArear irradiance sensor ratio applied to the PV module output

The POA and POArear irradiance are summed up and calculated. This ratio in
percentage is applied to the bifacial PV module output. This method suffers the least
from the uniform shadow effect. Errors come from the spectral mismatch of the
sensors mounted on the front and rear sides of the module.

Among the aforementioned four methods, we have chosen method 2. Method 3
seemed the best but was not used due to the unavailability of monofacial glass-glass
modules at the time. The contribution of rear side of the PV module was calculated
through Eq. (10).

POArearRelative≈
BifacialPanel� BifacialPanelBackCovered

BifacialPanel� ΦISC
(10)

where ΦISC is the module bifaciality factor for short-circuit current. To make a
fair comparison with the sensors, both POA and POArear from each sensor are
needed. Each sensor was calibrated on the POA side before being turned around to
measure POArear. Having the relative POArear contribution from module and
sensors, the difference of the sensors to the module POArearRelative is calculated:

POArearRelative ¼ POArear
POAþ POArear

(11)

Figure 15.
(a) Measuring POArear irradiance with the front side coverage of the PV module , and (b) Measuring POA
irradiance with the rear side coverage of the PV module. This is then subtracted from the output of the second
uncovered module.
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Thismethod is extremely dependent on the accuracy of the POA irradiance sensors.
The POA sensors need to be leveled and oriented precisely as same as the orientation of
themodule. Evenmore critical, the two PVmodules need to be perfectly aligned;
otherwise, their relative performance is changed as the sunmoves over the day.

In this study, only data from 12:00 to 13:30 local time from each day has been
used. This is due to the POA irradiance sensor error mentioned above and due to
shadowing from surrounding structures outside of these hours.

5.2 POArear irradiance on module and sensor comparison

Data were taken from the setup having various module tilt angles (30°, 45°, and
60°) ground covers (white fleece, artificial grass, and roof stones) and experiencing
various weather conditions. Generally, the POArear irradiance contributions are
higher during cloudy and overcast weather compared to sunny conditions (see
Figure 16). This is due to a significant reduction in POA contribution. The highest
POArear contributions are obtained at the lowest angle (30°) and highest albedo
using the white fleece (days from 21-5-20 to 25-5-20; see again Figure 16). The
sensor readings have a higher spread during sunny weather conditions due to the
higher direct light contribution, as on the day of 23-5-20 (see again Figure 16). The
lowest sensor (#6) receives the most irradiance because of higher incident direct
light on it compared to other sensors. In cloudy weather conditions, there is only
diffuse irradiation, so the spread of the sensor’s output is narrow (day 24-5-20; see
again Figure 16). This is also the case at the highest setup tilt angle (60°) where the
effect of direct reflected irradiation is reduced (from day 30-5-20 onwards; see
again Figure 16). Pyranometers at positions 3 and 4 (60% and 40% of height of
module) have the best overlap with the module data.

6. Discussion and conclusions

In recent decades, photovoltaics (PV) technology has received more attention
and PV installation is being dramatically deployed. The PV capacity is being

Figure 16.
The comparison of SP Lite2 irradiance sensors and the bifacial module in POArearRelative under various tilt
angles, surface coverages, and weather conditions (only data between 12:00 and 13:30 local time has been
considered).
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approached to one Tera Watt (TWp) in the world. A novel development is the
advent of bifacial PV modules that enhance energy production by converting inci-
dent irradiance on the rear side of module into electricity. In this chapter, we
discussed the physics principle and applications of bifacial PV technology. As
discussed, PV plant design considerations influence the bifacial gain. Furthermore,
an expected linear relation between the albedo and the bifacial gain was demon-
strated in this chapter. Moreover, we proved that mounting the modules at higher
heights has a large effect compared to the installed module at a lower height, but
once the modules are mounted more than 1.5 meters from the ground, the effect
was reduced. To improve the bifacial gain for a particular site, the design of PV
strings should be considered by selecting a site with a higher albedo or increasing
the albedo artificially by terraforming, for example, using white fleece or stones as
ground cover, or regularly moving the vegetation.

We have also discussed that besides the PV plant design, the location and
weather conditions play a vital role in the bifacial gain. As shown, at higher lati-
tudes, where corresponding larger tilt angles are used the bifacial gain has been
increased. This is most likely caused by the larger tilt of the modules, which ensures
that more diffuse irradiance can be absorbed by the rear side of PV modules as well
as more soil that scatters direct irradiance from the sun.

In cloudy weather conditions, bifacial gains have been increased, most likely
because cloudy conditions tend to have a larger diffuse component in the sky
irradiance compared to clear conditions. In addition to that, the direct component
in cloudy conditions was decreased thereby significantly reducing the front side
irradiance on the PV module. Therefore, it can be said that in the locations with
higher tilt angles as well as more cloudy weather, the position percentage is
increased in power output by installing bifacial modules instead of monofacial ones
that are greater than for lower tilt angles and clear weather.

However, as clear weather and lower tilt angles (latitudes) promote a higher
absolute energy generation, the kilowatt-hour (kWh) gain might be larger in clear
weather and lower latitudes as opposed to larger latitudes or cloudy conditions.

It should also be mentioned that there is a seasonal component to the bifacial
gain, namely, in the summer months there is a larger bifacial gain than in the winter
months. This is most likely due to the increasing irradiance of the land close to the
modules with higher sun angles as it is typical in the summertime. In this way, the
POArear irradiance of the module is increased as more light scatters from the surface
to the rear side of the bifacial PV module.

In summary, in this chapter, we also presented the advantages and performance
measurements of bifacial PV technologies. We discussed the recent characterization
techniques of bifacial PV modules. Furthermore, for accurately knowing the perfor-
mance ratio of PV strings with bifacial modules, we explained how to measure the
irradiance due to ground albedo. This can be performed with either an albedometer
or the front and rear-side plane of array (POA) irradiance very accurately.

By means of simulation using Bifacial Radiance software developed by NREL,
we investigated insight into what boundary conditions result in new bifacial tech-
nology gains and the influence of the mounting position of irradiance sensors. To
this end, we performed different experiments by varying the sensor positions on
the rear side of the PV modules in different locations within the PV plant, different
albedo numbers, mounting heights, as well as different geographical locations with
different tilts, different seasons, and weather types, are investigated. Validation of
the results of the simulation using multiple sensors in the Kipp & Zonen roof setup
was presented.

Simulation results demonstrated that the irradiance on the rear side of the PV
modules varies strongly with its positions. The results also proved that the rear side
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irradiance distribution and magnitude were varied with albedo, clearance height,
and tilt. For the plant of four landscape-positioned modules above each other, an
installation position on the rear side of the module at approximately 68%
represented the average irradiance well in case of cumulative yearly results. We
recommend that for other designs a similar optimal position for yearly results can
be found but at a slightly different position.

According to the results, we advise to install the POArear sensor (s) significantly
away from the start or end of a string. Seasonal results or results for a day with
weather showed significant changes in the rear side irradiance pattern, impacting
the optimal sensor position for seasonal analysis. A possible mitigation strategy is to
use multiple pyranometers at different positions.
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Chapter 9

Photovoltaic Power Forecasting
Methods
Ismail Kaaya and Julián Ascencio-Vásquez

Abstract

The rapid growth in grid penetration of photovoltaic (PV) calls for more accu-
rate methods to forecast the performance and reliability of PV. Several methods
have been proposed to forecast the PV power generation at different temporal
horizons. In this chapter the different methods used in PV power forecasting are
described with an example on their applications and related uncertainty. The
methods discussed include physical, heuristic, statistical and machine learning
methods. When benchmarked, it is shown that physical method showed the highest
uncertainties compared to other methods. In the chapter, the effect of degradation
on lifetime PV power and energy forecast is also assessed using linear and non-
linear degradation scenarios. It is shown that the relative difference in lifetime yield
prediction is over 5% between linear and non-linear scenarios.

Keywords: Degradation, Lifetime, Photovoltaic, Power, Forecasting

1. Introduction

The current trends in photovoltaic (PV) deployments worldwide are a clear
indication that PV energy will play a big role in the near future energy mix. For
example, the global solar photovoltaic (PV) capacity is projected to increase by
37.5% from 2019 to 2030 (i.e from 593.9 GW in 2019 to 1,582.9 in 2030) [1]. This
rapid growth in grid penetration of PV calls for more accurate methods to forecast
the performance and reliability of PV. Additionally, PV projects policy and invest-
ment decisions rely on PV performance and reliability forecasts. Therefore, to
reduce the risks of PV investments, more reliable methods to forecast the
performance and reliability of PV power are a prerequisite.

Different methods have been proposed for PV power forecasting. These
methods can be classified as: physical, heuristic, statistical and machine learning
methods [2, 3]. Each method might have different conceptual design, implementa-
tion, application and accuracy. In this chapter, the application and accuracy of the
different methods are assessed using measured PV module power and weather data.

PV power forecasting can range from different temporal horizons depending on
ones need. At a moment there is no standard classification criterion of the temporal
horizon. General classification can be made as: very short term (Intra-hour:
15 minutes to 2 hours ahead), short-term (hour ahead: 1 to 6 hours ahead, day
ahead: 1–3 days ahead), Medium-term (week to months ahead), long-term (one to
several years) and lifetime forecast (until PV expected lifetime).

Achieving high-accuracy forecasts at each of these temporal horizons is
influenced by different variables such as: solar radiation models, PV performance
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models, data availability, data quality and forecasting methods. The accuracy highly
deteriorates with increasing forecasting temporal horizon. This is because, more
input parameters such as: seasonal variations, soiling effects, degradation and many
other performance reducing effects need to be taken into consideration [4]. These
factors are not easy to evaluate precisely, therefore, they are simply approximated
which increase the uncertainties in long-term and lifetime PV forecast.

The main influencing factor of PV production is the amount of global solar
irradiation incident on the PV panels. As shown in Figure 1, there is a quasi-linear
correlation of power and irradiance. This property means that the accuracy of
power prediction is highly determined by the accuracy of the solar irradiation
forecast.

In this chapter, the different methods used in PV power forecasting are
presented. The chapter is organised as follows: In Section 1, a brief introduction on
power forecasting is presented. In Section 2, different PV forecasting methods are
presented, for some methods a practical example of their application and their
accuracy are evaluated using real measured PV module power. Section 3, is dedi-
cated to lifetime PV power forecasting. In this section, several effects affecting
lifetime PV power forecasting are stated and a more elaborative discussion of the
degradation effect on lifetime PV power forecasting is presented. Lastly, in Section
4, a summary of the different aspects within the chapter is presented.

2. PV power forecasting methods

Different methods: physical, heuristic, statistical and machine learning are com-
monly used in PV power forecasting [2, 3]. The methods are based on two main
approaches to generate the PV power forecasting. One is the physical approach,
which requires prior knowledge of PV material properties and the metadata of a PV
system, together with the need of weather data. The second ones is the data-driven
approach, which requires operational data to train/calibrate coefficients of the
models which are then used to generate the predictions. This means that, a data-
driven approach can only be applied after a given PV module or system has been
exposed and enough data is available to train/calibrate the models. On-contrary, a
physical approach can be applied even when the PV system is not yet commis-
sioned. Hence PV power forecasting methods based on a physical approach are the
mostly used methods by PV stakeholders to evaluate the economic viability of PV
projects during the initial phases.

Figure 1.
Measured irradiance versus measured power. Data corresponds to six month measurements of irradiance and
module power in Gran Canaria (Spain).
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Figure 2 illustrates the required inputs and general steps to generate PV power
forecast by the two approaches. What is clear is that both approaches require
weather data (mainly solar irradiation) as input. Therefore, solar irradiation fore-
cast is highly essential step for PV power forecast using both approaches. Unlike
data-driven approach, physical approach is based on physical assumptions and
therefore, knowledge of the physical parameters influencing PV generation is
required.

2.1 Physical method

Physical models calculate the PV power using the equivalent electrical circuits
[5]. The equivalent circuit model developed for a single cell can be used to derive
equivalent circuit models for a PV module as well as a PV system [6]. They are the
commonly applied models in the PV power forecasting commercial software pack-
ages (such as PVSyst [7] PVWATTS [8]).

2.1.1 PV cell and module equivalent circuit models

To build the physical model one need to know the basic photo-to-voltage theory.
The diode model is used to develop the PV cell model to calculate the PV output
power. The diode model can be characterized as: one-, two- and three-diode models
[5, 7] (see Figure 3). The choice of the model selection depend on charge carrier
recombination mechanisms one need to take into consideration. Because of its
simplest, the one-diode model is the most commonly used to model the operating
principles of a PV cell. The one-diode model can consist of three, four or five
parameters (see Table 1) .

The three parameter (3-P) one-diode model is only used to demonstrate the
basic working principles of a PV cell but not as a representative of the real operating
condition. To simulate the actual working conditions of a PV cell, the five parameter
(5-P) one-diode model is commonly used because it takes into account both the
series and shunt resistive losses. It is expressed as [9, 10]:

Figure 2.
Schematic of data-driven and physical approaches for PV power prediction. Data-driven approach requires
historical data (in green) to train and physical approach requires physical parameters as inputs.
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I ¼ IPH � I0 exp
V þ RsI
nVt

� �
� 1� V þ RsI

Rsh

� �� �
(1)

where I, Io and IPH are the generated solar cell current, reverse saturation current
and photo-generated current respectively. V, Rs and Rsh are the solar cell voltage,
series resistance and shunt resistance respectively. n is the ideality factor of the
diode, and Vt is the thermal voltage.

To derive the equivalent circuit model for a PV module, the basic assumption
that a PV module comprises of identical PV cells in series is usually taken [6]. This
assumption implies that under similar conditions (irradiance and temperature), all
the PV cells should generate equal current and voltage. According to [6], the PV
module equivalent model is derived from a PV cell diode model (Eq. (1)) as:

IM ¼ IPH � I0 exp
VM þ RsNsIM

nNsVt

� �
� 1� VM þ RsNsIM

NsRsh

� �� �
(2)

where Ns is the total number of cells in series IM and VM are the current and
voltage of a PV module respectively.

The photo-generated current IPH has a direct relation with solar irradiance and
operating solar cell temperature (see Eq. (3) It can be evaluated as [10]:

Figure 3.
a, four parameters (4-p) one-diode model. b, five parameters (5-p) one-diode model. c, two-diode model
(seven parameters) and d, three diode model (nine parameters).

Model Parameters Characteristic

3-p One-diode model IPH a, I01 b, n1 c Basic model No series and shunt resistive losses

4-p One-diode model IPH, I01, n1, Rs
d Includes series losses No shunt losses

5-p One-diode model IPH, I01, n1, Rs,
Rsh e

Includes both series and shunt shunt resistive losses

Two-diode model IPH, I01, I02, n1

,n2, Rs, Rsh

Two diodes to represent junction recombination Relevant at
low irradiance operation of a PV cell

Three-diode model IPH, I01, I02,I03,
n1,n2,n3, Rs, Rsh

Takes into account grain boundaries and leakage current

aPhotocurrent.
bReverse saturation current, the subscripts (1, 2 and 3) represents the diode number respectively.
cdiode ideality factor the subscripts (1, 2 and 3) represents the diode number respectively.
dSeries resistance.
eShunt resistance.

Table 1.
Parameters and characteristics of different diode models.
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IPH ¼ ISC
G

GSTC
þ ki Tc � TSTCð Þ (3)

where G is the given irradiance level, Tc is the cell temperature. GSTC and TSTC
are the irradiance and temperature at standard test conditions (STC) respectively.
ki is the temperature coefficient of the current in (A0C) and ISC is the short-circuit
current at STC.

The reverse saturation current (I0) can be evaluated as a function of short-
circuit current (ISC), open-circuit voltage (Voc), temperature and energy bandgap
of a semiconductor (Eg) as:

Io ¼ Tc

TSTC

� �3

:
ISC exp Ego=Vto � Eg=Vt

� �
exp Voc=nNsVto � 1ð Þ (4)

where Vto is the thermal voltage at STC and Ego is the energy bandgap at T = 0 K.
Readers are referred to [6, 10–12] for extended knowledge on how to derive and

evaluate the different PV cell and module model parameters. The functions are also
implement is freely available pvlib simulation packages [13].

2.1.2 Temperature dependence of I-V characteristics

Addition to solar irradiation, the I-V curve characteristics also depend on the
operating temperatures of the cell Tc. According to IEC60891 standards [14], the
temperature and irradiance correction of I-V characteristics are given as:

Isc ¼ ISC�STC:
G

GSTC

� �
: 1þ αsc Tc � TSTCð Þð (5)

VOC ¼ VOC�STC: 1þ βoc Tc � TSTCð Þ þ n:Ns:Vt: ln
G

GSTC

� ��
(6)

where αsc and βoc are the temperature coefficients for short-circuit current and
open-circuit voltage respectively. n, Ns and Vt are the ideality factor, total number
of cells and thermal voltage respectively.

Figure 4 shows the effect of irradiance and module temperature on Isc and Voc.
The irradiance has a greater impact on the short-circuit current and the temperature
has a greater impact on the open circuit voltage.

According to module mounting (e.g Open rack, close to the roof, insulated rack)
and module construction (e.g glass–glass or glass-backsheet), the cell temperature
might be some degrees hotter than module temperature [15]. In [15] the cell tem-
perature (Tc) is derived from the module temperature measured at the surface of
the module(Tm) and the irradiance G by a simple relations as:

Tc ¼ Tm þ G
GSTC

:ΔT (7)

where ΔT is the temperature difference between the cell and the module back
surface at an irradiance level of 1000 W=m2. In [15], ΔT was found to be around
3 0C for open-rack mount, 1 0C roof mount and 0 0C for insulated back.

The module temperature is calculated from solar irradiation, ambient tempera-
tures and/or wind speed using different methods [16]. The commonly used models
are: Standard NOCT model (Eq. (8)), the Faiman model (Eq. (9)) [17] and the
Kings model also known as Sandia model (Eq. (10)) [15].
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Tm ¼ Tamb þ NOCT � TNOCTð Þ
GNOCT

:G (8)

Tm ¼ Tamb þ G
U0 þ U1:WS

(9)

Tm ¼ Tamb þG: exp aþ b:WSð Þ (10)

where NOCT is the nominal operating cell temperature at given conditions
(TNOCT = 20 0C, GNOCT = 800 W=m2, wind speed (WS) = 1 m/s), NOCT is in the
range of 40–500C [9]. Tamb

0C½ � is ambient temperature, G W=m2½ � is the incident
solar irradiance on the module, and WS m=s½ � is the wind speed. U0 W=0Cm2

h i
and

U1 Ws=0Cm2
h i

are the coefficients describing the effect of the radiation on the

module temperature and the cooling by the wind, [18] respectively. a and b are
parameters that depend on the module construction, materials and on the mounting
configuration of the module [15].

2.1.3 Example of PV power prediction using physical method

In this example, we demonstrate a practical application of the described physical
model to predict four days PV module power using measured irradiance. The
predicted power is then compared with real measured power of the PV module. The
properties, electrical and thermal parameters of the PV module are presented in
Table 2. The module is exposed in Gran Canaria, Spain at tilt angle of 230 and
azimuth angle of 1690. The module is installed as open rack-fixed configuration.
The power and module temperatures are recorded every 5 minutes. The module
temperature is recorded using a Pt100 sensor attached at center-back of the module.
In addition, weather data (ambient temperature, wind speed and global horizontal
and in plane of array solar irradiation) are also recorded with a 1 minute resolution.

The PV module specific parameters and the weather variables (irradiance and
cell temperature) are used as input variable in Pvlib to simulate the five parameter
(5-P) one-diode model (Eq. (2)). Figure 5 shows the simulated I-V curves at

Figure 4.
Effect of irradiance and cell temperature on I-V characteristics. (I-V curve simulated using Pvlib one-diode
model).
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different irradiance and temperature levels for a period of four days. 15 minutes
aggregated data of temperature and irradiance are used hence the curves are evalu-
ated every 15 minutes. From each I-V curve the power at maximum power point
can be computed using:

Pmpp ¼ Impp � Vmpp (11)

In this example, the uncertainty of power prediction due to temperature models
are evaluated. The three commonly used temperature models presented in
(Eqs. (8), (9) & (10)) are used to model the module temperature. The parameters
of the models are: a = �3.87 & b = �0.0594 for Kings model and U0 ¼ 25:6 &

Module properties

Design and cell technology Glass–Glass and Poly-crystalline silicon cells

Number of cells 80

Electrical parameters Valuesa

Maximum power rating (Pmpp) 283 [Wp]

Rated current (Impp) 7.2 [A]

Rated voltage (Vmpp) 39.3 [V]

Short-circuit current (ISC) 7.8 [A]

Open-circuit voltage (VOC) 48.9 [V]

Thhermal parameters Quantity

Temperature coefficient of power (γ) �0.47 [%=K]

Temperature coefficient of short-circuit current (α) 2.39 [mA/K]

Temperature coefficient of open-circuit voltage (β) �161 [mV/K]

Normal operating cell temperature TNOCT 48 [0C]
aThe values are measured at STC (i.e. 1000 W/m2 irradiance, 1.5 air mass and at 25°C temperature).

Table 2.
Module properties and manufacturer datasheet electrical and thermal parameters.

Figure 5.
I-V curves of simulated solar module at different incident irradiance and temperature levels. Irradiance range
from 0 w=m2 to 1168 w=m2 and module temperature range from 10 0C to 50.3 0C.
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U1 ¼ 25:6 for Faiman model. These parameters are extracted from literature values
in [15, 18] with small modifications to minimize the uncertainty.

To evaluate the uncertainty in prediction, the normalized root mean square error
(NRMSE) (Eq. (12)) is used. Additionally, the normalized mean bias error (NMBE)
(Eq. (13)) is also evaluated as a metric to capture the average bias in the prediction
(i.e, to check whether the predictions are overestimated or underestimated).

NRMSE ¼ 100�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN
j¼1 p j �m j

� �2r

m
(12)

NMBE ¼ 100�
1
N

PN
j¼1 p j �m j

� �

m
, m 6¼ 0 (13)

Where p is the predicted data, m measured data, m is the mean of the measured
data.

Figure 6 shows the plot of measured and modeled temperature (a), measured
and predicted power (b). The uncertainty in temperature models as well as the
corresponding uncertainty in power predictions are presented in (c). It is clearly
visible that, for each temperature model, the prediction is different and hence the
uncertainty value. Generally, the Kings model showed the best performance both in
temperature modeling as well as power prediction depending on the NRMSE and R2

values. The standard NOCT model showed the least performance which is not
surprising since the model doesn’t take into account the impact of wind speed. All

Figure 6.
a, Measured module (black) and ambient (yellow) temperatures, modeled temperature with standard NOCT
(green), Faiman (blue) and Kings (red) models. b, Measured (black) and predicted power with module
temperature calculated using NOCT (green), Faiman (blue) and Kings (red) models. c, Evaluated NRMSE
and NMBE for module temperature modeling (blue) and power prediction (orange). d, Measured versus
predicted power with module temperature calculated using NOCT, Faiman and Kings models.
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the models overestimate the module temperature which correlates with the
underestimation of the predicted power (see Figure 6c). It should be noted that,
although the Kings model showed good predictions based on this example, it is not
enough to guarantee that this will always be the case when the model is applied on
different dataset. This is because the accuracy of the temperature models has been
found to be influenced by; geographical locations, model design and mounting
conditions [18].

2.2 Data-driven methods

Data-driven methods can be categorized into: data-driven heuristic methods,
statistical methods and machine learning methods.

2.2.1 Data-driven heuristic methods

The physical models described in Section 2.1 have one big drawback that they
require too many input variables which are not usually directly available. In this
case, heuristic models are proposed to reduce the number of required inputs. They
are heuristic models because they are not developed from physical assumptions/
theories. Therefore, they have no physical dependencies/interpretations. They are
classified as data-driven models because they are derived from correlation between
weather and power output data. In [19], several heuristic models are presented and
compared. They are developed on similar principles of generating power forecast
from irradiance and module temperature but only differs in the numbers of fitting
model parameters. The basic advantage of heuristic models is their simplicity
to derive the model parameters from PV power historic data. Here we present the
two- (Eq. (14)) and three- (Eq. (15)) parameter models described in [19, 20]
respectively.

Pmpp ¼ 1þ x: ln
G

GSTC

� �
þ y: ln 2 G

GSTC

� �� �
:PSTC:

G
GSTC

� �
: 1þ γ Tc � TSTCð Þð

(14)

Pmpp ¼ a:Gþ b:Gþ c:G2: ln 2 G
GSTC

� �� �
: 1þ γ Tc � TSTCð Þð (15)

Where Pmpp, is the generated power at maximum power point by a PV module,
G is the simulated or measured irradiance Tc is the cell temperature evaluated using
equation (Eq. (7)), a, b, c, x and y are the models fitting parameters γ is the
temperature coefficient of power in (%/0C). PSTC and GSTC ¼ 1000w=m2 are the
power and the irradiance at STC.

2.2.2 Example of PV power prediction by heuristic methods

In this example, the described heuristic models are applied to predict the power
of the same PV module described in subSection 2.1.3. To calibrate the models, six
days historical data (25/March �31/March) are used. The extracted parameters are
presented in Table 3. To demonstrate the usefulness of temperature correction
term, the second term in (Eq. (15)) is removed and the model is re-calibrated.

In Table 3 3-parameter model corresponds to calibration without a temperature
term and 3-parameter-Tcorr model corresponds to calibration with a temperature
correction term.
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Figure 7a shows a plot of the four days measured power and the predict power
using 2-parameters and the 3-parameters model. Figure 7b shows the uncertainty in
model calibration and the corresponding uncertainty in prediction using the differ-
ent models. According to the NRMSE and NMBE values, the 3-parameter model
with temperature correction term showed the best performance. From the same
figure it can also be concluded that it is important to include a temperature correc-
tion in power prediction since the same model showed the least performance when
applied without a temperature correction.

2.2.3 Statistical and Machine learning methods

Like heuristic models, statistical and machine learning (ML) methods are also
based on historical data to generate PV power forecast. While heuristic models
focus on an in-deep formulation of mathematical operations, statistical models
require selecting a model that considers previous knowledge of the system. ML
methods require the selection of a predictive algorithm by relying on its empirical
capabilities. Statistical models aim to “inference” the outcome of a model, while ML
approaches aim to find generalizable predictive patterns [21]. Both statistical and
MLmethods are data-driven approaches that rely on the availability and accuracy of
existing operational data to generate the forecasting. Usually, the larger the histor-
ical data, the better the PV system can be understood in terms of operational
behaviour under different weather conditions and hence the better the forecasting
accuracy.

The list of published methods is extensive and a case-to-case benchmark is
usually needed. Statistical methods such as Naive method, ARIMA (Autoregressive

Model Parameter

a b c x y

1. parameter model (Eq. (14)) — — — 0.0255 �0.03016

2. parameter model (Eq. (15)) 0.2842 �2.935e-5 �0.0106 — —

3. parameter-Tcorr
a model (Eq. (15)) 0.2802 �8.985e-7 �0.0111 — —

aTcorr is the temperature correction.

Table 3.
Extracted model parameters of the heuristic models.

Figure 7.
a, Measured power (black), predicted power using 2-parameter model (blue) and with 3-parameter model
without (green) and with (red) temperature correction. b, Evaluated NRMSE and NMBE for the models
during calibration (blue) and prediction (orange).

204

Solar Radiation - Measurement, Modeling and Forecasting Techniques for Photovoltaic…



Integrated Moving Average), SARIMA (seasonal ARIMA), Ordinary Least Squares
(OLS) or Facebook Prophet (FbP) are typically applied for PV forecasting with and
without regressors [22–24]. Below is a basic description of the commonly applied
statistical methods. A detailed description of each method can be found on the
respective cited reference.

• Autoregressive Integrated Moving Average (ARIMA): This method is
composed of three main elements: the auto-regression order (p), differencing
order (d) and moving average order (q). The statistical formulation of this
method can be found in [25].

• Seasonal ARIMA (SARIMA): This model is an extension of the ARIMA
approach, which adds the seasonal behaviour of the dataset analysed. This
feature is of interest for PV applications due to the high seasonality on daily
and annual basis observed in PV systems [26].

• Ordinary Least Squares (OLS): This method analyses the system by fitting
linear relationships between one or more input variables, and by minimizing
the sum of square errors of a continuous or at least interval outcome variable
(actual versus predicted values) [27].

• Facebook Prophet (FbP): This methodology has been developed to allows
non-experts in data science to adapt and configure the model to their needs.
The FbP method is based on a decomposable time series model including trend,
seasonality, holidays (not important for our application), and an error term. It
is also possible to define the type of evolution: linear or logistic. For PV
forecasting, it facilitates the modelling for short- and long-term by enabling
features such as time resolutions and temporal seasonalities [28].

More advanced methods, the so-called machine learning (ML) methods, can
provide better results [29, 30], however, in most cases they require more computa-
tional efforts. Some examples of machine learning methods used in PV power
forecasting include [2, 29–31]: k-nearest neighbors (k-NN), artificial neural net-
works (ANN), support vector machine (SVM), random forests (RF) and light
gradient boost machines (LightGBM). The basic description of these methods is
presented below with the references for a detailed description.

• k-Nearest Neighbors (k-NN): Is classified as one of the simplest and straight-
forward ML method. The K-NN algorithm compares the current state’s
Euclidean distances with training samples in feature space to select the “k”
nearest neighbours used in predictions. Detailed description and application in
PV power forecasting are presented in [32, 33]

• Artificial Neural Networks (ANN): Inspired by biological neural networks,
this algorithm is composed by neurons (mathematical units) and weights (the
link between mathematical units). Using gradient-based optimization
techniques, the ANNs learn a specific task (e.g., prediction) by the
optimization of the “weights”. This method is widely used in PV power
forecasting [2] described in [29, 34, 35]

• Support Vector Machine (SVM): The method separates the data linearly and
transforms it into a higher dimensional feature space through a specific kernel
function. The linear separation is performed with the so-called “hyperplanes”.
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The SVMs can be used for regression as well as classification tasks. In [32] the
model is presented and applied for short-term PV power forecasting.

• Random Forests (RF): The RF algorithm is based on an ensemble learning. A
set of decision/regression trees is created and the final result is voted. For a
regression problem, a set of regression trees are trained and the forecast will
equal to the mean of individual regression tree results [36].

• Light gradient boosting machine (LightGBM): This algorithm is an advanced
gradient boosting decision tree (GBDT), which combines two techniques to
find more effectively (higher accuracy and high processing speed) the optimal
split point in the GBDT: (1) Gradient-based one-side sampling (GOSS), to
reduce the number of data instances, and (2) exclusive feature bundling (EFB)
to reduce the feature space. In [30, 37], the method is presented and applied for
PV power prediction.

ML algorithms can be classified as supervised and unsupervised. A supervised
ML algorithm uses labelled training data. It is related to a standard fitting procedure
to find the unknown function/relationship between the input and output variables.
The unsupervised ML algorithm uses unlabelled training data to find the data
patterns (e.g., in the samples’ clustering). For PV power prediction, the supervised
algorithms are commonly used, due to weather forecasting availability. In general,
the procedure to run a ML algorithm can be composed of the following stages:

• Data collection: the available historical data (weather and PV operational) are
collected and filtered. The collection of weather forecasting data is also
considered.

• Feature selection: identification of the most relevant variables with regard to
the PV power output selected for further analysis.

• Data augmentation: in this stage, the enhancement of the initial dataset is
expected by typically applying mathematical operations (e.g., physical
relationships) to one or more relevant input variables.

• Dataset split: the input dataset is divided into a training and testing dataset.
Also, a validation dataset is recommended. This task is typically applied over
the sorted or random timestamps.

• Accuracy improvement: statistical indicators such as the MBE, RMSE or R2 are
used to quantify the accuracy of any forecasting model. Cross-validation
techniques are recommended.

A simple ANN network architecture is shown in Figure 8, where the layers of a
multilayer perceptron (MLP) for PV power forecasting are presented. The input
data for training can be the historical weather and PV power output, while for
testing and forecasting, expected weather variables are the input to the expected PV
power output in the future.

2.2.3.1 Example of PV power prediction by statistical and machine learning approaches

The statistical and ML approaches are applied to the same dataset used for
physical and heuristic models. To train the models, the regressors selected are
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limited to the plane-of-array irradiance and PV module temperature, while the
target variable is the PV output power. Most of these models are already
implemented in open-source software packages (i.e., statsmodels [38], prophet
[28], sklearn [39] and lightgbm [39]) and executed with Python scripts. Setting
parameters for each statistical and machine learning method are given in Table 4.

Figure 9a shows a plot of the four-day measured power and the predicted power
using statistical and machine learning models. Figure 9b shows the uncertainty in
model calibration and the corresponding uncertainty in prediction using the differ-
ent models. According to the NRMSE, LightGBM model shows the best perfor-
mance, followed by the SVM and Facebook Prophet.

Generally, comparing the uncertainty values among the physical, heuristic, sta-
tistical and machine learning methods (see Figures 6c, 7b and 9b), physical method
has the worst performance in comparison to other methods. This is not surprising
given that physical models generate prediction without preliminary performance
data, unlike the counterpart models that base their predictions from historical data.
Also, the different assumptions and the too many input parameters increase the
uncertainty range in physical models.

Figure 8.
Multilayer perceptron (MLP) for PV power forecasting, where the input layer includes at least irradiance and
temperature, while the output layer comprises the PV energy yield.

Model Parameter

Setup 1 Setup 2 Setup 3

ARIMAa p: 0 q:0 d: 0

SARIMAa p: 1 q:1 d: 1

OLSa — — —

Prophetb Daily Seasonality Changepoint prior scale: 0.01 —

DNNc Hidden layer size: (40,20,10) relu activation adam solver

LightGBMd Number of leaves: 10 Min. data in leaf: 5 Number iterations: 100

SVMc Kernel: rbf Degree: 3 Regularization: 1e6
aStatsmodels.
bProphet.
cSklearn.
dLightgbm.

Table 4.
Setup parameters for different statistical and machine learning approaches.
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3. Lifetime PV power forecasting

To begin with, it is important to understand how the lifetime of a PV module is
defined. Unlike other electrotechnical devices where the term lifetime is clearly
defined [40], the definition of a PV module “lifetime” is somewhat complex. This is
because, despite the catastrophic events (such as fire) it is unlikely that a PV
module drops its power generation to zero. However, even though a PV module is
still generating power, its output might be too low to be economically viable to
continue its operation. Therefore, in general terms PV lifetime is defined in eco-
nomical rather than technical terms.

For economical viability of PV projects, most PV module manufacturers guar-
antee a power reduction of less than 20% within 25–30 years of operation. The 20%
power reduction is usually referenced at standard test conditions (STC) (modules
tested under 250C temperatures, 1000 W/m2,irradiance and air mass 1.5). There-
fore, in this context the lifetime of a PV modules is defined as the time required for
a PV module to loss it’s STC power by 20% .

The actual performance of a PV module throughout its lifetime is very uncertain
and difficult to accurately forecast. This is because many factors can influence the
performance of a PV module. Some of these factors may include: solar resource, the
quality of the PV components and the long-term variations in system performance
(degradation). All these factors increases the uncertainty in PV lifetime forecast.
The Internation Energy Agency- Photovoltaic Power Systems Programme (IEA-
PVPS) -task 13 report [41] provides a detailed overview of the uncertainties in
lifetime yield predictions. To improve the accuracy and to achieve reliable lifetime
PV forecast, all these effects must be explored separately. Here, we asses the effect
of degradation on lifetime PV power forecasting.

3.1 Effect of degradation on lifetime PV power forecasting

Degradation is defined as the gradual and non-reversible decrease in PV perfor-
mance over time. Degradation is a crucial influencing factor to be taken into
account during lifetime PV power forecast. This is because over time the PV com-
ponents are ageing and deteriorating in their normal operation. Understanding how
PV degrades is a very widely studied topic in the PV community but it is also among
the not well understood topics. This can be explained by the numerous factors

Figure 9.
A, Measured power (black), predicted power using statistical and machine learning approaches. B, Evaluated
NRMSE and NMBE of statistical and machine learning approaches at calibration and predictions.
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influencing PV degradation. These factors include: PV technology, bill of materials
(BoM), climatic conditions [4], transportation, installation and operational condi-
tions. More-so, since new materials are being proposed frequently, it increases the
complexity to correlate the factors that influence PV degradation. Usually, different
materials have different degradation kinetics and are influenced by different stress
factors differently.

In lifetime power prediction models, degradation effect is included in a number
of ways. For example, according to the survey carried out among PVPS-task 13
experts regarding degradation effects in lifetime energy yield prediction, the fol-
lowing assumptions are taken [41]: (a). A variable degradation during the first five
year of operation and a fixed degradation from 5 to 30 years of operation. A
degradation of 1–2% is assumed in the first year, 0.7% to 0.5% to year 5 and0.3% to
0.5% up to year 30. (b). Initial degradation of 0.3% to 1.0% in the first years to
include the effects of initial degradation modes such as light induced degradation
(LID). (c). Constant degradation over the years with the exception of the first year
to take into account technology specific behaviour.

Generally, a constant degradation rate with linear performance loss is
considered (see Eq. (16)). However, some authors [42–44], have evaluated
and modeled the non-linearity in degradation rates and performance. For
example in [43] a non-linear power degradation model (Eq. (17)) was proposed
and applied in [44] with a time-dependent degradation rates to predict PV
performance lifetime.

P tð Þ ¼ Pmpp: 1� k:tð Þ (16)

P tð Þ ¼ Pmpp � 1� exp � B
k:t

� �μ� �� �
(17)

Where Pmpp is the power calculated using either the physical model or the
heuristic models described in the previous sections. k [%/year] is the degradation
rate B and μ are model and shape parameters respectively.

3.2 Example of lifetime PV power forecasting

In this example, the effect of degradation rate on lifetime power forecast is
presented. Using, 30 years of historical weather data (global irradiance, ambient
temperature and wind speed from ERA 5 reanalysis [45]), three different degrada-
tion scenarios are presented and their impact on lifetime power and energy yield
prediction. The first scenario is using a non-linear performance degradation with a
shape parameter (μ ¼ 1:2), the second scenario is using a linear performance deg-
radation and the third scenario is using a non-linear model with a different shape
parameter (μ ¼ 0:2). It should be noted that in all the three cases, a constant
degradation rate of 0.8%/year corresponding to a lifetime of 25 years (to have
a � 20% power loss) is used. In all the cases Pmpp is calculated using a 3-parameter
heuristic model (Eq. (15)). Although it is not usually the case, the prediction with-
out degradation effect and its impact on lifetime energy prediction is also shown in
this example.

Figure 10 shows the PV lifetime power and yield predictions using different
scenarios. It can be seen that depending on the degradation scenario, the lifetime
yield is significantly different. In numbers, when compared to the usually used
linear scenario, a relative difference of over 5.0% is evaluated in respect with the
non-linear scenarios.
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4. Conclusions

PV power forecasting is important to stabilize the electrical grids, financing PV
projects and also to plan operational and maintenance activities. In this regard,
different methods are proposed to forecast the PV power generation. In this chap-
ter, the different methods used in PV power forecasting are presented, applied and
their accuracy in PV forecasting is evaluated using measured PV module and
weather data. The degradation effect on lifetime PV power forecasting is also
assessed using two main scenarios; linear degradation scenario and non-linear deg-
radation scenario. The key observations in the chapter are:

• The uncertainties in PV module temperature modelling affect the forecasting
accuracy. In the chapter, three temperature models: Standard NOCT, Faiman
and King’s are compared, the King model showed the best performance among
the three models. The standard NOCT model, that neglects the impact of wind
speed displayed huge uncertainty.

• Data-driven models outperforms physical models in prediction accuracy. This
can be explained by the fact that physical models are derived from to many
assumptions and that they need too many input parameters that are usually
approximated.

• For lifetime PV power forecasting, a relative difference of over 5% is evaluated
between the linear and non-linear degradation scenarios.

Conflict of interest

The authors declare no conflict of interest.

Figure 10.
A, Lifetime power prediction using different degradation scenarios: non-linear with shape parameter = 1.2
(red), linear (green) and non-linear with shape parameter = 0.2 (blue) as well as a no degradation scenario
(cyan). B, Corresponding lifetime yield for all the respective scenarios.
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Chapter 10

Concentrator Photovoltaic System
(CPV): Maximum Power Point
Techniques (MPPT) Design and
Performance
Olfa Bel Hadj Brahim Kechiche and Habib Sammouda

Abstract

The research carried out in this work aimed to study the performance of MPPT
techniques applied to the Concentrator Photovoltaic (CPV) System for the research
and the pursuit of the Maximum Power Point (MPP).This study presents a model-
ing and simulation of the CPV system. It consists of a PV module located in the focal
area of a parabolic concentrator, a DC / DC converter (Boost), two MPPT controls
(P&O and FL) and a resistive load. This chapter presents the two MPPT techniques
(P&O and FL) performances. The obtained results show the importance of cooling
systems integration with CPV system. This hybrid system design results in good
MPPT P&O and FL performance. The numerical results obtained with Matlab/
Simulink® software have generally shown that the two MPPT controls result in
better performance in terms of speed, and accuracy, stability. In fact they showed
that the CPV system is stable.

Keywords: Concentrator photovoltaic System (CPV), Converter DC-DC (Boost),
MPPT Techniques, Performances, Perturb & Observe (P&O) algorithm,
Fuzzy Logic (FL) algorithm, Matlab/Simulink®

1. Introduction

Today, Concentrator Photovoltaic (CPV) systems are among the important
technologies for converting solar radiation into electrical energy. Despite the high
cost of this technique, the CPV system attracted attention last years many
researcher for their high power output compared with conventional module sys-
tems. Santosh Kumar Sharma et al. [1] designed the aspects and the performance of
a rooftop grid-connected solar photovoltaic power plant (RTGCSPVPP). The
RTGCSPVPP is installed at Gauri Maternity Home Ramkrishna Puram Kota Rajas-
than, India for supplying the energy to whole hospital building. T. Mrabti, et al. [2]
presented the implementation and operation of the first installation prototype high
concentration photovoltaic (CPV) in Morocco. This installation is formed by three
two-axis sun trackers connected to the national electricity grid. In fact, they showed
the first experimental results concerning the electrical operation of this plant and its
daily energy production as a function of meteorological conditions.
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On the other hand, photovoltaic modules are expensive and their electrical charac-
teristics suffer from climatic variations, it is therefore necessary to extract the maxi-
mum power to increase the efficiency of the module [3]. A.Saxena et al. [4] evaluated
the non-linear I-V characteristics of a photovoltaic solar module and its maximum
power point which depends on climatic conditions (temperature and irradiation).

Additional, the PV module efficiency is limited for two reasons: first, part of the
solar radiation is converted into heat. Second, the module temperature increases
during the energy production. Therefore, the use of a cooling system becomes
necessary. Sanjeev et al. [5] presented the various cooling technologies available for
CPV systems and they showed that cooling systems can provide an uniform and low
cell temperature.

Also, there are many techniques called MPPT (Maximum Power Point Tracking)
[6]. The most common MPPT methods are Perturb & Observe (P&O) and the
Incrementation of Conductance (INC). Other MPPT algorithms include the use of a
Fuzzy Logic Controller (FLC), an Artificial Neural Network (ANN), [7–9].

D. Djalel, et al. [10] showed the MPPT techniques (P&O and Fuzzy logic)
performance under STC or Standard Test Conditions, which correspond to
irradiation G of 1 kW/m2 at spectral distribution of AM1.5 and a cell temperature T
of 25°C. Then they carried out a comparison between these two MPPT controls.
According to the simulation results, the fuzzy logic method generates good perfor-
mance: low oscillating, more stable operating point than P&O and important preci-
sion to operate the MPP. M. A. Enany et al. [10] have modeled and simulated same
MPPT techniques such as: ANFIS, FCO, Fuzzy logic, Increment of conductance,
Disturbance and P&O observation. Then they compared between these techniques.
And they concluded that the ANFIS method and fuzzy logic control present the best
performance.

The previous studies mentioned below do not take into consideration the pho-
tovoltaic concentration conditions. To our knowledge, the MPPT techniques per-
formance in these conditions has rarely been studied in the open literature. In order
to further the study of CPV systems, improvements have been made to the present
study, including the integration of the cooling system with adequate temperature
and the evaluation of the performance behavior of the commercial PV module.

The purpose of this chapter is to compare the performances of two MPPT
techniques P&O and FL for a CPV system in the aim to determine the suitable
technique.

This chapter is organized as follows. Part 2 describes the modeling a PV
module placed at the focus of a parabolic concentrator. Part 3 presents the
improvement of a proposed CPV module with a cooling system, then the simulation
of this global system consisting of a CPV module, a boost converter, two MPPT
algorithms (P&O and FL) and a resistive DC / DC load. Part 4 presents numerical
results and a comparison between the two MPPT techniques. Finally, Part 4
concludes this work.

2. Modeling a PVmodule placed at the focus of a parabolic concentrator

In order to achieve a higher efficiency of a PV module, we propose to place it
in the focal space of a concentrator composed by a double reflective parabolic
concentrator, Figure 1.

This system is composed by:

• A first reflector: is a heliostat as a sun tracking system with a reflection
coefficient equal to 1.
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• A second reflector: is a parable that is composed of a set of curved mirrors. Its
role is to reflect and focus the light received by the heliostat on a receiver
placed in the focal space of the parabolic concentrator.

• A receiver: is a fixed photovoltaic module that concentrates the received radiation.

Figure 1 shows the block diagram of the proposed photovoltaic system. This
system is composed by the following elements:

• A PV module placed in the focal space of a concentrator

• A DC/DC converter Boost type

• Resistive load

• And an MPPT controller

In the state of solar concentration, the output current module, denoted IPV, is
given by (Eq. (1)), [11]:

IPV ¼ NpIph �NpIs exp
VPV
Ns

þ IRs
Np

nVth

 !
� 1

" #
�

NpVPV

Ns
þ IRs

� �

Rsh
(1)

The photo current Iph is mainly depending on the incident irradiance and the cell
operating temperature. It can determine using (Eqs. (2) and (3)), [12]:

Iph ¼ G
Gref

Isc,ref þ Ki:ΔT
� �

(2)

Figure 1.
Proposed CPV system.
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where

ΔT ¼ T � Tref (3)

The cell operating temperature T varies with the incident irradiance, which is
described by (Eq. (4)), [13]:

T ¼ Tamb þ TNOCT � 20
800

� �
G (4)

The diode saturation current Is at any operating conditions is related to its
reference conditions by the following equation, [7]:

Is ¼ Is,ref
T
Tref

 !3

exp
qEg

nK
1

Tref
� 1
T

 !" #
(5)

The reverse saturation current at STC condition Is,ref is depending on open
circuit voltage (Voc) and can be calculated by (Eq. (6)), [12]:

Is,ref ¼ Isc

exp Voc
nVth

� �
� 1

(6)

The material band gap energy Eg is obtained by (Eq. (7)) using Varshni relation,
[6, 14].

Eg Tð Þ ¼ Eg 0ð Þ þ αT2

T þ β
(7)

Table 1 Eg0, α and β silicon parameters [13]:

Then, the Si band gap as a function operating temperature is determined by (Eq. (8))

Eg Tð Þ ¼ 1:17 þ 4:73 � 10�4T2

T þ 636

� �
(8)

The series resistor module Rs can be approximately expressed by (Eq. (9)), [15]:

Rs ¼ Rs,ref � n
Is
exp

�Voc

n

� �� �
(9)

Rs,ref is the module series resistor measured at STC (Ω)
The shunt resistor module Rsh is inversely proportional to irradiance incident on

the CPV module and is given by (Eq. (10)), [15]:

Rsh ¼ Rsh,ref
Gref

G

� �
¼ Rsh,ref

1
C

� �
(10)

Eg0 (T = 0 K) α.10�4 , eV/K 2 β, K

Si 1.17 4.73 636

Table 1.
The Eg0, α and β silicon parameters
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where the concentration ratio C is defined by (Eq. (11)):

C ¼ G
Gref

(11)

Rs,ref is the module shunt resistor measured at STC (Ω)
The diode ideality factor n is considered according to C ¼ G

Gref
as function of cell

operating temperature and reference cell temperature, [15]:

n ¼ nref
T
Tref

(12)

For Si-poly, nref = 1.3 is the diode ideality factor at STC, [13]
The thermal voltage of the cell Vth is defined by (Eq. (13)):

Vth ¼ KT
q

(13)

K is the Boltzmann constant, 1.38 � 10�23J/K, q is the Electron charge,
1.602 � 10�19C.

3. CPV system configuration improvement

To improve the CPV system performance, the PV module temperature must be
reduced. Hence the interest of inserting a heat sinks. Thus we will assemble the
concentrator with a cooling system below the PV module to maintain the value of
its temperature constant.

An active dissipation exchanger will be used to maintain the module
temperature at 35°C. Figure 2 represents the modification made to the PV module,
[16, 17].

SOLKAR make 36- Watt, Photovoltaic module is taken as the reference module
for simulation and the manufacturer specifications details are given in Table 2.

The module series resistor and the module shunt resistor of SOLKAR Photovol-
taic Module are supposed ideal by, [2] and are fixed successively at Rs,ref ¼ 0:001Ω
and Rsh,ref ¼ ∞.

Based on (Eq. (1)), the solar module model was implemented in MATLAB/
Simulink® environment.

Figure 2.
Heat sink placed below the PV module under the solar concentration condition.
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4. Boost converter model

Figure 3 shows the boost converter structure used in this chapter. The boost
converter is composed with a MOSFET and Diode switching elements where are
supposed to be ideal, a resistor, inductance and capacitor where are supposed to be
linear, time invariant and frequency independent, [13].

The average output voltage Vc is given by:

Vc ¼ VPV

1� α
(14)

where
L ¼ 290µH, C1 ¼ 250µF, C2 ¼ 330µF, R ¼ 35Ω and the PWM frequency

f PWM ¼ 10kHz.

5. MPPT scheme

The MPPT algorithm used the measured values of the output voltage and/or the
output current of the PV module to estimate the duty cycle (D) of the DC–DC
converter in order to keep the electrical load characteristics with those of the PV
module at the Maximum Power Point MPP, [13].

5.1 Perturb & observe (P&O) algorithm

P&O algorithm is most popular and usually adopted strategy between all MPPT
techniques. This algorithm is frequently used for commercial PV module because it
is easy to implement and inexpensive, [9, 17].

Figure 3.
Boost converter structure.

Maximum Power Pm 37:08W

Voltage at Maximum power Vm 16:56V

Current at Maximum power Im 2:25A

Open circuit voltage Voc 21:24V

Short circuit current Isc 2:55A

Number of series Cells Ns 36

Table 2.
SOLKAR datasheet values at STC.
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The P&O method is based on, [15–17]:

• Periodical measuring the PV module voltage V kð Þ and current I kð Þ to calculate
the output power P kð Þ;

• Perturbing (increasing or decreasing) the switching duty cycle Dð Þ of the Boost
converter to change the operating point. In this study a slight perturbation
ΔD ¼ 0:01ð Þ is introduced in the system.

• Observing the output power variation ΔP ¼ P kð Þ � P k� 1ð Þ:

◦ If ΔP>0, the Maximum Power Point MPP will be approached, therefore
the perturbation should be kept the same for the following stage;

◦ Otherwise the perturbation should be reversed.

• This process is repeated until the MPP is reached.

Figure 4 presents the P&O algorithm implemented in Matlab/Simulink®.

Figure 5.
Fuzzy logic algorithm in MATLAB/Simulink®.

Figure 4.
P&O algorithm in MATLAB/Simulink®.
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5.2 Fuzzy logic (FL) algorithm

The FL algorithm checks the output power value of the PVmodule at each instant tð Þ
and then calculates the power variation dP=dtð Þaccording to the voltage variation, [16, 18].

The fuzzy logic algorithm generally consists of three stages: the fuzzification, the
rules and the defuzzification, [16, 18].

Figure 5 illustrate the fuzzy logic (FL) algorithm implanted in Simulink
environment.

6. Results and discussion

6.1 MPPT control performance under the concentration conditions

In the first part of this subsection, the concentration ratio is fixed to C = 1x.
For this report, the PV module temperature simulated by the software
Matlab/Simulink® is equal to T = 53.75 °C.

The simulation results of the CPV system using two different techniques (P&O
and FL) are presented successively by the Figures 6–8:

Figure 6.
Output voltage using the MPPT control (P&O and FL) for C = 1x and T = 53.75°C.

Figure 7.
Output current using the MPPT control (P&O and FL) for C = 1x and T = 53.75°C.
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Then, the CPV system performance parameters, the output voltage Vs, the
output current Is, the maximum output power Ps and the efficiency ηmppt for
different values of the solar concentration ratio (1x, 2x, 3 x) are determined in
Table 3.

From the results obtained, it can be seen that the “Fuzzy Logic” control does not
exhibit oscillations at the steady state of the current curve Is, the voltage Vs and the
power Ps and that the response time of this technique is fast. While, the P&O
control exhibits several disturbances due to climate change (temperature and con-
centration) and results in a longer response time than the other technique. For a
concentration ratio C = 1x, the efficiency of the CPV system using the FL control is
equal to 75% while the efficiency of the CPV system using the P&O control is equal
to 74.1%. For a C > 1x concentration ratio, the efficiency of the CPV system using
both FL and P & O controls is stabilized by up to 60%.

So, we can deduce that the FL control performs better than the P&O control.
The characteristics (I-V) and (P-V) of the CPV system using the P&O and LF

control are represented successively in Figures 9 and 10 for different values of the
concentration ratio solar (1x, 2x, 3 x).

Figure 8.
Output power using the MPPT control (P &O and FL) for C = 1x and T = 53.75°C.

Concentration report MPPT C = 1x C = 2x C = 3x

Simulated temperature T = 53.75°C T = 87.5°C T = 121°C

Fuzzy logic (LF) Is (A) 0.97 1.088 1.126

Vs (V) 33.72 38.08 39.39

Ps (W) 32.48 41.42 44.34

ηmppt(%) 96 96 96

Perturbation and observation (P&O) Is (A) 0.963 1.088 1.126

Vs (V) 33.71 38.08 39.39

Ps (W) 32.46 41.42 44.34

ηmpp (%) 85.8 96 96

Table 3.
Vs, Is, Ps and ηmppt variation of the MPPT control (P&O and FL) as a function of the concentration ratio.

225

Concentrator Photovoltaic System (CPV): Maximum Power Point Techniques (MPPT)…
DOI: http://dx.doi.org/10.5772/intechopen.98332



Figure 9.
Characteristics (I-V) and (P-V) of the CPV system using the P&O control under different solar concentration
values. (a) Characteristics (I-V). (b) Characteristics (P-V). (c) Zoom on the PPM.

Figure 10.
Characteristics (I-V) and (P-V) of the CPV system using the FL control under different solar concentration
values. (a) Characteristics (I-V). (b) Characteristics (P-V). (c) Zoom on the PPM.
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As shown in Figures 9 and 10, it can be seen that the PV module output (I-V)
and (P-V) characteristics strongly influenced by the variations in metrological
conditions (temperature and concentration) for both control P&O and FL. It should
be noted that the maximum power point MPP of the PV module is also influenced
by the concentration ratio C and the temperature T.

When the temperature varies, the P&O control shows the existence of strong
oscillations around the maximum power point, Figure 9(c). Due to these
oscillations around this point, the CPV system shows energy losses.

Contrariwise, during a temperature variation, and using the fuzzy logic
control, there are weak oscillations around the MPP which limits the power losses,
Figure 10(c).

6.2 MPPT control performance with the improve CPV system

In this section, initially, we maintained the same model under the concentration
conditions implemented under Matlab / Simulink® software by setting the tempera-
ture at 35°C. Secondly, we varied the solar concentration ratio C, in a range of (2x to
10x), to study the performance of the two MPPT controls used in the CPV system.

6.2.1 P&O control performance

From the output power curves Ps(t), Figure 11, it is noted that the increase in
concentration causes an increase in power. But also for each power curve, we obtain
two parts:

• Regime1: it is the transient regime of the power presents enormous peaks. The
transient state indicates the control speed.

• Regime2: the steady state shows the stability of the power over time.

The output power signal Ps stabilizes in a reduced response time, e.g. for C = 3x,
Tr = 0.0106 s. This shows that the FL control performs well its role which is the

Figure 11.
CPV system output power under the concentration conditions at a constant temperature (35°C) and with P&O
control.
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tracking of the maximum power point on the one hand and secondly, the CPV
system output signal is stable.

When C = 10x, the Ps curve has the largest peak (Ps = 65.23 W).
According to Figures 12 and 13, the output current Is and the output voltage Vs

have a transient region and a permanent region. Similarly, in the previous results,
we note that the transient regime has large peaks.

The Boost converter that ensures the electrical energy transit between the PV
module and the resistive load, it is characterized by their impedance which creates
voltage drops (disturbances of the duty cycle) and energy losses.

Figure 12.
CPV system output current under the concentration conditions at a constant temperature (35°C) and with
P&O control.

Figure 13.
CPV system output voltage under the concentration conditions at a constant temperature (35°C) and with
P&O control.
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Strong currents and impedance can cause long-term oscillations.
The simulation results show that this system can adapt to a resistive load

(R = 35 Ω). Indeed, it can give a fast response and a good transient performance,
insensitive to changes in external disturbances.

Table 4 summarizes the PV module characteristic parameters under the concen-
tration conditions at a constant temperature (35°C): the output voltage Vs, the output
current Is, the output power Ps, the MPPT efficiency ηmppt, and the response time Tr.

6.2.2 Fuzzy logic (FL) control performance

From Figures 14–16, we note that the results obtained by the FL control are
similar to those obtained by the P&O control, the same transient regime which we
find the peaks and the same steady state which is stable and the oscillations are gone.

It can be seen that the new configuration of the CPV system has improved the
performance of the P&O control. We can therefore deduce that the appearance of
oscillations in the old CPV system is due to the rise in temperature. By setting this
parameter, it was possible to stabilize the output signals of the system.

Figure 14.
CPV system output power under the concentration conditions at a constant temperature (35°C) and with FL
control.

Parameters C = 1x C = 2x C = 3x C = 4x C = 5x C = 6x C = 7x C = 8x C = 9x C = 10x

Current Is (A) 0.715 1.114 1.207 1.253 1.284 1.307 1.326 1.341 1.354 1.365

Voltage Vs (V) 25.04 38.98 42.24 43.87 44.95 45.76 46.4 46.93 47.38 47.78

Power Ps (W) 17.92 43.41 50.98 54.99 57.73 59.82 61.51 62.93 64.15 65.23

MPPT
efficiency (%)

53 56 59 63 65 67 69 70 72 73

Response time 0.058 0.0173 0.0106 0.0106 0.0121 0.0149 0.015 0.016 0.0196 0.0174

Table 4.
The characteristic quantities of the “SOLKAR 36 W” module under the concentration conditions at a constant
temperature (35°C).
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Figure 16.
CPV system output voltage under the concentration conditions at a constant temperature (35°C) and with FL
control.

Figure 15.
CPV system output current under the concentration conditions at a constant temperature (35°C) and with FL
control.

MPPT Type Stability Sensors number Response time
(Convergence time)

Digital or analog % Yield

LF Stable 1 current
1 voltage

0.0106 digital 73

P&O Stable 1 current
1 voltage

0.0106 Analog Or
Digital Or Both

73

Table 5.
The performances of the two techniques “P&O” and “FL”.
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The following Table 5 shows the performance of two MPPT techniques P&O
and FL for a CPV system with a cooling system:

From Table 5, it can be concluded that the P&O control in the CPV system with
a cooling system becomes more interesting than the FL control. Indeed, these two
controls have the same evolution of the output signals (Ps, Vs, Is), same response
time, same transient regime and same performance but the advantage of the P&O
control and that its practical implementation is simpler than the FL control.

The P&O technique has the following performances:

• Low implantation cost

• the ease of its implementation

• no need for precise inference parameters

In return, the fuzzy logic control in the CPV system has disadvantages such that:

• High implantation cost

• the complexity of its implementation

• Need precise inference parameters.

7. Conclusion

This work aims to present the principle of a CPV system, thus to study the
modeling of a PV module placed at the focus of a parabolic concentrator. Then, we
simulated this CPV system in a Matlab/Simulink ® environment under different
conditions of temperature and concentration ratio. Finally we showed the perfor-
mance of the two MPPT commands (P&O and FL).

Simulation results showed that both MPPT methods (P&O and FL) were suc-
cessful in continuing and reaching the PPM peak power point although disturbances
due to temperature and concentration changes. As well as the control by fuzzy logic
causes the best performance in terms of response time, stability and accuracy.

In the second part of this chapter, we improved the CPV system configuration
by adding a cooling system and setting the temperature to 35°C. The simulations
results in these new conditions show that the performances of the two MPPT P&O
and FL controls are identical and the oscillations are thus due to the rise in
temperature.
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Chapter 11

Model Reference Adaptive Control
of Solar Photovoltaic Systems:
Application to a Water
Desalination System
Abderrahmen Ben Chaabene and Khira Ouelhazi

Abstract

The major problem of the industrial sectors is to efficiently supply their energy
requirement. Renewable energy sources, in particular solar energy, are intermit-
tently accessible widely around the world. Photovoltaics (PV) technology converts
sunlight to electricity. In this work, we present a contribution dealing with a new
mathematic development of tracking control technique based on Variable Structure
Model Reference Adaptive Following (VSMRAF) control applied to systems
coupled with solar sources. This control technique requires the system to follow a
reference model (the solar radiation model) by adjusting its dynamic and ensuring
the minimal value of error between the plant dynamics and that of the reference
solar radiation model. This chapter provides a new theoretical analysis validated by
simulation and experimental results to assure optimum operating conditions for
solar photovoltaic systems.

Keywords: optimization, solar energy applications, following control, photovoltaic,
reference model-forecasting

1. Introduction

Using solar energy in several applications becomes more and more interesting in
order to minimize the cost of production for any system coupled with solar photo-
voltaic energy. In particular, water desalination systems, which we are going to
mention in this book chapter, actually require renewable energy sources to
minimize the cost of producing huge amounts of needed water.

Solar energy is only available during daylight hours. Furthermore, problems of
intermittent natural solar energies are rarely discussed in practical use cases as
power fluctuates over time. Thus, we must introduce real-time operating
procedures.

In addition, sunrise and sunset cause daily fluctuations, so the energy delivered
by panels will not be constant and it can also suddenly vary due to clouds. Thus,
there is a risk of not supplying the energy demand of the load. As an example, when
the load consists of a water desalination system, the minimum of sunshine variation
can provoke the clogging of membranes used for reverse osmosis desalination,
which causes the destroying of the whole desalination system.
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The production of needed water in large quantities demands excessive con-
sumption of energy. Thus, we need to reduce the cost of water production to the
maximum possible. Many studies have been carried out to link renewable energy
with water production [1, 2]. Furthermore, process control is an important part of
the coupling of solar energy to industrial systems; in particular, the desalination
industry requires to be operated at the optimum conditions. When coupled to solar
photovoltaic sources [3], all industrial systems must be equipped with a regulation
energy system to guarantee a continuous energy supply.

The intermittence of solar energy provokes an unstable electrical supply of the
photovoltaic solar plants, so the industrial system’s parameters change their values
with time in an unknown range.

The main idea is to develop a control strategy based on following control theory
in order to force the industrial system to adapt to variations in solar photovoltaic
energy.

Hence, our idea is to combine two types of robust controls: the adaptive control
characterized by its real-time adjustment and the sliding mode control, character-
ized by its robustness [4–9]. Many formulae have been derived to tune the variable
Structure Model Reference Adaptive Following control [10].

To guarantee the stability of the photovoltaic system in the opposite of the
intermittence of sunshine, we have chosen a new control algorithm designed by
VSMRAF judges effective against stochastic disturbances of uncertainties. These
uncertainties affecting the dynamic of photovoltaic solar sources come from various
sources [11]. Essentially, they are due to the following reasons: solar sources
modeling, intermittent sunshine, solar systems position, approximations in
dynamic models. Consequently, all these parameters must be taken into account in
the development of photovoltaic solar sources control laws in order to optimize
their operation and to avoid all the storage disturbances that may take place and
affect the performance of the solar-photovoltaic source.

To overcome renewable energy variability, many strategies were proposed
such as:

The application of Maximum Power Point tracking (MPPT) has different algo-
rithms. This method requires high-performance control and seems to be heavy in
experiment plants adding to high dependency on specialized and accurate sensors
(voltage and current sensors) [12].

The theory of Large Law Number (LLN) can be applied in the use of many solar
sources to assure the stability of the electric energy offered by the solar source.
Obviously, this solution is expensive at the level of the installation of the solar
system.

The use of hybrid renewable systems, for example, wind-solar systems is also
proposed as a solution to overcome the problem of solar intermittency. Although
this technique is practically possible, the geographical diversity of locations repre-
sents a real challenge among many other enormous challenges for this solution.

In other literature [13, 14], we proposed several methods of prediction of solar
energy and howmuch it can be available a day. This theory seems to be not practical
and extremely difficult since there are several parameters involved in the prediction
algorithms.

In this book chapter, we propose a novel technique depending on a dynamic
model of the system itself and taking into account the uncertainties introduced by
the intermittence of the photovoltaic solar source. This technique reinforces the
robustness and the stability of the system with respect to the disturbances caused by
the variation of the solar source.

This book chapter is organized as follows: a state of the art has been presented in
the introduction to explore the literature and the research developed to solve the
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problem of solar energy variation and its effect on industrial systems coupled to
photovoltaic sources.

The second section is devoted to the material and methods section. We have
presented theoretical elements and mathematic development of the VSMRAF control
algorithm. This algorithm is applied to an uncertain dynamic model of the system
coupled to a photovoltaic solar source. During the coupling of this system to the
photovoltaic solar energy, this model will allow us to avoid the disturbances due to
the variation of the electric power supply during the intermittence of the solar
energy. We have also presented a background on photovoltaic solar sources and the
description of our experimental study plant, which consists of a Reverse Osmosis
Desalination (ROD) system coupled to a photovoltaic solar source (PV-ROD) system.

The last section deals with the main simulated and experimental results obtained
by our experimental plant relating to a real example of coupling a water desalination
system to a solar photovoltaic system.

In conclusion section, we have summarized the main results of this book chapter
and we have presented the main findings as well as the perspectives of this research
work.

2. Material and methods

2.1 Theoretical elements

2.1.1 Multi input multi output linear uncertain systems

The following model represents the state-space model of an uncertain system
[15–18].

The pair of matrices (ΔA, ΔB) represents the incertitude affecting the state
matrix A and the control matrix B of the linear system.

_x ¼ Aþ ΔAð Þxþ Bþ ΔBð Þu (1)

The uncertainty state matrices of the system correspond to Eq. (1).
where

ΔA ΔB½ � ¼ D1∇ E1 E2½ � (2)

D1 ∈Rnxd E1 ∈Rexn E2 ∈Rexm

The uncertain matrices ΔA and ΔB are bounded in norm.

2.1.2 Novel mathematic development for the following control strategy

In this approach, we will develop the mathematical formulations detailed in [19]
concerning the structure of the adaptive sliding mode control of multivariate
systems by tracking a reference model, by replacing the multivariate system
represented in the state space by Eq. (3).

_x ¼ Axþ Bu (3)

If we replace A and B with their novel expressions taking into account the
uncertain matrices, we find the Eq. (4).

_x ¼ Aþ ΔAð Þxþ Bþ ΔBð Þu (4)
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Our following theorem shows that if we select a reference model, we can neglect
the incertitude on ΔB matrix.

2.1.3 Ben Chaabene’s theorem

As we have developed in [19], the reference trajectory in the state space Cr is
independent of the effect of uncertainties on the system’s dynamic. To take into
account the uncertainties on the system, we have assimilated its trajectory in the
state space to a cylindrical envelope (Es) with a radius r depending on uncertain
matrix ΔA. This matrix depends on the following error and represents the possible
deviation of the system evolved from its reference trajectory. As in the VSMRAF
control, the reference matrix of control Br has constant values, so Br = B, and
consequently ΔB = 0.

The trajectory can be represented by Figure 1.
Consider the state representation of an uncertain system and from the theorem

and the Eq. (4), we find that:

_x ¼ Aþ ΔAð Þxþ Bu (5)

The state-space reference model is represented by the following equation.

_xr ¼ Arxr þ Brur (6)

Two matrices ϴ* and Q* are defined in order to determine the reference model
matrices Ar and Br:

Ar ¼ Aþ ΔAþ Bθ ∗ (7)

Br ¼ BQ ∗ (8)

With:
ϴ*: matrix with dimension (m � n).
Q*: diagonal matrix (m � m).
The control law stretching the error to zero is defined.

u ¼ ψxþ Q ∗ ur (9)

The matrix Ψ is an against-reaction matrix of dimension (m � n). The switching
functions Ψij of the matrix Ψ are adjusted by a variable structure approach. The
tracking error xei for the uncertain system is determined as follows:

Figure 1.
Effect of the uncertainties on the evolution of the continuation error.
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xei ¼ x� xr (10)

If we derive the Eq. (10) with respect to time we find.

_xei ¼ _xi � _xrm (11)

By replacing _x and _xr by their expressions in Eqs. (5) and (6), we obtain:

_xei ¼ Aþ ΔAð Þxþ Bu� Arxr þ Brurð Þ (12)

The Eq. (7) gives:

A ¼ Ar � ΔA� Bθ ∗ (13)

Consequently.

_xei ¼ Ar � Bθ ∗ð Þxþ Bu� ArXr � Brur (14)

By replacing the control law with its expression in Eq. (9) and using the Eq. (14),
we obtain:

_xei ¼ Ar x� xrð Þ þ B ψ � θ ∗ð Þx (15)

By comparing the Eq. (15) to expressions in literature such as detailed in Eq. (14)
for the certain systems (or systems without uncertainties), we find that the
derivative of the state error for the uncertain system has the same expression than
the following Eq. (16).

de
dt

¼ Areþ B ψ� θ ∗ð ÞX (16)

Consequently, the VSMRAF technique allowed us to eliminate the affection of
the system dynamic by uncertainties due to sunshine intermittence.

2.2 Application to water desalination system fed by photovoltaic solar source

2.2.1 Design of the experimental plant

The experimental plant that we have used to validate theoretical results is shown
in Figure 2. It is essentially composed by 3 principal parts:

• A Photovoltaic (PV) system

• High Pressure (HP) pump

• A reverse osmosis desalination (ROD) unit

The brackish or sea water is pumped into a closed vessel and pressurized to the
RO unit by a High Pressure (HP) pump, which is fed by the photovoltaic solar
source using solar panels. The RO unit is a semi-permeable polyamide membrane,
composed of two sides: a brine side and a permeate side. Saltwater is pumped back
to the membrane where the salt solution is rejected by the brine side and the
desalted pure water passes through the permeate side.
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2.2.2 The photovoltaic system

Solar PV systems are composed of the following components [20]:

• PV arrays consisting of a number of PV modules or panels wired in parallel
and/or series association to provide desired voltage and current. Each PV
module is composed of many PV cells associated in series to produce high
voltages and in parallel to increase current intensity.

Solar cells are semiconductors made from silicon (single or polycrystalline)
devices that convert sunlight into direct current (DC). Figure 3 shows the
equivalent electric circuit of the PV solar cell [21] with all parameters designed
in the abbreviations table.

Figure 2.
Design of the photovoltaic reverse osmosis water desalination system.

Figure 3.
The equivalent electric circuit of the photovoltaic solar cell.
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• Solar inverter, which transforms direct current produced by PV modules to
alternative current (AC) needed by AC loads.

• A bias of system (BoS), the generation of AC and DC power.

• Batteries were used in case of off-grid PV systems or when power is needed at
night.

Mathematic laws of the PV solar cell model are given by the following expres-
sions detailed in [15].

VD ¼ VP þ RSIP (17)

IP ¼ Iph � ID � VD=Rshð Þ (18)

IP ¼ Iph � Is exp qVD=AKT
� �� 1

� �� VD=Rsh (19)

2.2.3 Description of our photovoltaic system

Figure 4 shows a PV (crystalline silicon) system with 42 kwp capacity, installed
at the Research Center of Energy Technologies (CRTEn) in the Borj Cedria techno
pole in the south of Tunis.

The installed PV system consists of three PV arrays including 172 modules
(64 each one) and 3 inverters with capacity of 17.5 kVA each one. Table 1 gives the
characteristics of one PV module.

2.2.4 Experimental plant

The whole reverse osmosis (RO) desalination system used as an experimental
plant is shown as follows. This system contains essentially 3 RO modules, a Moto
pump, and an electronic card for data acquisition from various sensors already
installed. This system is coupled to a photovoltaic system.

Figure 4.
The photograph of the PV system installed at CRTEn Borj cedria in the south of Tunis.
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3. Simulation and experimental results

3.1 Desalination system state-space model

The simulation of the Reverse Osmosis Desalination system dynamic was effected
Using Matlab software. The state-space model of the system is given by Eq. (5). The
following constant matrices A, B, and C are determined from experimental results.

A ¼

�1 1 0 0

�2:25 �1:50 0 0

0 0 �1 1

0 0 �4:62 �3:23

0
BBBBB@

1
CCCCCA
B ¼

2:50 0

0 �0:56

0 �0:20

�0:81 0

0
BBBBB@

1
CCCCCA
C ¼

1 0 0 0

0 0 1 0

 !

ΔA ¼

0:09 0 0 0

0:81 0:78 0 0

0 0 0:09 0

0 0 1:66 1:68

0
BBBBB@

1
CCCCCA

As it is shown by the Matlab Simulink model in Figure 5, we have replaced
all matrices of the state-space model using their real experimental values to test
the performances of the following of the model by the system. Values of the uncertain
matrix ΔA show that it is bounded in the norm. The real values of the uncertainty
matrix show that the deviation of the system from its reference trajectory is limited
and offers a margin of robustness to this system during its dynamic evolution.

3.2 VSMRAF control algorithm

Figure 7 shows the chronology of the calculation steps of the VSMRAF control
algorithm. After the calculation of the control law, the following error was
decreased, then the system was forced to follow its reference model.

Figure 6 shows the PV-RO water desalination experimental set-up used for real
experimentations.

Figure 5 shows the PV-RO desalination system diagram using the Matlab
Simulink procedure.

3.3 Test of system tracking dynamics

To test the PV-ROD system dynamics, we proceed to impose the reference
model and control the real evolution of the system dynamics compared to the

Characteristics Units STC conditions

Maximum power Pmax W 250

Voltage at Pmax V 28.90

Current at Pmax A 8.66

Open circuit voltage V 37.60

Short circuit current A 9.29

The total amount of energy produced annually by the PV system is 94.124 MWh/year.

Table 1.
PV module electrical characteristics.
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reference model evolution. The following curves show the tracking performance for
parametric uncertainties of different values of uncertainties, which correspond to
the variations of the photovoltaic solar energy caused by the variation of the sun-
shine. We note that we have chosen three uncertainty values, which are 10%, 20%,
and 40% to follow the tracking performance of the system. The choice of these
values of uncertainties stems from the fact that a preliminary study shows that they
do not often exceed 25%.

Figures 8 and 9 show respectively, the step responses of the product water flow
rate Q and the product salinity Cs for uncertainty of 10%, the reference trajectory is

Figure 5.
Matlab Simulink model of the PV-RO desalination system.

Figure 6.
PV-RO water desalination experimental set-up.
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characterized by a slow dynamic. Curves show perfect model following at a finite time.
The tracking error values do not exceed 3% for both of the two outputs Q and Cs.

The evolution of the two parameters Q (flow rate) and Cs (output salinity) is
shown in Figures 10 and 11. These figures show the perfect following of the model
even with an uncertainty of 20%. The tracking error is less than 5%.

Figure 7.
Algorithm of the VSMRAF control of the PV-ROD system.

Figure 8.
Flow rate tracking dynamics for uncertainty of 10%.
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The evolution of the two parameters Q (flow rate) and Cs (output salinity) is
shown in Figures 12 and 13. These figures show the perfect following of the model
even with an uncertainty of 40%. The tracking error is less than 8%.

Figure 9.
Salinity tracking dynamics for uncertainty of 10%.

Figure 10.
Flow rate tracking dynamics for uncertainty of 20%.

Figure 11.
Salinity tracking dynamics for uncertainty of 20%.
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3.3.1 Findings

If we assume that the intermittence of sunshine does not, in any case, exceed
40% of its normal value, the dynamic model of sunshine cannot be more than 40%
different from its reference model. Therefore, we can deduce that the dynamic of
the system remains insensitive to the variations of the photovoltaic solar source.
Thus, we have exceeded the problem of intermittent sunshine, thanks to the
implemented VSMRAF control technique.

3.4 Performances of VSMRAF control for optimization of operating systems

From these experimental results, we can essentially deduce that even in the case
of high uncertainties, the tracking error remains clearly low, the system remains
stable with regard to disturbances due to variations in the sunshine.

Consequently, the control technique that we have developed is suitable for the
optimization of operating systems coupled to photovoltaic solar sources. It keeps
the stability of the system and eliminates the effect of sunshine variation on its
dynamic behavior.

Figure 12.
Flow rate tracking dynamics for uncertainty of 40%.

Figure 13.
Salinity tracking dynamics for uncertainty of 40%.
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Simulations and experimental results prove our theoretical results and show a
perfect following of the reference sunshine model independent of the variation of
the photovoltaic solar source. The tracking error is less than 8% remains low even
for high intermittence of sunshine not exceeding 40% of its maximum value.

The comparison of results mentioned by the curves for the two output parame-
ters (water flow rate and salinity) of the PV-ROD system shows that the effect of
the photovoltaic solar system variation was removed. In addition, experimental
results justify the theoretical ones and show that this verified control technique for
desalination systems can be generalized for all industrial systems coupled to photo-
voltaic solar sources having multivariable dynamic models.

4. Conclusion

In this chapter, a VSMRAF Control for systems coupled to photovoltaic solar
systems has been proposed. This control technique decreases the sensitivity of the
system to variations of solar energy caused by intermittent sunlight. In addition,
this technique imposes on the system dynamics to follow the reference model
imposed by the daily evolution of solar energy without recourse to the use of
batteries.

Furthermore, the experimental and simulation results show that the
following error of the system has been kept with a low value (less than 8%)
even with a high variation of sunshine. Thus, we can conclude that using this
control technique ensures the system’s stability and neglects the effect of
intermittence of sunshine.

The mathematical development was independent of the nature of the systems,
which makes it possible to be applied to all industrial systems, especially those with
a limited number of parameters. Obviously, the prospect of this work consists in
applying this technique on other multivariable real systems with several parameters
and with strongly random variations of the solar energy to better examine the
performances of this technique of control.

Abbreviations

Is Current of saturation (A)
Q Charge (C)
Vp Photovoltaic voltage (V)
VD Voltage of diode (V)
Rsh Resistance of cell surface (Ω)
Rs Resistance of junction face (Ω)
K Constant of Boltzmann: 1.38064852(79) � 10 J–23 J/K.T
T Temperature (K)
Ip Photovoltaic current (A)
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