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Preface

Cystic fibrosis is a genetic disorder affecting multiple systems in the body with various 
levels of severity. Over the last few decades, the patterns of presentation, aspects of 
diagnosis, and approaches to its management have changed substantially. Rather 
than an acute disease in children, cystic fibrosis is also now a chronic condition in 
adults. In the developed world there are more adults than children affected with the 
disease. As more affected children are reaching adulthood, the burden on healthcare 
is ever increasing given the natural history of cystic fibrosis, which is riddled with 
exacerbations and complications requiring constant clinical input, healthcare pro-
fessional visits, and frequent hospital admissions. The treatment of cystic fibrosis 
has also changed greatly over the years. Gene therapy that remained on the horizon 
for many years is now a reality in clinical practice. Current management is focused 
on preventing disease complications rather than treating them.

Today, the medical community is facing new challenges in the management of 
cystic fibrosis. The disease exhibits as a chronic affair with slow-deteriorating stable 
phases interspersed with acute exacerbations. These aspects of the disease mandate 
close observation and timely intervention at early signs of exacerbations to prevent 
catastrophic complications. Cystic fibrosis transforms the lungs into a hotbed for 
a variety of microbial flora that slowly develops resistance to multiple antibiotics. 
Advances in lung transplantation, immunosuppression, and post-operative 
management have led to increased survival rates for lung transplant recipients, 
qualifying more and more recipients as candidates for re-transplantation.

Since cystic fibrosis affects multiple bodily systems, its management naturally 
involves multiple specialties including genetics, microbiology, neonatology, 
pediatrics, diabetology, gastroenterology, infertility, psychiatry, respiratory, 
thoracic surgery, and transplant surgery. This volume serves as a handbook as 
well as a reference for clinicians, medical professionals, healthcare assistants and 
trainees in these various specialties. This covers the basics of the included as well as 
examines recent advances in the field. As “a picture is worth a thousand words,” we 
have included in this book appropriate clinical photographs, explanatory cartoons, 
flowcharts, and diagrams. The book offers a comprehensive view of cystic fibrosis 
for students, professionals, and patients alike. We congratulate and thank all the 
authors who have contributed to this work.

Prashant Mohite, Anna Reed and André R. Simon 
Royal Brompton and Harefield NHS Foundation Trust,

United Kingdom
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Chapter 1

Introductory Chapter: Basics of 
Cystic Fibrosis
Prashant N. Mohite and Vicky Gerovasili

1. Introduction

“Woe to the child who tastes salty from a kiss on the brow, for he is cursed 
and soon must die,” describes European folklore and medical texts of middle ages 
a condition then unknown. It took several centuries for this condition to get its 
formal name from an American Pathologist Dr. Dorothy Anderson- cystic fibrosis 
[1]. While conducting an autopsy of a child apparently died of Celiac disease, she 
found ‘cystic fibrosis of the pancreas’ and her later research for over a decade defined 
the characteristics of the disease that involved pancreas, lungs and intestine [2]. 
Dr. Paul di Sant’Agnese in 1948 New York heatwave noticed a higher concentration 
of salt in the sweat of dehydrated children leading to the first, most reliable and 
yet ubiquitously used ‘sweat test’ for the CF [3]. Dr. Anderson recognized that the 
disease is autosomal recessive, however, after half a century in 1989 Lap-Chee Tsui 
in Canada discovered a gene called CFTR (CF transmembrane conductance regula-
tor), a mutation of which was responsible to cause CF [4]. Unfortunately, it was not 
the Holy Grail in the management of the CF as another 2000 variants of the gene 
mutation were found later on.

Even until the early part of the last century children affected with CF died of 
malnutrition. Discovery of pancreatic enzyme supplements and introduction of 
high-fat diet improved nutrition in CF children with many reaching to adulthood 
shifting the challenge to the pulmonary disease of CF. As more patients were diag-
nosed with the condition, a lot of organizations were founded in the western world 
to educate, support and treat CF. In 1965, the Royal Brompton hospital in London 
was the first in Europe, probably in the world to offer adult CF service [5]. Lack of 
knowledge and modern medicine in that era led to therapies like ‘mist tent’ where 
humidified air was delivered to liquefy mucus and ‘upside-down postural drainage’ 
to hasten expectorations. Over the decades, the discovery of various bugs affecting 
airways of CF patients and newer and more effective antibiotics to cull the bugs 
along with effective ways to deliver them including systematic inhalation saved 
many lives. The biggest breakthrough in the treatment of CF arrived at the begin-
ning of the current century when gene therapy directed at fixing the defect in the 
gene was successfully implemented [6, 7]. Early detection and management with a 
well-organized nutrition plan, improved airway clearance, targeted, combination 
and tailored antibiotic therapy along with ever-developing gene therapy should 
significantly improve survival in the CF patients.

2. Pathophysiology of cystic fibrosis

In the past, CF was called as ‘mucoviscidosis’ and the term quite aptly underlines 
the pathophysiology of the disease. The CF is an autosomal recessive disorder that 
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transpires due to mutation in the CFTR gene on chromosome 7 [8]. The CFTR is 
an anion channel on the surface of the epithelial cells that regulate cyclic AMP-
dependent and ATP energized secretion of chloride ions (Cl-) outside the cell and 
epithelial sodium channel (ENaC) regulated entry of Sodium ion (Na+) into the 
cell [9]. Simply put, the mutation in the gene leads to less secretion of chloride ion 
and inappropriate absorption of the sodium ion into the epithelial cells creating 
hyperosmolarity inside the cell and dehydration on its surface (Figure 1). F508del 
recognized by the absence of phenylalanine at position 508 in CFTR accounts for 
about two-thirds of mutations while the rest of the mutations measures less than 
5% individually [10]. Manifestations of CF involving various systems in the body 
are due to this genetic defect causing epithelial surface dehydration related vis-
cid mucus.

3. Clinical picture of cystic fibrosis

In the respiratory tract, abnormally dehydrated and thick mucus impedes 
normal mucociliary clearance creating a favorable environment for various organ-
isms infect and prosper with colonies. Due to persistent mucus, the airways are 
colonized with several pathogens which leads to the accumulation of inflammatory 
mediators and increases inflammation [11]. At early stages of life, the most common 
bacteria detected in the sputum are Staphylococcus aureus and Hemophilus influenzae, 
contrary to this Pseudomonas aeruginosa is the most prevalent bacteria during the 
second and third decade of life [12]. Pseudomonas aeruginosa, Burkholderia cepacia 
complex, and methicillin-resistant Staphylococcus aureus are known to be associated 
with CF morbidity and mortality [13]. Persistent productive cough, breathlessness, 
wheeze, to begin with, leads to chronic lung infections, recurrent sinusitis and 
decreased exercise tolerance. Vicious cycles of infection, inflammation and mucus 
build-up not only cause multiple pulmonary exacerbations but slowly damage 
respiratory airways culminating into bronchiectasis. In later stage complications 
like organized pneumonia, atelectasis, hemoptysis, pneumothorax, pulmonary 
hypertension, chronic hypoxic and hypercapnic respiratory failure and cor pulmo-
nale may occur [14, 15].

Abdominal manifestations of CF arise early in the course of the disease and 
have a severe impact on the quality of life of the patients. Dehydrated, concentrated 
pancreatic juices in CF patients cause a progressive obstruction and acute and 
chronic inflammation leading to parenchymal injury terminating into pancreatic 
insufficiency [16]. Clinical symptoms of pancreatic insufficiency include greasy 

Figure 1. 
Pathophysiology of cystic fibrosis.
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stools, flatulence, abdominal bloating, and poor weight gain. The CF liver disease 
is characterized by the hyper-viscous bile causing obstructive cholangitis initially 
leading to focal biliary fibrosis and subsequently to biliary multinodular cirrhosis 
and portal hypertension [17]. Gastrointestinal manifestations of CF occur due to 
pancreatic insufficiency, thickened intestinal secretions, undigested food remnants, 
poor motility, and fecal stasis with resultant impaction of mucofeculent material in 
the distal ileum and right colon presented as meconium ileus in the newborn and 
distal intestinal obstruction syndrome in the post-neonatal life. Manifestations of 
CF extend beyond respiratory and gastro-intestinal symptoms to practically every 
system of the body as shown in Figure 2. A peculiar manifestation of CF that defies 
systemic boundaries, however, is CF-related diabetes (CFRD) that involves charac-
teristics of both types of diabetes, that is, decreased secretion of insulin seen in type 
1 due to scarring of the pancreas and decreased sensitivity to insulin seen in type 2 
[18]. Incidence of CFRD increases with age and symptoms like unexplained weight 
loss, tiredness, increased thirst and micturition and sometimes decline in lung 
function can start in some patients in childhood itself. Microvascular complications 
like diabetic nephropathy, neuropathy and retinopathy are known to happen in 
untreated patients. Oral glucose tolerance test is a gold standard to detect the condi-
tion and should be performed at the age of 10 and yearly thereafter to diagnose and 
manage it at an early stage [19].

4. Diagnosis of cystic fibrosis

With the advent in diagnostic modalities, the CF is now diagnosed in newborns 
unlike a few decades ago when symptoms of CF and sometimes life-threatening 
CF complications prompted diagnostic procedures. However, even today false 
negative screening tests, migration, mild form of the disease and late presentation 
lets the condition undiagnosed until in the adulthood. Screening tests to clinch the 
diagnosis of CF at the earliest stage are offered at various levels. Carrier testing 

Figure 2. 
Clinical presentation of cystic fibrosis (credit wikimedia.org.png).
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with blood or buccal mucosa analysis for common mutations in the CFTR gene is 
indicated in people who wants to have children and have a relative affected with the 
CF. Antenatal testing involves chorionic biopsy or amniocentesis for similar genetic 
analysis and is offered to when partners are known carriers of the disease. Newborn 
screening involves testing immunoreactive trypsinogen (IRT) in heel prick blood 
which is increased in CF due to obstructed pancreatic ductus [20]. Raised IRT 
mandates sweat test which measures chloride concentration in the sweat that 
allows categorization of patients into CF, ‘CF unlikely’ and ‘intermediate’ as shown 
in Figure 3 prompting further evaluation by genetic testing in the intermediate 
category. In this, patients’ blood is checked for the number of copies of CFTR gene 
affected with most common CF mutations- the inheritance of 2 copies of mutated 
gene confirms CF, while undefined CFTR genotype or mutation of variable clinical 
consequence requires CFTR physiologic testing to establish the diagnosis of CF [21]. 
Nasal potential difference evaluating salt transport in the nasal epithelial cells and 
intestinal current measurement may further help elucidating the diagnosis of CF in 
this group of patients [22].

5. Management of cystic fibrosis

Management of CF-related complications varies and is dependent on 
disease severity and rate of progression and as a result, treatment is highly 
individualized.

As the progression of lung disease has significant prognostic implications for 
patients with CF, treatment of lung disease is one of the cornerstones of CF treat-
ment. Airway clearance is a key element of treatment and starts at birth or as soon 
as the patient is diagnosed. Airway clearance can be assisted by positive expiratory 
pressure devices and airway high-frequency chest wall oscillation techniques and 
should be performed daily (more frequently with advancing disease or during exac-
erbations) [23]. Airway clearance is assisted by treatments aimed at reducing the 
viscoelasticity of the mucous as thinner secretions are easier to expectorate. These 
involve nebulized treatment in the form of b-agonists, 3–6% hypertonic saline and 
dornase alpha as well as adequate levels of hydration [23, 24].

Figure 3. 
Diagnosis of cystic fibrosis.
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Preventing and controlling lung infections is central to the management of CF. 
Antibiotic regimes aim to prevent or treat exacerbations and to eradicate newly 
isolated pathogens. First isolation of gram-negative pathogens such as Pseudomonas 
aeruginosa should be prompt and attempt of eradication. Several eradications 
protocols including oral (typically ciprofloxacin) and inhaled antibiotics (typically 
tobramycin or colomycin) are available but details are beyond the scope of this 
chapter [25]. Prophylactic antibiotics aim to prevent or delay exacerbations, may be 
oral or inhaled and are used in conjunction with airway clearance techniques. They 
have been shown to reduce the frequency of exacerbations.

Pulmonary Exacerbations of CF include a combination of clinical symptoms, 
decline in lung function and oxygenation as well as rise of markers of inflamma-
tion. They are treated by a combination of antibiotic treatment, enhanced airway 
clearance and chest physiotherapy and supportive care as needed which may 
include oxygen supplementation or nutritional support. More severe exacerbations 
or exacerbations caused by more virulent and antibiotic-resistant pathogens will 
require intravenous antibiotics and a longer course of at least two weeks [24].

Haemoptysis and spontaneous pneumothorax are common complications of 
CF-related lung disease. Haemoptysis is often related to an infective exacerbation 
and treatment may be controlled with conservative measures such as treating the 
underlying infection and may require bronchial artery embolization or even lung 
resection. Repeated episodes of significant haemoptysis not controlled by emboliza-
tion may be an indication for lung transplantation [26].

Treatment of gastrointestinal manifestations of CF includes treatment of 
pancreatic insufficiency and management of CF-related diabetes as well as preven-
tion and treatment of intestinal blockage. Pancreatic insufficiency is treated with 
pancreatic enzyme replacement as well as nutritional support with high-calorie fat 
diet, vitamin supplementation and sodium chloride supplementation. Intestinal 
blockage prevention and treatment requires oral hydration, osmotic laxatives and 
hyperosmolar contrast enemas as needed [27, 28].

CF is a multisystem disease and therefore patients may also require treatment of 
other organs and systems such as complications from sinuses, urogenital complica-
tions as well as metabolic disorders such as reduced bone mineral density.

5.1 CFTR modulators – targeted treatment in CF disease

In recent years targeted therapy in the form of CFTR modulators has revolution-
ized the treatment of patients with CF. Oral, small molecules were developed that 
target the CFTR protein and have proven to be clinically successful in correcting 
the defect of the CFTR protein in vivo [29]. They are extremely efficacious and are 
transforming the care of patients living with CF - a chronic, progressive, multior-
gan disease- in an unprecedented way. A detailed description of CFTR modulators 
is beyond the scope of this chapter. The first CFTR modulator -ivacaftor- was suit-
able for a relatively small percentage of patients with CF. There are currently four 
single or combination therapies available (with more being investigated) and they 
have revolutionized the management of patients with CF. Numerous CFTR modula-
tors are currently being tested as well as gene engineering techniques aimed directly 
at the different mutations of the CF gene [30].

5.2 Lung transplantation in patients with CF

CF is a chronic progressive disease. Patients gradually develop structural changes 
in the lung parenchyma such as bronchiectasis. As the lung disease progresses the 
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Pulmonary Exacerbations of CF include a combination of clinical symptoms, 
decline in lung function and oxygenation as well as rise of markers of inflamma-
tion. They are treated by a combination of antibiotic treatment, enhanced airway 
clearance and chest physiotherapy and supportive care as needed which may 
include oxygen supplementation or nutritional support. More severe exacerbations 
or exacerbations caused by more virulent and antibiotic-resistant pathogens will 
require intravenous antibiotics and a longer course of at least two weeks [24].

Haemoptysis and spontaneous pneumothorax are common complications of 
CF-related lung disease. Haemoptysis is often related to an infective exacerbation 
and treatment may be controlled with conservative measures such as treating the 
underlying infection and may require bronchial artery embolization or even lung 
resection. Repeated episodes of significant haemoptysis not controlled by emboliza-
tion may be an indication for lung transplantation [26].

Treatment of gastrointestinal manifestations of CF includes treatment of 
pancreatic insufficiency and management of CF-related diabetes as well as preven-
tion and treatment of intestinal blockage. Pancreatic insufficiency is treated with 
pancreatic enzyme replacement as well as nutritional support with high-calorie fat 
diet, vitamin supplementation and sodium chloride supplementation. Intestinal 
blockage prevention and treatment requires oral hydration, osmotic laxatives and 
hyperosmolar contrast enemas as needed [27, 28].

CF is a multisystem disease and therefore patients may also require treatment of 
other organs and systems such as complications from sinuses, urogenital complica-
tions as well as metabolic disorders such as reduced bone mineral density.

5.1 CFTR modulators – targeted treatment in CF disease

In recent years targeted therapy in the form of CFTR modulators has revolution-
ized the treatment of patients with CF. Oral, small molecules were developed that 
target the CFTR protein and have proven to be clinically successful in correcting 
the defect of the CFTR protein in vivo [29]. They are extremely efficacious and are 
transforming the care of patients living with CF - a chronic, progressive, multior-
gan disease- in an unprecedented way. A detailed description of CFTR modulators 
is beyond the scope of this chapter. The first CFTR modulator -ivacaftor- was suit-
able for a relatively small percentage of patients with CF. There are currently four 
single or combination therapies available (with more being investigated) and they 
have revolutionized the management of patients with CF. Numerous CFTR modula-
tors are currently being tested as well as gene engineering techniques aimed directly 
at the different mutations of the CF gene [30].

5.2 Lung transplantation in patients with CF

CF is a chronic progressive disease. Patients gradually develop structural changes 
in the lung parenchyma such as bronchiectasis. As the lung disease progresses the 
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frequency of exacerbation increases as well as the likelihood of complications such 
as pneumothoraces and haemoptysis both of which are associated with advanced 
disease. Patients eventually develop respiratory failure. In these cases, lung trans-
plantation presents a definitive treatment. Patients with reduced lung function 
(expressed as an FEV1 of <30% predicted), increasing frequency of exacerba-
tions and/or increase in symptom burden as well as patients with life-threatening 
haemoptysis not controlled by embolization or with persistent recurrent pneumo-
thorax should be considered for lung transplantation. Median survival after lung 
transplantation remains modest (7–8 years), however, it improves the quality of life 
and prognosis of patients with end-stage lung disease [26].

6. Conclusion

CF is a chronic, progressive, multiorgan disease caused by different mutations of 
the gene responsible for the CFTR protein. The involvement of lung disease is cen-
tral in the clinical manifestations of the disease and carries significant prognostic 
implications for patients with CF. Early diagnosis and aggressive management with 
airway clearance and antibiotic treatment of lung disease as well as vigorous man-
agement of extrapulmonary complications have significantly improved the quality 
of life and survival of patients with CF. Lung transplantation remains a definitive 
treatment in patients with end-stage lung disease. However, the management of CF 
disease has entered an exciting era with CFTR modulators targeting the defective 
CFTR protein and have revolutionized the management and prognosis of CF.

Future studies are looking at gene engineering to target CFTR gene mutations 
which will hopefully provide new therapeutic targets.

© 2021 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 
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Chapter 2

Cystic Fibrosis-Related Diabetes 
(CFRD)
Manfred Ballmann

Abstract

Cystic fibrosis-related diabetes (CFRD) is the most frequent comorbidity in 
CF. The prevalence is age-dependent and abnormalities in/of glucose homeostasis 
start early in life. As CFRD has an impact on pulmonary function and life expec-
tancy, early diagnosis and treatment is mandatory. Screening is needed because 
initially, most patients with CFRD do not show any typical symptoms of diabetes. 
The question of which screening method gets the best results is still under discus-
sion. For treatment insulin is recommended but a relevant percentage of patients do 
not use it, and even if insulin is used, there is no consensus on what the best insulin 
regime in the case of CFRD is. Recently, oral antidiabetic drugs were shown to be 
as effective and safe as insulin in the initial treatment of CFRD. This treatment 
might reduce the additional treatment burden for patients with CFRD. The best 
way to monitor CFRD is also under discussion (HbA1c and/or continuous glucose 
monitoring; CGM). The threshold of HbA1c might be lower than for other types of 
diabetes. As patients with CF become older, the duration of CFRD will also increase 
and typical diabetes complications will occur. So far, these are mainly microvascular 
complications. The new CFTR modulators might influence not only pulmonary 
function but potentially also glucose homeostasis.

Keywords: CFRD, epidemiology, diagnosis, screening, treatment, CFTR modulators

1. Introduction

CF is a multi-organ disease that also affects the exocrine and endocrine pancreas 
[1]. CFRD is a discrete entity of type 3 Diabetes mellitus, displaying aspects from 
both type 1 Diabetes mellitus and type 2 Diabetes mellitus. It is the most frequent 
comorbidity in CF involving around 31% of CF patients older than 18 years [2] and 
up to more than 40% in those older than 30 years [3]. It results from involvement 
of the endocrine pancreatic function and is the end stage of early onset impaired 
glucose homeostasis [4]. Today, additional CFRD is still a risk factor for decreased 
pulmonary function but no longer for increased mortality [3]. In the past, an 
increased mortality, in part depending on sex and severe CFTR mutation, was 
observed [5]. Several aspects of the disease’s pathophysiology are not yet completely 
understood [6], but some new insights might help to understand the process [7]. 
Clinically, there is a need for screening since earlier prospective studies regarding 
CFRD showed that most CF patients exhibited no clinical signs of hyperglycemia at 
the time they were diagnosed with CFRD by oral glucose tolerance tests (OGTTs) 
[8]. The advantages and disadvantages of different screening approaches will be 
discussed. Even after diagnosis, there is some discussion on how to treat patients 
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with CFRD diagnosed by screening. Guidelines recommended insulin treatment [9] 
but registry data from the US [2] and Europe [10] showed that a relevant proportion 
of CF patients with CFRD are not treated with daily insulin. Alternative treatment 
options might be needed, and a recent study demonstrated that oral antidiabetic 
drugs are not inferior to insulin regarding HbA1c over 2 years after CFRD was 
diagnosed by annual OGTT screening [11]. Upcoming CFTR modulator treat-
ment is an interesting area regarding glucose homeostasis and CFRD. The results 
of two small case studies [12, 13] on CF patients treated with ivacaftor imply that 
there is a possibility that CFTR modulation might also influence insulin secretion. 
Additionally, a registry study showed a trend to a reduced prevalence of CFRD in 
those treated with ivacaftor for a longer time [14]. In another case study with five 
patients (F508 del homozygous) treated with lumacaftor/ivacaftor, no consistent 
effect on glucose tolerance or insulin secretion was observed [15]. Overall, there are 
a number of important aspects of CFRD, from its pathophysiology to screening, 
diagnosis, treatment, best methods of follow-up, and new perspectives with CFTR 
modulator treatment options.

2. CFRD and epidemiology

2.1 Prevalence and incidence and risk factors

In 1994, a first study reporting the prevalence of CFRD was published [16]. 
Prevalence was 14.7% in all Danish CF patients. More recent data from the CFF 
patient registry showed an age-dependent prevalence from around 2% in those 
younger than 10 years up to around 40–50% in adults [2]. The prevalence is in the 
same range as reported from Germany (Table 1) [17] as a European country. The 
prevalence varies between different European countries based on a recent report 
of the ECFS patient registry [18]. While diabetes prevalence has risen, incidence 
has fallen significantly: from 4 cases per 100 patient-years during the 1998–2002 
interval to 2.7 cases per 100 patient-years between 2003 and 2008, representing a 
40% decrease in the number of diabetes diagnoses in the US [3]. In a longitudinal 
study from the UK, the incidence was 3.5% (observation period 1996–2005) [19].

Severe genotype, pancreatic insufficiency, and female gender remain consider-
able intrinsic risk factors for early acquisition of CFRD [18]. In a large prospective 
study with 1093 patients, impaired fasting glucose, impaired glucose tolerance, and 
indeterminate glucose tolerance were all predictors of future CFRD [20] .

2.2 Sex differences and mortality

An increased mortality used to be described mainly for female CF patients with 
CFRD [21]. Mortality rate decreased from 1992–1997 to 2003–2008 in females from 

Diabetes in CF 0–5 
years

6–11 
yeas

12–17 
years

18–29 
years

30–39 
years

>40 
years

Diabetes 0.1 1.2 11.1 21.6 32.0 46.6

Of these CFRD 0.0 100 86.7 96.5 94.5 94.3

Of these not CFRD 0.1 0.0 13.3 3.6 5.5 5.7

Adapted from table 17 and table 18 [17].

Table 1. 
Frequency in % of CF patients with diabetes in 2018.
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6.9 to 3.2 deaths per 100 patient-years and in male subjects from 6.5 to 3.8 deaths 
per 100 patient-years. There was no longer a sex difference in mortality [3]. A 
follow-up study (2008–2012) from the same CF center reported that there still was 
a sex difference in adults, but only in severe genotypes with higher prevalence of 
CFRD, resulting in an increased mortality in females [22]. Consequently, there is 
still a discussion about the gender influence on CFRD and survival.

2.3 Genetics

Since the CF gene was detected, there has been the question of a CFTR muta-
tion/mutation class-related risk for CFRD or whether there are other mutations 
outside of the CFTR gene that may modify the risk of developing CFRD.

In a longitudinal study from the UK, CFTR mutation classes I and II were shown 
to increase the risk of CFRD independently of other known risk factors [19]. A 
more recent study reported the risk for CFRD and mortality in adults studied in 
the years 2008–2012 [22]. CFRD was associated with increased mortality indepen-
dently of mutation category (mild or severe) [22].

A study looking for CFRD frequency in different age groups and the influence 
of mutation classes of the CFTR gene found that the prevalence of CFRD increased 
with age from 2.6% in patients <18 years to 22.1% in patients 18 years or older in 
those homozygous for group II (including del phen 508, the most frequent CFTR 
mutation) mutations. It was only 1.5% in patients 18 years or older in group IV/any 
CFTR mutations [23]. In general, group IV mutations are less severe than class II 
mutations and this results also in a low risk for CFRD. If CFRD as a complication of 
CF has developed, there is still an increased mortality risk even in mild mutation 
classes (e.g., CFTR mutation class IV), but the risk for developing CFRD is higher in 
severe CFTR mutation classes (e.g., CFTR mutation class I or II).

2.3.1 Genetic modifiers

The frequency of HLA types related to type 1 or type 2 diabetes were in the 
same range in CF patients with or without diabetes. There was also no difference in 
frequency compared to normal population [23]. As for other comorbidities, there 
are also modifiers for CFRD. Susceptibility to CFRD is at least in part determined by 
variants at SLC26A9 and at four loci associated with type 2 diabetes in the general 
population [24]. In a very recent study, a wide overlap with genetic modifiers of 
type 2 diabetes was described [25]. This might allow for a stratification of CFRD 
screening. Those with less risk depending on CFTR mutation classes and modifier 
genes might be screened starting at an older age and less frequently than those with 
a high risk for CFRD.

3. CFRD and pathophysiology

The mechanism of how diabetes develops in CF is not yet completely under-
stood. Difficult access to animal models and human pancreatic tissue may con-
tribute to this situation. Two recent reviews focused on the pathogenesis of CFRD 
[26, 27]. Insulin secretion is reduced even with normal OGTT and this is observed 
even in kids [28]. Insulin sensitivity is not or only minimally impaired apart from 
severe infections or systemic glucocorticoid treatment [29]. An often-discussed 
question concerned the possible existence of a direct influence of CFTR on α or 
β-cells. In an elegant study, murine models of β-cell CFTR deletion and human 
pancreas and islets from controls and CF patients were used [7]. There were some 
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40% decrease in the number of diabetes diagnoses in the US [3]. In a longitudinal 
study from the UK, the incidence was 3.5% (observation period 1996–2005) [19].

Severe genotype, pancreatic insufficiency, and female gender remain consider-
able intrinsic risk factors for early acquisition of CFRD [18]. In a large prospective 
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Diabetes in CF 0–5 
years

6–11 
yeas

12–17 
years

18–29 
years

30–39 
years

>40 
years

Diabetes 0.1 1.2 11.1 21.6 32.0 46.6

Of these CFRD 0.0 100 86.7 96.5 94.5 94.3

Of these not CFRD 0.1 0.0 13.3 3.6 5.5 5.7

Adapted from table 17 and table 18 [17].

Table 1. 
Frequency in % of CF patients with diabetes in 2018.
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6.9 to 3.2 deaths per 100 patient-years and in male subjects from 6.5 to 3.8 deaths 
per 100 patient-years. There was no longer a sex difference in mortality [3]. A 
follow-up study (2008–2012) from the same CF center reported that there still was 
a sex difference in adults, but only in severe genotypes with higher prevalence of 
CFRD, resulting in an increased mortality in females [22]. Consequently, there is 
still a discussion about the gender influence on CFRD and survival.

2.3 Genetics

Since the CF gene was detected, there has been the question of a CFTR muta-
tion/mutation class-related risk for CFRD or whether there are other mutations 
outside of the CFTR gene that may modify the risk of developing CFRD.

In a longitudinal study from the UK, CFTR mutation classes I and II were shown 
to increase the risk of CFRD independently of other known risk factors [19]. A 
more recent study reported the risk for CFRD and mortality in adults studied in 
the years 2008–2012 [22]. CFRD was associated with increased mortality indepen-
dently of mutation category (mild or severe) [22].

A study looking for CFRD frequency in different age groups and the influence 
of mutation classes of the CFTR gene found that the prevalence of CFRD increased 
with age from 2.6% in patients <18 years to 22.1% in patients 18 years or older in 
those homozygous for group II (including del phen 508, the most frequent CFTR 
mutation) mutations. It was only 1.5% in patients 18 years or older in group IV/any 
CFTR mutations [23]. In general, group IV mutations are less severe than class II 
mutations and this results also in a low risk for CFRD. If CFRD as a complication of 
CF has developed, there is still an increased mortality risk even in mild mutation 
classes (e.g., CFTR mutation class IV), but the risk for developing CFRD is higher in 
severe CFTR mutation classes (e.g., CFTR mutation class I or II).

2.3.1 Genetic modifiers

The frequency of HLA types related to type 1 or type 2 diabetes were in the 
same range in CF patients with or without diabetes. There was also no difference in 
frequency compared to normal population [23]. As for other comorbidities, there 
are also modifiers for CFRD. Susceptibility to CFRD is at least in part determined by 
variants at SLC26A9 and at four loci associated with type 2 diabetes in the general 
population [24]. In a very recent study, a wide overlap with genetic modifiers of 
type 2 diabetes was described [25]. This might allow for a stratification of CFRD 
screening. Those with less risk depending on CFTR mutation classes and modifier 
genes might be screened starting at an older age and less frequently than those with 
a high risk for CFRD.

3. CFRD and pathophysiology

The mechanism of how diabetes develops in CF is not yet completely under-
stood. Difficult access to animal models and human pancreatic tissue may con-
tribute to this situation. Two recent reviews focused on the pathogenesis of CFRD 
[26, 27]. Insulin secretion is reduced even with normal OGTT and this is observed 
even in kids [28]. Insulin sensitivity is not or only minimally impaired apart from 
severe infections or systemic glucocorticoid treatment [29]. An often-discussed 
question concerned the possible existence of a direct influence of CFTR on α or 
β-cells. In an elegant study, murine models of β-cell CFTR deletion and human 
pancreas and islets from controls and CF patients were used [7]. There were some 
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important results: (1) In the murine cell model, CFTR did not affect β-cell func-
tion. (2) In human islets, nearly no expression of CFTR mRNA was detected. (3) 
Additionally, there was no CFTR protein or electrical activity. (4) The secretion of 
islet hormones (insulin and glucagon) was in the normal range and only minimal 
changes in important islet-regulatory transcripts were detected. (5) As a conse-
quence of inflammation, only 35% of β-cell area was conserved and the other part 
of the islet was compounded by immune infiltration. Overall, CFRD seems to be a 
consequence of beta-cell loss, accompanied by inflammation of the islets. There is 
no reason to think that CFTR mutations directly cause islet dysfunction [7].

4. CFRD and diagnosis

4.1 Screening, initial symptoms, and outcome

As there are usually no typical diabetes-related symptoms [8], there is a need 
to screen for CFRD. Guidelines recommended a regular oral glucose tolerance test 
(OGTT) for screening [9]. Annual screening should start at the age of 10 years, as 
recommended in the US and by the ECFS, or at 12 years, as recommended in the 
UK. Because OGTT is time-consuming for patients and CF center staff, there is 
some interest in more comfortable alternative methods. The screening rate with 
OGTT in CF is nowhere near the recommendations in guidelines. In median, only 
61.3% of CF patients aged 10–17 years and only 32.8% of adults were screened by 
OGTT in the US [2]. Nevertheless, it is possible to increase the rate of screening by 
OGTT, as shown from a program in a pediatric CF center that increased its annual 
screening rate for outpatients from 45% to 71% [30].

In a registry study, it has recently been reported that CF centers that screen 
more frequently for CFRD detected CFRD earlier and that those that screened less 
often had a faster decrease in pulmonary function [31]. This supports the view that 
screening for CFRD is an important tool to optimize CF care.

4.1.1 HbA1c for screening

HbA1c is quickly collected and simple to measure, which makes it a comfortable 
test for both patients and CF center staff. To reduce the need for OGTT, the question 
was whether HbA1c was able to identify those patients at risk for CFRD. However, 
because of low sensitivity to detect CFRD, HbA1c has not been recommended as 
a screening tool for CFRD [32] for many years. This has recently become contro-
versial. If a low HbA1c (<5.5%) as threshold was used to identify CF patients with 
CFRD, the sensitivity covered a wide range from 93% [33] to only 78% [34]. As of 
now, there is not enough evidence that HbA1c is a reliable tool to screen for CFRD.

4.1.2 Different OGTT methods

To make OGTT more comfortable for patients and staff, different modifications 
of the OGTT procedure were investigated. A shorter sample time (1 h) [35, 36] was 
discussed, as well as a lower glucose load (50 g) [37]. Both approaches need evalua-
tion in a larger cohort. So far, standard (WHO) OGTT is still recommended.

4.1.3 Continuous glucose monitoring (CGM)

Another way to uncover impaired glucose homeostasis and CFRD even earlier 
than using OGTT is CGM. OGTTs were compared with 6 days of CGM in detecting 
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glucose disturbance in 30 CF patients (age: 10–18 years). CGM identified glucose 
changes that had been missed by OGTT. This might help to initiate treatment of 
glucose disturbance before CFRD is diagnosed [38]. However, since even OGTT 
is only rarely used in many CF centers there is no reason to expect that the more 
sophisticated CGM will be used more frequently.

4.1.4 OGTT performance and diagnostic criteria

• OGTT: Glucose 1.75 g/kg body weight in 250–300 ml water max 75 g glucose 
drinking in 5 min

• Performed after >8 h of fasting in the morning.

• No physical activity during the test.

• Often the OGTT is done during the annual assessment. No other investigations 
during the OGTT (such as an ultrasound) are allowed.

• Blood glucose is measured before (0 min) and 60 min and 120 min after drink-
ing the glucose load.

5. CFRD and treatment

5.1 Treatment

Disturbance of glucose homeostasis starts early in life, CFRD being the end stage 
[4]. This opens the discussion on the best time to start treatment even before CFRD 
is diagnosed by OGTT. Insulin is the only recommended treatment. This should be 
accompanied by an education program and dietary advice. Despite recommendations, 
insulin is used only in around 75% of all CFRD patients all over the world [2, 17, 40].

5.1.1 Insulin

Insulin is the recommended treatment for CFRD. There are two problems with 
this recommendation. (1) A relevant percentage of CFRD patients do not use 
insulin (see Table 2). This is the case in the US [2], the UK [41], and Germany [17] 
at least, as the national registers documented. All these are registries sponsored 
by CF organizations. Data from a German/Austrian general diabetes registry [42] 
that collects data from both CFRD patients and type 1 and 2 diabetes patients have 
shown that only 77% of CFRD patients were on insulin [40]. There might be several 
reasons for this. First of all, most patients do not realize symptoms of hyperglyce-
mia early in the course of CFRD [8]. Secondly, CF treatment is an enormous burden 
for adult CF patients and families [43] as well as for children with CF. They spent 
74 min a day with treatment, compared to type 1 diabetes with 56 min and asthma 
with 6 min [44]. Perhaps they like to avoid this additional burden of insulin treat-
ment. (2) The optimal insulin regime is not defined and different regimes are in use. 
This includes long-term once-daily insulin, intensified insulin treatment several 
times a day, or an insulin pump with continuous insulin and pushes with meals. The 
more intensive insulin treatment with a pump is less in use, at least in adolescents 
and young adults, compared to type 1 diabetes patients in the same age range [45]. 
In adult CFRD patients treated with insulin, the mean daily dose was not different 
to matched type 1 or type 2 diabetes patients [46].
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discussed, as well as a lower glucose load (50 g) [37]. Both approaches need evalua-
tion in a larger cohort. So far, standard (WHO) OGTT is still recommended.
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than using OGTT is CGM. OGTTs were compared with 6 days of CGM in detecting 
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glucose disturbance in 30 CF patients (age: 10–18 years). CGM identified glucose 
changes that had been missed by OGTT. This might help to initiate treatment of 
glucose disturbance before CFRD is diagnosed [38]. However, since even OGTT 
is only rarely used in many CF centers there is no reason to expect that the more 
sophisticated CGM will be used more frequently.

4.1.4 OGTT performance and diagnostic criteria

• OGTT: Glucose 1.75 g/kg body weight in 250–300 ml water max 75 g glucose 
drinking in 5 min

• Performed after >8 h of fasting in the morning.

• No physical activity during the test.

• Often the OGTT is done during the annual assessment. No other investigations 
during the OGTT (such as an ultrasound) are allowed.

• Blood glucose is measured before (0 min) and 60 min and 120 min after drink-
ing the glucose load.

5. CFRD and treatment

5.1 Treatment

Disturbance of glucose homeostasis starts early in life, CFRD being the end stage 
[4]. This opens the discussion on the best time to start treatment even before CFRD 
is diagnosed by OGTT. Insulin is the only recommended treatment. This should be 
accompanied by an education program and dietary advice. Despite recommendations, 
insulin is used only in around 75% of all CFRD patients all over the world [2, 17, 40].

5.1.1 Insulin

Insulin is the recommended treatment for CFRD. There are two problems with 
this recommendation. (1) A relevant percentage of CFRD patients do not use 
insulin (see Table 2). This is the case in the US [2], the UK [41], and Germany [17] 
at least, as the national registers documented. All these are registries sponsored 
by CF organizations. Data from a German/Austrian general diabetes registry [42] 
that collects data from both CFRD patients and type 1 and 2 diabetes patients have 
shown that only 77% of CFRD patients were on insulin [40]. There might be several 
reasons for this. First of all, most patients do not realize symptoms of hyperglyce-
mia early in the course of CFRD [8]. Secondly, CF treatment is an enormous burden 
for adult CF patients and families [43] as well as for children with CF. They spent 
74 min a day with treatment, compared to type 1 diabetes with 56 min and asthma 
with 6 min [44]. Perhaps they like to avoid this additional burden of insulin treat-
ment. (2) The optimal insulin regime is not defined and different regimes are in use. 
This includes long-term once-daily insulin, intensified insulin treatment several 
times a day, or an insulin pump with continuous insulin and pushes with meals. The 
more intensive insulin treatment with a pump is less in use, at least in adolescents 
and young adults, compared to type 1 diabetes patients in the same age range [45]. 
In adult CFRD patients treated with insulin, the mean daily dose was not different 
to matched type 1 or type 2 diabetes patients [46].
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One single optimal insulin regime for all CFRD patients does not exist, since 
individual adjustment to medical needs and patients’ options is required. The treat-
ment of CFRD is a team approach including dieticians, diabetologists, psycholo-
gists, and the CF physician.

5.1.2 Oral antidiabetic drugs

Oral antidiabetic drugs have been used in CFRD for many years [47]. The group 
of sulfonylurea (glibenclamide) had some disadvantages. They showed inhibitions 
of CFTR Cl channels in vitro [48–50]. The non-sulfonylurea hypoglycemic agent 
repaglinide showed only a weak inhibition of CFTR Cl channels [51]. In 2001, a study 
was published that showed postprandial effects of premeal insulin lispro and premeal 
repaglinide on postprandial glucose levels in humans. Glucose decreased (peak, 2 h and 5 
h AUC) with insulin lispro, and glucose decreased with repaglinide only 5 h AUC. Insulin 
secretion (5 h AUC) increased only with insulin lispro [52]. In the latest Cochrane review 
regarding the use of oral antidiabetic drugs in CFRD, published in 2016, it was concluded 
that controlled prospective studies are needed [53]. There are two prospective random-
ized controlled trials comparing the effects of insulin versus repaglinide in patients with 
newly diagnosed CFRD [11, 54]. In a 12-month trial, there was a significant increase in 
BMI only in the insulin group. Comparing the insulin to the repaglinide group, there 
was no significant difference in BMI, HbA1c, or pulmonary function changes over the 
study period [54]. In the other study over 24 months, there was no difference between 
the groups (insulin and repaglinide) regarding HbA1c, BMI, and pulmonary function. It 
was concluded from that study that at least a subgroup of patients with newly diagnosed 
CFRD can be treated initially with oral antidiabetic drugs [11]. This might be an option 
for those who refuse insulin due to the additional treatment burden (Table 3).

Indication therapy in case of 
CFRD

0–5 
years

6–11 
yeas

12–17 
years

18–29 
years

30–39 
years

>40 
years

Insulin 100 72.7 64.0 67.6 76.9 75.7

Oral antidiabetics 0 9.1 11.0 9.3 9.3 8.8

Dietary measures 0 27.3 39.0 21 25 23.3

Adapted from table 22 and table 23 [17].

Table 3. 
Frequency in % of CF patients with indication therapies related to diabetes in 2018.

Blood glucose mmol/l (mg/dl)

Start 60 min 120 min

Normal glucose tolerance (NGT) <5·6 (100) <11·1 (200) <7·8 (140)

Fasting hyperglycemia (FH) >5·6 (100) and <7·0 (126) <11·1 (200) <7·8 (140)

Impaired glucose tolerance (IGT) <7·0 (126) <11·1 (200) >7·8 (140)
<11·1 (200)

Indeterminate glycemia (INDET) <7·0 (126 ) >11·1 (200) <7·8 (140)

Diabetes (CFRD) without FH <7·0 (126) – >11·1 (200)

CFRD with FH ≥7·0 (126) – >11·1 (200)

Adapted from [39].

Table 2. 
Classification of glucose tolerance.
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5.1.3 Diet

The well-known diet restrictions and advice for type 1 or type 2 diabetes are 
not transferable to CFRD. In CFRD, the patients need a high-caloric nutrition, in 
contrast to what is recommended in other types of diabetes. Therefore, a dietician 
trained in CFRD is needed to support the patient with detailed information regard-
ing nutrition in the special situation of CFRD [55].

5.2 Treatment monitoring

5.2.1 HbA1c

HbA1c is not recommended to diagnose CFRD (see Section 4.1.1.). The situation 
is different for monitoring CFRD. HbA1c is used to monitor glycemic control in 
CFRD. In CFRD, the target value for HbA1c should be lower than in type 1 diabetes, 
because in CFRD mean plasma glucose does not correlate with HbA1c [56]. This is, 
for example, incorporated in the Australian Standards of Care for CFRD [57]. Adults 
with CFRD have a significantly lower HbA1c value compared to type 1 diabetes 
adults (6.8% vs. 7.9%) [58]. How low HbA1c values should be to prevent long-term 
diabetic comorbidities like microangiopathies (see also Section 6.1) is unknown.

5.2.2 CGM

A more strict control of glucose homeostasis with insulin treatment is achievable 
with CGM and is accompanied by an improved clinical outcome [59]. This requires the 
cooperation of the entire CFRD team and particularly the support by a diabetologist.

In general, adherence to diabetes care guidelines (ADA/CFF) is suboptimal [40] 
and improvement is urgently needed.

6. CFRD and complications

6.1 Microvascular complications

With decreased mortality, CF patients spend more years living with 
CFRD. Today, CF patients tend to develop microvascular complications, much like 
patients with type 1 or type 2 diabetes [60]. In long-standing CFRD (>10 years) 
with fasting hyperglycemia, 14% of patients had microalbuminuria and 16% had 
retinopathy [61]. The percentage of patients with hypertension was lower in adult 
CFRD patients while the percentage of patients suffering from nephropathy was 
higher compared to type 1 and 2 diabetes [58]. These data underline the need for 
routine screening for CFRD complications.

6.1.1 Retinal complications

More sophisticated eye investigations demonstrated changes at the retina level.
Screening for this kind of complication should be also mandatory [62]. 

Percentage of patients with retinopathy did not differ between adults with CFRD 
and type 1 or type 2 diabetes [58].

6.1.2 Macrovascular complications

Macrovascular complications have not been described so far. However, with 
increasing duration of CFRD in older CF patients, this kind of complication has 
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5.1.3 Diet

The well-known diet restrictions and advice for type 1 or type 2 diabetes are 
not transferable to CFRD. In CFRD, the patients need a high-caloric nutrition, in 
contrast to what is recommended in other types of diabetes. Therefore, a dietician 
trained in CFRD is needed to support the patient with detailed information regard-
ing nutrition in the special situation of CFRD [55].

5.2 Treatment monitoring

5.2.1 HbA1c

HbA1c is not recommended to diagnose CFRD (see Section 4.1.1.). The situation 
is different for monitoring CFRD. HbA1c is used to monitor glycemic control in 
CFRD. In CFRD, the target value for HbA1c should be lower than in type 1 diabetes, 
because in CFRD mean plasma glucose does not correlate with HbA1c [56]. This is, 
for example, incorporated in the Australian Standards of Care for CFRD [57]. Adults 
with CFRD have a significantly lower HbA1c value compared to type 1 diabetes 
adults (6.8% vs. 7.9%) [58]. How low HbA1c values should be to prevent long-term 
diabetic comorbidities like microangiopathies (see also Section 6.1) is unknown.

5.2.2 CGM

A more strict control of glucose homeostasis with insulin treatment is achievable 
with CGM and is accompanied by an improved clinical outcome [59]. This requires the 
cooperation of the entire CFRD team and particularly the support by a diabetologist.

In general, adherence to diabetes care guidelines (ADA/CFF) is suboptimal [40] 
and improvement is urgently needed.

6. CFRD and complications

6.1 Microvascular complications

With decreased mortality, CF patients spend more years living with 
CFRD. Today, CF patients tend to develop microvascular complications, much like 
patients with type 1 or type 2 diabetes [60]. In long-standing CFRD (>10 years) 
with fasting hyperglycemia, 14% of patients had microalbuminuria and 16% had 
retinopathy [61]. The percentage of patients with hypertension was lower in adult 
CFRD patients while the percentage of patients suffering from nephropathy was 
higher compared to type 1 and 2 diabetes [58]. These data underline the need for 
routine screening for CFRD complications.

6.1.1 Retinal complications

More sophisticated eye investigations demonstrated changes at the retina level.
Screening for this kind of complication should be also mandatory [62]. 

Percentage of patients with retinopathy did not differ between adults with CFRD 
and type 1 or type 2 diabetes [58].

6.1.2 Macrovascular complications

Macrovascular complications have not been described so far. However, with 
increasing duration of CFRD in older CF patients, this kind of complication has 
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to be expected. Even microvascular complications develop later in CFRD than 
in other types of diabetes.

6.2 Risk for hyperglycemia

The risk for acute severe hyperglycemia exists but the condition is very rare 
[63]. Most CFRD patients do not develop a ketoacidosis. This might be related 
to residual insulin secretion and glucagon counter regulation. Hyperglycemia 
measured by HbA1c is a risk factor for mortality. In a prospective observational 
study, a HbA1c ≥ 6.5% was associated with a threefold increased risk of death [64]. 
Measuring HbA1c is mandatory and it should be kept in mind that the target value is 
lower than in type 1 or type 2 diabetes (see also Section 5.2.1).

6.3 Risk for hypoglycemia

The detected frequency of hypoglycemia is higher with CGM than with OGTT 
[65]. There is no prognostic relevance of hypoglycemia during OGT for later 
development of CFRD [66]. In general, it seems that the risk of hypoglycemia is not 
different from other types of diabetes and instruction on how to handle CFRD in 
daily life should address this risk.

7. CFRD and special situations

7.1 Pregnancy

With improved clinical course of CF and improved life expectancy, more female 
CF patients want to become pregnant. According to the UK guidelines [55], there 
are four groups.

• CFRD and IGT: optimized diabetes control and needs to be referred to a 
specialized diabetes team.

• NGT (tested in the last 3 months): OGT in first trimester and the next between 
week 24 and week 28.

• Unknown glycemic status: OGT before becoming pregnant, if possible.

7.2 Physical activity

With better clinical conditions, physical activities in all age groups of CF 
patients increased. Patients with CFRD should exercise and be educated about the 
risk of hypoglycemia, like other diabetic patients. CFRD is no reason to stop physi-
cal activities.

8.  CFRD and cystic fibrosis transmembrane regulator (CFTR) 
modulators

Since 2012, there is a new class of medication for CF patients on the market. 
These drugs are called “CFTR modulators.” They are CFTR mutation specific 
and are administered orally. This offers the chance that these drugs might affect 
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different organs that are reached by the bloodstream. The regulation of glucose 
homeostasis is a complex process and CFTR modulators might interfere at differ-
ent steps.

8.1 CFRD and ivacaftor

Ivacaftor is a CFTR potentiator and acts with gating mutations (e.g., G551D). 
It increases pulmonary function, weight, and quality of life (QoL) and decreases 
sweat chloride concentration [67].

In two siblings, insulin secretion and glucose AUC were measured during an 
OGTT before and 16 weeks after initiation of ivacaftor [12]. This paper described 
the beneficial effect of 4-month ivacaftor treatment on the pathologic OGTT of two 
patients with CF carrying the S549R gating mutation. This beneficial effect may 
be partially due to the increased earlier insulin secretion capacity [12]. Two other 
studies also reported an increase in insulin secretion after ivacaftor was initiated in 
CF patients with a gating mutation [68, 69]. As of now, reports have included only 
small numbers of patients and/or are uncontrolled studies. Sufficiently powered 
studies are still missing. In a registry study using data from the US and the UK 
with a follow-up of more than 5 years, a trend to a reduced prevalence of CFRD in 
ivacaftor-treated patients [14] was reported. If this observation will be corrobo-
rated in future studies, many CF patients would benefit from a postponed CFRD 
treatment burden.

8.2 CFRD and Ivacaftor/lumacaftor combination therapy

The combination therapy with ivacaftor/lumacaftor was administered to 
patients with the del F508 mutation [70]. The overall clinical effect regard-
ing pulmonary function, weight, and QoL was low compared to ivacaftor in 
patients with a gating mutation [67]. Using CGM and OGTT to control glucose 
homeostasis in five patients after initiation of ivacaftor/lumacaftor treatment, 
glycemic abnormalities persisted [71]. A consistent impact of the combination of 
ivacaftor/lumacaftor on insulin secretion or glucose tolerance was not detected in 
five patients [15]. In a very recent article from France [72], the change of OGTT 
categories after 1 year of lumacaftor/ivacaftor treatment was described in an 
uncontrolled study design. The reported improvement, for example, from CFRD 
to IGT is within the range of the well-known high variability of OGTT results in 
CF patients [73]. It is not surprising that the combination treatment, which had 
less of an effect on clinical outcome in gating mutations compared to ivacaftor, 
has so far no proven effect on CFRD, even if only a small number of CF patients 
were investigated.

8.3 CFRD and outlook

The recently published results with a triple combination CFTR modulator 
therapy in patients with a del phen 508 allele are impressive regarding pulmonary 
function increase, sweat chloride decrease, and other outcomes [74]. With a highly 
clinically effective CFTR modulator treatment and a sufficient number of patients, 
the demonstration of a positive influence on glucose homeostasis in a prospective 
study seems realistic.

However, there is currently no evidence-based information that CFTR modula-
tors have a relevant influence on the complex pathophysiology regarding glucose 
homeostasis.



Cystic Fibrosis - Facts, Management and Advances

16

to be expected. Even microvascular complications develop later in CFRD than 
in other types of diabetes.

6.2 Risk for hyperglycemia

The risk for acute severe hyperglycemia exists but the condition is very rare 
[63]. Most CFRD patients do not develop a ketoacidosis. This might be related 
to residual insulin secretion and glucagon counter regulation. Hyperglycemia 
measured by HbA1c is a risk factor for mortality. In a prospective observational 
study, a HbA1c ≥ 6.5% was associated with a threefold increased risk of death [64]. 
Measuring HbA1c is mandatory and it should be kept in mind that the target value is 
lower than in type 1 or type 2 diabetes (see also Section 5.2.1).

6.3 Risk for hypoglycemia

The detected frequency of hypoglycemia is higher with CGM than with OGTT 
[65]. There is no prognostic relevance of hypoglycemia during OGT for later 
development of CFRD [66]. In general, it seems that the risk of hypoglycemia is not 
different from other types of diabetes and instruction on how to handle CFRD in 
daily life should address this risk.

7. CFRD and special situations

7.1 Pregnancy

With improved clinical course of CF and improved life expectancy, more female 
CF patients want to become pregnant. According to the UK guidelines [55], there 
are four groups.

• CFRD and IGT: optimized diabetes control and needs to be referred to a 
specialized diabetes team.

• NGT (tested in the last 3 months): OGT in first trimester and the next between 
week 24 and week 28.

• Unknown glycemic status: OGT before becoming pregnant, if possible.

7.2 Physical activity

With better clinical conditions, physical activities in all age groups of CF 
patients increased. Patients with CFRD should exercise and be educated about the 
risk of hypoglycemia, like other diabetic patients. CFRD is no reason to stop physi-
cal activities.

8.  CFRD and cystic fibrosis transmembrane regulator (CFTR) 
modulators

Since 2012, there is a new class of medication for CF patients on the market. 
These drugs are called “CFTR modulators.” They are CFTR mutation specific 
and are administered orally. This offers the chance that these drugs might affect 

17

Cystic Fibrosis-Related Diabetes (CFRD)
DOI: http://dx.doi.org/10.5772/intechopen.92767

different organs that are reached by the bloodstream. The regulation of glucose 
homeostasis is a complex process and CFTR modulators might interfere at differ-
ent steps.

8.1 CFRD and ivacaftor

Ivacaftor is a CFTR potentiator and acts with gating mutations (e.g., G551D). 
It increases pulmonary function, weight, and quality of life (QoL) and decreases 
sweat chloride concentration [67].

In two siblings, insulin secretion and glucose AUC were measured during an 
OGTT before and 16 weeks after initiation of ivacaftor [12]. This paper described 
the beneficial effect of 4-month ivacaftor treatment on the pathologic OGTT of two 
patients with CF carrying the S549R gating mutation. This beneficial effect may 
be partially due to the increased earlier insulin secretion capacity [12]. Two other 
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uncontrolled study design. The reported improvement, for example, from CFRD 
to IGT is within the range of the well-known high variability of OGTT results in 
CF patients [73]. It is not surprising that the combination treatment, which had 
less of an effect on clinical outcome in gating mutations compared to ivacaftor, 
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therapy in patients with a del phen 508 allele are impressive regarding pulmonary 
function increase, sweat chloride decrease, and other outcomes [74]. With a highly 
clinically effective CFTR modulator treatment and a sufficient number of patients, 
the demonstration of a positive influence on glucose homeostasis in a prospective 
study seems realistic.

However, there is currently no evidence-based information that CFTR modula-
tors have a relevant influence on the complex pathophysiology regarding glucose 
homeostasis.
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9. Conclusions

CFRD is still a highly relevant comorbidity in CF. Nevertheless, there are many 
questions regarding its optimal handling from both patients’ and physicians’ point 
of view. CFRD is a team approach, which includes the CF team but also the diabetes 
team.

Adherence to all aspects of CFRD diagnosis and treatment is low and needs 
urgent efforts to increase.

As long as no better screening procedure is established, 2h of OGTT should be 
used annually as screening for CFRD.

Education regarding CFRD should include patients, families, physicians, and the 
entire team.

Treatment as recommended by guidelines prefers only insulin. The recently 
published controlled prospective trials may endorse the use of oral antidiabetic 
drugs, at least in a subgroup of patients.

Monitoring must include all the measurements that are recommended for other 
types of diabetes. HbA1c target value for treatment should be lower than in type 1 or 
2 diabetes.

Typical microvascular complications are reported and patients should be 
regularly checked for these.

In future, the new and effective CFTR modulator therapies might also influ-
ence the prevalence of CFRD. In a perfect world, they might also improve glucose 
homeostasis in patients with CFRD and postpone CFRD entirely.
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Detection and Management of 
Early Glucose Abnormalities in 
Cystic Fibrosis
Katerina Theocharous, Bernadette Prentice, Charles F. Verge, 
Adam Jaffé and Shihab Hameed

Abstract

With advances in technology, it is now possible to detect the emergence of glucose 
abnormalities in cystic fibrosis with improved sensitivity, and from a very early age. 
These abnormalities are increasingly recognized as predictors of clinical decline, 
raising the possibility that early intervention may slow or prevent this deterioration. 
In this chapter, we will review the available literature on methods of detecting glu-
cose abnormalities in cystic fibrosis (random and fasting glucose, HbA1c, oral glucose 
tolerance testing, and continuous glucose monitoring), and detail their advantages 
and possible limitations in the interpretation of glycemic data. We will also discuss 
treatment outcomes of early intervention, prior to the diagnosis of diabetes as cur-
rently defined.

Keywords: cystic fibrosis-related diabetes, glucose, insulin, abnormal glucose 
tolerance, indeterminate glycaemia, impaired glucose tolerance, oral glucose tolerance 
test, continuous glucose monitoring

1. Introduction

Historically, cystic fibrosis (CF) caused fatal respiratory failure in early child-
hood [1, 2], but proactive multidisciplinary care has increased life expectancy to 
~44 years [3]. With longer survival, co-morbidities have become more prevalent, 
the commonest being cystic fibrosis-related diabetes (CFRD) [4, 5]. This is associ-
ated with poorer clinical status [6–21], quality of life [22, 23], and life expectancy 
[16, 24, 25] relative to non-diabetic CF patients.

CFRD is distinct from other diabetes mellitus etiologies, including type 1 (T1D) 
and type 2 (T2D) (see Table 1) [4, 5]. It is caused primarily by chronic pancreatitis 
[26–30] with progressive insulin deficiency [9, 11, 31], particularly during first-
phase insulin secretion [8, 9, 11, 19, 32–40]. Variations in peripheral insulin sensi-
tivity also contribute to CFRD [20, 41]; hyperglycemia progressively induces insulin 
resistance via downregulation of glucose transporters [42–44], and insulin sensitiv-
ity decreases with inflammation, use of exogenous glucocorticoids, and puberty 
[45–49]. In CF, the depleted and dysfunctional pancreatic β-cells may be unable to 
compensate for this, producing early intermittent hyperglycemia progressing to 
fasting hyperglycemia [35, 44, 50].
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CFRD is usually preceded by a spectrum of abnormal glucose tolerance (AGT) 
on oral glucose tolerance testing (OGTT), including impaired fasting glucose 
(IFG), indeterminate glucose tolerance (INDET), and impaired glucose tolerance 
(IGT) [4, 51]. There may be ‘waxing and waning’ of glucose tolerance between 
these categories [19, 52–55], probably due to variations in insulin sensitivity [35, 
44]. Nevertheless, large prospective cohort studies report overall deterioration 
in CF patients’ glucose tolerance over life [16, 20, 53, 54, 56]. The date of onset of 
CFRD is considered to be the first time a patient meets diagnostic criteria, even if 
glucose abnormalities subsequently resolve due to improvement in insulin sensitiv-
ity [4]. This is because studies utilizing this definition report correlations between 
CFRD duration, microvascular disease prevalence [57], and mortality [16, 56].

Taken together, these factors explain why CFRD becomes more common with 
age. Prevalence is ~1.5% in CF patients aged <10 years, but ~15% in those aged 
11–17 and ~50% in those aged ≥18 [8, 16, 58]. The American Diabetes Association 
(ADA) recommends annual screening from age 10, using 2-h OGTT [59]. CFRD 
can also be diagnosed using clinical status, random blood glucose, fasting plasma 

Type 1 diabetes Type 2 diabetes CFRD

Prevalence 0.2% 11% 35% (likely underestimated due 
to lack of testing)

Onset Usually acute Insidious Insidious

Peak age of 
onset

Childhood or 
adulthood

Adulthood Ages 18–24

Usual body 
habitus

Normal Overweight Underweight, normal, or 
sometimes overweight (due to 
CF therapy success)

Likely 
pathophysiology

β-cell dysfunction & 
destruction, primarily 
autoimmune with 
genetic & possible 
environmental causes

Peripheral insulin 
resistance & 
subsequent β-cell 
stress

β-cell destruction due to 
inspissated pancreatic 
secretions, inflammation, and 
replacement with fibrosis & 
amyloid, plus a component of 
β-cell dysfunction

Insulin 
deficiency

Nearly complete Partial and variable Severe but not complete

Insulin 
resistance

Variable Severe Variable depending on 
circumstances (e.g. glycemic 
control, pubertal stage, use of 
glucocorticoids, inflammation)

Ketoacidosis risk High Low Low

Pharmacological 
& dietary 
therapy

• Insulin

• Dietary monitoring 
to ensure appropriate 
insulin dosage

• Insulin or oral 
anti-hypoglycemics

• Low-calorie, 
low-carbohydrate, 
low-fat diet

• Insulin

• Continuation of CF-specific 
diet, designed to prevent 
wasting: high-calorie, high-
carbohydrate, high-fat

Complications Microvascular & 
macrovascular disease

Microvascular & 
macrovascular 
disease

• Decline in nutritional status & 
lung function, associated with 
early mortality

• Microvascular disease

Likeliest cause 
of death

Macrovascular disease Macrovascular 
disease

CF pulmonary disease

Table 1. 
Comparison of common etiologies of diabetes. Adapted from Moran et al. [4].
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glucose, and glycated hemoglobin (HbA1c) [4, 60, 61]. In clinically-stable outpa-
tients with CF, diagnostic criteria are identical to those used for other etiologies 
of diabetes mellitus [4], and are shown in Table 2. Recently, continuous glucose 
monitoring (CGM) has also been used to investigate glucose abnormalities in CF 
patients. This method is not yet widely recommended for diagnosis of diabetes, but 
it is often used to monitor glycemic control or assist insulin dosage [62]. Moreover, 
CGM often detects even earlier CF-related glucose abnormalities than OGTT, in the 
form of intermittent postprandial glucose excursions [63].

This chapter compiles research on use of each glucose measurement method in 
CF patients, with special focus on pre-diabetic patients. The benefits and limita-
tions of each method will be explored to help ascertain when their usage might be 
appropriate. In the process, we will examine correlations between early glucose 
abnormalities and clinical decline. Finally, we will review preliminary evidence of 
improved long-term outcomes with insulin treatment of early glucose abnormali-
ties, supporting their detection and management in routine practice.

Glucose 
measurement 
method

Diagnostic criteria

Normal ranges Pre-diabetic ranges Diabetic ranges

Clinical status Classical symptoms of hyperglycemia, including polyuria, polydipsia, and 
hyperglycemic crisis, may assist diagnosis of diabetes when combined with other 
positive diagnostic tests. Some CF-specific definitions also consider unexplained 
decline in lung function & nutritional status to be classical symptoms.

HbA1c ≤5.6% (38 mmol/
mol)

5.7–6.4% (39–46 mmol/mol) ≥6.5% (48 mmol/mol)

Random blood 
glucose

— — ≥11.1 mmol/L (200 
mg/dL)

Fasting plasma 
glucose

<5.6 mmol/L 
(100 mg/dL)

IFG: ≥5.6 mmol/L (100 mg/
dL), <7.0 mmol/L (126 mg/dL)

≥7.0 mmol/L (126 mg/
dL)

2-h OGTT 0 min: <5.6 mmol/L 
(100 mg/dL)
2 h: <7.8 mmol/L 
(140 mg/dL)

All categories constitute AGT
IFG:
0 min: ≥5.6 mmol/L (100 mg/
dL), <7.0 mmol/L (126 mg/dL)
2 h: N/A
INDET:
0 min: <7.0 mmol/L (126 mg/
dL)
OGTT midpoints: ≥11.1 mmol/L 
(200 mg/dL)
2 h: <7.8 mmol/L (140 mg/dL)
IGT:
0 min: <7.0 mmol/L (126 mg/
dL)
2 h: ≥7.8 mmol/L (140 mg/dL), 
<11.1 mmol/L (200 mg/dL)

0 min: ≥7.0 mmol/L
(126 mg/dL)
AND/OR
2 h: ≥11.1 mmol/L 
(200 mg/dL)

CGM Usually 
<7.8 mmol/L  
(140 mg/dL)

Elevations ≥7.8 mmol/L (140 mg/dL) are referred to as 
glucose excursions, but there are no standardized criteria 
correlating them with AGT or diabetes.

HbA1c = glycated hemoglobin. OGTT = oral glucose tolerance testing. IFG = impaired fasting glucose. 
AGT = abnormal glucose tolerance. INDET = indeterminate glucose tolerance. IGT = impaired glucose tolerance. 
CGM = continuous glucose monitoring.

Table 2. 
Diagnostic criteria of glucose measurement methods commonly used in CF. Diagnosis must occur during 
clinical stability, defined as no pulmonary exacerbations during the past 6 weeks and no current systemic 
glucocorticoids. It is also recommended that any positive fasting plasma glucose, HbA1c, or OGTT is repeated at a 
later date. Non-CGM diagnostic criteria are from the American Diabetes Association [59, 64]. CGM diagnostic 
criteria are from the Juvenile Diabetes Research Foundation Continuous Glucose Monitoring Study Group [65].
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(IGT) [4, 51]. There may be ‘waxing and waning’ of glucose tolerance between 
these categories [19, 52–55], probably due to variations in insulin sensitivity [35, 
44]. Nevertheless, large prospective cohort studies report overall deterioration 
in CF patients’ glucose tolerance over life [16, 20, 53, 54, 56]. The date of onset of 
CFRD is considered to be the first time a patient meets diagnostic criteria, even if 
glucose abnormalities subsequently resolve due to improvement in insulin sensitiv-
ity [4]. This is because studies utilizing this definition report correlations between 
CFRD duration, microvascular disease prevalence [57], and mortality [16, 56].

Taken together, these factors explain why CFRD becomes more common with 
age. Prevalence is ~1.5% in CF patients aged <10 years, but ~15% in those aged 
11–17 and ~50% in those aged ≥18 [8, 16, 58]. The American Diabetes Association 
(ADA) recommends annual screening from age 10, using 2-h OGTT [59]. CFRD 
can also be diagnosed using clinical status, random blood glucose, fasting plasma 

Type 1 diabetes Type 2 diabetes CFRD

Prevalence 0.2% 11% 35% (likely underestimated due 
to lack of testing)

Onset Usually acute Insidious Insidious

Peak age of 
onset

Childhood or 
adulthood

Adulthood Ages 18–24

Usual body 
habitus

Normal Overweight Underweight, normal, or 
sometimes overweight (due to 
CF therapy success)

Likely 
pathophysiology

β-cell dysfunction & 
destruction, primarily 
autoimmune with 
genetic & possible 
environmental causes

Peripheral insulin 
resistance & 
subsequent β-cell 
stress

β-cell destruction due to 
inspissated pancreatic 
secretions, inflammation, and 
replacement with fibrosis & 
amyloid, plus a component of 
β-cell dysfunction

Insulin 
deficiency

Nearly complete Partial and variable Severe but not complete

Insulin 
resistance

Variable Severe Variable depending on 
circumstances (e.g. glycemic 
control, pubertal stage, use of 
glucocorticoids, inflammation)

Ketoacidosis risk High Low Low

Pharmacological 
& dietary 
therapy

• Insulin

• Dietary monitoring 
to ensure appropriate 
insulin dosage

• Insulin or oral 
anti-hypoglycemics

• Low-calorie, 
low-carbohydrate, 
low-fat diet

• Insulin

• Continuation of CF-specific 
diet, designed to prevent 
wasting: high-calorie, high-
carbohydrate, high-fat

Complications Microvascular & 
macrovascular disease

Microvascular & 
macrovascular 
disease

• Decline in nutritional status & 
lung function, associated with 
early mortality

• Microvascular disease

Likeliest cause 
of death

Macrovascular disease Macrovascular 
disease

CF pulmonary disease

Table 1. 
Comparison of common etiologies of diabetes. Adapted from Moran et al. [4].
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glucose, and glycated hemoglobin (HbA1c) [4, 60, 61]. In clinically-stable outpa-
tients with CF, diagnostic criteria are identical to those used for other etiologies 
of diabetes mellitus [4], and are shown in Table 2. Recently, continuous glucose 
monitoring (CGM) has also been used to investigate glucose abnormalities in CF 
patients. This method is not yet widely recommended for diagnosis of diabetes, but 
it is often used to monitor glycemic control or assist insulin dosage [62]. Moreover, 
CGM often detects even earlier CF-related glucose abnormalities than OGTT, in the 
form of intermittent postprandial glucose excursions [63].

This chapter compiles research on use of each glucose measurement method in 
CF patients, with special focus on pre-diabetic patients. The benefits and limita-
tions of each method will be explored to help ascertain when their usage might be 
appropriate. In the process, we will examine correlations between early glucose 
abnormalities and clinical decline. Finally, we will review preliminary evidence of 
improved long-term outcomes with insulin treatment of early glucose abnormali-
ties, supporting their detection and management in routine practice.

Glucose 
measurement 
method

Diagnostic criteria

Normal ranges Pre-diabetic ranges Diabetic ranges

Clinical status Classical symptoms of hyperglycemia, including polyuria, polydipsia, and 
hyperglycemic crisis, may assist diagnosis of diabetes when combined with other 
positive diagnostic tests. Some CF-specific definitions also consider unexplained 
decline in lung function & nutritional status to be classical symptoms.

HbA1c ≤5.6% (38 mmol/
mol)

5.7–6.4% (39–46 mmol/mol) ≥6.5% (48 mmol/mol)

Random blood 
glucose

— — ≥11.1 mmol/L (200 
mg/dL)

Fasting plasma 
glucose

<5.6 mmol/L 
(100 mg/dL)

IFG: ≥5.6 mmol/L (100 mg/
dL), <7.0 mmol/L (126 mg/dL)

≥7.0 mmol/L (126 mg/
dL)

2-h OGTT 0 min: <5.6 mmol/L 
(100 mg/dL)
2 h: <7.8 mmol/L 
(140 mg/dL)

All categories constitute AGT
IFG:
0 min: ≥5.6 mmol/L (100 mg/
dL), <7.0 mmol/L (126 mg/dL)
2 h: N/A
INDET:
0 min: <7.0 mmol/L (126 mg/
dL)
OGTT midpoints: ≥11.1 mmol/L 
(200 mg/dL)
2 h: <7.8 mmol/L (140 mg/dL)
IGT:
0 min: <7.0 mmol/L (126 mg/
dL)
2 h: ≥7.8 mmol/L (140 mg/dL), 
<11.1 mmol/L (200 mg/dL)

0 min: ≥7.0 mmol/L
(126 mg/dL)
AND/OR
2 h: ≥11.1 mmol/L 
(200 mg/dL)

CGM Usually 
<7.8 mmol/L  
(140 mg/dL)

Elevations ≥7.8 mmol/L (140 mg/dL) are referred to as 
glucose excursions, but there are no standardized criteria 
correlating them with AGT or diabetes.

HbA1c = glycated hemoglobin. OGTT = oral glucose tolerance testing. IFG = impaired fasting glucose. 
AGT = abnormal glucose tolerance. INDET = indeterminate glucose tolerance. IGT = impaired glucose tolerance. 
CGM = continuous glucose monitoring.

Table 2. 
Diagnostic criteria of glucose measurement methods commonly used in CF. Diagnosis must occur during 
clinical stability, defined as no pulmonary exacerbations during the past 6 weeks and no current systemic 
glucocorticoids. It is also recommended that any positive fasting plasma glucose, HbA1c, or OGTT is repeated at a 
later date. Non-CGM diagnostic criteria are from the American Diabetes Association [59, 64]. CGM diagnostic 
criteria are from the Juvenile Diabetes Research Foundation Continuous Glucose Monitoring Study Group [65].
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2.  Benefits and limitations of conventional methods used to diagnose 
glucose abnormalities in CF

2.1 Clinical status and/or random blood glucose

The ADA allows diagnosis of CFRD following one random blood glucose mea-
surement ≥11.1 mmol/L, provided that it is combined with polyuria, polydipsia, or 
hyperglycemic crisis [59]. However, symptomatic hyperglycemia or hyperglycemic 
crisis is extremely rare in CFRD [4]. In Lanng et al.’s seminal 5-year prospective 
cohort study of 191 CF patients receiving annual OGTT, only 33% of those diag-
nosed with CFRD had polyuria or polydipsia [54]. Moreover, in a cross-sectional 
study of all 60 patients aged ≥10 years at a Brazilian CF center, age at diagnosis was 
significantly lower for patients diagnosed using OGTT as opposed to clinical criteria 
(13.5 years vs. 22.3 years), implying much earlier detection of disease [66].

Some centers compensate by accepting unexplained decline in lung function or 
nutritional status as classical symptoms of hyperglycemia (see Section 3) [67]. In 
one cross-sectional study of 91 CF patients not known to be diabetic, these modi-
fied clinical criteria detected OGTT-diagnosed CFRD with 58% sensitivity [68], 
which is an improvement over other studies but still suboptimal for a screening test.

2.2 HbA1c

HbA1c, i.e. glycated hemoglobin as a percentage of total hemoglobin, is com-
monly used to monitor glycemic control in diabetes mellitus. It usually reflects aver-
age blood glucose over the life of an erythrocyte (~3 months) [64, 69]. However, 
CF patients with CFRD, INDET or IGT rarely have a significantly-higher HbA1c 
than those with normal glucose tolerance (NGT) [11, 70–73], and even statistically-
significant differences tend to be of <1% magnitude [8, 34, 40, 74, 75]. Godbout 
et al.’s study of 13 CFRD patients also found that HbA1c did not correlate with mean 
plasma glucose, as calculated using fingerprick self-monitoring [76].

Numerous hypotheses have been espoused to explain HbA1c’s relatively poor cor-
relation with glucose tolerance in CF. These include insufficient duration of tran-
sient CF-related post-prandial hyperglycemia, which is often limited to the early 
phase of insulin secretion; alteration of hemoglobin glycation by hypoxia; iron defi-
ciency, which is a common comorbidity of CF; and increased erythrocyte turnover 
in the context of chronic inflammation [1, 4, 5, 76, 77]. This implies that HbA1c may 
vary with degree of inflammation [78], and that trends in HbA1c may be more useful 
for predicting deterioration in glucose tolerance. Supporting this, Lanng et al.’s 
5-year prospective cohort study found significant differences in median HbA1c 
between patients who consistently had NGT (5.2%), patients who varied between 
NGT and IGT (5.3%), patients who developed CFRD during the study (5.8%), and 
patients who entered the study with a diagnosis of CFRD (6.5%) [54].

It has also been hypothesized that poor correlation between mean plasma glu-
cose and HbA1c may be confounded by use of fingerprick tests to measure glucose, 
since these can easily miss CF-related hyperglycaemic peaks due to their relative 
infrequency [76]. In two studies of CF and CFRD patients, mean plasma glucose 
was estimated using 2–7 days of CGM rather than fingerprick self-monitoring, and 
strongly correlated with HbA1c (r = 0.86–0.89) [75, 79].

These findings have regenerated interest in potentially using HbA1c to screen for 
CF-related glucose abnormalities, especially because it is much more convenient 
than OGTT. However, computing HbA1c thresholds suitable for CFRD screening 
has proved challenging. Some studies do report almost 100% sensitivity for OGTT-
defined CFRD using HbA1c thresholds of 6.0–7.5% [40, 80–82], but all have small 
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sample sizes, and most either did not calculate sensitivity to CF-related AGT [81] or 
report low values, ~20–50% [80, 82]. Therefore, HbA1c may not detect CFRD and its 
complications until late. Moreover, most evidence suggests that the diagnostic thresh-
old for CFRD, HbA1c ≥6.5%, has poor sensitivity compared to OGTT [54, 83–85].

Lowering the diagnostic threshold for HbA1c abnormalities does increase 
sensitivity to both CFRD and AGT, but the thresholds required to achieve sufficient 
sensitivity for screening generally have unacceptably low specificity [60]. There is 
also wide variation in the sensitivities and specificities reported by different studies 
using the same HbA1c threshold; this may be due to differences in type of HbA1c 
assay [74, 86] and timing of the studies relative to the institution’s routine OGTT 
screening [87]. Yung et al., conducting a cross-sectional study of 91 CF patients 
not known to be diabetic, but also not previously routinely screened, found that 
HbA1c ≥6.1% had 83% sensitivity for OGTT-diagnosed CFRD [68]. However, more 
recent studies with similar designs report only 30–50% sensitivity [39, 82, 88, 89].

Given this uncertainty, the current advice from the ADA is that HbA1c should not 
be used to screen for CF-related glucose abnormalities [59]. HbA1c is still recom-
mended for monitoring glycemic control in CFRD, although normal results must 
be interpreted with caution [4, 78]. It has also been suggested that HbA1c might be 
a useful adjunct to OGTT in screening, as its results may fluctuate less and hence, 
may more accurately predict long-term risk of glucose abnormalities. In a recent 
6-year retrospective cohort study of 50 NGT adults with CF followed up with 
annual OGTT, HbA1c ≥5.6% had OR 3.49 for development of IGT or CFRD [90].

2.3 Fasting glucose

In 2003, the ADA briefly sanctioned fasting plasma glucose as an alternative to 
OGTT in CFRD screening, because there were insufficient data supporting insulin 
therapy for CFRD without fasting hyperglycemia [91]. However, subsequent studies 
have demonstrated similar insulin-induced clinical improvements in patients with 
and without fasting hyperglycemia [16, 92], and treatment of CFRD without fast-
ing hyperglycemia is now standard practice [4]. Only 16–25% of patients diagnosed 
with CFRD on OGTT have fasting hyperglycemia [8, 54, 68, 81].

Use of fasting glucose to detect pre-diabetic stages on the glucose tolerance spec-
trum remains somewhat contentious in CF. Most studies report that fasting plasma 
glucose does not significantly differ between CF patients with NGT, INDET or IGT 
[39, 72, 93]. The ADA does use fasting glucose to define one pre-diabetic glucose tol-
erance category, IFG (5.6–6.9 mmol/L), and suggested in 2003 that screening OGTTs 
could be limited to IFG patients [94]. A prospective cohort study of 1128 CF patients 
aged 10–64 found that this approach would reduce number of OGTTs by 67%, but 
miss 17.8% of CFRD and IGT [94]. In a cross-sectional analysis of 73 children with 
CF, IFG had 100% sensitivity for CFRD, but only 25% sensitivity for IGT [11].

Finally, like HbA1c, there is debate regarding the utility of IFG as an adjunctive 
test for predicting long-term risk of CFRD. Frohnert et al. found no significant rela-
tionship [95], but Schmid et al. found that IFG generated OR 2.72 for CFRD [96].

2.4 Oral glucose tolerance testing

As discussed above, other conventional diagnostic tests have <100% sensitivity for 
CFRD compared to OGTT. Therefore, OGTT remains the recommended screening 
test in CF. It is also the only test with standardized definitions of multiple pre-diabetic 
glucose abnormalities, all demonstrated to predict development of CFRD [96].

Nevertheless, there are several issues with the 2-h OGTT. It may be more incon-
venient and resource-intensive than other glucose measurement methods, which is 
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2.  Benefits and limitations of conventional methods used to diagnose 
glucose abnormalities in CF

2.1 Clinical status and/or random blood glucose

The ADA allows diagnosis of CFRD following one random blood glucose mea-
surement ≥11.1 mmol/L, provided that it is combined with polyuria, polydipsia, or 
hyperglycemic crisis [59]. However, symptomatic hyperglycemia or hyperglycemic 
crisis is extremely rare in CFRD [4]. In Lanng et al.’s seminal 5-year prospective 
cohort study of 191 CF patients receiving annual OGTT, only 33% of those diag-
nosed with CFRD had polyuria or polydipsia [54]. Moreover, in a cross-sectional 
study of all 60 patients aged ≥10 years at a Brazilian CF center, age at diagnosis was 
significantly lower for patients diagnosed using OGTT as opposed to clinical criteria 
(13.5 years vs. 22.3 years), implying much earlier detection of disease [66].

Some centers compensate by accepting unexplained decline in lung function or 
nutritional status as classical symptoms of hyperglycemia (see Section 3) [67]. In 
one cross-sectional study of 91 CF patients not known to be diabetic, these modi-
fied clinical criteria detected OGTT-diagnosed CFRD with 58% sensitivity [68], 
which is an improvement over other studies but still suboptimal for a screening test.

2.2 HbA1c

HbA1c, i.e. glycated hemoglobin as a percentage of total hemoglobin, is com-
monly used to monitor glycemic control in diabetes mellitus. It usually reflects aver-
age blood glucose over the life of an erythrocyte (~3 months) [64, 69]. However, 
CF patients with CFRD, INDET or IGT rarely have a significantly-higher HbA1c 
than those with normal glucose tolerance (NGT) [11, 70–73], and even statistically-
significant differences tend to be of <1% magnitude [8, 34, 40, 74, 75]. Godbout 
et al.’s study of 13 CFRD patients also found that HbA1c did not correlate with mean 
plasma glucose, as calculated using fingerprick self-monitoring [76].

Numerous hypotheses have been espoused to explain HbA1c’s relatively poor cor-
relation with glucose tolerance in CF. These include insufficient duration of tran-
sient CF-related post-prandial hyperglycemia, which is often limited to the early 
phase of insulin secretion; alteration of hemoglobin glycation by hypoxia; iron defi-
ciency, which is a common comorbidity of CF; and increased erythrocyte turnover 
in the context of chronic inflammation [1, 4, 5, 76, 77]. This implies that HbA1c may 
vary with degree of inflammation [78], and that trends in HbA1c may be more useful 
for predicting deterioration in glucose tolerance. Supporting this, Lanng et al.’s 
5-year prospective cohort study found significant differences in median HbA1c 
between patients who consistently had NGT (5.2%), patients who varied between 
NGT and IGT (5.3%), patients who developed CFRD during the study (5.8%), and 
patients who entered the study with a diagnosis of CFRD (6.5%) [54].

It has also been hypothesized that poor correlation between mean plasma glu-
cose and HbA1c may be confounded by use of fingerprick tests to measure glucose, 
since these can easily miss CF-related hyperglycaemic peaks due to their relative 
infrequency [76]. In two studies of CF and CFRD patients, mean plasma glucose 
was estimated using 2–7 days of CGM rather than fingerprick self-monitoring, and 
strongly correlated with HbA1c (r = 0.86–0.89) [75, 79].

These findings have regenerated interest in potentially using HbA1c to screen for 
CF-related glucose abnormalities, especially because it is much more convenient 
than OGTT. However, computing HbA1c thresholds suitable for CFRD screening 
has proved challenging. Some studies do report almost 100% sensitivity for OGTT-
defined CFRD using HbA1c thresholds of 6.0–7.5% [40, 80–82], but all have small 
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sample sizes, and most either did not calculate sensitivity to CF-related AGT [81] or 
report low values, ~20–50% [80, 82]. Therefore, HbA1c may not detect CFRD and its 
complications until late. Moreover, most evidence suggests that the diagnostic thresh-
old for CFRD, HbA1c ≥6.5%, has poor sensitivity compared to OGTT [54, 83–85].

Lowering the diagnostic threshold for HbA1c abnormalities does increase 
sensitivity to both CFRD and AGT, but the thresholds required to achieve sufficient 
sensitivity for screening generally have unacceptably low specificity [60]. There is 
also wide variation in the sensitivities and specificities reported by different studies 
using the same HbA1c threshold; this may be due to differences in type of HbA1c 
assay [74, 86] and timing of the studies relative to the institution’s routine OGTT 
screening [87]. Yung et al., conducting a cross-sectional study of 91 CF patients 
not known to be diabetic, but also not previously routinely screened, found that 
HbA1c ≥6.1% had 83% sensitivity for OGTT-diagnosed CFRD [68]. However, more 
recent studies with similar designs report only 30–50% sensitivity [39, 82, 88, 89].

Given this uncertainty, the current advice from the ADA is that HbA1c should not 
be used to screen for CF-related glucose abnormalities [59]. HbA1c is still recom-
mended for monitoring glycemic control in CFRD, although normal results must 
be interpreted with caution [4, 78]. It has also been suggested that HbA1c might be 
a useful adjunct to OGTT in screening, as its results may fluctuate less and hence, 
may more accurately predict long-term risk of glucose abnormalities. In a recent 
6-year retrospective cohort study of 50 NGT adults with CF followed up with 
annual OGTT, HbA1c ≥5.6% had OR 3.49 for development of IGT or CFRD [90].

2.3 Fasting glucose

In 2003, the ADA briefly sanctioned fasting plasma glucose as an alternative to 
OGTT in CFRD screening, because there were insufficient data supporting insulin 
therapy for CFRD without fasting hyperglycemia [91]. However, subsequent studies 
have demonstrated similar insulin-induced clinical improvements in patients with 
and without fasting hyperglycemia [16, 92], and treatment of CFRD without fast-
ing hyperglycemia is now standard practice [4]. Only 16–25% of patients diagnosed 
with CFRD on OGTT have fasting hyperglycemia [8, 54, 68, 81].

Use of fasting glucose to detect pre-diabetic stages on the glucose tolerance spec-
trum remains somewhat contentious in CF. Most studies report that fasting plasma 
glucose does not significantly differ between CF patients with NGT, INDET or IGT 
[39, 72, 93]. The ADA does use fasting glucose to define one pre-diabetic glucose tol-
erance category, IFG (5.6–6.9 mmol/L), and suggested in 2003 that screening OGTTs 
could be limited to IFG patients [94]. A prospective cohort study of 1128 CF patients 
aged 10–64 found that this approach would reduce number of OGTTs by 67%, but 
miss 17.8% of CFRD and IGT [94]. In a cross-sectional analysis of 73 children with 
CF, IFG had 100% sensitivity for CFRD, but only 25% sensitivity for IGT [11].

Finally, like HbA1c, there is debate regarding the utility of IFG as an adjunctive 
test for predicting long-term risk of CFRD. Frohnert et al. found no significant rela-
tionship [95], but Schmid et al. found that IFG generated OR 2.72 for CFRD [96].

2.4 Oral glucose tolerance testing

As discussed above, other conventional diagnostic tests have <100% sensitivity for 
CFRD compared to OGTT. Therefore, OGTT remains the recommended screening 
test in CF. It is also the only test with standardized definitions of multiple pre-diabetic 
glucose abnormalities, all demonstrated to predict development of CFRD [96].

Nevertheless, there are several issues with the 2-h OGTT. It may be more incon-
venient and resource-intensive than other glucose measurement methods, which is 
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of particular concern in CF because patients and clinics already face a high treatment 
burden from other aspects of CF care [97]. It also requires patient co-operation, 
which can be difficult when assessing children [93]. Patients are expected to con-
sume at least 150 g (600 kcal) of carbohydrates for 3 days before an OGTT, then 
fast for 8 h overnight and be tested early the next morning [59]. They must drink a 
solution containing a 1.75 g/kg glucose load, preferably within 5 min, then lie or sit 
quietly for 2 h [64]. In a standard OGTT, venous blood is sampled twice: immedi-
ately before ingestion of the load, and at 120 min (BG120). Many CF centers also take 
hourly or 30-minutely samples to detect post-prandial hyperglycemia that resolves 
before 2 h [59]. As described earlier, these transient post-prandial glucose excursions 
are very common in CF, due to selective impairment of early insulin secretion. Our 
group previously performed OGTT with 30-minutely sampling in 33 children with 
CF aged 10–19, and found that peak venous insulin concentration was delayed until 
90–120 min, producing an early venous glucose peak at 60–90 min [9] (Figure 1).

The inconvenience of OGTT may contribute to poor patient uptake of CFRD 
screening [98–100]. In 2018, the Cystic Fibrosis Foundation Patient Registry 
reported that the average CF center was screening just 61.3% of adolescents and 
32.8% of adults [100]. Rates of utilization of other glucose measurement methods, 
such as HbA1c and fasting glucose, were much higher (92.3% for adolescents and 
89.6% for adults), suggesting that the main barrier to screening is the OGTT itself 
[100]. Suggested solutions include shortening the OGTT to 60 or 90 min [83] or 
replacing it with the 50-g non-fasting 1-h glucose challenge test [89, 101], which is 
currently used to screen for gestational diabetes mellitus in healthy women [101]. 
These modified OGTT protocols are not standard recommended practice [4].

There are also other issues with the OGTT that likely cannot be resolved by 
simply shortening it. Its diagnostic thresholds are not specific to CF and may be 
insensitive to CF-related clinical decline (see Section 3). OGTT results also fre-
quently fluctuate in CF, with a large multicenter prospective cohort study finding 
a variability coefficient 1.5–1.8 times higher than in the general population [55]. 
Similarly, in two 4–5 year prospective cohort studies, 18–58% of AGT patients dem-
onstrated overall improvement in glucose tolerance category, while only 14–22% 
demonstrated deterioration [19, 54].

Finally, even with venous sampling at additional timepoints, the peak blood 
glucose measurements recorded during OGTT may poorly reflect peak blood glucose 
achieved by CF patients in daily life [4, 60, 61]. After all, the OGTT’s 1.75 g/kg 
load contains less glucose than most CF patients’ everyday meals [61, 98]. This has 
prompted research into CF-related glucose abnormalities using CGM, a technology 
that can screen for glucose excursions over a longer interval of everyday life and high 
calorie CF diet.

Figure 1. 
Venous blood glucose (□) and insulin ( ▓ ) in 30-minutely samples over a 2-h oral glucose tolerance test, as 
measured in 33 children with CF aged 10–19. Boxes indicate interquartile range, horizontal lines indicate 
median, whiskers indicate 5th and 95th percentiles. Figure taken from Hameed et al. [9].
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2.5 Continuous glucose monitoring

Most CGM systems consist of two parts: a sterile sensor, worn subcutaneously 
for up to 14 days, and a transmitter attached to the sensor that measures interstitial 
fluid glucose every 30 s, recording an average every 5 min [97] (Figure 2). Some 
systems do not require a separate sensor, instead measuring interstitial fluid glucose 
via an electrical current applied across intact skin, but issues have been reported 
with skin reactions and inaccuracy [102]. Interstitial fluid glucose reflects capillary 
glucose with a 4–20 min delay [103].

CGM has been validated against OGTT in children with CF of all glucose 
tolerance categories [104] and non-diabetic adolescents and adults with CF [105]. 
A subsequent study of this latter group found that they differed significantly from 
healthy controls in mean CGM glucose (+14.1%) and presence of CGM peaks 
≥11.1 mmol/L (+33%), but not in the conventional diagnostic measures of fast-
ing glucose, BG120, and HbA1c [106]. Moreover, 70% of CF patients undertaking 
simultaneous CGM and OGTT had their CGM peak outside OGTT [106]. This was 
the beginning of a substantial body of evidence demonstrating the superior sensi-
tivity of CGM to CF-related glucose excursions above OGTT diagnostic thresholds, 
with numerous studies finding CGM glucose peaks ≥7.8 or 11.1 mmol/L in 71–93% 
of patients classified as NGT on recent OGTT [14, 31, 85, 98, 107, 108]. In a 5-year 
prospective cohort study of 21 adults with CF, 83% had their CGM peak and BG120 
fall in different diagnostic categories, and for 93% the CGM-identified category was 
worse. Again, this suggests the superior sensitivity of CGM over OGTT [98].

Most of this evidence, particularly in children, is limited by small sample sizes 
[14, 85, 98, 107, 108] and lack of non-CF controls [14, 85, 98, 108]. However, it is 
logical that the increased duration and frequency of glucose monitoring facilitated 
by CGM, and the opportunity to incorporate the patient’s usual diet and physical 
activity, facilitates more sensitive detection of glucose excursions [109]. CGM 
is also generally easier and better tolerated than OGTT [78]. While sensors and 
transmitters are expensive, and staff do require training on their usage, they have 
become more user-friendly, smaller and cheaper over time [73, 110]. The newest 
devices can be inserted rapidly during a clinic appointment, do not require calibra-
tion against fingerpricks, and can be removed by patients or carers without medical 
supervision [97].

CGM does have one major disadvantage compared to OGTT. The clinical 
significance of the mild glucose excursions that it detects are still being determined; 
consequently, there is no standardized system for recognizing and describing clini-
cally relevant CGM findings, and no universally accepted threshold for initiation 

Figure 2. 
Continuous glucose monitor sensor, before and after attachment of the transmitter. ‘CGM set’ and ‘Continuous 
Glucose Monitor’ by Sara Bassett are licensed under CC BY-NC-SA 2.0.
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of particular concern in CF because patients and clinics already face a high treatment 
burden from other aspects of CF care [97]. It also requires patient co-operation, 
which can be difficult when assessing children [93]. Patients are expected to con-
sume at least 150 g (600 kcal) of carbohydrates for 3 days before an OGTT, then 
fast for 8 h overnight and be tested early the next morning [59]. They must drink a 
solution containing a 1.75 g/kg glucose load, preferably within 5 min, then lie or sit 
quietly for 2 h [64]. In a standard OGTT, venous blood is sampled twice: immedi-
ately before ingestion of the load, and at 120 min (BG120). Many CF centers also take 
hourly or 30-minutely samples to detect post-prandial hyperglycemia that resolves 
before 2 h [59]. As described earlier, these transient post-prandial glucose excursions 
are very common in CF, due to selective impairment of early insulin secretion. Our 
group previously performed OGTT with 30-minutely sampling in 33 children with 
CF aged 10–19, and found that peak venous insulin concentration was delayed until 
90–120 min, producing an early venous glucose peak at 60–90 min [9] (Figure 1).

The inconvenience of OGTT may contribute to poor patient uptake of CFRD 
screening [98–100]. In 2018, the Cystic Fibrosis Foundation Patient Registry 
reported that the average CF center was screening just 61.3% of adolescents and 
32.8% of adults [100]. Rates of utilization of other glucose measurement methods, 
such as HbA1c and fasting glucose, were much higher (92.3% for adolescents and 
89.6% for adults), suggesting that the main barrier to screening is the OGTT itself 
[100]. Suggested solutions include shortening the OGTT to 60 or 90 min [83] or 
replacing it with the 50-g non-fasting 1-h glucose challenge test [89, 101], which is 
currently used to screen for gestational diabetes mellitus in healthy women [101]. 
These modified OGTT protocols are not standard recommended practice [4].

There are also other issues with the OGTT that likely cannot be resolved by 
simply shortening it. Its diagnostic thresholds are not specific to CF and may be 
insensitive to CF-related clinical decline (see Section 3). OGTT results also fre-
quently fluctuate in CF, with a large multicenter prospective cohort study finding 
a variability coefficient 1.5–1.8 times higher than in the general population [55]. 
Similarly, in two 4–5 year prospective cohort studies, 18–58% of AGT patients dem-
onstrated overall improvement in glucose tolerance category, while only 14–22% 
demonstrated deterioration [19, 54].

Finally, even with venous sampling at additional timepoints, the peak blood 
glucose measurements recorded during OGTT may poorly reflect peak blood glucose 
achieved by CF patients in daily life [4, 60, 61]. After all, the OGTT’s 1.75 g/kg 
load contains less glucose than most CF patients’ everyday meals [61, 98]. This has 
prompted research into CF-related glucose abnormalities using CGM, a technology 
that can screen for glucose excursions over a longer interval of everyday life and high 
calorie CF diet.

Figure 1. 
Venous blood glucose (□) and insulin ( ▓ ) in 30-minutely samples over a 2-h oral glucose tolerance test, as 
measured in 33 children with CF aged 10–19. Boxes indicate interquartile range, horizontal lines indicate 
median, whiskers indicate 5th and 95th percentiles. Figure taken from Hameed et al. [9].
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2.5 Continuous glucose monitoring

Most CGM systems consist of two parts: a sterile sensor, worn subcutaneously 
for up to 14 days, and a transmitter attached to the sensor that measures interstitial 
fluid glucose every 30 s, recording an average every 5 min [97] (Figure 2). Some 
systems do not require a separate sensor, instead measuring interstitial fluid glucose 
via an electrical current applied across intact skin, but issues have been reported 
with skin reactions and inaccuracy [102]. Interstitial fluid glucose reflects capillary 
glucose with a 4–20 min delay [103].

CGM has been validated against OGTT in children with CF of all glucose 
tolerance categories [104] and non-diabetic adolescents and adults with CF [105]. 
A subsequent study of this latter group found that they differed significantly from 
healthy controls in mean CGM glucose (+14.1%) and presence of CGM peaks 
≥11.1 mmol/L (+33%), but not in the conventional diagnostic measures of fast-
ing glucose, BG120, and HbA1c [106]. Moreover, 70% of CF patients undertaking 
simultaneous CGM and OGTT had their CGM peak outside OGTT [106]. This was 
the beginning of a substantial body of evidence demonstrating the superior sensi-
tivity of CGM to CF-related glucose excursions above OGTT diagnostic thresholds, 
with numerous studies finding CGM glucose peaks ≥7.8 or 11.1 mmol/L in 71–93% 
of patients classified as NGT on recent OGTT [14, 31, 85, 98, 107, 108]. In a 5-year 
prospective cohort study of 21 adults with CF, 83% had their CGM peak and BG120 
fall in different diagnostic categories, and for 93% the CGM-identified category was 
worse. Again, this suggests the superior sensitivity of CGM over OGTT [98].

Most of this evidence, particularly in children, is limited by small sample sizes 
[14, 85, 98, 107, 108] and lack of non-CF controls [14, 85, 98, 108]. However, it is 
logical that the increased duration and frequency of glucose monitoring facilitated 
by CGM, and the opportunity to incorporate the patient’s usual diet and physical 
activity, facilitates more sensitive detection of glucose excursions [109]. CGM 
is also generally easier and better tolerated than OGTT [78]. While sensors and 
transmitters are expensive, and staff do require training on their usage, they have 
become more user-friendly, smaller and cheaper over time [73, 110]. The newest 
devices can be inserted rapidly during a clinic appointment, do not require calibra-
tion against fingerpricks, and can be removed by patients or carers without medical 
supervision [97].

CGM does have one major disadvantage compared to OGTT. The clinical 
significance of the mild glucose excursions that it detects are still being determined; 
consequently, there is no standardized system for recognizing and describing clini-
cally relevant CGM findings, and no universally accepted threshold for initiation 

Figure 2. 
Continuous glucose monitor sensor, before and after attachment of the transmitter. ‘CGM set’ and ‘Continuous 
Glucose Monitor’ by Sara Bassett are licensed under CC BY-NC-SA 2.0.
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of treatment [97]. Common variables computed by CGM software include aver-
age sensor glucose, maximum glucose, area under the curve of glucose per day 
(AUCglucose/day), percentage time spent above thresholds (e.g. 7.8 or 11.1 mmol/L), 
number of excursions ≥11.1 mmol/L, and measures of glycemic variability, such as 
standard deviation of average sensor glucose [103]. All these parameters have been 
correlated with HbA1c in CF patients [75], and many have been correlated with 
clinical outcomes. However, these studies report heterogeneous findings and rarely 
include substantial prospective follow-up (see Section 3) [84].

Given all these factors, CGM is not yet widely recommended for CFRD diagnosis 
or screening [4]. However, it is used in some centers for diagnosis and screening, 
follow-up of borderline diagnostic tests, and investigation of patients who cannot 
or refuse to undergo OGTT [31, 111, 112]. Like HbA1c, it may also be useful as an 
adjunctive test for predicting long-term risk of CF-related glucose abnormalities. In 
a prospective cohort study of 17 children with CF, all those who had glucose excur-
sions ≥11.1 mmol/L on CGM developed either CFRD or IGT with INDET over a 
period of 2.5 years, irrespective of their glucose tolerance at baseline [107].

3.  Clinical significance of early glucose abnormalities in CF, as detected 
using various glucose measurement techniques

3.1  Defining clinically significant sequelae of CFRD: the importance of lung 
function & nutritional status

CFRD is well-understood to have a differing profile of sequelae as compared 
to T1D or T2D. Macrovascular disease is uncommon outside of case reports  
[1, 4, 5, 113], and although screening for microvascular disease should be 
routinely undertaken [59], microvascular complications are uncommon until at 
least 5–10 years of CFRD with fasting hyperglycemia [57, 114, 115]. Therefore 
they are substantially predated by declines in lung function [6–21, 116–118] and 
nutritional status [7, 9–12, 14, 117], both of which are significant predictors 
of early mortality in CF [10, 11, 16, 18, 25, 56, 119]. Four large cohort studies 
also report higher annual frequency in diabetic vs. non-diabetic CF patients of 
pulmonary exacerbations requiring intravenous antibiotics or hospitalization 
[10, 21, 39, 120], and it was recently demonstrated that diabetic CF patients have 
reduced recovery of baseline forced expiratory volume in 1 sec as a percentage of 
predicted (FEV1%) following pulmonary exacerbations [116].

A causative relationship between CFRD, impaired lung function, and poor 
nutritional status is implied by the clinical improvements seen following insulin 
therapy [13, 92, 120–122], and is also biologically plausible on several accounts. 
Insulin is a powerfully anabolic hormone, therefore insulin deficiency combined 
with CF’s increased metabolic requirements promotes catabolism with nutritional 
decline [9, 93, 123, 124]. Regarding lung function and pulmonary exacerbations, 
hyperglycemia is known to promote respiratory tract infections (RTIs) both 
systemically, via pro-inflammatory and immunosuppressive effects [125, 126], 
and locally, via glucose leakage into airway secretions, which could promote 
pathogen growth [125, 127–130]. Several cohort studies report higher prevalence 
in diabetic vs. non-diabetic CF patients of certain RTIs, including Pseudomonas 
aeruginosa [10, 19, 117, 131], Staphylococcus aureus [132, 133], and Burkholderia 
cepacia [10, 117, 132].

Finally, hyperglycemia can also impair lung function through non-infective 
pathways. It has been associated with restrictive lung disease in T1D and T2D (via 
non-enzymatic glycation of collagen and elastin) [134], and with inflammatory and 
proteolytic lung destruction in CFRD [135–137]. Lung proteolysis may be exacerbated 
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by protein catabolism [19, 122], which can furthermore weaken respiratory muscles 
[138, 139] and impair immunoprotein synthesis during RTIs [61]. This may explain 
why lung function in CF also correlates with nutritional status [6, 7, 140–142].

3.2 Decline in clinical status prior to diagnosis of CFRD

Numerous cohort and case-control studies examining the 1–5 years before CFRD 
diagnosis report decline in lung function [19, 35, 38, 92, 143–146] and nutritional 
status [19, 35, 38, 92, 143, 144] in pre-diabetic patients, or significantly reduced 
values compared to non-diabetic CF controls [12, 17]. This suggests that pre-
diabetic glucose abnormalities are clinically significant. Two case-control studies 
focusing specifically on pediatric populations also report that pre-diabetic children 
with CF have significantly lower height and weight velocities than non-diabetic CF 
controls [145, 146], with one study demonstrating differences up to 11 years before 
CFRD diagnosis [146]. These differing velocities produce steadily-widening gaps 
in height-for-age and weight-for-age, reaching statistically-significant sizes after 
CFRD diagnosis, usually around ages 15–19 [18, 146]. Importantly, this grow-
ing disparity seems to occur even if aggressive insulin therapy is commenced at 
diagnosis [144], and although it may narrow with prolonged therapy, it may not 
fully correct [18, 144, 147]. Therefore, optimizing clinical outcomes in CFRD may 
require treatment of pre-diabetic abnormalities, highlighting the importance of 
glucose measurement systems that can sensitively predict clinical decline.

3.3 Clinically significant pre-diabetic markers detectable using OGTT

Traditional OGTT diagnostic thresholds are not specific to CF – in fact, they 
were originally designed to predict T2D-associated microvascular disease in Pima 
Native Americans [148]. This may explain their apparent insensitivity to CF clinical 
outcomes. A few studies do report poorer lung function or nutritional status in IGT 
vs. NGT CF patients [37, 72], and several more identify IGT as a significant risk fac-
tor for substantial decline in FEV1% over 4–5 years [19, 149]. However, most studies 
attempting to correlate IGT with contemporary lung function and nutritional status 
find no significant relationship [19, 33, 34, 39, 53, 70–73, 150–152].

A more successful non-conventional OGTT parameter is the additional glucose 
tolerance category of INDET, defined as blood glucose ≥11.1 mmol/L at an OGTT 
midpoint – most commonly 60 min (BG60) – as opposed to 0 or 120 min [4]. BG60 
has been shown to inversely correlate with BMI in children with CF, and correlates 
with FEV1% and forced vital capacity as a percentage of predicted (FVC%) in 
both children [7] and adults [150]. In a subsequent study, INDET patients had 
mean FEV1% comparable to CFRD patients, representing a significant reduction 
compared to NGT and IGT patients [71]. INDET has also been confirmed to predict 
development of CFRD (OR 2.81 over ~3.5 years) [93, 96].

Other OGTT parameters shown to predict FEV1% in non-diabetic CF patients 
include higher peak glucose (BGmax) [9, 33, 72, 153], higher AUCglucose [124, 153], 
and reduced insulin secretion [34, 35, 72, 124]. Finally, a few studies have correlated 
FEV1% with trajectories of deterioration in glucose tolerance [41, 154]. One pro-
spective cohort study recruited 152 non-diabetic CF patients, and stratified them 
according to whether their glucose tolerance on OGTT improved, deteriorated or 
remained stable over 2 years [41]. While all patients experienced a decline in FEV1%, 
the extent of decline only reached statistical significance in patients of stable or 
deteriorating glucose tolerance, and those of deteriorating glucose tolerance also had 
a much larger drop than those of stable glucose tolerance (−6.1% vs. −1.6%) [41].

It is rarer for studies to report correlations between OGTT parameters and 
nutritional status [33–35, 41, 71, 72, 154], possibly because intensive dietician 
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of treatment [97]. Common variables computed by CGM software include aver-
age sensor glucose, maximum glucose, area under the curve of glucose per day 
(AUCglucose/day), percentage time spent above thresholds (e.g. 7.8 or 11.1 mmol/L), 
number of excursions ≥11.1 mmol/L, and measures of glycemic variability, such as 
standard deviation of average sensor glucose [103]. All these parameters have been 
correlated with HbA1c in CF patients [75], and many have been correlated with 
clinical outcomes. However, these studies report heterogeneous findings and rarely 
include substantial prospective follow-up (see Section 3) [84].

Given all these factors, CGM is not yet widely recommended for CFRD diagnosis 
or screening [4]. However, it is used in some centers for diagnosis and screening, 
follow-up of borderline diagnostic tests, and investigation of patients who cannot 
or refuse to undergo OGTT [31, 111, 112]. Like HbA1c, it may also be useful as an 
adjunctive test for predicting long-term risk of CF-related glucose abnormalities. In 
a prospective cohort study of 17 children with CF, all those who had glucose excur-
sions ≥11.1 mmol/L on CGM developed either CFRD or IGT with INDET over a 
period of 2.5 years, irrespective of their glucose tolerance at baseline [107].

3.  Clinical significance of early glucose abnormalities in CF, as detected 
using various glucose measurement techniques

3.1  Defining clinically significant sequelae of CFRD: the importance of lung 
function & nutritional status

CFRD is well-understood to have a differing profile of sequelae as compared 
to T1D or T2D. Macrovascular disease is uncommon outside of case reports  
[1, 4, 5, 113], and although screening for microvascular disease should be 
routinely undertaken [59], microvascular complications are uncommon until at 
least 5–10 years of CFRD with fasting hyperglycemia [57, 114, 115]. Therefore 
they are substantially predated by declines in lung function [6–21, 116–118] and 
nutritional status [7, 9–12, 14, 117], both of which are significant predictors 
of early mortality in CF [10, 11, 16, 18, 25, 56, 119]. Four large cohort studies 
also report higher annual frequency in diabetic vs. non-diabetic CF patients of 
pulmonary exacerbations requiring intravenous antibiotics or hospitalization 
[10, 21, 39, 120], and it was recently demonstrated that diabetic CF patients have 
reduced recovery of baseline forced expiratory volume in 1 sec as a percentage of 
predicted (FEV1%) following pulmonary exacerbations [116].

A causative relationship between CFRD, impaired lung function, and poor 
nutritional status is implied by the clinical improvements seen following insulin 
therapy [13, 92, 120–122], and is also biologically plausible on several accounts. 
Insulin is a powerfully anabolic hormone, therefore insulin deficiency combined 
with CF’s increased metabolic requirements promotes catabolism with nutritional 
decline [9, 93, 123, 124]. Regarding lung function and pulmonary exacerbations, 
hyperglycemia is known to promote respiratory tract infections (RTIs) both 
systemically, via pro-inflammatory and immunosuppressive effects [125, 126], 
and locally, via glucose leakage into airway secretions, which could promote 
pathogen growth [125, 127–130]. Several cohort studies report higher prevalence 
in diabetic vs. non-diabetic CF patients of certain RTIs, including Pseudomonas 
aeruginosa [10, 19, 117, 131], Staphylococcus aureus [132, 133], and Burkholderia 
cepacia [10, 117, 132].

Finally, hyperglycemia can also impair lung function through non-infective 
pathways. It has been associated with restrictive lung disease in T1D and T2D (via 
non-enzymatic glycation of collagen and elastin) [134], and with inflammatory and 
proteolytic lung destruction in CFRD [135–137]. Lung proteolysis may be exacerbated 
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by protein catabolism [19, 122], which can furthermore weaken respiratory muscles 
[138, 139] and impair immunoprotein synthesis during RTIs [61]. This may explain 
why lung function in CF also correlates with nutritional status [6, 7, 140–142].

3.2 Decline in clinical status prior to diagnosis of CFRD

Numerous cohort and case-control studies examining the 1–5 years before CFRD 
diagnosis report decline in lung function [19, 35, 38, 92, 143–146] and nutritional 
status [19, 35, 38, 92, 143, 144] in pre-diabetic patients, or significantly reduced 
values compared to non-diabetic CF controls [12, 17]. This suggests that pre-
diabetic glucose abnormalities are clinically significant. Two case-control studies 
focusing specifically on pediatric populations also report that pre-diabetic children 
with CF have significantly lower height and weight velocities than non-diabetic CF 
controls [145, 146], with one study demonstrating differences up to 11 years before 
CFRD diagnosis [146]. These differing velocities produce steadily-widening gaps 
in height-for-age and weight-for-age, reaching statistically-significant sizes after 
CFRD diagnosis, usually around ages 15–19 [18, 146]. Importantly, this grow-
ing disparity seems to occur even if aggressive insulin therapy is commenced at 
diagnosis [144], and although it may narrow with prolonged therapy, it may not 
fully correct [18, 144, 147]. Therefore, optimizing clinical outcomes in CFRD may 
require treatment of pre-diabetic abnormalities, highlighting the importance of 
glucose measurement systems that can sensitively predict clinical decline.

3.3 Clinically significant pre-diabetic markers detectable using OGTT

Traditional OGTT diagnostic thresholds are not specific to CF – in fact, they 
were originally designed to predict T2D-associated microvascular disease in Pima 
Native Americans [148]. This may explain their apparent insensitivity to CF clinical 
outcomes. A few studies do report poorer lung function or nutritional status in IGT 
vs. NGT CF patients [37, 72], and several more identify IGT as a significant risk fac-
tor for substantial decline in FEV1% over 4–5 years [19, 149]. However, most studies 
attempting to correlate IGT with contemporary lung function and nutritional status 
find no significant relationship [19, 33, 34, 39, 53, 70–73, 150–152].

A more successful non-conventional OGTT parameter is the additional glucose 
tolerance category of INDET, defined as blood glucose ≥11.1 mmol/L at an OGTT 
midpoint – most commonly 60 min (BG60) – as opposed to 0 or 120 min [4]. BG60 
has been shown to inversely correlate with BMI in children with CF, and correlates 
with FEV1% and forced vital capacity as a percentage of predicted (FVC%) in 
both children [7] and adults [150]. In a subsequent study, INDET patients had 
mean FEV1% comparable to CFRD patients, representing a significant reduction 
compared to NGT and IGT patients [71]. INDET has also been confirmed to predict 
development of CFRD (OR 2.81 over ~3.5 years) [93, 96].

Other OGTT parameters shown to predict FEV1% in non-diabetic CF patients 
include higher peak glucose (BGmax) [9, 33, 72, 153], higher AUCglucose [124, 153], 
and reduced insulin secretion [34, 35, 72, 124]. Finally, a few studies have correlated 
FEV1% with trajectories of deterioration in glucose tolerance [41, 154]. One pro-
spective cohort study recruited 152 non-diabetic CF patients, and stratified them 
according to whether their glucose tolerance on OGTT improved, deteriorated or 
remained stable over 2 years [41]. While all patients experienced a decline in FEV1%, 
the extent of decline only reached statistical significance in patients of stable or 
deteriorating glucose tolerance, and those of deteriorating glucose tolerance also had 
a much larger drop than those of stable glucose tolerance (−6.1% vs. −1.6%) [41].

It is rarer for studies to report correlations between OGTT parameters and 
nutritional status [33–35, 41, 71, 72, 154], possibly because intensive dietician 
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management of CF mitigates nutritional decline [133, 154]. Nevertheless, one 
seminal prospective cohort study inversely correlated age-adjusted height and 
BMI with AUCglucose [8], and a recent cross-sectional study found that lower-than-
median insulin secretion at 60 min is independently associated with worse BMI 
[150]. In children, BMI (calculated as weight in kg divided by the square of height in 
meters) may be a less sensitive measure of nutritional status than weight-for-age, as 
poor linear growth may mask decline [146]. Nevertheless, Wooldridge et al. report a 
direct correlation between AUCinsulin and BMI z-score in 146 NGT children with CF 
aged 5–20 [123], and our group has found that AUCglucose inversely correlates with 
age-adjusted weight, height and BMI in children aged ≤10 years [153]. Furthermore, 
in an earlier cohort study of 33 children aged 10–19, we found that higher BGmax 
was associated with decline in weight z-score, FEV1% and FVC% over the past 12 
months, and BGmax ≥8.2 mmol/L had 87% sensitivity and 70% specificity for a 
clinically significant decline in weight z-score [9]. By contrast, BG120 was no better 
than chance at detecting decline in weight z-score, and the conventional diagnostic 
threshold of 11.1 mmol/L had only 10% sensitivity [9]. These findings led us to 
propose an alternative system for classifying CF-related glucose abnormalities on 
OGTT, the Cystic Fibrosis Insulin Deficiency (CFID) stages (Table 3) [9].

3.4 Clinically significant pre-diabetic markers detectable using CGM

Six main studies have explored the clinical significance of CGM-based measures 
of CF-related early glucose abnormalities [9, 98, 111, 152, 155, 156]. Their results are 
compelling but heterogeneous. Taylor-Cousar et al. conducted a 5-year prospective 
cohort study of 17 originally non-diabetic CF patients, 7 of whom developed CFRD 
during observation [98]. In this subgroup, there was significant inverse correlation 
between peak glucose and BMI, and a trend towards correlation with FEV1% [98]. 
Leclercq et al. also examined peak glucose, stratifying 38 NGT CF patients accord-
ing to whether they had any peaks ≥11.1 mmol/L during 72-h CGM [155]. In the 
‘yes’ group, there was significantly lower FEV1% and FVC%, and increased risk of 
colonization with P. aeruginosa [155].

In the aforementioned study undertaken by our research group in 33 children 
with CF aged 10–19, we also showed that percentage time ≥7.8 mmol/L on CGM 
predicted 12-month rate of decline in weight z-score, FVC%, and FEV1%. Similarly, 
on receiver operator characteristic (ROC) analysis, ≥4.5% time at ≥7.8 mmol/L on 
CGM was a sensitive and specific predictor of clinically significant decline in weight 
z-score and FVC% [9]. Frost et al. subsequently used these parameters to interpret 
the CGM results of 59 adults being investigated for CF-related glucose abnormali-
ties [112]. They found that percentage time ≥7.8 mmol/L on CGM correlated with 
baseline FEV1% and 12-month rate of decline [112].

In Chan et al.’s study of 88 children with CF aged 10–18, 12-month decline in 
FEV1% and FVC% was predicted by multiple other CGM parameters: peak glucose, 
number of daily glucose excursions >11.1 mmol/L, mean amplitude of glycemic 

Diagnostic category o-min OGTT glucose Max OGTT glucose 2-h OGTT glucose

CFID1 <7.0 mmol/L ≥8.2 mmol/L <11.1 mmol/L

CFID2 <7.0 mmol/L ≥11.1 mmol/L <11.1 mmol/L

CFID3 <7.0 mmol/L N/A ≥11.1 mmol/L

CFID4 ≥7.0 mmol/L N/A N/A

Table 3. 
Cystic fibrosis insulin deficiency (CFID) classification system of CF-related glucose abnormalities, as proposed 
by Hameed et al. [9].
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excursions, and standard deviation [152]. Brugha et al. investigated another gly-
cemic variability measure, glucose interquartile ranges, in a 7-year retrospective 
cohort study [111]. On ROC analysis, ranges >1.95 mmol/L predicted CFRD with 
60% sensitivity and 98% specificity, but did not correlate with BMI or FEV1% [111].

Finally, our group recently conducted a cross-sectional study of 18 children 
with CF aged ≤5 years [156]. Even in this very young group, history of P. aeruginosa 
was predicted by mean glucose and percentage time at ≥7.8 mmol/L, and levels of 
inflammatory markers in bronchoalveolar lavage fluid were predicted by peak glu-
cose, mean glucose, percentage time at ≥7.8 mmol/L, and standard deviation [156].

3.5  Clinically significant pre-diabetic markers detectable using other glucose 
measurement techniques

3.5.1 HbA1c and alternative glycated proteins

Three studies report a weak inverse correlation between HbA1c and lung func-
tion in non-diabetic CF patients (r = −0.25–0.3) [72, 73, 88], and one of these also 
found a direct correlation with number of infective pulmonary exacerbations per 
year [73]. In two more studies, HbA1c ≥ 5.5–5.8% predicted poorer FVC% [74] or 
FEV1% [82]. Therefore HbA1c, despite its insensitivity to CF-related glucose abnor-
malities, may be a useful harbinger of clinical decline when elevated.

Several studies have also investigated fructosamine, glycated albumin, and 
1,5-anhydroglucitol as alternatives to HbA1c in CF. These biomarkers are not depen-
dent on the lifespan of erythrocytes, and have been shown to correlate with mean 
plasma glucose in CF as estimated using CGM [75]. However, evidence of their 
ability to predict glucose abnormalities and clinical decline in CF is currently mixed 
[11, 74, 157]. In one study, fractional serum fructosamine (FSF) ≥3.70 μmol/g 
predicted IGT and CFRD with 100% sensitivity and 67% specificity, and patients 
with elevated FSF also had significantly lower median FEV1% (47% vs. 90%) [157].

3.5.2 Fasting glucose

Early evidence suggests that fasting glucose, including IFG, does not correlate 
with clinical status in CF [53, 95]. In one case-control study, IFG actually predicted 
better lung function than normal fasting glucose in some patient subgroups, 
particularly children with simultaneous IGT [95]. It was hypothesized that IFG may 
represent a physiological adaptation to CF, with hepatic glucose production upregu-
lated to meet increased baseline metabolic requirements [95].

4.  Detection protocols for early glucose abnormalities and CFRD at the 
Sydney Children’s Hospital, Randwick

Our institute, the Sydney Children’s Hospital, provides one example of inte-
grating multiple glucose measurement methods into routine practice. Children 
with CF are screened annually for glucose abnormalities from age 10, using OGTT 
with 30-minutely sampling. CGM is used to follow up borderline OGTTs, or to 
investigate children with clinically-suspected glucose abnormalities who have 
normal OGTTs or are unable to undergo OGTT. CGM excursions ≥11.1 mmol/L 
over 72 h of monitoring are considered severe abnormalities that warrant further 
investigation for possible insulin therapy. Moreover, some pre-diabetic children 
on OGTT are randomized to insulin therapy via the CF-IDEA trial (ClinicalTrials.
gov Identifier NCT01100892, see Section 5).
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management of CF mitigates nutritional decline [133, 154]. Nevertheless, one 
seminal prospective cohort study inversely correlated age-adjusted height and 
BMI with AUCglucose [8], and a recent cross-sectional study found that lower-than-
median insulin secretion at 60 min is independently associated with worse BMI 
[150]. In children, BMI (calculated as weight in kg divided by the square of height in 
meters) may be a less sensitive measure of nutritional status than weight-for-age, as 
poor linear growth may mask decline [146]. Nevertheless, Wooldridge et al. report a 
direct correlation between AUCinsulin and BMI z-score in 146 NGT children with CF 
aged 5–20 [123], and our group has found that AUCglucose inversely correlates with 
age-adjusted weight, height and BMI in children aged ≤10 years [153]. Furthermore, 
in an earlier cohort study of 33 children aged 10–19, we found that higher BGmax 
was associated with decline in weight z-score, FEV1% and FVC% over the past 12 
months, and BGmax ≥8.2 mmol/L had 87% sensitivity and 70% specificity for a 
clinically significant decline in weight z-score [9]. By contrast, BG120 was no better 
than chance at detecting decline in weight z-score, and the conventional diagnostic 
threshold of 11.1 mmol/L had only 10% sensitivity [9]. These findings led us to 
propose an alternative system for classifying CF-related glucose abnormalities on 
OGTT, the Cystic Fibrosis Insulin Deficiency (CFID) stages (Table 3) [9].

3.4 Clinically significant pre-diabetic markers detectable using CGM

Six main studies have explored the clinical significance of CGM-based measures 
of CF-related early glucose abnormalities [9, 98, 111, 152, 155, 156]. Their results are 
compelling but heterogeneous. Taylor-Cousar et al. conducted a 5-year prospective 
cohort study of 17 originally non-diabetic CF patients, 7 of whom developed CFRD 
during observation [98]. In this subgroup, there was significant inverse correlation 
between peak glucose and BMI, and a trend towards correlation with FEV1% [98]. 
Leclercq et al. also examined peak glucose, stratifying 38 NGT CF patients accord-
ing to whether they had any peaks ≥11.1 mmol/L during 72-h CGM [155]. In the 
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colonization with P. aeruginosa [155].

In the aforementioned study undertaken by our research group in 33 children 
with CF aged 10–19, we also showed that percentage time ≥7.8 mmol/L on CGM 
predicted 12-month rate of decline in weight z-score, FVC%, and FEV1%. Similarly, 
on receiver operator characteristic (ROC) analysis, ≥4.5% time at ≥7.8 mmol/L on 
CGM was a sensitive and specific predictor of clinically significant decline in weight 
z-score and FVC% [9]. Frost et al. subsequently used these parameters to interpret 
the CGM results of 59 adults being investigated for CF-related glucose abnormali-
ties [112]. They found that percentage time ≥7.8 mmol/L on CGM correlated with 
baseline FEV1% and 12-month rate of decline [112].

In Chan et al.’s study of 88 children with CF aged 10–18, 12-month decline in 
FEV1% and FVC% was predicted by multiple other CGM parameters: peak glucose, 
number of daily glucose excursions >11.1 mmol/L, mean amplitude of glycemic 

Diagnostic category o-min OGTT glucose Max OGTT glucose 2-h OGTT glucose

CFID1 <7.0 mmol/L ≥8.2 mmol/L <11.1 mmol/L

CFID2 <7.0 mmol/L ≥11.1 mmol/L <11.1 mmol/L

CFID3 <7.0 mmol/L N/A ≥11.1 mmol/L

CFID4 ≥7.0 mmol/L N/A N/A

Table 3. 
Cystic fibrosis insulin deficiency (CFID) classification system of CF-related glucose abnormalities, as proposed 
by Hameed et al. [9].
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excursions, and standard deviation [152]. Brugha et al. investigated another gly-
cemic variability measure, glucose interquartile ranges, in a 7-year retrospective 
cohort study [111]. On ROC analysis, ranges >1.95 mmol/L predicted CFRD with 
60% sensitivity and 98% specificity, but did not correlate with BMI or FEV1% [111].

Finally, our group recently conducted a cross-sectional study of 18 children 
with CF aged ≤5 years [156]. Even in this very young group, history of P. aeruginosa 
was predicted by mean glucose and percentage time at ≥7.8 mmol/L, and levels of 
inflammatory markers in bronchoalveolar lavage fluid were predicted by peak glu-
cose, mean glucose, percentage time at ≥7.8 mmol/L, and standard deviation [156].

3.5  Clinically significant pre-diabetic markers detectable using other glucose 
measurement techniques

3.5.1 HbA1c and alternative glycated proteins

Three studies report a weak inverse correlation between HbA1c and lung func-
tion in non-diabetic CF patients (r = −0.25–0.3) [72, 73, 88], and one of these also 
found a direct correlation with number of infective pulmonary exacerbations per 
year [73]. In two more studies, HbA1c ≥ 5.5–5.8% predicted poorer FVC% [74] or 
FEV1% [82]. Therefore HbA1c, despite its insensitivity to CF-related glucose abnor-
malities, may be a useful harbinger of clinical decline when elevated.

Several studies have also investigated fructosamine, glycated albumin, and 
1,5-anhydroglucitol as alternatives to HbA1c in CF. These biomarkers are not depen-
dent on the lifespan of erythrocytes, and have been shown to correlate with mean 
plasma glucose in CF as estimated using CGM [75]. However, evidence of their 
ability to predict glucose abnormalities and clinical decline in CF is currently mixed 
[11, 74, 157]. In one study, fractional serum fructosamine (FSF) ≥3.70 μmol/g 
predicted IGT and CFRD with 100% sensitivity and 67% specificity, and patients 
with elevated FSF also had significantly lower median FEV1% (47% vs. 90%) [157].

3.5.2 Fasting glucose

Early evidence suggests that fasting glucose, including IFG, does not correlate 
with clinical status in CF [53, 95]. In one case-control study, IFG actually predicted 
better lung function than normal fasting glucose in some patient subgroups, 
particularly children with simultaneous IGT [95]. It was hypothesized that IFG may 
represent a physiological adaptation to CF, with hepatic glucose production upregu-
lated to meet increased baseline metabolic requirements [95].

4.  Detection protocols for early glucose abnormalities and CFRD at the 
Sydney Children’s Hospital, Randwick

Our institute, the Sydney Children’s Hospital, provides one example of inte-
grating multiple glucose measurement methods into routine practice. Children 
with CF are screened annually for glucose abnormalities from age 10, using OGTT 
with 30-minutely sampling. CGM is used to follow up borderline OGTTs, or to 
investigate children with clinically-suspected glucose abnormalities who have 
normal OGTTs or are unable to undergo OGTT. CGM excursions ≥11.1 mmol/L 
over 72 h of monitoring are considered severe abnormalities that warrant further 
investigation for possible insulin therapy. Moreover, some pre-diabetic children 
on OGTT are randomized to insulin therapy via the CF-IDEA trial (ClinicalTrials.
gov Identifier NCT01100892, see Section 5).
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5. Management of early glucose abnormalities in CF

Ultimately, the most clinically relevant measures of CF-related early glucose 
abnormalities are those that alter patient management. Therefore the long-term 
effects of actively treating early abnormalities is an important research question. 
Most studies have focused on insulin therapy, as insulin is currently the only 
recommended pharmacotherapy for CFRD (in part because of its anabolic effects) 
[59]. Emerging research has also explored oral anti-hypoglycemics [158], incretin 
modifiers [159], and CFTR modulators [160, 161].

It is already known that earlier diagnosis and treatment of CFRD, via OGTT 
screening programs, improves life expectancy and resolves historical sex differ-
ences in clinical outcomes (females with CFRD previously did worse than males) 
[16, 24]. Seven studies were identified trialing insulin therapy for CF patients who 
were pre-diabetic on OGTT [92, 122, 143, 162–164]. Five report statistically-signif-
icant improvements in lung function [122, 163, 165], nutritional status [122, 143, 
164, 165], or rate of decline in either variable [163, 164], either intra-individually 
or relative to untreated controls. Moreover, five out of six studies assessing toler-
ability found no significantly-increased incidence of symptomatic hypoglycemia 
[92, 122, 143, 162, 164, 165]. Finally, one additional study has assessed the effi-
cacy of insulin therapy initiated based on CGM, via retrospective analysis of all 
non-diabetic adults at a British CF center who had a CGM ordered between 2013 
and 2016 [112]. Insulin was initiated if patients spent >4.5% time at >7.8 mmol/L 
on CGM, and if they recorded no clear triggers for these glucose excursions in a 
contemporary food diary. Patients treated with insulin demonstrated statistically-
significant improvements in FEV1% and weight within 3 months of treatment, and 
maintained an improvement in weight and annual rate of lung function decline at 
12 months [112].

All this suggests that treatment of CF-related AGT may be beneficial. 
However, results are difficult to generalize, due to heterogeneity in studies’ 
inclusions criteria, types of controls, and insulin regimens [166]. Studies are also 
limited by small sample sizes [92, 112, 122, 143, 162–165], short durations [92, 
112, 122, 143, 162, 165], and mixed analysis of pre-diabetic and diabetic patients 
[92, 122], highlighting the need for large long-term randomized control trials. 
One such trial, CF-IDEA (ClinicalTrials.gov Identifier NCT01100892), is near-
ing completion. To date, CF-IDEA has recruited 86 participants aged ≥5 years 
at 5 participating sites, all non-diabetic on OGTT with BGmax 8.2 mmol/L to 
<11.1 mmol/L (CFID1) or ≥ 11.1 mmol/L (CFID2). Participants are randomized 
to observation only or to a once-daily insulin detemir (Levemir) for 12 months, 
with starting dose 0.1 units/kg/day, blood glucose self-monitoring intensively 
for 10 days and twice daily thereafter, and a blood glucose target range of 
4–8 mmol/L. The main outcome factors are change in weight SDS, change in lung 
function, and frequency of hospitalization.

6. Conclusions

As patients with CF live longer, CFRD becomes an increasingly prevalent 
serious co-morbidity, associated with significant decline in lung function and 
nutritional status. Evidence suggests that this decline may begin years earlier, in 
the pre-diabetic phase. Currently, OGTT is the most sensitive licensed diagnostic 
tool for identifying pre-diabetic CF-related glucose abnormalities, but its utility 
is limited by inconvenience, high variability of results, and insensitivity of tradi-
tional diagnostic categories to CF-related glucose excursions and clinical decline. 
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Abstract

Cystic fibrosis (CF) is the most common genetic disease in Caucasians that 
increases the mortality rate. This disease retards the passage of water and salt 
through the cells and therefore affects the vital functions of different organs. 
Pulmonary cystic fibrosis is the most common and responsible for the majority of 
symptoms, burden of care, and mortality. The gene that causes the disease has now 
been identified and sequenced. The lung diseases with CF are usually have three 
pathological elements; mucus obstruction, inflammation, and infection. In the last 
century, the relationship between CF, respiratory microbiology, and inflammation 
has been understood with increased longevity and development of new treatments 
and laboratory techniques. In this chapter, we will illustrate causes of CF lung 
diseases and modern therapeutic strategies.

Keywords: cystic fibrosis, pathogenic bacteria, pneumonia infection, pulmonary 
inflammation, treatment guidelines

1. Introduction

Cystic fibrosis (CF) arises due to recessive mutations in the CF transmembrane 
regulator (CFTR) gene. This genetic disorder is carried out when two carrier parents 
transport the mutant CFTR gene to their child. Although no symptoms appear in 
the carriers, CF can be detected by genetic testing. CF-pulmonary diseases are usu-
ally associated with three pathological aspects; airway obstruction, infection, and 
inflammation. According to previous studies, children are most frequently infected 
by this disease with high rate of mortality. Staphylococcus aureus is the main cause of 
bronchitis, bronchiectasis, and pulmonary abscesses arising in the bronchi, which 
are usually accompanied by tenacious greenish-gray mucopurulent material [1, 2].

The mutation that attacks CFTR gene leads to CF, and obstruction in the air-
ways with abnormal mucus, infection, and inflammation is present. Although the 
current treatments cannot halt the disease progression, good nutrition, defective 
mucus clearance, and treatment of inflammation and infection greatly improve CF 
of the respiratory system and its complications [3]. There is a controversial relation-
ship between infection and inflammation. Some scientists think that the infection 
should precede the inflammation of airways, while others suggest the opposite [4].

Americans and Europeans are more susceptible to CF. One in 29 people of 
Caucasian ancestry is a healthy carrier of the CF gene mutation [5]. Detection of CF 
in early phases is very useful due to symptom reduction, health improvement, and 
low cost. For example, since 2010s, all American newborns undergo screening for 
CF to provide a chance for recovery if the disease is diagnosed. Most patients of CF 
must take pancreatic enzymes to digest food effectively, and some require insulin 
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for diabetes mellitus. The treatment cost of CF is very high because the drugs which 
treat and prevent the pulmonary diseases are very expensive [6]. Walaa et al. [7] 
report that 60 Egyptian children are affected by CF (6 months to 14 years). Salty 
skin is the most common symptom in the children affected with CF, because they 
suffer from dehydration due to loss of exuberant salty sweat. The percentage of 
ill males is 63%, while the percentage of ill females is 37%. Positive consanguinity 
of patients is 57%. 23% of patients has a positive family history of CF; the most 
frequent clinical presentation is pulmonary disease (84%), followed by pancreatic 
insufficiency (56%). The scientific material of this chapter aims to clearly interpret 
the roles of infection and inflammation in CF lung disease pathogenesis. Also, we 
will shed light on the therapeutic approaches to both infection and inflammation.

2. Microbes: CF interaction

2.1 Microbiology of CF lung disease

Severe and uncontrolled microbial infection may lead to CF. Microbes usually 
invade the airway luminal mucus, rather than tissues. Although Staphylococcus 
aureus is the main pathogenic agent for CF, many other bacteria are recorded with 
the development of both treatments and laboratory methods. The detection of 
pathogenic bacteria of CF depends on the cultivation of respiratory samples (e.g., 
sputum, bronchoalveolar lavage fluid, oropharyngeal swabs, or sinus samples) 
on the nutritive and selective media. Moreover, there are advanced techniques by 
which CF microbes are identified. Current methods mainly depend on cultivation 
of pathogenic bacteria on synthetic microbiological growth media and follow the 
incubation conditions to allow good growth and culture characteristics of patho-
gens [8]. Conventional techniques including microscopic and biochemical investi-
gations revealed that the pathogenic microbes infecting CF airways usually exist in 
biofilms, which provide complete defense mechanism to the pathogens [9, 10].

2.2 CF respiratory pathogens

2.2.1 Staphylococcus aureus

Staphylococcus aureus is a Gram-positive bacterium and is the first CF respira-
tory pathogen. Children are more susceptible to CF lung diseases than adults, 
and they are usually affected by S. aureus, which has been associated with higher 
airway inflammation [11, 12] and lung dysfunctions [13, 14]. This infection can 
be lethal when associated with Pseudomonas aeruginosa [15]. This association may 
lead to worse outcomes, if P. aeruginosa is associated with specific subtypes of S. 
aureus such as methicillin-resistant S. aureus (MRSA) and small-colony variants of 
S. aureus (SCVs). S. aureus infection in adults is harmless than in children, because 
lung functions are better [16] and there are lower complications [17]. Accordingly, 
the pathogenicity of S. aureus has two levels: the first is high when the infection 
occurs in children or in the absence of P. aeruginosa, and the second is very high 
(extreme) when the host is infected by specific subtypes of S. aureus (such as MRSA 
or SCVs). On the other hand, S. aureus may be nonpathogenic, but just serves as a 
marker of early or mild disease as with children and adults, respectively [18].

The two subtypes of S. aureus which are mentioned above (MRSA and SCVs) 
as well as oxacillin-resistant S. aureus (ORSA) are usually identified either by their 
resistance to these β-lactams or by carriage of the mecA gene, which encodes this resis-
tance. The subtypes of S. aureus SCVs are slow-growing, antibiotic-resistant variants 
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that are difficult to detect with conventional cultures and require special laboratory 
methods. SCVs are associated with decreasing lung functions, and they may be treated 
with antibiotics including aminoglycosides and sulfonamides [19]. MRSA are tightly 
accompanied with CF lung disease especially in the last 20 years. A lot of people are 
infected with MRSA due to hospitalization and worse use of antibiotics [20–22]. Many 
studies reported that MRSA are associated with CF lung disease in particular decrease 
of lung functions [23]. Moreover, MRSA is an independent risk factor for decreasing 
lung functions and respiratory exacerbations [24] and for increased mortality [25]. 
There are some similarities between the two subtypes (MRSA and SCVs): antibiotic 
treatment, antibiotic resistance, and higher lung disease severity.

In some countries where CF lung disease is spreading, anti-staphylococcal 
agent is provided as a prophylaxis approach during childhood particularly when P. 
aeruginosa is detected early [26]. Many of antibiotics are used to eradicate S. aureus 
and P. aeruginosa as co-infectious agents of CF lung disease, but the most commonly 
used antibiotics are aminoglycosides and sulfonamides [27].

2.2.2 Pseudomonas aeruginosa

After overcoming S. aureus by effective anti-staphylococcal agents, P. aeruginosa 
became the most common and important pathogen related to CF-pulmonary diseases 
[28]. P. aeruginosa infection is associated with decreasing lung functions, severe 
inflammation of the respiratory tract, a greater risk of respiratory exacerbations, and 
high rate of mortality [29]. Early detection of P. aeruginosa is a helpful factor for full 
eradication, while chronic infection cannot be eradicated. Also, eradication of P. aeru-
ginosa can be carried out by using antipseudomonal bioagents [30]. In contrast with 
S. aureus infection, P. aeruginosa infection is higher in adults than in children. At the 
end-stage of CF-pulmonary disease, P. aeruginosa is only present as a main pathogen 
for respiratory tract 31].

Despite P. aeruginosa usually producing numerous toxins as virulence factors, 
it may loss these virulence factors or their regulatory genes during chronic CF 
infections [32]. After invasion of lungs with P. aeruginosa, the mucoid colonies are 
formed due to exuberant production of alginate as one of the phenotypic changes 
due to chronic infection of CF-pulmonary disease [33]. The mucoid texture pro-
vides high rates of persistence and resistance for many antimicrobial agents as 
well as full adaptation to the respiratory airways. P. aeruginosa may be epidemic or 
non-epidemic, but the former is associated with worse outcomes such as high rate 
of mortality and requirement for lung transplantation [34].

Although P. aeruginosa is a multidrug resistant pathogen and usually leads to 
severe pulmonary CF, it leads to worse outcomes when associated with MRSA 
and SCVs. Prophylaxis by using of antibiotics is not recommended in the recent 
approach of P. aeruginosa treatment due to severe adverse events of antibiotics, but 
if P. aeruginosa is early detected, the treatment course with antibiotics must begin 
for complete eradication and to decrease the risk of exacerbations. Recently, inhaled 
antibiotics such as tobramycin and aztreonam are sufficient for eradication without 
any additional oral antibiotics such as ciprofloxacin [35]. Although inhaled antibi-
otics are sufficient for P. aeruginosa treatment without oral antibiotics, the clinical 
reports are revealing that, the combination between two classes of antibiotics leads 
to longer periods of clinical stability than does a single class [36].

2.2.3 Burkholderia cepacia complex

Burkholderia cepacia complex (BCC) is a group of Gram-negative bacteria and 
is comprised of at least 18 species. Of these, two species are the most common and 
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associated with CF lung infections and disease, B. cenocepacia and B. multivorans, but 
the latter is more distributed than the former. Nevertheless, B. cenocepacia is associated 
with more rapid lung function decline and mortality rate than B. multivorans. Other 
BCC species are less common, and their clinical associations are less well defined such 
as B. gladioli [37]. Burkholderia CF infections are notorious because they are associated 
with more severe lung disease, they are transmissible among persons with CF, they are 
resistant to multi-antibiotics, and epidemic strains can infect CF patients after internal 
contact at camps and clinics [38]. Associated outcomes often range from clinical quies-
cence to rapidly progressive, necrotizing pneumonia and fatal septic disease “cepacia 
syndrome” [39]. Therapy is usually limited to specific antibiotics as needed [40, 41].

2.2.4 Stenotrophomonas maltophilia

Stenotrophomonas maltophilia is a Gram-negative bacterium, which is widely 
spreading in the United States in recent years as CF pathogen especially among 
adolescents and young adults. This bacterium has intrinsic and acquired resistance 
to many antibiotics. No clear evidence for treatment of this pathogen so far [42].

2.2.5 Haemophilus influenzae

Haemophilus influenzae is a Gram-negative bacterium and is firstly detected in CF 
respiratory cultures. This bacterium is more prevalent in children and less common in 
adults. Although its association with CF complications is controversial, it is associated 
with non-CF bronchiectasis and chronic obstructive pulmonary disease. The cultiva-
tion of this bacterium is difficult and usually requires specific conditions for detection. 
The recent isolates of H. influenzae are non-typeable and unencapsulated since the vac-
cine of H. influenzae type B (HIB) has been discovered. This bacterium is well known 
as resistant to β-lactam antibiotics due to its production of β-lactamase; therefore, 
treatments usually include a β-lactamase inhibitor such as amoxicillin-clavulanate [43].

2.2.6 Achromobacter xylosoxidans

Achromobacter xylosoxidans is a Gram-negative bacterium that is similar to P. 
aeruginosa. Although this bacterium is widely spreading in the United States, it 
remains low in CF lung diseases (<10%). This bacterium is associated with worse 
radiographic and spirometric measures of lung disease. Similar to P. aeruginosa and 
BCC, A. xylosoxidans is the dominant, and occasionally, bacterium is isolated from 
CF patients at end-stage. Some microbes are notorious due to their resistance to 
many antibiotics, so their treatment is limited [44].

2.2.7 Nontuberculous mycobacteria

Nontuberculous mycobacteria represent 6–30% of CF prevalence. Two groups 
of mycobacteria, accounting for six species, are currently considered important CF 
pathogens: Mycobacterium avium and Mycobacterium abscessus complexes. The treat-
ment of nontuberculous mycobacteria has two phases: multiple intravenous antibiotics 
for weeks to months or multiple inhaled and oral antibiotics for months to years. 
Side-effects and toxicities are common and can be troublesome [45].

2.2.8 Fungi and viruses

A lot of fungi are isolated from CF patients, including yeasts such as Candida spp. 
and filamentous fungi such as Aspergillus spp. There is a respiratory disease known as 
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allergic bronchopulmonary aspergillosis (ABPA), in which the bronchia are affected 
by inflammation due to Aspergillus infection. Patients of CF and other chronic airway 
diseases can develop an IgE-mediated allergic airway disease known as ABPA. The 
treatment for which primarily involves steroids, although the addition of an antifun-
gal such as itraconazole may allow for lower doses of steroids. Human respiratory 
viruses are not thought to chronically infect the CF airway, but they have been shown 
both to be important and common triggers of CF respiratory exacerbations [45].

2.3 CF airway microbiome

Many studies which are concerned with identification of the microbiota of the 
respiratory system depend on DNA-sequencing techniques. The results of these 
techniques revealed that there is a wide diversity of microbiota inhabiting the 
respiratory system. This diversity of microbiota is high in young CF patients who 
have better lung functions and subsequently need fewer courses of antibiotics and 
vice versa in the case of adults. The most dominant microbiota in infected lungs of 
CF patients are P. aeruginosa, BCC, and A. xylosoxidans [46].

3. Immune response in CF lung disease

Destruction of the respiratory airways may carry out due to the chronic CF 
infections. This damage is mediated by abnormal response of the host to airway 
infections, which in turn leads to irreversible bronchiectasis and lung function 
decline [47]. Many studies report that, bacterial infection and inflammation are 
leading to triggering of neutrophils [48]. Moreover, the dysfunction of CF-CFTR is 
a main cause of altered immune defense and disorders in the airway’s environment. 
Appearance of neutrophil elastase (NE) is a good biomarker of disease [49].

The mutant CFTR gene leads to production of an abnormal protein, resulting in 
abnormal transport of salt and water across lining cells of the respiratory system, 
digestive system, and genital tracts. Insufficient water transport to the lining cells 
of the airways leads to formation of more thick and viscous respiratory secretions 
which clog small airways. Due to water reduction, the mucus becomes stagnant and 
infected with bacteria such as P. aeruginosa that may be inhaled or brought into the 
lungs through the mouth. Due to stagnant mucus, infection and chronic inflamma-
tion are developed. The tenacity of stagnant mucus is increased because the inflam-
matory cells are trapped in it. Due to accumulation of stagnant and infected mucus 
inside the airways, the bronchi dilate, and subsequently their walls are weakened. 
This phenomenon is called bronchiectasis that results in further airflow obstruc-
tion. According to the previous case, the respiratory cycle can be called the viscous 
cycle in which airway obstruction, inflammation, and infection are present, which 
lead to decrease of lung functions, respiratory failure, and death. Decrease of lung 
functions especially in children can also be due to exposure to smoking and polluted 
air, which also leads to pulmonary exacerbations.

The defective CF gene leads to defective CFTR and thick viscous secretions, 
which in turn lead to bronchial obstruction then to an infection then inflammation 
and finally bronchiectasis. Infection, inflammation, and bronchiectasis can lead 
to bronchial obstruction (Figure 1). Infection amplifies defective CF gene, which 
in turn leads to defective CFTR, which activates the resident airway inflammatory 
cells, which stimulate neutrophils and neutrophil products such as neutrophil 
elastase and monocytes, and finally bronchiectasis occurs (Figure 2).

The surface of epithelial lining cells of respiratory airways is dehydrated and 
acidified due to CFTR dysfunction, and abnormal mucociliary clearance is carried 
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lungs through the mouth. Due to stagnant mucus, infection and chronic inflamma-
tion are developed. The tenacity of stagnant mucus is increased because the inflam-
matory cells are trapped in it. Due to accumulation of stagnant and infected mucus 
inside the airways, the bronchi dilate, and subsequently their walls are weakened. 
This phenomenon is called bronchiectasis that results in further airflow obstruc-
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cells, which stimulate neutrophils and neutrophil products such as neutrophil 
elastase and monocytes, and finally bronchiectasis occurs (Figure 2).

The surface of epithelial lining cells of respiratory airways is dehydrated and 
acidified due to CFTR dysfunction, and abnormal mucociliary clearance is carried 
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out. Dehydration is carried out due to water loss, while acidification is carried out 
due to bicarbonate loss [50, 51]. The neutrophilic inflammatory response is higher 
in CF than in non-CF patients. However, the neutrophilic inflammatory response is 
reduced in neutrophil apoptosis. Neutrophils and their products are accumulated due 
to deficiency in mucociliary clearance and macrophage dysfunction [52]. The passage 
airways may destruct by the action of anti-proteases, such as alpha-1-antitrypsin, a 
serine protease inhibitor, and secretory leukocyte protease inhibitor. So, neutrophil 

Figure 2. 
Potential alternative mechanism for airway inflammation in CF lung disease.

Figure 1. 
Traditional pathophysiology of CF lung disease.
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products such as proteases and elastases are released to react with anti-proteases and 
therefore avoid their deleterious action toward the passage airways [53, 54].

Some substances act as mediators of immune response and serve as important 
biomarkers of disease progression, such as neutrophil elastase, which is abundant 
in induced sputum in children with CF compared to control children [55]. High 
level of neutrophil elastase in induced sputum indicates lung dysfunctions and 
bronchiectasis [13]. The inflammation of the passage airways in sputum is reduced 
after detection and using of effective antibiotics for treatment of a CF-pulmonary 
diseases [56]. Inflammatory proteins are considered potential biomarkers of disease 
in CF. For example, the blood plasma proteins are biomarkers of CF disease [57].

The common example of immune response in CF lung disease is the immune 
response to P. aeruginosa [58]. CFTR dysfunction predisposes the host to infection 
with P. aeruginosa and then allows for chronic infection and subsequent reduced 
opportunity for eradication. Moreover, P. aeruginosa interacts with other bacterial 
pathogens including S. aureus and B. cepacia complex to alter the inflammatory 
response [59].

4. Anti-inflammatory therapy of CF

4.1 Ibuprofen

Ibuprofen inhibits neutrophil migration and aggregation [60]. It improves the 
lung functions especially in patients younger than 13 years. Gastrointestinal bleed-
ing may be associated with chronic therapy. Recent studies report that high-dose 
ibuprofen could slow the progression of lung disease in CF, particularly in children 
with mild disease [61]. Despite the efficacy of ibuprofen for CF lung disease 
therapy, its use is uncommon compared to other CF therapies due to severe adverse 
effects such as kidney failure and gastric bleeding [62].

4.2 Azithromycin

Azithromycin is a broad-spectrum antibiotic belonging to macrolide group, and 
at the same time, it has immunomodulatory effects, so it has high effectiveness in 
the treatment of CF lung disease and other chronic inflammatory conditions [63]. 
Azithromycin may be used for a very long period (chronic azithromycin) either with 
or without chronic P. aeruginosa infection [64]. With chronic P. aeruginosa infection, 
azithromycin is taken thrice weekly for 6 months to improve forced expiratory volume 
(FEV) and subsequently decrease the risk of pulmonary exacerbations. On the other 
hand, without chronic P. aeruginosa infection, azithromycin could reduce 50% of pul-
monary exacerbations and improve weight, but without improvement of lung func-
tions [65]. Azithromycin is recommended for CF treatment in patients suffering from 
chronic P. aeruginosa infection and those without chronic infection aged 6 years and 
older [66]. Despite the high durability of azithromycin, resistant bacteria are emerging, 
so the treatment should be reassessed every 6–12 months. Azithromycin is prohibited 
for patients with nontuberculous mycobacteria (NTM) unless it is prescribed in 
combination with other anti-mycobacterial medications as part of NTM therapy.

4.3 Corticosteroids and leukotriene receptor antagonists

Corticosteroids, especially its systemic forms, or cortisones are powerful 
anti-inflammatory agents which are widely used in the treatment of CF. Although 
systemic corticosteroids can intensively improve lung functions, they have adverse 
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Azithromycin may be used for a very long period (chronic azithromycin) either with 
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azithromycin is taken thrice weekly for 6 months to improve forced expiratory volume 
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hand, without chronic P. aeruginosa infection, azithromycin could reduce 50% of pul-
monary exacerbations and improve weight, but without improvement of lung func-
tions [65]. Azithromycin is recommended for CF treatment in patients suffering from 
chronic P. aeruginosa infection and those without chronic infection aged 6 years and 
older [66]. Despite the high durability of azithromycin, resistant bacteria are emerging, 
so the treatment should be reassessed every 6–12 months. Azithromycin is prohibited 
for patients with nontuberculous mycobacteria (NTM) unless it is prescribed in 
combination with other anti-mycobacterial medications as part of NTM therapy.
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Corticosteroids, especially its systemic forms, or cortisones are powerful 
anti-inflammatory agents which are widely used in the treatment of CF. Although 
systemic corticosteroids can intensively improve lung functions, they have adverse 
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effects that outweigh any benefit [67]. Inhaled corticosteroids do not have any 
efficacy in the treatment of CF [68]. Therefore, the treatment of CF by systemic or 
inhaled corticosteroids is not recommended by the Cystic Fibrosis (CF) Foundation 
[66]. On the other hand, leukotriene receptor antagonists (LTRAs) are nonsteroidal 
oral medications, which are used as anti-inflammatory bronchoconstriction pre-
ventors. LTRAs block a chemical reaction that leads to inflammation in the airways. 
LTRAs are effective as antihistamines, and they are better than placebo, but less 
effective than nasal corticosteroids in improving symptoms and quality of life in 
patients with seasonal allergic rhinitis [69].

5. Treatment management of CF

CF carrier testing is recommended for everybody especially for Caucasian 
women whether they are considering pregnancy or already pregnant. CF-carrier 
test must be made before marriage, because the marriage of the positive CF-carriers 
leads offspring affected with CF, and vice versa. So, the early diagnosis of CF either 
before birth or for newborns allows for earlier and faster treatment in CF centers 
and avoidance of serious complications including poor growth. CF centers must 
be accredited by the CF Foundation. CF centers have multidisciplinary teams of 
physicians, nurses, respiratory therapists, dietitians, and social workers who can 
care for both adult and pediatric patients [70]. Good nutrition for affected persons 
with CF increases lung functions and life expectancy. Once CF disease is diagnosed, 
the patient must follow a nutrition program that is including a high-calorie diet, 
pancreatic enzymes and a liberal-fat. Essential vitamins must be supplemented to 
reduce the risk of deficiency of certain fat-soluble vitamins.

Although ill infants and young children with CF have intermittent cough and 
wheezing, structural and functional abnormalities in the lung as early as the first 
few months of life are detected. CF treatments include physical methods to elimi-
nate thick secretions from the chest. CF treatments with chemical methods include 
prescription of different medications, such as dornase alfa and hypertonic saline 
as thinners of sticky airway secretions, albuterol as bronchodilator, tobramycin as 
inhaled antibiotic, and ibuprofen and azithromycin as anti-inflammatory drugs 
[71]. Preventive measures against CF or its complications necessarily require 
frequent follow-up for nutrition, lung functions, and screening for complications in 
an accredited CF center.

6. Conclusion

CF lung disease is one of the many causes of morbidity and mortality world-
wide. CF lung disease has indefinite symptoms including airway obstruction, infec-
tion, and inflammation. This disease is associated with different microorganisms 
such as P. aeruginosa, S. aureus, and B. cepacia complex. Several medications are 
used as antimicrobial treatment for these pathogens. The airway microbiota is influ-
enced by several factors including the environment, host, disease progression, and 
antibiotic treatment. Immune response to microbes in the CF airways is high due to 
dysfunction of CFTR protein. Although the recent therapies for airway infections 
and immune-inflammatory response are effective, they cannot fully stop disease 
progression. Today, CF lung disease has less risk because anti-inflammatory and 
antimicrobial therapies are in continuous development. Eventually, the authors rec-
ommend that, CF-carrier test must be made in particular before the marriage, early 
treatment of respiratory diseases especially if CF disease is diagnosed, avoidance of 
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relatives marriage because it enhances an emergence of genetic diseases including 
CF, and finally, the treatment with corticosteroids (cortisone) must be under full 
control by a physician due to its severe adverse effects.
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Abstract

Cystic fibrosis (CF) is one of the most common indications for lung transplant 
(LTx) and nearly one-third of the LTx worldwide are performed in people with CF 
(PwCF). Due to vast developments in diagnostic modalities, antibiotic therapies, 
and management of associated comorbidities in dedicated and experienced centres, 
over the past few decades, more PwCF are reaching adulthood than ever before. 
This has increased the burden on transplant programs particularly in a universal 
donor shortage scenario. To improve the donor pool a diligent and proactive donor 
care management, acceptance of marginal organs and utilisation of ex-vivo lung 
perfusion systems for organ preservation, assessment, and improvement is being 
advocated widely. LTx is not a readily available therapy and the average waiting 
time is 18 months in the UK. Therefore, it is essential that PwCF are referred for 
LTx assessment when their disease is stable, before respiratory deterioration leads 
to overall deconditioning of the patients. Once listed for LTx, it is crucial to control 
waiting list mortality by prioritising rapidly deteriorating patients through schemes 
like the lung allocation score, national urgent and super-urgent waiting lists, and 
institutional highlighting of deteriorating patients that do not meet other urgent 
criteria. LTx in PwCF is challenging due to colonisation of the respiratory tract with 
multi-drug resistant organisms, associated comorbidities such as diabetes, liver dis-
ease, gastro-oesophageal reflux, and distal intestinal obstruction syndrome (DIOS) 
and CF-specific technical difficulties (adhesions due to prior pneumothoraces or 
pleurodesis, or bronchial collaterals that increase surgical time). Hilar lymphade-
nopathy and bronchial collaterals may increase surgical time, organ ischemia time, 
intra and post-operative bleeding, and blood transfusions. Advances in immuno-
suppression, prophylactic anti-viral and anti-fungal therapies, early ambulation 
and rigorous physiotherapy, and meticulous postoperative follow up with spirom-
etry, x-rays, and bronchoscopies to detect rejection at the early stage followed by 
its efficient treatment have helped to improve post-LTx survival in the CF patients. 
Constant development in the surgical field with adoption of off-pump transplanta-
tion, sternal sparing bilateral thoracotomy approach, and utilisation of mechanical 
circulatory assist as a bridge to transplant and as a support for primary graft failure 
strives for better outcomes. However, chronic lung allograft dysfunction, chronic 
refractory infections, malignancies, and CF associated comorbidities remain major 
determinants of post-LTx long term survival. Despite this, CF patients are often 
good candidates for re-do LTx with improving survival outcomes. In this chapter, 
we are compiling the different aspects of LTx in PwCF emphasising the advances 
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in bridge to transplantation, the surgical approach, management of primary graft 
failure, and immunosuppression as well as complications post-transplant.

Keywords: cystic fibrosis, lung transplantation, advances,  
minimally invasive lung transplantation, off pump lung transplantation

1. Introduction

While it took years following the first human LTx in 1963 for this procedure to 
become a gold standard therapy in the management of end-stage lung disease, the 
procedure took off in the 80s following the introduction of Cyclosporin in medi-
cal practice. The first transplant in a patient with CF was a heart-lung transplant 
performed by Magdi Yacoub in Harefield Hospital in the United Kingdom [1]. Since 
then, nearly ten thousand patients with CF have undergone LTx worldwide [2]. 
According to the 36th adult lung and heart-lung transplant report comprising more 
than 69000 adult LTx in the ISHLT registry, 15.2% of all adult LTx were performed 
in PwCF [2]. Although the number of transplants performed for each indication 
has increased ever since, the proportion of patients transplanted for CF continues 
to fall, now accounting for 13% of total adult lung transplants, compared with over 
15% five years ago [2, 3]. With constant improvement in knowledge, better manage-
ment of infective exacerbations, developments in the field of antimicrobials and 
breakthrough modulator therapy for PwCF, survival has improved in CF patients 
significantly [4–6]. However, this may have led not only to increasing numbers of 
PwCF meeting criteria for LTx but unfortunately, also to delayed referrals, refer-
ral of sicker patients with comorbidities, and patients with complex colonisations 
of multi-drug resistant organisms. Despite this, with 9.9 years of median survival 
and 12.4 years of conditional survival in patients that survive beyond the first year, 
PwCF demonstrate the best survival compared to any other indication for LTx 
[2]. Moreover, survival in ISHLT registry (1992 to 2017) stratified in 3 eras show a 
significant improvement in the survival of PwCF in the recent era when compared 
with other indications for LTx [2]. This is mainly due to the younger age and good 
other end-organ function of these patients at the time of transplantation. On the 
other hand, CF patients when compared to other indications for LTx pose a set of 
exclusive challenges. Familiarity, experience and expertise of the transplant team to 
deal with these problems make a significant difference in the outcomes.

2. Patient selection

2.1 Indications and contraindications of LTx in CF

With a scarcity of donor organs and higher mortality in LTx recipients compared 
to other organs, health economics would support offering a limited supply of donor 
organs to recipients expected to benefit the most. However, the onus to identify such 
recipients falls upon timely referral and listing of the candidates for potential LTx. A 
clinical window where the patient is symptomatic enough to require LTx but strong 
enough to survive the operative trauma varies with the individual patient. Generally, 
when the FEV1 in PwCF drops below 30%, their expected median survival is around 
2 years [7]. However, FEV1 is not a reliable indicator of survival as many with CF 
with longstanding low lung function may survive without transplantation. Currently 
though, in the absence of a better option, it remains the best available indicator 
for referral and listing purposes. Inadequacy of clinical parameters to sufficiently 
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predict survival in CF patients raise a need for mortality prediction models. One 
of the first such comprehensive models recognised age, respiratory microbiology, 
height, FEV1, annual number of hospital admissions and courses of home intrave-
nous antibiotics as the most important predictors of 2-year mortality [8]. However, 
the authors also admit that their model is no better than the widely used FEV1 < 30% 
predicted. Thus, referral of patients for transplant based either on their model prob-
ability of dying within 2 years or on an FEV1 of less than 30% predicted could result 
in a high rate of premature referral, as a substantial proportion of patients predicted 
to die within 2 years based on these criteria would survive this period. Therefore, 
it is wise to take into consideration risk factors associated with early mortality in 
PwCF when shortlisting them for LTx. One of the biggest CF databases, the UK CF 
Registry reviewed records from 2005 to 2015 on 6181 individuals, and acknowledged 
strong associations of Burkholderia cepacia infection, CF-related diabetes, and 
more hospital days on IV antibiotics with decreasing survival [9]. A Canadian CF 
registry analysis identified older age at diagnosis, diabetes, and deteriorating FEV1 
as predictors of reduced survival [10] whilst a recent meta-analysis based upon 11 
studies identified Burkholderia cenocepacia and ascending chronological year of LTx 
as predictors of post-LTx mortality [11]. Referring physicians whilst focusing on the 
FEV1, should also pay special attention to these risk factors for poor survival when 
considering referral to a transplant centre.

Contraindications of LTx in the CF are similar to other end-stage lung disease 
causes and are broadly divided into absolute and relative contraindications. A 
consensus document for the selection of LTx candidates offers a thorough review 
into the contraindications for LTx (Table 1) [12].

2.2 Criteria for referral and listing

Early or sometimes premature referral of PwCF to transplant centres offers 
patients a chance of early transplant assessment to maximise their window of 
opportunity for donor offers and a LTx. Additionally, early referral has the potential 
to identify modifiable contraindications to LTx or risk factors of transplant mortal-
ity allowing these to be treated and optimised before requiring listing. A delayed 
referral carries a risk of insufficient time to wait and less number of donor offers 
to the referred patients. Candidates may miss their window of opportunity and be 
removed from the waiting list due to clinical deterioration or worse. An ideal time 
of listing any candidate for LTx is when the benefits from the procedure balance 
its risk. It is not unusual practice at transplant centres to send patients back to the 
referring physicians for not meeting the criteria of listing post-assessment but iden-
tifying them as future candidates. A 2006 ISHLT update for selection of transplant 
candidates for the first time separated referral and listing criteria emphasising a 
timely referral of the end-stage lung disease candidate to transplantation centres 
[13]. These were revised in a 2014 update as summarised in Table 2 [14].

2.3 Pre-operative work-up

Transplant teams while assessing referred CF patients for LTx should ask two 
vital questions- (i) Is a transplant required- in other words, is the transplant going 
to improve survival and quality of life? (ii) Is the patient transplantable? – i.e. is the 
patient going to survive the transplant?

Transplant evaluation requires a medical assessment, psychological assessment, and 
in some countries, financial assessment. The medical assessment requires an admission 
for 2–3 days so that a patient can have multiple investigations and be reviewed by the 
multi-disciplinary team (MDT) (Table 3) [15]. Additional investigations that may be 
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required include CT coronary angiogram (CTCA) in PwCF aged over 40 years or right 
heart catheterisation in severe pulmonary hypertension. All referrals require a dental 
assessment before listing, but PwCF may require assessment by ENT or gastroenterol-
ogy doctors in addition. Psychology, palliative care and physiotherapy review during 
their assessment provides insight on a patient’s suitability to undergo transplantation, 
and social support is also explored during this time. In some countries, financial evalu-
ation is necessary to ensure a potential recipient can afford the immediate transplant 
care, lifelong aftercare and medications, and management of complications. Following 
this period of assessment, patients are subsequently discussed at MDT meetings, which 
include respiratory physicians, transplant surgeons, psychologists, immunologists, 
radiologists, dietitans and physiotherapists. After discussion, outcomes for each patient 

Absolute contraindications

History of malignancy with less than 5 years of disease free interval

Untreatable significant dysfunction of another major organ system

Coronary artery disease not amenable to revascularization

Acute medical instability (sepsis, myocardial infarction, liver failure)

Uncorrectable bleeding diathesis

Chronic infection with highly virulent and/or resistant microbes

Evidence of active Mycobacterium tuberculosis infection

Significant chest wall or spinal deformity

BMI ≥ 35.0 kg/m2

Current or history of non-adherence to medical therapy

Psychologic conditions with inability to cooperate with medical team

Absence of adequate or reliable social support system

Severely limited functional status with poor rehabilitation potential

Substance abuse or dependence

Relative contraindications

Age > 65 years in association with low physiologic reserve

BMI 30.0–34.9 kg/m2

Progressive or severe malnutrition

Severe, symptomatic osteoporosis

Extensive prior chest surgery with lung resection

Mechanical ventilation and/or extracorporeal life support

Colonisation/infection with highly resistant or virulent organisms

Infection with hepatitis B and/or C

Infection with HIV

Infection with Burkholderia cenocepacia, Burkholderia gladioli

Infection with multi-drug–resistant Mycobacterium abscessus

Atherosclerotic disease burden

Diabetes mellitus, systemic hypertension, epilepsy

Central venous obstruction, peptic ulcer disease, gastroesophageal reflux

Table 1. 
Absolute and relative contraindications for LTx in CF.
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include decision for active listing, further information required, rejection as unsuitable, 
or deferral as too well.

2.4 Waiting list

The time spent by potential recipients on the LTx waiting list depends on various 
factors including blood group, HLA antibody status and the size of pleural cavities. 
Whilst on the waiting list, patients are encouraged to exercise regularly, achieve or 
maintain a healthy BMI, avoid frequent infective exacerbations, and inform any 
changes in circumstances urgently. Transplant coordinators maintain contact with 
patients on the waiting list, update records, educate patients and communicate 
between all members of the transplant team. Traditionally, organ offering systems 
take into account time spent on the waiting list and the clinical status of the can-
didates, but influenced by the urgency of transplantation. With this freedom of 
recipient selection to the transplant centres, fairness in the distribution of the donor 
organs to the most worthy recipients may be jeopardised. A study looking into 2213 
lung-only registrations into the UK Transplant Registry between 2004 and 2014 
showed discrepancies between the risk profile and probability of LTx. The chance 
of LTx after listing differed by the combined effect of disease category and centre, 
height (taller patients having a greater chance of transplant) and blood group 
(blood group ‘O’ having highest waiting mortality) [16].

The ideal recipient for any donor organ is the one with urgent need of trans-
plantation along with the longest expected post-transplant survival. The Lung 
Allocation Score (LAS) system adopted in the US in 2005 incorporated estimated 
survival benefit offered by LTx by 1 year after surgery and medical urgency. Since 
its introduction, the number of deaths on the waiting list in the US has reduced 

Timing of referral

FEV1 < 30% pred or falling rapidly despite optimal therapy

A 6-minute walk distance <400 m

Pulmonary hypertension in absence of hypoxic exacerbation

Clinical decline- increasing exacerbations with -

(i) Acute resp. failure requiring NIV

(ii) Increasing antibiotic resistance and poor clinical recovery from exacerbations

(iii) Worsening nutritional status despite supplementation

(iv) Pneumothorax

(v) Life threatening hemoptysis despite bronchial embolization

Timing of listing

Chronic respiratory failure with hypoxia alone (PaO2 < 8 kPa)

Chronic respiratory failure with hypercapnia (PaCO2 > 6.6 kPa)

Long-term NIV

Pulmonary hypertension

Frequent hospitalisation

Rapid lung function decline

WHO Functional Class IV

Table 2. 
Timing of referral and timing of listing for LTx in CF patients.
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Timing of referral

FEV1 < 30% pred or falling rapidly despite optimal therapy

A 6-minute walk distance <400 m

Pulmonary hypertension in absence of hypoxic exacerbation

Clinical decline- increasing exacerbations with -

(i) Acute resp. failure requiring NIV

(ii) Increasing antibiotic resistance and poor clinical recovery from exacerbations

(iii) Worsening nutritional status despite supplementation

(iv) Pneumothorax

(v) Life threatening hemoptysis despite bronchial embolization

Timing of listing

Chronic respiratory failure with hypoxia alone (PaO2 < 8 kPa)

Chronic respiratory failure with hypercapnia (PaCO2 > 6.6 kPa)

Long-term NIV

Pulmonary hypertension

Frequent hospitalisation

Rapid lung function decline

WHO Functional Class IV

Table 2. 
Timing of referral and timing of listing for LTx in CF patients.
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from 500/year to 300/year, the distribution of recipients has changed, and the 
number of LTx increased despite no substantial increase in organ donors with no 
decrease in 1-year survival after LTx, even though sicker patients were undergoing 
transplant [17]. With the introduction of the LAS, the number of LTx for PwCF 

Blood tests

Full blood count, Coagulation studies, Blood glucose, Blood group

Kidney function, Liver function

Lipid profile, Thyroid function

HLA status, Panel reactive antibody status

Radiology studies

Chest CT, Sinus CT

Abdominal ultrasound

Functional studies

Lung function: Spirometry, lung volumes and diffusion

Arterial blood gases

6-min walk test

Cardiac: ECG, Echocardiogram, right heart catheterisation

Bone mineral density

Infection screen

Sputum m/c/s, fungi and mycobacteria

Mantoux test

Midstream urine

Swabs for MRSA

Serology for HIV, hepatitis B, hepatitis C

Serology for cytomegalovirus, Ebstein-Barr virus, Varicella zoster

Serology for Chlamydia pneumoniae

Malignancy screen

Sputum cytology

Papanicolau smear

Prostate specific antigen

Mammography

Faecal occult blood screening

Autoimmune screen

ANA, ENA, DNA antibody, Rheumatoid factor, ANCA, Immunoglobulins

Creatine kinase

Compliance screen Serum cotinine

Consultant referrals

Dental, Ear, nose and throat, Gastroenterology

Nutrition

Physiotherapy

Table 3. 
Assessment for LTx in CF patients.
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increased by 25%, 70% of CF patients were transplanted within 1 year of being 
listed, and 1-year waiting-list mortality decreased from 15–10% [18]. The LAS was 
then adopted by Eurotransplant who distribute lungs between donor countries 
if they cannot be used within the donor’s country of origin. After 3 years, the US 
results were imitated in Germany [19]. However, some reports have shown that 
the LAS increases the complexity of the post-transplant course and postoperative 
mortality [20, 21] and in some cases, reduced survival outcomes irrespective of 
risk profile [22]. Current allocation policy in the US initially utilises donor organ 
location and age to match with compatible wait-listed patients, followed by the LAS 
value, ABO blood type, thoracic cavity size and immunological compatibilities to 
ultimately select a match.

In the UK, between 2004 and 2014, 79.2% of patients with chronic obstruc-
tive pulmonary disease (COPD) received a transplant by 3 years of wait on the 
list versus 61.3% of PwCF and 48.9% of those with pulmonary fibrosis (PF). 
During the same period, patients with COPD had the lowest mortality on the list. 
In comparison, PwCF had a 230% higher chance of death on the list without LTx 
[16]. To optimise this disparity in organ allocation, in May 2017 the Cardiothoracic 
Advisory Group introduced an urgent and super-urgent lung allocation scheme in 
which patients at high risk of death without a LTx are prioritised at a national level 
[23]. In this scheme, patients supported with ECMO (extracorporeal membrane 
oxygenation) or iLA (interventional lung assist) as a bridge to transplant are 
prioritised on a national super-urgent waiting list, whilst severely unwell patients 
particularly in CF patient, worsening hypoxia and hypercapnia, persistently low 
pH, refractory right heart failure and ongoing massive hemoptysis can be recom-
mended for the national urgent waiting list. Other policies in the UK include small 
adults (≥16 years of age and ≤ 155 cm of height) receiving offers of lungs from 
paediatric donors before other adults, (but after paediatric patients,) and priority 
is given to blood group identical recipients over blood group compatible recipients. 
In some cases, ‘zonal centre’ priority is given to patients at a centre if the donor 
is located within that centre’s allocation zone [23]. However, the current system 
remain inefficient in prioritising patients depending upon the type of lung disease, 
and building individual risk profiles combining the factors such as urgency, height, 
and blood group. All current organ allocation systems strive to achieve the best 
post-transplant survival rates whilst reducing waiting list mortality, but remain far 
from ideal. Current systems should continue to undergo periodic evaluations, adopt 
practices from other systems, and remain dynamic to outcome-driven changes. The 
zonal allocation should depend on a distance rather than arbitrary geographical 
boundaries.

3. Lung transplantation

3.1 Donors

Availability of donor organs remains the most important limiting factor 
for transplantation as lungs, in particular, have the lowest harvest rate. The 
Eurotransplant registry reports utilisation of lungs from only 698 donors out of 
1192 registrants in the year 2019 which is significantly lower compared to abdomi-
nal organs [24]. Significant progress has been made in the last decade to improve 
the donor pool for lungs, but there remains a huge scope for further development. 
Donation after circulatory death (DCD) is becoming commonplace with a recent 
review of ISHLT data showing comparable five-year survival in recipients receiv-
ing lungs from donors after brain death (DBD) against DCD (63% vs. 61%) [25]. 



73

Lung Transplantation in Patients with Cystic Fibrosis
DOI: http://dx.doi.org/10.5772/intechopen.94523

increased by 25%, 70% of CF patients were transplanted within 1 year of being 
listed, and 1-year waiting-list mortality decreased from 15–10% [18]. The LAS was 
then adopted by Eurotransplant who distribute lungs between donor countries 
if they cannot be used within the donor’s country of origin. After 3 years, the US 
results were imitated in Germany [19]. However, some reports have shown that 
the LAS increases the complexity of the post-transplant course and postoperative 
mortality [20, 21] and in some cases, reduced survival outcomes irrespective of 
risk profile [22]. Current allocation policy in the US initially utilises donor organ 
location and age to match with compatible wait-listed patients, followed by the LAS 
value, ABO blood type, thoracic cavity size and immunological compatibilities to 
ultimately select a match.

In the UK, between 2004 and 2014, 79.2% of patients with chronic obstruc-
tive pulmonary disease (COPD) received a transplant by 3 years of wait on the 
list versus 61.3% of PwCF and 48.9% of those with pulmonary fibrosis (PF). 
During the same period, patients with COPD had the lowest mortality on the list. 
In comparison, PwCF had a 230% higher chance of death on the list without LTx 
[16]. To optimise this disparity in organ allocation, in May 2017 the Cardiothoracic 
Advisory Group introduced an urgent and super-urgent lung allocation scheme in 
which patients at high risk of death without a LTx are prioritised at a national level 
[23]. In this scheme, patients supported with ECMO (extracorporeal membrane 
oxygenation) or iLA (interventional lung assist) as a bridge to transplant are 
prioritised on a national super-urgent waiting list, whilst severely unwell patients 
particularly in CF patient, worsening hypoxia and hypercapnia, persistently low 
pH, refractory right heart failure and ongoing massive hemoptysis can be recom-
mended for the national urgent waiting list. Other policies in the UK include small 
adults (≥16 years of age and ≤ 155 cm of height) receiving offers of lungs from 
paediatric donors before other adults, (but after paediatric patients,) and priority 
is given to blood group identical recipients over blood group compatible recipients. 
In some cases, ‘zonal centre’ priority is given to patients at a centre if the donor 
is located within that centre’s allocation zone [23]. However, the current system 
remain inefficient in prioritising patients depending upon the type of lung disease, 
and building individual risk profiles combining the factors such as urgency, height, 
and blood group. All current organ allocation systems strive to achieve the best 
post-transplant survival rates whilst reducing waiting list mortality, but remain far 
from ideal. Current systems should continue to undergo periodic evaluations, adopt 
practices from other systems, and remain dynamic to outcome-driven changes. The 
zonal allocation should depend on a distance rather than arbitrary geographical 
boundaries.

3. Lung transplantation

3.1 Donors

Availability of donor organs remains the most important limiting factor 
for transplantation as lungs, in particular, have the lowest harvest rate. The 
Eurotransplant registry reports utilisation of lungs from only 698 donors out of 
1192 registrants in the year 2019 which is significantly lower compared to abdomi-
nal organs [24]. Significant progress has been made in the last decade to improve 
the donor pool for lungs, but there remains a huge scope for further development. 
Donation after circulatory death (DCD) is becoming commonplace with a recent 
review of ISHLT data showing comparable five-year survival in recipients receiv-
ing lungs from donors after brain death (DBD) against DCD (63% vs. 61%) [25]. 



Cystic Fibrosis - Facts, Management and Advances

74

Metanalyses comparing LTx outcomes dependent on the type of donation have 
shown no difference in survival, primary graft dysfunction (PGD) or acute rejec-
tion [26, 27]. Protocol-based management of multiorgan brain dead donors with a 
focus on lung donation in recent years have significantly improved lung utilisation 
rates [28]. A ventilation strategy with a low tidal volume and higher PEEP, along 
with a neutral or negative fluid balance helps protect potential donor lungs [29].

Standard lung donor criteria have been liberalised in the last two decades with 
an increasing proportion of marginal donor lungs being utilised for LTx with 
equivalent outcomes. A review of the UNOS database showed reduced 1-year sur-
vival with the use of marginal donor lungs, especially in high-risk recipients [30]; 
however, the survival of these patients on the waiting list without transplantation 
is questionable. Moreover, it’s the high-risk recipients and not marginal donors that 
are associated with poor outcomes [31]. A lung donor score (LDS) based upon past 
medical history, smoking history, age, arterial blood gases, chest X-ray, and bron-
choscopy findings, that accurately predicts the likelihood of organ acceptance and 
recipient mortality may facilitate donor risk assessment and patient selection [32]. 
Ex-vivo lung perfusion (EVLP) is now an established therapy to repair and evalu-
ate marginal lungs for transplantation with comparable post-transplant outcomes 
[33–35].

To expand the donor pool, more countries are embracing an ‘opt-out’ system 
for organ donation. In Europe, the 2018 figures of lung donor utilisation rate were 
significantly higher in Austria and Belgium (9.8 and 10.8 ppm) where they have 
opt-out systems for organ donation, compared to Germany and the Netherlands 
(3.8 and 4.7 ppm) where an opt-in system remains [36]. The waiting list mortality 
rates in countries with high donation rates are lower compared to those in countries 
with low donation rates (7% vs. 12% at 1 year), with higher quality donor lungs 
more often used in these countries with high donation rates, thus offering a chance 
of better outcomes in recipients [37].

3.2 Challenges in LTx for CF

3.2.1 Preoperative procedures

The average annual incidence of pneumothorax in PwCF is 1:167 patients per 
year and 3.4% of CF patients will experience a pneumothorax during their lifetime 
[38]. According to current CF Foundation practice guidelines, a chest drain is 
recommended for large pneumothoraces or small pneumothoraces with clinical 
instability, whilst surgical pleurodesis is recommended for recurrent, large pneu-
mothoraces [39]. The incidence of CF patients with a history of pleural intervention 
undergoing LTx is increasing as patients are being offered alternative interventional 
therapies before resorting to LTx.

The inflammatory/chronic infective component of CF independently contrib-
utes to increased pleural adhesions [40]. Dense pleural adhesions encountered 
during LTx in such patients increases surgical time, bleeding, blood transfusion 
requirement (that may further increase the chance of primary graft failure (PGD)), 
renal injury, prolonged respiratory wean and early mortality [41, 42]. Some groups, 
however, report no difference in operative outcomes despite pleural adhesions in 
PwCF [40, 43, 44]. It is worth noting that the LAS nor the ISHLT Registry consider 
previous cardiothoracic procedures as a contraindication to LTx.

In a multicentre study of CT scan scoring in PwCF based on infection/inflam-
mation, air trapping/hypoperfusion, normal/hyperperfusion, and bulla/cysts, 
infection/inflammation was found to have a significant predictive value for survival 
[45]. Careful and detailed studies of CTs for pleural thickening, irregularity and 
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calcification before listing for LTx is recommended to anticipate operative chal-
lenges and risk stratification. Avoidance of CPB, starting the procedure on the 
side of fewer adhesions, minimising blood loss by meticulous adhesiolysis and the 
presence of an experienced surgeon may prove helpful. PwCF may require lung 
resection for localised severe bronchiectasis, atelectasis, bronchopleural fistula 
refractory to medical management and severe hemoptysis refractory to conserva-
tive management [46, 47]. This not only causes pleural adhesions, but can also lead 
to loss of pleural cavity volume. At LTx evaluation, such patients require strategic 
planning while setting donor size parameters; they may require a donor lung reduc-
tion or lobar lung implantation.

3.2.2 Preop ECMO and mechanical ventilation

It is not uncommon for PwCF to suffer an infective exacerbation causing acute 
hypercapnic respiratory failure with worsening respiratory acidosis. Most exacer-
bations are managed with antibiotics and chest physiotherapy, but some require 
respiratory support with inhaled oxygen or escalation to non-invasive ventilation 
(NIV). Patients with deteriorating gas exchange despite NIV either require endotra-
cheal intubation and invasive mechanical ventilation (IMV) or ECMO despite or to 
minimise IMV. Once an acceptable gas exchange is established with ECMO, sedation 
wean and extubation or tracheostomy should be performed in these patients to 
allow for ongoing physiotherapy rehabilitation.

Recent evidence from the UNOS database comprising 14,320 patients in the 
LAS era showed an association between pre-transplant ECMO and IMV with 
30-day mortality as well as prolonged hospital length of stay after LTx [48, 49]. 
The Extracorporeal Life Support Organisation (ELSO) Registry showed 52% 
survival in CF patients supported on ECMO [50]. Fuehner et al. demonstrated 
improved survival in patients bridged to LTx with an “awake ECMO” strategy when 
compared with those managed with IMV (80% vs. 50% at 6 months), emphasis-
ing the potential advantages of minimising time sedated [51]. The key benefits of 
maintaining patients awake on ECMO is the avoidance of complications associated 
with sedation, intubation, IMV, and immobilisation. They can undertake active 
physiotherapy helping to reduce the rate of muscle wasting and preventing pressure 
sores. Patients are encouraged to eat and drink without enteral feed if possible. 
Meeting family and social media helps to maintain a positive mood, and suboptimal 
therapy or complications can be detected at an earlier stage as patients can identify 
and communicate symptoms of dizziness, breathlessness, and pain [52].

3.3 Procedure of LTx

Despite early success and advantages of heart-lung transplantation for CF 
(fewer anastomoses, shorter ischaemic times and re-utilisation of recipient’s heart 
in a “domino” transplant), it has been superseded by LTx due to donor organ 
shortage and equivalent outcomes [53]. Bilateral sequential LTx in which unilateral 
pneumonectomy and donor lung implantation are performed in sequence is the 
standard operation for a suppurative disease like CF. However, single-LTx after 
synchronous or metachronous contralateral pneumonectomy for PwCF resulting 
in an asymmetric chest and lung volume mismatch may be an acceptable functional 
therapeutic option [54, 55].

The CF patient population consists of a large proportion of children and small 
adults that are not suitable recipients for most adult sized donors leading to an 
increase in the waiting list mortality. For a marginal size mismatch, peripheral lung 
resection, also known as ‘lung shaving’ may suffice, however, donor lung lobectomy 
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to utilise only the upper or lower (preferred option) lobe dependent on the recipient 
pleural cavity size may be required [56, 57]. Bi-partitioning lobar LTx is a bilateral 
lobar transplant from a single donor lung. This can be performed to maximise the 
donor pool, but is not a popular procedure due to technical challenges [58]. Living-
donor lobar LTx (LDLLT) is lifesaving in countries with low cadaveric donation and 
for patients deemed unable to await a cadaveric LTx [59]. Two lobes obtained from 
live donors can adequately support an adult CF patient and the morbidity from 
lobectomy to the healthy donor is minimal. A study where 84% of the cohort were 
CF patients undergoing LDLLT showed a survival of 70% and 45% at 1 and 5 years, 
which is comparable with double-lung cadaveric transplantation according to the 
ISHLT Registry (74% and 49.5% at 1 and 5 years) in in the same year [60].

3.4 Advances in LTx surgery

3.4.1 Minimally invasive LTx

For double LTx in CF, the clamshell is a conventional approach that offers a 
direct vision to the heart and lung hila, but can cause sternal dehiscence, malalign-
ment, wound dehiscence and rarely mediastinitis. These complications are thought 
to be under-reported, but cause significant morbidity through readmissions, mul-
tiple surgical debridements and prolonged wound care. Infection can be difficult to 
treat in the presence of steroid-induced osteoporosis, breathing-induced mobility in 
healing sternal edges, and immunosuppression. Sternal sparing bilateral thoracot-
omy approach may be less painful and may support early extubation, ambulation, 
and rehabilitation [61]. This approach spares the internal mammary arteries, caus-
ing less blood loss, and is superior cosmetically to the clamshell incision. A require-
ment of long instruments and telescopic surgical skills for this approach is a myth. 
Utilisation of a modified rib spreader, with movable and adjustable blades provides 
optimum exposure without injuring the ribs. For emergency conversion to CPB, 
apart from peripheral access via the groin, one can cannulate via the thoracotomy.

3.4.2 Role of mechanical circulatory support in LTx surgery

Double LTx is conventionally performed with the aid of cardio-pulmonary 
bypass. As bilateral sequential LTx became commonplace, the use of CPB during 
the procedure declined. A comparative study of LTx in CF shows that the implanta-
tion of both lungs on CPB after bilateral pneumonectomy and airway decontamina-
tion does offer a protective effect against early graft infection [62]. CBP provides 
complete respiratory support and haemodynamic stability, ease of hilar dissec-
tion and retraction of the heart during the LTx, but can induce an inflammatory 
response, bleeding, (and thus increased requirement of blood transfusions), and 
a higher incidence of PGD [63]. Significantly lower survival was observed in CF 
patients undergoing LTx with the utilisation of extracorporeal circulation [64]. Off-
pump surgery may avoid complications caused by circulatory support but is suscep-
tible to periods of hypotension, hypothermia, and hypoxia. It also exposes the new 
lung to the entire cardiac output potentially causing acute lung injury and PGD.

Off-pump LTx may require emergency conversion to CPB in case of inability to 
tolerate single lung ventilation, hemodynamic instability, or uncontrolled bleeding. 
Off-pump LTx requiring emergent conversion to CPB is by default a part of the on-
pump group in several reports comparing on-pump and off-pump procedures, which 
has found worse outcomes in the on-pump group [65, 66]. In the quest of a fair com-
parison, a further study segregated cases with unplanned CPB conversion and found 
that despite this segregation, patients with comparable preoperative demographic 
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and risk profiles demonstrated better early postoperative outcomes including early 
survival with an off-pump strategy for LTx in comparison to an on-pump strategy. 
While a considerable proportion of high-risk patients require intraoperative conver-
sion from off-pump to CPB with suboptimal outcomes, there is no significant benefit 
to employing an elective on-pump strategy in this high-risk group [67]. Although 
elective use of CPB for LTx has decreased in recent years, mechanical circulatory 
support of some form is still necessary during LTx in the presence of pulmonary 
hypertension, suboptimal cardiac function, severe respiratory disease, and marginal 
donor organs with an insufficient gas exchange when performing one-lung ventila-
tion. Instead of CPB, ECMO that can potentially be continued post-operatively until 
the donor organs recover and pulmonary pressures alleviate is increasingly being 
utilised. ECMO offers cardiopulmonary support without cardiotomy suction, venous 
reservoir, a large amount of prime, and may avoid some complications associated 
with CPB. A meta-analysis of 7 studies comprising 785 patients comparing CPB and 
ECMO in LTx showed a lower rate of primary graft dysfunction, bleeding, renal 
failure requiring dialysis, tracheostomy, intraoperative transfusions, intubation 
time, and hospital stay along with a trend towards lower mortality in the ECMO 
group [68]. Elective use of mechanical circulatory support in LTx for CF is now 
limited to severe secondary pulmonary hypertension or if additional cardiac surgery 
is required, such as atrial septal defect closure. Optimisation with Milrinone and 
nitric oxide before a trial of pulmonary artery clamping can be helpful to assess 
if mechanical support may be required. If there is hemodynamic instability and 
inadequate gas exchange on single lung ventilation, the operation should continue 
under ECMO support, whilst emergency CPB can be ustilised in case of catastrophic 
bleeding, irreversible arrhythmia or hemodynamic instability.

3.4.3 Re-transplantation

CF patients often become candidates for re-transplantation due to their young 
age at the time of their primary transplant. PwCF have overall good post-transplant 
survival but also suffer a higher incidence of bronchiolitis obliterans syndrome 
(BOS). BOS, primary graft failure (PGD) and irreversible airway complica-
tions (stenosis and dehiscence) are the main causes for lung re-transplantation. 
Pseudomonal airway colonisation before and after LTx is thought to be associated 
with the increased prevalence of BOS in CF patients [69]. CF recipients are at 
higher risk of acute cellular rejection and subsequent BOS due to the enhanced 
immune activation associated with CF, their younger age and higher prevalence of 
donor specific antibodies [70, 71]. Scarcity of donor organs and suboptimal out-
comes have always raised doubts about the validity and ethics of re-transplantation, 
especially as historically, the survival post-re-transplantation has remained inferior 
compared to the primary transplantation. Interestingly though, rates of BOS has 
shown an improved trend with 1-year survival increasing from 47% in the 1990s to 
72–78% in the last 15 years [73–75]. Re-transplantation in non-ambulatory, venti-
lated patients, with PGD, anastomotic dehiscence, or less than a year since primary 
transplantation is associated with higher mortality [72–75]. Careful recipient selec-
tion with preoperative optimization in terms of nutrition and functional status, 
along with end-organ function are vital for successful re-transplantation.

4. Complications of LTx in CF

PwCF continue to demonstrate the best survival compared to other indications 
for LTx [76, 77], but suffer the same complications as those without CF to varying 
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lated patients, with PGD, anastomotic dehiscence, or less than a year since primary 
transplantation is associated with higher mortality [72–75]. Careful recipient selec-
tion with preoperative optimization in terms of nutrition and functional status, 
along with end-organ function are vital for successful re-transplantation.

4. Complications of LTx in CF

PwCF continue to demonstrate the best survival compared to other indications 
for LTx [76, 77], but suffer the same complications as those without CF to varying 
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extents. Within the first month, primary graft dysfunction, acute infections, and 
technical complications dominate the cause for admissions, transitioning to also 
include rejection in the first year. Rejection and infection remain complicating 
factors throughout a recipient’s life, with malignancy an increasing risk the longer a 
recipient remains on immunosuppression [77, 78].

4.1 PGD

Primary graft dysfunction (PGD) is the main cause of death within the first 
30 days post-operatively [78], and is a form of acute lung injury that involves a 
wide spectrum of signs and symptoms within the first 72 hours of transplanta-
tion. For this reason, it is also known as the “re-implantation response”. PGD is the 
consequence of an inflammatory response triggered by injury to the donor, graft or 
recipient, ischaemia, and reperfusion, and can cause a decrease in oxygenation with 
minimal pulmonary infiltrates caused by oedema, through to complete graft failure 
and death or re-transplantation. PGD is caused by the activation of pulmonary 
macrophages and circulating leukocytes and is divided into two phases – a first 
acute phase of lung schaemia and reperfusion injury, which drives the second phase 
mediated by massive neutrophil recruitment which amplifies the initial innate 
immune reaction.

A number of risk factors for development of PGD have been identified; in gen-
eral, donor factors tend to impact the initial 24 hours post-transplantation, whilst 
the recipient factors affect later outcomes. Donor-related risk factors include sex, 
age, smoking history, ischaemic time, and brain-death-associated lung injury [79, 
80]. Given the underlying pathophysiology of PGD, the approach to management 
is based on the treatment of ARDS (acute respiratory distress syndrome) using 
protective IMV and maintaining a negative fluid balance. However, this treatment 
plan is complicated by patients who may not tolerate permissive hypercapnia 
cardiologically, and fragile renal function due to multiple insults in the operative 
and immediate post-operative period.

It has been shown that lung recipients who develop PGD have a marked graft 
and systemic inflammatory response, and that the timing and grade of PGD sever-
ity has implications to the risk of developing BOS (bronchiolitis obliterans) later 
[81, 82].

4.2 Infections

Post-transplant infections remain a significant source of morbidity and mortal-
ity in all recipients, but this is complicated by the nature of the multi-resistant 
organisms found in CF recipients due to repeated antibiotic courses. It has long 
been accepted that PwCF are chronically colonised with bacteria, and so finding 
positive microbiology in the sputum of transplanted PwCF does not necessitate an 
acute infection, but equally, transplanting the lungs does not eradicate individu-
als with CF of the bacteria which remain colonised in the upper airways and the 
sinuses. PwCF colonised with Mycobacterium abscessus or Bulkholderia cenocepacia 
cannot be transplanted in most centres due to the high morbidity and mortality 
rates associated with these conditions post-transplantation. Though there have been 
some success in transplanting PwCF who have negative sputum for M. abscessus 
pre-transplantation but remain on treatment [83–85].

It is just as important to consider the donor’s microbiological profile. All donors 
are screened for obvious reasons for HIV, hepatitis B and hepatitis C, but where 
donors have died from undiagnosed infections, the risk of transmitting a poten-
tially lethal infection into a recipient has to be considered. In addition, the longer 
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a potential donor is ventilated, the more likely they are to become colonised with 
antibiotic-resistant flora, complicating a future transplant. BAL before harvesting 
or implantation is useful to culture and therefore guide antibiotic management in 
the peri-operative and immediate post-operative period.

Like any major surgery, surgical site infection can also occur. Good peri-operative 
lavages of the donor lungs and the recipient’s pleural cavity is important to reduce 
the presence of infected material. It is often difficult for antibiotics to penetrate the 
pleural cavity so although infections at a wound site are unusual, once present, they 
can be difficult to manage and treat. Again, PwCF are at higher risk of infections at 
anastomotic and surgical sites by the nature of the underlying disease. The antibiot-
ics selected peri-operatively and post-operatively are guided by the patient’s response 
to antibiotic combinations pre-operatively, as well as microbiological sensitivities. 
Just like other intensive-care patients, post-transplant patients are at high risk of 
ventilator-associated pneumonia (VAP), and so unless there are contraindications, it 
is important to work towards extubating the patient as expediently as possible.

CMV (cytomegalovirus) disease used to be a significant concern post-trans-
plant, but the routine use of prophylactic and treatment valgangiclovir combined 
with surveillance management has significantly reduced the risk of infection 
or reactivation [86]. A recent study looking at the incidence of CMV infection 
in heart transplant recipients has estimated the rate of early-onset (<100 days 
post-transplant) CMV disease at only 2%, compared with late-onset (>100 days 
post-transplant) at 7.5%, and this is largely thought to be due to the introduction 
of valganciclovir [87]. EBV (Epstein–Barr virus) mismatches where the donor is 
positive and the recipient negative, are rare as >95% of the population seroconvert 
by the time they are 20 years of age. Most recipients undergo a B-cell proliferation 
1–3 months post-transplant, but occasionally this can proceed to a post-transplant 
lymphoproliferative disease (PTLD). Monitoring of EBV levels is generally used as 
a marker of over-immunosuppression rather than a way of looking for malignant 
disease. Similarly, with the widespread use of co-trimoxazole as first-line prophy-
laxis, PCP (pneumocystis pneumonia) – also known as PJP (pneumocystis jiroveci 
pneumonia) – is an unusual finding, with rates in solid organ transplant recipients 
reduced from 5 to 15% to 0.3–2.6% [88]. Other respiratory viruses that can have sig-
nificant impact to a transplant recipient includes respiratory syncytial virus (RSV), 
metapneumovirus, influenza/parainfluenza, adenoviruses and rhinovirus. Any of 
these can cause a viral pneumonitis, which can in turn inflict permanent damage to 
the transplanted lungs, either through the inflammatory process of an infection, or 
by triggering acute rejection or chronic allograft dysfunction (CLAD) [89]. Most of 
these infections have no direct treatment, and so management remains supportive 
with the addition of IV methylprednisolone and/or IV immunoglobulin (IVIG) in 
an effort to prevent rejection which can be triggered by these viral infections [89].

Many PwCF are often sensitised to Aspergillus fumigatus and will often be on 
longterm oral antifungals that will need to continue following transplantation. For 
all causes, invasive aspergillosis is the most common cause of all invasive fungal 
infections in lung transplant recipients [90], but it can also be asymptomatic. Often 
however, it will lead to a more pathogenic process, including causing anastomotic 
dehiscence and lung function decline without obvious radiographic changes [91]. 
This process is still not fully understood, which often results in trials of treatment 
to find the most effective. A. fumigatus accounts for 44% of fungal infections in 
the post-lung transplant population, but other common fungal infections post-
transplant include Candida (23%), Scedosporium (20%), Mucorales (3%) and 
Cryptococcus (2%) [92]. Throughout a recipient’s lifetime, it is often difficult to 
tell the difference between rejection and infection as no reliable markers exist. 
Recipients are subjected to frequent invasive investigations (usually bronchoscopy) 
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especially in the early post-transplant period, requiring washings and biopsies to 
differentiate. Patients are encouraged to attend their transplant centres as their local 
referring centre which usually treat patients as having infections rather than con-
sider or have the means to investigate for a diagnosis of rejection. This is especially 
true for PwCF as they are likely to remain positive for their primary pre-transplant 
pathogenic bacteria. It is important to keep in mind that they are also susceptible 
to the same atypical infections as all other lung transplant recipients are, and that 
even if a diagnosis of infection is correct, it may not be caused by the same causative 
organisms as per prior to transplantation.

Part of keeping transplant recipients well includes maintaining appropriate 
prophylactic antibiotic cover. In CF recipients, this often means continuing the 
oral anti-fungals or nebulised antibiotics they were on pre-transplant for a number 
of months at least. If these recipients remains well with no positive microbiology, 
an informed decision to reduce the prophylaxis burden could be considered. All 
recipients are advised to maintain annual vaccines such as the flu vaccine, but other 
vaccines should be discussed with transplant centres as not all vaccines are appro-
priate in the immunosuppressed population.

4.3 Rejection

The first 2 months post-transplant are high risk for acute rejection, as recipient 
lymphocytes encounter donor antibodies for the first time. However, the risk of 
death is low with acute cellular rejection (ACR), and this decreases even further 
with time [93]. Longer term, the risk is of bronchiolitis obliterans syndrome (for 
which ACR is a risk factor) and CLAD. Unlike most other solid organt transplants 
(SOT), lung transplantation has always required a fine balance between adequate 
immunosuppression and the risk of infection. Many patients end up with varying 
individualised immunosuppression based on the number of rejection episodes 
against the rate of infections each person has 28% of surviving lung transplant 
recipients between 2004 and 2015 required treatment for acute rejection in the first 
year post-discharge [3]. Most recipients will require treatment for acute rejection 
in the first year post-transplant, usually in the first 6 months [94]. Treatment is 
usually a short course of high dose IV methylprednisolone (IVMP) for 3–5 days, 
followed by a tapering course over 2–3 weeks. If a patient suffers from recurrent 
bouts of acute rejection and treatment adherence is confirmed, then immunosup-
pression may need to be increased if tolerated renally. Where acute cellular rejection 
is refractory to standard treatment, other modalities of treatment are available. 
RATG has variable success but is still used. Total lymphoid irradiation (TLI) and 
extracorporeal photophoresis are both used with a degree of success in slowing the 
rate of lung function decline, sometimes halting it altogether [95, 96].

Chronic lung allograft dysfunction (CLAD) remains a major barrier to long-
term survival post lung transplantation. Until recently, CLAD and bronchiolitis 
obliterans syndrome (BOS) were used interchangeably. However, the heterogeneity 
of the clinical course of CLAD along with highly variable responses to treatment 
has caused clinicians to review radiology and histology and suggest two distinct 
phenotypes: BOS and restrictive allograft syndrome (RAS) (also known as restric-
tive CLAD (rCLAD)). BOS is characterised by an obstructive picture on pulmonary 
function tests, air trapping on CT imaging, and obliterative bronchiolitis (OB) on 
histology [97]. RAS is characterised by restrictive results on pulmonary function 
tests, pleuro-parenchymal infiltrates on CT and fibro-elastosis on biopsies [98]. It 
is important to differentiate between the two as patients with RAS have an aver-
age expected life expectancy of 6–18 months following diagnosis, compared to 
3–5 years after diagnosis of BOS [97].
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4.4 Malignancy

With improved survival post-transplant, long term complications are increas-
ingly common. Lung transplantation requires higher amounts of immunosuppres-
sion compared with most other solid organ transplants, which increases the risk of 
developing cancer due to impaired anti-tumour immune surveillance and anti-viral 
activity. Malignancies occur in 18% of patients reaching 5 years of survival, and 
28.7% of patients reaching 10 years of survival [99]. Malignancies transmitted from 
the donor are rare due to the surveillance undertaken at the time of donation [100].

PTLD is diagnosed when EBV levels start to rise in association with an abnormal 
white cell count, and is more common in lung transplant recipients than most 
other SOT recipients. It occurs in 2–9% of lung transplant recipients [101, 102]. 
Early cases (within 1 year of transplantation) typically involve the lungs and 
occur in recipients who have not previously been exposed to the virus, whereas 
cases presenting more than 1 year post-transplantation are more likely to involve 
the gastrointestinal (GI) tract [101]. Radiologically, lymphadenopathy and 
pulmonary nodules in the peripheral and basal zones are seen on CT [103]. Post-
transplant immunosuppression impairs T-cell-specific immunity against EBV but 
EBV-negative PTLD has also been recognised. Early-onset PTLD is more likely to 
respond to a reduction in immunosuppression than late-onset as the pathogenesis of 
the latter is less well understood, but this in turn increases the risk of rejection and 
graft failure [104]. As a result, prognosis with late-onset PTLD is worse [102, 105]. 
If reduction in treatment is not the solution, the next option would be rituximab, 
which induces cell death of B-cells via CD20 which is on the surface of these cells.

Non-melanoma skin cancers are the most common skin cancer for SOT recipi-
ents and this is also true in LTx [106, 107]. All lung transplant recipients are advised 
to monitor their skin for any suspicious changes, and regular review by their GP 
or a dermatologist is often recommended. They are also cautioned about time 
spent in the sun and advised to use high factor sun cream liberally. Squamous cell 
carcinomas (SCCs) are 100–200 times more likely to occur post-lung transplant 
compared to the general population [107], and they are usually more aggressive 
with high rates of recurrence [102]. All other forms of skin cancer are more com-
mon than the general population but not to the same extent. The increased risk of 
non-melanoma cancer in all SOT recipients is primarily due to immunosuppression 
which affects the usual cellular pathways that prevent cancerous growths. With LTx 
recipients receiving the highest levels of immunosuppression, it is unsurprising that 
this group of patients have the highest rates of skin cancer. There is also increasing 
evidence that voriconazole increases the risk of SCC [108] and so it is advised to 
reduce the length of treatment time if possible and otherwise switch to an alterna-
tive anti-fungal that appears to have less of an association with cancer.

Treatment is identical to all other skin cancer treatments, aiming for local exci-
sion with complete clearance, but if possible, rates of immunosuppression should 
be reduced to reduce the risk of recurrence or further skin cancers. Radiotherapy is 
an alternative option for those who are high risk for surgery or whose cancers have 
progressed to being inoperable [109]. Monoclonal antibodies have had increasing 
success in the general population, however, these have not been tried to a great 
extent in post-transplant recipients due to concerns over their interaction with 
immunosuppression and risk of graft rejection.

Lung transplant recipients appear to have up to a 5-fold increased risk of lung 
cancer compared to the general population [110], but the risk is primarily related to 
pre-transplant risk factors and so there is a higher incidence in those transplanted 
for COPD or ILD. For PwCF, the risk of developing lung cancer is generally donor-
related risk factors or due to immunosuppression as described earlier. When lung 
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cancer does develop, treatment remains challenging as no treatment has been well-
studied alongside immunosuppression, and outcomes are often poor.

Although all SOT recipients are at increased risk of developing colorectal cancer, 
LTx recipients who have CF have a significantly higher incidence, even within the 
transplant population [111]. This is presumed to be due to the inherent risk of GI 
malignancy in all PwCF compounded with the increased incidence due to immu-
nosuppression. The US-based CF Foundation have recently published Consensus 
guidelines for colorectal cancer screening in PwCF which should be followed post-
transplant also [112]. Further information on colorectal cancer in CF can be found 
in the chapter entitled “Digestive System”.

5. Conclusions

Although lung transplantation in PwCF has achieved results once thought 
impossible, there remains substantial opportunity for progress. Avenues for these 
opportunities include better donor management and organ preservation, improved 
donor allocation systems to offer organs to those most in need who will also benefit 
most, optimization of recipients in terms of physiology, GERD management and 
CFRDM, and prevention of PGD, rejection, and infections. Preoperative pleurode-
sis and lung resections are not contraindications to lung transplantation, however, 
strategic planning with CT imaging and availability of experienced team members 
may reduce complications. While preoperative mechanical ventilation is potentially 
detrimental, patients should be bridged to lung transplantation with ECMO sup-
port, aiming to wake them as soon as is feasible. Bilateral thoracotomy approach is 
superior to the conventional clamshell cosmetically as well as in regards to wound 
complications. Elective use of mechanical circulatory support in LTx for CF is now 
limited to severe secondary pulmonary hypertension or additional cardiac surgery, 
and in the case of hemodynamic instability or inadequate gas exchange on single 
lung ventilation, the operation should be performed under ECMO support.

© 2021 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
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Recent Advances in Targeted 
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Fibrosis
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Abstract

The cystic fibrosis transmembrane conductance regulator (CFTR) gene was  
discovered just over 30 years ago, and soon after, gene therapy for cystic fibrosis 
(CF) has been rapidly and continually developing. Recently, novel gene therapy 
strategies have been developed, including mRNA delivery, genome editing, and 
mRNA repair; all these strategies are collectively named “genetic medicines.” 
The last quarter of the century showed a significant boost in the development of 
viral and nonviral vectors to deliver genetic treatment. This chapter will provide a 
brief overview of the CFTR gene and its different classes of mutations as well as a 
review of the different genetic therapeutic options that are under research. Later 
in this chapter, drugs that target different CFTR mutation classes and are currently 
approved to treat CF patients will be briefly presented.

Keywords: cystic fibrosis, CFTR, gene therapy, CRISPR/Cas9, mRNA therapy, gene 
editing, gene delivery, viral vectors, nonviral vectors, CF animal models, CF drugs

1. Introduction

CF is an autosomal recessive genetic disorder and is caused by mutations in both 
copies of CFTR. The CFTR gene is found on chromosome 7, on the long arm at posi-
tion q31.2 from bp 116,907,253 to bp 117,095,955. CFTR consists of 27 exons, whereas 
the CFTR protein has 1480 amino acids with a molecular mass of 168,138 Da [1].

The CFTR gene encodes a protein that is an ATP-gated chloride and bicarbonate 
channel. It is located only on the apical membrane of the airway, intestinal, and 
exocrine glands epithelium. The CFTR protein undergoes different steps of post-
translational modifications and trafficking inside the epithelial cells (Figure 1). The 
CFTR protein structure consists of four main domains: an extracellular domain, 
a transmembrane domain, a nuclear binding domain (NBD), and the regulatory 
domain (R domain) (Figure 2) [2].

1. Extracellular domain: It comprises of small loops that connect the transmem-
brane proteins, e.g., (M1 and M2), (M3 and M4), (M5 and M6), etc.

2. Transmembrane domain: It consists of two groups; each of them consists 
of six membrane-bound regions that are each connected to a nuclear binding 
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domain (NBD). It was found that it plays a major role in the pore function of 
the membrane.

3. NBD domain (NBD; NBD1 and NBD2): It is responsible for ATP binding.

4. Regulatory domain (R domain): It consists of numerous charged amino  
acids, and it is phosphorylated and activated by protein kinase A.

The CFTR transport mechanism depends on two membrane-spanning domains 
(MSD) and two nucleotide-binding domains (NBD). The cycle of the transport of 
the chloride ions starts with the phosphorylation of the R domain that activates 
the channel. This step will start the ATP ligation to the NBD and the subsequent 
conformational changes and dimerization. This step will provide the energy for the 
release of the chloride ions across the cellular membrane. Once ATP is hydrolyzed, 
the NBD is destabilized, releasing ADP and phosphates; this results in the protein 
regaining its basal state. This cycle is called the ATP switch model of CFTR [3].

The CFTR mutations can be classified into six main classes based on their effect 
on the synthesis and/or function of the encoded protein. More recently, a Class VII 
has been added (Figure 3) [5, 6].

Figure 1. 
The physiological process of CFTR transcription and cellular processing of the protein inside the cells. The 
process starts with the mRNA transcription in the nucleus, and then the mRNA leaves the nucleus and is 
translated by ribosomes in the endoplasmic reticulum to protein. Chaperone proteins facilitate folding of the 
new CFTR proteins. The CFTR protein next undergoes post-translational modifications in the Golgi apparatus 
such as glycosylation, ubiquitination, SUMOylation, and phosphorylation and is then transported to the 
epithelial cell surface [4].
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Class I mutations result in a partial or complete lack of production of a func-
tional CFTR protein. Those mutations are due to the introduction of a premature 
termination codon (PTC). This class includes mutations such as p.Gly542X, 
p.Arg553X, and p.Trp1282X. The p.Gly542X mutation is the most common mutation 
of this class worldwide.

Class II mutations are associated with abnormal trafficking of the CFTR pro-
tein due to misfolding of the protein. These mutations occur in any domain of the 
CFTR protein and can lead to either a partial reduction (p.Leu206Trp) or complete 
absence of the mature CFTR protein (p.Arg1066Cys). The F508del (p.Phe508del) is 
the most common mutation worldwide, and it has been demonstrated that it leads 
to instability of the NBD1 domain and alters the CFTR assembly.

Class III mutations are missense mutations frequently located in the ATP 
binding domains (NBD1 and NBD2). They are also known as gating mutations since 
in this type there is a defective channel gating. There is production of CFTR, which 
is efficiently transported to the cell membrane at normal levels, but the protein is 
resistant to activation by protein kinase A and cannot exhibit channel gating func-
tion (e.g., p.Gly178Arg and p.Gly551Asp).

Class IV mutations are missense mutations located in the membrane domains, 
which are responsible for the formation of the channel pores. The protein can 
still efficiently reach the membrane but with reduced channel conductance (e.g., 
p.Arg117His and p.Arg334Trp).

Class V mutations reduce the amount of functional CFTR protein. 
Nonfunctioning proteins are produced due to alternative splicing. Moreover, as 
a result of amino acid substitution, there is less protein maturation, reducing 
the amount of functional CFTR that reaches the cell surface. Consequently, 
the reduced numbers of CFTR channels lead to the subsequent loss of chloride 
transport (e.g., c.3272-26A>G). Direct RNA analysis is not routinely performed 
and this in turn leads in underestimation of the number of mutations causing 
splicing defects.

Class VI mutations result in a protein that is unstable, degrades easily, and has 
abnormally fast turnover rates due to the truncated C terminus of the protein (e.g., 
p.Lys684fs and p.Gln1412X).

Figure 2. 
This figure illustrates the composition of the CFTR chloride channels (at rest and when activated) in the apical 
epithelial membranes. It is composed of different domains including the MSD, NBD, and the R domains.
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Finally, Class VII mutations are a subtype of Class I mutations with no messenger 
RNA (mRNA) transcription [7]. The outcome is the same as that of class I mutations, 
i.e., complete absence of CFTR protein which cannot be treated by the CFTR correctors.

2. Genetic medicine

Although there are some approved drugs for specific patients who harbor certain 
mutations, genetic medicine is important as it offers the ultimate treatment for 
all CF mutations and can benefit every CF patient [8]. There are multiple genetic 
strategies that are currently under investigation for the treatment of CF. They can 
be summarized as follows (Figure 4).

1. Gene therapy: Here, the correct copy of the CFTR gene is delivered to the 
diseased CF cells using either viral or nonviral vectors such as nanocom-
plexes.

2. Gene editing (repair): This technique aims to correct the mutant CFTR allele 
by cutting the double strand DNA and correct the existing mutations inside 
the cells at the DNA level.

3. mRNA-based therapeutics: RNA oligonucleotides are delivered to the cyto-
plasm and repair the defective CFTR mRNA.

4. mRNA therapy: Wild-type CFTR mRNA is delivered to the cytoplasm of the 
cell, resulting in the production of normal CFTR protein [8].

Figure 3. 
This figure describes the different classes of CF according to the production of the encoded CFTR protein.
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2.1 Gene therapy

Gene therapy is currently the most advanced and promising field of CF genetic 
medicine. For a long time, the main obstacle of this approach has been the absence 
of an efficient delivery system for the lung. The barriers (intracellular or extracel-
lular) that are there to protect us from viruses and bacteria also prevent the uptake 
of different gene treatments via inhalation. The barriers also include the nuclear 
membrane which prevents the passage of the genetic materials from the cytoplasm 
to the nucleus. Other obstacles include airway mucus, mucociliary clearance, CF 
mucopurulent sputum, and the humoral and cellular immune responses. All these 
hinder the efficiency and the effectiveness of gene therapy as a treatment for CF [8].

Vectors can be classified broadly into two categories: viral and nonviral [9]. Viral 
vectors include adenoviruses and adeno-associated viruses (AAV). Both viruses 
can infect the lung cells efficiently and carry specific proteins in their cell surface to 
overcome the lung’s natural defense systems [10]. However, any preexisting immunity 
toward the viruses will render them useless. Even if there is no previous immunity, 
the repeated administration of the virus will eventually lead to the development 
of immunity toward it and limit its success. However, recent preclinical studies in 
animals showed that multiple administrations of lentiviral vectors in immunocompe-
tent lungs are effective [10]. Although some adenoviral clinical trials showed partial 
correction of the chloride transport in CF nasal epithelium by measuring the poten-
tial difference between the outer and inner cell membranes, this correction was only 
recorded after the nasal epithelium was damaged and removed during delivery [10].

Due to the simple structure of the nonviral vectors, they do not usually induce 
immune reactions inside the body [8]. The UK CF Gene Therapy Consortium 
(GTC) was formed from three groups in Edinburgh, London, and Oxford. Their 
aim was to share expertise to assess gene therapy and its ability to stop the pro-
gression of CF lung disease. After extensive research, they concluded that the 
nonviral cationic lipid formulation GL67A combined with the modified pGM169 
plasmid (which encodes a CpG-free and codon-optimized CFTR) can produce 
some improvements in spirometry assessments in animals and even longer dura-
tion of response of up to 1 month [8]. In a randomized double-blind phase IIb trial, 
conducted on 120 patients with different mutations in the UK, it was found that 
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Finally, Class VII mutations are a subtype of Class I mutations with no messenger 
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Figure 3. 
This figure describes the different classes of CF according to the production of the encoded CFTR protein.

95

Recent Advances in Targeted Genetic Medicines for Cystic Fibrosis
DOI: http://dx.doi.org/10.5772/intechopen.92434

2.1 Gene therapy

Gene therapy is currently the most advanced and promising field of CF genetic 
medicine. For a long time, the main obstacle of this approach has been the absence 
of an efficient delivery system for the lung. The barriers (intracellular or extracel-
lular) that are there to protect us from viruses and bacteria also prevent the uptake 
of different gene treatments via inhalation. The barriers also include the nuclear 
membrane which prevents the passage of the genetic materials from the cytoplasm 
to the nucleus. Other obstacles include airway mucus, mucociliary clearance, CF 
mucopurulent sputum, and the humoral and cellular immune responses. All these 
hinder the efficiency and the effectiveness of gene therapy as a treatment for CF [8].

Vectors can be classified broadly into two categories: viral and nonviral [9]. Viral 
vectors include adenoviruses and adeno-associated viruses (AAV). Both viruses 
can infect the lung cells efficiently and carry specific proteins in their cell surface to 
overcome the lung’s natural defense systems [10]. However, any preexisting immunity 
toward the viruses will render them useless. Even if there is no previous immunity, 
the repeated administration of the virus will eventually lead to the development 
of immunity toward it and limit its success. However, recent preclinical studies in 
animals showed that multiple administrations of lentiviral vectors in immunocompe-
tent lungs are effective [10]. Although some adenoviral clinical trials showed partial 
correction of the chloride transport in CF nasal epithelium by measuring the poten-
tial difference between the outer and inner cell membranes, this correction was only 
recorded after the nasal epithelium was damaged and removed during delivery [10].

Due to the simple structure of the nonviral vectors, they do not usually induce 
immune reactions inside the body [8]. The UK CF Gene Therapy Consortium 
(GTC) was formed from three groups in Edinburgh, London, and Oxford. Their 
aim was to share expertise to assess gene therapy and its ability to stop the pro-
gression of CF lung disease. After extensive research, they concluded that the 
nonviral cationic lipid formulation GL67A combined with the modified pGM169 
plasmid (which encodes a CpG-free and codon-optimized CFTR) can produce 
some improvements in spirometry assessments in animals and even longer dura-
tion of response of up to 1 month [8]. In a randomized double-blind phase IIb trial, 
conducted on 120 patients with different mutations in the UK, it was found that 

Figure 4. 
This figure illustrates the different genetic medicine strategies for gene treatment of the CF mutations. It 
includes gene therapy, gene editing, mRNA repair, and mRNA therapy.



Cystic Fibrosis - Facts, Management and Advances

96

pGM169/GL67A was associated with a small but statistically significant stabilization 
of lung function in the patients [11]. In addition, the safety of this nonviral system 
was validated following 12 monthly administrations.

Another promising viral vector that has been investigated is the lentivirus. 
However, because this virus lacks the lung tropism, it must be combined with 
another virus in order to transduce the lung cells. The VSV-G protein is commonly 
used for this purpose, but others like the HA protein from the influenza virus and 
the F and HN proteins from the Sendai virus (Figure 5) have also been used [12].

It has been reported in murines that one dose of lentivirus leads to life-long 
stable expression of luciferase (almost for 2 years). In addition, repeated adminis-
trations of the vector (10 daily doses, or three administrations at monthly intervals) 
did not cause a significant immune response. In a comparison between the GL67A/ 
pGM169 and the lentivirus, it was found that the lentivirus is a much more effective 
form of gene therapy [8, 10].

At the end of 2017, the preparation for a clinical trial of a F/HN-pseudotyped 
lentivirus was announced [8]. This clinical trial will be a single-dose, double-
blinded, dose-escalating phase I/IIa safety, and efficacy study. In a preliminary 
study, for the preparation of this clinical trial, it was predicted that only between 5 
and 25% of the lung epithelial cells will need to be corrected in order to provide a 
clinical level of correction [13].

The human bocavirus virus-1 (HBoV1) is a parvovirus which efficiently infects 
the human airway epithelium. It was successfully recombined with an adenovirus to 
give a chimeric rAAV2/HBoV1 virus that was able to deliver a full-length CFTR gene 
coding sequence in CF human epithelial cells [14].

Marked progress in the development of vectors for airway gene delivery, along 
with a better understanding of CF pathophysiology and the presence of new animal 
models, has increased the possibility and the hope of gene therapy for CF. However, 
some obstacles to overcome include the percentage of the lung epithelial cells that 
need to be corrected to restore physiological function, as well as the limited life 

Figure 5. 
This figure shows the F/HN pseudotyped lentiviral vector. The virus loses its gp120 protein which originally 
enables it to enter the T-cells but it gains the HN envelope proteins from the Sendai virus to facilitate its 
transduction inside the lung epithelial cells.
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span of the ciliated epithelium of the lung. In addition, repeated dosing will require 
a better understanding of the immune system and the use of immune modulators. 
Regardless of the strategy, the benefit of a gene therapy approach will ultimately be 
realized in well-designed CF clinical trials [11].

2.2 Gene editing

Gene editing is an advanced form of genetic engineering which enables the 
insertion, deletion, or change of the nucleotide sequence of any living organism. It 
certainly gives the promise of providing therapy for diseases that were previously 
considered untreatable or difficult to treat. The field of genome-editing technolo-
gies is rapidly evolving and progressing, and the newer techniques seem to be more 
promising [15]. Gene editing was originally developed in the 1980s by Capecchi, 
Evans, and Smithies (awarded the 2007 Nobel Prize in Physiology or Medicine) but 
was mainly used in mice and pigs. The outstanding discovery that editing efficiency 
is increased at the site of double-stranded breaks (DSBs) made it possible to use the 
technique in larger studies of animal models and human cells. However, a method to 
create specific breaks at a certain genomic location with minimal off-target effects, 
insertions, and deletions in the DNA sequence had yet to be discovered [15].

In 2005, the development of fully programmable zinc finger nucleases (ZFNs) 
and their ability to perform this exact task led to its use in research extensively, 
but the limitation was the inefficiency and high cost of the ZFNs technology [16]. 
In 2009, the emergence of TAL-effector nucleases (TALENs) increased the gene 
editing specificity and the ease of design and production [16]. However, in 2013, 
the development of the clustered regularly interspaced short palindromic repeats/
CRISPR-associated protein 9 (CRISPR/Cas9) system has revolutionized gene edit-
ing as a research method that can be used by many groups worldwide [16].

CRISPR is an adaptive immunity function in bacteria like Streptococcus pyogenes 
through which they can defend themselves against the bacteriophage virus’ DNA 
or RNA. The main function of the CRISPR system inside the bacteria is to act as a 
molecular immunity protective mechanism to keep a copy of previous bacterio-
phage infections, in the form of a short sequence target of DNA or RNA molecules, 
inside the cytoplasm of the bacteria, allowing a more rapid identification and 
elimination of foreign DNA from the cytoplasm [17].

2.2.1 CRISPR/Cas9 system

Generally, the CRISPR/Cas9 system is composed of (Figure 6) the following:

1. The cas9 endonuclease that is capable of binding and unwinding the DNA helix 
and cleave any sequence complimentary to the guide RNA attached to it.

2. The guide RNA molecule (gRNA) that is designed to bind to the desired se-
quence and direct the Cas9 endonuclease. Usually, it is a short segment about 
20 nucleotides long.

3. A template DNA, to achieve the repair of the DSB with homology directed 
repair (HDR) rather than nonhomologous end joining repair (NHEJ).

The ribonucleoprotein complex of Cas9 and sgRNA first scans the DNA, anneals 
to the complementary DNA sequence and then makes a double strand cut before 
the sequence of the protospacer-associated motif (PAM) (it is a part of the DNA 
sequence ~2–6 base pair long immediately downstream of the sequence targeted by 
the Cas9 nuclease and it is essential for the Cas9 endonuclease function) [18].
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promising [15]. Gene editing was originally developed in the 1980s by Capecchi, 
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is increased at the site of double-stranded breaks (DSBs) made it possible to use the 
technique in larger studies of animal models and human cells. However, a method to 
create specific breaks at a certain genomic location with minimal off-target effects, 
insertions, and deletions in the DNA sequence had yet to be discovered [15].

In 2005, the development of fully programmable zinc finger nucleases (ZFNs) 
and their ability to perform this exact task led to its use in research extensively, 
but the limitation was the inefficiency and high cost of the ZFNs technology [16]. 
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molecular immunity protective mechanism to keep a copy of previous bacterio-
phage infections, in the form of a short sequence target of DNA or RNA molecules, 
inside the cytoplasm of the bacteria, allowing a more rapid identification and 
elimination of foreign DNA from the cytoplasm [17].
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Generally, the CRISPR/Cas9 system is composed of (Figure 6) the following:
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sequence ~2–6 base pair long immediately downstream of the sequence targeted by 
the Cas9 nuclease and it is essential for the Cas9 endonuclease function) [18].
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The application of this system for the editing of the genomes is quite simple, 
efficient, multiplexed, applicable in many species, and relatively affordable com-
pared to other forms of gene editing. In addition, this system can be modified to 
perform activation or repression of certain genes, and the Cas enzymes can be fused 
to epigenetic modifiers to create programmable epigenome-engineering tools [20].

A more advanced approach of genome editing is the base editing technique 
(BE), a newer approach to gene editing that achieves the direct and programmable 
conversion of one DNA base pair to another DNA base pair chemically, using 
specific enzymes, without inducing a DSB [21]. It was proposed that different base 
editors were needed to make more efficient and specific conversion of nucleotides 
with minimal off-target effects, e.g., the conversion of G: C to A: T by using the 
third-generation base editor (BE3) [21].

Typically, BE3 contains (Figure 7):

1. A catalytically inactive dCas9 that binds only to DNA but is not able to cut the 
strand. It is only capable of creating a DNA bubble at a guide RNA-specified 
region.

2. A cytidine deaminase enzyme that changes cytidine to uracil within a 3–5 
nucleotide window of the single-stranded DNA bubble, e.g. APOBEC1 (Apoli-
poprotein B mRNA editing enzyme, catalytic polypeptide-like 1 enzyme).

3. A uracil glycosylase inhibitor (UGI) that inhibits the automatic cellular repair 
mechanisms by inhibiting the base excision, therefore improving the efficiency 
of the BE technique.

4. Nickase activity: to make a cut only in one strand of the DNA in order to 
achieve manipulation of the cellular mismatch repair innate mechanisms of the 
cells to replace the G-containing DNA strand.

These components combine to achieve a permanent C to T (or G to A) conver-
sion in the cells with minimal or lack of in-del formation [21].

Figure 6. 
This figure illustrates the composition of the CRISPR/Cas 9 system [19].
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Moreover, additional modifications have been made to BEs to limit off-target effects 
(e.g., Hypa-BE3), decrease bystander effects (e.g., YE1-BE3, YE2-BE3), increase the 
editing window (BE-PLUS), and improve intracellular expression (BE4max) [23].

A recent technique (late 2017) is the use of Adenine base editor (ABE) which is 
able to convert A: T to G: C by using an adenine deaminase enzyme such as E. coli 
TAD-A, human ADAR2, mouse ADA, and human ADAT2 [22]. The adenine base 
is converted to inosine by deamination. Inosine is then treated as guanine by cell 
polymerases, therefore pairing it with cytidine in the opposite strand and ultimately 
converting A: T to G: C. The ABE also consists of a guide RNA, a catalytically 
impaired Cas9 and an adenine deaminase enzyme such as E. coli TAD-A (Figure 8).

Therefore, these base editors (both ABEs and BEs) revolutionize the field of 
genome editing and can position all the transitional DNA bases at specific loci in 
different cells with a minimum of harmful by-products [24].

In CF, CRISPR/Cas9 was used to correct the F508del mutation, which resulted 
in recovery of the functions of CFTR in human gastrointestinal tract stem cells in 

Figure 7. 
This figure describes the different components and the mechanism of action of base editing converting G: C to 
A: T [22].

Figure 8. 
This figure illustrates the composition and the mechanism of action of adenine base editing converting A: T to 
G: C [25].
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an intestinal organoid model [20]. CRISPR/Cas9 has also been used to edit CFTR in 
human-induced pluripotent stem cells (iPSCs). This approach provided new models 
for CF disease, and it helped in the identification of novel drug targets [26].

Added advantages of gene editing over gene therapy are the use of the endog-
enous cell machinery and the fact that the modifications are permanent for the cell’s 
life time. In addition, the reagents used for one mutation can also be used for any 
other CF mutation [8].

One of the main concerns when using the CRISPR/Cas9 system is the possibility 
of off-target effects; therefore, multiple modifications have been made to Cas9 to 
reduce such effects, e.g., the use of the nickase Cas9-D10A [27] in yeast achieved 
precise editing with completely undetectable off-target events. Moreover, both the 
meticulous choice of the target regions and the use of donor DNA templates with 
asymmetric homology arms have improved the on-target editing [28].

Other obstacles needed to be overcome in order to increase the gene editing 
efficiency in vivo are similar to those that affect gene transfer vectors such as 
the delivery mechanism to the stem basal cells of the lungs through the mucus-
obstructed CF lung epithelium. Ideally, the target for the gene editing should be the 
basal airway progenitor cells, but unfortunately, these are “buried” beneath the sur-
face epithelium and it is difficult to reach with the vectors available currently [29]. 
On the other hand, there is some optimism using different approaches to deliver 
CRISPR components: either as mRNA or directly as a protein or ribonucleoprotein 
complexes with modified lentiviral vectors [30].

Another dilemma, unique to CF, is which cells need to be corrected in the airway 
epithelium to achieve normal lung function and whether the lung stem cells should 
be targeted. Furthermore, unrestrained high CFTR expression across all the cells of 
the lung epithelium might have adverse effects, since normally the expression of the 
CFTR is controlled with tight activation and repression mechanisms [31, 32].

2.3 mRNA-based therapeutics

For CF, the repair of mRNA is a valuable therapeutic technique that was first 
investigated by Zamecnik et al. [33]. The mRNA repair could be done by either direct 
repair, exclusion of the defective exon, or a splice site change. The repair of the RNA 
is done using short double-stranded RNA oligonucleotides, targeting an mRNA 
sequence between 15 and 40 nucleotides. These oligonucleotides are designed to be 
specific for every mutation; hence, they might repair or remove the defective RNA 
[8]. In other studies, the oligonucleotide was designed to target the CFTR splicing 
mutation 3849 10 kb C-to-T, and it was shown that the defective splicing can be 
changed to include a cryptic exon and regain the CFTR function [34].

Moreover, ProQR Therapeutics developed QR-010 which targets the F508del 
mutation. It does not need to cross the nuclear membrane, since it acts in the 
cytoplasm. QR-010 showed that it can increase the CFTR Cl− channel activity in 
homozygous F508del HBE cells. Also, when administered intranasally to mice, it 
restored the normal potential difference of the lung epithelium [34–37]. QR-010 
is currently in a Phase Ib clinical study given as an inhalational drug to treat the 
homozygous F508del mutation in adults to evaluate its tolerability and its pharma-
cokinetics [37].

Small interfering RNA (siRNA) is one of the mRNA therapies that is used to silence 
the epithelial sodium channel, ENaC. It has been shown that upregulation of ENaC in 
CF leads to dehydration of the airway and formation of thickened mucus [38]. Due to 
the lack of a proper delivery system, the use of siRNA to transfect epithelial lung CF 
cells is difficult. However, ENAC silencing by siRNA when formulated with lipid-
peptide nanocomplexes was recently reported both in vitro and in vivo [38].
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2.4 mRNA therapy

Messenger RNA as a gene therapy approach has several advantages over DNA 
(as it does not require nuclear localization or transcription) and viruses, since it 
does not integrate in the genome once inside the cell. For years, scientists have been 
investigating the possibility of injecting the wild form of the CFTR mRNA to the 
cytoplasm to act as a template to produce wild-type CFTR protein [9]. Nevertheless, 
the unstable nature of RNA and its capacity to elicit innate immune responses pose 
limitations for in vivo applications. However, recent advances in synthetic biology 
helped alleviate these limitations by modifying the exogenously synthesized mRNAs 
to mimic their endogenous counterparts. These modifications have led in both an 
increase in mRNA transfection efficiency, as well as longer protein expression [39].

The immune system has evolved to recognize exogenous RNA, as it can also 
be found in viruses and other pathogens. Viral single- and double-stranded RNA 
can induce immune stimulation by interacting with pattern recognition recep-
tors (PRR) tasked with identifying pathogen-associated molecular patterns. 
Endogenous RNAs evade immune response since they contain modified nucleotides 
that affect PRR engagement. For example, the incorporation of nucleotide analogs 
in the RNA sequence, such as 2-thiouridine (2-SU), 5-methylcytidine (5-meC), and 
1-methylpseudouridine (m1Ψ), enables them to prevent recognition [40].

Furthermore, to optimize their translational efficiency and stability, the in vitro 
synthesized mRNAs incorporate a 5′-end modified cap (anti-reverse analogue [modi-
fied ARCA]) and a 3′-end poly(A) tail, eventually resembling fully-processed endog-
enous mRNA molecules [40]. In conclusion, as a result of extensive research, a variety 
of different chemical modifications of the mRNA in conjunction with its encapsulation 
into nanoparticles are currently under investigation [41, 42]. A recent study in bronchial 
epithelial cells has even demonstrated the restoration of chloride secretion using lipid 
nanoparticles (LNPs) to package and deliver chemically modified CFTR mRNA [43].

3. Drugs for the treatment of cystic fibrosis mutations

There are several drugs that were investigated for the treatment of CF muta-
tions. According to the class of the mutation, different drugs with different mecha-
nisms of action are used. CFTR modulators are small molecule drugs that improve 
CFTR protein function by a variety of mechanisms [44]. However, those molecules 
do not treat the main mutation defect of the CFTR gene. They can be classified into 
four categories (Figure 9) [45]:

1. The potentiators that increase the gating function and the opening probability 
of the CFTR Cl− gates, e.g., Ivacaftor.

2. The correctors that promote protein folding, assisting the transition of the 
CFTR protein through the cytoplasm to the cell surface, and the rescue of the 
CFTR protein, e.g., Lumacaftor.

3. The read-through drugs that enable the overriding of the premature termina-
tion codons and subsequently lead to complete translation and production of 
the full length protein, e.g., ataluren.

4. The amplifiers that increase the amount of the CFTR inside the cells and are 
usually given with other modulators (mentioned above) to increase their  
efficiency.



Cystic Fibrosis - Facts, Management and Advances

100

an intestinal organoid model [20]. CRISPR/Cas9 has also been used to edit CFTR in 
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life time. In addition, the reagents used for one mutation can also be used for any 
other CF mutation [8].

One of the main concerns when using the CRISPR/Cas9 system is the possibility 
of off-target effects; therefore, multiple modifications have been made to Cas9 to 
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On the other hand, there is some optimism using different approaches to deliver 
CRISPR components: either as mRNA or directly as a protein or ribonucleoprotein 
complexes with modified lentiviral vectors [30].

Another dilemma, unique to CF, is which cells need to be corrected in the airway 
epithelium to achieve normal lung function and whether the lung stem cells should 
be targeted. Furthermore, unrestrained high CFTR expression across all the cells of 
the lung epithelium might have adverse effects, since normally the expression of the 
CFTR is controlled with tight activation and repression mechanisms [31, 32].

2.3 mRNA-based therapeutics

For CF, the repair of mRNA is a valuable therapeutic technique that was first 
investigated by Zamecnik et al. [33]. The mRNA repair could be done by either direct 
repair, exclusion of the defective exon, or a splice site change. The repair of the RNA 
is done using short double-stranded RNA oligonucleotides, targeting an mRNA 
sequence between 15 and 40 nucleotides. These oligonucleotides are designed to be 
specific for every mutation; hence, they might repair or remove the defective RNA 
[8]. In other studies, the oligonucleotide was designed to target the CFTR splicing 
mutation 3849 10 kb C-to-T, and it was shown that the defective splicing can be 
changed to include a cryptic exon and regain the CFTR function [34].

Moreover, ProQR Therapeutics developed QR-010 which targets the F508del 
mutation. It does not need to cross the nuclear membrane, since it acts in the 
cytoplasm. QR-010 showed that it can increase the CFTR Cl− channel activity in 
homozygous F508del HBE cells. Also, when administered intranasally to mice, it 
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2.4 mRNA therapy

Messenger RNA as a gene therapy approach has several advantages over DNA 
(as it does not require nuclear localization or transcription) and viruses, since it 
does not integrate in the genome once inside the cell. For years, scientists have been 
investigating the possibility of injecting the wild form of the CFTR mRNA to the 
cytoplasm to act as a template to produce wild-type CFTR protein [9]. Nevertheless, 
the unstable nature of RNA and its capacity to elicit innate immune responses pose 
limitations for in vivo applications. However, recent advances in synthetic biology 
helped alleviate these limitations by modifying the exogenously synthesized mRNAs 
to mimic their endogenous counterparts. These modifications have led in both an 
increase in mRNA transfection efficiency, as well as longer protein expression [39].

The immune system has evolved to recognize exogenous RNA, as it can also 
be found in viruses and other pathogens. Viral single- and double-stranded RNA 
can induce immune stimulation by interacting with pattern recognition recep-
tors (PRR) tasked with identifying pathogen-associated molecular patterns. 
Endogenous RNAs evade immune response since they contain modified nucleotides 
that affect PRR engagement. For example, the incorporation of nucleotide analogs 
in the RNA sequence, such as 2-thiouridine (2-SU), 5-methylcytidine (5-meC), and 
1-methylpseudouridine (m1Ψ), enables them to prevent recognition [40].

Furthermore, to optimize their translational efficiency and stability, the in vitro 
synthesized mRNAs incorporate a 5′-end modified cap (anti-reverse analogue [modi-
fied ARCA]) and a 3′-end poly(A) tail, eventually resembling fully-processed endog-
enous mRNA molecules [40]. In conclusion, as a result of extensive research, a variety 
of different chemical modifications of the mRNA in conjunction with its encapsulation 
into nanoparticles are currently under investigation [41, 42]. A recent study in bronchial 
epithelial cells has even demonstrated the restoration of chloride secretion using lipid 
nanoparticles (LNPs) to package and deliver chemically modified CFTR mRNA [43].

3. Drugs for the treatment of cystic fibrosis mutations

There are several drugs that were investigated for the treatment of CF muta-
tions. According to the class of the mutation, different drugs with different mecha-
nisms of action are used. CFTR modulators are small molecule drugs that improve 
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do not treat the main mutation defect of the CFTR gene. They can be classified into 
four categories (Figure 9) [45]:

1. The potentiators that increase the gating function and the opening probability 
of the CFTR Cl− gates, e.g., Ivacaftor.

2. The correctors that promote protein folding, assisting the transition of the 
CFTR protein through the cytoplasm to the cell surface, and the rescue of the 
CFTR protein, e.g., Lumacaftor.

3. The read-through drugs that enable the overriding of the premature termina-
tion codons and subsequently lead to complete translation and production of 
the full length protein, e.g., ataluren.

4. The amplifiers that increase the amount of the CFTR inside the cells and are 
usually given with other modulators (mentioned above) to increase their  
efficiency.
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F508del accounts for ~69% of CF-causing alleles [46]. To address this muta-
tion defect, two different forms of drugs are used: CFTR correctors to increase the 
amount of correctly-folded CFTR protein and CFTR potentiators that improve the 
gating mechanism of the apical CFTR protein [47]. When combined together, they 
restore the Cl− transport and improve the airway mucociliary clearance [48]. The 
commercially available formulations of these two drugs are the corrector Lumacaftor 
(VX-809) and the potentiator Ivacaftor (VX-770). When administered alone in 
patients homozygous for F508del, Lumacaftor lead to a modest, yet statistically sig-
nificant reduction of ≥10 mmol/L in the sweat chloride concentration, but no other 
improvements in lung function (FEV1) and quality of life (CFQ-R) were observed 
[49]. On the other hand, in patients with the G551D mutation, Ivacaftor lead to an 
all-around improvement. In detail, after 48 weeks, the treated patients demonstrated 
an overall increase in BMI and quality of life markers, a 10.6% increase in FEV1, 
as well as a decrease of 48.1 mmol/L in sweat chloride levels, making Ivacaftor the 
first agent to achieve a reduction to values below the diagnostic threshold for CF 
(60 mmol/L). As a result, Ivacaftor was approved for the treatment of the Class III 
CF mutations in 2012 [50, 51]. The combination of both, which is called Orkambi, 
is currently available for CF patients as it proved beneficial for homozygous F508del 

Figure 9. 
Different mechanisms of action of drugs that are used to treat the different classes of CF mutations [45]. There 
is a fourth category of drugs, the amplifiers, which are not depicted here. ER, endoplasmic reticulum; GA, 
Golgi apparatus; PTC, premature termination codon.
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mutation treatment. To elaborate, in addition to a significant general improve-
ment in the clinical picture of the disease, such as increased BMI and CFQ-R, and 
a decreased rate of exacerbations, a 5% improvement of FEV1, when compared to 
the placebo, was observed [52, 53]. In 2019, a triple combination therapy consisting 
of the correctors Elexacaftor and Tezacaftor and the potentiator Ivacaftor (called 
Trikafta and developed by Vertex Pharmaceuticals) was tested in a double blind, 
randomized phase 3 clinical trial, demonstrating remarkable results. Among others, 
a significant increase in CFQ-R and a favorable safety profile. Moreover, there was a 
10.4% increase in FEV1 and a considerable improvement in sweat chloride concen-
tration, with a mean decrease of 43.4 mmol/L, achieving values below the diagnostic 
threshold for CF. Subsequently, Trikafta was approved by the FDA as a treatment 
among patients aged 12 years or older with the F508del mutation [53].

Furthermore, a number of proteins based on proteostasis modulation have been 
identified as useful drug targets for CF therapy [54–56]. Hsp90 and AHA1 are 
thought to have a role in CFTR folding and degradation. It was found that treatment 
with Hsp90-AHA1 inhibitors combined with Lumacaftor was more effective than 
Lumacaftor alone [56].

Ataluren is another drug that was used to facilitate the read-through of nonsense 
mutations in Duchene Muscular Dystrophy. However, a randomized clinical phase 
II trial showed no significant efficacy of Ataluren in the treatment of CF [57]. ELX-
O2 is another drug that is recently developed by ELoxx Pharmaceuticals for its read-
through effects. It is currently in a phase 2 clinical trial involving CF patients [58].

Another possible drug target is endoplasmic reticulum-associated degradation 
(ERAD), including chaperone proteins and ubiquitin complexes. RNF5 (also known 
as RMA1) was found to be important in the protein folding and NBD domain 
synthesis [59].

Interestingly, due to the presence of more than 2000 mutations in CFTR, the 
use of “theratyping” for the patient becomes of value. The term “theratype” is 
described as classifying the CFTR variants according to their response to the correc-
tor and potentiator drugs. More recently, this term is used to classify the mutations 
according to their characterization and their response to CFTR modulators across 
many model systems, which include functional and biochemical characterization 
[45]. Theratyping is also used to predict the clinical outcome of the patient toward 
the drug by the in vitro studies [45].

4. Nonviral delivery vectors

For a long time, viral vectors dominated the fields of gene therapy and vector 
development, mainly due to their very high efficiency. However, over the last years, 
novel approaches in vector design and recent advances in microfluidics have turned 
nonviral vectors into a promising method of drug and gene delivery [60, 61]. There 
are multiple materials that can be used to create nonviral vectors, including lipo-
somes, which allow the delivery of the nucleic acids inside the lung epithelial cells. 
Liposomes are spherical vesicles composed of two layers of phospholipids with a 
hydrophilic core. They are normally formulated with natural lipids and possess no 
immunogenicity [62].

Nonviral vectors have the advantages of simple large-scale production and a 
large capacity for nucleic acids as cargos. Furthermore, low host immunogenic-
ity and the ability to maintain their efficiency even after repeated administration 
render them a popular alternative to their viral counterparts. In addition, recent 
advances in vector technology have yielded molecules and techniques with even 
higher transfection efficiencies [60, 61]. These new vectors can be used to deliver 
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mutation treatment. To elaborate, in addition to a significant general improve-
ment in the clinical picture of the disease, such as increased BMI and CFQ-R, and 
a decreased rate of exacerbations, a 5% improvement of FEV1, when compared to 
the placebo, was observed [52, 53]. In 2019, a triple combination therapy consisting 
of the correctors Elexacaftor and Tezacaftor and the potentiator Ivacaftor (called 
Trikafta and developed by Vertex Pharmaceuticals) was tested in a double blind, 
randomized phase 3 clinical trial, demonstrating remarkable results. Among others, 
a significant increase in CFQ-R and a favorable safety profile. Moreover, there was a 
10.4% increase in FEV1 and a considerable improvement in sweat chloride concen-
tration, with a mean decrease of 43.4 mmol/L, achieving values below the diagnostic 
threshold for CF. Subsequently, Trikafta was approved by the FDA as a treatment 
among patients aged 12 years or older with the F508del mutation [53].

Furthermore, a number of proteins based on proteostasis modulation have been 
identified as useful drug targets for CF therapy [54–56]. Hsp90 and AHA1 are 
thought to have a role in CFTR folding and degradation. It was found that treatment 
with Hsp90-AHA1 inhibitors combined with Lumacaftor was more effective than 
Lumacaftor alone [56].

Ataluren is another drug that was used to facilitate the read-through of nonsense 
mutations in Duchene Muscular Dystrophy. However, a randomized clinical phase 
II trial showed no significant efficacy of Ataluren in the treatment of CF [57]. ELX-
O2 is another drug that is recently developed by ELoxx Pharmaceuticals for its read-
through effects. It is currently in a phase 2 clinical trial involving CF patients [58].

Another possible drug target is endoplasmic reticulum-associated degradation 
(ERAD), including chaperone proteins and ubiquitin complexes. RNF5 (also known 
as RMA1) was found to be important in the protein folding and NBD domain 
synthesis [59].

Interestingly, due to the presence of more than 2000 mutations in CFTR, the 
use of “theratyping” for the patient becomes of value. The term “theratype” is 
described as classifying the CFTR variants according to their response to the correc-
tor and potentiator drugs. More recently, this term is used to classify the mutations 
according to their characterization and their response to CFTR modulators across 
many model systems, which include functional and biochemical characterization 
[45]. Theratyping is also used to predict the clinical outcome of the patient toward 
the drug by the in vitro studies [45].

4. Nonviral delivery vectors

For a long time, viral vectors dominated the fields of gene therapy and vector 
development, mainly due to their very high efficiency. However, over the last years, 
novel approaches in vector design and recent advances in microfluidics have turned 
nonviral vectors into a promising method of drug and gene delivery [60, 61]. There 
are multiple materials that can be used to create nonviral vectors, including lipo-
somes, which allow the delivery of the nucleic acids inside the lung epithelial cells. 
Liposomes are spherical vesicles composed of two layers of phospholipids with a 
hydrophilic core. They are normally formulated with natural lipids and possess no 
immunogenicity [62].

Nonviral vectors have the advantages of simple large-scale production and a 
large capacity for nucleic acids as cargos. Furthermore, low host immunogenic-
ity and the ability to maintain their efficiency even after repeated administration 
render them a popular alternative to their viral counterparts. In addition, recent 
advances in vector technology have yielded molecules and techniques with even 
higher transfection efficiencies [60, 61]. These new vectors can be used to deliver 
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small molecules such as siRNAs, miRNAs, or even small therapeutic molecules and 
drugs, as well as bigger molecules like mRNA, minicircle, and plasmid DNA.

The cationic lipid-based vectors are an effective delivery approach for the 
CRISPR/Cas9 system but only after local administration [62]. However, the main 
problem about liposomes as drug delivery vectors for the treatment of CF or any 
chronic obstructive disease remains the development of inhalational formulations 
which can be delivered by nebulization. The nebulizer can alter the stability of the 
liposomes and cause their aggregation [63]. Therefore, several methods have been 
developed to stabilize the liposomal formulations such as lyophilisation [64] or use 
of dry powder inhaler (DPI) liposomal formulations which have shown promising 
results for drug administration in the lung, but those are still in an early develop-
ment stage [65]. Targeted liposome-peptide nanocomplexes have been successfully 
nebulized, offering another alternative [66, 67].

Additionally, mucus-penetrating nanoparticles have emerged as a suitable vector 
to deliver various drugs and nucleic acids across the thick mucus barrier in cystic 
fibrosis. In CF, targeted mucus-penetrating nanocomplexes successfully delivered 
siRNA against ENAC in the airway epithelium and decreased the Na+ reabsorp-
tion, thus restoring the clearance of the mucus and regaining the function of cilia 
[38, 68]. Mucus-penetrating NPs have a small size which leads to a lower mucus 
surface tension and easy penetrance. Also, they are coated with polyethylene glycol 
(PEG) which is electrically neutral and lead to an enhancement of the penetrance 
of the thick mucus of CF [69]. PEGylated nanoparticles loaded with Ivacaftor were 
formulated to test the drug uptake capacity of CF artificial mucus (CF-AM) on 
human bronchial epithelial (16-HBE) cells [70]. It was found that there was a higher 
release and uptake of Ivacaftor by 12% compared to Ivacaftor alone. In light of 
these results, the PEGylated mucus-penetrating NPs are considered a good vehicle 
to deliver the CFTR modulators through pulmonary administration to treat CF 
patients [70]. However, in order to be effective, the size of mucus-penetrating NPs 
should be small enough to penetrate mucus and big enough to prevent rapid exhala-
tion and expulsion from the lung. Moreover, in order to increase their efficacy, 
certain parameters must be considered such as the nanoparticle morphology and 
their surface properties [71].

In summary, both viral and nonviral vectors are used to introduce different nucleic 
acids into the cell. Though the design of viral vectors has improved in the last few years 
and they have become more efficient, the immunogenicity and safety concerns still 
remain a big issue. On the other hand, the nonviral vectors offer safe and low-cost 
therapies with increased transfection efficiencies. Further improvements and optimiza-
tion of these therapies and delivery vehicles could lead to a great outcome for CF [72].

5. CF animal models, organoids and iPSCs

Having an animal model is a crucial step to understand the disease pathogenesis, 
progression, and to test new drugs. The CFTR-knockout pigs and ferrets were 
generated approximately 15 years ago [73]. These species have a similar lung biology 
to humans because their submucosal glands are in their cartilaginous parts of the 
lung. On the contrary, rats and mice have their submucosal glands in the trachea, 
and rabbits do not have glands at all [74].

Among other in vitro cell culture models, one that has particular value in CF is 
the use of organoids, which have become a very useful model for CF research [75]. 
Organoids are 3D cultures of the lung progenitor cells grown in the presence of appro-
priate medium. They grow also with supporting cells that organize in a very similar way 
as the in vivo organs. In CF research, organoids of the intestinal and respiratory systems 
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are currently used to screen and test the newest drugs for CF [20]. Moreover, the intesti-
nal organoids have been used as a model for the CRISPR/Cas9 technique [20].

These models could also be used potentially for testing gene editing-based thera-
peutics in CF [8, 76]. Another therapeutic option is to directly edit the progenitor 
cells in the lung epithelium in vivo, but a CRISPR editing system in CF lung in vivo 
has yet to be reported [8].

Human embryonic stem cells (ESCs) and iPSCs are newer models that can be 
used in CF. iPSCs are obtained by somatic cell reprogramming and differentiating 
these cells into specific human tissues [77]. The iPSCs can produce cell lines with 
the different rare CF mutations. The CRISPR/Cas9 technique was efficiently used 
to correct the CFTR F508del in patient-derived iPSCs that were differentiated to 
proximal airway cells [78].

6. Conclusion

Cystic fibrosis is a good example of how a deeper understanding of the genetics 
of disease can lead to personalized therapy for each patient. Continued efforts to 
develop better viral and nanoparticle-based nonviral vectors and produce novel 
gene editing with CRISPR/Cas9 are always investigated. Along with the advance-
ment in the production of CF animal and in vitro human models and the presence 
of different electrophysiological methods such as transepithelial potential dif-
ference (TPD), all these give the promise and hope for the future of CF patients. 
Certainly, the recent use of organoids will be essential to personalized genetic 
medicine. This chapter has presented the past and current research that shows that 
the concept of genetic medicine can become a reality for CF patients in the near 
future.

© 2021 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 
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future.
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