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Preface

Throughout history, people have been interested in plants and the nutrition and
metabolic events taking place in plants. Aristotle asserted that plants get the
nutrients they need from the soil through the roots. The root system is an essential
part of a plant and understanding roots and their function is key to agricultural
production. The root system is the part of the plant under the ground. It has four
important tasks: (1) It allows the plant to hold onto the soil; (2) It absorbs water and
substances dissolved in water; (3) roots store nutrients and some plants store root
nutrients (e.g., carrots); and (4) It synthesizes plant hormones and other organic
compounds.

This book addresses root-soil interactions, the genetic basis of root growth and
development, plant hormone action and signaling pathways that control root growth
and development, mechanisms that determine the root structure and architecture,
and soil resource acquisition from agricultural and ecological perspectives. The
book also combines comprehensive investigations with the latest technologies and
challenges that affect root growth to facilitate environmentally sustainable and
economical crop production.

The book comprises an introduction and six chapters. Chapter one suggests that
adventitious roots and hairy roots are promising materials for the production of
valuable secondary compounds of plants that are used in the pharmaceutical, food,
and cosmetic industries. Chapter two presents a meta-analysis of 37 studies related
to responses of root system characteristics in crop plants under potassium deficiency
conditions from 1969 to 2019 in 23 countries. Chapter three deals with how abiotic
stress conditions affect plant roots. Chapter four discusses cotton root biological
context of root—environment interactions and provides an overview of the root
growth morphology in certain species. It also covers the phytohormone action that
controls root growth, root anatomical significance in drying soils, biotic and abiotic
stresses involved in controlling root growth, and the environmental responses.
Chapter five introduces the ethnobotany for roots of various plant species in Turkey.
Chapter Six reviews the plant growth-promoting rhizobacteria (PGPR) effects on
the growth, physiological, biochemical, and molecular characteristics of plant roots.

We hope this book is widely read as it will enhance the readers’ understanding of
roots as an underground treasure.

Ertan Yildirim
Faculty of Agriculture,
Atatiirk University,
Erzurum, Turkey
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Chapter1

Introductory Chapter:
Plant Roots - Underground
Treasure

Evtan Yildirim

1. Introduction

Since the earliest ages of history, almost everywhere in the world, people have
been interested in plants in terms of more utilization. People have learned which
plants can be nutrients, which are medicinal and poisonous, and the wood of which
trees is suitable for construction or making weapons. Human beings have been
using plants and their roots, which are an important part of them, in many areas of
their lives since ancient times [1].

In botany, the root, normally part of an underground vascular plant, plays a very
important role in plant growth and development. The root is an organ that gener-
ally grows into the soil in developed plants that have adapted to terrestrial life, but
rarely is found above the ground. The roots have channels to transport nutrients and
water to the stem and leaves. They also have channels that allow organic matter to
be transported from the above-ground parts of the plant to the roots [2].

Roots also act as a storage organ by accumulating nutrients. Although the root
is in the soil, the roots of some plants can also grow in air or water. Roots that grow
in air are called aerial roots, roots that grow in water are called water roots [3].
Primitive plants such as mosses and ferns have no real roots, but rhizoid extensions.
In general, the difference of the root from the stem in terms of its external appear-
ance is that it does not have leaf-bearing nodes (nodes) and nodes (internodes) and
does not appear green because it does not contain chloroplasts. The surface of the
root system consisting of roots and lateral roots under the soil is equal to or more
than the total surface of the trunk and side branches above the soil.

The root system has important functions: 1. Ensures that the plant anchors
to the soil. 2. Absorbs water and minerals dissolved in water. 3. Stores foods (e.g.
carrot) 4. Synthesizes hormones and organic compounds [4]. The roots send some
signals to the stem in stress conditions such as drought and salt stress to avoid dam-
age to the plant, and provide that the above ground part takes the precautions to
adapt to the negative conditions [5].

The root system body forth a significant interface to which plants act and react
by the environment. Roots perceive the characteristics of their environment and
adjust their development and performance accordingly, so they play an important
role in maintaining the growth targets of the plant under abiotic stress which
adversely affect plant productivity around the world.

Human being use plant roots as food, clothing, and medicine, and dyes. Some
roots like carrots, yam, potato and radish serve the purpose of a storage organ which
is used as food by humans. They store carbohydrates and water.

Roots are the source of crucial drugs that have the potential to save life. Herbal
remedies such as ginseng, ipecac, rauwolfia, ashwagandha are obtained from the
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roots. The use of plants in human therapy started with the history of humanity.
Thousands of years ago, people recognized the therapeutic power of plants and took
advantage of them to live healthy. Folk medicines are practices that have survived
until today after long experiences. Many drugs used in modern medicine are also
obtained from plant roots [6].

The usage of natural dyes is increasing significantly due to the quality of the
natural dyestuff obtained, the environmental compatibility of the dyes, and the
reduction of processing costs significantly. Natural dyes are obtained from various
parts of plants such as leaves, roots, seeds and flowers. Madder (Rubia tinctorum) is
a perennial plant originating in the Eastern Mediterranean and Central Asia. It’s the
most important source of “true” red in plant dyeing [7].

Hairy and adventitious roots can biosynthesize highly stable secondary com-
pounds in vitro. Nowadays, it is possible to expand the scale of root cultures in
bioreactors, making it possible to produce secondary compounds on an industrial
scale. Roots can have fiber. Fiber obtained from the roots is utilized to make brooms,
baskets and brushes. Roots can prevent soil erosion. Roots also play an important
role in preventing desertification by preventing soil erosion [8].

2. Conclusion

Eshel and Beeckman [9] describe the roots as hidden half. They emphasize new
understandings about roots gained in the post-genomic era. The genetic and pheno-
typic variability of the roots will be fully utilized by growers to benefit agricultural
productivity and maintain natural plant systems. Studies on roots will provide
opportunities to develop food security and environmental sustainability. The chal-
lenge is not just to reveal how roots work, but to do so in the soil of all its physical,
chemical, and biological complexity [4]. This book explain root-soil interactions,
ethnobotanical use of roots, secondary metabolite production and soil resource
acquisition from agricultural and ecological perspectives.
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Chapter2

Root Cultures for Secondary
Products

Le Thi Thuy Tien

Abstract

Plants are source of many high-value secondary compounds used as drugs, food
additives, flavors, pigments and pesticides. The production of these compounds
in nature faces to many difficulties because of the dependence on weather, soil ...
Furthermore, these compounds are usually limited by species, periods of growth or
stress. The utilization of plant cells iz vitro for the secondary compounds has gained
increasing attention over past decades. However, the yield is still low, probably due to
the degree of cell differentiation. Therefore, root culture is focused on research as an
alternative to cell cultures to produce secondary compounds because of high rate pro-
liferation, great potential in the production with high and stable yields. Hairy roots
and adventitious roots have a high ability to biosynthesize secondary compounds
in vitro with high and fairly stable in yield in comparison with plant cell suspension
cultures. Nowadays, it is feasible to expand the scale of root cultures in bioreactors,
which makes it possible to produce secondary compounds on an industrial scale.

Keywords: adventitious roots, Agrobacterium rhizogenes, elicitors, hairy roots,
secondary products

1. Introduction

Plant secondary products are natural sources of bioactive compounds which
used in traditional medicine and in industrial applications. In 1976, Farnsworth and
Morris said that: higher plants-the sleeping giant of drug development [1]. Indeed,
many chemicals derived from plants are important drugs, which are used as anti-
bacterial and antitumour agents. Furthermore, they are used in antioxidant foods ...
Besides, natural products presented chemical structures, which are very important
for scientists to pursue new chemical for drugs [2]. In plants, these valuable com-
pounds are usually limited by species, periods of growth or stress and the yield is
still low. The production faces to many difficulties because of the dependence on
weather, soil .... So the utilization of plant cell, tissue and organ culture for these
compounds has gained increasing attention over past decades.

2. Plant primary and secondary products

Plants synthetize efficiently organic compounds via photosynthesis from
inorganic materials and the pathways involved are metabolic pathways. They are
primary metabolism and secondary metabolism. Carbohydrates, lipids, proteins
and nucleic acids are necessary for normal growth, development, and reproduction
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of plants (primary products). Besides, there is a large, diverse array of organic com-
pounds that have no direct function in growth and development of plants. These
substances are known as secondary products (secondary compounds, secondary
metabolites or natural products) [3].

Secondary products are restricted distribution in the plant kingdom, that is
found in only one plant species or related group of species. For many years, these
compounds were thought to be simply functionless end products of metabolism or
metabolic wastes. But now, secondary products have been suggested to have impor-
tant ecological functions in plants. They protect plants against being eaten by herbi-
vores and against being infected by microbial pathogens (Figure 1). Furthermore,
they serve as attractants for pollinators, seed dispersing animals and as agents in the
competition of plants [4].

Secondary metabolism is connected to primary metabolism by using inter-
mediate products and biosynthetic enzymes derived from primary metabolism.
Secondary compounds are synthesized through mevalonate, non-mevalonate (MEP
(methylerythritol phosphate) shikimate and malonate pathway (Figure 2). These
metabolisms rely on environmental conditions, physiological states and stages of
plant growth, and yields are often very low.

There are many ways of classification of secondary products, but in general,
they are divided into three chemically distinct groups: terpenes, phenolics, and
nitrogen containing compounds.

The terpenes (terpenoids, isoprenoids) seem to be the largest class of second-
ary products. They are biosynthesized from acetyl-CoA - intermediates of many
biological reactions. Terpens are widely used in pharmaceuticals, food and cosmet-
ics industries. They possess antitumor, anti-inflammatory, antibacterial, antiviral,
antimalarial effects, promote transdermal absorption, prevent and treat cardiovas-
cular diseases, and have hypoglycemic activities [5].

The phenolics in plants are a chemically heterogeneous group of nearly 10,000
individual compounds. Many kinds of phenolics are used as agents of anti-aging,
anti-inflammatory, antioxidant and anti-proliferative activities. They are used as
therapy agents for chronic diseases, diabetes, cancers, cardiovascular diseases ...
through the management of oxidative stress [6].

Alkaloids are organic compounds that contain at least one nitrogen atom at any
position in the molecule, which does not include nitrogen in an amide or peptide
bond. Alkaloids have a wide range of biological activities such as antiviral, anti-
bacterial, anti-inflammatory, antitumor .... [7]. Many of these compounds possess
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Figure 1.
The effects of exogenous factors on plants.
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Figure 2.
A simplified view of the major pathways of secondary-metabolite biosynthesis and their interrelationships with
primary metabolism [4].

potent pharmacological effects, for example, the well-known plant alkaloids
include the narcotic analgesics (morphine, codeine, apomorphine (a derivative of
morphine) used in Parkinson’s disease, the muscle relaxant papaverine, the antimi-
crobial agents sanguinarine and berberine. Also several potent anti-cancer drugs
have been developed from plant compounds such as vinblastine, vincristine, taxol,
camptothecin, colchicine ... .

3. Plant cell culture for secondary products

Plant cell culture techniques provide a reliable and predictable method for iso-
lating valuable secondary products at high efficiency within a short time comparing
to the whole plants in vivo. This provides a continuous, stable and economical
production of secondary products independent of geography and climate [8].

To stabilize the raw materials for pharmaceutical industry, plant cell culture
is emerging as an alternative bioproduction system. This technology offers an
attractive potential to produce valuable secondary products such as ajimalicine [9],
artemisinin [10], ginsenosides [11], taxol [12], resveratrol [13].

A suspension culture consists of isolated cells and cell aggregates dispersed and
growing in a moving liquid medium. It used to be proved as an effective biosystem
to produce valuable secondary products for commercialize. However, in most cases,
for the large scale production, there are some troubles because of the instability and
non-uniformity of the undifferentiated cells in liquid culture.

Adventitious root cultures show a higher constancy in the production of these
compounds with more rapid growth than cell suspension cultures [14]. In addi-
tion, bioreactor system for root cultures has emerged as a technology with possible
commercial applications [15]. In aseptic environment, suitable phytohormone-
augmented medium is demanded for adventitious roots formation and prolifera-
tion. In another way, hairy roots (transformed roots) derived from the infection of
a plant by Agrobacterium rhizogenes — can strongly proliferation in medium without
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phytohormone, that is a promised biosystem for producing valuable secondary
products in large scale [16].

3.1 Adventitious root cultures

Adventitious roots are roots that arises from any part of plant other than the
radicles or the root axis. The formation of adventitious root needs a combination of
a complicated molecular process involving numerous of endogenous and exogenous
factors [17]. Adventitious roots appear in response to stress conditions, such as
flooding, nutrient deprivation or wounding [18]. Iz vitro, the formation of adventi-
tious roots responses to wounds and exogenous phytohormones, especially auxin
(Figure 3) [19]. The induction of adventitious roots is promoted by high auxin and
low cytokinin levels. There are three phase in adventitious root formation: induc-
tion, initiation and extension [20]. Auxin promotes adventitious root initiation but
decreases the elongation. Root elongates when auxin concentration decreases. The
application of auxins strongly increases the number of roots [21].

IBA (indol butyric acid) is most commonly used for rooting iz vivo and in vitro.
The other auxins used commercially are IAA (indol acetic acid) and NAA (naph-
thalene acetic acid) [22]. 2,4-D (2,4-Dichlorophenoxyacetic acid) is rarely used for
rooting but usually used for callus initiation. The commonly cytokinins used are
BAP (benzylaminopurine) and kinetin. The appropriate concentration of auxins
and cytokinins in rooting depends on species, individuals and organs.

There are many scientific articles related to adventitious root cultures have
been published. There are many factors that effect on rooting such as explants
(type, age), exogenous phytohormones, light, organic supplements, ... The pro-
cess of induction and differentiation of rooting can be controlled by changes in
endogenous auxin concentrations and exogenous auxins (type and concentration)
[23]. The rooting of monocotyledons usually need exogenous auxins only, but
dicotyledons need auxins supplemented with cytokinins. Mineral media, source
of carbon, light are also important. The requirements of nutrients and exogeneous
phytohormones depend on species and physiological age of explants in initiation
and proliferation phase. However, the secondary products biosynthesis phase may
need a different nutritional and phytohormone requirement.

Figure 3.
Adventitious roots from the wounds on Catharanthus roseus leaf explants on MS medium with 0.7 mg/L IBA.
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Adventitious roots formed from all kinds of explants of Beta vulgaris seedlings
even on free phytohormones medium. The response of root explants with auxins was
better than the others. Hypocotyl explants were more suitable than cotyledon explants
in adventitious root formation. The numbers of root per explant were different with
the different kinds and concentrations of auxins. NAA was suitable for the initiation
of roots hypocotyls and cotyledons. Whereas, IAA at various concentrations were
suitable for root induction from root explants. Roots on medium with NAA were red
with many root hairs, roots with IAA treatments appeared with a thicker shape and
brighter red color (Figure 4). However, callus could be observed in hypocotyl and cot-
yledon explants and shoots formed from any treatments in hypocotyl explants [24].

The advances in plant cell, tissue and organ culture have resulted in the produc-
tion of high amounts of high value secondary products [25]. Due to the rapid growth
and stability in secondary metabolites production, adventitious root cultures are
considered as the most promising method for biomass production [26]. Root cultures
show better biosynthetic ability than plant cell suspension cultures, in a suitable
phytohormone supplemented medium, with stable yield of secondary products [27].
So, adventitious roots are interested in order to increase biomass iz vitro especially
medicinal plants to produce bioactive compounds. Plant roots are the main raw
materials of herbal drugs (about 60% of herbal medicinal plants applied for ethno-
medicine needs). As a result of which, adventitious roots cultures have the potential
to be developed as a strategy for large-scale bioactive compound production [28].
Establishing adventitious roots by liquid cultures would accelerate large-scale bio-
mass and conservation in addition to supplementing pharmaceutical products [29].

Secondary products biosynthesis iz vitro is effected by many factors: phytohor-
mones, carbon sources, mineral elements, light ... In liquid cultures, an important
factor that effected on the growth of roots must be tested: initial inoculum density.
The initial inoculum density effected on biomass and betalains accumulation of
B.oulgaris L. roots in liquid culture. The inoculum density 3 g/L seemed be so low
that did not sufficiently maintain betalains biosynthesis while 5 g/L and 7 g/L
inoculum density almost showed more appropriate for root proliferation as well as
betalains accumulation (Figure 5) [24].

The optimal condition for initiation and proliferation of adventitious roots from
young Aloe vera leaves were 0.5 mg/L NAA and 0.2 mg/L BA in Murashige and
Skoog (MS) medium. But aloe-emodin concentration was higher on B5 medium
(133.08 + 0.12 pg/g) than on MS medium (3.56 + 0.26 pg/g) [30].

Figure 4.

Adventitious roots from Beta vulgaris voot explants after 3 weeks of culture on MS medium with auxins
(a) NAA 0.5 mg/L; (b) NAA 1.0 mg/L; (c) NAA 2.0 mg/L; (d) IAA 0.5 mg/L; (e) IAA 1.0 mg/L; (f) [AA
2.0 mg/L.
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Figures.
Beta vulgaris L. adventitious roots in liquid culture. A, B and C: Initial inoculum density at 3 g/L, 5 g/L and
7 g/L respectively.

Andrographis paniculata adventitious roots were induced directly from leaf
segments of on solid MS medium with 5.3 pM NAA but grew well and accumulated
andrographolide in MS liquid medium with 2.7 pM NAA within four weeks. Fresh
biomass increased seven-fold along with 3.5-fold higher andrographolide compared
to natural plants [31].

Adventitious roots from Morinda citrifolia leaf explant were initiation on
medium with 1.0 mg/L IBA. The highest number of roots were induced under
red light, followed by blue light and lowest under far-red light. In the other hand,
catalase and guaicacol peroxxidase activities were highest under red light, followed
by fluorescent light and lowest under red + blue light. Moreover, superoxide dis-
mustase activity was not influenced by light sources [32].

To enhance the production of valuable secondary products from adventitious
cultures, many strategies were approached: optimization of medium and physi-
cal factors, carbon source, elicitation, precursor feeding, permeabilization and
immobilization. Among them, elicitation seems to be the best solution to enhance
secondary metabolites productivity in plant cell and organ cultures. Elicitor is a
substance which initiates or enhances secondary biosynthesis of a living cell system
when introduced in small concentration [33].

In plants, elicitor molecules attach to special receptors located on plant cell
membranes. These receptors can recognize the molecular pattern of elicitors and
activate intracellular defense via signal transduction pathway (Figure 6). The
response results are enhancing the synthesis of metabolites which reduce damage
and increase resistance to pest, disease or environmental stress [34]. Elicitors can be
divided into two types abiotic and biotic according to basic nature. Abiotic elicitors
include of substances that are of nonbiological origin, they are grouped in physical
(thermal stress, salt tress, drought, osmotic stress) chemical (heavy metals, minerals
salts, gaseous toxins) and hormonal (methyl jasmonate, salicylic acid) factors. Biotic
elicitors are the biological origin substances of that comprise polysaccharides from

Elicitors

Cell membrane

Signaling pathway

Secondary products < /Nucleus )

\__/

Figure 6.
Model of elicitor signal transduction leading to secondary production.
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plant cell walls (e.g. chitin, pectin, and cellulose), yeast extracts, fungal or bacterial

extracts, microorganisms or saliva of insects or herbivores [35]. Methyl jasmonate is a

potent elicitor in plant cell, tissue and organ culture for secondary compounds [36].
The effects of elicitors on secondary productivities depend on:

* Elicitor concentration

* Duration of elicitor influencing

Cell lines

» Time course of elicitation

* Growth stage of culture system
* Phytohormone

* Nutrient composition [37].

Many kinds of elicitor (yeast extract, methyl jasmonate, AgNO3 and sorbitol)
were investigated to adventitious roots cultures of Perovskia abrotanoides Karel.
Biomass and production of cryptotanshinone and tanshinone IIA were estimated.
Elicitors had no significant effect on biomass (dry weight). The highest concentra-
tions of cryptotanshinone and tanshinone IIA were achieved with 200 mg/1 YE and
25 uM AgNO3, respectively. M] moderately promoted tanshinone accumulation.
Sorbitol was almost ineffective in enhancing tanshinone content. Cryptotanshinone
formation was stimulated more significantly by elicitation than tanshinone IIA [38].

Root cultures of Datura stramonium were treated with copper and cadmium salts
as elicitors. With the concentration at 1 mM, both Cu?* or Cd** have been found
to induce the rapid accumulation of high levels of lubimin and 3-hydroxylubimin
(sesquiterpenoid). These compounds were undetectable in unelicited cultures.
However, no change was seen in the alkaloid content (tropane alkaloid) of the
system when treatment with Cu* or Cd* [39].

Adventitious roots of Glycyrrhiza uralensis were cultured MS liquid medium for
the accumulation of secondary metabolites and salicylic acid has been used as an
elicitor. The addition of 1 mg/L salicylic acid significantly enhanced the concentra-
tions of glycyrrhizic acid (0.31 mg/g), glycyrrhetinic acid (0.14 mg/g) and polysac-
charide (159.29 mg/g) in the adventitious roots and the contents were 2.58-fold,
1.27-fold, and 2.07-fold respectively over the control. Furthermore, the concentra-
tion of total flavonoid (9.40 mg/g) was observed with 2 mg/L salicylic, which was
2.68-fold higher than the control [40].

Aspergillus niger, Alternaria sp., Fusarium monoliforme and yeast extract were
added to leaf-derived root cultures of Datura metel L., established on B5 medium
with 1.2 p M IAA, to study the influence of biotic elicitors on the growth and produc-
tion of hyoscyamine and scopolamine. Besides, salicylic acid, AICl;, CaCl,, NaCl and
Na,SO, were used as abiotic elicitors. The hyoscyamine and scopolamine concentra-
tions were 1.39 mg/g dw and 0.069 mg/g dw, respectively in control cultures. The
highest hyoscyamine (4.35 mg/g dw) and scopolamine (0.28 mg/g dw) accumulation
was obtained in cultures treated with 500 uM salicylic acid. 3.17 mg/g dw hyoscya-
mine and 0.16 mg/g dw scopolamine were observed in treatment with 0.75 g/L yeast
extract and 2.49 mg/g dw hyoscyamine and 0.11 mg/g Dw scopolamine were in
treatment with 250 pM AICl; [41]. Many kinds of elicitors were tested in adventitious
root cultures. The effects depended on species and other factors (Table 1).
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Species Elicitors Secondary products References
Datura stramonium Cu*, cd* Lubimin, 3-hydroxylubimin [39]
Capsicum annuum Cellulase Capsidiol [42]
Datura metel L. Salicylic acid, yeast Hyoscyamine and scopolamine [41]
extract, NaCl
Valeriana amurensis Methyl jasmonate, Valtrate [43]
Smir. ex Kom salicylic acid,
chitosan
Morinda citrifolia (L.). Chitosan Anthraquinone, phenolics and [44]
flavonoids
Aloe vera Salicylic acid Aloe emodin and chrysophanol [30]
Panax ginseng Casein hydrolysate Ginsenoside [45]
Perovskia abrotanoides Yeast extract, AgNO; Cryptotanshinone, tanshinone ITA [38]
Karel
Psoralea corylifolia L Methyl jasmonate Psoralen [46]
Glycyrrhiza uralensis Salicylic acid Glycyrrhizic acid glycyrrhetinic [40]
acid polysaccharide
Glycyrrhiza uralensis Protein fragment of Flavonoids, glycyrrhizic [47]
Fisch more than 10 kDa acid, glycyrrhetinic acid and
polysaccharide
Oldenlandia wmbellata Pectins Anthraquinones [48]
L.
Gynura procumbens Yeast extract, CuSO4 Quercetin, kaempferol [49]
(L.). Merr 1mg/L
Talinum paniculatum Methyl jasmonate Saponin [50]
Gaertn.
Panax vietnamensis Ha Methyl jasmonate Saponin [51]
et Grushv.
Hybanthus enneaspermus Salicylic acid L-Dopa [52]
(L.) F. Muell
Hypericum perforatum Uv-B Hypericin [53]
4°C
Table 1.

The application of elicitors on secondary products of adventitious root cultures.

The regulation of metabolic processes in plants is highly dependent on carbon
source, so plant cells and tissue are quite sensitive to sugar concentration in nutri-
ent medium [54]. In vitro plant cells are heterotroph, although in many cases they
canlive as mixotroph thanks to artificial lighting and chloroplasts. Therefore, the
supplement of sugar is necessary. Saccharose is the most common sugar, which
accelerates the growth of biomass, which is commonly used in the concentrations of
2 to 5%, but also depends on the purpose of culture [55].

In broccoli (Brassica olearacea var. capitata) adventitious root cultures, the
proliferation of roots enhanced with the increasing of saccharose from 20 to 40 g/L
and decreased with saccharose 50 g/L. The color of roots was white with saccharose
20 and 30 g/L and pale yellow with saccharose 40 and 50 g/L (Figure7) [56].

The role of saccharose can be explained by the effect on tubulin, one kind of
protein presents throughout the growth and development of the cell. Tubulin
controls the cell shape, cell division and intracellular transport via genes tual and
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Figure 7.
Adventitious roots from broccoli cotyledons in liquid MS medium with variable saccharose concentration
(a) 20 g/L; (b) 30 g/L; (c) 40 g/L; (d) 50 g/L.

incwl. These genes are only exhibited with the presence of saccharose [57]. When
the concentration of saccharose in medium is too high, it’s difficult for cell to absorb
nutrients so the proliferation will decrease.

Beside the role in biomass proliferation, carbon source also effects on second-
ary products biosynthesis. According to Miao et al., glucose is also an inducer of
glucosinolate biosynthesis. Glucosinolate biosynthesis is mediated indirectly by
XK1 (hexokinase 1) and/or RGS1 (G1 protein regulatory signal) through MYB28
and MYB29 translation factors, both of them are induced by glucose. As a signal-
ing molecule, glucose can regulate growth, development, metabolism and resis-
tance to environmental stress of cells [58]. Glucose is released from the saccharose
during autoclaving as well as by invertase which takes part to glucosinolate
biosynthesis [59].

3.2 Hairy roots

Hairy roots derived from the infection of plant by Agrobacterium rhizogenes, a
Gram-negative soil bacterium. Hairy roots can be obtained from a wide variety of
plants and be well interested because of the ability of valuable secondary metabo-
lites production. Hairy roots can produce and secrete complex active glycoproteins
and organic compounds from a wide variety of plants. Nowaday, hairy roots have
positioned as effective biological systems in pharmaceutical industry due to the
development of fully controlled large-scale bioreactors [60].

Agrobacterium sp. are agents of disease in plants. Agrobacterium tumefaciens
cause crown gall disease and Agrobacterium rhizogenes cause abnormal roots (root-
mat disease) in dicotyledonous plants. Hairy roots induced by Agrobacterium
rhizogenes are very similar to wild-type roots in structure (Figure 8) except
some characteristics: lateral branching, root hairs are longer, more numerous,

Figure 8.
Carrot root discs after four weeks on mineral medium with Agrobacterium rhizogenes [61].
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Figure 9.
Transformed roots of Ocimum basilicum with many hairy roots [62].

have an agravitrpic phenotype and genetic stability (Figure 9). In especially, the
ability of hairy roots is growing quickly iz vitro in the absence of exogeneous
phytohormones.

Agrobacterium are Gram-negative soil, aerobic, rod-shaped (0.6-1.0 x
1.5-3.0 pm) bacteria, of the family Rhizobiaceae. They can move by 1-4 peritrichous
flagella (Figure 10).

The mechanisms for crown gall or hairy root formation are very similar, depend
on Ti-plasmid (tumor inducing plasmid) and Ri-plasmid (root inducing plasmid)
respectively. In Agrobacterium, a portion of Ti-plasmid or Ri-plasmid, T-DNA
(region bounded by 25 bp direct oligonucleotide repeats- right border and left
border) is transferred to the plant cell, randomly integrated into the host genome
and expressed. Vir genes are very important to the infection of this bacterium to the
plant cell (Figure 11).

There are two kinds of Ri-plasmid: agropine and mannopine based on the
compounds that are synthesized by the transgenic plant tissue [64]. Agrobacterium
recognizes some signal molecules (phenolic compounds) excreted by the wound
in plant and attached to it. In the Agropine, Ri-plasmids consist of two copies: left
T-DNA (TL-DNA) and right -DNA (TR-DNA), each copy is transferred inde-
pendently (Figure 12). Encoding genes in T-DNA are bacterial origin but they can
express in infected plant cells because of eukaryotic regulatory. Genes of auxins
synthesis are ascribed to the TR-DNA. The right T-DNA of Ri-plasmid contains two

Figure 10.
Agrobacterium rhizogenes [63].
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T-DNA

VIR G

Figure 11.
Ri-plasmid of Agrobacterium rhizogenes. T-DNA: transfer DNA, RB: Right T-DNA border (25 bp), LB: Left
T-DNA border (25 bp), Vir genes: Virulence genes, ori: Origin of replication.
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Figure 12.
Ri plasmid (T-DNA with two copies: Left T-DNA and right T-DNA).

genes in the role of auxin synthesis referred to astms1 and tms2 (aux1 and aux2). The
TR-DNA also contains genes for agropine synthesis (ags). The TL-DNA has been
sequenced and a total of 18 open reading frames (ORF1-ORF18) have been identified
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[65]. For the formation of the hairy roots, four rol genes (r0lA, rolB, rolC, and rolD)
are very important. These genes correspond to reading frames ORF10, ORF11, ORF12
and ORF15 [66]. The products of 70l genes have specific functions in the hairy roots
formation; among them, rolB gene seems to be the most relevant in the induction.
Also the rol-genes have a big influence on the phenotype of hairy roots [67]. RolA
protein is suggested as a transcription factor that has been proposed to participate in
the metabolism of gibberellins. The 70lA gene is also reported to be responsible for
changes in polyamine metabolisms. The 70lB gene is important in the mechanism of
adventitious root formation in plants. The adventitious roots induced by the rolB gene
produce lateral roots in cell plant cultures, that indicates that the rolB protein has an
effect on the formation of both lateral and adventitious roots. The r0lC gene effects on
the plant size and architecture, these include height decreasing, internode elongation,
male fertility, apical dominance and increasing number of flowers. Other effects are
the changes in leaf size, color and shape that increasing their ornamental value. The
RolD is suggested to exert a positive effect on flowering by inducing a striking earli-
ness in the flowering process and increasing the number of flowers [68].

Hairy roots grew more rapidly and produce higher levels of secondary products
than the adventitious root obtained by hormonal control. One of the final goals of
hairy root cultures is to produce valuable plant secondary products in large-scale
bioreactors [69].

Hairy roots have different shapes depends on the Agrobacteroum rhizogenes
strain that infected. Hairy roots were established by the infection of six different
Agrobacterium rhigogenes strains to two varieties of Catharanthus roseus. Fourty
seven hairy root clones were recorded. Growth rate and morphological appearance
of hairy roots were wide showed (Figure 13) [70].

Hairy roots from root discs of Panax ginseng C.A. Meyer were obtained after the
infection of Agrobacterium rhizogenes A4. Hairy roots displayed three phenotypes
(three lines): the first lines showed the characteristic traits of hairy roots (HR-M),
the second were callus-like (C-M) and the third were thin, without branching
(T-M) (Figure 14). HR-M and C-M root phenotypes presented the highest biomass.
The highest ginsenoside production was achieved by HR-M root lines, followed by
C-M and the lowest yield was found from T-M root phenotype [71].

Hairy roots were induced from Rhaponticum carthamoides leaf explants by the
transformation of Agrobacterium rhizogenes strains A4 and ATCC 15834. A4 strain
was more appropriate than ATCC 15834 in the formation of transformed roots.
Hairy roots systems were established in liquid media (WPM, BS5, SH) with full and

Figure 13.
Hairy voot cultures of Catharanthus roseus showing the diversity in the growth between different clones derived
from the same variety.
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Figure 14.
Three phenotypes of Panax ginseng C. (a). Meyer hairy roots. Hairy voot morphology (HR-M), (b) callus
morphology (C-M), (c) thin morphology (T-M).

half-strength concentrations of macro- and micronutrients. Two different lighting
conditions (light or dark) were tested on the biomass of hairy root line (RC3). The
highest biomass was obtained in WPM medium under periodic light. The content of
caffeoylquinic acid and their derivatives was raised in hairy roots grown in the light.
Besides, the biosynthesis of flavonoid glycosides such as quercetagetin, quercetin,
luteolin, and patuletin hexosides was detectedin the light. Chlorogenic acid, 3,5-di-
O-caffeoylquinic acid and tricaffeoylquinic acid derivative were found as the major
compounds present in the transformed roots [72].

Hairy roots from petiols of Isatis tinctoria L were induced by Agrobacterium
rhizogenes strain LBA9402 to investigate eight bioactive flavonoid constituents (rutin,
neohesperidin, buddleoside, liquiritigenin, quercetin, isorhamnetin, kaempferol
and isoliquiritigenin). Many basal salt media were used (Chu (N6), Nitsch & Nitsch
(NN), Gamborg (B5), Schenk & Hildebrandt (SH), White, (Murashige & Skoog)
MS and Y2 MS) for the biomass and flavonoid accumulation. Other factors were
studied such as: carbohydrate sources and initial pH. ¥2 MS medium, 3% sucrose and
pH 5.8 were suitable for either biomass or flavonoid accumulation as the results. The
total flavonoid concentration after 24 days of culture (438.10 ug/g DW) was higher
than 2 year-old natural plants (341.73 pg/g DW) [73].

The efficiency of transformation depends on many factors: type and age of
explant, the strain, density and growth stage of Agrobacterium rhizogenes, aceto-
syringone concentration, the pre-culture time, the infection time...

Plant secondary production by hairy roots process:

1. Hairy roots induction and proliferation.

2.Hairy roots in liquid phase: nutrient medium optimization, several strategies
can be used to improve the yields of target compounds.

3. Bioreactor stage: batch / fedbatch or continuous culture. Optimization airflow
rate, temperature, pH....
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To improve the yield of valuable secondary products in hairy root cultures, elici-
tation seems to be the most effective strategy. Hairy root cultures are preferred for
the application of elicitation because of their stable genetics and biosynthesis and
high growth rate in non-phytohormone medium. Elicitors act as signals that were
recognized by elicitor-specific receptors on the plant cell membrane and stimulate
defense responses during elicitation. The results are the increasing of synthesis and
accumulation of secondary metabolites. The effects of elicitation depend on elicitor
type, concentration, duration of exposure and treatment schedule (Table 2).

Panax ginseng C.A. Meyer hairy roots from roots, stems, and leaves induced by
the infection of Agrobacterium rhizogenes (KCTC 2703) were propagated in 5-liter
cone type bubble bioreactors containing MS media supplemented with 2.0 mg/L
NAA and 30 mg/L sucrose. Jasmonic acid in various concentrations was added to
the culture system after 30 days of culture to increase ginsenoside concentration.
Total ginsenoside concentration increased with the increasing of jasmonic acid
concentration, but the root growth was inhibited with high concentration. Total
productivity was greatest at 2.0 mg/L jasmonic acid but there was the difference in
groups of ginsenoside. Ginsenosides in the Rb group mainly increased, while those
in the Rg group did not. High concentrations (5 and 10 mg/L) of jasmonic acid
decreased Rgl content but significantly increased the Rbl. In the Rb group, the Rbl
content increased more than Rb2, Rc, and Rd. [88].

Species Elicitors Secondary References
products
Azadirachta indica A. Jasmonic acid, Salicylic acid Azadirachtin [74]
Juss
Silybum marianum (L.) Ag’ Silymarin [75]
Gaertn.
Plumbago indica Jasmonic acid Plumbagin [76]
Glycyrrhiza inflata Chitosa Glycyrrhizin [77]
Methyl jasmonate, Yeast extract
Artemisia annua L. Methyl jasmonate, fungal elicitors Artemisinin [78]
(Alternaria alternate, Curvularia
limata, Fusarium solani, and
Piriformospora indica)
Valeriana officinalis L CaCl, Valerenic acid [79]
Salvia miltiorrhiza Salicylic acid Tanshinone [80]
Astragalus Methyl jasmonate Isoflavonoid [81]
membranaceus
Rauwolfia serpentina NaCl, cellulase from Aspergilus Ajmaline, [82]
and Solanum khasianum and mannan from Saccharomyces solasodine and
cerevisiae a-solanine
Psovalea corylifolia Methyl jasmonate Daidzin [83]
Datura metel B. ceveus and S. aureus Scopolamine [84]
Panax quinquefolium Yeast extract Ginsenosides [85]
Ocimum tenuiflorum L Yeast extract, Methyl jasmonate, Ursolic acid and [86]
Salicylic acid eugenol
Scutellaria bornmuelleri Methyl jasmonate + chitosan Chrysin, wogonin [87]

and baicalein

Table 2.

The application of elicitors on secondary products of hairy root cultures.
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In another experiment, peptone and jasmonic acid were used as elicitors to pro-
mote ginsenosides accumulation in Panax ginseng C.A. Meyer hairy roots induced
by the infection of Agrobacterium rhizogenes (KCTC 2703) to root explants. Root
system was cultured in phytohormone-free Murashige and Skoog liquid medium.
Jasmonic acid in the range 1.0-5.0 mg/L strongly improved total ginsenoside
production. Peptone (300 mg/L) showed good effects on ginsenoside concentra-
tion but weaker than that of jasmonic acid. The Rb group of ginsenoside content
was increased remarkably by jasmonic acid, while Rg group ginsenoside content
changed slightly compared to controls. However, jasmonic acid also strongly
inhibited hairy root growth [89].

Node explants of Vitis vinifera subsp. sylvestris were used as materials for the
hairy root induction by Agrobacterium rhizogenes ATCC 15834. Hairy roots were
immerged in %2 B5 medium without phytohormone. Methyl jasmonate and other
elicitors were used to enhance resveratrol biosynthesis of hairy roots. The result
showed that the resveratrol production of hairy roots was higher than natural roots.
Especially, the production of resveratrol increased with the present of elicitors.
There was a significant difference in inducing resveratrol production between the
elicitors. The treatment with 3 mM acetic acid led to the highest resveratrol content
and methyl jasmonate seemed to be less effective than the others [90].

4, Conclusion

Adventitious roots and hairy roots are promising materials for the production of
valuable secondary compounds of plants which are used in pharmaceutical, food
and cosmetic industry. The chemical characteristics of these compounds are the
same as that in natural plants but the yields are proved higher. Furthermore, there
are many investigations which focused on improving bioreactor for root cultures to
raise their quality and productivity.
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Abstract

Unlike nitrogen (N) and phosphorus (P), morphological responses of root
systems of crop plants to potassium (K) dynamics in soils or growth media are only
gaining currency. This is due to the realization of the instrumental role of K in several
cellular and tissue level processes crucial for the growth, stress tolerance, metabolic
functions, and yield of crop plants, and ultimately, food security and sustainable
agriculture. This chapter used meta-analysis to synthesize the pooled evidence for
modifications in several root system traits of different crop plants under conditions of
K starvation in different growth media. In all, 37 studies that passed inclusion/exclu-
sion criteria, from 1969 to 2019, were analyzed in aggregate and then disaggregated
for root biomass, root length, and the number of roots. Three moderators were ana-
lyzed: type of soil or growth medium, crop, and K fertilizer applied in the included
studies. The aggregated results show that the cumulative effect of K deprivation was
a significant and large reduction (about 25.5 + 15.0%) in the bulk of root system traits
considered, which was slightly lower than the reduction in shoot- or yield-related
traits. Reductions of approximately 38 + 38.0% in root biomass and 23.2 + 18.6% in
root length were observed, and the magnitudes of reduction were comparable to those
observed from the disaggregated data. Though reductions in root system traits due to
K starvation occurred under both greenhouse/lab and field conditions, the cumula-
tive reduction in the former was significantly larger than that of the latter. Among
the moderators, the effect of type of soil (or growth media) and crop on the scale of
modification of root system traits to K deprivation are stronger compared to the effect
of type of K fertilizer applied. It is concluded that, overall, K deprivation leads to
significant reductions in root system traits, especially root biomass and length in soils
and perlite regardless of the type of K fertilizer applied. Attention should be given to
K management in cropping systems to avoid K starvation, especially at the early and
vegetative stages, and to improve K reserves in soils. Further attention should be given
to the responses of root system traits to K supply when matching crops to soils.

Keywords: potassium, deficiency, root growth, root system architecture,
plant nutrition
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1. Introduction

Potassium (K) is the 7" most abundant element in the Earth’s crust. Recent
increases in consumption of K fertilizers is leading to fast depletion of K reserves
[1]. Potassium is a macro-nutrient that plays instrumental roles in the nutrition,
physiology, growth and development of crop plants. It is essential for many cellular
and tissue processes, including the regulation of stomatal aperture, photosynthesis,
respiration, utilization of nitrogen (N) and protein synthesis, and transport of
minerals and metabolites [2, 3]. Potassium contributes to osmotic pressure or turgor
regulation, required in plants for cell expansion [2, 4] and osmotic adjustment to
salinity. Potassium plays a role in the activation of over 60 enzymes, the balance
of the microbial population in soil and is crucial for root growth and development
[5, 6]. The major role of K in osmotic regulation and cell expansion implies K is
instrumental in the growth and establishment of crop plants. Potassium also plays
key roles in the physiology, nutrition and health of animals and humans, including
the control of non-communicable diseases such as hypertension and other car-
diovascular diseases [7, 8]. Humans and animals derive their nutritional K supply
largely from crop plants, making K nutrition of crop plants critical to food security
and human health, especially in reducing the global burden of non-communicable
diseases [7, 8].

The K nutrition of crop plants derives from the dynamic balance between the
labile and non-labile K, which are respectively responsible for the immediate or short-
and long-term supply of K, in the soil or growth media [5, 6]. Labile K comprises the
exchangeable and soil solution K while the non-labile K is made up of non-exchange-
able and mineral K. Potassium limitation is a major problem of most soils and, even in
fertile soils, root zone K supplies can be depleted rapidly early in the growing season
or in few years of cultivation to create conditions of scarcity [5, 9]. The instrumental
role of K in several cellular and tissue level processes, including efficient use of other
macro-nutrients such as N, makes K deprivation critical to the growth and develop-
ment of crop plants and food security.

Apart from carbon (C) and oxygen (O), the efficiency of plant uptake of water
and most nutrients depends on the root system architecture (RSA, the arrangement
and magnitude of roots in the soil) and physiology. Crop plants have evolved the
ability to modify their RSA in response to resource scarcity [10], such as nutrients
in the soil [9, 11]. This plasticity of RSA in response to the dynamics of soil resource
supply has been exploited by plant breeders to enhance root traits to ultimately
improve crop yield in variable environments [12, 13]. With nutrients, such as K, an
understanding of the RSA-based response is particularly important for breeding
and adapting crop plants to both natural and managed systems with low external
input and highly unstable balance between depletion and supply over time and
space. This is because the configuration of plant roots in the soil considerably
influences the spatiotemporal distribution and exploration for resources in each
soil layer or volume, and the effectiveness of plant acquisition of soil resources in
response to concentration gradients [14, 15]. For example, it is known that RSA
characterized by steep growth angles are vital for the uptake of nitrate and water
which tend to be mobile in soils [16, 17] while shallow growth angles are more valu-
able for the uptake of P and K which tend to become immobile when fixed [18, 19].

Plant roots can respond metabolically [20], physiologically [21], and morphologi-
cally [9, 22] to nutrient deficiencies. As a result, crop plants would be expected to
engage in the modification of their RSA to cope with or respond to conditions of low
or deficient available K. However, the plasticity of RSA is highly random and not
deterministic as it can give different results depending on the interaction of a given
root phenotype with the prevailing environmental conditions, plant fitness and/or
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underlying crop management practices [10, 13]. For example, local availability of K
elicits local root growth and branching to K rich patches, although these adaptations
may be moderate compared to root responses to local N or P [23, 24]. Under K limit-
ing conditions, root elongation and the count of lateral roots are inhibited [9, 25, 26],
but the magnitude of suppression varies among crop genotypes and root types [9, 27].
In Arabidopsis, for example, it has been reported that some accessions respond to
low K supply by investing in the elongation of main roots to the detriment of lateral
roots while the reverse is true for other accessions [9]. As a result, there is a need for
cumulative evidence from several studies under different environmental conditions
and with different crop plants to understand the most probable response of RSA of
crop plants to K starvation.

While the magnitude of the morphological modifications of root traits remains
to be quantified, studies involving root morphological responses to K starvation are
not only a few compared to those involving N and P [28], but also patchy or sketchy
and riddled with conflicting results. A pooled synthesis of the evidence from
individual studies is required to show the most probable modifications and permit
reasonable and reliable generalizations on the effect of K starvation on RSA of
crop plants. Though a narrative review on the effect of K nutrition on root growth
and development [28] exists, it has some of the limitations of narrative reviews
that are addressed by meta-analysis [29, 30]. A key limitation is that the narrative
review by [28] did not quantify the modifications in given root traits as a result of K
starvation. The present study, therefore, used meta-analysis to (i) provide a pooled
synthesis of the effect of K on RSA; (ii) quantify the reduction or otherwise in given
RSA traits as a result of K starvation and (iii) assess how the effect of K on RSA
traits is moderated by factors such as crop species and type of soil.

2. Methods
2.1 Data collection

We searched journal articles and grey literature that reported root trait
responses to K application using Scopus (Elsevier BV), Google Scholar and Google
(Google Inc., Mountain View, CA, USA). Title searches included combinations
of the terms: potassium OR K* OR KO,, “potassium superoxide” OR “potassium
fertiliz*” OR potash AND “root growth” OR “root system architecture” OR “root
morphology” OR “root hair” OR root*. In Google, we searched for ‘effect of potas-
sium on plant roots’ and considered the first 200 hits. One investigator performed
the search and two additional investigators explored the search results to decide
on included studies. The two investigators had to agree based on predefined study
inclusion criteria. The two investigators also had to agree on the extracted data from
the included studies. Any discrepancies on an included study or data extracted from
studies were resolved by the third investigator.

The predefined study inclusion criteria were: (i) the study had to report at least
one root trait measured under both low or no K treatment (experimental treatment)
and high or replete K treatment (control); (ii) the root traits should be reported
on the same scale for both the experimental and the control treatments; (iii) the
environmental conditions for the experimental and control groups, including plant
species, and soil properties of each experiment were the same, and experiments
were performed at the same temporal and spatial scales in the control and treatment
groups; (iv) an included study must report means (X) for the measured trait(s) and
the reported X, sample size () and a measure of dispersion (standard error [SE],
standard deviation [SD], or 95% confidence interval [CI]) should be present as
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numerical or graphical data, or it should be possible to estimate from the reported
data. In studies where SEs were provided, SDs were computed as the product of the
SE and the square-root of #. However, where SD or SE was not available, SD was
reassigned as one-tenth of the X and the effect of this assumption on the results
assessed via sensitivity analyses [29, 30]. To avoid multiple counting, the reported
data must originate from primary research, and should not have been already
included in another paper. Whenever it was available, we also collected data on
three non-root traits, namely total biomass, shoot biomass and yield.

2.2 Handling of complex data structures

Complex data structures or non-independent observations were reported in
some of the included studies. In such cases, a study reported root trait data from
a plant using the same scale but at a series of distinct time-points. Thus, the same
plant provided data for different time-points. Similarly, some studies also included
several experimental treatment groups (increasing rate of K fertilization) and a
single control group. For each of these complex data structures, the X, SD and n
were respectively combined into single metrics because treating the data for the
different time-points or subgroups as though they were independent would lead
to incorrect estimates of the variance for the summary effect [31]. The # across
subgroups or time-points was summed to get a combined z (i.e.: 1 = 111 + 115) and
the combined mean was computed as the weighted mean, by sample size, across
groups (Eq. (1)). Subsequently, the combined standard deviation was computed as
shown in Eq. 2 [31].

n11X11 + n12X12

X= 1)
nll +n12
(n,, —1)SD% +(ny, —1)SD}, +%(>‘<M -X, )2
n,.n
SD — 11712 (2)
! ny, +n, -1

Where X,,, X,, are the means in subgroups or time-points 1 and 2 of treatment
group 1; SD,; and SD,, are the standard deviations, and #,; and #,, are the sample
sizes; of subgroups 1 and 2 [31]. If a study, however, reported data on different
crops or varieties of crops, these were considered as independent subgroups and
were included separately in the meta-analysis if the data reported were single
time-point data for the different crops species or varieties [29, 30].

2.3 Handling of dependent effect sizes

Most independent studies included multiple measures and therefore yielded
multiple effect sizes. For example, a study could report on root traits such as
biomass, length, diameter and branching density which were obtained on the
same plants, each of which provided an estimate of the effect of K fertilizer
application. Here, the data obtained from the included studies were subjected to
two types of meta-analyses: a meta-analysis of aggregated outcomes of all these
traits measured from same plants per study and a meta-analysis of the individual
or disaggregated outcomes. We were mindful of the fact that often, a meta-
analysis of aggregated outcomes is the recommended option due to the tendency
of studies reporting more outcomes to be weighted heavier and biasing the
summary estimate [32]. However, this option could lead to publication bias and
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also provides limited control over the data within the context of the heterogeneity
in the original studies. For example, heterogeneity due to subgroups within studies
or variable categorizations is difficult to deal with in meta-analysis of aggregated
outcomes. We, therefore, decided to employ the two approaches, albeit for dif-
ferent purposes, in this study. Accordingly, we firstly performed a meta-analysis
including the multiple effect sizes from the same sample in individual studies

in the meta-analysis and utilized this disaggregated dataset for moderator or
subgroup analyses. Subsequently, we used the Borenstein, Hedges, Higgins, and
Rothstein approach (BHHR; [31]) to aggregate dependent effect sizes (i.e. multiple
root traits obtained from the same sample) to obtain one effect size per an inde-
pendent study in each analysis. The BHHR method is the univariate method which
is least biased and most precise in large simulation studies [32]. The aggregations
were done using the MAd package [33] implemented in the R Project for Statistical
Computing [34] and which averages all within-study effect sizes and variances,
considering the correlations among the within-study outcome measures consistent
with the BHHR procedures. Due to the non-availability of between-measure corre-
lations within each of the studies, we assumed the default correlation for between
within-study effect sizes of 7 = 0.5. Here, we conducted a meta-analysis for all the
extracted traits. Subsequently, we conducted three independent meta-analyses,
one each for root biomass, root length, and the number of roots. These root traits
were the commonly measured root traits in the included studies.

2.4 Estimation of effect sizes and analysis of heterogeneity

We quantified the effects of K supply on root traits by calculating the
response ratio (R), which is the ratio of the means of the experimental and
control groups. The R was our preferred metric of effect size because we were
interested in comparing the magnitudes of two means from the experimental
and control treatments and we could back-transform it (i.e., R = ¢™}) for ease
in interpretation [30]. Given that ratios are said to generally have poor statisti-
cal properties; the R was subsequently log-transformed by Eq. 3 to obtain more
desirable properties [35, 36].

Y, _ _
InR = ln[rlj =InY, -InY, 3)
2

where y, and y, are the mean of the root traits of the experimental group and
mean of the root trait from the control group, respectively. The variance of the IR
is given Eq. 4.

SD?  SD?

v =——F+ —
InR 2 2
mYy mY;

*)

where 71 and #; are the sample size of the experimental group and the control
group, respectively, and SD; and SD, are the SDs of the experimental group and
the control group, respectively [36]. A random-effects model of the meta-analysis
was used to determine the grand mean and explore the continuous factors that
may explain the response of root traits to K fertilizer application. The restricted
maximum likelihood method (REML) was used to estimate the between-study
variance. The mean effect size was considered significantly different from zero if
its confidence interval did not include zero [35]. We estimated a summary effect
and heterogeneity of the summary effect and when heterogeneity between studies
was evident, a moderator analysis was performed via meta-regression to attempt an
explanation of the heterogeneity.
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2.5 Moderator analyses

Several explanatory variables (moderators), including soil factors, plant fac-
tors, and fertilizer and management practices, may affect the magnitude of the
response of root traits to K fertilization. Study characteristics such as crop species
(several), the agronomic purpose of crops (cereals, vegetables, fruits, industrial
crops, etc.), texture of soil used for the experiment (several), growth media
used (several), type of K used in fertilization (e.g.; muriate of potash, sulphate
of potash, etc.), location of the experiment (field or greenhouse), among oth-
ers, were collected from the primary studies. These moderators were extracted
from primary studies when available; otherwise, it was marked as ‘not provided_
The influence of any of these moderators on the effect size was assessed through
analyses of heterogeneity [37] and was performed only when there were at least
two studies for a given moderator. To examine whether root traits differed among
treatments, variation was estimated by a Q statistic, a measure that partitions total
heterogeneity (Qr) into variance explained by the model (Qu or Qg) and residual
error not explained by the model (Qg or Qw; i.e. Qr = Qum + Q&) [30, 35, 38]. Qs
and Qy were tested against a X*-distribution (significance level p < 0.05) [35, 38].
Two moderators were significantly different if their 95% CI did not overlap [39].
A statistically significant Qg suggests that there are differences among cumulative
effect sizes for the categorical subgroups, while a significant Qg implies that there
are differences among effect sizes not explained by the model [30, 38]. There was
no statistical justification for the further subdivision of the data if Qg was not
significant [40]. Also, we computed I’ index as a complement to the Q estimates.
The I’ can be interpreted as the percentage of the total variability in a set of effect
sizes because of differences between-study or between-comparisons (true hetero-

geneity) [30, 37].
2.6 Publication bias and sensitivity analysis

To test the publication bias, funnel plots were presented as scatter plots of
the log ratio of means against their standard errors, in which case studies should
be distributed symmetrically around the mean of the log ratio of means, in the
absence of publication bias. If there was any evidence of publication bias, the ‘trim
and fill’ method was used to assess the potential impact of bias on the overall effect
size and the effect size re-calculated from the resultant model from the trim and
fill [30, 41]. Due to reported limitations of the funnel plot approach, we further
calculated the Rosenberg’s fail-safe number (Nfs) for evidence of publication bias.
The results were considered robust despite the possibility for publication bias if
Nfs > 5 x n + 10, where n is the number of effect sizes [29, 30, 42]. A sensitivity
analysis was conducted to compare the robustness of results for primary studies
that reported SDs and those for which SDs were estimated as one-tenth of the
mean.

2.7 Data analyses

OpenMEE, the open-source, cross-platform software for ecological and evolu-
tionary meta-analysis [43] and Metafor [44], the package for meta-analysis in the
R statistical software [34] were used for statistical analyses and in producing forest
plots. Some forest plots were produced in Microsoft® Excel 2016 using the results
obtained with OpenMEE software.
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3. Results
3.1 Overview of included studies

The included studies span 50 years, with the earliest published in 1969 and the latest
in 2019. The recent years contributed the most number of studies and outcomes to the
analysis (Figure 1a). The analyses included 37 studies (Appendix 1), consisting of 29
controlled-environment and 8 field-based experiments conducted in 16 and 7 coun-
tries, respectively (Figure 1b). There were 794 outcomes, consisting of 556 and 238
outcomes from the greenhouse- and field-based studies, respectively, and these were
measured on 23 crop plants. Majority of the studies were conducted on cereals, mainly
on maize and rice (Figure 1c). Included studies measured 23 root traits, with root
biomass, length and numbers being the commonly measured root traits (Figure 1d).

3.2 Root system response to K fertilization

Root system traits and shoot biomass response to the growth media amended
with K was compared with the non-K-amended media (Figure 2). The overall
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Figure 1.

Overview of included studies used in the comparison of shoot biomass, yield and root system traits from crop
plants grown on media or soils amended with K and those grown on non-amended soils or growth media. For
each panel, the location of the bubble on the chart indicates the number of effect sizes or outcomes and the size
of the bubble indicates the number of studies which yielded respective outcomes or effect sizes.
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Figure 2.

Effect of K deficiency on shoot biomass, yield and root system traits of crop plants. Figures (a) to (e) are

the analyses of disaggregated data and presents the overall effect size and effect size as a function of various
moderators. The effect of K deficit on extracted traits as modevated by (a) crop categories; (b) type of K
fertilizer supplied to the veplete K growth media; (c) location of the experiment; (d) type of trait that was
measured and (e) growth media or soil texture on which plants were grown. (f) Effect of K deficiency on all
extracted traits based on aggregated data, where dependent effect sizes were combined to obtain one effect size
per study. The log ratio of means (dotted vertical line) = o indicates no effect; log ratio of means >0 indicates
the larger size of the traits from crops grown on replete K media over those grown on deficient K media; log
ratio of means <o indicates the larger size of the traits from crops grown on K-deficient growth media over those
grown on replete K media. Effect size is considered statistically significant if its 95% CI does not overlap zero.

effect size based on the disaggregated outcomes of k = 794, was —0.266 + 0.020
(95% CI of —0.31to —0.23; I* = 98.91%; p < 0.001; Figure 2a-e), suggesting that
the deficiency of K leads to approximately 23.3 + 4.0% reduction in the size of root
system traits compared to that on growth media with added K. The effect of K on
root traits alone was comparable to the overall effect size and that of the shoot or
yield-related traits. The effect size of root system traits alone was —0.263 + 0.022
and that of shoot or yield-related traits was —0.283 + 0.050, suggesting that the
deficiency of K leads to approximately 23.1 + 4.0% reduction in the size of root
system traits and 24.7 + 10.3% in the size of shoot biomass or yield compared to
that on soil or growth media with added K. Based on the I (98.9%), there was a
large inconsistency of effect sizes across the included studies, warranting the need
for further examination of this variability.

There was a significant reduction in root traits on no or low K soils or growth
media for all categories of crops, except those categorized as trees, fruits and herbs
(Figure 2a). Meta-regression analysis suggested that the differences among cumu-
lative effect sizes for the various categories of crops were significant (Qgp = 46.8;

I* = 98.8%; df = 8; p < 0.001). Thus, the predictive model (crop type) probably
explains some of the variances in the effect size and the effect of K application
on root traits of some of the species of crop plants significantly differs from that
of cereals, the nominated reference subgroup. The error sum of squares (Qg) was
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insignificant (Qg = 817.2; df = 785; p = 0.207), suggesting that the variation was
accounted for by the crop species. But for potassium oxide (K,0), potassium nitrate
(KNOs3) or the combination of potassium nitrate and potassium dihydrogen phos-
phate (KNO; + KH,POy,), regardless of the type of K fertilizer applied, there was
a significant increase in root system traits (Figure 2b) due to K application. Many
studies did not provide the type of K fertilizer used but the effect size obtained
for these studies was similar to the overall effect (Figure 2b). The Meta-regression
indicated that the differences among cumulative effect sizes for the various types of
K fertilizer were significant (Qgp = 21.2; I? = 98.8%; df =7;p = 0.0034) but only the
estimates of the intercept (SoP; —0.280 + 0.037, CI: —0.352 to —0.208, p < 0.001)
and KNOjs in combination with MOP (-0.966 + 0.281, CI: —1.516 to —0.416,
p < 0.001) were significantly different from zero.

Moreover, whether experiments were conducted under controlled condi-
tions or field conditions, the lack of K in the soil or the growth media led to
a significant reduction in the size of root system traits, yield, shoot and total
biomass (Figure 2c). Although both were significantly different from zero, the
meta-regression showed that there was a significant difference among cumulative
effect sizes between greenhouse/lab- and field-based experiments (Qp = 9.41;
I? = 98.9%; df = 1; p = 0.0022). The estimates were — 0.307 + 0.024 (CI: —0.354 to
—0.26, p < 0.001) and 0.133 + 0.043 (CI: 0.048 to 0.218, p = 0.002) for the green-
house (the intercept) and field experiments, respectively, suggesting that there
were larger reductions in root system traits due to K deficiency in greenhouse
experiments (26.4 + 4.8%) than there were under field experiments (16 + 4%).
Even so, about 99% of the observed variance comes from differences between
studies which can be explained by other study-level covariates. About 50% of the
traits extracted from the included studies were not significantly affected by K
application. These included length of root hairs, density, length and branching of
lateral roots, diameter and volume of roots, the ratio of length and surface area
of roots (Figure 2d). The meta-regression showed that the differences among
cumulative effect sizes for the different traits were not significantly different
(Qgp = 26.5; I” = 98.9%; df = 24; p = 0.278).

There were about 9 main plant growth media used in the experiments
from the included studies. These included soil of various textures, peat and
several non-soil growth media including perlite, vermiculite, paper roll, agar,
hydroponics (water) and aeroponics (misty air). On the majority of these
soil textures or growth media, there was a significant effect of K application
on measured root system traits. The results suggested that there were larger
reductions due to K deficiency on clay loam, loam and silt loam than on sandy
clay, silty clay and clay (Figure 2e). The differences among cumulative effect
sizes for the various soil textures of growth media were significant (Qp = 60.5;
I* = 98.8%; df = 16; p < 0.001). Thus, soil texture or growth medium probably
explains some of the variances in the effect size and the effect of K applica-
tion on root traits might differ depending on soil texture or growth media.
The residual sum of squares (Qg) was insignificant (Qg = 806.3; df = 777 2;
p = 0.226), suggesting that the variation was accounted for by the soil texture
or growth media. After within-study dependencies among outcomes have
been addressed by aggregating outcomes within individual studies, the overall
effect size based on the k& = 37 was: InR = —0.294 (95% CI of —0.434 to —0.153;
p < 0.001; Figure 2f), indicating that the deficiency of K in soils or growth
media could lead to approximately 25.5 + 15.0% reduction in the size of root
system traits compared to that on high K soils or growth media amended with
K. The I’ = 98.68% of the aggregated data still indicated that there is a large
degree of between-study heterogeneity.
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3.3 Root biomass response to K fertilization

The overall effect size for root biomass for the disaggregated data of k = 106
was —0.389 (95% CI of —0.553 to —0.226; I* = 99.5%; p < 0.001; Figure 3). Back-
transforming the InR suggested that K deprivation in a growth media leads to
approximately 32.2 + 17.7% drop in root biomass. When the data was analyzed
based on crop species, significantly large root biomass due to K application
was found for root and tuber crops (izR = —0.394; 95% CI = —0.640 to —0.148;

p = 0.002), cereals (IR = —0.573; 95% CI = —0.857 to —0.289; p < 0.001) and
fruits (InR = —0.615; 95% CI = —0.858 to —0.372; p < 0.001) (Figure 3a). However,
the cumulative effect sizes of the different categories of crops were not signifi-
cantly different (Qg = 8.77; I* = 99.4%; df =7; p = 0.269). The analysis based on
the type of K fertilizer indicated that the effect size for all K types except that of
MoP was significantly different from zero (Figure 3b). According to the meta-
regression, the cumulative effect sizes of the different types of K fertilizers were
significantly different (Qg = 23; I* = 99.4%; df = 5; p < 0.001). Moreover, when
growth media was used as a moderator, the effect sizes for root biomass did not
significantly differ from zero for aeroponics and paper growth media but it was
significantly different from zero for hydroponics, perlite and soil growth media
(Figure 3c). Even so, there was no significant difference among cumulative effect
sizes for the various growth media (Qg = 3.56; I* = 99.43%; df = 5;p = 0.614). After
within-study dependencies among outcomes have been addressed by aggregating
outcomes within individual studies, the overall effect size based on the & = 24 was
—0.477 (95% CI of —0.799 to —0.154; p = 0.004; Figure 3d), indicating that the
deficiency of K in soils or growth media could lead to approximately 38 + 38.0%
reduction in root biomass compared to that on high K soils or growth media
amended with K.

3.4 Root length response to K fertilization

Under low K conditions, there is about 20.42 + 10.3% reduction in root length
compared to non-K-limited conditions (InR = —0.228, CI = -0.325 to —0.131,
I = 98.6, p < 0.001). Using crop categories as moderators, the effect size of all
groups was different from zero except that of legumes and herbs (Figure 4a) and
there were significant differences in the estimates (Qp = 36; I? = 98.2%; df = 8;
p < 0.001). The largest reduction in root length due to K deficiency was recorded by
tobacco, here classified as an industrial crop and the least reduction in root length
was recorded by tree crops (Figure 4a). Based on the type of K fertilizer, the effect
size from SoP and K,O were insignificant. Among the effect sizes which differed
from zero, there were larger gains in root length if the source of K was a combina-
tion of KNO; and MoP compared with that of MoP alone (Figure 4b). The results
of the meta-regression based on type of K fertilizer indicated that the estimates dif-
fered significantly (Qp = 33.2; I? = 98.2%; df = 5; p < 0.001). Thus, the relationship
between root length and the effect of type of K fertilizer is stronger than would be
expected by chance. Although the I’ was very large, the Qg suggested that with the
type of K fertilizer in the model, the between-studies variance was largely explained
(Qg = 122.7; df = 125; p < 0.001). Having used growth media as a moderator, all
effect sizes were significantly different from zero, except for that for germination
paper (Figure 4c). There were significant differences among cumulative effect sizes
for the various growth media (Qg = 22.1; I* = 98.3%; df = 5; p < 0.001), with perlite
recording the biggest reduction in root length due to K starvation. The overall effect
size based on the aggregated outcomes of k£ = 23 was —0.263 (95% CI of —0.433 to
—0.094; p = 0.002; Figure 4d), indicating that the deficiency of K in soils or growth
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Figure 4.

Effect of K deficiency on root length of crop plants. Figures (a) to (c) are the analyses of disaggregated data and
presents the overall effect size and effect sizes a function of various moderators. The effect of K deficit on root
length as moderated by (a) crop categories; (b) type of K fertilizer supplied to the replete K growth media;

(c) growth media on which plants weve grown. (d) Effect of K deficiency on voot length based on aggregated
data, where dependent effect sizes were combined to obtain one effect size per study. The log ratio of means
(dotted vertical line) = o indicates no effect; log ratio of means >o indicates the longer length of crops grown

on replete K media over those grown on deficient K media; log ratio of means <o indicates longer root length of
crops grown on K-deficient growth media. Effect size is considered statistically significant if its 95% CI does not
overlap zero.

media could lead to approximately 23.2 + 18.6% reduction in root length compared
to that on high K soils or growth media amended with K.

3.5Root count response to K fertilization
The first meta-analysis for root count involving the disaggregated dataset
showed that under K deficiency conditions, there is about 29.2 + 9.4% reduction in

root numbers compared to non-K-limited conditions (inR = —0.345, CI = —0.434 to
—0.256, I* = 92.5, p < 0.001). Using crop categories as moderators, the effect size of
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all groups was different from zero except that of trees (Figure 5a) but there were no
significant differences in the cumulative effect sizes of these species of crop plants
(Qg = 11.8; I? = 89.44%); df = 8; p = 0.158). Based on the type of K fertilizer, the effect
size from SoP was insignificant (Figure 5b). There were differences in the cumula-
tive effect size (Qg = 13.3; I = 90.13%; df = 2; p = 0.0013). Thus, the relationship
between the number of roots and the effect of type of K fertilizer is stronger than
would be expected by chance. All effect sizes were significantly different from zero,
for all growth media in which the number of roots was counted (Figure 5c) but
these cumulative effect sizes for the different media were not significantly different
(Qg = 8.36; I* = 90.31%; df = 5; p = 0.137).

3.6 Sensitivity analysis of data with available and estimated dispersion
around the mean

Here, we provide four sensitivity analyses of the data with available and
estimated dispersions around the means. This includes the sensitivity analysis
for the overall dataset involving all root traits (k = 794; number of studies = 37),
the data for root biomass (k = 106; number of studies = 24), root length (k = 131;
number of studies =23) and root count (k = 63; number of studies = 12). For
each of these analyses, we provide a sensitivity of results between the outcomes
or studies that originally provided standard deviations (SDs), outcomes or stud-
ies that provided standard error of the mean (SEM) which had to be converted
to SDs and those without any dispersion for which the SD was estimated as
one-tenth of the mean.

For the entire dataset, similar to the overall effect size (InR = —0.266; 95%

CI = —0.305to —0.227; p < 0.001), the effect sizes for studies with measures of
dispersion reported as SD (InR = —0.248; 95% CI = —0.42 to —0.077; p = 0.005),

or SEM (InR = —0.198; 95% CI = —0.23 to —0.167; p = 0.057) or estimated as 10%

of the mean (InR = —0.35; 95% CI = —0.429 to —0.271; p < 0.001) were all negative
and significant (Figure 6a). This suggests that root system size reduces by approxi-
mately 22 + 18.6%, 18 + 3.2%, and 30 + 8.2% due to K deficiency if, respectively,

the study originally reports dispersion around mean as SD, SEM or dispersions are
estimated as 10% of the mean. Meta-regression suggested that the cumulative effect
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Figures.

Effect of K deficiency on the root count of crop plants. Figures (a) to (c) ave the analyses of disaggregated data
and presents the overall effect size and effect sizes a function of various moderators. The effect of K deficit on
root count as moderated by (a) crop categories; (b) type of K fertilizer supplied to the replete K growth media;
(c) growth media on which plants were grown. (d) Effect of K deficiency on root count based on aggregated
data, where dependent effect sizes were combined to obtain one effect size per study. The log ratio of means
(dotted vertical line) = o indicates no effect; log ratio of means >0 indicates more roots from crops grown on
replete K growth media over those grown on deficient K media; log ratio of means <o indicates move root length
of crops grown on K-deficient growth media. Effect size is considered statistically significant if its 95% CI does
not overlap zero.
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Figure 6.

Segsitivity analyses of measures of dispersion for (a) data for all traits extracted from the included studies;

(b) data for root biomass; (c) data for voot length and (d) data for root count. The sensitivity analysis

was conducted between primary studies that oviginally reported standard deviations, primary studies that
originally reported standard ervor of the mean which had to be converted to standard deviations for the meta-
analysis and primary studies which did not report any measure of dispersion and for which SDs weve estimated
as 10% of the mean. Effect size is considered statistically significant if its 95% CI does not overlap zero.

sizes for the different measures of dispersion were significantly different (Qg = 13.5;
P’ = 98.89%; df = 2; p = 0.0012).

For the root biomass data, all the three effect sizes, were negative and signifi-
cantly different from zero (Figure 6b) and the meta-regression indicated that
differences between their cumulative effect sizes were insignificant (Qg = 5.6;

I* = 99.45%; df = 2; p = 0.0609). The sensitivity analysis for the root length data
indicated that the three effect sizes for the different types of dispersion were all
negative as was the overall effect size for the trait (Figure 6c). All effect sizes were
significantly different from zero except for outcomes for which SDs were reported
in the original study (InR = —0.63; 95% CI = —1.322 to 0.062; p = 0.074). The meta-
regression for the root length data indicated that differences between the cumula-
tive effect sizes were significant (Qp = 7.51; I? = 98.47%; df =2;p = 0.0234). Similar
to the overall effect size for the root count data (InR = —0.345; 95% CI = —0.434

to —0.256; p < 0.001), the effect sizes for studies with measures of dispersion
reported as SD (InR = —0.412; 95% CI = —0.557 to —0.267; p < 0.001), as SEM

(InR = —0.305; 95% CI = —0.413 to - 0.197; p < 0.001) and estimated as 10% of the
mean ([nR = —0.519; 95% CI = —0.673 to —0.364; p < 0.001) were all negative and
significant (Figure 6d). This suggests that root count reduces by approximately

34 + 15.6%, 26 + 11.4%, and 41 * 16.7% due to K deficiency, respectively, if the
study originally reported dispersion around mean as SD, SEM or SD was estimated
as 10% of the mean. The meta-regression, however, suggested that the cumulative
effect sizes for the different measures of dispersion around the means of root count
were not significantly different (Qg = 2.61; I’ = 91.57%; df = 2; p = 0.271).

3.7 Analysis of publication bias

For each of the analyses conducted here, Rosenberg’s fail-safe numbers were
computed for the disaggregated datasets and funnel plots produced for the
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aggregated datasets. For the overall data involving all extracted traits, the fail-safe
number for the disaggregated data was 2,232,020, which is approximately 193%
greater than the threshold of 39,700 (5 x n + 10) needed to consider the mean effect
size robust. For the aggregated data of the overall dataset, the original funnel plot
obtained was essentially asymmetrical, indicating the tendency for smaller sample
sizes to be associated with stronger negative effects. Consequently, trim and fill
analysis estimated that there were 13 (SE = 4) studies missing to the left side of the
grand mean (Figure 7a). Although correcting for these with trim and fill method
changed the magnitude of the effect size, it did not affect the significance and
direction (InR = —0.4498; 95% CI = —0.5773 to-0.3224; I* = 98%; p < 0.0001). This
suggested that when the effect size is corrected for by trim and fill, there is about
36.2 + 13.6% reduction in the size of various traits in crop plants grown under K
deficient conditions compared to those grown under replete K conditions.

The Rosenberg’s fail-safe number for the disaggregated data of root bio-
mass (32081) was approximately 143.3% greater than the threshold of 5300
(5 x 106 + 10) needed to consider the mean effect size robust. Similar to that of the
general data, the original funnel plot for the analysis of root biomass was asym-
metrical. The subsequent trim and fill analysis estimated 8 (SE = 3) missing studies
on the left side of the mean (Figure 7b) and altered the magnitude of the effect
size for root biomass, but not the significance and direction (IR = —0.7088; 95%
CI = —0.9902 to —0.4273; I* = 99%; p < 0.0001). Back-transforming the new effect
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Figure7.

Funnel plots of average effect sizes (log ratio of means) for: (a) data for all traits extracted from the included
studies; (b) data for root biomass; (c) data for root length and (d) data for root count. Effect sizes estimated
missing on the left side of the grand mean and were corrected for with trim and fill method.

40



A Meta-Analysis of Modifications of Root System Traits of Crop Plants to Potassium (K)...
DOI: http://dx.doi.org/10.5772/intechopen.95044

size showed that there is about 50.8 + 32.5% reduction in the root biomass of crop
plants grown under K deficient conditions compared those grown under replete K
conditions.

The Rosenberg’s fail-safe number for the disaggregated data of root length
(67875) was an over 10-fold increase of the threshold of 6550 (5 x 131 + 10) needed
to consider the mean effect size robust. The funnel plot for the analysis of root length
was equally asymmetrical and required correction by trim and fill, which estimated
that 6 (SE = 3) studies were missing on the left side of the mean (Figure 7c). Back-
transforming the trim and fill-corrected effect size (IlnR = —0.3764; 95% CI = —0.5339
to —0.2189; I” = 98.2%; p < 0.0001) showed that there is about 31.4 + 17% reduction
in the root length of crop plants grown under K deficient conditions compared those
grown under replete K conditions.

The Rosenberg’s fail-safe number for the disaggregated data of root count
(14840) was an approximately, 5-fold increase of the threshold of 3150 (5 x 63 + 10)
needed to consider the mean effect size robust. Funnel plots produced for the analy-
sis of root count indicated a weak tendency for smaller sample sizes to be associated
with stronger negative effects (Figure 7d). According to the trim and fill analysis,
there was only 1 (SE = 2) study missing on the left side of the mean and correct-
ing for the effect size (inR = —0.3404; 95% CI = —0.4807 to —0.2002; I? = 90.5%);

p < 0.0001) suggested that there is an approximately, 29 + 15% reduction in the root
count of crop plants grown on K deficient growth media compared to those grown
on replete K growth media.

4, Discussion

Due to its crucial role in osmotic regulation and root expansion, potassium
(K) starvation in soil or growth media during the early stages of plant growth can
result in plant death or impaired establishment with adverse impacts on subsequent
growth, performance and harvest index [45]. Potassium is indispensable in several
cellular and tissue level processes that are critical to high harvest index and food
and human health security. Potassium depletion can be rapid even in very fertile
soils, resulting in conditions of starvation to crop plants [5]. However, morphologi-
cal responses of plant roots to K starvation has not received as much attention as N
and P [28]. In the current study, a meta-analysis of 37 included studies from 1969 to
2019 in 23 countries (Appendix 1; Figure 1) was done to quantify the net effect of
K starvation (low or deficient K) on modifications of the root system architecture
(RSA) of crop plants. Most of the included studies were done on cereals (mainly
maize and rice) and root biomass, root length and number of roots were the com-
monest measured root traits. The use of inclusion/exclusion criteria, as a require-
ment of systematic review and meta-analysis, meant that some studies (and for that
matter crops or root traits) were not covered in the current study if they did not
meet the inclusion criteria.

Overall, results based on the aggregated data indicates a large effect size of K
starvation, with substantial reduction (25.5 + 15.0%) in the size of root system traits
compared to K replete conditions. However, there were substantial heterogeneities
between the included studies, which could be partly explained by the moderators
identified in this study and others unaccounted for. The results of the disaggregated
data also show significant reductions in root system traits under conditions of K
starvation compared to K replete conditions. This magnitude of reduction in root
system traits was comparable to that of shoot biomass and yield. A significant,
net reduction in root system traits was observed for all categories of crop plants in
the current study except those categorized as trees, fruits and herbs. The pooled

41



Plant Roots

evidence suggests that, compared to the type of K fertilizer used, the type of crop
and soil or growth media considerably mediated the scale of reduction in root
system traits due to K starvation. Indeed, the crop genotype or species has been
shown to mediate, if not confound, root system responses to conditions of K starva-
tion. For example, it has been reported that even different accessions of Arabidopsis
(Arabidopsis thaliana) responded differently to conditions of K starvation, in which
one accession promoted main root elongation and diminished the elongation of
lateral roots while the reverse was the case for the other accessions [9]. These differ-
ences were shown to be genetically controlled. A related study [46] found no effect
of K starvation on the elongation of main roots but substantial reduction in lateral
roots, while [25, 26] reported impaired elongation of main roots.

Type of soil (texture) also moderates the effect size of K starvation on root
system traits. Larger reductions in root system traits, due to K starvation, were
observed in clay loam, loam and silt loam compared to sandy clay, silty clay and
clay (Figure 2e). This could be due to differences in K-specific binding sites in clay
minerals and organic matter [5]. In soils with properties considerably influenced by
clay, K can have a protective or competitive advantage for storage in the exchange-
able or non-exchangeable but bioavailable form in clay minerals due to its low
hydration energy compared to other antagonistic ions or competitive cations. This
permits slow and progressive release of K in response to the concentration gradient,
a situation more useful to the K nutrition of some crops. Besides, the K-bearing
minerals of the sand and silt fractions (e.g. mica or alkali feldspars) can make large
contributions to recharging the labile K pool. In contrast, soils with properties
considerably influenced by organic matter would have much of its K in solution due
to poor specific binding sites of organic matter for K [5, 45]. This could result in
rapid depletion or loss of K from solution with attendant reductions in root system
traits, especially in young roots.

The results also suggest that reductions in root system traits could be more
drastic under greenhouse/lab conditions than under field conditions. Perhaps, field
conditions present the typical dynamic balance between the labile and non-labile
K pools, and depending on the soil and field conditions, can moderate the effect
of K starvation due to potential recharge from non-labile sources [5]. This is in
contrast to greenhouse/lab experiments where conditions are homogenized and
potentially stable. The large variation in effect sizes from the included studies seems
consistent with the heterogeneous results on morphological root system adaptation
or responses to K starvation [9, 28] and this might be explained by crop and/or soil
type. This inconsistency in the plasticity of root system architecture to K starvation,
together with the variations observed across the included studies, suggests a need
for extensive studies involving different crop plants and environmental conditions,
complemented by elucidation of the metabolic activities that affect K uptake. It
would also be critical to explore plant K content, due to its influence on plant water
relations and metabolic processes and often serving as a regulator of various physi-
ological processes.

4.1 Specific root traits and moderators

Results from both the aggregated and disaggregated data indicated a large, nega-
tive impact of K starvation on root biomass, root length, and the number of roots.
Indeed, K is among the essential general regulatory factors of root growth. Contrary
to previous results, recent findings show both systemic and localized root growth
responses to K supply or deprivation in Arabidopsis though further studies are
required to strengthen the evidence [28]. While roots have low preferential branch-
ing to K patches in a heterogeneous soil, local root growth is known to be promoted
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by the close presence of K in the root zone [24, 47]. The general effect of K depriva-
tion is inhibition of root elongation and reduction in the count of first-order lateral
roots though this might vary by genotype or species [9, 26]. The role of K in osmotic
regulation and maintenance of turgor pressure is critical for cell expansion in the
elongation zone of roots [48] while K fluxes influence apical growth of root hairs
[49, 50]. Also, the partitioning of assimilates or biomass between root and shoots is
mediated by K through phloem transport [51]. Unlike other nutrients, K depriva-
tion generally stimulates decreased (rather than increased) allocation of biomass

to the root system, resulting in lower root biomass [52, 53]. This could be due to
retarded phloem transport arising from a low supply of K [45, 51, 54]. Retardation
of root growth would in turn limit further exploration and effective acquisition of
K from the rhizosphere to redress the effect of K starvation. Hence, the effect of K
starvation can be more drastic at early stages of plant growth, but this can persist
to affect overall crop performance subsequently and harvest index. These physi-
ological or metabolic roles of K in root system growth and development can account
for the observed large reductions in root biomass, root length, and the number of
roots in the current study as roots actively engage in functional and morphological
modifications to cope with or respond to K starvation. The current study aimed

at quantifying the effect size of K starvation on root system traits of crop plants
using meta-analysis. A detailed treatment of the physiological basis of root system
responses to K starvation can be found in the extensive narrative review by [28].

The type of soil (or growth media), crop and K fertilizer used were analyzed as
moderators. Generally, the sign of the effect of K starvation on root system traits
was independent of the type of K fertilizer used. It has been reported that different
types of K fertilizers gave similar results, unlike the dosage, in a study with the rice
variety IR 64 grown on Entisols [55]. However, unlike other types of K fertilizers in
the disaggregated data, there was no significant difference between the effect size
for root biomass of K-replete and K-starved plants when MoP was used. The larg-
est reductions were observed in studies that used SoP or KNO; or KPO,. For root
length, there was no significant difference between the effect size for K-replete and
K-starved plants in studies that used SoP and K,O. Studies that used MoP alone or
KNO; + MoP showed significantly larger reductions in the K-starved group compared
to the K-replete group. Because there were only two studies that combined KNO; and
MoP and the confidence interval is wide, the cumulative effect on root length should
be treated with caution due to weak statistical power. Similarly, the overall effect
size of K starvation on the number of roots was not significantly different from the
K-replete group when SoP was used but MoP and others were significantly different.
These might suggest differences in sensitivities of different root system traits or crop
plants to different types of K fertilizer. Perhaps, SoP or KNO; or KPO, substantially
increased root biomass while MoP substantially increased root length or the number
of roots. This could also be due to net interactive effect between soil, fertilizer and soil
water regime. MoP is widely used but has a high potential for leaching. As a result, it
could be more effective on soils with high K-specific binding sites and/or moderate
rainfall or watering regime [45]. Besides, root system traits responses to K fertil-
izer could be different depending on whether the crop plant is chlorophobic or not.
Compared to monocots, dicots are relatively poorer at extensive root growth for for-
aging under low K conditions [45]. Further studies would be required to substantiate
this to inform breeding and, perhaps, fertilizer management practices to selectively
enhance a target root system trait over others for specific purposes.

With crop type, the effect size of K starvation was significantly different from
that of the K-replete group and the difference was largest for root and tuber crops,
cereals and fruits. Cereals generally require sufficient K supply during the early or
vegetative stage but little to no K during the regenerative stage [45]. The K supply at
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the early stages is critical for the development of extensive root system that supports
not only anchorage and crop establishment, but also foraging for soil resources,
including K under low supply conditions, and phloem-xylem cycling during the
regenerative stage. Analysis of previous experimental results showed that relative
post-anthesis K uptake of maize, millet, rice, sorghum and wheat was significantly
lower than N and P, but not different among the tropical cereals [56]. In roots and
tubers, K is essential for the quantity and quality of roots or tuber yield [57]. The
unique role of K in the synthesis and translocation of sugars and starches, as well as
increasing sink capacity is much more pronounced in roots and tubers. Potassium
enhances primary cambial activity to help storage root initiation. It also promotes
enlargement of storage root and tubers. As a result, roots and tubers are heavy
K feeders and, because they take up larger quantities of K than any other macro-
nutrient, they can remove substantial amounts of K from the soil via harvesting.
Cassava, for example, can take up about 146-167 kg K ha™ to produce root yield of
25 kg ha™, with about 87.8 kg K ha™* removed with the harvest [58]. In sweet potato,
about 185 kg K ha™ might be required to produce 22 t ha™* tubers; and the roots can
account for about 66% of total K removal from soil [59]. It is, therefore, not sur-
prising that the cumulative effect of K starvation was negative and large for roots
and tubers. K-starved legumes and herbs did not show any significant cumulative
reductions in root length compared to the other categories of crop plants. Perhaps,
this could be because the roots of legumes require K principally for root nodule
formation. As observed for the number of roots in herbs, some herbaceous plants
might increase the number of roots or root hairs in response to K deprivation [45].
In the disaggregated data, significant and large reductions in root biomass were
observed under K starvation in studies that used soil and perlite as growth media,
while germination paper and aeroponics did not produce cumulative effect signifi-
cantly different from the K-replete condition (though these had much wider CIs).
Similarly, the cumulative effect of K starvation on root length was not significantly
different from the K-replete group in studies that used germination paper as growth
medium but significant reductions were observed for all other growth media, with
perlite showing the largest reductions. However, though significant reductions were
observed in the number of roots of plants under K starvation for all growth media
used, the cumulative effect sizes for the different growth media were not signifi-
cantly different. These suggest differential mediation or moderation of root system
traits responses to K starvation. Light textured or well-drained soils might facilitate
K loss from the root zone via leaching depending on the intensity of rainfall or
irrigation. Conversely, clay soils might fix K and reduce its availability to the roots
[45]. Perlite, on the other hand, facilitates drainage which can contribute to leach-
ing of K depending on irrigation or rainfall intensity. In both situations, conditions
of scarcity would be created which can have marked effects even if the scarcity is
short-lived. Germination paper might not be a good medium for studying the effect
of K starvation on root system traits. Adu et al. [60] noted that when germination
papers are used in screening root traits, significant paper effects on the root system
data were recorded, possibly due to inadequate water absorption or some inherent
minerals in the different papers.

4.2 Analyses of sensitivity, publication bias and heterogeneities

The Rosenberg fail-safe numbers generated from the analyses suggest that
the results are more likely to be robust to publication bias. Thus, a relatively large
number of unpublished data would be required to change statistically significant
effects observed in the current meta-analysis [30]. Even so, the visual observation
of the funnel plots indicates possible under-estimation of the original effect sizes,
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as the ‘trim and fill’ suggested relatively bigger effect sizes. The sensitivity analyses
of measures of dispersion indicated that the effect size from studies that originally
reported SDs is comparable to the effect size from the overall data. However, while
the conversion of SEM to SD seems to have underestimated the effect size, the
estimation of SD as one-tenth of the mean may have significantly overestimated the
effect size. This borders on quality of reporting practices in publications, where cer-
tain critical information such as standard deviation must be enforced in published
papers, especially when continuous data are used. The analysis of heterogeneity
also showed that the percentage of the total variability in a set of effect sizes, due

to true heterogeneity between-study or comparisons rather than sampling error,
was high. While this may point to large differences in experimental approaches,
environmental variables and variations between studies, it is also possible that
certain critical moderators were unaccounted for in the current study. Availability
and uptake of K by plants is often complicated by many interacting components,
including soil, plant, climate, and management factors. Critical moderators such as
available and non-exchangeable K, cation exchange capacity (CEC), temperature
and moisture content of the soil, plant population, placement of K fertilizer, tillage
practices, among others were largely unreported in the included studies and may be
implicated in the large heterogeneities or I* values observed.

5. Conclusion

Potassium plays critical roles in the growth and development of plant roots,
which respond morphologically to K starvation. As agronomic use of K increases
and becomes even more crucial for food security and sustainable agriculture in a
changing climate, it is imperative to understand the extent of modifications in root
system architecture in response to K starvation to inform efforts at improving crops
and agronomic practices for efficient use of K. This meta-analysis sought to provide a
pooled evidence on and quantify the effect of K starvation on modifications in RSA.
Generally, the cumulative effect size of K starvation on pooled root system traits was
significantly different from that of K-replete plants, resulting in about 25.5 + 15.0%
reduction in pooled root system traits. Similarly, K starvation can lead to a signifi-
cant cumulative reduction of about 38 + 38.0% in root biomass and 23.2 + 18.6% in
root length. The reductions were largest for the categories roots and tubers, cereals
and fruits. Soils modified by organic matter showed large reductions compared to
those modified by clay. Soil and perlite, as growth media, showed the largest reduc-
tions in root biomass and root length while germination paper might not be a suitable
medium for assessing the response of these parameters to K starvation. Generally,
the type of K fertilizer used in such studies is unimportant. The effect of K starva-
tion on RSA might be invisible but the cascading effect on the quantity and quality of
shoot biomass, harvest index, and food security could be palpable and costly. Hence,
efforts at estimating optimal K management, in terms of timing, frequency, rate, and
building K reserves in soils should be intensified vis-a-vis improvement in under-
standing of responses of root system traits in different crop genotypes and species,
types of soil, and environmental conditions. In all this, special consideration should
be given to responses of targeted root system traits to K starvation in matching crops
to soil environments and adapting agronomic management practices.
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Chapter 4

How Abiotic Stress Conditions
Affects Plant Roots
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and Ertan Yildirim

Abstract

Roots are generally subject to more abiotic stress than shoots. Therefore, they
can be affected by such stresses as much as, or even more, than above ground parts
of a plant. However, the effect of abiotic stresses on root structure and development
has been significantly less studied than above ground parts of plants due to limited
availability for root observations. Roots have functions such as connecting the plant
to the environment in which it grows, uptaking water and nutrients and carrying
them to the above-ground organs of the plant, secreting certain hormones and
organic compounds, and thus ensuring the usefulness of nutrients in the nutrient
solution. Roots also send some hormonal signals to the body in stress conditions
such as drought, nutrient deficiencies, salinity, to prevent the plant from being
damaged, and ensure that the above-ground part takes the necessary precautions
to adapt to these adverse conditions. Salinity, drought, radiation, high and low
temperatures, heavy metals, flood, and nutrient deficiency are abiotic stress factors
and they negatively affect plant growth, productivity and quality. Given the fact
that impending climate change increases the frequency, duration, and severity
of stress conditions, these negative effects are estimated to increase. This book
chapter reviews to show how abiotic stress conditions affect growth, physiological,
biochemical and molecular characteristics of plant roots.

Keywords: roots, growth, physiology, biochemistry, abiotic stresses

1. Introduction

Plants encounter different stress conditions during their life (Figure 1). Under
stress, the growth, metabolism and yield of plants are significantly adversely
affected. Drought, nutrient deficiency, salinity, soil and atmosphere pollution,
extreme temperatures, and radiation are abiotic stresses that limit productivity in
crop production [1]. Bray et al. [2] reported that these stress factors, as the primary
causes of agricultural loss worldwide are estimated to result in an average yield loss
of more than 50% for most crops. Impending climate change, as the prospect of
higher abiotic stress, jeopardizes the world’s food supply, which even makes global
yield hard to stabilize in the future [3, 4].

Since the root system acts as a bridge between soil and the plant regarding its
physical, chemical and biological properties, it has a tremendous effect on plant
growth and yield. The volume covered by the root system defines the part where the
soil can be used by the plant to absorb water and plant nutrients. The development
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Figure 1.
Abiotic stress sources affecting root and shoot growth of plants.

of the root structure can differ according to the physical properties of the soil such
as soil depth, the presence of impermeable layers, as well as the moisture level in the
growing environment [5].

The most important characteristics of plants are that their apical meristems at
the bud and root tip are constantly active, allowing them to grow throughout their
lives. Growth is defined as an irreversible increase in the size of vegetative organs
and dry matter accumulation. For growth to occur, the synthesis rate of macromol-
ecules in cells must be faster than the rate of their breakdown. Development is a
term used to describe the structural and functional changes that occur in different
plant parts during growth and maturation. Development in plants includes such
events as cell division, increase in volume and differentiation of tissues and organs
[6]. Growth and development events in plants are under the control of internal and
external factors. Growth and development can only occur in their normal course
under suitable environmental conditions. Every change that occurs in environmen-
tal conditions affects plant growth and development to a certain extent and reveals
the concept of stress. Stress factors are the factors that not only reduce agricultural
productivity, but also restrict or prevents the use of new lands for agricultural activ-
ities. The morphological, anatomical and metabolic responses of plant species to
stress factors led to the emergence of natural selection in the evolutionary process.
In this case, environmental stress factors have an important place among the main
factors that enable the plants to be shaped structurally and functionally. Plants are
exposed to more than one stress factor simultaneously under natural conditions [7].
The elucidation of how living things respond to environmental factors outside of
optimal boundaries constitute the main research area of stress ecology. The study
of the stress physiology of plants contributes to understanding the biogeographical
extent of the species, studies on increasing the productivity of cultivated plants and
knowledge on plant metabolism [8].

The root is defined by Raven and Edwards [9] as: “roots are axial multicellular
structures of sporophytes of vascular plants which usually occurs underground,
have strictly apical elongation growth, and generally have gravitropic responses
which range from positive gravitropism to diagravitropism, combined with negative
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phototropism” Roots have four important functions in plants which are: (i) anchor-
ing the plants to the soil, (ii) uptaking minerals and water from the soil, (iii) ensur-
ing the transportation of water and mineral substances and (iv) synthesizing some
plant hormones and organic compounds. Roots also send some hormonal signals
to the body under stress conditions such as water and nutrient deficit, salinity, to
prevent the plant from being damaged, and ensure that the above-ground part takes
the necessary precautions to adapt to these adverse conditions [10].

Roots perceive almost whole the physiological and chemical parameters of
the soil and adjust their development and performance accordingly, so it plays an
important role in sustaining the nutritional and growth purposes of the plant under
abiotic stresses. Abiotic conditions such as water deficit and quality, limit plant
productivity around the world. Roots should grow in an environment where plant
requirements heterogeneously provided. Factors affecting the growth of roots;
salinity, heavy metals, plant nutrients, soil air, soil moisture, soil temperature, soil
texture and foreign materials, physical barriers [11]. Roots are generally subject
to more abiotic stress than the shoots do. The root system can be affected by such
stresses as much, or even more so, above ground parts of a plant. However, the
effect of abiotic stresses on root structure and development has been significantly
less studied than above ground parts of plants due to restricted availability for root
observations. This book chapter reviews to show how abiotic stress conditions affect
growth, physiological, biochemical and molecular characteristics of plant roots.

2. Salinity stress

Salinity stress is one of the major environmental abiotic stresses that negatively
affect plant yield and product quality [12]. It is estimated that salinity stress affects
more than 6% of the world's soils (approximately 800 million ha) [13]. Soil salinity
is constantly increasing due to insufficient irrigation practices, use of more fertiliz-
ers, improper drainage, rising sea level, salt accumulation in desert and semi-desert
areas, and increased industrial pollution [14, 15]. Saline soils contain toxic levels of
sodium chlorides and sulphates. The problem of soil salinity can vary depending
on the response of the plants to salt, the development period of the plant, the salt
concentration and the time the salt affects the plant. It may also differ depending on
the climate and soil characteristics [16].

The detrimental effects of high salinity on plants can be observed at the whole
plant level as a decrease in productivity or plant death. Salt stress affects physi-
ological functions such as ion toxicity, nutrient defects, increased respiration rate,
changes in plant growth, membrane instability resulting in the replacement of
calcium ions with sodium ions, changes in membrane permeability and decreased
photosynthesis efficiency. On the other hand, salinity negatively affects nitrogen
and carbon metabolism [17]. As a result of increasing salt stress, water intake in
plants significantly decreases. This affects the intracellular and intercellular water
level as well as inhibits cell expansion by reducing stomatal activity. The ionic and
imbalance that develops under salinity stress also disrupts the growth and develop-
ment pattern in the plant [18]. Moreover, the increased accumulation of ROS in
the plant inhibits transpiration, mineral uptake and damages vital macromolecules
such as proteins, nucleic acids, lipids. As a result of that, membrane integrity can
collapse and other vital metabolisms can be adversely affected. Premature aging of
leaves, followed by chlorosis or necrosis may occur due to sodium chloride (NaCl)
entering protein synthesis, enzyme activity and photosynthesis. In order for plants
to cope with salt stress; it should increase ions excretion, osmotic tolerance, redox
homeostasis, and photosynthesis efficiency [19].
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Salinity exerts two different consequences on the roots: osmotic stress caused
by low water potential in the growing medium; and ionic stress by the excess
amount of specific ion concentration in the root environment. Mostly, root growth
is inhibited under salinity due to both osmotic and toxic effects [20]. As a result of
these negative effects of salt stress, profound changes occur in root architecture.
Treatment of tomato with NaCl leads to a more branched root system; roots became
shorter and each major root had more lateral roots compared to untreated controls.
The alterations of root growth resulted in a greater root system [21]. Rose et al.

[22] stated that plants grown in saline conditions have shallower root systems than
plants grown under sufficient rainfed. Root development and growth have been
reported to reduce by salinity stress in different crop plants [23-29]. Keser et al. [30]
determined that salt, in which root growth is reduced due to increasing salt concen-
trations in tomato plants, has a toxic effect on root development.

According to Papadopoulos and Rendig [31], while tomato root development
was less at high salt concentrations, root density and water intake increased with
the decrease in salt concentration. Salinity in the layers of the plant root restricts
the growth of the root. Besides, the dead root length increases in roots that are very
sensitive to salinity [32]. Koger [33] found that increased salt concentrations in corn
plants s decreased root dry weight compared to the control group. Cirillo et al. [34]
stated that the ratio between root to shoot of Viburnum lucidum L. and Callistemon
citrinus plants did not increase under salinity stress, and explained this by the same
decrease in both root and shoot weights under stress. Alvarez and Sanchez-Blanco
[35] found that the root/stem ratio increased in the C. citrinus plant in salinity
condition.

Formentin et al. [36] pointed out that morphological analyses between Baldo
(tolerant) and VN (sensitive) rice varieties displayed opposing root developments
in response to salinity. In the salt tolerant variety, no differences in total root length
were observed, however, in the sensitive variety, two days after the salt exposure,

a significant reduction in root length was detected as compared to control treat-
ments. In the same experiment, they investigated the root structure to classify the
root characteristics of these different varieties. They showed that the difference in
the topological index was not significant between tolerant and sensitive varieties.
Nevertheless, tolerant variety showed significant changes in the root topology four
days after salt treatment. The roots of sensitive variety stopped growing and they
just maintained the initial structure, salt tolerant plants provided more herringbone
topological pattern.

Furthermore, salt stress affects the plant nutrient content of roots. Previous
studies showed that salinity conditions caused to increase in Cl and Na content, but
decrease content of N, P, K, Ca, Mg, Fe, etc. in the roots of different crops [25, 26, 28].

Abscisic acid (ABA) as a stress hormone, takes part in the signaling of water
deficit under the cases as salinity and drought, it detected at the root level, and
plant takes precautions to activate stomatal closure, leaf expansion limitation, and
root architecture modulation to save water [37]. Moreover, rapid H,0, signaling at
the root level is also one of the most processes in inducing salt tolerance. In roots,
several genes for peroxidases and universal stress proteins were up-regulated.

The ABA levels in salt sensitive plants roots were much higher than in the tolerant
plants. Ethylene signaling and response categories of genes were also much more
represented, demonstrating a possibly lower content of ethylene. Roots of tolerant
plants then continued to grow but changed topology. They also stated that in salt
sensitive plants, the company of GA4 and the deficit of GA51, along with high ABA
and ethylene levels, could be a reason for the initial growth and lateral roots forma-
tion. Formentin et al. [36] stated that in salt-sensitive plants, high content of ABA is
responsible for stopping the root elongation.
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3. Drought stress

Considering the rates of affected areas of the world from different stress
factors; drought has the highest share at 26%, secondly mineral matter stress
with 20%, followed by cold and frost stress with 15%. It is stated that the remain-
ing 29% of the area is under some other stress factors and only 10% of the total
usable areas have the optimum agricultural conditions [38]. Plant species and
have significant physiological and metabolic differences in response to drought
stress [27]. The degree of exposure to drought, which occurs at different severities
depends on the metabolic changes that genotype develops as physiological and
biochemical reactions [39].

When the plant cannot provide the water it needs from the root zone and this
situation starts to cause stress, the plants try to get rid of it by reducing water losses
or increasing water intake [40], and the first effect that occurs in the plant is the loss
of turgor [41]. As a result of the plant roots not meeting the water lost by transpira-
tion from the leaves thanks to the loss of turgor, the leaf cells go into plasmolysis
and shrivel [42].

One of the early effects of water deficiency is a decrease in vegetative growth due
to a decrease in photosynthesis. Stem growth and especially leaf growth are more
sensitive to water deficiency than root growth. In the early periods when drought
conditions occur, the plant slows down stem elongation and triggers root develop-
ment in order to reach more water (Figure 2). In case of prolonged drought condi-
tions, both stem and root stop, leaf area and the number of leaves decrease, and
even some leaves shed by yellowing [43]. Liu and Stiitzel [44] stated that root dry
weight increased and leaf area decreased under drought stress in Chinese spinach.

Drought stress initiates many physiological, biochemical and molecular
responses in plants, and accordingly plants develop adaptation mechanisms that
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Long and short term responses of plants to drought stress.
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can adapt to changing environmental conditions in response to stress. Responses

to water deficiency vary depending on the species, genotype, severity and length
of water loss, growth status of the plant, age, organ, and cell type [45]. Plant roots
tend to move towards to water source, called hydrotropism, which is also one of the
adjustments

Roots are the first part of the plant detects the soil drought and drought resis-
tance of the plant or a different variety determines the morphological and physi-
ological characteristics of the roots. Roots can maintain the growth and distribution
of biomass to adjust to water deficit during the plant development phases.
Therefore, the most direct destruction under drought occurs in the plant roots, so
when the damage is investigated, it may be directive that the root is morphologically
and physiologically adopted, adjusting to absorb nutrition and water effectually.
Therefore, studies investigate the response of root morphology and root physiology
to drought may better expose the drought resistance of the plant [46-48]. Shan et
al.[49] found that seedlings of Reaumuria soongorica redistribute root biomass and
change their internal chemistry to adjust osmotic balance under drought. The abil-
ity to adjust physiologically could be the main reason for this plant to remain in arid
environments. The cessation of cell division or expansion is directly related to the
decrease in photosynthesis rate due to water deficiency [43].

Plant adjustments under drought stress by regulating the distribution of biomass
help them ease from stress by escaping, tolerating or recovering. Many studies
prove that root growth is significantly affected by drought stress, plant growth
transforms into underground biomass (roots), and root/shoot ratio increase [50].
Eziz et al. [51] stated that biomass allocation under drought occurs more in roots
than in shoots, while a greater increase occurs in total root biomass. As the roots are
the only source for obtaining nutrients and water from the soil, the increase in root
biomass, reproduction and size under drought would be an adaptive response to
drought stress. On the contrary, some studies have stated that the diameter of top
root becomes thin and its development inhibited, as a result of that the root biomass
decreased [52]. Earlier studies reported that drought stress negatively affected the
root growth of many crops [27, 39, 53-55].

Many researches have revealed the inhibition of lateral roots together with deep
rooting under drought [56, 57]. Plants tend to go deeper to take water instead of
spreading horizontally in the soil. Comas et al. [58] found the tendency of plants
to absorb water from deeper layers through vertical root growth beneficial for crop
productivity under water deficiency. Ors and Suarez [57] reported significantly
longer root length under drought stress for spinach. Franco et al. [59] reported
thinner roots under drought stress earlier for Silene vulgaris. Under drought roots
expand a capillary structure and elongate to obtain water from depth. Therefore,
under optimum conditions (non water deficit) root structure would be shorter and
thicker for the same varieties [57].

For instance, Arabidopsis thaliana root hairs became short and swollen in
response to the water deficiency [56, 60], whereas the presence of very short and
hairless root development under drought stress was also reported in soil-grown A.
thaliana [61].

ABA and auxins contribute to a complex signaling system that plays a crucial
role in the improvement of the root systems under drought. The hormonal adjust-
ments are assumed intrinsic, and they can modulate under different environmental
conditions [62]. ABA, gibberellins and cytokinins are produced in the roots and
they transported to other tissues to promote plant growth. Although auxins are the
main determinants of root growth [63], cytokinin and especially abscisic acid [64,
65] have been suggested as prospective chemical signals to modulate root system
structure in response to drought stress. Previous studies reveals that POD, SOD, and
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CAT activities increased at mild drought stress [66, 67], but SOD and CAT activity
decreased in severe drought stress [68].

4. Heavy metal stress

Industrialization in line with both population growth and the requirements of
the modern age, as well as environmental pollution, has a significant impact on
soil, water and agricultural lands. This pollution is mostly caused by heavy metals
released into nature for various reasons. Heavy metal pollution in water and soil,
causes negligible negative effects on human health both on plants and through
consumption of plants [69]. Although more than seventy elements can be given as
examples of heavy metals, the most important heavy metals in this element group
are; Manganese (Mn), Iron (Fe), Silver (Ag), Cadmium (Cd), Arsenic (As), Cobalt
(Co), Copper (Cu), Palladium (Pd), Aluminum (Al), Chromium(Cr), Antimony
(Sb), Nickel (Ni), Mercury (Hg), Zinc (Zn) and Lead (Pb). These heavy metals are
classified as environmental pollutants due to their toxic effects on plants, animals
and humans [70].

Heavy metals are classified as non-biodegradable. They are persistent
inorganic chemical components with a density higher than 5 g cm™ that have
genotoxic, cytotoxic, and mutagenic effects on humans or animals and plants
through food chains, soil, water and the surrounding atmosphere [71]. Heavy
metals, which can be found in different amounts in the ecosystem, directly
affect plant growth and physiology. There are serious yield losses in plants in
areas where heavy metal content is high [72]. Higher plants extract biologi-
cally usable metal ions from the soil solution through membrane carriers, and
different metal cations are transported carried across the plasma membrane in
the roots. Metal ions in stem cells are loaded into xylem and are transported to
shoots in complexes with chelators such as organic acids and amino acids. The
concentration metals, affect plant growth, and root depth, which allows plants
to reach the contaminant (Figure 3) [73].

Besides the direct effect of heavy metals on plants, they can also cause cell
toxicity through overproduction of reactive oxygen species (ROS) that disrupt
antioxidant defense systems and cause oxidative stress [74, 75]. Heavy metals that
adversely affect protein synthesis, DNA, RNA, root-water relationship, germina-
tion, development and photosynthesis in the plant can cause damage to tissues and
organs by forming complex structures in soil, plants and water. Plants exposed
to heavy metal toxicity display symptoms such as chlorosis, stunted growth root
browning and death [76]. High concentrations of heavy metals (Cd, Ni, Pb, Cuand
Zn) in plant production areas cause stress in the plant. By promoting the formation
of free radicals in the plant under heavy metal stress, it damages the plant tissues
and can lead to oxidative damage [77]. Plants have established various defense
mechanisms against damage from heavy metals. For instance, antioxidant enzymes
have been reported to have an important role in the development of defense mecha-
nisms against heavy metal toxicity [78].

The blockage of heavy metals by Casparian strips or their being trapped by
the cell walls of roots may result in the accumulation of the heavy metals in the
root cells. Accumulation of heavy metals in the root system worsens biochemical,
physiological and morphological functions [79]. For example, Cr toxicity leads to
chlorosis, wilting of top and injury of roots and growth retardation [80]. Nickel
accumulation leads to a reduction of mitotic activity of meristem in maize [76].

Due to heavy metals accumulation in the soil, plants cannot get the nutrients
they need from the soil. It was reported that plants exposed to heavy metal have
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Figure 3.
Responses of plants to heavy metal stress.

shorter root and stem lengths less number of leaves and smaller leaf area due to

the lack of essential nutrients [81, 82]. The negative effect of heavy metals on root
length arises from oxidative damage, disruption of the membrane structures of

the cells and damage to the epidermal cells forming the root surface [83]. Suberin
compound increase on the root surfaces of plants exposed to heavy metal that has
the property of limiting the amount of water results in browning of the plant roots,
deterioration of the plant-water relationship [84].

Copper, which exhibits toxicity with its high amount, disrupts plant physiology,
adversely affects protein synthesis, nutrient uptake, membrane stability and respi-
ration [85]. Copper, which causes the structure to change by passing to the chloro-
plast structure, reduces the amount of chlorophyll [86]. Chlorosis can be seen in the
plant with decreasing chlorophyll amount. With copper poisoning, the roots lose
their properties and consequently the plant-water balance is negatively affected.
High amounts of zinc cause growth retardation and premature aging of the plant
[87]. Problems such as a decrease in shoot development in zinc toxicity, adverse
effects of chlorophyll synthesis, chlorosis in young leaves [88], and reduction of
both root and stem development due to inhibition of mitosis in the roots occur [89].
Iron, which has a toxic effect, causes burns on leaves, stunted roots and stems. In
addition, amino acid binding and protein synthesis in plants are negatively affected
by iron toxicity [90].

In addition, in plants exposed to chromium, membrane damages, changes in
structure and organs, inhibition of growth and development [91], blockage of
nutrient and water supply mechanism through roots, degradation of photosynthetic
pigments, and abnormalities in enzyme activity [92]. The toxic levels of chromium
prevents cell division and severely restrict water and nutrient absorption processes
that lead to shortening of the total length of the roots and/or shoots [93], which can
lead to reduced shoot growth. Moreover, the presence of toxic chromium in roots
causes the cell cycle to extend [94].

In a study conducted by Verma and Dubey [95], it was reported that applying lead
to the soil results in a 40% decrease in plant root growth and decreased to and up to a
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25% decrease in shoot growth and they further found that lead accumulation in the
roots was almost 3.5 times higher than in shoots. The reason for the accumulation of
more lead in the roots can be attributed as a defense mechanism applied by the plant
to protect its stem, fruit and shoots against lead toxicity [96]. Many studies showed
that heavy metal stress negatively affected root growth of various plant species
[97-99]. Pb worsens root elongation [100]. Cadmium (Cd) has been reported to
increase endogenous ABA levels in Typha latifolia and Phragmites australis roots [101],
potato tubers [102] as well as rice plants [103]. Lin et al. [104] used a whole genome
sequence to perform transcriptomic analysis of rice roots exposed to vanadium (V)
and showed that this metal triggers the expression of genes associated with the signal-
ing and biosynthesis of ABA. Rubio et al. [105] reported that exogenous ABA applica-
tions have an effect on the transport of Cd and Ni to the shoots, resulting in a higher
percentage of metals in the root. Cadmium has been reported to inhibit primary

root elongation in Arabidopsis [106, 107]. Under Cd exposure, NAA increases metal
accumulation in roots by fixing it to hemicellulose [108].

Kisa [109] reported a decrease in POD activity in tomato roots caused by Cd, Cu
and Pb treatments. Furthermore, it is stated that while Cd application significantly
increases SOD activity in roots compared to control group, Cu application decreases
SOD activity. In addition, a high concentration of Pb application increased SOD
activity in plant roots. The reduction in POD activity of Cd, Cu and Pb and copper
in APX and SOD activities in tomato roots can be seen as an end of heavy metal-
induced excessive free radical production.

Heavy metal mediated disruption of auxin transport in roots appears to be
another major cause of root growth inhibition. In Arabidopsis, excessive exposure
to Cd inhibits root hair growth, disrupting Ca,C influx and eventually the terminal
cytosolic Ca,C gradient required for growth. A genome-wide study of the DNA
methylation pattern in response to Pb stress in corn roots revealed increased
methylation in CpG [110].

5. Temperature stress

Temperature is a very important determining factor affecting the distribution
of plant species around the world. Many plant species and varieties may be faced
with boundary degrees in order to maintain their vitality due to the characteristics
of their own genetics (Figure 4). Approximately 25% of the terrestrial area in
the world consists of regions that do not fall below 15°C and are reliable in case of
frost damage. In the remaining regions, it is observed that especially cold-sensitive
plants are damaged if the temperature drops below 0° C in certain time periods. The
average temperature of the Earth's surface near the atmosphere increased by 0.6
(+ 0.2) ° C in the 20™ century. Heat stress is a major problem in many parts of the
world. Among the abiotic stresses, low and high temperature stress is very criti-
cal in determining the feasibility of agricultural production [111]. Short-term or
continuous high temperatures cause morphological, physiological and biochemical
changes that negatively affect the growth and development of plants and result in
significant yield decreases. Active growth of plants takes place within a relatively
limited temperature which is between 0 °C and 45 °C. Also, while certain tempera-
ture conditions are optimum for one plant, they may cause stress for the other plant
[112]. At low temperatures, the intake of water and nutrients from the root system
is limited [113]. Low soil temperature results in reduced tissue nutrient concentra-
tions and as such decreases root growth Lahti et al. [114]. Lateral root formation
is inhibited by low temperature. Root growth and temperature generally increase
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Responses of plants to temperature stress.

together up to a point. While growth and development in some plants are restricted
at temperatures above 45 °C, in some plants there is tolerance within the framework
of visible physiological mechanisms at temperatures below 0 °C [115].

High temperature causes increased respiration in plants, loss of enzyme activity,
change in cell structure and function, decrease in protein synthesis, necrotic spots,
a decrease in physiological activity and impairment of photosynthetic activity, caus-
ing negative effects on plant growth and development [116, 117]. High temperature
causes protein denaturation in the cell, changes membrane fluidity, disrupts the
entire balance of metabolic processes, and causes oxidative stress in the plant [118].
Reaction to high temperature stress; the intensity of the temperature is related to
the duration of action and the species, variety and development stages of the plant.

A key environmental factor regulating root growth is soil temperature [119]. Soil
temperature, has been reported to impact the pattern of root growth. Temperature
also has an effect on the direction of root growth. Onderdonk and Ketcheson [120]
found that the angle of maize root growth (relative to the horizontal) was found to
be minimum (10°C) at a constant 17°C. More vertical direction occurred above or
below this temperature (10-30°C). Morphological properties such as root length,
dry matter amount and branching are determined by soil temperature.

High soil temperatures resulted in decrease root weight and root/shoot ratio in
some crops [121-123]. This may be attributed to inhibition of the formation and elon-
gation of the main root [124], reduced distribution of carbohydrates to root [125] and
increased respiration [126]. Soil temperature has a great impact on root and shoots
growth [127]. An increase in soil temperature improves root growth because of the
increase in metabolic activity of root cells and the development of lateral roots [128].

Shoot and root growth is expected to show similar temperature responses as all
meristems are assumed to use identical processes at the cell and tissue level. Plant
species that are cold-adapted generally just do not have the optimum low tempera-
ture for growth. In warm substrate total root length in three alpine plant species
was 83 % longer and total root dry mass was 67 % higher under cold conditions.
However, aboveground biomass was barely affected. Average root elongation ratio
was 47 % lower under cold substrate conditions [129].
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Posmyk et al. [130] investigated the changes in antioxidant enzyme activity
and isoflavonoid levels in withered soybean roots and hypocotyls exposed to cold.
Prolonged exposure of the seedlings to 1 °C suppressed root elongation and hypo-
cotyl, and seedlings growth was inadequate even after transferring to 25 °C. Root
sensitivity to cold was higher than hypocotyls, a gradual increase in MDA concen-
tration in roots at 1 ° C was not observed in hypocotyls. They found an increase in
CAT and SOD activity was observed both at 1° C and o0 25° C in hypocotyls. It was
also reported that in roots, CAT activity starts to after 4 days of cooling, while SOD
activity increased after rewarming. Buriro et al. [131] found that low temperature
reduced root length, fresh stem and root weight, and root dry weight in wheat.
Kumari et al. [132] showed in their study that heat stress will accelerate root and
shoot development and root branching in chickpeas compared to plants grown
under controlled conditions.

Deep rooting is restricted at low temperatures by reduced top root elonga-
tion. The restricted deep rooting coincided with a stimulated branching activity
and lateral growth. The relative reduction of the dominance of the top root tip at
lower root temperatures would lead to a root system of higher efficiency due to
increased placement of active roots in beneficial conditions in maize (Zea mays L.)
[133]. Suboptimal root temperature reduces water, nutrient and hormone supply
[134, 135].

Each plant has an optimum temperature at which it can grow and develop
normally, and temperatures below this temperature are known as cold stress in
plants. Low temperature is an environmental factor affecting many events in plants,
including germination, growth and development, reproductive organs, and post-
harvest storage time [136]. Roots, rhizomes and bulbs are more sensitive to cold
than their above-ground organs [137]. Exposing the cold-sensitive seedlings to
temperatures below 10 ° C to non-freezing temperatures causes reduction of root
development and water uptake, reduction of the root tip and root growth [138].
When cold stress was applied to the lentil plant, a significant increase in MDA con-
tent was noted in root and stem tissue and a significant increase in POD activity has
been detected in the root tissue [139]. When soybean (Glycine max) was gradually
exposed to low temperatures, CAT and POD activity increased in the root and stem
of the plant [140]. When they were gradually exposed to low temperatures, growth
of cucumber (Cucumis sativus L.), tomato (Lycopersicon esculentum Mill.) and rice
(Oryza sativa L.) were negatively affected [123, 141].

Fading and drying caused by cold stress in sensitive plants is the result of the
reduction in the amount of water coming from the root system to the green hitch,
in other words, the loss of the hydraulic conductivity of the roots. One of the first
signs of low temperature damage is stem dehydration due to the imbalance between
transpiration and water uptake from the root zone [142]. Water uptake decreases
with low temperature. Therefore soil temperature changes soil water, viscosity, in
parallel with nutrient uptake by and root nutrient transport [114, 143].

6. Nutrient deficiency stress

Plant nutrients constitute one of the broadest and most important issues in soil
chemistry. Plants, like other living things, need various plant nutrients in different
proportions in order to survive. They absorb at least 90 different elements from
the air, water and soil. Some of these elements are essential elements that the plant
needs in order to grow and develop, and some are useful in the growth and develop-
ment of the plant. From this point of view, it can be said that the elements varying

63



Plant Roots

between 16 and 20 are essential for the growth and development of the plant, and
the others are useful elements. Each nutrient helps different plant functions that
enable the plant to grow and develop [144]. Nutrient stress might occur in two
different ways, which are; (i) nutrient deficiency (Figure 5), (ii) the presence of
excess concentrations.

Root morphology forms according to external sources such as nutrient avail-
ability in soil solution [145-147]. Nutrient deficiencies can reduce root growth and
alter root morphology [148-150]. Plants distribute a significant portion of biomass
to the roots under this stress factor [151]. Plants under nitrogen have a higher root:
shoot ratio and shorter lateral branches compared to control. High NO; levels in
soil solution also inhibit root growth, thus, result in a reduction in root: shoot ratio
[152]. In Chinese pine seedlings, the decrease in N available in the soil increased
the number and length of fine roots and decreased the diameter of the coarse roots
[153]. Qin et al.[154] reported that rapeseed roots become longer consisting of
denser cells in the meristematic zone and larger cells in the elongation zone of root
tips under N deficiency. Root proteome analysis showed that a total of 171 and 755
differentially expressed proteins were identified in short and long-term N-deficient
roots, respectively.

Phosphorus deficiency led to a reduction in primary root elongation and
increased lateral root formation [155]. In terms of dry matter yield, the root is much
less affected than the shoot so that P-deficient plants are typically low in shoot-
to-root dry weight ratio [156]. K-deficiency stress caused profoundly reductions
in weight, length, surface area, and volume of the root of sugarcane (Saccharum
officinarum)[157]. Sulfur deficiency reduced the hydraulic conductivity of roots
and net photosynthesis [158]. Shoot growth in sulfur deficiency is more affected
by root growth. Thus, the shoot/root dry weight ratio decreased in plants with
sulfur deficiency [159]. Calcium is also required for root elongation. Iron toxicity
may cause bronzing, stunted top and root growth. Manganese-deficient plants
contained low levels of soluble carbohydrates. The decrease is more in roots and this
may be responsible for the reduced growth of roots [160]. Under boron-deficient
conditions cytokinins synthesis was depressed in sunflower roots [161].

Nutrient

deficienc: =
Ca deficiency: Young leaves and fult display il o Fe “HGIT““\’- E*F”ess'e" 9 et
Ca deficiencies first, Yellow brown spols == ITEVEA Chuneoais D Mie NeyE s,
i minge il bl . Fe chiosis deveiops when scl Ph is high,

K deficiency: Chiorosis may cause
yedlowing of leaves. Lead to shedding and
defoliation of the leaves. Stunted growth Lead
10 SIOW Growtn oF poor developed roots and
stems.

N deficiency: The chiorophyll content of piant
leaves Is reduced. Flowering, fruiling, protein and
starch contents are reduced.

Zn deficiency: Growih suppression, reduced
intemnode length, rosetting. Interveinal
chinrosis on young kaves

Mn deficiency: Similar to Fe ehiofosis.
Interveinal chiorosie on younger of oider leaves
followed by [esionsa leal shading, Restricted
growth and failure to mature

P deficiency: Plants are stunled and older leaves
often dark dull green in color. Stems and leaf stalks
may turn purple. There can loss of leaves. Plant
maturity is often detayed. Plant will be dwarled or
stunted.

Mg deficiency: Yellawing between jeal
veins, sometimes with reddish brown tints,
Early lea fall

Figure 5.
Responses of plants to nutrient deficiency stress.
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7. Conclusion

Plants encounter many stress factors that negatively affect their growth and
development during their life cycle due to their sessile nature. Damage caused
by stressors; varies depending on the type of plant, tolerance and adaptability.
Considering that plants encounter many stress factors throughout their lives, it is
very important to clarify the stress-related mechanisms and to develop tolerant
species and varieties. Roots are generally subject to more abiotic stress than shoots.
Therefore, the root system can be affected by such stresses much as, or even more
than above ground parts of a plant. However, the effect of abiotic stress factors on
root growth and development has been significantly less studied than shoots due
to limited availability for root observations. Roots are highly able to perceive the
physicochemical constraints of the soil and adjust its development accordingly, so
it has an important impact of maintaining the nutritional and signal functions of
the plant under abiotic stresses. Understanding the impact of stress conditions on
root growth, development, and architecture may offer opportunities for genetic
manipulations. The increase in root branching and root hairs in plants can increase
yield while reducing the need for heavy fertilizer application by enabling plants to
use available soil nutrients more efficiently and increase stress tolerance.
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Chapter 5

Understanding Root Biology for
Enhancing Cotton Production
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Abstract

Cotton is an important commercial crop grown in India. It occupies an area of
about 12.7 million hectares and is grown both in irrigated as well as rainfed tracts. In
such situations, roots are very important organ for plant growth and development,
since they act as anchors, providing mechanical support, and chemical extractors
for the growing plant. Root length density sets the proportion of water uptake
both under wet conditions and dry soils. Cotton plants with efficient root system
capture water and nutrients from soil having these features of longer tap root. It is
widely accepted that breeding efforts on aboveground traits are not sufficient to
the necessary yield advantage. Shifting the emphasis to analyzing the root system
would provide an additional means to enhance yield under changing climatic condi-
tion. Belowground image analysis studies point to the importance of root system
architecture for optimizing roots and rhizosphere dynamics for sustainable cotton
production. In this review, we describe the cotton root biological context in which
root-environment interactions providing an overview of the root growth morphol-
ogy species wise, phytohormone action that control root growth, root anatomical
significance in drying soils, biotic and abiotic stresses involved in controlling root
growth and environmental responses.

Keywords: root architecture, root diseases, stress conditions, root growth, cotton

1. Introduction

Cotton is one of the most important fiber crops cultivated worldwide. India has
the largest cotton acreage approximately 12.7 million hectares and is now the second
largest cotton producing country in the world with 312 lakh bales (each of 170 kg)
[1]. Cotton cultivation in India encounters with several environmental factors like,
abiotic stresses such as drought, flooding, salinity, heat waves and extreme events
that limits cotton productivity and projected climate changes could increase their
negative effects in the future [2]. Plant root system represents an important inter-
face through which plants respond to various environmental factors. The interface
between the environment and plants is multifaceted, with temporally and spatially
dynamic processes affecting the signals that growing cells grasp [3]. Taproot systems
like in cotton plants are composed of a primary root (the taproot) and lateral roots
that emerge from this primary root. The depth of the primary root; the periodic-
ity of lateral root patterning [4], growth rate, and root tip angles of the lateral
roots define the potential volume of soil that can be explored and foraged for soil
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resources by the root system. The sessile nature of plants has made them extremely
sensitive toward the constant flux of surrounding environmental factors. Root archi-
tecture is intimately interwoven with and shaped by the availability of soil resources.
Strategies for enhanced resource acquisition have recently focused on root traits
with the targeted approach for efficient utilization of water and nutrients. [5] pro-
posed that quantification of root traits should focus on phenes, which are defined as
the smallest quantifiable phenotypic elements that cannot be divided further. These
traits can be computed automatically from root images. The role of the root system
under soil moisture stress is receiving much focused research attention recently and
which signify importance of root traits such as root length, root-to-shoot ratios,
rooting habit, conductance of water through the xylem vessels, and drought toler-
ance. The depth of root penetration depends on a number of environmental factors,
but in general the taproot can reach depths of over three meters and can root cells
elongate one to six centimetres per day. In general, the root system traits such as root
length continues to thrive upto young boll formation [6], at which time root length
declines as older roots die. New roots continue to be formed but overall decline in
total length [7]. Roots constitute a critical organ and functionally associated with
crop architecture, lodging resistance, drought resistance and yield potential [8].
Due to low heritability and complexity of root system, breeding for root traits has
been relatively slow associated with its expensive, labor intensive methodology and
time-consuming phenotyping [9]. So far, no report has explored the developmental
behaviour of seedling root traits with molecular markers in upland cotton.

2. Root architecture in cotton

Cotton is one of the taproot crop, where the root system consists of tap root,
lateral root, branch root, hair root and root hairs. Cotton production systems are
exposed to several abiotic stresses during the growing season. In general, plant root
zone expansion is a highly desirable outcome of crop production. Roots are a plant’s
lifeline to water and nutrients that directly impacts cotton productivity. Cotton
is grown under stressful conditions that can limit water and nutrient availability
throughout the growing cycle. Access to water and nutrients is especially critical to
production of the highest quality fiber [10]. Root system architecture is constituted
an assemblage of root phenes which determine the temporal and spatial distribution
of roots in the diverse soils and the ability of the plant roots to absorb water and
essential nutrients from the soil [5]. Cotton plant has a taproot that grows fast and
reaches to a depth of 20-25 cm even before seedling emergence. The total depth of
root system usually reaches about 2.5 meter depending upon soil physical traits such
as soil moisture, soil aeration, soil temperature and genetic potential of variety [11].

In general G. arboreum genotypes can withstand dry spell, intermittent and
terminal drought conditions in rainfed cotton cultivation due deep tap root system
[12]. Cotton is grown in India on soils of varying depths in rainfed tract of central
region. In India more than 95 percent of area is covered by Bt-hybrids and in some
area Bt-hybrids have been found to have shallow roots (30 cm) due to early onset
of reproductive phase. Synchronized boll development in Bt plants altered source-
sink relationship and led to early crop maturity [13]. Due to hard-pan of the soils or
surface irrigation during early seedling stage impacts early root development. Lack
of proper phenotyping strategy for root traits and low heritability for root traits are
the most important constraints. There is need to exploit existing genetic variability
for root traits. Selection for and incorporation of increased seedling vigour and
rapid root system establishment traits may be included into future cotton varieties
to improve drought tolerance [11].
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The studies on characterization of genetic diversity for root traits in cotton crop
with respect to abiotic stresses is very scanty due to inherent challenges in sampling
intact roots from the field condition [11]. Therefore, existence of variability for root
traits among available cotton germplasm/cultivar in response to environmental
stresses indicates the possibility of selecting best genotype to withstand future
change climatic scenario. Extensive research has shown that water uptake into plant
roots occurs primarily in response to water potential gradients between bulk soil
and the root interior. Hence, traits like osmotic adjustment of roots offers poten-
tial for manipulation in the breeding of drought resistant plants [14]. In cotton,
morphological adaptive response to excess water has been seen as formation of
adventitious root and hypertrophied lenticels. Formations of shallow or deep roots
are some of the differential strategies adopted by growing plants to adapt to their
environments. Root length density sets the magnitude of water uptake both under
irrigated and rainfed soils. Thus, root responds to the altered root architecture
that may further impact soil properties by decreasing the development of second-
ary roots. With the help of modern phenotypic tools to understand root system,
studies on adaptive root system architecture can be one of the breeding strategies
to incorporate into modern cultivar with taking advantage of available genetic
variability [11].

3. Development of root systems

Cotton have vertical tap roots [15]; secondary and tertiary roots originates from
the tap roots [16] having a single layer covering of epidermal cells surrounded by
root cortex. The Arrangement of xylem is either tetrarch or pentrach and the endo-
dermis cells surround the stele and pericycle cells of roots [17]. The secondary roots
can grow up to two meters [6]. Lateral roots are mostly shallow [18] and are formed
by a taproot cambial cell. Their radial arrangement depends on number of vascular
bundles (four or five) in primary root [19, 20]. Vascular bundles also have a direct
correlation with taproots and number of lateral roots [21]. Functional significance
of root size is determined by length, surface area, diameter, and volume of roots
[22]. These traits determine growing plants nutrient uptake efficiency under low
nutrient conditions [23]. Root growth and distribution is closely linked with nutri-
ent and water uptake from the soil as most of cotton roots are present in 0-60 cm
depth. Adequate nitrogen (N) supply may enhance the root biomass. However,
application of N in sodic soils reduces the root parameters such as density, volume,
and surface area of cotton roots [24]. Soil temperature of 35°C is optimal for cotton
root growth [25]. Soil water status also influences the root development. Soils with
less water holding capacity have deeper roots than soils with high water holding
capacity [26]. Type of irrigation also affect the cotton root growth as heavy irriga-
tion water supply affects the root system more rapidly during reproductive stage
than normal reduction in root growth during boll development [27].

4. Root traits for phenotyping

Root traits can be used as reliable selection criteria for drought tolerance in
cotton [28]. Several studies revealed that introgression of root traits has been
successfully enhanced crop productivity [29]. Maintaining of cell tissue turgor
reinforced by superior water mining through roots has also been shown to enhance
photosynthetic carbon assimilation and finally water use efficiency. Aquaporins,
the water channels through the cell membrane are gaining significance as a possible
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mechanism to enhance water uptake and transport [30]. They assume significance
in the scenario of drought tolerance as they actively involved in the regulation of
hydraulic conductivities for a better water uptake, CO, transport as well as tight
cell osmoregulation across cell membranes under water stress [31]. More profuse
(higher root length density) and deeper root systems in the soil is often proposed
as desirable characteristics for drought adaptation [11, 31]. Mild and initial-stage
drought stress enhanced root length in cotton, but long-time water deficit reduced
the root activity [32]. Nevertheless, drought tolerant genotypes having large root
system coupled with a low A*C could be the best donor parent for breeding for
abiotic stress tolerance in cotton [33].

5. Root disorder: soil compaction

Generally, compaction is considered to be detrimental to plant root growth;
however, usually not all parts of a root system are exposed to the same degree of
compaction under field conditions, and the capacity of unimpeded parts of the root
system for compensatory growth may result in only the distribution of roots being
changed and not the total length. Compacted soils will have lower root densities and
be inefficient absorbers of water and nutrients. Nutrient deficiencies that may show
up due to restricted rooting and soil compaction. When soils are compacted, bulk
density increases and the number of larger pores decreases, leading to increased
resistance (soil strength) to root growth. Roots growing into compacted soil must
displace soil particles, so that the rate of root elongation decreases as soil strength
increases. In soil without significant compaction, roots will grow through soil pores
and rapidly extend into the profile. Taylor and Ratliff [34] showed that root elonga-
tion rates in cotton (Gossypium hirsutum) decreased with increasing soil strength.
Fine-textured soils physical conditions often limit root penetration and thus effect
on water translocation due to the development of hardpans. Cotton roots become
unable to take advantage of high water holding capacity of fine textured soils. Such
soils required deep tillage for breaking of hardpans below the surface of soils [35].
Low aeration is very common in clayey soil that is caused due to heavy and frequent
irrigations, waterlogging, and soil compaction due to heavy machinery that restricts
the root proliferation and optimal nutrient uptake. Soil compaction on the other
hand significantly decreases cotton productivity because of its deep-rooted nature.
Soil compaction can be reduced by deep plowing and by cultivating deep-rooted
cover crops, which penetrate compacted soil zone besides creating channels.

Early season moisture stress to cotton plants can be the cause of a deeper root
system [36]. During this time, the greatest root deepening is attained; however,
lateral roots carry on growing throughout the rooting zone; therefore, the maxi-
mum size of the roots may not be achieved till 90 days of sowing [37]. Moreover,
cotton has a deep root system with low density of roots in the surface layer of soils
where availability of nutrients is high. Therefore, the rooting system makes cotton
crop more dependent on the subsoil for nutrition. Soils with smaller particles have
less pore space and bind water more tightly owing to capillary forces. This effect is
quantified by the soil matric potential, which is affected by compaction and dry-
ing. In Vertisol soil, wetting and drying cycles in soil cause swelling and shrinking,
respectively, which induce cracks that can extend deep into the soil. Models of soil
chemical and physical properties (such as matric potential, hydraulic conductance,
and hardness) need to be designed that enable prediction of such properties based
on image data [38]. These data can be integrated into plant physiological models
such as SimRoot to predict the effects of the soil environment on root physiology
[39]. The distribution of water in the soil is generally determined by influence of
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gravity. But the porosity of the soil and the presence of hardpans and macropores
influence overall the rate of bulk flow [40]. Some nutrients, such as nitrogen, follow
similar principles as water because they do not bind tightly to clay particles in soil.
Phosphorus is present at very low levels in about 70 percentage of agricultural soils
and in chemical forms that are unavailable to the plant [41].

6. Root morphology of cultivated cotton species
6.1 Root study of cultivated cotton species

Improving of yield and maintaining yield stability of cotton crop, under normal
as well drought stress conditions, is very much essential for the ever-increasing global
population. India is the only country where all the four cultivated cotton species are
being cultivated in rainfed conditions. India experiences drought like situation or
gaps in rains during most critical cotton crop growth period in such areas every year.
Various other factors, such as high temperature, flood, low light, pests and diseases
and nutrients deficiency affects cotton production severely. Environmental fac-
tors, such as drought stress affect growth, productivity, and fibre quality of cotton
[42, 43]. Deep root systems and more profuse root length density in the soil are often
considered as selection criteria for drought adaptation trait. Luo et al. [32] reported
that mild and early stage drought stress enhanced root length in cotton, but at later
stage reduced the root activity as compared to water sufficient plants. Riaz et al. [44]
established genotypic variability for root/shoot parameters under water stress in
cotton (G. hirsutum). This has provoked to study the growth of plant and understand
root architecture of cotton species under laboratory conditions.

Laboratory experiment was conducted at ICAR-Central Institute for Cotton
Research, Nagpur in a newly designed rhizotron made of transparent acrylic resin
sheets to understand root architecture of intact plants of cultivated cotton species.
Transparent acrylic resin sheets filled with soil media facilitate the study of root
systems of intact cotton plant seedlings grown in a rain out shelter. This method
eliminates destructive root sampling and makes possible continuous observations
and periodic tracing of undisturbed root systems of the seedlings. Megha et al. [45]
evaluated G. hirsutum genotypes for water stress by slanting glass plate technique.
The present rhizotron assembly was constructed using two transparent acrylic resin
sheets of sizes, 2.44 x 1.22 m (Figure 1). The soil media of one inch thick was sand-
wiched between two transparent acrylic resin sheets in an aluminium framework
having four compartments for root observations. The two plants of each cultivated
cotton species, G. arboreum (Phule Dhanwantari), G. hirsutum (NH 615), G.
barbadense (ND 3B) and G. herbaceum (Jayadhar) were sown in each compartment
at a distance of 30 cm. The experiment was repeated in kharif 2017 and 2018 season
with normal watering at field capacity. The periodic observations of root and shoot
growth were recorded until plant matures at 60 days. The 60 days old seedlings
were taken out to study the root growth parameters and density. The composition
of the soil was a sterilised mixture of sand, soil, vermicompost and FYM in 1:2:1:1
ratio. The chemical properties of the soil media used for the experiment was 7.33
pH, 0.47 EC, 0.67% OC, 332.5% N, 21.73% P, 8.73% S, 0.82% Zn, 1.58% Fe, 1.78%
Cu, 7.69% Mn and 1.33% B.

The results of the experiment revealed that root growth of G. arboreum and G.
hirsutum was more and faster than the root growth of G. barbadense and G. herba-
ceum (Figure 2). The dry matter accumulation in shoot and root system also shows
same trends. The initial root growth was faster till 35-40 days, a stage of squaring
cotton plant followed by slow growth towards 50th day making a sigmoid pattern of
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Figure 1.
Acrylic resin sheet rhizotron assembly for seedling roots showing of four cultivated Cotton species.
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Figure 2.
Root length after every 5 days interval of cultivated cotton species.

roots growth. The secondary lateral root initiation takes places just below the crown
and same pattern sequentially follows from top to bottom of root. The cap portion
and 20-25 cm above remain devoid of lateral roots during pre-flowering growth
period. Generally, the root growth after flowering is declined over the period of
time. The root density was highest in first 30-45 cm depth. Reduction of root length
density at 42 and 70 days after emergence has been reported by Plaut et al. [46].
Cotton root growth follows a typical sigmoidal curve and continues to grow up to
flowering [6]. The tap root first tries to penetrate the soil as long as it can in the first
week of its growth. Due to its tap root system, the development of lateral roots and
overall root density depended on the available soil volume of water and nutrients.
The growth of course roots serves as function of anchorage and typically establish
overall root system architecture, controlling ultimate rooting depth, and the ability
of plants to grow into compacted soil layers [47]. The number of lateral roots
produced depends on the number of xylem poles in the taproots of cotton seedling
[48]. As the number of vascular bundles increased, high branching intensities of
lateral roots also increased in 7-day-old seedlings of exotic cotton [21]. The root
architecture, growth and density can be visually seen in the Figure 3.
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Figure 3.
Root growth of four cultivated cotton species after 60 days after sowing.

Shoot Growth: After 60 days of sowing the plants were taken out of frame to
study the shoot and root length, stem thickness, shoot and root dry weight and
their ratios. The aerial growth was good in all the species and the fresh weight was
highest in G. hirsutum (1.6 kg) followed by G. barbadense (1.2 kg), G. arboreum
(0.4 kg) and G. herbaceum (0.4 kg). The stem thickness was highest in G. herbaceum
followed by G. hirsutum and lowest was in G. barbadense (Figure 4).

Root Growth: Similarly, the below ground root growth was robust in all the
species (Figure 3). The root growth was good in all the species and the fresh root
weight was highest in G. hirsutum. The root thickness from crown to 35 cm was
highest in G. hirsutum and G. arboreum. However, the crown portion was thickest
in case of G. herbaceum and uniformly thinnest and tapering at later root growth
among all the species (Figure 5). Root thickness was more uniform upto 15 cm and
was tapering afterword in G. barbadense.

Root: Shoot Ratio: Root system is a key trait of interest in relation to acquisition
of soil resources towards development of remainder of the plant, either relative
to leaf area, shoot, or whole plant size. Accordingly, root: shoot ratio changes
with plant growth and development in addition to shifting in response to limiting
resources above versus below ground. Among all the cotton species, root biomass or
root dry weight remained highest in case of G. barbadense with dry root: shoot ratios
of 0.81 followed by G. hirsutum (0.64), G. herbaceum (0.59) and G. arboreum (0.48)
(Figure 6). More profuse (higher root length density) and deeper root systems
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Root diameter, mm of four cultivated cotton species
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in the soil are often proposed as desirable characteristics for drought adaptation.
McMichael and Quisenberry [49] showed significant variability in the dry weights
of root systems of sixty-day-old plants of twenty-five cotton genotypes ranging
from exotic accessions to commercial cultivars.

6.2 Root growth and development under abiotic stresses

6.2.1 Drought

In most of crop plants drought stress is perceived initially by the root, which
continues to grow underneath the soil even though shoot growth is inhibited under
water deficit conditions [50]. Root temporal and spatial growths in soil matrix
are closely linked with aboveground shoot traits. Water stress affects more to the
growth of lateral roots than the growth of primary root, mainly by suppression of
the activation of the lateral root meristems [51]. Increased root length in the soil
under drought stress helps to get water from deeper soil layer [52, 53]. An increase
in root density in soil layer (70-180 cm) in drying soil profile shown in cotton by
[54]. More profuse (higher root length density) and deeper root systems in the soil
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are often proposed as desirable characteristics for drought adaptation [11, 31]. Luo
et al. [32] described response of mild drought stress at initial-stage enhanced root
length in cotton, but long-time water deficit induced the root activity as compared
to control plants. In another study, biotech cotton plants were more tolerant to
drought stress, with a better efficient root system than in wild type [55]. Similarly,
the transgenic cotton plants harbored Arabidopsis that enhanced drought tolerance
1/homodomain glabrous 11 (AtEDT1/HDG11) gene had well-developed roots in
addition to other drought-tolerant features [56].

Roots sense the edaphic water stress, transmit chemical signals to the above
ground portion ie.shoots, and maintenance of root growth despite reduced water
availability through water foraging [57]. The transpiration rate and stomatal
conductance of plants are reduced during water deficit, and they are stimulated by
chemical and hormonal signalling before hydraulic signalling in the roots. Various
phytohormonal signalling molecules such as auxin and cytokinin are produced in
the roots and play a crucial role in shoots during the drought stress in plants [10].

The water content of the soil can have a significant influence on rooting depth
and root length density and therefore on the overall function of cotton roots [54].
McMichael and Lascano [58] demonstrated presence of “hydraulic lift” phenom-
enon in cotton roots where water is transported to the roots in the drier upper soil
layers through the root system. The water moves from the wetter lower layers to
the upper layers to maintain the viability of the roots in the drier layers to reduce
overall root stress. In general, soils with high water holding capacity have shallow
roots and with low water holding capacity have deeper roots [26]. Klepper et al. [54]
reported change in root morphology under drying soil. Initially more roots were
in the upper soil profile, but as a result of the death of the older roots in the upper
soil layer due to the soil drying and production of new young roots at deeper layer
results in increased rooting density with depth. Radin et al. [27] reported that long
duration irrigation cycles makes more rapid deterioration of the root system during
periods of boll development. Carmi et al. [59] showed that subsurface irrigation
such as drip have more profuse growth of roots within one millimeter in diameter
of size concentrating nearer to emitters site. Carmi and Shalhevet [60] reported
that dry matter production in root in less affected than shoot growth under dry-
ing soil condition. In other studies, changes in rooting growth pattern based on
maturity of cotton plants and availability of water distribution and in response to
progressive drying soil [61]. This implies that changes in the root dry weight/root
length relationships can change in response to changes in soil moisture. In terms
of water extraction, Taylor and Klepper [62] observed that water uptake in cotton
was proportional to the rooting density as well as the difference in water potential
between the root xylem and the bulk soil. Taylor and Klepper [6] showed that both
deep roots and shallow roots were effective in extracting water from the soil. Radin
[63] showed that the hydraulic conductance of cotton roots declined at cooler tem-
peratures which would affect water uptake. Oosterhuis [64] reported under mild
drought stress in cotton decreased activity of root hydraulic conductance, influence
on axial and radial movement of water and overall impact of water on root develop-
ment. Field study on root traits using mini-rhizotrons has shown that rainfed cotton
had tendency to grow at deeper depth than irrigated cotton [65, 66].

These results suggested that cotton cultivars express large differences in root
length distribution under water stress, and therefore, deep rooting cultivars should
be selected within environments under low rainfall regions. [67] reported signifi-
cant role of osmotic adjustment with the growth of a root system in drought stress
condition under field. In cotton, drought stress limits root development, shoot traits
and fibre quality [68]. Drought affects the root growth which in turn may leads to
reduced biomass accumulation in cotton. Cotton undergoing water deficit explores
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moisture and nutrients by deeper root penetration [69]. Cotton showed some adap-
tations toward drought stress effect with increased root length and decreased shoot
length; the enhanced root/shoot ratio indicates water assimilation and enhanced
drought tolerance [68]. The capacity to form a greater number of lateral roots
increased root surface area for water absorption which is desirable traits for drought
adaptation [70]. Drought treatments reduced the GA content of roots; upon
rewatering GA content and CAT activity increases [71]. Overexpression of GhNAC2
suppressed the ethylene pathway and activated the ABA/JA pathway which leads

to longer roots, larger leaves, and hence higher yield in cotton under drought [72].
ABP9 gene was introduced into Gossypium hirsutum L and its over expression con-
fers drought tolerance in cotton by better root systems, higher germination, reduced
stomatal aperture, and stomatal density [73]. Abdelmoghny et al. [74] described
the analysis of gene expression of fourteen drought stress related genes under water
stress indicated that both ABA dependent and ABA independent mechanisms
operate differentially in studied genotypes for drought tolerance. The G. hirsutum
genotype 1C325280 exhibited ABA mediated expression of stress responsive genes.
Molecular basis of drought tolerance in IC357406 and 1C259637 genotypes could

be attributed to ABA independent pathway. Based on morpho-physiological and
biochemical screening, the genotypes 1C325280 and IC357406 were identified to
possess efficient root traits.

6.2.2 Waterlogging

Waterlogging creates a hypoxic condition [75] and cotton is most susceptible to
O, deficiency [76]. Moreover, waterlogging causes reduction in cotton yield [77]
due to reduced plant growth and nutrient uptake [78]. The excessive water-logging
particularly with younger plants is responsible for root damage due to lack of
oxygen, yellowing of leaves due to gaseous hormone ethylene production or poor
nutrient uptake and wilting of plants, increased square abscission and shorter inter-
nodes [79]. Excess water in waterlogged soil promotes the fruit and boll shedding in
cotton due to hypoxia in the root zone. Invitro studies show that root apices must be
at or above the critical oxygen pressure for normal root growth and extension [80].
The O, concentration threshold value below which root expansion begins to decline
depends on the critical oxygen pressure for respiration, which in turn is influenced
by the characteristics of the tissues through which O, must diffuse the O, affinity of
oxidases [81]. In field-grown cotton, root growth is a function of O, consumption in
the soil by roots and microbes [82]; growth inhibition starts under mildly hypoxic
(02, 10%) conditions. Short term eexposure of cotton plants to transient (2-3 min)
anoxia caused transitory cessation of tap root elongation but it resumed activity
as the O, supply was normalize. But continues exposure for example 3 h of anoxia
resulted in complete death of the terminal apices of cotton roots [83]. Armstrong
and Drew [81] proposed that inhibited energy production in reduced oxygen supply
condition of root, inhibits cell division which results into deterioration in absorp-
tion of water and nutrients from the soil. Zhang et al. [84] also demonstrated that
despite up-regulation of fermentative genes, waterlogging also induces oxidative
damage to cotton root tissues.

In a comprehensive study by Davies et al. [85] reported waterlogging tolerance
of different plant species confirmed that primary tolerance mechanisms reside in
roots not in shoots. The root system plays a pivotal role in root-shoot communica-
tion to waterlogging through mechanism of (i) Water and nutrient uptake from
soils and supply to the aboveground organs; (ii) Synthesis of endogenous hormones
regulating plant response to hypoxia. Root structural traits and processes strongly
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depend on edaphic factors. Root internal cellular arrangement impacts shape

and growth of cortical cells, path lengths, tissue level oxygen demands and radial
losses, and shape of the root apical region [86]. Within a single root axis of a plant,
root apices and the stele are potentially anoxic while the outer cortical tissues may
continue to be aerobic [87]. Factors controlling these tissue-specific and genotypic
variations in O, status are not well understood in cotton, where phenotypic varia-
tion in anatomical features such as radial dimensions and biophysical characteristics
of roots cells might yet be exploited. Initiation of morphological adaptation like
adventitious root primordia is controlled by an interaction with production of
gaseous hormone ethylene [88]. Ethylene accumulation also triggers various cellular
adaptive traits such as cortical cell senescence, root porosity and secondary growth
of phelloderm in dicot species [89].

Eudicotyledons species such as cotton do not display the same widespread
tendency to form aerenchymatous roots as that of monocots [90]. However, there
are other potential adaptations to submergence tolerance, with cotton enhancing
survival in short-term deficient oxygen supply by developing lenticels [91]. Parawilt
or sudden wilt in the cotton field are noticed under drought conditions that are
followed by heavy rains or irrigation. In studies at ICAR-CICR, Nagpur, Gotmare
et al. [92] reported genotypic differences were observed in terms of morphological
adaptations such as lenticel and adventitious root formation when cotton plants
subjected to waterlogged conditions. Agronomic practices such as sub-soiling prior
to planting to improve root development and increase sufficient soil O, is necessary
for root development [93].

6.2.3 Salinity

Cotton is relatively salt tolerant and can tolerate salinity up to 7.7dS m™ [94]
beyond that growth declines when the plant is exposed. Germination and emer-
gence [95] and seedling growth [96] are most salt-sensitive stages of cotton. Salinity
induces nutrient imbalance by high accumulation of ions such as Na* and CI” with
lower concentration of K*, Mg®*, and Ca”" ions. Salinity also caused altered growth
and root expression. Cramer et al. [97] observed that the growth of the taproot of
cotton seedlings was reduced in the presence of NaCl but that the effects could be
alleviated by the addition of Ca”" to the growing media.

The elongation of the taproot cotton seedlings was reduced to 60 percentages
when roots were subjected to 150 mol/m? NaCl salinity stress, Zhong and Lauchli
[96]. Salinity stress causes morpho-physiological alterations in cotton by reducing
the leaf and root weight, root growth, proline, and chlorophyll contents, stomatal
conductance and net photosynthesis [98]. Salinity usually reduces the root growth
due to inhibition of root length and reduction in number of secondary roots [99].
Leidi [100] demonstrated that high salinity stress condition constrained the growth
of primary root length and under mild salinity stress also inhibited the length of
secondary roots. Plant growth heavily relies on ionic influx in the root system along
with their translocation toward shoot part. With the increase in the salinity, root
growth reduced significantly in different soils but the suppression in root growth,
fresh and dry weight was more in clay and loam soils [101]. Salinity has ddecreased
root length and delayed secondary root growth have been reported [97]. Sodium is
also a competitor of calcium to limit its uptake by cotton roots [102]. Cotton is salt
tolerant, but its vegetative growth is severely affected on saline soil. Shoot is more
sensitive to salt than roots. Reinhardt and Rost [103] showed that high salinity stress
reduces cellular structural features such as root width and length of metaxylem in
cotton growing seedlings which increase with increase in plant growth.
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These altered changes in root morphology along with changes in osmotic rela-
tionships as a result of high salt, can result in a significant reduction in root growth
and root activity to reduce plant productivity.

6.2.4 Heat stress

Cotton are photosynthetically more tolerant to drought and heat that requires
a mean minimum temperature of 12-15°C and mean maximum temperature of
20-30°C for better growth [104]. The minimum temperature for seed sowing is
15.5°C [105] and optimum temperature of 35°C for root growth and development
[106] for irrigated, while thermal kinetic window (TKW) is 23.5-25°C for rainfed
cotton. The lowering of temperature from 30 to 18°C causes reduction in hydraulic
conductivity of roots, resulting in reduced proliferation of roots [107]. Cotton root
growth is maximum at day/night temperatures of 30/22-35/27°C and rise in tem-
peratures to 40/32°C alter root distribution pattern resulting in limited downward
extension of roots [108, 109]. Generally, abiotic stresses such as heat and drought
stress restricted the root growth, plant height, boll development, and fiber quality.
The root growth is faster at initial stages than shoot growth. McMichael and Burke
[106] reveal that soil with a temperature range of between 20 and 32°C is suitable
for proper root growth and development. The elevated root temperature between 35
and 40°C affects the root hydraulic conductivity, affect nutrient uptake, reduce hor-
mone synthesis and translocation in different part of the plant [110, 111]. It is well
established that the site of cytokinin originates in roots and the most sensitive pro-
cess in growth and development of plants [112]. As compare to shoot temperature,
root temperature are more critical because of less adaptable to extreme temperature
variations [113]. Bolger et al. [107] also showed that conductance decreased when
the root temperatures were reduced from 30-18°C. These results would suggest that
under certain conditions the water uptake by cotton roots may decrease as a result
of low soil temperatures even though water was not a limiting factor.

7. Plant hormones: the actions that control root growth and development

Phytohormone auxin is a small tryptophan derivative that induces a battery
of developmental responses in plants. But auxin rarely acts alone. Cytokinin, an
adenine derivative is required for vascular patterning, and hormonal signalling that
pattern the root vasculature in crop plants [114]. During drought stress abscisic
acid (ABA) plays a crucial role as a signalling molecule from its production site
(roots) to the leaves for closure of stomata [115]. The root system of crop plants is
altered by intrinsic developmental signals and diverse environmental cues. Trigger
for to activate internal and external environmental cues on phytohormones to
regulate the formation of a highly plastic and adaptive root system [116], which
sustains the growth of plants even in unfavorable conditions. Several recent stud-
ies on hormonal regulation suggest that cross-talks among different hormones are
essential for the regulation of root development, and auxin plays a central role in
these processes. Although two phytohormones, auxin and cytokinin are the key
regulators of root development have been extensively studied, the roles of other
phytohormones still need to be further characterized to give us a full view of root
development. Hormones appear to control root growth by regulating cell division
and/or expansion [117, 118]. Phytohormone regulate root growth processes such as
cell proliferation, differentiation or expansion in distinct tissues. New studies have
highlighted a new target zone for hormonal regulation is transition zone found
between the zones of proliferating and expanding root cells. Jasmonic acid (JA)
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promotes lateral root formation by directly inducing the auxin biosynthesis and/or
modulating PIN2 accumulation on the plasma membrane [119]. A growth retardant
mepiquat chloride (MC), a gibberellin synthetic growth inhibitor regulates the
plant growth upon soaking seeds or foliar spraying of leaves. Response of MC on
cotton plants results into shorten internode elongation, reduce main stem nodes,
and decrease plant height, leading to more compact plant architecture and increase
numbers of lateral roots. Over view of phytohormones involve in root structure and
function regulation shown in Table 1.

The major areas of PGR research are to improve defoliation characteristics
and control rank growth in cotton. Roots play an essential role in plant growth by
acquisition of water and nutrients from the soil. Endogenous hormone auxin, which
is transported and regulated by auxin efflux transporters, has been reported asa

Hormone Production Transport Site of Action Reference
site

Auxin (IAA) Shoot Xylem & Root meristem, [120]
meristem Phloem dynamic regulation of

root meristem size.

Abscisic acid (ABA) Roots Xylem & Regulate root growth [115, 121, 122]
Phloem and LR branching
Cytokinins (CK) Root tips & Xylem & Cell enlargement, [98, 123]
Developing Phloem amount of CKs
seeds reaching the shoot will
reflect the extent of
the root system
Gibberellins (GAs) Root meristem Xylem & Endodermis of the [124]
Phloem root elongation zone
Ethylene Tissues Moves by Adventitious root [125]
undergoing diffusion formation
senescence or from its
ripening site of
synthesis
Brassinosteroids Root Xylem Lateral root [126-128]
(BRs) development
epidermis
Strigolactones (SLs) Root Xylem Shoot branching [127,129, 130]

regulation, positive
regulators of primary
root elongation and
negative regulators
of adventitious root

formation
Jasmonic acid (JA) Plasma Xylem & Promotes lateral root [119]
membrane Phloem formation
p-Cyclocitral Endogenous - Promote cell divisions [131]
(B-carotene-derived root compound in root meristems and
apocarotenoid) stimulate lateral root
branching
Karrikins (KARs) Root ligand - Root hair elongation, [132]
smoke-derived root density,
butenolides
Table 1.

An overview on the phyto-hormones involved in the regulation of root meristem size and the pivot of root
growth.
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positional cue for root cell type determination [133]. Comparative gene analysis of
G. hirsutum and G. arboreum indicated that PIN1-3 and PIN2 may play an impor-
tant role in root development. GhPIN1-3 and GhPIN2 are required for cotton root
development, which can be further used in breeding programs to selecting geno-
types that are lodging-resistance [133]. The current studies showed that the major-
ity of cotton PIN genes contained auxin response elements (AuxREs) and salicylic
acid responsive elements in their promoter regions, which can be up-regulated by
exogenous hormone treatment [134].

8. Mechanism that determine the root structure and architecture
and soil resource acquisition: eg. Nitrogen

Plant nutrient absorption and uptake is the process successfully executed by
young roots, especially by the root hairs. The absorption of water through roots
is always in a continual state of flux and further, the uptake of water by the cells
generates a pressure known as turgor. Root system architecture plays a critical role
for crop growth by providing above ground mechanical support and controlling
water and nutrient acquisition. Lateral roots, the major part of the root system in
terms of root length and number, have crucial physiological capacities for water and
nutrient uptake, and serve as the primary interface in response to heterogeneous
soil environments. Lateral root initiation originates from asymmetric cell division
of xylem pole-pericycle cells induced by auxin-accumulation [135].

Efforts to increase flowering and boll retention cannot be realized unless the
plant has the ability to supply sufficient nutrients to these sinks to cater their
demands. Alteration of root: shoot (i.e. higher root: shoot) ratios could potentially
benefit the plant by providing a larger root mass to meet the needs of the aboveg-
round biomass. The total plant root length continues to increase as the plant devel-
ops from seedling to until the maximum plant height is achieved and boll begin to
form [6, 136]. The root then begins to decline as plant height enter into reproductive
phase and older roots die. Synchronization of plant root activity with boll produc-
tion is critical both in variety and Bt-hybrids [13]. Increased root activity during
the later stages of boll filling is important for supplying needed nutrients and water
to the developing cotton boll, but prolonged activity can hamper with late-season
vegetative growth at cut out stage near to or following defoliation and problem of
regrowth after application of harvest aids.

Plant root growth is closely linked with shoot growth, both of which are affected
by N availability in the soil. In addition, roots in the surface soil were more strongly
affected by availability N than roots distributed in the deeper soil layers. Root trait
such as total root length, total root surface area, and root biomass in the top soil
layer (0-15 cm) was significantly correlated with shoot and boll biomass. Next,
60-75 cm layer, total root length, total root surface area, and root length were sig-
nificantly positively correlated with seed cotton yield. The application of a moder-
ate level of N markedly increased total shoot biomass, boll biomass, and seed cotton
yield [137]. Nitrogen plays an important role in plants root and shoot communica-
tions during plant growth and is critical for maximizing crop productivity [138].

Insufficient N fertilizer application causes premature senescence, while excessive
application causes excessive vegetative growth and increases soil pollution. Root
growth is significantly affected by N fertilization; especially low N levels enhanced
root elongation [139, 140]. Zhang et al. [141] suggested that N can affect the distribu-
tion of roots in the soil. Igbal et al. [142] showed that for improving N use efficiency
in cotton the morphological characteristics of the root system is an important feature.
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Luo et al. [143] demonstrated that cotton root activity in the soil at a depth
of 40-120 cm was significantly correlated with canopy photosynthetic rate and
significantly affected by nitrogen levels. N-sensitive period of cotton growth
are flowering and boll period [144]. Root length and surface area are important
traits for describing root system architecture [145]. Moderate available N could
improve assimilate transport from source to sink, which could increase biomass
in the fruiting parts [146]. The modulation of root development by N avail-
ability has great agricultural importance and its understanding provides the
basis for improvement of cultivars with better root architecture. Recent studies
demonstrated that arginine is the precursor of nitric oxide in roots catalysed by
nitric oxide synthase [147], and nitric oxide plays a key role in the lateral root
formation. In Arabidopsis reduced activity of arginase may increase synthesis
of nitric oxide contents in roots and therefore resulted into improved forma-
tion of the lateral roots in transgenic plants. Wang et al. [73] reported use of
CRISPR/Cas9-mediated editing of arginase genes in cotton in upland cotton R18,
orthologous arginase genes (GhARG), Gh_A05G2143 and Gh_D05G2397, in the
A and D chromosomes. CRISPR/Cas system was efficient in producing targeted
mutations in the selected genes which improved lateral root system under both
sub-optimal nitric conditions consequent adaptation of cotton on a different type
of soils [70].

9. Root cellular anatomical significance in plant growth and
development

9.1 Anatomical

McMichael et al. [17] showed that the increased root xylem cells in radial cellular
fashion in the vertical taproot of few exotic cotton germplasms resulted in a signifi-
cant increase in total xylem cross-sectional area and number of lateral roots which
may be associated with drought tolerance in plants with the increased xylem vessels.
Oosterhuis and Wullschelger [10] supported the finding that increased water flux
was associated with increased xylem cross sectional area. Elevated number of xylem
cell files in the primary root did not contribute to the decrease in axial resistance
to water movement. The increased number of lateral roots cells associated with
increased vascular bundles resulting in increased xylem vessels may be important
characteristics associated with drought tolerance in plants with the increased xylem
vessels which may lead to improved yields. The root tip grows by adding new root
file cells along the axis and enlarging at the tip, forming the tap root. The root tip
produces a tap root of 12 to 20 cm by the time cotyledons emerge from the soil
[148]. Lateral roots initiate inside the tap root tissue and grow horizontal into fresh
soil for nutrient and water uptake. Because these young lateral roots proliferate
near the surface in warm, nutrient rich soil, they are critical for seedling vigour.

The origins of lateral roots are from cambium of the tap root and are arranged in
radial fashion depend upon the number of vascular bundles present in the primary
root. Crop roots are the main organs that primarily sense and respond to the biotic
as well as abiotic stresses [88]. A high number of lateral roots would increase the
total root surface volumetric area of the plant that may potentially improve the
overall growth, fiber length, yield, and stress tolerance against severe conditions.
Therefore, genetic engineering of root traits especially lateral roots makes cotton
plants to enhance yield and fibre contents but will also make cotton crop tolerant to
abiotic stresses [73].
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9.2 Root tip border cells and pathogens

The number of border cells that can be produced daily by a given root is con-
served at the plant family level, and can range from a dozen for tobacco to ten
thousand for cotton. During cell differentiation of root system, the border cell
production of tap roots, branch roots and secondary roots are identical [149].
Current evidences and results have suggested that border cell production in dif-
ferent plant species is tightly regulated process including cotton and govern by
endogenous and environmental cues [149]. Upland cotton (Gossypium hirsutum)
discharges 8,000-10, 000 root border cells per 24 hours. The cotton root tip sur-
rounding border cells can diffuse after dissolved in liquid water for 30 sec, showing
one days’ accumulation of border cells (~10,000) surrounding the tip. Border cells
of cotton specifically attract zoospores of Pythium dissotocum (Root Rot), which
germinate, penetrate and kill the cells within two minutes. The chemotactic behav-
ior of zoospores of Pythium dissotocum and Pythium catenulatum were attracted to
border cells of their hosts, Gossypium barbadense and G. hirsutum but unresponsive
to non-host plant species [150].

9.3 Root diseases of cotton

Other than abiotic stresses faced by cotton plants during cotton root develop-
ment, however, biotic stresses that might be categorized as root stress, would be the
infection of roots by plant pathogens such as Verticillium wilt (Verticillium dahliae
L.), and other pathological organisms. Although these organisms live in the soil,
they can have a more direct effect on root system growth as contrasted to edaphic
factors such as water and nutrient stress. King and Presley [151] reported that a
disease of cotton that was characterized by a swollen taproot and internal black rot
of the vascular tissue was found in USA (Arizona) in 1922. The plant pathogenic
fungus was identified as Thielaviopsis basicola and was found to be the most damag-
ing to cotton root system in the seedling stage that causes black root rot. Detailed
study of black root rot infection of cotton roots and their interaction with edaphic
factors were showed by [152].

Cotton Verticillium wilt caused by Verticillium dahlia fungus during seedling
stage of crop growth that causes significant yield losses in most of cotton growing
areas [153]. V. dahliae is a soil-borne pathogen, which infects the plants through
root system causing stunted growth, wilting and defoliation, thus incurring 15-70
percentage yield losses [153, 154]. Liu [155] reported the effect of VAM (vesicular
arbuscular mycorrhizae) on Verticillium wilt in cotton. The data indicated that
when the cotton roots are colonized by VAM, the incidence of Verticillium is reduced
resulting in improved yields.

9.3.1 Root rot

The root rot disease caused by Rhizoctonia solani Kuhn and Rhizoctonia bataticola
(Taub) Butler is among the most serious diseases of cotton at seedling and growth
stages in all the cotton growing region of India. However, the disease is more promi-
nent in the north India including Panjab, Haryana, Rajasthan and western regions
of Uttar Pradesh. The pathogen attacks both G. hirsutum and G. arboreum species
of cotton. The disease first occurs in June on seedling stages and becomes severe
during July months in North and central India. The fungal hyphae are septate and
relatively thick in size. R. bataticola produces pycnidia, known as Macrophomina
phaseolina (Maubl.) Ashby. The sexual stage of R. solani is Thanatephorus cucumeris
(Frank) Donk which produces basidia and basidiospores (sexual spores). The soil
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moisture of 15-20 percent and temperature range of 35-40°C is most favourable
for the pathogen infection. The vast diversity has been reported in R. solani and
R. bataticola isolates with host range of more than 400 hosts for R. bataticola and
more than 150 hosts range for R. solani [156].

Complete wilting of the affected plants and drooping of leaves from top to
bottom with sudden wilting is the characteristics symptoms of root rot disease
(Figure 7). In the field, diseased may occur in isolated spots and later develops into
more or less in circular patches. Earlier symptoms appear on roots including main
roots and brown to black discoloured infection on the roots with sore-shin and the
diseased plants can be easily pulled out from the soil (Figure 8). The germinating
seedlings and young seedlings are attacked by the pathogen to hypocotyl causing

Figure 7.
Diseased cotton plants showing black discolored infection on the voots with sove-shin.

Figure 8.
Cotton root vot disease.
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black lesions, stem girdling and finally death of the seedling. Generally, roots of
affected plants shreds and become yellowish in colour as compared to disease free
plants. In case of severe infection, higher numbers of dark brown coloured sclerotia
bodies are seen on the stem or on the shredded bark. Similarly, microsclerotia may
be observed on roots and stems in case of R. bataticola (M. phaseolina). The disease
is mainly soil-borne and the pathogen can survive in the soil as microsclerotia

(R. bataticola) and/or sclerotia (R. solani) for many years in the field. The secondary
infection spread through sclerotia and/or microsclerotia which are disseminated by
cultural operations, irrigation water, and farm implements [157].

It was observed that the disease progressed faster in G. arboreum as compared to G.
hivsutum. It is also noticed that there is no clear relationship between soil moisture and
soil temperature in relation to root rot incidence. However, there was increased root
rot incidence in case of increase or decrease levels of soil moisture. This is due to the
facts that causal agents (variants) are involved in root rot disease with different fungal
biology and favourable condition at particular infection stages of pathogens [158].

Seed dressing with recommended fungicides is an important strategy for the
management of root rot and seedling diseases with any one of the fungicidesi.e.
Fluxapyroxad 333 g/l FS, Tetraconazole 11.6% w/w (12.5% w/v) SL, Carboxin
37.5% + Thiram 37.5% DS and Thiram75% WS at the recommended doses. It was
observed that biocontrol agents T. harzianum, T. viridae and G. virens proved effec-
tive against R. bataticola. Development and screening of resistance varieties are very
important for the management of root rot diseases. Whereas, integrated disease
management practices including resistant varieties bioagents, crop rotation with non-
host crops, deep tillage during summer, FYM, amendments with organic matter and
fungicides are the key factors in the management of root rot disease of cotton [159].

Other studies have shown that infection of cotton roots by nematodes may
impact the growth and development of the plant with infections similar to water
stress. This conditions favours reduction in hydraulic conductivity and increases
drought resistance in plants [160].

9.3.2 Plant pavasitic nematodes

Root-knot nematodes (RKN): Plant parasitic nematodes, especially root-knot
nematodes (RKN), are the hidden enemy of crops. The estimated overall annual
yield loss of world’s major crops due to damage by phytoparasitic nematodes has
been reported to the extent of 12.3% [161]. The national loss due to plant parasitic
nematodes in 24 different crops in monetary terms has been worked out to the tune
of 21068.73 million rupees [162]. Amongst all, the root-knot nematodes Meloidogyne
incognita is the most pathogenic species with a host range spanning over 300 plant
genera in India. In field crops the yield losses due to root-knot nematode are esti-
mated to be in the range of 10-27% [162, 163]. Nematode problems are exacerbated
in the tropics as climate conditions are ideal for nematode development and are now
compounded by agricultural practices as monoculture of susceptible cultivars that
favour population development and thus crop damage. Plant parasitic nematodes
cause losses in cotton crop by feeding on roots and are also involved in diseases
complexes resulting in yield reduction. About 10% of agricultural production
worldwide is lost due to nematode damage. The nematode infection causes stunt-
ing, yellowing, chlorosis, mid-day wilting, reduced boll size and reduction in lint
percentage. The nematode infected plant roots are shorter with fewer roots and root
hairs. Appearance of patches of stunted plants in field is indicative of nematode
damage. These patches grow in diameter every year in nematode infected fields.

The root knot nematode, Melidogyne incognita, of cotton is one of the most
important plant parasitic nematode and has been reported on Bt cotton in north
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Figure 9.
Roots of cotton infected with Meloidogyne incognita showing heavy root galling on entire root.

India (Figure 9). On national scale cotton crop losses ranging between 12.3-20.8%
have been attributed to M. incognita [164]. Amongst six races of M. incognita
documented so far [165], only race three and four are known to attack cotton. Race
diversity of M. incognita across India has been recorded and race two, three and five
have been reported predominantly on different crops in Maharashtra [166-168].
Race three is reported from Karnataka and Tamilnadu on cotton [169] while race
four has been recorded on cotton from north India [170]. The root knot nematode
produces galls on roots and its size varies with the host species. Comparatively
smaller galls are produced on cotton roots. Root-knot nematode Meloidogyne incog-
nita, a sedentary endoparasitic nematode, is an obligate parasite. During invasion,
the nematode secretes enzymes including CAzymes, cellulases, xylases, expansins,
chorismate mutase, proteases, galactouronase, pectate lyase etc. which have diverse
functions ranging from softening of plant cell walls to inducing differentiation of
host root cells into multinucleate giant cells that form a permanent feeding site.
Feeding cells are important organ of nematode for successful attachment and devel-
opment. Nematodes increase demand on plant energy resources while reducing the
supply and prevent plants from getting enough water and plant food. Symptoms

of nematode injury on cotton root can get expressed on above ground plant parts

as weakened plant condition, leaf chlorosis, less ability to tolerate adverse condi-
tions, reduced boll size and reduced lint percentage. Root knot nematode is also
involved in disease complex with Fusarium. The intensity of Fusarium wilt increases
in nematodes infected fields. The reniform nematode (Rotylenchulus reniformis)

is another dominant species causing damage to cotton in central and south India.
Pericycle and phloem tissues of cotton roots are damaged by immature female of
reniform nematode.

9.4 Belowground data revolution

The improvement of belowground plant efficiency has potential to further
increase crop productivity. However, hidden half i.e., plant roots studies are chal-
lenging, due to its underground nature and difficult to screen. Several tools for
identifying root anatomical features and image analysis software have been pro-
posed (Table 2). However, the existing tools are not fully automated and require
significant human effort to produce accurate results [202-204].
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1. Fully automated Ez-Rhizo [171]
reconstruction software Rhizo scan (172]
Dynamic Root [173]
Root Reader 3D [174]
GrowScreen Root [175]
Root Track [176]
Root Trace [177]
NM Rooting [178]
REST [179]
DIRT [180]
GIA Roots [181]
GLO-RIA [182]
Root Scape [183]
RhizoVision [184]
2. Semi- automated Root Nav [185]
reconstruction software Root System Analyzer [186]
Smart Root [187]
Root Reader 2D [188]
DART [189]
3. Database GRooT [190]
sROOT [191]
FungalRoot [192]
Fun™" [193]
MycoDB TraitAM [194, 195]
FRED [196]
TRY [197]
TropiRoot [198]
Open Traits [199]
CLO-PLA [200]
Rhizopolis [201]
Table 2.

List of voot system architecture image analysis tools and database.

10. Conclusions

Studies of cotton root biology bring challenges and opportunities to understand
the intimate interaction between plants and their environment. Root systems use a
variety of mechanisms to adjust growth dynamics to local conditions, such as uneven
distributions of nutrients and water. These signals are integrated using different
systemic signals such as phyto-hormonal at the whole-plant and root system levels to
adjust root and plant growth accordingly. The complexity of soil-root interactions in
a highly heterogeneous environment calls for the use of computational models to
help integrate the different underground soil processes. However, despite major
advances made in plant-soil-microbe interaction, large gaps remain in understanding
root biology.
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11. Challenges

1. Nutrient acquisition (N, P, K) under changing environmental conditions
through roots.

2. Characterization of Root system architecture (RSA) which is an important trait
for genetic improvement of nutrient acquisition from nutrient limiting soils.

3.One major challenge will be to reconcile the optimal root architectures, for
example, N and P acquisition in one root system. Since the optimal RSA is also
related to the carbon status of the plant, planting density, and temperature.

12. Future perspectives

1.Identification of root system ideotypes for important abiotic stress conditions
such as drought and salinity is necessary to facilitate breeding efforts focused
on root traits.

2. Understanding how plants integrate signals from different nutrients at differ-
ent concentrations and locations within the root system will require develop-
ing new methods to capture these complex interactions.

3.The modification of soil parameters, as well as microbial or plant engineer-
ing are strategies developed to engineer the rhizosphere. Thus, rhizosphere

engineering may ultimately reduce our reliance on agrochemicals by replacing
their functions.
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Chapter 6

Ethnobotanical Uses of Roots of
Various Plant Species in Turkey

Mehmet Ugur Yildirim, Evciiment Osman Sarihan
and Khalid Mahmood Khawar

Abstract

Turkey has advantage of lying on transection of three climatic zones. Namely
Europe-Siberia, Iran- Turan and the Mediterranean region situated between 26 and
45° east longitude and 36-42° north latitude in the Northern hemisphere. The num-
ber of plant species subspecies, taxa and varieties in Flora of Turkey is above 12,000.
In terms of plant diversity in the temperate zone, it attracts attention with its features
that are different from the neighbouring countries around it in Asia, Europe and the
Middle East. This has led to the development of many distinct ethno-medicinal-
botanical habits among local people; who use different plant parts like roots, leaves,
flowers, fruits, herbs, seeds, etc. in their cuisines, natural dyeing, decoration, textile
dyeing and medicinal purposes, etc. This study reviews ethnomedicinal and botanic
uses of the 196 taxa belonging to 54 families and 113 genera grown in Turkey.

Keywords: Edible plants, flora of Turkey, medicinal uses, plant species

1. Introduction

Turkey lies on intersection of three climatic zones namely European-Siberia,
Iran-Turan and the Mediterranean region; surrounded by oceans on three sides,
with mountains, plateaus and plains having different heights and topographical
features (Figure 1). It is located in the Mediterranean climate zone, also seen in
inland continental climate with seven ecogeographical regions (Aegean, Black Sea,
Central Anatolia, Eastern Anatolia, Marmara, Mediterranean, and South Eastern
Anatolia) [1]. Koppen-Geiger climate classification system identifies 3 main and 10
sub climates in Turkey [2].

Hosting different climate types within the boundaries of different flora regions
play an important role in the abundance of species, taxa and also endemic plant
taxa. According to “Flora of Turkey and The East Aegean Islands” Turkey has 174
families, 1251 genera and more than 12,000 taxons (including species and subspe-
cies and varieties) [3-5]. Approximately 3649 or 1/3rd of these are endemic [6].

The total and endemic number of plant taxa in these regions are given in
Table 1. Some of these are found in only one, while the others are naturally
distributed in more than one ecogeographical regions.

Moreover, it has distinction to become homeland of one among the three oldest
civilizations (Indus valley, Nile, and Mesopotamia) in the World. The present day
Turkey has honor to host 9 different civilizations (Hatti; Hittite, Urartu, Phrygian,
Lydian, Ionian, Carian, Lycian, Hellenic) along with majestic Roman, Byzantine,
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Turkey is located at the intersection of three biogeographical regions.
A: Mediterranean, B: Euro - Siberian , C: Irano-Turanian
@ Some provinces where ethnobotanical studies are conducted in Turkey. These studies are summarized in this review.

Figure 1.
Map of Turkey, showing different provinces of Turkey and biogeographical regions.

Regions Number of total taxa in a region Number endemic plant taxa in a region
Aegean 3369 591

Blacksea 4571 856

Central Anatolian 3488 1030

Eastern Anatolian 4760 1237

Marmara 3519 308

Mediterranean 5487 1755

South East Anatolian 1891 239

Source: [7].
Table 1.

Number of total and endemic plant taxa in Turkey.

Seljuk and Ottoman Empires in the later periods, that has resulted in accumulation of
a huge knowledge about use of local flora in traditional medicines and cuisines [8-11].

2. Ethnobotany

The Word ethnobotany, is coined from two Greek words “ethnos”, meaning
folk, and “botane” or “botanos”, meaning plants. It is defined as the branch of
science that studies relationship between human beings and plants [12-14]; related
to their use in foods, medicines, religious rituals, ceremonies and and related chores
in a local culture [15]. The therapeutic uses of medicinal herbs is largely desired in
both developed and developing countries of the World during these days and are
emerging as powerful aid to discover treatments to many diseases and their use in
palliative care [16]. The rich cultural history of Turkey has played a distinct role in
the plant-human relationship, both in verbal and written form. It has passed down
from generation to generation and has become a part of Turkish culture of
ethno-medicine-botany over time. In line with advances in technology in recent
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years there is increased economic migration from rural areas to cities. This has
resulted in reduced understanding and recognition of these plant species, loss of
habitat of many plants and have resulted in the risk of disappearance of many plants
from the Turkish flora. There is need to protect and guaranty the survival of this
knowledge by securing it through transcription for benefit of future generations
[17]. Therefore, documenting “Taraditional Ethnobotanical Knowledge” is impor-
tant for their conservation and proper use of biological resources [5, 18].

It is noted with interest that the first works about medicinal plants were put
forward in China, South Asian subcontinent (Indus valley), Egypt (Nile valley) and
Turkey (Mesopotamia) followed by Greeks and Roman people.

3. Prescription patterns through times

Prescription patterns belonging to the Hittite civilization are accepted as one of
the oldest known prescriptions in the history. Materia Medica, written by
Dioscorides, is considered the world’s first pharmacopoeia. The book describes 500
600 plants and most of these are grown in Turkey. This book also describe drug
preparation methods from plants and their usage [19, 20].

Many medicinal plants and herbal medicines not known to the Western civili-
zations were used in daily life of the deep-rooted Asian and the Middle Eastern
civilizations (present day Iraq, Syria, Saudi Arabia, Turkey, Palestine/Israel, Jordan,
Lebanon, Greece, Egypt), FarEastern civilizations (China, Koreas, Japan), South
Asian Indian sub continent (present day Pakistan, india), the Mayans, the Aztecs
and Incas that lived in the Central and Southern America [19].

4. Egyptian, Mesopotamian and Greek periods

Information from transcriptions about Egyptian medicines written on papyrus
describe use of plants in ancient Egypt. The most important of these papyrus based
prescription were written many years before Common Era (BCE). It is the Ebers
Papyrus (discovered by George Maurice Ebers in 1872), that is estimated to have been
written in 1550 [19, 20]. Celsus (25 BCE-50 CE, Plinus (23-79 CE), Dioscorides (40—
90 CE) and Galenos (129-201 CE) were the World-renowned medical doctors who
were trained during the Roman Empire. The prescriptions on the tablets belonging to
this period show the number of herbal drugs used by people during Mesopotamian
civilization (inTurkey); period was around 250 CE. It is estimated that about 600
medicinal plants were used during the Greeks and 4,000 during the Arab Moroccan
civilization [20].

5. Developments during Greek and Roman Periods

Plants and root drugs collected by the ancient Greek physicians, known as
rhizomotomy were used in the treatment of various diseases. Hippocrates, who
lived in 460-377 BCE; is considered the founder of modern medicine, mentions 236
plant species and their healing effects in his work [19].

5.1 Islamic or Arab period

Apart from the ancient Greek and Egyptian civilizations, the Islamic or Arabs
started to translate Greek, Roman South Asian and Iranian books/works into their
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own languages from the 7th century, adding significant number of their own con-
tributions for the development of medical science. The most important and famous
scientists like al-Razi (850-923); al-Dineveri (895-992); Al-Zahravi (936-1013).
Al-Biruni (973-1051) and ibn-i-Sina (Avecena) (980-1037) can be counted among
them. These works were continued by many other worth mentioning scientists like
ibn-i- Ziuhir (1094-1162), al Gafiki (? -1165), ibn-i- Rushd (1128-1198), ibn-i-
Baytar (1197-1248), Niiveyri (1279-1332) and Davud al Antaki (1541-1599) [19].

5.2 Seljuk and Ottoman periods

The Turks used the traditional practices in Central Asia by synthesizing them
together with the traditional practices of Ancient Anatolia. During the Anatolian
Seljuk period with the establishment of hospitals (medical centers) in various
regions. Gevher Nesibe Sultan hospital was located and established in the Turkish
province of Kayseri during this period. It was first example of the modern hospitals.
During the Ottoman Empire, Darushifa (Hospitals) were established, in many cities
including Bursa, Edirne, Manisa and Istanbul. The most famous medical doctors and
surgeons of the Ottoman Empire, include Sherafeddin Sabuncuoglu (1386-1470) and
Merkez Efendi. The Ottomans opened famous hospitals like Tibkhane-i Amire with
the efforts of Shanizade Mehmed Ataullah Efendi (1771-1826) and Behchet Efendi
(1774-1834) to modernize medical education in the Ottoman Empire [19].

5.3 Post Democracy Period

After passing to democracy or establishment of the Republic of Turkey, the
medical law was enacted based on modern medical practices and put into practice in
1923. Number of Medicine and Pharmacy Faculties, began to rise with the estab-
lishment of Istanbul and Ankara universities. These institutions contributed posi-
tively to the diagnosis and treatment process and development of modern medical
education in Turkey in parallel to the scientific and technological progress in med-
icine and pharmacy sciences in the World [19]. Today, medical scientists in Turkey
continue to benefit and study local flora in line with the local ethnobotanical trends
since centuries by diagnosis and treatment methods. The scientists have discovered
many active substances necessarry for human and animal health.

The first ethnobotanic works in the modern sense in Turkey are focused on
medicinal plant as in the worldwide [19]. In a 70-year period between the years
1928-1997, a total of 765 ethnobotanical studies were conducted in Turkey. These
informations are included in the thesis entitled “Republican Turkish Ethnobotanical
Research Archive” by Narin Sadikoglu. The thesis is available in the archive of
Istanbul University Faculty of Pharmacy, Department of Pharmaceutical Botany.
This study include uses of plants belonging to Sivas, Istanbul and Konya provinces;
mostly used in human health, beliefs and used as food [21, 22].

A brief information about 196 taxa (species, subspecies and 43 varieties)
belonging to 54 families and 113 genera frequently used in Turkish folk medicines
(Table 2).

Prof. Dr. Turhan Baytop (1920-2002) has significant work on Turkey’s medici-
nal plants and flora of Turkey. He collected many plant samples with his research
trips in the Anatolian mountains between 1949 and 1999 and brought them to
Istanbul University Faculty of Pharmacy Herbarium in his book “With medicinal
Plants in Turkey.” He has described medicinal plants used in traditional folk medi-
cine in Anatolia in his book. In his work titled “50 years in the Anatolian moun-
tains”, he has described significant contributors who to the Anatolian (Turkish)
flora as follows. The first plant collectors coming to Anatolia were P. Belon (1517-
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1567), L. Rauwolff (1535-1596), J.P. Tournefort (1656-1708). Apart from these; G.
A. Olivier (1756-1814), P.M.R Aucher-Eloy (1793-1838), K.H.E. Koch (1809-1879),
E. Boiser (1810-1885), G.T. Kotschy (1813-1866), E. Bourgeau (1813-1877), P.
Tchihatcheff (1818-1890), B. Balansa (1825-1891), L. Charrel (1839-1924), P.
Sintenis (1847-1907)), W. Siehe (1859-1928), JFN Bornmiiller (1862-1948), K.
Krause (1883-1963), P.M. Zhukovsky (1888-1975), O. Schwarz (1900-1983), A.
Huber-Morath (1901-1990), and Peter Handland Davis (1918-1983), [19].

5.4 Recent trends and common practices

Continuing to many researchers ethnobotanical studies in recent years intend to
describe Turkey’s flora, patterns thir use, information about the chemical contents
and their distribution areas [8, 13, 17, 22-34], in Turkey in traditional folk medicine
in usage patterns and ethnobotany based studies [24, 35-130].

Also ethnobotanical studies have been done to describe medicinal plants sold to
the public for therapeutic purposes in regional herbalists shops and involving the
identification of the drugs belonging to commonly used plant species [22, 50-58].

Developing of medicinal, chemical and pharmaceutical sciences and technolo-
gies, are continuously contributing to the development and understanding of many
new medicinal characteristics of locally grown plant species.

The plant taxa or their products are used for several oral and topical treatments
against described diseases and malfunctions and energy boosters. Some of these
plants are also used in other industries like food, paint, cosmetics, animal feed, bio
diesel production or directly as fuel.

6. Conclusion

It is important to document traditional knowledge and its utilization in local
health systems. This study has reviewed and evaluated traditional strategies of
plants belonging to 54 families, 113 genera and 196 taxa (species, subspecies, varie-
ties) that serve as base to understand local use of these plants in Turkey. This review
can provide an excellent source of knowledge to recognise and compare existing
and emerging treatment methods. The study has great significance for creating
awareness among people in Turkey, where the rate of migration from rural to urban
areas is very fast.

Some plant species and their applications as listed in Table 2 could be highly
poisonous. Their described applications are traditional usage forms. They must be
taken very carefully after consulting an expert medical doctor.
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Abstract

Soil microorganisms perform a variety of functions, some of which are
extremely helpful to the maintenance of ecological sustainability. Bacteria thriving
in the plant rhizosphere drive plant development through a variety of ways, which
are referred to as PGPRs (plant growth-promoting rhizobacteria). Despite the fact
that there are many different types of PGPRs, their significance and applications
in sustainable agriculture are still debated and limited. The performance of PGPRs
vary, which might be related to a variety of environmental conditions that impact
their development and proliferation in plants. PGPR is a nonpathogenic, friendly
bacterium that stimulates plant development by altering hormone concentrations
and nutritional needs, as well as mitigating stress-related damage. PGPRs colonize
root hairs and lateral roots in plants, where they may exhibit their beneficial charac-
teristics. Rhizobacteria that promote plant development have the ability to control
root system architecture (RSA), as well as the vegetative growth and physiology of
the entire plant. The generation of hormones like Indole acetic acid (IAA) by PGPR
has long been linked to RSA effects. This book chapter reviews the effects of PGPRs
on the growth, the physiological, biochemical, and molecular characteristics of
plant roots as well as the mechanisms involved.

Keywords: Roots, growth, PGPR, plant

1. Introduction

Agriculture is vital to a country’s economic well-being. Many biotic and abiotic
stressors are plaguing the industry, which has resulted in massive plant productivity
losses throughout the world. Nutrient shortage, heavy metal pollution, high tem-
perature, diseases, plant invasions, pests, salt, and soil erosion are all stress factors.
The absence of reliable and consistent traits has generally hampered crop breeding
for abiotic stress resistance. Multiple genes operate collectively to promote stress
tolerance. Furthermore, the use of agrochemicals to combat biotic stressors and
nutritional shortages hastens environmental pollution and has a detrimental impact
on the biogeochemical cycle system, and poses a health risk to humans. The poten-
tial consequences of the aforementioned stresses are substantial, implying the need
for solid, cost-effective, and ecologically acceptable ways to reduce the negative
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impacts of these challenges on plants. As a result, interest in ecologically friendly
and organic agriculture techniques has surged [1]. Bio-fertilization, revitalizing
root growth, rhizoremediation, disease resistance, and other methods of microbial
revival employing plant growth stimulants have been used.

Plants, unlike animals, cannot employ avoidance and escape as stress-relieving
techniques; as a result, their evolution has been distinguished by the development
of extremely advantageous relationships with their more mobile partners, micro-
organisms. Interactions between plants and microbiomes including soil bacteria
are in high demand all around the world. Microorganisms are considerably more
prevalent in the rhizosphere, or soil/root contact than they are in bulk soil. This is
due to the fact that roots release a large portion of their photo-assimilates, serving
the primary food source for the rhizobacteria. In exchange, they are able to have a
positive impact on plant development and play an important part in plant adapta-
tion to the environment [2, 3].

Soil microorganisms perform a variety of functions, some of which are
extremely helpful to the maintenance of ecological sustainability. Bacteria
thriving in the plant rhizosphere drive plant development through a variety of
ways, which are referred to as PGPRs [4]. The rhizosphere is the confined zone
of soil directly around the roots [5] whereas rhizobacteria refer to a group of
rhizosphere bacteria capable of inhabiting the root environment [6]. PGPR is a
nonpathogenic, friendly bacterium that stimulates plant development by altering
hormone concentrations and nutritional needs, as well as mitigating stress-related
damage [7, 8].

Plant growth could be boosted by PGPRs in both direct and/or indirect ways.
The direct ways are 1) secreting growth regulators such as cytokinins, auxin, and
gibberellins, 2) decreasing the levels of ethylene in plants, 3) solubilizing inorganic
phosphate, 4) mineralising organic phosphate, 5) Non- symbiotic nitrogen fixa-
tion, 6) forming organic matter, which comprises amino acids, 7) synthesizing
enzymes and 8) activating disease-resistance pathways [9]. Indirectly, PGPRs may
serve as biocontrol agents by controlling plant disease-causing organisms. They
also help to relieve the effects of cold, drought, metal toxicity, and excessive salin-
ity. The drought resistance and water usage efficiency of plants grown in arid and
semi-arid climates might be increased by PGPR inoculation, which promotes plant
abiotic stress tolerance with an osmotic component. Plant’s biochemical changes
resulting in improved tolerance to abiotic stress have been suggested as PGPR
induced root growth, nutrient uptake efficiency, and systemic tolerance. They
can also fix asymbiotic nitrogen, help with mineral phosphate and other nutri-
ent solubilization; manage plant disease caused by other bacteria and fungi, and
produce antibiotics, enzymes, and siderophores, among other functions. Certain
PGPR may infer particular growth-promoting properties like abiotic stress toler-
ance, and phytopathogen and insect biological control [10]. The stimulation of
disease tolerance of the inoculated plant, N, fixation, phosphorus solubilization,
and/or phytohormone synthesis are all possible explanations for PGPR’s growth-
promoting effects on plants [9]. Phytohormones (a.k.a. plant growth regulators)
that influence the development of plants. Auxins, gibberellins, ethylene, cytoki-
nins, and abscisic acid are the five principal categories of phytohormones known
by botanists. Indole acetic acid is a phytohormone that affects plant growth in a
variety of ways, including organogenesis, tropic responses, cell division, and cell
differentiation.

Despite the fact that there are many different types of PGPR, their significance
and applications in sustainable agriculture are still debated and limited. The perfor-
mance of PGPR varies, which might be related to a variety of environmental condi-
tions that impact their development and proliferation in plants (Figure 1) [11].
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Figure 1.
PGPR in plant roots.

2. PGPR’s effect on the architecture and structure of root systems

The plant’s aboveground development is heavily reliant on its underground root
structure. The root system of most terrestrial plants develops to scrutinize soil and
reach nutrients. Root comprises the root tip, differentiation and elongation zones,
root meristem, and emerging lateral roots [12]. Each of these regions has a unique
significance. According to gene expression research, root hairs are specialized epi-
dermal cells that are crucial for nutrient uptake [13]. The functional specialization
of roots is also reflected in plant-microbe interactions. The root tip, for example,
is the most essential area for initiating the rhizobial colonization, which leads to
the development of a nodule in the Fabaceae family [14]. PGPR colonizes roots
in plants where they can exert their beneficial properties [15]. RSA encompasses
spatial arrangement of primary and lateral roots, as well as the number and length
of different root types. It can be affected by a variety of abiotic and biotic variables,
including PGPR strains. The potential of PGPRs to interfere with the plant hor-
mones modifies root system architecture (Figure 2).

PGPR engages in some activities in the soil to keep it active in crop produc-
tion and sustainability [16]. PGPR colonizes root systems competitively, regulate
root development, surface area and enhance plant growth through and a variety
of mechanisms, including phosphate solubilization [17], nitrogen fixation [18],
production of siderophores [19], 1-amino-cyclopropane-1-carboxylate (ACC)
deaminase and hydrogen cyanide [20].

Ironically, some microorganisms, such as PGPR, may trigger the synthesis of
phytohormones in plants. Phytohormones are organic compounds that stimulate,
hinder, or change plant growth at low concentrations [21]. Gibberellins, cytokinins,
abscisic acid, ethylene, brassinosteroids, and auxins are examples of phytohor-
mones that cause the root cell to proliferate by overproducing lateral roots and
root hairs [22]. Plant growth regulators may be given exogenously to plants or
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The influence of phytostimulating PGPR on nutvient uptake, rot system architecture and root function.

plant tissues as extracted hormones or synthetic counterparts. Phytohormones

are classified according to where they act. This is critical for nutrient absorption
regulation based on soil type and climatic conditions. The most prevalent effects
are a slowdown in primary root development rate and an increased lateral roots
and root hairs. The synthesis of growth metabolites by PGPRs may play a role in
conferring resilience to water stress in host root colonization, leading to increased
strategic crop output. By root repair, beneficial rhizobacteria may adapt to specific
environmental circumstances and gain stress resistance.

Auxin, cytokinin, ethylene, and to a lesser extent gibberellin and abscisic acid
(ABA) interactions with PGPR might induce variations in the root system [23].
Auxin-cytokinin balance is a fundamental regulator of plant organogenesis and
influences root characteristics [24]. PGPR can alter the auxin to cytokinin ratio
because they may produce a variety of phytohormones as well as secondary metabo-
lites that might disrupt hormonal pathways. Several PGPRs generate phytohor-
mones and secondary metabolites that interfere with auxin pathway in plants. PGPR
can generate IAA, which promotes primary root elongation (Figure 2) [25, 26]. IAA
is often produced by PGPR via various routes, which can be present in various quan-
tities in root exudates depending on the plant genotype. Indirect activation of the
plant auxin pathway by PGPR can also promote plant growth. Several PGPR strains,
such as Azospirillum brasilense, for example, exhibit nitrite reductase activity and
can thus generate NO during root colonization [27]. NO is engaged in the auxin
signaling system, which controls the development of lateral roots [28]. Fluorescent
pseudomonas generates 2,4-diacetylphloroglucinol (DAPG), which at lower doses
can act as a signal molecule, causing systemic resistance [29], and increasing root
forming [30]. DAPG can modify RSA by interfering with an auxin-dependent
signaling pathway [31].

Cytokinin production has been shown by PGPR like Azospirillum brasilense,
Bacillus licheniformis, Bradyrhizobium japonicum, Pseudomonas fluorescens, and
Paenibacillus polymyxa [25, 32]. Cytokinins promote cell division, regulate root
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meristem differentiation, and drive root hair proliferation, however, reduce lateral
root development and main root growth [33].

PGPR has been shown in several studies to be capable of producing ABA or gib-
berellic acid, as well as controlling the levels of these hormones in plants [34]. ABA,
for example, plays an important role in drought stress. Elevated ABA levels under
water stress induce stomata to close, reducing water loss [35]. ABA, on the other
hand, has a variety of functions during lateral root growth [34]. In Arabidopsis,
Agzospirillum brasilense Sp245 resulted in an increase in ABA concentration, par-
ticularly when grown under osmotic stress [36]. Gibberellins encourage lateral root
growth and primary root elongation [37]. Gibberellin production has been seen
in PGPR from Azospirillum spp., Azotobacter spp., Acinetobacter calcoaceticus,
Gluconobacter diazotrophicus, Hevbaspirillum seropedicae, Rhizobia spp., and Bacillus
spp. [34]. These two hormones are engaged in plant defensive systems in addition to
their involvement in plant RSA. As a result, the hormonal balance involved in plant
defense may be modulated by PGPR generating these hormones [38]. The role of
bacterial hormones in modulating plant hormonal balance has yet to be shown.

3. The structural properties of the root by PGPR

PGPRs can alter the chemical composition and, as a result, the structural char-
acteristics of root cell walls (Figure 2) [39]. The biocontrol agent Bacillus pumilus
INR-7, for example, significantly increases lignin deposition in pearl millet epider-
mal tissues [40]. INR-7 inoculation was the sole cause of callose apposition. Bacillus
pumilus and Bacillus subtilis resulted in increased fungal pathogen resistance in pea
and melon roots [41]. In the case of PGPR, these cell wall changes have been found
to protect plants against phytopathogens through the activation of induced systemic
resistance (ISR) [41, 42]. ISR is not unique to a single pathogen, but it aids the plant
in the management of a variety of diseases [43]. ISR includes ethylene hormone,
which aids in the induction of a host plant’s defense responses against a range of
plant diseases. ISR can strengthen the cell wall by increased lignin synthesis and
callose apposition [44], which limits phytopathogen progression in plant tissues
[41]. PGPR also triggers modifications in the chemical makeup of root cell walls,
which directly stimulate plant development (Figure 2).

Lower lignin concentration, on the other hand, may aid cell elongation and
hence total root growth. Azospirillum irakense generates pectate lyases, which can
degrade the pectate content of root cell walls, allowing it to move across root cortex
cells [45]. Changes in plant gene expression caused by the PGPR are considered
to be the primary cause of changes in root cell wall ultrastructure. Bacillus subtilis
GBO03 stimulates Arabidopsis development by generating volatile organic com-
pounds (VOCs), which have been demonstrated to affect the expression of 38 genes
related to cell wall construction [39]. Thirty of these were linked to cell wall expan-
sion or loosening. Sekar et al. [46] found that the endophytic PGPR Azospirillum
irakense up-regulated polygalacturonase genes in rice.

PGPR produces enzymes such ACC-deaminase, 1,3-glucanase, and chitinase,
which are involved in the lysis of cell walls and pathogen neutralization [47].
Because most fungal cell wall components are made up of 1,4-N-acetylglucoseamine
and chitin, bacteria that produce 1,3-glucanase and chitinase regulate their devel-
opment. Fusarium oxysporum and Fusarium udum cause fusarium wilt, which is
caused by beta-glucanases and chitinases produced by Pseudomonas fluorescens LPK2
and Sinorhizobium fredii KCC5 [48]. PGPR also inhibits Phytophthora capsici and
Rhizoctonia solani, two of the world’s most devastating crop diseases [49].
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4. PGPR’s systemic effects on the physiology and functioning of the
whole plant

PGPR may alter the physiology and function of tissues far from colonized areas
in plants. PGPR can improve plant root nutrient availability and absorption. Some
PGPR, on the other hand, causes particular systemic reactions, most of which are
triggered by unknown signaling pathways. PGPR has been shown to affect gene
expression and metabolite accumulation in plants which have been demonstrated
by studies of plant transcriptome and metabolomic. These findings show that PGPR
has a broad impact on plant physiology and function, and they highlight ways to
better understand PGPR’s systemic impact.

4.1 PGPR’s effect on plant nutrition

Plant nutrition may be affected by PGPR through impacts on nutrient absorp-
tion and/or plant development [50]. Nutrient absorption can be improved as a result
of the enhanced root growth induced by PGPR. To promote both higher nutrient
uptake and plant growth, PGPR is involved in pathways that coordinate plant
development and nutrition (Figure 2). Rhizobacteria that promote plant develop-
ment can enhance nutrient supplies in the rhizosphere and/or activate root ion
transport mechanisms. One of the most important effects of PGPR on plant nutri-
tion is phosphate solubilization. Soils typically contain a lot of phosphorus, which
builds up over time as a result of fertilizer treatments, but only a tiny quantity of it
is available to plants. Plants may absorb mono and dibasic phosphate on their own;
organic and insoluble phosphate must be mineralized or solubilized by microbes
[51]. Pseudomonas, Bacillus, and Rhizobium may dissolve phosphate in insoluble
forms [52].

Miller et al. [53] identified that various linked bacteria have the ability to fix
N, and so supply nitrogen to the plant. For some plants, particularly sugar cane,
evidence of PGPR engagement in the plant N budget has been documented [54].
Also, non-fixing rhizobacteria can promote plant growth, indicating that external
fertilizer application may not be necessary to increase plant growth and yield.

Only a few research on the influence of PGPR on nutrient absorption have been
reported so far though. NO; and K uptake have been shown to increase after canola
was inoculated with Achromobacter sp. strain U80417 [55]. In Arabidopsis, NO;
inflow was enhanced after 24 hours of inoculation with Phyllobacterium brassi-
cacearum [56]. Increases in transcripts of nitrate and ammonium transporters were
substantially altered after Phyllobacterium brassicacearum STM196 treatment, with
the exception of the RT2.5 and NRT2.6 genes [56]. The RT2.5 and NRT2.6 genes
were recently discovered to be essential in Arabidopsis growth stimulation [57].
This result highlights the topic of the connections between N nutrition and plant
growth in PGPR-inoculated plants, as these two genes control NO; transporters
[58]. In experiments using Bacillus subtilis GBO3, evidence was found in favor of
PGPR regulating ion transporters at the transcriptional level. This strain can modify
HKT1 expression in Arabidopsis seedling [59]. HKT1 acts in phloem tissues in the
shoots to extract Na + from the xylem and is implicated in Na + absorption [60].
Under salt-stress conditions, the differential control of HKT1 caused decreased
Na + uptake and enhanced K+ uptake in GB03-inoculated seedlings [59]. The plant’s
iron acquisition mechanism is also activated by the volatile organic chemicals
released by GB03, resulting in enhanced iron absorption [61]. PGPR affects nutri-
tion through nitrogen fixation, phosphorus solubilization, and siderophore forma-
tion, as well as modify root physiology through gene transcription and metabolite
synthesis.

150



Plant Root Enhancement by Plant Growth Promoting Rhizobacteria
DOI: http://dx.doi.org/10.5772/intechopen.99890

4.2 PGPR’s effect on plant transcriptome

Effects of PGPR applications on gene expression in plants has been described.
Inoculation of Arabidopsis leaves with Pseudomonas putida resulted in upregula-
tion of 520 genes. These genes take part in hseveral metabolic processes, chemical
syntheses, ABA and Ca signaling, and ISR induction [62]. Azospirillum brasilense
Sp245 on two rice cultivars with a contrasting capacity to acquire N via nitrogen
fixation, the expression of ethylene receptors was monitored. Cultivar IR42 had
greater ethylene receptor expression than IAC 4440 [63]. All ethylene receptor
transcripts may be required for the formation of a favorable relationship between
the plant and the bacterium [64]. Herbaspirillum seropedicae inoculation induced
the expression of genes sensitive to auxin and ethylene, as well as the suppression
of the defense-related proteins PBZ1 and thionins in rice [65]. Plants treated with
the biocontrol PGPR are more resistant to bacterial and fungal pathogen infections.
This rhizobacteria-mediated ISR in Arabidopsis necessitates ethylene and jasmonate
sensitivity. Pseudomonas fluorescens WCS417r triggered a significant shift in the
expression of 97 genes in roots [66]. Following investigations on Arabidopsis found
that bacterized plant shoots had higher levels of defense-related transcripts [67].
The ISR generated by Pseudomonas fluorescens SS101 has been shown to be related to
salicylic acid signaling rather than jasmonic acid [67]; moreover, a major function
for camalexin and glucosinolates in the ISR was postulated. Pseudomonas fluorescens
treatment resulted in enhancement of defense-related transcripts in wheat [68].
Beneficial relationships involve reciprocal considerable coordination of plant and
PGPR, and beneficial microorganisms influence plant immunology as a result.

4.3 PGPR’s effect on plant metabolome

Researches have looked at the metabolomic changes caused by PGPR by examin-
ing the metabolite content in plants under non-stressed and stressed circumstances
(Figure 2). PGPR has been found in certain studies to cause modifications in the
activity of root enzymes, which play role in the synthesis of metabolites [69]. The
level of carbon compounds released from roots was increased by up to one-third
in several Azospirillum strains [70]. Furthermore, microbially produced chemi-
cals such as phenazines and DAPG have the potential to increase total net amino
acid outflow in plant species [71]. Chryseobacterium balustinum affects flavonoids
exudation on soybean roots [72]. Flavonoid exudation by Fabaceae roots may be
influenced by PGPR [72] or Azospirillum [73]. PGPR can cause changes in the
metabolite composition of plants. Rice plants treated with Herbaspirillum seropedi-
cae, for example, had greater malate and important amino acid levels in their shoots
than the control ones [74]. Furthermore, other researches focused on second-
ary metabolite changes. Isoflavone accumulation was seen on soybean seedlings
infected with different PGPR [75]. Following PGPR inoculation, medicinal plants
showed enhancement in the concentration of numerous alkaloids and terpenoids
of pharmacological importance [76]. Azospirillum strains caused qualitative and
quantitative changes in secondary metabolite content in maize cultivars [30].
Similarly, the metabolic profile of two rice cultivars infected with two different
strains of Azospirillum under gnotobiotic conditions showed that their secondary
metabolite profiles changed [77]. Plant metabolic alterations changed depending
on the Azospirillum strain-cultivar combination in both investigations, indicat-
ing a unique response. Furthermore, PGPR applied to the roots has been shown to
change the composition of metabolites in shoots [77]. Pseudomonas, Azospirillum,
or Rhizophagus/Glomus strains, or all three strains together treatments resulted
in qualitative and quantitative changes in root secondary metabolites in maize
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[78]. These changes were dependent on the degree of fertilization and the kind of
microorganisms injected. When treated alone, the three strains produced differ-
ent outcomes, yet all microbial consortia produced metabolic responses that were
surprisingly comparable. Rhizobacteria that promote plant development can assist
plants to survive saline stress, which could be connected to the buildup of particular
metabolites. Infected Bacopa monnieri had a greater proline content, while rice
inoculated with Pseudomonas pseudoalcaligenes had a larger accumulation of glycine
betaine [76]. Bacillus subtilis GBO3 caused an increase in glycine betaine and its
precursor choline content in the Arabidopsis [79]. On the grapevine, Burkholderia
phytofirmans PsJN, an endophytic strain, alleviated cold stress, improving cold
acclimation [80]. This is accompanied by increased expression of defense and
cold-related genes [81]. Bacterization increased starch content by 1.2 times and total
soluble sugars by two times, with sugars implicated in low-temperature tolerance
showing greater amounts in treated seedlings [82].

5. PGPR population ecology and impact on root system performance

PGPR’s methods of action have been studied extensively utilizing only one
strain and one host plant. However, PGPRs do not function in the rhizosphere as
individuals. A diverse range of PGPR populations are interacting with the same host
plant, and they may have antagonistic or synergistic effects. Different taxonomic
groupings of plant growth-promoting rhizobacteria strains exist, and these groups
may coexist in a particular soil [83]. PGPR strains from different taxonomic groups
might coexist in soil and colonize the same rhizosphere. This potential has been
recorded several times, particularly when determining the taxonomic identity
of bacterial isolates chosen for their beneficial influence on plant growth [84]. It
appears that this option is the rule rather than the exception. A functional group is
made up of PGPR populations that perform the same function (for example, ISR,
nitrogen fixation, plant growth promotion, and so on). When particular genes are
documented, functional group methods can be used. The coexistence of genetically
contrasting PGPR strains has two effects when examining the PGPR-plant connec-
tion in fields. If the PGPR populations have synergistic effects, the PGPR func-
tion may be higher than only one kind of strain. The higher the function leads to
increased nutrient availability to the plant. Others, such as the generation of auxinic
signals, will require fine-tuning of the functional group’s performance to prevent
production levels that are too small or too big [85]. Regulatory effects should also be
considered to bridge the gap between the PGPR function and its actual execution
[86]. Some interactions between various PGPR strains in the same rhizosphere are
crucial. Interactions between different PGPR functional groups can be competitive
and inhibitory [87] and positive signaling [15]. These interactions have the ability
to influence PGPR effectiveness by modulating spatial colonization patterns on
roots [87].

6. PGPR’s effects on regulated phyto and microbial beneficial protein
interactions

PGPR efficacy is connected to the mutual gene regulation between PGPR and
plants during colonization. This regulation has positive effects on growth, nutri-
ent absorption, and metabolite upregulation, as well as on proteins and biological
processes, and gene expression [88-90]. PGPR produces a number of phytoben-
eficial and desirable features, including increased phytohormone production and
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resistance to biotic and abiotic stress [91]. Increases in gene expression and particu-
lar protein families, which interfere with hormone production, cellular breakdown,
and signaling pathway modulation, are linked to the positive effect. The capacity
of sulfatase to cycle ambient sulfur via degradation or cellular remodeling might
explain the rise in element compositions after PGPR inoculation. Because of a rise
in the Carbohydrate Kinases protein family the rise in biomass in plants is linked to
the increased sugars and carbohydrates shown in their study [92].

Heat Shock Protein 70 (Hsp70) is a family of conserved proteins that are found
in the cytoplasm and in the chloroplasts. Hsp70 is involved in protein synthesis,
stress protection, and protein translocation help. The preservation of cellular
homeostasis and protection from various forms of stress. Phytobeneficial char-
acteristics were modulated by reciprocal protein activation via microbe-plant
interactions during and after colonization by PGPR. Furthermore, bacterial gene
regulators linked to bacterial signaling, DNA binding transcriptional regulators,
and cell proliferation were induced by plant root exudates [93]. Climate change has
a significant impact on the efficiency of PGPR, yet unfavorable growing circum-
stances in the field are to be expected as part of the routine operation of agriculture
[94]. Multiple mechanisms, such as phosphate solubilization, dinitrogen fixation,
ACC deaminase, and antifungal activity, IAA and siderophore biosynthesis, and
others, are responsible for plant growth promotion and increased yield [95].
Following PGPR treatments, significant increases in yields of several agricultural
plants have been seen in both natural agro-ecological niches and controlled soil
conditions. Because there is a global aversion to eating foods made from genetically
engineered plants, PGPR might be useful for encouraging plant development. The
widespread use of PGPR might reduce the world’s reliance on agricultural pesti-
cides. Furthermore, it is a technology that farmers in both rich and poor nations
may easily obtain [96].

7. PGPR as a growth enhancer

Plant development is aided by PGPR through both direct and indirect processes,
which include improving plant physiology and resistance to diverse phytopathogens
via a variety of modes and activities [97]. These include nutrition fixation, biotic
and abiotic stress neutralization, and disease prevention through the production
of volatile organic compounds and enzymes. However, depending on the kind of
host plant (Figure 3), the manner of action of different kinds of PGPR differs [98].
Plant genotypes, developmental phases, defense systems, and other members of
the microbial community are among the biotic and abiotic elements that impact
them [99].

Auxin may be produced by a wide range of bacterial species (Indole acetic
acid). Mycobacterium, Sphingomonas Hizobium, Azospirillum, Micvobacterium,
and Burkholderia spp. are examples of such bacteria [100]. PGPR treatments were
found to have a considerable impact on the hormone content of cabbage seedlings
in previous investigations. Inoculation with PGPR enhanced salicylic acid, gibber-
ellic acid, and IAA levels. P. agglomerans RK-92 had the highest levels of gibberellic
acid, salicylic acid, and IAA, whereas abscisic acid was highest in the control
treatment [9].

Pseudomonas aeruginosa, Pseudomonas putida, Paenibacillus polymyxa, Enterobacter
asburiae, Mesorhizobium ciceri, Azotobacter chroococcum, Klebsiellaoxytoca and
Stenotrophomonas maltophilia, Rhizobium leguminosarum, all of which are considered
as PGPR. Auxins, kinetin, ethylene and gibberellins are the hormones generated
exclusively by these bacteria and are vital for root growth (Figure 3) [101].
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Figure 3.
Rhizobacteria promotes plant development in a variety of ways.

8. Conclusion

Plants have developed a variety of biotic relationships with microbial communi-
ties in the soil, ranging from commensalism to mutualism. Plant-PGPR collabora-
tion plays a key part in this continuum of interactions, boosting the development
and health of a wide range of plants. Recent research has aided in understanding
important characteristics of plant-PGPR interactions, such as mechanisms of action
and ecology, although substantial information gaps remain. Rhizobacteria that
promote plant development have the ability to control RSA, as well as the growth
and physiology of plant. The generation of IAA by PGPR has long been linked to
RSA effects. Remarkably, bacterial regulation of auxin distribution and IAA signal
pathways has also been discovered, independent of IAA synthesis by PGPR. Plant
hormones control the expression of genes involved in the production of other
hormones or hormonal pathway components. As a result, it explains why PGPR has
such pleiotropic effects on plants.

Understanding how PGPR influences the plant hormonal balance and signaling
pathways is one of the key ongoing scientific problems ahead. PGPR populations
from different soils can work together to exhibit plant-beneficial characteristics. As
previously stated, plant-rhizo-microbiome interactions are complicated and vary
depending on plant genotypes and soil-inhabiting populations. The taxonomic and
functional diversity of next-generation sequencing methods have begun to emerge.
They’ve started to provide fresh information on the ecology of PGPR groupings.
Metatranscriptomics and metaproteomics are likely to advance dramatically in the
near future, allowing for greater knowledge of the ecological behavior of PGPR in
the rhizosphere.
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