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Preface

A few decades ago, research in biological sciences, especially molecular biology and 
disease connection, was confined to research on prominent diseases and involved 
techniques like polymerase chain reaction (PCR) to study gene polymorphisms, 
underpin the genetic nature and heritability of certain diseases, study mutations in 
various forms of cancer, and so on. These approaches, although still relevant and 
significant, were not able to fully capture the underlying problems in various diseases 
and missed the mark on the role of “environmental influences” in various diseases, 
which we now understand to play a paramount role in propagating or sometimes even 
driving various diseases. In addition, these environmental influences also impact our 
overall wellbeing and play a huge role in all aspects of life, including longevity, stress 
levels, and responses to stress since these takes into account various unappreciated 
factors like the impact of social influences, diet, nature of work, exposure level to 
chemicals, environment, ethnicity, geographical location, climatic conditions, and so 
on. Our environmental influences encompass anything and everything from where we 
are located to what we do and how we are exposed to various conditions. In addition to 
affecting our well-being in a “transient” manner, these may also influence our health, 
well-being, and the likelihood of disease conditions in a more stable and long-term 
manner. Part of the reason for this is that these influences not only affect signaling 
pathways to produce an immediate outcome, but they can also impact the expression 
of various genes in both the short and long term. The science of epigenetics deals with 
the study of environmental influences that have the power to alter gene-environment 
interactions and can result in stably inherited patterns of gene expression.

In Section 1 of this book, Chapter 1 sheds light on the meaning of epigenetics, its role, 
and the evolution of its definition.

Section 2 examines the various roles of epigenetics as well as advancements in 
the field. Chapter 2 examines the Evolution of the Epigenome as the blueprint for 
Carcinogenesis. Chapter 3 discusses the role of epigenetics, in particular DNA, in 
different aspects of diabetes. Chapter 4 presents the mechanism of diet–epigenome 
interactions and how dietary components could be used as “epidrugs” to reverse 
some epigenetic signatures for positive health outcomes in cancer prevention. Finally, 
Chapter 5 addresses the effect of social and environmental influences on health and 
wellbeing at the epigenetic level.

Research in neurobiology was plagued for the longest time by a lack of techniques 
to “turn on” or “turn off” essential genes and pathways in one cell or one part of the 
brain to pinpoint a function, a change in neuron firing, or change in a certain signal-
ing pathway. The science of optogenetics, with its single-cell resolution, has made 
it possible to turn genes on and off in particular cells under the influence of light. 
This has allowed neurobiologists to improve the assessment of various  neurological 
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functions and disorders. Section 3 of this book provides some Background and 
Mechanisms Governing Optogenetics Chapter 6 provides information on the meaning 
of Cyanobacterial phytochromes in Optogenetics.

Chapter 7 discusses the Functional mechanism of proton pump-type rhodopsins 
found in various microorganisms as a potentially effective tool in optogenetics, and 
Chapter 8 discusses spatiotemporal regulation of cell-cell adhesions.

Embodying the latest research-based knowledge in epigenetics and optogenetics, 
this book fosters a deeper understanding of these two disciplines. It presents scientific 
data and information in an easy-to-follow manner to allow readers from various 
disciplines of biological sciences, especially undergraduate and graduate students, 
to develop a better understanding of epigenetics and optogenetics.
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Chapter 1

Introductory Chapter: Epigenetics 
and Optogenetics - The Science 
behind the Cover Blanket of Our 
Genome
Mumtaz Anwar, Thomas Heinbockel and Zeenat Farooq

1. Introduction

1.1 Epigenetics

For the longest time in the history of scientific research, a belief existed that DNA, 
the master molecule that makes up our genome, is the destination of living beings, 
the blueprint for every trait and disease that we might inherit or develop. Various 
landmark discoveries through many decades contributed to this “ultimate destina-
tion” tag of the DNA like the double helical structure in 1953 by Watson and crick, 
discovery of mutations in certain genes contributing to disease phenotypes such as 
phenylketonuria, cystic fibrosis, p53, and many more. These developments led to 
immense interest in the field and one of the most astounding accomplishments in this 
regard was the “human genome project,” which resulted in complete sequencing of 
the human genome. Soon after, complete genome sequences of closely related organ-
isms and other model organisms were deciphered, published, and made available 
for use by every researcher across the globe. This led to the inception of the fields of 
bioinformatics and comparative genetics.

In the middle of all the euphoria about research on DNA and genes, it was being 
increasingly realized that only about 2% of the DNA in humans codes for proteins. 
The rest of the DNA was initially called junk DNA. However, an intriguing question 
surfaced regarding the reason for nature to preserve this huge amount (98%) of junk 
DNA if it did not serve any function. This seemed quite paradoxical to the concept of 
evolution.

This question paved the way for more research, and soon interest started booming 
in the field of epigenetics. This term has been used differently by different scien-
tists from time to time, according to what could be proven using the resources and 
technology of that time. Epigenetics (from epigenesis) was first aimed to describe 
changes that take place when a zygote undergoes divisions and leads to differentiation 
(genesis) into different cell types, tissues, and organs. It was a beautiful concept to 
illustrate the differentiation potential of zygote, but the knowledge of the mecha-
nisms responsible for this potential was lacking at that time. The term was originally 
coined by C.H. Waddington in 1942 as the phenomenon that changes the cells from 
totipotent state to fully differentiated state during embryonic development [1]. 
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The phenomenon of heredity and the concept of genes were not known back then, 
and hence these definitions did not contain any molecular feature. Later, the term 
was defined by Riggs as “the study of mitotically and/or meiotically heritable changes 
in gene function that cannot be explained by changes in DNA sequence” [2]. The 
most common definition of epigenetics today is “the study of phenomena that lead to 
heritable changes in gene expression without changing the sequence of nucleotides.” 
For the sake of simplicity and universality, an epigenetic trait was defined as “a stably 
heritable phenotype resulting from changes in a chromosome without alterations in 
the DNA sequence” at the Cold Spring Harbor meeting in 2008 [3].

All these definitions were based on two important principles.

I. The change should influence gene expression and not DNA itself.

II. The change should be heritable.

With the discovery of histones, it was initially thought that these proteins only 
helped the DNA to wrap itself appropriately to fit into the nucleus. However, with 
advancing research, histones were viewed as the “interface” between DNA and the 
environment. These were the proteins that could change the accessibility of genes 
within the DNA to increase or decrease expression and interestingly, they could do 
it without the requirement to change the sequence of the underlying gene. This led 
to the identification of various histone modifications such as methylation, acetyla-
tion, phosphorylation, ubiquitylation, and so on, each one of them having their own 
kind of impact, that is, either increasing or decreasing gene expression. Research 
performed in the field also showed that different cells carry different combinations 
of histone modifications, and these combinations together constitute the histone code. 
More research on histones identified mechanisms such as histone sliding that can also 
influence gene accessibility and expression in response to various signaling pathways 
and at different stages of the cell cycle. DNA methylation on the 5′ cytosine also came 
to be recognized as a mechanism that could impact gene expression independent of 
the sequence of the gene that carries them.

Further research on model organisms was conducted on histones and DNA 
methylation to establish the transmissibility of epigenetic traits at the molecular level 
[4, 5]. One of the pioneering experiments performed on the mechanism of epigenetic 
inheritance was carried out by Manel Esteller and colleagues. The group extensively 
studied identical twins and verified that twin pairs that were older and/or had expe-
rienced different lifestyles had far greater differences in epigenetic marks (histone 
acetylation and DNA methylation) [6]. These studies were astounding as they helped 
in establishing the fact that DNA is not the destination to dictate all traits but patterns 
of expression and epigenetic changes can result in the establishment of different 
traits as a result of different environments, even in identical twins. Another study 
showed that supplementation of the diet of expectant mice with vitamin B, folic acid, 
choline, and betaine could alter the color of the fur of their offspring by affecting 
DNA methylation of the pigmentation genes [7]. Research on the agouti gene, which 
can cause diabetes and yellow color pigmentation of the fur in mice, has shown that 
offspring born to mice that were fed with supplements that resulted in methylation 
of the gene were slim and nondiabetic due to increased DNA methylation and conse-
quent silencing of the agouti gene [8]. These experiments proved beyond doubt that 
we not only inherit our parents’ DNA but also their experiences and exposures, which 
influence our traits. Studies performed concomitantly and afterward also showed 
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how the exposure of mothers to conditions such as smoking, alcohol consumption, 
stress during pregnancy, prenatal malnutrition, etc., can influence epigenetic patterns 
of key genes in offspring [9].

The very fact that epigenetic changes are heritable, yet reversible stimulated a lot 
of interest in the field because it provided a ray of hope to find a cure for many dis-
eases that were initially thought to be terminal. This effect also impacts directly at the 
level of gene expression and hence can offer a lasting and more effective therapeutic 
approaches [10]. In addition, it established that different cells carry different epigen-
etic signatures, and that one cell type can be changed to another, or a diseased cell can 
be converted into a healthy one through changes in the epigenetic landscape.

More research identified more players of the field such as long non-coding RNAs, 
enhancer RNAs, micro RNAs, etc. It was in fact realized that the so-called “junk 
DNA” actually codes for these “regulator elements,” which play a role in regulating 
the expression of the genes that code for proteins [11]. Until now, we have been able to 
decipher very little information about epigenetic or regulatory elements. The fact that 
98% of the genome codes for regulatory elements prompt us to believe that the field 
of epigenetics is very diverse and yet mostly unexplored. If this field is explored with 
the help of more advanced research tools and technology in the future, we might be 
able to find cures for many debilitating diseases of humans, might find more answers 
for our similarities and dissimilarities with other species, better understand evolu-
tion, and might develop a better understanding of the entire ecosystem by unraveling 
more connections related to gene–environment mechanisms. Increased knowledge of 
how gene–environment interactions operate acquired by means of increased knowl-
edge of epigenetics through superior technology might answer many ecologically 
important questions for us and might enable us to understand the ecosystem and the 
role of Homo sapiens in this ecosystem in relation to other species and the environ-
ment more clearly and effectively.

2. Optogenetics

The sequencing of the genome in species as different as humans and plants has 
helped us to understand mechanisms of development, physiology, and evolution 
[12–14]. The field of epigenetics studies chemical modifications of the DNA as well 
as interactions that include genome-associated proteins to analyze differences in 
the expression of genes that are heritable and arise without a change of the DNA 
sequence. As such epigenetic mechanisms afford another mechanism of transcrip-
tional control in regulating gene expression. While the field of epigenetics revealed 
an entire new layer of genetic regulation, optogenetics is the field that has allowed 
researchers to study cell signaling pathways and networks with unprecedented detail 
and resolution [15, 16]. This relatively new field exemplifies the power of taking a 
molecular approach to explore complex biological systems such as the brain in order 
to understand even the nature of emotions or psychiatric disorders [17]. Optogenetics 
is a combination of genetic manipulation and the use of optical tools. Genes that 
confer light responsiveness are inserted into cells of interest and allow for subsequent 
assessment of well-defined events in cells or even freely moving animals. Genetic tools 
allow the insertion of genes into cells that afterward respond to specific wavelengths 
of light. Subsequently, light can turn on or off specific signal cascades in cells and even 
trigger or inhibit the behavior of organisms. Thereby, optogenetics gives researchers 
an opportunity to obtain a deep view into an organism under optical control [18].
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To understand the brain means to be able to reliably manipulate it and predict its 
response. Neuroscientists have long used electrophysiological techniques to stimulate 
particular brain areas or even single neurons [15]. Electrical stimuli activate neural 
circuitry, often without being able to stop neuronal activity. Neuropharmacological 
tools are based on drugs that are slow in their effects or not specific enough to stimu-
late individual cells. In 2005, a set of new techniques started to emerge that combined 
optical stimuli with genetic tools in order to control events in individual cells [19]. 
The field of optogenetics has since revolutionized experimental approaches to study 
cell signaling, metabolism, brain circuits, and organismal behavior.

Two pieces of information about the origin of the field are worth mentioning. As 
recounted by Karl Deisseroth [15], it was Nobel Laureate Francis Crick who suggested 
the creation of this new field in the late 1970s by stating that the major challenge 
facing neuroscience was the need to control one type of brain cell while leaving 
others unaltered. Later on, Crick proposed the use of light to achieve this control feat 
because it could be delivered in precisely timed pulses. The other piece of information 
relates to the fact that it was microorganisms that allowed optogenetics to come into 
existence. It had been known for many years that certain microorganisms generate 
proteins, which allow ions to cross the cell membrane in response to light. The genes 
coding for these proteins are known as opsins. One of the proteins, bacteriorhodop-
sin, discovered in 1971, is an ion pump that can be activated by photons of green light 
[20]. Later on, other opsins were identified, namely the halorhodopsins and channel 
rhodopsins, which are also light-gated ion pumps, more specifically, single-compo-
nent light-activated cation channels. These discoveries have led to widespread use of 
optogenetic tools. Channelrhodopsin-1 (ChR1) and Channelrhodopsin-2 (ChR2) are 
found in the model organism Chlamydomonas reinhardtii. In 2005, several groups pub-
lished the first accounts of using ChR2 as a tool for genetically targeted optical remote 
control, namely optogenetics, of neurons, neural circuits, and behavior of animals 
[19, 21, 22]. This marked the beginning of the field of optogenetics. Optogenetics has 
taken advantage of microbial opsins such as channel rhodopsin to genetically target 
and then remotely control excitable cells. In order to control cells or organisms, opti-
cal activation is superior to other methods because of its speed, ease of use, specific 
targeting, and precise temporal control of optical activation.
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Evolution of Epigenome as the 
Blueprint for Carcinogenesis
Zeenat Farooq, Ambreen Shah, Mohammad Tauseef, 
Riyaz Ahmad Rather and Mumtaz Anwar

Abstract

Epigenetics “above or over genetics” is the term used for processes that result in 
modifications which are stably inherited through cell generations, without changing the 
underlying DNA sequence of the cell. These include DNA methylation, Post-translational 
histone modification and non-coding RNAs. Over the last two decades, interest in the 
field of epigenetics has grown manifold because of the realization of its involvement in 
key cellular and pathological processes beyond what was initially anticipated. Epigenetics 
and chromatin biology have been underscored to play key roles in diseases like cancer. 
The landscape of different epigenetic signatures can vary considerably from one cancer 
type to another, and even from one ethnic group to another in the case of same cancer. 
This chapter discusses the emerging role of epigenetics and chromatin biology in the 
field of cancer research. It discusses about the different forms of epigenetic mechanisms 
and their respective role in carcinogenesis in the light of emerging research.

Keywords: Epigenetics, DNA Methylation, Histone Modifications, Cancer

1. Introduction

Transmission of characters in a stable, inheritable manner is governed by the 
genetic make-up of a cell. This information for vertical transmission of characters 
is carried by the macromolecule deoxyribonucleic acid (DNA). The linear sequence 
of nucleotides in the DNA dictates the sequence of amino acids in the proteins and 
hence controls all the vital processes occurring within the cell. However, the linear 
length of DNA molecules is very long. For example, a typical human cell contains 
about 2 meters long DNA. Therefore, in order to accommodate DNA into nucleus, 
this genetic information is contained in the form of a nucleoprotein complex called 
chromatin [1]. This is particularly true about eukaryotic cells. Though prokaryotic 
cells also contain a nucleoid, it, however, is not well-organized.

The organization of DNA into chromatin is particularly important for two main 
reasons.

1. To bring about compaction of the large DNA molecule into a small nuclear space 
in an ordered manner.

2. To facilitate regulated gene expression.
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Alongside DNA, chromatin mainly consists of small, basic positively charged 
group of proteins called histones. The positively charged histones bind with the 
negatively charged DNA in an energetically favorable manner inside chromatin [2]. 
These proteins have remained the focus of intensive research for many years now. 
Apart from DNA and histones, chromatin also contains a huge array of non-histone 
proteins, most of which are not as well characterized and well-studied as histones.

Earlier it was thought that compaction of DNA into chromatin solely occurs to 
accommodate DNA. But later it was realized that this compaction plays a paramount role 
in orderly organization of DNA and thereby helps in differential gene expression. The 
fundamental repeating unit of chromatin is the nucleosome which consists of two copies 
each of histones H2A, H2B, H3 and H4 wrapped around 146 bp of DNA in a left-handed 
helical manner [1]. The histone proteins are named in the order in which they were dis-
covered. Because of being associated with the nucleosome core, these histone proteins 
are known as the core histones. Another class of histones binds DNA at the entry and 
exit sites into nucleosomes. This is known as the linker histone H1 and paves way for 
further compaction of nucleosomes into higher order chromatin structures (Figure 1).

Upon observation under a microscope, chromatin appears as two distinct enti-
ties within the nucleus. These are termed as euchromatin and heterochromatin. 
Euchromatin is the lightly stained part of chromatin which mostly lies towards 
the interior regions of nucleus and contains actively transcribed genomic regions. 
Heterochromatin is the darkly stained fraction which mostly lies towards the 
periphery of nucleus [3]. It contains regions which are transcriptionally silent and 
mostly contains repetitive DNA sequences. This spatial organization of chromatin is 
maintained through various mechanisms. These mechanisms serve as the “epigenetic 
carriers of nuclear information” within the cell and include covalent histone modi-
fications, non-coding RNAs and chromatin remodeling complexes and lately also 
included DNA methylation (Figure 2).

Figure 1. 
Representation of different levels of hierarchical chromatin organization. (A) Inside a compact chromosome, 
DNA and proteins are organized at different levels. (B) Ultrastructure of a nucleosome containing two copies of 
H2A,H2B,H3 and H4 inside 147 bp of DNA. 
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2. Epigenetics and chromatin biology: unifying themes and differences

At its heart, epigenetics refers to the study of heritable changes in gene expression 
without changes in the DNA sequence. This term was coined by Waddington and 
as the name indicates, epi (above or over genetics) is any moiety that can be stably 
inherited by cells across many generations without altering the sequence of nucleo-
tides in the DNA. The study of epigenetics previously involved study of covalent 
histone modifications and non-coding RNAs. However, DNA methylation has also 
been increasingly recognized as an epigenetic phenomenon owing to its non-sequence 
based heritable nature and its importance in maintaining cellular homeostasis and 
association of its perturbations with various diseases. Therefore, the definition and 
scope of epigenetics has changed dynamically since the inception of the field.

Quite often, epigenetics and chromatin biology are very loosely stated terms. 
However, to be more precise, epigenetics refers to the study of “epigenetic marks 
or signatures” which play a prominent role in maintenance of cellular homeostasis 
whereas chromatin biology refers to the study of “chromatin structure and func-
tion”. This encompasses nuclear dynamics, topology, localisation, organisation and 
three-dimensional (3D) structure [3]. There is a huge overlap between the two terms, 
and these are often used interchangeably. For example, epigenetic signatures and 
modifications play a paramount role in the maintenance of nuclear topology, overall 
chromatin organization and chromatin states.

Field of epigenetics is very interesting because of the reversible nature of epi-
genetic changes. This means that although these changes can be stably inherited, 
however, unlike DNA sequence, these changes can also be reversed under particular 

Figure 2. 
Major players involved in the propagation of epigenetic mechanisms in cells. DNA methylation and micro RNAs 
are involved in gene silencing, histone modifications are involved in both silencing and expression of genes.
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conditions. In fact, mechanisms are well in place within the cells which lead to the 
reversal of these modifications [4]. Interestingly, these changes can also be targeted 
for the reversal externally, using specific enzymes, under desired conditions. This 
may include the reversal of epigenetic modifications involved in disease progression 
with the help of enzymes [5]. For example, reversal of an epigenetic modification that 
is involved in carcinogenesis by an enzyme specific for the reversal to alleviate some 
of the symptoms.

Epigenetic modifications play a very prominent role in almost all the cellular 
processes like growth, cell division, maintenance of cellular identity etc. Therefore, 
any changes in these modifications can lead to serious outcomes. Perturbations in 
epigenetic modifications have been observed to be involved in various deleterious 
conditions including cancer [6].

In this chapter, we shall discuss about the various epigenetic mechanisms, their 
importance, major functions that they carry out in the cells and changes to these 
marks and their implications in cancer.

3. DNA methylation

DNA methylation involves transfer of a methyl group from S-adenosylmethionine 
to the 5’position of cytosine residues in DNA. DNA methylation is one of the most 
prominent epigenetic events that take place within the cells and has been shown 
to play important roles in various cellular processes like genome integrity, genome 
imprinting, X chromosome inactivation and development [7–9].

DNA methylation at 5 methyl cytosine is catalyzed by two groups of 
methyltransferases.

1. DNMT1 which catalyzes methylation on the newly synthesized hemi-methylated 
DNA strand, utilizing the parental strand as template for copying of methylation 
pattern. This class of enzymes are known as the maintenance methyltransfer-
ases as they play role in maintaining the methylation status following replica-
tion. These are critically important enzymes for mammals as mice deficient in 
DMNT1 display embryonic lethality [10].

2. DNMT3a and 3b. These are the enzymes which play role in methylating DNA at 
5′ methyl cytosine without utilization of a methylated template. These enzymes 
are therefore known as de novo methyltransferases and these have been known 
to catalyze methylation events during various important cellular phases like 
development. These enzymes are therefore highly expressed during embryogen-
esis and display reduction in expression pattern in adult tissues [11]. DNMT 3a 
and 3b are also extremely important for mammals since DNMT 3b deficient mice, 
similar to DNMT 1, are embryonic lethal whereas those deficient in DNMT 3a die 
by the age of 4 weeks [10].

Another member of the DNMT family of enzymes is DNMT 3 L. It was discov-
ered in 2000. DNMT 3 L lacks an intrinsic methyltransferase activity but assists 
DNMNT3a and 3b in methylating retrotransposons [12].

In eukaryotes, DNA methylation occurs predominantly within repetitive 
sequences in order to maintain genomic integrity [13]. Methylation on cytosine 
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residues usually takes place in the context of CG dinucleotides (Known as CpG) and 
around 75% of CpG dinucleotides in humans remain methylated. These CpG dinu-
cleotides are unevenly distributed but are concentrated in stretches of high frequency 
known as CpG islands. These islands remain mostly unmethylated and can be found 
in the promoters of constitutively expressed genes like housekeeping genes [14]. In 
humans, almost half of the estimated 29,000 CpG islands remains unmethylated 
under normal conditions [15–17].

Methycytosine residues often co-operate with other effectors to bring about a 
silenced chromatin state. Methyl binding domain (MBD) proteins recognize and 
bind to methylated cytosines. These MBD proteins act as a signal/binding platform 
for histone modifying and chromatin remodeling enzymes to bring about further 
compaction of chromatin [18]. Apart from binding methylated DNA, MBD 2 (a 
member of MBD family of proteins) has also been shown to promote the DNA meth-
yltransferase activity of NuRD (chromatin remodeling complex) by interacting with 
NuRD [19, 20]. This interaction brings NuRD complex in close proximity of cytosine 
residues which are later methylated by NuRD. Till date, six members of methyl bind-
ing domain proteins have been identified that include MBD1, MBD2, MBD3, MBD4, 
methylcytosine binding protein 2 (MECP2) and Kaiso [21]. All of these proteins are 
under intense investigation and efforts are being made to identify more members of 
the family.

Various genes contain regions of CpG dinucleotides in their promoters with 
variable degrees of methylation levels [14]. These levels are crucial for normal func-
tioning of the cells and any mis-regulation in this level is associated with a number 
of physiological outcomes. Methylated DNA elements often co-operate with other 
epigenetic elements to ensure proper silencing of chromatin and any increase in levels 
of DNA methylation are often involved in silencing of cognate genes which can lead 
to carcinogenesis [15, 22]. For example, it has been observed that increase in the levels 
of promoter DNA methylation in tumor suppressor genes leads to a decrease in their 
expression and hence a steady decline in their cellular activity is observed [15, 23–25]. 
Hypermethylated promoters can also serve as targets for transition mutations due 
to spontaneous deamination of 5’methyl cytosine into thymine [7, 26]. This leads 
to transmission of DNA with errors during replication to new cells. These cells are 
genomically unstable and with time, accumulate more and more mutations which 
in the absence of proper surveillance, eventually lead to cancer initiation [7, 16, 27]. 
Decrease in the DNA methylation of tumor suppressor genes has been observed in a 
number of primary tissues from cancer patients at various geographical locations.

Global hypomethylation can also ensue which can lead to loss of repression from 
the repetitive DNA sequences (like transposons) and imprinted genomic sequences. 
This can be accompanied by loss of methylation from genomic regions involved in 
maintaining chromosome stability like peri centromere. This can cause gross genomic 
instability which is a characteristic of many forms of cancer. Though the relationship 
between global loss of DNA methylation and cancer has not been very well studied 
and needs more research (Figure 3) [16, 28, 29].

Alternatively, certain genes undergo hypomethylation and therefore experience 
increase in expression that has been associated with carcinogenesis. Genes predomi-
nantly affected by hypomethylation include developmentally critical genes, enzymes, 
growth regulatory genes and tissue-specific genes such as germ cell-specific tumour 
antigen genes [30]. Various other genes which have been shown to be involved in 
carcinogenesis as a result of aberrant DNA methylation are listed in Table 1.
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S.No. Name of 
gene

DNA 
methylation 
change

Change 
in gene 
expression

Type of cancer References

1. P16 Increase Decrease Colorectal, Renal
Lung, Oral, 
Head and neck, 
Hepatic

[23, 29, 31–39]

2. Hmlh1 and 
hMSH2

Increase Decrease Colorectal, Renal [40–42]

3. P Cadherin Increase Decrease Breast, Hepatic, 
Pancreatic, Lung, 
Salivary gland

[26, 37, 43–45]

4. Cyclin D2 Decrease Gastric [46]

5. MAGE Decrease Melanoma [47]

6. P15 Increase Decrease Oral carcinoma [32]

7. RASSF1 Increase Decrease Nasopharyngeal 
Hepatic, Bladder

[37, 48–50]

8. MGMT Increase Decrease Oral, Head and 
neck
Bladder, Lung

[33, 35, 38, 39, 
50, 51]

9. FHIT Increase Decrease Lung [23, 43]

10. DAP-K Increase Decrease Oral, 
Nasopharyngeal
Head and neck, 
Lung
Pancreatic, Renal

[32, 33, 35, 48, 38, 
39, 51–53]

11. APC Increase Decrease Colorectal, Lung [40, 51, 54]

12. RAR 
(retinoic 
acid 
receptor)

Nasopharyngeal
Head and Neck
Lung

[23, 38, 39, 43]

Table 1. 
Changes in DNA methylation of different genes in different forms of cancer.

Figure 3. 
Schematic of two broad mechanisms involved in cancer progression through DNA methylation. Hypermethylation 
and silencing of tumor suppressor gene promoters to allow unchecked growth of damaged cells to accumulate more 
damage and generate cancer phenotype. Hypomethylation of proto-oncogenes to favor uncontrolled proliferation 
of cells to generate cancer mass.
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4. Epigenetic modifications in context of chromatin

The organization of DNA into chromatin, although very necessary, imposes 
constraints on all the nuclear processes which require DNA as a template like replica-
tion, transcription and repair. Therefore, in order to gain access to the underlying 
DNA, chromatin structure is dynamically regulated through various mechanisms. 
This flexibility is permitted by mechanisms like histone modifications, incorporation 
of histone variants and chromatin remodeling [2].

Histone modifications act as binding platforms for various effectors for appropri-
ate downstream signaling. Histone variants are incorporated by replacing canonical 
histones under specified conditions into nucleosomes. The variants possess different 
bio-physical properties compared to their canonical counterparts and hence play 
crucial roles in cellular processes like DNA repair. Chromatin remodeling leads to 
sliding of nucleosomes along chromatin, exposing regions of genome which could be 
acted upon by trans-acting factors for specified outcomes.

4.1 Histone modifications

Histone proteins undergo a variety of covalent modifications which can either lead 
to compaction or relaxation of the underlying DNA within chromatin. The outcome 
of these modifications is dictated by the type of modification, degree of modifica-
tion as well as stage of the cell cycle. Histone proteins consist of a highly structured 
C-terminal globular domain and an unstructured N-terminal tail. Globular domains 
are generally involved in mediating histone-histone and histone-DNA interactions 
while as N-terminal tails act as sites for covalent modifications. Among the different 
classes of histone proteins, histone H3 and H4 generally undergo covalent modifica-
tions in their tails. Though recently, H2A and H2B have also been observed to undergo 
certain modifications [55, 56]. Similarly, many modifications have been observed in the 
globular domain of histone H3 as well [1]. Histone modifications play role in numer-
ous biological processes like gene regulation, DNA repair, chromosome condensation 
and spermatogenesis [57]. Some of the well-recognized histone modifications include 
acetylation and ubiquitination of lysine (K) residues, phosphorylation of serine (S) and 
threonine (T) residues, methylation of arginine (R) and lysine (K) residues as well as 
other less known modifications [58, 59]. These modifications are largely postulated to 
affect chromatin function through two distinct mechanisms: By altering the electrostatic 
charge of histones, these could alter the structural properties or the binding of histones 
to DNA. As against the first mechanism, some of the modifications create binding 
surfaces for the recruitment of specific functional complexes to their sites of action e.g., 
proteins containing bromodomains recognize acetylated residues while those containing 
chromodomains recognize methylated residues [60, 61]. It was, In fact, the potential 
specificity of these interactions which prompted Struhl and Allis to propose the ‘histone 
code hypothesis’ according to which “specific combinatorial sets of histone modification 
signals dictate the recruitment of particular trans-acting factors to accomplish specific func-
tions” [62]. Initially, it was thought that histone proteins undergo covalent modifications 
after translation (post translational modifications) in a manner dictated by nucleosomal 
context. But recently, it has been observed that histones can undergo co-translational 
modifications as well, depending upon the cellular context. This observation has added 
an additional layer into the role of histones in regulation of cellular homeostasis and 
clearly calls for more research in the field. Perturbations in histone modifications is 
associated with many physiological disturbances, including carcinogenesis [5].
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4.1.1 Histone acetylation and deacetylation

Acetylation is the most widely studied post translational modification in histones. 
This modification involves transfer of an acetyl group from N-acetyl-Co-A to the 
€ amino group of lysine with the help of histone acetyltransferases (HATs). Histone 
acetylation is associated with loosing of chromatin structure due to neutralization 
of the positive charge on histones with the negative charge on acetyl group which is 
responsible for increase in transcription. In fact, various transcription activator or 
co-activator complexes contain HAT activity such as CBP 300, TAF II 250. Reversal of 
acetylation is carried out by another class of enzymes known as histone deactylases 
(HDACs). Both HATs and HDACs have been studied extensively in relation to various 
diseases, including neurodegeneration and cancer [4]. Depending upon the gene/s 
being involved (oncogenes or tumor suppressor genes), HATs and HDACs can have 
different effects on the cancer outcomes.

4.1.2 HATs, HDACs and cancer

Relationship between histone acetylation status and cancer has been demonstrated 
in various studies. For example, a loss of acetylation on lysine 16 of histone H4 (H4K16) 
has been observed in cancer cell lines and primary human tissues by Fraga et al. [63]. 
Decrease in promoter acetylation and consequent decline in expression of P21 gene 
has been observed in some forms of cancer with subsequent rescue of expression upon 
treatment of cells with HDAC inhibitors under similar conditions [64]. Another study 
has linked decrease in histone acetylation with tumor invasiveness and metastasis [65]. 
Accumulating data also shows that HDACs are involved in hematological malignancies 
like acute promyelocytic leukemia (APL) due to aberrant recruitment to non-target 
promoters, as a result of interaction with translocation-induced fusion proteins like 
RAR-PML [66]. Downregulation of E-cadherin due to decrease in promoter acetylation 
levels has been implicated in the invasive potential by carcinomas [67, 68]. A number 
of studies have also linked levels of specific classes of HDAC enzymes with different 
forms of cancer like increase in HDAC1 expression in gastric [69], prostate [70], colon 
[71], breast carcinoma [72], increase in HDAC2 expression in cervical [73], gastric [74] 
and colorectal carcinoma [75]; increase in HDAC3 expression in colon carcinoma [76] 
and increase in HDAC 6 in breast carcinoma [71]. Mutations in HDAC2 gene has also 
been reported in sporadic colorectal carcinomas [77].

Various mechanisms are responsible for the role of specific forms of enzymes in 
specific cancer types, largely depending upon their interaction partners and the path-
ways involved. For example, HDAC1 has been shown to play a role in transcriptional 
repression of various oncogenic targets of retinoblastoma gene (Rb). Therefore, loss 
of HDAC1 activity leads to compromise in efficiency of Rb in downregulation of tar-
get oncogenes [78]. HDAC3 has also been seen to interact with retinoblastoma protein 
(Prb) in cancer, Perhaps the most important HDAC III enzyme in cancer is SIRT1 due 
to its role in regulation of protein factors like P53 [79], androgen receptor [80], p300 
[81], E2F1 [82], DNA repair factor ku70 [83] and most importantly, NF-KB [84].

4.1.3 Histone methylation

Histone methylation involves transfer of methyl group(s) from S-adenosyl-
methionine to lysine or arginine residues on histones. The enzymes catalyzing histone 
methylation are known as histone methyltransferases (HMTs). Depending on the 
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target residue, histone methyltransferases are of two kinds 1. Histone lysine meth-
yltransferases (HKMTs) and histone arginine methyltransferases (HRMTs). Also, 
lysine residues have three replaceable amino groups on the β-carbon. Therefore, lysine 
can undergo mono, di or tri-methylation whereas arginine can undergo only mon and 
di methylation.

Histone methylation is most commonly observed on lysine residues of H3 and 
H4 tails [85]. It is the most diverse histone modification in terms of complexity and 
is involved in various functions, depending on the physiological context. Histone 
methylations commonly associated with gene activation include H3K4, H3K36 and 
H3K79 and those associated with gene inactivation include H3K9, H3K27 and H4K20 
[86]. Furthermore, variations in the degree of methylation on a single residue can also 
amplify the histone code further. For example, monomethylated H4K20 (H4K20me1) 
is involved in the compaction of chromatin and therefore transcriptional repression. 
However, H4K20me2 is associated with repair of DNA damage [63].

Histone methylation is involved in several cellular functions like maintenance of 
chromatin structure, DNA repair, gene silencing, prevention of hyper-recombination, 
maintenance of genome integrity et cetera. It is also involved in maintenance of 
X-chromosome integrity and silencing through excessively methylation of H3K9 on 
the second copy of human X chromosome in female cells. This provides a binding 
surface for methyl domain binding (MDB) protein and heterochromatin protein 
(HP1) to heterochromatinize and silence the second copy of X-chromosome [87, 88]. 
Since histone methylation plays a paramount role in regulation of gene expression and 
represents the most stable and complex histone modification, even slight changes to 
the methylation pattern can have deleterious effects on the organism. In Saccharomyces 
cerevisiae, a lethal mutation that leads to H3K4, H3K36 and H3K79 methylation 
inactivates many genes required for cell cycle progression and hence causes a delay 
in mitosis. It has been discovered that deletion of the methyltransferase genes which 
play role in the above-mentioned methylations allows this organism to live since the 
lysine residues in question are not methylated [89].

4.1.4 HMTs and cancer

Cancer cells use a diverse range of molecular mechanisms to alter histone meth-
ylation landscape. These include mis-regulation of histone methyltransferases and/
or demethylases, mistargeting of histone methyltransferases and mutations in 
methyltransferases. For example, if areas around oncogenes become unmethylated, 
these genes will attain the potential of being transcribed at an alarming rate. On the 
contrary, if areas around tumor suppressor genes become highly methylated, these 
genes will lose their activity and therefore cancer will be more likely to occur [90]. 
Accumulating data suggests that histone methylation is mis-regulated in various 
forms of cancer [91, 92]. Fraga et al. [63] have observed that loss of H4K20 trimeth-
ylation that leads to hypomethylation of repetitive sequences is a common event in 
human cancers which occurs at a early stage during tumorigenesis. Mutations on 
the genes encoding histone proteins are also linked with cancers. 30% of paediatric 
glioblastomas have mutations at key post translational modification sites in histone 
genes [93]. Recently, mutations in metabolic enzymes have also been observed to 
have a role in histone methylation status alteration. The mutated metabolic enzymes 
produce altered metabolites (popularly known as oncometabolites) which jeopardize 
the function of methylase enzymes. For instance, inhibition of histone demethylation 
Jumonji C enzymes by the oncometabolite d-2-hydroxyglutarate [94–97].
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4.1.5 Histone phosphorylation

Phosphorylation of histones takes place on serine, threonine, tyrosine and histi-
dine residues, predominantly in the N-terminal tails of all nucleosomal histones by 
histone kinase enzymes which transfer a phosphate group from ATP to the hydroxyl 
group of the target amino-acid side chain. Phosphate group contains significant nega-
tive charge and therefore phosphorylation is generally associated with transcriptional 
upregulation. Various proteins have been identified which contain phosphor-binding 
domains [98, 99]. Histone phosphorylation changes dynamically with the transcrip-
tional profile of the cell [100]. For example, H3Ser10 phosphorylation correlates with 
gene activation in mammalian cells and heat shock response induced transcription in 
Drosophila [101]. However, the same phosphorylation is associated with chromosome 
condensation and segregation during mitosis and meiosis [102]. Histone phosphory-
lations also play a pivotal role in response to DNA damage e.g., phosphorylation of 
H2A(X) on serine 139 in mammalian cells (referred to as γ H2AX) and S129 of H2A in 
yeast [103].

4.1.6 Histone phosphorylation and cancer

Regulation of the level of histone H3 phosphorylation by an interplay of the 
activities of kinases and phosphatases serves as a means of promoting chromosomal 
condensation and segregation in mitosis [104]. Phosphorylation of H3S10 has also 
been linked to the expression of proto-oncogenes like c-fos [105–107]. It has been 
detected with the aid of ChIP assay that phosphoacetylation of H3 tails exist at the 
promoters of several MAP- kinase activated genes as well as the promoters of c-fos and 
c-jun [108]. H2A(X) phosphorylation is involved breast cancer [109] and colon cancer 
[110]. Histidine phosphorylation on histone H4 has been shown to be involved in liver 
regeneration and cancer [111]. Phosphoacetylation of histones, involving phosphory-
lation of histone H3 on residue serine 10 and acetylation of histone H4 on lysine 12 
has been shown to have a role prognosis of oral squamous cell carcinoma [112].

4.1.7 Histone ubiquitination

It is a process in which ubiquitin molecules are added to lysine residues of his-
tones. Monoubiquitination is the major form of ubiquitination in histones. However, 
histones H2A and H2B can also be modified by polyubiquitination. The first ubiquiti-
nated histone to be identified was H2A [113]. H2A and H2B also hold the distinction 
of being the most abundantly ubiquitinated proteins in the nucleus [113, 114]. In 
addition, H3, H4 as well as H1 have been reported to be modified by ubiquitin but the 
biological function of these ubiquitinations has not been well characterised [115, 116]. 
Histone ubiquitinations perform a number of important nucleosomal functions. 
Chromatin immunoprecipitation (ChIP) experiments have revealed enrichment of 
monoubiquitinated H2A (H2Aub) in the satellite regions of genome and of H2Bub in 
transcriptionally active genes [117, 118].

4.1.8 Histone ubiquitination and cancer

Several recent studies have linked ubiquitination, especially H2Bub with inflam-
mation and cancer [119–121]. Histone H2Bub1 predominantly resides downstream 
to transcription start sites (TSS), a position which allows association with highly 
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transcribed genes and therefore makes this protein a likely target in cancer [117]. 
RNF20/RNF40 has been shown to negatively regulate cancer- related inflammation in 
mice and humans through increased recruitment of repressive NF-κB subunit p50 to 
various gene targets to downregulate their transcription [121]. RNF40 is also known 
to modulate NF-κB activity in colorectal cancer in mice [122] while as RNF20 and 
H2B ubiquitylation have also been shown to be involved in breast cancer [123]. Loss 
of H2B monoubiquitination has also been shown to activate immune pathways by 
alteration of chromatin accessibility in ovarian cancer [124–126].

5. Conclusion

Epigenome in a typical eukaryotic cell is packaged as an entity containing nucleo-
proteins-DNA and histones. This epigenome is compartmentalized into euchromatin 
and heterochromatin and contain various marks which are transmitted from one 
cell generation to another [127]. Covalent DNA and histone modifications are the 
carriers of epigenetic inheritance which are required for the maintenance of a stable 
epigenome [128]. Any disturbance in the propagation and maintenance of a stable 
epigenome is associated with diseases like transformation and cancer. The process of 
cellular transformation is associated with changes in the epigenetic landscape of DNA 
methylation and histone post-translational modifications. In recent past, genome 
wide studies have identified various genes related to diseases like cancer and neuro-
degeneration [4]. Many of these genes have been observed to code for key epigenetic 
enzymes like HDACs, which raises the possibility of their involvement in far reaching 
pathological problems. In recent years, non-coding RNA has also been increasingly 
investigated in relation to carcinogenesis and various types of non-coding RNAs have 
been associated with different forms of cancer [129, 130].

A stable epigenome also requires proper chromatin conformation. It has been 
observed that upon transformation, the 3D organization and nuclear topology 
also undergoes certain changes. These topological changes can be both cause and 
consequence of alterations in histone and DNA modifications. Topological changes 
in chromatin structure are associated with increased expression of repetitive DNA 
elements, which leads to hyper-recombination and gross genomic instability which 
can further lead a cell on the path of transformation.

Studies performed on chromatin structure and covalent modifications have paved 
way for better understanding as well as therapeutic intervention of various forms 
of cancer. Epigenetic approach of therapeutic intervention in cancer is definitely a 
better approach for cancer treatment since it aims at reversal of inheritable changes 
without changing the DNA or without affecting normal physiological processes. 
Also, tumor forms have recently been discovered with anatomical restrictions which 
contain mutations in histone variant genes. For example, H3.3, a variant of histone 
H3, contains a point mutation at residue 34 in which glycine changes to valine or 
arginine (H3.3G34V or H3.3G34R). These tumors are found almost exclusively in 
the cerebral hemispheres [131, 132]. Tumors with point mutations in histone variant 
H3.1 (H3.1K27M) are restricted to pons of brainstem while as H3.3K27M tumors are 
found along the midline of the brain [133]. This “anatomical restriction” in tumor 
types and the corresponding mutations in histone variants are indicative of an excit-
ing new dimension of the role of epigenetics in tumor biology [134, 135]. This also 
provides cues about the role of epigenetics in defining tumor micro-environment. 
Alternatively, many more tumor types can be screened for mutations in genes coding 
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for epigenetic factors to have better insights into the role of epigenetics in tumor 
progression. These findings also encourage the possibility of exploration of epigenetic 
therapy in resetting the balance in tumor micro-environment for therapeutic target-
ing. However, the field of epigenetic studies and epigenetic cancer therapy is still in its 
infancy and intense investigations are required for further exploration of the possibil-
ity of epigenetic targeting and treatment of cancer (Figure 4).

Figure 4. 
Schematic depicting two major pillars of epigenetic mechanisms that is, DNA methylation and histone modifications, 
their importance in maintaining normal cellular morphology and function and their mis-regulation leading 
to cancer.
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Abstract

As we attempt to understand and treat diseases, the field of epigenetics is receiving 
increased attention. For example, epigenetic changes may contribute to the etiology 
of diabetes. Herein, we review the histology of the pancreas, sugar metabolism and 
insulin signaling, the different types of diabetes, and the potential role of epigenetic 
changes, such as DNA methylation, in diabetes etiology. These epigenetic changes 
occur at differentially-methylated sites or regions and have been previously linked to 
metabolic diseases such as obesity. In particular, changes in DNA methylation in cells 
of the pancreatic islets of Langerhans may be linked to type 2 diabetes (T2D), which 
in turn is related to peripheral insulin resistance that may increase the severity of the 
disease. The hypothesis is that changes in the epigenome may provide an underlying 
molecular mechanism for the cause and deleterious metabolic health outcomes 
associated with severe obesity or T2D. Conversely, reversing such epigenetic changes 
may help improve metabolic health after therapeutic interventions.

Keywords: glucose, pancreas, beta cells, epigenetics, DNA methylation,  
diabetes mellitus, hypomethylation, hypermethylation, histone modification

1. Introduction

Diabetes mellitus (DM) is a chronic metabolic disease in which either the pancreas 
produces very little to no insulin, termed type 1 diabetes (T1D), or insufficient insulin 
in the context of systemic insulin resistance, termed type 2 diabetes (T2D) [1]. Both 
of these conditions result in high levels of glucose in the bloodstream.

DM is associated with significantly elevated diabetic nephropathy, neuropathy, and 
retinopathy, which are microvascular complications, and cardiovascular conditions 
such as hypertension, atherosclerosis, and stroke, which are considered macrovascular 
diseases. DM is associated with genetic as well as environmental factors, with the cost 
of treatment and debilitating complications increasing dramatically due to an epidemic 
of DM worldwide.

However, the above statement is something of an oversimplification, because 
besides T1D and T2D, there are even more variants, and we will now look at all of 
these in more detail.

2. Type 1 diabetes

T1D represents only around 10% of the DM cases worldwide but is increas-
ingly occurring earlier in life. It results from autoimmune destruction of the beta 
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cells (β-cells) of the endocrine pancreas. As with cancer, obesity, and autoimmune 
diseases, T1D results from the interaction of genetic and non-genetic factors [2]. In 
autoimmune diseases, due to an immunological malfunction and lack of tolerance 
of self-antigens, the immune system destroys the body’s own tissues. More than 80 
different diseases are considered autoimmune and affect approximately 100 million 
people worldwide [3]. T1D is one such example that results in the slow degenera-
tion and destruction of the pancreas. However, approximately 10% of the affected 
patients are classified as subtype 1B, and the pathogenesis in these cases is considered 
idiopathic since there is no evidence of autoimmunity [4]. T1D can be correlated to 
ethnicity, gender, genetics, and environmental influences. For instance, it occurs 
more in children and those under the age of 20 and affects both male and female chil-
dren equally. However, studies have found that males are disproportionally affected in 
areas with a high prevalence of T1D, whereas females are disproportionally affected in 
areas with a low prevalence of the disease. It is highest in non-Hispanic White people 
and lowest in Navajo groups. Moreover, T1D is common in families with a history 
of the disease. Epidemiological studies have found an association between T1D and 
environmental factors, and dietary and nutritional habits [5].

Essential mediators leading to β-cell destruction in T1D include the following 
pro-inflammatory cytokines: interleukin-1β (IL-1β); interferon-γ (IFN-γ); and tumor 
necrosis factor-α (TNF-α). These cytokines induce the overexpression of iNOS in 
β-cells, leading to an overproduction of NO that causes cytotoxicity. This suggests an 
important role for NO in the pathogenesis of DM [6].

3. Type 2 diabetes

In contrast to T1D, T2D is a defect in insulin secretion, insulin action, or both that 
leads to the development of a multifactorial and heterogeneous group of disorders. 
Changes in diet and physical activity levels have led to an increased worldwide preva-
lence of T2D over the past several decades. There is also strong evidence supporting 
a genetic component of T2D susceptibility, and several genes underlying monogenic 
forms of DM have already been identified. However, T2D likely results from the con-
tribution of many genes interacting with different environmental factors to produce 
wide variations in the clinical course [7].

Regarding this process, there is a decrease in β-cell mass in T2D with the primary 
implicated mechanism being the apoptosis of the cells. This type of dynamic cell 
death is increased in all diabetic individuals; β-cell mass depends on many factors, 
including cell size, cell renewal rate from proliferation of pre-existing cells or neogen-
esis (differentiation from other precursor cells), and speed of apoptosis. Also, β-cell 
failure during the progression to T2D can be caused by either chronic exposure of the 
β-cell to glucose, which is called “glucotoxicity,” or exposure to fatty acids, which is 
known as “lipotoxicity” [8].

4.  Latent autoimmune diabetes in adults and maturity-onset diabetes  
of the young

Besides T1D and T2D, some forms of the disease do not fit neatly into those 
groups, namely latent autoimmune diabetes in adults (LADA) and maturity-onset 
diabetes of the young (MODY). LADA shares some type 1 and type 2 symptoms and 
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treatments, is diagnosed during adulthood, and sets in gradually, like T2D [9]. On the 
other hand, MODY is caused by genetic changes that affect how well the body makes 
insulin [10].

5. Type 3 diabetes

There may be a connection between T2D and Alzheimer’s disease (AD). Indeed, it 
has been proposed that AD is actually a form of DM termed type 3 (T3D). Globally, 
the epidemic of T2D and the possibility of it contributing to the risk of AD have 
become a paramount health concern.

The hypothesis is that T3D corresponds to chronic insulin resistance plus an 
insulin-deficient state that is mostly confined to the brain [11, 12]. A deficit in glucose 
utilization is observed, which ultimately leads to cognitive dysfunction. Over time 
T3D steadily destroys cerebral functions due to insulin imbalance. Thus, the central 
nervous system develops insulin resistance, which leads to AD [13].

6. Gestational diabetes

Finally, in terms of DM classifications, the American Diabetes Association defines 
gestational DM (GDM) as DM seen during pregnancy. GDM occurs in approximately 
5% of pregnancies, but rates can increase due to obesity. Pregnancies with a diagnosis 
of GDM present a risk to both mother and child. Women who have a record of GDM 
will typically develop T2D after pregnancy. Their children have a higher incidence of 
becoming obese and developing T2D early in life [14].

So, as we can see, ultimately, DM and its resultant health conditions are numerous 
and include many degenerative diseases such as the above-described six types of DM.

But possibly, this myriad of insidious conditions and diseases could be preventable 
if we focus research on the pancreatic β-cells (vital to the regulation of glucose levels 
in the bloodstream). But first, what exactly are β-cells? At this point, we will look at 
the histological composition of the pancreas in more detail.

7. The cells of the pancreas

Histologically, the adult pancreas consists of endocrine and exocrine cells, but 
these cells can change their state of differentiation in response to various stimuli (e.g., 
injury or stress). The exocrine portion of the pancreas produces and releases enzymes 
that digest proteins and lipids. In contrast, the endocrine portion produces hormones 
such as insulin and glucagon, which control blood glucose levels. During the cephalic 
phase of digestion, even before food enters the mouth, digestive enzymes and insulin 
are secreted to regulate and coordinate metabolic processes.

Over millions of years of evolution, large portions of what we today call the 
pancreas evolved originally from just exocrine tissue. As a result of this evolution, 
endocrine cells form encapsulated boundaries called islets of Langerhans, that sepa-
rate the endocrine and exocrine acini within the pancreas [15].

Moreover, many cell types are present within these evolved islets: the alpha (α), 
beta (β), and delta (δ) cells produce the vital hormones glucagon, insulin, and soma-
tostatin, respectively. A fourth cell type, known as the pancreatic polypeptide (PP) 
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cell has the significant function of inhibiting glucagon release. Yet other cell types, 
ghrelin-positive cells, are mainly found in the gut and in the islet to inhibit insulin and 
somatostatin secretion and regulate the secretion of glucagon, PP, and somatostatin 
(Figure 1) [16]. Evidence in the literature, and discussed in detail by Da Silva Xavier 
[16], suggests transdifferentiation of α-cells via stimulation by gamma-aminobutyric 
acid and δ-cells into insulin-containing β (like)-cells. It is unknown whether the 
replenishment of β-cells from the transdifferentiation of α-cells is able to replace hub 
(stem) β-cells which influence the function of other β-cells (Figure 1) [16]. In any 
case, the pancreas does appear to have some reserve capacity for the regeneration of 
β-cells but this may be overwhelmed in DM.

In fact, the most abundant cells in the islets of Langerhans are the β-cells, com-
prising 55% of the cell number, and it has been suggested that they interact with 
other endocrine cells to influence the secretion of hormones [8]. Moreover, because 
the β-cells produce insulin they are the most critical pancreatic cell type involved in 
the etiology DM. It is therefore timely at this point to look at insulin production in 
more detail.

8. Insulin synthesis and secretion

Insulin production begins in the β-cells with the secretion of pre-proinsulin that is 
converted into proinsulin. Proinsulin is then transformed into insulin and C-peptide, 
which are stored in the form of secretory granules until they are triggered for release 
throughout the body during food ingestion. Insulin is mainly produced in response 

Figure 1. 
Schematic diagram showing the interaction of islet cells. Evidence points to the transdifferentiation (light blue 
arrow) of α-cells (red) via stimulation by gamma aminobutyric acid (GABA), and δ-cells (pink) into insulin-
producing β-cells (green). It is unknown whether the replacement of β-cells by α-cells is able to take the place of 
hub β-cells (light blue) which influence the function of other β-cells (yellow arrows). Somatostatin released from 
δ-cells can inhibit the release of glucagon, insulin, and pancreatic polypeptide from α-, β-, and PP cells (purple), 
respectively. Pancreatic polypeptide released from PP cells can inhibit the release of glucagon. Ghrelin released 
from ghrelin-positive islet cells (orange) can inhibit insulin and somatostatin secretion.
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to glucose. This has been validated  in vitro : it was found that when human islets or 
stem cell-derived β-cells were stimulated with glucose, they secreted insulin [ 17 ]. 
Other hormones, such as melatonin, estrogen, leptin, growth hormone, glucagon-like 
peptide 1, etc. can modulate the level of insulin secretion. 

 The primary signal that stimulates insulin exocytosis from granules is a process 
triggered by glucose (for instance, increased intake of dietary sugar) followed by a 
rise in intracellular calcium (Ca 2+ ) [ 8 ,  18 ]. Calcium influx relies on many factors such 
as glucose transport, metabolic enzymes, and functioning potassium ion channels. 
Moreover, an elegant study showed that the growth and survival effects of glucose on 
β-cells require activation of proteins in the insulin signaling pathway via an autocrine 
mechanism (  Figure 2    ) [ 19 ]. This, the fact that β-cells both secrete and  respond  to insulin 
via autoregulation may make they especially vulnerable to epigenetic changes induced 
by glucose (  Figure 2    ), In the model proposed by Assmann et al . [ 19 ], we further posit 
that the identified targets may be exceptionally sensitive to epigenetic dysregulation in 
DM (in addition to transcriptional and/or translational dysregulation) (  Figure 2    ). If 
these targets are epigenetically misregulated they may become difficult to normalize.  

 Furthermore, the pancreatic endoplasmic reticulum kinase (ERK) plays a central 
role in regulating translational events. It regulates insulin translation through phos-
phorylation of eukaryotic initiation factor 2 alpha (eIF2a). ERK mutation is linked 
with permanent neonatal DM in humans [ 8 ]. One such example is Wolcott-Rallison 
syndrome (WRS), a rare autosomal recessive disease characterized by neonatal/early-
onset non-autoimmune insulin-requiring DM associated with skeletal dysplasia and 
growth retardation [ 20 ]. Because glucose is critical in activating insulin signaling, let 
us look at glucose in more detail.  

  Figure 2.
  Diagram of a link between glucose and insulin signaling in β-cells and indicating epigenetic effects (blue arrows). 
(A) Potential direct effects of glucose and/or its metabolites on proteins in the insulin/IGF-1 signaling pathway. 
(B) Potential indirect effects of glucose and direct effects of insulin following exocytosis of insulin. Akt, v-akt 
murine thymoma viral oncogene homolog; FoxO-1, forkhead box O1; GRB2, growth factor receptor-bound 
protein 2; PIP3, phosphatidylinositol (3,4,5)-trisphosphate; mTOR, mammalian target of rapamycin; 4EBP1, 
translation initiation factor 4e binding protein 1. We postulate that β-cells are especially sensitive to epigenetic 
perturbations (blue arrows) because unlike cells that do not produce insulin, β-cells also have an autocrine 
quality, in that they both produce insulin,  and  receive the insulin signal by receptor binding. This autoregulatory 
loop may be especially vulnerable to epigenetic dysregulation.          
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9. Glucose metabolism

Glucose activates other cell signals, such as cyclic AMP (cAMP), cyclic GMP 
(cGMP), inositol 1,4,5-trisphosphate (IP3), and diacylglycerol (DAG). When cAMP 
is produced, it then activates protein kinase A (PKA). cAMP may be the most crucial 
molecule that leads to insulin secretion and phosphorylation of proteins involved 
in insulin exocytosis via PKA. Incretin hormones also augment glucose-stimulated 
insulin secretion by stimulating the cAMP signaling pathway [8].

Incretin hormones are gut peptides secreted by enteroendocrine cells after feeding 
[21]; their function is to control the amount of insulin. In the pancreas, two kinds of 
incretins, glucose-dependent insulinotropic peptide (GIP) and glucagon-like pep-
tide-1 (GLP-1), share the same behavior, but outside the pancreas, they differ. They 
are both rapidly deactivated by an enzyme called dipeptidyl peptidase 4 (DPP4). A 
decrease in incretin secretion or an increase in incretin clearance is not a pathogenic 
factor in DM. However, in T2D, GIP no longer modulates glucose-dependent insulin 
secretion, even at supraphysiological (pharmacological) plasma levels. GIP incom-
petence is detrimental to β-cell function, especially after eating. On the other hand, 
GLP-1 is still insulinotropic in T2D, which has led to the production of compounds 
that activate the GLP-1 receptor intending to improve insulin secretion [22].

Furthermore, glucose metabolism is critical in insulin biosynthesis because it trig-
gers insulin gene transcription and mRNA translation. The triggering of insulin gene 
transcription and mRNA translation is necessary for regulating insulin biosynthesis 
via modification of proinsulin mRNA expression and maintaining insulin mRNA 
stability [8]. mRNA has a vital role in regulating and controlling gene expression 
and this stability is affected by how RNA-binding proteins and structural elements 
interact with each other.

Regulation of mRNA stability is accomplished through various reactions to devel-
opmental stimuli (e.g., nutrient levels, cytokines, hormones, and temperature shifts 
or to different environmental stimuli such as stresses like hypoxia, hypocalcemia, 
viral infection, and tissue injury). However, deregulated mRNA stability can cause 
mRNA accumulation contributing to some forms of neoplasia, thalassemia, and AD 
[23]. The results from in vitro studies revealed that insulin mRNA stability decreases 
under lower glucose concentrations and increases under high glucose conditions [8]. 
In the absence of glucose, insulin mRNA levels in β-cells decrease sharply, which is 
reversed by elevating intracellular cAMP levels.

10. Transcription factors

Another stratification of regulation besides glucose signaling and mRNA expres-
sion is at the level of transcription factors. These play a central role in regulating 
gene expression by binding to specific consensus sequences, or cis-elements, within 
promoter regions [24]. Transcription factors are proteins that can be targets of modi-
fications when they respond to cellular stimuli. This will affect their stability, activity, 
intracellular distribution, and interaction with other proteins [25]. One of these 
stimuli is insulin resistance, which affects many organs, mainly the liver, pancreas, 
adipose tissue, and muscle [26, 27].

Illustrating the power of transcription factors, pancreatic acinar cells can be 
reprogrammed to produce, process, and secrete insulin when forced to express the 
transcription factors Pdx-1, MafA, and Ngn3 [28].
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Cellular differentiation processes can also be negatively impacted by gene expres-
sion [8]. For example, the deletion of pancreatic and duodenal homeobox 1 (PDX-1) 
from postnatal islets results in phenotypic loss of the β-cells. The Pdx-1 protein is a 
transcription factor responsible for the development of α and β-cells [8]. A second 
proposed explanation for the loss of β-cell phenotype is that there is an increase 
in α cells in the pancreatic islets due to a lack of Pdx-1 transcriptional processes, 
which convert α cells to β-cells [8]. This process would produce an overall imbalance 
between α and β-cells; hence the β-cells would ultimately be fewer, but it is unclear 
whether the loss of the β-cell phenotype was due to lack of Pdx-1 or lack of α to β-cell 
conversion [29].

Even more starkly, mutation in both PDX-1 and PTF1A results in pancreatic 
agenesis [8]. PTF1A is a gene that is a component of transcription factor 1 complex 
(PTF1) in the pancreas and encodes a protein that functions in embryonic pancreatic 
development. It is crucial and determines if cells in the pancreatic buds go on either 
towards pancreatic organogenesis or return to duodenal fates [18, 30].

Although we see that transcription factors are powerful effectors of cellular behav-
ior, there are deeper layers than this, namely epigenetic, which we will begin to cover 
in more detail.

11. Etiology of type 2 diabetes mellitus

We have covered the different types of diabetes, the cells that comprise the pan-
creas, glucose signaling, transcription, and some of the genes that govern pancreatic 
cellular behavior and differentiation, so we will now look more closely at the etiology 
of T2D, ultimately moving into the epigenetic layer.

The etiology of T2D is complex and multifactorial since it is affected by genetic 
predisposition [31] and behavioral influences, such as diet and physical activity 
[32]. As previously stated, T2D is often characterized by β-cell dysfunction, insulin 
resistance, and hyperinsulinemia [33]. These factors and symptoms depend on the 
disease phase and how insulin affects and regulates the bloodstream’s high level of 
glucose [34]. Essentially, genetic, epigenetic, and non-genetic factors influence the 
pathogenesis of T2D [35].

Firstly, as far as genetics goes, genome-wide association studies have identified 
associations between single-nucleotide polymorphisms (SNPs) and disease in large 
case-control cohorts and family-based studies. However, although over a hundred 
genetic variants have been identified that are associated with T2D risk, they can 
explain only a modest portion of T2D heritability [36].

There also are non-genetic risk factors for T2D, such as age, physical inactivity, 
and energy-rich diets that result in obesity [35]. However, it is not necessary to be 
obese to have this type of DM. Most patients who have DM are not obese, have an 
incommensurable reduction of insulin secretion, and are less insulin resistant than 
obese individuals. It was discovered that T2D could also exist in the absence of an 
obese phenotype by studying non-obese rodent models [34].

There is also evidence that DM in adulthood can be caused by intrauterine or fetal 
malnutrition. This type of malnutrition is vital to comprehending adult DM because 
the genetic abnormalities and imbalances in the mother’s uterus can affect the prob-
ability of her child developing DM even as an adult. Another study has shown that 
low birth weight leads to T2D development or insulin resistance. Moreover, factors 
such as the mother having DM, low birth weight of the child, and fetus malnutrition, 
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work in a complex manner with a variety of epigenetic regulators (guided by α and 
β-cell-type-specific transcription factors such as Pdx1, mentioned earlier) and result 
in abnormal β-cell maturation and differentiation causing adult DM [ 37 ]. 

 Thus, other explanations for T2D heritability have been proposed, including 
alterations in epigenetic patterns [ 35 ]. We likely need a more holistic understanding 
of epigenetics to obtain a complete picture of the etiology of DM, especially environ-
mental-epigenetic interactions. 

 But what exactly does “epigenetic” mean? It is here that we can delve more into the 
molecular aspects of DNA and chromatin and how they relate to gene expression and 
disease etiology.  

  12. Role of epigenetics in diabetes mellitus 

 Epigenetics addresses the relationship between genes, environmental exposure, 
and disease development. Additionally, epigenetics concerns heritable gene expres-
sion changes  without changes in the DNA sequence  itself, affecting how cells “read” 
genes. Many factors affect epigenetic modifications, such as age, lifestyle, family his-
tory, and disease status. Today, three major epigenetic systems are recognized: DNA 
methylation, histone modifications (the most well-characterized being acetylation), 
and non-coding RNA (ncRNA)-associated gene silencing (  Figure 3    ).  

 Epigenetic alterations such as DNA methylation and/or histone modifications 
alter the accessibility of genes to the transcriptional machinery by inducing either 
a relaxed/open or condensed/closed chromatin state. In general DNA methylation, 
principally of cytosines in gene promoters, condenses DNA and leads to gene silenc-
ing, whereas acetylation of histones opens up chromatin and is associated with 

  Figure 3.
  Epigenetic regulation of gene expression. Epigenetic alterations such as DNA methylation and/or histone 
modifications alter the accessibility of genes to the transcriptional machinery by inducing either a relaxed/open 
or condensed/closed chromatin state. Non-coding RNAs such as miRNAs also regulate the cell phenotype by 
repressing or enhancing the expression of gene transcripts. Conversely, these non-coding RNAs can themselves be 
epigenetically regulated.          
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gene activation (  Figure 3    ). Non-coding RNAs such as miRNAs also regulate the cell 
phenotype by repressing or enhancing the expression of gene transcripts (  Figure 3    ). 
Conversely, these non-coding RNAs can themselves be epigenetically regulated. 
Epigenetic changes often occur during an organism’s lifetime and are sometimes 
transmitted to the next generation [ 38 ]. 

 Several studies suggest that epigenetics plays a vital role in the pathology of DM, 
especially T2D. Common T2D is likely to result from many genes interacting with 
different environmental factors (  Figure 4    ) to produce a wide variation in the disease’s 
clinical course [ 7 ], and as previously described for other multifactorial diseases such 
as hypertension [ 39 ]. In the model proposed by  Arif et al. [ 39 ], epigenetic and genetic 
factors regulate phenotypes. Specifically, in addition to heritable Mendelian genetics, 
polygenic phenotypes, such as DM, are significantly affected by gene-environment 
interactions triggering epigenetic modifications (  Figure 4    ). Indeed, previous studies 
have shown that epigenetic mechanisms can predispose individuals to the diabetic 
phenotype. Also, the altered homeostasis in T2D, such as prolonged hyperglycemia, 
dyslipidemia, and increased oxidative stress, could result from, and cause, epigenetic 
changes associated with the disease [ 40 ].  

 As previously stated, the main insulin-producing cells in the pancreas are the 
β-cells, and epigenetic modifications play a critical role in establishing and main-
taining their identity and function in physiological conditions [ 41 ]. Stable β-cell 
function is vital to the regulation of glucose levels in the bloodstream. In the case 
of diabetes, epigenetic dysregulation may result in the reduction of the expression 
of genes essential for β-cell function, the ectopic expression of genes that are not 
supposed to be expressed in β-cells, and loss of genetic imprinting, leading to loss of 
β-cell identity [ 40 ]. Consequently, this may lead to β-cell dysfunction and impaired 
insulin secretion, impairing the function of the pancreas, and in turn, causing 
widespread sequalae and finally disease in the whole organism, Thus, a causal chain 
is established whereby the environment causes disease in the following sequence: 
environment ⟶ chromatin ⟶ genes ⟶ cells ⟶ organs ⟶ organism [ 42 ]. 
The model proposed by Liu  et al . goes a long way in establishing this causal chain 
(  Figure 5    ) [ 42 ].  

  Figure 4.
  Influences on the expression of phenotypes. Development of polygenic conditions, such as diabetes, depend on 
complex and interacting genetic and environmental pathways.          
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 It’s important to realize that many risk factors may lead to epigenetic dysregulation 
by causing this initial “disruption” to chromatin, such as hyperglycemia, physical 
inactivity, parental obesity, mitochondrial dysfunction, aging, and an abnormal 
intrauterine environment. Those factors can affect the epigenome at different time 
points throughout the lifetime of an individual. Moreover, the epigenome can change 
due to environmental factors, such as diet and exercise, because of the epigenome’s 
plasticity. As a result, the epigenome is a good target for epigenetic drugs that may be 
used to induce insulin secretion and treat DM [ 40 ]. 

 Ultimately, epigenetics is vital to research DM and possible future treatments. 
It could be the solution to early detection and treatment, via timely detection and 
modification of relevant genes and reversal (normalization) of signaling pathways. 
But how do we identify these genes and pathways?  

  13.  DNA methylation, and the pathogenesis and potential treatment 
of type 2 diabetes mellitus 

 As mentioned, DNA methylation and histone modifications (typically acetyla-
tion but there are others such as phosphorylation, ribosylation, ubiquitylation, 
sumoylation, and citrullination [ 43 ]), are the main mechanisms in which epigenetics 
affects cell phenotype and biological processes (  Figure 3    ). 

 Of the two, DNA methylation has been the most well-studied by microarray. 
During methylation of DNA, 5-methylcytosine is created by DNA methyltransferases 
modifying cytosines. Most of this occurs in CpG islands in the promoter regions in 
multiple protein-coding genes. Methylation of cytosines at the promoter regions is 
associated with the repression of transcription. Repressors that bind to methylated 
CpG islands then initiate a cascade that results in the second primary mechanism of 

  Figure 5.
  A stratified view of gene-environment interactions during development and disease. Environmental effects are 
incorporated by epigenetic processes including chromatin remodeling to either inhibit or enhance gene expression. 
These effects are then manifested hierarchically in the sequence of cells to organs (i.e. pancreas) to organism. 
Disease etiology (for example diabetes) occurs in this hierarchical sequence.          
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epigenetic regulation: namely histone modifications and the recruitment of histone 
deacetylases (or transferases) [27]. Repression of multiple genes could then lead to 
the DM phenotype. But we need to identify what these genes are.

Bansal and Pinney [44] reviewed studies where both DNA methylation and gene 
expression changes were reported. DNA methylation status had a strong inverse 
correlation with gene expression, suggesting that this may be a potential future 
therapeutic target. They highlighted the emerging use of genome-wide DNA methyla-
tion profiles as biomarkers to predict patients at risk of developing diabetes or specific 
complications of diabetes.

Indeed, developing predictive models that incorporate both genetic information 
and DNA methylation changes may be effective diagnostic approaches for all types of 
diabetes and could lead to additional innovative therapies.

For example, one study used the genome-wide Infinium 450K array and identified 
1,649 CpG sites, and 853 genes that include TCF7L2, FTO, KCNQ1, IRS1, CDKN1A, 
and PDE7B. Significant changes in DNA methylation were found in donors that have 
T2D compared to controls. Also, increased DNA methylation at the promoter of 
CDKN1A and PDE7B was associated with decreased transcriptional activity in clonal 
in vitro, as well as impaired glucose-stimulated insulin secretion [45].

Another genome-wide study of DNA methylation using the Infinium27K array 
found 276 differentially-methylated CpG sites, of which 96% were hypomethylated 
in islets of diabetic compared to non-diabetic donors [46]. Changes in differential 
DNA methylation were correlated with expression changes of 34 genes assessed by 
microarray [46].

We are also conducting our own genome-wide methylation studies using a human 
in vitro model of diabetes based on induced pluripotent stem cell-derived β-cells.

Interestingly, bariatric surgery appears to be capable of partially reversing the 
obesity-related and diabetic epigenome [47]. The identification of potential epigen-
etic biomarkers predictive of the success of bariatric surgery may open new doors 
to personalized therapy for severe obesity and diabetes, which is cause for great 
 optimism [47].

14. Conclusions

DNA methylation changes at differentially methylated sites or regions have been 
linked to metabolic diseases such as obesity and T2D. Thus, changes in the epigenome 
may provide an underlying molecular mechanism for the deleterious metabolic health 
outcomes associated with these conditions. Conversely, coordinated reversal of 
these changes may improve metabolic health after therapeutic intervention, and this 
provides optimism for the future.
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Chapter 4

Diet-Epigenome Interactions:  
Epi-Drugs Modulating the 
Epigenetic Machinery during 
Cancer Prevention
Fadime Eryılmaz Pehlivan

Abstract

The roles of diet and environment on health have been known since ancient times. 
Cancer is both a genetic and an epigenetic disease and a complex interplay mechanism 
of genetic and environmental factors composed of multiple stages in which gene 
expression, protein and metabolite function operate synchronically. Disruption of epi-
genetic processes results in life-threatening diseases, in particular, cancer. Epigenetics 
involves altered gene expression without any change of nucleotide sequences, such 
as DNA methylation, histone modifications and non-coding RNAs in the regulation 
of genome. According to current studies, cancer is preventable with appropriate 
or balanced food and nutrition, in some cases. Nutrient intake is an environmental 
factor, and dietary components play an importent role in both cancer development 
and prevention. Due to epigenetic events induce changes in DNA and thus influencing 
over all gene expression in response to the food components, bioactive compounds and 
phytochemicals as potent antioxidants and cancer preventive agents have important 
roles in human diet. Several dietray components can alter cancer cell behavior and 
cancer risk by influencing key pathways and steps in carcinogenesis, including signal-
ing, apoptosis, differentiation, or inflammation. To date, multiple biologically active 
food components are strongly suggested to have protective potential against cancer 
formation, such as methyl-group donors, fatty acids, phytochemicals, flavonoids, 
isothiocyanates, etc. Diet considered as a source of either carcinogens that are pres-
ent in certain foods or acting in a protective manner such as vitamins, antioxidants, 
detoxifying substances, chelating agents etc. Thus, dietary phytochemicals as epigen-
etic modifiers in cancer and effects of dietary phytochemicals on gene expression and 
signaling pathways have been widely studied in cancer. In this chapter, current knowl-
edge on interactions between cancer metabolism, epigenetic gene regulation, and how 
both processes are affected by dietary components are summerized. A comprehensive 
overview of natural compounds with epigenetic activity on tumorogenesis mecha-
nisms by which natural compounds alter the cancer epigenome is provided. Studies 
made in epigenetics and cancer research demonstrated that genetic and epigenetic 
mechanisms are not separate events in cancer; they influence each other during 
carcinogenesis, highlighting plant-derived anticancer compounds with epigenetic 
mechanisms of action, and potential use in epigenetic therapy. Recent investigations 
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involving epigenetic modulations suggest that diet rich in phytochemicals not only 
reduce the risk of developing cancer, but also affect the treatment outcome.

Keywords: diet, cancer, epi-drugs, epigenetic modulation, phytochemicals

1. Introduction

1.1 Epigenetics

Epigenetics is the study of the variations of genetic expression that has been 
referred to the heritable changes in gene expression without changes in the DNA 
sequence and described the interactions between the genome and the environment 
that leads to the formation of the phenotype [1]. Epigenetic modifications such as DNA 
methylation and histone modifications are able to affect gene expression mostly by 
interfering with transcription factors with DNA or may lead to structural rearrange-
ment of chromatin thus promoting the expression of particular genes. These epigenetic 
mechanisms are those that alter the chromatin structure including DNA methylation 
of cytosine residues in CpG dinucleotides and post-translational histone modifications. 
Epigenetic regulations occur not because of differences in DNA structure, but because 
of chromatin alternations that modulate DNA transcription such as DNA methylation, 
that can mediate gene and environment interactions at the level of the genome. The 
mechanisms of epigenetics are thus the link between genome and phenotype [1, 2]. 
Epigenetic mechanisms play an important role in regulating gene expression. The main 
mechanisms are methylation of DNA and modifications of histones by methylation, 
acetylation, phosphorylation. Modifications in DNA methylation are performed by 
DNA methyltransferases (DNMTs) and ten-eleven translocation (TET) proteins, and 
by enzymes, such as histone acetyltransferases (HATs), histonedeacetylases (HDACs), 
histone methyltransferases (HMTs), and histone demethylases (HDMs) that regulate 
covalent histone modifications. In many diseases, such as cancer, the epigenetic regula-
tory system is disturbed [2]. MicroRNAs (miRNAs) are another epigenetic regulatory 
system that influences the regulation of gene expression, which are small RNA mol-
ecules, ∼22 long nucleotides, that can bind to their target miRNAs and downregulate 
their stabilities and/or translation [3]. Recent investigations have shown the association 
of altered expression of noncoding RNAs in general and miRNAs in particular with 
epigenetic modifications [2–4], suggesting that epigenetic alterations can contribute 
to the carcinogenesis [3] and are considered a hallmark of cancer [4].

2. Epigenetics and cancer

The progression of cancer is driven not only by acquired genetic alterations but also 
epigenetic modifications [4]. Epigenetic changes have been reported during cancer 
development and are found in genes involved in cell differentiation, proliferation, and 
apoptosis [4, 5]. DNA methylation is the most extensively studied epigenetic mark 
which occurs on cytosines followed by guanine (CpG), in humans [4, 5]. Methylation of 
CpGs plays a crucial role in regulation of gene expression [5, 6], which is necessary for 
orchestrating key biological processes, such as cell cycle, differentiation, and genomic 
imprinting, where, DNA hypermethylation is found in repetitive genomic sequences to 
maintain these regions in a transcriptionally inactive chromatin state [4–6].
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Cancer cells exhibit a global DNA hypomethylation, which causes chromosome 
instability leading to various mutations, loss of imprinting, activation of transposable 
elements disturbances in the genome, eventually, to cancer progression [5, 6]. On the 
other hand, a DNA hypermethylation of specific promoter regions of tumor suppres-
sor genes leads to loss of expression of specific genes affecting pathways involved in 
maintenance of cellular functions, including apoptosis, DNA repair, and cell cycle, 
[5, 6]. Several tumor suppressor genes are silenced by promoter hypermethylation in 
tumors. Epigenetically mediated silencing of cyclin-dependent kinase inhibitor 2A, 
which is crucial for control of cell cycle has been reported in several cancers [5–7]. In 
addition, DNA hypermethylation-dependent silencing have been associated with the 
pathways regulated by microRNAs [5–7].

In cancer cells, DNA methyltransferases (DNMTs) are able to maintain DNA meth-
ylation and to de novo-methylate DNA of tumour suppressor genes [5, 6]. Recently, a 
new group of enzymes that induce demethylation of the DNA was found, the ten-eleven 
translocation (TET) enzyme family, that plays crucial roles both in tumorigenesis [5–7]. 
These aberrant DNA methylations are not limited to cancer cells; abnormal DNMT 
expressions are also linked to various diseases including cardiovascular diseases, type 2 
diabetes, obesity, depression, anxiety disorder, dementia, and autism [7–9].

Gene expression is modulated by interactions between DNA methylation, histone 
modification, and nucleosome positioning effecting chromatin structure. Chromatin 
remodellers, chromatin-associated proteins, and methyl DNA binding proteins are 
important for structural modification of chromatin (Figure 1) [10].

Eukaryotic nuclei has histone proteins facilitating the dense packing of DNA and 
thus playing an essential role in the dynamic accessibility of DNA for transcription 
factors. In humans, there are two major histone families: linker histone (LH) and the 
core histones. The dynamic structure of chromatin allows changes in gene regulation 
[7–10]. The N-termini of histone proteins contain multiple lysine residues that are 
accessible to covalent modifications such as acetylation, methylation, phosphoryla-
tion, glycosylation, thus allowing regulation of gene transcription (Figures 2 and 3) 
[11, 12]. Aberrant expression of histone methyltransferases (HMTs), and histone 
demethylases (HDMs) has also been associated with cancer development [8–12].

In addition, cell cycle regulation, DNA repair mechanisms, chromosomal integrity, 
cellular senescence, and transcriptional activity of tumour-associated proteins such as 

Figure 1. 
Gene expression is modulated by interactions between DNA methylation, histone modification, and nucleosome 
positioning effecting chromatin structure [10].
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p53, nuclear factor kappa-lightchain- enhancer of activated B cells (NF-κB), and the 
FoxO family [10–14] rely on a stable cellular metabolic state. In majority of cancer cells 
genomic instability is found causing an increased vulnerability against DNA damaging 
agents [12–14]. Therefore, cancer cells might be more susceptible to exogenous com-
pounds causing oxidative stress by production of reactive oxygen species than healthy 
tissues [13]. Oxidative stress plays an important role in epigenetic reprogramming of 
expression of tumour suppressor genes, cytokines, and oncogenes, thereby setting up 
a ground for carcinogenesis [13, 14].

Unlike genetic defects, epigenetic modifications are reversible and represent a 
promising field in therapeutic interventions [15]. Due to epigenetic aberrations occur 
in early stages of cancer, approaches in targeting the epigenome have been proposed 
as preventive and therapeutic strategies [15, 16], that aim to reverse cancer-associated 
epigenetic changes and restore normal gene expression. A synergistic combination of 
epigenetic modifying agents, including miRNAs, may provide a clinically important 
reversal of epigenomic cancer states.

It is known that the cause of cancer is a complex interplay mechanism of genetic 
and environmental factors. Dietary nutrient intake is an environmental factor and 
a marked variation in cancer development with the same dietary intake between 
individuals has been identified [17]. The effects of dietary phytochemicals on gene 

Figure 2. 
Epigenetic markers on histone tails and DNA strand. Various enzymes (E) are responsible for the generation of 
epigenetic modification including DNA methylation/demethylation, histone acetylation/deacetylation, histone 
methylation/demethylation, histone biotinylation, crotonylation, phosphorylation and glycosylation [11].

Figure 3. 
Epigenetic mechanisms [12].
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expression and signaling pathways have been widely studied in cancer [17, 18]. The 
present review aims to clarify the basic knowledge about the vital role of nutrition-
related genes in cancer, focusing on the role of dietary phytochemicals as epigenetic 
modifiers in cancer, and summarizing the progress made in cancer chemoprevention 
with dietary phytochemicals.

3. Diet and cancer

Cancer is a multi stage process composed of complex stages in which gene expres-
sion, protein and metabolite function operate aberrantly [19]. Inherited mutations in 
genes can increase one’s susceptibility for cancer; while the risk of developing cancer 
can be increased markedly, if there is a gene-diet interaction [19, 20]. Epigenetic 
functions has reversible nature which made them attractive as targets for drug 
development. Epigenome is continuously changing due to environmental factors such 
as diet, and lifestyle factors such as stress and exercise. Diet has been demonstrated to 
have important impact on epigenetic mechanisms [19–21]. Changes in dietary intake 
have been shown to affect epigenetic functions providing a significant reduction in 
cancer risk and also contributing to disease prevention [19–21]. In addition, revision 
of diet in cancer patients has shown to be resulted in changes in gene expression, 
that can enhance therapeutic efficacy. Diets rich in fish, fibers, fruits, vegetables, 
and reduction in consummation of red meat have affected the epigenome, providing 
therapeutic efficacy [21].

The impact of diet and environment on human health has been known since ages. 
Diet can either be a source of carcinogens present in certain foods or a source of protec-
tive contituents (vitamins, antioxidants, detoxifying enzyme-activating substances, 
etc.) [22]. Cancer initiation and progression have been linked to oxidative stress by DNA 
mutations, genome instability, and cell proliferation; therefore antioxidant agents could 
interfere with carcinogenesis. Natural herbs have been used for prevention or treatment 
of diverse diseases for thousands of years; depending on the presence of bioactive com-
ponents in plants that makes them appropriate choices to be used as food or medicinal 
purposes. Plant derived bioactive components confirmed the anticancer activities of 
natural dietary phytochemicals which resulted in an increase in comprehension of these 
compounds as a biological functional agent which has a theuropetic effect on human 
health [22]. Epidemiological studies reported that diet rich in fruits and vegetables have 
cancer preventive properties and several phytochemicals originated of edible plants 
have defensive mechanisms that prevent the induction of carcinogenesis by scaveng-
ing free radicals and by transducting signals in response to stress factors that activate 
proteins associated to cellular signaling pathways [22]; thus, dietary phytochemicals 
are able to be a chemopreventative agent toward cancer by inflection of the cancer cell 
cycle, proliferation inhibition, and initiation of apoptosis [22, 23].

Common dietary compunds can act on the human genome, directly or indirectly, by 
altering gene expression or structure; some dietary constituents affect post translation 
events [23]. Acetylation of histones and non-histone proteins has been shown to affect 
cell metabolism and can be targeted by inhibitors of histone deacetylases (HDACs) 
and histone acetyl transferases (HATs) [23, 24]. Natural compounds from broccoli, 
garlic, curcumin speculated to have inhibitory effects of HDACs and HATs with their 
influence on epigenetic mechanisms for normalization of the deregulated cancer 
cell metabolism [23, 24]. Dietary factors can also interact with hormonal regulation 
such as obesity that strongly affects hormonal status such as phytoestrogens [23, 24]. 
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Plant-derived natural bioactive compounds (phytochemicals) have acquired an impor-
tant role in human diet as potent antioxidants and cancer chemopreventive agents 
[ 23 ,  24 ]. Recently, the role of epigenetic alterations such as histone modifications, DNA 
methylation, and non-coding RNAs in the regulation of genome have been addressed 
(  Figure 4    ) [ 25 ].  

 The present review outlines epigenetic mechanisms in the regulation of genome 
and the role of dietary phytochemicals as epigenetic modifiers in cancer; summariz-
ing the progress made in cancer chemoprevention with dietary phytochemicals, and 
the challenges in the future. 

  3.1 Cancer control and prevention by diet and epigenetic approaches 

 Epigenetic mechanisms are known to be essential for normal development and 
maintenance of adult life. Disruption of epigenetic processes results in deregulated 
gene expression and leads to life-threatening diseases, in particular, cancer, which is 
defined as both a genetic and epigenetic disease. Genetic and epigenetic events are 
suggested to be susceptible to environmental and lifestyle factors such as radiation, 
toxins, pollutants, infectious agents, and diet (  Figures 5     and   6  ) [ 26 ,  27 ], that affect 
the phenotype of cells and organisms. Diet is defined as more easily studied and 
therefore better understood environmental factor in epigenetic changes [ 26 ,  27 ].   

 Cancer is known to take many years to develop from initiation to progression, as 
the long period of development may represent an opportunity to use multi-functional 
preventive drugs to block or reverse tumorigenesis. Unlike genetic mutations, 
epigenetic alterations are potentially reversible and can be restored to their normal 
state, thus one path to cancer prevention can be to target and reverse these epigenetic 
defects. According to epidemiological studies there is a close link between rich diets 
in bioactive compounds and the low incidence of different types of cancer; regarding 
the impact of bioactive nutrients on the epigenetic mechanisms of gene expression, 
such as genomic DNA methylation, altered activity and expression of DNA methyl 
transferases and ten-eleven translocation enzymes, local DNA hypermethylation of 
gene promoters of tumor suppressor genes or of non-coding RNAs (microRNAs and 
long-noncoding RNAs), as well as global hypomethylation (  Figures 5     and   6  ) [ 26 ,  27 ]. 

  Figure 4.
  Plant-derived natural bioactive compounds (phytochemicals) have acquired an important role in human diet 
as potent epigenetic modulators such as histone modifications, DNA methylation, and non-coding RNAs in the 
regulation of genome (from Daniele Segnini) [ 25 ].          
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Dietary components play importent roles in either cancer prevention or cancer 
development [28–31]. Intake of certain bioactive food components such as resve-
ratrol (grapes), polyphenol-catechins (green tea), genistein (soybean), curcumin 
(turmeric), sulforaphane (cruciferous vegetables), and other bioactive components 
such as isothiocyanate (cruciferous vegetables), apigenin (parsley), silymarin (milk 
thistle), cyanidins (grapes), and rosmarinic acid (rosemary) (Figure 7) [28] is identi-
fied to play significant roles in modulating tumor risk and development [28–31].

Despite the investigations that epigenetic changes are heritable in somatic cells 
and epimutations are rare in healthy tissues, it is of interest to note that epigenetic 
modulations are potentially reversible. Depending on this property targeting epi-
genetic mechanisms have been a promising approach for cancer prevention [32]. 
Interestingly, altered diet is found to have transgenerational effects [33]. In a study 
done by Heijmans et al. [33] pregnant mothers during the Dutch Hunger Winter of 

Figure 6. 
Modulation and interaction of epigenetic mechanisms [27].

Figure 5. 
Epigenetic events are suggested to be susceptible to environmental and lifestyle factors such as radiation, toxins, 
pollutants, infectious agents, and diet [26].
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1944 to 1945; methylation profiles of the mothers’ offspring six decades later are 
followed and compared them with the profiles of their unexposed, same-sex siblings. 
The data indicated hypomethylation of insulin-like growth factor 2 (IGF2) and 
hypermethylation of interleukin-10 (IL-10), LEP, ABCA1, and MEGF; indicating the 
significance of diet components in the development of diseases including cancer [34].

Several diet components are demonstrated to alter tumor cell behavior and cancer 
risk by influencing key pathways and steps in carcinogenesis, including inflamma-
tion, cell signaling, cell cycle control, hormonal regulation, apoptosis, differentiation, 
and carcinogen metabolism [31–34]. While, antioxidant compunds such as polyphe-
nols and resveratrol, are known to modulate proliferating cell nuclear antigen, p21, 
and p27 [34, 35]; and indole-3-carbinol inhibiting cellular proliferation in human 
breast cancer cells [34, 35]; xenobiotic compounds, such as tobacco-specific carcino-
gens known to induce lung cancer [36].

Epigenetic modifications such as DNA methylation, histone modifications, 
chromatin remodeling, and non-coding RNAs are the most common epigenetic 
mechanisms. Dietary agents such as sulforaphane (SFN) found in cruciferous plants 
and epigallocatechin-3-gallate (EGCG) in green tea are demonstrated to exhibit 
various epigenetic mechanisms such as histone modifications via histone deacety-
lase (HDAC), histone acetyltransferase (HAT) inhibition, DNA methyltransferase 
(DNMT) inhibition, or noncoding RNA expression [37, 38]. These phytochemicals 
are shown to have an enhanced effect on epigenetic changes, which play a crucial role 
in cancer prevention [37, 38]. Meanwhile, restriction of glucose has been suggested 
to decrease the incidence of cancer and diabetes. Diet rich in compounds such as SFN 
and EGCG are reported to modulate the epigenome positively and lead to many health 
benefits; while reducing glucose in the diet is conferred to reduced cancer incidence 
[37, 38]. As a result, due to change in lifestyle and food habits, people can reduce risk 
of diet-related diseases and cancers. This review is focused on the phytochemicals 
that can affect various epigenetic modifications such as DNA methylation and histone 
modifications as well as regulation of non-coding miRNAs expression for treatment 
and prevention of various types of cancer.

Figure 7. 
Certain bioactive food components such as resveratrol (grapes), polyphenol-catechins (green tea), genistein 
(soybean), curcumin (turmeric), sulforaphane (cruciferous vegetables), and other bioactive components such as 
isothiocyanate (cruciferous vegetables) playing significant roles in modulating tumor risk and development [28].
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3.2 Dietary compounds as epigenetic modulating agents in cancer

Drugs targeting epigenetic processes are called “epi-drugs”, which are mostly plant-
derived compounds that work through epigenetic mechanisms such as polyphenols, 
alkaloids, organosulfur compounds, and terpenoids [39]. Epigenetic mechanisms such 
as DNA methylation and posttranslational histone modifications regulate expression of 
various genes of changes in the DNA sequence, that play important roles in controlling 
cellular functions, including the cell cycle, signal transduction and immunoresponses 
[40]. On the other hand, epigenetic aberrations are associated with proliferation of can-
cer cells and oncogenesis, that these epigenetic alterations have been identified in many 
human cancer cells [40, 41]. This review focuses on the plant-derived anticancer drugs 
with epigenetic mechanisms of action, and their potential use in epigenetic therapy.

3.2.1 Therapeutic potential of polyphenols on DNA methylation

Plant-derived flavonoids as a therapeutic agents for cancer, attributed to their abil-
ity for epigenetic regulation of cancer pathogenesis [42]. The epigenetic mechanisms 
of various classes of flavonoids including flavonols, flavones, isoflavones, flavanones, 
flavan-3-ols, and anthocyanidins, such as cyanidin, delphinidin, and pelargonidin, are 
demonstrated [43]. These phytochemicals are mainly contained in fruits, vegetables 
and seeds, as well as in dietary supplements; that act as powerful antioxidants and anti-
carcinogen agents; such as curcumin, catechins, genistein, quercetin and resveratrol.

As known, epigenetic modifications of chromatin are reversible and inherited, 
so they represent promising targets for the development of novel drugs targeting 
the epigenome which can contribute to amelioration of conventional therapies in 
cancer [44]. It has been reported that a diet rich in phytochemicals may act through 
epigenetic mechanisms such as modulation of DNMTs and HDACs activities that 
can significantly reduce the risk of cancer development by regulating the expres-
sion of oncogenes and tumor suppressor genes [45]. Cancer treatments are involved 
using chemo-radio therapeutic agents, kinase inhibitors, antibodies as well as certain 
compounds that stimulate the immune system, generally. Meanwhile, demethylating 
drugs modified gene expressions by reversing the aberrant epigenetic alterations 
acquired during tumorigenesis [44, 45]. In this context, polyphenolic flavonoid 
compounds may represent an alternative therapeutic option for cancer treatment.

Flavonoids are natural phenolic molecules that form a large group of secondary 
plant metabolites with important biological activities; subgroups of flavonoids are: 
flavonols such as quercetin, kaempferol, and myricetin; that are found in onions, 
curly, broccoli. The flavanones as hesperetin and naringenin that are found in grape-
fruit, oranges, and lemons. Isoflavonoids including daidzein and genistein are found 
in leguminous. The flavones as apigenin and luteolin that are present in cereals. The 
flavanols as catechin are found in green tea and chocolate, and the anthocyanins 
including cyanidin, delphinidin, malvidin, pelargonidin, peonidin, and petunidin 
are present in berries, pears, apples, grapes and peaches [46]. The biological effects 
of flavonoids have been linked to their antioxidative activities, that these compounds 
inhibit cell proliferation, induce cytotoxicity, suppression of angiogenesis; and 
situmulation of apoptosis, in cancer (Figure 8) [27]; displaying diverse properties 
affecting epigenetic mechanisms such as modulation of the DNA methylation and 
histone acetylation [23–25].

Phytochemicals and other bioactive dietary compounds are reported to restore 
global and gene-specific promoter DNA methylation patterns by reactivating 
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DNA methyltransferases or by providing the provision of methyl groups [47]. 
This review focuses on the impact of modified DNA methylation pattern on early 
carcinogenesis and summarizes the effects/mechanism of phytochemical interven-
tions on this type of epigenetic alterations. Recent investigations reported that 
flavonoids blocked the development and progression of tumors by targeting key 
signaling transducers resulting in the restoration of tumor suppressor genes,  
and inhibition of oncogenes expression [44–47] by modulating epigenetic 
 machinery that is included the regulation of DNMTs and HDACs activities 
(Figure 8) [27].

Depending on epidemiological studies, dietary flavonoid intake is strongly sug-
gested to reduce the risk of numerous cancer entities. According to current studies, 
cancer is preventable with appropriate or balanced diet and avoidance of obesity 
[48–50], in some cases. Multiple biologically active food components are strongly 
suggested to have protective potential against cancer formation, examples are methyl-
group donors such as phytochemicals, flavonoids, isothiocyanates, allyl compounds, 
selenium and fatty acids [49–51].

3.2.1.1 Epigenetic effects of curcumin in cancer prevention

The yellow pigment curcumin (diferuloyl methane), a polyphenolic compound 
derived from turmeric (Curcuma longa Linn), a major ingredient of the spice curry, 
possessing remarkable antioxidant properties and has been studied for its potential 
anti-anticancer effects [52]. It has a broad spectrum of activities and acts on signal-
ing pathways, particularly NF-𝜅𝜅B signaling; has been shown to induce apoptosis and 
block invasion, metastasis, and angiogenesis for all major tumor entities [52]. It has 
been reported to modulate epigenetic changes in cancer cells, and has been shown to 
be a DNA hypomethylation agent in colon, prostate, and breast cancer, thus serving 
as a chemopreventive agent [53], other epigenetic studies include histone acetylation/
deacetylation, and histone methylation/demethylation [52, 53]. Curcumin is first 
identified as an inhibitor of HAT activity; as a specific inhibitor of p300, also identi-
fied as inhibitor of acetylation of the tumor suppressor protein p53 as a non-histone 
protein target of p300 [52, 53], considering acetylation of p53 to be essential for 

Figure 8. 
Epigenetic machinery that is included the regulation of DNMTs and HDACs activities [27] (from Jan Frank).
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p53-dependent growth arrest and apoptosis; curcumin and its derivatives have also 
been identified as potent modulators of miRNAs [53].

3.2.1.2 Epigenetic effects of isothiocyanates in cancer prevention

Organosulfur compounds, isothiocyanates (ITCs), are the most investigated 
glucosinolate-derived bioactive diet components. The chemopreventive properties of 
ITCs on cancer, are well demonstrated [18, 38, 54]. Although the anticancer effects of 
ITCs, little attention has focused on their ability about the epigenetic processes that 
lead to epigenetic changes in cancer. Regular intake of organosulfur compounds is 
reported to protect cardiovascular health [18, 38, 54], besides prevent carcinogenesis 
stimulated by N-nitrosodiethylamine [18, 38, 54].

3.2.1.3 Epigenetic effects of green tea polyphenols in cancer prevention

Green tea polyphenols constitute a mixture of flavan-3-ols containing a catechol 
moiety. Biochemical compounds from green tea such as (−)-epigallocatechin  gallate 
have been demonstrated to alter DNA methyltransferase activity in studies of 
various cancer cells. Mouse model studies have confirmed the inhibitory effect of 
(−)-epigallocatechin gallate on DNA methylation [27, 55].

3.2.1.4 Epigenetic effects of quercetin in cancer prevention

Quercetin is reported to have a broad spectrum of cancer-preventive activities: 
acting as an antioxidant and modulating enzymes and signaling cascades involved 
in detoxification, inflammation, proliferation, apoptosis, angiogenesis, autophagy, 
immune defense, and senescence; besides it has been suggested to have potential to 
inhibit DNMT activity in vitro, associated with p16 up-regulation at the mRNA and 
protein level and inhibition of cell proliferation [27, 56].

3.2.1.5 Epigenetic effects of resveratrol in cancer prevention

Resveratrol is a plant-derived stilbene derivative found in fruits, especially in 
the skin of red grapes [45]. It has been reported to have a broad spectrum of health-
beneficial effects, including antioxidant, cardioprotective, and antitumor activities, 
which have mechanistically been linked to effects on cell signaling related to cell 
survival, apoptosis, inflammation and tumor angiogenesis [45, 46]. Resveratrol was 
shown to prevent carcinogenesis in animal models for various cancer typesi, and 
reduced xenograft growth of various tumor cell lines. For example, activation of the 
aryl hydrocarbon receptor (AhR) has been shown to lead to epigenetic silencing of 
the DNA repair gene BRCA1 in breast cancer [57–59].

3.2.1.6 Epigenetic effects of anacardic acid in cancer prevention

A component of cashew nut shell liquid, anacardic acid (6-nonadecyl salicylic 
acid), is identified as a natural-product inhibitor of the HAT enzyme which is 
involved in the activation of key enzymes of DNA damage response, which is also 
found to inhibit p300-mediatedacetylation of the p65 subunit of NF-𝜅𝜅B (nuclear 
factor “kappa light-chain enhancer” of activated B cells) as a non-histone substrate 
of HATs, and inhibited NF-𝜅𝜅B-mediated signaling involved in inflammation, cell 
survival, proliferation, and invasion [60–62].
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3.2.1.7 Epigenetic effects of gallic acid in cancer prevention

Gallic acid (3,4,5-trihydroxybenzoic acid), having high antioxidant activity is 
found in various fruit, tea and coffee, witch hazel, sumach, oak bark, walnuts, berries 
and other plants, as free tannins and as part of hydrolyzable tannins (gallotannins) 
[63]; has been shown to reduce oxidative DNA damage and to induce apoptosis in 
cancer cells [64]. It is identified as a specific inhibitör of HAT activity in vitro, and 
finally reduced NF-𝜅𝜅B activation and expression of anti-apoptotic genes in response 
to pro-inflammatory stimuli [64].

3.2.1.8 Epigenetic effects of delphinidin in cancer prevention

Fruit, particularly blueberries contain anthocyanidins that have high antioxidant 
potential; possessing antiproliferative activity, inducing apoptosis and cell differ-
entiation, and inhibiting angiogenesis and invasiveness, contributing to their high 
chemopreventive potential [60, 61, 65]. Overall, anthocyanidins have been shown to 
prevent cancer, and delphinidin has been identified as a HAT inhibitor [65]. HAT-
mediated acetylation of histones and non-histone proteins seems to play an important 
role and; as gallic acid, delphinidin is proved to reduce pro-inflammatory signaling 
by preventing acetylation of the NF-𝜅𝜅B [65], contributing to the anti-inflammatory 
activity of chemopreventive polyphenols [65].

3.2.1.9 Epigenetic effects of flavolignan silymarin in cancer prevention

Milk thistle (Silybum marianum) is used to protect liver against various diseases, 
and poisions. Silymarin is derived from milk-thistle seeds contains at least seven 
flavolignans and additional components. The most abundant compound is silybinin 
(or silibinin), existing as isomers, silybin A and B. Cancer-preventive potential of 
milk-thistle has been attributed to the inhibition of cell growth, angiogenesis, tumor 
invasion, metastasis, and inflammation [66, 67]. It is reported that silybinin treatment 
reduced the growth of human liver cancer xenografts through induction of apoptosis, 
and this was associated with an increase in histone H3 and H4 acetylation [68].

3.2.1.10 Epigenetic effects of genistein and soy isoflavones in cancer prevention

Isoflavones (genistein and daidzein) are a class of flavonoids found in plants of 
the Fabaceae family abundantly, and characterized by phytoestrogenic properties. 
They are contained in high amounts in soybean (Glycine max L.) and are enriched 
in soy products. Epidemiological studies indicates an inverse correlation between a 
traditional soy-rich, low-fat Asian diet and the risk of developing breast and prostate 
cancer [69, 70]. As soy isoflavones and phytoestrogens bind to the estrogen receptor 
and modulate ER signaling; genistein has been shown to affect several additional 
chemopreventive mechanisms, including inhibition of oxidative stress, activation 
of carcinogens, cell signaling, angiogenesis, modulation of cell-cycle regulation, 
induction of apoptosis and inhibition of inflammation [71]. Recent investigations of 
a growth-promoting effect of genistein in ER-positive breast-cancer cell lines and 
xenograft models have indicated a potential risk of genistein for human health [72]; 
while another recent review does not support these concerns that genistein is tested 
in various clinical trials for the treatment and prevention of prostate, bladder, kidney, 
breast, and endometrial cancer [73]. Nutrients are classified that supply methyl 
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groups have been shown to have a protective effect in various cancer types, such as 
curcumin, isothiocyanates, green tea polyphenolics, quercetin, resveratrol, anacardic 
acid, gallic acid, delphinidin, silymarin, silybidin, and genistein that are found 
in various food components and medicinal plants are summerized in this chapter 
(Figure 9) [74].

These were the best known bioactive food compounds; besides these dietary 
components folic acid, alliin and allicin in garlic, omega 3 fatty acids, pigments such 
as licopene, carotenoids and anthocyanins, multivitamins such as vitamine A, C, E, 
vitamine B12 moreover, minerals such as zinc and selenium are the examples of nutri-
ents that have a proven role in cancer prevention through an epigenetic mechanism 
[59–61, 74–77]; that substantially take part in prevention of various cancer types such 
as oral, breast, skin, esophageal, colorectal, prostate, pancreatic and lung cancers 
(Figure 10) [74].

Figure 10. 
Dietary components and their interaction with epigenetic regulation [74].

Figure 9. 
Natural food components with epigenome altering properties [74].
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4. Conclusion

Epigenetic modifications is observed to perform a significant role in disease occur-
rence and pathogenesis. DNA methylation and chromatin remodeling are the most 
common epigenetic mechanisms, as described as a phenomenon of modifications 
in gene expression caused by heritable, but reversible, alterations in the chromatin 
structure, DNA methylation, and post-transcriptional effects of small noncoding 
microRNAs (miRNAs), without changes in the DNA sequence. The relationship 
between epigenome, epigenetic mechanisms and gene expression form a complicated 
feedback network that regulates and organizes cellular functioning at the molecular 
level; when this regulatory circuit is disrupted by internal or external factors, nor-
mal physiological functions are affected, leading to tumor initiation process [59]. 
Epigenetic mechanisms represent novel targets for natural products in prevention and 
treatment of cancer and other diseases. The influence of various classes of diet phyto-
chemicals on the enzymatic activities of enzymes involved in epigenetic gene regula-
tion; such as DNA and histone methyltransferases (DNMTs and HMTs), histone 
acetyltransferases (HATs), histone deacetylases (HDACs), and histone demethylases 
(HDMs) are also emphasized.

As a conclusion, the present review provided an overview of the most frequent 
epigenetic alterations in cancers, then described the most studied dietary phytochem-
icals and their potential use in the reversion of cancer hallmarks through epigenetic 
mechanisms, and finally discussed their potential use as an alternative strategy for 
cancer therapy. Above all, this review focused on modulation of epigenetic activities 
by epi-drugs that will allow the discovery of novel biomarkers for cancer prevention, 
as a potential alternative therapeutic approach in cancer, summarizing the progress 
made in cancer chemoprevention with dietary phytochemicals, and challenges in 
the future.

© 2021 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of 
the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided 
the original work is properly cited. 
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Abstract

Lately, a brand-new studies agenda emphasizing interactions between societal 
elements and wellness has emerged. The phrase social determinant of health and 
fitness typically refers to any nonmedical element directly effecting health, including 
behaviors, knowledge, attitudes, and values. Status of health is adversely and strongly 
impacted throughout the life span by social disadvantages. Epigenetic mechanisms are 
implicated in the processes through which social stressors erode health in humans and 
other animals. Research in epigenetics suggests that alterations in DNA methylation 
might offer a temporary link between interpersonal adversity and wellness disparity. 
Likewise, accelerated loss in telomeres is extremely correlated not only with chronic 
and social stress but also aging. Therefore, it may provide a link between the vari-
ous physiological events associated with health inequalities. Research in epigenetics 
indicates that alterations in DNA methylation may provide a causal link between 
social adversity and health disparity. Additionally, these experimental paradigms have 
yielded insights into the potential role of epigenetic mechanisms in mediating the 
effects of the environment on human development and indicate that consideration 
of the sensitivity of laboratory animals to environmental cues may be an important 
factor in predicting long-term health and welfare.

Keywords: stress, epigenetic, DNA, social, environment

1. Introduction

Absence of early life stress has great effects on both health and well-being. This 
particular topic focuses on the availability or quality of food sources, exposure to 
toxic effects, community-based events, and the presence of stressors or threats in the 
ecosystem. In humans, years of extensive researches have revealed some sort of cor-
relation among variations within being exposed in early life era and long-lasting risks 
of psychiatric and physical illness of maturity [1].

While it is expected that the effects of exposure to chemical substances besides 
deprivation or stress hormones of a vital vitamin or energy supply, they might have 
biological impacts on human depending on the specification of the exposure and 
availability. Personal and social experiences carry the partly same features with 
biochemical, cellular, and neurobiological changes and this case is amplified with 
psychosocial expertise executed on animal models in the light of finding answers to 
these questions.

Effects of social experiences and aggravating events taken place in life leads to 
the experimental study which has mainly focused on types of lab rodents (usually 
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including mice and rats), albeit several numbers of primate studies can be obtained to 
maintain additional data in the interest of powerful impacts of encounters taken place 
in the initial stages of life [2, 3]. In these designs, impact of prenatal nervousness, 
absence of a mother role and also disengagement variance in maternal treatment, 
adolescent cultural enhancement, isolation and mature cultural anxiety. When these 
have been investigated, results indicate that the quality of emotional stress experience 
or social experiences may cause neuroendocrine consequences which effects social 
and reproductive behavior. While it is the evidence of there is a phase of increased 
sensitivity to these eco-induced factors during prenatal as well as first postnatal devel-
opment, there may also be plasticity that extends into adulthood and adolescence 
after infancy. The long-term negative impact of the first latter life events on human 
brain’s region-specific gene expression part would be an important finding within 
these studies. Substantial evidence supports the existence of longterm effects on HPA 
axis functioning following early life stress; these effects persist into adulthood and 
are accompanied by lasting behavioral changes. In clinical studies, early life stress has 
been shown to be a strong predictor of ACTH responsiveness [4, 5]. Further analysis 
of the molecular mechanisms that could mediate this long-lasting effect involved in 
gene regulation have been led by these findings.

Epigenetic processes are effective events in changing gene expression and the 
long-term effects of events experienced in the early stages of life on gene expression 
are the subject of biologically based research [6]. Across species, it is obvious that a 
selection of experiences, such as the aspects of interactions experienced socially as 
well as being exposed to the stressors, can trigger epigenetic consequences. In addi-
tion, these progressive outcomes may be carried over descendants in certain cases, 
resulting in behavioral and neurobiological disturbance of the offspring and even of 
the grand offspring [7, 8].

2. Epigenetic effects of stress experienced in early life

The crucial role of epigenetic machinery in the biological embedding of stressful 
exposures in early life has been demonstrated in a number of rodent models, where 
considerable variations in both DNA methylation and histone modification have been 
reported in offspring exposed to different prenatal stresses, inappropriate maternal 
care, maternal deprivation/separation, as well as to juvenile social enrichment/
isolation [9–11]. It was found out by the rodent tests that mothers’ offspring with 
comparatively flat postnatal maternal hygiene grades increased fearfulness, anxiety, 
and stress-reactivity compared to the mothers’ offspring with caregiving of normal 
PH grades [12]. These behavioral anomalies were followed by diminished exposition 
of the glucocorticoid receptor (GR) encoding NR3C1 gene within the hippocampus 
along with increased methylation of CpG dinucleotides in the NR3C1 promoter and 
additionally great levels of activation of the hypothalamic–pituitary–adrenal (HPA) 
axis and serum glucocorticoids [13–15]. Maternally deprived offspring developed irri-
tability, anxiety, depressive symptoms, interruption of socially received interactions, 
genome-wide changes and high reactivity of DNA methylation transcription [16–18].

Depriving the organization and maternal attention of some other family mem-
bers of juvenile rhesus macaques and infants also induced stress and depression 
related symptoms followed by protracted activation of the HPA axis. Consecutively, 
changed genome-wide modifications and gene transcription to DNA methylation 
patterns are within the mental faculties and in the peripheral T lymphocyte [19–24]. 
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The amygdala, hippocampus, HPA axis, and medial prefrontal cortex form the areas 
affected by reduced maternal care in rodents [25]. Within the very first week of post-
natal existence, maltreatment of mothers breastfeeding new-born children has shown 
to cause frequent vocalized distress calls in offspring and shifts in patterns of meth-
ylcytosine last long and its hydroxymethyl cytosine derivative at many spots such as 
the BDNF locus, in the amygdala, hippocampus, and in exposed offspring’s medial 
prefrontal cortex, all at the time of exposure [26–28]. Early-life stress as in maternal 
separation-induced in the paraventricular nucleus of the hypothalamus increased 
AVP and POMPC expression and decreased DNA methylation at these loci [29]. 
Experienced early-life stress increased NR3CR1 transcription in the paraventricular 
nucleus and rendered CRH transcription refractory to maturity chronical stress after 
stress experienced in early life, suggesting that it jeopardizes CRH transcriptional 
responsiveness in the hypothalamus to later chronic stressors, probably through a 
GR-dependent mechanism [30].

The long-lasting effects of prenatal maternal pressure on the neural genes as well 
as offspring behavioral word was showed more by a research analyzing the effects 
on adult offspring of prenatal exposure to predator odor during fetal gestation. In 
offspring of whose mothers suffered being exposed to the odor of predator in the time 
of pregnancy and in female (yet no male) offspring, stated endocrine and behav-
ioral modifications were followed by BDNF’s diminished expression and improved 
DNA methylation of BDNF promoter sequences of the hippocampus, as well as bb 
promoter sequences of the hippocampus, odor avoidance, addition to corticosterone 
production as a response to being exposed to the odor, were enhanced. Mentioned 
studies show that not only prenatal but also postnatal stressors may result in long-
lasting alterations in epigenetic control, neuroendocrine function, and neural gene 
transcription activity that continuing through adulthood [31].

Research one on humans have advanced and expanded the results of animal stud-
ies on the effects of early-life strains [32]. So, proof states that adolescence, infancy, 
and fetal gestation are actually delicate stages during which epigenetic, psychological, 
and behavioral changes continue through adulthood which may be caused by expos-
ing to cultural adversity. A recent systematic review reported, forty studies which 
were betwixt 2004 and 2014, that listed NR3C1 methylation changes in response to 
early life adversity, parental anxiety, and psychopathology studies, of which twenty-
seven were human studies [33]. While in these papers a variety of different NR3C1 
sequences are actually involved as reglementary targets, perhaps the most stable 
finding is actually a highly related expansion in exon 1F methylation in the NR3C1 
gene of the individual (or maybe the analogous exon seventeen in the thirteen animal 
studies) as well as early life adversity experience. Exon 1F/17 has a portion of the 
DNA sequence encoding a methylation-sensitive binding website for the NGF1A/
EGR1 [34] controlled transcription activator for neural activity. The decreased 
NR3C1 expression caused by increased methylation of this unique binding website, 
consecutively decreases the means of providing bad feedback to the hypothalamus 
and pituitary mediated by glucocorticoid, resulting in continuous activation of the 
HPA axis, as well as the ensuing disorders. Improved NR3C1 promoter methylation 
has been associated with a variety of experiences highly appropriate for inducing 
prenatal tension, such as near partner aggression, or perhaps maternal exposure to 
genocidal war [35, 36]. In addition, neglect, being abused in childhood, and destitute 
were also concluded to be related with enhanced methylation of the NR3C1 promoter 
[34, 37–39]. Recently prepared reports give further backing for a correlation among 
early life adversity, improved methylation of the promoter, and reduced NR3C1 



Epigenetics to Optogenetics - A New Paradigm in the Study of Biology

74

transcription [38, 40–44]. These mixed scientific studies indicate that as a conse-
quence of allostatic overload caused by a range of stressful interactions, attenuation 
of the NR3C1 phrase is actually an aspect of the task leading to elevation of HPA axis 
operation. Despite such insights, it remains unclear how NR3C1 is specifically tar-
geted for epigenetic silencing, and whether methylation of the NGF1A/EGR1 binding 
site, which prevents NGF1A/EGR1 recruitment to NR3C1, is accompanied by other 
changes that attenuate NR3C1 expression in the brain. As inhibitors of NR3C1 protein 
run [45, 46], noncoding RNAs such as the lncRNA GAS5 have been involved, as well 
as miRNAs such as MIR 124 could as well control the durability of NR3C1 transcripts 
[47, 48]. Though, several different early life adversity response studies including DNA 
methylation changes linked to several extra-human genes, such as SLC17A3, PM20D1, 
KITLG, SLC6A4, BDNF, MORC1, LGI1/LGI2, FKBP5, CRHBP, CRH, and MAOA 
[49–54]. Additional studies to explain the purposeful interrelationships of genes with 
NR3C1, along with a greater comprehension of exactly how these genes are actually 
controlled, possibly make it possible to reveal precisely how prenatal stress, child-
hood neglect, and parental hygiene deprivation are biologically embedded and have 
long-lasting effects that dwell on across. In addition, an in-depth study of the proce-
dures may explicate the biological base of resistance to anxiety as well as provide an 
evidence base for successful interventions.

3. Epigenetic plasticity in adulthood as well as adolescence

While plasticity carrying epigenetic pathways was originally considered to be 
confined for the premature steps of embryogenesis, now it is becoming more and more 
apparent to that epigenetic variation can be caused by experiences occurring during the 
lifespan. In addition, a key facet of memory and learning from infancy to adulthood 
may be the guiding source to modify DNA methylation and histone tails [55]. Variation 
of epigenetic, similarly, has been related with the alterations in phenotype and gene 
expression in the mean time of the latter stages of advancement in the form of studies 
on the effect of social experiences & stressors. In addition to adult mice with genetically 
mediated memory dysfunction, being exposed to complicated housing environments 
for four weeks were found to be associated with enhanced hippocampal histone acetyla-
tion as well as memory enhancement and cortex [56]. Surprisingly, these enrichment-
induced effects on histones, memory and comprehending, can as well be obtained 
with pharmacological remedies in non-memory-impaired mice that promote histone 
acetylation. Histone modifications (particularly histone methylation) are also observed 
in mice in enriched settings in the BDNF III, IV, and VI promoter regions [57].

Chronic stress is actually linked to decreases in the expression of this specific gene 
compared to environmental enrichment, which has been shown to advance stages of 
BDNF, an epigenetic base might be an issue for such consequences. In rats, immobi-
lization pressure was found to cause great rises in hippocampal DNA methylation in 
the BDNF gene, coupled with exposure to predator odor [58]. Reductions in BDNF 
are actually found within the version of social defeat after a month of being exposed 
to what is known as social stressor, then hippocampal histone demethylation at the 
promoter of BDNF might take credit for such specific impact [59]. Histone acetyla-
tion is temporarily diminished, after that shows elongated risings on mice that is 
rejected socially. Therefore, such specific impact may be related with long-lasting 
reductions in histone deacetylase amounts induced by stress [60]. Similarly, increased 
histone acetylation in rats continues to be observed for up to twenty-four hours 
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following the experience of repeated population-based rejection [61]. In addition, 
the behavior-based outcomes of interpersonal loss, such as diminished social-based 
activity, can be pharmacologically turned around thanks to a medication that inhibits 
histone deacetylases [60]. It is concluded that a group of mice were resistance to our 
stressor. And the other conclusion is that discomfiture between humans results in 
consequences which would last long. Stress-susceptible mice were found in a recent 
study to have elevated levels of CRF mRNA in the PVN and also diminished methyla-
tion of DNA in the CRF gene [62]. In comparison, stress-resilient mice were found to 
undergo no changes in the CRF mRNA or perhaps DNA methylation of this particular 
gene. In fact, differential sensitivity to the effects of stress is a key thing to consider in 
these studies, and as a consequence of anxiety, there is growing evidence for strain or 
perhaps genotype-specific epigenetic consequences [63].

4. Transgenerational effect of the social stress and environment

The continuous epigenetic effects of environmental events were presented in the 
previous sections. In influencing behavioral and neurobiological effects, these conse-
quences seem to play a crucial role. However, it may also be the case that these eco-
induced influences are capable of persisting over centuries. One mechanism by which 
this transmission occurs [64] may be transgenerational continuity in maternal behav-
ior. There is evidence in rodents that coercive caregiving as well as variance in mater-
nal LG can change the enhancement of female offspring so that each offspring as well 
as grand offspring can also find these maternal characteristics. In the medial preoptic 
position of the hypothalamus of female offspring, maternal LG tends to alter the DNA 
methylation as well as the Esr1 phrase [65]. Throughout the postnatal period, during 
which adulthood continues, these implications emerge. ER-alpha quantities possess 
a crucial part in deciding the responsiveness of females to circulating oestrogens for 
late gestation, and stated specific responsiveness predicts the quality as well as the 
number of interactions between postnatal mother babies. Individual differences in 
maternal LG are actually transferred from mother to offspring (generation F1) as well 
as to grand offspring (generation F2) as a result of the epigenetic changes [64, 66].

In studies of child violence, variance of behavioral segmentations is found across 
species. In rats, both the variation of DNA methylation and the BDNF phrase in the 
prefrontal cortex can be correlated with the transgenerational continuity of violence. 
Females’ BDNF term tends to be decreased if experienced violence in childhood and 
methylation of BDNF IV promoter DNA in the prefrontal cortex is to be improved by 
this situation as well. The offspring of these females likewise have increased Bdnf IV 
promoter DNA methylation in the prefrontal cortex. Addition to these, offspring of 
stated females is likely to have enhanced methylation of BDNF IV promoter DNA in 
the prefrontal cortex [67]. Surprisingly, scientific studies on cross-fostering recom-
mend that prenatal elements may be linked to the transmission of violence and also 
the epigenetic variance related to this specific phenotype rather than postnatal events 
with the dam. In fact, the direct inheritance of epigenetic change is another path by 
which perinatal epigenetic, as well as behavioral effects, may persist over generations. 
Although it has long been believed that during the first stages of embryogenesis, a 
complete erasure of epigenetic disruption to the genome is at hand. Revelation of 
imprinted genes (genes that are expressed depending on the parent from whom they 
are inherited) has led to widely believed speculation that the previous generation’s 
epigenetic “memory” is actually retained and transmitted to the genome [68].
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The epigenetic inheritance of the toxicological exposure effect has been studied 
and also suggests the existence of the patriline effects for many decades [69]. More 
recently, in offspring exposed to separation (F1), the offspring of separated males 
(F2), and the grand offspring of separated males (F3), the transgenerational impact 
of maternal separation have been investigated. With this paradigm, during the 
postnatal era, mice were exposed to unforeseen separation from the dam. Depressive-
like behaviors that were activated in the offspring of the F1 model were found to be 
contained in both F2 and F3 generation mice [70]. DNA methylation patterns caused 
by separation have been shown to be contained in the sperm and brains of F1 male 
mice and also in the brains of F2 males. Hypermethylation of the Mecp2 gene as well 
as hypomethylation of the Crfr2 gene resulted in these epigenetic consequences. 
As a result, it appears that the epigenetic variation that is created with the early life 
environment’s aspect could be encoded within the germ cells, leaving traces of stress 
and social environment on the next descendants through transgenerational approach.

5. Human health’s social-based determinants

A distinguishing figure in inequal cultures is the fact that in neighborhoods and 
neighborhoods with lower socioeconomic mobility (SES) [71, 72], community prob-
lems and persistent wellbeing appear to be more prevalent. In lower SES populations, 
the risks of illnesses such as cardiovascular disease, stroke, diabetes, obesity, and 
mental conditions are highest. It as well needs to be remembered, however, that the 
prevalence of such chronic, non-communicable diseases is actually classified across 
social classes, with the lowest incidence in higher SES categories. Expectancy of life 
across social classes is equally ranked, being higher in high SES categories. The pros-
pect of designing evidence-based health and policy that covers social subjects strate-
gies is to elucidate the biological and social roots of the social gradient in health that 
could increase well-being and health for everyone while providing additional benefit 
to those with higher needs. Good knowledge of the biochemical mechanisms by 
which wellbeing is impacted by the social gradient will also help to identify relevant 
intervention or mitigation goals and sustain biomarkers for which to track effects.

Salary inequality can be seen as sensitive, quantitative relative place measures 
among a larger hierarchy of socioeconomic status that indicate disparities in access 
to, along with economic resources, a number of forms of social, educational and 
cultural capital [73–75]. It has been speculated that social rank is essentially a result 
of the amount of entrance obtained to stated and differentiated forms of resources in 
extremely unequal environments that competing social experiences for such access 
are actually mental stressors that can contribute to uncertainty about ranking. Many 
scientific researches confirm the theory of status anxiety, connecting not so high 
social expectations to nervousness, guilt, depression and harming oneself [76–79]. 
In addition, status-based nervousness and its not only mental but also cognitive 
outcomes are potentially possible contributors to some kinds of social adversity, 
childhood era deprivation for example, limited autonomy on making decisions which 
even consider matter of life events, reduced social connectivity, and decreased levels 
of interest in certain different parts and members of the community. Such theories 
align with the findings of hierarchies of animal domination, yet in which situation 
that dominant individuals are literally prohibited from ensuring preferential entrance 
to group services provided in scarce supplies, such as meals, water, accommodation, 
as well as companions, and access to subordinates. As previously stated, the hierarchy 
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of dominance is currently an evolutionarily and strongly maintained form of social 
organization. Undoubtedly, social rank understanding evolves very quickly in mem-
bers of humanity, as it is a prevalent conception for infants [hundred] and is used by 
children from two years of age to create relationships of dominance [80, 81].

As potential causes of chronic behavioral tension and allostatic load, inducing 
hypercortisolaemia and improved levels of inflammatory biomarkers in the blood, 
the pervasive experiences of status tournaments, in which rank is actually guided and 
controlled by oneself and others, have been labeled [82, 83]. Moreover, epidemiologi-
cal data suggest that low SES increases allostatic load and increases blood inflamma-
tory biomarkers [84, 85]. Therefore, the tendencies of too many social challenges to 
erode group harmony, degrade social networking sites and impede mutual assistance, 
such as persistently competitive activities and violence, may place restrictions on 
social practices that decide the fundamental characteristics of human well-being.

Emerging research recognizes social networking platforms as critical factors in 
health security [86–90] and supports the theory that loss of social capital accentu-
ates the very poor health outcomes of low SES communities by weakening or even 
diminishing social networks. In order to minimize allostatic burden and buffer the 
immune system against inflammatory stimuli associated with very low SES [91–94], 
increased parental assistance has been confirmed. Close comparisons can be drawn 
between the mechanisms of action of animal and human social buffering treatments, 
general themes of which include reducing the function of the HPA axis, attenuat-
ing inflammation and increasing the development of oxytocin [95]. Via enhancing 
parenting skills, strengthening family relationships, or even developing capacities for 
young people, social interventions that promote group buffering have all been found 
to decrease pro-inflammatory biomarkers, indicating a preventive impact, while 
some aspects of resilience-building may be much more durable relative to others. 
Additional analyses of these and other human cohorts would enable the biological 
mechanisms and psychosocial processes by which such strategies accomplish their 
buffering effects to be explained in greater detail [93, 94].

6.  The epigenetic effects of persistent interpersonal stress in humane 
communities

In particular being long-lasting exposed to the social-based stressors associated 
with low SES over the course of life are recognized to impact the likelihood of chroni-
cal illness by using their effects on a broad variety of physiological processes affecting 
the nervous, hemopoietic, cardiovascular, and endocrine systems. Most documented 
studies of the effects of SES on the epigenome showed that DNA methylation patterns 
in samples taken from tissues collected, such as whole blood, fractionated white blood 
cells, or perhaps buccal swabs were altered. Numerous scientific works indicate that 
SES is actually connected to differences in patterns of genomic DNA methylation 
[96, 97]. Childhood SES was shown to be specifically correlated with differential 
methylation of 1252 gene promoters in forty individuals from the 1957 British Birth 
Cohort in one of several experiments using promoter microarrays so that increased 
methylation was related with lower childhood SES for 586 promoters and superior 
childhood SES for the remaining 666 promoters [96]. A review of 239 participants 
of the Glasgow pSoBid cohort, which indicates a particularly steep social gradient 
in wellbeing, found with an alternative technique of DNA methylation analysis that 
average DNA methylation levels across the entire genome were more or less seventeen 
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percent lower in the most deprived group than in perhaps the least deprived group 
[98]. It remains to be clarified if this low SES-related hypomethylation of whole 
genomic DNA is specifically directed at gene bodies, cis-regulatory elements, inter-
genic areas, and/or repetitive DNA sequences. Recent studies have reported that 
genes whose transcription is actually involved in neuroendocrine and inflammatory 
responses to low SES also show epigenetic SES sensitive modifications, which are 
actually in line with previous studies involving process dysregulation in low SES 
individuals [99, 100].

In more unequal environments, possibility of mental wellness problems such as 
nervousness, alcohol, and anxiety are actually much higher. Consecutively, these 
disorders are certainly easier to come across in low-SES communities [101]. Predictive 
connections between lower SES, differential methylation of the SLC6A4 serotonin 
transporter gene promoter, greater amygdala activity, as well as signs of depression 
have been reported in a recently published analysis [102]. Previously, differential 
SLC6A4 methylation has been shown to be exclusively linked to molestation of child 
[103], low SES [104], stress-related depression [105], as well as enhanced amygdala 
reactivity to frightening stimuli. In addition, increased fear reactivity of the amygdala 
in puberty has been shown to become a likely biomarker indicative of adult stress 
and tension [106–108]. These findings were expanded to include a possible analysis 
of depression development within a cohort of teenagers tested on 3 occasions at 
11–15,13–18 and 14–19 years of age, in order [102]. Using blood and saliva samples for 
DNA methylation analysis, low SES at age 11–15 years was discovered to be predic-
tive of increased methylation of SLC6A4 at age 13–18 years, which was predictive of 
improved amygdala reactivity to a fearful stimulus (detected by fMRI) over exactly 
the same time, and which subsequently was connected with an elevated threat of 
depression between ages of 14–19 for adolescents with an optimistic depression-based 
family history. Such outcomes, therefore, propose a plausible biological path through 
which low SES, by methylation of SLC6A4, may attenuate expression of the serotonin 
transporter encoded by that stated particular gene, forwarding to elevations not only 
in amygdala reactivity but also in liability of depression. Additionally, such indica-
tions pinpoint possible biomarkers for building and evaluating preventive or maybe 
treatment-based interventions that may buffer the effects of low SES on liability of 
depression in the means of lifetime.

7. Post-traumatic stress and anxiety

The intense stress caused by imposed to stressful experiences, battle for example, 
genocide, starvation, elevates the liability of psychiatric wellbeing problems, includ-
ing PTSD, schizophrenia, depression, even killing oneself [36, 37]. Similarly, US 
fighting veterans with an analysis of moderate PTSD showed hypomethylation on the 
regulatory portion of the NR3C1 promoter 1F and decreased HPA axis actions [109]. 
As a result, in the meantime NR3C1 is a very typical target for epigenetic modifica-
tions as a response upon these distinctive stress forms, in addition to qualitative dis-
crepancies in the mechanisms as well as the context of traumatic events themselves, 
the particular variations within the patterns of NR3C1 methylation could represent 
disparities in the timings as well as times of coverage for trauma.

Traumatic stress and PTSD-associated variance in DNA methylation at the SKA2 
locus have been reported in recently made studies on epigenetic alterations among 
war vets suffering extreme PTSD [110, 111]. SKA2 encodes a protein that is rather to 
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serve as a chaperone or possibly a GR activity regulator, allowing negative feedback to 
the HPA axis mediated by cortisol dependent GR. SKA2 was recognized as a hyper-
methylated, under expressed locus of suicide completers in post-mortem cortical 
tissue, and variance in SKA methylation was also correlated with suicidal activities 
in PTSD individuals [112, 113]. Although the discovery of altered DNA methylation 
taken from those who tried to commit suicide and who suffers PTSD at this locus 
in tissue indicates possible functions for SKA2 in the control of traumatic stress 
response, it is presently uncertain if these modifications are directly linked to the 
multiple psychopathological behaviors under investigation.

In intergenerational epigenetic responses to stress, research on the effects of PTSD 
suffered by those who survived Holocaust through their offspring includes modified 
HPA axis actions, and even more especially dysregulation of the GR along with its 
auxiliary components. In a similar study, methylation with a CpG dinucleotide inside 
a GR binding website inserted within an intron of this gene encoding the GR regula-
tor FKBP5 was shown to be increased within the blood cells of Holocaust survivors, 
as well as lower in their offspring, relative to the quantity of this gene encoding the 
GR regulator FKBP5 [114]. These findings show that intergenerational transfer of 
trauma-related DNA methylation modifications has taken place between Holocaust 
survivors and descendants of theirs in at least a variety of cases. In response to a new, 
moderately demanding exposure, diminished behavioral regulation was recognized 
as diminished latency to type in unknown places, indicative of probably elevated 
resistance or impulsivity. Additionally, DNA methylation switches at candidate 
gene loci transmitted via the germline along with mediated, transmitted behavioral 
anomalies from the MSUS. The applicant genes include Nr3c1, which demonstrated 
decreased methylation of the promoter and increased transcription of this progeny 
of MSUS treated mice in the hippocampus. In addition, traumatized men’s sperm 
contained microinjection and trauma-induced miRNAs of distilled RNA derived 
from their traumatized adult men’s sperm recapitulated MSUS-induced behavioral 
abnormalities, suggesting functions within the intergenerational transmission of 
trauma-induced phenotypes for these very short noncoding RNAs. Interestingly, the 
intergenerational transfer of MSUS mediated altered behavioral reactions to moder-
ately challenging stimuli, increased Nr3c1 methylation, and decreased transcription 
of this specific gene within the hippocampus was improved by environmental enrich-
ment. In a related study, corticosterone administration to adult male mice caused 
behavioral phenotypes that indicated hyper nervousness within their male F1 prog-
eny, as well as reduced anxiety levels, but elevated depressed characteristics within 
their F2 progeny. In addition, both the F1 and F2 phenotypes have been identified 
with the expression within the paternal sperm of some corticosterone mediated  
miRNAs. Taken together, these animal experiments suggest that ameliorative and 
negative interactions modulate behavior, the effects of which could be delivered 
among one descendant to the others, possibly by epigenetic modulation of neuroen-
docrine reaction systems involving miRNAs [115].

8. Conclusion

The pervasive influence of social stressors on well-being and health are recorded 
in detailed literature. Emerging data shows that the biological embedding of psy-
chosocial messages throughout the body potentially includes epigenetic pathways, 
influencing cellular mechanisms that could influence health hazards over the life 
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Abstract

Optogenetics initially used plant photoreceptors to monitor neural circuits, later 
it has expanded to include engineered plant photoreceptors. Recently photorecep-
tors from bacteria, algae and cyanobacteria have been used as an optogenetic tool. 
Bilin-based photoreceptors are common light-sensitive photoswitches in plants, algae, 
bacteria and cyanobacteria. Here we discuss the photoreceptors from cyanobacteria. 
Several new photoreceptors have been explored in cyanobacteria which are now 
proposed as cyanobacteriochrome. The domains in the cyanobacteriochrome, light-
induced signaling transduction, photoconversion, are the most attractive features for 
the optogenetic system. The wider spectral feature of cyanobacteriochrome from UV 
to visible radiation makes it a light potential sensitive optogenetic tool. Besides, cya-
nobacterial phytochrome responses to yellow, orange and blue light have more appli-
cation in optogenetics. This chapter summarizes the photoconversion, phototaxis, 
cell aggregation, cell signaling mediated by cyanobacteriochrome and cyanophyto-
chrome. As there is a wide range of cyanobacteriochrome and its combination delivers 
a varied light-sensitive response. Besides coordination among cyanobacteriochromes 
in cell signaling reduces the engineering of photoreceptors for the optogenetic system.

Keywords: cyanobacteriochrome, cyanophytochrome, photoswitch, photoreceptor, 
cell signaling transduction

1. Introduction

Photoreceptors in cyanobacteria are diverse in their spectral character from ultravi-
olet to visible wavelength. Plant photoreceptors were widely used in optogenetics, but 
their responses to specific wavelengths need more revision. When compared to these 
photoreceptors cyanobacteriochromes (CBCRs) receive more attention as a versatile 
optogenetic tool. Several photoreceptors respond to a wide range of light, photoconver-
sion ability and photoswitches for dual light are new approaches and powerful tools 
for optogenetics [1]. Engineering of these photoreceptors will develop more versatile 
CBCR to alleviate the conventional methods like mutation and recombination [2]. 
Optogenetics in mammalian tissue adopted far-red illumination and adjacent infra-red 
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radiance to visualize and activate responses in the cell. The CBCRs with linear tetrapyr-
role is very sensitive to red and far-red light. Utilization of these infra-red sensitive and 
red light responsive CBCRs raised their application in optogenetics. So far phytochro-
mobilin is used in mammalian cells recently cyanobacterial phytochrome 1 (CPH1) has 
been applied in mammalian cells proven its benefit in synthetic biology [3].

1.1 Cyanobacteria

Cyanobacteria are evolutionarily ancient phototrophic Gram-negative bacteria 
widely distributed in terrestrial, freshwater and marine environments. They are 
oxygenic photosynthesizers having major photosynthetic pigment chlorophyll-a and 
light-harvesting pigments phycobiliproteins. They survive in many extreme environ-
ments, such as hot and cold deserts, hot springs, and hypersaline environments [4].

1.2 Cyanobacteriochrome

Light is an important factor for their nutrition and growth, therefore, it has a 
multitude photosensory complex that responds to a wide array of illumination. 
Each chromophore is a response to a particular wavelength based on the incident 
light it changes the arrangement and composition of pigments in the photon captur-
ing antenna. This rearrangement of pigments to the incident light is the process of 
complementary chromatic acclimation. Cyanobacteria possess phototaxis move-
ments it means they can move towards or away from specific light. Photoreceptors in 
cyanobacteria are commonly referred to as CBCRs [5].

1.3 Phytochromes

Generally, Phytochromes are photoreceptors that have been found in plants, algae, 
and bacteria. These photoreceptors are broadly utilized in biosensors and optoge-
netics to screen and regulate diverse intracellular cycles like phosphorylation, gene 
activation, degradation of protein and change of calcium ions [6].

1.4 Phytochromes from cyanobacteria

Phytochromes are photochromic photoreceptors, generally responding to red 
and far-red radiation in the visible spectrum. Bilin is the most important portion 
in the chromophore and it is distributed in three different forms. Phytochrome 
in plants made of phytochromobilin, whereas in cyanobacteria it is in the form of 
Phycocyanobilin. Further Phytochromes in plants, algae and cyanobacteria constitute 
linear tetrapyrrole biliverdin [7]. The chromophore part in plant phytochrome has 
cysteine at the N terminal site of the protein. The phytochrome in plants differs from 
cyanobacteria by having biliverdin in the chromophore part. Evolutionary develop-
ment in cyanobacteria brings out cysteine linked with biliverdin in the GAF domain 
and formed as phycocyanobilin also referred to as phytochromobilin. The transforma-
tion of phytochrome into CBCR is due to changes in the molecular level.

1.5 Phytochrome classification

Phytochromes were primarily arranged into three subfamilies dependent on the 
number of domains in their photosensory core module (PCM). Phytochrome has 
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three domains in their core structure, for example, PHY - phytochrome-explicit area, 
PAS - Per-Arnt-Sim, and GAF - cGMP phosphodiesterase-adenylate cyclase-FhlA. 
Even though the amino acid groupings of these domains have a dissimilar sequence, 
their structures were similar. Further subfamilies are cyanobacterial phytochromes 
(Cph), lack an N-terminal PAS area, and CBCRs, which contain a solitary GAF 
domain [8]. The domain proteins of PAS, GAF and PHY were interconnected to form 
homo and heterodimers [9].

1.6 Features of cyanobacteriochrome

Phytochrome in plants and algae has the sensitivity to the different light spectrum. 
Plant phytochromes are sensitive to red radiance furthermore, it performs red and 
far-red photoreversible photocycle. The phytochrome with bilin photoreceptors in 
eukaryotic green algae and prokaryotic cyanobacteria are sensitive to the visible 
spectrum [10–12].

The CBCRs are photoreceptors involved in the regulation of phototaxis. The pho-
toreceptors SyCcaS, SyPixJ1, TePixJ, AnPixJ, SyCikA are now proposed to be CBCRs 
due to the presence of chromophore binding GAF domain.

• The domain GAF is enough for photoconversion

• chromophore in GAF domain varies from phytochrome GAF

• The GAF domain binds to linear tetrapyrrole pigments like phycoviolobilin or 
phycocyanobilin

• The chromes are responsive to a wide range of light from ultraviolet to the 
red region

2. CBCR in cyanobacteria

2.1 AnPixJ

The cyanobacterial genomes of Anabaena and Nostoc harbor PixJ homologs, 
having chromophore-linked GAF domains and domain MCP. The PixJ-GAF domains 
of Anabaena and Nostoc were distinct from the blue-shifted complex of CBCR TePixJ 
and CBCR SyPixJ1 [13]. The four GAF domains of PixJ are continuously arranged 
in AnPixJ of Anabaena sp. PCC 7120 (Figure 1A) that possess reversible photocon-
version between red (648 nm) Pr[AnPixJ] to green (543 nm) absorbing form Pg 
(AnPixJ) [14]. Acidic denaturation of AnPixJ in Anabaena sp. PCC 7120 affected the 
gliding motility of hormogonia and phototaxis.

2.2 SyCcaS

Chromatic acclimation is an adaptive mechanism in some cyanobacteria capable of 
modifying their photosynthetic system reaction to the incident radiance. The phy-
cocyanin content in Synechocystis sp. PCC 6803 is chromatically synchronized under 
red and green-orange light. The cells irradiated with red light produced a higher 
quantity of phycocyanin [15] than the cells exposed to green-orange light. The red 
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light condition activated the gene cpcG2 which encodes the synthesis of phycocyanin 
linker protein. Under red light CcaS, photoreceptor and transcriptional regulator 
CcaR induced the expression of the cpcG2 gene [16]. It has a single GAF domain 
 followed by PAS and PAC domains (Figure 1B).

2.3 FdRcaE

Fremyella diplosiphon harbor photoreceptor RcaE_GAF sector is homologous 
to SyCcaS_GAF. Genetic studies on FdRcaE revealed that it is a red light receptor, 
involved in the expression of operon cpc2 encode synthesis of phycocyanin, [17] 
FdRcaE domain structure GAF, PAS and His kinase (Figure 1C), are parallel to 
SyCcaS (Figure 1B). Though the GAF domain is analogous to FdRcaE_ and SyCcaS, 
their light response is different in which the SyCcaS is a green light receptor. In  
F. diplosiphon, the green light has been used to activate genes for phycoerythrin post-
translational modification and its linker polypeptides through the second signaling 
pathway by CBCR [18, 19]. The modern genome sequencing project would reveal the 
genetic background of the whole complementary chromatic acclimation process.

2.4 SyCikA

The chromophore-binding GAF domain of CikA in Synechococcus elongatus sp. 
PCC 7942, (Figure 1D) plays a crucial role in resetting the circadian rhythms [20]. 

Figure 1. 
Domain architecture of common cyanobacteriochromes (A) AnPixJ (B) SyCcaS (C) FdRcaE (D) SyCikA and 
their specific domains GAF with additional signaling domains are HAMP, methyl accepting chemotaxis protein 
(MA), PAS (PAS+ PAC- Photoswitchable adenyl cyclase), histidine kinase (HisKA+HATPase) and response 
regulator receiver domains (REC).
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Generally, the cyanobacterial chromophore is ligated with cysteine residue but it lacks 
the chromophore-tied Cys residue is parallel to other CikA homologs. Interconnection 
between the C-terminal pseudo-receiver domain and quinone is essential for the 
phase synchronizing of the rhythms [21]. CikA GAF domain of Synechococcus is com-
parable to the SyCikA_GAF of Synechocystis sp. PCC 6803. The properties of SyCikA 
are extremely uncommon however appear to be viable with the idea of circadian 
rhythms.

3. Functions of CBCR

3.1 Coordination of the cyanobacteriochromes

The photo biochemical properties of SesA holoprotein from the cyanobacte-
rium Thermosynechococcus vulcanus have a blue light-responsive DGC (Diguanylate 
cyclase) activity. The SesB holoprotein isolated from T. vulcanus exhibited a revers-
ible photoconversion system. It becomes blue light (417 nm) capturing form to a 
teal light (498 nm) assimilator. Another homologous CBCR from T. vulcanus is SesC 
which photoconverts a blue light (415 nm) assimilator to a green light (522 nm) 
absorber. These three CBCR proteins (SesA, SesB, and SesC) have phycoviobilin 
(PVB) and phycocyanobilin (PCB). These CBCR proteins were genetically expressed 
in E. coli which contains both PVB and phycocyanobilin [22, 23]. The SesA and SesB, 
perform independent photo conversion in E. coli in contrast when it is expressed 
in cyanobacteria it shows single photoconversion (Figure 2). Even though their 
spectral wavelength is different they coordinate and expressed single photocycle 
conversion.

SesB has GGDEF- type DGC (Diguanylate cyclase) domain (Figure 3B) and SesC 
has EAL- type PDE domain to deliver the c-di-GMP signal (Figure 3C). The SesB 

Figure 2. 
Three different CBCR individually expressed to reveal different c-di-GMP signals. Ses A-produces c-di-GMP 
under blue light, Ses B- degrades c-di-GMP under teal light, Ses C- produces c-di-GMP under shorter wavelength 
and degraded c-di-GMP at the longer wavelength. These CBCR were coexpresses in Thermosynechococcus revealed 
c-di-GMP signal binds with cellulose synthase domain and promoted cell aggregation.
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DGC for c-di-GMP signal degraded under teal light, in contrast, expressed higher 
in blue light. In Ses, A c-di-GMP is higher under blue light and lowered in teal blue 
light. SesC DGF activity is maximum in blue light and minimum in green light. This 
is a chrome-responsive cyanobacterial c-di-GMP signaling coordination of (Ses –A, B 
and C) CBCRs.

i. SesA a blue light-responsive DGC

ii. SesB a teal light-responsive and GTP sensitive PDE

iii. SesC, a dual-active CBCR having blue light-sensitive DGC and green  
light-responsive PDE activity

3.2 Cyanobacteriochrome in cell aggregation

The cell aggregation signaling molecule Cyclic dimeric guanosine monophosphate 
(c-di-GMP) is unique to cyanobacteria and bacteria [24]. Light is a key factor in 
controlling c-di-GMP signaling [25, 26]. The domain (GGDEF) for the synthesis 
and (EAL/HD-GYP) (Figure 3A and B) destruction of the c-di-GMP is higher in the 
CBCR GAF structure of freshwater cyanobacterial genomes. The CBCR induces the 
c-di-GMP signaling pathway. The CBCR—GAF domain of SesA (Figure 3A) from 
the thermophilic cyanobacterium Thermosynechococcus elongatus is activated by blue 
light irradiation, and disordering of T. vulcanus SesA inhibited cell aggregation.

Thermosyncechococcus spp., genomes possess five CBCR genes, three homologous 
CBCRs involved in the clumping of cyanobacterial cells are SesA (Tlr0924), SesB 
(Tlr1999), and SesC (Tlrtml). This CBCR has a photosensory domain with a c-di-
GMP protein production/destruction domain. The CBCR-GAF domain of these three 
CBCR is involved in the light-controlled cell accumulation. There is a coordinated 
system of cell accumulation by c-di-GMP signaling via, Ses (A, B and C) CBCR 
(Figure 2) [27, 28].

Figure 3. 
Domain architecture of cyanobacteriochromes Ses A, Ses B and Ses C-GAF photosensitive domain and cell 
signaling domain PAS (Per/Arnt/Sim), GGDEF, EAL capped with a.a-amino acids.
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3.3 Cyanobacterial photobiological responses

Prokaryotic photosynthetic organisms, cyanobacteria, depend on bilin-linked 
phytochromes (Cphs) and CBCRs, photoreceptors which are structurally and func-
tionally vary from plant photoreceptors. The CBCRs are made of light-absorbing 
domains with various color-tuning and signal transmission processes, that make 
cyanobacteria capture a wide wavelength of light from UV–visible to far-red lights. 
The genome of filamentous cyanobacteria has a different type of CBCRs with wide 
chromophore-linked selectivity and photocycle protochromicity. The Cph lineage can 
absorb a wide range of light from blue-violet to yellow-orange light. This chapter also 
emphasized the color-sensitive diversity [29, 30] and signal transmission process of 
Cphs and CBCRs, concerning optogenetic.

Bilin-linked phytochrome Cphs and plant phytochromes (Phys) are similar in 
structure, with an N-terminal photosensory core module (PCM) and a C-terminal 
output regulatory module. The PCM contains the following domains PAS (Period/
Arnt/Single-minded), GAF(C-GMP phosphodiesterase/Adenylylcyclase/FhlA), 
and PHY (phytochrome-specific). The GAF domain is necessary for forming the 
bilin cross-linking; PAS and PHY structures are involved in bilin lyase activity [31]. 
Cyanobacteria have two types of bilin-linked photoreceptors Cphs, and CBCRs. In 
contrast to Cphs with PAS and PHY domain, CBCRs (lack PAS and PHY) absorb a 
wide array of light, by the GAF structure [32]. This wide array of light absorption by 
CBCR is called a color or spectral tuning mechanism.

3.4 CBCR in photobiological responses

Growth of the cyanobacterium Synechocystis PCC 6803 in red (R) and far red (FR) 
light is regulated by Cph1 and Cph2 in an antagonistic method. Modification in Cph1 
negatively affects the Synechocystis growth in FR light, further destruction of Cph2 
hinders its growth in red light [33]. Mutation in Cph2 transformed the growth rate 
and exopolysaccharide biofilm formation, involved in the control of the principal 
energy metabolism [34]. Under unusual light environments, the bilin conformation 
of the cyanobacterial antenna with light-absorbing phycobilisomes rearrangement is 
known as chromatic acclimation (CA). This process allows cyanobacteria to neutralize 
the proportion of light absorption between the photosystems [35, 36].

3.5 Dual light system

The CBCR response to two different light systems is mediated by the histidine 
(His) kinase domain. In Leptolyngbya sp. JSC-1, His domain is found in the proteins of 
Cph, RfpA, whereas CcaS in Synechocystis and Nostoc punctiforme, RcaE and DpxA in 
Fremyella diplosiphon, act as sensor kinase [35].

3.6 Phototaxis

The non-flagellated cyanobacteria adapt phototaxis in response to light. In 
Synechocystis, move towards light [37] and away from light [38] phototaxes are 
achieved by PixJ and UirS CBCRs. The CBCR- PixJ-GAF domain in Synechococcus 
elongatus, can respond to the direction of illumination by wavelengths that induce 
both progressive and refusal phototactic movements [39]. Other similar CBCR viz., 
SyPixJ [37], TePixJ [40], and AnPixJ [41] are commonly involved in phototaxis.
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3.7 Photoinhibition

In some cyanobacteria, photoinhibition light conditions trigger the synthesis of 
photoprotective pigments. For example, intense radiation or UV radiation, accumu-
late mycosporine-like amino acids and scytonemins [30, 42]. Cyanobacteria, like 
Nodularia sp., Euhalothece sp. Microcoleus sp., and Scytonema hofmanii [43, 44] pos-
sess bilin photoreceptors, Cphs and CBCRs. These photosensitive receptors facilitate 
photobiological reactions by sensing and delivering signaling compounds.

3.8 Circadian clock

Cyanobacteria are responsive to diurnal photoperiods by adjusting their photosyn-
thesis and respiration. In S. elongatus PCC 7942, the circadian clock controls the genes 
using promoters in light and dark conditions. Control of promoters is time-depen-
dent, which sequentially maintains energy metabolism, cell division, and chromo-
some structure. Some CBCR domain (KaiABC), CikA (circadian input kinase A) and 
PsR in the S. elongatus oscillator become natural sensors that identify the change from 
light to dark by detecting the redox condition of the quinone pool [45].

3.9 Biofilm

Cyanobacteria form biofilms, which favor attachment on a surface to grow and 
produce extracellular polymers. This biofilm development in Thermosynechococcus 
is intervened by the cyclic diguanosine monophosphate (c-di-GMP) a bacterial 
secondary messenger [46]. Three CBCRs, SesA, B and C, in the blue/green light 
(ON/OFF) - c-di-GMP switch control non-motile and motile in planktonic  
networks [26, 47].

4. Photosensitive features of CBCR

4.1 Color sensing by Cphs and CBCRS

Cyanobacterial proteins contain the accompanying regions PAS-GAF-PHY [48]. 
Entire genome sequencing of cyanobacterial species, for example, Microcoleus IPAS 
B373 [49], Euhalothece Z-M001 [44], and Tolypothrix PCC7910 [50] are devoid of 
gene HY2, for phytochromobilin (PФB) synthase. Further, these cyanobacteria 
have pcyA gene that encodes phycocyanobilin (PCB): ferredoxin oxidoreductase 
that catalyzes the conversion of biliverdin (BV) to PCB, a significant cofactor of 
Cphs and CBCRs [32, 51]. The quantity of Cphs and CBCRs differ among cyano-
bacteria, Euhalothece has 3 numbers, Synechocystis (8), Microcoleus IPAS B353 (9), 
Acaryochloris marina (12), N. punctiforme (18), and Tolypothrix PCC 7910 (36). In 
cyanobacterium, the complete number of bilin photoreceptors relies upon the size 
of its genome [49]. Besides, CBCRs are more plentiful in cyanobacteria, than Cphs, 
and the proportion of CBCRs for blue to red is corresponding to the environmental 
light conditions. For example, Microcoleus IPAS B353 grown in UV light developed 
only violet CBCRs than red/green and green/red CBCRs. Generally, UV light is 
recommended to develop and improve the quantity of short wavelength responsive 
CBCR [49].
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4.2 Dual cays residues in CBCR for dual photocycle

Some CBCRs with exceptionally unchanged DXCF motif or the feebly rationed 
CXXR/K motif have extra Cys amino acids in the insertion loop (embed - Cys) via 
second thioether bond at the C10 atom under dark phase [52]. This sort of double Cys 
CBCRs, with a second thioether bond, is fragile and light-labile. These CBCRs are 
extremely responsive to capture violet or blue light in dark phase but it absorbs green, 
yellow, orange or greenish-blue light in the light phase. The cyanobacterial CBCRs are 
primarily linked to PCB yet some may link to phycoviolobilin (PVB) like Cphs [53, 54]. 
The change of PCB into PVB is unique to the DXCF-CBCRs subfamily [22]. The color 
tuning systems of CBCRs for far-red to orange (Fr/O) remain unidentified [55].

4.3 Signal transmission by CBCR

Cyanobacterial photoreceptors associated with signal transmission through phos-
phor transfer or c-di-GMP. Phosphorelay is a signal transmission process engaged 
with the autophosphorylation of His amino acid residue by His kinases, continued 
by phosphotransfer in association with reaction controllers. A film bound His kinase 
CBCR-UirS in Synechocystis accompanied with the reaction controller AraC family and 
UirR roles as a UV absorbing two-segment signaling framework [38]. Signaling in the 
chromophorylation process is regulated by the cystathionine beta-synthase (CBS) in 
the N-terminal of SesA. This in SesA can bind to ATP, ADP, and AMP which regulate 
the signaling process in chromophorylation.

4.4 Autolyase and autoisomerase in CBCR

Cyanobacterial photoreceptors are also called CBCRs that are similar to phyto-
chromes [56]. PixJ GAF, from a thermophilic cyanobacterium Thermosynechococcus 
elongatus, regulates phototaxis. The BP-1 bacterial photoreceptors (TePixJ_GAF) 
reveal reversible photoconversion between a blue light (433 nm) capturer and a green 
light (531 nm) capturer. TePixJ GAF chromoprotein expressed in Synechocystis was 
denatured using acidic urea (8 M urea/HCl, pH 2.0) and it was compared with the 
cyanobacterial phytochrome Cphl having chromophore phycocyanobilin (PCB). The 
PCB is not a chromophore part in TePixJ, but PCB is a part of its isomer, phycoviolobi-
lin (PVB). It confers the autolyase and autoisomerase property of GAF in TePixJ.

The primary CBCR for the phototaxis controller was recognized as PixJ. The CBCR 
SyPixJl of Synechocystis sp. PCC 6803 and TePixJ of Thermosynechococcus elongatus BP-1 
showed selective reverse photo transfiguration between blue absorber (425-435 nm) 
Pb to green (531–535 nm) absorber Pg [57, 58]. Genetic modification in the pixJ of 
SypixJl and SypixD lost progressive phototaxis, these CBCR in original structure 
perceive blue light and characterize the order of motility as a regulatory switch [59]. 
The anticipated secondary arrangement of SyPixJl has N-terminal transmembrane 
helices, two successive GAF domains and a C-terminal methyl-accepting structure 
[5]. Proteolytic destruction and mass spectrometric investigation of SyPixJ 1_GAF 
and TePixJ_GAF showed that a straight tetrapyrrole was covalently bound to a peptide 
connected with phytochrome, a moderated Cys-His motif [5].

At the point when His6-TePixJ_GAF was digested with acidic urea in the dark 
phase, the Pb peak (433 nm) was changed from native form to a peak at 594 nm with 
a shoulder at 565 nm. The PVB in TePixJ_GAF captures a shorter wavelength of light 
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than PCB. In any case, it ought to be noticed that the Pb absorb at 433 nm in native 
form is extraordinarily smaller than the urea-denatured PVB absorb at 594 nm. PVB 
is an isomer of PCB with a similar atomic mass, yet conjugated double bonds are 
detached at the C5 position. PVB with the apoprotein is accountable for the extraordi-
nary blue capturing structure Pb and photoreversible modifications. The PCB trans-
formation to PVB is because of the PecE and PecF proteins which are fundamental for 
ligation and isomerization.

5. Color-tuning mechanisms of cyanobacteriochromes

The term cyanobacteriochrome was first reported in 2004 by Dr. Ikeuchi in his 
paper about photoreceptor SypixJ1 [60]. This photoreceptor covalently binds a 
linear tetrapyrrole chromophore and performed reversible photoconversion between 
a blue-absorbing form (Pb) and a green-absorbing form (Pg). This protein has a 
cGMP-phosphodiesterase/adenylate cyclase/FhlA (GAF) similar to those of the 
Phytochromes. The GAF in cyanobacterial signals transduction proteins is identified 
as CBCRs. The GAF s of cyanobacteria are covalently linked to tetrapyrrole chro-
mophore. This chromophore can sense different light (UV–visible spectra). In some 
cyanobacteria, this GAF regulate phototactic motility, chromatic acclimation and 
light-dependent cell aggregation.

5.1 CBCR structure and diversity

In CBCRs, the GAF is essential for chromophore incorporation and photo-
conversion [61] CBCRs have N and C terminals in which GAF s are located at the 
N-terminus. Signal output s viz. (HisKA + HATPase_c), Methyl-accepting (MA), 
GGDEF, and EAL s located at the C- terminus. His kinase is frequently detected as 
signal output s.

5.2 Chromophore variation in color-tuning mechanism

Generally, four types of linear tetrapyrrole chromophores, phycocyanobilin 
(PCB), biliverdin (BV), phytochromobilin (PFB) and phycoviolobilin (PVB), have 
been identified in the CBCR GAF domain. The mixture of these chromophores in 
the GAF domain results in broad and diverse spectral features [54, 62]. These chro-
mophores are arranged in an order from a longer wavelength absorbing system to 
a shorter wavelength absorber (BV > PFB > PCB > PVB). The longer wavelength of 
light is absorbed by the longer length chromophores. Sometimes, the PCB isomer-
izes to PVB at the GAF region. This sort of PVB linked GAF area in CBCR has been 
distinguished from the cyanobacterium Acaryochloris marina [54]. The chromophore 
binding species should possess a UV-to-blue absorber.

The absorption of the Cys-free form is highly affected by the linked species of 
chromophores. The chromophore PCB in AM1_1186g2 revealed a reversible photo-
conversion between a Cys-free red-absorber (Pr) and a Cys-dependent blue absorber 
Pb [63], while covalently linked PVB in TePixJg showed reversible photoconversion 
between a Cys-free Pg absorber to a Cys-linked Pb absorber [62, 64]. The Cys-linked 
Pb absorber in the CBCR GAF s is the same as the blue to green reversible, but the 
Cys-free teal-absorber (Pt) is often shifted to blue absorber in association with 
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the typical green absorber Pg. A twist in the D ring of the conserved Phe residues in 
the Pt absorber contributes to the blue-shift [65, 66]. The conversion of the Pt form 
into the typical red-shifted Pg form is mediated by the loss of these Phe residues [66]. 
Likewise in the XRG lineage, CBCR GAF s have red to green reversible photoconver-
sion. Blue-shift of the Pg form to red absorbing Pr caused a small twist in the A and 
D ring [67]. This photocycle is mediated by the proton donor and the acceptor is Glu 
amino acid.

5.3 Dark reversion

The two distinctive light-harvesting types of the CBCR GAF domain are generally 
constant under the dark phase, thus these CBCR GAFs can detect the proportion of 
two wavelengths. Further, in some CBCR GAF showed unidirectional photoconver-
sion and rapid dark reversion. This can identify the concentration of certain colors of 
light [68]. Some XRG CBCR GAF s are unidirectional photoconversion from Pr-to-Pg 
in dark conditions, and after 4–25 s it rapidly undergoes dark reversion from Pg-to-Pr 
[68]. The kinetics of these GAF s of the dark reversion is highly dependent on higher 
temperature [53, 69, 70]. Light and temperature were indulged in the regulation 
of these GAFs. These characteristics may be physiologically relevant to sense light 
intensity for efficient photosynthesis because the same light intensity with lower 
temperatures severely inhibited photosynthesis.

5.4 Engineering

Several CBCRs have been designed to change the color-tuning interaction and 
output activity. Inclusion of the second Cys residue and modifications of PCB-binding 
in the GAF s caused reversible photoconversion from red/green into blue/green. This 
is due to the isomerization of PCB to PVB by the incorporation of the second Cys resi-
due which attaches to the chromophore in the reversible form [70, 71]. The twisted 
geometry of the D ring can also be removed [66]. The output activity of the native 
GAF was modified with other lineage s by adenylate cyclases [72–74] that respond to 
various light. Changing the length of the CBCR GAF linker region in CcaS and HisKA 
turns the light receptiveness of the green to red lineage [75].

6. Conclusions

Optogenetics, is a new branch of synthetic biology, is generally defined as the 
engineering of particular light-induced cellular reactions. This study was initiated 
with light-sensitive Phytochromes and bacteriochromes experimented in bacteria 
and mammalian neurons. Recently this research field is sensational due to the CBCRs 
from cyanobacteria are widely used as signaling components. These CBCRs in optoge-
netic systems performed the regulation of cellular responses spatially and temporally 
by precisely applying and removing light. A cyanobacterial photoreceptor-based 
optogenetic system was implemented to study the protein interaction and cell signal-
ing in cyanobacteria, bacteria and mammalian cells. The application of CBCRs in 
optogenetic systems extends their usage in developing potential new therapeutics. 
Smaller size photosensory regions and autocatalytic activity of CBCRs are more 
advantageous than other photoreceptors.
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Abbreviation

CBCRs Cyanobacteriochromes
CPH1 Cyanobacterial phytochrome 1
PCM Photosensory core module
PAS Per-ARNT-Sim
GAF cGMP phosphodiesterase-adenylate cyclase-FhlA
PHY Phytochrome-specific
Cph Cyanobacterial Phytochromes
DGC Diguanylate cyclase)
Phys Phytochromes
UV Ultraviolet
nm Nanometer
Cys Cysteine
PCB Phycocyanobilin
PVB Phycoviobilin
(PФB) Phytochromobilin
PFB Phytochromobilin
Glu Glutamine
Phe Phenylalanine
BV Biliverdin
MA Methyl acceptor
ATP Adenosine triphosphate
ADP Adenosine diphosphate
AMP Adenosine monophosphate
CBS Cystathionine beta-synthase
His Histidine
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Chapter 7

Functional Mechanism of Proton
Pump-Type Rhodopsins Found
in Various Microorganisms
as a Potential Effective Tool
in Optogenetics
Jun Tamogami and Takashi Kikukawa

Abstract

Microbial rhodopsins, which are photoreceptive membrane proteins consisting of
seven α-helical structural apoproteins (opsin) and a covalently attached retinal chro-
mophore, are one of the most frequently used optogenetic tools. Since the first success
of neuronal activation by channelrhodopsin, various microbial rhodopsins functioning
as ion channels or pumps have been applied to optogenetics. The use of light-driven
ion pumps to generate large negative membrane potentials allows the silencing of
neural activity. Although anion-conductive channelrhodopsins have been recently
discovered, light-driven outward H+-pumping rhodopsins, which can generate a
larger photoinduced current than a light-driven inward Cl�-pump halorhodopsin,
must be more efficient tools for this purpose and have been often utilized for
optogenetics. There are abundant proton pumps in the microbial world, providing
numerous candidates for potential practical optogenetic instruments. In addition,
their distinctive features (that is, being accompanied by photoinduced intracellular
pH changes) could enable expansion of this technique to versatile applications. Thus,
intensive investigation of the molecular mechanisms of various microbial H+-pumps
may be useful for the exploration of more potent tools and the creation of effectively
designed mutants. In this chapter, we focus on the functional mechanism of
microbial H+-pumping rhodopsins. Further, we describe the future prospects of these
rhodopsins for optogenetic applications.

Keywords: Microbial rhodopsin, Photocycle, Proton transfer, Neural silencing,
Optical pH control

1. Introduction

Optical control of biological reactions is one of the most recently studied fields of
research because light facilitates highly spatial and temporal manipulation. In partic-
ular, optogenetics, that is, the specific and noninvasive control of biological activities
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such as neural activities by light stimulus of photoreceptor proteins heterogeneously
expressed in targeted neurons or other related cells, has a significant impact in the
field of neuroscience [1–8] and has attracted the interest of myriad researchers in the
life sciences. Over the past 15 years since the first report on optogenetics in 2005 [1],
the development of tools for this interesting technique has been rapidly progressing
[9–14]. Recently, various types of photosensitive proteins have been employed for
optogenetics [15–17]. Nevertheless, retinal-based proteins found in microbes (referred
to as microbial rhodopsins), which were first applied to optogenetics, are still over-
riding toolkits [18, 19].

Microbial rhodopsins (also termed type-I rhodopsins) are seven transmembrane α-
helical proteins that bind to the retinal chromophore, similar to animal rhodopsins
(also termed type-II rhodopsins) [20]. A distinctive property of animal rhodopsins is
the difference in their chromophore configurations; retinals in microbial and animal
rhodopsins adopt all-trans and 11-cis forms in the dark state, respectively. In addition,
by all-trans-to-13-cis isomerization of the retinal with illumination, microbial rhodop-
sins undergo a linear cyclic photoreaction called photocycle, in contrast to animal
rhodopsins, whose retinals are isolated from the protein moiety during their photore-
action processes. Their functions are also different; in addition to photo-sensing
functions of animal rhodopsins, microbial rhodopsins also act as light dependent-ion
transporters that can carry various types of ions such as H+, Na+, and Cl� [21–24].

Microbial rhodopsins are classified into two categories of ion carriers. One is a light-
gated ion channel, and the other is a light-driven ion pump. The former group includes
channelrhodopsins (ChRs) [8, 25–27] and anion channelrhodopsins (ACRs) [28–30],
which are the principal tools for optogenetics. Upon illumination, ChRs become perme-
able to various monovalent or divalent cations, such as H+, K+, Na+, and Ca2+ [8, 25–27].
Therefore, in nerve cells expressing ChRs, the influx of Na+ induced by light activation
of ChRs causes depolarization in these cells, leading to neural activation [1–8, 25–27].
Conversely, light activation of ACRs, which act as anion-selective channels, can drive
the hyperpolarization of ACR-expressing cells to suppress neural activity [28, 31]. The
ion pump group includes light-driven outward H+- [32, 33], Na+- [34], and inward Cl�-
pumps [35–38]. As these proteins can generate negative membrane potential in their
incorporated cells by illumination, they can be utilized as neural silencers similar to
ACRs [39, 40]. Microbial rhodopsins, as ion channels or pumps, can lead to changes in
membrane potential by absorption of a photon without going through complicated
reactions. This simple light-activated machinery makes them more easily applicable to
optogenetics, together with repeatable properties through their photocycle.

Among the three types of ion-pumping rhodopsins, proton-pumping rhodopsins
have a distinct feature from the other two. Proton translocation across the cell mem-
brane induced by light activation of these pigments is accompanied by a change in
intracellular pH. Hence, these proteins have the potential for various applications, for
example, photoinduced pH control in cells or all sorts of organelles, as well as their use
as neural silencers. To date, genes encoding H+-pumping rhodopsins have been iden-
tified from the genomes of many microorganisms, irrespective of species [41], which
enables us to gain the most plentiful genetic information from the database of the
microbial rhodopsin family. Therefore, these types of rhodopsins may be applicable
for exploring better candidates for optogenetics in various respects, such as the
strength of neural inhibition, spectral properties (maximum absorption wavelength
for activation), and kinetics.

Chow et al. screened efficient neuronal silencing rhodopsins and showed that the
magnitude of photocurrents evoked by the activation of H+-pump-type rhodopsins
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was on average higher than those evoked by the activation of inward Cl�-pump
halorhodopsins (HRs) [39]. Moreover, the rates of activation upon light irradiation
and recovery from inactivation after light cessation tended to be faster, as observed
for archaerhodopsin-3 from Halorubrum sodomense (aR-3 or Arch), which is currently
the most powerful H+-pumping tool for neural suppression, unlike HRs that retain
long-lasting inactive states [39]. Based on these observations, H+-pump rhodopsins
are considered more effective for the light-induced inhibition of neurons. Thus, these
experimental facts for the practical use of H+-pumping rhodopsins have been steadily
amassed; however, the utility of H+-pumping rhodopsins for optogenetics has not
been completely evaluated from the molecular viewpoint. Therefore, an overview of
the molecular mechanism of various H+-pumping rhodopsins, including newly found
H+-pumps, may be useful for further development and rational design of optogenetic
instruments. Here, we describe the functional mechanism of H+-pumping rhodopsins,
particularly highlighting the aspect of photochemistry and the accompanying proton
movement, with their future prospects for optogenetic applications.

2. H+-pumping rhodopsins from various microbial species

2.1 H+-pumps in archaebacteria

Among all microbial rhodopsins, the first H+-pumping rhodopsin reported was
bacteriorhodopsin (BR), which was discovered in Halobacterium salinarum living in
salt lakes or salterns in 1971 [42]. Haloarchaea, including those described above, can
survive even in extremely salty environments with low oxygen concentrations using
BR-based phototrophy, which is accomplished by ATP synthesis driven through a
proton gradient produced with outward proton translocation across the cell mem-
brane. Haloarchaeal plasma membranes contain deeply purplish patches (referred to
as purple membranes), in which BR forms highly dense assemblies in the form of a
two-dimensional hexagonal lattice. The high BR expression in native membranes,
along with its highly stable property, facilitated biochemical and biophysical investi-
gations of this protein by various approaches, including spectroscopic and structural
methods [32, 33, 43–48]. Thus, BR is the most well-studied H+-pump.

Following the discovery of BR, the second H+-pump identified was
archaerhodopsin (aR). Two homologous proteins, archaerhodopsin-1 and -2 (aR-1 and
aR-2), were simultaneously identified from Halobacterium sp. aus-1 and aus-2 isolated
from a lake in Western Australia by Mukohata et al. [49]. Several aR homologous
proteins, including aR-3 described above, have been discovered in different
haloarchaeal species [50–53]. In addition, Mukohata et al. successively identified two
other H+-pump-like proteins belonging to a different clade from BR and aR:
cruxrhodopsin-1 (cR-1) from Haloarcula argentinensis [54] and deltarhodopsin-1
(dR-1) from Haloterrigena sp. arg-4 [50]. Several homologs of these H+-pumps have
also been identified in other species [55–57]. aRs, cRs, and dRs are very similar H+-
pumps to BR; however, they are classified as apparently different tribes [50].

2.2 Eubacterial H+-pumps

The history of microbial rhodopsin research has been confined to the archaebacterial
world for about three decades since the first discovery of BR. However, since the 2000s,
rapid technical advances in metagenomics have led to the discovery of unknown
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microbial H+-pumping rhodopsins from various eubacteria [58, 59]. A representative
example is proteorhodopsin (PR) from marine bacteria [60, 61].

In 2000, PR was first identified in the genome of uncultivated marine γ-
proteobacteria, which is a member of the SAR86 clade, from a sea sample collected
from Monterey Bay in California [62]. Thus, the nomenclature of this protein, i.e.,
“proteo-,” originates from the name of the hosting bacterium. Sequencing of a bacte-
rial artificial chromosome vector into which a fragmented DNA extracted from sam-
ples was cloned revealed the presence of a gene encoding rhodopsin-like protein
(EBAC31A08) [62]. Furthermore, after transformation by this gene and successive
induction of protein expression with exogenous retinal in Escherichia coli, acidification
in suspension containing these PR-expressing cells was caused by illumination, indi-
cating that PR can work as an outward light-driven BR-like H+-pump in the E. coli
membrane [62]. After the first discovery of PR, further surveys demonstrated
the existence of genes encoding novel PRs in not only γ-proteobacteria but also
α-proteobacteria containing ubiquitous marine clades such as the SAR11 group [63],
β-proteobacteria [64], and Flavobacteria [65, 66]. In addition, genes encoding
numerous PR variants (>several hundreds or thousands of variants) have been iden-
tified in widespread oceans [67–72]. Nowadays, most marine bacterioplankton living
in the photic zone are assumed to hold PR genes [41]. PR can be classified into two
groups depending on their absorption maxima (λmax): green-absorbing PR (GPR),
whose λmax is approximately 525 nm, and blue-absorbing PR (BPR) with a λmax of ca.
490 nm [67, 69, 73–75]. The difference between these two groups is probably associ-
ated with the adaptation to the environments that the PR-retaining bacteria inhabit;
most bacteria that are distributed at the surface of the sea and have access to available
green light have GPR to obtain energy produced effectively using this wavelength of
light, while bacteria at the depth of the sea water that exclusively have access to
available blue light contain BPR [67, 74, 75].

PR-related proteins were also discovered from non-marine bacteria present in
various environments, such as freshwater [76], high mountains [77], hot springs [78],
and permafrost [79]. For example, a PR-like protein identified from actinobacteria
living in freshwater is called actinorhodopsin (ActR) because it is classified into a
phylogenetically different clade from PR [76]. A halophilic eubacterium Salinibacter
ruber also contains a PR-like H+-pumping protein called xanthorhodopsin (XR) [80].
XR binds to the second chromophore, carotenoid salinixanthin, which acts as a light-
harvesting antenna, expanding the spectral range for light activation of this protein
because the energy obtained by light absorption of salinixanthin can be transferred to
the retinal to induce isomerization [80, 81]. Another PR-like H+-pump with binding
ability to salinixanthin, similar to XR [82], was discovered from the cyanobacterium
Gloeobacter violaceus and called Gloeobacter rhodopsin (GR) [83]. Furthermore, a new
type of H+-pump with a unique feature (described later) was discovered from a
nonmarine gram-positive bacterium Exiguobacterium sibiricum present in Siberian
permafrost samples, which was named Exiguobacterium sibiricum rhodopsin (ESR)
[79]. Thus, PR-like eubacterial H+-pumping rhodopsins have been found in various
archaea and bacteria [84, 85] and even in eukaryotic marine protists [86], which
seems to have been achieved by lateral gene transfer [84].

2.3 Two types of H+-pumps from lower eukaryotes

In 1999, the presence of a gene encoding eukaryotic microbial rhodopsin (nop-1)
was first found in the eukaryotic filamentous fungus Neurospora crassa [87]. This
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rhodopsin-like protein encoded by nop-1 is called Neurospora rhodopsin (NR). The
amino acid sequence of NR contained the requisite corresponding residues for proton
pumping of BR; however, a previous photochemistry study using recombinant NR
proteins heterogeneously expressed in the methylotrophic yeast Pichia pastoris
revealed that NR showed a slower photocycle that is close to sensor-type rhodopsins
[88]. Therefore, it is speculated that NR is physiologically associated with carotenoid
biosynthesis regulation by functioning as a photosensor rather than a H+-pump
[89, 90], although its exact physiological role remains unknown. Later, other NR-
related fungal opsin genes were discovered in a different fungal species, Leptosphaeria
maculans, which is the fungal agent of blackleg in canola [91]. This opsin-coded
protein is termed Leptosphaeria rhodopsin (LR or Mac). Through its characterization
using proteins prepared by heterogeneous expression in yeast (Pichia pastoris) similar
to NR, it was demonstrated that LR acts as a BR-like outward H+-pump with a fast
photocycle, unlike NR [91]. Furthermore, through advanced genomic analyses, new
fungal rhodopsins that are classified into a third subgroup were identified. The fungal
wheat pathogen Phaeosphaeria nodorum possesses two rhodopsin-like protein-
encoding genes [92]. These fungal rhodopsins are called Phaeosphaeria rhodopsin 1
(PhaeoRD1) and Phaeosphaeria rhodopsin 2 (PhaeoRD2). PhaeoRD1 is an analogous
protein to LR, whereas PhaeoRD2 is a member of the third group. Considering its
coexistence with other rhodopsin forms from the same species, PhaeoRD2 is regarded
as an auxiliary protein [92]. Characterization of these fungal rhodopsins heteroge-
neously expressed in P. pastoris suggested that both pigments exhibit fast photocycles
that are characteristic of H+-pump-type rhodopsins [92].

Figure 1.
Phylogenetic tree of microbial rhodopsins. RpActR represents ActR from actinobacterium Rhodoluna planktonica
strain MWH-Dar1.
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Acetabularia rhodopsin (AR) is another eukaryotic H+-pump found in the giant
unicellular marine green alga Acetabularia acetabulum [93]. Acetabularia acetabulum,
which is also known as the “Mermaid’s Wineglass”, is an extremely interesting organ-
ism in terms of morphology because this unicell exhibits a unique complex life cycle
comprising several distinct developmental phases [94]. In 2004, Mandoli et al. first
reported the cDNA sequence of a fragmented possible opsin-encoding gene (aop)
from juvenile Acetabularia. Subsequently, Hegemann et al. succeeded in cloning full-
length opsin cDNA from this alga [93]. They heterogeneously expressed AR proteins
in the membrane of Xenopus laevis oocytes and characterized the electrophysiological
properties of this protein. Through a series of experiments, they demonstrated that
AR is an outward light-driven H+ pump [93]. Moreover, Jung et al. successively
recloned two opsin genes from juvenile Acetabularia, which slightly differed from the
gene cloned by Hegemann et al. The two AR homologs identified by them were named
Acetabularia rhodopsin I and II (ARI and ARII, also abbreviated as Ace1 and Ace2,
respectively) [95, 96]. Thus, two types of H+-pumps from eukaryotic microorganisms
are currently known: fungal and algal H+-pumping rhodopsins (Figure 1).

3. Proton translocation mechanism of microbial H+-pumping rhodopsins:
from the photochemical and proton transfer viewpoints

3.1 Proton transport of BR: a typical model of H+-pumping rhodopsins

When the molecular mechanism of microbial H+-pumping rhodopsins is consid-
ered, the scenario of proton transportation in BR is often used as a prototype. Detailed
descriptions of the H+-pumping mechanism of BR from various aspects can be found
in excellent previously published reviews (refer to relevant refs. [32, 33, 43-48]). We
present only a brief outline here.

The photocycle of BR is initiated by photoisomerization of the retinal from all-
trans to 13-cis upon formation of the K-intermediate. Then, during the transition
between four sequentially formed photoproducts, L, M, N, and O intermediates,
stepwise proton transfer reactions occur between amino acid residues buried within
the protein or aqueous phases on both the cytoplasmic (CP) and extracellular (EC)
sides. In these processes, three main groups play an essential role in proton transport.
One is a part of the retinal Schiff base (SB), which represents a linkage with a specific
lysine residue located at the center of the seventh helix of the protein (G-helix)
(Lys216BR, Figure 2). This portion is usually protonated in the unphotolyzed state
(protonated retinal Schiff base, PSB). The other groups are two aspartic acid residues,
Asp85BR and Asp96BR, located in the EC and CP domains, respectively, on the C-helix.
Asp85BR facilitates the first step of proton translocation upon the L–M transition as a
proton acceptor from PSB, whereas Asp96BR works as a proton donor to deprotonated
SB during M–N transition and is sequentially involved in proton uptake from the CP
bulk upon N–O transition accompanied by 13-cis-to-all-trans retinal reisomerization.
Both Asp85BR and Asp96BR are required for efficient proton pumps because substitu-
tions of these residues with nonionizable residues abolished or significantly decreased
H+-pumping capability [97].

A proton releasing complex (PRC) comprising several internal H2O and various
residues on the EC surface such as Tyr57BR, Arg82BR, Tyr83BR, Ser193BR, Glu194BR,
Glu204BR, and Thr205BR also participates in the proton transfer reaction of BR
[98, 99], although it is not always an indispensable component for proton pumping.
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The pKa value of PRC in the H+-releasing M-state (�6) [100] divides the timing of
proton release into two patterns: at pH values above �6, a proton is initially released
from PRC to the EC bulk during the L–M transition and the resultant deprotonated
PRC receives a proton from the protonated Asp85BR upon O-decay. In contrast, at pH
values below �6, the first such proton release from PRC upon M-rise does not occur,
and a proton on PRC is released late upon O-decay [101].

Two threonine residues, Thr89BR and Thr46BR, are also important, although these
residues do not belong to the series of proton transfer events due to nonionizable
residues. Thr89BR is within the active center and includes PSB, Asp85BR, and some
water molecules [102], where this residue forms a hydrogen bond with Asp85BR [103],

Figure 2.
Amino-acid alignment of various microbial H+-pumping rhodopsins. Analysis was performed using a multiple
sequence alignment program (CLUSTALW). The numbers shown in the top row represent the numbering of amino
acid residues in BR. The dotted line represents the missing residues in the determined structure. The amino acid
residues with maximum homological numbers at each position are marked with a black or gray background
depending on their numbers: The monochrome tone becomes darker as the number of homological residues
increases. Notes: cR-2, cR from Haloarcula sp. arg-2; cR-3, cR from Haloarcula vallismortis; dR-2, dR from
Haloterrigena turkmenica JCM9743; dR-3, dR from Haloterrigena thermotolerans; GPR, γ-proteobacterium
(EBAC31A08) GPR; BPR, γ-proteobacterium (Hot75m4) BPR; ActR, RpActR.
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indirectly contributing to the initial proton transfer from PSB to Asp85BR during M-
formation [102, 103]. In contrast, Thr46BR forms an interhelical hydrogen bond with
Asp96BR in the CP region, which is associated with the regulation of pKa in Asp96BR in
the unphotolyzed state [104].

3.2 Common and different points on the amino-acid sequences among varying
H+-pumps

In most outward H+-pumping microbial rhodopsins identified to date, the residues
corresponding to three main groups (PSB [Lys216BR as the retinal binding site],
Asp85BR, and Asp96BR) described above are highly conserved. By checking their pres-
ence, we can therefore forecast whether each protein in the microbial rhodopsin family
acts as an H+-pump like BR. Figure 2 shows a comparison between important amino
acid residues for proton transport among representative H+-pumping rhodopsins. As
shown in this figure, almost all primal residues relevant to proton transport in archaeal-
type H+-pumps agree with the residues corresponding to BR. Similarly, both fungal and
algal H+-pumps from eukaryotes retain the residues corresponding to Asp85BR and
Asp96BR; however, a difference exists in the components of PRC in BR. In both types of
eukaryotic H+-pumps, the residue corresponding to Glu194BR of two EC glutamates in
PRC is replaced by glycine, whereas another residue corresponding to Glu204BR is
conserved. In contrast, in the eubacterial H+-pump, the residues corresponding to
Asp96BR are substituted by conservative carboxylate glutamic acid, although there are
several exceptions. Another significant aspartate corresponding to Asp85BR is perfectly
conserved, similar to other types of H+-pumps. Furthermore, these H+-pumps lack both
glutamic acids in the components of PRC: Glu194BR and Glu204BR. Thus, a comparison
of the amino acid sequences among various H+-pumping rhodopsins can reveal the
superconservation of the proton acceptor (Asp85BR) and the diversity of the proton
donor (Asp96BR) and the residues in the EC proton releasing pathway. These differ-
ences could lead to different methods of proton transfer among varying H+-pumps.

3.3 Photocycles of other H+-pumping rhodopsins than BR

During a single photocycle induced by the absorption of one photon, ion-pump-type
rhodopsins can transport ions as substrates. The number of photocycle turnover under
illumination, therefore, affects the amount of ions transported by these proteins, in
other words, the ion-pumping activity of these rhodopsins. In general, the turnover rate
of the photocycle in ion-pumping rhodopsins tends to be relatively higher than those of
photosensor-type rhodopsins to transport numerous ions per illumination. The speed of
their photocycle completion can be used to analyze the H+-pump, in addition to actually
measuring H+-pumping activity that is usually examined by measuring the photoin-
duced pH change in a suspension of cells expressing these rhodopsins. Furthermore, the
identification of photointermediates during the photocycle of respective rhodopsins and
the estimation of their rise/decay kinetics together with the measurement of transient
proton transfer during their photocycles enable us to understand the timing of proton
movement. Thus, detailed investigations of the photocycles are important for under-
standing the H+-pumping mechanism.

Among the H+-pumping rhodopsins identified so far, the next well-characterized
proton pump following BR is GPR. In many studies, the first identified PR variant
(EBAC31A08) was employed as a sample. As soon as GPR was discovered in 2000,
various spectroscopic approaches such as static and time-resolved transient
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UV–visible, FTIR, and FT-Raman spectroscopies were applied to characterize the
photochemistry of this protein, as previously performed for the research of BR [105–
110]. These experimental results revealed that the photocycle of GPR was similar to
that of BR but also concomitantly contained several differences. Using the same
kinetically analytical method as previously applied to the transient absorbance data of
BR, where the possibilities of parallel or branch models were also considered [111],
Váró et al. determined the photocycles of GPR at acidic and alkaline pH values
[108, 109]. Their proposed photocycle at alkaline pH (9.5) is in accordance with the
following scheme: GPR! K$M1 !M2$N$GPR’(O)! GPR [108]. As shown in the
above scheme, one of the apparent differences from the BR photocycle is the absence
of L after K, which is thought to be probably due to kinetic reasons. A remarkably
retarded (ca. 10-100-fold slower) decay of K compared with that of BR was observed
in GPR [105]. Because of such slow K-decay, low-temperature Raman spectroscopic
data presented by Fujisawa et al. demonstrated that the chromophore structure in
GPR in the K state is less distorted compared to that of BR in the same state and is
rather close to that of L in BR, which possess a more relaxed chromophore structure
[112]. Therefore, the formation of a longer stable K state may obscure the appearance
of L in the GPR along with the fast formation of the following M-state. Another
difference from BR can be observed in the spectral characteristics of the latter photo-
products, N and GPR’(O). The N-intermediate in PR was red-shifted with 13-cis
chromophore retinal [105, 108] and resembled O in BR with respect to the absorption
maxima. In addition, the GPR’ intermediate had all-trans retinal chromophores similar
to O in BR; however, its λmax was very close to that of the original pigment. Friedrich
et al. also determined the photocycle of GPR under both acidic (pH 5) and alkaline
(pH 10) conditions based on a global fitting analysis (sequential irreversible model)
for flash photolysis data [106]. In the latter half of the photocycle scheme proposed by
them, after an equilibrium of M and a red-shifted O (λmax = 580 nm) was produced,
an equilibrium of N with a spectral property similar to that of the original pigment
(λmax = 530 nm) and O appeared [106]. Hence, if it is assumed that O and N in their
scheme agree with N and GPR’ in Váró’s scheme, respectively, both schemes are
compatible. The rate of photocycle turnover in GPR was fast (<several hundreds of
milliseconds), although it was somewhat slower than that of BR (<several tens of
milliseconds). In contrast, the photocycle of another type of PR, BPR, was slower by
an order of magnitude than that of GPR [113]. The possibility of using BPR as a
photosensor has been advocated, although its physiological role is still debated [113].

The photocycles of other eubacterial H+-pumping rhodopsins, including XR, GR,
ESR, and ActR, were also investigated by time-resolved absorption spectroscopy [80, 83,
114–116]. Their photocycles go through the K, L, M, N, and O states, similar to BR or
GPR. Formany eubacterial H+-pumps including GPR, structural information obtained by
multiple approaches such as X-ray crystallography, NMR, and atomic force microscopy
has also been reported [117–123], providing structural insights into their photochemistry.

Recent genome analysis revealed that numerous eukaryotic fungi possess rhodopsin-
like protein-encoding genes (RDs) and opsin-related genes (ORPs) [124]. Nevertheless,
unlike archaeal or bacterial H+-pumping rhodopsins, reports on the photochemistry of
eukaryotic H+-pumps are extremely limited because the protein expression in Pichia
pastoris has been established only for a few fungal rhodopsins such as NR and LR.
Meanwhile, several studies on the photochemical characterization of LR and its analo-
gous protein PhaeoRD1 using visible and infrared spectroscopic techniques have been
published [91, 92, 125–128]. These reports revealed that their photocycles include the K,
L, M, N, and O states, similar to the BR photocycle [91, 92].
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For two algal H+-pumps, ARI and ARII, the establishment of a large-scale sample
preparation method using a unique Escherichia coli cell-free membrane-protein pro-
duction system developed by Shimono et al. [129] allowed the detailed elucidation of
the spectroscopic and structural features of these proteins [96, 130–133]. Through
global fitting analysis for time-dependent absorption changes based on a sequential
irreversible model, we determined that the photocycles for ARI and ARII at near-
neutral pH values can be represented by ARI! K$L$M$N$O! ARI’! ARI and
ARII!K! L$M$N$O! ARII’! ARII, respectively, which are very similar to the
BR photocycle [130, 131]. However, the formation of a long M-N-O quasi-equilibrium
was observed in both the photocycles of both AR proteins [130, 131], which is char-
acteristic of these ARs. This indicates the presence of pronounced reverse reactions
between M, N, and O in the photocycles of ARI and ARII. Although similar N–M or
O–N back reactions also exist in BR, the rates of these reactions in BR are not signif-
icantly higher than those of ARI and ARII. The existence of prompt back reactions
could hamper the fast turnover of the photocycle in these rhodopsins, thereby reduc-
ing H+-pumping efficiency. However, a significantly faster O-rise and the irrevers-
ibility of the transitions from O to ARII’ (a precursor of ARII) and from ARII’ to the
original state were observed during the photocycle of ARII [130]. Owing to these
kinetic properties, the overall photocycle of ARII is a forward reaction, which may
result in a turnover rate (<�100 ms at neutral pH) that is comparable to that of BR
[130]. In contrast, the photocycle turnover of ARI was approximately 10-fold slower
than that of ARII [131]. This may be attributed to slower decay of O and ARI’ in the
second half of the photocycle in ARI compared to the decay of O and ARII’ in the
photocycle of ARII.

3.4 Initial proton transfer from PSB to the proton acceptor, aspartate, upon L–M
transition: the most crucial step for proton transport

As described above, the proton acceptor residue from PSB corresponding to
Asp85BR is superconserved in all H+-pump-type rhodopsins, suggesting the signifi-
cance of this residue in the proton pumping mechanism. The negative charge of
deprotonated Asp85BR interacts with another deprotonated aspartate Asp212BR and
three water molecules through hydrogen bonds, forming a pentagonal cluster that
electrostatically stabilizes two positive charges of PSB and Arg82BR [47]. The same
cluster structure has also been observed in H+-pumping rhodopsins other than BR
[22, 131]. In this sense, two aspartates also play an important role in counterions to
PSB, in which Asp85BR and Asp212BR are referred to as primary and secondary coun-
terions, respectively. The aspartate residue, which is the proton acceptor, is
deprotonated in the unphotolyzed state under physiological conditions. At pH values
below the pKa of the proton acceptor in the resting state, where this residue takes the
protonated form, initial proton migration from PSB does not occur; thus, the forma-
tion of the M state with deprotonated SB is not observed and H+-pumping activity
vanishes. The pKa of the proton acceptor in the unphotolyzed state, therefore, tends to
adopt as low a value as possible, for example, ca. 2.5 for Asp85BR [134]. Asp85BR is
conjugated with PRC located on the EC surface, which contributes to the retention of
its low pKa in the dark state [45, 134].

In contrast, the pKa values of proton acceptor residues in eubacterial H+-pumps tend
to be relatively higher, for example, approx. 7-7.5 for GPR [105, 106, 109, 113], 7.8 (or
6.2) for BPR [113], 6.0 for XR [135], 4.5 for GR [136], 6.0 for ESR [137], and 5.8 for
ActR [116]. Such high pKa values in these pigments are thought to be associated with
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physiological pH conditions of the hosting bacteria possessing these rhodopsins; because
the habitat of bacteria containing PR-like proteins (e.g., sea water, freshwater, etc.)
usually has near-neutral or weakly alkaline pH conditions (approx. pH 6.5-8.5) that are
above the pKa values of the proton acceptors in the dark state, the proton acceptors of
these H+-pumps can adopt the deprotonated form to work as proton pumps. The
elevated pKa values of the proton acceptors in eubacterial-type H+-pumps may be due
to the absence of two EC glutamates corresponding to Glu194BR and Glu204BR and the
repositioning of an arginine residue (corresponding to Arg82BR) located within the
pentagonal cluster in the EC channel [138]. Moreover, in GPR, it was clarified that a
highly conserved histidine residue His75GPR among bacterial H+-pumps that is adjacent
to the proton acceptor Asp97GPR contributes to the adjustment of the higher pKa of
Asp97GPR in the unphotolyzed state because the mutation of this residue significantly
decreases the pKa of Asp97

GPR [139]. The replacement of the corresponding histidine
residues in other eubacterial H+-pumps, however, did not cause such a large change in
the pKa of their proton acceptor residues [136, 137], implying that the above-mentioned
pKa modulation mechanism through histidine is not common in all eubacterial-type
H+-pumps.

The primary and secondary counterions (corresponding to Asp85BR and Asp212BR,
respectively) are located near and arranged symmetrically around the PSB, resulting
in forming a part of the proton acceptor cluster. The secondary counterion is also
deprotonated like the primary counterion (proton acceptor) because the pKa of this
residue in the resting state usually takes a further lower value compared to the
primary counterion. Nevertheless, a proton of PSB is always transferred to the pri-
mary counterion at the photoproduct rather than the secondary counterion. How
should this proton transfer mechanism be considered? In the case of BR, it is thought
that upon L–M transition, the pKa of PSB is lowered from a value above �13 in the
dark state to a value below �3, which is near the pKa (�2.5 [134]) of Asp85BR in the
same state. In contrast, the pKa of Asp85

BR simultaneously increases to a value of at
least 8.5 approximately at this time (the first increase in the pKa of Asp85

BR) [140].
Thus, the pKa values between PSB and Asp85BR are reversed, giving rise to a one-way
proton movement from PSB to the deprotonated Asp85BR. Then, the pKa of Asp85

BR

finally increases to above �10 in the M-state, thus allowing it to maintain its proton-
ated state until the end of the photocycle (a second increase in the pKa of Asp85

BR)
[140]. The second increase in the pKa of Asp85

BR upon M-formation is thought to be
triggered by the disruption of the electrostatic interaction between the negatively
charged Asp85BR and the positively charged Arg82BR in PRC, which is caused by the
protonation of Asp85BR and the accompanying deprotonation of PRC (initial proton
release from PRC) during this process [140].

In contrast, a question that could arise would be how pKa regulation in the proton
acceptors of PR-like eubacterial H+-pumps lacking their coupled PRC is achieved.
Although there is no experimental evidence, we may presume that a similar pKa

inversion between PSB and its proton acceptor (Asp97GPR) in BR occurs upon the
formation of M in GPR; the pKa of PSB decreases from > � 11 in the unphotolyzed
state [141] to �3 upon M-rise, resulting in it being lower than the pKa of Asp97

GPR in
the dark state (7-7.5). The possibility of an increase in the pKa of Asp97

GPR in the
M-state similar to BR has also been reported [142]. FTIR data in DMPC-reconstituted
vesicles revealed that the origin of the first proton release upon M-rise observed in
GPR under alkaline conditions (pH �9.5) is not Asp97GPR, which is protonated during
this transition [142]. This observation implies that the pKa of Asp97

GPR at M is above
�9.5. Why is the photoinduced pKa increase in Asp97GPR caused by the absence of a
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BR-like interaction with PRC? Although the reason is still unclear, an alternative
interaction with neighboring His75GPR [143] may work instead of the PRC, which is
missing in GPR.

Through low-temperature FTIR experiments, it was suggested that PSB forms a
stronger hydrogen bond with Asp227GPR rather than Asp97GPR within the pentagonal
cluster around PSB upon K-formation [144]. In addition to this observation, the pKa of
Asp227GPR in the unphotolyzed state was estimated to be approximately 2.6 or 3.0
[141, 145]. Hence, we cannot exclude the possibility that Asp227GPR receives a proton
from PSB at the photoproduct under such low pH conditions (�3 < pH < �7), where
Asp97GPR and Asp227GPR are protonated and deprotonated at the resting state,
respectively. Our experimental data using a rapid time-resolved pH-sensitive elec-
trode method (described later with the details of this experimental method), however,
showed that the pKa of Asp227

GPR may further decrease from �3 at the dark state to
�2.3 at the photolyzed state [145]. This possible pKa decrease in Asp227GPR at the
photoproduct might hinder its proton acceptance from the PSB. Even though
Asp227GPR can transiently receive a proton from PSB, the proton might be immedi-
ately released to other dissociable residue(s) or internal waters. Interestingly, the
computational calculations performed by Bondar et al. suggested that among three
possible pathways of proton transfer from PSB to Asp85BR, that is, 1) a direct pathway
to Asp85BR on the Thr89BR side of the retinal, 2) a proton wire through Thr89BR, and
3) a proton transfer pathway via Asp212BR, the energy barrier of the third proton
transfer pathway was the smallest [146]. Thus, a similar photoinduced pKa decrease in
the second counterion to GPR occurs even in other H+-pumping rhodopsins, including
BR, and might play a role in the initial proton movement from PSB to its proton
acceptor upon light activation of these pigments. Further studies are required to
clarify the roles of this mechanism.

3.5 Diverse proton transfer occurring on the CP side

Following the EC proton transfer in the first half of the photocycle, the CP proton
transfer events via the SB proton donor in the second half of the photocycle after M-
decay are the next critical steps. The proton transfer mechanism at this stage varies
among the three types of H+-pumping rhodopsins—archaeal, bacterial, and eukary-
otic. In the latter half of the BR photocycle, the deprotonated SB first accepts a proton
from its proton donor, Asp96BR, located in the CP channel during the M–N transition.
The pKa of SB in this reprotonation process was estimated to be approximately 8
[147]. In contrast, the pKa of Asp96

BR is maintained at a higher value (>� 11) through
an interhelical hydrogen bond with Thr46BR on the B-helix [148]. Therefore, the pKa

of Asp96BR needs to be lower than the pKa value (�8) of SB to release a proton toward
deprotonated SB, from > � 11 at the initial state to �7-7.5 [149, 150]. This pKa

decrease is caused by the entry of water with the opening of the intracellular segment
via the outward tilt of the F-helix at the M-state, leading to the internal hydration of
the CP region. The inflow water breaks the interaction between Asp96BR and Thr46BR,
facilitating hydrogen bonding rearrangement so that Asp96BR forms a new interaction
with neighboring water chains [151]. Then, during the following N–O transition, the
pKa value of Asp96

BR increases again and finally reaches a higher value (> � 11) close
to one in the dark state. Therefore, Asp96BR can capture a proton from the CP medium
to reprotonate.

As described above, in GPR, the residue corresponding to Asp96BR is the conser-
vative carboxylate, Glu108GPR. This residue can function as a proton donor to SB;
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however, the proton movement from Glu108GPR to SB and the subsequent
reprotonation of Glu108GPR from the CP bulk are indistinguishable, unlike BR; two
sequential proton transfer events in the CP channel concurrently take place upon the
M–N transition [105]. The difference in CP proton migration in eubacterial H+-
pumps, including PR from BR, seems to be related to the difference in the environ-
ment around the proton donor in the intracellular part of the protein between them. In
many eubacterial H+-pumping rhodopsins, the interhelical hydrogen bonding pair
corresponding to the Asp-Thr interaction in BR is replaced by the Glu-Ser interaction.
The X-ray crystal structure of XR in the dark state revealed that the proton donor
(Glu107XR) in the CP channel connects to the peptide carbonyl of the lysine residue
(Lys240XR) in SB; therefore, the CP H-bonded chain via water is already formed in
the unphotolyzed state [118]. Thus, the difference in the CP proton transfer scheme
from BR may be due to the formation of the hydrophilic CP pathway in eubacterial
H+-pumps.

We also observed a further interesting characteristic in the CP proton transfer of
the PR-like H+-pump ESR. The residue positioned at the site of the proton donor in
ESR is the cationic residue Lys96ESR (see Figure 2). Nevertheless, Lys96ESR seems to
be involved in the CP proton transfer from the intracellular aqueous space to the inner
deprotonated SB because the replacement of this residue by other nonionizable resi-
dues resulted in a significant delay of the M-intermediate [114]. This observation
exploded a conventional concept, the so-called carboxyl rule, that the functional
proton-donating residue is confined to two carboxylates (Asp or Glu). Some distinct
structural features of BR can be observed in the X-ray crystal structure of the ESR.
One of the differences is the presence of a cavity around Lys96ESR located close to the
CP bulk media [122]. Although Lys96ESR is surrounded by hydrophobic residues in the
CP channel in the dark state similar to BR, the cavity in the vicinity of Lys96ESR is
separated only by a polar side chain of Thr43ESR (corresponding to Phe42BR), in
contrast to BR, whose proton donor residue is completely separated from the CP bulk
solvent by a hydrophobic barrier composed of multiple hydrophobic residues includ-
ing Phe42BR [122]. Connectivity with the CP bulk facilitates direct access of the pro-
tons from the CP solvent in Lys96ESR. Another difference is the flexibility of the side
chain of Lys96ESR, which may allow the smooth repositioning of this residue by
donating to SB and reprotonation. Given that these structural properties are present in
the CP region together with the time-resolved spectroscopic data using D2O, it may be
plausible that the CP proton transfer scheme in ESR is as follows [114]: Lys96ESR

adopts an unprotonated form at the resting state to be buried within the hydrophobic
CP region. Upon M-decay, Lys96ESR transiently catches a proton from the CP bulk
solvent (at M1$M2), and then, a little later, it donates a proton to SB (at M2$N1).
Hence, Lys96ESR acts as a residue facilitating proton delivery from the CP bulk to the
SB, which is an apparently different proton donating mechanism from the conven-
tional one.

Another unique example of CP proton transfer was found in two types of gram-
negative rod-shaped Proteobacteria in soil: Pseudomonas putida rhodopsin (PspR)
from Pseudomonas putida and Pantoea ananatis rhodopsin (PaR) from Pantoea
ananatis, a plant pathogen [152]. The notable properties of these types of rhodopsins
are the replacement of the residue corresponding to Asp96BR with nonionizable gly-
cine and the presence of a specific histidine at the position corresponding to Thr46BR.
This histidine residue is highly conserved in a member of this group and is assumed to
constitute a part of a proton-donating complex [152]. However, it was observed that
the rate of M-decay linearly depends on the proton concentration of the medium in a
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Figure 3.
pKa estimation of critical residues for a proton pump by the SnO2 (or ITO) electrode method. (A) Photoinduced
voltage changes representing proton uptake/release at varying pH values [164]. Noisy and smooth curves
represent the observed and fitted curves, respectively. For fitting, we employed the following kinetic equation:
ΔVoltage∝Δ Hþ½ � ¼ �A kf ,u

ks,r�kf ,u
e�kf ,ut � e�ks,r t
� �þ B kf ,r

ks,u�kf ,r
e�kf ,r t � e�ks,ut
� �

, where A represents a constant
reflecting the fraction of the subpopulation photoinducing the first proton uptake followed by release and the rate
constants of the first H+-uptake and second H+-release in such a proton transfer sequence are expressed by kf,u and
ks,r, whereas B represents a constant reflecting the fraction of subpopulation inducing the opposite sequence of proton
transfer, and the rate constants of the first H+-release and second H+-uptake in that case are expressed by kf,r, and
ks,u, respectively. At pH < 9.5, where the first H+-release cannot be obviously observed, it was assumed that B is
almost zero. In contrast, the fitting at pH > 9.5 was conducted as A = 0. Six buffer agents with different pKa values
were added to the media for experiments so that the buffering action remained constant over a wide pH range
(�5 ≤ pH ≤ �11). (B) Plot of amplitude of H+-transfer versus pH. Filled and empty circles indicate plots of strict
values with theoretical regression (�A and B values obtained by the above fitting) and approximate peak values of
photoinduced signals estimated by sight, respectively. These values were plotted as relative values. A solid curve

represents a curve fitted using the following equation: Δ Hþ½ � ¼ �C 1
1þ10pKa1�pH

� �
1

1þ10pH�pKa2

� �
� 1

1þ10pKa2�pH

� �h i
,

where C, pKa1, and pKa2 represent a scaling constant for the amplitude, pKa values of Asp97
GPR, and an

unidentified X-residue at the unphotolyzed state, respectively. The idea for the derivation of the equation has
been described previously [164]. (C) Plots of the part of the second H+-uptake after initial H+-release as a function
of time [162]. All values obtained at varying pH values (◇, pH 7.1; ▽, pH 7.5; △, pH 7.9; □, pH 8.4; ○,
pH 9.0) were plotted as relative values. Continuous curves are fitting curves with single exponential eqs. (D) pH
dependence of the rate constants of the second H+-uptake (ku). Increments of ku at each pH obtained by
subtraction of the minimum value at the highest pH were plotted as relative values. Filled and empty circles
represent the plots for BR and ARII, respectively. These plots were well fitted with the Henderson–hasselbalch
equation with a single pKa value. Respective fitting curves for BR and ARII are shown using solid and
broken curves. Panels A and B were adapted with permission from Tamogami et al. [164], Biochemistry copyright
2016 American Chemical Society, whereas panels C and D were adapted with permission from Tamogami et al.
[162], Photochem. Photobiol. Copyright 2009 the authors, journal compilation, the American Society of
Photobiology.
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homologous protein in the same group [153], implying that the histidine forms a CP
conductive channel rather than a proton-donating complex to enable rapid proton
movement from the CP surface. Identification of the role of this unique histidine
requires further study.

Among eukaryotic H+-pumps, both fungal and algal H+-pumps possess the same
proton donor aspartate residue as BR. For two algal H+-pump homologs ARI and ARII,
however, the residue corresponding to Thr46BR is replaced by asparagine, which may
cause different interactions with the proton donor and its pKa regulation from BR and
fungal-type rhodopsins. Our experimental data indeed revealed that the pKa values of
their proton donors (Asp100ARI and Asp92ARII) in H+-uptake (N-O transition) are �6
(Figure 3D), which is ca. 1-1.5 units lower than that of BR (7-7.5) [130]. In the sensor-
like fungal rhodopsin NR, the residue corresponding to Asp96BR is glutamic acid,
similar to numerous eubacterial H+-pumping rhodopsins, while the corresponding
residue in the H+-pump LR is aspartic acid, similar to BR. Interestingly, the substitu-
tion of the proton donor Asp150LR with an NR-like glutamate abolished the fast H+-
pumping photocycle [126, 127], implying that residues other than native aspartate
work improperly in fungal H+-pumps, even though it is a conservative one. In con-
trast, the influence of Asp-Glu replacement in Asp96BR differed depending on the
experimental conditions [97, 154]. In the reconstituted BR heterogeneously expressed
in Escherichia coli, the replaced glutamate residue fully functioned as a proton donor
[97], whereas the replacement of BR in the native membrane led to a remarkable delay
in SB reprotonation [154]. In contrast to the cases of BR or LR, the proton donating
function of GPR was not lost by the substitution of Glu108GPR with BR and LR-like
aspartate or even ESR-like lysine (data unpublished). Therefore, the distinct mecha-
nisms of CP proton translocation via their proton donors and the specificity of the
respective proton donors in the three types of H+-pumping rhodopsins may originate
from the difference in the environment around each proton donor in the CP channel.

3.6 Existence of two substates in the latter photoproducts of the photocycle
and the chemical and structural events occurring during the transition
between them

Among the three photointermediates M, N, and O produced in the latter half of the
photocycle in H+-pumping rhodopsins, two spectrally silent substates are known for
each photoproduct [33, 132]. Because the transitions between these substates occur
without apparent spectral changes, they are usually observed by kinetic analysis for
transient absorbance changes measured using various spectroscopic techniques. Three
critical events for proton translocation occur during these silent transitions. As is
known in BR, the first crucial event was observed upon the transition between two
successive M-states, M1 and M2, which is accompanied by the accessibility switch of
SB from the EC side to the CP side. This switching is important for unidirectional
proton transport because it causes the conversion of the direction of proton move-
ment from toward EC at M to toward CP at N.

The second event occurs during the N1-to-N2 transition, where the accessibility of
the proton donor changes. In BR, the proton donor Asp96BR connects to the SB but not
the CP bulk during the M–N transition, thus hampering the misdirected transfer of a
proton of Asp96BR toward the CP solvent. Then, the connection of Asp96BR to SB is
switched toward the CP side upon the N1–N2 transition, facilitating the reprotonation
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of Asp96BR from the CP surface [33, 45]. Although the detailed mechanism of this
accessibility switch upon N1–N2 transition remains incompletely understood, even in
the most well-known BR, a previous computational study by Wang et al. proposed a
model in which the further opening of the proton uptake pathway in the CP channel,
which remains closed even in the M-state with the opening of the F-helix by the
presence of a hydrophobic barrier composed of Phe42BR and multiple other hydro-
phobic residues, is triggered by the deprotonation of Asp96BR during the M–N transi-
tion, leading to the connection of Asp96BR to the CP aqueous space [155]. In contrast,
for the algal H+-pump ARII, it was presumed that the change in the unique interhelical
interaction between Asp92ARII and Cys218ARII located in the CP domain acts as a
switch for opening the gate of the CP channel for H+-uptake [133].

In contrast to M and N, the molecular events in the O-state have not been
completely examined because the stable trapping of O produced in the latter stages of
the photocycle is difficult. In the early stages of studies on BR, Haupts et al. hypoth-
esized that during the N–O transition, the reisomerization of the retinal from the
13-cis (15-anti PSB) to all-trans (15-syn PSB) form is followed by the switching of the
N-H bond of PSB from the CP (15-syn PSB) to the EC (15-anti PSB) side, the so-called
isomerization/switch/transfer (IST) model [156]. In contrast, the results of MD simu-
lation performed by Wang et al. supported the opposite model (SIT model) as a more
plausible scheme: the isomerization of the retinal from 13-cis (15-syn PSB) to all-trans
(15-anti PSB) is preceded by the switching of PSB from the 15-anti to 15-syn forms
[157]. If the scheme corresponds to the latter model, another substate with a 13-cis
chromophore should be formed after the switching of PSB during the N2-O transition
with the thermal reisomerization of retinal. Thus, we attempted to detect the presence
of further substates. In general, the existence of the quasi-equilibrium among M, N,
and O states described above makes it difficult to observe O. However, in the algal H+-
pump ARII under acidic conditions (pH < �5.5), N did not accumulate during the
photocycle due to the presence of a rapid back reaction between M and N and the
acceleration of proton uptake upon the following N–O transition under these condi-
tions, resulting in notable observation of O [132]. Through kinetic analysis of time-
resolved absorbance changes under these conditions, we succeeded in detecting two
spectral analogous O-intermediates (O1 and O2) [132]. As the O1–O2 transition was
accompanied by a faint but obvious red-shift of the absorption maximum, we
assumed that the 13-cis-to-all-trans retinal isomerization occurs during the O1–O2

transition after the switching of PSB upon the N2–O1 transition based on the model
proposed by Wang et al. [157]: O1 is a precursor before the formation of O (O2) with a
twisted all-trans chromophore retinal. In previous studies on BR, it was reported that
the steric contact of Lue93BR with the 13-methyl group of retinal is significant for
facilitated retinal reisomerization during this transition [158]. The residue
corresponding to this leucine is almost completely conserved among all microbial
rhodopsins (see Figure 2), implying that the mechanism described above is common
in the microbial rhodopsin family.

3.7 Role of PRC formed on the EC surface

As described above, PRC located on the EC surface is not necessarily indispensable
for proton pumping because of the presence of a PRC-deficient type (eubacterial or
eukaryotic) H+-pumping rhodopsins, although PRC alters the timing of proton release
during the photocycle. The replacement of either Glu194BR, Glu204BR, or both by
nonionizable residues, however, caused a delay in O-decay with a late proton release
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from the protonated Asp85BR toward the EC surface as well as the absence of the
initial proton release upon the L–M transition. In addition, when the residues
corresponding to three of PRC-constituting residues (Ser193BR, Glu194BR, and
Thr205BR) in a sensory-type rhodopsin from Natronomonas pharaonis (NpSRII) were
replaced by the same residues as BR, the lifetime of O in this triple NpSRII mutant
became approximately 20-fold shorter than that of the wild type [159]. Hence, the
presence of PRC on the EC surface may be involved in not only the early proton
release toward the EC aqueous phase during the photocycle but also in the formation
of a hydrophilic proton conductive pathway in the EC channel, which contributes to
efficient proton translocation. In contrast, as observed in the X-ray crystal structure of
ESR, there may be a cavity for the proton releasing pathway that already connects to
the EC bulk solvent at the resting state in eubacterial H+-pumping rhodopsins without
PRC. Thus, in the EC domain of these H+-pumping rhodopsins, a hydrophilic pathway
may be formed in a different manner from archaeal H+-pumps, participating in
facilitated proton movement on the EC side.

3.8 Importance of the method for pKa estimation of crucial residues involved in
proton transfer

As described previously, sequential proton transfer events during the photocycles
in various microbial H+-pumping rhodopsins, including BR, are successfully accom-
plished by regulating rigorous pKa changes among the crucial residues (particularly,
PSB (or deprotonated SB), its proton acceptor, donor, and known or unknown
proton-releasing residue(s)) related to proton translocation. The estimation of the pKa

values of these residues in both unphotolyzed and photolyzed states, therefore, pro-
vides important clues for understanding the proton transfer mechanism in these H+-
pumps. Such pKa values can be indirectly estimated using spectroscopic approaches,
such as FTIR or NMR. However, the establishment of a more direct method for pKa

estimation is preferable, which can be achieved by measuring the photoinduced pro-
ton exchange between the protein and media (proton uptake/release) arising as a
result of proton transfer events during the photocycle at varying pH values.

As a method for measuring proton movement transiently occurring during the
photocycles of these pigments, the conventional method of using various pH-indicator
dyes is frequently employed [44]. This method is highly time-resolved because the
transient pH changes of the media with photoinduced proton uptake and release in
rhodopsins are monitored based on the real-time transient absorbance changes of
these pH-sensitive dyes in the sample suspension. The use of this method, therefore,
enables us to precisely identify the timing of proton uptake and release together with
the rise and decay kinetics of photoproducts. However, the pH range for measurement
is confined to the pH values around its pKa; therefore, pKa estimation using this
method is difficult. In contrast, another method using a tin oxide (SnO2 or indium-tin
oxide, ITO) transparent electrode [160–163] is also highly pH-sensitive and rapidly
time-resolved, although the applicable time period is limited within the time scale
from several ten to hundred microseconds to hundreds of milliseconds [162, 164].
Moreover, this method can detect small pH changes with photoinduced proton uptake
and release in the vicinity of a protein-attached electrode as a sufficiently large
amplitude of voltage changes, even in solutions containing a small amount of buffer
agents. Based on these advantages, we applied this method to the pKa estimation in
H+-pumps from three biological kingdoms, BR, GPR, and ARII [130, 162, 164]. The
pKa estimation was performed in two ways. One method estimates the pKa value from
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the pH dependence of the magnitude of voltage changes, reflecting proton uptake and
release. Figure 3A shows the photoinduced transient proton transfers in GPR at
varying pH values, where the upward and downward shifts represent proton release
and uptake, respectively. Because the peak time and magnitude of these data depend
on both the on- and off-time constants, the fraction of the subpopulation inducing
proton uptake or release at the respective pH values is estimated by fitting with the
kinetically derived theoretical equation. Figure 3B shows the plots of the values
estimated from the above fitting analysis as a function of pH. From further fitting
analysis for these plots with an equation developed based on the Henderson–
Hasselbalch theory, we succeeded in estimating the pKa values of some residues
associated with photoinduced proton transfer events in GPR [164]. In contrast, the
direct plots of amplitudes of light-induced proton transfer signals without strict
regression described above, which are approximately proportional to the amount of
proton transfer, also exhibited similar pH-dependent behavior, although these plots
include some error. Therefore, such plotting may be useful as a method for simply
estimating the approximate pKa values. Another method estimates the pKa values
from the pH dependence of the kinetics of photoinduced proton uptake or release.
Figure 3C shows the pH-dependent changes in the traces of the part representing the
latter proton uptake following the initial release of a proton in BR in the pH range of
6.5 9.5. The fitting for these traces with a single exponential equation (solid curves in
this figure) gave the rate constant values of proton uptake at the respective pH values.
Similarly, the estimated values of the rate constant at each pH were plotted against pH
(Figure 3D), and sequentially, the pKa values of Asp96

BR in H+-uptake (N-O transi-
tion) were estimated using the Henderson–Hasselbalch Equation [162]. All other BR
values estimated by these methods were consistent with the corresponding values
previously estimated using other experimental approaches [45] (also see Figure 4B).
Therefore, this method for estimating the pKa values of some crucial residues for
proton pumping, which is an index of proton pumping efficiency, may be a powerful
and effective tool for screening efficient H+-pumps or their engineered mutants for
optogenetics.

4. Future perspectives of H+-pumping rhodopsins as optogenetic tools

As described at the beginning of this chapter, outward H+-pumping microbial
rhodopsins can evoke stronger light-induced neural suppression and quicker recovery
from the inactivated state formed upon illumination than inward Cl�-pump HRs.
Hence, optical neural control using H+-pumping rhodopsins may also be an effective
alternative for optogenetics, although neural inhibition with light-gated anion channel
ACRs has recently attracted attention. The rational design based on the functional
molecular basis of these rhodopsins described in this chapter may allow the creation of
“neo-type” H+-pumping microbial rhodopsins by introducing several mutations to
further enhance the effect of neural silencing upon illumination, resulting in the
acceleration of the development of more efficient tools for optogenetics along with
developing color variants with various spectral properties. Further increases in protein
expression and stability in targeted neural cells could also lead to the improvement of
optogenetic tools. For this purpose, taking advantage of the abundance of these H+-
pumping rhodopsins, the exploration of new microbial H+-pumping rhodopsins with
novel properties (e.g., high thermal stability [165, 166]) from nature may be useful for
producing mutants.
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Figure 4.
Schematic representation of the photocycle and accompanying proton transfer of three types of H+-pumping
rhodopsins. (A) Schematic diagram of the photochemistry of BR. The stepwise proton transfer reactions are
depicted by thin blue arrows and overlaid on the crystal structure of BR at the dark state (PDB 1c3w). The timing
of H+-release differs depending on pH values. The expected configuration changes of chromophore retinal (RET)
and PSB in each photocycle intermediate are also depicted. (B) Summary of pKa changes in the residues
participating in the proton transfer reactions during the photocycle. A transient pKa increase and decrease of
respective residues upon each transition are shown in upward and downward thin arrows. The reverse of pKa
values between two adjacent residues leads to a unidirectional proton movement from a (protonated) residue with
a lowered pKa value to another (unprotonated) residue with an elevated pKa value. Such proton migrations are
expressed in thick blue arrows. The values in parentheses represent our previous estimated pKa values by the SnO2
electrode method [162]. (C) Schematic diagram of the photochemistry of a eubacterial H+-pump GPR. The proton
transfer reactions are the case in the pH region below ca. 9.5. H-X represents an unidentified residue whose
deprotonation at the initial state induces the formation of another parallel photocycle via a different M-like state
(Ma) from normal M and early proton release [164]. (D) Schematic diagram of the photochemistry of a
eukaryotic H+-pump ARII. The timing of H+-release is divided into three patterns depending on pH [130]: 1) an
initial H+-release from an unknown Y-residue (H-Y) at pH > �10 (shown in orange arrow), 2) an initial H+-
release from Glu199ARII at � 7.5 < pH < �10 (shown in blue arrow), and 3) a probably direct H+-release from
Asp81ARII at the latter stage (O-ARII’ transition) of the photocycle (shown in gray arrow). In panels C and D, the
pKa values of several crucial residues for H

+-pumping in respective rhodopsins, which were previously estimated
using the SnO2 (or ITO) electrode method [130, 145, 164], are shown together.
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In addition, studies on H+-pumping microbial rhodopsins are required to develop
novel optical cellular control methods because these types of pigments can simulta-
neously induce alkalization of the intracellular pH by illumination-induced outward
proton transport. As is generally known, the maintenance of an appropriate cellular
pH is necessary to ensure that each requisite enzyme for various biological reactions
functions properly. Because the drainage of acids produced by cellular metabolism is
controlled through the Na+/H+ antiporter or the Cl�/HCO3

� exchanger to maintain
the cellular pH near neutral, failure in these transporting systems affects the normal
function of cells. Therefore, the application of optogenetics to cells with abnormal pH
values, that is, light-induced manipulation of the cells specifically expressing H+-
pumping microbial rhodopsins, may allow the restoration of the functions of these
cells. As an example of intracellular pH regulation by optogenetics, Matsui et al.
reported that the photoinduced intracellular pH increase in glial cells expressing aR-3
(Arch) suppressed the release of glutamate from these cells, which was triggered by
glial acidosis upon brain ischemia, thereby ameliorating the effects of ischemic brain
damage [167]. Moreover, the optical regulation of the function of varying organelles
expressing H+-pumping rhodopsins has recently been attempted. Rost et al. demon-
strated that selective Arch expression on synaptic vesicles together with a pH-
sensitive indicator and successive illumination led to vesicular acidification via Arch
instead of vacuolar-type H+-ATPases (V-ATPases), enabling neurotransmitter accu-
mulation within synaptic vesicles driven by the proton motive force (PMF) generated
through light-activated Arch [168]. In addition, Hara et al. achieved dR-2-mediated
optical partial suppression of cell death induced by the inhibition of respiratory PMF
generation in the mitochondria of mammalian cells [169]. More recently, a method for
topological inversion of microbial rhodopsins as optogenetic tools was also developed
[170]. Hence, the application of this technique together with the use of recently
discovered natural inward H+-pumping rhodopsins [171, 172] as optogenetic tools may
allow the induction of both light-activated acidification and alkalization in various
types of cells or organelles such as mitochondria, vesicles, and lysosomes. Hence, the
combination of an outward H+-pumping rhodopsin and the topological reversal tech-
nique described above may allow various types of optogenetics. For instance, the use
of outward H+-pumping rhodopsin might lead to the following optogenetics: in gen-
eral, the pH values of lysosomes in normal cells are regulated to be approximately 5,
whereas those of lysosomes in cancer cells with acquired resistance to carcinostatic
agents tend to be lower [173, 174]. The efficacy of carcinostatic agents for these cancer
cells is degraded because they get trapped in acidified organelles; therefore, specific
expression of H+-pumping rhodopsins in lysosomes of drug-resistant cancer cells and
optical pH control (photoinduced alkalization) of these cellular organelles might lead
to the restoration of the original effect of drugs. Thus, optogenetics using H+-pumping
microbial rhodopsins may lead to the establishment of new optical therapies in the
future.

5. Conclusion

Proton pump-type microbial rhodopsins are not only effective neural suppressors
but also optical tools for pH control of various cells or organelles that specifically
incorporate these pigments, which makes them a dual optogenetic tool. Rational
protein engineering based on molecular mechanisms is required to further develop
these rhodopsins into more effective tools. Considering the photochemical reaction
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and accompanying proton transfer mechanism in various H+-pumping rhodopsins
described previously, mutations that increase their photocycle kinetics may be effec-
tive for enhancing the respective H+-pumping abilities. To increase their H+-pumping
efficiency via their photocycles, for example, a mutation that lowers the pKa values of
proton acceptors in the unphotolyzed state, which increases the population with H+-
pumping activity, may be effective. Alternatively, alterations that lead to a reduction
in the pKa of the proton donor upon M–N transition (donor-to-SB H+-transfer) and to
an increase in its pKa value upon N–O transition (H+-uptake) may be efficacious for
promoting CP-side proton transfer. In addition, the introduction of PRC-forming
residues on the EC surface may facilitate EC proton transfer. While screening for
more effective tools among such designed mutants based on their molecular mecha-
nism, the SnO2 (ITO) electrode method could be a simple and efficient tool for
estimating the pKa values of critical residues for proton pumps, which is an index of
proton pumping effectiveness. Thus, through a series of investigations on H+-
pumping rhodopsins based on molecular mechanisms, novel optogenetic H+-pumping
rhodopsins could be developed in the near future.
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Chapter 8

Spatiotemporal Regulation  
of Cell–Cell Adhesions
Brent M. Bijonowski

Abstract

Cell–cell adhesions are fundamental in regulating multicellular behavior and lie 
at the center of many biological processes from embryoid development to cancer 
development. Therefore, controlling cell–cell adhesions is fundamental to gaining 
insight into these phenomena and gaining tools that would help in the bioartificial 
construction of tissues. For addressing biological questions as well as bottom-up 
tissue engineering the challenge is to have multiple cell types self-assemble in paral-
lel and organize in a desired pattern from a mixture of different cell types. Ideally, 
different cell types should be triggered to self-assemble with different stimuli without 
interfering with the other and different types of cells should sort out in a multicellular 
mixture into separate clusters. In this chapter, we will summarize the developments 
in photoregulation cell–cell adhesions using non-neuronal optogenetics. Among the 
concepts, we will cover is the control of homophylic and heterophilic cell–cell adhe-
sions, the independent control of two different types with blue or red light and the 
self-sorting of cells into distinct structures and the importance of cell–cell adhesion 
dynamics. These tools will give an overview of how the spatiotemporal regulation of 
cell–cell adhesion gives insight into their role and how tissues can be assembled from 
cells as the basic building block.

Keywords: optogenetics, cell–cell adhesion, differential adhesion hypothesis, reversible 
adhesion, subcellular resolution

1. Introduction

Cells adhere to the matrix and other cells around them, which fundamentally 
impacts their behavior. A thorough understanding of these adhesive interactions is 
also important to produce artificial tissues. Cell adhesions are formed by cell adhe-
sion molecules on the cell surface such as integrins and cadherins which bind to the 
matrix and cadherins on neighboring cells, respectively [1]. These adhesion molecules 
transmit both physical and chemical signals between cells and their environment via 
the underlying cytoskeleton and intracellular signaling cascades [2].

1.1 Cell–cell adhesions

Cell–cell connections induce and receive biochemical signals and contractile 
forces from adjacent cells, and it is through theses stresses that cellular and tissue 
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homeostasis is maintained [3]. The most abundant and well-studied cell–cell 
 adhesion molecules are the cadherins. Cadherins such as E-cadherin, N-cadherin, and 
P-cadherin, consist of five extracellular domains with a calcium-binding site between 
each domain (Figure 1). The cell–cell adhesion is initiated by the cadherins on 
adjacent cells forming homophilic interactions via the exchange of β-strands between 
the first extracellular domains [4] and from here the cadherin signal is transmitted 
into the cell via an intracellular tail domain. Force-dependent conformation changes 
in cadherins lead to the recruitment of binding partners such as α-catenin, β-catenin, 
and vinculin thereby conveying the chemical signal to the intracellular actomyosin 
network. These ensuing biomechanical and biochemical cascades direct scaffolding 
proteins toward cellular pathways regulating division, survival, structural morpholo-
gies [5, 6] epithelial-mesenchymal transition (EMT), cell-sorting, and collective cell 
migration [7].

1.2 Spatiotemporal regulation of cell–cell adhesions

Altering the number of cellular adhesions is critical to many biological processes 
during tissue development and cancer progression. For instance, the interconnected 
nature of epithelial cells, which line the surface of organs, tissues, and blood vessels, 
designates their polarity, which is critical to their function. EMT takes place when 
epithelial cells lose the adhesions to other cells and therefore their basal-apical polar-
ity. The resulting mesenchymal cell has increased cellular motility and invasiveness. 
This process takes place naturally to produce the mesoderm, one of the germ layers, 
during embryonic development [8, 9], pro-inflammatory wound healing [10], and 
during cancer cell metastasis [11–13].

Before the development of the germ layers, the embryonic stem cells in the inner 
mass of the blastocyst are largely epithelial in characteristic; however, during germ 
layer development, gastrulation, the epithelial-like cells undergo EMT to form the 

Figure 1. 
E-cadherin dependent cell–cell adhesion. The E-cadherin consists of five extracellular domains, one 
transmembrane domain and an intracellular domain. During binding of two E-cadherin molecules the proteins 
p120, β-catenin, ɑ-catenin, and vinculin get recruited to the intracellular domain leading to cytoskeletal adhesion 
and actomyosin based activation.



149

Spatiotemporal Regulation of Cell–Cell Adhesions
DOI: http://dx.doi.org/10.5772/intechopen.97009

mesoderm. In vitro culturing of embryonic stem cells or epiblast cell colonies, shows 
that they lose expression of E-cadherin, vimentin, and N-cadherin, thus giving rise to 
cells with a mesenchymal phenotype. The opposite of EMT, mesenchymal-epithelial 
transition (MET) also occurs naturally and can be seen in the procedure by which 
induced pluripotent stem cells are formed from fully differentiated cells. This process 
requires the transition from a cmesenchymal phenotype to an epithelial phenotype, 
and the activation of epithelial genes encoding epithelial cell junction proteins [8].

EMT extends to carcinomas as well, where a subpopulation of self-renewing 
cells, known as cancer stem cells, can efficiently generate new tumors. This can be 
seen in mammary carcinomas following the induction of EMT, which promotes the 
generation of clusters of invasive mammary gland cells [14]. The extent of these 
epithelial connections can also be seen in metastatic experiments involving the 
mammary cancer cell line MCF-7, which maintains an epithelial-like phenotype. In 
these experiments, MCF-7 is added on top of mammary endothelial cell sheets, and 
the invasiveness of MCF-7’s was evaluated over increasing crossflow, it was revealed 
that the majority of MCF-7 cells could not form strong adhesions thereby failing to 
invade. Instead, the MCF-7 s remained rounded and rolled across the surface of the 
endothelial sheet [13].

Cadherin connections also guide cell migration through their intracellular connec-
tion to the cytoskeleton. For instance, in experiments examining the effect of cad-
herin adhesions in binary cell systems, it was revealed that single adhesions quickly 
recruit more cadherins to the initial contact site. Additionally, each recruited cadherin 
binds to the actin cytoskeleton preventing its depolymerization and enabling actomy-
osin-based mechanical signals [2, 15–17]. Additionally, cadherin-based stabilization 
of actin in migrating cells leads to in situ blebbing of the plasma membrane. These 
develop the leading edge for the cell, which in turn coordinates the migration of 
the cell [18]. In tissues with lots of interlocking cadherins, these effects lead to the 
development of leader cells, which migrate in front of the main body of follower cells. 
This is an event very common in angiogenesis, where sprouting endothelial cells lead 
to the development of new blood vessels [19].

1.3 Bottom-up tissue engineering

Another aspect for which controlled cell–cell adhesions are crucial is in bottom-up 
tissue engineering, in which single cells are organized into either planar or three-
dimensional structures [20]. Since bottom-up engineering does not rely on external 
matrices to sequester the cells and instruct cellular arrangement the ability to spatio-
temporally control the cell–cell connections is critical to building the desired struc-
ture. Techniques for creating bottom-up tissues include bioprinting, construction of 
cell sheets, and self-assembly of multicellular aggregates [20–23].

Self-assembled multicellular aggregates form by mixing multiple cell types such 
that microtissues with desired organization form. Generally, these structures form 
based on minimizing the potential internal energy resulting from cell–cell adhesions 
[24, 25]. Self-assembled aggregates have been used to construct multicell neuro-
organoids comprised of cortical neural progenitor cells, endothelial cells, and mesen-
chymal stem cells. Different aggregates of each or a mix of two cells were first created 
in low-attachment 96-well plates. Following aggregate production, aggregates were 
then mixed to fuse the three cell populations. The resultant aggregate then sorted to 
form discrete layers within the aggregate. The cortical neural progenitor and endo-
thelial cells developed into vascularized cortical brain tissue, while the mesenchymal 
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stem cells took on a supportive role in the core of the aggregate [26]. With the ability to 
spatiotemporally control cell–cell adhesions it becomes possible to self-assemble cells 
together to produce more complex tissues that better recapitulate the in vivo structure.

1.4 Differential adhesion hypothesis

The cell sorting observed in tissues, self-assembled aggregates, and the developing 
embryoblast can be described by the differential adhesion hypothesis (DAH). The DAH 
explains cell sorting by comparing it to that of liquid mixtures, whereby the compo-
nents (liquids or cells) arrange so that the internal free energy from cellular adhesions 
is reduced to a minimum to attain thermodynamic equilibrium [27–30]. Equilibrium 
is achieved via the active or passive motility of cells in the tissue rearranging with 
respect to each other to minimize stress and strain thereby limiting the internal energy 
[31]. Other aspects such as the cell’s ability to round up to minimize their surface area, 
spreading of one cell over another, the fusion of two cellular aggregates, the sorting out 
behavior of mixed cell populations, and the hierarchy of the layering of two cell types 
further prove the analogy to liquid mixtures [31–33]. The DAH describes three different 
cases for multicellular assemblies in a mixture of two cell types (Figure 2) [30].

1.4.1 Intermixed

In this condition cells of type A and type B stay intermixed when the work of 
adhesion between the two cell populations (Wab) is higher than the work of cohesion 
of a single cell type (Wa and Wb) as this results in the maximal adhesion.

Figure 2. 
Differential adhesion hypothesis (DAH). Different cell assemblies form at equilibrium depending on the work of 
adhesion between cells of type a (Wa), cells of type b (Wb) and cells of type a and type b (Wab).
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1.4.2 Enveloped

An enveloped arrangement of cells, occurs when one cell type is in the center and 
the secondary at its periphery. This arrangement forms when the average work of 
cohesion of cell type A and cell type B is greater than the work of adhesion between 
the two cell types and the work of cohesion of one cell type is smaller than the work 
of adhesion between the cell types. Herein, the cell type with the stronger cohesion, 
type A, forms the core and the less cohesive cell type, type B, surrounds this core.

1.4.3 Self-isolated

In a self-isolated system the two cell types form separate assemblies because the 
work of adhesion between the cell types is smaller than the work of cohesion within 
either population. In this case each cell type will self-isolate with no intermixing.

Numerous studies with cells expressing different types and amounts of cadherins 
have demonstrated these sorting schemes [34–36]. These studies show that the differ-
ences in homophylic and heterophilic cell–cell adhesions determine the outcome and 
the origin of these differences on adhesions are not important for the result.

2. Possible ways of controlling cell–cell adhesions

Currently, there are only a few tools for controlling cell–cell adhesion, which 
enable the studying of the underlying biology and for bottom-up tissue engineering. 
Important aspects to consider in the control of cell–cell adhesions are their specificity, 
their dynamics, and most importantly, their spatiotemporal regulation. The current 
approaches can be divided into two; the modification of the cell surface with chemi-
cally reactive groups and the genetic modification of cells to alter the expression of 
cell adhesion molecules [37].

In the following sections, we will discuss options of regulating cell–cell adhesions 
using reactive chemical groups and then consider photoregulation of cell–cell adhe-
sions using light-responsive small molecules and finally optogenetic approaches. 
Light is especially advantageous as a trigger for cell–cell adhesions since light, as 
opposed to other stimuli like chemical inputs, temperature, redox etc., can be deliv-
ered with superior spatial and temporal control. Using a focused beam of light enables 
precise subcellular delivery, which can exclude the surrounding area. Secondly, light 
allows for temporal control as it can be turned on or off instantly making delivery or 
removal at the desired point instantaneous [38, 39].

2.1 Introduction of reactive groups to induce cell–cell adhesions

A general strategy for initiating user-controlled cell–cell interactions is to introduce 
reactive chemical groups on the cell surface. These chemical groups are not genetically 
coded and thus do not require genetic engineering to add them to the surface. Such 
chemical groups are introduced through the fusion of lipid vesicles containing the 
chemical reactive groups or through metabolic labeling with non-natural sugars bear-
ing bioorthogonal functional groups with the cell [40]. For instance, complementarily 
reactive ketone and oxyamine groups or alkyne and azide groups can be introduced 
on the plasma membrane of cells [41]. Consequently, when cells with complementary 
reactive groups are mixed, the functional groups on the cell surfaces react and cells 
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are connected through covalent bonds [42, 43]. In general, so-called click reactions, 
that take place in water, do not form toxic side products and do not interfere with 
other functional groups found in biomolecules. Alternatively, noncovalent interac-
tions with high specificity can be used to form cell–cell adhesions. For this purpose, 
the binding of biotin to streptavidin [44–46] or the hybridization of complementary 
single-stranded DNA [47–49] is employed. DNA-based cell–cell adhesions open the 
possibility to form diverse structures with varying cell types and cellular connectivity 
owing to the high specificity of these interactions; however, DNA adhesions show 
limited reversibility making migratory sorting impossible, and covalent and strong 
noncovalent links between cells permanently glue them together [50].

2.2  Spatiotemporal control over cell–cell adhesions using light responsive small 
molecules

Light sensitive small molecules, such as nitrobenzenes and azobenzenes, have been 
used to control cell–cell adhesions in space and time. For example, light cleavable 
nitrobenzene groups can be introduced to oxyamine linkers at the cell surface. When 
this cell population is mixed with a second population of cells with a ketone group at 
the cell surface multicellular clusters formed. These cell cluster can then be broken up 
into single cells upon UV-light illumination since UV-light cleaves the nitrobenzyl moi-
ety [51]. Such a photocleavable linker only allows for a single reversion of the cell–cell 
adhesions. To achieve cell–cell adhesions that can be switched on and off repeatedly a 
linker with a photoswitchable azobenzene group was developed. β-cyclodextrins can 
be clicked onto the surfaces of cells and when a divalent photoswitchable azobenzene 
(azo) linker (azo-PEG-azo) is added in the dark the cells will link together. This is 
because, in the dark, the trans configuration of the azobenzenes binds to the cyclodex-
trin moieties linking the cells together. Upon UV illumination the azobenzene switch 
to the cis conformation, which results in the release from the cyclodextrin and the 
dissociation of the cell–cell interactions. The azobenzene can then be switched back to 
the trans configuration with blue light illumination, thus allowing for the formation 
of new cell–cell adhesions [52]. These studies represent great advances in the field and 
allow for spatiotemporal control over cell–cell adhesions. However, the use of UV-light 
is damaging to DNA and therefore to cells, and secondly, the chemical modifica-
tions cannot be maintained over long periods of time. Thus, a system which utilizes 
biocompatible light and can be expressed over long times would be more beneficial to 
bottom-up tissue engineering since cell proliferation is a key component of any built 
tissue. For this purpose, a genetically engineered system, which allows for propagating 
the modification at the cell surface would be desirable.

2.3 Optogenetic control of cell–cell interactions

Cell–cell adhesions can be photoregulated by expressing bioartificial light-
responsive proteins on the surfaces of cells as adhesion receptors. Numerous light-
responsive proteins from algae, plants, bacteria, and engineered proteins change their 
conformation upon light illumination and bind to other proteins in a light-dependent 
manner through non-covalent protein–protein interactions [53–56]. In these optoge-
netic approaches, complementary light-dependent binding partners are expressed in 
the surfaces of different cell types by transfecting these proteins along with a plasma 
membrane localization sequence and a membrane anchoring sequence. Following 
translation, the localization sequence ensures that the protein is exported to the 
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cell membrane where the extracellular portion operates as a bioartificial cell adhe-
sion receptor [51, 52, 57]. For instance, the proteins Cryptochrome 2 (CRY2) from 
Arabidopsis thaliana and its blue light-dependent binding partner cryptochrome-
interacting basic helix–loop–helix (CIBN) protein, were expressed on the surfaces of 
MDA-MB-231 cells, which do no form native cell–cell adhesion. When cells express-
ing CRY2 and CIBN at their surface are mixed and cultured in the dark, no cell–cell 
adhesions form similar to the parent MDA-MB-231 cell line. However, if these cells are 
cultured under blue light, the cells grow in clusters indicating the formation of cell–
cell adhesions (Figure 3). Moreover, the cell–cell interactions formed under blue light 
can be reversed in the dark, allowing for repeated deconstruction and reconstruction 
with light-dependent control [58]. This optogenetic approach has the advantage that 
the cell–cell adhesions can be triggered with visible blue light, which is non-toxic to 
the cells and the cell surface modifications are passed on to daughter cells following 
cell splitting.

The large repertoire of photoswitchable protein–protein interactions allows for 
the formation of bioartificial cell–cell adhesions with different properties in terms of 
cell–cell adhesion mode, the light of color the adhesions responds to, reversion kinet-
ics in the dark, and cell–cell adhesion dynamics [53–55].

In biology, cells can either interact with cells of their own type forming homo-
philic interactions or cells of another type forming heterophilic interactions.

Figure 3. 
Optogenetic proteins bind either in hetero or homophilic complexes. In heterophilic optogenetic systems 
an optogenetic protein undergoes conformational changes that enable the binding to a target protein. Homophilic 
optogenetic proteins also undergo conformation changes, but here a homomer is formed. iLID (improved light 
induced dimer), CRY2 (Cryptochrome 2), CIB1/N (cryptochrome-interacting basic helix–loop–helix/truncated), 
Cph1 (cyanobacterial phytochrome 1).
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To obtain light-responsive homophilic cell–cell adhesion, proteins that homodi-
merize under light are used as a mediator of cell–cell adhesion. For this purpose, the 
proteins Vivid, a member of the light oxygen voltage (LOV) domain from Neurospora 
crassa, and cyanobacterial phytochrome 1 (Cph1) from Synechocysitis sp. PCC 6803 
were used as these proteins homodimerize under blue and red light, respectively 
(Figure 4). Cells expressing Vivid at their plasma membrane form cell–cell adhesion 
exclusively when illuminated with blue light but not with red light. The reverse is true 
for cells expressing Cph1 at their cell surface, which only form cell–cell interactions 
under red light and not in the dark or under blue light. Similarly, the blue-green light-
responsive protein, CarH from Thermus thermophilus, has been used to mediate homo-
philic cell–cell interactions. The formation of a CarH homotetramer allows it to form 
cell–cell adhesions between cells expressing CarH on their surface in the dark [59]. 

Figure 4. 
Co-culture of optogenetic proteins results in cluster segregation. When colloidial particles are labled with the 
iLID/Nano, nMag/pMag, or nMagHigh/pMagHigh clusters of particles can be seen to form with respect to the 
kinetics of the system (adapted from Müller et al. [62]). In cellular systems utilizing the vivid (VVD) and Cph1 
systems descrete clusters are observed rather than any intermixing (adapted from Rasoulinejad et al. [57]).
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The CarH tetramer irreversibly degrades when exposed to blue-green light and hence 
the CarH based cell–cell adhesion can only be reversed once [59, 60].

Light responsive heterophilic cell–cell adhesions, can be achieved by proteins that 
heterodimerize under light to form cell–cell adhesions. For this purpose, different 
heterodimerization pairs that form under blue light and reverse in the dark were used. 
These include the binding of the improved light-induced dimer (iLID) to Nano [61], 
the binding of the Vivid-based proteins nMag and pMag and the previously-described 
binding of CRY2 to CIBN. These different protein pairs provide different interaction 
strengths, reversion kinetics in the dark, and protein–protein dynamics.

2.4  Cell–cell adhesion dynamics dictate the structure of multicellular assemblies

The assembly of multicellular structures does not just depend on the strength of 
the underlying cell–cell adhesions but also their dynamics. If cell–cell adhesions are 
dynamic, meaning that formed protein–protein interactions constantly form and dis-
assemble within the chemical equilibrium, cells can move with respect to each other 
and maximize the number of adhesive contacts they form. This scenario is observed 
in mixtures of iLID and Nano expressing cells, which assembled into spherical and 
compact clusters. If cell–cell adhesions are not dynamic, meaning that once protein–
protein interactions form that they do not reverse, cells stick to the first cell they meet 
and cannot move to areas with potential higher numbers of adhesions. For example, 
mixtures of nMagHigh and pMagHigh or nMag and pMag expressing cells assemble 
into ramified branched structures, which are kinetically trapped. Optogenetics allows 
for the altering of the dynamics of the cell–cell adhesion by turning light on and off. 
The ramified structures formed with nMag and pMag cells could then be converted 
into compact spheres under pulsed illumination (5 min on, 5 min off), allowing the 
adhesions to dissipate and the cells to move.

2.5 Regulation of cell sorting using photoswitchable cell–cell adhesions

Different types of photoswitchable cell–cell adhesions can be mixed to obtain cell 
sorting within multicellular mixtures and organize cells as predicted by the DAH. 
For example, when cells expressing Vivid or Cph1 at their cell surface were mixed 
and illuminated with either blue or red-light clusters of cells with Vivid or Cph1 cells 
formed, respectively. When both blue and red light was used self-isolated clusters 
containing either Vivid or Cph1 cells were observed (Figure 4) [57]. That means that 
the adhesive force for Vivid and Cph1 is lower than that for the homodimers formed 
for each system due to the specific protein–protein interactions. Similarly, also dif-
ferent pairs of heterophilic cell–cell adhesions can be used to achieve self-sorting in 
mixtures containing four different cell types. In mixtures of iLID, Nano, nMag, and 
pMag expressing cells, two types of multicellular aggregates assembled each contain-
ing one of the protein pairs (iLID/Nano or nMag/pMag) [62]. It should be noted that 
cell sorting is only possible if the system is under thermodynamic control and is not 
observed if kinetically trapped structures form. Therefore, mixtures of iLID, Nano, 
nMagHigh and pMagHigh do not sort into distinct clusters.

2.6 Photoswitchable cell–cell adhesions controlling cellular function

Cell–cell adhesions play an important role in many cellular functions, and the 
adhesions resulting from the optogenetic proteins are no different. Using CarH based 
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homophilic cell–cell adhesions, the spatiotemporal control of migrations was assessed 
by measuring the rate and the morphology of cells migrating during a wound-healing 
assay. The spatiotemporal element was carried out by illuminating discrete sections 
to depolymerize the cell–cell adhesion. Cells with intact CarH adhesions in the dark 
showed significantly enhanced migratory potential compared to cells illuminated 
with green light, which dissociate the cell–cell adhesions. This was characterized 
by cells remaining together and thus migrating as a single cell wall resulting in 
faster migration. Cells that were illuminated with blue-green light broke away from 
the migratory front and engaged in random walking resulting in a slower overall 
 migration rate [59].

Additionally, spatiotemporal control of the cell–cell adhesion complex has been 
shown in experiments where the β-catenin binding domains on E-cadherin and 
α-catenin have been replaced with the Halo and SNAP tags, respectively. The Halo/
SNAP system incorporates the UV-light photocleavable small molecule Ha-pl-BG, so 
adhesions can be reversed upon UV illumination. This system was then applied to 
MDA-MB-468, which do not express endogenous E-cadherin to assess the efficacy 
of the system. Using the system cell–cell adhesions could only be observed when 
the cofactor was present and were degraded rapidly under UV-light. To illustrate the 
spatiotemporal control, A431 cells, with knocked out α-catenin, were labeled with 
the Halo/SNAP system and cultured overnight to initiate connections between cells. 
Specific adhesions between cells were then targeted and illuminated with UV-light. 
Only the targeted connections were degraded leaving the other connections intact.

3. Conclusion

The spatiotemporal nature of cadherin-based cell–cell adhesions enables cells to 
self-sort, assemble into tissues, or can lead to cellular differentiation. However, these 
adhesions cannot be exogenously controlled, and as such make the construction of 
bottom-up tissues difficult to manage. Chemical means for binding cell membranes 
together are too rigid and offer limited reversibility. There is also a lack of spatio-
temporal control. However, light is non-invasive, highly biocompatible, and can be 
delivered in a spatiotemporal fashion. Through the delivery of optogenetic proteins 
to the cell membrane, the construction of spatiotemporal cell–cell adhesions has been 
achieved. These proteins can respond to a wide range of wavelengths enabling the use 
of multiple pairs to construct larger structures, form reversible adhesions, and offer 
superior kinetics to other adhesion methods.
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