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Preface

Electroencephalography (EEG) was discovered in 1875 when Richard Caton of 
England recorded electrical impulses from the brains of rabbits, dogs, and monkeys. 
He reported that EEG fluctuated steadily and that these fluctuations changed 
with light stimulation and exercise, as well as with sleep and death. Later, in 1924, 
Hans Berger of Germany recorded the potential fluctuations of the human brain, 
and in 1929, the first paper on human EEG, “Über das Elektrenkephalogramm des 
Menschen,” was published.

Current non-invasive brain function testing methods can be broadly divided 
into two categories: electrophysiological testing methods and brain function 
imaging methods based on hemodynamic principles. The former includes EEG, 
magnetoencephalography (MEG), and transcranial magnetic stimulation (TMS), 
and the latter includes functional magnetic resonance imaging (fMRI), positron 
emission tomography (PET), single-photon emission computed tomography 
(SPECT), and near-infrared spectroscopy (NIRS). Today, these methods are used 
in human neuroscience research and clinical practice, and EEG is one of the oldest 
non-invasive methods for testing brain function.

EEG is used in a wide range of fields, from basic research on the human brain to 
clinical diagnosis of epilepsy and psychiatric disorders. Recently, EEG has also 
been used as a tool for rehabilitation evaluation and treatment, and research and 
development of brain–machine interface have been actively conducted. This book 
presents basic research and clinical applications related to the aforementioned 
topics and is organized into the following eight chapters written by experts from 
around the world. 

Chapter 1 “EEG-Emulated Control Circuits for Brain-Machine Interface”

Chapter 2 “EEG Analysis during Music Perception”

Chapter 3 “Multicriteria Algorithm for Multisensory Food Analysis”

Chapter 4 “ EEG Measurement as a Tool for Rehabilitation Assessment and 
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Chapter 1

EEG-Emulated Control Circuits
for Brain-Machine Interface
Liljana Bozinovska and Bozinovski Adrijan

Abstract

This paper reviews efforts in a new direction of the EEG research, the direction
of EEG emulated control circuits. Those devices are used in brain computer inter-
face (BCI) research. BCI was introduced 1973 as a challenge of using EEG signals to
control objects external to the human body. In 1988 an EEG-emulated switch was
used in a brain machine interface (BMI) for control of a mobile robot. The same
year a closed loop CNV paradigm was used in a BMI to control a buzzer. In 2005 a
CNV flip-flop was introduced which opened the direction of EEG-emulated control
circuits. The CNV flip-flop was used for BMI control of a robotic arm in 2009, and
for control of two robotic arms in 2011. In 2015 an EEG demultiplexer was intro-
duced. The EEG emulated demultiplexer demonstrated control of a robotic arm to
avoid an obstacle. The concept of an EEG emulated modem was also introduced.
This review is a contribution toward investigation in this new direction of EEG
research.

Keywords: electroencephalography, EEG-emulated control circuits, brain-machine
interface, robotic arm, tower of Hanoi, achievement motivation

1. Introduction

In 1929 Berger carried out research on human electroencephalogram (EEG)
and introduced EEG rhythms [1]. In 1973 Vidal [2] introduced the term Brain–
Computer Interface (BCI), and he set a challenge of controlling objects external to
the human body by using the signals from a human electroencephalogram (EEG).
He actually stated two challenges for EEG researches:

1.develop methods for EEG control of objects not being part of a human body

2.develop new methods for extracting event-related potentials (ERP) from an
EEG, other than the standard averaging method.

Vidal [2] advised the use of various EEG signals, including EEG rhythms and
event related potentials. Specifically, he challenged the use of the Contingent
Negative Variation (CNV) event related potential.

Response to the BCI challenge was relatively slow in the years after 1973. The
first report on control of an object using EEG was given by Vidal himself in 1977 [3].
He designed a responsive BCI, with active movement of eyes to elicit various visual
evoked potentials (VEPs), in order to control a 2D movement of a cursor-like object
on a screen. In 1988, three reports appeared related to control of objects using EEG
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signals. Farwell and Donchin [4] used P300 event related potential to choose a letter
from a computer screen and write text on that screen. Bozinovska et al. [5–8] used
contingent negative variation (CNV) event related potential to control a buzzer.
That work also responded to the second Vidal’s challenge, as it introduced an
adaptive filter to extract a time varying CNV potential. That work introduced a new
taxonomy of brain potentials [8] which classified CNV as an anticipatory brain
potential. Bozinovski et al. in 1988 [9–12] used changes in EEG alpha frequency
band (contingent alpha variation, CαV) to control a movement of a physical object,
namely a robot; that BMI solved the long lasting challenge of telekinesis (movement
of a physical object with energy emanating from a human brain). And, after the
1973 BCI challenge, it was the first intention driven (rather than response driven)
BCI. Those five pioneering BCI efforts appeared before 1990. Examples of works of
other authors after 1990 related to this work are [13–16].

An EEG based BCI setup consists of the following steps: (1) Produce a state in a
(human or animal) brain which will be manifested by a particular EEG signal in
which a control command is encoded. (2) Record the EEG signal and transmit it to a
computer. (3) Analyze the EEG signal and decode the encoded command. (4) Send
the decoded signal to a controlled object, such as a visual object, or a sound object,
or a physical object with a mass.

EEG is a classical modality of obtaining a brain signal, but other ways of record-
ing brain signals (e.g. magnetoencephalogram) are also being developed. This paper
deals only with the EEG modality used in a BCI.

There are two ways of generating EEG-encoded commands to control an object.

1.Command encoded in an external stimulus-driven EEG response. This method
uses an external stimulus (e.g., light flickering) to generate an EEG response
which then is used for external object control. This way of conducting a BCI in
the early 1990s was named brain-response interface (BRI) [17]. As example, a
BRI directs the eye gaze toward a particular part of a computer screen which
flickers in particular frequency. When a user eye looks at that part of the
screen, the brain reflexively produces a corresponding visual evoked potential
in the EEG, which is a function of the stimulus frequency. This method usually
requires contraction of the eye muscles in order they to direct the eye gaze to a
particular area on the screen, where a particular flicker is generated. An
example of such method is the SSVEP (steady state visual evoked potential)
method. It is a gaze-based brain-response interface method.

2.Command encoded in an intention to modulate a particular brain rhythm.
This method encodes a command in EEG by an internal intention (i.e.,
conatively, willingly) rather than by a brain response to an external event.
An example is willingly increasing the amplitude of the EEG alpha frequency
band (7–13 Hz), by an idle activity (no activity), and decreasing that
amplitude due to an engaging activity. For example, if the alpha band is
measured from the visual area of the brain (named alpha rhythm), then
closing the eyes produces a resting state and increased alpha activity. Other
methods also produce relaxation and increased alpha activity. If the alpha band
is measured from the motor area (named mu rhythm) then no movement and
no imaginative movement produces resting state. If the alpha band is
measured from the auditory area (named tau rhythm) then no-sound produces
resting state.

Another term used, besides BCI (brain computer interface) and BRI (brain-
response interface), is BMI (brain machine interface). It is usually used for control
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of an object outside of the computer screen, for example a physical object with a
mass, such as a robot. With that in mind, the term BMI is used in this paper.

A BCI can be carried out invasively and non-invasively. Invasive BCI records a
signal inside a brain, which requires a surgical intervention. Non-invasive BCI
records EEG from the scalp, which is outside the brain. For example, the first non-
invasive BMI was carried out in 1988 [9–10] for control of a (mobile) robot, and the
first invasive BMI for control a robot (arm) was carried out in 1999 [18]. It is worth
mentioning that those two works were the only ones in the 20th century dealing
with BMI for moving object with a mass.

An essential objective of the BCI software is to find an EEG feature which can be
used as a switch for controlling an object. In addition to an EEG emulated switch,
recently other EEG emulated control structures are being explored, such as a flip-
flop, demultiplexer, and modem. This paper will be devoted to that research.

Reviews of the BMI efforts (e.g., [19–21]) are present in the literature. Various
robotic devices are being built (e.g, [22]). Many companies are involved in BMI
(e.g. Emotiv [23], Kinova [24]).

In the sequel, we will first review the EEG emulated switch for control of a
mobile robot. Then we will describe the EEG emulated flip-flop with applications of
controlling robotic arms. Then we will describe an EEG demultiplexer and the EEG
modem. Some results of current experimental research work using EEG demulti-
plexer are also shown.

2. EEG emulated switch

An EEG switch is a control circuit which produces a digital switch output driven
by an EEG pattern. After the BCI challenge stated by Vidal [2], the first EEG switch
was explicitly described in 1988 [9–12]. It is shown in Figure 1 [11–12].

Figure 1 shows the screen of the 1988 brain-machine interface program [9–12].
The lower part of the screen shows the EEG signal recorded in a particular BMI
session. Inside that session a user may generate alpha wave bursts by some relaxa-
tion technique, for example closing/opening the eyes. The robot movement takes
place in real time while intentionally generating/blocking the alpha rhythm. In
offline analysis mode, the program has a feature of zooming a part of the signal,
defined by a line below the signal, as shown in Figure 1. The zoomed segment of the
signal is shown in the center of the screen. The upper part of the screen shows the
result of pattern recognition method in real time, which recognizes when the EEG
signal contains increased amplitude of the alpha rhythm. That produces a switch
pattern, actually an EEG emulated Schmitt trigger (e.g., [25]). The recognition
software implements a machine learning algorithm in which the learning phase is
collecting two distributions, one for amplitude and one for frequency. If both
amplitudes and periods between two adjacent extreme points of an EEG signal
increase, it is recognized as increased alpha rhythm, and it turns on the switch.

Figure 1.
EEG emulated digital switch.
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If both amplitudes and periods decrease, it turns off the switch. A statistical
machine learning method was used. Details are given in a recent review [26].

A human user, in a BCI based on an EEG emulated switch presented in Figure 1,
requires a period of training in order to perform the task. The 1988 experiments
show that the training requires about 20 minutes.

Let us note that the concept of a “mind switch” was introduced in [14]. Before
that, the term “switching devices” [27] was used in relation to the independence of
disabled persons. The term “brain-controlled switch” was used in [16]. We use the
term EEG emulated switch as part of our work on EEG emulated control circuits.

The BMI task when the EEG emulated switch was used in 1988, was control of a
mobile robot moving along a closed line drawn on the floor. Robot movement
happens when the user increases the alpha rhythm by closing the eyes. The robot
stops when the user opens the eyes and observes how far the robot is from the goal
point, a “station”where the robot should stop. At what point to stop was decided by
the user based on a visual feedback. The BMI setup is shown in Figure 2.

Figure 2 is a translation of the original 1988 block diagram of a BCI [9–12]. It
was the first block diagram of a BCI in the literature. It shows a human user, an EEG
amplifier, a computer (PC/XT), an A/D converter, a software for recognition of an
alpha rhythm, a D/A converter, an energy amplifier, a robot, and an optical sensor
for following the trajectory drawn on the floor. The robot used was a Ellehobby
Movit Line Tracer II.

A differential biosignal amplifier was used to record the signal from the Pz site
(international 10/20 system), with referential electrode on right mastoid, and
ground electrode placed at the forehead. The signal was received in an IBM PC/XT
(640 KB, 8 MHz) computer by an A/D converter at 300 Hz sampling rate. The
software which recognized the alpha wave was written in Pascal. During the alpha
wave presence, the system outputted a logic pulse at 5 volts through a D/A
converter. The output signal was amplified on a transistor amplifier which drove
the robot motor.

3. EEG-emulated flip-flop

A CNV flip-flop is an EEG emulation of the flip-flop digital circuit based on the
contingent negative variation (CNV) event related potential (ERP). The concept of
CNV flip-flop was introduced in 2005 [28].

The CNV potential [29] manifests an EEG a mental state of expectation. The
CNV potential appears in an experimental procedure known as the CNV paradigm.

Figure 2.
The 1988 experimental setup for an EEG control of a robot.
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It is a well-known procedure (e.g., [30]) in which, in an open-loop way, a slow
negative potential shift (the CNV) appears in the inter-stimulus interval of the S1-
S2 stimulus pair. The negative slow potential shift is interpreted as an expectancy
wave and is related to learning and memory. The classical CNV paradigm is an
open-loop control system. After a stimulus S1 (visual or auditory), the brain is
expecting stimulus S2 and is preparing to produce reaction R on S2. The ERP
between S1 and S2 gradually develops to be a recognizable CNV. The CNV para-
digm produces a ramp-like potential (the CNV) related to the pair S1-S2, but also
produces a number of other evoked, cognitive, and preparatory potentials related to
S1 and/or to S2.

The open-loop design for obtaining a CNV potential is given in Figure 3.
As Figure 3 shows, while EEG is recorded, the user (subject) receives two

sequential stimuli, by some time distance apart. The time distance between S1 and
S2 (inter-stimulus interval) is fixed, 2 seconds. The time distance between S2 and
next S1 (inter-trial interval) is random, 11 � 2 seconds. Here a three - state buffer
represents a trial control, where EEG enters the CNV paradigm. After several
repetitions, the subject learns that after S1 follows S2 and starts to expect it. As a
result, a special event related potential (ERP) appears between S1 and S2. It is a
negative shift of the EEG baseline and was named Contingent Negative Variation
(CNV). If a standard ERP averaging is applied, a distinctive ramp-shape potential is
visible. In the classical CNV paradigm, the goal was to show the existence of a CNV
potential, so the experiment ends after CNV appears, as shown in Figure 3.

In 1988 a feedback loop was introduced in the classical CNV paradigm [5]. In
2005 [28] it was recognized that in such a way a CNV flip-flop is emulated by an
EEG. The EEG emulated CNV flip-flop is shown in Figure 4.

As Figure 4 shows, a CNV flip-flop has two binary states, like an ordinary flip-
flop, Q and inverse of Q (Q’). In state Q, an EEG signal is recorded as in a classical
CNV paradigm, ERP is extracted after each trial, and it is tested whether the ERP is
a CNV. In other words, it is tested whether the expectation expect (S2|S1), is

Figure 3.
The classical CNV paradigm.

Figure 4.
An EEG emulated CNV flip-flop.
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developed in the brain. However, as distinct to the classical CNV paradigm, once
the CNV potential is recognized inside the recorded EEG, the flip-flop enters the
sate no-Q (i.e., Q’). In this state the stimulus S2 is disabled. As a result, the CNV
potential will degrade beyond recognition, which will trigger the reactivation of the
S2 signal, and the flip-flop will enter the state Q again. The digital outputs Q and Q’

here are used to control S2 but, can also be used to control other external devices.
Figure 5 shows the block diagram of the 1988 CNV-based BCI experiment [5–8].
As can be seen from Figure 5, the subject generates an EEG which contains an

ERP due to the stimuli S1 and S2. The EEG undergoes initial signal processing, after
which the procedure of ERP extraction follows. The final CNV pattern recognition
procedure tests whether the observed ERP is a CNV. Once the presence or absence
of CNV is recognized, the control signal (Enable/Disable) is sent to the controlled
buzzer.

The BCI procedure starts with building CNV potential in the subject by gener-
ating S1-S2 pairs of sounds. By classical conditioning, an expectation of S2, E(S2) is
being built. After repetitions, which are part of the learning process, the expectation
to S2 is formed in the subject’s brain, and a CNV is manifested. That event, recog-
nition of a CNV, can be used to control an external device, such as a sound gener-
ator, a robot, or something else. In the case that expectation is not built, the CNV
will gradually degrade and disappear. That point, recognition of no-CNV (no
expectation) event, can also be used to control an external device, in our 1988
experiment to enable the buzzer.

A standard way of building expectation is using a reaction R(S2) to stop the
duration of the S2 signal, usually by pressing a button. Pressing a button is not
essential, because a subject develops expectation regardless of a motor reaction [31].

Note that the subject could willingly control the process by ceasing to build
expectation, i.e., by not paying attention to the S2 stimulus. But in that case, there is
no adaptive interaction between the subject and BCI, and adaptive interaction is
what makes this BCI interesting.

An important feature of the CNV flip flop paradigm is that it was the first
bidirectional adaptive BCI, in which both the human brain and machine are
engaged to adapt to each other. This paradigm was used to study adaptive behavior
in adaptive learning systems [32].

Moreover, the 1988 CNV based BCI was the first to respond to the second BCI
challenge, building a method for extracting an ERP beyond the classical averaging.
The need for that appeared because in the CNV flip-flop paradigm the ERP is
constantly changing so the classical ensemble averaging is not applicable. An adap-
tive filter was needed, and the following adaptive filter was implemented.

The feature extraction module extracts the Event Related Potential (ERP). Since
the paradigm requests that the obtained signal be time-variant, i.e., it forms and

Figure 5.
The first CNV-based brain-computer interface, developed in 1988. It shows a control of a buzzer using CNV
potential.
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decays, a classical averaging technique is not suitable, so we used our own adaptive
filter, namely

ERP s, tð Þ ¼ pERP s, t� 1ð Þ þ qEEG s, tð Þ (1)

where.
s is the sample number in a trial (s = 1,2,… , N),
t is the trial number in an experiment (t = 1,2,… ,T), and.
p and q are weighted parameters, satisfying p + q = 1.
Several parameters are collected for the current shape of the ERP, particularly

important being the regression angle and the amplitudes near S1 and S2. The pattern
recognition module decides whether the current ERP can be classified as a CNV.
The key parameters are the slope of the regression angle and the ERP amplitude
difference near S1 and S2. In the forming phase of the CNV, three consecutive
confirmation trials are needed before a CNV appearance can be acknowledged.

From a practical use of a BCI, it is important that the use of a CNV flip-flop does
not require separate subject training. The mental development of an expectation
state is taking place in the course of the CNV experimental paradigm. In the CNV
paradigm, the subject learns to expect. S/he learns that after event S1 comes event
S2, and s/he adjusts her/his mental state accordingly. The mental action produces a
cognitive state “after S1 expect S2.”

3.1 Non-invasive BMI control of a robotic arm using a CNV flip-flop

In 2009 a BMI was built to control a robotic arm using a CNV flip-flop [33]. The
task we considered was the Tower of Hanoi puzzle with two disks, the TOH(2) task.

The Towers of Hanoi, TOH(n) task, is a well known puzzle in Computer Science
[34]. It has been pointed out that the solution space has a fractal structure [35].
Given a stack of n disks with different diameters, a tower is defined as a stack of
disks in which the smaller disk is always above the larger one. The task is stated as
follows: given three spots, A, B, and C, if the initial tower is in the spot A, move it to
the spot C, using a “buffer” tower in the spot B. At each step of the task, the concept
of a tower is preserved, a smaller disk always being above a larger one. It is known
that to solve the TOH(n) problem, the number of required moves of disks is 2n-1.

The BMI setup we used is shown in Figure 6.
The equipment used consists of a 4-channel biosignal amplifier from Biopac. The

subject is connected to the biosignal amplifier with EEG electrodes placed on Cz and
mastoid, while the forehead is the ground. A Windows based personal computer
was used, as well as a Lynxmotion with 6-degrees-of-freedom robotic arm. We
wrote the complete software in C#.

Figure 6.
BMI setup for control of a robot arm to solve TOH(2).
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The preprocessing part of the software shows the obtained raw EEG and con-
siders the EOG artifacts. The ERP extraction part extracts the ERP between S1 and
S2. The CNV recognition part observes when the ERP builds a recognizable CNV, as
well as when the CNV decays beyond recognition, and becomes a non-specific ERP.

The CNV flip-flop recognizes series of appearances and disappearances of the
CNV potential, and triggers a behavior execution part, which moves the robotic arm
toward the completion of the Towers of Hanoi task.

The robot control software receives a flip-flop signal from the CNV recognition
software that a CNV is not recognizable (state Q) or is recognizable (state Q’). The
flip-flop activates one of the robot behaviors stored in the memory. If there are 2
disks, i.e., the task is TOH(2), there are 22–1 = 3 behaviors stored. The behaviors 1
and 3 are activated by the state Q’ and behavior 2 by the state Q. Each behavior is a
trajectory to move a disk from current spot to the next, at a particular height. The
sequence of behaviors is a solution of the TOH task. Behavior-based robotics [36] is
a widely used approach in robot control.

Figure 7 is a photo of the experimental setup [37].
As Figure 7 shows, the subject having EEG and EOG electrodes, observes the

progress of TOH(2) solution, as he oscillated the state of expectation it his brain.
Figure 8 shows our graphical user interface which the experimenter observes

during each trial [33].
The screen shows six rows (channels) out of which the first four are acquisition

channels and the last two are mathematically computed channels. The first channel
is the EEG acquisition channel, the second is the EMG acquisition from the arm
pressing the button, the third is the EOG signal channel, and the fourth is the press-
button recognition channel. The sixth channel is the event related potential
extracted so far. If an appearance or disappearance of CNV is recognized on that
channel, the signal is given to the robot to move and that is recorded on the fifth
channel in Figure 8. In this case channel 6 shows a recognizable CNV potential, and
that is signaled on channel 5. Note that CNV potential (expectancy state) is recog-
nized before the EMG reaction signal is recognized.

TOH(2) requires 22–1 = 3 moves to complete the task. To see the number of BMI
trials needed for solving the TOH(2) task we carried out 4 experiments and
obtained results as shown in Table 1 [33].

The data in the Table 1 show the trial number in which the event occurred. For
example, in the first experiment, the first appearance of CNV was in trial 16, the

Figure 7.
Experimental setup for BMI control of a robotic arm based on a CNV flip-flop.
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first CNV disappearance was in trial 22, and the second CNV appearance was in trial
26. As can be seen from Table 1, in each experiment, the two-disk Towers of Hanoi
task was executed successfully within 30 trials, using this brain-machine interface.

3.2 Non-invasive BMI control of two robotic arms using a CNV flip-flop

The next BMI task considered using a CNV flip flop in a BMI setup was collab-
oration of two robot arms in solving the Tower of Hanoi problem with three disks,
TOH(3). The task is depicted in Figure 9 [38].

The approach is the following: Robot1 is activated by a CNV appearance event
and Robot2 is activated by a CNV disappearance event. Both robots have predefined
behaviors. Robots and their behaviors are triggered by a brain state recognition

Figure 8.
An experiment trial of CNV flip-flop for robot control.

Experiment 1 2 3 4

Brain state Robot behavior Trial number

CNV behavior1: A to B 16 12 11 6

noCNV behavior2: A to C 22 23 12 19

CNVagain behavior3: B to C 26 29 22 22

Table 1.
Experiments of using a CNV flip-flop to control a robotic arm to solve TOH(2).

Figure 9.
The considered TOH(3) problem to be solved by two robotic arms controlled by a CNV flip-flop.
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system, which recognizes the existence and non-existence of the brain expectancy
state represented by the CNV potential.

If the height of a particular disk is denoted with a number between 1 and 3
(height 1 being the bottom), the needed sequence of robot behaviors can be defined
as: A3toC1, A2toB1, C1toB2, A1to C1, B2 to A1, B1 to C2, A1 to C3. Let us note that
an artificial Intelligence program was previously written for solving the general
TOH(n) problem [39], where from the knowledge was used to solve this TOH(3)
problem.

Once the problem is decomposed into a sequence of robot behaviors, the CNV
flip-flop generates an oscillatory process that will drive the two robots with
corresponding behaviors. Robot1 behaviors are activated whenever the ERP shapes
into a CNV, while Robot2 behaviors are activated whenever the ERP loses its CNV
shape.

In order to solve the TOH(3) task the number of moves is 23–1 = 7. The research
hypothesis for the experimental investigation is that healthy subjects will be able to
carry out the oscillatory expectancy process in the brain long enough to solve the
TOH(3) problem. The subject should produce the appearance of the CNV four
times and the disappearance of the CNV three times. It is assumed that the TOH(3)
task gives enough achievement motivation for completing the task.

The experimental setup consists of an EEG-event recognition part and a robot
behavior execution part. The event recognition part recognizes the appearance/
disappearance of the brain state of expectation, while the behavior execution part
activates the controlled devices.

The two controlled robotic arms and the Towers of Hanoi disk set are shown in a
photo in Figure 10 [38].

Each robot is controlled by a servo controller connected to the computer by a
USB-to-COM cable.

The subject is sitting and observing his/her progress toward the solution of the
TOH(3) task, which gives a motivation for achievement. The EEG electrodes are
placed on Cz and mastoid, while the forehead is the ground. A personal computer
receives the signals and processes them. A Biopac four-channel biosignal amplifier
receives the biosignal information from the subject. A USB cable connects the
biosignal amplifier to the computer.

Figure 11 shows the BMI experiment screen [38].
As Figure 11 shows, a raw EEG is recorded in channel 1, and EMG and EOG

channels are recorded in channel 2 and 3. Channel 4 shows the recognized EMG and

Figure 10.
Experimental setup, two robotic arms and the TOH(3) disk set.
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channel 5 the recognized CNV signal which is sent to execute Behavior 1 in Robot1.
Channel 6 shows the current ERP which is recognized as CNV.

Table 2 shows results of 12 experiments [38].
As Table 2 shows all the experiments were successful. A human user developed

her/his CNV potential in average in the 14th trial, lost it in average in the 22nd trial
and so on. The task is completed in average 60 trials of a CNV flip-flop paradigm.

4. Non-invasive BMI control of a robotic arm using an EEG-emulated
demultiplexer

EEG emulated demultiplexer is an emulation of a demultiplexer, a 1-to-n serial
to parallel converter, a device that receives a serial input and distributes it to n
outputs. An example of an EEG emulated 1-to-2 demultiplexer is shown in
Figure 12 [40]. It is driven by alpha rhythm.

Figure 11.
The BMI experiment screen. An experimental trial. A developed CNV potential, triggers a behavior in one of
the two robots.

Experiment

1 2 3 4 5 6 7 8 9 10 11 12 Average

EEG event! Robot#Behavior# Trial order number

CNV1 ! Robot 1 Behavior 1 (A to C) 9 19 15 10 6 6 11 31 7 18 17 18 14

no CNV1 ! Robot2Behavior 1 (A to B) 15 25 24 18 22 12 13 36 21 22 31 22 22

CNV2 ! Robot1Behavior2 (C to B) 22 41 29 29 25 21 21 44 25 33 36 35 30

no CNV2 ! Robot2Behavior2 (A to C) 31 45 48 40 35 32 24 50 41 40 42 42 40

CNV3 ! Robot1Behavior3 (B to A) 38 60 50 52 38 36 30 55 47 46 46 45 45

no CNV3 ! Robot2Behavior3 (B to C) 43 64 71 56 51 53 34 62 53 51 50 49 53

CNV4 ! Robot1Behavior4 (A to C) 57 69 75 76 54 56 39 71 57 59 53 60 60

Table 2.
Results of experiments of controlling two cooperating robots by a CNV flip-flop.
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As Figure 12 shows, a serial EEG signal is divided into two segments (frames).
Those two EEG frames, A0 an A1, with encoded intent for commands to external
devices, are sent to the EEG demultiplexer. Both frames can be defined as binary
channels, but A0 can also be defined as multi-valued channel. The binary channels
are used as binary addresses for the address decoder of the demultiplexer, while the
multivalued channel is viewed as a data input of the demultiplexer. The EEG
demultiplexer contains an address converter and a data converter. The signals enter
the redundant 1-to-2 demultiplexer which sends the data channel to one of the two
output channels c1 and c2, defined by the address decoder. Those output channels
control two devices, for example two motors of a robotic arm. The demultiplexer
used is redundant, because for addressing 2 output channels it uses 2 address lines,
instead of just one. That has been done to increase the accuracy of EEG addressing
(e.g., [41]).

The BMI task considered is shown in Figure 13 [40].
As shown in Figure 13, a robotic arm should move from start region A to goal

region B. The horizontal projection of the arm is such that if moved toward goal area
B, it would hit an obstacle C along the way. In order to avoid the obstacle, the wrist
of the arm should be moved up, so that horizontal projection of the arm is shortened
before it reaches the obstacle C. The BMI task for the subject is: from a single EEG

Figure 12.
EEG emulated demultiplexer.

Figure 13.
The BMI task of controlling two motors by a single EEG channel using EEG demultiplexer.
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channel, generate an EEG pattern that will move the robot arm from A to B,
avoiding C. So, the task is to control two motors from a single channel EEG.

Figure 14 shows the experimental setup [40].
As Figure 14 shows, a subject is sitting in front of a robotic arm and sends EEG

commands such that the task of moving the arm while avoiding and obstacle is
achieved.

The experimental trial of an EEG demultiplexer controlling a robot is shown in
Figure 15 [40].

As Figure 15 shows, a raw EEG is received by the BMI system and is shown in
Channel 1. Channels 2 and 3 are not recorded. Channel 5 is the filtered EEG to
obtain the alpha rhythm. Channel 4 is the filtered alpha rhythm to obtain a signal
which represents the alpha rhythm envelope. That signal is tested against a thresh-
old value, shown in the same channel. Channel 6 contains two frames, each showing

Figure 14.
Experimental setup for a BMI based on a EEG demultiplexer.

Figure 15.
The screen of an experimental trial of an EEG demultiplexer.
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a pulse for how long the duration in which the envelope is above the threshold.
Also, in the Figure 15 can be seen that the binary value of frames is A1A0 = 01.

The channel 6 is the EEG demultiplexer channel. First the binary values of the
frames are computed, in this case A1A0 = 01. That is a command to send the data to
the chosen motor. The data are computed from the duration of the signal in frame
A0, and a signal to move is sent to the motor. The demultiplexer commands are
defined as A1A0 = 00 do nothing, A1A0 = 1X, change motor, and A1A0 = 01 move
motor. Thus, control of two motors using a single channel EEG is achieved.

Table 3 [40]. shows an experiment of a BMI using EEG demultiplexer in solving
the problem of moving a robotic arm from A to B avoiding an obstacle at point C
along the way.

As can be seen from Table 3, the threshold value of the alpha band envelope is
set to 25. At trial 1, the frame A1 has a value of 20 < 25, and frame A0 has a value
0 < 25. So the binary values of the input lines to the demultiplexer are a1a0 = 00.
The output line of the demultiplexer is c1, which activates motor M0 which is for
horizontal movement of the robot arm. The command a1a0 = 00 means “do noth-
ing” and the robot arm stays and its initial position 127, which is in the start region
A. In the second trial the subject generates EEG such that C1 = 23 < 25, and
C0 = 36 > 25, so the input demultiplexer lines are a1a0 = 01. The currently addressed

Trial EEG Demultiplexer Robot

Threshold θc = 25 Output line Motors

ak = sgn (Ck - θc) Motor Command Position

C1 a1 C0 a0

1 20 0 0 0 c1 M0 NoOP 127

2 23 0 36 1 c1 M0 Move 112

3 1 0 88 1 c1 M0 Move 89

4 5 0 45 1 c1 M0 Move 76

5 0 0 62 1 c1 M0 Move 60

6 0 0 28 1 c1 M0 Move 53

7 23 0 31 1 c1 M0 Move 39

8 77 1 4 0 c2 M3 Switch 127

9 11 0 43 1 c2 M3 Move 138

10 0 0 47 1 c2 M3 Move 150

11 0 0 35 1 c2 M3 Move 159

12 0 0 44 1 c2 M3 Move 170

13 2 0 55 1 c2 M3 Move 184

14 0 0 75 1 c2 M3 Move 203

15 0 0 65 1 c2 M3 Move 220

16 0 0 65 1 c2 M3 Move 237

17 25 1 17 0 c1 M0 Switch 39

18 0 0 19 0 c1 M0 NoOP 39

19 0 0 54 1 c1 M0 Move 25

Table 3.
Experiment of a BMI using EEG demultiplexer to control a robotic arm to move from point a to point B
avoiding an obstacle at point C along the way.
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motor M0 moves from position 127 to position 112. The subject drives the robot arm
horizontally, up to position 39. The obstacle is at position 35, so the subject changes
the movement to the motor M3 which will move the arm wrist vertically. It should be
noted that the subject does not know the internal coordinates of the motors, and s/he
only sees the movement in space, and s/he estimates how far the robotic arm is from
the visible obstacle. In trial 8 the subject changes the alpha rhythm pattern co that
A1 = 77 > 25 and A0 = 4 < 25, i.e., a1a0 = 10 which changes the demultiplexer output
and chooses the motor M3 which is still in its initial position 127. In trial 9 s/he
moves that motor to position 136. With careful BMI control, the subject succeeds to
achieve the goal area in robot coordinates M0M3 = (25, 217), avoiding the obstacle at
M0M3 = (< 34, <217). Any position of M3 < 217 would hit the obstacle at M0 < 34.

Figure 16 [42] shows some results of the experiments of a BMI using EEG
demultiplexer in controlling a robotic arm, as described above.

The experimental investigation carried out 53 BMI experiments. Successful were
42 of them. Figure 16 shows example of 5 experiments. Here the goal region is
marked with symbol and the avoidance region (obstacle) with symbol . The
participants build behavioral trajectory through the achievement motivation space
in order to reach the goal region while avoiding the obstacle. The coordinates are the
internal robot coordinates, unknown to the participants. The participants use the
view of the robotic arm to navigate the arm using their EEG.

As can be seen from Figure 16, the starting region of robot movement in each
experiment is around the coordinate M0M3 = (127,127). Using BMI and controlling
generated alpha rhythm in an EEG sentence, various trajectories are achieved toward
the goal regionM0M3 (>34,>217), avoiding the obstacle regionM0M3 = (< 34, < 217).

5. EEG emulated modem

An EEG emulated modem [40] is a process in which a sentence (message,
command) is encoded in an EEG and is decoded at some receiving site, for example
in a computer. Figure 17 shows the concept.

Figure 16.
Achievement motivation space for experiments in BMI for controlling a robot arm using an EEG demultiplexer.
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As Figure 17 shows, the EEG signal is viewed as an EEG encoded sentence,
which contains words represented by EEG frames. The sentence is encoded as an
EEG modulation. A modulation process usually contains a carrier signal which is a
good harmonic signal, modulated by a message. The EEG carrier signal is a stochas-
tic (or chaotic) signal [43], and it has some statistical properties, such as mean value
and standard variation, among others. And it can be decoded given some informa-
tion about the encoding process. For example, if it is known that the message is
encoded in the alpha band, then first the alpha band can be filtered out, and the
envelope can be obtained containing the message, as it was done in [40].

Here the concept of modulation is wider than the classical harmonic signal
modulation. It can be any way of encoding a sentence in an EEG.

The EEG modem is an approach toward application of BCI with a low number of
channels, when several devices should be controlled with a minimum number of
EEG channels.

6. Conclusion

EEG emulation of control circuits is a new direction in EEG research. It was
introduced in 2005 with the concept of a CNV flip-flop. However, after the Vidal’s
BCI challenge in 1973, the first explicit description of an EEG emulated electronic
circuit was given in 1988. It was an EEG emulated switch, actually a Schmitt trigger,
based on the EEG alpha rhythm. Recently in 2015 the EEG emulated demultiplexer
and EEG emulated modem were described. This paper is a first review of this new
direction in EEG research.
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Chapter 2

EEG Analysis during Music 
Perception
González Almudena, Santapau Manuel  
and González Julián Jesús

Abstract

This review presents the most interesting results of electroencephalographic 
studies on musical perception performed with different analysis techniques. In 
first place, concepts on intra-musical characteristics such as tonality, rhythm, 
dissonance or musical syntax, which have been object of further investigation, are 
introduced. Most of the studies found use listening musical extracts, sequences 
of notes or chords as an experimental situation, with the participants in a resting 
situation. There are few works with participants performing or imagining musical 
performance. The reviewed works have been divided into two groups: a) those that 
analyze the EEGs recorded in different cortical areas separately using frequency 
domain techniques: spectral power, phase or time domain EEG procedures such 
as potentials event related (ERP); b) those that investigate the interdependence 
between different EEG channels to evaluate the functional connectivity between 
different cortical areas through different statistical or synchronization indices. 
Most of the aspects studied in music-brain interaction are those related to musi-
cal emotions, syntax of different musical styles, musical expectation, differences 
between pleasant and unpleasant music and effects of musical familiarity and musi-
cal experience. Most of the works try to know the topographic maps of the brain 
centers, pathways and functions involved in these aspects.

Keywords: EEG, network-graph, phase synchronization, functional connectivity, 
music

1. Introduction

The literature on the use of EEG analysis in musical perception processes engage 
very different aspects related to the effects and processes of music in the brain, such 
as musical emotion, cognition, musical syntax, etc. In this review at the introduc-
tion, we summarize different aspects of the characteristics of musical styles to 
afterwards develop the EEG applications in different music-brain interactions.

Music is an art present in our daily life through numerous styles and forms. We 
know that musical perception involves different human factors, on the one hand 
it produces emotion and sensations, and it is also related to syntactic processing 
[1–4]. Musical perception is also modulated by factors associated with the personal 
characteristics of the listener: age, cultural level, socioeconomic and cultural con-
text in which they live, musical experience and learning, familiarity with the type 
of music hearing, psychological state and preferences [5–7]. On the other hand, the 
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dichotomy between cognition and musical sensation has been widely studied; the 
literature finally proposes a continuum between the both concepts [8]. The recep-
tion of musical content not only consists of sensations (e.g. happiness or melan-
choly) it also implies aspects such as recognition of structures and/or predictability 
of musical discourse. For all this, it is a mixture of concepts that leads to cognitive 
and sensitive perception.

When talking about musical perception, the importance of tonality (previously 
modality), should be highlighted, which is known to have been present in Western 
academic and popular music since medieval times. Harmony is the structure from 
which the tonal system departs. This structure consists of intervallic relations that 
can be consonant, perceived by humans as pleasant, or dissonant, perceived as 
unpleasant or at least as a moment of tension. In musical syntax consonant chords 
tend to be associated with relaxation, and dissonant with tension. Music theory, 
and harmony in particular, is a very extensive and complex field of knowledge that 
has been transformed by musical styles and the evolution of history, hence our 
simplified summary of intervallic relations. Different fields of knowledge such as 
the electroencephalography literature have analyzed many of these concepts.

The cognitive component in music recognition has been of great importance. 
So, musical cognition is related to the use of long-term memory, since it refers to 
the perceptual and to what the brain has learned in terms of the tonal hierarchi-
cal structure overwhelmingly present in our culture [6]. The sensory is related to 
short-term memory, to how we receive the sound result of the tonal distributions 
in Western music [9]. Another very important issue that has been extensively dealt 
is the predictability of the tonal system. Structurally, tonal music evolves tem-
porarily within specific tonal/spectral ranges and with relatively low uncertainty 
(entropy) limits that make it reasonably predictable. Recent theories along these 
lines, such as that of McDermot, analyze familiarization with the tonal system of 
society against theories of auditory neurobiology underlying the attraction factor 
to the tonal structure [10]. This aspect of neurobiology has been discussed by 
Bowling et al., who analyze this issue and conclude that without the exposure of 
the general population to the system or tonal structure, it is undeniable that there 
is underlying biological evidence that demonstrates that both concepts are closely 
linked [11].

In addition to tonality, concerning Western academic music also contains 
defined rhythmic forms. This means that when listening, we can recognize pat-
terns that develop temporarily (or within a sequence of time) and that lead to a 
continuous generation of expectations and predictions [12–14] together with a 
certain capacity for anticipation [15]. These three concepts: expectation, prediction, 
and anticipation are closely linked to our perception of music and occur without 
us being aware of them. Two main sources of musical expectations have been 
described: the explicit knowledge of how a piece of music with which one is familiar 
will develop and the implicit understanding that comprises the knowledge of the 
rules of music while listening [16]. The implicit expectations arise because each 
musical style, genre, and culture contains specific rules, patterns, sound character-
istics, and time. Exposure to music training or social and cultural influences affect 
and determine an individual’s emotional response [17].

Musical preferences are also believed to be due to the completion of the 
expectation of a pattern [18], that is, whether the expectation is met positively 
or negatively. When listening to music, −for regular listener- the listener expects 
certain patterns of notes or phrases, and this entails a prediction of the musical 
event [12], which can be frustrated in some musical styles like contemporary/new 
music. Zatorre’s review, identifies some of the auditory cortical circuits responsible 
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for coding and storing tonal patterns, and discusses evidence that shows the 
importance of cortical loops between auditory and frontal cortices for maintaining 
musical information in working memory and for the recognition of structural regu-
larities in musical patterns that then lead to expectations [19]. In the tonal system, 
the emotional effects of the alteration of predictions include surprise. Irregular 
or unexpected chord types evoke skin conductivity responses, and the range of 
such emotional responses is related to the degree of surprise at the unexpected 
[20]. Therefore, the three cognitive aspects -expectation, prediction and anticipa-
tion- that occur when listening to tonal music are also related in generating musical 
emotions.

The different aspects of musical perception mentioned above have been 
investigated since the last century by means of different types of analysis 
and techniques based on electroencephalographic signals. In fact, it has been 
considered that the EEG frequency oscillations are crucial to link different 
elements and merge them into a coherent perception something relevant for the 
processing of music considered as a multifunctional stimulus [21]. There is a 
review of the neural bases of musical perception by Koelsch in which different 
signal and neuroimagen techniques are considered including some based on EEG 
signals [22].

2.  Electroencephalographic (EEG) signals analysis during music 
perception

The first quantitative analyzes of brain activity using EEG signals date back to 
the 70s of the 20th century after the appearance of the fast Fourier transform that 
allowed the representation the EEG signal spectral power in different frequency 
bands. Specifically, electrical brain activity has been used in brain music research 
using univariate procedures, that is, analyzing the individual activity of EEG/MEG 
(magneto-EEG) /ERP (event related potentials) signals extracted from certain 
cortical brain areas/channels. Multivariate procedures have also been used where 
interdependence, correlation or synchronization between two or more channels are 
evaluated (see Figure 1).

Figure 1. 
Summary block diagram of the sections included in the EEG review.
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2.1 Single channel analysis

2.1.1 General effects of listening music

EEG spectral power measurements from different cortical areas appear to indi-
cate that musical processing may entail local and/or distant neural networks whose 
communication may affect different EEG frequency bands [23], such as changes in 
alpha power in the parieto/occipital and fronto/temporal regions [24], in beta power 
in the right parietal/temporal cortex [25], or in gamma power in the right parietal 
region [26]. Also, depending on the type of tonal music heard, different alterations 
in EEG spectral power occur in different bands [27, 28], located bilaterally in certain 
cortical areas [29].

2.1.2 EEG and musical emotions

Others studies have examined changes in spectral power in different EEG 
frequency bands at different brain regions as indicators of musical emotion process-
ing. Concerning music emotions, in a review by Koelsh about music processing, it 
is reported that sounds are structured in time, space, and intensity, and that the 
perception of musical structures has emotional effects, which emerge from the 
music itself [20]. This occurs due to the processing of the intra-musical structure 
and the concept of musical tension. This author, gives an extensive explanation of 
the underlying structural factors that give rise to this concept and that nowadays 
we can observe/identify in many musical styles, including some as current as pop 
or rock. On the other hand, musical emotions are closely related to the concept of 
musical familiarization, it is worth highlighting the familiarization with the tonal 
system in which practically all the music that we perceive are immersed and that we 
have mentioned above. In this line with the image analysis technique (FMRI) famil-
iar music appears to activate the limbic and allocortex systems, and areas associated 
with the reward mechanism: areas of the cingulate and frontal lobe, which in turn 
are not activated with unfamiliar music [5]. Also, brain areas in the right striatum 
and the orbitofrontal cortex have been related to specific emotions such as joy [30] 
and music that produces happiness increases activity in the striatum, cingulate, and 
posterior Heschl’s gyri, while sad music activates the anterior hippocampus and the 
amygdala [31]. As well areas reported to be activated in the reward system in musi-
cal emotion are the ventral striatum, the insula, and the orbitofrontal cortex [32]. It 
is a fact that most people derive pleasure from music. Hearing especially expressive 
musical stimuli is reported to evoke emotion and neuronal activations relating to 
the reward system. It also produces an affective impact on the listener’s brain, which 
can be altered by the subjects’ musical training [33]. In other words, familiarity 
with music affects perception of it. Zatorre considers the evidence on how the 
mesolimbic striated system participates in reward, motivation, and pleasure in 
other domains [19]. In this line, several authors consider that the areas associated 
with emotions and reward is also involved in the emotional response to music  
[34, 35]. Limbic and paralympic areas respond to the dynamic expression of the 
musical interpretation of humans [33], specifically accord to tonal music, the cin-
gulate subcallosal gyrus, the anterior prefrontal cingulate, the retrosplenial cortex, 
the hippocampus, and the anterior insula [36]. Therefore, through the analysis of 
neural networks, the literature suggests that the subcortical dopaminergic regions 
work in conjunction with important cortical regions to give rise to esthetic pleasure. 
These regions are related to the reward system, a set of structures that, through 
stimuli, in this case the auditory, provide humans with pleasure or can modify 
behaviors through positive reinforcement.
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Several studies have analyzed increases or decreases in power in different bands 
when listening to pleasant or unpleasant music [26, 37]. Furthermore, it has been 
reported that pleasant as opposed to unpleasant music appears to increase the 
strength of the frontal midline theta band [38]. On the other hand, the hypothesis 
of asymmetry has been postulated, which proposes that positive and negative emo-
tions are processed mainly in the left and right frontal brain regions, respectively 
[39]. Various measures of asymmetry, not necessarily in the frontal cortex, have 
been used to develop quantitative tools to assess emotions caused by visual [40] 
and musical [41] stimuli. It has also been reported lateralization of EEG activity 
in the alpha band due to opposite valences and different cortical topographies of 
lateralized alpha activation have been found for different musical patterns [28, 42]. 
In addition, theories about the cortical topography of musical emotion where the 
hemispheres would have specialized functions have been studied [43].

Another aspect that can modulate musical emotions is the musical familiariza-
tion which is normally closely linked to musical genres. Thus, bilateral frontal-
temporal alteration in EEG spectral power has been reported while the subjects 
listened to musical extracts of different genres -structure-tonal or environmental 
origin- [29]. Moreover, the preferences of the subjects towards different musi-
cal extracts have also been studied, using characteristics extracted from the 
frequency-time analysis of the EEG signals. Once the listeners’ familiarity with the 
excerpts was considered, the classification accuracy increased for familiar music 
[44]. Another point of interest is the musical concept of dissonance that has been 
widely discussed in the literature. Dissonance can be part of harmonic language 
creating musical tension and is in fact common in musical languages until the 20th 
century. But dissonance has also been studied as an isolated concept and related 
as an uncomfortable or unpleasant sound in some relation to noise. Thus, several 
centuries of the established use of dissonance to create unexpected and disconcert-
ing moments is altered, the general EEG activity recorded in the left hippocampus 
has been reported to discriminate changes from consonance to dissonance [45], 
said of another as from the consonance of musical intervals to the dissonance of, for 
example, a major or minor second [46]. Also using PET images, it has been reported 
that the gradual variation from consonance to dissonance is accompanied by a 
gradual decrease in neuronal activity in some cortical areas (orbital and ventrome-
dial prefrontal and subcallosal cingulate) but increases in other subcortical areas 
such as the parahippocampal and precuneus gyri [34]. Evidently, if we grow up and 
develop in a cultural environment of tonal music, our neuronal brain centers relat-
ing to emotion and musical cognition will adapt. For this reason, the sounds that 
make up a piece of music can be considered esthetically pleasing or not, depending 
on acoustic properties such as the use of harmony within that system [47] which 
can give pleasure to the listener or not.

2.1.3 EEG and music styles and experience

The style of music heard and its intramusical characteristics show different 
alterations in the spectral power of the EEG in different bands [27, 28]. On the other 
hand, there are research papers that reveal the impact of musical experience on 
musical brain processing. Thus, using MEG, it has been found signal oscillations 
phase blocking in gamma improved in expert musicians versus non-musicians dur-
ing audition of dissonant and minor chords [48]. Moreover, in an EEG study carried 
out with expert musicians, in this case saxophone players playing in ensemble 
(quartet), found alterations in power potency in brain areas BA44/45 involved in 
semantic functions [49]. It therefore seems evident that musical experience is an 
important condition that intervenes in musical processing by the brain.
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2.1.4 ERP analysis in brain musical processing

There is abundant literature in relation to musical syntax studies by using the 
EEG event related potentials (ERP) at different cortical areas. Thus, measuring 
negative/positive ERP peaks latencies syntactic language and harmony incongrui-
ties has been investigated [50] or whether language and music processing share 
processing resources: both appear to activate non-identical syntactic connections 
[51] and also has been reported how the two forms of music expectations –explicit 
and implicit that we explained above- manifest themselves with different neuronal 
correlations [52]. In ERP experiments where repetitive auditive stimulation was 
produced, early right anterior negativity (ERAN) has been found [53]. In unpre-
dictability experiments where the position of the irregular chords is unknown, that 
is, when the musical expectation is broken in a sequence of sounds, the negativity 
usually has a longer latency and an anterior-temporal distribution (RATN) [54]. 
Additionally, analysis of incoming harmonic sequences elicited an early effect, 
taken as the magnetic equivalent of the ERAN (termed mERAN) localized in 
Broca’s area and its right-hemisphere [1]. It has also been shown with this kind of 
analysis that when listening to melodies with irregular tones, the early right anterior 
negativity has a shorter maximum latency than that caused by irregular chord 
functions [55]. Therefore, a difference in musical perception in relation to musi-
cal expectation has been demonstrated through different paradigms of syntactic 
irregularities in chords or melodies. However, in other ERP studies on syntactic pro-
cessing of music and language report shared neural resources, or what is the same, 
interactions between music-syntactic and language-syntactic processing [56, 57]. 
In this line, it should be noted that music is considered a kind of language, hence 
the interest in seeing if it reflects or shares neural resources with language. In this 
line, in an ERP work on musical perception [4] has been found that the processing 
of hierarchical structure with nested nonlocal dependencies -a mechanism funda-
mental for syntactic processing- is also activated during the perception of music. 
Therefore, it cannot yet be concluded that the musical syntactic process shares the 
bases of language but rather certain aspects. The different techniques inform us of 
various regions related to musical processing, although the exact differences in the 
syntactic treatment of language and music remain to be elucidated. In musicians’ 
studies about musical phrasing, it is observed that the ERP shows a closure positive 
shift (CPS) in phrase boundaries -a positive shift in electrical activity at the closure 
of the phrase- [58–60] Also, the music CPS was observed in subjects of different 
cultural background listening both to music of their native and an alien culture. 
These findings add to the generality of the CPS as a marker for the processing of 
musical phrasing [61].

2.2 EEG channels interdependence measurements

The term functional connectivity (FC), is used to refer to the statistical interde-
pendence between two neural signals (EEG or brain fMRI hemodynamic response 
signals) from anatomically different brain areas, a concept introduces by [62] and 
also defined as the temporal statistical correlation between spatially remote neuro-
physiological events between groups and dispersed neuronal areas [63]. Indeed, FC 
among different brain areas is important on brain processing since cognitive activ-
ity requires in general terms, that different brain regions not only co-act simultane-
ously, but there is also a functional interaction between them [64]. Furthermore, in 
the article by Núñez where FC was discussed in the human brain, it was reported 
that the cross interactions between local, regional and global networks are appar-
ently responsible for a large part of the oscillatory EEG behavior [65]. In addition, 
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this author report that combined EEG and high-resolution EEGs can provide differ-
ent multiscale estimates of functional connectivity in healthy and diseased brains 
with measures such us covariance and coherence. In the field of musical percep-
tion, it has been reported that the analysis of the coherence or functional coupling 
between brain areas is of interest regarding the effect of music on the neurological 
mechanisms related to attention, cognition and emotion [66, 67].

2.2.1 EEG FC while listening to music

Authors have shown that musical perception requires the integration of different 
cortical areas [68]. This highly important concept has led researchers to use con-
nectivity analysis [69–72] and network theory [73] to examine how different brain 
regions communicate while listening to music. In this line, related to musical experi-
ence, a study carried out in musicians shows synchronization of phase alterations 
in the alpha band between the right frontocentral cortical regions when musical 
expectation is violated [74]. Moreover, various EEG studies indicate that musical 
hearing produces changes in EEG coherence/synchronization in different bands 
[70, 74–77] and it has been considered of interest to study the configuration of the 
connectivity networks between different brain areas using modern graph theory that 
we will see later. Related to emotion, music-induced EEG neural correlations have 
been found at various frequencies on the prefrontal cortex and a set of functional 
connectivity patterns, defined by measures of coherence between channels, which 
are significantly different between the groups of emotional responses induced by 
music [78]. Recent studies show the integration of different cortical areas is required 
for musical perception and emotional processing [79] and that the magnitude of the 
cross-correlation values was significantly higher when we listened to unknown and 
coded music than when we listened to familiar music. These results are in agreement 
with those suggesting that the response to unfamiliar music is stronger than that 
of familiar music [80]. Furthermore, through joint EEG and fMRI spectral coher-
ence measurements, a left cortical network has been identified that is involved with 
pleasant feelings associated with music [70]. These musical characteristics have been 
reported to produce greater sensory complexity of unexpected and puzzling situa-
tions or moments of unfulfilled expectations and higher levels of arousal [81].

2.2.2 Functional connectivity in musicians’ experts

In general, it is known that the musician’s brain has specific characteristics 
related to its functionality and structure [82–84]. There are numerous studies on 
this issue performed with signal analysis techniques (EEG and EMG) although most 
of them has been performed through BOLD neuroimagen fMRI signals. Thus, the 
size of the intranucal length of the precentral gyrus appears to be negatively corre-
lated with age when their musical training starts has been found in keyboard players 
[85]. Furthermore, musically trained children show greater activation in areas 
related to executive functions like pre-supplementary motor area/supplementary 
motor area while performing a task [86]. In relation with FC in neuroimagen there 
is abundant literature carry out to expert musicians in a resting condition. Thus, 
musicians have been reported to exhibit stronger FC between the primary auditory 
cortex, the primary motor cortex [87] and in the right ventral premotor cortex. 
This is related to functional coupling between the motor and auditory areas and 
modulated as a function of musical training [88]. Also, in musicians, a significantly 
higher density of local functional connectivity has been shown in different brain 
regions [89], greater insular connectivity [90] and parietal opercular connectivity 
[91]. In musical interpretation condition, activity is reported in the auditory areas 
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functionally connected with activity in the dorsal motor and pre-motor areas, whose 
connectivity is positively correlated with a good performance in interpretation [92]. 
Therefore, the musical experience seems to influence the functional connectivity 
(EEG) of some cortical areas. Indeed, in expert musicians, listening to extracts of 
tonal music modified the magnitudes of spectral coherence of the EEG in the alpha 
and beta bands with respect to non-musicians [93] and the phase synchronization of 
the gamma band, especially the left hemisphere [75]. Furthermore, the phase syn-
chronization of expert musicians was greater than that of non-musicians listening 
to the same musical extract [76]. Another study reports that during the hearing of 
major and minor compositions by non-musicians, amateurs, and expert musicians, 
the EEG activity of the theta and gamma bands of the posterior cortical regions 
decreased with musical experience [94]. In this line, a study through the analysis 
of cortical images extracted from the ERPs and the responses of the subjects to the 
closure of complex musical stimuli (syntactic musical violations on which we have 
spoken in the univariate approach) reported important differences between groups, 
attributed to their different musical experience [95].

2.2.3 EEG during musical imagination in musicians

Finally, with regard to the work carried out professional musicians by analyzing 
signals electroencephalography (EEG) in Imagined interpretation is reported that 
this task proved to induce activation of the alpha band significantly stronger than 
the simple musical perception [96]. In this sense, it is known that musical images 
are a mental representation of music, as well as that its underlying mechanisms of 
perception are active and committed to it [97]. It is known that musical learning 
shows certain aspects of behavior that can be observed in the notable acquisition 
of skills of musicians, which is why the benefits of imagined interpretation in the 
learning of motor skills is a reason for interest and discussion among authors [98]. 
The imagined interpretation and the real interpretation or performance are cor-
related and are believed to activate similar neural structures [99]. There are some 
characteristics of the imagined interpretation, which we can call simulated action or 
mental rehearsal, that reveal a close relationship between it and motor action, spe-
cifically it has been pointed out that the synchronization patterns of both processes 
are similar [100] as well as that the changes in corticospinal excitability involve 
the same muscles in both conditions [101]. Consistent with this hypothesis, fMRI 
studies investigating imagined interpretation in paradigms where subjects execute 
hand and finger movements [102] have demonstrated activation of the supplemen-
tal motor area (SMA), the premotor cortex, the cerebellum and the primary motor 
cortex. Therefore, we can say that according to these studies, imagined performance 
and real performance share certain common characteristics reflected in the cerebral 
cortex and in the musculature. On the other hand, also in the fMRI technique, a 
study carried out on piano students [103] in which imagination and interpretation 
tasks were analyzed, found activations of the frontoparietal-bilateral network 
that includes the areas premotor, precuneus, and medial part of Brodmann’s area 
(BA) 40 during both tasks. Other areas that appear to be involved in the imagined 
interpretation are the superior parietal and ventrolateral/dorsolateral frontal areas 
[104]. In another line of work, the activity of the EEG potentials was investigated 
in violinist players [105], finding that the bilateral frontal opercular regions are 
crucial both in the preparation and during the performance of music and during 
the imagination of the same in agreement with some previously commented fRMI 
results. The authors suggest that this effect is due to “mirror neurons” that are at the 
service of the observation or imagination of one’s own performance [106]. It has 
been also observed the activation of different motor areas that were not the same 
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for interpretation as for imagination. Functional interactions between the temporal 
cortex and the frontal cortex have been found to improve during musical imagi-
nation [107]. For all this, it seems that the imagined interpretation is capable of 
activating different areas of the cerebral cortex such as those belonging to the motor 
system, the SMA, the auditory cortex.

With the fMRI technique a study observes that, compared to the resting condi-
tion, the imagined interpretation increased in extended regions of the brain the 
FC of the supplementary motor area (SMA), including the sensorimotor cortices, 
the parietal cortex, the temporal cortex posterior cortex, occipital cortex and 
inferior and dorsolateral prefrontal cortex, this is related to cognitive control, motor 
planning and syntactic processing [108]. Increased connectivity with sensorimo-
tor cortices is believed to be potentially involved with planning thought in motor 
programs. These authors also consider that the reconfiguration of the SMA network 
reflects the multimodal integration required for imagined musical interpretation 
and real interpretation/performance, as well as they propose that the SMA net-
work build “the internal representation of musical performance” by integrating 
multimodal information required for the presentation [108]. The same authors, in 
a later study with the same task, found that imagined music performance increased 
the functional connectivity of the angular gyrus with different regions, which 
attributes a role to this region in the imagined performance [109]. Therefore, it is 
observed that the FC in the interpretation and imagined interpretation shares the 
configuration of networks that are involved in the performance process, which 
is different from neural activity, and therefore is able to connect in the imagined 
interpretation as in the real one. If the imagined interpretation is capable of activat-
ing the connections between brain regions that occur during interpretation, this is a 
way to study its possibilities from the perspective of imagination interpretation.

2.2.4 EEG FC using graph metric

In the graph theory context EEG channels are taken as the graph nodes and 
connectivity values between them as edges. The usefulness of this metric has been 
reported to be of interest in brain neural network research to evidence changes in 
its topological structure. Two measures are used to define different types of neural 
network organization: one involves the nodal groups, the clustering coefficient (C) 
and the other the magnitude of the length of the path between nodes, length of the 
characteristic path L. For a given node, C measures the tendency to link from neigh-
boring nodes, reflecting the extent of the local domain; while L is associated with 
the ability to integrate global information and, therefore, with the readiness for 
communication within the brain [110, 111]. Depending on the relative magnitudes 
of C and L, different levels of topological organization of a cortical brain network 
are defined. Thus, a network is considered “regular” when a high value of C and L 
is obtained from its graph representation, while a network is considered “random” 
when a low value of C and L is found. Between both types of network, the type 
called small world (SW) is defined when a graph has a high C magnitude and a low 
L magnitude. Consequently, SW neural networks are said to have a high level of 
local information distribution together with a high efficiency for global transfer 
information, both properties of great relevance for the dynamics of complex brain 
processing [110, 111]. For determining the SW level of a network NN, the C and L 
magnitudes are normalized with regard to the mean of a number (N = 100) of ran-
dom networks having the same number of nodes, edges, and degree distributions 
as the network NN [112]. A network with approximately equal L and larger C than 
matched random networks (i.e., normalized L ~ 1 and normalized C > 1) is said 
to be a SW network. In the context of the musical perception, listening to Chinese 
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music (Guquin music excerpts versus silence and noise) in non-specialist subjects 
has been reported to produce an increase in functional connectivity (EEG phase 
coherence) in the alpha band, an improvement in cortical network organization of 
small world [73] and also a tendency to the random organization of the network as 
well -when a phase delay index is used that indicates a tendency to a more efficient 
but less economical architecture during musical listening [113]. Therefore, musical 
hearing somehow affects the topological structure of brain networks.

3. Conclusions

Since computational algorithms for signal analysis introduction in Biomedicine, 
different methods of cortical electrical signal analysis (EEG) have been used to 
study the neural multiple processes involved in musical perception. Applications 
range since from music recognition and its brain processing to its cognitive and 
emotional effects. In this broad chain of neural events, many brain centers and 
functions (central and peripheral) intervene. The participation and importance 
of some of these, by using different techniques of analysis and processing of EEG 
signals (including MEG and ERP cortical recordings) have been investigated along 
the time. In the review, the most interesting results appeared in the literature on the 
subject have been reported. Among them are those that study aspects such as musi-
cal syntax (its comparison with language), the differences between styles including 
consonances and dissonances, musical expectation and the nature of the different 
emotions (including rewards) produced by music. From the review carried out it is 
concluded that the analysis of cortical electrical signals (EEG, MEG, ERP) con-
stitutes, mainly due to its high temporal resolution, a useful methodology for the 
study of many issues concerning the music-brain interaction.
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Chapter 3

Multicriteria Algorithm for
Multisensory Food Analysis
Alexandre Magno da Rocha Vianna

Abstract

Observation of the multisensory experience using fMRI, EEG and analysis of
users’ responses using Fuzzy logic. The tabulation of these data aims to verify the
responses and quantify them for comparison with a personal opinion survey using
the SAATY scale and apply in general terms (opinion response and neural response)
in other users belonging to the same group of people. Based on the data and
processes of the described applications, a sensory mapping of the observer and
verification of “patterns in neurophysiological processes” can be performed with a
verbal response, in addition to allowing the understanding of the importance of
these patterns for the selection of an option.

Keywords: multisensory, neurodesign, neuroscience, food

1. Introduction

This research is a continuous process of studies started in 2016 at UFRJ under the
guidance of Dr. Paulo de Oliveira Reis through LabFuzzy. The proposal deals with
the use of neuroscientific technologies to analyze and identify multisensory ana-
logues that can improve the users’ experience in the design process. An analysis of
how human cognitive processes (related to the acquisition of information such as:
learning, attention, memory, language, reasoning, decision making, etc.) linked to
people’s behavior has been analyzed and applied for some decades. A good example
is given by Simon [1], when studying the human cognitive processes linked to
decision making. This field was developed and branched out into the decision
process linked to the marketing processes.

Subsequently, psychologists Khaneman and Tversky [2, 3] developed the Pros-
pect Theory, demonstrating a profit and loss perspective model and the cognitive
impact related to this event, which demonstrated that people tend to value much
more avoiding losses than generating gains. An important milestone along this path
occurred in 1980, when the first full-body magnetic resonance imaging (MRI)
occurred in Scotland, a major advance compared to X-rays. In the middle of the
following decade, functional magnetic resonance imaging (fMRI) recorded, for the
first time, images of the brain in activity, during and after stimuli, showing the
activation of the regions involved in certain tasks without the need to use ionizing
radiation and exogenous contrast. Like traditional MRI devices. This model brings a
new perspective in the view of consumption that, from the 90’s, is widely treated in
marketing processes. Lindstrom [4] through research on thousands of brains, ana-
lyzed a large part of the processes related to attractiveness and consumption
behavior.
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This chapter proposes the use of multidisciplinary concepts and tools between
Creative Economy, Neuroscience, Mathematics and design for the observation of
multisensory experience. The author of this chapter [5] enters this universe through
the Design of furniture for offshore ships, where in addition to the functional
character the internal environments need to attend to the psychological of the
employees who remain there for months. Colors, shapes, spaces, art, everything has
to be thought with a view to physical and emotional health. From that moment on
(2006), a methodology for designing products and images with a focus on the user
experience starts to be constructed through multisensory analogs, that is, informa-
tion sensorialized by the observers that arouse certain reactions and that can be
applied to the 5 senses. This methodology was used in the industrial sector and in
micro and small companies (healthy food, PET, drinks, food, etc.) and patterns that
can be recognized and mapped to generate certain reactions in the consumer were
observed. As of 2017, with the acquisition of fMRI and EEG software and equip-
ment, the Fuzzy Logic started to be used to quantify the mapped responses that
started to be studied and tested in applications related to food and beverages.

Presentation of the techniques used for research in this chapter:

• Functional magnetic resonance (fMRI) analysis mentioned above,

• Electroencephalogram (EEG): used to record the electrical activity of the brain
that is diagnosed by means of neural oscillations or brain waves, beta, alpha,
theta and zeta.

• Hormonal dosage of saliva: just as the blood test can identify hormones and
other elements, the analysis of saliva focuses on those present at the time of
collection).

Other techniques can be used in data collection such as: Galvanic skin conduc-
tance (SCR), Skin temperature analysis by infrared thermography (ING), Heart
rate (HVR), Facial expression recognition (FER), Implicit association test (IAT),
retina mapping (eye tracking) and other less common.

For the research to be presented, techniques such as functional magnetic reso-
nance analysis (fMRI), electroencephalogram (EEG), hormonal dosage of saliva
were used, in addition to other techniques such as focus group and SAATY scale.
The objective is to search the data for neurophysiological patterns that can generate
a division between satisfactory and unsatisfactory neurobehaviors, that is, unfavor-
able reactions occur when data is presented and favorable reactions occur in the
same way. The construction of these favorable or satisfactory reactions can be
applied widely (a city, a public space, an enclosed space) or in very small areas (an
environment, an object, a product, a service experience or even physical) or digital
image). The point in question is the result that must be designed so that the user has
an intended experience and keeps it in his memory. This analysis will be done using
the techniques obtained above to identify in users, areas of the brain that have been
stimulated and to identify these patterns, to be determined in each element of the
project.

To understand what this observer seeks, it is necessary to go through the moti-
vation theorists: Freud [6], Maslow [7] and Herzberg [8] who explain the subjec-
tivity of human thought and how it correlates with social cycles and their own
experience with what is observed, generating “satisfactory and unsatisfactory” pro-
files, rationalizing their environment and their sensorializations. Freud develops his
thinking about the subjectivity of human choices, through his literatures: The
unconscious, which traces a trajectory of ideas of the subjective factors of our
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choices. This thought was addressed with the example of “motivation for choosing
an object” that occurs due to factors such as color, weight, size, texture, shape, etc.
which are linked to the interpretation of each of these details through subjective
memory, as well as the “object as a whole”, as well as, all “emotional charge”
contained in its interpretation in our past and its relationship with the present
moment.

Maslow in his work “Motivation and Personality” describes the “Hierarchy of
needs” which is widely known as the “Maslow’s Pyramid”. According to him, the
individual feels the desire to satisfy his needs, according to the stage or level.
Therefore, the motivation to fulfill these wishes comes gradually, generating a
certain predictability of needs and desires according to several sociodemographic
(age, income, geographic area, etc.) and behavioral (ambitious, heavy users, etc.)
factors as well as in the cycle of life of a person or group of individuals. Herzberg,
talks about the “2-factor theory” that defends the idea that there are satisfactory
and unsatisfactory motivators in the work environment and that it is used in
marketing management Kotler [3] for the marketing universe interpreting these
concepts for products, services, people, environments, etc. From there, it is neces-
sary to understand what makes the observer have a pleasant experience and enter
the universe of experience design. The one by Csikszentmihalyi [9] brings in his
works about Flow (concept defined as the great experience, or the psychology of
the great experience, is linked to the challenge and reward zones of the brain and
related to learning) the aspects that are related to the experience engaging and
charming enough to pass the time and even forget some of the most basic needs like
eating. To reach this level of immersion, Norman’s work [10] and his concepts on
design bring terms to specify levels of experience of the observer that go beyond the
visceral or subconscious level, to the reflective level, but this reflection is based on
their habits, which in turn, is at the behavioral and instinctual level, which is
basically the automatic and subjective area linked to our experience. An individual’s
experience contains memories and emotional charges linked to the result of
similar previous situations and which, in turn, are the result of our emotions
Krippendorff [11].

The projected emotions will be mainly in search of the observer’s pleasure and
satisfaction as ways to reach the state of Flow and in this context the pleasures of
Jordan 4 [12] relate aspects of functionality and usability to these states. The author
assumes that pleasures are the result of the hedonic and practical emotional benefits
associated with a product and that needs related to the usability of that product can
be satisfied in 4 forms of pleasure (physiological pleasure, social pleasure, psycho-
logical pleasure and ideological pleasure). These authors reflect the concepts and
tools for the investigation and manifestation of multisensory experiences. Another
literature such as Logic Fuzzy Tanaka [13] is needed to measure the observer’s
reaction to the possibilities. In Fuzzy Logic, a multiple-value chain can be generated
in which the logical values of the variables can be any real number between 0,
corresponding to the false value, and 1, corresponding to the true value, for exam-
ple. In contrast, in Boolean logic, the logical values of variables can be just 0 and 1, a
or b, etc. this means that there are several possibilities between true and false and
these possibilities can be found and determined if they correspond to the analyzed
objective with the greatest probability, possibility and or plausibility. In this way,
measurable variables can be found and an analysis system designed to measure
these experiences created Ross [14]. One should not only take into account the
tabulation of these data, but obtain them to measure the reaction of the observer
and verify through the emotional dimensions of Carter [15] the impact that will
provide for them to reach a certain objective, be it to obtain better performances or
simply for entertainment.

43

Multicriteria Algorithm for Multisensory Food Analysis
DOI: http://dx.doi.org/10.5772/intechopen.96135



It works like this, people determine verbally when asked about a particular
experience or random information, but the verbal response does not always
represent the cognitive response. In addition to the truth, there are exaggerations,
minimizations and lies. This happens for several reasons and more often than we
imagine Feldman [16]. However, by analyzing the cognitive response by means
of Functional Magnetic Resonance (fMRI), Electroencephalogram (EEG), hor-
monal dosage of saliva and other previously necessary techniques, it can be
verified if certain areas of the brain have been affected and what is the biological
response. For example, when smelling a food being made on the spot, the
olfactory cortex in the temporal lobe will be stimulated and information will be
sent to areas such as the frontal lobe cortex (association with similar previous
experiences), limbic system of the diencephalon (Memory) and response
through neural peptides available in the hippocampus Silverthorn [17]. Other
areas can be stimulated and hormones such as ghrelin for example, also known as
“hunger hormone”, are a peptide produced mainly by epsilon cells in food and by
the pancreas when on an empty stomach, which then acts on the lateral hypothala-
mus and in the arched nucleus, generating a sensation of hunger. These areas of the
brain can be observed by means of magnetic resonance in conjunction with specific
areas (nucleus accumbens, geniculate body and certain areas of the visual cortex)
making it possible to observe the option for a particular dish in a restaurant, in
addition to determining the intensity of these reactions through EEG (stress,
engagement, interest, excitement, focus and relaxation). One can go further, and
check the levels of Ghrelin, Serotonins and Dopamines (through the analysis of
saliva), understanding the levels of hormones and peptides Dispenza [18],
responsible for hunger, pleasure and well-being. It can be measured against a
quantity when you see, taste, touch, smell, etc. in each of the restaurant’s dish
options, following the previous example. When determining the preference stan-
dards of the tested group (which should represent consumers and target customers
through personas, for example), it is possible to select a better menu, presentation
of dishes, images for campaigns, restaurant environment, employee uniform,
memorabilia and etc.

The complexity of the new consumer market requires an investigative method
that clearly demonstrates how to design experiences for a group, capable of
generating a positive impact, focusing on the necessary elements and increasing
performance, minimizing unnecessary and incorrectly applied costs. The applica-
tion of an investigative method linked to the relationship between the public and a
medium or product is related to the sociocultural profile of these people in the sense
that their parameters of relationship with the external world and interpretations of
this world come from the knowledge acquired throughout life, where a large part of
their cognitive stimuli and co-relationships happen through the environment where
they live and relate daily.

1.1 Stages of development

Phase 1. Qualitative Research: The generation of personas is necessary to define a
group that can represent the general public.

Phase 2. Explanatory research (cause and effect): The processes of attention,
retention and memory, occur in different areas of the brain and transmit informa-
tion to the body through hormones and peptides that are used as a basis to measure
whether the data obtained in the experiment is positive or negative (EEG, fMRI and
saliva analysis).

Phase 3. Experimental Research. Observation of the user’s brain during the
experiment.
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2. Experiences

The experiences presented below were evolutions and variations of this meth-
odology in the area of food. Because it is a sector that can awaken the 5 sensory
channels, even though the 3 main ones are vision, smell and taste. The first test was
developed using the image of 3 foods (as we can see in Figures 1–3), where a more
juicy image was presented (Figures 1 and 2) and even an image with desaturated
and manipulated foods to look unpleasant (Figure 3). The objective of having 3
such different variations, was to verify if the neural and verbal response coincided
in options that seemed to be practically unanimous and if the result of the algorithm
would follow this path, Figure 1 was selected as the most tasty and Figure 3 the
least tasty as we expected.

Subsequently, 3 hamburger options were tested (Figures 4–6) this time, the test
was to understand whether the launch of a new hamburger option with reference to
the artisanal hamburger trend in Brazil (Figure 6) would be accepted among the
more consolidated options on the market (Figures 4 and 5). This time, the accep-
tance of the new option was rejected by the participants in the verbal analysis
(Figure 8), but an interesting feature was observed in the EEG analysis (Figure 7).
According to the software data, the level of “interest” in the participants increased
when this option was presented, which led me to invite them to a focus group to try
to understand this discrepancy between verbal and neural analysis. The response of
the participants in most cases was that they had an interest in trying the option in

Figure 1.
Image of barbecue with grilled fruits.

Figure 2.
Pasta with fruits.
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Figure 6, but they were not willing to “pay” for that option, the options in
Figures 4 and 5 being better known, that is, even in no information has ever been
given on option values, whether there would be any payment, etc., the participants’
response had a direct connection with the fact that they preferred to stick to
traditional options rather than try a new one (taking into account automatically) the
financial factor and the fact that they prefer to stick to already known tasty options

Figure 3.
Plate of fruits, fungi, sausage and bacon with sauce (with manipulation of the saturation of the colors to look
disgusting).

Figure 4.
Hamburguer A.

Figure 5.
Hamburguer B.
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than to take a chance on a new flavor that is likely not to be as tasty, according to
Prospect theory).

The following analysis (Figures 9–11) was performed without the hormonal
dosage of saliva, however, EEG analyzes were introduced in a more protagonist
way. This decision was made in order to better observe the experience because it is
understood that when it comes to food, when eating a salad or a chocolate, most of
the stimulated areas observed through the fMRI equipment are the same. But the
preference for the second option (chocolate) is probably greater in most people,

Figure 6.
Hamburguer C.

Figure 8.
Although the waves show high interest in options C and A, the verbal chart portrays them as the worst options.

Figure 7.
EEG Interest is the yellow wave.
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simply because the brain prefers more fatty foods due to its high energy consump-
tion (it consumes approximately 20% of the energy produced by the body). There-
fore, the analysis of waves and neural frequencies, as well as the attributes
presented by the EEG software, are faster to interpret. In addition to this facilita-
tion, it is possible to compare the results verified by the fMRI images (brain waves
are represented in different colors, with 1 color for each frequency - Figure 15).
Another way of comparing the 3 techniques presented (fMRI, EEG and hormonal
dosage of saliva) is precisely through the hormones found during the experiments,
as well as their quantity. The hormones, wave frequencies and analysis of the EEG
software, demonstrate differently the possible emotional states of the participants
and can be compared with each other.

Figure 9.
Analysis site of coffee samples.

Figure 10.
Sample A.

Figure 11.
Sample B.
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2.1 Analyzed areas

Lateral geniculate body and prefrontal cortex: attraction for appearance. The
appearance of food is more important than taste in many cases, even when food is
prepared with the same ingredients and cooking methods. When we see something
we shouldn’t be eating, the brain sends an alarm. You can be fooled by stimuli of the
smell of good food and the sound of frying, for example, which stimulate the
production of ghrelin.

Accumbens Core: Food generates dopamines and serotonins and the tastier the
better (our brain tends to prefer foods with more fat). It is related to pleasure.

Olfactory cortex: smell is one of the oldest senses and its stimulus is received in
the olfactory bulb that directs the stimulus to the olfactory cortex, limbic system,
motor cortex and others.

Visual cortex: related memory and visual processing.
Prefrontal cortex: related to planning complex behaviors and thoughts, expres-

sion of personality, decision making and modulation of social behavior.

2.2 Personas selection

In the case of a complex analysis, the cut used so far is that of qualitative research,
seeking to analyze a series of people who can represent the target audience with
quality. An adopted methodology uses a method of crossing supply and demand
matrices Cosenza [19] to identify the distances between the different product alterna-
tives in meeting the needs of its customers according to the profile demanded by them.

2.3 Phase identification (coffee experience)

• Personas. Selection.

• People who represent personas (Figures 9–18).

• Subscription.

• Sensory scale (linguistic variables and neural response).

• Multicriteria algorithm for sensory analysis. fMRI and EEG. SAATY scale for
verbal response (1, 2, 3, 4, 5, 7, 9).

• Observation of the impacted area.

• Fuzzification and defuzzification of results (normative maximization).

• Answer 1: Selection of the option.

• Answer 2: evaluation of the experience at a rational and emotional level.

Figure 12.
Sample C.
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Step 1: Preparation of the drink. Sensory analysis was performed using 3 coffee
samples. For the preparation, a conventional home coffee maker was used. The
coffee samples were prepared using coffee and mineral water. Each infusion was

Figure 13.
Verbal Response graph, Sample A, B and C.

Figure 14.
Verbal Attributes description fuzzy matrix.

Figure 15.
fMRI.
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prepared with a maximum of 500 mL of each sample and stored in thermos,
remaining in place for a maximum of 90 minutes. The evaluation for aroma and
flavor was made using 30 mL of each coffee sample served in transparent cups at an
average temperature of 60 °C without the addition of sucrose. Between each sam-
ple, participants were served water at room temperature to wash the taste buds.
Appearance was assessed using the conventional presentation (transparent cups
and saucers) and transparency exists so that participants can see the color and
texture of the drink. Visibility and light conditions of a common night in ambient
lighting. For this experience, the environment used was an open area with room
temperature and filming and protection equipment (mask, alcohol gel and gloves,

Figure 16.
fMRI area.

Figure 17.
EEG image.

Figure 18.
EEG results.
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in addition to receiving 1 person at a time in intervals of 3 to 4 hours between each
participant to clean the place) The alone are served 2 times each, so that in each one
the data of EEG + scale of SAATY and fMRI + saliva are collected.

Step 2: The equipment will be placed on the user and the user will taste the
coffee and rate each sample using the SAATY scale, while the EEG data is gener-
ated. For measurement, the EPOC + equipment from the company Emotiv and the
EEG software EmotivPro were used, which in addition to presenting the data for
each frequency, generates the interpretation of these signals as stress, focus, moti-
vation, engagement, relaxation, interest and excitement (Figures 17 and 18).

Step 3: The user will try it a second time, while the fRMI analysis is done. For
measurement, the EPOC + equipment from Emotiv and the fMRI software BrainViz
were used. During the test, 6 samples were taken from each user. Before drinking
coffee, after the first sip and after the end of each cup. The saliva analyzes were
stored to be sent to the laboratory.

Step 4: Movies and photos of people were stored in HD and cloud, as well as
films from fMRI and EEG. Gel alcohol, masks and gloves were available at all times
for participants with an isolated disposal site of at least 3 m.

Step 5: The linguistic terms of the SAATY scale (2.4 results) were developed and
approved by food professionals such as restaurant owners, buffets, cheffs, house-
wives who cook for their families and even by a purchasing chef in a large chain.
Supermarkets in the state of Rio de Janeiro in Brazil. The fMRI analyzes were made by
the author with the cutout presented in brain response to food [20] and after adapta-
tion, presented to specialists in neuroscience and consumer psychology at USP and
UNIFESP for validation. EEG analyzes are taken from the software. The traditional
EEG reading presents the frequencies in real time, however the software presents a
reading (patented by the manufacturer) through the frequencies that generates
responses of: interest, motivation, stress, engagement, focus and excitement.

Step 6: The data collected through fMRI, EEG and hormonal dosage in saliva are
inserted in Matrix 2: Brain and hormones. The fMRI data is collected by analyzing
the video of the brain at a speed of 30 frames per second, counting the moments of
stimulus of the areas: Lateral Geniculate Body, Visual Cortex, Nucleus Accumbens,
Olfactory Cortex, Frontal Cortex and standardized to be on a scale from 0 to 100, as
is the answer presented by the EEG software. Inserted in the matrices, the data is
processed through the algorithm created for this project and receives a final score
(2.4.3 Verbal Analysis � Neural Analysis).

Step 7: Comparative analysis. After analyzing the samples of each participant,
we have the verbal and neural score for each sample. These notes are compared in
order to understand the preferred option of the participants in an individual and
general way.

Step 8: Conclusion interview. After the analysis and conclusions, the participants
of the experiment are invited to an interview where the variables involved and the
preferences of the group are debated to verify points that influence the preference
and which responses generate these variables. As we could see in the hamburger
experiment (Figures 4–6), some answers can be contradictory, but this was not the
case for this third experiment with the 3 coffee samples.

2.4 Results

The attributes selected for the option selection:

• Spit: Any reaction linked to the exclusion of food from the mouth;

• Disgust: I don’t even want to try it;
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• Bad;

• Indifferent: it is not bad, but it is also not good;

• Good: satisfied with the taste;

• Great - satisfied with the taste, he would eat again;

• Delicious - delicious.

2.4.1 Sensorial scale of verbal attributes

Before interpreting the data, a classification vector was constructed using the
sets below (Dispensable: 1 to 3; Unsatisfactory: 3 to 4; Important: 4 to 5; Satisfac-
tory: 5 to 7 and Crucial: 7 to 9). Where the attributes for grades 1 to 9 of the verbal
scale (SAATY) are developed.

Set 1: Dispensable
if 1 < or = x, then u (x) = 1
if 2 < ou = x < ou = 3, then u (x) = � x + 3

Set 2: Unsatisfactory
if 2 < ou = x < ou = 3, then u (x) = x - 2
if 3 < ou = x < ou = 4, then u (x) = � x + 4

Set 3: Important
if 3 < ou = x < ou = 4, then u (x) = x - 3
if 4 < ou = x < ou = 5, then u (x) = � x + 5

Set 4: Satisfactory
if 4 < ou = x < ou = 5, then u (x) = x - 4
if 5 < ou = x < ou = 7, then u (x) = � x + 7

Set 5: Crucial
if 5 < ou = x < ou = 7, then u (x) = x - 7
if 7 < ou = x < ou = 9, then u (x) = 1

At the same time that the participant responds verbally, his brain is analyzed in
fMRI, checking if the areas responsible for the feeding process, such as salivation,
digestion and etc. are stimulated, and for how long the stimulus occurs in each
area. To measure whether the participant’s interest, involvement, excitement,
focus, relaxation and stress, EEG equipment was used. Some of these states are
linked to the production of hormones such as serotonin, endorphins and dopa-
mines, among others, which are related to pleasure. These data generate an inter-
ference model to establish the criteria of the Fuzzy set of pertinence and can be
crossed to generate a score for each experience with each coffee, which can be
measured and compared.

In the table below, we can identify the sensation (column sensations)
according to the linguistic terms (2.4 Results). The grades for each sample A, B
and C are presented in the respective columns and the importance for the objective
is applied by the researcher according to the sets above (which represent each
grade).

The notes in Table 1 are represented in the graph below (Figure 13). The graph
in Figure 14 represents the description of the Fuzzy Matrix, between the “linguistic
terms” and the importance for the objective.
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2.4.2 Sensorial scale of neural attributes

To interpret the neural matrix data, a new classification “Vector” is required,
this time between 0 and 100, which was represented by the sets below (Dispens-
able: 10 to 30; Unsatisfactory: 30 to 40; Important: 40 to 50; Satisfactory: 50 to 70
and Crucial: 70 to 90 or greater). Where the attributes for the notes analyzed
through the fMRI are developed (where we check 30 images per second to
define how long each stimulus takes place, as well as making mathematical
adjustments for quantification (each sample was tasted for 1 min, therefore, having
the same time interval of each sample and the time in which each area was stimu-
lated, we can interpret this data as a number between 0 and 100 that will fit
perfectly in the neural matrix and in the Vector for interpretation of the algorithm
(Table 2).

Set 1: Dispensable (g) = 10
c (g) = x

Set 2: Dispensable (g) = 20
10 < n < or = 20, n (g) = x + 10

Set 3: Dispensable (g) = 30
20 < r < or = 30, n (g) = x + 20

Set 4: Unsatisfactory (g) = 40
30 < i < ou = 40, n (g) = x + 30

Set 5: Important (g) = 50
40 < b < ou = 50, n (g) = x + 40

Set 6: Satisfactory (g) = 70
50 < o < ou = 70, n (g) = x + 50

Set 7: Crucial (g) = 90
70 < d < ou = 90, n (g) = x + 7

Sensations Sample A Sample B Sample C Importance for the objective

Split 1 1 1 Dispensable

Disgust 2 2 2 Dispensable

Bad 3 3 3 Dispensable

Doesn’t matter 4 4 4 Unsatisfactory

Good 5 5 5 Important

Great 7 9 7 Satisfactory/crucial/satisfactory

Delicious 9 7 9 Crucial/satisfactory/crucial

Linguistic terms of importance for the objective: dispensable, unsatisfactory, important, satisfactory and crucial.

Table 1.
Verbal scale.

Stimuli Sample A Sample B Sample C Importance for the objective

Lateral geniculate body 76 86 64 Satisfactory/satisfactory/important

Visual cortex 52 80 58 Important/satisfactory/important

Nucleus accumbens 90 80 88 Crucial/satisfactory/satisfactory

Olfactory cortex 71 86 70 Satisfactory/satisfactory/satisfactory

Frontal cortex 76 80 76 Satisfactory/satisfactory/satisfactory
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The notes for stress, excitement, engagement, focus, interest and relaxation stim-
uli are interpreted and sent by the software. Below in Figures 15 and 16, we can see
the fMRI images and the areas stimulated with different frequencies (Figure 16). In
Figure 17, we can analyze the EEG data during the process of the experiment with
one of the coffee samples, thus being able to understand peaks and falls of the stimuli,
as well as identify what happened in the experiment that may have been responsible
for the changes in the graph. Figure 18 shows the results of the EEG software, it can
be seen that the colors of each attribute are represented in the graph of Figure 17.

In Figure 19, we can see the graph of the Neural response and its interpretation
is very similar to the graph in Figure 13, where the terms of importance for the
objective are on the vertical axis and the stimulated areas, as well as the EEG
attributes are positioned to give us a visual representation of the difference between
samples for one participant.

2.4.3 Verbal analysis � neural analysis

The standardization of notes through vectors and the importance for the objective,
aims to transform the numbers on a scale, where the largest number is themost perti-
nent, that is, the higher the number found in the analysis of the algorithm, the greater the
relevance of that one. Sample regarding the participant’s preference for the sample.

Sample A
Verbal = 1.4474 | Verbal Analysis Winner
Neural = 1.9886

Sample B
Verbal = 1.4447
Neural = 2.0515 | Neural Analysis Winner

Figure 19.
Neural response graph, sample A, B and C.

Stimuli Sample A Sample B Sample C Importance for the objective

Stress 51 51 43 Important/important/unsatisfactory

Excitement 45 36 22 Unsatisfactory/dispensable/dispensable

Engagement 71 73 77 Satisfactory/satisfactory/satisfactory

Focus 52 48 34 Important/unsatisfactory/dispensable

Interest 51 55 65 Important/important/important

Relaxation 34 31 30 Dispensable/dispensable/dispensable

Linguistic terms of importance for the objective: dispensable, unsatisfactory, important, satisfactory and crucial.

Table 2.
Neural stimuli.
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Sample C
Verbal = 1.4447
Neural = 1.9834

2.4.4 Comparison between samples

Sample A | Verbal / Neural
(1.4474 + 1.9886) / 2 = 1.7178

Sample B | Verbal / Neural
(1.4447 + 2.0515) / 2 = 1.7481 | Winner of Verbal / Neural Analysis

Sample C | Verbal / Neural
(1.4447 + 1.9834) / 2 = 1.7140

3. Conclusion

A tie can be observed if verbal analysis is considered, but neural analysis showed
preference for Sample B. For one more test, the average between the verbal/neural
scores of each sample was made in order to be able to compare them to each other,
giving Sample B the winner again. Considering previous experiences and those
scheduled for the coming years, the multicriteria algorithm is developed according
to the number of linguistic terms, areas to be analyzed and the number of partici-
pants. The linguistic terms vary according to the segment (food, perfumes, etc.)
and experts must always be used so that the terminology reproduces the objectives
of the experiment. In this case, the verbal scale was discussed and approved by
professionals from different areas related to food and beverages, such as restaurant
chefs, sommeliers, food and beverage entrepreneurs, as well as empirical specialists
(people who cook for home or small businesses) and professional of a supermarket
chain in Brazil. The neural matrix was built based on models and studies by
CARNELL S. and Emotiv’s EEG software.

3.1 Future reviews

This same data can be used to analyze peaks and falls individually and to
understand what factors can be determined by these effects. Analysis of each
element of a layout, product or service such as colors, images, typography, packag-
ing, internal and external experience, etc. Thus, the same experience can be ana-
lyzed at satisfactory and unsatisfactory peak times, identifying them and using the
information both to avoid unsatisfactory, and to praise and build their offers and
experiences based on the observer’s satisfaction, both for a product/service and for
an environment/experience.
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Chapter 4

EEG Measurement as a Tool for 
Rehabilitation Assessment and 
Treatment
Hideki Nakano

Abstract

In recent years, neuroscience-based rehabilitation, also known as  
neurorehabilitation, has been attracting increasing attention worldwide. 
Electroencephalography (EEG) has been widely used in clinical practice as a tool 
for the evaluation and treatment of rehabilitation because of its noninvasive and 
simple measurement of human brain activity. EEG-electromyography coherence 
is a method to analyze the synchronization between the motor cortex and muscle 
activity during movement and to quantitatively assess how the motor cortex 
controls muscle activity. In addition, recent advances in analysis and measure-
ment techniques have made it possible to estimate the source of EEG signals, thus 
serving as a method to evaluate rehabilitation. The brain-machine interface, which 
integrates medicine and engineering, has been widely applied in the treatment of 
rehabilitation and for improving the quality of life. This chapter provides an over-
view of EEG, and its uses as a tool for rehabilitation assessment and treatment.

Keywords: EEG, non-invasive brain function measurement, rehabilitation,  
EEG–EMG coherence, EEG mapping, EEG source imaging, brain-machine interface

1. Introduction

Ever since the first human electroencephalography (EEG) [1] and electro-
myography (EMG) [2] recordings were performed in the 1920s, the theoretical 
aspects, test techniques, and clinical applications of each have rapidly advanced 
[3]. Methods for imaging brain function have appeared one after another over 
the past century beginning with evoked potentials [4] in the 1940s, event-related 
potential [5, 6] and magnetoencephalography (MEG) [7] in the 1960s, positron 
emission tomography (PET) [8, 9] in the 1970s, and functional magnetic resonance 
imaging (fMRI) [10, 11] in the 1990s. Currently, the noninvasive methods available 
for measuring brain function are broadly divided into two categories: electrophysi-
ological examinations and imaging techniques based on hemodynamic principles. 
The former includes EEG, MEG, and transcranial magnetic stimulation (TMS), 
while the latter includes fMRI, PET, single photon emission computed tomography 
(SPECT), and near-infrared spectroscopy (NIRS) [12].

EEG is widely used in rehabilitation as it is well suited to the field’s demands 
for measurement, which includes simple, safe, and portable equipment. In the 
past, EEG has primarily been an analysis method used to capture brain activity 
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accompanying a given phenomenon or during a given task as an electric field and 
subsequently estimates the source of that activity based on the distribution on the 
scalp. In contrast, recent advancements have led to the development of a method 
capable of capturing fluctuations in the power of rhythms in a certain frequency 
band. When this power decreases accompanying a given phenomenon or task, it 
is called event-related desynchronization (ERD). Conversely, when this power 
increases accompanying a given phenomenon or task, it is called event-related 
synchronization (ERS) [13–15]. Thus, electric field analysis is an analysis of the 
temporal domain, while the second method is an analysis of the frequency domain. 
In frequency analysis, ERD is thought to reflect a state of increased cortical activity 
in the region, while ERS is thought to reflect a state of decreased activity or return 
to a low level. This chapter will outline the clinical applications for treatment and 
evaluation of rehabilitation using these features of EEG focusing specifically on 
EEG–EMG coherence, scalp mapping, and brain-machine interface.

2. EEG-EMG coherence

Like brain waves, it has long been known that myoelectric activity—the final 
output of the motor system—is rhythmic. Since a correlation between EEG and 
EMG rhythms was first reported, the concept of EEG–EMG coherence has become 
a field of study attracting much attention [16–18]. As EMG measures the collective 
firing of a motor unit, if rectified such that the positivity or negativity of individual 
spikes is irrelevant, EMG signals are thought to correspond to action potentials of 
spinal motor neurons [19]. At the same time, EEG activity reflects the collective 
activity of neurons, particularly their postsynaptic potential. Therefore, EEG–EMG 
coherence is considered capable of measuring the control of spinal motor neurons 
by the cerebral cortex.

In healthy individuals, EEG–EMG coherence shows a distribution following 
the somatotopy of the primary sensorimotor cortex contralateral to the muscle for 
which myoelectric activity was recorded. Research using MEG has found that the 
source of coherent rhythmic activity can be found in the primary motor cortex 
[20, 21]. Further, peak coherence has been reported to roughly correspond to hot 
spots during TMS [17]. Significant coherence is primarily seen in the β frequency 
band (13–30 Hz) but has also been observed in the lower frequency α band and 
the γ band near 40 Hz. Thus, coherence in these various frequency bands may be 
derived from different mechanisms [22].

Research measuring the time lag between EEG and EMG has found that EEG 
invariably precedes EMG for the β band, yet there is almost no lag for the α band 
[18]. This suggests that the mechanisms of coherence in the α and β bands differ. 
One theory to explain this is that a muscle’s peripheral centrifugal sensory input is 
involved in α band coherence. However, a previous study found that coherence in 
this band was not affected when peripheral sensory input was modified using vibra-
tion stimulation [18]. Thus, it appears that the reason there is no time lag between 
cortical activity and myoelectric activity is that subcortical rhythmic activity con-
tributes to both brain wave rhythms and myoelectric activity. Further, studies have 
found that intensifying muscle contraction changes the coherence peak frequency 
from the β band to the γ band [23, 24]. This γ band coherence is thought to contrib-
ute to the control of myoelectric activity (piper rhythm) at approximately 40 Hz, as 
is seen during strong muscle contraction. Interestingly, the coherence peak does not 
transition smoothly from the β band to the γ band as myoelectric activity changes 
from weak contraction to strong contraction; rather, it shifts in a step-like man-
ner. This suggests that the mechanism involved in coherence in the γ band differs 
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from that of the β band. However, there is no difference between the two frequency 
bands when measuring the time lag between brain activity and myoelectric activ-
ity; brain activity precedes myoelectric activity for both. Accordingly, coherence in 
both of these frequency bands is thought to be involved in centrifugal output from 
the cerebral cortex to spinal motor neurons. This type of coherence is localized to 
the primary sensorimotor cortex contralateral to the muscle. However, subdural 
recordings of patients with intractable epilepsy requiring surgical intervention have 
shown EEG–EMG coherence in other brain areas, such as the premotor cortex and 
supplementary motor cortex [25]. Anatomically, its well known that there are direct 
projections from the premotor cortex and supplementary motor cortex to spinal 
motor neurons [26, 27], suggesting that these brain areas are involved in the control 
of myoelectric activity.

Due to its ability to non-invasively measure frequency-specific coupling of the 
cerebral cortex (specifically the primary motor cortex) and spinal motor neurons, 
clinical applications of EEG–EMG coherence are ongoing and include illuminat-
ing the pathophysiology and evaluation of diseases featuring motor impairment 
or involuntary movement. A relatively slow resting tremor of 3–6 Hz is one of the 
core symptoms of Parkinson’s disease. While the rhythm of these tremors is thought 
to originate in the basal ganglia-thalamo-cortical loop, the mechanism of onset 
remains unknown. One study exploring the EEG–EMG coherence of these resting 
tremors found that primary sensorimotor cortex activity corresponds to the tremors 
[28]. As Parkinson’s disease patients exhibit EEG–EMG coherence at their tremors’ 
peak frequency or double harmonic frequency, stronger coherence is observed 
between 5 and 12 Hz, a range that displays low coherence in healthy individuals. 
At the same time, such patients show reduced coherence in other frequency bands 
(15–60 Hz) [29]. This abnormal coherence pattern has been found to approach 
that of healthy individuals (strong coherence for 15–60 Hz) with the use of deep 
brain stimulation or pharmacotherapy using drugs such as levodopa [30, 31]. Thus, 
the dopaminergic system may influence the occurrence of this coherence. Studies 
also report EEG–EMG coherence features resembling those of resting tremors in 
relation to freezing of gait, a typical gait disorder seen in patients with Parkinson’s 
disease [32, 33]. Accordingly, EEG–EMG coherence is considered widely applicable 
as a tool for evaluating the effects of rehabilitation interventions and elucidating the 
pathology of movement disorders in patients with Parkinson’s disease.

Reduced EEG–EMG coherence has been reported not only in patients with 
Parkinson’s disease, but also in stroke patients and older adults. One study examin-
ing the EEG–EMG coherence of the hemiplegic and non-hemiplegic sides of sub-
cortical infarction patients found that although the EEG and EMG power showed 
similar patterns for both the hemiplegic and non-hemiplegic sides, the coherence 
was significantly lower on the hemiplegic side [34]. This reduced EEG–EMG 
coherence on the hemiplegic side has been shown to improve as the patient’s motor 
function recovers [35], suggesting that this may be a useful biomarker reflecting 
motor function recovery in stroke patients. Meanwhile, EEG–EMG coherence in 
older adults is significantly lower than that in younger individuals and has been 
shown to have a significant correlation with muscle strength [36]. This suggests 
that lower EEG–EMG coherence in older adults may be one factor in the decline in 
strength, motor skills, and coordination that accompanies aging.

3. EEG mapping and source imaging

Interpreting an EEG visually requires experience, but a two-dimensional 
representation of brain electrical activity (topography) is a way to display brain 
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waves more objectively as a planar map of electrical activity on the scalp’s surface. 
Techniques are also being developed to estimate areas of activity within the brain 
from multichannel EEG data obtained from the scalp, thereby increasing the preci-
sion of brain function analysis using EEG.

EEG scalp mapping analyses include spatial analysis (two-dimensional and 
three-dimensional), coherence, and complexity (Ω). As brain waves consist of 
multiple frequencies with different physiological significances, it is vital to per-
form frequency analysis based on a fast Fourier transform (FFT) to consider each 
frequency independently. It is also integral to select the appropriate analysis and 
interpretation with consideration to the items to be evaluated and features of each 
disease using these analysis techniques [37].

A previous study reported the spatial distribution of EEG topography indepen-
dent of electrode placement by epoch and found that the standard topographies of 
various intervals were separated by instantaneous transitions [38]. In other words, 
it was unusual for one shape to slowly change into the next. Different topographies 
are thought to reflect different regions of neural activity and represent different 
stages of information processing. In light of this, dividing brain waves according 
to the temporal similarity of their spatial distribution on the scalp is considered a 
potentially useful method for studying information processing within the brain as it 
changes moment to moment. EEG microstate modeling and analysis was developed 
as a method of microstate segmentation using cluster analysis to determine the 
optimal topography and number of segments from a sequence of brain electrical 
activity corresponding to the characteristics of a mental activity [39]. This method 
is used to efficiently extract data based on the temporal and spatial structure of 
background EEG activity and explore the pathophysiology of brain function in a 
number of diseases [40, 41].

Importantly, a three-dimensional approach is necessary when considering actual 
brain pathology. Estimating the source of brain waves has recently been gain-
ing attention as one approach to three-dimensional EEG analysis. This approach 
can be broadly divided into equivalent dipole estimation methods [42–44] and 
low-resolution brain electromagnetic tomography (LORETA) [45–47], a standard 
method of current density distribution estimation. While there are advantages and 
disadvantages to each, one challenge faced by the former, for which it is essential to 
stipulate the number of sources of activity in advance, is the difficulty of selecting 
which combination of dipoles is valid because different combinations of dipoles 
result in similar scalp distributions (inverse problem). The latter depicts the spread 
of neural activity within the brain in three-dimensional tomography using EEG data 
collected from the scalp based on the hypothesis that adjacent groups of neurons 
have roughly the same activity. Excluding special cases such as epileptic seizures, 
actual brain activity is not limited to one specific area, making this method use-
ful in understanding complex brain activity such as higher brain function. More 
specifically, LORETA excels in primary processing, analyzing raw data to display an 
image, and secondary processing, carrying out statistical analyses to extract maps 
and find differences in current density distributions, and is therefore a form of EEG 
mapping used in diverse branches of neuroscience. As discussed above, LORETA 
estimates a three-dimensional distribution of brain tissue activity from EEG data 
measured on the scalp based on the hypothesis that adjacent neuron groups carry 
out similar activity. In other words, assuming a number of cubic lattices within the 
cerebral parenchyma, this method generates a three-dimensional blurred image of 
the current source by selecting the smoothest option from among combinations of 
three-dimensional current density distributions based on the Laplacian operation. 
Unlike other programs, the initial location value or number of dipoles is not set in 
advance. The operation is relatively simple, and while the resolution is low, the result 
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is not a primitive spherical model, but instead a tomographic image superimposed 
onto Talairach atlas, which can be shown in color and three dimensions (Figure 1) 
[48–50]. LORETA is being improved, and it has recently become possible to evaluate 
functional lagged connectivity and the directionality of that connectivity (isolated 
effective coherence; iCoh) between different areas of the brain.

As demonstrated above, delving deeper into background EEG activity by 
first exploring the time domain using methods such as microstate segmentation, 
then investigating the frequency domain using FFT, and the spatial domain both 
two-dimensionally (topography) and three-dimensionally (equivalent dipole 
estimation, FFT-dipole-approximation, LORETA) has a wide range of clinical 
applications, including elucidating pathological mechanisms and evaluating 
rehabilitation.

4. Brain-machine interface (BMI)

BMI techniques are methods of connecting the exchange of information 
between the external world and the brain using artificial electric circuits to restore 
and supplement its function. In the field of rehabilitation, output-type BMI appli-
cations, which read motor intention from brain activity and use this information 
to operate various devices and computers, are commonly used. Output-type BMI, 
which interprets motor intention from brain activity to operate external equipment, 
is classified into invasive and noninvasive types based on the method by which 

Figure 1. 
Statistical non-parametric maps of LORETA of the alpha band comparing pre-rest and post-rest of hand 
massage (A) and foot massage (B) [48]. White blobs indicate increased activity at post-rest for each massage.
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Figure 2. 
Motor imagery training using neurofeedback, a therapeutic BMI [51]. EEG activity feedback during motor 
imagery (μ band EEG activity in the sensorimotor area) is given using sensory modalities such as vision or 
hearing and the participant is trained to control their own EEG activity.

brain activity is measured. The former uses intracranial or epidural electrodes; the 
latter uses scalp EEG or functional brain imaging techniques. In addition to the 
conventional methods of restoring function using BMI, such as directly operat-
ing a robot arm or environmental control apparatus using brain activity, research 
geared toward therapeutic BMI applications, which utilize BMI for rehabilitation or 
reconstruction of functional neural networks, is also underway.

Neurofeedback is a method of learning to voluntarily control one’s own brain 
activity through the presentation of said activity as real-time sensory information 
(visual, auditory, etc.) (Figure 2) [51]. Neurofeedback requires technology that 
measures brain activity and analyzes the measured data in real time. The technolo-
gies involved in brain signal processing and interpretation are shared with those 
of BMI and, in a broad sense, neurofeedback can be considered a therapeutic form 
of BMI. In fact, EEG-based neurofeedback is widely used as a tool for improving 
motor, cognitive, and psychological functions not only in individuals with diseases, 
but also in healthy individuals ranging from childhood to old age. The delta (<4 Hz), 
theta (4–8 Hz), alpha (8–13 Hz), beta (14–30 Hz), and gamma (>40 Hz) frequency 
bands are most commonly used in evaluation and training [52]. As the functional 
characteristics of each frequency band differ, it is essential to select the appropriate 
frequency band for neurofeedback depending on the pathology of the case or the 
type of function one wishes to improve (Table 1) [53].

Neurofeedback is also gaining popularity as a technique for neuromodulation, 
that is, the regulation of local brain activity. Neurofeedback is considered very safe 
compared to methods such as repetitive transcranial magnetic stimulation (rTMS) 
or transcranial direct current stimulation (tDCS), as it does not use external 
stimulation and therefore avoids the risk of side effects such as seizure or burns that 
occur with rTMS and tDCS. At the same time, output-type BMI has been gaining 
interest in recent years as a tool for supporting the daily activities of persons who 
have difficulty with independent living or spontaneous expression due to disease, 
disability, or aging. Specifically, it will soon become possible to operate a variety of 
assistive devices, including wheel chairs, exoskeletons, drones, and communica-
tion robots using the operator’s EEG signals (Figure 3) [54]. Researchers are also 
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developing and exploring the effectiveness of smart homes that incorporate these 
BMI technologies [55]. Smart homes are equipped with technology that interprets 
the user’s motion intention or emotional state using methods such as EEG, which 
can easily measure brain activity with no special training or burden on the user. 
Specifically, smart homes assist with daily life by measuring the brain activity that 
occurs when the user naturally moves their body accompanying a motion intention, 
for example, to operate the television or air conditioner, recognizing what kind of 
motion intention is occurring, and manipulating the environment in accordance 
with the user’s intention. They may also detect when the user is feeling discom-
fort and modify the environment accordingly using technology that captures an 

Protocol Purpose

↓ theta Cognitive training after stroke;

Cognitive training of healthy adults with a risk for neurodegenerative 
disorder.

↑ theta Aiming to increase capabilities of executive functions on healthy students;

Memory consolidation training.

↑ theta, ↓ alpha Relaxation training;

Training to improve creative performance (playing music, dancing), effects 
on mood.

↓ alpha Attentional training;

Frontal alpha-asymmetry self-regulation training to influence mood;

Training for increased motor performance.

↑ alpha; Training to reduce anxiety;

Training to improve cognitive performance;

Relaxation training for stress reduction.

↑ high alpha Training to improve cognitive performance.

↑ SMR (12-15 Hz) Training to decrease epileptic seizures;

Training to improve declarative learning and sleeping pattern;

Training to improve cognition and memory in stroke patients;

Training to enhance golf putting.

↑ SMR, ↓ theta Training to optimize microsurgical skills;

Training to minimize ADHD symptoms on a healthy population.

↑ SMR, ↓ theta, ↓ high beta Training to improve cognitive performance;

Training to improve Asperger’s syndrome and autistic spectrum disorder 
symptoms.

↑ low beta Training to improve cognitive performance;

Training to modulate sleep spindle activity and overnight memory 
consolidation.

↑ beta, ↓ theta Typical training for improvement of ADHD symptoms.

↑ beta, ↓ theta, ↓ low alpha Training of attention.

↑ gamma Training of cognitive control;

Training of memory and intelligence.

Table 1. 
An overview of already used protocols of frequency EEG-neurofeedback training with the references to 
exemplary studies and their main therapeutic purpose [53].
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emotional state (discomfort) by measuring and analyzing the user’s brain activity. 
This information can further be communicated to family members or caregivers 
to allow them to provide assistance based on the user’s emotional state. In addition 
to the above, it is also possible to assist a user’s own actions in a standard living 
environment using BMI actuation technology that moves an exoskeleton-type robot 
actuator linked to brain activity [54, 55]. It is hoped that such BMI technologies will 
increase communication in a variety of settings and create an environment where 
people can continue to live independent fulfilled lives.

5. Conclusion

The development of brain function imaging techniques has led to a new under-
standing of previously unexplained brain functions as well as the creation of clini-
cal applications, scientific techniques, and assistive devices based on these findings. 
Elucidation of brain function fully utilizing the advantages of EEG is expected to 
continue as high definition EEG and accompanying analysis methods become more 
advanced. EEG is also advantageous in that it is relatively easy to record simultane-
ously with other methods of brain function measurement. Therefore, it is impera-
tive that we do not simply interpret pathology and brain function using EEG results 

Figure 3. 
EEG-based BMI for assisting with daily activities and improving quality of life [54].
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alone but gain a comprehensive picture of the brain’s physiological function and 
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Appendices

EEG electroencephalography
EMG electromyography
MEG magnetoencephalography
PET positron emission tomography
fMRI functional magnetic resonance imaging
TMS transcranial magnetic stimulation
SPECT single photon emission computed tomography
NIRS near-infrared spectroscopy
ERD event-related desynchronization
ERS event-related synchronization
FFT fast Fourier transform
LORETA low-resolution brain electromagnetic tomography
BMI brain-machine interface
rTMS repetitive transcranial magnetic stimulation
tDCS transcranial direct current stimulation
SMR sensorimotor rhythm
ADHD attention-deficit hyperactivity disorder
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Chapter 5

Fronto-Temporal Analysis of EEG
Signals of Patients with
Depression: Characterisation,
Nonlinear Dynamics and
Surrogate Analysis
Subha D. Puthankattil

Abstract

The recent advances in signal processing techniques have enabled the analysis of
biosignals from brain so as to enhance the predictive capability of mental states.
Biosignal analysis has been successfully used to characterise EEG signals of unipolar
depression patients. Methods of characterisation of EEG signals and the use of
nonlinear parameters are the major highlights of this chapter. Bipolar frontopolar-
temporal EEG recordings obtained under eyes open and eyes closed conditions are
used for the analysis. A discussion on the reliability of the use of energy distribution
and Relative Wavelet Energy calculations for distinguishing unipolar depression
patients from healthy controls is presented. The potential of the application of
Wavelet Entropy to differentiate states of the brain under normal and pathologic
condition is introduced. Details are given on the suitability of ascertaining certain
nonlinear indices on the feature extraction, assuming the time series to be highly
nonlinear. The assumption of nonlinearity of the measured EEG time series is
further verified using surrogate analysis. The studies discussed in this chapter
indicate lower values of nonlinear measures for patients. The higher values of signal
energy associated with the delta bands of depression patients in the lower frequency
range are regarded as a major characteristic indicative of a state of depression. The
chapter concludes by presenting the important results in this direction that may
lead to better insight on the brain activity and cognitive processes. These measures
are hence posited to be potential biomarkers for the detection of depression.

Keywords: depression, relative wavelet energy, wavelet entropy, approximate
entropy, Hurst exponent, largest Lyapunov exponent and fractal dimension,
surrogate analysis

1. Introduction

Depression refers to a state of mental disorder accompanied by mood variations
that affect the thought process, social and physical well-being of an individual.
World Health Organisation reports that more than 264 million people under all age
group suffer globally from this leading cause of disability. Depression may also
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sometimes lead to cognitive impairment. History demonstrates that depressive
disorders have been with human civilization from the very beginning of the man-
kind. Unlike many other ailments that affect the health of an individual, an early
diagnosis of this mental disorder is highly challenging. Timely medical intervention
has been proved to be very effective in arresting the progression of this disorder.
Automated diagnosis using EEG signals of the brain would be highly beneficial in
the effective clinical intervention and thereby assisting the psychiatrists in the
assessment of mental state.

EEG signals contain information about the state of the brain. The variations in
the biosignals, indicating certain symptoms, are highly subjective and may appear
at random in time scale. The electroencephalogram has been used as a tool for
investigating the brain electrical activity in different physiological and pathological
states for several decades. The identification of neurophysiological events, different
behavioural states and the localisation of the areas involved constitute a relevant
task in the EEG analysis.

Electroencephalogram (EEG) is the recording of electrical activity along the
scalp produced by the firing of neurons within the brain. It is a tool which helps in
diagnosing various disorders of the brain and also helps in studying the functional
state of the brain. EEG recording is most commonly done by placing the electrodes
on the scalp while localised measurement of potentials is done subdurally or from
the cerebral cortex. Electrode placement for recording EEG is based on the Interna-
tional 10–20 electrode placement system. The amplitude of the EEG signal is
slightly less than 10 μV to slightly more than 100 μV p–p and the frequency ranges
from 0 to slightly greater than 100 Hz. Earlier, the analysis of EEG has been based
on the assumption that the EEG signals are generated by a highly complex linear
system, but later they have been interpreted as the output of a deterministic system
of relatively low complexity but containing nonlinear elements. Thus applying the
concept of deterministic chaos to the EEG, it can be characterised by various
parameters [1]. EEG studies of depression patients have been proven worthwhile
for quantitative analysis that will lead to the development of automated clinical
diagnostic tools.

In this chapter we discuss the method to characterise and compare frontopolar-
temporal EEG signals of depression patients and normal controls using signal
processing and nonlinear methods. An 8-level Multiresolution decomposition of the
time -frequency analysis, which decomposes a mixed signal into signals at different
frequency bands, is attempted. Energy at different resolution levels has been calcu-
lated using Parseval’s theorem. Relative Wavelet Energy (RWE) is used to charac-
terise the EEG signal energy distribution of healthy subjects and depression patients
at different frequency bands. Wavelet Entropy calculations are performed to assess
the degree of order associated with the acquired signals. All the aforementioned
measures posit better quantitative measures in the comparative study of brain
activity and complexity in depression patients and normal controls.

2. Materials and methods

2.1 Measurement protocol

The real time data was recorded from 30 medication free outpatients under the
age group of 20–50 years comprising of 16 female and 14 male patients from the
Psychiatry department of Medical College, Calicut, Kerala, India (female mean age:
33; male mean age: 35). The measurement was done on unipolar depression patients
who did not have any history of substance abuse and no significant medical illness.
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Similarly 30 age and sex matched healthy controls also participated in the study
who were free of medical illness. None of them reported of a history of any central
nervous system disorder. Bipolar EEG recordings using a 24-channel EEG measur-
ing instrument was carried out at locations FP1-T3 (left half) and FP2-T4 (right
half) of the brain. The electrodes were placed, based on the International 10–20
electrode placement system. An ear clip electrode attached to the right earlobe
served as an isoground connection. The EEG recordings were done by placing the
electrodes on the frontopolar-temporal regions both on the left and right half of the
brain for duration of 5 minutes each, under eyes closed and eyes open condition in a
resting state. The sampling frequency of the signal is 256 Hz and is notch filtered at
50 Hz to remove the power line interference. Statistical analysis was performed by
One-way ANOVA to test for differences among the two classes of EEG signals
recorded. Informed written consent was obtained from all the subjects who partic-
ipated in the study and medical ethical committee approval was taken prior to the
study. Figures 1 and 2 show a typical EEG signal of normal and depression patient
respectively.

2.2 Preprocessing

Artefacts such as eye movements, eye blinks, head movements, cardiac and
muscle activation artefacts, tongue movements and power line noise pose a problem
for the proper EEG interpretation and analysis. Other artefacts that disrupt the EEG
signal include instrument artefacts (faulty electrodes), sweat artefacts, impedance
fluctuations, cable movements, pulse artefacts etc. Power line interferences are
removed from the EEG signal by using a 50 Hz notch filter. Eye movement and
muscle movement artefacts are manually removed from the signal with the help of
an expert by visual inspection. In this work, the high frequency components present
in the acquired EEG signals are denoised using Total Variation Filtering (TVF) [2].

The TVF employed in this work is based on the algorithm developed by
Chambolle [3]. A dual formulation approach is used to minimise the objective

Figure 1.
EEG signal of a normal control.
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function of the Total Variation (TV) denoising problem. So the TV denoising
problem amounts to minimising the following discrete function [4]:

J xð Þ ¼ y� xk k22 þ λ Axk k1 (1)

where A is a matrix of size M � N. Smoothing of the signal is controlled by λ,
which is known as the regularisation parameter. Since the amount of high frequency
noise present in the EEG signal recorded from depression patients using the 24-
channel equipment was already low, the optimal value of λ for denoising was found
to be 0.9.

2.3 Selection of wavelet

From an array of discrete orthogonal wavelets, Daubechies-1(D1) to D10,
Coiflet-1 to Coiflet- 5 and Symlet 1 to Symlet 8, the task is to identify the wavelet
which suits well with the individual EEG signal recorded from depression patients.
This is necessitated as it is found that there is extreme patient variability and also
variability of the signals with respect to the location on the scalp from person to
person. All the above 23 wavelets were tested on all the 30 patient records under
four categories namely eyes open and eyes closed conditions recorded from the left
and right half of the brain.

The best wavelet is chosen based on the highest value of correlation coefficient
which indicates a better match of the characteristics of the EEG signal of depression
patient with the wavelet selected. Of the 30 cases considered in this experimental
study described here, for 85% of the cases, Coiflet 5 emerged as the best suited
wavelet. Hence Coiflet 5 is used for analysis.

2.4 Wavelet Transforms

Wavelet Transforms are efficiently used in many of the signal processing appli-
cations as it gives more accurate time and frequency representation of the signal.

Figure 2.
EEG signal of a depression patient.
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Wavelet Transforms help in the extraction of wavelet coefficients of discrete time
signals. An important feature of Wavelet Transform is that it gives good frequency
resolution over a large window while good time resolution at high frequencies. This
feature has been of great interest to biomedical applications, as most of the
biosignals contain high frequency components in a short span and low frequency
components over large span. Wavelet Transforms are thus highly useful for the
analysis of nonlinear, nonstationary signals as it gives an excellent time–frequency
resolution.

In this method, the signal is decomposed into a set of basis functions called
wavelets by the Wavelet Transform. These basic functions are obtained by dila-
tions, contractions and shifts of a unique function called wavelet prototype. Con-
tinuous wavelets are functions generated from one single function by dilations and
translations of a unique mother wavelet ψ (t):

Ψa,b tð Þ ¼ 1ffiffiffiffiffiffi
aj jp Ψ

t� b
a

� �
(2)

where a is the scale parameter, b, the shifting parameter and t, the time. The
function set Ψa,b tð Þð Þ is called the wavelet family. The Wavelet Transform usually
used in engineering application is the Discrete Wavelet Transform (DWT). It uses
the discrete values of the scaling and the translational parameters given by,

a ¼ a j
0 and b ¼ kb0a

j
0 where j and k are integers. Then we get:

Ψ j,k tð Þ ¼ a
�j=2
0 Ψ a�j

0 t� kb0
� �

(3)

where j indicates frequency localization and k indicates time localization. Dyadic
scheme implementation is the basis for Multiresolution Analysis (MRA) in Discrete
Wavelet Transforms. Any time series can be decomposed in terms of coarse
approximations provided by scaling functions and the detail information by the
wavelet functions [5]. The scaling function is associated with low-pass filters (LPF)
and the wavelet function is associated with the high pass filters (HPF). The decom-
position of the signal into the different frequency bands is obtained by successive
convolution with high-pass and low pass filtering of the time domain signal.

The approximations are the low frequency components and the details are the
high frequency components of the time series. The detail coefficients and approxi-
mation coefficients at level 1 (CD1 and CA1) are obtained by decimating the out-
puts from both the filters by 2. The procedure is then repeated by sending the
approximation coefficients to the second stage. This is continued till the signal is
decomposed at the expected level. In this work, an eight level decomposition is
carried out. The EEG signal acquired from the depression patients are sampled at a
frequency of 256 Hz. The multiresolution decomposition offers a time-frequency
decomposition of the signal involving not only its energy but also the morphological
aspects that are relevant for signal recognition and understanding [6]. Each of the
wavelet scales corresponds to a specific frequency band given by

f ¼ 2n�m f s
2n

(4)

where, f is higher frequency limit of the frequency band represented by decom-
position level m, fs is sampling frequency and 2n is the number of data points in the
signal. CD1 (64-128 Hz) and CD2 (32-64 Hz) correspond to gamma band, CD3
(16-32 Hz) corresponds to beta band, CD4 (8-16 Hz) corresponds to alpha band,
CD5 (4-8 Hz) corresponds to theta band while CD6 (2-4 Hz), CD7 (1-2 Hz), CD8
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(0.5-1 Hz) and CA8 (0–0.5 Hz) correspond to delta band. The DC level of the signal
corresponding to eighth level approximation coefficient (CA8) is also considered in
this work. The signals are reconstructed from the wavelet coefficients for each scale
by applying inverse transform. The reconstructed signal coefficients obtained from
eight levels of details and from the eighth level of approximation are further used
for energy calculations.

2.5 Calculation of energy

After multilevel decomposition, Parseval’s theorem is employed to calculate the
energy of the reconstructed signal coefficients at the detail and approximation
levels. It helps in identifying the energy distribution in different frequency bands of
gamma, beta, alpha, theta and delta [7]. Parseval’s theorem is mathematically
expressed as [8]:

XN
n¼1

x nð Þj j2 ¼
XN
n¼1

a j nð Þ�� ��2 þ
Xm
j¼1

XN
n¼1

d j nð Þ�� ��2 (5)

where x(n) is the time domain discrete signal, N is the total number of samples

in the signal,
PN

n¼1 x nð Þj j2 is the total wave energy of the signal x(n),
PN

n¼1 a j nð Þ�� ��2 is
the total energy concentrated in the level ‘j’ of the approximated version of the

signal.
Pm

j¼1
PN

n¼1 d j nð Þ�� ��2 is the total energy concentrated in the detail version of
the signal, from level 1 to m and m is the maximum level of wavelet decomposition.

Energy distribution calculations are done on all recordings of eyes open and eyes
closed conditions, acquired from both the left (FP1-T3) and right (FP2-T4)
frontopolar-temporal regions of the brain for both the normal controls and depres-
sion patients. Energy distribution associated with the various bands of frequency,
for different levels of detail are plotted in Figures 3–7, for a single case of measure-
ment recorded (from the left half of the brain under eyes closed condition). Similar
variations are also observed for measurements with the other recording protocols.

It is observed that there exists a clear difference in the energy levels of EEG
signals of both normal and depression patients in the Gamma band (D1) (Figure 3).
Values of energy obtained for normal controls are always higher than that of
depression patients, covering all age groups. These differences in energy levels tend
to narrow down as we move from Gamma band D1 to alpha band D4 through D2
and D3. It is interesting to note that normal subjects register higher energy distri-
bution levels for cases considered up to theta band D5. This trend appears to get

Figure 3.
Energy distribution in gamma band (D1) of normal controls and depression patients.
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reversed beyond theta band D5 (see Figure 7 for Delta band D8). The energy
distribution of depression patients in theta band (D5-Figure 6) is almost at par with
that of normal controls. But the energy distribution of depression patients has
crossed the threshold of normal subjects and is higher than normal in all cases of
delta band from D6-D8 and A8. It gives a clear indication that the brain activity of
depression patients in gamma, beta and alpha band is lower when compared to
healthy controls. Similar is the trend for all other measurements taken from the
right side of the brain under eyes closed and open condition and also for measure-
ments from the left half of the brain for eyes open condition.

Figure 4.
Energy distribution in Beta band (D3) of normal controls and depression patients.

Figure 5.
Energy distribution in alpha band (D4) of normal controls and depression patients.

Figure 6.
Energy distribution in theta band (D5) of normal controls and depression patients.
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2.6 Relative Wavelet Energy (RWE)

Relative Wavelet Energy (RWE) gives information about the relative energy
associated with the frequency bands and it can detect the degree of similarity
between segments of a signal [9, 10]. It is also known from previous studies that
RWE is a good tool for detecting and characterising specific phenomenon in time
and frequency planes [11].

The energy wavelet coefficients dj,k represent the detail signal energy at each
resolution level, j given by,

E j ¼
X
k

d j,k
�� ��2 j ¼ 1…N (6)

The energy scaling coefficients Ck is defined as the energy at decomposition
level N + 1 given by

ENþ1 ¼
X
k

ckj j2 (7)

Thus the total energy of the signal for all levels is given by

Etotal ¼
XNþ1

j¼1

E j (8)

and hence the Relative Wavelet Energy (RWE) is defined as

ρ j ¼
E j

Etotal
j ¼ 1,…:,N þ 1 (9)

Clearly
P

jρ j ¼ 1 and the distribution {ρ j} can be considered as a time scale
density. This provides information to characterise signal energy distribution at
different frequency bands.

RWE calculations are carried out on the different frequency bands to understand
the variations in healthy subjects and depression patients. Wavelet energy in the
gamma band, particularly D1 is negligible, while D2 is negligibly small for depres-
sion patients in comparison to normal controls. The RWE levels associated with
beta (D3–18.5%) and alpha (D4–22%) bands for normal controls are approximately
25% higher than the corresponding values for depression patients with D3 being
1.9% and D4–4.3% (Figures 8 and 9). RWE of theta band also shows similar trend

Figure 7.
Energy distribution in delta band (D8) of normal controls and depression patients.
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with normal controls having values slightly lower than twice the values associated
with depression patients. RWE associated with delta band (D6–19.5%, D7–23.5%,
D8–17.1% and A8–23.7%) show appreciably higher values for depression patients
when compared to normal controls. The feature worth noting is that RWE of
approximation level has the highest percentage in depression patients to that of
normal controls. From the results of RWE calculations, it may be observed that the
RWE is more prominent in depression patients in the frequency bands, 1-2 Hz and
0–0.5 Hz. Hence depression may be classified as a very low frequency phenomenon.

RWE values plotted in Figures 8 and 9 represent the calculations carried out on
the frequency bands of normal and patient EEG signals recorded from the left half
of the brain under eyes open condition. RWE calculations are also carried out on the
frequency bands of the EEG signal acquired from the left half of the brain under
eyes closed condition and on the EEG signals from the right half of the brain both
under eyes open and eyes closed conditions. The observation from all the protocols
reveals a high value of RWE in alpha band (D4) of normal controls indicating high
activity in the thought process of healthy subjects. Also a high value of RWE in 8th
level approximation followed by detail level D7 is observed in depression patients.
Hence from all the four cases, it may be concluded that depression phenomenon is
confined to the lower frequency bands especially in delta band of 0–4 Hz. In order
to analyse the statistical nature of the measurement among the two broad classes of
EEG signals recorded, One-way ANOVA is carried out which gave a statistical
significant difference (p < 0.005).

2.7 Wavelet Entropy (WE)

The degree of order/disorder associated with a multifrequency signal response
is characterised by Wavelet Entropy (WE). The time evolution of WE was also

Figure 8.
RWE of all frequency bands of normal controls from the left half of the brain under eyes open condition.

Figure 9.
RWE of all frequency bands of depression patients from the left half of the brain under eyes open condition.
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calculated which gave information about the dynamics in the EEG records. It was
observed that in contrast to spectral entropy, WE is capable of detecting changes in
a nonstationary signal due to the localisation characteristics of the Wavelet Trans-
form. The computational time of WE was significantly shorter since the algorithm
involved the use of fast wavelet transform in a multiresolution framework. The
results demonstrated that WE could differentiate between specific physiological
brain states under spontaneous or stimulus-related conditions. The time evolution
of the WE is calculated to give information about the dynamics in the EEG records.
A signal generated by a totally random process can be taken as representative of a
very disordered behaviour.

The Shannon Wavelet Entropy (WE) as a function of time is calculated [10] as:

WE ¼ �
Xm
j¼1

ρ j ln ρ j

� �
(10)

where m is the wavelet decomposition level from level 1 to level m.
WE may be considered as a meaningful indicator since it is able to differentiate

physiological brain states under normal and depression conditions. Figure 10
represents the Wavelet Entropy calculated for the EEG signals recorded from the
left half of the brain under eyes open condition from normal and depression
patients. Significant decrease in theWE is observed in the EEG signals of depression
patients under all the four recording protocols, indicating a more rhythmic and
ordered behaviour of the EEG signal [12, 13]. Being independent of the amplitude or
the energy of the signal, the WE gives additional information about EEG signals in
comparison to those obtained by using frequency analysis or other standard
methods. The use of such quantifiers based on time-frequency methods can
contribute to the analysis of brain responses and may also lead to a better
understanding of their dynamics.

2.8 Nonlinear measures

Reduction in complexity in patients with disease is the main hypothesis that is
checked in most of the research work. Here we analyse the EEG signal complexity
and irregularity of the frontopolar-temporal regions of the brain of controls and

Figure 10.
Wavelet entropy calculated for the EEG signals recorded from the left half of the brain under eyes open
condition from normal and depression patients.

84

Electroencephalography - From Basic Research to Clinical Applications



patients with unipolar depression under resting states of eyes open and closed
conditions. The analysis is carried out using Approximate Entropy, Fractal
Dimension and Largest Lyapunov exponent.

2.8.1 Approximate Entropy (ApEn)

Approximate Entropy (ApEn) is a statistic quantifying regularity and complexity
which has potential application to a wide variety of physiological and clinical time
series data. ApEn is a statistical parameter that measures the predictability of the
current amplitude values of a physiological signal based on its previous amplitude
values. Approximate Entropy is the is the probability difference of the pattern
similarities of the connected straight lines of the m adjacent points and m + 1
adjacent points of time sequence data [14]. The more complex the sequence data,
higher is the probability that new pattern appears and larger the corresponding
ApEn. ApEn measures the (logarithmic) likelihood that runs of patterns that are
close remain close on next incremental comparisons.

For a time series of N data points, {u(i):1 ≤ i ≤ N}, form vector sequences x(1)
through x(N-m + 1), defined by x(i) = [u(i),..., u(i + m-1)]. These vectors represent
m consecutive u values, commencing with the ith point. m is the length of compared
runs. The distance d[x(i), x(j)] between vectors x(i) and x(j) is defined as the
maximum difference in their respective scalar components. Let Bi be the number of
vectors x(j) within r of x(i) for a window length m and let Ai be the number of
vectors x(j) within r of x(i) for a window length m + 1, where r is the tolerance for
accepting matches. The function Cm

i rð Þ is defined as:

Cm
i rð Þ ¼ Bið Þ

N �mþ 1ð Þ (11)

In calculating Cm
i rð Þ, the vector x(i) is called the template and the instance where

a vector x(j) is within r of it is called a template match. Cm
i rð Þ is the probability that

any vector x(j) is within r of x(i). It measures within a tolerance r, (r = k*standard
deviation) the regularity, or frequency, of patterns similar to a given pattern of
window length m. The function Φm rð Þ is defined as:

Φm rð Þ ¼ 1
N �mþ 1

XN�mþ1

i¼1

lnCm
i rð Þ (12)

where, Φm rð Þ is the average of the natural logarithms of the functions Cm
i rð Þ.

For finite data sets,

ApEn m, r,Nð Þ ¼ Φm rð Þ �Φmþ1 rð Þ (13)

The parametres N, m and r must be fixed for each calculation and r effectively
works as a filter. The values of m and k adopted in this work are 1 and 0.2
respectively.

The column plot of Figure 11 represents the ApEn values calculated for the EEG
signals of healthy controls and patients, acquired from the left half of the brain
under eyes open condition. The results of ApEn calculated for from the left part of
the brain under eyes closed conditions and from the right part of the brain both
under eyes open and closed conditions indicate that normal controls have a higher
value of ApEn than depression patients. A low value of ApEn indicates predictabil-
ity and regularity in a time series, whereas a high value of ApEn indicates
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unpredictable and random variation. The results of ApEn indicate that the com-
plexity of the brain is high in normal controls while the signals from depression
patients are less complex.

2.8.2 Fractal Dimension (FD)

FD analysis is frequently used in biomedical signal processing, including EEG
analysis. Fractal Dimension can be used to quantify the complexity and the self-
similarity of an object. The EEG FD can expected to be always between 1 and 2 since
the dimension of a plane is equal to 2 and the dimension of a line is equal to 1. FD
can be calculated using Higuchi’s method, Katz algorithm, box counting approach
and so on. FD analysis provides a fast computational tool to track complexity
variations of biosignals. FD analysis used in this work is based on Higuchi’s
algorithm [15]. The algorithm is based on the measure of the mean length of the
curve L(k) by using a segment of k samples as a unit of measure.

Consider x(1), x(2),… , x(N) be the time series to be analysed. The algorithm
constructs k new time series xkm, defined as

xkm : x mð Þ, x mþ kð Þ, x mþ 2kð Þ, ::……, x mþ ⌊
N �m

k
⌋k

� �
for m ¼ 1, 2,…:, k (14)

where m and k are integers indicating the initial time and the interval time
respectively. ⌊a⌋ means the integer part of a. For each of the curves or time series
xkm constructed, the average length Lm kð Þ is computed as

Lm kð Þ ¼
P⌊N�m=k⌋

i¼1 x mþ ikð Þ � x mþ i� 1ð Þkð Þj j N � 1ð Þ
⌊N�m

k ⌋k
(15)

where N is the total length of the data sequence x and N�1ð Þ
⌊ N�mð Þ=k⌋k

is a normalisation

factor.
An average length is computed for all time series having the same delay

(or scale) k, as the mean of the k lengths Lm kð Þ for m = 1,....,k. This procedure is

Figure 11.
Approximate entropy values calculated for the EEG signals of normal and depression patients acquired from the
left part of the brain under eyes open condition.
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repeated for each k ranging from 1 to kmax, yielding a sum of average lengths L(k)
for each k as indicated in Eq. (16).

L kð Þ ¼
Xk
m¼1

Lm kð Þ (16)

The total average length for scale k, L(k) is proportional to k�D, where D is
the FD by Higuchi’s method. In the curve of ln(L(k)) versus ln(1/k), the slope of the
least squares linear best fit is the estimate of the FD. The kmax values depends on
the dimension D, on the signal’s length N and on the specific class of fractal signals.
The value of kmax chosen for the analysis of EEG signals is 6. Figure 12 shows the
plot of Fractal Dimension values calculated from the EEG signals of normal and
depression patients acquired from the left part of the brain under eyes closed
condition.

FD based on the algorithm followed is a quantifier evaluated directly in the time
domain. Similar to the plot in Figure 12, the plots of FD for the rest of the recording
protocols show that the values of FD are higher for normal controls indicating
higher complexity in EEG signals of normal controls [16, 17]. It may be concluded
that the value of FD increases with the increase in the degree of the cognitive
activity. Lower values of FD indicate a low degree of cognitive activity for
depression patients.

2.8.3 Largest Lyapunov Exponent (LLE)

Lyapunov exponents provide a qualitative and quantitative characterisation of
dynamical behaviour. To discriminate between chaotic dynamics and periodic
signals, Largest Lyapunov Exponent (λ) is often used. Lyapunov exponents are the
average exponential rates of divergence or convergence of nearby orbits in phase
space. It is a quantitative measure of the sensitive dependence on the initial
conditions. The rate of separation between the nearby orbits in phase space is
characterised by the Largest Lyapunov Exponent λ, mathematically written as:

Figure 12.
Fractal dimension values of EEG signals of normal and depression patient from the left part of the brain under
eyes closed condition.
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Xτ � Yτk k≈ X0 � Y0k keλτ (17)

where X0 and Y0 are two initial conditions close together, and Xτ and Yτ are
their respective time evolutions after τ time units. The approach of Wolf et al. [18]
was used for constructing the algorithm for calculating the Largest Lyapunov
Exponent (LLE) in this work.

Let x0�! tð Þ denote a reference trajectory passing through x0�! 0ð Þ at time t = 0 and
let x1! tð Þ denote a trajectory passing through x1! 0ð Þ at time t = 0. The Largest
Lyapunov Exponent λ x0�!� �

is defined with respect to the reference orbit x0�! by

λ x0�!� � ¼ lim
t!∞

lim
Δx 0ð Þ��!���

���!0

1
t
log

Δx tð Þ��!���
���

Δx 0ð Þ��!���
���

(18)

where Δx 0ð Þ��!���
��� is the Euclidean distance between the trajectories x0�! tð Þ and

x1! tð Þ at an initial time t = 0 and Δx tð Þ��!���
��� is the Euclidean distance between the

trajectories x0�! tð Þ and x1! tð Þ at a later time t. In this definition x1! tð Þ can be any
trajectory that is initially infinitesimally close to x0�! 0ð Þ at time t = 0. The corre-
spondence between sensitivity to initial conditions and a positive Lyapunov expo-
nent is obvious in equation number 17. An embedding dimension of 10 and a delay
of 1 were used for calculating LLE. Figure 13 shows the values of LLE calculated for
normal and depression patients from the left half of the brain under eyes closed
condition.

Larger values of LLE observed for all the recording protocols for normal controls
are indicative of higher brain activity [16, 17]. Therefore LLE can be effectively
used for discriminating the EEG signals of normal controls and depression patients.

2.9 Surrogate data analysis

The method of using surrogate data in time-series analysis was introduced by
Theiler et al. to validate that a given time-series is nonlinear. Nonlinear indices such

Figure 13.
LLE values of EEG signals acquired from normal controls and depression patients from the left part of the brain
under eyes closed condition.
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as FD and LLE are computed for several surrogate data series. Their values are
compared with that of the nonlinear index computed for the original data. The lack
of any statistically significant difference is interpreted as the deviation from a linear
process. Surrogate data is constructed by phase randomising the original time series
and has the same linear features like mean, variance, histogram and power spec-
trum as the original data. This method of generating surrogate data is based on the
amplitude adjusted Fourier transform method, which yields the same distribution
of amplitudes but randomises the phases from the spectral aspect [19]. Tentative
surrogate data are obtained by inverse Fourier transform.

To test for a statistical significance of difference in FD and LLE between the
original and the surrogate data, 10 surrogate data series were generated to match
each original signal. Let LLE (D) be the LLE of the original data, and let LLE (Si) be
the LLE of the 10 surrogate series (i = 1, … , 10). The mean and standard deviation,
SD of LLE (Si) (i = 1, … , 10) are estimated as LLE (S) and SD(LLE(Si)). The
statistical significance measure σ then is computed as follows:

σ ¼ LLE Dð Þ � LLE Sð Þj j
SD LLE Sið Þð Þ (19)

It follows a Student t test distribution with 9 degrees of freedom (�t9[1-α/2]). For
α = 0.05, the critical value of t is 2.26. Accordingly, when the σ> 2.26, the null
hypothesis is rejected at the 5% probability level, and the original data are consid-
ered to contain nonlinear features.

Nonlinear indices (FD and LLE) are computed for several surrogate data series
and their values are compared with the ones computed for the original series. The
demonstration of significant difference in nonlinear indices between the original
and surrogate data is supportive of the presence of nonlinearity in the original data.
Tables 1 and 2 show the calculation of the statistical significance measure for both
the normal controls and depression cases for the nonlinear indices, FD and LLE. The
results prove that the original data contain nonlinear features since the statistical
significance measure is greater than 2.26.

Protocol Fractal dimension Largest Lyapunov exp.

Original data Surr. data Stat. sig. Meas. Original data Surr. data Stat. sig. Meas.

L:EC 1.1659 1.1889 65.22 0.552 0.5059 3.87

L:EO 1.159 1.1803 50.14 0.538 0.6066 2.84

R:EC 1.1663 1.1875 63.75 0.529 0.6177 5.25

R:EO 1.6556 1.1876 76.04 0.485 0.5251 3.85

Table 1.
Surrogate data analysis of normal controls.

Protocol Fractal dimension Largest Lyapunov exp.

Original data Surr. data Stat. sig. Meas. Original data Surr. data Stat. sig. Meas.

L:EC 1.0368 1.0604 57.07 0.3978 0.4808 7.36

L:EO 1.0441 1.0615 35.63 0.4811 0.5201 2.45

R:EC 1.1220 1.1536 62.23 0.3767 0.4782 4.43

R:EO 1.0638 1.0827 47.95 0.5420 0.4775 4.93

Table 2.
Surrogate data analysis of depression patients.
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3. Conclusions

The characteristics of frontopolar-temporal EEG signals of depression patients
are investigated using signal processing techniques and nonlinear parameters. EEG
signals for the analysis were acquired from 30 unipolar depression patients and 30
age and sex matched healthy controls. Bipolar EEG recording using a 24-channel
EEG machine was carried out at locations FP1-T3 (left half) and FP2-T4 (right half)
of the brain for a duration of 5 minutes each, under eyes closed and eyes open
condition in a resting state. Total variation filtering was found to be effective in
removing the high frequency noise while the eye blink and eye movement artefacts
were removed by visual inspection. Wavelet analysis is performed and signal
features having significant influence on the signal waveforms of depression and
normal controls have been identified. Coiflet 5 is used for the wavelet analysis. An
8-level decomposition was carried out and Relative Wavelet Energy was calculated
on the reconstructed signal coefficients. Wavelet Entropy calculations revealed the
degree of disorder associated with the EEG signals. The nonlinear measures like
Approximate Entropy (ApEn), Fractal Dimension (FD) and Largest Lyapunov
Exponent (LLE) are calculated. Nonlinearity of the EEG signal under study was
confirmed by surrogate data analysis.

Depression effects are reflected mainly in the lower frequency range indicating a
reduced brain activity. The multiresolution decomposition characterised the various
frequency bands of EEG signals. The wavelet energy distribution in different
frequency bands indicated higher levels of brain activity for normal controls in
gamma, beta and alpha bands. It also showed lower brain activity in the delta bands
of depression patients. The results from the calculations of RWE confirm the fact
that, mental activity as reflected in the EEG signals of depression patients is con-
fined to the lower frequency range especially in the delta band of 0-4 Hz. The
quantitative evaluation of nonlinear parameters like ApEn, FD and LLE confirmed
higher brain activity for normal controls compared to depression patients. Lower
values of these nonlinear parameters indicate the fact that complexity of EEG is
reduced in depression which effectively helped in discriminating EEG signals of
depression patients and healthy controls. The quantitative assessment of signal
characteristics and nonlinear parameters from the present study may be of
significant use in the analysis of brain dynamics.
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Chapter 6

Necessity of Quantitative EEG for
Daily Clinical Practice
Jesús Pastor, Lorena Vega-Zelaya and Elena Martín Abad

Abstract

The two main problems in the daily clinical practice of EEG are i) its under-use
dedicated mainly to epilepsy and ii) subjectivity in de visu analysis. However, both
problems can be overcome by using numerical tools in clinical practice that broaden
the scope and introduce real objectivity to bioelectrical measurements. We have
developed a method for quantitative EEG (qEEG) for daily use based on the
homeostatic foundation of EEG. This method is robust, easy, and not time consum-
ing and is arranged in two branches: the analysis of the spectral composition in each
channel and synchronization. Notably, channels are arranged in differential mode.
Since 2016, we have used this method for more than 4100 EEGs from scalp record-
ings in outpatients, epilepsy evaluation, and evaluation and monitoring in the
intensive care unit (ICU). We have been able to identify numerical properties that
are not visually evident in several pathologies, including COVID-19 in patients
suffering encephalopathy, and have performed diagnosis in ICU patients and dif-
ferentiation between epileptic and non-epileptic spells or minimum cognitive states.
The use of numerical variables across successive recordings in the same patient has
proven to be of great utility. We propose that qEEG use should be expanded
globally for daily clinical practice.

Keywords: encephalopathy, epilepsy, fast Fourier transform, numerical methods,
psychogenic non-epileptic seizures, spectral entropy, synchronization

1. Introduction

Electroencephalography (EEG) is one of the oldest diagnostic methods currently
used in medicine. It was described one century ago by the German psychiatrist Hans
Berger [1]. Since then, its use has rapidly spread, and practically every hospital in
the world has an EEG device. However, although EEG is probably the fastest,
cheapest, and most straightforward method to obtain neurophysiological informa-
tion from the human brain in a non-invasive way [2], its use is sometimes exces-
sively restricted to the diagnosis of epilepsy, even in patients in whom the level of
consciousness should be carefully evaluated [3]. Nevertheless, it should be always
remembered that the primary function of the cerebral cortex is to exchange
information by generating bioelectrical signals, not only in epilepsy.

In addition to this excessive restriction to epilepsy, EEG is sometimes reported
as a subjective method, depending strongly on the interpreter [4–8]. There has been
an attempt to reduce inter-rater variability among interpreters by the introduction
of a consensus for EEG interpretation [9–13]. Although these consensus and
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classifications introduce some objectivity in EEG analysis, the variables are mostly
qualitative or binary (present/absent), and specificity is therefore not very high.

In the past few decades, clinicians, neuroscientists, mathematicians, physicists,
and engineers (among other experts) have sought a way to overcome these flaws to
increase the true field of EEG application and reduce subjectivity in diagnosis. Some
research has been devoted to combining EEGs and imaging techniques, mainly
magnetic resonance imaging [14–16]. Another direction has been to develop math-
ematical tools to increase the reliability and deepen the information extracted from
neurophysiological recordings. Collectively, this approach is called quantitative
EEG (qEEG [17]). A canonical formulation toolbox is not needed to define qEEG.
Instead, we can say that every EEG recording that uses any kind of post hoc
numerical method to obtain a result about frequency spectrum, synchronization,
network dynamics, or anything else of bioelectrical magnitude can be considered
qEEG. This approach has been increasing in popularity since the introduction of
digitalization in electroencephalography. As an example, in the past few decades,
the number of papers referenced in PubMed with the word “qEEG” in the title/
abstract rose from two in 1979, to 31 in 1999, and 76 in 2019 (a factor of x38!).
However, the use of qEEG in clinical practice is far from being generalized, with the
exception of ICUs where long-term monitoring (continuous EEG, cEEG) and qEEG
are slowly increasing [18–25].

The time required for a cEEG review is one of the most commonly given reasons
for the use of qEEG in the ICU and other diagnostic fields. However, we have taken
a different approach to qEEG during cEEG or standard EEG for ambulatory/hospi-
talized patients: instead of just simplifying seizure detection (another manifestation
of the excessive focus on epilepsy), our aim is to obtain a comprehensive and
efficient view of the bioelectrical brain physiology/physiopathology in the most
objective way. To do this, we have developed qEEG using classical mathematical
methods, but in a neurophysiologically and clinically oriented fashion [26].

In this chapter, we want to describe in detail the physiological basis of
qEEGs, the method implemented for its quantification, and provide some examples
of its use.

2. Physiological basis of qEEG

We have adopted the assumption that EEG is founded in a homeostatic system
to obtain the main variables of our method [26–28]. This aspect is of extraordinary
relevance because its specific application in different pathologies will lead to spe-
cific changes in the different numerical variables obtained. EEG consists of the
multivariate spatio-temporal determination of the electrical potentials generated by
the brain and recorded on the surface of the scalp. The oscillatory activity of the
EEG, in clinical practice, is divided into four bands, depending on its oscillation
frequency: delta (δ; 0–4 Hz), theta (θ; 4–8 Hz), alpha (α; 8–13 Hz), and beta (β; 13–
30 Hz). Frequencies above 30 Hz, although very important in cognitive research,
are not customarily used in clinical practice.

Briefly, the regulation of different bands is given by the following systems [29]:

• Delta. The hyperpolarization of the thalamic-cortical (TC) interstitial
pacemaker cells by the nucleus reticularis, together with a lower excitatory
effect of the ascending activating reticular system (AARS), releases the
spontaneous activity of cortical cells, oscillating at <4 Hz. This oscillation
throughout the putamen/globus pallidus inhibits the brainstem nuclei
responsible for AARS.
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• Theta. There are two theta-generating systems: i) activation of the nucleus
reticularis (activated by the AARS) and inhibiting TC neurons and ii) through
the mesolimbic system, which includes multiple afferents from the entorhinal
cortex, hippocampus, amygdala, septum and anterior cingulate cortex;
activating the intralaminar thalamic nuclei, and projecting to layer I of the
cerebral cortex.

• Alpha. TC neurons spontaneously oscillate at 6–12 Hz and regulate the
excitation of large cortical areas through thalamic-cortico-thalamic re-entry
loops. The membrane potential of these cells determines the frequency of
oscillation and is regulated by synaptic inputs from the AARS (which includes
the intralaminar nuclei of the thalamus), mainly from the brainstem and
cortical inputs. Within the cortex, this activity is propagated from some nodes
of special importance through interneuronal connections.

• Beta. Originates primarily from cortico-cortical interactions and is facilitated
by diffuse activation of the AARS and depolarization of TC cells, allowing the
free transfer of information from the sensory systems through the thalamus to
the cerebral cortex.

This complex neuroanatomical homeostatic system is probably genetically
determined and regulates basal levels of local synchronization, global interactions
between different regions, spectral composition, and periodic signal space sampling
[30–33].

One of the main limits in our approach is to maintain a close relationship between
numerical magnitude variation and the underlying anatomo-functional system. For
example, an increase in cortical activity (e.g., a seizure) must always be associated
with an increase in β and probably α bands. Obviously, it does not preclude an
increase in slower bands, but rising activity in faster bands is mandatory [26].

3. Quantified EEG

There are two branches of analysis: power spectra and synchronization. For both
of them, dynamic (i.e., varying along the time) and mean measurements (i.e., mean
spectra or mean graph of synchronization) are obtained. The process is summarized
in Figure 1.

The process used for qEEG followed these steps:
Different length raw records are exported from the EEG device (EEG32,

NeuroWorks, XLTEK®, Oakville, ON, Canada) to an ASCII file. Usually, artifacts
are excluded by the export of several artifact-free chunks, which are later combined
for analysis. We have shown that this process does not changes the main properties
analyzed (see below). This process (exportation to an ASCII file) would probably be
different for other EEG suppliers, but we have not assessed this possibility. We have
computed the export time (texport) as a function of the ASCII file size (S) and
obtained a linear expression by means of least-square fitting (r = 0.9947):

texport sð Þ ¼ 0:43S MBð Þ þ 4:13 (1)

Although the raw recordings were digitized at 512 or 1024 Hz, we down-sampled
to 128 or 256 Hz.

Exported files are digitally are filtered by a sixth-order Butterworth digital filter
between 0.5 and 30 Hz.
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A differential EEG montage is then reconstructed. Topographic placement of
channels is defined on the scalp as the midpoint between the electrode pairs defin-
ing the channel; e.g., the Fp1–F3 channel would be placed at the midpoint of the
geodesic between the Fp1 and F3 electrodes.

All recording can be divided into different lengths of moving windows (1–5 s
each) with different overlaps (between 0 to 50%, but usually 10%). The total length
used during the fast Fourier transform (FFT) is directly related to frequency preci-
sion in the power spectrum (PS). Overlap is used to minimize the border effect
produced by windowing [35].

For each window (n) and frequency (k), we computed the fast Fourier trans-
form (FFT) of the voltage (Vm nð Þ) obtained from each channel (m) to obtain the
power spectrum (Smn,k, in μV2/Hz). We used the expression:

Smn,k ¼
XN�1

n¼0

Vm nð Þe�i2πNkn;m ¼ Fp1, F3, … (2)

We also computed Shannon’s spectral entropy (SSE) according to:

SSemk ¼ �
XF

k¼0

pk log 2pk (3)

Figure 1.
Method of electroencephalogram (EEG) quantification in two branches: Power spectra (b–d) and
synchronization (e,f). (a) Raw EEG tracing. The discontinuous rectangle shows the moving window used for
analysis; (b) power spectra for each channel; (c) areas for delta, theta, alpha, and beta bands under the
spectrum are highlighted in different colors; (d) dynamics of the four bands (and entropy in the lower row) for
every lobe. Mean and SEM values for each tracing are displayed inside each graph. Red and blue lines indicate
right and left hemispheres, respectively; (e) correlation matrix for the window; (f) mean correlation computed
for all recordings [34].
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where F is the maximum frequency computed and pk is the probability density
of S, obtained from the expression:

pk ¼
Smn,kPF

k¼0S
m
n,kΔk

(4)

We computed the area under the Smn,k according to the classical segmentation of
EEG bands. We used the expression:

A j kð Þ ¼
Xsup

k¼ inf

Smn kð ÞΔk; j ¼ δ, θ, α, β (5)

The expression sup refers to the upper limit of each EEG band.
The absolute value of Pearson’s correlation coefficient (ρ) is computed for each

pair of channels (i,j) according to the expression:

ρkij ¼
PNwindow

k¼1 xi kð Þ � xið ÞPNwindow
k¼1 x j kð Þ � x j

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNwindow

k¼1 xi kð Þ � xið Þ2PNwindow
k¼1 x j kð Þ � x j

� �2q (6)

where Nwindow is the number of points included in a window (usually 128) and
xi, x j represents the mean of both channels.

The mean value of all windows is then computed, obtaining the mean correla-
tion matrix.

Areas of the same band are grouped by cerebral lobes. In the case of the left

hemisphere (shown as an example), we grouped the frontal F ¼
Fp1�F3ð Þþ F3�C3ð Þþ Fp1�F7ð Þ

3

� �
, parieto-occipital PO ¼ C3�P3ð Þþ P3�O1ð Þþ T5�O1ð Þ

3

n o
, and

temporal T ¼ Fp1�F7ð Þþ F7�T3ð Þþ T3�T5ð Þþ T5�O1ð Þ
4

� �
. Channels from the right hemi-

sphere were grouped accordingly. These areas, for both bands (j) and lobes (r),
Ar

j tð Þ; r ¼ F,PO,T, are plotted as time functions and compared between the
hemispheres. The same groups were used to compute SSe.

The total time of analysis (tanalysis) is obtained from this linear expression, which
was obtained from least-square fitting:

tanalysis sð Þ ¼ 0:32S MBð Þ þ 46:3 (7)

From expressions 1 and 7, for a typical 88 MB file (10 min record), we can
estimate the time spent in export + analysis as less than 2 min.

We can optionally introduce two time-markers to define different states
(e.g., pre-ictal, ictal, and post-ictal periods) in order to statistically compare the
changes.

We can optionally export the numerical results to an Excel® file (e.g.,
mean � SEM of power, synchronization; and SSe for channels, lobes, and
hemispheres). This last step is the most time-consuming (up to 3 min for a
custom-length file).
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Numerical analysis of EEG recordings was performed with custom-made
MATLAB® software (MathWorks, Natick, MA, USA).

For power spectra as well as for synchronization, we can represent measurements
either as dynamic time-dependent variables (Figure 1d), or as the mean values,
averaged over the file (Figure 1b,f). Therefore, although complementary, informa-
tion obtained from both kinds of computations must be interpreted differently. In
other words, average measurements are only useful if the stationarity of the record is
evident (e.g., basal recordings, well-defined phases of sleep, etc.).

4. Robustness of the method

A very important aspect of any numerical method is its robustness, e.g., the
evaluation of the method wherein the results obtained are found to be reliable, even
when performed under slightly varied conditions. It is the ability of a method to
remain unaffected when slight variations are applied. It is extremely important to
check trials of the numerical method within the same group of EEG records under
the different conditions of i) down sampling, ii) windowing, or iii) overlapping.
Moreover, it is important to check whether synchronization measures are affected
by the global analysis of different, non-consecutive chunks.

For this purpose, we selected EEG recordings of five minutes in length, from six
control individuals (without any neurological or psychiatric pathology, between 20
and 30 years old, and with no pharmacological treatment). We analyzed each EEG
under different conditions, namely:

• Down-sampling at 128 and 512 Hz, (f is for frequency).

• Windows of 1, 3 or 5 s (w).

• Overlapping at 10, 20, or 40% (o).

Overall, we had 18 combinations for frequency/windows/overlapping (f,w,o).
The structure of EEG for each patient (pi, i = 1,2,… 6) can be described by a

10-element vector as:

pi ¼ δli, θ
l
i, α

l
i, β

l
i, ρ

l
i, δ

r
i , θ

r
i , α

r
i , β

r
i , ρ

r
i

� �
; l ¼ left, r ¼ right (8)

Obviously, every structure can be described as pi f ,w, oð Þ. A robust method
should not affect the structure of EEG for the same patient, irrespective of changes
in absolute values. For each patient, we have plotted along the x-axis (coordinates
of EEG structure) the normalized band values and correlations for all of the 18
combinations (Figure 2).

From Figure 2, we can observe that different combinations cannot affect the
structure of EEG.

The effect of multiple compositions of the analyzed file on synchronicity was
assessed as follows: an EEG record of 3 min was analyzed. Then, the same record
was exported in three different chunks, and a new analysis was performed on a
recombined file with the parts randomly ordered (1,3,2/2,1,3/2,3,1/3,1,2 or 3,2,1).
We did not observed any difference in synchronization between the whole record
and a recombined one (not shown).

In summary, these results demonstrate that the method is highly robust, at least
for the limits addressed.
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5. Some examples of the utility of qEEG

It is out of the scope of this chapter to illustrate the objective and quantified
difference between the classical, de visu, analysis of EEG and qEEG. Instead, we will
provide some examples of qEEG application to real clinical problems and the
results. In these examples it will be shown that information obtained by qEEG
clearly exceeds the possibility of de visu analysis.

5.1 Differentiation between periodic patterns and seizures

Patients in the ICU usually undergo a limited clinical neurological examination
because of either structurally or functionally altered conditions of the central

Figure 2.
Structures of EEG for the 18 combinations of variables for (a) patient #1, (b) patient #2, (c) patient #3, (d) patient
#4, (e) patient#5and (f) patient#6. L= left, R = right, d =delta, t = theta, a =alpha, b =beta, and rho = correlation.
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nervous system (CNS) or due to the effects of drugs used for sedoanalgesia [36].
Therefore, we can evaluate brain function in these conditions by EEG. However, a
dynamic evolution of injury is frequently observed in critically ill patients due to the
occurrence of epileptic seizures (ES), status epilepticus (SE), or other brain insults
[37, 38]. In this sense, cEEG allows the functional assessment of the cerebral cortex in
real time for prolonged periods. It has been proven to be an extraordinarily useful tool
for detecting electrographic seizures and non-convulsive epileptic status (NCES),
modifying treatment and assessing the functional prognosis [10, 11, 39–42].

The particularity of cEEG records of patients in the ICU comprises a high
frequency of artifacts and frequently observed rhythmic and periodic patterns,
which are easily confused with seizures. Both can be difficult to interpret not only in
a raw EEG but also with the qEEG tools currently used [43, 44]. As indicated above,
the use of multiple drugs acting on the CNS and primary and secondary injuries
profoundly affect the bioelectrical brain dynamics. Therefore, it can be quite diffi-
cult to differentiate between bursts of periodic activity (BPA) and true ES/SE. The
main problem is that EEG patterns analyzed de visu do not always exhibit the sharp
morphology of ES/SE of not-ICU patients.

According to the ILAE, an ES is a transient occurrence of signs and/or symptoms
due to abnormal excessive or synchronous neuronal activity in the cortex of the
brain [45]. Signs/symptoms are usually excluded in critically ill patients, but the
excessive activity of the cortex is mandatory for a positive identification. We have
used this pathophysiological feature for the numerical definition of ES. Therefore,
we can use this method to exclude epilepsy in those cases where α/β activity does
not change (or even decreases) during the event (see below). The limits of change
for the different bands (Table 1) can be used to distinguish PBA from ES.

From this table we can observe that the superposition is very high for δ bands
(i.e., this band is not discriminative), low for θ and Se, and practically null for α and
β bands. Therefore, the intervals for increments of normalized activity defining an
ES in these types of patients are as follows (excluding superposition and rounding):
δF ¼ 119, 166½ �; θF ¼ 173, 264½ �; θPO ¼ 168, 248½ �; θT ¼ 151, 274½ �;
αF ¼ 159, 244½ �; αPO ¼ 159, 244½ �; αT ¼ 159, 244½ �; βF ¼ 141, 374½ �; βPO ¼ 146, 262½ �;
βT ¼ 141, 374½ �; SeF ¼ 97, 110½ �; SePO ¼ 98, 107½ �; SeT ¼ 98, 104½ �.

We have defined the numerical features of ES and BPA in critically ill patients
using the pathophysiological definition of epilepsy. This will facilitate its identifica-
tion in clinical practice, allowing a precocious and more adequate treatment.

5.2 Specific characterization of encephalopathy in SARS-CoV-2 patients

Neurological complications in COVID-19-infected patients have been reported.
The CNS effects reported include encephalitis, toxic encephalopathy, ageusia and
anosmia, headaches, or acute cerebrovascular disease [46–52]. The mechanisms of
CNS infection in the pathophysiology of COVID-19 are still debated, and it has been
proposed to result from direct invasion through the blood–brain barrier, a neuronal
pathway, hypoxia damage, immune-response mediated injury, or angiotensin-
converter enzyme 2 activity, among other possibilities [47, 53, 54]. Encephalopathy
refers clinically to state of impaired cognition, generally acute or subacute [55].
Descriptions de visu of EEG are based on classical analysis by visual inspection and
not on specific features [56–58].

We applied our method of qEEG to patients discharged from the ICU after
COVID-19 infection [34]. We used two control groups from patients previously
studied in our hospital: (i) patients with infectious toxic encephalopathy (ENC) and
(ii) patients after cardiorespiratory arrest (CRA), as an example of severe hypoxic
insult to the CNS.
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Visually, in COVID-19, EEG records the apparent absence of delta/theta activity
conferred a near-physiological aspect to the recordings. Despite the different visual
aspects appearing between ENC and COVID-19, the mean spectra by channel were
quite similar. Examples of typical recordings are shown in Figure 3.

We assessed the specific differences for each band in ENC, COVID-19, and CRA
patients. Subsequently, we performed one-way ANOVA (ANOVA on ranks when
normality failed) for each lobe and band, and for SSe and synchronization
(Figure 4).

The pattern of ENC and CRA was clearly different for all bands. However, the
COVID-19 group was not completely different from the ENC and CRA groups,
although it was evidently observed that the distribution is between the two extreme
groups. Nonetheless, the behavior of temporal lobes clearly differs for the ENC and
COVID-19 groups for the δ, α, and β bands. Contrary to EEG bands, SSe was higher
for the COVID-19 group and lower for the ENC group. In fact, SSe was different for
all groups at all lobes. This result may be surprising considering the kind of spectra
shown in Figure 3c, where the distribution was apparently more complex. How-
ever, the presence of α and β bands (scarcely present in the CRA group) increased
the SSe for COVID-19 patients.

Finally, although ρ was not as different between groups as SSe, a clear difference
was seen in the hemispheric synchronization and frontal lobes of ENC and COVID-
19 patients, with lower synchronization for the latter group.

In summary, we have demonstrated that qEEG can differentiate between
encephalopathy types, and we have described the numerical features of each. In this
context, we show that COVID-19 patients display EEG structures that are truly
distinguishable from those of both infectious toxic encephalopathy and encepha-
lopathies of patients who experience severe hypoxic conditions. Significantly, the
EEG pattern of COVID-19 patients was between those of the ENC and CRA groups.
Therefore, it can be speculated that hypoxia may show some participation in this
electroclinical entity. However, the EEG structures of the CRA and COVID-19
groups were different enough to consider that other factors besides hypoxia must be
responsible for the bioelectrical pattern.

It is extremely relevant to bear in mind that COVID-19 patients showed mild to
severe cognitive symptoms despite de visu quasi-normal recordings. However, the
severe numerical alterations of temporal lobes spectra, structure of SSe and

Variable State Frontal Sup (%) Parieto-occipital Sup (%) Temporal Sup (%)

Delta ES 111.8–234.0 55.4 123.8–276.8 91.3 118.4–247.6 86.1

BPA 166.3–370.4 137.1–278.7 136.3–253.9

Theta ES 158.2–264.0 14.2 166.7–247.7 1.6 139.2–230.5 19.9

BPA 92.8–173.2 84.3–168.0 93.1–157.4

Alpha ES 158.8–244.0 0 146.0–248.6 0 144.3–243.5 0

BPA 75.0–137.8 79.7–134.1 82.7–135.6

Beta ES 141.9–373.6 0 146.7–261.8 0 136.5–274.4 10.4

BPA 77.1–137.8 82.2–137-2 95.1–150.8

Entropy ES 95.5–109.5 10.7 96.2–106.7 12.4 96.1–104.8 19.5

BPA 78.9–97.0 84.3–97.5 82.3–97.8

Table 1.
Inter-percentile 25–75 intervals for bands and lobes in BPA and ES. Superposition is indicated with respect to
the ES interval [26].
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synchronization were highly different and are probably explained by symptomatol-
ogy with quasi-normal EEG traces.

5.3 Continuous EEG monitoring in ICU

Long-term EEG monitoring in the ICU (cEEG) has been one of the main devel-
oping fields of electroencephalography in recent years. There are several methods
used for EEG monitoring, and most of them share a similar philosophy: to identify
the presence of seizure/status epilepticus to make the information of monitoring
easy and fast. As stated above, we think that this reductionist approach impover-
ishes the scope of electroencephalography.

We systematically used qEEG during cEEG for the below indications:

• Monitoring the presence of ES/SE. More useful than identifying the presence of
ES, qEEG is essential to discriminate between epileptic and non-epileptic
patters, as we stated above.

Figure 3.
Examples of raw recordings: (a) encephalopathy (ENC), (b) COVID-19, and (c) cardiorespiratory arrest
(CRA). Right column shows mean spectra for channels. Red and blue lines indicate right and left hemispheres,
respectively. Y-axis units in μV2/Hz [34].
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• Titration of sedation/anti-epileptic drugs (AEDs). Identifying changes in
background from the variations in spectra or mean values of specific EEG
bands is mandatory to increase/decrease the dose of sedation. Additionally,
AEDs are adjusted with the help of qEEG, although de visu inspection of
irritative activity is mandatory.

Figure 4.
Box plots showing the comparison of EEG structures for different bands: (a) delta, (b) theta, (c) alpha, and
(d) beta, (e) Se; (f) ρ. striped black box: ECN; striped red box: COVID-19; striped blue box: CRA; black
asterisk: Difference between ENC and COVID-19; red asterisk: Difference between ENC and CRA; blue
asterisk: Difference between COVID-19 and CRA.
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• Long-term recordings in patients with alterations of consciousness without
sedo-analgesia to evaluate brain physiology. Severe encephalopathy can induce
a low-consciousness level. These recordings typically lack irritative activity,
and changes in the background are slow. However, these changes correlate
with the level of consciousness and predict the outcome. Therefore, it is
important identify changes to adjust treatment as soon as possible, especially to
avoid unnecessary therapeutic actions.

In this way, we have performed more than 250 cEEG + qEEG in the ICU in the
last five years. This is a time-consuming task (especially considering that every
cEEG takes 1.4–4.3 days (inter-percentile 25–75 range)), but the clinical utiliy is
clear because the demand increased from 1.0� 0.2 cEEG/month in 2015 to 5.5� 0.8
cEEG/month in 2019.

5.4 Utility in dementia

There are numerous articles in the literature showing that the initial phases of
dementia can be detected by qEEG [59–63]. We have used our numerical method in
patients with either minimum cognitive impairment (MCI) or aphasia. Obviously,
the de visu analysis of raw recordings shows only a nearly normal aspect or low-
voltage. However, numerical analysis can show very relevant facts that are not
observable by eye (Figure 5).

At this time, we are conducting a study to identify specific properties of differ-
ent pathologies (sub-types of primary aphasia, Alzheimer disease, vascular demen-
tia, etc). Although we have not yet defined different groups of features specific to
each pathology, what is clear from the above figure is that connectivity is a magni-
tude that is affected early and consistently in most cognitive alterations.

5.5 Other examples of qEEG utility

Finally, we provide two more representative examples of diagnosis highly aided
by the use of qEEG.

Case 1. A 17-year-old male patient with severe cognitive and behavioral impair-
ment, secondary to severe epileptic encephalopathy due to refractory epilepsy in
childhood after a central nervous system infection. Daily seizure frequency, with
countless seizures per day. In treatment with zonisamide (400 mg), valproic acid
(1200 mg), oxcarbazepine (1400 mg), and clobazam (10 mg) daily. Rectal diaze-
pam 10 mg if required. A video of EEG is performed in which it is observed that
during sleep, the patient exhibits several episodes of lateral head movement and
growls. De visu recordings (Figure 6a) can be described as global desynchro-
nization. However, the dynamics of the EEG bands show a decrease (practically
total) for all the bands (Figure 6b). As stated above, epilepsy is expected to be
accompanied by an increase in cortical activity (α and β bands). Therefore, this
event cannot be identified as epileptic.

Although the patient also presented true epileptic events, the number of these
was substantially lowered and AED was adjusted according to the real number of
ES. The final diagnosis for this event was a nonepileptic behavioral disorder,
secondary to severe epileptic encephalopathy.

Case 2. A 22-year-old female diagnosed with epilepsy at the age of 14 years and
with anxious-depressive illness from the age of 20 years. The applied treatment was
lamotrigine (100 mg/day) and clonazepam (0.5 mg/8 h). Seizures occurred every
2–3 days, described as the perception of black dots in the visual field, weakness, loss
of consciousness and muscle tone, loss of balance and falling to the ground. During
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telemetry, we recorded one episode of black dot perception followed by a loss of
consciousness while in bed. De visu EEG recordings showed no significant changes
(Figure 7a). However, the dynamic variation of EEG bands indicated a generalized
decrease, except for the occipital α band, which increased after the eyes closed
(Figure 7b).

The final diagnosis was psychogenic non-epileptic seizure (PNES), and the
AEDs were slowly removed.

6. Discussion

Numerous methods have been used for qEEG, although they are rarely used in
daily clinical practice. There is, therefore, a huge gap between the promising (even
spectacular) results obtained with qEEG and its practical usefulness. To the best of
the knowledge of the authors, this issue has not been systematically addressed,
although it has been said that electroencephalographers have poor trust in
mathematical models [2, 17].

The degree of mathematical complexity and abstraction is quite different among
the methods proposed. Not all of the mathematical models can be included in the
same category, and it is of extreme importance that mathematical solutions be

Figure 5.
Initial steps of dementia. (a) Example of a male with primary aphasia and (b) a female with MCI. Left
column = raw recordings of both patients; middle column = connectogram for patients; right
column = connectogram of a control volunteer of the same sex and age (� 5 years).
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robust with respect to physiological assumptions [2]. Then, some procedures require
relatively simple and involve straightforward methods as FFT [26, 34, 64–66] and
synchronicity measurements [67, 68], approaches that clinicians are familiar with.
In contrast, other numerical methods are more complex, or the mathematical
approach deviates from physiological assumptions [69–74], and this probably takes
neurophysiologists out of their comfort zone.

We have developed a robust method that is physiologically founded and easy to
use in daily clinical practice. The tools selected are neither unique nor are they
necessarily the best. Other tools (e.g., coherence) can be implemented. A careful
comparison between these methods will decide the fitted procedure for each

Figure 6.
Box plots showing a comparison of EEG structure for different bands: (a) raw recording during a complete
event during sleep. The images under the recordings correspond to the periods indicated by arrows. (b) Lobar
dynamics of EEG bands during the entire event (vertical red lines). Blue = left hemisphere; red = right
hemisphere.

106

Electroencephalography - From Basic Research to Clinical Applications



pathology. From the beginning of 2016, we have performed more than 4100
analyses and used this toolbox in most patients, even those with EEG apparently
evident. We did not use qEEG only when the record included so many artifacts
(e.g., in agitated patients) that the results would not be reliable.

The method described can be implemented to automatically differentiate
between paroxysmal events and ES during the long-term monitoring of ICU
patients. This feature is very relevant for clinicians because it can shorten the
review time, particularly during long cEEG, and can help apply adequate therapeu-
tic measures, avoiding pharmacological blind trials that only delay correct treat-
ment, increasing the inefficacy of treatment and diminishing the probability of
recuperation. Therefore, considering that “time is brain”, a fast and accurate
treatment is mandatory to increase the probability of a good outcome.

Finally, it is extremely important to keep in mind that qEEG is only a tool to help
better understand and diagnose brain pathophysiology; therefore, it should not be
thought that numerical analysis (at least as we use it today) is enough, without
evaluation by an expert, to make an automatic diagnosis. Not all brain pathologies

Figure 7.
Psychogenic non epileptic seizure (a) raw recordings (in transverse and double banana differential montages)
during the event. (b) Lobar dynamics of EEG bands during the entire event (vertical red lines). Blue = left
hemisphere; red = right hemisphere.
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are likely to benefit to the same degree from analysis. For example, the method
described in this chapter is not well fitted to detect low-frequency transitory waves
as medium/small focal epileptiform discharges, although visual inspection can
identify them very well. However, patterns that are not readily visible in de visu
analysis (e.g., asymmetries in power spectra compositions) are easily detected.

7. Conclusions

We can summarize the conclusions of this work as follows:

• qEEG is a robust and non-time-consuming method that is able to produce
numerical and objective values of several bioelectrical magnitudes with clinical
significance.

• qEEG increases and facilitates diagnoses that are otherwise exceedingly
difficult to obtain by de visu inspection. Therefore, the scope of the true
applicability of EEG is expanded far beyond epilepsy.

• We propose that qEEG use should be expanded globally for daily clinical
practice. Thus, clinical neurophysiologists should be informed of the methods
of numerical analysis procedures.
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Abstract

Periodic electroencephalographic (EEG) patterns are frequently recorded during 
ICU EEG monitoring in patients with altered mental status; these EEG features rep-
resent electrical discharges, ictal in appearance, occuring at regular intervals. They 
are known as lateralized periodic discharges (LPDs), bilateral independent periodic 
discharges (BIPDS), generalized periodic discharges (GPDs), continuous 2/s 
GPDs with triphasic morphology or triphasic waves (TWs) and Stimulus Induced 
Evolving Lateralized Rhytmic delta activity or Si-Evolving LRDA (previously 
SIRPIDS); other periodic, rhythmic patterns are Occasional frontally predominant 
brief 2/s GRDA (FIRDA previously), Lateralized rhythmic delta activity (LRDA) 
and Brief potentially ictal rhythmic discharges or B (I)RDs. The role of most (not 
all) of these EEG patterns is controversial; there is no consensus on which patterns 
are associated with ongoing seizure injury, which patterns need to be treated, and 
how aggressively they should be treated. Many authors consider these patterns as an 
unstable state on an ictal-interictal EEG continuum; the aim of the present chapter 
is to gain knowledge of these EEG features, show their association with known 
neurologic pathologies/syndromes and finally how to manage them.

Keywords: ICU, periodic EEG patterns, altered mental status, treatment

1. Introduction

Periodic electroencephalographic (EEG) patterns are frequently recorded during 
ICU EEG monitoring in patients with Altered Mental Status (AMS) [1]; these contro-
versial EEG patterns consist of discharges usually epileptiform in appearance, which 
occur at regular intervals, in critically ill patients. They are commonly classified as 
periodic lateralized discharges (PLDs), bilateral independent PLDs or BIPLDs, gener-
alized periodic discharges (GPDs) and triphasic waves. Stimulus-induced rhythmic, 
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periodic or ictal discharges (SIRPIDs) are peculiar EEG patterns, which may be pres-
ent as periodic discharges. Other periodic, rhythmic patterns are Occasional frontally 
predominant brief 2/s GRDA (FIRDA previously), Lateralized rhythmic delta activity 
(LRDA) and Brief potentially ictal rhythmic discharges or B (I)RDs.

There is still no consensus on which specific EEG features are associated with 
ongoing neuronal injury, which ones should be treated and how aggressively they 
should be treated [2]. In critically ill patients, a high index of suspicion of ongoing 
status epilepticus (SE), particularly non-convulsive epileptic status (NCSE) should 
alert the intensive care team and the neurologist, in the presence of these EEG 
periodic discharges, especially in patients with impaired consciousness, prompting 
the use of antiseizure medications [3, 4]. In addition, the occurrence of such EEG 
features may be in favor of cerebral impairment, acute or subacute [4, 5].

The aim of this study is to make a review of these periodic EEG features, 
emphasizing the importance of their recognition and clinical significance. Their 
clinical significance is uncertain, it is related to a variety of etiologies, and many 
authors suggest that these patterns are unequivocally epileptogenic in some 
cases. Their recognition and classification are important to establish a correlation 
between clinical, neurological, neuroimaging data with the EEG results.

2. Historical note

There is still a scientific debate regarding these EEG features. Until recently, 
there was no uniformly accepted nomenclature for those frequently encountered 
ICU EEG abnormalities such as periodic epileptiform discharges, fluctuating 
rhythmic patterns and combinations.

Based on these questions, the American Clinical Neurophysiology Society (ACNS) 
recently proposed new terminology for these controversial EEG patterns [6, 7]  
(Table 1); terms such as “triphasic waves,” which implies for many clinicians a 
metabolic encephalopathy was eliminated; in addition, the use of “ictal,” “interictal” 

New Terms for Older Terms

OLD Term NEW Term

Triphasic waves, most of record = continuous 2/s GPDs (with triphasic morphology)

PLEDs = LPDs

BIPLEDs = BIPDs

GPEDs/PEDs = GPDs

FIRDA = Occasional frontally predominant brief 2/s GRDA (if 1–10% of 
record)

PLEDS+ =LPDs+

SIRPIDs* w/ focal evolving RDA =SI-Evolving LRDA

Lateralized seizure, delta frequency = Evolving LRDA

Semirhythmic delta = Quasi-RDA

SIRPIDs: stimulus-induced rhythmic, periodic or ictal discharges

PLEDS: Periodic Lateralized Epileptiform Discharges; LPDs: Lateralized Periodic Discharges; BIPLEDs: Bilateral 
Independant Periodic Lateralized Epileptiform Discharges; BIPDs: Bilateral Independant Periodic Discharges; 
GPEDs/PEDs: Generalized Periodic Epileptiform Discharges/Periodic Epileptiform Discharges; FIRDA: Frontal 
Intermitent Rhytmic Delta Activity; LRDA: Lateralized rhythmic Delta Activity; SIRPIDS: Stimulus-induced 
rhythmic, periodic or ictal discharges

Table 1. 
ICU periodic EEG patterns: Old vs. new terminology [6].
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and “epileptiform” for the equivocal patterns was ovoided; these EEG features are 
now termed Periodic Lateralized Discharges (PLDs), (formerly Periodic lateral-
ized Epileptiform Discharges or PLEDs), Bilateral independent Periodic Discharges 
or BIPLDs, (formerly Bilateral independent Periodic Lateralized Epileptiform 
Discharges or BIPLEDs), Generalized Periodic Discharges (GPDs), formerly 
Generalized Periodic Epileptiform Discharges (GPEDs) and continuous GPD 2 / s 
with triphasic morphology) (formerly Triphasic Waves or TWs). SI-Evolving LRDA, 
Stimulus-induced Lateralized Rhythmic Delta Activity (formerly stimulus-induced 
rhythmic, periodic or ictal discharges or SIRPIDs) are also peculiar, recently discov-
ered EEG patterns, and may manifest as periodic discharges [8]. The other periodic 
and rhythmic patterns are the occasional brief 2 / s GRDA predominantly frontal (for-
merly Frontal Intermitent Rhythmic Delta Activity or FIRDA), Evolving Lateralized 
Rhythmic Delta Activity or Evolving LRDA, (formerly Lateralized Rhythmic Delta 
Activity (LRDA) or Lateralized seizure delta activity, and Short ictal potential rhyth-
mic discharges or B(I)RDs, will also be briefly discussed in this chapter.

3. Lateralized periodic discharges (LPDs)

3.1 EEG characteristics

LPDs are stereotyped, repetitive EEG discharges and recurr periodically at regular 
intervals at 0.5 to 3 Hz; they are broadly lateralized over one hemisphere, particularly 
over the parasagittal and temporal areas; LPDs are usually epileptiform in appear-
ance; they appear like sharp waves/sharp waves complexes ranging from 50 to 300 
uV in amplitude or as blunt delta waves that recur in stereotyped periodic fashion 
(Figure 1). They are maximal in any focal brain lesion, sometimes asymmetrical 
(Figure 2). They are also associated with additional EEG evidence of ipsilateral 
cerebral dysfunction such as focal slowing, loss of posterior dominant rhythm.

3.2 Frequency

LPDs frequency on continuous EEG Monitoring (cEEG) varies from 6.2% to 
8.6% [9]. In the intensive care unit, LPDs are found in 47% of patients [9]. LPDs are 
most commonly seen in patients with focal neurological deficit and are associated 
with varying degree of altered consciousness.

3.3 Etiology

LPDs are frequently associated with acute, structural brain lesion; very often 
with Ischemic stroke, viral encephalitis, including autoimmine encephalitis [10], 
tumors, intracerebral hemorrage (ICH) [11], Anoxic encephalopathy, Creutzfeld-
jacob disease CJD [12], Subarachnoid Hemorrage (SAH) [13], Multiple Sclerosis 
(MS), Posterior Reversible Encephalopathy Syndrome (PRES) (Figure 3); they 
have been also reported in Migraine headache, Mitochondrial Encephalopathy with 
lactic acidosis and stroke like episodes, (MELAS).

LPDs are most commonly associated with cortical gray matter or subcortical 
gray and white matter lesion [14]; however no structural abnormality is found on 
neuroimaging in 25–33% of patients with LPDs.

3.4 Significance

Are LPDs a transient EEG phenomenon following acute neurologic insult 
resolving usually within days to weeks? or a chronic phenomenon associated with 
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epilepsy? Studies have reported that LPDs are found in 5–30% of patients with his-
tory of epilepsy [15], in 26% of patients with remote brain injury and epilepsy [16] 
and also in patients with structural brain lesions and symptomatic epilepsy [17]; 

Figure 1. 
LPDs in a 70ys old male patient with HTN. Brain MRI compatible with PRES syndrome. Quasi-periodic 
LPDs lateralized over the left hemisphere. PRES: Posterior Reversible Encephalopathy Syndrome.

Figure 2. 
Unilateral, LPDs in a 61 ys old patient with right temporal hemorrhage.
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some authors consider LPDs as an unstable, potentially epileptogenic state, a pattern 
on the “ictal-interictal continuum [18].

3.5 LPDs and seizures: LPDs ictal pattern??

The presence of LPDs in patients with altered mental status (AMS) is associated 
with increased risk of seizures. Clinical seizures are indeed very frequent in patients 
with LPDs; focal motor seizures are the most common (Figure 3) [19]; such sei-
zures can occur prior or at the same time as LPDs [20]; the risk of developing subse-
quent seizures following LPDs is 10–56% [21]; LPDs may represent an ictal pattern 
when associated with clinical correlate such as focal clonic seizures (Stroke) and 
Epilepsia Partialis continua (EPC); LPDs may be ictal when associated with subtle 
clinical manifestations such as eye deviation, aphasia, hemianopsia in patients with 
AMS; in this setting both LPDs and clinical symptoms improve with antiseizure 
drugs (ASD); Claassen et al. have reported that LPDs are highly associated with Non 
Convulsive Seizures (NCSs), as high as 40% [22]. The frequency of LPDs is cor-
related with seizure risk [23]: LPDs of less than 1 Hz: 40% risk of seizures, LPDs of 
2 Hz or greater: 66% risk of seizures. “Lateralized Periodic Discharges Plus (“LPDs 
plus”) are LPDs with a Complex morphology, a prolonged after discharges and an 
“Ictal appearing” (Figures 3–5); in addition, intervening fast activities (LPD + F) 
(Figures 3 and 5), superimposed rhythmic activity (LPD + R) or both (LPD + FR) 
can complicate this picture. “LPDs plus” have a rapid repetitive rate (>2HZ) and are 
highly associated with clinical seizures [24].

3.6 Management of patients with LPDs

There are no clear data regarding the management of the LPDs in patients 
with AMS. However neuroimaging should be performed in all patients with 
LPDs; metabolic/reversible conditions should be treated; as mentioned above, 

Figure 3. 
“LPDs Plus” with complex morphology and prolonged after discharges; “Ictal appearing” LPDs in a 50 ys old 
patient with left sided stroke and right sided clonic seizures.
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prolonged EEG monitoring (>24 h) is recommended in the presence of LPDs 
because of their association with seizures, particularly NCSs and NCSE. When 
LPDs are found in a confused patient, a benzodiazepine trial, such as lorazepam 
IV should be considered and the patient monitored (Figures 6 and 7). The 
clinical significance and management of LPDs in comatose patients is contro-
versial [25] and there no available data regarding the continuation of ASDs after 
hospitalization.

Figure 4. 
LPDs at a frequency of 0.5 to 1/s with a spiky appearence running at nearly regular interval.

Figure 5. 
64 year old left MCA infarction with jerky movements of the right upper limb. MCA: Middle Cerebral Artery.
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Figure 6. 
LPDs in a 58 ys old male admitted to ICU with AMS, confused; no abnormal movements; given lorazepam 
4 mg IV. AMS: Altered mental status; ICU: Intensive care unit.

Figure 7. 
Same patient in Figure 6, 14mn following lorazepam IV. Note the dramatic EEG improvement; the patient 
also showed an improvement in the level of consciousness.
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4. Generalized periodic discharges (GPDs)

4.1 EEG characteristics, frequency

GPDs are symmetric, bilateral, repetitive discharges with regular morphology 
and a frontal or occipital predominance; they show the same morphology and 
in general the same interdischarge interval (quasi-periodic in more than 50%); 
slowing of the delta or theta range, frequently a background suppression of corti-
cal activity accompagny GPDs (Figure 8). Their occurrence with LPDs and BIPDs 
in the same patient is not rare [26]. GPDs are frequently encountered in comatose 
patients (>55%) and very early during cEEG Monitoring and are observed in 5–10% 
during cEEG [26].

4.2 Etiology

GDPs have been described in hypoxic anoxic encephalopathy, acute ischemic 
stroke, herpes encephalitis, Sepsis, Systemic lupus Erythematous (SLE), traumatic 
brain injury (TBI), hepatic encephalopathy, Hashimoto’s encephalitis, hypo/
hypernatremia, uremia, renal failure, hypoglycemia, hypothyroidism, Epileptic 
Encephalopathy, Status Epilepticus (SE), Creurzfeld Jacob disease, Steroid respon-
sive encephalopathy Subacute, Sclerosing Panencephalitis (SSPE), Alzheimer 
Disease, Benzodiazepines, Barbiturates, propofol withdrawal; with baclofen, 
lithium, Phencycline or ketamine, Tiagabine and Cyclosporine, Cefepime, and 
other cephalosporines [27–31].

4.3 GPDs and seizures

GPDs are associated with seizures [32]; one study found NCSs in 27% vs. 8% of 
patients with/without GPDs and NCSE in 22% vs. 7% only [26]. GPDs with “plus 

Figure 8. 
GPDs. One per second GDPs with clear frontal predominance and a sharp morphology.
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Figure 9. 
Association of NCSs, NCSE with GDPs. Generalized periodic discharges and NCSs, NCSE. (A) Seizure 
occurrence at any time in patients with GPDs vs. controls (%) and (B) during cEEG in patients with GPDs 
vs. controls (%). (C) Timing of first recorded seizure in patients with GPDs vs. controls. CSE convulsive status 
epilepticus; CSz convulsive seizure; NCSE nonconvulsive status epilepticus; NCSz nonconvulsive seizure.

Figure 10. 
GPDs with Triphasic morphology (GDPs TM) in a 59 ys old patient following cardiac arrest. GDPs show 
frequency change and qualify probably for “evolving GPDs”. Patient given 10 mg diazepam IV.
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features”, sharper morphology, and high frequency increase the possibility of sei-
zures on EEG [23]. Sutter R et al. have shown that GDPs are strongly associated with 
NCSs, NCSE [33] (Figure 9). GDPs may reflect an ictal rhythm; they may manifest 
with a triphasic morphology [31]; in addition there is a clear GDPs response  
(triphasic morphology) to Benzodiazepines (BDZs) (Figures 10 and 11).

4.4 GPDs with triphasic morphology (GDPs TM)

4.4.1 EEG characteristics

GPDs TM (Figure 10) [7] are known as moderate to high voltage EEG discharges 
(100-300uv), with a frequency varying from 1 to 2 Hz; they are usually character-
ized by the presence of 3 phases: Negative–positive –negative in polarity with a 
predominant positive phase; often, there is a frontal predominance, and sometimes 
an anterior –posterior or posterior –anterior phase lag.

4.4.2 Etiology

GPDs with triphasic morphology are reported in metabolic disturbances, 
hypertensive encephalopathy, subcortical white-matter disease, infections, strokes, 
hypoglycemia hypernatremia/hyponatremia, postictal states, lithium and baclofen 
toxicity.

4.4.3 GPDs with triphasic morphlogy and seizures

GDPs TM association with seizures has been discussed by several authors 
especially concerning nonconvulsive status epilepticus (NCSE) where the 

Figure 11. 
Same patient in Figure 10 following 10 mg of diazepam. Note the EEG improvement 6 mn following  
diazepam IV; however, there was no clinical improvement (patient remained comatose): “Possible NCSE in 
coma” (“comatose NCSE”?).
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improvement of both EEG and patient level of consciousness with BDZs is consis-
tent with NCSE; Jirsh et al. define a possible NCSE in a patient, a state where BDZs 
abolish GPDs TM without clinical improvement [34] (Figures 10 and 11); patients 
with GDPs and TM are likely to develop seizures as those without (25% vs. 26%) 
[35]; furthermore anterior to posterior “phase lag” does not occur with GDPs TWs 
related NCSE.

4.4.4 Significance, prognosis of GDPs

In one study the mortality of patients with GPDs is estimated at 53% [36]. 
Predictor of poor outcome in patients with GDPs include Dementia, altered to 
poor mental status, focal neuroimaging abnormalities and cardiac arrest [36]. Few 
Patients with GPDs and anoxic brain damage regain consciousness [37].

5. Bilateral independent periodic discharges BIPDs

BIPDs occur as LPDs involving both hemispheres, in an independent and 
asynchronous manner (Figure 12); The true prevalence and incidence of BIPDs 
is unknown; however, they are less common than LPDs; studies mention that 
seizures are also less common in association with BIPDs than with LPDs, succes-
sively 29% vs. 44% [23] and 43% vs. 70% [17]. BIPDs are associated with acute 
brain lesions (anoxic brain damage, stroke, CNS infection, tumor); in general the 
clinical status and prognosis of patients showing BIPDs is worse than those with 
LPDs; mortality rate for BIPDs compared to LPDs is much higher 47, 8% vs. 14% 
respectively [38].

Figure 12. 
Bilateral independent periodic discharges BIPDs. Black arrows show discharge arising from the left 
hemisphere, red arrows discharges arising from the right hemisphere.
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6.  Stimulus induced evolving lateralized rhytmic delta activity 
(Si-evolving LRDA)

These EEG features were recently described by Hirsch et al. in ICU patients 
[8]. They occur whenever ICU patients with AMS are stimulated using auditory, 
sternal rub, suctioning, or other stimulating procedures (Figure 13); these curi-
ous EEG patterns appear ictal, they are sometimes associated with an evolving 
lateralized rhythmic delta activity, stimulus induced also; Si-Evolving LRDA looks 
like an epileptiform activity recurring at regular intervals; there are in general 
purely EEG changes; however, few patients showing these features present focal 
motor seizures.

No data are available regarding the pathophysiology and prognostic significance 
of these stimuli–induced EEG features.

7.  Occasional frontally predominant brief 2/s generalized rythmic delta 
activity (GRDA)

These EEG waves are bilateral, bisynchronous, symmetric activity of 4 Hz or 
less, intermittent, predominant anterior activities (Figure 14). It is the most EEG 
feature frequently seen in the ICU [39].

It is reported in various diseases and syndromes such as structural brain lesion, 
metabolic encephalopathy, epilepsy, neurodegenerative disorders.

Study has shown that this pattern is not associated with an increasing risk of 
seizures [23]. In general, this EEG feature represents a benign pattern and is associ-
ated with a good outcome.

Figure 13. 
Stimulus induced evolving lateralized Rhytmic delta activity (Si-evolving LRDA) in a patient with SAH. 
Sternal Rub (red arrow) inducing right sided periodic spikes at 2 Hz. Also note the presence of rhythmic delta 
activity over the left side. SAH: subarachnoid hemorrhage.
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8. Evolving lateralized rhythmic delta activity (LRDA)

These interesting EEG features are unilateral rhythmic activity of 4 Hz or less, 
are found in various central nervous system lesions such as cortical and deep gray 
matter lesions, acute brain injury, and in chronic seizure disorder (Figure 15); there 

Figure 14. 
Generalized Rythmic Delta activity (GRDA). Average montage. Note the brief (lasting 2 s), 2 cps, bilateral, 
predominantly anterior delta activity.

Figure 15. 
LRDA in a 50 years old patient with NCSE. Note the right sided continuous lateralized focal predominantly 
fronto-temporal 3, 5 to 4 cps delta activity.
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are also seen in acute seizures in 63% of patients [40] and are frequently associated 
with LPDs; LRDA carries similar implications as LPDs [40].

9. Brief potentially ictal rhythmic discharges [B(I)RDs]

B(I)RDs are very brief EEG discharges, of moderate to low amplitude, lasting 
between 10s and 4 s, firing at around 4 Hz or more, rhythmic focal theta activity 
(Figure 16); they are most often seen in neonates and occur in 2% in ICU population 
during cEEG monitoring.

Patient with B(I)RDs suffer from various neurological disorders especially 
chronic seizure disorder, and acute cerebral injury; a large majority of patients with 
B(I)RDs experience seizures.

10. Conclusion

The electrographic patterns discussed above, such as LPDs, GPDs, LRDA, and 
B(I)RDs are strongly associated with seizures; this association is well established in 
ICU patients suffering from AMS. There are however many unanswered questions 
regarding these abnormal EEG features: do they reflect the severity of the brain 
injury? Do they actively contribute to its damage and how should we treat them are 
still largely unknown. Equally not established is their association with long term 
seizures and the risk of epilepsy.

Figure 16. 
B(I)RDs in a 80 ys old patient. Patient suffered from generalized tonic–clonic seizure and was unconscious. 
EEG shows a very brief run of sharply contoured, intermittent rhythmic theta activity over the right anterior 
region (boxed areas).
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Chapter 8

Basic Electroencephalogram and 
Its Common Clinical Applications 
in Children
Raafat Hammad Seroor Jadah

Abstract

Electroencephalography (EEG) is a non-invasive neurophysiological study that 
monitors electrical activity of the brain. EEG is an essential investigational tool to 
analyze and record electrical impulses of the brain and considered to be the gold 
standard electrophysiological test which can be used to help diagnose epilepsy. EEG 
can also be used to diagnose and evaluate other conditions such as sleep disorders, 
neurometabolic diseases with encephalopathy and neuropsychiatric disorders. 
It is also an essential ancillary test in other conditions such as brain death assess-
ment. However, it is essential not to entirely rely on EEG for an absolute diagnosis 
of epilepsy as the main indication of EEG in general and in Pediatric age group in 
particular is to categorize different types of seizure and epilepsy syndromes for 
further evaluation and management.

Keywords: electroencephalography, epilepsy, neuropsychiatric, ancillary, 
electrophysiological, pediatric, encephalopathy

1. Introduction

EEG is a common, non-invasive and essential electrophysiological technique 
used to evaluate and study the brain function. EEG measures and investigates the 
cerebral electrical impulses by direct application of electrodes to the patient’s scalp. 
EEG is considered the main neurophysiological study used in Pediatric population 
especially in children with epilepsy [1, 2] and remains the primary test used to 
study and assess other clinical conditions such as parasomnia and encephalopathy 
associated with neurometabolic disorders and post traumatic brain injury [3]. EEG 
study has been used in the evaluation and assessment of organic brain pathology in 
patients presented with psychiatric and behavioral disorders and has been also an 
essential tool to confirm absence of cerebral electrical activity in patients with brain 
death [4, 5]. Epilepsy diagnosis is primarily made based on the clinical history of the 
patient and hence it is necessary not to rely completely on the EEG study to confirm 
the diagnosis of epilepsy [6], however EEG is the major neurophysiological test used 
in the classification and evaluation of seizures and epilepsy syndrome in Pediatric 
patients [7].
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Figure 2. 
The classical 3 per second spike and wave discharges was first described by Frederic Gibbs [10].

1.1 History

In 1875, Richard Caton an English physician reported a spontaneous electrical 
variation from exposed cortical brain hemispheres of rabbits and monkeys [8]. Early 
in the twentieth century, specifically in 1912, Vladimir Vladimirovich Pravdich-
Neminsky a Russian Physiologist reported the first electrical brain impulse and 
evoked response in animals (dog) [8]. However, in 1924 German Neurologist and 
Psychiatrist Hans Berger recorded the first human EEG in a graph paper which later 
named an electroencephalogram (EEG) device. Berger subsequently character-
ized different rhythmic nature and wave patterns of the brain activity based on the 
different physiological state of the subjects (Figure 1) [8]. The initial description 
of clinical encephalography was first reported by an American neurologist Frederic 
Andrews Gibbs in 1935 who initially documented the classical interictal spikes 
associated with epilepsy and first to demonstrate the typical 3 per second spike and 
wave discharges associated with absence epilepsy. He also described EEG pattern 
during impaired consciousness level (Figure 2) [8–10].

Figure 1. 
Hans Berger, German neurologist and psychiatrist (1873–1941) [11].
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2. Analysis and understanding the complex brain network

The human brain consists of a complete and comprehensive network map of 
neuronal connections called human connectome. The normal maturation of these 
interconnected neurons associated with normal development of high cortical func-
tions and motor skill consolidation. The failure of this network maturation can lead 
to some serious neurodevelopmental disabilities [12].

The connectivity of this complex brain network can be classified into three 
types: structural connectivity, functional connectivity and effective connectivity 
[13]. Structural connectivity can be further subdivided into two types. First the 
anatomical connections that links a bundle of neural elements and second is the 
interregional fibers linking cortical to subcortical gray matter areas [13].

Functional connectivity is obtained from time series analysis and reflects the 
statistical dependence within neural units. This time sense date can be defined by 
different methods which include EEG, Functional magnetic resonance imaging 
(fMRI) and magnetoencephalography (MEG) [13].

Effective connectivity (EC) defines the casual effects that one neural system 
exerts over another. EC cannot be assessed directly so several techniques have been 
used to study the EC. The Dynamic Casual Modeling (DCM) is the main method 
for evaluating EC by analyzing data from neuroimaging studies such as Functional 
Magnetic Resonance Imaging (fMRI) [14].

3. Preparing pediatric patients for EEG study

Performing electroencephalography (EEG) in children can be quite challenging 
as most of these children are not cooperative during this study due to the great 
fear and restlessness during the EEG procedure. It is vitally important to prepare 
a Pediatric patient for EEG study in order to have better interpretation of the EEG 
results. The application of psychological technique prior to the study and the avail-
ability of the parents during the procedure can be helpful to conduct the study 
smoothly and minimize the need for premedication drugs. However, the behav-
ioral and psychological techniques are not always successful in a small proportion 
of children. Different premedication protocols have been proposed in order to 
alleviate the great distress and anxiety during the study. The ideal pharmacological 
agents for such procedure should have a minor impact on the EEG tracing with fast 
onset and few side effects. Benzodiazepine is the most common premedication 
agent used with Midazolam being the most popular drug to induce sedation for 
EEG study in children [15].

Chloralhydrate is another medication which has been used to induce sedation 
in the Pediatric population during different neurological studies including EEG. 
Chloralhydrate is a safe, cheap hypnotic non-opiate drug with no major side effects 
with the exception of vomiting in few cases. Chloralhydrate has been also shown to 
be effective and more time saving during EEG procedure [16].

4. Technical aspects of electroencephalography

Electroencephalography EEG, since it’s first introduction early in the 20th 
century, has been an essential and the most common neurophysiological device to 
monitor and study the electrical and functional activity of the brain [17]. EEG is a 
commonly used non-invasive tool to track and record the electrical field potentials 
captured by electrodes placed on the patient scalp. These electric field potentials 
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created by dipoles as a result of excitation of the epical dendritic postsynaptic 
potential at the cortical pyramidal cells [18, 19]. The measurement and assessment 
of the electric field potentials can be made by attaching conductive electrodes to the 
human scalp. At the present time the wet electrodes are the gold standard used for 
EEG study [19]. A conductive paste or gel need to be used during the application of 
wet electrodes to minimize electrode-skin impedance in order to achieve good con-
ductivity of the electrical impulse. The typical value of skin impedance should be 
kept between 5 and 20 KΩ. This skin impedance should be continuously monitored 
during the EEG study to ensure proper and high-quality conductivity between the 
skin and the EEG electrode. Performing an EEG study is a time consuming process 
which require an expert EEG technician or neurophysiologist in order to obtain 
good quality EEG results for proper interpretation and reporting as the reading and 
analyzing EEG data is a hard task and must be interpreted by expert neurophysiolo-
gists. The location site and description of the scalp electrodes is well recognized by 
the international 10–20 system (Figure 3) [19, 20].

During the first EEG only 20–50% of patients with seizure disorder show 
interictal epileptiform discharges (IED) so the yield of the EEG study can be 
enhanced by many activation methods in order to capture the interictal epilep-
tiform discharges which help confirming the diagnosis of epilepsy and seizure 
disorder [22]. The common activation procedure used in EEG laboratories includes 
Hyperventilation, intermittent photic stimulation (IPS), sleep and sleep deprived 
techniques. Hyperventilation (HV) is considered to be the first and oldest activa-
tion method used to trigger the interictal epileptiform discharges (IED) especially 
the one associated with absence epilepsy. HV is more effective in Pediatric popula-
tion than in adult. A proper effective HV should be carried out for full 3 minutes 
with continuous recording and monitoring for one-minute post hyperventilation. 
HV is more efficient in diagnosing generalized seizures than focal epilepsy. The 
mechanism of HV to trigger interictal epileptiform discharges can be explained by 
hypocapnia induction which also manifest as background slowing or focal slowing 
in the EEG [22]. HV is a major provocation technique used to trigger the typical 
3-Hz spike-and-wave discharge (SWD) which is characteristic for absence epi-
lepsy as more than 90% of patients who have absence epilepsy show SWD during 
HV. The non-specific thalamic projection system (NSTPS) which is a part of the 
thalamocortical networks triggered by respiratory alkalosis and considered to be 
the major induction of SWD associated with absence epilepsy during the process 
of HV [23]. HV is an efficient and safe activation method for epilepsy and seizure 
disorder provocation however there are certain contraindication to perform HV 
during EEG study which includes patients with cardiopulmonary disease, sickle 

Figure 3. 
The international 10-20 system [21].
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cell anemia, Moy-Moya disease, subarachnoid and intracerebral bleeding and 
severe carotid stenosis [22].

A standard activation procedure used during the routine EEG study is the 
intermittent photic stimulation. This procedure done in a dimmed light room and 
application of different light frequencies between 1 and 30 Hz for 5 to 10 seconds 
during eye closure. The flashing light device should be kept 30 cm form the patient 
eyes. The response to intermittent photic stimulation (IPS) can be seen as an evoked 
potentials at frequencies less than 5 Hz seen posteriorly or drive response at the 
occipital regions or in the form of photoparoxysmal response (PPR) which was pre-
viously named photoconvulsive response. The most common types seizure disorder 
seen with IPS are absence epilepsy, myoclonic and tonic–clonic seizures [22].

Among the activation techniques used during routine EEG study is the sleep and 
sleep deprived approach which produce the maximum yield of interictal epilepti-
form discharges (IED) as compared to the hyperventilation and intermittent photic 
stimulation procedure. The young age patients tend to have better yield of IED with 
each activation technique than older patients [24].

5. Brain computer interface

A Brain Computer Interface (BCI) which also named as Brain –machine Interface 
(BMI) is a computer- build network system that allow direct communication 
between cerebral brain activity and external recordable machine without using 
human muscles or peripheral nervous system. BCI utilize and analyzes the brain 
signals to collect information and send them to output system. BCI network con-
sists of five phases: Signal Acquisition, Signal Magnification, Feature Extraction, 
Categorization and Control Interface. BCI assesses and analyze brain activity 
through mainly electrophysiological and hemodynamic studies. The electrophysio-
logical study consists mainly of EEG, electrocorticography and magnetoencephalog-
raphy. The hemodynamic study measures glucose uptake by an active neurons and 
this can be evaluated by procedures like functional magnetic resonance and infrared 
spectroscopy. BCIs commonly used EEG to gain details from brain activity. The 
design of BCI is complex due to restricted resolution and data reliability detected by 
the brain [25, 26].

6. Different types of EEG study

The American Clinical Neurophysiology Society suggest at least 20 minutes’ 
time duration for routine outpatient study. However, the International League 
against Epilepsy suggests a minimum 30 minute for routine EEG recording. 
Currently most routine EEG studies are done with an average time between 20 and 
30 minutes. The abnormal epileptiform discharges found in 29–55% in patients 
with epilepsy on their first routine EEG study. Ambulatory prolonged EEG study is 
considered to be helpful diagnostic technique to capture interictal epileptiform dis-
charges (IEDs) in epilepsy patients whom their first routine EEG studies reported 
normal. Prolonged ambulatory EEG study is considered to be superior to routine 
EEG in identifying IEDs specially during the natural sleep state. This procedure is 
also helpful to differentiate epileptic from non-epileptic psychogenic events. The 
duration of the ambulatory EEG study usually between 24 to 96 hours [27, 28].

Epilepsy Monitoring Unit (EMU) is an important and crucial part of the neuro-
physiological work up for the diagnosis and classification of epilepsy and evaluation 
of psychogenic non-epileptic seizures (PNES). EMU is also essential for patients 
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with intractable epilepsy resistant to antiepileptic medications and for evaluating 
candidates for possible epilepsy surgery [29].

EMU is strongly recommended for children with unclear history of paroxysmal 
episodes in order to differentiate between epileptic and non-epileptic events as 
this can be quite challenging in pediatric population. EMU is also important in 
evaluating different types of epilepsy syndromes in children. One of the vital 
advantages of the video-EEG telemetry is the monitoring and recording the ictal 
events especially in patients with partial epilepsy. EMU is a highly selective study 
should be done for carefully selected patients as this is an expensive and time 
consuming procedure [30]. The process of monitoring and recording video-EEG 
telemetry can range from 24 hours to 7 days. In some situation antiepileptic drugs 
need to be tapered in order to induce seizure activity for better evaluation of 
seizure semiology and localization of the epileptogenic zone [31].

The Amplitude-Integrated EEG (aEEG) is another continuous electrophysio-
logical modality used in both term and preterm newborns in the neonatal intensive 
care units (NICUs). Since it’s first introduction late in 1980s. the aEEG considered 
to be the gold standard to monitor and assess neonatal brain background activity, 
diagnose and manage newborn seizure disorders and help in selecting newborns 
who might be benefit from cooling therapy. The aEEG also plays a major role in 
predicting the neurodevelopmental outcomes for term and preterm newborn 
babies. The application and recording of the aEEG is done by using two or four 
scalp electrodes applied to C3, P3, C4 and P4 positions of the newborn head 
according to the international 10–20 system. aEEG is a safe procedure which has 
a major limitation as it covers only small area of the head surface and hence focal 
epileptiform activity cannot be monitored during the aEEG recording [32–34].

EEG is considered to be the commonest procedure used for intraoperative neu-
rophysiological and cerebral perfusion monitoring [35]. EEG is also considered to 
be the gold standard modality for evaluating patients for possible epilepsy surgery 
to localize and define different epileptogenic foci. EEG also plays an important 
role in understanding the nature and pathophysiology of epilepsy and presurgical 
evaluation of functional cortical mapping. However, routine EEG monitoring might 
not be always sufficient to evaluate certain types of epilepsy such as non-lesional 
temporal lobe epilepsy which necessitate the need of more interventional procedure 
such as the invasive electroencephalography (iEEG) [36, 37].

7. Basic EEG interpretation

A proper and detailed history taking is more reliable and important in diagnosing 
epilepsy and seizure disorders than EEG study. A solid and classical history of seizure 
even with the presence of normal EEG finding make the diagnosis of epilepsy is more 
likely as the sensitivity of single routine EEG study is only about 50% in diagnosing 
seizure disorders [38].

A single EEG study provides extensive data for interpretation. The main initial 
description of the EEG recording includes the amplitude, frequency and wave 
morphology. Hans Berger described two characteristic EEG wave frequencies 
during awake state: The alpha rhythm (8–12 Hz) which is more prominent in the 
arousable stage with eye closure and beta rhythm (13–30 Hz) commonly seen with 
mind focus state. In most people eye closure will result in frequency transfer from 
beta to alpha rhythms. Subsequent wave frequencies were identified the theta 
rhythm (4–7 Hz) and the delta rhythm (0.5–3 Hz) which are predominant during 
sleep in adults, and the gamma rhythm (> 30 Hz) which is associated with memory, 
information processing and cognitive skill (Figure 4) [39].
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Figure 4. 
Different EEG waveforms [39].

Figure 5. 
Hypnagogic hypersynchrony. A normal EEG variant [42].

Figure 6. 
High amplitude rhythmic slowing with hyperventilation [43].
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Figure 7. 
EEG tracing showing bilateral, diffuse, high amplitude slow waves seen in hypsarrhythmia [47].

It is vitally important to ensure proper education and gain enough experience 
to read and interpret EEG recording in order to avoid misdiagnosis of epilepsy and 
to provide better care to the patient. It is also essential to appreciate the common 
benign variations of normal EEG study [40, 41].

A common normal patterns seen in EEG study which can be falsely interpreted 
as abnormal epileptiform discharges include multifocal sharp waves and spikes, 
generalized slowing with hyperventilation, hypnagogic hypersynchrony and most 
commonly is the background alteration at the temporal area (Figures 5 and 6) [38].

Over interpretation of normal EEG tracing is the main factor for misdiagnosis of 
epilepsy and seizure disorders. Improper neurophysiological training and inad-
equate experience is the major reason for over interpretation of normal EEG study. 
Conservative EEG interpretation and avoiding biased history are strongly recom-
mended by all epileptologists [38].

8. Common clinical applications of EEG in children

Although the diagnosis of epilepsy is primarily made by clinical history, EEG 
remains an essential investigational tool to differentiate between epileptic and 
non-epileptic events, it’s also important in the classification of different types of 
epilepsy and epilepsy syndromes [44–46]. Frequent classical epileptiform abnor-
malities seen in Pediatric population are hypsarrhythmia associated with infantile 
spasm, 3 Hz spike and wave discharges in absence epilepsy and burst suppression 
(Figures 7 and 8) [46].

According to the American Academy of Neurology and Child Neurology Society, 
EEG is recommended in children presented with their first attack of unprovoked 
seizure [49]. EEG is indicated in children with atypical febrile convulsion or 
prolonged febrile seizure and it is an essential investigational study in patients with 
newly diagnosed epilepsy and in classification of common childhood epilepsy syn-
dromes such as centrotemporal spikes associated with benign rolandic epilepsy and 
Panayiotopoulos syndrome (idiopathic childhood epilepsy). EEG is also important 
in recording continuous spike-waves during slow-wave sleep (CSWS) in epileptic 
encephalopathies (Figures 9 and 10) [50].
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Pediatric patients diagnosed with autistic spectrum disorder (ASD) with posi-
tive history of epilepsy and abnormal findings in the neurological examination, 
EEG study is indicated as a part of their screening tests. EEG is also recommended 
in monitoring antiepileptic medication in patients with confirmed diagnosis of 
epilepsy [50].

The background EEG monitoring has been also used in children with traumatic 
brain injury which is helpful in evaluating prognosis in these patients [50, 53]. EEG 
study with poor reactivity, prolonged discontinuity and burst suppression associ-
ated with poor prognosis, whereas EEG with good reactivity and normal sleep 
rhythm favor a good prognosis [53]. A prolonged EEG recording is also essential 
in children admitted to the PICU (Pediatric Intensive Care Unit) with suspected 
non-convulsive seizures (NCS). It has been also important in monitoring Pediatric 
patients underwent surgery for congenital cardiac anomalies as they are at risk to 
have seizure post-surgery [53].

Figure 8. 
EEG with burst suppression [48].

Figure 9. 
EEG showing left centrotemporal epileptiform spike and wave discharges in patients with benign rolandic 
epilepsy [51].
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Viral encephalitis is an inflammatory infectious neurological disease that affects 
the central nervous system (CNS) which triggers an immune response by the viral 
antigen causing damage to the brain parenchyma and associated with electrical 
disturbance of the brain activity [54]. Viral encephalitis is common in children 
with Herpes Simplex Virus (HSV) being the commonest agent for encephalitis in 
Pediatric population [54, 55]. EEG study is considered to be a part in the investiga-
tional work up in patients with viral encephalitis [56]. Patients with Herpes Simplex 
Encephalitis (HSE) found to have significant EEG changes in the early stage of 
the diagnosis. Unilateral Periodic Lateralized Epileptiform Discharges (PLED) 
is considered to be the most typical EEG finding which correlate with diagnosis 
of HSE [57] and found to have a good outcome as compared to bilateral periodic 
lateralized epileptiform discharges which associated with unfavorable prognosis 
(Figure 11) [58].

Figure 11. 
Periodic lateralized epileptiform discharges (PLED) over the right central-temporal head regions seen in  
HSE [59].

Figure 10. 
Occipital spike and wave discharges seen in panayiotopoulos syndrome [52].

145

Basic Electroencephalogram and Its Common Clinical Applications in Children
DOI: http://dx.doi.org/10.5772/intechopen.94247

EEG study can be also used as an ancillary test to support the diagnosis of brain 
death. Although positive diagnosis of brain death can be made by two separate 
settings of clinical examination, The American Neurological Association strongly 
suggest the use of EEG study to confirm the diagnosis of brain death. Hypothermia 
and hypotension should be avoided when applying EEG for brain death assessment 
[60]. Isoelectric encephalogram is confirmed when 30 minutes of EEG recording 
reveals complete absence of cerebral activity with sensitivity over 2 μV/mm in the 
absence of electrolyte disturbance and sedative medications (Figure 12) [61].

9. Conclusion

EEG is considered to be save non-invasive procedure since its first application early 
in the 20th century. This procedure is done by trained EEG technicians and it should be 
interpreted by Neurologist or expert Neurophysiologists in order to obtain a high qual-
ity report to reach a proper diagnosis and provide optimal management to the patient.

Performing EEG study in children can be a difficult task because of the great fear 
and anxiety in this age group patients, so its vitally important to properly prepare 
these patients to minimize EEG artifacts for better interpretation of the EEG report.

EEG is an essential neurophysiological study especially in Pediatric patients to 
differentiate epileptic form and non-epileptic events as the differential diagnosis for 
paroxysmal episodes in children is wide and varies according to certain age group.

Although the diagnosis of brain death is primarily made on clinical basis, EEG 
remains an important ancillary test for diagnostic confirmation of brain death.
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Figure 12. 
Isoelectric EEG. No cerebral brain activity with sensitivity over 2 μV/mm [62].
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