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Preface

Candida albicans, a fungal pathobiont, is the major component of the microbiota
communities in healthy adults. It resides in the host’s gastrointestinal tract and mouth. 
C. albicans can become pathogenic via overgrowth of the fungus under a variety of
conditions. Infection caused by C. albicans can form a biofilm that is resistant to anti-
fungal therapeutics and the host immune system. The epithelial cells in mucosa help
develop elaborate immune responses again C. albicans infection.  Genetic mutations
play an important role in the virulence of C. albicans. Whole-genome sequencing has
revealed more identifications of population structure, epidemiological investigations, 
and phylogenetic analyses of Candida species.  

This book reviews recent knowledge and the latest research on C. albicans, including 
the mechanism of candidiasis infection, host response, antifungal strategies, biofilms, 
genetics, and molecular epidemiology of immune responses. 

Chapter 1 examines several factors of C. albicans pathogenesis. It surveys all the under-
lying variables and components of pathogenesis to improve understanding of these
factors’ effects on modulate virulence and consequent infection. 

Chapter 2 discusses the molecular mechanisms of resistance to antifungal agents at the
molecular level described in C. albicans. The information presented may be helpful for
discovering new antifungal agents or targets to combat candidiasis.

Chapter 3 reviews current advances in model construction, target identification, and 
validation. It presents several examples of successful metabolic model construction and 
these models’ utility in rational drug design. 

Chapter 4 examines the effect of cell-mediated (T cells) and immune cells (macrophages,
neutrophils, and natural killer cells) on C. albicans infection. The chapter adds to the
understanding of immune responses and antibody-mediated responses fighting infection.

Chapter 5 discusses onychomycosis, a common fungal infection affecting nails. Caused 
by C. albicans, onychomycosis is frequently associated with local or systemic immune
disturbances. Microscopic examination and fungal cultures are the gold standard 
methods for diagnosing onychomycosis.

Chapter 6 discusses C. albicans and the risk of miscarriage.  Excessive growth of C. 
albicans can cause vulvovaginal candidiasis, which, if chronic and recurrent in pregnant
persons, may contribute to spontaneous abortion or miscarriage.

Understanding the mechanism of C. albicans infection can aid in developing proper
treatment and discovering novel drugs. 

Xinhui Wang
School of Computer Science,

Qinghai Normal University,
Xining, China
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Chapter 1

Pathogenicity Mechanism of 
Candida albicans
Snigdha Pattnaik, Laxmidhar Maharana and Manoj Sethi

Abstract

In normal human microbiome, the polymorphic fungus Candida albicans is a 
crucial member. C. albicans resides mostly in individual as harmless commensal life. 
In specific situations, however, C. albicans can cause diseases that cause contamina-
tions of the skin to life-threatening fundamental contaminations. Pathogenesis of 
Candida species is contributed by multiple factors. Some of the major contributors 
are enlisted here. These include host pathogen interaction, receptors molecule like 
TLR recognition, TLR signaling, C type lectin receptors, Dectin 1,2 and 3, mannose 
receptor, mincle, DC sign, Nod-Like Receptors (NLRs) and inflammasomes, soluble 
molecules in candida recognition, cellular responses to candida such as neutrophils, 
macrophages. This chapter enlightens all the components of candida pathogenicity 
by the assessment of Candida species pathogenic determinants. All together these 
will explain the current knowledge about how these determinant factors and recep-
tors modulate virulence as well as consequent infection. Better understanding of 
candida pathogenicity mechanism can be the resultant of better treatment guide-
lines along with development of novel antifungal agents. Overall, in this review 
we present an update in the current understanding of the insight of pathogenicity 
mechanisms in this important human pathogen.

Keywords: Pathogenicity, C. albicans, TLR, receptor, lectin

1. Introduction

Candida is a diploid parasite that as often as possible causes mucosal and 
fundamental contaminations in people [1]. Candida species can colonize a few 
particular anatomical locales. Greater part of diseases by commensal microorgan-
isms comes from endogenous colonization. Notwithstanding, exogenous pollution, 
for example, diseases communicated through emergency clinic workers, medical 
clinic air, and biofilm-debased intrusive gadgets like catheters, can likewise happen 
[2–4]. Diseases brought about by Candida can be delegated shallow, cutaneous, 
mucosal, and fundamental infection. At the point when Candida spp. taint the oral 
cavity, skin, genitalia, respiratory framework, and the remainder of the gastrointes-
tinal lot, the disease is delegated the shallow sort. Intrusive candidiasis is a disease 
portrayed with very extreme conditions, for example, candidemia, meningitis 
(influencing the mind), and endocarditis (influencing the heart) [5]. In hospital-
ized patients and those with bedraggled safe framework, intrusive contamination is 
a huge reason for dismalness and mortality along with increased frequency as well 
as pervasiveness rates.
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Candida species pathogenesis is a complex cycle including numerous instru-
ments and pathways. It is likewise a mind boggling and multifactorial system, 
including highlights of both the host and the microorganism [6]. For contamina-
tion to be set up, the pioneering microorganism should avoid, duplicate in the host 
climate, and make do in the safe arrangement of the host. The living being must 
likewise have the option to scatter to other body tissues and organs, most particu-
larly in foundational disease [7]. Problem in skin or gastrointestinal boundaries can 
prompt dispersed or profound organ candidiasis. In more significant circumstances, 
circulatory system intrusion may some time possible which hence will disperse to 
various organs of the body.

Candida contaminations in a great many people are asymptomatic. This is 
because of the capacity of the immunological framework to checkmate the life form 
as it endeavors to spread in the body. In any case, consumption in resistant systemor 
changes in microbiota balance, combined with different elements, can work with 
the spread of Candida which is regularly deadly in 42% of announced cases [8–10]. 
C. albicans is answerable for about half of candidiasis and non-albicans Candida 
species are liable for the rest of the Candida contamination. Disease brought about 
by several other species of candida are of extraordinary concern. A portion of these 
non-albicans Candida species are presently viewed as arising artful microbes [11]. 
Forestalling Candida contaminations for the most part brought about by Candida 
species is a developing test in human medication. Indeed, even with the accessibility 
and utilization of antifungal prescription, scattered candidiasis is went with high 
death rate (around 40–60%), helpless conclusion, and unseemly illness the board. 
The overall clinical show of the patient likewise adds to the expansion in death rate. 
Protection from antifungal medications is not, at this point another issue. Indeed, 
even among people that have not been presented to anti-infection agents, obstruc-
tion has been accounted for [12]. Candida is one of the main sources of mucosal 
contaminations in sound people for now days. It additionally causes initial diseases 
particularly in immunosuppressive patients, regardless of its status as a commensal 
microorganism [13]. Truth be told, candidiasis is viewed as the third to fourth most 
regular infection in medical care offices inside the USA and even all around the 
world [14].

As anyone might expect, it is the destructiveness and pathogenic qualities and 
components that have gotten the most consideration from specialists throughout 
the long term. As of late, much have been found out about the components of 
Candida pathogenesis. Studies have shown that at the core of the capacity of 
Candida to multiply, change from non-destructiveness commensal to pioneering 
pathogenic organism and build up disease in the host lie profoundly interconnected 
elements made out of transcriptional circuits, morphology-related/harmfulness 
encoding qualities, metabolic versatility, genome pliancy, phenotypic exchanging, 
biofilm arrangement, tissue harming extracellular hydrolytic catalysts, and a few 
different variables that work with destructiveness and pathogenesis in Candida spe-
cies [15]. Changes in ecological pH, vigorous supplement procurement framework, 
escape from phagocytosis, avoidance from have insusceptible framework, have 
microbiome coaggregation, protection from antifungal specialists, and the capacity 
to productively react to numerous anxieties are other crucial characteristics that 
upgrade endurance and pathogenesis.

In order to be capable of inducing such a diversity of infections C. albicans can 
live in several anatomically discrete sites and translates several virulence factors. 
The phenomenon of phenotypic converting from yeast- to filament-growth is just 
one, but critical, factor that contributes to the virulence of C. albicans. It offers 
a basis for activating different receptors leading to diverse immune responses. 
Other virulence factors of C. albicans contain adhesion factors, thigmotropism and 
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secretion of several hydrolytic enzymes, such as lipase, phospholipase, and protein-
ase. During the past few years it has become increasingly clear that PRRs are vital 
for the host response to C. albicans, with various TLRs and LRs having distinc tive 
roles in innate immunity. Each ligand–receptor system activates specific intracel-
lular signaling path ways, which in turn leads to modulation of various components 
of the host immune response. While a few receptors, like TLR4, dectin 1 and the 
MR, apply an all the more favorable to fiery job, others employ immunosuppressive 
impacts (for instance, TLR2, CR3 and FcγR). After disclosure and characterized 
clarification of the part of TLRs in parasitic acknowledgment, further investiga-
tions have explained the job of the C-type lectin receptors with an emphasis basi-
cally on dectin-1 and dectin-2. The presence of various relationships among all of 
the components that guide the establishment of pollutions is an undeniable compo-
nent in the pathogenesis of Candida species. This chapter is precisely based on the 
mechanisms of Candida pathogenesis with emphasis on the virulence factors mostly 
the important receptors and pathogenic determinants.

2. Pathogenicity mechanism of Candida species

2.1 Infection

The pathogenicity of C. albicans is identified with its change between the 
commensal yeast structure and the obtrusive hyphal shape [16]. Upon have cell 
connection, thigmotropism (contact detecting) triggers C. albicans filamentation. 
This allows the creature to infiltrate further into the host tissues through extracel-
lular compound emission [17]. The capacity of Candida to change over from yeast 
to hyphae stage or hyphae to yeast stage is named dimorphism. Every one of these 
periods of development is crucial for harmfulness and pathogenicity as it impacts 
how Candida gets away from the resistant framework. Yeast and fiber (hyphae) 
structures assume autonomous parts during scattered candidiasis. While the yeast 
structures engaged with scattering, the hyphal (filamentous) structure is associated 
with tissue intrusion and pathogenesis [18]. Candida species should have the option 
to adequately colonize its host and moreover adjust to assortments of unessential 
requirements like temperature, oxygen, pH, carbon dioxide, and diverse nega-
tive organic conditions, for example, carbon source, supplement accessibility, the 
immunological framework, and other existing together bacterial and contagious 
cells inside the specialty [19, 20]. Positive reaction to those imperatives has a quick 
impact in transformation and advancement of Candida harmfulness and pathoge-
nicity. Before receptor-intervened epithelial acknowledgment by Candida species, 
a few flagging pathways are actuated. Temperature change, supplement starvation, 
oxidative pressure, osmotic pressure, and pH detecting trigger mitogen-enacted 
protein kinase, pathways based on CAMP, transduction of Rim-101, along with 
surprisingly hereditary mechanisms that constantly instigate numerous qualities. 
Most of the induced characteristics are connected with filamentous turn of events 
and biofilm plan. While assorted hereditary pathways transduce shifts from yeast to 
hyphae or hyphae to yeast stage, distinctive ecological signals emphatically and con-
trarily regulate morphology-related cell surface exchanging [21]. The flagging and 
variation pathways assume pivotal parts in different physiological and cell measures 
engaged with the Candida species pathogenicity as demonstrated in Table 1.

The greater part of the flagging pathways are amazingly fundamental for 
protecting Candida spp. against immunological assault [40]. They assume differ-
ent parts in the declaration of morphology related qualities. The co-articulation 
of morphology-connected proteins brings about synergistic association among 
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S/no. Pathways Functions Reference(s)

1 Mitogen-activated 
protein kinase 
(MAPK) pathways

Important regulator of morphogenesis. [22, 23]

Involved in sensing and transmitting stress 
signals and other environmental signals

Three main MAP kinase pathways are the 
following:

a. Mkc1- controls cellular integrity, invasive 
growth, cell wall biogenesis, and forma-
tion of biofilm

b. Hog1- mediates response to thermal, 
osmotic, and oxidative stress. Controls 
cell wall formationand morphogenesis. 
Under osmotic stress, its activation leads to 
glycerol accumulation.

c. Cek1- it mediates mating and hyphae for-
mation and is also involved in adaptation 
to boththermal and nutrient stresses.

[24].

2 Ras-CAMP-PKA 
pathways

Regulate adhesion, dimorphism. Also involved in 
the formation of biofilms.

[23, 25, 26]

Control hyphal formation and white-to-opaque 
change

[27, 28]

Involved in drug tolerance and in the 
maintenance of cell wall integrity

3 RIM 101 signal 
transduction

Enables Candida albicans to sense pH changes, 
thus mediate pH-dependent responses

[29]

4 Stress response 
pathways

Contribute to virulence and pathogenesis
Facilitate adaptation to ever-changing 
environmental conditions.
Protect against host-derived stresses

[30]

5 Ergosterol 
biosynthetic 
pathways

Link between hyphae formation and virulence in 
C. albicans

[31]

Enhance cell adhesion and damage to the tissues [32]

ERG3 and ERG11 play major roles in azole 
drug resistance; thus, it is the target of 
fluconazoleantifungals

6 Genome plasticity Triggers adaptation to fluctuating host 
environment.
Leads to the generation of recombinant progeny 
with increased fitness.
Induces natural mutations that alter the balance 
between commensalism and pathogenicity.

[33, 34]

Facilitates resistance to stressors including 
antifungal agents and pathogenicity during 
systemic and mucosal infections

[35]

Triggers polarized filamentous growth
Involved in the generation/evolution of new 
pathotypes or strains
Enhances the utilization of several nutrients.
Facilitates Candida growth rate, as well as its 
morphology and behaviors at the host interface

7 Calcium-calcineurin 
pathways

Major mediator of stress responses [36]

Essential for survival in the presence of stressors [37]

Play crucial roles in virulence [38, 39]

Table 1. 
Major pathogenicity inducing pathways/responses in Candida species.
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quality items fundamental for biofilm foundation and development inside the 
host [41]. Along these lines, for hindering Candida endurance in have tissues, 
impedance with Candida species capacity to incorporate quality articulation to 
changes in morphology could be surely a potential restorative technique [42]. 
Also, distinguishing flagging segments saved among Candida species is vital for 
recognizing potential medication targets. During the interaction of pathogenesis, 
actuated endocytosis happens. It for the most part happens inside 4 h of start-
ing contact to epithelial cell. Candida uses prompted endocytosis to sidestep 
invulnerable acknowledgment. The acknowledgment of invasins communicated 
on the contagious cell surface triggers prompted endocytosis. Until this point, 
only A1s3p and Ssa1p (invasins) are known for C. albicans. In a murine model of 
oropharyngeal candidiasis revealed by Sun et al., Als3 and Ssa1 freaks displayed 
diminished grip and intrusion of cells of epithelium [43]. Free of the cellular 
receptor of epithelium, instigated endocytosis can likewise happen. This is 
conceivable through the association of the host epithelial cell epidermal develop-
ment factor receptor with the invasins of candida cell. Post actuated endocytosis, 
discharged harmfulness factors by pathogens to improve capacity to enter to 
surface of mucosa. The oral and vaginal mucosa, which are terminally separated 
and non-proliferative, are made out of delineated layers more averse to work 
with intrusion of parasites by means of initiated endocytosis. Candida species 
should use an elective course to attack a tissue less inclined to help disguise in 
a cycle called dynamic infiltration. Dynamic infiltration interceded through 
hyphae augmentation (constrained by Ume6 and Eed1) is a contagious actuated 
cycle that needs reasonable parasitic hyphae [44]. Actual powers, attachment, 
and hydrolytic chemicals like SAP additionally assume a part. C. albicans uses 
dynamic entrance as the underlying way to attack the furthest layers of the 
epithelium in vivo. Be that as it may, prompted endocytosis could likewise 
be obvious of additional upgraded attack once the fundamental proliferative 
layers of the epithelium have been gotten to by the growth. Along these lines, 
both dynamic infiltration and initiated endocytosis are unthinkingly noticeable 
systems required for disease foundation through mucosal boundaries in vivo. 
When all is said in done, the pathogenesis of Candida begins with colonization, 
shallow disease, and profound situated contamination before spread contami-
nation. The overall strides in tissue intrusion by C. albicans incorporate in the 
following stages.

a. Adhesion to the cellular epithelium.

b. Colonization.

c. Penetration to epithelium/hyphal invasion.

d. Dissemination of vasculature.

e. Endothelial colonization/penetration.

Systemic candida infection only occurs by immune system escape than vascu-
lature penetration and invading the blood components. Entry to the bloodstream 
occurs via two routes:

a. Natural routes.

b. Artificial routes.
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Above subsequent course is worked with biofilm arrangement as pathogens can 
get away and invade the blood. For Candida to endure and spread in the blood, vari-
ous qualities are upregulated: qualities engaged with protein amalgamation, glyco-
lytic cycle, glycolysis, and reaction to oxidative pressure. The presence of Candida 
in the blood prompts a condition called candidemia. From the blood, the yeast is 
dispersed to different fundamental organs in the body where it causes foundational 
contaminations. Dispersed candidiasis is profoundly worked with by extracellular 
hydrolytic compounds, adhesins, phenotypic exchanging, and cytolytic proteins. 
Candida in the blood can likewise bring about candiduria by antegrade contamina-
tion. Albeit most diseases include biofilm arrangement, a few contaminations can 
happen without the development of biofilm. Indeed, hyphae development and 
development are the beginning stages in the pathogenicity of Candida species, with 
the exception of C. glabrata that does not shape hyphae. It is notable that few quali-
ties straightforwardly or by implication incited by natural irritations trigger hyphae 
arrangement.

Notwithstanding, questions actually remain with respect to the instruments 
controlling its union, the receptors, and its carrier. In outline, the exchanging of 
Candida spp. from commensal to artful microbe is ascribed to destructiveness fac-
tors that are specifically communicated under reasonable inclining conditions. The 
majority of these destructiveness factors are under close guideline. More examina-
tions in their administrative instruments could be fundamental in the mission 
for new antifungal specialists. Figure 1 is the significant organization of Candida 
destructiveness and pathogenesis showing the associations between the different 
pathogenic determinants and harmful variables.

2.2 Host response to Candida species

Host insusceptible acknowledgment of Candida happens through a few instru-
ments involving intrinsic and versatile insusceptibility. The versatile insusceptible 
framework perceives explicit antigenic moieties, prompting the advancement of 
a focused on safe reaction. Interestingly, inborn insusceptible acknowledgment is 
vague and wide and is the primary line of host protection against possibly hazard-
ous organisms. These vague reactions are promptly endless supply of an organism 
in a pre-modified design and assume a fundamental part in controlling contagious 
weights and forestalling infection. Natural invulnerability includes a progression 
of dissolvable (supplement) and cell (neutrophil, macrophage) parts that act in 
show to keep by far most of microbes from setting up an intrusive disease. Further, 
it has become progressively clear that these reactions capacity to enact versatile 
insusceptibility just as acting along with other homeostatic cycles to give further 
security. Natural invulnerable acknowledgment of Candida happens through the 
acknowledgment of microorganism related atomic examples (PAMPs).

PAMPs are themes or particles that are regular between various sorts of growths. 
In contrast to antigens, individual PAMPs are not explicit to a solitary Candida ani-
mal variety but instead are divided among various species and contagious genera. 
These microbial PAMPs are perceived by have germline encoded design acknowl-
edgment receptors (PRRs) [45] and give a pre-customized method of parasitic 
acknowledgment, taking into consideration moment acknowledgment of normal 
contagious parts. Most of contagious PAMPs are cell divider related and incorporate 
𝛽𝛽-glucans, 𝑁𝑁-and 𝑂𝑂-connected mannans, and phospholipomannans [46]. These 
are perceived by three key PRR families: cost like receptors (TLRs), C-type lectin 
receptors (CLRs), and nucleotide-restricting area leucine-rich receptors (NLRs) 
[46–52]. Dendritic cells, monocytes, macrophages, polymorphonuclear leukocytes 
(PMNs), Tcells, Bcells, and epithelial cells all transmit PRRs on a surface level, in 
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endosomes or in the cytoplasm of host cells. Sanctioning of these PRRs by PAMPs 
prompts setting off of intracellular hailing pathways, as MAPK (mitogen-started 
protein kinase) and NF-𝜅𝜅B (nuclear factor kappa-light-chain-enhancer of incited B 
cells) pathways, and finally to further developed record of countless characteristics 
drew in with have safe protections, including chemokines, cytokines, provocative 
center individuals, and antimicrobial peptides. Appropriately, PRRs are fundamen-
tal center individuals among intrinsic and adaptable safe responses.

3. Receptor molecules in Candida recognition

While comparing the human genome with murine genome; human genome 
encodes for ten TLR characteristics (TLR1–10) and murine genome encodes 12 i.e. 
TLR1 to TLR9 and TLR11 to TLR13. Each TLRs depicted as transmembrane type-
1receptors having an enriched lucine extracellularly intermittent region which sees 
target PAMP and a Toll/interleukin-1 receptor-(TIR-) space containing cytoplasmic 
region that imparts the institution stimuli, which having closeness to the sort 1 
interleukin-1 (IL-1) receptor. TLR family is a developmentally monitored gather-
ing of PRRs that react to an assortment of bacterial, viral, and contagious PAMPs 
just as some endogenous components delivered when have cells are harmed. The 
extracellular areas of TLRs perceive an assortment of microbial PAMPs, including 
lipopolysaccharide (LPS), peptidoglycan, proteins (counting triacylated proteins 
and flagellin), and changed nucleic acids [53–58].

Figure 1. 
Simplified diagram illustrating the network of Candida virulence and pathogenicity. (1) planktonic yeast 
cells attach to surfaces. Favorable conditions facilitate overgrowth; adherence (2): The cells attach to host 
cells via adhesins; hyphae formation/extension (3): Environmental constrains induce the HSPs, signaling and 
adaptation pathways which induce morphology-associated genes. The formation of the hyphae marks the 
beginning of Candida pathogenesis. Epithelial/endothelial adhesion/invasion (4 and 6): This is facilitated by 
hydrolytic enzymes and it is achieved via two ways: Induced endocytosis and active penetration. Some species 
such as C. glabrata do not form hyphae; rather, they form biofilms (5) prior to the establishment of infection. 
Destruction of epithelial and mucosal surfaces by the enzymes and cytolytic proteins gives rise to different 
types of candidiasis (8). Yeast cells can enter the blood (7) and then disseminate to the vital organs where they 
establish new biofilms. Infections associated with biofilms are of great clinical significance. Major Candida 
infections include vulvovaginal, oropharyngeal, and gastrointestinal candidiasis, candidemia, candiduria, and 
intra-abdominal candidiasis. Key: Dashed lines: Signals and inductions; single-headed thick dark red arrow: 
Major route of Candida pathogenesis; curved double-arrow connector: Interaction/association between factors; 
T-shaped thin red line: Inhibitory signal. The pool of virulence encoding genes house both the genes involved in 
hyphae and biofilm formation and other vital processes crucial for pathogenesis.
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3.1 Toll like receptors

3.1.1 TLR recognition of Candida

Key part for TLRs in host protection against fungal infection was initially identi-
fied when Drosophila inadequate in Toll receptor were seen to profoundly helpless 
to A. fumigatus disease [59]. Therefore by far most of the underlying antifungal 
insusceptibility research focused on how contagious cells were perceived. This 
provoked the distinctive verification of a couple of PRRs related with affirmation of 
different cell divider polysaccharides of parasites and C. albicans explicitly, includ-
ing TLR2 (phospholipomannan), TLR4 (𝑂𝑂-associated mannan), and mannose 
receptor (MR) (𝑁𝑁-associated mannan) [46, 48, 60].

At last, these investigations finished in the disclosure of another PRR, dectin-1 
(dendritic cell associated C-type lectin-1), who perceives parasitic 𝛽𝛽-1,3 glucan [61]. 
Outstandingly, these parasitic PRRs can work both freely and related to each other. 
For instance, dectin-1 and TLR2 act additionally to perceive contagious yeasts, with 
dectin-1 prompting phagocytosis while TLR2 initiates cytokine creation [62–64]. 
Dectin-1 likewise synergises with TLR4 flagging [64]. Moreover, TLR1 and TLR6 
structure heterodimers with TLR2 [65] however do not seem to assume a significant 
part in C. albicans acknowledgment in a mouse model of intrusive candidiasis [66]. 
Obviously depending upon the coreceptor included, coligation of TLR2 may either 
update TLR2-subordinate responses [67] or change its PAMPs distinction concern-
ing the circumstance with galectin-3 [68].

Even so these are standard receptors utilized by macrophages and neutrophils to 
see C. albicans, various receptors have moreover been perceived inclusive of dec-
tin-2 [69], mincle (macrophage inducible CTL) [70], Dendritic cell specific inter-
cellular grasp particle 3- getting nonintegrin (DC-SIGN ) [71, 72], and galectin-3 
[68]. The piece of these PRRs is correct now not totally settled; regardless, dectin-2 
and DC-SIGN are perceived to assume a significant part in the acknowledgment 
of high mannose structures [73] and galectin-3 in the acknowledgment of 𝛽𝛽-1,2 
mannosides [68].

Curiously, galectin-3 coimmunoprecipitates accompanied by dectin-1 [74], 
which recommends that galectin-3 can work with associations among TLR2 and 
dectin-1 flagging. TLR acknowledgment of other medicinally significant growths 
have likewise been concentrated yet are less very much described, despite the 
fact that apparently TLR3 perceives A. fumigatus conidia and TLR4 perceives 
Cryptococcus neoformans glucuronoxylomannan, with TLR9 perceiving A. fumigatus, 
C. albicans and C. neoformans [75].

3.1.2 TLR signaling

PAMP acknowledgment of TLRs brings about enactment of flagging cascade 
intracellularly (Figure 2) through connection of the cytoplasmic TIR spaces with 
various connector proteins: myeloid separation essential reaction quality (88) 
(MyD88), MyD88-connector like (MAL), TIR-area containing connector initiating 
interferon-𝛽𝛽 (TRIF), and TRIF-related connector atom (TRAM) [53–58, 76–79]. 
This TLR-adapter interaction ends up in the activation of the IRAK ( IL-I receptor 
associated kinase) proteins and TRAF6 (TNF receptor associated factor-6). As a 
result it ends up in activation of the main signaling pathways together with NF-𝜅𝜅B, 
MAPK, and IRF (interferon regulative factor) pathways. MAPK activation contains 
3 alleyways: p38, JNK (c-Jun N-terminal kinase), and ERKI/2 (extracellular signal-
regulated kinaseI/2). Finally, signaling pathway induction ends up in the activation 
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and nuclear localisation of transcription factors as well as NF-𝜅𝜅B, AP-I (activating 
macromolecule I), and IRF-3 and IRF-7. the result of this activation cascade is to 
induce organic phenomenon and secretion of varied proteins concerned in immune 
defense as well as cytokines, chemokines, antimicrobial peptides, and alternative 
inflammatory mediators, all of that operate to stimulate innate and reconciling 
responses of immune system. It thought to be noted that the overwhelming major-
ity of studies shaping the TLR-mediated pathways are performed victimization 
myeloid or humor cells, however elaborated analysis of TLR- mediated pathways 
in alternative cell varieties, and specifically animal tissue cells, could nonetheless 
establish novel and strange mechanisms of infectious agent (fungal) recognition 
and management at membrane surfaces.

3.1.3 Role of TLRs during Candida infection

Although animals missing the TLR signaling adaptor protein MyD88 are vulner-
able to fungal infection [46, 80–82], the exact role of particular TLR receptors in 
fighting Candida infections is unclear. This is most likely because of contrasts in 
examination plan, where diverse contagious species, morphotypes, and courses 
of contamination have been surveyed [52]. Thusly, contemplates utilizing TLR 
knockout mice have uncovered critical contrasts in the putative jobs of various 
TLRs in fundamental or mucosal insusceptible reactions against contagious con-
taminations [83]. For instance, while a few examinations demonstrate that TLR2 
and TLR4 impact vulnerability to murine scattered candidiasis [82, 84–86], not all 
investigations support this attestation [87, 88]. TLR7 might be needed for parasitic 
RNA acknowledgment in the autophagosome, which is needed for IFN-𝛽𝛽 discharge 
and is related with delayed C. glabrata contamination [89]. TLR9 perceives C. 
albicans DNA (unmethylated CpG arrangements) bringing about cytokine creation 
in dendritic cells [90]; notwithstanding, TLR9 knockout mice do not seem, by 
all accounts, to be more helpless to C. albicans contamination, notwithstanding 
delivering diminished degrees of IL-I2 and expanded measures of IL-4 and IL-I0  
[82, 90–92]. Outstandingly, explicit TLRs (TLR2, TLR4, TLR6, and TLR9) seem to 
hold various jobs relying upon which arm of the inborn invulnerable reaction they 

Figure 2. 
Signal pathway activation by TLRs and CLRs. TLRs and CLRs activate MAPK and NF-𝜅𝜅B signal pathways to 
varying extents, thereby allowing different innate immune responses to be generated. TLRs utilize TIR-domain 
containing adapter proteins such as MyD88, mal, TRAM, and TRIF. CLRs signal using ITAM domains within 
their cytoplasmic region (e.g., dectin-1) or associate with an ITAM-containing transducing protein (e.g., 
dectin-2 with FcR𝛾𝛾). Dectin-1 utilizes Src kinases and Syk kinase to activate a complex containing CARD9, 
MALT1, and Bcl1o to activate the downstream signal pathways. Figure adapted from [47].
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draw in with, for instance, advancement of versatile reactions by working with 
antigen show in dendritic cells [93].

A few examinations have related normal hereditary variations (polymor-
phisms) in TLR qualities with vulnerability or inclination to foundational 
candidiasis or constant mucocutaneous candidiasis (CMC). These recollect 
polymorphisms for TLRI (R80T , N248S , and S602I) [94, 95] and TLR3 (L4I2F)  
[96, 97]. Polymorphisms in TLR4 (D299G) and TLR2 (D753Q ) have moreover 
been perceived as possible frailty markers for basic candidiasis [98] yet these could 
not be approved in a greater report [95]. As of now, a large portion of the informa-
tion accessible recommends a solid part for TLRs in antifungal protection however 
recognizing explicit jobs for each TLR has been over shadowed by repetitive signs 
instigated by other PRRs [94].

3.2 C-type lectin receptors

CLRs (C-type lectin receptors) are a diverse restriction protein family defined 
by the presence of an extracellular carb acknowledgment space (CRD) or a C-type 
lectin like area (CTLD) [99]. The job of CLRs in antifungal insusceptibility has 
been the subject of serious investigation as of late and a few key CLRs have now 
been shown to show basic capacities in Candida acknowledgment, take-up, and 
executing and furthermore add to the commencement and additionally tweak 
of the resistant reaction to organisms [46, 100, 101]. By and by, the key CTLs in 
Candida affirmation appear, apparently, to be dectin-I, dectin-2, and MR. CLRs 
signal through incitation of ITAM/ITIM (immunoreceptor tyrosine-based actua-
tion/restraint theme) cytoplasmic areas (Figure 3). This can be done by using their 
own cytoplasmic area, as dectin-I does, or by using coreceptor cytoplasmic spaces, 
as DAPI2 (DNAX actuation protein of I2 kDa) and FcR (Fc receptor gamma chain) 
do, as dectin-2 does. The activation of numerous connections to those activated 

Figure 3. 
Signaling and damage pathways activated by C. albicanshyphae. C. albicanshyphal cells, when in sufficient 
quantities, are recognized by an unknown PRR mechanism that results in the activation of NF-𝜅𝜅B, MAPK, 
and PI3K pathways. MAPK signaling via p38 and ERK1/2 appears to discriminate between yeast and hyphal 
cells. Activation of p38 by hyphae leads to activation of the c-Fos transcription factor, which, in conjunction 
with the p65/p50 NF-𝜅𝜅B heterodimers and PI3K/AKT results in upregulation of cytokine and inflammatory 
mediator expression. Concurrently, activation of ERK1/2 signaling, results in stabilization of the MKP1 
phosphatase, which deactivates p38 and JNK, hence acting as part of a negative feedback loop and preventing a 
potentially deleterious overreaction of theimmune system. Damage induced by hyphae appears to be mediated 
via JNK activation and prevented via the PI3K/AKT/mTor pathway.
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by TLRs, most notably Src family kinases including Src, Lyn, and Fyn, is triggered 
when CLRs are ligated. If we talk about dectin-I , it prompts initiation of spleen 
tyrosine kinase (SYK) and the downstream actuation of the CARD9/BclI0/MALTI 
(caspase enlistment space family/B cell CLL-lymphoma I0/mucosa related lym-
phoid tissue lymphoma movement quality I) flagging complex. Independent of the 
CLR pathways and connectors utilized, a definitive outcome is the enactment of 
comparative flagging pathways as those initiated by TLRs, overwhelmingly NF-𝜅𝜅B 
and MAPK, that are discussed below point.

3.2.1 Dectin-I

Dectin-I, (also called CLEC7a) is that the main CLR known as taking part in 
a serious role in fungous recognition by the host system [102] and may be a sort 
II transmembrane macromolecule that belongs to a subgroup of CLRs referred to 
as natural killer (NK) receptor-like CLRs. The target ligands of dectin-I are 𝛽𝛽-I,3 
glucan polymers, that comprise a serious part (∼60%) of fungous cell walls. The 
intracellular region of dectin-I contains a changed ITAM motif containing one 
amino acid residue rather than the standard 2 (hence the terms hem-ITAM or 
hemi- ITAM). Activation of the dectin-I results in phosphorylation of this domain 
and phosphorylation of SYK and activation of the BclI0- CARD9-MALTI compli-
cated as mentioned on top of. This results in activation of each the canonical and 
noncanonical NF-𝜅𝜅B pathways [103] further as nuclear issue of activated T cells 
(NFAT) pathway [104]. Dectin-I can even induce signaling via Raf-I in an exceed-
ingly SYK -dependent fashion [103] and is related to phospholipase C and A2 acti-
vation [50]. one in all the most important functions of dectin-I binding seems to 
be the induction of bodily process [105]. However, a singular feature of dectin-I is 
its ability to be activated or suppressed by its target matter. to completely activate 
dectin-I, cells got to be exposed to insoluble 𝛽𝛽-glucan particles. Notably, exposure 
of dectin-I to soluble 𝛽𝛽-glucan seems to dam activation. This appears to ensue to 
the apparent form type a vegetative cell conjunction,“whereby phosphatases that 
usually suppress ITAM motifs are accumulated. This exclusion later permits the 
phosphorylation of the intracellular hem-ITAM motif [106], thereby sanction-
ing bodily process. Dectin-I has additionally been shown to synergise with each 
TLR2 and TLR4, leading to the induction of tumor necrosis factor (TNF), IL-I0, 
transforming growth factor (TGF) and dendritic cell maturation [107–109]. In 
view of the fact that the 𝛽𝛽 - I,3 glucan polymers that are the main components 
of the fungal cell wall, and a strong activation of the immune system, dectin-I 
plays an important role in inducing antifungal activity of the host. This may also 
explain why some of the mold surface structure of “the mask” -I.3 glucan from the 
immune system. For example, Histoplasma capsulatum, masks are 𝛽𝛽-I,3 glucan, 
with a low - 𝛼𝛼-I,3 glucan [110] and it seems likely that the C. albicans hyphae of 
𝛽𝛽-I,3 glucan has been covered over by layers of 𝑁𝑁 - 𝑂𝑂 - linked mannoproteins in 
order to prevent the discovery of the dectin-I. However, the yeast is in the form 
of C. albicans, while 𝑁𝑁 - 𝑂𝑂 - linked mannoproteins present in the underlying 
𝛽𝛽 -glucan layer is exposed in the developing gut, which dectin-I in order to be 
recognized. Thus, it could be concluded that the most important role of dectin-I 
in the control of the yeast form of candidiasis (thrush). In addition, 𝛽𝛽 - glucan, 
which has been in the hyphal cell wall of C. albicans, it seems to be structurally 
different from the yeast 𝛽𝛽 - glucan [111] and, therefore, may not be immune to or 
understood by the dectin-I.

Although some studies have shown that the expression of dectin-I in the epithe-
lial cells of the gastro- intestinal tract [112], and lung [113, 114], in oral epithelial 
cells express dectin-1 [115, 116]. What’s interesting is that dectin-I expression 
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appears to be reduced in the presence of live C. albicans cells [116], and it is not 
affected by the dectin-I ligands [115, 117]. This suggests that dectin-I is likely to 
play only a minor role in the detection of C. albicans epithelial cells. Studies car-
ried out with the help of dectin-I knockout mice have provided mixed data sets for 
the C. albicans systemic infection models, to demonstrate these differences, [118] 
and increased mortality [119] depending on the study, the C. albicans strain used. 
On the one hand, it is the work for the dectin-I is supported by the consideration 
that CARD9 knockout mice are susceptible to the most important infection [120] 
and in patients with head-and-CARD9 immunity and are particularly vulnerable 
to both the lining and the main foundation candidiasis [121]. In addition, another 
study, it has been the study of the normal function of the genetic polymorphism 
in CARD9 (SI2N), to CADR9, especially candidiasis, it is recommended that the 
method of fixing of the 𝛽𝛽 - glucan may be excessive for the first invulnerability of 
C. albicans [122]. However, recent studies have shown the potential role of dectin-I 
in the maintenance of tissue health. Dectin-I−/− the mice showed greater severity 
of the disease, at least one more commonly, however, this weight can be reduced by 
the removal of fungal and bacterial flora in [123]. Histologically, extensive infesta-
tions of fungi have been recorded from the underlying tissue, which was not seen 
in wild-type mice. Clinical trial data have shown that a subgroup of patients with 
ulcerative colitis, especially in aggressive disease, and shows a common single-
nucleotide polymorphisms (rs2078I78 in dectin-I, possibly indicating a requirement 
for functional dectin-I receptors, and to maintain, mucosal health, in a commensal 
state [123]. However, the role of dectin-I in the intramucosal infections, it is far 
from clear, as recent studies in mice have demonstrated that dectin-I does not play 
an important role in the control of gastro-intestinal colonization by C. albicans 
[124]. In particular, it is well known that, in humans, mutations in the stop codon 
(Tyr238X in dectin-I is associated with an increased risk of developing mucocuta-
neous fungal infections, with an increased colonization of the oral cavity and the 
gastrointestinal (gi) tract and vulvovaginal candidiasis (thrush) infection (RVVC) 
[125, 126]. In another case, we obtained that the dectin-I polymorphism (I223S) was 
associated with oropharyngeal candidiasis (OPC) the susceptibility of West Africa, 
a group of HIV-positive patients [127]. That is why, even though the great one, the 
precise role of dectin-I in the susceptibility to candida infection is still unclear and 
requires further investigation.

3.2.2 Dectin-2

Dectin-2 (otherwise called CLEC6a) is a sort II transmembrane protein 
however is enacted contrastingly to dectin-I. Dectin-2 comes up short on an 
intracellular flagging area [128] and requirements to dimerise with FcR𝛾𝛾, which 
has an intracellular flagging space, to send a sign [69]. In myeloid cells and fiery 
monocytes, dectin-2 perceives high mannose structures that are normal to numer-
ous parasites and ties to hyphae with higher proclivity than to yeast [129, 130]. This 
may clarify why dectin-2 inadequate mice are helpless to C. albicans contamination 
be that as it may, strangely, not C. neoformans [130, 131]. Dectin-2 may moreover 
recognize 𝛼𝛼-mannosyl linkages [132]. Dectin-2 may activate a number of cytokines 
and chemokines via NF-B, MAPK, SYK, CARD9-BclI0-MaltI, and PKC, as well as 
initiate the NLRP3 (NOD-like receptor family, pyrin region containing 3) inflam-
masome and a respiratory burst [69, 133]. Furthermore, dectin-2 may have a role 
in protecting against C. glabrata illnesses, since dectin-2/lacking mice were more 
susceptible to C. glabrata infections, indicating a poor transmittable choice in 
kidneys [134].



15

Pathogenicity Mechanism of Candida albicans
DOI: http://dx.doi.org/10.5772/intechopen.99737

3.2.3 Dectin-3

Dectin-3 (additionally called CLECsf8, MCL, or CLEC4d) was as of late distin-
guished and seems to shape heterodimers with dectin-2 to perceive 𝛼𝛼-mannans on 
the outside of C. albicans hyphae, prompting NF-𝜅𝜅B enactment [135]. Strikingly, 
dectin-3−/− mice were exceptionally helpless to C. albicans disease. Contrasted 
and their particular homodimers, dectin-2/3 heterodimers bound 𝛼𝛼-mannans all 
the more viably, prompting strong incendiary reactions. This recommends that 
distinctive CLRs may shape an assortment of hetero and homodimers that may 
give diverse affectability and variety to have cells to identify different contagious 
contaminations.

3.2.4 DC-SIGN

DC-SIGN (otherwise called CD209) is another sort II transmembrane receptor 
that is communicated dominatingly on dendritic cells and macrophages. Dendritic 
Cell-Specific Intercellular adhesion molecule-3-Grabbing Non-integrin) also known 
as CD209 (Cluster of Differentiation 209) is a protein which in humans is encoded 
by the CD209 gene. DC-SIGN is a C-type lectin receptor present on the surface of 
both macrophages and dendritic cells Nonetheless, the part of DC-SIGN in anti-
fungal invulnerability is muddled [101], in spite of the fact that DC-SIGN seems to 
perceive high (𝑁𝑁-connected) mannose containing glycoproteins and actuate IL-6 
creation [71, 136]. Albeit the part of DC-SIGN in the endocytosis and take-up of 
microbes to advance antigen show is all around recorded [136, 137], its job in phago-
cytosis is sketchy [71, 136].

3.3 Mannose receptor

The MR (or called CD206) is a prototypical kind I transmembrane protein 
that is transcendently communicated on macrophage and dendritic cells. MR 
receptor ties a few starch particles, including extended 𝑁𝑁-connected mannans, 
N-acetylglucosamine, glucose, and fucose [138]. Thus, MR can perceive numerous 
contagious, bacterial, and viral pathogens. MR needs regular intracellular flagging 
spaces despite the fact that ligation actually prompts an assortment of cell reactions, 
including signal pathway acceptance, phagocytosis, advancement of antigen show 
to T cells, and cytokine discharge [63, 136–140]. For instance, the MR is enlisted to 
the phagosome after C. albicans ingestion and actuates intracellular flagging and 
cytokine creation [141]. MR may likewise be needed for the enlistment of defensive 
ThI7 reactions in C. albicans contamination [140] however may repress cytokine 
creation because of different organisms, for instance, Pneumocystis carinii [142]. 
Remarkably, MR inadequacy does not seem to present helplessness to C. albicans 
foundational disease [143] as it does to C. neoformans [144], albeit minor changes 
in parasitic weights can be noticed [143]. In oral epithelial cells, MR impeding does 
not modify the discharge of IL-6, IL-8, and GM-CSF upon incitement with Candida 
cell divider parts [117]. As of now, there is no conclusive part for MR in mucosal 
antifungal host safeguards.

3.4 Nod-like receptors (NLRs) and inflammasomes

NLRs are a group of intracellular PRRs portrayed by leucine rich rehashes and 
a nucleotide-restricting area that identify PAMPs present in the cell cytoplasm. 
Like TLRs and CTLs, NLRs perceive microbial items yet they additionally perceive 
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have determined threat signals or alarmins [145]. There are now 23 human NLRs 
and 34 mouse NLRs identified [146]. Inflammasomes are huge multimeric protein 
structures framed by NLRs and two distinct proteins, ASC (apoptosis-related 
spot like protein containing a CARD) and procaspase-I (procysteine-subordinate 
aspartate-coordinated protease I). The inflammasome’s main function is to convert 
procaspase-I to dynamic caspase-I, which causes young cells that are friendly to IL-I 
and supportive of IL- I8 to produce IL-I and IL-I8 [147]. Despite the fact that C. 
albicans is not recognized by NLRCI (NLR family CARD space containing protein 
I) or NLRC2 [148], it is known to activate inflammasomes fusing NLRP3 (NACHT , 
LRR, and PYD spaces containing protein 3) [149] and NLRC4 [150], resulting in the 
production of IL-I.

Surprisingly, NLRP3 is strongly expressed in nonkeratinizing epithelia, such as 
the oral cavity and throat [151], suggesting a possible role for NLRP3 in parasitic 
recognition in oral epithelial cells, which is supported by studies showing increased 
IL- I and IL- I8 levels in response to C. albicans stimulation [115, 152–155]. Mice 
missing NLRP3 appear to be susceptible to candidiasis [156], but mice lacking 
IL-I receptor type I (IL- IRI), IL-I8, or caspase-I exhibit distinct contagious con-
tamination helplessness profiles [157]. Strikingly, IL-I𝛽𝛽 (and IL-I𝛼𝛼) lacking mice 
show expanded mortality during scattered candidiasis [158]. Late reports have 
likewise recognized a significant part for NLRP3 along with TLR2 and dectin-I in 
forestalling dispersal of C. albicans in a murine model of oral contamination [159]. 
Steady with a part for NLRP3 inmucosal security [160], deficient NLRP3 actua-
tion expands C. albicans colonization in the gut and fuels Crohn’s illness [161], and 
a length polymorphism in intron 4 of the quality (CIASI) that codes for NLRP3 
inclines patients to RVVC [162]. Nevertheless, the full degree of the practical jobs 
for NLRs and inflammasomes in antifungal host safeguards is as yet not completely 
comprehended.

4. Protein involves in pathogenesis

4.1 Mincle

Mincle (also known as CLEC4e or CLECsf9) is a type II transmembrane protein 
that transmits its signal after dimerizing with the FcR connector protein [128]. 
Macrophages, monocytes, neutrophils, myeloid dendritic cells, and certain B cell 
subsets all communicate mincle, while plasmacytoid dendritic cells, T cells, and 
NK cells do not [133]. Mincle binds -mannans-containing starch structures [143, 
163] and detects C. albicans [70, 164, 165], Malassezia spp. [163], and Fonsecaea 
pedrosoi, the chromoblastomycosis causative pathogen [166]. As with dectin-2, 
mincle is not believed to be needed for phagocytosis [70] yet adds to the acceptance 
of cytokines and chemokines by means of NF-𝜅𝜅B, MAPK, SYK, CARD9-BclI0-
MatIt, and PKC𝛿𝛿 [133, 163]. In spite of the fact that mincle-incited reactions have 
all the earmarks of being MyD88 autonomous, mincle may synergise with TLRs to 
instigate fiery cytokines and the respiratory burst [167].

4.2 Soluble proteins in Candida recognition

The supplement course assumes a significant part in have protection against 
parasitic microorganisms and is quickly enacted in light of host attack by Candida 
[168–170]. Candida actuates each of the three known pathways (old style, elective, 
and mannose-restricting lectin (MBL)) with nobody clear pathway overwhelming 
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the reaction [171]. Given that the Candida cell surface is covered with a bounty of 
manno proteins, it is not astonishing that Candida microorganisms are viable at 
actuating the MBL pathway, which seems significant for opsonisation, phagocyto-
sis, and other supplement capacities [172, 173]. The connection between enacted 
C3b and the supplement receptor CR3 is generally needed for the uptake of Candida 
cells by phagocytes [174]. C. albicans cell divider proteins (e.g., GpmI, PraI, and 
Gpd2) can possibly tie supplement segments, for example, Factor H, FHL-I, C4BP 
and plasminogen from human plasma that meddle with phagocytic opsonisation 
and take-up [168, 170, 175–180]. For example, restricting of Pra1 to factor H and 
FHL-1 most likely includes an avoidance methodology including the hindrance 
of C3 cleavage into opsonic and anaphylatoxic parts, in this manner forestalling 
acknowledgment and take-up by phagocytes [181]. C5 is likewise significant in 
Candida diseases since mice that need practical C5 quality duplicates are vulnerable 
to obtrusive foundational contaminations [182–185]. C5 insufficiency is related 
with expanded creation of proinflammatory cytokines (TNF𝛼𝛼 and IL-6) and fast 
parasitic replication in organs that can prompt cardiovascular disappointment [186, 
187]. Sanctioning of C5 prompts the improvement of C5b, which consequently 
triggers the plan of the film attack complex (MAC). Despite the fact that affidavit 
of MAC on the outside of C. albicans does not bring about fungicidal movement, 
presumably because of the thickness of the parasitic cell divider, it might work 
with the incitement of phagocytes and ensuing arrival of terminal supplement 
segments from these phones. Curiously, as no impact on irritation is recognized 
in C3 insufficient mice, this may recommend a generally C3-free preparing of C5 
in foundational C. albicans disease [188]. After phagocytosis, the oxidative burst 
is set off which prompts contagious executing, a cycle that can be hindered with 
monoclonal antibodies to forestall C3b-CR3 associations. C3b-CR3 contact also 
appears to be crucial for lymphocyte hyphal formation and cytokine production 
[189]. MBL has also been linked to the inhibition of Candida development [190] 
and the enhancement of TNF release from Candida-infected monocytes [191]. C3a, 
an anaphylatoxin released by C3 during supplement enactment, may have direct 
antifungal activity independent of its chemotactic effect [192]. These findings sug-
gest that complement activation is critical in the host’s defense against C. albicans 
infections. The reader is directed to the following reviews [168, 170] for further 
in-depth information on the involvement of complement in Candida infections.

5. Cellular responses to Candida

5.1 Neutrophils

Neutrophils are a key effector cell in intrinsic insusceptibility, and they play a 
dual role in antifungal responses. First, they phagocytose and destroy contaminated 
Candida cells (below), and then, via cross communication with epithelial cells, they 
indirectly assist in mucosal protection (tended to above). TLRs and CTLs help neu-
trophils phagocytose nonopsonized Candida, while CR3 and the Fc receptor (FcR) 
help them phagocytose opsonized Candida [193]. Once phagocytosed, Candida 
is killed both inside and outside the cell through oxidative and nitrosative mecha-
nisms, but fungicidal movement varies across Candida species [194, 195]. Preformed 
cytoplasmic granules interweave with the phagosome intracellularly, although 
unlike macrophages, no substantial pH changes occur [196]. Antimicrobial proteins 
found in neutrophil granules include defensins, lactoferrin, lysozyme, myeloper-
oxidase, and elastase [197], all of which can be transported into the extracellular 
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environment. Candida’s phagocytic execution requires oxidative processes. During 
the oxidative burst, neutrophils create reactive oxygen species (ROS), which needs 
the NADPH oxidase catalyst complex to assemble in the cytoplasmic and phago-
somal film [198]. First, the superoxide extremist is formed, which is subsequently 
dismutated to hydrogen peroxide, an oxidative and harmful particle [199].

Then, myeloperoxidase uses hydrogen peroxide to create hypochlorous acid, 
which is moreover an exceptionally oxidative particle that responds with natural 
amines to frame chloramines that have further antimicrobial stuffs [193, 200]. 
Candida’s phagocytic execution is further aided by reactive nitrogen species (RNS) 
[193]. When neutrophils are activated, they produce nitric oxide (NO) from argi-
nine and oxygen via an enzyme called inducible nitric oxide synthase (iNOS). NO 
is extremely sensitive, and it is converted to peroxynitrite, which is then reduced to 
nitrogen dioxide and a hydroxyl radical. Because iNOS is restricted to the intracel-
lular compartment, RNS production is restricted to the intracellular compartment 
[199]. The creation of neutrophil extracellular catches (NETs) [201, 202], which 
are formed during a unique sequence of neutrophil cell death known as NETosis, is 
another more recently found way of Candida executing. Similar to serine proteases, 
antimicrobial peptides (e.g., calprotectin), and other microbicidal chemicals, the 
neutrophil “explodes,” unleashing a snare of chromatin fibrils coated with the 
neutrophil’s material. Candida spp. are well-versed in surviving the oxidative, 
nitrosative, osmotic, and restorative nerves encountered during interactions with 
neutrophils. Because of the weights, many cycles, features, and proteins are altered 
within the organism. These include upregulation of transporters (e.g., oligopeptide, 
ammonium, and iron), use of alternative carbon and nitrogen sources and meta-
bolic cycles (e.g., glycolysis, glyoxylate, unsaturated fat, and amino destructive), 
and detoxification of neutrophil oxidative/nitrosative butchering instruments. 
(e.g., catalase, superoxide dismutases, and nitric oxide dioxygenase). In any 
event, these nuances are beyond the scope of this examination, and the reader is 
directed to a later examination that focuses on the Candida reaction to neutrophils 
[193, 203].

5.2 Macrophages

Macrophages can function as phagocytic cells as well as antigen-presenting cells 
capable of activating T lymphocytes. Upon activation, macrophages divide into 
two phenotypically and functionally distinct subsets, M1 and M2, based on the 
cytokine milieu in which they are initiated [204–206]. The M1 total is derived from 
receptiveness to the T colleague (Th)1 cytokine IFN, whereas the M2 total is derived 
from receptiveness to Th2 cytokines, IL-4 and IL- 13. M1 macrophages are microbic 
and proinflammatory, whereas M2 macrophages are involved in wound healing and 
extracellular network upgradation. Macrophages, like neutrophils, see and phagocy-
toze nonopsonised Candida via TLRs and CTLs, and opsonised Candida via CR3 and 
FcR [193, 207]. Nonetheless, macrophage phagosome formation differs from neutro-
phil phagosome development in that macrophage phagosomes follow the endocytic 
development route and grow into phagolysosomes with a distinctive acidic pH that 
promotes compound activity, such as cathepsin D [208]. M1 macrophages use both 
oxidative and nitrosative executing components (as seen above for neutrophils), but 
they also use the RNS, NO, to directly kill phagocytosed Candida via the transloca-
tion of iNOS. TNF and the chemokines CXCL9 and CXCL10 are also released by M1 
macrophages [209]. These chemokines act as ligands for the CXCR3 receptor, which 
is found on Th1 cells and NK cells, attracting resistant cells to contamination sites.

M2 macrophages, then again, advance contagious ingenuity inside the mac-
rophage, giving an instrument to invulnerable avoidance. M2 macrophages 
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additionally express more significant levels of MR (CD206) bringing about 
expanded phagocytosis of Candida [210]. Correspondingly, the arginase-1 (Arg1) 
quality is additionally expanded in articulation, which rivals iNOS for a similar 
substrate (arginine), consequently diminishing NO levels [211]. This is addition-
ally exacerbated by decreased degrees of TNF𝛼𝛼 creation in M2 macrophages. In 
light of this, macrophages anticipate playing an important role in Candida protec-
tion, but this is contingent on the Candida strain assisting the macrophage [212]. 
Candida spp., like neutrophils, are believed to rely on relative adaptations to survive 
in macrophages. C. albicans and C. glabrata have been shown to alter metabolic 
requirements by using alternative carbon sources, upregulating impetuses for 
gluconeogenesis, glyoxylate cycle, and -oxidation of unsaturated lipids, and down-
regulating protein synthesis and glycolysis [193, 207]. This combines the formation 
of catalase and superoxide dismutases for extracellular ROS detoxification [213] 
and the outflow of flavohemoglobin impetuses for intracellular RNS butchering 
[214]. Concerning C. albicans, intracellular dealing additionally seems unusual and 
the growth may repress both lysosomal fermentation and NO delivery [215]. For 
additional subtleties the peruser is guided to ongoing surveys that emphasis on the 
Candida reaction to macrophages [207].

Besides these receptors molecules, actively participated proteins and cellular 
mechanism system there is a lot of others factors in these mechanisms are linked 
like adhesins and invasins, biofilm formation, contact sensing and thigmotropism, 
secreted hydrolases, pH-sensing and its regulation, environment and metabolic 
adaptation, small HSPs, metal acquisition. So, for a complete understanding these 
factors also play significant role in pathogenicity mechanism of C. albicans.

6. Conclusion

This chapter has discussed the pathogenicity mechanism along with host and 
cellular responses in Candida species. Host reactions to Candida are profoundly 
assorted because of the assortment of contagious PAMPs and antigens perceived 
by various safe cells at different disease destinations. Many inquiries have been 
conducted on this important topic, particularly with C. albicans, and thus we 
have obtained a much improved understanding of the appropriate structures of 
the PAMPs & PRRs. Still, further analysis is needed in order to attain insight into 
the complex communication between PAMPs and the corresponding receptors. 
Definitely, co-stimulation via multiple PAMP–PRR interactions may increase 
together the sensitivity as well as the specificity of the immune recognition 
process.
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Abstract

Invasive Candidiasis (IC) presents a global mortality rate greater than 40%, 
occupying the fourth place worldwide as the most frequent opportunistic nosoco-
mial disease. Although the genus Candida consists of around 200 species, only 20 
are reported as etiological agents of IC, being Candida albicans the most frequent 
causal agent. Even when there is a broad range of antifungals drugs for Candida 
infections, azoles, polyenes, and echinocandins are considered among the most 
effective treatment. However, there is some incidence for antifungal resistance 
among some Candida strains, limiting treatment options. Several molecular mech-
anisms with antifungal agents have been reported for C. albicans where insertions, 
deletions, and point mutations in genes codifying target proteins are frequently 
related to the antifungal drug resistance. Furthermore, gene overexpression is also 
frequently associated to antifungal resistance as well as an increase in the activ-
ity of proteins that reduce oxidative damage. This chapter summarizes the main 
molecular mechanisms to C. albicans antifungal drug resistance, besides offering 
an overview of new antifungal agents and new antifungal targets to combat fungal 
infections.

Keywords: resistance mechanism, antifungal, azoles, polyenes, echinocandins

1. Introduction

Candida albicans is the most important opportunistic commensal yeast that 
asymptomatically colonizes the skin, oral cavity, gastrointestinal and genitourinary 
tracts in healthy people. However, it can cause superficial and invasive infections, 
especially in immunocompromised individuals [1–3]. Actually, invasive infections 
due to Candida species are considered among the main causes of morbidity and 
mortality in hospitalized patients. Although there are at least 15 Candida spe-
cies related to human disease, more than 90% of the invasive diseases are related 
to C. albicans, Candida glabrata, Candida tropicalis, Candida parapsilosis, and 
Candida krusei [4–6]. C. albicans infections is considered the fourth most common 
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opportunistic infection in hospitals. Invasive candidiasis (IC) is fatal in about 42% 
of the reported cases, despite the use of antifungal therapies [7, 8].

Nowadays, the most widely used antifungal drugs for IC include: A) azoles, 
for instance fluconazole (FLZ), itraconazole (ITC), voriconazole, posaconazole, 
isavuconazole; B) polyenes such as amphotericin B (AMB); C) echinocandins like 
caspofungin, micafungin, and anidulafungin [9–11].

These antifungal compounds act on different parts of the fungal cell (Figure 1).  
Azoles interrupt the ergosterol biosynthesis, the main component of the fungal 
membranes [10, 12, 13]. Polyenes such as AMB interact with ergosterol making pores 
in the cell membrane [10, 12–14]; while echinocandins act blocking the synthesis of  
β-d-glucan located in the fungal cell wall [13, 15]. The gradual risk increment for 
Candida infection and the greater use of antifungal agents has increased resistance 
towards Candida spp. Pharmacological failures in Candida spp. treatments have 
drawn attention to the problem of resistance to antifungals and their molecular mech-
anisms. C. albicans inherently is susceptible to azoles, polyenes, and echinocandins. 
Mono-resistance to azoles or echinocandins has been reported, as well as combined 
resistance to azoles and amphotericin, but resistance to multiple compounds that 
covers all three drug classes is a rare phenomenon and few cases have been reported in 
C. albicans [10, 12, 16].

The following chapter offers an overview of the main genetic mechanisms 
contributing to the antifungal resistance in C. albicans, besides giving an approach 
for alternative-compounds proposed against their infection.

2. Molecular mechanisms of antifungal resistance

2.1 Azoles

Fungi cell membrane is mainly integrated by ergosterol, a sterol contributing to 
several cellular functions, besides modulating membrane fluidity and the structure 
and function of membrane proteins. The azoles mechanism of action is to inhibit 

Figure 1. 
Mechanisms of action of main antifungals families in the fungal cell. (a) Azoles disrupt the ergosterol synthesis 
by inhibiting the enzyme 14-α-lanosterol demethylase (ERG11) involved in the transformation of lanosterol 
into ergosterol in the endoplasmic reticulum. (b) Polyenes disrupt the cell membrane by binding to ergosterol 
resulting in pore formation. (c) Echinocandins inhibit 1,3-β-d-glucan synthase (FKS ½) which causes 
disruption of the cell wall.
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14α-lanosterol demethylase, encoded by the ERG11 gene, which converts lanosterol 
to ergosterol in the cell membrane (Figure 1). This enzyme contains an iron pro-
toporphyrin unit in its active site. Azoles bind to iron causing the blockage of the 
ergosterol biosynthetic pathway [17–19]. The interruption of ergosterol synthesis 
allows the accumulation of 14α-methyl sterols, which alters the membrane’s stabil-
ity, permeability, and the action of the enzymes bound to it [20].

The evolution of antimicrobial agent’s resistance is common, as there are many 
microbes able to develop strategies against drugs action. The incremented azoles 
resistance is mainly a result of their fungistatic rather than fungicidal nature [17–19]. 
The mechanisms of resistance to azole antifungal agents have been elucidated in 
Candida spp. species and can be classified mainly as: 1) changes in cell wall or in 
plasma membrane, leading to poor drug absorption; 2) alterations in the affinity 
of the target drug (i.e. ERG11 gene), due to a site mutation or its overexpression; 3) 
drug efflux mediated by membrane transporter proteins belonging to the transport-
ers of the ATP-binding cassette (ABC), namely CDR1 and CDR2 or the transporter 
of the major facilitator superfamily (MFS), CaMDR1; 4) biofilm formation [18–21]. 
Although the resistance described in C. albicans strains is usually a combination of 
the mechanisms mentioned above (Figure 2) [16].

2.1.1 Mutations of the ERG11 target enzyme

Mutations in the C. albicans ERG11 gene reduce the affinity for fluconazole and 
have a moderate effect on posaconazole [17–19]. Several point mutations have been 
identified in the ERG11 gene. In resistant strains, there are more than 140 substitu-
tions reported, most of them have a functional additive effect. Two of the most 
common alterations in C. albicans (R467K and G464S), are located near the heme-
binding site [20]. Other substitutions related to resistance are A114S, Y132H, Y132F, 
K143R, Y257H, and K143Q, which contribute to a significant increased resistance 
(more than four times) to fluconazole and voriconazole [22].

Some clinical isolates share common mutations with environmental azole-
resistant strains, suggesting that some azole-resistant clinical isolates could have 
their origin in the environment [23]. This resistance appears to be driven by the 

Figure 2. 
Schematic overview of the main mechanisms of drug resistance against azoles, AMB, and echinocandins adopted 
by Candida albicans. (a) Alteration of the enzyme target (azoles and echinocandins), (b) overexpression of 
drug efflux proteins (azoles), (c) Reduction of sterols in the plasma membrane (AMB), (d) increased stress 
tolerance and altered the fungal cell wall (echinocandins and AMB).
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agricultural use of azoles. In patients without azoles treatment, resistance has been 
identified derived from the environment. These cases involved a Cyp51A substitu-
tion at position 98 (from leucine to histidine), and a 34 base tandem repeat (TR) 
in the cyp51A promoter, leading to overexpression. Both changes are necessary to 
confer resistance. In particular, these resistant isolates can be crossed with suscep-
tible strains, suggesting that resistance could be transferred through the sexual 
cycle. Strains with these alterations have emerged throughout Europe and beyond. 
Additionally, a new environmentally selected resistance mutation (TR46, Y121F, 
T289A) was reported among patients in the Netherlands [20].

2.1.2 Dysregulation of the target enzyme ERG11

One way to decrease the drug effective concentration is the overexpression 
of ERG11 [17]. This overexpression is common among azole-resistant C. albicans 
clinical isolates. This contributes directly to resistance, since an increase in the 
target requires more drug for inhibition, reducing susceptibility [19]. ERG11 
overexpression arises either from genetic dosing through gene duplication or from 
positive regulation of the gene by trans-acting factors [23]. Multiple mechanisms 
explain the constitutive overexpression of ERG11 in azole-resistant clinical strains. 
First, amplification of the ERG11 gene can occur by the formation of an isochromo-
some with two copies of the left arm of chromosome 5 [i (5 L)], in which ERG11 
resides, or by duplication of the entire chromosome. Second, the activation of 
mutations in the gene encoding the transcription factor Upc2 positively regulates 
most of the ergosterol biosynthesis genes [18, 20].

2.1.3  Alteration of the ergosterol biosynthesis pathway (point mutations in ERG 
genes)

Brief exposures of two to three hours to azoles cause transient upregulation 
of the ERG gene family in C. albicans. These data suggest a common regulation 
of ergosterol biosynthetic pathway in the presence of inhibitors. Longer in vitro 
exposures to azoles (minimum 24 h) leads to constitutive up-regulation of the ERG 
genes decreasing drug susceptibility [23].

Modification of the metabolic pathway can be effective at different points, as 
example, alteration of the last steps of biosynthesis through the inactivation of the 
ERG3 gene results in no toxic methylated sterols production, leading to azole cross-
resistance. Furthermore, mutations in non-essential genes of this pathway (ERG3, 
ERG6, ERG24, and ERG2) also lead to a decrease, or even a total absence, of ergos-
terol in the plasma membrane [17]. Lanosterol demethylase inactivity or defective-
ness due to azoles induce ergosterol depletion and toxic 14α-methyl-3,6-diol sterols 
accumulation. The presence of 14α-methyl sterols can modify the function and 
fluidity of the plasma membrane [21]. The additive mutation in the ERG3 gene 
prevents the formation of this toxic product from 14α-methylfecosterol and leads to 
the accumulation of non-toxic sterols (Mishra, 2007; Shukla, 2016). Although this 
mechanism is not the most frequent one, it has been identified in several clinical 
isolates of C. albicans [23]. Mutations in ERG3 are sufficient to induce azole resis-
tance in Candida spp., but they are rarely associated with high resistance [20].

Four clinically isolated C. albicans erg3 mutants (CA12, CA488, CA490, and 
CA108) were reported as resistant to fluconazole, voriconazole, itraconazole, keto-
conazole, and clotrimazole under CLSI test conditions. Importantly, CA12 and CA108 
retained an azole-resistant phenotype even when tested in the presence of FK506, a 
multi-drug flux inhibitor. In contrast, CA488, CA490, along with three isolates (CA6, 
CA14, and CA177, in which ergosterol comprised more than 80% of the total sterol 
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fraction and ergosta 7,22-dienol was undetectable) exhibited azole sensitive pheno-
types in the inhibitor FK50 presence. CA108 mutant strain contains multiple amino 
acid substitutions in ERG3, but only a single conserved polymorphism (E266D) in 
sterol 14α-demethylase (ERG11). CA12 contains a substitution (W332R) in ERG3 and 
no residue changes in ERG11. Furthermore, CA488 and CA490 were found to harbour 
multiple residue changes in both ERG3 and ERG11 [24]. Furthermore, the residue 193 
in ERG3 was found to play an important role in azole resistance [25].

2.1.4 Efflux pumps

A mechanism to decrease the azoles intracellular concentration is increasing their 
output. This class of resistance is mediated by the activity of transport systems such 
as the pleiotropic drug resistance (PDR) class of ATP-binding cassette transporters 
(ABC) and major facilitators superfamily (MFS) transporters [17]. These membrane 
proteins translocate compounds across cell membranes actively using different 
energy sources. ABC proteins are primary transporters that use ATP hydrolysis. MFS 
pumps are secondary transporters that use the motive force of the proton across the 
plasma membrane. Both types of transporters contain distinctive protein domains 
that confer substrate specificity: nucleotide-binding domains (NBD) in ABC pumps 
and transmembrane domains (TMD) in ABC and MFS pumps. Fungal PDR proteins 
appear to share common features on both sides of the two TMDs that separate the 
cytosolic from the outer cytosolic space [18, 26]. This probably reflects the fact that 
the cytosolic part is the motor that drives the transport of a variety of substrates 
through the lipid bilayer through the core of the protein into the outer cytosolic 
space or the outer layer of the lipid bilayer [26].

C. albicans contains 28 ABC proteins and 96 potential MFS transporters [18]. 
In this species, the main transporters, related to resistance, of the ABC proteins 
are CDR1 and CDR2 (resistance drugs to Candida 1 and 2) [21], while for MFS it is 
MDR1 (Multidrug Resistance 1). CDR1 and CDR2 overexpression improves drug 
output and reduces its accumulation in cells [23]. Positive regulation of MDR1 
results in increased azole output [17]. Several cis-acting regulatory elements 
responsible for the regulation of the CDR1 and CDR2 genes have been identified. 
Promoter deletion studies have revealed five different regulatory elements in the 
CDR1 promoter, including one BEE (basal expression element), one DRE (drug-
sensitive element), two SRE (steroid sensitive element), and one NRE (negative 
regulatory element). Internal deletions of the BEE and DRE motifs in the CDR1 
promoter affect baseline CDR1 expression and drug-induced expression, respec-
tively. SRE1 and SRE2 are involved in steroid hormone responses: SRE1 responds 
only to progesterone and SRE2 to progesterone and β-estradiol. Finally, the dele-
tion of the NRE motif leads to an increase in the baseline expression of CDR1. In 
contrast to CDR1, the CDR2 promoter contains only one DRE motif. Among these 
diverse cis-acting elements, DRE is the only element involved in constitutive high 
expression and transient up-regulation of CDR1 and CDR2. In C. albicans, CDR1 is 
the main contributor to azole resistance among ABC transporters [23, 26].

In C. albicans a gene encoding a CaNdt80p protein similar to the Saccharomyces 
cerevisiae meiosis-specific transcription factor Ndt80p has been identified. Alteration 
of CaNdt80 affects the basal expression of CDR1 and reduces its ability for up-
regulation in the presence of miconazole. More recently, Ndt80p was involved in the 
global effect of azole resistance through its regulon, including several genes impli-
cated in ergosterol metabolism [23]. Additionally, MDR1 is the only MFS transporter 
involved in the azole resistance of clinical isolates. MDR1 usually does not express 
detectable levels in fluconazole-susceptible isolates but is constitutively up-regulated 
in some fluconazole-resistant strains. A region called BRE (benomyl response 
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element) or MDRE (MDR1 drug resistance element), respectively, was identified. 
This region is responsible for the constitutively high expression of MDR1 in flucon-
azole-resistant isolates. Hyperactive alleles confer a constitutive overexpression of 
MDR1 and therefore, resistance to fluconazole [23]. MDR1 expression in C. albicans 
cells is enhanced by benomyl, methotrexate, and several other unrelated drugs, and 
found to be more pronounced in some of the azole-resistant clinical isolates [21].

The up-regulation of ABC and MFS transporters is mediated by specific regula-
tions in resistant fungal pathogens. Point mutations defined as gain-of-function 
(GOF) mutations in these regulators confer an inherently high level of expression of 
the transporters in drug-resistant strains. GOF mutations in the transcription factor 
Upc2p led to increased resistance to fluconazole in C. albicans [17]. GOF mutations 
in the transcription factors TAC1 and MRR1 lead to upregulation of the CDR1/CDR2 
and MDR1 drug efflux pumps, respectively [16, 18]. An important question related 
to strategies to overcome efflux-mediated antifungal resistance is the relative contri-
bution of each efflux pump protein to clinically significant antifungal resistance in  
C. albicans. It is now clear that the CDR1, CDR2, and MDR1 transporters are the 
main efflux pumps that mediate resistance of C. albicans to azole drugs. However, 
MDR1 is relatively specific for fluconazole, while many azole drugs can act as sub-
strates for CDR1 and CDR2. Interestingly, several fluconazole-resistant C. albicans 
isolates overexpress only CDR1 and CDR2, but not MDR1, while other strains over-
express only MDR1, reflecting the existence of at least two different transcriptional 
pathways that are responsible for the upregulation of these genes in azoles [26].

2.2 Polyenes

The potent fungicidal activity of polyenes derives from their ability to selec-
tively bind sterol at the fungal cell membrane (Figure 1). Four models have been 
proposed as the mode of action for polyenes: 1) the pore formation model, 2) the 
surface adsorption model, 3) the sterol sponge model, and 4) the oxidative damage 
model [14]. The pore formation model is the most studied mechanism, where poly-
enes are directly intercalated with the ergosterol membrane forming ion channels 
that permeabilize and kill yeast cells [14, 27]. Additionally, indirect mechanisms of 
fungal cells damage have been identified due to the effect of polyene compounds, 
such as those mediated by reactive oxygen species (ROS) and by the secretion of 
interleukin-1β (IL-1β) by host cells [28, 29].

The polyene AMB is a broad-spectrum drug and is one of the main antifungals 
used for ICs [10, 14]. AMB is heptane isolated from Streptomyces nodosus producing 
high toxicity. Hence, a liposomal AMB (Ambisome R) has been developed to mini-
mize side effects and increase treatment efficacy [10, 14, 30, 31]; however, the high 
costs of this drug limited its use. Resistance to AMB is rare, despite 50 years of clinical 
use as monotherapy, although resistant C. albicans strains have been found in different 
studies [32–35]. The alterations in the composition of the sterols and phospholipids of 
the membrane, the regulation of oxidative stress, and alterations of the fungal cell are 
the more frequent resistance mechanisms described for AMB in fungi [10, 12, 14]. In 
C. albicans, resistance to AMB is associated with ergosterol replacement by a precur-
sor molecule or by sterols reduction at the plasma membrane (Figure 2) [10, 12, 14].

2.2.1  Alteration in the composition of sterols in the cell membrane (mutations in 
ERG genes)

The most common mechanism for acquired resistance to AMB in C. albicans is 
attributed to alterations in the composition of sterols of the fungal cell membrane 
[10, 12, 14, 36]. Different mutations in ERG genes (ERG11, ERG3, ERG2, and 
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ERG6) have been associated with this mechanism in Candida spp. [14, 37, 38]. Loss 
of function of the ERG11 and ERG3 genes (lanosterol 14α-demethylase and C-5 
sterol desaturase, respectively), leads to the exchange of ergosterol for alternative 
sterols such as lanosterol, eburicol, and 4,14-dimethyl-zymosterol in the mem-
brane of C. albicans, [14, 36, 39]. Resistance to AMB in C. albicans is also associated 
with an aminoacidic substitution in ERG11 and with ERG5 (sterol desaturase C-22) 
disfunction, again associated with an alternative membrane sterol composition 
[14, 39, 40]. In other Candida spp., the inactivation of ERG6 [11, 14, 37] and ERG2 
had a similar effect [11, 14]. Resistance to AMB is rarely found in combination 
with resistance to other antifungal drugs, although certain mutations that induce 
resistance to polyenes can lead to cross-resistance to azoles [14, 36, 41].

2.2.2 Response to oxidative stress and alterations in the cell wall

Fungal resistance mechanisms are also related to oxidative stress regulation, 
allowing the cell to tolerate exposure to AMB [14, 30]. In C. albicans, one of the 
described mechanisms of stress tolerance to AMB includes the heat shock protein 
90 (Hsp90) molecular chaperone, which regulates a large number of proteins 
involved in several fungal cellular processes [42, 43]. In addition to alterations in 
the composition of sterols in the plasma membrane and the regulation of oxida-
tive stress, studies in fungi have correlated resistance to AMB with fungal cell wall 
alterations [14, 44, 45]. In AMB resistant C. tropicalis strains, an enlargement of 
the cell wall has been observed with increased levels of 1,3-β-glucans [14, 44], 
suggesting an affectation in the penetration of AMB through the cell wall [14, 45].

2.3 Echinocandins

Echinocandins are lipo-peptides that inhibit 1,3-β-d-glucan synthetase, which 
is responsible for the biosynthesis of 1,3-β-d-glucan, one of the main components 
of the fungal cell wall, causing osmotic instability and therefore the death of fungal 
cells (Figure 1) [10, 13]. This class of drugs has certain advantages attributable to 
its effects on the fungal cell wall, including a lower risk of side effects since animal 
cells do not have this structure [10]. Echinocandins have a limited spectrum, but for 
Candida species, they have broad fungicidal activity. The 1,3-β-d-glucan synthetase 
target comprises a GTP binding protein Rho, which helps regulate the biosynthetic 
capacity of glucan synthetase, and a catalytic subunit, FKS, which encodes three 
related genes, FKS1, FKS2, and FKS3. FKS1 is essential in C. albicans and other 
Candida spp. Whereas FKS1 and FKS2 are functionally redundant in C. glabrata, 
FKS3 is very low expressed compared to other genes [46], not being a significant 
contributor to biosynthetic capacity in general.

Echinocandins are the first major new class of antifungal drugs on the market in 
decades. Consequently, it is of vital importance to assess the nature of the resistance 
mechanism to this class of drugs. Mutations that affect the target site are the most 
likely resistance mechanism that exists (Figure 2), since unlike azoles, echinocan-
dins are poor substrates for drug exit through efflux transporters, ruling out this 
mechanism of resistance [10, 13]. Specific mutations have already been reported in 
two highly conserved regions of the Fks1 subunit of glucan synthetase, a membrane 
protein, which can confer resistance in vitro in Candida isolates to caspofungin, the 
first echinocandin approved for the treatment of yeast infections [10, 13, 47, 48]. 
Other ways in which there may be the acquisition of resistance to echinocandins in 
C. albicans is through different response pathways to cellular stress, as well as some 
clinical factors such as empirical therapy, prophylaxis, gastrointestinal reservoirs, 
or intra-abdominal infections.
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2.3.1 Acquired FKS mutations

Resistance-associated amino acid substitutions occur in two highly con-
served hot-spot (HS) regions of the FKS genes. The residues they encompass are 
Phe641– Pro649 and Arg1361 in C. albicans and other Candida spp. Substitutions 
of amino acids Ser645 and Phe641 cause 75% resistance in C. albicans [10, 13]. 
Pharmacodynamic studies conducted in murine models infected with C. albicans 
demonstrated that mutations in the FKS1 gene confer resistance to echinocandins 
[48, 49]. Mutations in FKS1 lead to a decrease in the virulence of C. albicans in 
murine models of IC. Furthermore, high doses of caspofungin are effective against 
C. albicans, including resistant isolates that presented point mutations in FKS1 
[50, 51]. Several studies have reported that mutations in the FKS1 gene produce 
changes in the morphology of the cell wall of C. albicans, observing a decrease in 
1,3-β-d-glucan levels in contrast to the increased amount of chitin in response to 
echinocandin exposure [51]. Data suggest that increased chitin in the C. albicans 
cell wall could provide a window of opportunity to acquire mutations in FKS1, 
even without exposure to caspofungin [52].

2.3.2 Adaptive stress responses

The fungal cell wall is a dynamic structure that changes during growth and 
development, requires 1,3-β-d-glucan crosslinking, an essential polymer for the 
survival of the fungal cell. Echinocandins alter the integrity of the cell wall and 
induce stress in the cell. In response to this, the fungal cell possesses a repertoire 
of mechanisms to protect the cell against such destabilization. Protection against 
cell wall weakening is induced through a variety of stress adaptation mechanisms, 
which involve protein kinase C (PKC), calcineurin, and Hsp90 [10, 13]. Stress 
signals in the cell wall are transmitted through the Rho GTPase, which mobilizes 
various effectors. Its activation alters several carbohydrate polymers along with the 
structure and remodelling of the cell wall. The Hsp90 heat shock protein organizes 
a cellular stress response circuit that has a major impact on resistance to echino-
candins. Also, the genetic or chemical modulation of the Hsp90 protein reduces 
tolerance to echinocandins [52]. In response to the inhibition of FKS by the action 
of echinocandins, a greater amount of chitin is produced helping to maintain the 
integrity of the cell wall as chitin replaces 1,3-β-d-glucan, thus reducing sensitivity 
to drugs [10, 13, 48].

3. New antifungals

The resistance of C. albicans and other pathogenic fungi to current antifungal 
agents has established the need to find new antifungal targets with a novel mecha-
nism of action. Resistant strains are increasing in number for some classes of 
antifungal agents, particularly for azoles and echinocandins [53]. Consequently, 
it is necessary to face the challenge of successfully managing fungal infections. To 
achieve this, one of the main points is the continuation of the development of new 
antifungal drugs [54]. The main issues faced by the development of new drugs 
are: 1) they must have a broad spectrum against emerging filamentous yeasts 
and fungi and 2) they must have a more efficient fungicidal activity to eliminate 
pathogens quickly and totally [55–59]. Besides, invasive candidiasis occurs in very 
frail patients who do not tolerate much organ toxicity, since such patients are often 
taking many other therapeutic agents, so drug–drug interactions must be care-
fully considered [60].
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3.1 Discovery and development of new antifungal drugs

This part of the chapter provides an overview of ongoing efforts to develop 
new classes of antifungal drugs (Table 1). Although there are several strategies for 
the development of these drugs, these include those obtained from new chemical 
agents, from reusing existing drugs, from peptides with antimicrobial properties, 
and finally from natural compounds extracted from plants [10, 55, 58].

Several new chemical-antifungals are designed specifically to target either 
1,3-β-d-glucan (such as Rezafungin and Ibrexafungerp) or ergosterol (such as the 
compound VT-1161). These compounds are very specific for fungal infections or 
they have a longer half-life, offering better efficacy [58, 60–62]. At the same time, 
several of these antifungal agents have new targets and subsequently, new mecha-
nisms of action. For instance, fosmanogepix, formerly APX001, and aureobasidin 
A, which act by inhibiting inositol acyltransferase, and inositol phosphorylceramide 
synthase, respectively [63, 64]. Efungumab (or Mycograb) and geldanamycin-like 
agents can inhibit the HSP90 chaperone, which has been also shown to confer resis-
tance to antifungals [65, 66]. The AR-12 compound deregulates chaperone’s activity 
by blocking fungal acetyl-CoA synthase [67]. The T-2307 compound is an aryl-
amidine that inhibits the respiratory chain complex and is active against yeast and 
filamentous fungi [68]. Finally, the VL-2397 compound has a similar structure to the 
ferrichrome siderophore, and whose mechanism of action or its target is unknown, 
but it is known to be transported by the Sit1 protein [69]. Some compounds that 
have been already tested for other types of diseases are now receiving a new focus as 
antifungals. These include two compounds that enhance the antifungal activity, such 
as rifampin, which acts on RNA polymerase [70], and verapamil, which acts on a 
calcium channel [71]. We have also given importance to alternative compounds such 
as peptides and plant extracts; many molecules are actually studied with promising 
results, especially against C. albicans. Some peptides such as lysozyme, lactoferrin, 
defensins, Histatin-5, and cathelicidins are known to have antifungal properties. The 
main mechanism of action is due to the enhancement of substances traffic through 
the fungal membrane, which favours permeabilization [10, 72–76]. Plant extracts are 
another prominent source of new antifungals, they can act either alone or synergisti-
cally with existing antifungals to improve their function. The compounds extracted 
from plants are essential oils, terpenes, and flavonoids among many others. They 
have diverse mechanisms of action, such as alteration of the plasma membrane, 
binding to ergosterol, induction of apoptosis, inhibition of growth, filamentation, 
and biofilm formation in C. albicans [10, 77–81].

3.2 New targets and alternative approaches

Despite the efforts made to discover, repositioning, or create new antifungal 
drugs, it is imperative to find new targets to help eliminating Candida spp. infec-
tion. The new antifungal targets include biosynthetic and signal transduction 
pathways, which are key players for fungal survival processes. The sphingo-
lipids biosynthesis is a biosynthetic pathway considered as a promising target. 
Sphingolipids are a part of cell membranes, that act as signalling molecules 
regulating processes such as apoptosis. As fungal sphingolipids are structurally 
different to mammalian sphingolipids, they are excellent candidates for antifungal 
design [82]. The heat-shock proteins (Hsps) represent another potential antifungal 
target as they control several basic physiological activities, and heat-shock protein 
disruption in C. albicans inhibits growth or reverses tolerance to antifungals [83]. 
A recently studied pathway as a potential target is the ionic homeostasis signalling 
pathway, which is central to the fungus survival by regulating gene expression, 
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Source Compound Target Mechanism of 
action

Reference

Chemicals Rezafungin 
(CD101)

β-d-glucan β-d-glucan 
synthase inhibition

[60]

Ibrexafungerp 
(SCY-078)

β-d-glucan β-glucan synthase 
inhibition

[61]

VT-1161 Ergosterol Specific for fungal 
Cyp51

[62]

Fosmanogepix 
(APX001]

Glycosyl 
phosphatidylinositol

GPI biosynthesis 
inhibition

[63]

Aureobasidin A Inositol 
phosphorylceramide 
synthase

Sphingolipids 
biosynthesis 
inhibition

[64]

Efungumab  
(or Mycograb)

HSP90 Antibody binds to 
fungal HSP90

[65]

Geldanamycin-
like agents

HSP90 HSP90 inhibition [66]

AR-12 Probably blocks fungal 
acetyl-CoA  
synthetase 1

Downregulation of 
chaperone proteins

[67]

T − 2307 Mitochondrial 
membrane potential

Respiratory 
chain complexes 
inhibition

[68]

VL-2397 
(ASP2397)

Unknown Unknown, but 
taken up by Sitl

[69]

Repurposed 
compounds

Rifampin RNA polymerase Enhance the 
antifungal activity

[70]

Verapamil Calcium channel Enhance the 
antifungal activity

[71]

Promising 
Peptides

Lysozyme Secreted aspartic 
protease (SAP)

Reduces SAP 
activity and 
secretion

[72]

Lactoferrin (hl.f) Antimicrobial activity Production 
of cationic 
antimicrobial 
peptide 
lactoferricin

[73]

Human 
b-defensins 
(HBD)

Cell membrane Increases 
membrane 
permeability

[74]

Histatin-5 Non-lytic ATP efflux Inhibition of 
adhesion

[75]

Cathelicidins Cell membrane Increases 
membrane 
permeability

[76]

Scutellaria 
aicalensis 
(flavonoid 
baicalein)

Unknown Induces apoptosis 
in C. albicans

[77]

Cymbopogon 
nardus (essential 
oils)

Unknown Inhibits hyphal 
growth in  
C. albicans

[78]
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morphological transition, response to stress, and resistance to antifungals [84]. The 
Ras-cAMP-PKA signal transduction pathway is essential for cellular metabolism 
and controls morphogenesis, adhesion, and biofilm formation, making the inacti-
vation of this signalling cascade attractive as a target for new antifungals [85].

Finally, an alternative approach to conventional antifungal drugs is the use of 
nanotechnology, which produces the so-called “nanoantibiotics”. These nanoantibi-
otics are unique due to their improved physicochemical properties, such as reduced 
toxicity and biocompatibility as well as their size that must be less than 100 nm 
[86]. The antimicrobial properties of silver have been known for a long time, so sil-
ver nanoparticles were tested as antimicrobials and showed potent activity against 
drug-resistant fungal biofilms [87].

4. Conclusions

A better understanding of the resistance mechanisms of azoles, polyenes, and 
echinocandins, along with the discovery of new cellular and clinical factors promot-
ing resistance, will facilitate the design of more effective strategies to overcome and 
prevent resistance to antifungal agents. Even though several biomedical research 
offer a window hoping to reduce the incidence of C. albicans and the complications 
those systemic infections by this fungus entail; the quest for new targets with novel 
mechanisms of action continues to be the priority.
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Source Compound Target Mechanism of 
action

Reference

Plant Artemisia judaica 
(essential oil)

Germination Inhibits the 
formation of 
germination tube 
and biofilms in C. 
albicans

[79]

Natural 
compounds

Thymol (terpene) Ergosterol Binds to ergosterol 
in the membrane 
resulting in cell 
death

[80]

Carvacrol 
(terpene)

Cell membrane Alters cellular 
cytoplasmic 
membrane and 
induces apoptosis

[81]

Table 1. 
Antifungal compounds in development against C. albicans or Candida spp.
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Abstract

The growing evidences of Candida albicans (C. albicans) infections are slowly
becoming a threat to public health. Moreover, prevalence of antifungal resistant
strains of C. albicans has emphasized the need for identification of potent targets for
rational drug designing. In this aspect, traditional methods for target identification
with validation have been found to be expensive and time-consuming. To overcome
the concern, genome scale metabolic model construction provides a promising
platform that allows novel target identification in combination with subtractive
genome analysis. Thus, the chapter details current advancement in model
construction, target identification and validation. In brief, it elucidates the overall
strategies of C. albicans metabolome draft preparation, gap filling, curation of
model, simulation followed by model validation, target identification and host
pathogen interaction analysis. Finally, several examples of successful metabolic
model construction and their utility in rational drug designing also have been
discussed.

Keywords: Genome Scale Metabolic Model, Target Identification, Drug Designing,
Host-Pathogen Interaction, In-Silico Gene Knockout

1. Introduction

Candida albicans (C. albicans) is an opportunistic fungal pathogen that lives in
equilibrium with normal microbial flora of healthy individual [1]. As commensal, it
colonizes on the mucosal surface of oral, respiratory, gastrointestinal and genito-
urinary tract. But on transformation into pathogen, it breaches the protective bar-
rier in imunocompromised patients and cause candidiasis [2, 3]. Over 90% patients
of cancer and HIV endure with orophryngeal candidiasis whereas vulvovaginal
candidiasis distressed 138 million women per year [4, 5]. Candidemia is the most
recurrent nosocomial infection acquiring up to 15% infections of blood with mor-
tality rate from 40 to 70% [6]. Consequently, candidiasis has become the most
common fungal infections responsible for increased mortality and morbidity
worldwide.

For the treatment of candidiasis, limited number of antifungals has been
approved for clinical use. These antifungals categorize into four major classes -
azoles, polyenes, echinocandins, and pyrimidine analogs [7]. Azole and
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echinocandins precisely target the enzymes liable for synthesis of cell membrane or
cell wall while polyenes directly bind to membrane proteins that maintain the
osmolarity of the cell. In addition, Pyrimidines analogs are the sole antifungals that
target the pathogen’s genome rather than proteome [8, 9]. Consequently, the anti-
fungals disturb the integrity of cell directly or indirectly which ultimately leads to
the death of the pathogen (Figure 1).

C. albicans still represents itself as an emergent pathogen due to the side effects
associated with such as RBCs toxicity, nephrotoxicity, hepatotoxicity, arrhythmias,
cardiotoxicity and genitointestinal disturbances [10, 11]. Moreover, the drug resis-
tance has also increased the complexity of the disease. The reason behind resistance
is the prolonged or discriminated use of antifungals. The resistance mechanism
involves the hyperactivity of efflux pumps, mutation in targeted genes and metab-
olites bypass [12, 13]. Thus, C. albicans have different resistance pattern against the
diverse antifungals that lift up the difficulty level during the management of

Figure 1.
Antifungal Drug Discovery and Resistance. A) Since 1990s, polyenes, pyrimidine analogs, azoles,
echinocandins, and allylamines, morpholines, thiocarbamates has been approved for treatment of C. albicans
infection. Nystatin and 5-flucytosine binds to membrane ergosterol and thymidylate-synthetase, respectively that
leads to the leakage of osmotic constituents. Azoles inhibit the synthesis of ergosterol by interrupting the activity of
lanosterol-α-demethylase. Echinocandins halts the participation of (1,3) β-D-glucan synthase in glucan
synthesis. Allylamines and thiocarbamates block the oxidation of squalene. Consequently, leads to the death of
cell. B) Now, drug resistance has come into picture. Mechanism of resistance involves (1) overexpression of
target product, (2) modification of target enzyme, (3) Hyperactivation of multi-drug pump, (4) Production of
cell wall Barrier, (5) Adaption to stress response or metabolic bypass, (6) Inactivation of Drug.
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infection. On the other aspect, significant homology of drug targets with human
genes/protein, fitness traits and survival strategies such as secretion of hydrolytic
enzymes, morphogenetic switch, adhesion to surface and formation of biofilm
make this pathogen hard to kill. Thus, the scenario emphasizes the need of the
novel drug designing i.e. effective against resistant strain of C. albicans and easily
accessible with less or no side effects [14–18].

Effective drug designing could be possible only after the (i) identification and
(ii) validation of potential target. In silico and in vitro approaches have been
attempted for the identification and validation of novel targets of C. albicans
followed by drug designing. Traditional methods of target identification with
experimental validation (growth assay, enzyme inhibition assay, gene knockout,
yeast to hybrid system, RNA interference) have been expensive, time-consuming
and more focused towards few genes instead of whole genome. To reduce the time
and cost, various in silico approaches such as subtractive genomics, comparative
genomics, machine learning and inverse docking has been performed for novel
target identification [19–21]. But a reliable approach is still required for proposed
drug target validation.

The present chapter introduces the advancement in reconstruction and analysis
of genome scale metabolic model (GSMM) which provides a platform that offers
the opportunity to mimic the biological environment of pathogen into a machine to
validate the essentiality of the target for the survival of pathogen. “Gene-Protein-
Reaction” association in GSMM establishes its importance as a hub for validation of
targets while stoichiometry matrix of model helps to depict the linkage information
of metabolites to each reaction. If the inhibition of a particular metabolite shows a
negative effect on growth of pathogen, it ensures the essentiality of the gene.
Additionally, the approach also allows identification of the effect of inhibition
on whole metabolome of pathogen. The GSMM can be used independently or in
combination with different approaches (high throughput transcriptome profiling
and subtractive genomics approach) (Figure 2) [19, 20, 22, 23].

Figure 2.
GSMM as a central approach for target identification and validation. In silico approaches such as (1)
Transcriptome data analysis, (2) Genome Scale Metabolic Reconstruction (GSMM), (3) Subtractive &
Comparative Genomics and (4) Integration of genomics variants dataset of pathogen are widely used for target
identification and validation. Among these, GSMM serves as a central approach which can used independently
or in combination with these approaches. Gene-protein-reaction association and in silico gene knockout feature
of GSMM make it reliable and standard approach to validate the putative targets via monitoring the impact of
gene deletion on biomass of the system. Further, prioritization of proposed genes can be done by host-pathogen
interaction analysis and protein-protein interaction analysis.
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2. Genome scale metabolic model reconstruction

A genome scale metabolic model (GSMM) is a computationally designed frame-
work of microorganism that allows an efficient and comprehensive annotation of the
metabolic functions of an organism, integrated with large-scale omics datasets and the
study ofmicrobe-host interactions [24, 25]. In brief, it describes gene-protein-reaction
association of organism that mimics the biological condition in a machine to under-
stand the genetic engineering, protein–protein interaction and evolutionary traits of
organism [26]. Consequently, it generates forecast ranging from lethality of patho-
gen’s gene to the dynamics engaged in defense mechanism of host towards infection.

As genome-scale metabolic model reconstruction become the more standard
approach, the requirement of in-silico, automated tool turn out to be more perceptible
to design and analyze these kinds of networks [27, 28]. Furthermore, availability of
the whole genome of the pathogen also encourages the construction of in silico
models. The Recent examples also have shown the potential of these models in the
quest for novel drug targets in pathogenic organisms [29–33]. Kim et al., 2009
emerged a model of multi drug resistant A. baumannii and find the essential novel
targets for therapeutic implications. Abdel-Haleem et al. in 2018, described the
reconstruction of genome-scale metabolic models for five life cycle stages of Plasmo-
dium falciparum, enabling the identification of potential drug targets that could be
used as both, anti-malarial drugs and transmission-blocking agents [34]. Reinksma
et al., 2019 developed combine model ofM. tuberculosis and human to understand the
metabolic state of pathogen during infection. Subsequently, Reinksma and team also
assessed the effect of increasing dosages of drugs targeting metabolism on the meta-
bolic state of the pathogen and predict resulting metabolic adaptations and flux
rerouting through various pathways [35]. Similarly, Nouri et al., 2020 designed a
comprehensive model of Z. mobilis to find the target for metabolic engineering
applications [36]. Thus, design of C. albicans would also be the strong platform to
understand its metabolic state in distinct adverse conditions that helps to identify and
validate the target for novel drug design even against the resistant strains.

3. Experimental design for C. albicans model

Construction of a model involved 4 major steps: 1) Preparation of Draft; 2)
Manual curation; 3) Generation of mathematical model; 4) Network evaluation and
analysis [37]. In brief, draft preparation (50%) consist gene annotation of pathogen’s
genome that further map with data reported in literature. Manual curation (20%)
considers the manual refinements and re-evaluation of draft due to the presence of
annotations having low confidence score retrieved from organism unspecific bio-
chemical databases that may affect the behavior of pathogenic model. Collection of
data for growth condition and biomass composition also is the part of this stage.
Generation of mathematical model (10%) is fully automated and includes the con-
version of refined draft into mathematical model. Fourth stage comprises the verifi-
cation, evaluation and validation of model that leads to the identification and
fulfillment of network gaps by repeating stages 2 & 3 until the gap fill is accomplished.

The complete protocol of the genome scale metabolic model reconstruction of
C. albicans is shown in Figure 3. The protocol consists of a set of methods that are
introduced in sequence but can be combined in a multitude of ways.

3.1 Hardware and software

A 64 bit computer of 8 GB RAM with stable internet connection is desired for
drafting a model till analysis. MATLAB vR2014b (https://www.mathworks.com/
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products/matlab.html) or above, COBRA Toolbox v3.0 or above, Pathway Tools v
22.5 are required to accomplished the reconstruction [38–40].

Steps:
# Matlab Installation (v2014 or above)
> > Download ! Extract ! Click on Setup ! Install with or without Internet ! Next ! Accept
license agreement ! Next ! Provide installation key ! Next ! Choose Installation Type ! Next !
Specify installation folder ! Next ! Provide license file location ! Next ! Select installation options
! Confirm the Installation ! Finish
# CobraTool box Installation
> > Download i) git ii) curl (v7.0 or above) and iii) CobraTool box (v3.0 or above)
> > First Install git: extract ! Click on Setup ! choose default settings except adjusting your PATH
environment (select use git and optional unix tool from window command prompt) and configuring

Figure 3.
A flow diagram of Genome Scale Metabolic Model Reconstruction.

61

Metabolic Network Modeling for Rational Drug Design against Candida albicans
DOI: http://dx.doi.org/10.5772/intechopen.96749



the line ending conversion (choose checkout as –is, commit Unix-style line ending).
> > Install curl: Select default settings ! Just click next ! Finish
> > Install CobraTool box: Open git bash ! Run command “git clone –depth = 1 https://github.com/
opencobra/cobratoolbox.git cobratoolbox” (it will install the setup in C:
/user/username/cobratoolbox) ! open matlab ! click on set path ! select the Toolbox folder
# SBML installation
> > Download ! Extract ! Open Matlab ! Navigate to SBML toolbox folder ! Run script “run
(install.m)”.
# Pathway tool Installation
> > Download ! Click on Setup.exe ! Select the location of installation (same as cobratool
box) ! Next ! Choose location to store configuration and data file ! Next ! Verify location of
installation ! Next ! uninstall older version (if present) ! Click finish to continue ! Ok ! Create
desktop icon (optional) ! Finish

3.2 Preparation of draft

The draft reconstruction can be done manually or automatically. On manual
mode, it is very tedious and time taking process. Thus, the software such as
metaShark and PathwayTools are available which automate the draft by using
genome database (CMR, GOLD, SEED, TIGR and NCBI Entrez Gene), biochemical
database (KEGG, BRENDA, Transport DB, TCDB and PubChem) and organism-
specific database (EcoCyc, BioCyc, Metacyc and Gene Cards) [38, 41]. First, the
chapter described the draft construction with PathwayTools followed by manual
curation and biomass composition. Further, in silico activities and model analysis
illustrated using COBRA Toolbox in MATLAB [38–40].

3.2.1 Input file format

PathoLogic plugin of PathwayTool is dedicated for automated draft construction
that accepts FASTA file (.fasta), genetic-elements.dat (.dat), GenBank (.gbk) or
PathoLogic (.pf) format as input. FASTA and GenBank file formats are easily
accessible and can be retrieved from RefSeq and GenBank database while genetic-
elements.dat and PathoLogic must be prepared that defines the annotation for each
genetic element of organism. Each input file comprises at least the basic attributes
such as unique ID, name, start base, end base, function, EC number and gene
ontology.

Steps:
> > Retrieved the .fasta file and .gbk file of each chromosome of C. albicans from RefSeq (https://www.
ncbi.nlm.nih.gov/genome/?term=candida+albicans).

3.2.2 Creation of new database

Database creation is the first step of draft model construction that requires the
information like unique identifier, database name, taxonomy of organism and
database storage type etc. Consequently, the provided data is saved into organism.
dat and organism-init.dat files that indicate the initialization of new database. Once
the database has been initialized, specify the replicons of your organism i.e., the
input files of each chromosome that can be .fasta, .dat, .gbk or .pf. Thereafter,
specify the reference database of closest organism that will add the missing entities
(reactions, enzymes and metabolites) which are absent in databases linked to path-
way tool. Trial Parse operation parse the input file(s) to correct the errors present in
input file before to automate the building of new database. Finally, the removal of
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errors allows building the model. This is the focal phase of PathoLogic plugin that
perform the parsing again and generate a database for each chromosome, gene,
proteins, enzymes, metabolites of organism. Now save the organism database that
will take several minutes to complete (Figure 4, steps: 1–6).

Steps:
> > Pathway Tool ! PathoLogic (New window popup)
> > Database ! Specify Reference PGDB (S. cerevisiae or C. glabrata)
> > Database ! Create New ! Organism ID (CanCyc) ! NCBI Taxonomy ID (237561)
> > Build ! Trial Parse
> > Build ! Automated Build.
> > Database ! Save KB

3.2.3 Refinement

Refining of database includes the inferences and manual operations: 1) Probable
Enzymes involved the additional enzyme-to-reaction assignments; 2) Name
Matcher add the additional name; 3) Rescore Pathways performs the addition of
new pathways and deletion of un-established pathways; 4) Create Protein Com-
plex permit to stipulate protein complexes that involuntarily link to appropriate
reactions; 5) Assign Modified Proteins allocate the modified substrate within the
reaction encoded by gene product within the database; 6) Predict Operons allow to
choose genetic elements on the whole genome; 7) Transport Inference Parser
finds transport reaction catalyzes proteins to construct their protein complexes and
enzymatic reactions; 8) Pathway Hole Filler seal the gaps using candidate enzymes
arise during the construction; 9) Update Cellular Review draw the cellular outline
of database; 10) Consistency Checker automatically rectify the disturbances of
data constraints. Among the refinement, hole filler play the major role which can be
done mechanically or manually (Figure 5A and B). Now, resave the database and

Figure 4.
A detailed Protocol of Genome Scale Metabolic Reconstruction.
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export it for further analysis in .sbml format using the command File ! Export !
Selected reactions to SBML file. For further processing, convert the sbml model
into “CanCyc.xls” file for manual curation (Figure 4, step: 7–8).

3.3 Manual curation

Curation of model is time taking and tedious task that require special consider-
ation during performance. It concentrates on re-evaluation and refinement of
model content manually instead of mechanically. The reason behind the manual
curation is the absence of proper and complete annotation of gene and their func-
tions. In addition, the available database provides the information which is not
organism specific. Consequently, there is a chance of adding those genes or reac-
tions or metabolites which might not be the part of organism’s metabolic network
and affect the expected behavior of modeled organism. Thus, it is suggested to
curate and assemble the draft model in pathway to pathway manners using KEGG,
Gene Ontology, Candida Genome Database, UniProt and DrugBank that ultimately
facilitate the detection of gaps of the model [42–45]. Moreover, the stage also
includes the metabolic function verification, removal of generic reaction terms
(protein, electron acceptor/donor, DNA, RNA etc.), addition of charged formula of
each metabolite, inspection of reaction stoichiometry as well as directionality,
localization of gene with its related reactions, association of gene-protein-reaction,
append of transport reaction with literature support. Other than this, inclusion of
sink reaction, demand reaction, growth associated and non-growth associated
ATP maintenance reaction are also required in a model for in-silico growth of the
organism (Figure 4, step: 9).

Figure 5.
Genome-Scale Metabolic Model of C. albicans. (A) Construction of model using Pathway Tools generated the
detailed chromosome-wise description and (B) cellular overview of the model that defines the linkage among the
metabolic pathways present in model. (C) For manual curaion, sbml format of model is converted to
mathematical model which further subjected for evaluation and validation.
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3.4 Biomass composition

Biomass reaction is the engine of metabolic model as it shows the obvious effects
on model validation and strain improvement. The biomass consist of cellular com-
ponents (proteins, RNA, DNA, Lipids, Lipopolysaccharides, Peptidoglycan, Glyco-
gen, Polyamines, etc.) with its fractional constituents [46]. Estimation of total
biomass composition may not be feasible; still the determination of comparative
fraction of all precursors can be possible experimentally for log phase growing cells.
Among the biomass precursors, lipid extraction is quite tough due the presence of
different fatty acid with diverse chain length, saturation and un-saturation. After
the quantification of biomass components, data is subjected to normalization that
computes the equation of biomass (Figure 4, step: 10).

3.5 Curated model conversion to mathematical model

In this stage, model is subjected to convert the curated draft into a condition-
specific mathematical model i.e., fully automated. MATLAB and COBRA Toolbox
are widely used software for model conversion, evaluation and analysis. To convert
the model initialize the COBRA toolbox using the command “initCobraToolbox”
first, then set of optimization solvers such as Gurobi and LP. The optimization
solvers provide commanding algorithms that improvise the programming of math-
ematical models, constraint models and constraint based scheduling models. The
solver Gurobi is a default solver for LP, MILP and QP problems while GLPK is
selected for LP and MILP problems. Read the model with “xls2model” command to
verify and set the objective as well as simulation constraints to the model. Save it to
“CanCyc.xml” format.

Script to load and save the model in mathematical format is provided in
Supplementary Data 1.

3.6 Model evaluation and validation

The metabolic model designed in third stage may have some common errors: 1)
wrong reaction constraints; 2) cofactor cannot be produced or consumed; 3)
shuffling of compounds across compartments; 4) missing transport and exchange
reactions. To rectify these issues network verification, evaluation and validation
is needed. Verification and evaluation usually leads to the addition of transport
reaction, exchange reactions and metabolic function that can be done by the
repetitive process of stage 2 and 3. Thus, it is also known as iterative process that
evokes the debugging to cure errors arising computationally. The major concern is
to make a decision when to end this process which is based on the rationale of
reconstruction.

The process starts with the test of unbalanced reaction that provides the list of
unbalanced reaction in model to balance it manually. Next is to identify the dead
end metabolites that are only consumed or produced and indicates about gaps
present in the model. Removal of dead metabolites promote gap filling which is a
manual process that can be done by using the published literature, genome pathway
annotation tools (KEGG) and organism specific databases. During gap fill, all added
reactions and metabolites must be connecting to each other. This step also includes
the addition of exchange reactions and transport reaction as well. Thereafter, the
upper and lower constraints to desire medium or environmental condition required
for the growth of organism. Constraints must be varying according to the objective
of study.
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To practice the exercise of evaluation and validation, user can also download the
published GSMM model of other organisms from BioModel Database (http://www.
ebi.ac.uk/biomodels/).

Steps:
> > initCobraToolbox;
> > solverok = changeCobraSolver(‘glpk’,'LP’);
> > model = xls2model(CanCyc.xlsx’);
# Check biomass production
> > FBAsolution = optimizeCbModel(model,'max’)
# Test unbalances mass and charge of C, N, P and S atoms and balances them.
> > [dE E] = checkBalance(model,'C0);
> > ind = find(dE);
> > ImbalReacs_C = model.rxns(ind);
> > [dE E] = checkBalance(model,'N0);
> > ind = find(dE);
> > ImbalReacs_N = model.rxns(ind);
> > [dE E] = checkBalance(model,'P0);
> > ind = find(dE);
> > ImbalReacs_P = model.rxns(ind);
> > [dE E] = checkBalance(model,'S0);
> > ind = find(dE);
> > ImbalReacs_S = model.rxns(ind);
# Identification of metabolic dead ends and document it in excel.
> > model = changeObjective(model,'BiomassReac_1’);
> > [missingMets,presentMets] = AnalyzeGaps(‘model’);
# Filling the gap of the model.
• Search the published literature first on metabolome of C. albicans
• Give the second priority to genome annotation tools (KEGG - https://www.kegg.jp/kegg-bin/show_

organism?menu_type=pathway_maps&org=cal) and organism specific database (Candida genome
database - http://www.candidagenome.org/).

• Last precedence gives to closest organism database (Saccharomyces - https://www.yeastgenome.
org/)

• Document all the gap fill reactions with references.
• Add gap fill reaction by repeating the stage 2 till the biomass production occurs. For addition or

deletion use the command given below-
> > model_add = addReaction(model, ‘ReactionName’, ‘Reaction’);
> > model_del = removeRxns(model, ‘ReactionName’, ‘Reaction’);
• After filling the gaps, check the production of biomass of the cell as commands given below:
> > initCobraToolbox;
> > solverok = changeCobraSolver(‘glpk’,'LP’);
> > model = xls2model(CanCyc.xlsx’);
> > model = changeObjective(model,'BiomassReac_1’);
> > FBAsolution = optimizeCbModel(model,'max’)
# Set the reaction constraints of modeled organism on minimal media
• For example-check the growth of C. albicans at Glucose and oxygen
> > model = changeRxnBounds(model, ‘GLC_tx_c’, �10, ‘l’);
> > model = changeRxnBounds(model, Oxygen_Molecule_tx_c’, �10, ‘l’);
# Change the objective function according the study and simulate the model
> > model = changeObjective(model,'BiomassReac_2’);
> > FBAsolution = optimizeCbModel(model,'max’)
• Change the reaction and reaction bounds according to the aim of the study and validate the model.

‘u’ = upper bound, ‘l’ = lower bound and ‘b’ = both bound
# Validation of the model
• On different carbon sources (Glucose for example).
> > GrowthRate = 0.10;
> > CarbonIntake = �10.0;
> > model = changeRxnBounds(model,'BiomassReac_c_test_2’,GrwothRate,'b’);
> > model = changeRxnBounds(model,'GLC_tx_c’,CarbonIntkRate,'b’);
> > fba = MinOptmz
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• Similarly perform the validation of model on nitrogen and sulfur sources i.e., reported in the
literature. Draw the flux map to check the flow of carbon throughout the model.

Once the model has been developed and validated, write the model in either .
mat, .sbml or .xlsx format for further analysis (Figure 5C).

3.7 Target identification through essentiality analysis and gene knockout

Developed model can be used for novel drug target identification by prioritizing
essential genes through in silico gene knockout of single or double genes. Reaction
deletion command lists out the reactions that help the pathogen model to cultivate
too fast. On the other hand, gene knockout inhibit the particular gene of
metabolome which act as chokepoint in pathogen. Consequently, it provokes the
survival of pathogen that establishes the necessity of that gene as drug target for
therapeutic use.

# Reaction essentiality analysis
> > [EssentialReactions,NonEssentialReactions,Reactions] = ReacEssentiality(model);
# Gene essentiality analysis
• Single gene deletion
> > [EssentialGenes,NonEssentialGenes,Genes] = SingleGeneEssentiality(model);
• Double gene deletion
> > [EssentialGenes,NonEssentialGenes,Genes] = DoubleGeneEssentiality(model);
# Gene Knockout
• Single gene knockout
> > geneList = “GeneName1”;
> > [grRatioDble, grRateKO, grRateWT] = singleGeneDeleion(model, MOMA, geneList);
• Double gene knockout
> > geneList1 = “GeneName1”;
> > geneList2 = “GeneName2”;
> > [grRatioDble, grRateKO, grRateWT] = doubleGeneDeleion (model, MOMA, geneList1,
geneList2);

3.8 Host-pathogen interaction (HPI) analysis

HPI analysis comprised of five central stages: 1) reconstruction of high quality
host and pathogen model, 2) check the common reaction and metabolites of both
the model, 3) integration of the model, 4) integration testing and 5) simulation [47].

HPI model development and analysis is presented in the Figure 6. As the proto-
col for high quality model development has been described above, this section will
exclude the first stage i.e., reconstruction of model. Next is pre-integration check to
remove the violation of mass conservation. Thus, it checks the mass balance and
stoichiometric consistency on prior basis followed by the identification of overlap
features of both the models [48]. These regions are expected to be the region of
host-pathogen interaction. Thereafter, assign the unique metabolite and reaction
identifier to common metabolites and reaction respectively that promotes the
integration of both the model successfully.

Once the model has been merged, detailed integration testing required to be
carried out that ensure the linkage among the merged models. Integrity testing is
divided into functionality test suits and independence suit. Functionality suits
include the check mass balance, flux variability analysis and literature based
boundaries verification while independence suit needs to find objective function
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that assumed to be influence by the host pathogen coupling. Further, the evaluation
of function is performed to proceed towards simulation of the integrated model.
Through simulation, one can envisage the characteristics of disease or validate the
experimental data in infection circumstances using HPI model. In addition, Gene
knockout of the HPI model can potentially predict virulent genes of the pathogen
with better accuracy than the individual model. The identification of lethal gene
and knockout can be performed as similar as mentioned in the section of 3.7.

4. Advantages of GSMM of C. albicans

Genome Scale metabolic models of several pathogens have been designed and
available at Biomodel database. The potential of these models in studying whole

Figure 6.
Host-Pathogen Interaction (HPI) Analysis using GSMM. Host-pathogen interaction analysis using GSMM
includes draft construction, pre-integration model check, integration of host-pathogen models, test of integration
and simulation. Consequently, the build mathematical model can be used to evaluate the interactions of
individual components and highlight potential targets for drug development.
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metabolite organization in living cell/organism widen significant attention in sys-
tem medicine. Nevertheless, GSMM of C. albicans would provide a platform for
target identification and validation. Till date, single metabolic model (iRV781) of C.
albicans has been developed [49]. The published model, designed on the GUI
platform of merlin, found to be non-compatible with widely used system biology
platforms such as Matlab and CobraToolbox. On comparison, model of present
study explained the complete set of gene-protein-reaction associations based on
genome annotation data and experimentally obtained information. Consequently, it
allows the production of flux value for entire set of reactions. The model also
provides the opportunity to integrate the omics and kinetic data that contributed to
better understanding of metabolism of pathogen. Such progression in model devel-
opment of C. albicans permits the context–specific simulation. Additionally, the
model would be beneficial in prediction of enzyme functions, pan-reactome analy-
sis, modeling interaction among multiple cells or organism and understanding the
colonization of pathogen and disease progression in human. In future prospect,
proposed model could be used as a reference template to design the model for
resistant strain of C. albicans.

5. Conclusion

Despite the presence of distinct antifungals, current situation demands the dis-
covery of novel antifungal(s) against resistant strain of C. albicans. A successful
drug design method is reliable on when a potent target is present. Thus, a potential
strategy, approach, pipeline and tools are required to identify the druggable target.
System biology and genome scale metabolic reconstruction of infectious pathogen
offer a novel and effective approach that positively impel the research towards the
identification of drug target that could help to design a novel antifungal against all
kind of pathogenic strains of C. albicans.
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Chapter 4

Responses of White Blood Cells 
to Killed Candida albicans as a 
Preventive Strategy
Ahmad Ibrahim

Abstract

C. albicans is by far the most common Candida species causing infection in 
humans which include superficial and a life- threatening systemic infections. 
Despite the public health significance of candida infections, phenotypic switching 
of C. albicans, slow mycological diagnosis, limitation of use of antifungal agents 
due to toxicity, high cost and emergence of resistance have impeded effective 
treatment. Therefore, a need for safe and potent strategy to prevent this disease 
is necessary. This chapter discusses the roles of white blood cells as the first line 
defense mechanism against inactivated C. albicans.

Keywords: white blood cells, Candida albicans, immune response

1. Introduction

Fungal infections are a serious public health concerns, particularly with the 
growing number of immunocompromised individuals. C. albicans amongst other 
fungal species has been identified as one of the leading cause of infections in recent 
times [1]. Candidemia and Candidiasis account for 50% and 70% prevalence 
infections in human and has caused a great deal of morbidity and mortality largely 
because of the polymorphic nature of C. albicans. Also, factors such as toxicity of 
antifungal drugs, drug resistance, limited arsenal of antifungal drugs, slow myco-
logical diagnosis, variable drug bioavailability in immune-compromised patients 
and drug interactions have truncated every efforts being made at mitigating the 
prevalence and its consequential effects. These challenges have led to the several 
attempts at developing a viable preventive option for candida infections. The cellular 
surface of C. albicans is a predominant source of immuno-stimulatory antigens [2] 
comprising of 90% carbohydrates and 10% proteins [3] and hence making carbohy-
drates dominate immune recognition while the proteins exhibit the key role of adhe-
sive interactions with the host cellular surfaces. Therefore, complete inactivation of 
the pathogen amongst many strategies such as using the genetic material, a specific 
protein on the cell surface or attenuation to prevent candidiasis has been attempted. 
The killed C. albicans has lost its ability to infect their hosts but can stimulate enough 
immunological responses for the host protection. White blood cells response against 
C. albicans is initiated within the first few hours of inoculation or infection.

Therefore during host – killed C. albicans interaction, the cell surface molecules 
trigger and modulate cell mediated (T cells) and innate immune cells (macro-
phages, neutrophils and natural killer cells) to respond appropriately. These cells 
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are considered to be the first line and most important defense mechanism against 
Candidiasis [4] and consequently induced a strong response against the pathogen 
[5]. These responses function synergistically, co-operate and modulate each other 
with the final goal of fighting infection (4).

2. Recognition of C. albicans in mucosal surfaces

The epithelial cells represent the first line of defense against Candida infec-
tion on mucosal surfaces. As the predominant cells in the innate immunity of the 
host, epithelial cells express pattern recognition receptors, which recognize C. 
albicans by interacting with pathogen-associated molecular patterns on the fungal 
cells. However, there are three major groups of these receptors (Toll-like receptors, 
C-type lectin receptors and nod-like receptors) but only certain Toll-like receptors 
and C-type lectin receptors on epithelial surfaces recognize C. albicans. In addition 
to pattern recognition receptors, other cell-surface proteins, such as E-cadherin 
and Epidermal Growth Factor Receptor, can also recognize Candida and these are 
unsurprisingly implicated in Candida adherence and endocytosis [6, 7].

Figure 1. 
Summary of host immune response against C. albicans.
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2.1 Host immune response

The cell surface receptors on C. albicans initiate adhesive interactions and 
invade the host cell using a series of proteins including adhesins and invasins. These 
immunodominant factors would trigger and stimulate a complex interplay of natu-
ral and adaptive immunity, posing interesting immunological response to the host. 
Cell-mediated (T cells) and innate immunity (macrophages, neutrophils and natu-
ral killer cells) are considered to be the most important line of defense against can-
didiasis [4] as they are recruited into the site of infection to exert protective effects. 
These include phagocytosis and antigen presentation, opsonization and production 
of chemicals for effective killing of the microbial cells. It must be emphasized there-
fore, that these responses comprise of different arms of the immune system (innate, 
cell-mediated and antibody-mediated) as shown in Figure 1.

2.1.1 Innate immunity

White blood cells are produced and derived from multi-potent cells in the bone 
marrow known as hematopoietic stem cells and are found throughout the body, 
including the blood and lymphatic system [8]. Five individual types of white blood 
cells namely neutrophil, monocytes, lymphocytes, basophils, eosinophils [9] are 
involved in sustaining immunity [10].

Innate immune response is the dominant protective mechanism against dis-
seminated candidiasis [11] and host defense against fungal infection depends 
on elimination of the fungi by phagocytic cells of the innate immune system, 
especially neutrophils and macrophages [12] at the initiation of infection before 
other immune cells are mobilized. Therefore, white blood cells are used to assess 
the working condition of body’s immune system, to determine an active or chronic 
infection, identify the type of infection and also point to an allergic response or 
inflammation in the body [9].

Hence, quantitative and qualitative abnormalities of these immune cells are 
indications to different physiological conditions and particularly neutrophils and 
monocytes are associated with systemic candidiasis.

2.1.1.1 Neutrophils

Neutrophils or Polymorphonuclear leukocytes are the predominant phago-
cytic immune cells that play a major role against C. albicans infection. These 
cells activate various antimicrobial mechanisms in addition to phagocytosis, 
such as producing reactive oxygen species, the release of granular enzymes and 
antimicrobial proteins [13]. In addition, a neutrophil extracellular trap composed 
of a neutrophil chromatin is another significant protective strategy deployed by 
the host against fungal infections [14]. Neutrophils and monocytes damage and 
kill yeast cells of C. albicans, hyphae and pseudohyphae [11] by recognizing and 
engulfing opsonized and non-opsonized yeast cells via cell-surface pattern rec-
ognition receptors. However, the large size of Candida hyphae and pseudohyphae 
may preclude phagocytosis and thus the need for several phagocytes to collaborate 
and affect extracellular killing [15].

2.1.1.2 Monocytes

Neither dead cell debris nor attacking microorganisms can be dealt with effec-
tively by the neutrophils [16]. Monocytes and their derivatives, including macro-
phages and dendritic cells, play diverse roles in the response to fungal pathogens 
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by sensing fungi and triggering signaling pathways that mediate direct effects like 
phagocytosis, cytokine production and presentation of fungal antigens to elicit 
adaptive immune response [17].

• Phagocytosis

 In phagocytosis, fungi can be eliminated in monocytes and their derivatives in 
the phagolysosome. This is an acidified compartment that contains enzymes 
such as Nicotinamide Adenine Dinucleotide Phosphate (NADPH) oxidase 
(generates reactive oxygen species), and inducible nitric oxide synthase 
(produce Nitrogen IV Oxide and reactive nitrogen species) that can sequester 
nutrients and in response to pro-inflammatory stimuli [18]. This fungal killing 
may be sufficient to halt the progression of infection, but it can also provide 
fungal antigens that can be used to initiate the adaptive immune response 
to ensure sterilizing immunity. Fungal uptake is not always beneficial to the 
host, however, as some fungi have adapted to the harsh environment in the 
phagolysosome or can subvert monocytes to enable fungal persistence and 
proliferation [17].

• Production of Cytokines

 Cytokines are a group of low molecular weight proteins that act as a mediator 
between cells and are produced by white blood cells and other non-immune 
cells in response to stimuli [19].

 Monocytes and their derivative cells can produce chemokines, pro-inflamma-
tory, anti-inflammatory and pleiotropic cytokines [20, 21]. These cytokines and 
chemokine secretion is important for the development of both the innate and 
adaptive immune response to fungal pathogens and can influence the activation 
and recruitment of other immune cells and the polarization of the adaptive 
immune response [17]. Under normal physiological condition, cytokines are 
not detectable or are present at low levels in body fluids or tissues because they 
are only produced when required in immune responses [19]. Therefore, an 
elevated levels or unregulated production of cytokines may be associated with 
inflammation or disease pathogenesis [22].

• Presentation of Antigens

 Antigen-Presenting Cells (APCs) are cells that can process a protein anti-
gen, break it into peptides, and present it in conjunction with class II Major 
Histocompatibility Complex (MHC) molecules on the cell surface where it 
may interact with appropriate T cell receptors. Monocytes and their deriva-
tive are professional APCs and are amongst the principal antigen-presenting 
cells for T cells [23]. Antigen-Presenting Cells are critical for the initiation of 
adaptive immune responses and for maintenance of peripheral tolerance [24]. 
Dendritic cells serve as the connection between innate and acquired immu-
nity and morphological characteristics of C. albicans dictates the specific 
immune response [25]. For example, the interaction of dendritic cells with 
yeast cells or pseudohyphal sensitize different receptors. Therefore, when 
yeast form of C. albicans is engulf by dendritic cells, differentiation of CD4+ 
cells into T-helper 1 cells is induced, while dendritic cells stimulated by the 
pseudohyphal form induce a T- helper 2 response. The response produced by 
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T- helper 1 cells is linked with protection of the host against fungal infection 
while for T- helper 2, responses are related to the ability of microorganisms to 
escape or suppress the host’s immune response. Nonetheless, T-helper 1 and 
T-helper 2 responses activate B cells and leads to maturation of other phago-
cytic cells [23].

2.1.1.3 Eosinophils and basophils

Eosinophils and Basophils are both granulocytes characterized by their content 
of intracellular granules. These cells become especially active during an allergic 
response and are responsible for releasing histamine [9]. Fungi also represent a 
source of major allergens.

While the roles of eosinophils in an allergic disease associated with fungal 
sensitization is still debatable or even poorly understood, their contributions to 
remodeling are more accepted.

2.2 Inactivation of Candida albicans

The commonest methods for inactivation of C. albicans, in the preparation of 
an immune-based prevention of C. albicans infection include using of heat and a 
source of UV. According to Evron, [26], whole C. albican cells suspended in 0.85% 
sterile normal saline and heated at 65°C are inactive. While exposing C. albicans 
suspended in 0.85% sterile normal saline directly to a source of Ultraviolet radia-
tion (UV) at a wavelength of 254 nm for 30 minutes inactivates the cells [27]. This 
inactivation renders the C. albicans non-viable to infect an intended host but retains 
the structural conformation of immunogenic components on the cell surface.

2.2.1 Response of antibodies to Killed C. albicans

Adherence of lymphocytes to a fungus is the first step in the direct lymphocyte- 
mediated anti- fungal effect against C. albicans [1]. Experimental study indicates 
that antibodies play an important role in host defense against disseminated candi-
diasis because individuals with defects in cell mediated immunity mechanisms are 
particularly prone to superficial but not disseminated candidiasis [28].

Therefore, humoral mediated immune response results in a significant elevated 
level of antibodies in Wister albino rats exposed to killed C. albicans. This could be 
as a result of recognition of the immunogenic proteins and glycoproteins on the cell 
surface and subsequent stimulation of memory cells to produce significant quantity 
of antibodies on a second encounter of similar antigens on killed C. albicans that 
are immunoprotective. According to Evron, [29], circulating antibodies in mice 
exposed to killed - C. albicans that are immunoprotective should be greater than 
256 μg/m. Hence a concerted effort for more research to produce vaccines that can 
stimulate the release of even more antibodies in rats and subsequently in human are 
necessary.

2.2.2 Response of phagocytic cells (monocytes, macrophages and granulocytes)

Phagocytic cells such as the granulocytes and monocytes play an important 
role in cell-mediated immunity (T-cells and phagocytic cells such as monocytes, 
granulocytes) and so attacks the killed C. albicans in similar mechanism as though it 
is viable and infectious cells. These cells are the first line defense mechanism and are 
recruited in large quantity in the first few days of injection of the killed C. albicans 
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to the Wister rats. Granulocytes being components of white blood cells are recruited 
as innate immune response to engulf the killed C. albicans [29]. However, viable C. 
albicans have the ability of switching or morphogenesis which allows them to escape 
phagocytosis by piercing of phagocytes and subsequent killing of phagocytic cells, 
leading to a decrease in circulating granulocytes in blood [30]. Consequently, con-
tributing to a large extent the impeding factor for availability of an effective vaccine.

2.2.3 Delayed-type hypersensitivity

Delayed-Type Hypersensitivity reaction is initiated when antigens are pre-
sented by antigen presenting cells (i.e. langerhans cells) to sensitized memory T 
cells. The antigen presentation and subsequent T cell activation elicit an influx of 
macrophages, monocytes and lymphocytes at the site of antigen exposure. At the 
onset of delayed-type hypersensitivity reaction, verso-permeability is increased so 
that additional cellular components migrate into the local site of antigen presenta-
tion [31] and this explains the swelling at the site of injection of killed C. albicans. 
Therefore, inactivated C. albicans have an immune-stimulatory property.

3. Conclusion

The need for appropriate immuno-prophylaxis or immunotherapy against 
candidiasis is readily apparent. Therefore, the relationship between killed Candida 
albicans and the hosts’ white blood cells in terms of recognition and response clearly 
suggest an interesting immunoprotection against viable C. albicans.

A safe and effective therapeutic alternatives to combat these infections and to 
eliminate potential problems of toxicity and emergence of resistance to the lim-
ited options of antifungal drugs is needed [32]. Therefore, killed C. albicans is an 
immune-based prophylactic and therapeutic approach [33] which represents novel 
option against C. albicans infections [32].
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Chapter 5

Candida Onychomycosis: Mini 
Review
Sandra Widaty, Eliza Miranda and Caroline Oktarina

Abstract

Onychomycosis is a common fungal infection affecting nails. The infection is 
frequently due to dermatophyte, while yeast and non-dermatophyte molds (NDMs) 
attributed especially in immunocompromised patients. NDMs and Candida species 
can be involved as primary or secondary pathogens. Candida onychomycosis (CO), 
most commonly caused by C. albicans and C. parapsilosis, is frequently associated 
with local or systemic immune disturbances. In the cases that the host immunity 
is severely affected, Candida acts as primary pathogen, while other diseases e.g., 
diabetes mellitus, malnutrition, and smoking serve as predisposing factors for 
Candida to cause secondary infection. Furthermore, formation of biofilms and 
production of enzymes contribute as the virulence factors of the yeasts. Clinical 
manifestation of CO varies, from discoloration and marked thickening of the nail to 
dystrophic nails with fingernails more commonly affected. Paronychia is the most 
common type of CO and Candida granuloma is one of the severe types of CO which 
often occurs in chronic mucocutaneous candidiasis. Establishing the diagnosis of 
CO is crucial as well as the identification of each predisposing factors. Microscopic 
examination and fungal cultures are the gold standard examination for diagnosing 
onychomycosis, while for NDM, multiple confirmation and repeated examination is 
needed due to its as contaminants.

Keywords: candida onychomycosis, nail, fungal infection, diagnostic challenges, 
treatment

1. Introduction

Onychomycosis is a common nail infection caused by fungi, namely yeasts, 
dermatophytes, and non-dermatophyte molds (NDMs) [1]. The prevalence 
keeps increasing with age and it is commonly identified in elderly populations. 
Approximately 20% of adults in their second to fourth decades are affected by this 
disease. Yeasts contribute to 24–50% cases of onychomycosis with Candida species 
as the most common agent [2]. Various factors are associated with the event of 
onychomycosis, e.g. host’s comorbidities (human immunodeficiency virus [HIV] 
infection, diabetes mellitus, peripheral circulation disturbances), repeated nail 
trauma, smoking, antibiotic therapy, immunosuppressive therapy, repeated expo-
sure to fungi, humid climates, genetic predisposition, and occlusive footwear [2, 3]. 
Establishing the diagnosis of Candida onychomycosis (CO) is challenging. Albeit 
frequently identified in culture and direct microscopic examination, the presence 
of Candida species might only be colonization, not necessarily the cause of nail 
diseases. A careful interpretation of diagnostic tests’ results and correlation with 
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results of clinical examination are necessary to establish the diagnosis of CO which 
will aid the clinicians in providing correct treatment for the patients [4].

2. Epidemiology

The prevalence of onychomycosis differs based on geographical location with 
worldwide prevalence of approximately 10% [5]. The incidence onychomycosis in 
North America ranges from 8.7–13.8% while the prevalence in Southeast Asia ranges 
from 2–6% [2, 3]. Higher prevalence is reported in countries with humid climates, 
such as Greece (27.99%) and Ethiopia (60,4%), [6, 7]. While there are three groups 
of fungi responsible for onychomycosis, dermatophytes are the most common cause 
of onychomycosis (60–70%) [3].

Yeasts, most commonly identified as Candida species in onychomycosis, con-
tributes in approximately 40% of the onychomycosis cases in Southeast Asia. Other 
studies reported that the prevalence of CO varies between 24–50% of onychomyco-
sis cases [2]. NDMs and yeasts onychomycosis is more common in subtropical and 
tropical climates while dermatophytes is more common in temperate climates [7]. 
Candida albicans is identified as the most common isolated species, followed by C. 
parapsilosis, C. krusei, C. tropicalis, and C. glabrata [2]. CO is more frequently to be 
identified in fingernails than toenails, especially in patients with hands continu-
ously immersed in water [3].

3. Prognostic factors

In assessing the treatment outcome of CO patients, there are three types of cure 
to be considered, which area mycological cure, clinical cure, and complete cure. 
Clinical cure is described as a previously infected nail without signs and symptoms 
of onychomycosis. Mycological cure is described as negative results on both direct 
microscopic examination and culture. Complete cure is described as achieving both 
clinical and mycological cure [8]. Various prognostic factors have been identified 
for the treatment outcome of onychomycosis. In general, they can be divided into 
three groups, which are patient’s characteristics, nail features, and the infectious 
agents (Table 1) [9].

Most studies reported that the onychomycosis is more commonly diagnosed in 
men. Male patients are associated with poor outcome because they are more likely to 
be exposed to repeated nail trauma and they usually do not seek health care until the 
disease becomes too advanced. Furthermore, they are more likely to have low com-
pliance; hence, male patients become more resilient when it comes to treatment and 
have 2,6 times risk of not achieving clinical cure [8]. Increasing age is also known to 
be associated with poor prognosis in onychomycosis patients because elderly popula-
tions usually suffer from poor circulation system, poor immune status, decreased 
nail growth, and mixed fungal infections. Hence, their response to therapy might be 
lacking and they have 3,7 times risk of not achieving clinical cure [8, 9].

Nail trauma can exert significant and irreversible damage which will predispose 
patients to onychomycosis. Patients who have abnormal nails with positive mycol-
ogy examination had 5,4 times risk of developing onychomycosis [9]. Other poor 
prognostic factor is history of onychomycosis. Patients with prior infection have 
2,3 times risk of not achieving clinical cure. These patients are more likely not to 
respond standard treatment course since they have been treated before. There 
might also be involvement of genetic susceptibility in the development of recurrent 
onychomycosis [8].
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As most fungi are opportunistic agents, poor immune status can predispose 
patients to onychomycosis, especially in HIV patients with CD4 count <400/mm3. 
The onychomycosis is more likely to involve fingernails and toenails also more 
severe [9]. Patients with hand and foot involvement have 1.1 times risk of not 
achieving complete cure and if the patients have more than 3 infected nails, they 
have 1.5 times risk of not achieving complete cure [4]. Furthermore, hallux involve-
ment presents as poor prognostic sign because it is more likely to suffer repeated 
trauma lead to predisposition of continuous infection.

In addition, poor peripheral circulation caused by chronic venous disease is associ-
ated with poor prognosis. Chronic venous disease can cause nail dystrophy, hyperkera-
tosis, discoloration, hyperplastic nail bed, and onychogryphosis. Only 25% of patients 
treated with itraconazole are cured [9]. Poor peripheral circulation can also identified 
in patients with uncontrolled diabetes mellitus which associates with secondary 
infections and nonhealing ulcers. This population is also reported to have more severe 
onychomycosis, high recurrence rate and longer duration to achieve complete cure [9].

Poor Prognostic Factors

Patient’s characteristics Male gender

Increasing age

History of nail trauma

History of onychomycosis

Poor immune status

Poor peripheral circulation

Uncontrolled diabetes mellitus

Repeated exposure to water and detergents

Repeated exposure to mud and soil

Barefoot walking

Nail features Subungual hyperkeratosis >2 mm

Fingernail and toenail involvement

More than 3 infected nails

Matrix involvement

Significant lateral disease

Dermatophytoma

Nail plate involvement >50%

Slowly growing nails

Hallux involvement

Severe onycholysis

Paronychia

Melanonychia

Total dystrophic onychomycosis

Infectious agents Fungal and bacterial coinfections

Yeasts

Non-dermatophytes molds

Table 1. 
Poor prognostic factors in onychomycosis [4, 8–10].
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Repeated exposure to water and detergents will predispose patients to chronic 
paronychia and affect the drug delivery since the tissue is more edematous and 
inflamed. While repeated exposure to mud and soil, also barefoot walking will 
predispose the patients to repeated minor trauma. Most fungi are saprophytic; 
hence, they can invade nails easily in this condition. This often happened in tropical 
countries [10].

Subungual hyperkeratosis is host’s reaction towards fungal infection by thick-
ening the stratum corneum. The thick debris presents as a barrier to antifungal 
agents, both systemic and topical agents [9]. Furthermore, patients with matrix 
involvement have 2.1 times risk of not achieving complete cure [8]. Matrix is known 
to be the nail’s origin [11]. Hence, matrix involvement in onychomycosis will affect 
the nail growth and drug delivery [8]. In addition, the slow nail growth is also a 
poor prognostic factor since the patients shed the infected portion of the nail more 
slowly. This association is also described in elderly populations. Slow nail growth is 
also seen in significant nail plate involvement. Greater surface involved is associated 
with greater fungi load; hence, lower cure rates [9].

Significant lateral disease affects the treatment outcome since there is poor 
attachment of the lateral edge to the nail groove. This can reduce the drug delivery 
about two thirds of normal nail. Similar cases are seen in severe onycholysis [9]. 
Patients with lateral disease have 3,5 times risk of not achieving complete cure [8]. 
Another poor prognostic factor is dermatophytoma, a dense thick-walled fungal 
elements presenting as white to yellow patch or longitudinal streak in nail plate. 
This dense mass is difficult to be penetrated by antifungal agents. Therefore, 
the patients with dermatophytoma have 2.9 times risk of not achieving clinical 
cure [8, 9].

Melanonychia is black pigmentation identified on the nail plate. This feature is 
associated with poor prognosis in onychomycosis. However, the association has not 
been elucidated yet. Total dystrophic onychomycosis (TDO) is the final destructive 
stage of onychomycosis, in which there is thickened nail bed, crumbling nail plate, 
and significant involvement of nail matrix. Patients with TDO have 1.1 times risk of 
not achieving complete cure [4, 9].

As for the infectious agents, CO and NDMs onychomycosis indicate poor 
prognosis. CO is associated with immunosuppression, especially in case of chronic 
mucocutaneous candidiasis (CMC) and HIV patients. While NDMs infections are 
difficult to be diagnosed and lack of data for treatment course. In addition, fungal 
and bacterial infections can complicate the treatment. Therefore, these factors can 
implicate in poor prognosis of onychomycosis patients [9].

In order to aid the clinicians in have better treatment outcome, several instru-
ments have been developed to predict the prognosis in onychomycosis patients. The 
first developed instrument was Scoring Clinical Index for Onychomycosis (SCIO 
Index). This scoring assesses the nail’s clinical component based on its clinical 
form, nail involvement, and subungual hyperkeratosis. In addition, it assesses the 
growth component based on the patient’s age and location of onychomycosis. As the 
score increases, the onychomycosis might be more difficult to treat [12]. However, 
this scoring has not been validated and has other limitations, such as exclusion of 
important prognostic factors and complex calculation [9].

Another scoring was developed by Baran et al. (Table 2). The higher the score, 
the more likely the treatment failure will happen [13]. Albeit being the most com-
prehensive instrument, this index has not been validated and time-consuming [9].

The most commonly used instrument is Onychomycosis Severity Index (OSI). 
OSI is simpler by assessing three major components, which are area of involve-
ment, proximity of disease to matrix, presence of dermatophytoma or subungual 
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hyperkeratosis >2 mm (Table 3). The score is multiplication of score for area of 
involvement with score for proximity of disease and addition of score for the pres-
ence of dermatophytoma or subungual hyperkeratosis >2 mm. Score 1–5 indicates 
mild onychomycosis; 6–15 indicates moderate onychomycosis; and 16–35 indicates 
severe onychomycosis [14]. This index has been validated with high reliability. 
However, this index only assesses one nail, does not correlate the severity of disease 
with treatment outcome, and excludes other important prognostic factor [9].

Descriptor Subdivision Score

1 Extent of involvement Distal one-third of nail plate 1

Distal two-thirds of nail plate 2

Proximal nail plate involvement 3

2 Diffuse nail plate thickening Mild or moderate 1

Associate with onychogryphosis 3

3 Nail plate thickening associated with the 
appearance of linear streaks – includes the 
change confined to the lateral border

One streak only 2

Two or more streaks 3

If the streaks are black do not score but 
see 7

4 Onycholysis Affecting the distal two-thirds of nail 
plate

2

5 Location Any one of:

Second to fifth toes or thumb 1

Great toenail 2

6 Paronychia associated with nail plate disease With diffuse melanonychia 3

With melanonychia at the lateral edges 
of the nail

3

7 Melanonychia (without paronychia) With one or more longitudinal streaks 3

Diffuse pigmentation 4

8 Age of patient Under 7 years 3

7–25 years 1

25–60 years 2

Over 60 years 3

9 Presence of the following predisposing factors Diabetes mellitus 1

Known severe trauma to affected nail 2

Immunosuppression (due to therapy, e.g., 
prednisolone, or disease, e.g., AIDS)

4

Symptomatic peripheral vascular disease 2

10 Causative organism Scytalidium spp. 4

Other mold fungi 2

Yeasts 1

Cited as is from Baran et al. [13].

Table 2. 
Baran-Hay’s severity index for onychomycosis [13].
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4. Pathogenesis and causative agent

The most common causative agent of yeast onychomycosis is candida species. 
Fingernails are the predilection site of CO, especially in patients who are regularly 
submerging their hands in water [3]. Candida species are a commensal part of the 
normal skin flora, which are present in nature. However, these species may exhibit 
opportunistic quality in an immunocompromised host. Candida species can be 
either primary or secondary causative agent in onychomycosis. Primary CO can be 
commonly encountered in a severe immunocompromised host, for example, in HIV 
patient. On the contrary, secondary CO is usually related to predisposing diseases 
or circumstances, for instance, diabetes mellitus, malnutrition, peripheral vascular 
disease, chronic nail trauma, smoking, and vulnerable age (elderly and children). 
Particular occupations such as housekeepers, fishers, and farmers are also at risk 
of CO due to the frequent trauma and excessive moisture on the nails, exposure to 
contaminants, and contact with chemicals [2].

Instead of appearing as individual spores and hyphae, fungal organisms tend to 
integrate, forming a biofilm which is a syntrophic group of fungi adhering to the 
host’s surface. When not infiltrating a substrate, fungi may fluctuate between free-
floating types and parts of a superficial biofilm. This particular feature provides 
benefits for fungi development while being surrounded by extracellular matrix 
(ECM). The surrounding ECM defends fungi from the host’s immune response 
and antifungal treatments. ECM also supports fungi to distribute nutrients to the 
biofilm. Fungi biofilm contributes to the rationale of why onychomycosis is rela-
tively refractory to antifungal treatment and challenging to eliminate the spores in 
chronic manifestation entirely [3].

The biofilm development by C. albicans is initially started with the adhesion 
and colonization of C. albicans cells on an appropriate substrate. Several features 
that influence the attachment process of C. albicans are non-specific factors (elec-
trostatic forces and hydrophobic part of the cell membrane) and specific factors 
(adhesin on the extracellular layer of C. albicans, which connects the ligands on 

Predictor Subdivision Score

Area of involvement (%) 0 0

1–10 1

11–25 2

26–50 3

51–75 4

76–100 5

Proximity of disease to matrix <1/4 1

1/4–1/2 2

>1/2–3/4 3

>3/4 4

Matrix involvement 5

Presence of dermatophytoma or subungual hyperkeratosis >2 mm No 0

Yes 10

Cited as is from Carney et al. [14].

Table 3. 
Onychomycosis severity index [14].
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the film). Besides attaching to their counterparts, Candida species can also occur 
secondary to bacteria that have previously colonized their host. When the attach-
ment process followed by microcolonies formation has completed, C. albicans 
began to proliferate characterized by the budding yeasts, production of filamentous 
structure, and deposition of ECM materials, ultimately resulting in biofilm forma-
tion. The filamentous structure supports the biofilm scaffolding and protects the 
adhesion spots for the budding yeasts [15].

There are 3 definite stages of C. albicans observed through microscopic exami-
nation, including early stage (0–11 hours), intermediate stage (12–30 hours), 
and maturation stage (72 hours) [15, 16]. During the 3rd and 4th hour, budding 
yeasts’ microcolonies can be observed, while pseudo-hyphae and true hyphae 
start to appear in the 4th hour and 8th hour, respectively. Throughout the inter-
mediate stage, microcolonies are later bounded by hyphae, which eventually 
results a single coalescent layer formation. An opaque film overlaying the micro-
colonies can be observed at this stage, which is mainly composed of non-cellular 
material such as polysaccharides. The basal layer is composed of yeast cells, while 
the filamentous cells constitute the underlying structure. Eventually, the matura-
tion stage is characterized by the multiplication of extracellular material in a 
time-dependent manner until the mature biofilm covering the entire fungi has 
been developed [15].

In addition to biofilm, yeast factors that contribute to the virulency of CO 
are synthetization of hydrolytic enzymes, including proteinase, hemolysin, and 
phospholipase, which are unique between each type of Candida species. Moreover, 
proteinase plays a part in the breakdown of protein and phospholipase contributes 
to the destruction of the host cell, allowing Candida species to invade the host [2]. 
The reported prevalence of CO is 5–10% of all onychomycosis cases. The most com-
mon causative species of CO are C. albicans and C. parapsilosis [17].

5.  Clinical presentation in immunocompetent and immunocompromised 
patients

Most CO cases involve fingernails compared to toenails, with an estimated 
prevalence of up to 50% of onychomycosis cases in fingernails. Women at risk of 
developing CO are typically wet workers due to the recurrent moist in the hands, 
exposure to trauma, regular contact with washing liquids, and contamination to 
vaginal flora during cleansing, which ultimately provides a suitable niche for the 
development of Candida species [2].

Clinical presentations that are predictive for CO are nail plate dystrophy and 
off-white discoloration, commonly followed by pigmentation. Melanisation, one of 
the virulence factors for Candida, suggests an indication of progressive resistance 
to antifungal treatment. Classification of CO is established because of the complex 
etiopathogenesis and diverse clinical presentations. The first clinical classifica-
tion of CO was suggested based on the clinical presentation, the affected location, 
and the infection route, which are Candida paronychia, Candida granuloma, and 
Candida onycholysis [2].

The most frequent type of CO is paronychia. Humidity plays an essential role 
in the development of Candida paronychia. Clinical manifestation of Candida 
paronychia comprises erythema and swelling in the nail folds followed by gradual 
dystrophy in the nail plate accompanied by paronychia and Beau lines, which 
is depicted by an oblique dent in the nail plate suggesting parasite infestation 
on the nail matrix. The most severe type of CO is granuloma, which is fre-
quently observed in patients with chronic mucocutaneous candidosis. Clinical 
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manifestation of Candida granuloma displays brittle nails and a deformity resem-
bling drumstick which is also referred to as pseudoclubbing. The last type of CO 
is onycholysis. Clinical manifestation of Candida onycholysis is characterized by 
subungual distal hyperkeratosis, which further develops into a group of kerato-
sis separating the nail plate from the bed. Moreover, a recent classification was 
proposed, including four clinical groups of CO, which are chronic paronychia with 
secondary nail dystrophy, distal onychomycosis, chronic mucocutaneous  
candidosis, and secondary candidosis [17].

Chronic paronychia initially emerges from the proximal nail fold, although lat-
eral nail folds are occasionally affected in the beginning. Swelling of the periungual 
skin and a noticeable gap between the fold and nail plate is observed, followed by 
the nail plate involvement. Marks with a white, green, or black color can be detected 
at the lateral and distal parts, respectively. The longitudinal ridges and opaqueness 
appear on the nail that develops into a brittle and easily detached nail. Pressure 
and movement on the nail can be painful in contrast to dermatophyte infections. 
A superimposed infection caused by bacteria into the subcuticular space usually 
occurs, leading to a vicious cycle. Chronic paronychia usually appears in adults 
whose occupations regularly contact water and children because of the thumb  
sucking habit [17].

Distal candida nail infection manifests as subungual hyperkeratosis along with 
onycholysis. Differentiating the clinical manifestation with dermatophytosis can be 
challenging, however the candida results in less extent damage to the nail compared 
to dermatophyte. In addition, the predilection of CO usually affects the fingernails, 
while most dermatophytes invade the toenails. The prevalence of distal candida nail 
infection is infrequent and most of the cases are related to vascular problems, such 
as Raynaud’s phenomenon [17].

Total dystrophic onychomycosis occurs in patients with chronic mucocutaneous 
candidosis. The organism invasion on the nail plate results in hyperkeratotic and 
gross thickening of the nail. Chronic mucocutaneous candidosis has multifaceted 
etiology which results in the weakened cell-mediated immunity. The variety of 
clinical appearance depends on the severity of immunosuppression; however, thick-
ening of the nails can be observed in advanced cases due to the Candida granuloma. 
In addition, the involvement of the mucous membrane is nearly presented in most 
cases [17].

Secondary candida onychomycosis results because of other diseases involving 
the nail apparatus, most commonly psoriasis [17].

6. Diagnostic tests

Common tests utilized in the diagnosis of onychomycosis are potassium 
hydroxide (KOH) preparation, fungal culture, histopathology, polymerase chain 
reaction (PCR), and flow cytometry (Table 4). The combination tests are usually 
performed; however, the gold standard of diagnostic tests are microscopy and 
culture [3].

Onychoscopy can also be used for initial diagnosis of onychomycosis. The most 
common findings in onychomycosis are jagged edge with spikes of the proximal 
part of the onycholysis, parallel bands of various color resembling aurora borealis 
pattern, and ruin appearance at the subungual part [3].

KOH microscopy and fungal culture are presently the gold standards to establish 
the diagnosis of onychomycosis. However, it remains questionable because KOH 
microscopy demonstrates a false-negative rate between 5% to 15% and false-
positive for evaluating the medication, given that KOH microscopy visualizes both 
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live and dead hyphae which are identical through microscope. Furthermore, fungal 
culture has a wide-ranging sensitivity from 30% to 57% and requires incubation for 
weeks. Latest studies comparing a variety of diagnostic tests indicate that histopa-
thology staining has higher sensitivity than KOH microscopy or culture, although 
another study suggests PCR for a quicker and precise alternative for fungal culture, 
particularly in NDM onychomycosis. Therefore, the combination of diagnostic tests 
is recommended to diagnosis onychomycosis accurately. A feasible option can be 
a KOH microscopy and PCR (or culture in a resource-limited setting) if the KOH 
shows positive results [3].

In the case of CO, obtaining sample for KOH microscopy and culture can be 
performed from the proximal and lateral parts of the nail. Nevertheless, sample can 
be obtained from the distal part in the case of onycholysis. Culture result may reveal 
creamy-whitish colonies on Sabouraud dextrose agar media or primary isolation can 
also be attained using chromogenic media, for instance CHROMagar Candida®. 
Anti-fungal susceptibility should be performed following the identification of the 
isolated strains to achieve the most effective therapy. Histopathological results of 

Test Procedure Pros Cons Fungal 
viability

Fungal 
identify

Potassium 
hydroxide (KOH)

Dissolved large 
keratinocytes result in 
the flattening of nail 
segment and decreasing 
reflection from cell 
borders. Examined with 
microscopy

Quick, 
on-the-
spot

Low 
sensitivity

No No

Fungal culture Cleaned and clipped 
subungual debris of the 
nail are scraped into the 
gauze. Culture developed 
in the agar with or 
without cycloheximide. 
Examined with 
microscopy

Precise Results 
obtained in 
≥3 weeks, 
high false-
negative rate

Yes Yes

Histopathology Stained by hematoxylin 
and eosin to depict the 
elements of the fungi. 
Periodic acid-Schiff or 
Grocott’s methenamine-
silver can be utilized to 
enhance the appearance 
of hyphae

Validate 
the 
presence 
of fungus

Involves 
specific 
laboratory 
equipment

No No

PCR Employ a target gene part 
of ribosomal DNA or 
chitin synthase genes

Quick, 
48 hours

Costly Yes (real-
time PCR)

Yes

Flow cytometry Employ granulosity, 
cell volume, DNA, 
and protein markers to 
produce definite profiles 
for fungi

Very 
specific

Involves great 
sample size, 
costly

No Yes

Cited as is from Gupta et al. [3].

Table 4. 
Diagnostic tests for onychomycosis [3].
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CO usually display hyphae and pseudomycelia on the nail through Schiff ’s periodic 
acid stains or Grocott’s methenamine silver stains. PCR can also be utilized for 
further identification [2].

7. Treatment algorithm

Defining the resolution of onychomycosis can be achieved through clinical, 
mycological, and complete cure. Clinical cure is described as 100% improvement 
depicted by clear nail, while mycological cure is described as negative KOH micros-
copy and negative fungal culture, respectively. Ultimately, complete cure comprises 
100% clear nail and mycological cure. The goal of treating onychomycosis for 
physicians and affected stakeholders are achieving the complete cure. However, it 
is difficult for an infected nail to return into an utterly normal appearance, particu-
larly in advanced stage although mycological cure has been attained [3].

The treatment choices (Figure 1) available for managing onychomycosis are oral 
medication, topical therapy, and devices. Oral antifungals (Table 5) are the first-
line therapy because they result in high success rates. Nevertheless, oral antifungals 
are contraindicated in patients with chronic or active liver disease, congestive 
heart failure, and kidney failure. Besides, oral antifungals may interact with 
other pharmacological agents, which can trigger a severe adverse reaction. These 
setbacks urged the request for the safer option which leads to the awareness of 
topical therapy. Topical treatments (Table 6) are indicated in mild–moderate cases 
and patients with contraindication for oral antifungals. However, they also have 
limitations which are smaller cure rate, prolonged therapy and difficulty applying 
for patients with mobility problems. Ultimately, lasers are FDA-approved device 
therapy for short-term clearance and/or nail enhancement. However, laser therapy 
is lacking conclusive guidance and its efficacy demonstrates notable disparities 
among all treatment modalities. Topical antifungals eradicate the fungus from the 
outward penetrating the dorsal part of the nail, whereas oral antifungals eliminate 
from the inward infiltrating the ventral part of the nail [3].

Another proposed treatment algorithm is based on the severity of onychomyco-
sis assessed with SCIO (Table 7) [12].

Figure 1. 
Treatment algorithm of onychomycosis [16]. Cited as is from Christenson et al. [16].
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Drug name Terbinafine Itraconazole Fluconazole

Trade name Lamisil Sporanox Diflucan

Chemical 
structure

Allylamine Triazole Triazole

Molecular 
formula

C21H25N•HCl C35H38Cl2N8O4 C13H12F2N6O

Mass (g/mol) 291.3 705.64 306.27

Mechanism 
of action

Squalene epoxidase 
inhibitor

Lanosterol 
14α-demethylase 

inhibitor

Lanosterol 
14α-demethylase 

inhibitor

CYP+ 
inhibition

CYP2D6 CYP3A4 CYP2C9, CYP2C19, 
CYP3A4

Spectrum of 
action

Dermatophytes, some 
activity against NDMs

Dermatophytes, 
NDMs, and Candida 

spp.

Dermatophytes, 
some NDMs, and 

Candida spp.

Efficacy MC 70% 54% 47–62%

CC 38% 14% 28–36%*

Approval US–1996 US–1995 US–1990†

EU–1991 EU–1989 EU (UK)–1988

Canada–1993 Canada–1993 EU (Finland)–1993

China–1993

Canada–1990*

FDA 
pregnancy 
class

B C D

CYP, cytochrome P450; NDM, non-dermatophyte molds; MC, mycological cure; CC, complete cure.
*Data provided are clinical cure rates.
†Fluconazole was FDA-approved for use in humans in 1990, but is not yet approved for treatment of onychomycosis 
in the US or Canada.
Cited as is from Gupta et al. [3].

Table 5. 
Summary of available oral antifungal [3].

Drug name Efinaconazole Tavaborole Ciclopirox Amorolfine

Trade name Jublia Kerydin Penlac Loceryl

Chemical 
structure

Triazole Oxaborole Hydroxypyridone Morpholine

Molecular 
formula

C18H22F2N4O C7H6BFO2 C14H24N2O3 C21H35NO

Mass (g/mol) 348.39 151.93 207.27 317.51

Mechanism 
of action

Lanosterol 
14α-demethylase 

inhibitor

Aminoacyl 
†RNA synthetase 

inhibitor

Chelation of 
polyvalent heavy 

metal ions

Δ14-sterol 
reductase and 

cholestenol

Δ-isomerase 
inhibitor

Spectrum of 
action

Dermatophytes, 
NDMs, and 

Candida spp.

Dermatophytes, 
NDMs, and 

yeasts

Dermatophytes, 
Candida spp., 

and some NDMs, 
gram-positive and 
negative bacteria

Dermatophytes, 
NDMs, and 

yeasts
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8. Prevention and education

As CO commonly recurs with overall onychomycosis recurrence rate of 10–53%, 
additional measures should be implemented to prevent this recurrence. For the 
clinicians, it is imperative to confirm the diagnosis and identify the infectious agent 
before providing treatment. Assessing and treating the comorbidities is also crucial 
since some comorbidities are risk factors for onychomycosis, also portend as poor 
prognostic factors. Tinea pedis should be treated properly as the infected skin can 
play a role as reservoir for the pathogens [3].

When the patients are diagnosed, the clinicians should provide them with opti-
mal onychomycosis therapy, provide counseling on the expectations and adherence 
to treatment. The patients should also be provided with information to maintain 
hand and foot hygiene, avoid occlusive shoes, trim the nails regularly, use broad 
toed shoes with absorbent materials, and avoid barefoot walking in locations with 

SCIO Treatment approach

1–3 Topical treatment: remove (cut or scrape off) affected marginal parts of the nail

Use topical antifungals until healthy nail regrows

3–6 Topical treatment with lower success, which often depends on growth rate

Systemic therapy recommended in slower-growing nails or proximal onychomycosis type

6–9 Systemic therapy. Use scheme proposed for fingernails (e.g., itraconazole: 2 pulses of 200 mg bid)

9–12 Systemic therapy. Use scheme proposed for toenails (e.g., itraconazole: 3 pulses of 200 mg bid)

12–16 Systemic therapy. Use scheme proposed for fingernails with any antifungal (e.g., 4–5 pulses of 
itraconazole, 200 mg bid)

16–20 Combination therapy (systemic antifungal + topical measures)

Adequate keratolytic treatment recommended

20–30 Consider nail avulsion (e.g., with urea paste), continue with systemic therapy

Cited as is from Sergeev et al. [12].

Table 7. 
Proposed treatment approach based on scoring clinical index of onychomycosis (SCIO) [12].

Drug name Efinaconazole Tavaborole Ciclopirox Amorolfine

Efficacy MC 53.4–55.3% 31.1–35.9% 29–36% 60%125

CC 15.2–18.8122 6.5–9.1%121 5.5–8.5%123

Approval US–2014 US–2014 US–1999 EU–1991

Canada–2013 Canada–2004 Australia–1996

Japan–2014

FDA 
pregnancy 
class

C C B Poor systemic 
absorption, 

safe in animals, 
no studies in 

pregnant women†

CC, complete cure; MC, mycological cure; NDM, non-dermatophyte molds.
†Not approved by FDA, thus no pregnancy classification.
Cited as is from Gupta et al. [3].

Table 6. 
Summary of available topical antifungal [3].
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abundant fungal density (e.g., swimming pool, communal showers, gymnasium 
floors). Good sanitization measures should be taken for previous infected socks 
and shoes. Socks should be washed with hot water (60 °C) for 45 minutes and shoes 
should be exposed to ultraviolet rays or ozone or can be sprayed with antifungal 
sprays. The close contacts or family members of the patients should be examined 
and treated if they suffer from onychomycosis or tinea pedis [3, 18].

Prophylaxis can be considered for patients with high probability to suffer from 
recurrence. Topical antifungal agent in the form of solution or lacquer can be 
applied once daily for a month then twice weekly for at least two years after the cure 
have been achieved [3].

9. Conclusions

CO is a common nail infection affecting people worldwide. Establishing the 
diagnosis of CO becomes a challenge for the clinicians since Candida spp. is a 
well-known normal flora inhabiting human’s skin, nails and mucosa. In addition 
to confirming the diagnosis, the clinicians should pay attention to patient’s charac-
teristics, nail features, and the infectious agent as it can portend as poor prognostic 
factors. A proper treatment course along with additional measures will aid the 
patient to achieve complete cure and prevent recurrence.
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Appendices and nomenclatures

CMC Chronic Mucocutaneous Candidiasis
CO Candida Onychomycosis
HIV Human Immunodeficiency Virus
KOH potassium hydroxide
NDMs Non-Dermatophyte Molds
PCR Polymerase Chain Reaction
SCIO Scoring Clinical Index of Onychomycosis
TDO Total Dystrophic Onychomycosis
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Chapter 6

Candida albicans and Abortion
Humam Kasem Hussein

Abstract

An abortion that occurs spontaneously is known as a miscarriage. Various 
effectors associated with abortion such as Genetic and uterine anomalies, 
Endocrinopathy, immunological dysfunctions, infectious agents, environmental 
contaminants, psychogenetic elements, and endometriosis. Maternal infections 
considered the main reason for pregnancy wastage in females with Bad Obstetric 
History (BOH). Candida albicans is a dimorphic fungus that can grow as yeast  
or filamentous cells and considered one of the limited species of the Candida 
genus that cause humans candidiasis. It is an opportunistic fungus that 
responsible for mucosal infections in the mouth and genital tract. Excessive 
growth of C. albicans will follow with Vulvovaginal candidiasis (VVC). The 
incidence of VVC combined with chronic recurrent candidiasis is high in 
pregnancies than in healthy women. Several scientific researches showed the 
significance of VVC as an inducer of abortion, candida chorioamnionitis, 
subsequent preterm delivery, and immunosuppression.

Keywords: Candida albicans, Opportunistic fungi, Spontaneous abortion, VVC, 
Candidemia

1. Introduction

Mycoses considered as most ancient infections, established by Hippocrates 
and Galen. The fungal infection may be acute, chronic, superficial, or deep [1]. 
Every year, invasive candidiasis infects about 250,000 persons around the world, 
which leads to more than 50,000 deaths [2]. In the 19th century, mycoses fixed as 
infections of newborns and the genital tract in gestation and how affected by each 
other. The vaginal infections that resulted from yeast-like fungi of the Candida 
genus are the main infections during pregnancy [3]. Even with the presence of 
placenta and fetal membranes as protective sheets of him against infections, the 
embryo maybe infected with fungi via ascending (from the vagina) or hematogenic 
routes in exceptional cases. Candida albicans can cross that barrier without 
damage to the membranes. Watching the placenta plays an important role in the 
diagnosis of congenital candidiasis [4]. Many infants born at the 23rd week of 
gestation in serious conditions with congenital candidiasis and the invasion of 
the membranes by C. albicans. Intrauterine infection with C. albicans leads to the 
raising of inflammatory parameters in maternal blood (leukocytes, C-reactive 
protein, procalcitonin) that also detected in the child blood after delivery. So, early 
termination of pregnancy becomes prefers [5].
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2. Abortion

Termination of the gestation by removing fetus or embryo prior to gaining the 
ability to survive outside the uterus is called abortion. Nevertheless, if this process 
happens after the fetus acquires this ability, then it is termed a “late termination 
of pregnancy“. If the abortion occurs spontaneously, it is termed a miscarriage. 
In addition, it is titled an induced abortion or “induced miscarriage” if it resulted 
purposely [6].

Induced abortion does not raise the risk of mental or physical complications if it 
ensues under legal and secure conditions [7]. Every year nearly 56 million abortion 
cases happen worldwide [8], half of these cases ended unsafely [9]. Unsafe abortion 
is considered one of the main challenges of public health in Africa and Middle 
East areas. In 2003, 1.5 million abortions occur in these regions in unhygienic and 
unexperienced conditions according to World Health Organization (WHO). From 
those abortions, 11% of the cases were ended with maternal death. Increasing 
family planning and birth control make the rate of abortion decline and that what 
happened in the last two decades globally [10].

In general, the causes of miscarriage are different. Several factors that can form 
a high degree of risk on pregnancy have been recognized. Health and medical 
causes have a high rate of incidence in recurrent than in spontaneous miscarriages. 
Cytogenetic abnormalities are probable reasons for miscarriage particularly 
earlier to the 9th week of gestation. Autosomal trisomies are the most common 
chromosomal abnormalities then 45X and triploidy. Gene inactivation in the 4 to 
8 cell stages karyotype supposed to be responsible for the non-recognized cases of 
abortion at an earlier period of gestation.

Miscarriage also occurs by anomalies in the uterus configuration such as 
the bicornuate and septate uterus, which consider as congenital defects. In 
addition, submucosal or intramural myomata may lead to early miscarriage [11]. 
Occasionally, women with spontaneous miscarriage may have endocrine and 
autoimmune irregularities. The danger of miscarriage will increase in pregnancies 
who suffered from Hypothyroidism and Polycystic Ovarian Syndrome (PCO). In 
addition, those with low control on their blood glucose level especially in insulin-
dependent diabetes mellitus [12]. The incidence of miscarriage will upsurge 
with the progression of maternal age. The rate of recurrence increased from 12% 
before 25 years to 18% after 39 years. At higher ages, anembryonic pregnancies are 
frequently prevalent. Menarche and menopause are the main factors that influenced 
maternal age. Social, economic and, cultural situations also affect the preferred 
family size and period between gestations [13].

Besides smoking, exposure to environmental tobacco smoke (also called passive 
smoking) holds the same possibility of abortion’s occurrence [14]. Consumption of 
alcohol, caffeine also described as a weak and debatable risk factor of pregnancy 
loss [15]. Employments with high levels of stress are associated with spontaneous 
abortion [16]. Miscarriage also resulted from genital infections. Mycoplasma hominis 
and Chlamydia trachomatis are established as inducing factors of miscarriage 
existence. Pregnant women with bacterial vaginosis may be exposed to the risk 
of late miscarriage [17]. Bacterial vaginosis may follow deficient in lactobacilli 
with overgrowth of anaerobic bacteria, as well as Mycoplasma genitalium and 
Gardnerella vaginalis [18]. Primary infection with genital herpes will increase the 
risk of miscarriage existence. In addition, other infectious agents such as Rubella, 
Toxoplasmosis, Cytomegalovirus and, Listeriosis also fixed as probable causes of 
miscarriage. Candida species are the second most common cause of vulvovaginitis 
worldwide and C. albicans is the most common and clinically significant species 
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that cause vulvovaginal candidiasis. Untreated vaginal candidiasis may lead to a 
pelvic inflammatory illness that scar the fallopian tube followed by infertility.

2.1 Candida albicans

A dimorphic fungus that can grow as yeast or filamentous cells and considered 
one of the limited species of the Candida genus that cause humans candidiasis 
[19]. 50–90% of all cases of humans’ candidiasis are result from C. albicans [20]. 
Systemic fungal infections (fungemia) caused by C. albicans appeared as significant 
foundations of morbidity and mortality in immunocompromised patients (e.g., 
AIDS, cancer chemotherapy and, bone marrow transplantation). Today, hospital-
acquired candidiasis became a source of major health anxieties.

Candida albicans is a common human flora that noticed in the gastrointestinal 
tract of 40% of healthy adults [21]. It is commonly a commensal creature, 
nonetheless, it can turn out to be pathogenic in immunocompetent individuals 
under various conditions. Candidiasis also can happen due to excessive growth of 
the fungus, which recurrently detected in immunocompromised cases including 
HIV-infected patients. It usually befalls the mucous membranes of the mouth or 
vagina in addition to a number of other parts of the body [22].

2.1.1 Fungal genome

The genome of C. albicans characterized by numeric rearrangements 
of chromosomal structures leads to creating genetic rearrangements called 
chromosome length polymorphisms, reciprocal translocations, and chromosome 
deletions. These karyotypic modifications followed by changes in the phenotype, 
which consider a fungal strategy of adaptation. Two species of candida (including 
C. albicans and C. tropicalis) have an uncommon trait in which the CUG codon, 
which usually specifies leucine, in these species it encodes serine. The main 
feature of C. albicans genome is extremely dynamic, and this changeability is a 
higher benefit for molecular, epidemiological, and population researches for this 
species [23].

2.1.2 Heterozygosity

The heterozygosity of the Candidal genome surpasses that persist in other 
genomes is common among clinical isolates. Two proteins ensued via single-base 
polymorphisms vary in one or more amino acids will provide the functional 
variances of each protein. Therefore, this condition significantly raises the number 
of diverse proteins encoded by the candidal genome [24].

2.1.3 Biology of Candida albicans

Candidal colonies seem large, round, white, or cream that emanates a 
yeasty odor on agar plates at room temperature when grown in vitro [25]. By 
fermentation process, C. albicans consumes; glucose and maltose and produce 
acid and gas, sucrose to acid, but does not ferment lactose, this was a benefit in 
distinguished it from other Candida species. Recently, molecular phylogenetic 
researches confirm a polyphyletic character in the genus Candida. Previously, 
most yeast that isolated from infected individuals regularly called Candida even 
in absence of a clear indication of relationship to other Candida species until 
the development of molecular methods. For example, three species of candida 
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which are C. guilliermondii, C. glabrata and C. lusitaniae were misclassified and 
positioned in other genera until the evolution of phylogenetic reorganization [23].

2.1.4 Epidemiology

Many regions of the human body like skin and mucosal surfaces are inhabited 
by numerous candidal species, this colonization carried a commensal nature with 
the host. The immune condition of the individual plays an effect on the severity of 
the Candida infections, so, any disturbance in immunity increase the percentage 
of the host’s illness make the host more susceptible to infection with candidiasis. In 
immunocompromised patients, Candidal infections create main fungal infections 
[26]. Generally, oropharyngeal candidiasis is the primary illness presented in those 
patients, because of that malnutrition developed leading to restriction of the action 
of the treatment [27]. These invasive infections have many challenges against public 
health lead to cumulative health and economic significances because of the great 
mortality proportions and amplified expenditure of medical care [28].

Skin, mouth, throat, genitals, and blood are the main body regions that are 
usually infected with candidiasis. Generally, Candida spp sustains as the fourth 
supreme isolated pathogen from bloodstream infections (BSIs). Most cases of 
candidaemia are caused by C. albicans have been associated with a high mortality 
rate, while the non-albicans species are responsible for about 23% of candidemia 
collectively with the rare incidence of mortality. Virulence of these species depends 
on many elements; capability of biofilms creation, the existence of teleomorph 
forms, therapeutic difficulty, and resistance to conventional antifungal medicines 
[29]. Candidal nosocomial infections determined by organ transplantations, an 
increase of immunosuppression cases, and the clinical procedures that required the 
usage of invasive devices [30].

2.1.5 Host predisposing factors

Besides the commensalism interaction between Candida species and humans 
and the fundamental existence of it in healthy persons, recent two decades showed 
an unusual overgrowth in respiratory, gastrointestinal, and urinary tracts in 
comparison with earlier periods. Shortly after childbirth, species colonize the 
mucosa of the upper respiratory passages and gastrointestinal tract. Habitually, 
C. albicans exists fluently in the internal warm crinkles and fissures of the 
gastrointestinal tract and vaginal tract. Candidal colonization rises nearly to 
30–40% during pregnancy due to disturbance of immunity, bacterial flora, and pH 
level variations, while about 10% of these species are found in mucosa and skin of 
the genitalia in men [31].

2.2 Candida albicans and pregnancy

During pregnancy, females exposed to many physiological changes. Gestation 
is a complicated condition in fetal development that requires various essential 
substances such as glucose, fatty acids, amino acids, minerals, and vitamins. These 
nutrients must continuously apply to improve the process of fetal growth and to 
protect the health condition of pregnant women. Many pathogens that responsible 
for several sexual and non-sexual transmitted infections invade the women’s 
bodies through the female genital tract (FGT), leading to vaginal infections. The 
common clinical symptom for female genital tract infection is vaginal discharge, 
which considers as the second main gynecological problem after menstrual 
disorders [32]. Vulvovaginal candidiasis (VVC) (also called candidal vaginitis or 
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moniliasis) initiated by an overgrowth of candida yeast species mainly C. albicans. 
The main features of this disease are curd-like vaginal discharge, itching, erythema, 
burning, vulvar and vaginal irritation associated with dysuria and dyspareunia 
[33]. C. albicans overgrowth causes superficial infections such as vaginitis that 
are usually associated with an immuno-compromised state mucosal candidiasis. 
Scientific researches fixed that near to 75% of women undergo at minimum one 
incidence of a genital yeast infection at reproductive years of them, In addition, 
about 10–20% of women acquire asymptomatic vaginal colonization with Candida 
species during their life. While 5–10% of healthy women suffering from recurrent 
vaginal candidiasis without any predisposing factors. In the presentation of chronic 
recurrent candidiasis, pregnant women are less resistant to VVC in comparison 
with healthy women. The forms of infection may be acute, chronic, superficial, or 
deep. During pregnancy, rising in estrogen level will be followed by increasing in 
glycogen production in the vagina, which improves the proliferation of the yeast 
on the lining of it. Alterations in physiological conditions that affect the beneficial 
bacteria in the vagina would change the vaginal acidity reducing its pH to 5.0–6.5. 
This alteration in pH will increase the overgrowth of pathogenic Candida. Several 
factors such as age, menstrual cycle, sexual activity, pregnancy, and excessive use of 
antibiotics may lead to an increased vaginal pH [34].

Colonization of the vagina by Candida species may be enhanced by numerous 
factors such as pregnancy, weak immunity, obesity, diabetes, prolonged use 
of corticosteroids, HIV, malnutrition, consumption of high level of estrogens, 
Intrauterine Contraceptive Device (IUCDs), tight clothing, poor personal hygiene, 
intrauterine devices and diet with high carbohydrates contents. VVC is a significant 
infection that may lead to abortion, candida chorioamnionitis, subsequent preterm 
delivery, and suppression of the immune system. Even with the isolation of Other 
candida spp (Candida tropicalis) from aborted placenta [35], C. albicans considered the 
main one that can invade the fetal membranes. Uterus infection with candida may be 
occurring via the usage of IUD that might hold the yeast from contaminated external 
genitalia into the uterus. In many cases, the pregnancy occurs even with the presence 
of IUD and that may lead to candidal abortion [5]. In addition, the probability of the 
presence of C. albicans in the uterus was referred to transmit of that yeast via seminal 
fluid, giving some proves about the role of the male as a reservoir of C. albicans. This 
may lead to re-infection of their sexual partner besides the isolation of that yeast from 
the genitalia and from semen [36]. In general, the infected male stays asymptomatic 
carriers and that will add another difficulty to control the yeast spreading. Although 
its ubiquity in the vagina, intra-amniotic infection with C. albicans is rare and that 
explained the few isolates that detected from the aborted placenta [37].

3. Conclusion

Candida albicans is one of the major normal microbiota found in the human 
body. It converts to opportunistic microorganisms when the host underwent several 
physiological and pathological conditions. In pregnant women, it can reach the 
placenta either by cause ascending infection from the vagina or by infected seminal 
fluid, which may lead to abortion.
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