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With the development of the modeling and computer technology, the scale of mate-
rial has been expanded from macro- to micro-, also from micro- to nanoscale. The
development of molecular modeling tools to describe and predict the mechanical 
properties of structural materials reveals to be of undeniable practical importance. 
At the nanometer scale, anisotropy is the consequence of differences in the direc-
tional arrangements of atomic structure, the force between atoms, such as van der
Waals force, typical Coulomb force, and other forces.

Till early twenty-first century, the approximate solution of the Schrödinger equa-
tion in quantum mechanics field is almost equivalent to the importance of using 
Newton’s laws widely to solve classical mechanics problems. Density functional 
theory (DFT) as a first-principles theory and a solid band theory in quantum
mechanics has own a great success in linking physical properties and molecular
structure, the calculation with exact accuracy but for low computational efficiency
for macromolecular structure. Molecular dynamics (MD) has obvious advantages
in simulating macromolecular structure, with very high computational efficiency
but for much dependency of atomic potential parameters. Besides, MD method is
limited into a range of structure at atomic scale level and it cannot effectively solve
continuum mechanics problems like practical engineering application using finite
element method (FEM). So we look for a modeling tool so as to further widen the
application fields of nanoindentation simulation with consideration of atomic
forces at nanoscale level. In addition to the tradition of DFT and MD methods
that we briefly introduced above, a so-called AFEM modeling methodology at the
atomic scale (or nanoscale) is further investigated since the macroscopic properties
depend largely on the physicochemical properties of the interatomic bonds.

Nanoscale modeling and mechanical properties by using the density functional 
theory (DFT), a so-called atomic finite element method (AFEM), and the classi-
cal molecular dynamics (MD) method are especially concerned according to the
modeling requirement of different crystals structures investigated.

This is a book of a professional and systematic scientific research by Dr. Jia Fu.

This book is committed to model and to calculate mechanical properties (Young’s
modulus especially) of typical anisotropic crystals structures (cubic crystals: CaO 
and MgO; hexagonal crystals: CH and calcite; monoclinic crystals: 11 Å tobermorite
and gypsum; others: CNT and graphene; monolithic structures of C▬S▬H (I) 
(Ca/Si = 0.67) and C▬S▬H (II) (Ca/Si = 1.67)) by programming with using three
methods above. Omitting the description of these structures’ importance, elastic
moduli are separately calculated by either homogenization or curve fitting of the
linear portion of the stress-strain curve by the corresponding numerical simula-
tions. At the end, nanoindentation experiments, SEM, and nanoindentation simula-
tions are carried out to determine elastic moduli of several phases in cement pastes.

As crystal structures at nanoscale always tend to exhibit anisotropy, our research
objects of typical cement phase structures depending on crystal types and practical 
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Preface 

With the development of the modeling and computer technology, the scale of mate-
rial has been expanded from macro- to micro-, also from micro- to nanoscale. The 
development of molecular modeling tools to describe and predict the mechanical 
properties of structural materials reveals to be of undeniable practical importance. 
At the nanometer scale, anisotropy is the consequence of differences in the direc-
tional arrangements of atomic structure, the force between atoms, such as van der 
Waals force, typical Coulomb force, and other forces. 

Till early twenty-first century, the approximate solution of the Schrödinger equa-
tion in quantum mechanics field is almost equivalent to the importance of using 
Newton’s laws widely to solve classical mechanics problems. Density functional 
theory (DFT) as a first-principles theory and a solid band theory in quantum 
mechanics has own a great success in linking physical properties and molecular 
structure, the calculation with exact accuracy but for low computational efficiency 
for macromolecular structure. Molecular dynamics (MD) has obvious advantages 
in simulating macromolecular structure, with very high computational efficiency 
but for much dependency of atomic potential parameters. Besides, MD method is 
limited into a range of structure at atomic scale level and it cannot effectively solve 
continuum mechanics problems like practical engineering application using finite 
element method (FEM). So we look for a modeling tool so as to further widen the 
application fields of nanoindentation simulation with consideration of atomic 
forces at nanoscale level. In addition to the tradition of DFT and MD methods 
that we briefly introduced above, a so-called AFEM modeling methodology at the 
atomic scale (or nanoscale) is further investigated since the macroscopic properties 
depend largely on the physicochemical properties of the interatomic bonds. 

Nanoscale modeling and mechanical properties by using the density functional 
theory (DFT), a so-called atomic finite element method (AFEM), and the classi-
cal molecular dynamics (MD) method are especially concerned according to the 
modeling requirement of different crystals structures investigated. 

This is a book of a professional and systematic scientific research by Dr. Jia Fu. 

This book is committed to model and to calculate mechanical properties (Young’s 
modulus especially) of typical anisotropic crystals structures (cubic crystals: CaO 
and MgO; hexagonal crystals: CH and calcite; monoclinic crystals: 11 Å tobermorite 
and gypsum; others: CNT and graphene; monolithic structures of C▬S▬H (I) 
(Ca/Si = 0.67) and C▬S▬H (II) (Ca/Si = 1.67)) by programming with using three 
methods above. Omitting the description of these structures’ importance, elastic 
moduli are separately calculated by either homogenization or curve fitting of the 
linear portion of the stress-strain curve by the corresponding numerical simula-
tions. At the end, nanoindentation experiments, SEM, and nanoindentation simula-
tions are carried out to determine elastic moduli of several phases in cement pastes. 

As crystal structures at nanoscale always tend to exhibit anisotropy, our research 
objects of typical cement phase structures depending on crystal types and practical 



 
 

 
  

  

  
  

  
 

 

research needs in book are mainly divided into five types: cubic crystals (CaO 
and MgO), hexagonal crystals (calcite and portlandite), monoclinic crystals (11 Å 
tobermorite and gypsum), monolithic structures: C▬S▬H (I) (Ca/Si = 0.67) and 
C▬S▬H (II) (Ca/Si = 1.67), and other crystals structures (CNT, graphene). These 
structures are typical constituents of the microscale Portland hydrated cement 
paste (HPCP) and their Young’s moduli are needed in a 3D multiscale mortar model. 
Nanoscale modeling helps build the bottom-up multiscale model, by which the 
accurately independent models of typical structures can be verified by the elastic 
moduli obtained at atomic scale, then the needed multiscale model can be estab-
lished. In this book, we mainly focus on modeling and calculating the mechanical 
properties of these typical anisotropic crystal structures at nanoscale with a high 
efficiency, then determining homogenized elastic moduli of these structures with a 
larger scale. 

In summary, by identifying relevant parameters using the improved AFEM method 
and other computational program, it therefore connects nanoscale modeling and 
continuous pattern of deformation behavior from small scales to larger scales. 
We believe that our research above will be expanded the existing research and to 
provide further detailed parameters of our research objects, thus leads to a certain 
practical significance. 

Jia Fu 
Xi’an Shiyou University, 

Xi’an, China 

INSA de Rennes, 
Rennes, France 
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Chapter 1

Overview of Nanostructure
Modeling and Atomistic
Simulation Methods
Jia Fu

Abstract

The development of molecular modeling tools to describe and predict the
mechanical properties of structural materials reveals an undeniable practical
importance. It is now well recognized that such an objective can be achieved
through the linking of the structure of materials at the nanoscale or with their
performances. At the nanometer scale, anisotropic materials exhibit differences due
to the directional arrangements of atomic structure, the force between atoms, such
as van der Waals force, typical Coulomb force, and other forces. Nanoscale
modeling and mechanical properties by using the density functional theory (DFT),
a so-called atomic finite element method (AFEM), and the classical molecular
dynamics (MD) method are especially concerned according to the modeling
requirement of different crystal structures investigated. Omitting the description of
these structures’ importance, elastic moduli are separately calculated by either
homogenization or curve fitting of the linear portion of the stress-strain curve by
the corresponding numerical simulations. This chapter is committed to introduce
the modeling and simulation for calculating mechanical properties (Young’s
modulus especially) of typical anisotropic crystal structures using three methods
(DFT, AFEM, and MD) mentioned above. It is therefore asked to connect to the
nanoscale modeling and continuous pattern of behavior by identifying the
relevant output data at small scales and bringing the necessary information to
higher scales.

Keywords: nanoscale, crystal structures, anisotropic elasticity, DFT, AFEM,
molecular dynamics simulation, nanoindentation, mechanical properties

1. Introduction

Nanotechnology is considered “high-tech” since it requires deep knowledge of
the system considered at the nanoscale in order to intelligently design.
Nanomaterials refer to one dimension in the nanometer range (nanosized particles,
atomic clusters etc.) or a basic unit at least among a three-dimensional space
(nanotubes, ultrathin films, multilayers, superlattices, etc.). Nanoscience and tech-
nology turns up in the late 1980; its basic meaning is to understand and transform
the nature in the nanometer size range (10˜10–10˜7 m), directly through the
manipulation and arrangements of atoms. Material properties mainly include
chemical properties, physical properties (density, viscosity, particle size, specific
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The development of molecular modeling tools to describe and predict the 
mechanical properties of structural materials reveals an undeniable practical 
importance. It is now well recognized that such an objective can be achieved 
through the linking of the structure of materials at the nanoscale or with their 
performances. At the nanometer scale, anisotropic materials exhibit differences due 
to the directional arrangements of atomic structure, the force between atoms, such 
as van der Waals force, typical Coulomb force, and other forces. Nanoscale 
modeling and mechanical properties by using the density functional theory (DFT), 
a so-called atomic finite element method (AFEM), and the classical molecular 
dynamics (MD) method are especially concerned according to the modeling 
requirement of different crystal structures investigated. Omitting the description of 
these structures’ importance, elastic moduli are separately calculated by either 
homogenization or curve fitting of the linear portion of the stress-strain curve by 
the corresponding numerical simulations. This chapter is committed to introduce 
the modeling and simulation for calculating mechanical properties (Young’s 
modulus especially) of typical anisotropic crystal structures using three methods 
(DFT, AFEM, and MD) mentioned above. It is therefore asked to connect to the 
nanoscale modeling and continuous pattern of behavior by identifying the 
relevant output data at small scales and bringing the necessary information to 
higher scales. 

Keywords: nanoscale, crystal structures, anisotropic elasticity, DFT, AFEM, 
molecular dynamics simulation, nanoindentation, mechanical properties 

1. Introduction 

Nanotechnology is considered “high-tech” since it requires deep knowledge of 
the system considered at the nanoscale in order to intelligently design. 
Nanomaterials refer to one dimension in the nanometer range (nanosized particles, 
atomic clusters etc.) or a basic unit at least among a three-dimensional space 
(nanotubes, ultrathin films, multilayers, superlattices, etc.). Nanoscience and tech-
nology turns up in the late 1980; its basic meaning is to understand and transform 
the nature in the nanometer size range (10˜10 –10˜7 m), directly through the 
manipulation and arrangements of atoms. Material properties mainly include 
chemical properties, physical properties (density, viscosity, particle size, specific 
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heat, thermal conductivity, linear expansion coefficient, etc.), and mechanical 
properties (elasticity, hardness, strength, plasticity, ductility, toughness, impact 
resistance, fatigue limit, etc.). At nanoscale, the crystalline material with the 
smallest unit holds anisotropy, meaning that crystal has different properties in 
different directions. 

With the development of material science and technology, the scale of material 
has expanded from macro to micro, also from micro to nanoscale. Nanostructure 
scientific research at nanometer scale includes elaboration, observation, characteri-
zation, and analysis. Modeling of miniaturized materials has a lot of new properties, 
where characteristic space and time scales correspond to typical simulation 
methods. Modeling and applications of structures at typical space/time scales [1] are 
shown in Figure 1. 

From Figure 1, for electronic structure, DFT-QHA method is commonly used, 
while for atomistic structure, Monte Carlo method or molecular dynamics is used. 
However, real materials are never perfectly isotropic. At nanoscale, the crystal 
structure reorientations are not a direct result of the applied stress but are a geo-
metrical requirement. Bulk anisotropy due to crystal orientation is therefore 
induced by plastic strain and is only indirectly related to stress. Recrystallization 
during annealing usually changes the crystallographic texture but does not cause 
randomness [2]. When the grain size is reduced to the nanoscale, its Young’s 
modulus and hardness have great changes. The microscopic deformation mecha-
nism is very complex for nanograins, which depends on the shape of the crystal 
orientation, surface effect, the substrate effect, the grain boundaries affect, etc. In 
some cases (e.g., composite materials, single crystal), the differences in properties 
for different directions are so large that one cannot assume isotropic behavior, 
which leads to another behavior—anisotropic. 

Anisotropic behavior is widespread among the variety of materials, and it has a 
great meaning in practical engineering application in material science field. 

Figure 1. 
Modeling and applications of structures at typical space/time scales [1]. (a) Some characteristic space and time 
scales and (b) characteristic times of typical simulation methods. 
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Anisotropy is the property of being directionally dependent, as opposed to isotropy, 
which implies identical properties in all directions. It can be defined as a difference, 
when measured along different axes, in a material’s physical or mechanical proper-
ties. From the plastic performance perspective, the anisotropy of plastic deforma-
tion of the material shows the performance of texture, ears, and other aspects. 
Mechanical working produces preferred orientations or crystallographic textures. 
The primary cause of anisotropy of plastic properties is preferred orientation of 
grains. In contrast, anisotropy of fracture behavior is largely governed by mechan-
ical alignment of inclusions, voids, and grain boundaries. However, from the elastic 
performance perspective of crystal structure, the mechanism of elastic anisotropy 
behavior is still not being recognized, especially for knowing the connection 
between atomic bonds and mechanical properties of anisotropic crystals structures 
at nanoscale. Therefore, a comprehensive understanding of the intrinsic nature and 
the anisotropy behavior at nanoscale has become an urgent task. 

Essentially, material properties due to anisotropy are closely related to its inter-
nal structure and deformation conditions in the research field of materials science. 
The microstructure provides a link between processing (how a material is made) 
and properties (how a material behaves) [3]. It relates with the thermal, electrical, 
and mechanical properties of a crystal [3]. Alongside the experiment and theory, 
numerical simulation is a way additional access to the understanding of physical 
systems. Indeed, it can calculate experimentally measurable quantities and predict 
properties that are inaccessible in the laboratory or in the model to be validated. In 
general, both the chemical structure and the microstructure of a material control its 
properties, of which the chemical structure is relatively fixed and the microstruc-
ture depends strongly on how the material is made. However, from mesoscopic 
level to atomic scale, the drop of material scale makes the contained atoms of 
nanometer system greatly reduced; besides, macroscopic quasistationary continu-
ous band disappeared, thus showing the energy level separation. The quantum size 
effect makes physical properties of nanosystem different from other conventional 
materials, leading to many novel features. At the nanometer scale, anisotropic 
materials exhibit differences due to these directional arrangements of atomic struc-
ture, the force between atoms, such as van der Waals force (caused by hydrogen 
bonding, ionic bond), typical Coulomb force (caused by charge), and other forces 
caused by covalent bond, atomic distortion, defects, hydrophilic, etc. Numerical 
simulation of anisotropic plastic behavior has been investigated by Yonggang [4] in 
Harvard University, while the numerical simulation and elastic properties of crystal 
structure at nanoscale have not been investigated systematically. 

Although material performance is not the same in different directions in crystal, 
however, it has a strict symmetry. Anisotropic behavior of crystalline/structure can 
be reflected in the constitutive relation, where the elastic coefficient matrix 
corresponding to crystal system is certain. For different crystal/system, the number 
of cubic crystal has the least number of 3, hexagonal crystal 6, monoclinic crystal 
13, and triclinic crystal with the most number of 21. Elasticity coefficient has 
important practical significance on the scientific basis and engineering 
applications of the material. Different crystal systems can be characterized 
exclusively by their symmetries. Each crystal has a certain level of crystal 
symmetry with corresponding different number of independent elastic coefficients. 
By obtaining elastic coefficient matrix, homogenized elastic properties (bulk, shear, 
and Young’s moduli) of polycrystals at larger scale can be determined, using the 
Voigt-Reuss-Hill estimation, for example. Because of complex issues mentioned 
above, for different anisotropic structure, selecting the appropriate modeling 
approach is particularly critical. 
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2. Nanostructural modeling and simulation methods at nanometer scale 

With the development of the modeling and computer technology, the scale of 
material has expanded from macro to micro, also from micro to nanoscale. 
Nanomechanics aims to study fundamental mechanical properties of material 
structure at the nanoscale. Nanoscale modeling methods mainly include quantum 
molecular (QM), Monte Carlo (MC), molecular (structural) mechanics (MM) [5], 
molecular dynamics (MD) [6], nonlocal continuum theory [7], the ab initio calcu-
lation [8], tight-binding molecular dynamics (TBMD), and the density functional 
theory (DFT) [9]. Typical application, different space scale, the corresponding time 
scales, and simulation methods in computational materials science fields have been 
discussed by Raabe [1, 10]. Molecular simulation is also known as molecular 
modeling, which refers to theoretical methods and computational techniques to 
model or imitate the behavior of molecular. The model size at different scales has 
gradually decreased to continuum and mesoscopic level (material model diameter 
greater than 10˜4 m), the mesolevel (about 10˜6 –10˜4 m), the microlevel (about 
10˜7 –10˜6 m), and atomic/nanolevel (about 10˜10 –10˜7 m). Figure 2 shows typical 
scales of material computational mechanics. 

From Figure 2, scales in computational mechanics field can be divided into four 
scales: the macro (macroscale), mesoscopic (mesoscale), microscopic (microscale), 
and nano (nanoscale). Correspondingly, the continuum mechanics is commonly 
used to solve the macroscale structures, where finite element method can be used. 
For molecular dynamics for microscale, mesoscale, and nanoscale structures, for 
example, the discrete model can be an option at mesoscale. For quantum mechanics 
for both nanoscale and atomic scale structure, for example, density functional 
theory can be an effective option. 

During the last decade, nanomechanics has emerged on the crossroads of classi-
cal mechanics, solid-state physics, statistical mechanics, materials science, and 
quantum chemistry. Numerical methods represent the most versatile computational 
method for the various engineering disciplines, and the scale of material modeling is 
gradually transited from bulk scale to nanoscale in Figure 3. 

From Figure 3, the simulation approach for the structure in each domain is not 
all the same. The internal distance of each structure from quantum scale (nanoscale 
and atomic scale) to bulk scale covers the range of nanometer to micrometer and 
the time scale within the range of femtosecond to seconds. 

Correspondingly, numerical modeling in computational material mechanics 
includes several analysis techniques such as ab initio methods, molecular dynamics, 
finite elements, boundary elements, distinct elements, and other numerical 
approaches that depend on the material/structure at different scales. Relationship 
between modeling methods and time/length scale is shown in Table 1. 

Figure 2. 
Scales of material computational mechanics. 
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Figure 3. 
Length/time scales using various methods in computational materials mechanics. 

Table 1 shows typical space, time scales, and simulation methods. These 
methods can separately link the relationship between modeling methods and real 
structure size. The fundamental characteristic of numerical methods is that a struc-
ture is discretized into small elements. Then the corresponding models that describe 
the individual elements and their interactions are constructed. The scale of material 
has expanded from macro to micro, also from micro to nanoscale. 

2.1 Classical quantum mechanics and molecular dynamics methods 

2.1.1 Brief introduction of quantum mechanics (QM) method 

In the early 1900, the basics of quantum mechanics were gradually proposed by 
Schrödinger and others to study the quantum phenomena when the dimension of 
the system is in the size of atoms and molecules. Schrödinger equation [11] is 
proposed and it plays the same role as Newton’s equation in classical systems but 
exactly describes the wave function of a system that evolves with time. Then, some 
approximations [12], such as the first ab initio Hartree-Fock (HF) calculations on 
diatomic molecules, were carried out at the Massachusetts Institute of Technology 
in 1956 [13]; thus, the numerical resolution of the time-independent Schrödinger 
equation was calculated. These traditional methods are briefly introduced as 
follows. 

First-principles calculations are also called ab initio method, which refers five 
fundamental constants of physics—mass of the electron, the electron charge, 
Planck’s constant, the speed of light, and Boltzmann constant. The calculation is to 
compute the system integrating of all the electronics solving the Schrodinger 

Modeling methods Length scales (m) Time scales (s) 

Quantum mechanics method < 10˜8 10˜15 –10˜12 

Molecular dynamics method 10˜8 –10˜6 10˜12 –10˜9 

Micromechanics methods 10˜6 –10˜4 10˜9 –10˜3 

Continuum method > 10˜3 > 10˜3 

Table 1. 
Relationship between modeling methods and time/length scale. 
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equation without considering any empirical parameters and thus can reasonably 
predict the status and nature of microscopic systems. Besides, it is a strong theoret-
ical approach developed from quantum mechanics and quantum chemistry, mainly 
to study hundreds of atoms or periodic crystal material. First-principles calculations 
can be used not only to explain the physical nature of the experimental phenomena, 
relationship between microscopic electronic structure and the physical parameters, 
but also to design new materials and to theoretically predict many physical properties. 

Density functional theory is a kind of first-principles molecular dynamics calcu-
lations [14], which is also called ab initio molecular dynamics. First-principles 
molecular dynamics make up shortcomings that the classical molecular dynamics 
need to know the atomic interaction potential. The atomic interaction potential is 
solved by DFT [15] and then substituted into the atomic motion equations to solve 
the trajectory of the particles of the system. The main difference between first-
principles molecular dynamics and classical molecular dynamics is to calculate the 
atomic interaction force [14, 15]. Advantages of first-principles molecular dynamics 
are as follows: (1) quantum mechanics is used to describe the interaction between 
electrons and atomic structure and (2) it is able to calculate the effect of 
nonharmonic crystal thermal vibrations. The downside of DFT is that it is time-
consuming [16]. 

2.1.2 Brief introduction of molecular dynamics (MD) method 

The molecular dynamics (MD) simulation to describe the atomic behavior by 
classical models and equations was reported in 1956 [17]. Molecular dynamics is to 
calculate a set of molecular orbital phase space. The MD method uses a microclassic 
calculation, assuming that atomic motion can be described by Newton’s motion 
equations, which means that atomic motion is associated with a particular track. 
This assumption is feasible and available only when the movement of quantum 
effects can be ignored and the adiabatic approximation is strictly satisfied. Molecu-
lar dynamics is a deterministic method that offers the possibility of a microscopic 
description of a physical system in consideration of all the interactions involved. 
The main advantage of this method is that it gives the information on the evolution 
of the system over time by numerically solving Hamilton equations of motion, 
Lagrange, or Newton. 

Before showing how organized a simulation by molecular dynamics, it is impor-
tant to define some necessary terms (NVE, NVT, NPH, and NPT ensembles) in 
such a simulation. The MD method is a deterministic simulation technique for 
evolving systems to equilibrium by solving Newton’s laws numerically. Molecular 
dynamics method can be used to study the molecule substances with lots of atoms 
(even up to millions atoms). The implemented potential was tested to reproduce the 
basic physical parameters of bulk, defects, and surface. The bulk physical parame-
ters, such as the cohesive energy, lattice constant, and bulk modulus, were obtained 
on the supercell structure with a certain boundary condition, which were equili-
brated by MD method with the set of a time step. 

2.2 The AFEM methodology based on molecular mechanics method 

Molecular mechanics method aims to study fundamental mechanical properties 
at the atomic scale. It has emerged on the crossroads of classical mechanics, solid-
state physics, statistical mechanics, materials science, and quantum chemistry. 
Length/time scales using various methods in computational materials mechanics are 
shown in Figure 5. 
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From Figure 4, we can see that there is a gap between time record and space 
record. The QM method, such as the density functional theory (DFT) as a first-
principles theory and a solid band theory in quantum mechanics, has own a great 
success in linking physical properties and molecular structure, the calculation with 
exact accuracy but for low computational efficiency for macromolecular structure. 
Molecular dynamics (MD) has obvious advantages in simulating macromolecular 
structure, with very high computational efficiency but for much dependency of 
atomic potential parameters. Besides, MD method is limited into a range of struc-
ture at atomic scale level, and it cannot effectively solve continuum mechanics 
problems like practical engineering application using finite element method (FEM). 
In fact, the physicist Garrett Lisi in 2007 has proposed “a theory of everything” and 
has proposed an E8 model [18]. Garrett Lisi believes that all known physics particles 
and elementary various forces can be accommodated at the E8 mode where the 
plurality of interactions between particles is naturally appeared. 

So how to establish a connection between quantum-mechanical (QM), molecu-
lar dynamics (MD), and continuum mechanics, so as to predict or calculate macro-
scopic properties at the atomic scale based on some kinds of continuum methods? 

These possible modeling methods cause great interest and concern of the 
scholars. Quantum-mechanical (QM) or ab initio methods mainly aim to solve 
electronic Schrodinger equation for atoms and molecules, as well as various 
approximations of that solution. Electronic structure of each atom is accounted for. 
Major methods include density functional theory, Hartree-Fock, and tight binding. 
QM methods are very accurate but extremely expensive. Otherwise, without con-
sideration of the complex electronic structure of each atom, the whole atom calcu-
lation methods can be realized by modeling the structure/system just as a type of 
ball (soft sphere), using a series of empirical interatomic potentials. These major 
methods (molecular mechanics, molecular dynamics, Monte Carlo) are less accu-
rate but relatively inexpensive. Although MD method can simulate the microscopic 
deformation in a certain degree, some effects due to size are too small but still 
cannot be obtained because of computational limitations of molecular dynamics 
simulations, and continuum mechanics finite element method cannot effectively 
simulate the microstructure deformation behavior. Because of these deficiencies of 
molecular dynamics and continuum methods, multiscale method came into being, 

Figure 4. 
Length/time scales using various methods in computational materials mechanics. 
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which can be used to simulate in larger sizes without ignoring the deformation at 
smaller scale. 

In addition to the traditional simulation methods that we briefly introduced 
above, a so-called atomic finite element method (AFEM) [19] at the atomic scale (or 
nanoscale) has attracted our great interest. In fact, models of crystal structures at 
the nanometer scale often tend to exhibit anisotropy. Modeling of anisotropic crys-
tal structure needs to include the atomic and force field information, which leads to 
anisotropy due to the consequence of differences in the directional arrangements of 
atomic structure. The force between atoms, such as van der Waals force, typical 
Coulomb force, and others, should be considered. 

In 2011, an atomic finite element (AFEM) as a bridge between molecular 
dynamics and continuum mechanics is proposed, which makes the classical finite 
element method (FEM) to model at nanoscale. 

Considering Coulomb interaction, the total steric potential energy U by Rappe is 
as [20]: 

U ¼ ∑Ur þ ∑Uθ þ ∑Uϕ þ ∑Uω þ ∑Uvdw þ ∑Ucoul (1) 

where Ur is bond stretching, Uθ is bond angle bending, Uϕ is dihedral angle 
torsion, Uω is improper torsion, Uvdw is nonbonded van der Waals interaction, and 
Ucoul is Coulomb (electrostatic) interaction. 

At this scale, the interatomic forces are considered binding van der Waals, 
electrostatic force, and the covalent chemical bond. However, its application is 
limited as well, including the simple binary alloy and covalent bonds [19]. The 
application of AFEM in the field of ionic crystal is blank. Description of main force 
field of molecular mechanics is shown in Figure 5. 

From Figure 5, covalent bonds can be characterized to be equivalent beam by 
the molecular structural mechanics, and nonlinear spring element can be used to 
characterize the coupled field of van der Waals force and Coulomb force between 
atoms or charged ions by using Lennard-Jones potential. For AFEM modeling, the 
equivalent beam’s definition of other covalent bond can be approximated solved by 
a linear bond energy ratio according to C▬C bond energy. This book tries to 
approach this goal, elastic constants under various anisotropic crystal directions and 
homogenized elastic moduli of polycrystal become the research priorities of subject. 

Figure 5. 
Description of main force field of molecular mechanics. 
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In addition, the conventional DFT methods and MD methods are also used to 
compare mechanical properties and the simulation results of research objects. 

As a structural mechanics approach [5] has successfully modeled the frame-like 
structure of C▬C covalent bonds by equivalent beam elements and an AFEM 
methodology has solved the interatomic bonds modeled by nonlinear spring ele-
ments, modeling of nanostructure is realized by an equivalent beam, and nonlinear 
spring elements become possible. Such modeling tool may be used to further widen 
the application fields of nanoindentation simulation with consideration of atomic 
forces at nanoscale level. 

3. Research background on the multiscale modeling of concrete 
platform 

Concrete is the world’s most widely used man-made material with the history of 
more than 160 years. It is a complex mixture of numerous compounds, which has 
been used in the application in the antiseismic building, civil engineering, con-
struction, marine engineering projects, etc. [21] Our research background is based 
on some typical crystal structure of cement pastes in the reinforcing concrete, 
which accounts for the platform MuMoCC (Multi-Scale Modeling of Computational 
Concrete). 

3.1 Modeling scales of concrete and cement hydration products 

Concrete is a highly heterogeneous composite construction material whose 
microstructure contains randomly dispersed features. Concrete is primarily com-
posed of cement paste, sand, coarse aggregate, and admixtures. Each of these 
ingredients is heterogeneous themselves at a certain level and has different stiffness 
and strength. Therefore, the heterogeneity of concrete exists in a variety of length 
scales. 

3.1.1 Different scales of the concrete modeling 

All the types of cement pastes, in general, are truly complex materials, porous, 
multicomponent, and multiscalar. Moreover, as the hydration products have a very 
dissimilar structure and sizes, the cement paste itself has different hierarchical 
levels of organization at different scales. Figure 6 shows schematic representation 
of top-down five scale levels model for normal concrete [22, 23], which gives level 
classification and typical structures of cement-based composite material. 

From Figure 6, the typical structures can be divided into five levels, from the 
scale of pavement (10˜1 m) down to the C▬S▬H solid phase (10˜10 m) [22]. Each 
length scale is a random composite, and the description of the cement paste struc-
ture will be presented for each scale. A multiscale level model has been defined 
based on morphology and length scale of the structural elements [24]. The most 
usual classification divides the multiscale structure into four size ranges: macro-
scale, mesoscale, microscale, and nanoscale. 

3.1.2 Cement hydration process and typical hydrated structures 

Hydration refers to the chemical reactions between cement and water; the 
hydration process causes cement paste to first set and then harden. Meanwhile, 
hydration products—some new solid phases—are formed by hydration. Cement 
hydration refers to a lot of complex mixtures of numerous compounds. The major 
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Figure 6. 
Level classification and microstructures of cement-based composite material [22, 23]. 

compounds found in cement are tricalcium silicate (C3S), dicalcium silicate (C2S), 
tricalcium aluminate (C3A), tetracalcium aluminoferrite (C4AF), and gypsum. 
Some tricalcium silicate produces C▬S▬H gel and calcium hydroxide (CH) is 
formed at the early stage of hydration, while dicalcium silicate produces C▬S▬H 
gel and CH is formed at a later stage in the hydration process. 

Figure 7 summarizes the order of the different hydrates and their relative 
quantities [25]. 

Figure 7 shows the degree of hydration, particularly at later times. Dashed curve 
of the porosity decreases in proportion with the rate of hydration of the cement 
paste, due to the progressive filling empty initial intergranular by various hydrates. 
The C▬S▬H gel is the most important product of hydration. Furthermore, it is 
found that after a few hours, ettringite increases, reaches a maximum, and then 
decreases in favor of monosulfoaluminate, calcium aluminates, and hydrated alu-
minates C4(A,F)H13. At the end of stage (after 28 days), the initial cement has 
hydrated, and the paste has undergone final set. 

Typical microstructures and scanning electron microscope (SEM) of cement 
hydration products by Regourd [26] in 1975 is shown in Figure 8. 

In Figure 8, we can see the SEM image of C▬S▬H microstructures that are 
nanocrystalline compounds of nanometric particle aggregated with each other. 
Among the SEM of a clinker grain, the well-defined side and the pseudohexagonal 
contour of the upper face of the crystal of C3S are noted. Aluminates are as a “stick” 
structure between the crystals C3S calcium silicates and/or C2S. Alkali sulfates are 
condensed on the surfaces of the silicate crystals during solidification process. The 
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Figure 7. 
Crystals of silicates during solidification process [25]. 

Figure 8. 
Typical microstructures of cement hydration products [26]. 

hydration of C2S and C3S forms calcium hydrosilicate (C▬S▬H), which is accom-
panied with calcium hydroxide (CH). The continuous and relatively rapid deposi-
tion of hydration products (primarily C▬S▬H gel and CH) into the capillary 
porosity occurs, which is the space originally occupied by the mix water, leading to 
a large decrease in the total pore volume and a concurrent increase in strength [26]. 

C▬S▬H is responsible for most of the cement paste properties, which is amor-
phous and heterogeneous in composition. It is well known that the C▬S▬H gel can 
be classified as inner product and outer product, of which the inner product of 
C▬S▬H gel grows inward the boundaries of the clinker grains, occupying the 
place of the anhydrous phases, while the outer product of C▬S▬H gel is formed 
outward the boundaries of the clinker grains, in the water filled space [27]. In 
general, the inner product has a more compact and more amorphous structure, 
while the outer product has been found to form bundles of fibers radiating from the 
cement grains [28]. The composition of both products seems to be similar, although 
some authors report slight differences in the Ca/Si ratio, which is higher for the 
inner product [29]. 
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3.2 Background on reinforcing concrete and MuMoCC platform 

3.2.1 Research background on concrete reinforced by nanotubes 

Nowadays, the use of self-compacting concrete (SCC) is progressively changing 
the method of concrete placement on building sites [30]. Concrete is a heteroge-
neous material composed of a mixture of sand, aggregates embedded in a hardened 
cement paste. Cement is the binder component of concrete, the glue that holds the 
filler together to create a uniform, strong material. The cement notation uses letters 
that symbolize the main components expressed as oxides: CaO (C), SiO2 (S), Al2O3 

(A), Fe2O3 (F), H2O (H), SO3 (S), etc., forming crystal morphology. As a 
reinforcing material in cement matrix, carbon nanotubes have high stability and 
significantly improved its mechanical properties, impact resistance, antistatic 
properties, and wear resistance properties. Therefore, the development of a cement 
matrix of carbon nanotubes becomes scholars’ interest. In 2012, the conception that 
“cement nanotubes as a natural means for reinforcing concrete [31]” is proposed, 
shown in Figure 9. 

From Figure 9, it has been concluded that nanotubes make calcium silicate 
hydrates an ideal cement-reinforcement paste, of which the stress deformation of 
portlandite nanotubes increases almost linearly up to a strain of 27% [31]. Mechan-
ical properties of cement matrix reinforced by carbon nanotubes are super excel-
lent; it is not only resistance to fatigue and creep but also dimensionally stable. 
Carbon nanotubes can be formed by rolling a cylindrical graphene and thus can be 
used as a reinforcing material of brittle materials such as cement. 

3.2.2 Research background about MuMoCC platform 

Modeling of nanostructure and atomic/ionic crystal and their elastic properties 
has become a hot field for many scholars [32–41]. Another research background is 
that a hierarchical multiscale modeling of the behavior of cement-based materials 
and the multiscale modeling of computational concrete (MuMoCC) platform 
[42, 43] have been proposed; thus, behavior of hydrates (like C▬S▬H, CH, etc.) 
and admixtures (like calcite, CNT, etc.) are needed to be investigated in detail. 
Elastic properties (Young’s modulus, Poisson ratio, etc.), tensile strength, and 
postfailure tensile stress displacement are thus the unique data that are transferred 
from cement paste to mortar [43]. Besides, the elastic displacements are found in 
every pixel, and the average strain and stress is computed and averaged over the 
entire microstructure to give the effective elastic properties. Input data of these 
solid phases at the nanoscale are needed. Different scales in structural modeling of 
concrete using HYMOSTRUC model of multiscale structures by UT Delft [44] and 
MuMoCC platform [42, 43] are in Figure 10. 

Figure 9. 
Main cement paste types and nanotube reinforcing concrete expectation [31]. 
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Figure 10. 
Different scales in structural modeling of concrete. (a) HYMOSTRUC model of multiscale structures by UT 
Delft [44] and (b) the representative MuMoCC platform [42, 43]. 

The methodology has been successfully applied to determine mechanical as well 
as transport properties of cement-based materials, and also the evolution of these 
properties according to time, and their modification due to degradation phenomena 
such as leaching. 

The prediction of the mechanical effective properties has been an active research 
area for the few decades. Numerical models seem to be a well-suited approach to 
describe the behavior of semianalytical material models, because there is no restric-
tion on the geometry, on the material properties, on the number of phases in the 
composite, and on the size. Except for the experimental studies, either micro- or 
macromechanical methods are used to obtain the overall properties of material 
phases. In the macromechanical approach, the heterogeneous structure of the 
composite is replaced by a homogeneous medium with anisotropic properties. 
Micromechanical method provides overall behavior of the matrix-inclusion com-
posites from known properties of their constituents (inclusion and matrix) through 
an analysis of representative volume element or a unit cell model. The advantage is 
not only the global properties of the composites but also various mechanisms such 
as damage initiation and propagation, through the analysis. 

4. Objectives and characteristics of typical anisotropic crystals at 
nanoscale 

Under the research background of the conception that “cement nanotubes as a 
natural means for reinforcing concrete” and the platform construction of MuMoCC 
(multiscale modeling of computational concrete), 10 kinds of crystals structures 
are, respectively, studied so as to achieve the calculated values of their mechanical 
properties (Young’s modulus in particular) and to perfect the crystal elastic theory 
of typical crystal structures simultaneously. 

4.1 Objectives of typical anisotropic crystal structures at nanoscale 

4.1.1 Nanoscale modeling on concrete reinforced by nanotubes 

In 2016, Eftekhari and Mohammadi [45] have investigated the molecular 
structure of CNT-reinforced C▬S▬H phase, the C▬S▬H model is 3.925 nm ˜ 
3.626 nm ˜ 4.768 nm, shown in Figure 11. 

From Figure 11, the enhanced mechanical properties of C▬S▬H reinforced by 
embedding CNT in its molecular structure are simulated by MD method. It is 
indicated that the tensile strength of CNT-reinforced C▬S▬H is substantially 
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Figure 11. 
The molecular structure of CNT-reinforced C▬S▬H phase [45]. (Atom types: red, oxygen; cyan, 
hydrogen of water molecules; green, calcium; yellow, silicon; blue, CNT) (diameter of 0.813 nm with length 
of 4.0 nm). 

enhanced along the direction of CNT as compared to the pure C▬S▬H. In addi-
tion, CNTs can severely intensify the “transversely isotropic” response of the CNT-
reinforced C▬S▬H, which can be used for multiscale simulation of crack bridging 
at macroscale specimen of CNT-reinforced cement. 

In all, from a cementitious composite [46] reinforced with carbon CNT and/or 
polypropylene microfibers, a dense C▬S▬H formation that appears to be tightly 
bonded to the SWCNT, producing reinforcing behavior [47]. In fact, nanotubes 
and graphene as their superior mechanical properties have been more and more 
confirmed to be the reinforcing materials to enhance the toughness of brittle 
materials [48]. 

4.1.2 Objectives of typical anisotropic crystal structures at nanoscale 

The use of CNT as a reinforcing material is intended to move the reinforcing 
behavior from the macroscopic to the nanoscopic level, which has the advantage of 
extremely high strengths, Young’s modulus, elastic behavior, and advantageous 
thermal properties. Crystal elastoplastic behavior has been the long concern for 
scholars, with the introduction of nanoscale conception; the performances of aniso-
tropic crystal or polycrystalline become very interesting. The investigation of the 
crystal elastic simulation has become an urgent issue to be resolved. Combining the 
introduction mentioned above and the actual research needs, Young’s modulus of 
typical crystal structures is especially concerned, and models of these considered 
structures are shown in Figure 12. 

From Figure 12, depending on crystal types of typical structures and practical 
research needs, these crystals structures are divided into cubic crystals (CaO and 
MgO), hexagonal crystals (calcite and portlandite), monoclinic crystals (11 Å 
tobermorite and gypsum), monolithic disordered structures (C▬S▬H (I) with 
Ca/Si of 0.67 and C▬S▬H (II) with Ca/Si of 1.67), and other crystals structures 
(CNT, graphene). 

This book mainly includes three types of the cubic, hexagonal, and monoclinic 
crystals, as well as the other crystal structures considered. Abandoning the lengthy 
discussion of the important description in these typical structures, we mainly focus 
on modeling and calculating the mechanical properties of these typical anisotropic 
crystal structures at nanoscale with a high efficiency and then determining 
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Figure 12. 
Crystal modeling objects and corresponding real structures at nanoscale. (a) CNT and hexagonal graphene. 
(b) Cubic CaO structure. (c) Cubic MgO structure. (d) Hexagonal CH structure. (e) Hexagonal calcite 
structure. (f) Monoclinic 11 Å tobermorite. (g) Monoclinic 14 Å tobermorite. (h) Monoclinic gypsum structure. 
(i) Amorphous disordered C▬S▬H structure. 

Crystal type Number 
of Cij 

Independent elastic coefficient 

Isotropic 2 c11, c12 

a = b = c  α = β = γ = 90° Cubic 3 c11, c12, c44 

a = b  6¼ c α = β = 90°, 
γ = 120° 

Hexagonal 5 c11, c12, c13, c33, c44 

a = b  6¼ c α = β = γ = 90° Tetragonal 6 c11, c12, c13, c33, c44, c66 

a 6¼ b 6¼ c α = β = 90°, 
γ = 120 

Trigonal 6 c11, c12, c13, c33, c14, c44 

a 6¼ b 6¼ c α = β = γ = 90° Orthorhombic 9 c11, c22, c33, c12, c13, c23, c44, c55, c66 

a 6¼ b 6¼ c α = γ = 90°, 
β 6¼ 90° 

Monoclinic 13 c11, c22, c33, cl2, c13, c23, c44, c55, c66, cl6, c26, 
c36, c45 

a 6¼ b 6¼ c α 6¼ γ 6¼ β 6¼ 90° Triclinic 21 c11, c12, c13, c14, c15, c16, c22, c23, c24, c25, c26, 
c33, c34, c35, c36, c44, c45, c46, c55, c56, c66 

Table 2. 
Independent elastic constants for seven kinds of crystal symmetry. 

homogenized elastic moduli of these structures with a larger scale. The numerical 
simulation to determine elastic modulus of these typical structures is a meaningful 
research. 
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Figure 13. 
Elastic moduli determination based on AFEM, DFT, and MD. 
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4.2 Determination of crystal-independent elastic constant coefficients 

In matrix format, the stress-strain relation shows the 36 (6 � 6) independent 
components of stiffness. Crystal elastic anisotropy can be expressed by a fourth-
order tensor matrix of strain-stress relation; Hooke’s law thus can be written as a 
general symmetric 6 � 6 matrix in Voigt notation. 

2 2 3 2 3 3 
σ1 ε1 c11 c12 c13 c14 c15 c16 

666666664 

777777775 

¼ 

666666664 

666666664 

777777775 

777777775 

σ2 

σ3 

σ4 

σ5 

ε2 

ε3 

ε4 

ε5 

c21 c22 c23 c24 c25 c26 

c31 c32 c33 c34 c35 c36 

c41 c42 c43 c44 c45 c46 

c51 c52 c53 c54 c55 c56 

(2) 

σ6 c61 c62 c63 c64 c65 c66 ε6 

Elastic constant matrix Cijkl refers to the parameters that resist physical resil-
ience when the material is subjected to the stress. Elastic constants reflect the 
macroscopic mechanical properties. Further reductions in the number of indepen-
dent constants are possible by employing other symmetry considerations. 

Elastic constants of single crystal can be determined by various methods, such as 
classical MD method calculation [49], the universal linear-independent coupling 
strains [50], first-principles methods [51, 52], and experimental measurements. For 
an aggregate crystalline structure, Voigt [53] proposed to find the average of 
stresses at all possible lattice orientations under a given strain, while Reuss [54] 
suggested to calculate the average of strains under a given stress instead. In addition 
to the experimental technique, there exist mainly two methods of calculating the 
elastic constants: (1) stress-strain curve relationship and (2) strain energy-strain 
relationship [55]. Elastic constants can be determined by the first-order derivative 
of the curve. Finally, the bulk and shear modulus of the crystalline phases can be 
estimated based on averaging methods. 

The independent elastic coefficients corresponding to each crystal are listed in 
Table 2. 

Crystal 
type 

Lattice relations Cij number and elastic coefficient Method Object 

Cubic a = b = c;  
α = β = γ = 90° 

3 c11, c12, c44 DFT CaO, MgO 

Hexagonal a = b 6¼ c; 
α = β = 90°, γ = 120° 

5 c11, c12, c13, c33, c44 DFT Calcite, 
portlandite 

AFEM Portlandite, 
graphene 

Monoclinic a 6¼ b 6¼ c; 
α = γ = 90°, β 6¼ 90° 

13 c11, c22, c33, c12, c13, c23, c44, c55, 
c66, cl5, c25, c35, c46 

DFT Tobermorite, 
gypsum 

MD Tobermorite 

Others — — — AFEM CNT 

MD C▬S▬H with 
C/S = 1.67 

Table 3. 
Independent elastic constants for typical crystals/structure considered. 
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As we can see in Table 2, the elastic properties of an isotropic material can be 
fully determined by calculating independent coefficients; thus, bulk modulus and 
shear modulus can be finally determined, using the relationship between the 
homogenized elastic moduli and elastic constants, and Young’s modulus, shear 
modulus, the speed of sound, and other physical properties of the material. 

Simulations of typical structures to determine their elastic moduli based on 
AFEM, DFT, and MD are shown in Figure 13. 

Independent elastic constants for typical crystals/structure considered are in 
Table 3. A kind of AFEM method in Chapter 2 to simulate the previously proposed 
models at the atomic scale is shown in Chapter 2. 

From Table 3, we can see that during the investigation of nanoscale modeling 
and mechanical properties, the DFT, AFEM, and MD method are especially 
concerned according to the modeling requirement of different crystal structures 
investigated. In summary, our research will provide further detailed parameters of 
our research objects and thus leads to a certain practical significance. 

5. Mechanical properties calculation of typical structures for elastic 
properties 

To get all 21 elements, only one of the six independent strains (ε1, ε2, ε3, ε4, ε5, 
ε6) nonzero each time. Using the average stress tensor, < σij >, one can then define 
the effective elastic tensor by < σij > = < Cijkl > εij, where εij is the applied strain. 
Using this technique, all 21 elements can be evaluated. Methodology used for elastic 
constants evaluation is in Table 4. 

In Table 4, the experimental technique is to build a microstructure using one of 
the above rules, assign elastic properties to the phases, and use the programs to 
compute the effective elastic moduli of the model. 

Methodologies for elastic constant evaluation of considered structures are in 
Table 5. 

Method The method of measurement or Measured or calculated parameters 
calculation 

Experiment Static, quasistatic method Strain, stress 

Indentation method Strain, stress 

Pulse-echo method Velocity 

Resonance ultrasonic spectrum (RUS) Frequency 
method 

X-ray or neutron method Diffraction or scattering spectra 

Brillouin scattering method Diffraction or scattering spectra 

Calculation Pending elasticity parameter method Parameters from experiment 

Classical molecular dynamics Energy, stress, strain 

Monte Carlo method Energy, stress, strain 

First-principles molecular dynamics Energy, stress, strain 

DFT-QHA method Phonon density of states, Helmholtz free 
energy 

(Present) Atomic finite element method Strain, stress 

Table 4. 
Methodology used for elastic constant evaluation. 
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Method Measurement or calculation Measured or calculated 
methods parameters 

Experiment Indentation method Strain, stress 

Classical numerical Classical molecular dynamics Energy, stress, strain 
calculation 

First-principles molecular dynamics Energy, stress, strain 

Method developed AFEM Stress, strain 

Table 5. 
Methodologies for the elastic constant evaluation of considered crystal structures. 

From Table 5, it shows advantages and disadvantages of each modeling method. 
Besides, different typical structures are modeled using different modeling method 
to calculate mechanical properties. Researchers in materials science may be tasked 
with a number of challenging goals such as the development of new compounds or 
new molecular structure that may be faced with simply understanding and describ-
ing fundamental processes, explaining why one particular material is better than 
another. Modeling can address all of these challenges, provided that the method is 
fast, accurate, and works at the atomic scale. 

5.1 AFEM method for C▬C and hexagonal structures by ABAQUS 

5.1.1 AFEM methodology for C▬C and hexagonal structures 

The AFEM/FEM linkage provides a seamless multiscale computation method for 
static analysis [56]. The AFEM element can be implemented into the ABAQUS finite 
element program with its USER-ELEMENT subroutine to solve several atomic-scale 
problems. To ensure that the AFEM/FEM multiscale computation method accu-
rately represents the material behavior at both atomic and continuum scales, the 
continuum FEM elements should be based on the same interatomic potential as 
AFEM elements. The nonlinear spring element’s definition of ionic bond or metallic 
bond can be calculated by MATLAB according to proper potential functions in 
various corresponding equilibrium conditions and then be imported into ABAQUS. 
For AFEM modeling, the calculation of Ur, Uθ, Uφ, and Uω of Eq. (1) has been 
investigated in the reference [5], where the molecule's chemical energy is equiva-
lent to the beam strain energy. The coupled field of van der Waals force between 
atoms or charged ions may be considered by means of the Lennard-Jones potential. 
Nonlinear spring elements can represent Uvdw potential. 

5.1.2 The atomic finite element method modeling and ABAQUS 

As a so-called atomic finite element method (AFEM) as a bridge between 
molecular dynamics and continuum mechanics has been proposed based on molec-
ular mechanics method, where main force fields can be divided into two parts— 
covalent bond interaction and nonbonded force field. The nonlinear ABAQUS is a 
commercial finite element analysis program, which has been in use to analyze the 
structure in mechanical/material industry, civil engineering, and other field indus-
tries. The software is capable to analyze the stress and strain buildup in a variety of 
problems, to design the AFEM multiunit/element models. For defining nonlinear 
spring behavior, we can define nonlinear spring behavior by giving pairs of force-
relative displacement values, which should be given in ascending order of relative 
displacement and should be provided over a sufficiently wide range of relative 
displacement values so that the behavior is defined correctly. Nonlinear spring is 
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used to define force-relative displacement relations [57]. For crystal structure 
before homogenization, its elastic moduli in three directions are different, so is 
there a link of theoretical expression formula between axial elastic moduli and 
elastic coefficient? From Hooke’s law, it can be inferred indirectly that axial elastic 
moduli are closely related to elastic coefficient. For mechanical properties, the 
anisotropy of the material shows the performance difference of axial moduli in 
three axial directions; formula between axial elastic moduli and elastic coefficient is 
derived in Chapter 2. 

5.2 DFT method for typical structures by CASTEP and homogenization 

Elastic constants can be calculated by CASTEP module using DFT method. For 
DFT method, the Hamiltonian and Kohn-Sham equation [58] as an approximation to 
simplification of Schrodinger equation can be used to solve the multiparticle sys-
tems. However, at a sufficiently fine scale, all materials are heterogeneous or can be 
said to be homogeneous, which introduces an important concept—homogenization. 

5.2.1 The density functional theory calculation and CASTEP 

The Hamiltonian and Kohn-Sham equations as an approximation are used for 
the simplification of Schrodinger equation to solve the multiparticle systems [59]. 
DFT includes not only the nucleus and electron kinetic energy term, but also 
interaction term of nucleus-nucleus and electron-electron [49]. CASTEP is an ab 
initio quantum mechanical program employing density functional theory (DFT) to 
simulate the properties of a wide range of solid materials at the atomic scale. 
CASTEP uses quantum mechanical calculations to study problems in chemicals and 
materials research, which is able to predict the structure of a material as well as 
many essential properties. In particular, it can predict electronic properties (e.g., 
band gaps and Schottky barriers), optical properties (e.g., phonon dispersion 
curves, polarizability, and dielectric constants), or physical properties such as 
elastic constants. 

The computed elastic tensor of engineering material will have the symmetry of 
elastic constants matrix Cijkl in general. One can analytically average this tensor, 
using the full Cijkl form of the elastic moduli tensor, over the three Euler angles 
(α, β, γ) [60]. For solid material at macroscale, it can be seen that polycrystalline 
material is a collection of small grain, so elastic, plastic, and physical properties of 
the polycrystalline at macroscale are commonly thought to be relative with the 
mechanical properties of single crystals and polycrystalline themselves, including 
grain orientation and grain boundary structure. 

First-principles calculations allow researchers to investigate the nature and ori-
gin of the electronic, optical, and structural properties of a system without the need 
for any experimental input. CASTEP is thus well suited to research problems in 
solid-state physics, materials science, chemistry, and chemical engineering where 
empirical models are lacking and experimental data may be sparse. In these areas, 
researchers can employ computer simulations to perform virtual experiments, 
leading to tremendous savings in costly experiments and shorter developmental 
cycles. Key procedure includes a transition state search algorithm that greatly facil-
itates determination of reaction profiles and energy barriers, essential to an under-
standing of kinetics. The full 6 ˜ 6 tensor of the elastic constants can be predicted 
for a periodic structure of any symmetry. In the density functional theory part of 
the book, CASTEP is used to calculate the elastic constants of the single crystal 
structure, seen in Chapter 3. 
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5.2.2 Homogenized moduli by Y-parameter method based on elastic constants 

Although single crystals generally exhibit anisotropic mechanical behaviors, 
macroscopic averaging assuming a randomly distribution of initial crystals leads to 
isotropic mechanical properties such as Young’s modulus. Polycrystalline material is 
composed of single crystal, the probability distribution depicting upward almost the 
same as in three-dimensional space, resulting in an isotropic behavior of mechanical 
properties at macro-scopic scale. Meanwhile, Voigt model based on the assumption 
that all grains have the same deformation strain is given, by which the upper bound 
of polycrystalline and elastic constitutive relation can be given, while the Reuss 
model is based on the hypothesis of the same stress for polycrystalline, where the 
lower bound of polycrystalline and another form of elastic constitutive relation can 
be given. However, the constitutive relation by Voigt and Reuss model is not 
always accurate, especially for the lower bound. Y-parameter of cubic structure 
was firstly introduced and presented by Zheng and Min [61, 62] in 2009. Based on 
the elastic constants of cubic crystal, the corresponding Y-parameter, as new 
evaluation criteria, has been proposed. Elasticity of single crystal and mechanical 
properties of polycrystalline material has been closely integrated. By comparing 
various calculations method to determine homogenized moduli of the polycrystal-
line material composed of a single crystal, for example, the certain stress of Reuss 
model [54] and the certain strain of Voigt model [53], the Y-parameter, in the 
theoretical calculation to forecast the elastic modulus of polycrystalline material, 
has a high consistency. So our work aims to complete this part of the theoretical 
analysis for polycrystalline, with comparison of elastic constants measured by 
references. 

This interesting Y-parameter for cubic crystals can be used to determine the 
homogenized moduli of cubic structures. Moreover, the structural and the elastic 
properties of CH and calcite are investigated by ab initio plane-wave 
pseudopotential density functional theory method in Chapter 3, and then the cred-
ibility of Y parameters for determining elastic moduli of CH and calcite structures is 
proved. We will then describe these interesting Y parameters of cubic and hexago-
nal polycrystalline in detail in Chapter 4. In fact, due to the difficulty to accurately 
measure elastic constants of each crystal for polycrystalline, the fourth-order tensor 
connections between mean stress and mean strain called the elastic constitutive 
relation are impossible to be determined by numerical integration method. Then 
elastic moduli (Young’s, shear, and bulk moduli) can be obtained by means of Voigt 
and Reuss bounds, which are based on the Cij calculated. As the complication of the 
monoclinic crystals (11 Å tobermorite and gypsum), elastic moduli of monoclinic 
crystals will be still calculated by the classical Voigt-Reuss-Hill estimation, in 
Chapter 4. 

5.3 MD method and indentation simulation for C▬S▬H by LAMMPS 

5.3.1 Elastic moduli by stress-strain curve slope method using MD 

To simulate large-scale structures instead of these small crystals by DFT, the 
corresponding potentials were implemented in large-scale atomic/molecular 
massively parallel simulator (LAMMPS) code [63]. Note that LAMMPS is an open-
source code and thus can be actively modified by users as well as the developers. At 
the end of each time interval, a new box length is computed. The elastic modulus of 
typical structures can be approximated and computed from the slope of the linear 
portion of the stress-strain curve. 
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In the molecular dynamic part of this book, LAMMPS (large-scale atomic 
molecular massively parallel simulator) is a classical MD code used in this study. 
LAMMPS is developed by Steve Plimpton and his group of Sandia National Labora-
tories, which can be used to calculate the tension, compression, and shear defor-
mation processes of the large-scale supercell structures. An input file was generated 
for LAMMPS code to calculate the response of C▬S▬H structures to uniaxial 
loading, which leads to strain-stress data to calculate elastic moduli we aim to obtain 
in Chapter 5. 

5.3.2 Elastic moduli by nanoindentation simulation 

Mechanical properties of concrete as a composite material depend on micro-
structure and even depend on properties of crystal of each paste at nanoscales. 
Concrete is a complex heterogeneous material whose mechanical properties can 
vary substantially from point to point. Nanomechanics and nanotechnology are 
used to explore the composition, behavior, and nanomechanical properties of 
cement paste phases with submicron resolution. Nanoindentation technique bridges 
the gap between atomic force microscopy (AFM) and macroscale mechanical test-
ing. The corresponding load-depth curve can be measured directly by 
nanoindentation simulation; thus, elastic modulus can be determined. 

Therefore, nanoindentation technique as a useful tool can be used to better 
understand the submicron mechanical properties of cement pastes. Because of its 
small probe size, indentation tools are previously mainly used to measure local 
material properties in small, thin, and heterogeneous materials. Nanoindentation 
simulation becomes a hot spot in recent years; based on continuum mechanics, 
nanoindentation simulation can reveal atomic deformation mechanism under a 
indent force; the smallest unit with embedded atomic force is used in the indenta-
tion area of the multiscale model. Some methods or programs can be used partially 
to design and analyze multiscale model, which includes the finite element method, 
the boundary element method, finite difference method, and the discrete element 
method. ABAQUS can be used to program and simulate the nanoindentation pro-
cess even with the nanoscale unit. The nanoindentation model with the unit of a 
nanometer size will be simulated and discussed in Chapter 6. 

6. Conclusions 

The development of modeling tools to describe and predict the mechanical 
properties of structural materials proves an undeniable practical importance. It is 
now well recognized that such an objective can be achieved through the linking of 
the structure of materials at the microscopic nanoscale or with their performance. 
Nanoscale modeling and mechanical properties by using the density functional 
theory, a so-called atomic finite element method, and the classical molecular 
dynamics methods are especially concerned in this work. Such tools will be more 
accurate and they can relate the structure of materials at the atomic or microscopic 
scale with their performance. In quantum mechanics field, when applied to real 
systems including several atoms and electrons, a proper solution of the stationary 
equation remains a challenge due to its complexity. However, the mean field theory 
(electrons move as independent particles in an effective potential generated by the 
ions and the other electrons) is also effective. Especially for molecular dynamics 
simulations, the model scale can be greatly extended. 

In addition to the tradition of DFT methods and MD, a methodology for AFEM 
modeling at the atomic scale (or nanoscale) is explored since the macroscopic 
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properties depend largely on the physicochemical properties of the interatomic 
bonds. This book is committed to model and to calculate mechanical properties 
(especially Young’s modulus) of the different typical anisotropic crystal structures 
by programming using three methods above. It therefore connects nanoscale 
modeling and continuous pattern of deformation behavior by identifying relevant 
parameters from small scales to larger scales. Typical crystal structures will be 
discussed systematically in this book to determine their elastic moduli. 

In summary, such modeling tools will be more accurate and they can relate the 
structure of materials at the atomic or microscopic scale with their performance. It 
is not far for us to deeply investigate mechanical properties with the development of 
computer hardware level, the interatomic potential functions accurately described, 
new high-efficiency algorithms, etc. 
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Chapter 2 

The Advanced Atomic Finite 
Element Method: Modeling and 
Application 
Jia Fu 

Abstract 

An atomic finite element analysis is developed in this chapter. At atomic scale, the 
interatomic bonding forces of van der Waals and the covalent chemical bond are 
taken into account. In addition to the tradition atomistic simulation methods, the 
more specific objective of this chapter is to develop a modeling methodology at the 
atomic scale (or nanoscale) since the macroscopic properties largely depend on the 
physicochemical properties of the interatomic bonds. Above all, the methodology is 
applied to study the behavior of carbon nanotubes, whose development has experi-
enced strong growth in recent years and can be used for quality mechanical rein-
forcement. These carbon nanotubes are formed by repeating zigzag carbon-carbon 
bonds. Development of atomic finite element method (AFEM) can be traced back to 
the homogenized elastic properties of various graphene structures (single-layer 
graphene sheet, zigzag single-walled carbon nanotubes, triple-layer graphene sheet). 
Moreover, the AFEM is developed to investigate the Young modulus of one of the 
main constituents of cement-based materials, portlandite (CH). Besides, a theoretical 
formula between axial modulus (Ex, Ey, and Ez) and elastic constants of hexagonal 
crystal is derived by crystal elastic theory. Modeling of single crystal can be traced 
back to the homogenized elastic properties of polycrystals. 

Keywords: Portlandite, AFEM, DFT, anisotropy, Young’s modulus 

1. Introduction 

Composite material reinforced by carbon nanotubes (CNT) has a high strength, 
mechanical shock, thermal shock resistance, and fracture toughness, thus has a 
potential application with greatly improved properties. The “ene aluminum 
alloy”-graphene-reinforced aluminum matrix nanocomposites are firstly discovered 
for high properties in recent years. Carbon nanotube (CNT) and graphene have 
established a natural link; graphene was firstly discovered and separated by Geim 
[1] and the influential study shows that CNT can be formed by rolling a cylindrical 
graphene [2]. CNT has caused a widespread concern in civil engineering applica-
tion. Due to disadvantages of lower tensile strength and lower impact strength of 
cement-based material, CNT as a reinforcing matrix material has higher mechanical 
stability properties and impact resistance. The difficulty in seeking the analytical 
solution of CNT Young’s modulus is existing due to choosing various wall thick-
nesses, zigzag or armchairs, D/L ratio, indirect measurements, dimensions, and 
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modeling methods, etc. Young’s modulus of single-walled carbon nanotubes 
(SWCNT) is about 1.5–5.0 TPa [3] for individual CNT, 1.033–1.042 TPa [4] with 
thickness 0.34 nm by using nanoscale continuum mechanics method (CM), 5.5 TPa 
for SWCNT based on MD method with thickness 0.066 nm by Yakobson et al. [5], 
4.88 TPa for SWCNT based on CM by Vodenitcharova and Zhang [6], 5.1 TPa for 
CNT based on the electronic energy band theory (EEBT) by Zhou et al. [7] with 
considering the total energy of all electrons. There is no agreement of Young’s 
modulus of CNT and graphene in the analytical method up to nowadays; the 
disagreement of Young’s modulus of CNT and graphene is actually due to the 
restriction of both the theory and experiment. Especially for graphene, atomic van 
der Waals forces between the layers cannot be ignored. As the measurement of a 
single CNT and graphene has some difficulty especially for a certain type (zigzag 
type or air-chairs type), it therefore causes our interest to present the exact forms of 
modeling at nanoscale. 

It is common that graphene and nanotube structures sharing the same C▬C 
bond have a wide potential application. CNT has similar properties of fullerene 
molecules; its high strength has caused a widespread concern in various application 
fields. Graphene is considered to be an atomic crystal with flat polycyclic aromatic 
hydrocarbons (the structure is very stable). It can be rolled into a barrel-shaped 
carbon nanotube [2], showing the similar properties of nanotube and fullerene 
molecule. However, the theoretical mechanical deformation analysis is so compli-
cated that the nonlinear analytical method is needed where van der Waals force 
should be considered and the corresponding nonlinear transformation is needed. 

For the value of Young’s modulus of carbon nanotubes (CNT), after the separa-
tion of graphene by Geim [1], Young’s modulus is 1.033–1.042 TPa [8] with thick-
ness 0.34 nm by using nanoscale continuum mechanics method, then 1.5–5.0 TPa 
for CNT by Treacy et al. [3], 5.5 TPa for SWCNT based on MD method with 
thickness 0.066 nm by Yakobson et al. [5], 4.88 TPa for SWCNT based on contin-
uous mechanics method by Vodenitcharova and Zhang [6], 5.1 TPa for CNT based 
on the electronic energy band theory by Zhou et al. [7] with considering the total 
energy of all electrons. Researches of CNT are mainly listed in Table 1. 

From Table 1, the Young’s moduli of CNT with considering various thicknesses 
using various methods are not all the same. Actually, there is no agreement of 
Young’s modulus nowadays due to choosing various wall thickness, zigzag or arm-
chair, D/L ratio, indirect measurements, dimensions, methods, etc. 

Thus, a new so-called atomic finite element method (AFEM) as a bridge between 
molecular dynamics and continuum mechanics [22] can be used to investigate elastic 
properties of covalent bond structures. In 2011, the AFEM [22] is proposed, in which 
the interatomic bonds are modeled as nonlinear spring elements. Besides, for the 
typical C▬C frame-like structures (e.g., graphene and SWCNT), a structural 
mechanics approach proposed by Li and Chou [8] has good accuracy and stability to 
calculate their Young’s modulus, and the modeling part of covalent bond can be 
modeled as an equivalent beam element. As a structural mechanics approach, Li and 
Chou [8] have successfully modeled the C▬C covalent bond structures by equivalent 
beam elements and a so-called AFEM [22] has solved the interatomic bonds modeled 
by nonlinear spring elements, modeling of nanostructure realized by an equivalent 
beam and nonlinear spring elements becomes possible. 

In this chapter, carbon nanotubes (CNT), hexagonal graphene, and portlandite 
(CH) are particularly investigated. CNT, has its unique physical and chemical 
characteristics, has higher mechanical stability properties and impact resistance, 
thus can be used as a reinforcing material or composite material matrix. CH is a 
typical constituent of cement paste and its Young’s moduli are needed in the 
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Year Author Method t (nm) E (TPa) E.t 

1996 Yakobson et al. [5] MD 0.066 5.5 0.3630 

1999 Goze et al. [9] Tight binding 0.34 1.26 0.4284 

2000 Popov et al. [10] FCM 0.33 1.02 0.3368 

2000 Zhou et.al [7] Tight-binding MD 0.074 5.1 0.3774 

2001 Kudin et al. [11] Ab initio 0.089 3.859 0.3450 

2002 Tu and Ou-Yang [12] LDA 0.075 4.7 0.3525 

2003 Li and Chou [8] Structure mechanics 0.34 1.02 0.3463 

2003 Chang and Gao [13] Molecular mechanics 0.36 0.997 0.3592 

2004 Sears and Batra [14] Molecular mechanics 0.134 2.52 0.3377 

2004 Pantano et al. [15] Continuum shell 0.075 4.84 0.3630 

2005 Zhang et al. [16] C-B rule 0.335 1.08 0.3618 

2006 To [17] FEM 0.34 1.024 0.3482 

2007 Chandraseker and Mukherjee Ab initio 0.335 0.99 0.3317 
[18] 

2008 Wang and Zhang [19] Continuum shell 0.1 3.5 0.350 

2008 Jinan Lu and Chen [20] FEM 0.34 1.274 0.4332 

2010 Mahmood et al. [4] Continuum 0.34 1.033– 0.3512– 
mechanics 1.042 0.3543 

2012 Xiaoxing and Zhong Hu [21] Equivalent- 0.33 1.058 0.349 
continuum 

Table 1. 
Elastic modulus and wall thickness of nanotubes. 

MuMoCC platform. Above all, Young’s modulus formula of zigzag CNT can be 
obtained and then the AFEM method is verified. Modeling of TLGSs structure and 
CH crystal using the equivalent beam-spring element is also investigated. This 
chapter aims to develop a modeling method of nanostructure realized by an equiv-
alent beam and nonlinear spring elements, of which the nonlinear spring element’s 
definition of nonbonding can be realized according to a kind of Lennard-Jones 
potential in various corresponding equilibrium conditions. 

2. Modeling methods of continuum mechanics and AFEM modeling 

2.1 Classical modeling methods by continuum mechanics method 

2.1.1 Classical molecular mechanics method (MM) 

Generally, the force field is expressed in the form of steric potential energy. It 
depends solely on the positions of the nuclei constituting the molecule. The total 
steric potential energy, omitting the electrostatic interaction, is a sum of energies 
due to valence or bonded interactions and nonbonded interactions [23]: 

U ¼ ∑Ur þ ∑Uθ þ ∑Uϕ þ ∑Uω þ ∑Uvdw (1) 
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where Ur is for a bond stretch interaction, Uθ for a bond angle bending, Uϕ for a 
dihedral angle torsion, Uω for an improper (out-of-plane) torsion, Uvdw for a 
nonbonded van der Waals interaction. Interatomic interactions in molecular 
mechanics by Li and Chou are shown in Figure 1. 

Li and Chou have proposed the molecular mechanics method (MM) [8], under 
the small deformation premise, to simplify the calculation, the simplest harmonic 
forms to merge the dihedral angle torsion and the improper torsion into a single 
equivalent term are adopted, which are as follows: 

1 1 2 2 Ur ¼ krðr � r0Þ ¼ krð ÞΔr (2) 
2 2 

1 1 
Uθ ¼ kθ θ0

2 kθ 
2 ðθ � Þ ¼ ð ÞΔθ (3) 

2 2 

1 
Uτ ¼ Uϕ þ kτ Δϕ (4) Uω ¼ ð Þ2 

2 

where kr, kθ, and kτ are the bond stretching force constant, bond angle bending 
force constant, and torsional resistance, respectively, and the symbols Δr, Δθ, and 
Δϕ represent the bond stretching increment, the bond angle change, and the angle 
change of bond twisting, respectively. 

Assuming that the sections of carbon-carbon bonds are uniformly circular, thus 
Ix ¼ Iy ¼ I. So parameters of EA, EI, and GJ can be determined. As the molecules’ 
chemical energy is equivalent to the strain energy of beam, thus, there are the 
following approximate relationships: 

EA 
L 

¼ kr, 
EI 
L 

¼ kθ, 
GJ 
L 

¼ kτ (5) 

where L is the beam length of the C▬C bond, EA represents tensile stiffness, EI 
represents bending stiffness, GJ represents torsional stiffness of equivalent beam, kr 
is the stretching constant, kθ is the bending constant, and kτ is the torsional con-
stant. Obviously, these formulas have established the equivalent relation between 
the macrobeam structure and microscopic molecular structure. As long as the force 
constants kr, kθ, and kτ are known, the sectional stiffness parameters EA, EI, and GJ 
can be readily obtained. Then, a mathematical modeling—AFEM modeling—of 
ionic crystals is proposed by means of interatomic potentials. 

2.1.2 The chemical bond element method 

The chemical bond element method has been proposed to link the relation 
between finite element method and continuum mechanics considering atomic 

Figure 1. 
Interatomic interactions in MM by Li and Chou. 

31 

http://dx.doi.org/10.5772/intechopen.84597


� � 

� � 

� � 

ffi

Atomistic Simulation of Anistropic Crystal Structures at Nanoscale 

interaction, where the local geometry of chemical bonds of most materials is charac-
terized by a bond length r, bend angle θ, and dihedral angle φ, shown in Figure 2(a). 

Chemical bond element nodal forces and displacements are shown in Figure 2(b). 
As is shown in Figure 2(b), there are three nodal forces for each node: Fxi, Fyi, Mi 

for node i and Fxj, Fyj, Mj for node j. There are three nodal displacements for each 
node: ui, vi, θi for node i and uj, vj, θj for node j. 

The nodal force increment and the displacement increment in each loading step 
in the x-direction are: 

ΔFxi ¼ kr Δui � Δuj (6) 

ΔFxj ¼ kr �Δui þ Δuj (7) 

ΔMi ¼ �2kθiðΔθL � ΔθiÞ (8) 

ΔMj ¼ 2kθj Δθj � ΔθL (9) 

Δvj�Δvi where ΔθL ¼ , kr is the stretching stiffness, kyi and kyj are the bending L 
stiffness of joints i and j, and L is the length of the element. 

For the C▬C bonds, parameters by references [8, 24] are as follows: 
̊ kr ¼ 2:78aJ=A
2
, kθ ¼ 0:498aJ=rad, ε ¼ 0:585 � 10�3aJ, r0 ¼ 1:47 � 10�10m, 

̊ θ0 ¼ 1:88rad, σ ¼ 3:53 � 10�10m, kr ¼ 938kcal �mol�1 � A 
�2
, 

kθ ¼ 126kcal �mol�1 � rad�2, kτ ¼ 40kcal �mol�1 � rad�2, aC�C ¼ L ¼ 0:142nm. For 
the round section of C▬C bonds, when t = 0.34 nm, thus A = 0.090792 (nm2), 
E = 1019.259 (GPa), and I = 1.21959 � 10�4 (nm4). 

2.2 AFEM realization at nanoscale considering atomic interaction 

Continuum methods (such as FEM) use averaged description for modeling the 
material properties. As a result, they are not capable of modeling phenomena at the 
atomic scale. Localized nonlinear deformation, defects, nanoscale materials, and 
structures (e.g., CNTs) as well as various nanoscale phenomena need to be modeled 
with the atomic scale accuracy. CNT types and characteristic parameters are classi-
fied in Table 2. 

! pffiffiffi ! ! Where chiral vector Ch¼ na1 þma2, a1 ¼ a2 ¼ 3ac�c, so pffi ffi pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi h pffiffi i 
2nþm 3m Ch ¼ 3ac�c n2 þ nm þm2; chiral angle cos θ ¼ pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi or θ ¼ tg �1 ; 

2 n2þnmþm2 mþ2n pffiffi pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 
3 diameter d ¼ Ch ¼ acc n2 þ nm þm2. π π 

Figure 2. 
Geometry of chemical bonds, nodal forces, and nodal displacements. (a) Geometry of chemical bonds. 
(b) Nodal forces and nodal displacements. 
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Types Cross-sectional shape of carbon ring Chiral angle θ Chiral vector Ch 

Armchair 30° (n,n) 

Zigzag 0° (n,0) 

Chiral type Due to the chiral angle varies 0°< j jθ <30° (n,m) 

Table 2. 
Different types, chiral angle, and chiral vector of CNT. 

2.2.1 AFEM modeling based on molecular mechanics 

Molecular mechanics method mainly includes two basic assumptions. The first 
assumption is the Born-Oppenheimer approximation, of which the electronic func-
tion is centered on the nuclear positions, with the electrons around them in an 
optimal distribution [25]. The second assumption is that each nucleus is seen as a 
classical particle. Electrons are not taken into account and atoms are simulated as 
spheres, with an assigned radius and charge, interacting by means of a collection of 
interatomic potentials [26, 27]. 

The AFEM is proposed based on the development of nanotechnology across 
multiple length scales [22]. The AFEM can be used to calculate the van der Waals 

˛̨
˛̨
 

force in the plane. For a system composed of N atoms, the total energy of the system 
can be expressed as a sum of all the chemical energy stored: 

N 
Etotalð Þ ¼ Utotalð Þ � ∑ xi x x Fi � (10) 

i¼1 

where xi is the coordinate of atom i vector and Fi is the external force exerted on 
the atom i vector. The minimum energy state is: 

∂Etotalð Þx ¼ 0 (11) 
∂x 

0ð Þ  For ∂Ftotalð Þx , the initial state x can be expanded by the developed Taylor, we 
obtain: 

ð Þx ° ˜ ° ˜ ˜ ˛̨
˛̨
 

° T ∂
2Etotalð Þx ° ˜ 

∂Etotal 

∂x 
1 ð Þ0 0ð Þ  ð Þ0 ð Þ0 Etotalð Þx ≈ Etotal þ � x � þ x � 
2 

x � x x x x 
∂x∂x ð Þ  x¼x 0 ð Þ  x 0x¼ 

(12) 

Each atom not only forms a direct bond with its three adjacent atoms, but also 
has an interaction with its six subadjacent atoms. Newton-Raphson iteration is as 
follows: 

˙ ˝ 
dEtotal ψðxnÞ ¼ �  þ F (13) 
dx n ˙ ˝ ˆ ˇ dψ 

x nþ1 ¼ ψðxnÞ þ  Δxn ¼ 0 (14) ψ 
dx n 

According to Eq. (14), we can obtain: 

˝ ˙�1 dψ 
Δx n ¼ �  � ψ xð Þ  n (15) 

dx 
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nþ1 ¼ n þ n x x Δx (16) 

where F is the external force vector, ψ xn is imbalance force vector after n ð Þ  
iterations, xn is the vector of generalized coordinates of atoms after n iterations. 
Each iteration needs to compute the total potential energy of the system and coor-
dinates of the first and the second derivatives. 

For the expression of K and F, the corresponding expressions are as: 

dψ 
K ¼ �  

dx 
¼ 

d2Etotal 

dx2 (17) 

dEtotal F ¼ �  
dx 

þ F: (18) 

The above equation can be written as: 

K � u ¼ P (19) 

For the atoms before deformation, the expression can be described as follows: 

∂
2Etotal ¼ 

∂
2Utotal K ¼ (20) 

∂x∂x ð Þ  ∂x∂x x 0 ð Þ  x 0x¼ x¼ 

∂Etotal ∂Utotal P ¼ ¼ F � (21) 
∂x ð Þ  ∂x x 0 ð Þ  x 0x¼ x¼ 

K and P can be directly obtained by the interatomic interaction potential. The 
appropriate boundary conditions and finite elements are chosen to calculate the 
minimum energy state during iterative calculation, and the coordinates of each 
atom in the system can be obtained. 

Figure 3 shows the interaction of van der Waals force of atoms A and atoms L 
among atoms. 

As is shown in Figure 3, stiffness matrix for unit atom A is thus expressed as: 

3 2 
∂
2Etotal 1 ∂2Etotal 

∂aA∂aA 2 ∂aA∂ai 2�2 KA ¼ 64 
75 (22) 2�18 

1 ∂2Etotal 
2 ∂ai∂aA 

018�18 
18�2 

The right endpoint of the vector of atom A can be expressed as: 

# " 
∂Etotal FA � ∂aA FA ¼ 2�1 (23) 

018�1 

Figure 3. 
Interaction of van der Waals force among atoms. 
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where aA represents the coordinates of atomic vector, and in the two-
T dimensional case, aA ¼ xA yA ; the range of i is B-J, and the sum of the order 

number of KA and FA is related to the interaction between atoms A and B. h iT 
∂Etotal ∂Etotal For FA, the component ∂Etotal ¼ ; For KA, the component ∂

2Etotal . 
∂aA ∂xA ∂yA ∂aA∂aA 

For component FA: 

∂U rð ALÞ ∂U rð ALÞ ∂rAL ¼ (24) 
∂xA ∂rAL ∂xA 

∂U rð ALÞ ∂U rð ALÞ ∂rAL ¼ (25) 
∂yA ∂rAL ∂yA 

For component KA: 

∂U2 � �2 
∂
2 ðrALÞ ∂

2U rð ALÞ ∂rAL ∂U rð ALÞ rAL ¼ þ (26) 
∂r2 

∂x2 ∂xA∂xA AL ∂xA ∂rAL A 

2 2 
∂U2ðrALÞ ∂

2U rð ALÞ 
� 
∂rAL 

� 
∂U rð ALÞ ∂ rAL ¼ þ (27) 

∂yA∂yA ∂r2 ∂yA ∂rAL ∂y2 
AL A 

∂U2 
∂U2 2 ðrALÞ ðrALÞ ∂

2U rð ALÞ ∂rAL ∂rAL ∂U rð ALÞ ∂ rAL ¼ ¼ þ (28) 
∂r2 ∂xA∂yA ∂yA∂xA AL ∂xA ∂yA ∂rAL ∂xA∂yA 

12 6 
As is known to us, UVdW r � ð Þ ¼ 4ε σ σ , so: rij rij 

σ12 σ6 
∂U rð ALÞ ¼ 4ε �12 � þ 6 � (29) 13 7 ∂rAL r r AL AL 

σ12 σ6 
∂
2U rð ALÞ 

� � 

¼ 4ε 156 � � 42 � (30) 
r14 

∂r2 r8 
AL AL AL 

∂rAL xA � xL ¼ (31) 
∂xA rAL 

∂
2rAL 1 xA � xL ∂rAL ¼ � (32) 
∂x2 r2 rAL ∂xA A AL 

∂rAL yA � yL ¼ (33) 
∂yA rAL 

2
∂ rAL 1 yA � yL ∂rAL ¼ � (34) 
∂y2 r2 

A rAL AL ∂yA 

∂
2rAL ∂

2rAL ðxA � xLÞ yA � yL ¼ ¼ �  (35) 
r2 ∂xA∂yA ∂yA∂xA AL 

In summary, there are two types of interactions, including bonded and 
nonbonded: (1) for bonded type, it usually corresponds to strong covalent bonds, 
the number of neighbors is preset and is dictated by the lattice. Take the CNT for 
example, the carbon covalent bond often has carbon atoms 3–4 neighbors, and 
preset list of neighbors for each atom may be used throughout the calculations, used 
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for crystalline solids with well-defined bonds. Typical structure example is 
graphene; (2) for nonbonded type, it commonly corresponds to relatively weak 
forces, and the number of neighbors may be changing and is found based on the 
cutoff radius. It can be used to represent van der Waals and Coulomb forces of 
solid/crystal unit. 

Background of atomic finite element method (AFEM) contains the C▬C cova-
lent bonds [8] by beam element and the interatomic bonds modeled [22] by 
nonlinear spring elements of AFEM, shown in Figure 4. 

From Figure 4, the ionic bond or metallic bond is taken into consideration, van 
der Waals interaction and electrostatic interaction (Coulomb force) can be sepa-
rately calculated. Besides, modeling of covalent bond is based on the theory of 
molecular mechanics method (MM). AFEM can be readily linked with the conven-
tional continuum FEM since they are in the same theoretical framework. Based on 
the AFEM modeling, the elastic stiffness tensors can be described and defined [28]. 

2.2.2 Description of AFEM modeling hypotheses 

The expression of the total steric potential energy U is given out [23]. For ionic 
crystal, the Coulomb force should also be considered. So the ideal expression of U, 
considering the electrostatic interaction, is a sum of energies due to valence or 
bonded interactions and nonbonded interactions: 

U ¼ ∑Ur þ ∑Uθ þ ∑Uϕ þ ∑Uω þ ∑Uvdw þ ∑Ucoul (36) 

where Ur is for a bond stretch interaction, Uθ for a bond angle bending, Uϕ for 
dihedral angle torsion, Uω for an improper (out-of-plane) torsion, Uvdw for a 
nonbonded van der Waals interaction, and Ucoul for Coulombic (electrostatic) 
interactions. Equivalent beam elements [8] can be used to represent covalent bond 
to calculate Ur, Uθ, Uϕ, and Uω of Eq. (36), where the molecules’ chemical energy is 
equivalent to the beam strain energy. The coupled field of van der Waals force and 
Coulomb force between atoms or charged ions may be obtained by using Lennard-
Jones potential or other potentials. 

Nonlinear spring elements can represent Uvdw and Ucoul of ionic bond. Around 
the equilibrium position, van der Waals force is developed by the first-order Taylor: 

Figure 4. 
AFEM modeling hypotheses of covalent bond and ionic bond. (a) Covalent bond. (b) Ionic bond or metallic 
bond. 
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" # 
ð Þ  σ 

FVdW ðriÞ ¼ FVdW dF r0 ε 13 σ 7 

ðr0Þ þ  ðri � r0Þ ¼ 25 2 � 
dri σ r0 r0 " # (37) 

14 8 ε σ σ � 24 26 � 7 ðri � r0Þ 
σ r0 r0 

where r0 (unit: Å) is the distance between two atoms around the equilibrium 
position without external force, ri is the distance of the Lennard-Jones potential 
interaction, ε is the bond energy of van der Waals interaction between two balanced 
atoms, and σ is the value of r at which the potential is zero [29]. 

For arbitrary atom type of A-B, the van der Waals force can be obtained as follows: 

" # 
εA�B σ A�B 13 

σ A�B 7 

FatomA�atomB � FatomA�atomB A�B r 2 r ð  Þ ¼ 24 � VdW σ A�B VdW 0 rA�B � rA�B rA�B � rA�B 
0 0 

(38) 

For Uvdw, the nonlinear displacement-force characteristic of spring element as 
the first derivative of potentials must be defined by means of the program poten-
tials [22], then by the coordination transformation. 

Coulomb potential of ionic crystal according to Coulomb’s law is given by: 

UCoulom b 
� � � �2 

ij ¼ qiqj ri � rj = 4πε0 � ri � rj (39) 

where qi and qj are partial charges, ε0 is the dielectric permittivity of vacuum 
(8.85419 � 10�12 F/m). 

Nonlinear spring element is used to represent interatomic force of Lennard-
Jones potential. For Uvdw and Ucoul represented by nonlinear spring element, since 

0 0 transforming from ½x; y; 1� to x ; ; y ; 1 by the matrix [T], the expression is as: 

2 3 
1, 0, 0 

0 0 6 7 x ; ; y ; 1 ¼ ½x; y; 1� � T ¼ ½x; y; 1� � 4 0, 1, 0 5 ¼ ½x þ r0; y þ F0; 1� (40) 

r0, F0, 0 

where r0 and F0 are the offset values in the x- and y-directions, respectively. 

2.2.3 Interactions between atoms by Lennard-Jones potential 

Generally, the expression of van der Waals force can be obtained by the 
Lennard-Jones potential [30]: 

" # 
12 6 

UVdW σij σij 
ij ð  Þ ¼r Urepuls if þUattract if ¼ ∑∑ 4εij � (41) 

i j rij rij 

where rij is the distance between two atoms i and j; εij and σij are parameters of 
Lennard-Jones. εij represents the minimum potential energy between atoms i and j, 
which corresponds to the most stable interaction (the depth of the potential well 
under the distance of σij). σij is the equilibrium distance where atomic energy 
between two atoms is zero. 

Schematic illustration of Lennard-Jones potential and van der Waals force is 
shown in Figure 5. 

37 

http://dx.doi.org/10.5772/intechopen.84597


Atomistic Simulation of Anistropic Crystal Structures at Nanoscale 

Figure 5. 
Schematic illustration of Lennard-Jones potential and van der Waals force. (a) Schematic of Lennard-Jones 
potential. (b) van der Waals force of C▬C bond. 

As shown in Figure 5(a), repulsive force is more intense but the range is very 
short that prevents exchange of electrons from occupying the same region of space, 
since the forces exerted at larger distances are very small and can be neglected 
[23, 31]. Besides, from Figure 5(b), the equilibrium position of Lennard-Jones 
potential is at the place of r/σ = 1. The potential must be truncated at some point 
named the cutoff radius, Rcut, usually set to Rcut = 2.5σ. When the atomic distance is 
greater than 2.5σ, the Lennard-Jones potential is approximate to zero. As is shown in 
Figure 5(b), if the average distance r between the atoms increases, the attractive 
force of van der Waals force between pairs of atoms will resist the force caused by 
the increase of distance r. And if the average distance r between the atoms 
increases, the repulsive force between pairs of atoms will be able to resist the force 
caused by the decrease of distance r. 

Interactions of van der Waals consist of two terms: a repulsive term and an 
attractive term. The function of Lennard-Jones is known as a function of the potential 
of van der Waals type. It is used to describe the intermolecular force between argon 
atoms i and j separated by a distance rij. Any two molecules attract each other at long 
separation distance and repel each other when they come closer [32]. 

Moreover, coordinate transformation is used, and these curves are translated so 
that the system at the beginning of the calculation is at the equilibrium (no more 
attractive/repulsive force). When the interatomic spacing is greater than its 
unstressed value, the attractive forces between atoms must be greater than the repul-
sive forces (the attractive forces balance both the repulsive forces and the external 
forces). Repulsive forces are taken as positive and attractive as negative. This conve-
niently makes their potential energies positive and negative, respectively, in which 
the zero of potential energy is taken at large separation. Thus, AFEM can be used in 
multiscale computation with applications to carbon nanotubes and CH [28, 33]. 

2.2.4 Modeling of ionic crystal based on AFEM method 

AFEM modeling of zigzag CNT and zigzag graphene thus can be described by 
the algorithm, in Figure 6. 

As is shown in Figure 6, covalent bonds (e.g., for C▬C in the studied struc-
tures) are characterized by an equivalent beam, and nonbonded potential is char-
acterized by using nonlinear spring elements to represent the coupled field of van 
der Waals force. Then, axial moduli of the structure, as a function of elastic 
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Figure 6. 
Modeling of hexagonal structure based on AFEM and solving process. 

constants, are derived and verified by cubic linear elements volume unit on 
ABAQUS. Thus, elastic moduli of TLGSs and CH hexagonal structures can be 
determined. 

In the AFEM modeling, O▬H bond and C▬C bond as covalent bonds are char-
acterized to be equivalent beam based on MM method, and nonlinear spring element 
is used to characterize the coupled field of van der Waals force and Coulomb force for 
ionic or metallic bond by using Lennard-Jones potential or Buckingham potential, 
which is calculated by MATLAB and then imported into input program. Moreover, 
axial moduli of triple-layer graphene sheet (TLGSs) and CH hexagonal structure 
based on AFEM as a function of elastic constants are derivated and verified by FE 
simulation on ABAQUS. Elasticity coefficient matrix of TLGSs and CH crystals are 
solved reversely, thus elastic properties of TLGSs and CH polycrystals are furtherly 
investigated by the well-known Reuss-Voigt-Hill estimation. 

2.3 Elastic modulus determination of hexagonal crystal structures 

ABAQUS as a powerful nonlinear software is used to the continuation of quan-
tum mechanics and an approximate equivalent method—AFEM. Nonlinear springs 
are introduced to describe the relationship between atoms of different initial dis-
tances. When the van der Waals force is considered, the coordinate transformation 
needs to be done before carrying out the INP file. Input file usage: 

*SPRING, NONLINEAR, DEPENDENCIES = n 
first data line 
force, relative displacement, field variable 1, etc. 
… 
The nonlinear spring behavior is not supported in ABAQUS/CAE when you 

define springs as engineering features. Instead, we can define connectors that have 
spring-like elastic behavior. To obtain the homogenized moduli, the notion of 
homogenization has been introduced using the representative volume element 
(RVE) of the material [34]. When a solid model is under external load, 
microstresses and strains are induced; according to the statistical homogeneity 
assumption, an appropriate RVE can be defined and isolated. On the RVE bound-
ary, there exist definitive surface displacements and surface tractions. Within the 
RVE, there exist definitive stress field σij and strain field εij. Through homogeniza-
tion [35], mechanical behavior is described by a definitive constitutive law. So, the 
mechanical properties of anisotropic solids can be investigated using FEM simula-
tion by RVE unit on ABAQUS. 
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2.3.1 Axial moduli determination of hexagonal structures 

Stress-strain relation in an orthotropic hexagonal crystal can be defined by the 
independent elastic stiffness parameters of ABAQUS manual [36]: 

2 2 3 2 3 3 0 0 0 

0 0 0 

0 0 0 

ε11 σ11 c11 c12 c13 

66666666666664 

77777777777775 

66666666666664 

66666666666664 

77777777777775 

77777777777775 

σ22 

σ33 

σ12 

σ13 

ε22 

ε33 

γ12 

γ13 

c11 c13 

c33 
¼ 

0 0 sym c44 

0 c44 

1=2 � σ23 γ23 ðc11 � c12Þ (42) 2 2 
3 D1111 D1122 D1133 0 0 0 

D2222 D2233 0 0 0 

D3333 0 0 0 

sym D1212 0 0 

D1313 0 

3 
ε11 66666666666664 

666666666664 

77777777777775 

777777777775 

ε22 

ε33 

γ12 

γ13 

¼ 

γ23 D2323 

where σ represents the normal stress and shear stress in each direction (unit: 
nN/nm2); ε and γ are the normal strain and shear strain in each direction. The 
formula developed by finite element technique to solve the elastic constants by 
volume unit has been described [28], as in a manual of theory details [37]. 

If a unidirectional force is applied to obtain the strain value, the elastic constants 
of the matrix can be obtained by simultaneous equations. Figure 7 shows schematic 
deformation component. 

A finite element method for solving the elastic coefficient matrix Cij is proposed 
according to the schematic volume unit and stress direction after strain-loading 
(Figure 7(a)) and the different components of the deformation through different 
loading modes (Figure 7(b)). Supposing 
A ¼ ε11, B  ¼ ε22, C  ¼ ε33, D  ¼ ε31, E  ¼ ε11 þ ε21 (here εij independent strain of each 
unit in all directions), as elastic constants Cij = Del , Eq. (42) can be changed as: 

Figure 7. 
Schematic deformation component and loading modes of linear/shear strain. (a) Volume unit and stress 
direction under unidirectional stress. (b) Loading modes of linear/shear strain. 
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1 0 1 0 1 0 
A B  C  0 0 c11 σ11 

B A  C  0 0 σ22 c12 

0 0 A þ B C  0 σ33 ¼ c13 

BBBBBBBB@ 0 0 E D  0 

BBBBBBBB@ 

CCCCCCCCA c33 

CCCCCCCCA 

BBBBBBBB@ 0 

CCCCCCCCA 

0 0 0 0 c44 σ12 γ12 

Aσ11 � Bσ22 CDσ33 c11 ¼ D1111 ¼ D2222 ¼ 
A2 � B2 � 2 D Að þ BÞ ð � C A  þ BÞE 

(43) Aσ22 � Bσ11 CDσ33 c12 ¼ D1122 ¼ � 
A2 � B2 D A  þ BÞ2 � CðA þ B ð ÞE 

Dσ33 c13 ¼ D1133 ¼ D2233 ¼ ! 

8 >>>>>>>>>>>>>>>>>>>< 

>>>>>>>>>>>>>>>>>>>: 

; 
D A  þ BÞ � CE ð 
Eσ33 c33 ¼ D3333 ¼ �  ; 

DðA þ BÞ � CE 

σ12 1 
c44 ¼ D1212 ¼ D1313 ¼ ; c66 ¼ ðc11 � c12Þ ¼ D2323 2 γ12 

Stress-strain relation of hexagonal crystal is presented in Eq. (42). Assuming a 
normal stress σ3 in z-axis direction is introduced, it will not result in shear strains, 
thus: γ12 = γ23 = γ31 = 0. We assume σ33 expressed by ε33 as: σ33 = E3ε33. Substituting 
this equation into the ternary equations of stress-strain relation Eq. (42), if ε13, ε23, 
ε33 are not simultaneously zero, the determinant factor must equal to zero according 
to the theory of linear algebra, so homogeneous equations can be changed: 

8 >>< 

>>: 

0 ¼ c11ε13 þ c12ε23 þ c13ε33 

0 ¼ c12ε12 þ c11ε23 þ c13ε33 

0 ¼ c13ε13 þ c13ε23 þ ðc33 � E3Þε33 

! 

c11 c12 c13 

c12 c11 c13 

c13 c13 c33 � E3 

¼ 0 (44) 

Eq. (44) can be simplified as: 

c11 c12 c13 

c12 � c11 c11 � c12 0 

c13 c13 c33�E3 

C2 þ C1 

c11 þ c12 c13 c11 c12 c13 c11 

R2 � R1 0 0 c12 � c11 c12 c11 c13 

c13 c33 � E3 2c13 c33 � E3 c13 c13 

¼ 0: 
c11 þ c12 c13 ¼ 
2c13 c33�E3 

Then, we can get the relationship between z-axial modulus E3 and elastic con-
stants Cij, the formula of z-axial modulus E3 is thus obtained: 

2 2c13 E3 ¼ c33 � (45) 
c11 þ c12 

Similarly, we can obtain relationship between y-axial modulus E2 and elastic 
constants as: 

E2 ¼ ðc11 � c12Þ 1 þ 
c12c33 � c2 

13 

c11c33 � c2 
13 

(46) 
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Finally, we can see that formulas of E1 and E2 axial moduli in x- and y-directions 
are the same, so: 

2 2 E1 ¼ E2 ¼ ðc11 � c12Þ 1 þ (47) c12c33 � c = c11c33 � c 13 13 

Based on elastic constants calculated, homogenized elastic properties of poly-
crystals can be calculated. Firstly, shear and bulk moduli are obtained by means of 
Voigt and Reuss bounds, which are based on the cij calculated by Wu et al. [38]. 
Then, Young’s modulus can be finally determined from shear/bulk modulus 
formulas. 

2.3.2 Elastic coefficient solution by finite element method 

As ε1 ¼ εa, ε3 ¼ εc, so εb can be easily obtained by the relative displacement in b-
direction. 

0 1 0 1 0 1 1 0 1 0 � cos 60 ° �1=2 �1=2 c11 c12 c13 �1=2 
BBB@ 

CCCA 

! ¼ b 
BBB@ 

p ffiffiffi 
3=2 

CCCA 
, εb ¼ 

BBB@ 

p ffiffiffi 
3=2 

CCCA 

BBB@ 
c12 c11 c13 

CCCA 

BBB@ 

p ffiffiffi 
3=2 

CCCA 

! 
b sin 60 ° 

0 0 0 c13 c13 c33 0 

(48) 

For hexagonal structure, the coordinate transformation from 90 to 120° (in 
Figure 8), the relation is as: 

Under uniaxial condition (ε12 ¼ ε13 ¼ ε23 ¼ 0), so 

1 3 4 1 
εb ¼ ε11 þ ε22, ε22 ¼ εb � ε11 (49) 

4 4 3 3 

Linear elasticity in an orthotropic material can also be defined by giving the 
independent elastic stiffness parameters, as functions of predefined fields. 
ABAQUS/standard spatially varying orthotropic elastic behavior can be defined for 
homogeneous solid continuum elements by using a distribution. The distribution 
must include default values for the elastic moduli. If a distribution is used, no 
dependencies on temperature and/or field variables for the elastic constants can be 
defined and determined on ABAQUS. 

Figure 8. 
Solving equivalent strain conversion from 90 to 120°. 
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3. Application to structures of zigzag CNT and zigzag SLGSs 

For application to structures of CNT and graphene by AFEM, a calculation 
formula of Young’s modulus of zigzag SWCNT and zigzag SLGSs is given out and 
verified. As the total potential energy is equal to the thin cylindrical shell strain 
energy, the elastic modulus of (n, 0) zigzag nanotube is developed by reference [13] 
without considering the thickness as: 

pffiffiffi 
Ezigzag 4 3KC ¼ � � (50) CNT λ2 9C þ 4Kl2 

z1 þ 2λ2 
0 z2 

where K, C, respectively, correspond to constants of bond angle changes and 
bond stretching; λz1 and λz2 are structure parameters of zigzag nanotube, λz1 ¼ qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� �  � � � pffiffiffi pffi ffi � �� � �  

π π 2 π π �3 4 � 3 cos 2 � cos = 8 3 � 2 3 cos , and λz2 ¼ 12 � 9 cos 2 = 2n 2n 2n 2n � pffiffiffi pffiffiffi � �� 
2 π 16 3 � 4 3 cos . Young’s modulus formulas of the graphene sheet can be 2n 

derived when n becomes ∞ in zigzag nanotube parameters λz1 and λz2 expression, 
which is as follows: 

pffi ffi 
Ezigzag 8 3KC 

(51) SLGSs ¼ 
18C þ Kl2 

0 

where K, C, respectively, correspond to constants of bond angle changes and 
bond stretching. So, the Young’s modules of C▬C covalent bonds of zigzag SWCNT 
and SLGSs can be verified by reference [13]. 

Axial direction restraint and transverse direction with freedom (to ensure axial 
cross section during tensile can be freely deformed with shrinkage), the concentrated 
tensile force is added on each node of the other end. The sum of axial centralized force 
vectors at each node of carbon nanotubes is added up to F, and the finite element 
calculation is continuously carried out on ABAQUS. Young’s modulus is obtained as: 

σ F=A F � l 
E ¼ ¼ ¼ (52) 

ε Δl=l πD � t � Δl 
where A is the cross-sectional area, A = πDt; D is the carbon nanotube diameter, 

and t is the wall thickness. The boundary conditions are free-fixed. 

3.1 Nanoscale modeling of zigzag SWCNT and SLGSs 

3.1.1 Definition of C▬C bond by coordination transformation 

The transformed van der Waals curves are calculated, and the one-spring and 
two-spring of VDW forces are tested on ABAQUS software, as in Figure 9. 

From Figure 9(a) and (b), the definition of van der Waals forces and the 
coordinate conversion of C▬C bond are tested on ABAQUS, spring step-election △x 
is 0.001 nm in order to meet the accuracy requirements. For C▬C bond, parame-
ters are as: rmax = 0.425 nm, Fmax = 7.0174 nN. When the distance r = 0.3833208 nm, 
the van der Waals force is zero, whereas the equilibrium distance r0 is 0.3415 nm, 
and the F0 is �3.9247 nN. 

3.1.2 Modeling of zigzag CNT and zigzag SLGSs 

Modeling of a finite number graphene and (10, 0) zigzag CNT are shown in Figure 10. 
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Figure 9. 
One-spring and two-spring tests of transformed van der Waals curves. (a) True VDW of one-spring test. 
(b) True VDW of two-spring test. 

’ 

’ 

Figure 10. 
AFEM modeling of zigzag-CNT and single-layer graphene sheet (SLGSs). (a) Structures of zigzag graphene 
and SWNCT. (b) Models of zigzag graphene and SWNCT. 

The boundary conditions of SLGSs and zigzag CNT with the fixed bound at x-
direction and the tensional force applied at y-direction are shown in Figure 10(a). 
Moreover, the size 3.339 nm ˜ 4.446 nm of SLGSs and (10, 0) zigzag CNT modeled 
with ABAQUS are shown in Figure 10(b) to apply the tensional force in y-direction. 
Parameters of C▬C covalent bonds used in simulation are as [13, 39]: C▬C bond 
length is 0.142 nm, thickness is 0.3414 nm, bond angle θ0 is 120°, balanced distance 
constant σc-c is 0.3414 nm, and bond energy constant εc-c is 0.00239 eV. After we 
obtain the reaction force of y-direction, we substitute all parameters into the for-
mula of ESLGSs and ECNT in Eq. (52), the results are as: ESLGSs = 0.867 TPa, 
ECNT = 0.847 TPa. 

3.2 Young’s moduli of zigzag SWCNT and SLGSs 

Here, we choose K = 742 nN/nm and C = 1.42 nN.nm; When n becomes ∞ (here 
s modulus of graphene by Eq. (51) is calcu-

s modulus variation of zigzag SWCNT with 
s modulus relation. 

’ 
λz1 = °0.28867; λz2 = 0.14433), Young 
lated. Figure 11 shows the Young 
various diameters and the thickness and Young 

’ 
’ 

Figure 11(a) provides the result of the present modeling of zigzag SWCNT and 
SLGSs with a thickness of 0.34 nm, and the comparison of present results 
(ESLGSs = 1.06 TPa) and literature results (ECNT = 1.05 TPa [40]) for various 
thicknesses are also added. It can be seen in Figure 11(b) that the result of E.t 

s modulus and the thickness) tends to the analytical value 
s modulus variation of zigzag 

(product of the Young 
found by molecular mechanics approach [13]. Young 
nanotubes with the diameter is shown in Figure 11, the result is in good agreement 
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Figure 11. 
Young’s modulus variation and the thickness and Young’s modulus relation of zigzag SWCNT. (a) Young’s 
modulus variation with various diameters. (b) The thickness and Young’s modulus relation. 

with zigzag nanotubes [8–10, 13, 14, 20, 21] and no-distinguish CNT [5, 11, 12, 15–18]. 
When the thickness of carbon nanotubes chooses to be the experience value 
0.34 nm, the elasticity modulus E of carbon nanotubes calculated tends to 1.05 TPa, 
which is close to the consistent results of Yakobson et al. [5] and the result of the 
force-constant models by Popov et al. [10] and an analytical model based on a 
molecular mechanics approach by Chang and Gao [13]. The main difference with 
references [8, 13, 20] stems from the different values of the chemical bond param-
eters {kr, kθ, kτ}. It can be seen in Figure 11(b) that the numerical result of E.t of 
zigzag CNT with various thicknesses is plotted, we can see that E.t is mainly 
distributed in the range of 0.33–0.37 kJ/m2, and our result of E.t is also consistent 
with literature findings. It therefore shows that the atomic finite element analysis to 
study a covalent bond is feasible. 

4. Application to the nanostructure of the triple-layer graphene 

In general, the configuration of the equilibrium solid is decided by the minimum 
energy state. The basic idea of the continuum finite element is to divide into a 
certain number of units, of which the cell is represented by the nodes of the finite 
number of discrete. The location of these nodes is determined by the energy mini-
mization state, which is similar to the basic idea of molecular statics to calculate the 
position of the atoms. The point is to minimize the energy of molecular static 
system for determining the position of each atom, that is why the concept of 
cohesion is introduced to determine the displacement of each point. For multilay-
ered graphene, two interatomic potentials are used [41, 42]: one is for in-layer 
bonded interactions—multibody (Tersoff-Brenner), the other for interlayer 
nonbonded interactions (Lennard-Jones). A multilayer graphene modeling consid-
ering van der Waals force can be described by introducing nonlinear spring element 
between layers, which can be modeled by the AFEM method. 

4.1 C▬C bond definition and nanoscale modeling of graphene 

AFEM modeling of triple-layer graphene sheet (TLGSs) is shown in Figure 12. 
Graphene crystal is shown in Figure 12(a). A round-section definition of equiv-

alent graphene-beam is: kr = 669 nN/(nm2), kθ = 0.876 nN.nm, and kτ = 0.278 nN. 
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Figure 12. 
AFEM modeling of triple-layer graphene sheet (TLGSs). (a) Graphene crystal. (b) TLGSs model with beam-
spring element. (c) van der Waals force of C▬C bond. 

nm [8]. The size 3.41 � 3.46 � 0.680 nm of TLGSs is modeled with ABAQUS in 
Figure 12(b) to determine its elastic constants. van der Waals force of C▬C bond is 
shown in Figure 12(c). Parameters of Lennard-Jones potential is as [30]: pffiffiffi 
Uvdw ¼ �15:2=r6 þ 24:1 � 103=r12, r0 ¼ 6 2σ ¼ 0:383nm. Parameters of graphene 
used in simulation are as [24, 43]: C▬C bond length is 0.142 nm, thickness is 
0.3414 nm, bond angle θ0 is 120°, balanced distance constant σc-c is 0.3414 nm, and 
bond energy constant εc-c is 0.00239 eV. 

C▬C bonds are represented by means of equivalent beams, for triple-layer 
graphene sheets (TLGSs) model, interlayer is mainly maintained by van der Waals 
force, thus it can be defined by Lennard-Jones potential and connected by 
nonlinear-spring element. The cohesive energy between layers is also considered 
[44]. Here the C-C bond distance σ = 0.3415 nm, spacing distance is as: h1 = 0.992σC-C 

= 0.3373 nm, h2 -h1 = 0.997σC-C = 0.3390 nm. 

4.2 Elastic constants and homogenized moduli of graphene 

Similarly, elastic constants of TLGSs are verified by volume unit. Then, we 
extend to the equivalent beam-spring model by AFEM. Diagram of strain loading in 
triple-layer graphene sheets is as shown in Figure 13. 

Strain loading of triple-layer graphene sheets is shown in Figure 13. Then, the 
strain-stress data of TLGSs with beam element and beam-spring element separately 
by FEM and AFEM are given in Table 3. 

From Table 3, Cij is calculated and axial modulus by Eqs. (45)–(47) is as: 
σx = σy = 1025.21εy, σz = 36.14εz. As the graphene layer plane exists in the X-Y plane 
and the thickness direction of Z is relatively small, axial modulus of SLGSs can be 
averaged as: E = (Ex + Ey)/2 = 1025.81 GPa, with comparison of 996.49 GPa by 
Berryman [45]. Homogenized moduli of TLGSs based on AFEM can be calculated, 
and elastic moduli of polycrystalline graphene are given in Table 4. 

From references of Berryman [46, 47], elastic moduli for polycrystalline 
graphenes can be calculated based on the elastic constant matrix Cij of graphene. 
Elastic constants and elastic modulus by AFEM are in agreement with results of 
Berryman [48]. Stress-strain and elastic moduli of TLGSs by AFEM are shown in 
Figure 14. 

From Figure 14(a), elastic constants are in quite good agreement; axial modulus 
in Z direction is much smaller than that of X, Y direction. From Figure 14(b), 
elastic moduli by AFEM are nevertheless slightly lower than values by Berryman. 
The nonspherical nature in Young’s modulus of TLGSs is anisotropic and the x-axis 
is more anisotropic than the z-axis because of the values of C33 larger than C11. 
Elastic moduli of TLGSs by Wu et al. [38] are as: B = 167.55 GPa, G = 118.21 GPa. 
Thus, Young’s modulus of TLGSs is averaged to be 0.525 TPa, which is lower than 
SLGSs; this trend is consistent with the trend between the bilayer graphene sheets 
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Figure 13. 
Strain loading of triple-layer graphene sheets. 

(BLGSs) of 0.8 TPa [49] and SLGSs of 0.996 TPa [45], showing van der Waals 
forces between layers has weakened the Young’s modulus value of multigraphene. 

5. Application to the hexagonal portlandite (CH) structure 

CH is a typical nanostructure of the microscale-hydrated Portland cement paste 
[50] and its Young’s modulus is needed in a 3D multiscale mortar model [51], so we 
aim to propose a modeling method based on AFEM to investigate anisotropic 
stiffness of CH crystalline and elastic properties of polycrystals [52]. 

5.1 Nanoscale modeling and coupling force field of CH 

5.1.1 Nanoscale modeling of CH ionic crystal 

CH is a hexagonal structure; its crystal lattice [53] is: a = b = 3.5930 Å, c = 4.9090 Å, 
α = β = 90°, γ = 120°. AFEM modeling of portlandite (CH) is shown in Figure 15. 

From Figure 15(a), the Ca2+ is octahedrally coordinated by oxygen. There is no 
hydrogen bond across the layer. The direction of hydroxyl groups formed by oxy-
gen and hydrogen is vertical to the (001) plane direction. The atomic distance 
between O2˜ and H+ is 2.757 Å. O▬H covalent bond can be solved by a linear bond 
energy ratio relative to C▬C bond energy. For O▬H covalent bond, L = 0.985 nm 
[54]. Portlandite is modeled with equivalent beam-spring element in Figure 15(b). 
The potential cutoff radius is 0.8 nm. 

Parameters of weight, charges, and Lennard-Jones potential are given in Table 5. 

5.1.2 Coupling force field definition of CH ionic crystal 

For CH modeling, the initial conditions are as: (1) no hydrogen bond or other strong 
bonds across the layer; (2) without considering the effect of three-body potential and 
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Figure 14. 
Comparison of TLGSs stress-strain and elastic moduli by AFEM modeling. (a) Stress-strain and axial modulus 
by AFEM. (b) Comparison of Young’s and shear moduli. 

Figure 15. 
AFEM modeling of portlandite (CH). (a) Portlandite crystal. (b) CH model with beam-spring element. 

dihedral; (3) O▬H is approximately defined by estimation of C▬C bond according to 
the linear bond energy ratio. Moreover, CH parameters by AFEM modeling are as: 
O▬H bond length LO▬H = 0.986 nm, potential cutoff radius is 0.8 nm, 
EO▬H = 4.611 ˜ 103 nN/nm2, dO▬H = 0.175 nm, GO▬H = 1.921 ˜ 103 nN/nm2. Spring 
element to describe the interatomic forces under the equilibrium state is shown in 
Figure 16. 

From Figure 16(a), the curve of VDW force has been translated so that the 
system at the beginning of the calculation is at the equilibrium (no more attractive/ 
repulsive force). From Figure 16(b), Coulomb force curve is given, then the cou-
pling force field of Ca▬O and O▬H bond is decayed rapidly with increasing 
distance, and Ca▬Ca and O▬O bonds are weakened during the modeling of CH, as 
shown in Figure 16(c). 

5.2 Elastic constants and homogenized moduli of CH 

Similarly, elastic constants of CH crystal are verified by volume unit. Then, we 
extend to the equivalent beam-spring model by AFEM. Strain loading of CH crystal 
is shown in Figure 17. 
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Weight and charges [55] Lennard-Jones potential 

Symbol Weight [u] Charges [e] Bond Dij (eV) Rij (nm) 

Oh 16.00 ˜1.40 O▬O 0.15540 0.35532 

Ho 1.00 0.40 O▬Ca 3.83368 ° 10˜5 0.48980 

Ca 39.90 2.00 Ca▬Ca 2.18105 ° 10˜7 0.62428 

Ohw 16.00 ˜0.95 O▬H 6.73854 ° 10˜3 0.35532 

How 1.00 0.42 H▬H 0.02000 0.20000 

Table 5. 
CH parameters of atomic charges and atomic force field employed (1e = 1.6021892 ° 10˜19 C). 

Figure 16. 
Ionic bond’s definition and various atomic types of CH by AFEM modeling. (a) VDW force interaction. 
(b) Coulomb force of interaction. (c) Coupling force field. 

Figure 17 shows the stretching schematic diagram of CH crystal in three direc-
tions. The CH crystal modeling based on AFEM is extensively concerned in this 
section. CH crystal modeling using the equivalent beam-spring element is mainly 
investigated, and elastic modulus of CH hexagonal polycrystals can be finally 
determined based on the calculated elastic constants matrix. 

More particularly, the results of the AFEM are compared to previous results of 
experiment [56]. Comparison of CH stress-strain and elastic modulus by AFEM 
modeling is shown in Figure 18. 

Figure 17. 
Strain loading of CH crystal. (a) Strain loading in x-direction. (b) Strain loading in y-direction. (c) Strain 
loading in z-direction. 
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Figure 18. 
Stress-strain and comparison of elastic moduli by various methods. (a) Stress-strain and axial modulus by 
AFEM. (b) Comparison of Young’s and shear moduli. (c) Comparison of Young’s modulus of single CH crystal. 
(d) Comparison of shear modulus of single CH crystal. 

From Figure 18(a), it can be seen that, even if all the results are in quite good 
agreement, the numerical results using AFEM are slightly lower than those obtained 
by Brillouin spectroscopy measurement. Anisotropy of elastic modulus in each 
direction with various angles of z-axis is shown in Figure 18(b). The comparison of 
elastic modulus curves based on Cij shows anisotropy in each direction with various 
angles of z-axis in Figure 18(c). As can be seen from Figure 18(d) and axial 
modulus formulas, even if all the results are in quite good agreement, it can be 
noted that DFT results are upper than those of Brillouin spectroscopy measurement, 
whereas AFEM ones are lower. 

Elastic constant Cij is then calculated and axial modulus can be obtained by 
Eqs. (45) and (47). Axial moduli based on elastic constants by AFEM are as: 
σx = σy = 86.4918εx, σz = 31.7002εz. From Figure 18, shear and Young’s moduli by 
AFEM are slightly lower than Brillouin spectroscopy measurement. Moreover, elas-
tic moduli by Wu et al. [38] are as: B = 28.249 GPa, G = 17.314 GPa. Thus, Young’s 
modulus of CH polycrystals is averaged to be 43.130 GPa by Reuss-Voigt-Hill 
estimation, which is in quite good agreement with experimental averaged value 
(39.88 GPa) and with the literature values (45.94 GPa by Laugesen, 52.4 GPa by 
Speziale, 44.69 GPa by Kerisit, and 46.58 GPa by Holuj). AFEM has a certain 
meaning to provide a method to calculate elastic modulus of other hexagonal 
structures. 

Strain-stress data and elastic moduli (bulk, shear, and Young’s moduli) by AFEM 
are given in Tables 6 and 7. Strain-stress data of CH crystal by AFEM are given in 
Table 6. Elastic modulus of polycrystalline CH compared with previous results of 
the literature is given in Table 7. 

51 

http://dx.doi.org/10.5772/intechopen.84597


St
ra
in
-s
tr
es
s 
by

 v
ol
um

e 
un

it
 a
ni
so
tr
op

y 
St
ra
in
-s
tr
es
s 
by

 b
ea
m
-s
pr

in
g 
el
em

en
t 

σ i
j 
(n

N
/n
m

2 )
 

ε 1
1 

ε 2
2 

ε 3
3 

σ i
j 
(n

N
/n
m

2 )
 

ε 1
1 

ε 2
2 

ε 3
3 

σ 1
1 
= 
74

.3
83

2 
0.
83

44
93

 
˜0

.2
49

65
1 

˜0
.1
18
61
2 

σ 1
1 
= 
41

.0
12
1 

0.
45

31
52

 
˜0

.0
64

05
3 

˜0
.0
52
89

9 

σ 2
2 
= 
59
.7
72
2 

˜0
.2
00

61
2 

0.
67
05

76
 

˜0
.0
95
31
4 

σ 2
2 
= 
32
.3
67
1 

˜0
.0
57
14

8 
0.
33
74

53
 

˜0
.0
52
22
6 

σ 3
3 
= 
36

.1
15
1 

˜0
.0
57
59
0 

˜0
.0
57
59
0 

1.
01

85
42

 
σ 3

3 
= 
11
.3
92
9 

˜0
.0
41

02
4 

˜0
.0
41

02
4 

0.
34

83
41

2 

σ 1
2 
= 
4.
06

44
 

γ 1
2 
= 
0.
51
57
88

 
σ 1

2 
= 
3.
56
01

 
γ 1
2 
= 
0.
50

15
12

 

T
ab

le
 6
. 

St
ra
in
-s
tr
es
s 
da

ta
 o
f 
C
H

 b
y 
vo
lu
m
e 
un

it 
us
in
g 
FE

M
 a
nd

 b
ea
m
-s
pr
in
g 
el
em

en
t 
us
in
g 
A
FE

M
 m

od
el
in
g.

 

Atomistic Simulation of Anistropic Crystal Structures at Nanoscale 

52 



The Advanced Atomic Finite Element Method: Modeling and Application 
DOI: http://dx.doi.org/10.5772/intechopen.84597 

Method C11 C12 C13 C33 C44 C66 Bv Br Gv Gr μ 

FEM 99.38 30.78 7.36 36.29 7.88 34.31 36.23 26.63 22.65 13.92 0.2 

AFEM 94.02 25.51 6.02 32.31 7.099 34.25 32.83 23.67 21.88 12.75 0.246 

Equation-AFEM 95.806 25.294 4.626 35.671 7.098 35.256 32.93 24.59 22.74 12.99 0.243 

Equation-FEM 100.22 31.611 6.389 37.430 7.878 34.305 36.29 26.79 22.91 14.00 0.255 

Brillouin [56] 102.00 32.00 8.40 33.60 12.00 35.00 37.24 26.02 24.39 18.18 0.225 

Table 7. 
Elastic constants of CH and homogenized moduli (bulk, shear, and Young’s moduli) of polycrystalline CH by 
FEM and AFEM (unit: GPa). 

6. Conclusions 

Equivalent beam elements are applied in zigzag nanotubes of C▬C covalent 
bond, as well as the AFEM modeling of a tensile test on CH and TLGSs. These 
models at nanoscale are established and then elastic constants are determined based 
on several methods/algorithm existed and developed. Conclusions are as: 

1) A theoretical formula between axial modulus Ex,y,z and cij of hexagonal crystal 
is derived by crystal elastic theory. Besides, a reliable equation to calculate 
these Cij is also given out and verified by both volume unit (FEM) and 
equivalent beam-nonlinear spring elements (AFEM), which are as follows: 

a) The expressions of the x-axial modulus E1, y-axial modulus E2, and z-axial 
modulus E3 of hexagonal crystal as a function of elastic constants Cij are as: 

2 2c ˛ ˜ ° ˜ °˝ 13 2 2 E3 ¼ c33 � ; E1 ¼ E2 ¼ ðc11 � c12Þ 1 þ c12c33 � c13 = c11c33 � c13 c11 þ c12 

b) The equation of elastic constants Cij calculated by the stress components 
and strain components using the volume unit (FEM method) are derived 
and detailed as in Eq. (43), where A ¼ ε11, B  ¼ ε22, C  ¼ ε33, D  ¼ ε31, E  ¼ 
ε11 þ ε21 (εij are independent strains in all directions). 

2) The product E.t of Young’s modulus and wall thickness for CNT is mainly 
distributed in the constant range of 0.33–0.37 kJ/m2. Young’s modulus of 
zigzag SWCNT is 1.05 Tpa and E.t is close to be 0.3604 kJ/m2. Besides, the 
calculated E of TLGSs model is close to the measurement of Berryman. 

3) Young’s modulus of single-layer graphene calculated by AFEM is 1025.81 GPa, 
compared with 996.49 GPa by Berryman, and the relative errors of cij are in 
an acceptable range with experimental values. 

4) CH crystal has shown anisotropy. Based on the stress-strain data of AFEM 
modeling, elastic constant cij is calculated, Young’s modulus is estimated to be 
43.130 GPa using Reuss-Voigt-Hill estimation, which is close to the Brillouin 
spectroscopy result of 52.15 GPa. 

As an attempt, the computational efficiency of AFEM method of CH crystal on 
ABAQUS software is greatly improved. Besides, the computation cycle (no more 
than 5 min in total) is greatly reduced. Thus, based on the content above, AFEM can 
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be considered as a kind of alternative method to obtain mechanical properties of 
crystals at nanoscale. 

However, it should be noted that molecular mechanics methods cannot provide 
information of the electronic structure as they omit the electronic nature of the 
atoms. That is why the first-principles simulation (the density functional theory, 
etc.) is also introduced to calculate the Young’s moduli of other typical structures 
considered in this thesis, under the situation of lacking a complete potential func-
tion parameters or more complex chemical bonds existed in the structures. 

In short, we can see that AFEM modeling methodology at the atomic scale (or 
nanoscale) can also be an effective method for the specific models, since the mac-
roscopic properties depend largely on the physicochemical properties of the 
interatomic bonds. Multiscale methods, including the AFEM method, therefore 
connect nanoscale modeling and continuous pattern of deformation behavior by 
identifying relevant parameters from small scales to larger scales, thus have their 
prospective applications. It is not far for us to deeply investigate mechanical prop-
erties with the rapid development of computer hardware level, the interatomic 
potential functions accurately described, new high-efficiency algorithms, etc. Per-
spectives of the computer tools, accurate interatomic potential functions, and new 
high-efficiency algorithms will complete this meaningful work and study the 
mechanical behavior of materials more deeply. 
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Chapter 3 

Classical Density Functional 
Theory (DFT): Elastic Constants 
of Typical Single Crystals 
Jia Fu 

Abstract 

Anisotropy becomes the focus of condensed matter physics, materials physics, 
and materials chemistry research, where molecular pressure characteristics are 
critical to better understand the mechanical properties of the materials at the atomic 
scale. So the influencing effect of pressure on structural, elastic properties of single 
cubic crystals (CaO and MgO), single hexagonal crystals (CH and calcite), and 
single monoclinic crystals (11 Å tobermorite and gypsum) are mainly investigated. 
This chapter is committed to model and calculate elastic constants of typical aniso-
tropic crystal structures. Above all, the functional local density approximation 
(LDA) or generalized gradient approximation (GGA) is mainly used. Then, the 
elastic constants are calculated, which can be used as the measure criterion of the 
resistance of a crystal to an externally applied stress. Besides, the optimized struc-
tural lattice parameters at zero pressure are calculated to compare with the experi-
mental parameters, which all have good agreement with the experimental and 
theoretical values. Therefore, it is fairly meaningful to study the elastic constants 
to understand the physical, chemical, and mechanical properties of these 
cubic, hexagonal, and monoclinic crystal structures. The results show that the 
applied pressure is beneficial to the elastic properties. These researches provide 
basic physical parameters for their homogenized moduli of these typical 
polycrystals. 

Keywords: DFT, lattice parameters, elastic constants, GGA, LDA, pressure effect 

1. Introduction 

Anisotropy can effectively increase the freedom of material, thus can be used to 
provide controllability and design new materials, and anisotropy becomes the focus 
of condensed matter physics, materials physics, and materials chemistry research. 
Molecular pressure characteristics are critical to better understand the mechanical 
properties of the materials at the atomic scale. 

First-principles simulation starting from quantum mechanics is a powerful tool 
for materials research, of which the density functional theory (DFT) is commonly 
used to study the crystal structure, lattice energy, the equation of state, the elec-
tronic bandgap, and vibration spectral properties [1]. DFT is confirmed to be one of 
the important nanoscale modeling methods. With the increasing interest in the 
advanced applications of cementitious materials at the nanoscale, elastic constants 

59 



� � � � 

Atomistic Simulation of Anistropic Crystal Structures at Nanoscale 

of single crystal are essential to the material performance because many other 
parameters related to mechanical properties can be derived from them. This resis-
tant force of bond in crystal can be characterized by energy gap, and the number of 
bond per unit area can be determined by valence electron density. 

DFT has a great importance of simplifying the solving process of the complex 
Schrödinger equation. The internal degrees of freedom of the nuclei extend to a 
scale of several of magnitude orders (smaller than the electron variables and con-
centrated at the bulk of the mass), which causes a significant slowdown compared 
to electrons. Based on the kinetic energy density functional of Thomas [2] and the 
exchange-correlation effects of Dirac [3], the density functional theory has been 
greatly developed by Kohn and Sham [4], who have established the fundamental 
approximation theorem on the functional status to describe real systems by elec-
tronic structure calculations. Assuming that the validity of the exchange-correlation 
functional and the accuracy of density and energy convergence are correct, we 
should also clear that the eigenvalues of KS equations have no physical meaning and 
the ionization energy is in the opposite state direction [5]. 

Many studies show that the band structure obtained by KS equations remains 
more reasonable prediction of experimental energy spectra in the main usage of 
functional local density approximation (LDA) or generalized gradient approxima-
tion (GGA). Moreover, the use of the potential and the disturbance of 
eigenfunctions allow us to determine the excitation energies during KS solving 
process. One proposed approach is to introduce the eigenstates to calculate 
multibody (many-body calculation) on the basis of Monte Carlo calculations [6] 
and perturbation theory [7]. The approach of Kohn and Sham (KS) [4] proposed in 
1965 is still the most commonly used approach in DFT calculations, which aims 
to determine the specific properties of a multiparticle system using independent 
particle and owns satisfactory success. 

So, we mainly investigate some typical crystals (such as: cubic CaO and MgO, 
hexagonal portlandite and calcite, monoclinic 11 Å tobermorite and gypsum), 
focusing on the elastic constants within a certain pressure range, so as to lay a 
foundation for the elastic modulus calculations. 

2. Molecular modeling using DFT by materials studio 

2.1 Introduction of density functional theory (DFT) 

From a microscopic point of view, Schrödinger equation describing a periodic 
crystal system composed of atomic nuclei n in mutual interaction and electron spin n n� o ! ! ! ! 
σi is positioned R¼ Ri; i ¼ 1; …Nng and r ¼ ri; σiÞ; i ¼ 1; …Ne , respectively. 

! ! ! ! Hψ R; r ¼ Eψ R; r (1) 

The possible analytical representation and resolution of such a problem becomes 
a difficult task due to the limited memory of the computer tools. But it is possible to 
reformulate the problem using appropriate theorems and approximations. 

A multiparticle electronic structure satisfies the Schrödinger equation. Gener-
ally, Hamiltonian contains kinetic energy, Coulomb potential energy between elec-
trons and the external potential. Kohn-Sham equation as an approximation to 
simplify Schrödinger equation is described. For crystal composed by vibrator with 
the vibration frequency wi, the total Helmholtz free energy is: 
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Fth 1 �ℏwi 
kB T F ¼ E þ∑ ¼ U þ∑ ℏwi þ kBT ∑ In 1 � e (2) i 

i i i 2 

Helmholtz free energy can be calculated for all the thermodynamic quantities. 
DFT-QHA (quasi-harmonic approximation) is a precise calculation method to cal-
culate thermodynamic properties of solid material elastic constants and Debye 
temperature with the accurate predictions. Therefore, DFT-QHA method is quite 
suitable to study physical properties of crystal structure under high pressure. 

The Hamiltonian and Kohn-Sham equations as an approximation to simplifica-
tion of Schrodinger equation to solve the multiparticle systems are [8]: 

2 ℏ 1 e 
Ĥ ¼ �  ∑∇2 

i þ∑ VexðriÞ þ  ∑ � � (3) 
2me i i 2 i 6¼j 

�ri � rj� 

8� �
> ℏ ! ! ! > > � ∇2 þ Veff r φi r ¼ εiφi r >> 2m >> � �  � �  � �  >> ! ! ! > >Veff ð  Þ ¼ V r  þ Vee þ Vex r > r r < � �  ½ �ρ (4) ! δExe >Vxe r ¼ > ! >> δ r >>>> � �  � � �� > 2 >: ρ r ¼ ∑ �ϕi r � 

i 

where Vex(r) is an external potential; ri and rj are the nucleus position vector; 
while mε, m, respectively, stand for the quality of nuclei and electrons; ρ(r) is the 
electron density. Eqs. (3) and (4) include not only the nucleus and electron kinetic 
energy term, but also interaction term of nucleus-nucleus and electron-electron [8]. 

According to the theory of elasticity, under the isothermal strain, the elastic 
modulus of Helmholtz free energy can be described by the form of the Taylor 
expansion, of which the coefficients of the polynomial is the elastic coefficient: 

1 1 T T ρ0F ηij; T ¼ ρ0F ηij; T þ
2 
∑ cijklηijηkl þ… þ

n! 
∑ cijkl… ηijηkl… (5) 

ijkl ijkl 

T where ηij, ηkl, and ηmn are the coefficients of Lagrange deformation tensor, cijkl is the 

isothermal first-order elastic coefficients, and F ηij; T is the Helmholtz free energy. 

The components of the stress tensor can be extracted by σi ¼ ∑6 
j¼1cijεj, after the 

applied strain, the total energy variation of the system can be expressed as: 

6 6 V 
ΔE ¼ ∑ ∑ cijeiej (6) 

2 i¼1 j¼1 

As the independent elastic constants of different crystals are different from each 
other, through the different matrix elements of the crystal elastic modulus, we can 
get different strain applied methods. 

2.2 Introduction of the DFT and CASTEP module 

At present, there are a lot of software for molecular modeling, such as: Ceruis2, 
InsightII, VASP, Gaussian, Material Studio, etc., of which Ceruis2, InsightII run 
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under Unix mainframe systems and thus are inconvenient to use. Material Studio 
can run a set of quantum mechanics, molecular mechanics, mesoscopic model, and 
statistical correlation simulation. Moreover, Materials Studio has an environment of 
server/client mode, which has brought the advanced material simulation and 
modeling techniques. 

Materials Studio CASTEP has been applied to a wide range of research problems 
such as surface chemistry, and chemisorption, heterogeneous catalysis, defects in 
semiconductors, grain boundaries, stacking faults, nanotechnology, molecular 
crystals, polymorphic studies, diffusion mechanisms, and molecular dynamics of 
liquids. Materials Studio CASTEP uses a total energy plane-wave pseudopotential 
method. In the mathematical model of the material, Materials Studio CASTEP 
replaces core electrons with effective potentials acting only on the valence electrons 
in the system. Electronic wavefunction are expanded through a plane-wave basis 
set, and exchange and correlation effects can be included within either the local 
density approximation (LDA) or generalized gradient approximation (GGA). 
Combining the use of pseudopotentials and plane wave basis sets enables extremely 
efficient geometry optimizations of molecules, solids, surfaces, and interfaces. 
Based on total energy pseudopotential methods, Materials Studio CASTEP can 
predict properties such as lattice constants, molecular geometry, elastic constants, 
band structures, density-of-states, charge densities and wave functions, and optical 
properties. The pseudopotential plane-wave technology underlying CASTEP is well 
validated, and efficient parallel versions of the code are also available for large 
systems involving hundreds of atoms. 

CASTEP is capable of computing many electronic and optical properties using 
density functional perturbation theory (DFPT), known as the linear response 
method. The primary reason that CASTEP has become so powerful is that the 
numerical methods used to solve the underlying quantum mechanical calculations 
are both computationally efficient and extremely accurate. This approach makes 
possible a wider variety of properties than are possible using the so-called finite 
difference approaches, which require repeated computations on series systems. 

For a detailed description of the quality settings, we can set the calculation 
parameters as in Table 1. 

Convergence criteria of the accuracy of the calculation are controlled in Table 1 
by the quality settings. Specify the number of steps for each strain and maximum 
strain amplitude in the appropriate text boxes. The minimizer tab of the CASTEP 
geometry optimization dialog is used to obtain the optimized structure. Specify the 
quality using either the dropdown list or by providing individual convergence 
tolerances for the energy, maximum force, and maximum displacement in the 
corresponding text boxes. 

Value Coarse Medium Fine Ultrafine 

SCF tolerance (eV/atom) 1.0 ˜ 10 °5 2.0 ˜ 10 °6 1.0 ˜ 10 °6 5.0 ˜ 10 °7 

k-Points separation (1/Å) 0.07 0.05 0.04 0.04 

Energy cutoff Coarse Medium 340 eV 380 eV 

Energy tolerance (eV/atom) 5.0 ˜ 10 °5 2.0 ˜ 10 °5 1.0 ˜ 10 °5 5.0 ˜ 10 °6 

Max. force tolerance (eV/Å) 0.1 0.05 0.03 0.01 

Max. stress tolerance (GPa) 0.2 0.1 0.05 0.02 

Max. displacement tolerance (Å) 5.0 ˜ 10 °3 2.0 ˜ 10 °3 1.0 ˜ 10 °3 5.0 ˜ 10 °4 

Table 1. 
Parameter accuracy of CASTEP module. 
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! 

Figure 1. 
Solution of Kohn-Sham equations. (a) Theoretical calculation of Kohn-Sham equations. (b) Flowchart of 
solving Kohn-Sham equations by DFT. 

Elastic constants will be generated for the theoretical lattice constants after cell 
optimization. Theoretical calculation of Kohn-Sham equations is shown in Figure 1(a), 
and the corresponding DFT calculation process is shown in Figure 1(b). 

From Figure 1, the calculation of elastic constants is proceeded by full geometry 
optimization, including cell optimization. Elastic constants are evaluated by calcu-
lating the stress tensor for a number of distorted structures. Internal coordinates are 
optimized in each run, while keeping the lattice parameters fixed. The accuracy of 
the elastic constants depends to a great extent on the accuracy of the self-consistent 
field (SCF) part and also on the level of convergence of geometry optimizations for 
each distorted structure. 

3. Theoretical approximate solution of DFT calculation 

! ! ! ! The crystalline ion movement of the electron is as: ψ R R φ R and ¼ χ ; r ; r 

^ 

0 0 H φ φ! 

^ 

! 

^ ^ 

! 

^ 

^ 

assume that the electron mobility (φ) does not depend on the speed nuclei but on 
their positions. 

3.1 Solving equation of adiabatic approximation 

According to the Born-Oppenheimer or adiabatic approximation [9], the 
dynamics of the system (electrons and nuclei) is described. The electrons are 
assumed to react instantly to ionic motion. Therefore, in electronic coordinates, the 
positions of the nucleus are considered immobile external parameters. 

H ¼ Te þ Une þ Uee þ Unn (7) 

! ! ! ¼ EBO R (8) r r r ! 
R R R 

! 

where the last term of the Hamiltonian is constant and has been introduced in 
order to preserve the neutrality of the system and avoid the divergence of the 
eigenvalues. Clean the ground state of the system for fixed nuclear positions, total 
energy is given by the formula: 

EBO R 0 0 0 0 H H φ φ φ φ! 
^ ! ! 

^ ! 

D E D E 
¼ min 

R R R R 
(9) 
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This energy has a surface in the space coordinates that is said ionic Born Oppen-
heimer surface. 

The ions move according to the effective potential energy, including Coulomb 
repulsion and the anchoring effect of the electron, as: 

! 
Tn þ EBO 

H 

^ Ĥ 

^ 

BO ¼ R (10) 

BO ! ! 
χ R ¼ Eχ R (11) 

The dissociation degrees of freedom of electrons from those of nucleons, 
obtained through the adiabatic approximation, are very important, because if the 
electrons must be treated by quantum mechanics, degrees of freedom of ions in 
most cases are processed in a conventional manner. 

This formulation applies to any system of mutually interacting particles in an 
! external potential Vex r , where the Hamiltonian is written as: 

2 

H ¼ �  � ^ ℏ 1 e 
∑∇i 

2 þ∑ VexðriÞ þ  ∑ � 
2 

(12) 
2me ri � rj i i i 6¼j 

DFT and its founding principle is summarized in two theorems, first introduced 
by Hohenberg and Kohn, which say there is bijection between the set of potential

! Vex ri and the density minimizing the Eq. (9), based on the following points: 

The total energy of the ground state of a system for interacting electrons is 
functional (unknown) of the single electron density. 

ð ð ! ! 
d3rVexð  Þ þ Enm r EHK ½n� ¼ T n½  � þ Eint½n� þ  r R � FHK ½n� þ  d3rVexð  Þ þ Enn R 

(13) 

As a result, the density n0(r) minimizing the energy associated with the Hamiltonian 
in Eqs.(13) is obtained and used to evaluate the energy of the ground state of the system. 

The principle established in the second theorem of Hohenberg and Kohn spec-
ifies that the density that minimizes the energy is the energy of the ground state. 

h i  � � �� ! ! ! EBO R ¼ minE R; n r  (14) 

Because the ground state is concerned, it is possible to replace (in the Hilbert 
space) the wave system function by the electron charge density, which therefore 
becomes the fundamental quantity of the problem. In principle, the problem boils 
down to minimize the total energy of the system in accordance with the variations 
in the density governed by the constraint on the number of particles Ð ! n r d3r ¼ Ne. In this stage, the DFT can reformulate the problem rather than 

solve an uncertain functional FHK ð Þn . 

3.2 The approximation approach of Kohn-Sham 

This approach assumes that the density in the ground state of the system is equal 
to that in some systems composed of noninteracting particles. This involves 
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independent particle equations for the noninteracting (numerically manageable) 
system, gathering all the terms complicated and difficult to assess, in a functional 
exchange-correlation EXCð Þn . 

ð ð 
EKS ¼ F n½  � þ  d3rVex r ½  � þ EH n ½  � þ  d3rVexð Þ  ð Þ ¼ TS n ½  � þ EXC n r (15) 

T is the kinetic energy of a system of particles (electrons) independent 
(noninteracting) embedded in an effective potential which is no other than the real 
system, 

� � � � Ne � 1 � � � � ∇2� ½  � ¼  ψNI Te ^ ¼ ∑ TS n (16) ψNI φi � φi 2 i¼1 

The Hartree energy or energy of interaction is associated with the Coulomb 
interaction of the self-defined electron density 

1 
ð 

0 n rð Þn rð Þ0 ½  � ¼  d3rd3r (17) EHartree n 2 jr � r0j 
Ne 2 n rð Þ ¼ ∑ jφið Þr j (18) 
i¼1 

Solving the auxiliary Kohn and Sham system for the ground state can be seen as 
a minimization problem while respecting the density n(r). Apart from that TS is 
orbital function, all other terms depend on the density. Therefore, it is possible to 
vary the functions of the wave and deriving variational equation: 

δEKS 

δφ ∗ rð Þ  i 
¼ 

� 
δTS δEex δEHartree þ þ 

δφ ∗ rð Þ δn rð Þ δn rð Þ  i 

� 
δExc δn rð Þ  þ 
δn rð Þ  δφ ∗ rð Þ  i 

¼ 0 (19) 

D E 

^ 

^ 

With the constraint of orthonormalization φijφj ¼ δi, j, this implies the form 

of Kohn Sham for Schrödinger equations: 

HKS � εi 

HKS is the effective Hamiltonian H, 

φi r (20) ð Þ ¼ 0 

εi represents the eigenvalues, and 

1 
2 
∇2 þ VKS 

^ ^ 

ĤKS 

δEHartree δExc VKSð Þ ¼r Vex r þ ð Þ þ  (22) 
δn rð Þ  δn rð Þ  

Eqs. (20)–(22) are known equations of Kohn Sham, the density n(r), and the 
resulting total energy EKS. These equations are independent of any approximation 
on the functional EXCð Þn , resolution provides the exact values of the density and the 
energy of the ground state of the interacting system, provided that EXCð Þn is known. 
The latter can be described in terms of Hohenberg Kohn function (12) 

½  � ¼ FHK ½  � �n ðTS n ½ �Þ (23) Exc n ½  � þ EHartree n 

T V int 

(21) rð Þ ¼ �  ð Þr 

½  � ¼  Exc n ½  � þ  � TS n � EHartree½ �n (24) 

This energy is related to potential exchange-correlation Vxc ¼ ∂Exc . 
∂n rð Þ  
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For the exchange-correlation functional (LDA and GGA) and the parameter 
set of Bloch theorem and Brillouin zone, the content is detailed in our previous 
chapter [10]. 

4. Elastic coefficients of typical crystals solved by DFT method 

4.1 Elastic strain energy formulas of cubic crystals 

2 
c11 c12 c12 0 0 0 

c12 c11 c12 0 0 0 

c12 c12 c11 0 0 0 

0 0 0 c44 0 0 

0 0 0 0 c44 0 

0 0 0 0 0 c44 

3 

666666664 

777777775 

The matrix element of cubic crystal system is , 

where the subscript of matrix C corresponds to i and j. In the calculation of the 
elastic modulus, the strain component needs to be applied to the same δ. 

Strain tensor exhibits a total of six independent components. When a strain is 
applied, the corresponding strain component ei (i = 1~6) can be expressed as: 

e ¼ ðe1; e2; e3; e4; e5; e6Þ (25) 

Submitting the cubic crystal matrix into Eqs. (6), we can obtain the following 
formula: 

V 
ΔE ¼ ðc11e1e1 þ c11e2e2 þ c11e3e3 þ c12e1e2 þ c12e1e3 þ c12e2e1 þ c12e2e3 þ c12e3e1 2 

þc12e3e2 þ c44e4e4 þ c44e5e5 þ c44e6e6Þ 
(26) 

Firstly, considering the simplest constant C44, i and j are equal to 4, and by the 
cubic matrix elements, C44 = C55 = C66. By setting e ¼ ð0; 0; 0; δ; δ; δÞ of Eq. (25) and 
submitting into Eq. (5), we get: 

V0 ΔE ¼ 
2 

c44e4e4 þ c44e5e5 þ c44e6e6 ð Þ (27) 

Therefore, 

ΔE 
V0 

¼ 
3 
c44δ2 

2 
(28) 

Similarly, setting e ¼ δ; δ; 0; 0; 0; 0 ð Þ, we obtain: 

ΔE ¼ 
V0 c11e1e1 þ c11e2e2 þ c12e1e2 þ c12e2e1 ð Þ 
2 

(29) 

Therefore, 

ΔE 
V0 

¼ Þδ2 c11 þ c12 ð (30) 
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On this basis, if a strain e ¼ ðδ; δ; δ; 0; 0; 0Þ is imposed, we have: 

V0 ΔE ¼ ðc11e1e1 þ c11e2e2 þ c11e3e3 þ c12e1e2 þ c12e1e3 þ c12e2e1 þ c12e2e3 þ c12e3e1 þ c12e3e2Þ 2 
(31) 

Therefore, 

ΔE ¼ 
3 ðc11 þ 2c12Þδ2 (32) 

V0 2 

After fitting the three equations, we can obtain three independent elastic con-
stants c11, c12, and c44. 

A transverse strain causes a change in shape without a change in volume. Thus, 
by applying these five specific strains mentioned above and selecting a series of δ 
strain amplitude, we can get the data from the ΔE-δ curve, respectively, and then 
obtain by fitting quadratic coefficient according to the corresponding applied strain 
methods mentioned in Table 2. Finally, we can get the independent elastic con-

3 

stants of cubic crystals by these simultaneous equations. 
For the cubic phase, the criteria for mechanical stability are given by [11]: 

j ð Þ > 0 (33) C11 > 0, C44 > 0, C11 > C12j, C11 þ 2C12 

4.2 Elastic strain energy formulas of hexagonal crystal structures 

Matrix element of hexagonal crystal structure is as: 2 
c11 c12 c13 0 0 0 

c12 c11 c13 0 0 0 

c13 c13 c33 0 0 0 

0 0 0 c44 0 0 

0 0 0 0 c44 0 

0 0 0 0 0 
1 

c11 � c12 ð Þ 
2 

77777777775 

, system has a total of five independent 

66666666664 

components, of which independent elastic constants are c11, c12, c13, c33, and c44. 
Similarly, we can get the strain tensor expansion by strain energy, thus leading 

to the relationship between strain energy and second-order elastic coefficients of 
the hexagonal crystal: 

Deformation tensor LCEC 

e ¼ δ; δ; 0; 0; 0; 0 ð Þ 2c11 + 2c12 

e ¼ δ; �δ; 0; 0; 0; 0 ð Þ 2c11�2c12 

e ¼ 0; 0; 0; 0; 0; δ ð Þ 3c11 + 6c12 

e ¼ δ; δ; δ; 0; 0; 0 ð Þ 3c11 + 6c12 

δ2 = 1 � δ2 ; 0; 0; 2δ; 0; 0 4c44 e ¼ 

e ¼ ð0; 0; 0; δ; δ; δÞ 3c44 

Table 2. 
Deformation tensors to calculate independent elastic constants of cubic crystal. 
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1 T T T T T 
11η1η1 þ 11η2η2 þ 33η3η3 þ 44η4η4 þ 44η5η5 ρ0F ηJ ; T ¼ ρ0F ηJ ; T þ c 

2 
c c c c 

þ 
c11 
T � c12 

T 

2 
1 T T T 

12η1η2 þ 13η1η3 þ 13η2η3 
T ∑ 2c 2c 2c η6η6 þ ηJηP⋯ þ… þ cJP… n! JP… 

(34) 

For hexagonal crystal, the basis vector of original cell can be taken as: 

0 pffi ffi 
3 1 
a a 0 

2 2 p 

1 
1 0 BBBBB@ 

CCCCCA 

a1 ffi ffi ! B@ 
CA R (35) ¼ ¼ 3 1 a2 

0 � a a 
2 2 a3 

0 0 c 

where a and c are the lattice constants of crystals. 
We can apply strain e ¼ ðδ; δ; 0; 0; 0; 0Þ to calculate the value of c11 + c12: 

ΔE ¼ ðc11 þ c12Þδ2 (36) 
V0 

Similarly, we can apply strain e ¼ ð0; 0; 0; 0; 0; δÞ to calculate the value of 
c11�c12: 

ΔE 1 ¼ ðc11 � c12Þδ2 (37) 
V0 4 

Also for c33, we can apply strain e ¼ ð0; 0; δ; 0; 0; 0Þ: 

Δ 
V
E 

0 
¼

2
1 
c33δ2 (38) 

Then, for c44, we can apply strain e ¼ ð0; 0; 0; δ; δ; 0Þ: 

Δ 
V
E 

0 
¼ c44δ2 (39) 

Finally, we can apply strain e ¼ ðδ; δ; δ; 0; 0; 0Þ to calculate the values of c11, c12, 
c13, and c33: 

ΔE 
V0 

1 ¼ c11 þ c12 þ 2c13 þ c33 2 
δ2 (40) 

For hexagonal structure, mechanical stability condition is as [10]: 

2 c44 > 0, c11 > c12j j, c11 þð 2c12 Þc33 > 2c13 (41) 

Similarly, by applying these five specific strains mentioned above and selecting a 
series of δ strain amplitude, the independent elastic constants of hexagonal crystals 
by these simultaneous equations of ΔE-δ data in Table 3 can be obtained. 

The corresponding applied strain methods are mentioned in Table 2. Elastic 
strain energy and strain relations for hexagonal structure can be given in Table 3. 

Last but not the least, for elastic strain energy formulas of monoclinic crystals, 
the content is detailed in our previous chapter work [9]. 
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Distortion matrix Energy (Taylor’s expansion) 1 ∂
2 EðV, δÞ 

V0 ∂δ2 
δ¼0 

1 0 
E V; δ ð 2ðc11 þ c12 Þ 1 þ δ 0 0 Þ ¼ E V0 ; 0Þ ð 

B@ 
CA Þδ2 þ V0 ðτ1 þ τ2 Þδ þ ðc11 þ c12 0 1 þ δ 0 

0 0 1 

1 0 
E V; δ ð 2ðc11 � c12 1 þ δ 0 0 Þ ¼ E V0 ; 0Þ ð Þ 

B@ 
CA Þδ2 þ V0 ðτ1 � τ2 Þδ þ ðc11 � c12 0 1 � δ 0 

0 0 1 

1 0 
E V; δ ð 1 0  0  Þ ¼ E V0; 0Þ ð c33 B@ 

CA þ V0 τ3 δ þ 1=2c33δ2 0 1  0  

0 0 1  þ δ 

1 0 
E V; δ ð 4c44 1 0 0  Þ ¼ E V0; 0Þ ð 

B@ 
CA þ V0 τ5δ þ 2c44 δ

2 0 1  δ 

0 δ 1 

1 0 
E V; δ ð c11 þ 2c13 þ c33 1 þ δ 0 0 Þ ¼ E V0; 0Þ ð 

B@ 
CA Þδ2 þ V0 ðτ1 þ τ3Þδ þ 1=2ðc11 þ 2c13 þ c33 0 1 0 

0  0 1  þ δ 

1 0 
E V; δ ð c11 � 2c13 þ c33 1 þ δ 0 0 Þ ¼ E V0; 0Þ ð 

B@ 
CA Þδ2 þ V0 ðτ1 þ τ3Þδ þ 1=2ðc11 � 2c13 þ c33 0 1 0 

0  0 1  � δ 

1 0 
1 þ δ 0 0 E V; δÞ ¼ E V0; 0Þ 2c11 þ 2c12 þ c33 þ 4c13 ð ð 

B@ 0 1 þ δ 0 CA þ V0 ðτ1 þ τ2 þ τ3Þδ ½ 
0 0 1 þ δ þ 1=2 2ð c11 þ 2c12 þ 4c13 þ c33Þδ2 

Table 3. 
Deformation tensor to determine independent elastic constants of hexagonal crystal [12, 13]. 

5. Elastic coefficients of typical single crystals at nanoscale 

5.1 Elastic coefficients Cij of cubic crystals: CaO and MgO 

All DFT calculations were performed by the total energy of the linear combina-
tion of atomic orbitals with a Hartree-Fock self-consistent field [14, 15] method 
implementation. Monkhorst Pack using the Brillouin zone integration method [16] 
is used to set K point to verify the convergence of different sampling meshes. 

5.1.1 Modeling of cubic crystals: CaO and MgO 

5.1.1.1 Lime (CaO) cubic structure 

CaO is an alkaline earth oxide of native lime. In fact, there are many studies of 
CaO phase transition characteristics using quantum mechanics. The high-pressure 
structure phases and the elastic properties of CaO are important for mortar model-
ing in civil engineering. CaO has the B1–B2 transition at 61 GPa [17], and phase 
transformation from B1 to B2 takes over a range of pressure 60–70 GPa [18] from 
shockwave measurements. Kalpana et al. [19] and Baltache et al. [20] also investi-
gated this transition for CaO. Mehl et al. [21] predicted elastic constants and their 
pressure dependences of CaO using potential-induced breathing (PIB) models. The 
ab initio pseudopotential calculations with plane-wave basis (PWPP) and ab initio 
full-potential linear muffin-tin-orbitals (FP-LMTO) are used to study high-pressure 
elastic properties of CaO by Karki and Crain [22] and Tsuchiya and Kawamura [23], 
respectively. Tsuchiya et al. [23] have used the full-potential linearized muffin-tin-
orbital method to study elastic constants of MgO and CaO. 
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Lime (CaO) is a cubic structure, the initial lime crystal lattice by Fiquet et al. 
[24] is as: a = b = c = 4.8330 Å, α = β = γ = 90°, with space group Fm3m. 

As is shown in Figure 2, Ca and O are arranged alternately to occupy cube 
vertex, edge, and face-center. From the lattice unit terms, the ion at the apex, on the 
edge, on the surface, and inside of cell, each ion belonging to the cell separately 
have the occupancy rate of 1/8, 1/4, 1/2, and 1. Atomic coordinates and displace-
ment parameters of lime (CaO) are given in Table 4. 

The elastic properties of the B1-phase CaO are calculated by using the plane-
wave pseudopotential density functional theory (DFT) method. The Cambridge 
Serial Total Energy Package (CASTEP) program is used to obtain the calculated 
energy-volume points. The lattice constants, the bulk modulus, and the pressure 
derivatives of bulk modulus of the B1-CaO at zero pressure are given. In addition, 
the elastic constants, shear modulus, and bulk modulus of the B1-phase CaO are 
investigated over a wide pressure range from 0 to 1.0 GPa. 

5.1.1.2 Periclase (MgO) cubic structure 

In 1995, Duffy et al. [25] have found, for pressures up to 227 GPa, that B1-type 
MgO remained stable, while at 300 K, the stable pressure can reach up to 199 GPa. 
By Anvil hydrostatic test, Fei [26] has measured and got high-pressure state equa-
tion as well as elastic modulus of MgO. By ultrasonic interferometry method, Chen 
et al. [27] have found that the elastic anisotropy of MgO structure decreases with an 
increase of pressure under normal temperature conditions, while the elastic anisot-
ropy increases with temperature at high pressure. Jaekson and Niesler [28] have 
obtained isothermal bulk modulus of MgO and its first derivative of pressure. 
Sinogeikin and Bass [29] have studied the pressure state equation of MgO by Anvil 
Brillouin scattering experiments. Zha et al. [30] have experimentally measured 
elastic properties with the pressure up to 55 GPa by scattering spectroscopy X 
Brillouin zone. Merkel et al. [31] have studied the pressure up to 47 GPa and 
measured elastic modulus, shear modulus, and elastic anisotropy. Wolf and 
Bukowinski [32] have investigated the stabilization of the ionic charge densities in 
MgO and CaO crystals by an electron gas model. Matsui et al. [33] have calculated 
elastic constants and thermodynamic properties of MgO structure over a wide 

Figure 2. 
Crystal structure of CaO. a) CaO cubic crystal b) crystal in x-direction c) crystal in y-direction d) crystal in 
z-direction. 

Atom x y z Occupancy rate Uiso or Ueq 

Ca 0.000 0.000 0.000 1.00 1.00 

O 0.500 0.500 0.500 1.00 1.00 

Table 4. 
Atomic coordinates and displacement parameters of lime (CaO) [24]. 
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temperature and pressure range. Karki et al. [34], using the local density approxi-
mation of density functional perturbation theory, have studied the MgO thermal 
expansion coefficient and elastic properties. Karki et al. [35] have used a plane-wave 
qualitative study of the elastic properties of the potential B1-type MgO in the range 
of 0–25 GPa. 

Periclase (MgO) is a cubic structure, the initial lime crystal lattice by Kalpana 
[19] is as: a = b = c = 4.2130 Å, α = β = γ = 90°, with space group Fm3m. 

As is shown in Figure 3, Mg and O are arranged alternately to occupy cube 
vertex, edge, and face-center. Mg2+ ions will fill into the O˜2 ion accumulation to 
form MgO crystal. 

Atomic coordinates and displacement parameters of MgO are given in Table 5. 
Electronic basis is optimized in calculation using a linear combination of atomic 

orbitals by self-consistent field (SCF) method of Hartree Fock. The K points of 
convergence have been met when taking a 16 ° 16 ° 16 mesh in our calculations. 
For complex space, we use parameter of Gilat and Raubenheimer [36]: when the 
total energy reaches less than 10˜6 eV/atom, the self-consistent convergence is 
more effective. 

In addition, the elastic constants, Young’s modulus, and shear modulus are 
investigated over a wide pressure range from 0 to 1.0 GPa. 

5.1.2 Initial conditions and elastic constants of CaO and MgO 

5.1.2.1 Initial conditions and elastic constants of CaO 

All the total energy electronic structure calculations are implemented through 
the CASTEP code. In CaO crystal modeling, we adopt the exchange-correlation 
interaction by using the GGA and LDA of the exchange-correlation function. 
Ultrasoft pseudopotentials with cutoff energy of the plane waves of 500 eV are used 
to describe the electron-ion interaction. For the Brillouin zone sampling, the 
17 ° 17 ° 17 of Monkhorst-Pack mesh [15] is used, where the self-consistent 
convergence of the total energy is at 10˜6 eV per atom. 

For CaO crystal at zero temperature and pressure equilibrium, lattice constant a 
and bulk modulus B0 are as shown in Table 6. 

Figure 3. 
Crystal structure of MgO. (a) MgO cubic crystal. (b) Crystal in x-direction. (c) Crystal in y-direction. 
(d) Crystal in z-direction. 

Atom x y z Occupancy rate Uiso or Ueq 

Mg 0.000 0.000 0.000 1.00 1.00 

O 0.500 0.500 0.500 1.00 1.00 

Table 5. 
Atomic coordinates and displacement parameters of MgO [19]. 
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a C11 C12 C44 B G 

Present (LDA) 4.7124 289.497 71.432 76.652 144.12 88.295 

Present (GGA) 4.8339 200.879 56.902 75.600 104.89 74.134 

Ref. [21] 4.72 274 54 53 128 — 

Ref. [22] 4.820 206 50 66 102 71 

Ref. [23] 4.838 239 51.6 77.4 117 83.6 

Ref. [24] 4.840 223 53 84 109 85 

Exp. [37] 221.89 57.81 80.32 80.59 

Exp. [38] 220.53 57.67 80.03 80.59 

Table 6. 
Lattice a, elastic constants, bulk and shear moduli of CaO at zero pressure. 

The structural and the elastic properties of CaO are investigated by ab initio plane-
wave pseudopotential density functional theory method. Lattice a, elastic constants, 
bulk and shear moduli of CaO under different pressures are shown in Table 7. 

As can be seen from the Table 8, the obtained a, Cij, B, and G of the B1-phase 
CaO agree well with the experimental data [37, 38] and other calculated results 
[21–24]. CaO cubic crystal under pressure 0–1.0 GPa by GGA is shown in Figure 4. 

From Figure 4, we can see the pressure dependences of the elastic constants cij 
of CaO at zero temperature and different pressures. It is found that c11 varies largely 
under the effect of pressure, compared with the variations in c12 and c44. The change 
of elastic constant c11 represents a produced change with a longitudinal strain in 
length elasticity. The elastic constants c12 and c44 are related to the elasticity in 
shape, which is a shear constant. Besides, c12 and c44 are less sensitive of pressure as 
compared with c11. As pressure increases, c11 and c12 increase monotonically, but c44 

slightly decreases monotonically. 

5.1.2.2 Initial conditions and elastic constants of MgO 

Similarly, the exchange-correlation interaction by using the GGA and LDA of 
the exchange-correlation functions is adopted. Ultrasoft pseudopotentials with cut-
off energy of the plane waves are set to 700 eV to describe the electron-ion 

P a V(Å3) c11 c12 c44 

0.0 (LDA) 4.7124 104.647 289.497 71.432 76.652 

0.0 (GGA) 4.8339 112.951 200.879 56.902 75.600 

0.1 (GGA) 4.8324 112.847 201.548 56.742 75.621 

0.2 (GGA) 4.8310 112.748 202.538 56.986 75.639 

0.3 (GGA) 4.8299 112.665 203.062 56.893 75.659 

0.4 (GGA) 4.8279 112.534 204.506 57.361 75.683 

0.5 (GGA) 4.8264 112.428 205.667 57.736 75.717 

0.6 (GGA) 4.8251 112.336 206.105 57.440 75.717 

0.7 (GGA) 4.8238 112.249 207.001 57.664 75.753 

0.8 (GGA) 4.8219 112.110 208.202 57.762 75.784 

0.9 (GGA) 4.8204 112.008 209.415 58.192 75.890 

1.0 (GGA) 4.8193 111.934 209.830 58.059 75.823 

Table 7. 
Lattice a, elastic constants, bulk and shear moduli of CaO under different pressures. 
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a C11 C12 C44 B G A 

Present (LDA) 4.2130 298.508 92.228 141.197 160.988 124.506 — 

Present (GGA) 4.2130 343.468 106.358 140.823 185.395 131.449 — 

Ref. [19] 4.2130 — — — 167.600 — — 

Ref. [22] 4.30 270 73 127 139 115 0.21 

Ref. [24] 4.2590 318 87 144 164.000 132 0.18 

Ref. [29] — 298.96 96.42 157.13 163.930 131.80 — 

Ref. [33] 4.2210 300 93.6 147 162.4 127.6 0.29 

Ref. [35] 4.2510 291 91 139 158.00 121.800 0.27 

Ref. [39] 4.16–4.24 286–352 91–108 158–188 157.0–198.0 — — 

Ref. [40] 4.212 — — — — — — 

Table 8. 
Lattice a, elastic constants Cij, bulk and shear moduli of MgO at zero pressure. 

interaction. For Brillouin zone, the 15 ˜ 15 ˜ 15 of Monkhorst-Pack mesh [15] is 
used, where the self-consistent convergence of the total energy is at 10 °6 eV per 
atom. 

As can be seen in Table 8, the obtained a, Cij, B, and G of the MgO agree well with 
the experimental data [29] and other calculated results [19, 22, 24, 33, 35, 39, 40]. It is 
noted that c12 and c44 for MgO are positive indicating that the MgO is stable at zero 
pressure (Table 9). 

In the case of cubic crystals, there are only three independent elastic constants of 
c11, c12, and c44. MgO cubic crystal under pressure 0–1.0 GPa by GGA is shown in 
Figure 5. 

From Figure 5, we can see that c11 varies largely under the effect of pressure as 
compared with the variations in c12 and c44. 

5.2 Elastic coefficients Cij of hexagonal crystals: CH and calcite 

Portlandite is one of the main typical constituents of hydrated cementitious 
systems. CH represents 17–25% of the volume fraction of portland cement paste, 
and its Young’s modulus is needed in the modeling of cement systems on the macro-
and microscales [41, 42]. Portlandite influences the physical and mechanical prop-
erties as well as the durability of cement-based materials. Calcite has very large 

Figure 4. 
CaO cubic crystal under pressure 0–1.0 GPa by DFT. (a) Relative change of V. (b) Elastic constants. 
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P a V (Å3) c11 c12 c44 

0.0 (GGA) 4.2130 74.778 343.468 106.358 140.823 

0.0 (LDA) 4.2130 74.778 298.508 92.228 141.197 

0.1 (GGA) 4.2038 74.289 309.892 95.878 142.181 

0.2 (GGA) 4.2030 74.246 308.989 94.200 142.178 

0.3 (GGA) 4.2022 74.202 310.994 95.635 142.300 

0.4 (GGA) 4.2012 74.153 312.885 96.635 142.371 

0.5 (GGA) 4.2005 74.115 313.050 96.187 142.484 

0.6 (GGA) 4.1996 74.069 313.565 96.092 142.519 

0.7 (GGA) 4.1988 74.025 314.766 96.493 142.597 

0.8 (GGA) 4.1979 73.980 314.612 95.599 142.677 

0.9 (GGA) 4.1971 73.937 316.353 96.652 142.857 

1.0 (GGA) 4.1963 73.893 317.067 96.738 142.940 

Table 9. 
Lattice a, elastic constants, bulk and shear moduli of MgO under different pressures. 

Figure 5. 
MgO cubic crystal under pressure 0–1.0 GPa by DFT. (a) Relative change of V. (b) Elastic constants. 

industrial applications in the field of civil engineering construction, and it can also 
be used as a flux in glass and in the field of metallurgy. 

5.2.1 Modeling of hexagonal crystals: CH and calcite 

5.2.1.1 Portlandite hexagonal structure 

Laugesen [43] has calculated the elastic properties of portlandite using the 
density functional calculations, where elastic constants are given by GGA method. 
Speziale et al. [44] have determined the elastic constants of portlandite by Brillouin 
spectroscopy. Besides, Busing et al. [45] have investigated the calcium hydroxide 
structure by the neutron diffraction, of which the atomic information is given and 
thus is used to establish the CH model. The morphology of the portlandite crystal is 
hexagonal when the structure of the crystal is trigonal [45] with space group P3m1. 
Initial model of CH is as shown in Figure 6. 

As shown in Figure 6, Ca2+ is octahedrally coordinated by oxygen. CH is a 
hexagonal structure, the initial crystal lattice [43] is: a = b = 3.5930 Å, c = 4.9090 Å, 
α = β = 90°, γ = 120°. There is no hydrogen bond or other strong bonds across the 
layer. Ca2+ is octahedrally coordinated by oxygen and each O2˜ is tetrahedrally 
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Figure 6. 
Final optimized parameters of CH hexagonal crystal. (a) CH hexagonal crystal. (b) Real CH cell. (c) Cell in 
x-direction. (d) Cell in y-direction. (e) Cell in z-direction. 

coordinated by calcium and hydrogen. The direction of hydroxyl groups formed by 
oxygen and hydrogen is vertical to the (001) plane direction. The atomic distance 
between O2˜ and H+ is 2.757 Å (Table 10). 

In order to determine whether the elastic coefficients under various pressures 
are stable, the pressure region of 0–5.0 GPa is added, with the same initial condi-
tions of Laugesen [43]. 

5.2.1.2 Calcite hexagonal structure 

Several researchers [46, 47] have been interested in elastic constants of calcite 
and its structure. Each carbon atom of calcite is the center of an equilateral triangle, 
and each vertex of the triangle is occupied by the oxygen atom. The calcite is 
crystallizing in the trigonal system “or rhombohedral” system. Zhang and Reeder 
[48] have investigated compressibilities of calcite-structure carbonates and con-
firmed the results found by Aydinol et al. [49] on the post- and pyroxene-aragonite 
phase type. Rohl et al. [50] have developed a new force field for calcite model. 
Effenberger et al. [51] discussed some aspects of the stereochemistry of calcite-type 
carbonates. Pilati et al. [52] have given the atomic displacement parameters in the 
calcite structure. Zaoui and Sekkal [53] have investigated the mechanisms behind 
the ikaite-to-calcite phase transformation by using molecular dynamics calcula-
tions. Le Page et al. [54] have investigated calcite using ab initio calculation to study 
their stiffness properties. Meanwhile, the elastic properties of calcite structure have 
been studied by Chen et al. [55] using Brillouin spectroscopy. Dandekar and Ruoff 
[56] have investigated the MgO structure on the temperature dependence of the 
elastic constants. Prencipe et al. [57] have studied its structure and properties using 
an ab initio quantum-mechanical calculation. 

Initial hexagonal model of calcite by Prencipe [57] is as: a = b = 5.0492 Å, 
c = 17.343 Å, α = β = 90°, γ = 120°, with space group R-3C. The calcite model is as 
shown in Figure 7. 

The initial lattice of calcite hexagonal crystal is as shown in Figure 7(a). From 
Figure 7(a) and (b), calcite crystal has the following features: (1) two Ca atoms are 
connected to the anionic groups (CO3 

˜2), form together an equilateral triangle, 
including the central carbon atom and each vertex totalizing three oxygen atoms. 

Atomic species X Y Z Occupancy rate Uiso or Ueq 

Ca 0.0000 0.0000 0.0000 1.00 1.00 

O 0.3333 0.6667 0.2346 1.00 1.00 

H 0.3333 0.6667 0.4280 1.00 1.00 

Table 10. 
Atomic coordinates and displacement parameters of portlandite [45]. 
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Figure 7. 
Calcite hexagonal model. (a) Calcite hexagonal model. (b) In x-direction. (c) In y-direction. 
(d) In z-direction. (e) CO3 group. 

Atomic species X Y Z Occupancy rate Uiso or Ueq 

Ca 0.0000 0.0000 0.0000 1.00 1.00 

C 0.0000 0.0000 0.2500 1.00 1.00 

O 0.25642 0.0000 0.2500 1.00 1.00 

Table 11. 
Atomic coordinates and displacement parameters of calcite [57]. 

(2) CO3 group interatomic distances are as: C▬O is 1.2815 Å, Ca▬O1 is 3.4589 Å, 
O▬O1 is 2.2197 Å, O▬O2 is 4.7911 Å, O▬O3 is 3.4107 Å, and O▬O4 is 4.2459 Å 
(Table 11). 

In order to determine whether the elastic coefficients under various pressures 
are stable, the pressure region of 0–5.0 GPa using DFT methods is added. 

5.2.2 Initial conditions and elastic constants of CH and calcite 

5.2.2.1 Initial conditions and elastic constants of CH 

Initial conditions are as: GGA of the exchange-correlation function is used. 
Ultrasoft pseudopotentials with cutoff energy of the plane waves are 700 eV. 
Brillouin zone is 12 ˜ 12 ˜ 12. The self-consistent convergence of the total energy is 

Figure 8. 
CH hexagonal crystal under pressure 0–5.0 GPa by DFT. (a) Relative change of a, c, and V. (b) Elastic 
constants. 
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at 10˜6 eV per atom. The simulation of CH hexagonal crystal under pressure 
0–5.0 GPa by GGA method is shown in Figure 8. 

The changes of elastic constants (GPa) of CH under various pressures are sepa-
rately calculated, and the results are shown in Table 12. 

From Figure 8, for CH crystal at 0 GPa, elastic coefficients under initial condi-
tions by DFT are as: c11 = 103.948 GPa, c12 = 30.923 GPa, c13 = 2.564 GPa, 
c33 = 42.670 GPa, and c44 = 14.140 GPa. C14 is turned out not to be zero, which is 
different to the result of Laugesen. We can see that all elastic coefficients (c14 not 
included) under various pressures are stable except for a pressure of 1.0 and 
4.5 GPa. 

5.2.2.2 Initial conditions and elastic constants of calcite 

Generalized gradient approximation (GGA) of the exchange-correlation func-
tion is used. Ultrasoft pseudopotentials with cutoff energy of the plane waves are 
700 eV. Brillouin zone is 12 ° 12 ° 12. The self-consistent convergence of the total 
energy is 10˜6 eV per atom. 

Results of hexagonal calcite crystal under pressure 0–5.0 GPa by GGA is shown 
in Figure 9. 

From Figure 9, for calcite crystal, elastic coefficients under initial conditions at 
0 GPa by DFT are given as follows: c11 = 143.938 GPa, c12 = 55.579 GPa, 
c13 = 50.970 GPa, c33 = 81.175 GPa, and c44 = 32.658 GPa. The elastic coefficients of 
calcite under pressure 0–5 GPa show slight growing trends except for c11 and c12 

within a pressure region of 2.5–3.5 GPa. 
The calculated elastic constants of calcite are given in Table 13. 
From Table 13, elastic constants have been calculated by GGA method as fol-

lows: c11 = 143.938 GPa, c12 = 55.579 GPa, c13 = 50.970 Pa, c33 = 81.175 GPa, and 
c44 = 32.658 GPa. By LDA method, elastic constants have been calculated as follows: 
c11 = 153.926 GPa, c12 = 55.806 GPa, c13 = 50.970 Pa, c33 = 82.702 GPa, and 
c44 = 59.991 GPa. 

Similarly, for elastic constants Cij of monoclinic crystals (gypsum and 11 Å 
tobermorite), the content is detailed in our previous chapter work [9]. Further-
more, elastic moduli of cubic, hexagonal, and monoclinic structures at larger scale 
can be homogenized by the calculated elastic constants mentioned, as in Chapter 4. 

Figure 9. 
Calcite hexagonal crystal under pressure 0–5.0 GPa by DFT. (a) Relative change of a, c, and V. (b) Elastic 
constants. 
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6. Conclusions 

Elastic constants of typical crystal structures under a certain pressure region are 
calculated by DFT method. Three types of the cubic, hexagonal, and monoclinic 
crystals are considered, which have a certain value for both application and refer-
ence. Results are as: 

1) For cubic structure, results are as: 

(i) Elastic constants of CaO single crystal are as: c11 = 200.879 GPa, 
c12 = 56.902 GPa, and c44 = 75.600 GPa. 

(ii) Elastic constants of our MgO single crystal are as: c11 = 298.508 GPa, 
c12 = 92.228 GPa, and c44 = 141.197 GPa. 

2) For hexagonal structure, results are as: 

(i) For CH crystal, elastic constants under initial conditions at 0 GPa based on 
GGA method are as: c11 = 103.948 GPa, c12 = 30.923 GPa, c13 = 2.564 GPa, 
c14 = 4.336 GPa, c33 = 42.670 GPa, and c44 = 14.140 GPa. Besides, elastic 
constants based on LDA method are as: c11 = 95.417 GPa, c12 = 27.162 GPa, 
c13 = 1.313 GPa, c14 = 0.242 GPa, c33 = 27.585 GPa, and c44 = 8.998 GPa. We 
can see that C14 is not zero, which is different to the result of Laugesen. 
The elastic coefficients under various pressures are stable except for a 
pressure of 0.8 GPa. 

(ii) For calcite crystal, elastic coefficients under initial conditions at 0 GPa by 
DFT are given as follows: c11 = 143.938 GPa, c12 = 55.579 GPa, 
c13 = 50.970 GPa, c33 = 81.175 GPa, and c44 = 32.658 GPa. The elastic 
coefficients of calcite under pressure 0–5 GPa show slight growing trends 
except for a pressure of 2.5–3.5 GPa. 

Moreover, for monoclinic single-crystal structure (11 Å tobermorite and gyp-
sum), elastic coefficients are detailed in our previous chapter work of “Elastic 
constants and homogenized moduli of monoclinic structures based on density 
functional theory.” 
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Chapter 4 

Homogenized Moduli of Typical 
Polycrystals by Elastic Constants 
Based on DFT 
Jia Fu 

Abstract 

X-ray method to test the material properties and to obtain elastic constants is 

stress (Reuss model) have not been given, work aims to complete this part of our 
the theoretical analysis which effectively compare elastic constants measured can 
by the X-ray diffraction method. The structural and the elastic properties of cubic 

’ 

commonly based on the Reuss and Kroner models. Y parameter has been turned out 
to be an effective method to estimate elastic properties of polycrystalline material. 
Since Y parameters of cubic polycrystalline material based on the certain uniform 

structures (CaO and MgO) and hexagonal structures (CH and Calcite CaCO3) are 
investigated by the density functional theory method, and then, the credibility of Y 
parameters for determining elastic moduli of cubic structures is proved and elastic 
properties in typical crystallographic planes of [100], [110], and [111] are also 

s moduli of CaO, MgO, CH, and calcite structure are calculated. Meanwhile, Young 

’ 
’ 

175.76, 293.17, 58.08, 84.549, 54.30, and 79.51 GPa, which are all close to references. 
Elastic properties of cubic and hexagonal structures under various pressures are 
calculated and the surface constructions of elastic moduli are drawn, showing the 

s 
s ratio, and anisotropy factor are determined. 

anisotropy at various directions. Then, the bulk modulus, shear modulus, Young 
modulus, Poisson 

Keywords: anisotropic elasticity, Young ’s modulus, Y parameter, cubic crystal, 
hexagonal crystal, polycrystalline materials 

1. Introduction 

The development of computational methods to describe and predict the 
mechanical properties of materials is of obvious practical importance. The accuracy 
of the prediction of mechanical or, from a more general point of view, physical 
properties depends largely on the knowledge of the intrinsic properties of the 
various constitutive phases. Up to now, these properties have been solely obtained 
by experimental procedures. The tremendous increase of computational capabilities 
has largely favored the development of numerical modeling based on a realistic and 
multiscale description of these kinds of materials. Since several years, some of the 
authors of this chapter have been involved in the development of such numerical 
tools from the micro- to the macrolevel (see, for instance, [1] or [2]). The intent is 
to assist the material developer by providing a rational approach to material devel-
opment and concurrently assist the structural designer by providing an integrated 
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analysis tool that incorporates fundamental material behavior. It is now clear that 
any realistic attempts to accomplish such an objective should be based on appropri-
ate nanostructure/performance relationships, and also on an efficient method to 
upscale the properties determined on the lowest level to the next higher one. This is 
the context of the work detailed in this chapter. 

Generally, many industrial and engineering materials consisted of dissimilar 
constituents are essentially inhomogeneous, which are distinguishable at a small 
length scale. Each constituent composed by anisotropic crystals shows different 
material properties and/or material orientations at some smaller length scales. At a 
sufficiently fine scale, all materials can be considered to be heterogeneous. The 
crystal anisotropy would be very difficult to handle computationally when the 
crystals are overlapping, the structure of isotropic polycrystals as the real materials 
at large scale are usually isotropic. The length-scale problem is considered as a great 
importance factor in material mechanics. Each material has structural features from 
the microstructure when studied at sufficiently physical parameters, from the view 
of homogenization. Polycrystalline structure contains a variety of information 
(e.g., orientation) and the properties of a single crystal, such as anisotropy. Within 
the mechanics of typical crystal structures, the transition from the micro- to the 
mesoscale (homogenization) and vice versa (localization) can be estimated. 

Homogenization is an idealized description of a statistical distribution inside the 
actual heterogeneous material. At the engineering level, there exists such a scale 
(intermediate between the microscopic scale—that of the constituents—and the 
scale of the structure); it is said that the material can be homogenized. As opposed 
to the scale of constituents, the macroscopic homogeneity is called to be of statisti-
cal homogeneity or microscopic. The concept of homogenization is gradually pro-
posed, the Gologanu-Leblond-Devaux’s (GLD) analysis of an rigid-ideal plastic 
(von Mises) spheroidal volume gradually is extended to the case when the matrix is 
anisotropic (obeying Hill’s anisotropic yield criterion), and the representative vol-
ume element (RVE) is subjected to arbitrary deformation. For quasibrittle mate-
rials, Zhu et al. [3] have formulated the anisotropic model in the framework of 
Eshelby-based homogenization methods. However, for the homogenization of elas-
tic deformation, especially for polycrystalline structures, it is still the traditional 
Reuss-Voigt-Hill method. The homogenized moduli can be determined using the 
homogenization theory where periodic media are implemented. The hypothesis of 
continuity of a material is introduced to overcome theoretical difficulty, which 
implies a notion of statistical average, and the actual constitution of the material is 
idealized by considering the material to be continuous. Once the continuity model is 
admitted, the concept of homogeneity is deduced from it [4]. A homogeneous 
medium is then characterized by properties that are identical at every point. This 
hypothesis is particularly suitable for polycrystalline model. 

1.1 Limits of X-ray diffraction methods and Voigt-Reuss-Hill averaging 

Macroscopic averaging assuming a random distribution of initial crystals leads to 
isotropic mechanical properties such as Young’s modulus. The upscaling to higher 
levels is then done by means of the Y-parameter theory which has been introduced 
by Zheng et al. [5, 6] a few years ago to overcome the limits of X-ray diffraction 
methods and conventional Voigt-Reuss-Hill averaging, as it is recalled in the fol-
lowing of the introduction, but which can also be seen as an efficient way to 
estimate homogenized properties. 

X-ray method is commonly used to test the physical properties of materials. By 
satisfying the Bragg crystal diffraction conditions, the values, the shapes, and the 
position changes of the diffraction peak are tested to calculate the distance between 
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the crystal surfaces. Then, the strain value at the normal direction of the crystal 
surface can be solved through the distance between the crystal surfaces mentioned 
above. Normally, elastic constants measured by X-ray method contain the function 
of diffraction surface, which can be averaged within the total space to determine 
the macroscopic elastic properties of the material [7]. By multiplying the relevant 
X-ray elastic constant and the strain value, the stress in the material can be thus 
obtained. Until now, for the commonly used X-ray stress analyzer, the principle of 
X-ray diffraction to test the material stress and to obtain elastic constants [8] is 
based on the uniform certain stress Reuss model. However, for the uniform certain 
strain Voigt model, there are still some difficulties in explaining its principle by 
X-ray diffraction method. Based on the content mentioned above, Y parameter is 
introduced on the basis of theoretical formulas’ derivation to explain both Reuss 
and Voigt models. 

However, for the uniform certain strain Voigt model, there are still some diffi-
culties in explaining its principle by X-ray diffraction method. X-ray method is 
associated to the material surface, of which X-ray absorption and X-ray magnetic 
circular dichroism (XMCD) are very powerful tools [9]. Diffraction-based stress 
analysis depends critically on the use of the correct diffraction elastic constants 
[10]. By comparing various calculation method to determine homogenized moduli 
of the polycrystalline material composed of a single crystal, for example, the certain 
stress of Reuss model [11], the certain strain of Voigt model [12] and Kröner-Voigt 
model [7] taking into account these two models and interaction between crystals, 
the Y parameter, in the theoretical calculation to forecast the elastic modulus of 
polycrystalline material, has a high consistency. Y parameter makes up the meth-
odological disadvantage of X-ray diffraction method (only the stress determined by 
strain). It can be used to estimate the homogenized properties under various crystal 
planes, which is the function associated with the crystal plane index. 

Y parameters of both cubic and hexagonal polycrystalline materials based on 
the Voigt model of the certain strain [3, 4] and Y parameters of only hexagonal 
polycrystalline materials based on the certain stress of the Reuss model [4] 
have been given. In this work, it is first proposed to complete this part of the 
theoretical analysis and to obtain the definition of the Y parameter based on the 
Reuss model [13]. Here, the expression form of the 6 ˜ 6 matrix (36 parameters) 
[14] is used instead of the four-rank tensor (81 parameters) in order to simplify 
the actual computing work and the derivation [15]. Based on the content 
mentioned above, the concept of Y parameter, as new evaluation criteria, has been 
proposed on the basis of theoretical formulas’ derivation to explain both Reuss and 
Voigt models. 

1.2 Macroscopic mechanical behavior of cubic and hexagonal polycrystals 

Polycrystalline material composed of a single crystal, which generally exhibits 
anisotropic mechanics, with a probability distribution depicting upward almost the 
same as in three-dimensional space, exhibits an isotropic behavior at macroscopic 
scale. Using Voigt model, elastic stiffness tensor is obtained by Morris [16] and 
Sayers [17], using the volume averaging with setting orthogonal constitutive rela-
tion of cubic crystal. Based on Voigt and Reuss models, Li and Thompson [18] have 
deduced elastic stiffness with setting orthogonal constitutive relations of hexagonal 
crystal for determining the upper and lower bounds. Anderson et al. [19] have 
verified these bounds and obtained the orthogonal polycrystalline texture coeffi-
cient of hexagonal crystal using ultrasonic measurement. Then, the compressibility, 
shear modulus, bulk modulus, Young’s modulus, and Poisson’s ratio can be calcu-
lated based on the Voigt-Reuss-Hill approximation [20, 21]. 
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Y parameter can be seen as a function of the crystal plane index. Its theoretical 
derivation is thus relative to the type of crystal. Only cubic and hexagonal structures 
have been concerned by this concept. Y parameter of cubic and hexagonal structures 
was first introduced and presented by Zheng et al. [3, 4] in 2009. Elasticity of single 
crystal and mechanical properties of polycrystalline material has been closely inte-
grated. For that, a preliminary study by ab initio plane-wave pseudopotential density 
functional theory method is first performed for each of the considered crystalline 
structures mentioned in Chapter 3; then, this chapter focuses on some cubic, hexag-
onal, and monoclinic polycrystals to estimate their homogenized elastic moduli. In 
this part, the methodology of Y parameter is applied to typical cubic, hexagonal, and 
monoclinic structures, respectively, CaO and MgO, CH, and calcite CaCO3. Elastic 
moduli of the monoclinic tobermorite and gypsum polycrystals structures are calcu-
lated by Reuss-Voigt-Hill estimation [13]. Based on the elastic constants of cubic and 
hexagonal crystals, the corresponding Y parameter, as the new evaluation criteria, has 
been proposed. Thus, the credibility of Y parameters for determining elastic moduli 
of both cubic and hexagonal structures is proved. Elastic moduli of the monoclinic 
tobermorite structures calculated by Reuss-Voigt-Hill estimation are found to be 
further investigated for an amorphous structure in Chapter 5. 

2. Y parameter of cubic structure by Voigt and Reuss models 

Voigt and Reuss models are separately based on the assumption of the uniform 
deformation for upper bound and the uniform stress for lower bound. After that, 
Hill proposed averaged Voigt and Reuss models with a certain value in engineering 
application. However, according to the elastic constant definition of Hill model, that˜ ° ˛ ˝ 
is to say SHill ¼ 1 SReuss þ C� 

Voigt 
1 and CHill ¼ 1 CVoigt þ S�1 , it can be seen that the 2 2 Reuss 

stiffness coefficient C and the compliance coefficient S do not satisfy the relation 
C � S ¼ I. In other words, the elastic constants of Hill model are not self-consistent. 
That is why the Y parameter has been introduced to redefine the bounds of cubic 
and hexagonal polycrystals. 

For Y-parameter description, macroanalysis of a cubic and hexagonal polycrys-
talline system is shown in Figure 1. At L3 direction, there exists an orientation 
relationship between the global coordinate system [S] and the experimental coor-
dinate system [L]. If set the direction cosine of the direction L3 within system [S] 
relative to l, m, n, one can get [3]: 

l ¼ sin ψ cos ϕ 

m ¼ sin ψ sin ϕ (1) 

n ¼ cos ψ 

Therefore, whole strain εϕψ at the direction L3 is as [22, 23]: 

εϕψ ¼ l2ε11 þ m2ε22 þ n2ε33 þ lmγ12 þ mnγ23 þ nlγ31 (2) 

Therefore, whole stress σϕψ at the direction L3 is as [22, 23]: 

σϕψ ¼ l2σ11 þ m2σ22 þ n2σ33 þ 2ðlmτ12 þ mnτ23 þ nlτ31Þ (3) 

For cubic and hexagonal crystals, when the polycrystalline material as a whole is 
isotropic, Lamé constant λ as a polycrystalline material parameter satisfies the 

E relationship: λ ¼ 2μG ; here, E, μ, G are, respectively, Young’s modulus, 1�2μ, G ¼ 2 1ð þμÞ 
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Figure 1. 
Macro analysis of a polycrystalline system. (a) Macro analysis of a polycrystalline system and (b) schematic 
shear crystal plane. 

Poisson’s ratio, and shear modulus of the polycrystalline materials. When the poly-
crystalline material as a whole is only under a normal stress, thus 
τ12 ¼ τ23 ¼ τ31 ¼ 0; then, we can see that γ12 ¼ γ23 ¼ γ31 ¼ 0. If suppose ϕ ¼ 0°, 
Eq. (3) can be simplified as [3]: 

˜ ° 
σϕψ ¼ l2σ11 þ m2σ22 þ n2σ33 ¼ λ εð 11 þ ε22 þ ε33Þ þ 2G ðε11 � ε33Þ sin 2ψ þ ε33 

(4) 

From Figure 1, for Reuss bounds of cubic crystal, when the isotropic material as 
a whole is only under a uniaxial stress (i.e., σ11 6¼ 0, other stress components are 
zero) and under the conditions of ϕ ¼ 0°, the ratio expression between the whole 
strain and the uniaxial stress from Eq. (4) will be eventually developed as [3]: 

˛ ˝ ˙ ˆ  εϕψ 1 þ μ μ ¼ sin 2ψ � (5) 
σ11 E E 

2.1 Reuss bounds of cubic polycrystalline structure 

For the Reuss bound of cubic polycrystalline structure, the content is detailed in 
our previous work [13]. The main crystallographic planes of a cubic crystal are 
shown in Figure 2. 

As in Figure 2, if the uniaxial tensions are separately applied in the direction of 
[100], [110], and [111] for a cubic crystal, according to the Ref. [24], Young’s 
moduli by elastic constants C11, C12, and C44 can be calculated as follows: 

2 2 c11 þ c11c12 � 2c12 ¼ (6) Ej½100� c11 þ c12 ˇ ˘ 
2 2 4 c11 þ c11c12 � 2c12 c44 Ej½110� ¼ 

c2 (7) 
11 þ c11c12 þ 2c11c44 � 2c212 

3ðc11 þ 2c12Þc44 ¼ (8) Ej½111� c11 þ 2c12 þ c44 
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Figure 2. 
Some crystallographic planes of a cubic crystal. (a) The directions in a cubic lattice and (b) the {100}, {110}, 
and {111} planes. 

For cubic crystal, Y elastic constants based on Reuss model which has contained 
crystal surface normal (n = (u, v, w)) are as: 

1 
GY ðu; v; wÞ ¼  (9) 

2ðs11 � s12Þ � 3 2½ ðs11 � s12Þ � s44�Γ 

1 
EY ðu; v; wÞ ¼  (10) 

s11 � ½2ðs11 � s12Þ � s44�Γ 

2s12 þ ð2ðs11 � s12Þ � s44ÞΓ 
μY ðu; v; wÞ ¼ �  (11) 

2fs11 � ½2ðs11 � s12Þ � s44�Γg 

2 2 2 2 where Γ ¼ u v2 þ v w2 þ w u . From Eqs. (9)–(11), elastic moduli of cubic 
structures by Y parameters can be calculated, and the relationship of G-3Γ, E-3Γ, 
and μ-3Γ can be calculated and the limitation of elastic moduli can be determined by 
Reuss and Voigt models. 

2.2 Voigt bounds of cubic polycrystalline structure 

As is shown in Figure 2, supposing that the direction cosines are L3 (u, v, w) 
relative to the cubic crystal coordinates [K], the relationship between the macro-
scopic stress σL3 in L3 direction and the stress component (σx, σy, σz, τyz, τzx, τxy) of 
the coordinate system [K] is as [22, 23]: 

2σz þ 2 vwτyz þ wuτzx þ uvτxy σL3 ¼ u2σx þ v2σy þ w (12) 

With respect to the coordinate system [K], the relationship between stress and 
strain of single cubic crystal structure is as: 

2 2 3 2 3 3 
σx c11 c12 c12 0 0 0 

c12 c11 c12 0 0 0 

c12 c12 c11 0 0 0 

εx 

666666664 

777777775 

¼ 

666666664 

777777775 

666666664 

777777775 

σy 

σz 

τyz 0 0 0 c44 0 0 

εy 

εz 

γyz 
(13) 

τzx 0 0 0 0 c44 0 γzx 

τxy 0 0 0 0 0 c44 γxy 

Submitting Eq. (13) into Eq. (12), one can get: 
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σL3 2 2 2 ¼ c11 u2εx þ v2εy þ w2εz þ c12 v2 þ w εx þ u2 þ w εy þ u2 þ v εz 

þ 2c44 vwγyz þ uwγzx þ uvγxy 

(14) 

With respect to the coordinate system [K], assuming the three direction cosines 
of coordinate axes [S] (respectively S1, S2, S3) are S1 (l1, m1, n1), S2 (l2, m2, n2), 
S3 (l3, m3, n3), and considering relationship between strain components in coordi-
nates system [S] and strain component of coordinates system [K], we can get 
relation γ12 ¼ γ23 ¼ γ31 ¼ 0 when the polycrystalline material is limited only by the 
principal stress (τ12 ¼ τ23 ¼ τ31 ¼ 0). So the following formula of strain holds [22]: 

εx ¼ l21ε11 þ l22ε22 þ l23ε33 

2 2 2 εy ¼ m1ε11 þ m2ε22 þ m3ε33 

2 2 2 εz ¼ n1ε11 þ n2ε22 þ n3ε33 
(15) 

γyz ¼ 2ðm1n1ε11 þ m2n2ε22 þ m3n3ε33Þ 
γzx ¼ 2ðn1l1ε11 þ n2l2ε22 þ n3l3ε33Þ 
γxy ¼ 2ðl1m1ε11 þ l2m2ε22 þ l3m3ε33Þ 

Substituting Eq. (15) into Eq. (14), one can get: 

� � � � � � �� 
σL3 2 l2 2 2 2 2 2 2 2 2 ¼ c11 u 1ε11 þ l2

2ε22 þ l23ε33 þ v m1ε11 þ m2ε22 þ m3ε33 þ w n1ε11 þ n2ε22 þ n3ε33 

� � � � � 
2 2 2 2 2 þ c12 ðv2 þ w Þ l12ε11 þ l22ε22 þ l3

2ε33 þ ðu2 þ w Þ m1 ε11 þ m2ε22 þ m3ε33 

2 2 2 2 þðu2 þ v Þ n1ε11 þ n2ε22 þ n3ε33 

þ 4c44½vwðm1n1ε11 þ m2n2ε22 þ m3n3ε33Þ þ uwðn1l1ε11 þ n2l2ε22 þ n3l3ε33Þ 
þ uvðl1m1ε11 þ l2m2ε22 þ l3m3ε33Þ� 

(16) 

In practice, for cubic polycrystalline structure, the single crystal has a haphazard 
distribution, and the probability distribution of the crystals depicting up almost the 
same in the three-dimensional space. So, we can average all directions in three-
dimensional space, and then obtain the mean stress σL3 so as to determine its 
macroscopic stress. Here, if ϕ ¼ 0°, we can obtain the mean stress σYL3 by averaging 
the orientation in the crystal plane: 

Ð 2π 

, 

σL3 σL3 dθ ¼ 0 
Ð 2π (17) Y dθ 
0 

Here, we use the certain strain of Voigt model, where the material is only under 
the uniaxial strain [12]. For polycrystalline, the stress can be obtained by averaging 
integral within a crystal surface according to the formula (17): 

σL3 ¼ ½c11 � c12 � 3ðc11 � c12 � 2c44ÞΓ�ðε11 � ε33Þ sin 2ψ þ ½c11 � c12 � 3ðc11 � c12 � 2c44ÞΓ�ε33 Y 

þðε11 þ ε22 þ ε33Þ � ½c12 þ ðc11 � c12 � 2c44ÞΓ� 
(18) 

2 2 2 2 where Γ ¼ u v2 þ v w2 þ u w , uð ; v; wÞ is the cosine normals within planes of 
cubic crystal. With comparison of Eq. (18) and Eq. (16), we can obtain Y elastic 
constants containing crystal surface normal (n = (u, v, w)) as [3]: 
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c11 � c12 3ðc11 � c12 � 2c44ÞΓ 
GY ðu; v; wÞ ¼  � (19) 

2 2 

λY ðu; v; wÞ ¼ c12 þ ðc11 � c12 � 2c44ÞΓ (20) 

E As λ ¼ 2μG 
Þ, formulas can be developed as: 1�2μ, G ¼ 2 1ð þμ 

˜ ° 
1 þ μ 1 ¼ (21) 
E Y c11 � c12 � ðc11 � c12 � 2c44Þ � 3Γ 

˛ ˝μ c12 þ ðc11 � c12 � 2c44ÞΓ � ¼ �  (22) 
E Y ðc11 þ 2c12Þ½c11 � c12 � 3ðc11 � c12 � 2c44ÞΓ� 

ðc11 þ 2c12Þ½c11 � c12 � 3ðc11 � c12 � 2c44ÞΓ� EY ðu; v; wÞ ¼  (23) 
c11 þ c12 � ðc11 � c12 � 2c44ÞΓ 

c12 þ ðc11 � c12 � 2c44ÞΓ 
μY ðu; v; wÞ ¼  (24) 

c11 þ c12 � ðc11 � c12 � 2c44ÞΓ 

Mechanical properties of polycrystalline can be obtained by Y elastic constant 
with averaging in the (u, v, w) entire 3-D space orientation, which are all elastic 
parameters having nothing to do with the crystal surface index. Assuming Γ ¼ 1=5 
[25], the mechanical properties of polycrystalline, such as Young’s modulus E, 
Poisson’s ratio μ, and the shear modulus G, are as [3]: 

c11 � c12 þ 3c44 c11 þ 4c12 � 2c44 GM ¼ , λM ¼ (25) 
5 5 ˜ ° 

1 þ μ 5 ¼ (26) 
E 2ðc11 � c12 þ 3c44Þ M 

˛ ˝μ c11 þ 4c12 � 2c44 � ¼ �  (27) 
E M 2ðc11 þ 2c12Þðc11 � c12 þ 3c44Þ 

ðc11 þ 2c12Þðc11 � c12 þ 3c44Þ EM ¼ (28) 
2c11 þ 3c12 þ c44 

c11 þ 4c12 � 2c44 
μM ¼ (29) 

2 2ð c11 þ 3c12 þ c44Þ 
Eqs. (19)–(24) are the theoretical formula of mechanical elastic constants and Y 

parameters of cubic polycrystal structures based on a certain strain of Voigt model. 
For cubic polycrystalline model, at first, we set a face normal as the basis axis on 

surface of a polycrystalline, and then average the normals in all 360° orientation 
within the polycrystalline surface. After obtaining Y elastic constants, we choose the 
average orientation of crystal surface normals on the entire three-dimensional space. 

3. Y parameter of hexagonal structure by Voigt and Reuss models 

Similarly for hexagonal crystal from Figure 1, for Voigt bounds, when the isotro-
pic material as a whole is only under a uniaxial stress (i.e., σ11 6¼ 0, other stress 
components are zero) and under the conditions of ϕ ¼ 0°, the ratio expression 
between the whole strain and the uniaxial stress from Eq. (4) will be eventually 
developed as [4]: 

˙ ˆ 
σϕψ ¼ λ εð 11 þ ε22 þ ε33Þ þ 2G ðε11 � ε33Þ sin 2ψ þ ε33 (30) 
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3.1 Reuss bounds of hexagonal polycrystal structure 

As in Figure 1, supposing that the direction cosines are L3 (u, v, w) relative to the 
hexagonal crystal coordinates [K], the relationship between the macroscopic strain 
εL3 (equivalent to εϕψ ) in L3 direction and the strain component (εx, εy, εz, γxy, γyz, γzx) 
of the coordinate system [K] is as [22, 23]: 

εL3 ¼ u2εx þ v2εy þ w2εz þ uvγxy þ vwγyz þ wuγzx (31) 

With respect to the coordinate system [K], the relationship between strain and 
stress of a single hexagonal crystal structure is as [23]: 

2 2 3 2 3 3 εx σx s11 s12 s13 0 0 0 
666666664 

777777775 

¼ 

666666664 

666666664 

777777775 

777777775 

εy 

εz 

γyz 

γzx 

σy 

σz 

τyz 

τzx 

s12 s11 s13 0 0 0 

s13 s13 s33 0 0 0 

0 0 0 s44 0 0 

0 0 0 0 s44 0 

(32) 

γxy 0 0 0 0 0 2ðs11 � s12Þ τxy 

Substituting Eq. (32) into Eq. (31), one can get: 

εL3 2σy þ v2σx � 2uvτxy 
2σz þ s44w vτyz þ uτzx 

¼ s11 u2σx þ v2σy þ 2uvτxy þ s12 u h i (33) þ s13 ð 2 2 u2 þ v Þσz þ w σ x þxσ y þ s33w 

With respect to the coordinate system [K], assuming the three direction cosines 
of coordinate axes [S] (respectively S1, S2, S3) are S1 (l1, m1, n1), S2 (l2, m2, n2), 
S3 (l3, m3, n3), the relationship between the stress components in the coordinate 
system [K] and the stress component of the coordinate system [S] is as follows [26]: 

σx ¼ ∑liljσij (34) 

σy ¼ ∑mimjσij (35) 

σz ¼ ∑ninjσij (36) 

τxy ¼ ∑limjσij (37) 

τyz ¼ ∑minjσij (38) 

τzx ¼ ∑niljσij (39) 

When the material is only under the uniaxial stress σ11 6¼ 0 and other stress 
components are zero, under these conditions, substituting Eqs. (34)–(39) into 
Eq. (54), one can get: 

þ 2l2 
1 þ v u 2 2

1 þ v m 2l2 
1 � 2uvl1m1 εL3 2 2 

1 þ 2uvl1m1 m ¼ þ s12 s11 u 
(40) 

l2 
1 þ m 2 2 2 2 þ v Þn1 þ w 2 

1 þ s33w 2 2n1 þ s44wðvm1n1 þ ul1n1 σ11 s13 ð Þ u 

In practice, for hexagonal polycrystalline structure, the single crystal has a 
haphazard distribution, and the probability distribution of the crystals depicting up 
almost the same in the three-dimensional space. So, we can average all directions in 

three-dimensional space, and then obtain the mean strain εL3 so as to determine its 
macroscopic strain. Here, if ϕ ¼ 0°, we can obtain the mean strain εYL3 by averaging 
the orientation in the crystal plane: 
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Ð 2π 

, 

2π εL3 ¼ 0 
εL3 dθ Ð (41) Y dθ 

0 

Here, (u, v, w) are normal direction cosines of hexagonal crystal surface, so we 
take Reuss model using a certain stress. For polycrystalline, the stress can be 
obtained by averaging integral within a crystal surface according to the formula 
(41): 

εL3 
� 2 4 � 
1 w 3w Y ¼ ð2s11 � s12 � s13Þ � ð5s11 � s12 � 5s13 þ s33 � 3s44Þ þ ðs11 � 2s13 þ s33 � s44Þ 

σ11 2 2 2 
2 4 

� sin 2ψ þ 
1 ðs12 þ s13Þ þ  

w ðs11 � s12 � s13 þ s33 � s44Þ � 
w ðs11 � 2s13 þ s33 � s44Þ 2 2 2 

(42) 

With comparison of Eq. (42) and Eq. (33), we can obtain Y elastic constants 
containing crystal surface normal (n = (u, v, w)) as: 

2 4 1 þ μ 1 w 3w ¼ ð2s11 � s12 � s13Þ � ð5s11 � s12 � 5s13 þ s33 � 3s44Þ þ ðs11 � 2s13 þ s33 � s44Þ E 2 2 2 Y 

(43) 

μ 1 w2 w4 

� ¼ ðs12 þ s13Þ þ  ðs11 � s12 � s13 þ s33 � s44Þ � ðs11 � 2s13 þ s33 � s44Þ E Y 2 2 2 
(44) 

As, according to Eq. (43) and Eq. (44), we can get 

1 
EY ðu; v; wÞ ¼  (45) 

s11 � ½2ðs11 � s13Þ � s44�w2 þ ðs11 � 2s13 þ s33 � s44Þw4 

4 s12 þ s13 þ ðs11 � s12 � s13 þ s33 � s44Þw2 � ðs11 � 2s13 þ s33 � s44Þw 
μY ðu; v; wÞ ¼ �  

2fs11 � ½2ðs11 � s13Þ � s44�w2 þ ðs11 � 2s13 þ s33 � s44Þw4g 

(46) 
1 

GY ðu; v; wÞ ¼  ð2s11 � s12 � s13Þ � ð5s11 � s12 � 5s13 þ s33 � 3s44Þw2 þ 3ðs11 � 2s13 þ s33 � s44Þw4 

(47) 

Mechanical properties of polycrystalline can be obtained by Y elastic constant 
with averaging in the (u, v, w) entire 3-D space orientation, which are all elastic 

parameters having nothing to do with the crystal surface index. Assuming w2 ¼ 1 
3 

and w4 ¼ 1 [25], the mechanical properties of polycrystalline, such as Young’s 5 

modulus E, Poisson’s ratio μ, and the shear modulus G, are as [4]: 

1 þ μ 7s11 � 5s12 � 4s13 þ 2s33 þ 3s44 ¼ (48) 
E 15 M 

μ s11 þ 5s12 þ 8s13 þ s33 � s44 � ¼ (49) 
E M 15 

15 
E ¼ (50) 

2 4ð s11 þ 2s13 þ s44Þ þ 3s33 

s11 þ 5s12 þ 8s13 þ s33 � s44 μ ¼ (51) 
2 4ð s11 þ 2s13 þ s44Þ þ 3s33 
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15 
G ¼ (52) 

2 7ð s11 - 5s12 - 4s13 þ 2s33 þ 3s44Þ 
Based on the Reuss bounds and elastic constants of a single crystal, the theoret-

ical formulas (48)–(52) of mechanical elastic moduli of hexagonal polycrystalline 
are finally determined. 

3.2 Voigt bounds of hexagonal polycrystal structure 

With respect to the coordinate system [K], the relationship between strain and 
stress of a single hexagonal crystal is as in Eq. (54). By Eq. (54) and Ref. [3], one can get:

    
σL3 ¼ c11 u2εx þ v2εy þ uvγxy þ c12 u2εy þ v2εx - uvγxy h   i   (53) 

2 2 þ c13 ðu2 þ v Þεz þw εxþxεy þ c33w2εz þ 2c44w vγyz þ uγzx 

Similar to Ref. [3], according to Voigt model [12], we can average oriented 
polycrystalline material within a crystal surface and obtain the mean stress: 

1   
σL3 2 4 ¼ 2c11 - c12 - c13 -w ð5c11 - c12 - 5c13 þ c33 - 12c44Þ þ 3w ðc11 - 2c13 þ c33 - 4c44Þ Y 2 

· ðε11 - ε33Þ sin 2ψ 

1   2 4 þ 2c11 - c12 - c13 -w ð5c11 - c12 - 5c13 þ c33 - 12c44Þ þ 3w ðc11 - 2c13 þ c33 - 4c44Þ 2 
1 · ε33 þ ðε11 þ ε22 þ ε33Þ 2 

2 4 · ½c12 þ c13 þ w ðc11 - c12 - c13 þ c33 - 4c44Þ - w ðc11 - 2c13 þ c33 - 4c44Þ] 
(54) 

According to Eq. (53) and Ref. [3], we can obtain Y elastic constants containing 
crystal surface normal (n = (u, v, w)) as: 

1   2 4 GY ðu; v; wÞ ¼  2c11 - c12 - c13 - w ð5c11 - c12 - 5c13 þ c33 - 12c44Þ þ 3w ðc11 - 2c13 þ c33 - 4c44Þ 4 

(55) 

1   2 4 λY ðu; v; wÞ ¼  c12 þ c13 þw ðc11 - c12 - c13 þ c33 - 4c44Þ - w ðc11 - 2c13 þ c33 - 4c44Þ 4 
(56) 

E , λ ¼ 2μG As G ¼ 1-2μ, formulas can be developed as follows [4]: 2 1ð þμÞ
  
1 þ μ 2 
E Y 

¼ 
2c11 - c12 - c13 - w2ð5c11 - c12 - 5c13 þ c33 - 12c44Þ þ 3w4ðc11 - 2c13 þ c33 - 4c44Þ 

(57)
  2 4 μ c12 þ c13 þw ðc11 - c12 - c13 þ c33 - 4c44Þ -w ðc11 - 2c13 þ c33 - 4c44Þ - ¼ - h i 
E Y c12-c13-w2ð5c11-c12-5c13þc33-12c44Þ ½c11 þ c12 þ c13 -w2ðc11 þ c12 - c13 - c33Þ] ·  2c11- þ3w4ðc11-2c13þc33-4c44Þ 

(58) 
2 EY ðu; v; wÞ ¼ ½c11 þ c12 þ c13 - w ðc11 þ c12 - c13 - c33Þ]· 

2 4 ½2c11 - c12 - c13 - w ð5c11 - c12 - 5c13 þ c33 - 12c44Þ þ 3w ðc11 - 2c13 þ c33 - 4c44Þ] 
2c11 þ c12 þ c13 -w2ð3c11 þ c12 - 3c13 - c33 - 4c44Þ þ w4ðc11 - 2c13 þ c33 - 4c44Þ 

(59) 
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2 4 c12 þ c13 þw ðc11 � c12 � c13 þ c33 � 4c44Þ � w ðc11 � 2c13 þ c33 � 4c44Þ μY ðu; v; wÞ ¼ 2c11 þ c12 þ c13 � w2ð3c11 þ c12 � 3c13 � c33 � 4c44Þ þw4ðc11 � 2c13 þ c33 � 4c44Þ 
(60) 

Mechanical properties of polycrystalline can be obtained by Y elastic constant 
with averaging in the (u, v, w) entire 3-D space orientation, which are all elastic 

parameters having nothing to do with the crystal surface index. Assuming w2 ¼ 1 

and w4 ¼ 1 [25], the mechanical properties of polycrystalline, such as Young’s 5 

modulus E, Poisson’s ratio μ, and shear modulus G, are as [4]: 

7c11 � 5c12 � 4c13 þ 2c33 þ 12c44 GM ¼ (61) 
30 

c11 þ 5c12 þ 8c13 þ c33 � 4c44 λM ¼ (62) 
15 

1 þ μ 15 ¼ (63) 
E 7c11 � 5c12 � 4c13 þ 2c33 þ 12c44 M 

μ 3ðc11 þ 5c12 þ 8c13 þ c33 � 4c44Þ � ¼ (64) 
E M ½2ðc11 þ c12 þ 2c13Þ þ c33�ð7c11 � 5c12 � 4c13 þ 2c33 þ 12c44Þ 

½2ðc11 þ c12 þ 2c13Þ þ c33�ð7c11 � 5c12 � 4c13 þ 2c33 þ 12c44Þ E ¼ (65) 
3 9½ c11 þ 5c12 þ 4 3ð c13 þ c33 þ c44Þ� 

c11 þ 5c12 þ 8c13 þ c33 � 4c44 
μ ¼ (66) 

9c11 þ 5c12 þ 4 3ð c13 þ c33 þ c44Þ 

Based on the Voigt bounds, elastic constants of a single crystal and the theoret-
ical formulas (61)–(66), mechanical elastic moduli of polycrystalline hexagonal 
structure are finally determined. 

For the relative formulas of cubic and hexagonal material, the elastic moduli 
(Young’s modulus Eφ and shear modulus Gφ) can be determined along any orienta-
tion, from the elastic constants or compliance constants [13]. 

For monoclinic structures, the relationship between elastic compliance and 
Young’s modulus EФ in either direction of crystal c-axis with the angle Ф can be 
described as [1]: 

1 ¼ S11l
4
1 þ 2S12l1

2l22 þ 2S13l1
2l23 þ 2S15l1

3l3 þ S22l
4
2 þ 2S23l2

2l23 þ 2S25l1l
2
2l3 Eϕ (67) 

þ S33l
4
3 þ 2S35l1l3

3 þ S44l2
2l23 þ 2S46l1l2

2l3 þ S55l1
2l23 þ S66l1

2l2 
2 

where 

0 

B@ 

l1 

l2 

1 

CA ¼ 

0 

B@ 

sin θ cos ϕ 

sin θ sin ϕ 

1 

CA , Sij is the single crystal compliance tensor in 

l3 cos θ 
collapsed matrix notation and l1, l2, and l3 are the direction cosines between the 
direction normal to the hkl plane and the lattice vectors (a, b, and c). So, for a given 
hkl plane, the elastic modulus Ehkl in a normal direction to hkl plane in polycrystal-
line can be determined from Eq. (67). 

Meanwhile, for cubic and hexagonal material, the interchangeable relationship 
between elastic stiffness constants Cij and the elastic compliance constants Sij is 
detailed in Ref. [13]. 
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4. Elastic moduli of cubic polycrystals structures at nanoscale 

The homogenized moduli of typical cubic polycrystals can be calculated by 
Reuss-Voigt-Hill estimation [13]. 

4.1 Elastic moduli of typical cubic CaO structure 

Elastic constants of CaO single crystal by GGA are as: c11 = 200.879 GPa, 
c12 = 56.902 GPa, and c44 = 75.600 GPa. By LDA, the Cij are as: c11 = 289.497 GPa, 
c12 = 71.432 GPa, and c44 = 76.652 GPa. The elastic moduli of CaO polycrystalline 
based on Y parameters were calculated, shown in Figure 3. 

Mechanical moduli of CaO polycrystalline by Reuss-Voigt-Hill method are 
shown in Table 1. 

Figure 3. 
Poisson ratio, Young’s, and shear moduli of CaO by Y parameter. 
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P Bv Br Gv Gr B G E μ 

Ref. [27] 127.3333 127.3333 75.8000 66.8578 127.3333 71.3289 180.3170 0.2640 

Ref. [28] 102 102 70.8000 70.3279 102 70.5639 172.0231 0.2189 

Ref. [29] 114.0667 114.0667 83.9200 83.1886 114.0667 83.5543 201.4703 0.2056 

Ref. [30] 109.6667 109.6667 84.4000 84.3972 109.6667 84.3986 201.5038 0.1938 

0 (GGA) 104.894 104.894 74.155 74.113 104.894 74.134 179.9978 0.2140 

0 (LDA) 144.120 144.120 89.604 86.985 144.120 88.295 219.9640 0.2456 

0.1 (GGA) 105.011 105.011 74.334 74.300 105.011 74.317 176.617 0.2197 

0.2 (GGA) 105.503 105.503 74.494 74.467 105.503 74.481 177.512 0.2196 

0.3 (GGA) 105.616 105.616 74.629 74.608 105.616 74.619 178.159 0.2189 

0.4 (GGA) 106.409 106.409 74.839 74.825 106.409 74.832 179.377 0.2190 

0.5 (GGA) 107.046 107.046 75.016 75.006 107.046 75.011 180.357 0.2192 

0.6 (GGA) 106.995 106.995 75.163 75.157 106.995 75.160 181.067 0.2180 

0.7 (GGA) 107.443 107.443 75.319 75.315 107.443 75.317 181.873 0.2179 

0.8 (GGA) 107.908 107.908 75.558 75.557 107.908 75.558 183.113 0.2172 

0.9 (GGA) 108.600 108.600 75.730 75.730 108.600 75.730 184.108 0.2175 

1.0 (GGA) 108.650 108.650 75.848 75.848 108.650 75.848 184.664 0.2167 

Table 1. 
Mechanical moduli of CaO polycrystalline by different methods. 

From Figure 3(a)–(c), for CaO polycrystals, Y parameters of Reuss and Voigt 
models are very close to each other based on the elastic constants by GGA method. 
Besides, the Poisson ratio, Young’s, and shear moduli by GGA method have a very 
good agreement with other Refs. [27–30]. By Y parameter, shear modulus is 
between 71.99 and 75.61 GPa, while Young’s modulus is between 175.78 and 
182.86 GPa under overall crystal plane orientation. 

From Table 1, the elastic moduli B and G of CaO can be obtained based on the 
dependences of the elastic constants Cij. Mechanical moduli of CaO polycrystalline 
by different methods are shown in Table 1. Elastic moduli at 0 GPa are verified and 
averaged as: B = 104.894 GPa, G = 74.134 GPa, and μ = 0.2209 in Table 1. Young’s 
modulus is about 175.758 GPa by Reuss-Voigt-Hill estimation. 

According to Eqs. (26)–(28), Young’s moduli of CaO at 0 GPa in directions of 
[100], [110], and [111] are determined as: E[100] = 175.758 GPa, E[110] = 181.037 GPa, 
and E[111] = 182.868 GPa. 

4.2 Elastic moduli of typical cubic MgO structure 

Y parameters calculated by the polycrystalline bounds of MgO curves are shown 
in Figure 4. 

As can be seen from Figure 4(a)–(c), MgO polycrystals, Y parameters of Reuss 
and Voigt models are very close to each other based on the elastic constants by GGA 
method. Besides, the Poisson ratio, Young’s, and shear moduli by GGA method have 
a very good agreement with other Refs. [28, 30–32]. Moreover, shear modulus of 
MgO by Reuss and Voigt bounds of Y parameter is between 118.78 and 140.96 GPa 
under overall crystal plane orientation. Moreover, Young’s modulus of MgO is 
between 293.62 and 337.21 GPa. 
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Figure 4. 
Poisson ratio, Young’s, and shear moduli of MgO by Y parameter. 

Mechanical moduli of MgO polycrystalline by Reuss-Voigt-Hill method are 
shown in Table 2. 

From Table 2, the MgO elastic moduli of B and G on the dependences of the 
elastic constants cij, the elastic anisotropic parameter A on pressure is discussed. 
Mechanical moduli of MgO polycrystalline by different methods are shown in 
Table 2. Elastic moduli of MgO at 0 GPa are verified and averaged as: 
B = 160.988 GPa, G = 124.506 GPa, and μ = 0.2360 in Table 2. Young’s modulus of 
MgO is about 254.969 GPa by Reuss-Voigt-Hill estimation. 

Elastic constants of MgO single crystal by GGA are as: c11 = 343.468 GPa, 
c12 = 106.358 GPa, and c44 = 140.823 GPa. By LDA, the Cij are as: c11 = 298.508 GPa, 
c12 = 92.228 GPa, and c44 = 141.197 GPa. By Eqs. (26)–(28), Young’s moduli of MgO 
at 0 GPa by GGA method in directions of [100], [110], and [111] are determined as: 
E[100] = 293.173 GPa, E[110] = 324.938 GPa, and E[111] = 337.114 GPa. 
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P Bv Br Gv Gr B G E μ 

Ref. [28] 138.6667 138.6667 115.6000 113.8262 138.6667 114.7131 269.7539 0.1758 

Ref. [30] 164.0000 164.0000 132.6000 131.0638 164.000 131.8319 311.9172 0.1830 

Ref. [31] 163.9333 163.9333 134.7860 128.7278 163.9333 131.7569 311.7504 0.1831 

Ref. [32] 162.4000 162.4000 129.4800 125.6660 162.4000 127.5730 303.3001 0.1887 

0 (GGA) 185.395 185.395 131.9160 130.9822 185.395 131.449 293.172 0.2364 

0 (LDA) 160.988 160.988 125.974 123.037 160.988 124.506 254.969 0.2360 

0.1 (GGA) 167.217 167.217 128.111 125.659 167.217 126.885 264.582 0.2363 

0.2 (GGA) 165.796 165.796 128.265 125.871 165.796 127.068 264.972 0.2336 

0.3 (GGA) 167.421 167.421 128.452 126.085 167.421 127.268 266.009 0.2352 

0.4 (GGA) 168.718 168.718 128.673 126.362 168.718 127.517 267.279 0.2360 

0.5 (GGA) 168.474 168.474 128.863 126.583 168.474 127.723 267.835 0.2350 

0.6 (GGA) 168.583 168.583 129.006 126.766 168.583 127.886 268.484 0.2346 

0.7 (GGA) 169.250 169.250 129.213 127.020 169.250 128.116 269.486 0.2346 

0.8 (GGA) 168.603 168.603 129.409 127.258 168.603 128.334 270.054 0.2330 

0.9 (GGA) 169.886 169.886 129.654 127.530 169.886 128.592 271.116 0.2340 

1.0 (GGA) 170.181 170.181 129.830 127.738 170.181 128.784 271.836 0.2338 

Table 2. 
Mechanical moduli of MgO polycrystalline by different methods. 

5. Elastic moduli of typical hexagonal polycrystals at nanoscale 

The homogenized moduli of typical cubic polycrystals can be calculated by 
Reuss-Voigt-Hill estimation [13]. 

5.1 Elastic moduli of hexagonal CH structures 

Elastic constants of CH single crystal at 0 GPa have been calculated by LDA 
calculation method and are given in Chapter 3. Figure 5 also shows the anisotropy 
of the CH Young’s modulus. 

From Figure 5(a)–(c), Y parameters of Reuss and Voigt models are very close to 
each other based on the elastic constants by LDA method. Besides, the Poisson ratio, 
Young’s modulus, and shear modulus of CH by LDA method have a very good 
agreement with other Refs. [33–36]. Moreover, shear modulus of CH by Reuss and 
Voigt bounds of Y parameter is between 6.35 and 40.53 GPa under overall crystal 
plane orientation. Moreover, it has been found that the Young’s modulus of CH is 
between 21.33 and 92.23 GPa in function of the crystal plane orientation. The results 
of Voigt and Reuss approximations show upper and lower limits in Figure 5; the 
difference arises due to different elastic constants of single CH crystals. 

Mechanical moduli of CH polycrystalline by Reuss-Voigt-Hill method are shown 
in Table 3. 

From Table 3, based on elastic constants by GGA method, elastic moduli of CH 
by Jia [13] are as: B = 32.41 GPa and G = 24.05 GPa. Thus, Young’s modulus is 
averaged to 58.08 GPa by RVH method. We can see that elastic moduli by LDA 
method are close to other Refs. [33–36]. However, there is significant deviation with 
the results obtained by GGA method. Moreover, Y parameter is consistent with the 

101 

http://dx.doi.org/10.5772/intechopen.84597


Atomistic Simulation of Anistropic Crystal Structures at Nanoscale 

Figure 5. 
Poisson ratio, Young’s, and shear moduli of CH by Y parameter. 

results of Voigt and Reuss models. Based on elastic constants using LDA method, by 
Ref. [13], elastic moduli at 0 GPa are verified and averaged as: Gv = 30.889 GPa, 
Bv = 22.999 GPa, Gr = 19.583 GPa, Br = 14.890 GPa, B = 25.236 GPa, G = 18.945 GPa, 
and μ = 0.200 in Table 3. Young’s modulus of CH is about 45.459 GPa by Reuss-
Voigt-Hill estimation. 

5.2 Elastic modulus of hexagonal calcite structure 

For calcite single crystal, elastic constants have been calculated by GGA method 
as follows: c11 = 143.938 GPa, c12 = 55.579 GPa, c13 = 50.970 Pa, c33 = 81.175 GPa, and 
c44 = 32.658 GPa. The results of Voigt and Reuss approximations showing upper and 
lower limits are given in Table 4; the difference arises due to the use of different 
elastic constants of single crystals. 

From Table 4, the results with Y parameters are consistent with the results of 
Voigt and Reuss models. It can also be found that E and G are satisfied with the 
relation G = E/[2(1 + μ)]. 
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Pressure Bv Br (GPa) Gv Gr B (GPa) G (GPa) E (GPa) μ 
(GPa) (GPa) (GPa) (GPa) 

Ref. [33] 36.2300 26.6316 22.6510 13.9196 31.4308 18.2853 45.9460 0.2564 

Ref. [34] 37.3 26.0 24.4 17.5 31.6 20.9 51.4 0.23 
(˜0.4) (˜0.3) (˜0.3) (˜0.4) (˜0.3) (˜0.3) (˜1.0) (˜0.02) 

Ref. [35] 45.9778 22.3513 26.4167 8.4413 34.1646 17.4290 44.6878 0.2820 

Ref. [36] 40.2422 28.0648 21.2959 15.3032 34.1535 18.2996 46.5796 0.2727 

0 (GGA) 36.6395 28.1827 27.0233 21.0793 32.4111 24.0513 58.0794 0.2074 

0 (LDA) 30.8885 19.5826 22.9999 14.8900 25.2355 18.9450 45.45917 0.199767 

0.5 (LDA) 35.8308 27.1002 24.0796 18.2410 31.4655 21.1603 51.85653 0.225326 

1.0 (LDA) 40.5673 35.0865 24.6871 17.7577 37.8269 21.2224 53.63647 0.263676 

1.5 (LDA) 42.7098 35.6819 26.0083 18.9866 39.1959 22.4975 56.65329 0.259102 

2.0 (LDA) 44.8341 37.4192 28.4868 25.8209 41.1267 27.1539 66.76733 0.229424 

2.5 (LDA) 47.3443 41.2657 29.6026 26.3588 44.3050 27.9807 69.34408 0.239141 

3.0 (LDA) 51.2366 46.0601 27.9731 23.6034 48.6484 25.7882 65.74721 0.274754 

3.5 (LDA) 54.4701 49.1269 27.9306 23.5463 51.7985 25.7384 66.24323 0.286856 

4.0 (LDA) 56.4897 51.9437 28.8208 25.0783 54.2167 26.9495 69.35677 0.286791 

4.5 (LDA) 55.9515 51.4301 31.3143 28.8379 53.6908 30.0761 76.03140 0.263984 

5.0 (LDA) 65.1811 61.3509 30.6193 26.9974 63.2660 28.8084 75.03591 0.302327 

Table 3. 
Mechanical moduli of CH polycrystalline by different methods. 

Pressure Bv Br Gv Gr B G G/B E (GPa) μ 
(GPa) (GPa) (GPa) (GPa) (GPa) (GPa) (GPa) 

Ref. [37] 80.6433 74.6632 38.9690 36.5788 77.6533 37.7739 0.486443 97.5106 0.2907 

Ref. [38] 77.8078 71.5529 36.7167 35.0768 74.6803 35.8967 0.480672 92.8185 0.2929 

Ref. [39] 89.7778 83.8382 39.1667 37.4911 86.8080 38.3289 0.441536 100.2343 0.3076 

Ref. [40] 79.3111 72.9228 37.3967 35.1543 76.1169 36.2755 0.476576 93.9083 0.2944 

Ref. [41] 78.0556 72.5157 36.5933 34.4239 75.2856 35.5086 0.471652 92.0535 0.2962 

0.0 (LDA) 78.4495 70.9425 38.9105 36.1199 74.6960 37.5152 0.5022 96.4061 0.285 

0.0 (GGA) 76.0099 69.6255 36.0014 28.7137 72.8177 32.3576 0.4444 84.5492 0.306 

0.5 (GGA) 78.8573 72.0996 36.9119 29.1686 75.4785 33.0402 0.4377 86.4992 0.309 

1.0 (GGA) 80.8540 73.9455 37.0892 29.6910 77.3998 33.3901 0.4314 87.5769 0.311 

1.5 (GGA) 82.7850 76.1680 37.4184 29.7426 79.4765 33.5805 0.4225 88.3047 0.315 

2.0 (GGA) 86.2955 78.5694 38.3801 30.3575 82.4325 34.3688 0.4169 90.5253 0.317 

2.5 (GGA) 89.5705 80.5595 36.2223 27.4455 85.065 31.8339 0.3740 84.9097 0.334 

3.0 (GGA) 90.8761 82.5141 38.9433 28.9708 86.6951 33.9571 0.3917 90.1068 0.327 

3.5 (GGA) 93.6468 84.6268 39.4405 29.4758 89.1368 34.4582 0.3866 91.5743 0.329 

4.0 (GGA) 95.8936 86.6201 39.1752 29.1386 91.2568 34.1569 0.3743 91.1041 0.334 

4.5 (GGA) 98.4435 88.9200 39.3356 28.2723 93.6818 33.8139 0.3609 90.5476 0.306 

5.0 (GGA) 100.9450 90.7940 39.7741 27.9952 95.8695 33.8846 0.3534 90.9398 0.309 

Table 4. 
Mechanical moduli of calcite polycrystalline by different methods. 
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Figure 6. 
Poisson ratio, Young’s, and shear moduli of calcite by Y parameter. 

Poisson ratio, Young’s, and shear moduli of calcite structure by Y parameter are 
shown in Figure 6. 

From Figure 6(a)–(c) of calcite polycrystals, Y parameters of Reuss and Voigt 
models are very close to each other based on the elastic constants by GGA method. 
Besides, the Poisson ratio, Young’s, and shear moduli by GGA method have a very 
good agreement with other Refs. [37–41]. Moreover, by Reuss and Voigt bounds of 
Y parameter, shear modulus is between 15.08 and 46.13 GPa and Young’s modulus is 
between 42.28 and 116.65 GPa. 

Based on elastic constants by Ref. [13], elastic moduli of calcite at 0 GPa are 
averaged as: Gv = 36.001 GPa, Bv = 76.010 GPa, Gr = 28.714 GPa, Br = 69.626 GPa, 
B = 72.818 GPa, G = 32.358 GPa, and μ = 0.306 in Figure 6. Young’s modulus is 
about 84.549 GPa by RVH estimation. 

Moreover, for the homogenized moduli of monoclinic polycrystals (gypsum and 
11 Å tobermorite) at larger scale, the content is detailed in our previous chapter 
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work [42]. Based on the elastic constants of 11 Å tobermorite (Ca/Si = 0.67) calcu-
lated by DFT, Young’s modulus is homogenized about 79.512 GPa, which is close to 
the simulation result of Pellenq et al. [43] (89 GPa) and Shahsavari et al. [44] 
(78.939 GPa). However, Young’s moduli considering the ordered Si-chain at long-
range are far away from the nanoindentation test by Ulm [45, 46]. That confirms 
another time that the absence of order at long range in this phase and that the 
upscaling to polycrystals cannot be done with the tobermorite model. This finding is 
in agreement with the results of Manzano et al. [47]. 

6. Conclusions 

The elastic properties of typical crystals are investigated and Cij determination 
is given by DFT method. Y parameters have then been determined for various 
crystal structures and can be seen as an intermediate step in the homogenization. By 
means of the Y parameter, we can obtain the Young’s modulus in function of the 
orientation of the crystal plane. Contrary to Hill approach to obtain the isotropic 
elastic properties of polycrystals, the Y-parameter method enables to study the 
anisotropic behavior of a single crystal. By means of the Y parameter, which is a 
function of the stiffness coefficient Cij (or the compliance coefficient Sij) and the 
crystal plane orientation, the Young’s modulus in function of the orientation of the 
crystal plane may be obtained. Contrary to Hill approach which is used to obtain the 
isotropic elastic properties of a polycrystals, the Y parameter method enables to 
study the anisotropic behavior of a single unit cell. When Γ ¼ 1=5 or w2 = 1/3, the 
result is equal to that of Hill model. Results are as follows: 

1. For cubic CaO structure, Young’s modulus at 0 GPa is about 175.758 GPa by 
elastic constants and RVH estimation. Elastic moduli are as: B = 104.894 GPa, 
G = 74.134 GPa, and μ = 0.2209. Young’s moduli in directions of [100], [110], 
and [111] are separately determined by elastic constants as: 
E[100] = 175.758 GPa, E[110] = 181.037 GPa, and E[111] = 182.868 GPa. 

2. For cubic MgO structure, Young’s modulus of at 0 GPa is about 293.172 GPa by 
elastic constants and RVH estimation. Elastic moduli are homogenized as: 
B = 185.395 GPa, G = 131.449 GPa, and μ = 0.2364. Young’s moduli at 0 GPa in 
directions of [100], [110], and [111] are separately determined as: 
E[100] = 293.173 GPa, E[110] = 324.938 GPa, and E[111] = 337.114 GPa. 

3. For hexagonal CH structure, Young’s modulus of CH at 0 GPa is 45.459 GPa by 
LDA and RVH methods. Other elastic moduli are as: Gv = 30.889 GPa, 
Bv = 23.000 GPa, Gr = 19.583 GPa, Br = 14.890 GPa, B = 25.236 GPa, 
G = 18.945 GPa, and μ = 0.200. On the other hand, by GGA and RVH methods, 
Young’s modulus is 58.07 GPa. Other elastic moduli are as: Gv = 27.023 GPa, 
Bv = 36.640 GPa, Gr = 21.079 GPa, Br = 28.183 GPa, B = 32.41 GPa, 
G = 24.05 GPa, and μ = 0.207. 

4.For hexagonal calcite structure, Young’s modulus at 0 GPa is about 84.542 GPa. 
Elastic moduli are homogenized as: Gv = 36.001 GPa, Bv = 76.010 GPa, 
Gr = 28.714 GPa, Br = 69.626 GPa, B = 72.818 GPa, G = 32.358 GPa, and 
μ = 0.306. Young’s modulus is 84.549 GPa by RVH method. 

It is worth to mention that the crystalline tobermorite structure cannot accu-
rately represent the layered C▬S▬H structure at upper scale. So, modeling of a 
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represented amorphous C▬S▬H structure-considered disordered Si chain, instead 
of the crystalline one, will be realized and further discussed based on MD method in 
the following Chapter 5. 
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Chapter 5 

Classical Molecular Dynamics 
(MD): Atomistic Simulation of 
Typical C▬S▬H Structures 
Jia Fu 

Abstract 

C▬S▬H has a great influence on the mechanical properties of cement and it is 
the most important binding phase of cement paste. In the light of recent computa-
tional material technology, a promising way to establish a larger microscale struc-
ture to obtain the desired C▬S▬H phase structure with the consideration of 
porosity is proposed, using a mechanical property to verify the rationality of the 
designed structure. Here, we discuss the basic atomic unit at nanoscale and the 
inverse approach, which propose strategies for the design of a possible C▬S▬H 
structure over nano- to macroscales of an achievement of nearly experimental 
phase. At the nanoscale, a 11 Å tobermorite monoclinic crystal with the ordered Si-
chain is used to enlarge the scale to the monolithic “globule” C▬S▬H structure 
about 5.5 nm3 using molecular dynamics simulation. However, the inverse approach 
with full structural C▬S▬H information (atoms and their positions) from the 
macroscale by the neutral scattering tests to nanoscale by the reorganized amor-
phous C▬S▬H cell is unlinked nowadays. Our contribution is to find the 
interlinkages between the “globule” at nanoscale with LD/HD C▬S▬H at microscale, 
thus to seek experimental validation of the C▬S▬H hydrated phases. 

Keywords: nanoscale, tobermorite, molecular dynamics, DFT, anisotropic 
elasticity, Young’s moduli 

1. Introduction 

Concrete is the most used building material in the world, because of its appre-
ciable advantages such as load-bearing capacity, durability, maneuverability, 
flowability. Recently, a platform called multiscale modeling of computational con-
crete (MuMoCC) using various modeling methods has been developed. In these 
previous works, cementitious materials have been studied at four different scales: 

i. The nanoscale that considers the element cells of the various components of the 
hardened cement paste [1–3]. The anisotropic elastic properties of different 
hydrated phases are determined thanks to various modeling methods [4]: 
density functional theory, molecular dynamics, atomic finite element method. 

ii. The microscale that considers the hardened cement paste as a heterogeneous 
and complex porous material in which the main solid phases are calcium 
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silicate hydrates (C▬S▬H), portlandite (calcium hydroxides or CH), and 
hydrated aluminates or sulfoaluminates (ettringite or Aft, 
monosulfoaluminate or AFm) phases. The solid phase is itself in equilibrium 
with the internal solution, which fills the porosity [5]. 

iii. The mesoscale that is in fact divided into two scales: the submesoscale, 
firstly, is the scale of mortar, that is, the smallest fraction of the particle size 
distribution bonded by homogeneous cement paste with porosity and air 
voids; then the mesoscale itself is the scale of concrete: the largest aggregates 
embedded in a matrix of mortar. These two scales introduce also the 
presence of the interfacial transition zone between particles and matrix, 
which modifies crack patterns and diffusion paths but not necessarily 
homogeneous effective physical and mechanical properties at the various 
scales [6–8]. 

In such a hierarchical approach, the adequate outputs at a given scale are used as 
input data at the next higher level. 

C▬S▬H as the main and typical constituents of hydrated cementitious systems 
separately represents approximately 70% of the volume fraction of portland cement 
paste [9], which has a great influence on the mechanical properties of the cement 
paste, and it is the most important binding phase of cement paste. Its Young’s 
moduli are needed in the modeling of cement at the macro- and microscales [10]. 
The traditional continuum models [11] and nonlocal continuum theory [12] are not 
adequate in modeling [13] of these materials [14]. As C▬S▬H theoretical mecha-
nism is very complex [15] and size effect [16, 17] are not commonly considered, the 
simulation is used for comparison of mechanical properties of C▬S▬H according 
to loading/unloading curves between load and displacement in nanoindentation 
technique. Although there are some relative reports on experimental analysis and 
the numerical calculation of C▬S▬H structure, its nanostructure has not yet been 
revealed. 

The crystal structure of C▬S▬H structure is basically known and commonly 
modeled as tobermorite-like (i.e., tobermorite 9, 11, 14 Å) and jennite-like systems 
[18] and/or with distorted semicrystalline variations of them [19]. Tobermorite as 
one of the earliest models proposed by Taylor and Howison [20] is thought as its 
hydration degree, which may describe the relative C▬S▬H nanostructure. From 
the view of Ca/Si ratio, there are two types of C▬S▬H structures: the C▬S▬H(I) 
(with Ca/Si of 0.6–1.5) and C▬S▬H(II) structures [21] (with Ca/Si of 1.5–2.0), of 
which the later is close to the experimentally confirmed structure C1.7▬S▬H1.8 

with Ca/Si of 1.7 in the C▬S▬H gel [22]. From the view of several nanometers 
length scale, C▬S▬H gel has a nanogranular aspect composed of monolithic 
C▬S▬H (full-dense C▬S▬H) and porosity. At this scale, C▬S▬H gel “globule” 
model exists in two forms: low-density C▬S▬H (LD C▬S▬H) and high-density 
C▬S▬H (HD C▬S▬H). Recently, Fabrice et al. have investigated the specific heat 
of cementitious materials using multiscale modeling approach [23]. Hou et al. [24] 
have investigated an amorphous C▬S▬H structure on the elastic properties of the 
layered C▬S▬H based on the CSH-FF field. 

In recent years, some scholars have successfully simulated C▬S▬H structure by 
MD simulations. Pellenq et al. [25] have simulated several tobermorite structures by 
using the General Utility Lattice Program (GULP), where GULP uses the core-shell 
potential. Kalinichev et al. [26] have simulated the tobermorite structure using 
ClayFF force field [27], where water molecules are modeled using simple point 
charge (SPC) model, and it is indicated that the water shows very strong binding 
force in the solid surface. Pellenq et al. [28] have developed a new modeling method 
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to simulate C▬S▬H gel structure, of which it has a shorter [SiO4]
4˜ chain under 

the system equilibrium structure C1.65▬S▬H1.75, comparing with experimental 
values of C1.7▬S▬H1.8 [22, 29]. Shahsavari et al. [30] proposed a new CSH-FF 
field with a higher accuracy and more efficient than the traditional core-shell 
potential. Ji et al. [31] have simulated the influencing role of a variety of water 
molecules (usually optional SPC model) on C▬S▬H by using GROMACS [32] 
program and mainly used a simple harmonic force potential description of 
C▬S▬H between atoms and ions. Zaoui [33] has simulated tobermorite structure 
of different Ca/Si ratios under various pressures, of which Buckingham potential 
and core-shell potential are used. This author found that the elastic modulus of 
different Ca/Si ratio tobermorite structures tends to be similar with increasing 
pressure. Some scholars [34] develop the DL_POLY program to simulate the 
tobermorite by MD, finding that amorphous form of C▬S▬H(I) is a short-range 
structure and long-range disordered structure, which is more consistent with the 
experimental parameters. Dai et al. [35] have compared two C▬S▬H structures 
of different Ca/Si ratios and discussed MD modeling parameters, of which the 
COMPASS force field is used. According to the NMR measurement of C▬S▬H 
[19], mechanical properties of this amorphous structure can be simulated by 
MD method to study the deformation mechanism at atomic scale. 

Moreover, microporomechanics technique has been used to calculate 
elastic properties of LD C▬S▬H and HD C▬S▬H gels [36]. For the elastic 
properties of LD and HD C▬S▬H, Constantinides and Ulm [37] have obtained 
elastic moduli by nanoindentation experiment. The porosity is also a factor of 
influencing elastic modulus of cement paste, and it has been investigated based 
on the backscattered electron image analysis and the HYMOSTRUC model [38]. 
The impact of the porosity on the matrix Young’s modulus is that the Young’s 
modulus decreases highly with the increasing of the porosity [39]. According to 
LD and HD C▬S▬H models described by Jennings [22], the gel porosity of LD 
C▬S▬H solid phase is 35–37%, while the gel porosity of HD C▬S▬H solid 
phase is 24%. However, the relationship between the C▬S▬H structure with the 
size of about 5 nm and C▬S▬H phases (LD and HD C▬S▬H) has not been 
revealed yet. In this chapter, the porosity and homogenization are used to 
explain the difference, which is meaningful for the verification of both 
nanoindentation simulation [40] and nanoindentation experiment [41, 42] at 
nanoscale in Chapter 6. 

2. Molecular dynamics modeling of typical C▬S▬H structures by 
LAMMPS 

Molecular dynamics is a deterministic method that offers the possibility of a 
microscopic description of a physical system in consideration of all the interactions 
involved. The main advantage of this method is that it gives the information on the 
evolution of the system over time and this by numerically solving Hamilton equa-
tions of motion, Lagrange or Newton. 

2.1 Principle of MD method and ClayFF field used in LAMMPS 

2.1.1 Introduction and principle of molecular dynamics method 

The applied numerical integration for Newton’s equation of motion by MD [43] 
is described as: 
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N p2 N�1 N � �  i 1 
∑ ∑ ∑ H ¼ U rij (1) þ 

2 i¼1 mi i¼1 j¼iþ1 

dri ¼ mivi (2) pi ¼ mi dt 

N�1 N N�1 N ∂U rij dpi ∑ ∑ F rij ¼ �  ∑ ∑ (3) ¼ 
dt ∂rij i¼1 j¼iþ1 i¼1 j¼iþ1 

where p is momentum that depends on the mass m and the acceleration a, F is 
the net force vector on the ith molecule, r is the position vector of the ith particle. 
The force on each molecule is obtained from the interaction potential, that is, the 
Lennard-Jones pair potential. 

Positions and velocities of the particles are computed by integrating the equa-
tions of motion using finite difference algorithm at equal time intervals. One of the 
most used algorithms are the ones developed by Verlet that is the velocity Verlet 
leapfrog algorithm, which makes use of the half-time step velocities to calculate 
positions and velocities of particles [44]: 

riðt þ ΔtÞ ¼ ri t ð (4) ð Þ þ vi t þ Δt=2Þ Δt 

d2rið Þt � � 
viðt þ Δt=2Þ ¼ viðt‐Δt=2Þ þ  Δt þ Ο Δt3 (5) 

dt2 

d2rið Þt Fi 1 ¼ ¼ �  ∑∇ �U rð Þ  (6) 
dt2 mi mi 

where F is the net force vector on the ith molecule, m is the mass, and r is the 
position vector of the ith particle. For Verlet algorithm, particle acceleration: 

Fið Þt ai t . Initial conditions of Verlet algorithm are as: ri t¼0 ¼ rið Þ, ð Þ ¼  j 0 mi 
dri jt¼0 ¼ vi 0ð Þ. dt 

There are a few methods to control temperature, the simplest method involves 
velocity scaling or coupling with heat bath, and other more complicated approaches 
are the Andersen and Nose-Hoover thermostats [45]. In this research, a special form 
of Nose-Hoover thermostats developed by Berendsen is used, in which the friction 
coefficient λ rather than its time derivative varies according to the following equa-
tion rather than its derivative [46]: 

2p gkT 
∑N i λ ¼ � =Q (7) i¼1 2mi 2 

where Q = gkTτ2 , g is the degree of freedom in the system (g =  3N � 4) for a 
thermostated monatomic system with zero momenta, τ is thermostat relaxation 
time typically about 0.5. 

From Figure 1, the domain reduction only performs analysis of a representative 
substructure. During MD simulation, only one box is modeled explicitly. Each 
particle interacts with other particles in the box and with their images in nearby 
boxes. The mean square displacement (MSD) is a measure of the average distance a 
molecule travels, it represents the statistical average of the particle trajectories 
change over time. By solving differential motion equations, which is as [44]: 

n D E 1 
MSD tð Þ ¼  ∑ 

n i¼1 
j rn ð Þ �t rnð Þo j 2 (8) 
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Figure 1. 
Diagram from the original box to the conversion box in statistical mechanics. 

where rn(t) is the atom position at time t. 
The diffusion coefficient is one-sixth of the slope of the mean square displace-

ment, in Figure 2. 
As shown in Figure 2, the probability to find a pair of a distance r apart, relative 

to a uniform random distribution of particles at the same density, can be defined as 
g(r). For each particle, the probability to find another particle within the shell r to 
r + Δr is measured by g(r). Radial distribution function (RDF) is a measure of 
arrangement of atoms in a structure, and the MD is a deterministic method that 
offers the possibility of a microscopic description of a physical system in consider-
ation of all the interactions involved. In simulation, an input file was generated for 
LAMMPS code to calculate the response of C▬S▬H structures with a large number 
of particles (atoms) to uniaxial loading, which leads to strain-stress data to calculate 
elastic modulus. 

2.1.2 Parameters of ClayFF field and programming code by LAMMPS 

The total potential energy of the classical molecular force field expands to: 

u ¼ ∑ us þ ∑ ub þ ∑ ut þ ∑ uo þ ∑ ui þ ∑ uinv þ ∑ ucross þ ∑ uvdW þ ∑ ucl 
bonds angles torsions oops improoers inv cross vdW cl 

(9) 

Figure 2. 
Description of the probability to find a particle within the shell r to r + Δr [44]. 
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The total energy is the sum of Coulombic (electrostatic) interactions, short-range 
interactions (van der Waals), and bonded (stretching/angular) interactions [27]: 

Utotal ¼ Uvdw þ Ucoul þ Ubond þ Uangle (10) 

For bonded intramolecular interactions, the Coulombic and VDW interactions 
are excluded. The Coulombic energy is represented as: 

2 e qiqj Ucoul ¼ ∑ (11) 
4πε0 i < j rij 

where qi and qj are partial charges, e is the charge of the electron, while ε0 is the 
dielectric permittivity of vacuum (8.85419 � 10�12 F/m). Note that the Coulombic 
interaction is long range and requires techniques such as the Ewald sums to be 
properly calculated. The VDW interactions are represented with the conventional 
12-6 Lennard-Jones function that includes the short-range repulsion and the attrac-
tive dispersion energy: 

" # � � �6 �12 Rij Rij Uvdw ¼ ∑ Dij � 2 (12) 
i < j rij rij 

where D and Rij are empirical parameters derived from the fitting of the ClayFF 
model to a number of observed structural property data for oxides, hydroxides, and 
oxyhydroxides. 

The interaction parameters between the unlike atoms are calculated by the 
arithmetic mean rule for the distance parameter Rij, the geometric mean rule for the 
energy parameter Dij: 

qffiffiffiffiffiffiffiffiffiffi 1 � � 
Rij ¼ Ri þ Rj and Dij ¼ DiDj (13) 

2 

Bond stretching energy is considered between O and H of either a hydroxyl or a 
water molecule and is described by a simple harmonic term as: 

� �2 Ubond ¼ k1 rij � r0 (14) 

where k1 is a force constant and r0 represents the equilibrium bond length, both 
values taken from the flexible version of the SPC water model. For the description 
of the vibrational motion of hydroxyl groups, a bending (three-body) term is 
introduced in form of a harmonic relationship: 

� �2 Uangle ¼ k2 θijk � θ0 (15) 

where k2 is a force constant of Eq. (15), θijk is the bond angle for the oxygen-
hydrogen, and θ0 refers to the equilibrium bond angle. 

2.1.3 Parameters of ClayFF field used in C▬S▬H structures 

In this study, bonded interactions include bond stretching potential energy 
function and bond angle bending potential energy function, which can be 
described by a harmonic potential function [47]. For nonbonded parameters of 
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ClayFF force field, Lennard-Jones (12-6) potential is mainly considered. The 
empirical interatomic potentials in ClayFF field have been described above, 
and the corresponding parameters used for C▬S▬H structures are listed in 
Tables 1–3. 

In fact, development of new parameters is very difficult, we mainly look for 
force field and select suitable parameters to be programmed in LAMMPS software, 
as many existed and complex force fields at present are difficult to be fully taken 
into account in this developing software. 

2.2 Modeling of typical C▬S▬H structures considering the Ca/Si ratio 

2.2.1 Description of C▬S▬H structures with various Ca/Si and Qn ratios 

In neat Portland cement, only the C▬S▬H with the highest Ca/Si ratio (>˜1.5) 
is observed, whereas C▬S▬H with the whole compositional range may exist in 

(a) Bond stretching potential parameters 

Species i Species j K1 (kcal mol°1 Å°2) R0 (Å) 

ow hw 554.1349 1.0000 

oh ho 554.1349 1.0000 

ohs ho 554.1349 1.0000 

(b) Bond angle bending potential parameters 

Species i Species j Species k K1 (kcal mol °1 rad °2) θ0 (degree) 

hw ow hw 45.7696 109.4700 

Table 1. 
Bonded parameters of ClayFF force field [27]. 

Type R0 (Å) D0 (kcal/mol) Element Charge (ē) Atom type specification 

h* 4.5775 0.0000 H 0.410 Water hydrogen 

ho 4.5775 0.0000 H 0.425 Hydroxyl hydrogen 

o* 3.5532 0.1554 O °0.820 Water oxygen 

oh 3.5532 0.1554 O °0.950 Hydroxyl oxygen 

ob 3.5532 0.1554 O °1.050 Bridging oxygen 

St 3.7064 1.8405E°06 Si 2.100 Tetrahedral silicon 

cao 6.2484 5.0298E°06 Ca 1.360 Octahedral calcium 

obss 3.5532 0.1554 O °1.300 Bridging oxygen with double substitution 

obts 3.5532 0,1554 O °1.169 Bridging oxygen with tetrahedral substitution 

obos 35,532 0.1554 O °1.181 Bridging oxygen with octahedral substitution 

ohs 3.5532 0.1554 O °1.081 Hydroxyl oxygen with substitution 

cah 6.2428 5.0298E°06 Ca 1.050 Hydroxide calcium 

oh- 3.5532 0.1554 O °1.410 Oxygen in hydroxyl anion 

Ca 3.2237 0.1000 Ca 2.000 Aqueous calcium ion 

Table 2. 
The nonbonded parameters of ClayFF force field [27]. 
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(a) Charge and species of atoms of C▬S▬H (C/S = 1.67) structure used [27] 

Species Charge (ē) D0 (kcal/mol) R0 (Å) 

Water hydrogen (Hw) 0.41 — — 

Hydroxyl hydrogen (Ho) 0.42 — — 

Water oxygen (Ow) ˜0.82 0.1554 3.5532 

Hydroxyl oxygen (Oh) ˜0.95 0.1554 3.5532 

Bridging oxygen (O) ˜1.05 0.1554 3.5532 

Silicon (Si) 2.1 1.84E˜06 3.7064 

Calcium (Ca) 1.05 5.03E˜06 6.2428 

(b) The nonbonded Lennard-Jones (12-6) of C▬S▬H (C/S = 1.67) structure [27] 

Species i Species j Dij Rij Species i Species j Dij Rij 

Ca Ca 5.0298E˜06 6.2484 Sz Ow 0.000534802 3.6298 

Ca Cw 5.0298E˜06 6.2456 Sz Sz 1.8405E˜06 3.7064 

Ca Sz 3.04259E˜06 4.9774 Sz O 0.000534802 3.6298 

Ca Oss 0.000884099 4.9008 Sz Oss 0.000534802 3.6298 

Ca O 0.000884099 4.9008 Oss O 0.1554 3.5532 

Ca Hw 0 3.1242 Oss Oss 0.1554 3.5532 

Ca Ow 0.000884099 4.9008 Oss Hw 0 1.7766 

Cw Hw 0 3.1214 Oss Ow 0.1554 3.5532 

Cw Ow 0.000884099 4.898 O O 0.1554 3.5532 

Cw Sz 3.04259E˜06 4.9746 O Ow 0.1554 3.5532 

Cw Cw 5.0298E˜06 6.2428 O Hw 0 1.7766 

Cw O 0.000884099 4.898 Ow Ow 0.1554 3.5532 

Cw Oss 0.000884099 4.898 Ow Hw 0 1.7766 

Sz Hw 0 1.8532 Hw Hw 0 0 

Table 3. 
Parameters for ClayFF field of C▬S▬H (C/S = 1.67) structure used [27]. 

cement pastes containing fly ash, metakaolin, or silica fume [48]. From the view of 
several nanometers length scale, C▬S▬H gel has a nanogranular aspect composed 
of monolithic C▬S▬H (full-dense C▬S▬H) and porosity. At his scale, C▬S▬H 
gel exists in two forms: low-density C▬S▬H and high-density C▬S▬H. Two 
typical C▬S▬H structures of LD and HD C▬S▬H have been provided by Jennings 
[49] and Masoero et al. [50] in Figure 3. 

From Figure 3, from SEM image of C▬S▬H, two typical structures at nanoscale 
are provided, of which the LD C▬S▬H solid phase with the diameter of C▬S▬H 
gel is less than 16.6 nm, the gel porosity is about 35–37%, while the gel porosity of 
HD C▬S▬H solid phase is 24%. The solid porosity manifests itself (about 18%) at a 
scale smaller than the characteristic solid dimension of 2.2 nm [49, 50], irrespective 
of the type of C▬S▬H. It should be noted that, beyond this scale of nanoporosity, 
there is another type of porosity, which was found to differ from two C▬S▬H 
structures. This solid phase is named “globules,” which was found to have a char-
acteristic size of 5.6 nm. 
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Figure 3. 
Structures at nanoscale and shear moduli of two typical C▬S▬H [49, 50]. (a) Two typical C▬S▬H 
structures at nanoscale [49] and (b) Shear moduli of typical LD and HD C▬S▬H structures [50]. 

Relation of C▬S▬H phase at microscale and “globule” C▬S▬H at nanoscale is 
linked, in Figure 4. 

From Figure 4, the porosity is an important factor to reveal the differences 
between “globule” C▬S▬H at nanoscale and LD/HD C▬S▬H phase at microscale. 
Then elastic modulus of the “globule” C▬S▬H about 5.5 nm3 can be adopted to 
assess the elastic moduli of LD and HD C▬S▬H phases, where the values are 
verified by the outer and inner C▬S▬H distinguished in nanoindentation 
experiment. 

It is generally considered that C▬S▬H solid solution structure is a kind of 
tobermorite structure between CH structures to form a sandwich structure [51]. 
Calcium-rich model and silicon-rich structural models: depending on the Ca/Si 
ratio, C▬S▬H can be divided into silicon-rich C▬S▬H (Ca/Si = 0.65–1.0) and 
calcium-rich C▬S▬H (Ca/Si = 1.1–1.7) [52]. Structure and defect model of 
C▬S▬H [53] and the NMR measurement of Grutzeck et al. [19, 52], Q1/Q2 

˜ C/(S + A) are as in Figure 5. 
From Figure 5(a), we can see that such nanostructures and intermediary struc-

tural models consider that C▬S▬H composition is uniform within the scope of 
nanocrystals (about 5 nm). However, in the range of short-range order of 1 nm, 
C▬S▬H composition and structure can vary, especially in the area of matrix 

Figure 4. 
Relation of C▬S▬H phase at microscale and “globule” C▬S▬H at nanoscale. 
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Figure 5. 
Structure and defect model of C▬S▬H and the NMR measurement data of Q1/Q2 ratio. (a) Structure and 
defect model of C▬S▬H [53] and (b) Q1/Q2 ratio of various C▬S▬H [19, 52]. 

composition of the amorphous C▬S▬H. From Figure 5(b), the results show that 
the measured Ca/Si ratio has a mutation in both sides of 1.0–1.1 region, which 
proved that C▬S▬H between 1.0 and 1.1 is vacant. However, Q1/Q2 in calcium-
rich C▬S▬H is fluctuated from 1.0 to 1.5, which can be considered about 50% 
dimers and 50% repeated silicon-oxygen tetrahedron chain ternary. 

There, a Qn nomenclature is used in general for the peaks. Qn is the chemical 
shift of a silicon atom, which is bound to n bridging oxygens. The Qn distribution 
and the mean chain lengths (MCL) of C▬S▬H structures with various Ca/Si ratios 
are given by Tajuelo et al. [54], shown in Table 4. 

From Table 4, when the C▬S▬H structure with a C/S ratio higher than 1.0, the 
number of Q3 is zero, which means there is no silicate tetrahedral with three 
bridging oxygen atoms in its structure. 

2.2.2 Structural, bonding, and interaction of C▬S▬H structures 

For modeling of a 14Å tobermorite: (C/S = 0.83), we chose Bonaccorsi model 
[55] with the empirical formula of Ca5Si6O16(OH)2˜7H2O (Ca/Si = 0.83), and crys-
tallographic parameters are as follows: (1) crystal system: triclinic; (2) the cell 
parameters: a = 6.735, b = 7.425, c = 27.987 Å, α = 90°, β = 90°, γ = 123.25°; (3) space 
group: B11b. Figure 6 shows the structure and atomic connections of 14 Å 
tobermorite. 

From Figure 6, 14 Å tobermorite structure is basically a layered structure. 
Besides, the central part is a Ca▬O sheet (with an empirical formula: CaO2, 

Ca/Si Q 1 (%) Q 2 (%) Q 3 (%) MCL 

0.75 9.5 79.8 10.7 18.8 

0.83 19.1 77.1 3.8 10.1 

1 35.7 62.0 2.3 5.5 

1.25 74.0 26.0 0 2.7 

1.33 79.9 20.1 0 2.5 

1.5 87.7 12.3 0 2.3 

Table 4. 
The Qn distribution and mean chain lengths (MCL) of C▬S▬H with various Ca/Si ratios [54]. 
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Figure 6. 
The structure and atomic connections of 14 Å tobermorite structure [55]. (a) The real cell of 14Å tobermorite 
by Bonaccorsi [55]. (b) Silicon chain links and atomic connections. 

although the chemical aspect CaO should always be CaO, which implies that the 
oxygen in CaO2 also includes that of the silicate tetrahedron part). Moreover, 
silicate chains envelope the Ca▬O sheet on both sides, with the characteristics 
mentioned later. Last but not least, between individual layers, Ca2+ and H2O are 
filled into the space to balance the charges and determine the layer distance, 
respectively. 

For modeling of the jennite structure [56] (C/S = 1.5), the ordered jennite is 
triclinic, space group P-1, with the unit cell dimensions of a = 10.576 Å, b = 7.265 Å, 
c = 10.931 Å, α = 101.3°, β = 96.98°, and γ = 109.65° [57]. The chemical constitutional 
formula is Ca9Si6O18(OH)6˜8H2O and Ca/Si ratio is 1.5. Figure 7 shows the structure 
and atomic connections of jennite unit cell. 

We can see in Figure 7 that jennite has the same link of the silicate tetrahedral 
chains similar to 14 Å tobermorite [55]. The difference is that only half of the 
oxygen atoms of the Ca▬O layer in jennite structure are connected to the silicate 
tetrahedral chains, while the other half of the oxygen atoms are linked to the 
hydroxyl groups. Moreover, the bridging tetrahedra of the silicate chains are 
connected to the Ca▬O layer. 

Figure 7. 
Modeling structure and atomic connections of jennite crystal structure. (a) The topology structure of jennite 
crystal [56] and (b) the real structure of jennite crystal [57] (atom types: green, Ca; yellow, Si; red, oxygen; 
white, hydrogen). 
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Figure 8. 
Modeling of 11 Å tobermorite crystal. (a) 11 Å tobermorite by Hamid [58]; (b) silicon chain links and atomic 
connections; and (c) the real unit cell. 

For modeling of a 11 Å tobermorite: (C/S = 0.67), the morphology of 11 Å 
tobermorite is monoclinic and the initial lattice is as follows: a =  6.69 Å, b = 7.39 Å, 
c = 22.779 Å, α = β = 90°, γ = 123.49°, its structure is monoclinic with space group P21 
[58]. Modeling of 11 Å tobermorite is shown in Figure 8. 

In Figure 8(a), the 11 Å tobermorite crystal can be summarized as follows: 
(1) the structure is basically a layered structure with the central part as a Ca▬O 
sheet (with an empirical formula of CaO2, of which the oxygen in CaO2 also 
includes that of the silicate tetrahedron part). (2) Silicate chains envelop the Ca▬O 
sheet on both sides in Figure 8(b). (3) Ca2+ and H2O are filled between individual 
layers to balance the charges. The unit cell is in Figure 8(c), the infinite layers of 
calcium polyhedra, which is parallel to (001), with tetrahedral chains of 
wollastonite-type along b and the composite layers stacked along c and connected 
through formation of double tetrahedral chains [59]. 

2.2.3 Radial distribution function (RDF) of C▬S▬H structures with different Ca/Si 
ratios 

It should be pointed out that the description for C▬S▬H structures by 11 Å 
tobermorite structure is not fixed, and the position and the appearance of certain 
atoms can be changed and adjusted, thus leading to various Ca/Si ratios. There are 
three different structures with various Ca/Si forms based on Hamid model [60], of 
which 11 Å tobermorite is denoted as Ca8Si12O28(OH)8˜4H2O (Ca/Si = 0.67), 
Ca10Si12O32(OH)4˜4H2O (Ca/Si = 0.83), and Ca12Si12O36˜4H2O (Ca/Si = 1.00). The 
jennite (Ca9Si6O18(OH)6˜8H2O, Ca/Si = 1.50) is also given [56]. Then a total radial 
distribution function (RDF) and atomic partial RDF curves of C▬S▬H structures 
with different C/S ratios (0.67–1.5) can be calculated, shown in Figure 9. 

It can be seen in Figure 9(a) that, for the system of Ca/Si = 0.66 (or Water/ 
Si = 0.67), four sites of O8,  O9,  O14,  O18 are protonated caused by the lack of Ca5 and 
Ca6 atoms; For the system of Ca/Si = 0.83 (or Water/Si = 0.50), two sites of O8, O9, 
O14, O18 are protonated caused by the lack of Ca6 atoms. When Ca/Si = 1.0 (or 
water/Si = 0.33), there are only two water molecules of W1 and W2, all sites of O8, 
O9, O14, O18 are not protonated because both Ca5 and Ca6 atoms are present. In 
Figure 9(b), there are three kinds of atomic partial RDF curves, of which the 
chemical bonds include Ca▬O, Si▬O, Si▬Si. The first peak is OH, the second peak 
is Si▬O, the third peak Ca▬O, the fourth peak is Si▬Si, the respective location is 
1.28, 1.56, 2.54, and 3.10 Å, for the interatomic distance between corresponding 
pairs of atoms. 
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Figure 9. 
The total radial distribution function of C▬S▬H structures with different Ca/Si ratios. (a) A three-
dimensional view of tobermorite structure [58] and (b) the total RDF of C▬S▬H with different Ca/Si ratios. 

3. Construction of “glouble” C▬S▬H by 11 Å tobermorite with various 
C/S ratios 

As the initial configuration is monoclinic, in order to study the deformation of 
independence in a particular direction, the orthogonal box conversion of the 
C▬S▬H structure is needed from the initial monoclinic one, shown in Figure 10. 

From Figure 1(a)), it is noteworthy that the relative atomic position and model 
size are unchanged in C▬S▬H model after box transformation in Figure 1(b) with 
the conversion modes of orthogonal box by LAMMPS. Here the conversion is done 
to obtain the orthogonal structure as an analog initial structure. 

3.1 Construction of crystalline 11 Å tobermorite structures (C/S = 0.67) 

In order to obtain an amorphous structure in the long-range disorder and short-
range order, silicon-oxygen tetrahedra chain is rotated and twisted. Above all, the 
system was a preequilibrated ensemble of NVT system at 3000 K, and the temper-
ature of the system was gradually lowered to 300 K. After 300 K rebalance, the 
output is written as an input of the NVE heald, then we obtain stable amorphous 

Figure 10. 
Schematic conversion diagram of simulation box in x-y plane. (a) Original box of a monoclinic cell and (b) 
transformed box of a orthogonal cell. 
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C▬S▬H. Finally, the simulation results of the C▬S▬H at 300 K in terms of 
structural properties and dynamical behavior are analyzed. 

Construction of a monolithic C▬S▬H cell structure corresponding to “globule” 
C▬S▬H is in Figure 11. 

As in Figure 11, based on single crystal of 11 Å tobermorite (C/S = 0.67) in 
Figure 3(a) discussed in Chapter 3, two supercells 4a � 3b � 1c in Figure 3(b) and 
4a � 3b � 2c of 11 Å tobermorite model are established first. Then the amorphous 
model of 5.5 nm3 is obtained after MD simulation considering an annealing treat-
ment, shown in Figure 3(c). MD simulation of monolithic C▬S▬H is seen as the 
“glouble” C▬S▬H. 

The 11 Å tobermorite structure is transformed from crystalline to amorphous by 
means of an annealing process simulated by molecular dynamics simulation. The 
modeling procedure is deeply presented in a recent publication of the authors [2], 
that is why only a brief description is developed here. 

An assembly of a supercell with the size of 8a � 6b � 2c (5.352 � 4.434 � 
4.554 nm3) of single 11 Å tobermorite cells. These dimensions are chosen to be 
coherent with the model of Jennings, which describes the C▬S▬H gel as a packing, 
more or less dense, of monolithic C▬S▬H (with a nanogranular aspect of about 5 
nm diameter) [49]. 

Molecular dynamics is a computational simulation method, which aims to study 
the physical movements of atoms and molecules, by resolving Newton’s equations. 
LAMMPS software is used to perform this study. ClayFF potential is retained to 
simulate the atomic force field between the various atoms of the supercell. 

The various steps to simulate the annealing process and to obtain an amorphous 
structure are: 

• energy minimization (conjugate gradient method) and balance of the structure 
at 300 K separately under NVT and NVE systems; 

• increase of the temperature until 3000 K under NVT system, then balance of 
the structure at this high temperature until NVT and NVE systems; 

• decrease of the temperature from 3000 to 300 K under NVT system; 

• balance of the structure at 300 K under NVT and NVE systems. 

Figure 11. 
Nanoscale modeling of C▬S▬H with a size of a “globule” by Jennings. (a) 11 Å tobermorite, (b) model of 2.5 
nm3, (c) amorphous model of 5.5 nm3 (atom types: red-Ow + white-Hw ! water molecule (H2O); red, O; 
green, Ca; purple, Ca; yellow, Si). 
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After this annealing treatment, the ordered silicon chain becomes disordered 
and the system is more stable in comparison with the initial structure. 

3.2 Construction of amorphous 11 Å tobermorite structure (C/S = 1.67) 

Modeling of an amorphous C▬S▬H structure (C/S = 1.67) with various sizes is 
in Figure 12. 

In Figure 12(a), a 3D image of a C▬S▬H structure with a C/S ratio equal to 1.67 
and with a distribution of Q0 = 13%, Q1 = 67%, and Q2 = 20% is presented. 
Amorphous C▬S▬H (C/S = 1.67) models in Figure 12(c) are constructed by 
periodic extension in x, y and z directions of the primary cell of 
5.352 � 4.434 � 4.556 nm3 with 8328 atoms presented in Figure 12(b), with an 
initial density of 2.257 g/cm3. 

Based on the layered supercell of 11 Å tobermorite (Ca6[Si6O18]�2H2O, 
Ca/Si = 1.0), an amorphous C▬S▬H(II) (C/S = 1.67) supercell (4a � 3b � 1c) is 
constructed, as shown in Figure 13. 

Figure 13 records the C▬S▬H model construction procedures, which are as 
follows: above all, from Figure 13(a), a supercell of 4a � 3b � 1c 11 Å tobermorite 
is periodically established by Materials Studio software. Then a cleave surface is 
built and makes it possible to change the box into an orthogonal type [61], which 
can be used to better understand mechanical bahaviors of cement paste using MD 
method by Murray et al. [62]. The simplified formula is (CaO)1.67(SiO2)(H2O)1.75, 
which is close to the reference [28]. As presented in Figure 13(b) and Figure 13(c), 
the light silicate tetrahedrals are broken along [010] and [001] and the layered 
supercell of 11 Å tobermorite without water is taken as the initial configuration. 
Secondly, Figure 13(d) describes a dry C▬S▬H in which the continuous silicate 
chains were broken to achieve Q0, Q1, and Q2 percentages of 13, 67, and 20%, 
respectively, without considering the O▬H bonds. 

Finally, Grand Canonical Monte Carlo (GCMC) simulation of the water adsorp-
tion [63] by LAMMPS using the ClayFF parameters (in Tables 1–3) is carried out to 
obtain the disordered C▬S▬H structure in Figure 13(e) and (f)), which is 
performed on the initially dry C▬S▬H structure at 300 K. The number of atoms is 
about 4164, with the initial density of 2.56 g/cm3. The hydrated phase is presented 
at various stages of the simulation in Figure 13(d)–(f)). At the equilibrium state, 
the C▬S▬H reached saturation shown in Figure 13(f)), which is also the same 
with the disordered C▬S▬H structure shown in Figure 13(c)). The final chemical 
composition and density of the amorphous disordered C▬S▬H are (CaO)1.67(SiO2) 

Figure 12. 
Modeling of an amorphous C▬S▬H structure (C/S = 1.67) with various sizes. (a) A 2.676 � 2.217 � 2.278 
nm3 model, (b) a 5.352 � 4.434 � 4.556 nm3 model and (c) amorphous 5.5 nm3 model (atom types: light 
blue-Ow + white-Hw ! water molecule (H2O); red, O; green, Ca; purple, Ca; yellow, Si). 
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Figure 13. 
Construction of an amorphous C▬S▬H (C/S = 1.67) supercell of 4a � 3b � 1c 11 Å Tob. (a) Initial 
2.676 � 2.217 � 2.278 nm3 model; (b) removal of light silicate tetrahedral along [010]; (c) along [001] 
(atom types: red-Ow + white-Hw ! water molecule (H2O); red, O; green, Ca; purple, Ca; yellow, Si). 
(d) GCMC water adsorption (initial); (e) GCMC water adsorption (half); (f) final amorphous C▬S▬H 
(atom types: light blue-Ow + white-Hw ! water molecule (H2O); red, O; green, Ca; yellow, Si). 

(H2O)1.75 and 2.257 g/cm3, which are in a good agreement with the results obtained 
from the neutral scattering tests [22]. As for a C/S ratio of 0.67, this supercell 
represents the monolithic full-dense C▬S▬H, in other words, the “globules” by 
Jennings [49]. 

4. Simulation and properties of mechanical two kinds of C▬S▬H (I) 
(C/S = 0.67) 

In order to get the stress-strain relation of C▬S▬H, the model was subjected to 
uniaxial tensile loading through gradual elongation with a strain rate of 0.001 ps�1. 
In the whole simulation process, NPT ensembles are set for the system. Nosé 
Hoover thermostat temperature control method and the Nosé Hoover barostat 
pressure method were used for NPT calculations. A time step of 1 femtosecond (fs) 
was chosen since 1 fs is suitable for most purposes. The dynamic time ranges from 
100 to approximately 400 picoseconds (ps) depending on the size of the simulation 
cell, which ensures thermodynamic equilibrium and the convergence of energy 
with a reasonable computational time. For example, the procedures in the uniaxial 
tension test in the x direction are as follows. Firstly, the supercells are relaxed at 300 
K and coupled to zero external pressure in the x, y, and z dimensions for 50 ps. 
Then, after the pressures in three directions reach equilibrium, the C▬S▬H struc-
ture is elongated in the x direction. Meanwhile, the pressure in y and z direction 
should be kept at zero. Pressure evolution in the x direction is taken as the internal 
stress σxx. The pressure perpendicular to the tensile direction is set to zero, which 
allows the normal direction to relax anisotropically without any restriction. The 
setting, considering the Poisson’s ratio, can eliminate the artificial constraint for the 
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deformation. Additionally, in the simulation process, 10,000 configurations are 
recorded for structural analysis. 

4.1 Tensional simulation of the crystaline and amorphous C▬S▬H(I) 

4.1.1 Tensional simulation of the crystalline C▬S▬H(I) 

The crystalline 11 Å tobermorite structure is obtained first and then the tensional 
deformation under a strain rate of 10˜3 ps˜1 is simulated. We assume that, for a 
tensile strain rate of 10˜3 ps˜1, quasistatic conditions are obtained. The crystaline 
C▬S▬H(I) structure (4a ° 3b ° 1c) by 11 Å tobermorite is obtained first, and then 
the tensional deformation under the strain rate 1.0 ° 10˜3 ps˜1 is simulated. The 
tensile deformation process of C▬S▬H(I) structure with the size of 
2.676 ° 2.217 ° 2.278 nm3 are calculated and analyzed. Take the z direction, for 
example, the structure evolution of the difference strain under the strain rate of 
1 ° 10˜3 ps˜1 is in Figure 14. 

From Figure 14, it is indicated that the water molecule has great impact on the 
mechanical properties of C▬S▬H(I) during tensile deformation. Moreover, for 
crystalline C▬S▬H(I) by 11 Å tobermorite structure (4a ° 3b ° 1c) with the size of 
2.676 ° 2.217 ° 2.278 nm3, it is likely to be broken in the z direction, while it is 
difficult to break in the x and y directions. 

During the stretching process, the aqueous layer is easily broken along the z 
direction, and the stratified phenomenon becomes apparent at both sides. A com-
parative study of the behaviors of crystalline and amorphous C▬S▬H(I) is 
presented in this section. In order to maintain comparative structure, use the same 

3 initial structure with the size of 2.676 ° 2.217 ° 2.278 nm . 

4.1.2 Tensional simulation of an amorphous C▬S▬H(I) (C/S = 0.67) 

After annealing treatment on Lammps, the ordered silicon chain becomes disor-
dered and the system becomes more stable compared with the initial structure, 
which is consistent with the real structure of C▬S▬H(I). Then the stretching 
process of an amorphous C▬S▬H (the ratio of Ca/Si is 0.67) at a certain strain rate 
1 ° 10˜3 ps˜1 is simulated. Take the z direction, for example, the nanostructure 
evolution of the difference strain under the 1 ° 10˜3 ps˜1 is shown in Figure 15. 

From Figure 15, it is indicated that the water molecule has a great impact on the 
mechanical properties of C▬S▬H(I) during tensile deformation. With an increas-
ing strain, the water molecules in an aqueous layer have a tendency to be pulled off, 
which may explain the softening behaviors of C▬S▬H(I) during tensile process. In 
the structure after annealing, the distribution of water molecules changes a lot, and 
water molecules become dispersed disorderly. During stretching process, the 

Figure 14. 
Results of a crystalline C▬S▬H(I) structure for various strains under 10˜3 ps˜1 strain rate. 
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Figure 15. 
Aggregation of water molecules during tensile deformation under different strains. Deformation during a 
tensional test of a 4a � 3b � 1c supercell model after annealing processes (atom types: light blue-Ow + white-
Hw ! water molecule (H2O); red, O; green, Ca; yellow, Si). 

aqueous layer is only formed in the upper layer, and the deformation resistance is 
much greater than that in z direction in the crystalline structure. 

4.2 Elastic moduli results of the crystalline and amorphous C▬S▬H(I) 

4.2.1 Elastic moduli for a crystalline C▬S▬H(I) (C/S = 0.67) in various directions 

The tensional process of an amorphous C▬S▬H(I) is calculated and 
analyzed. The corresponding tensile and compressive stress-strain curves are in 
Figure 16. 

As is shown in Figure 16, for the crystaline C▬S▬H(I) structure (the supercell 
4a � 3b � 1c structure by 11 Å tobermorite) using the ClayFF parameters, Young’s 
modulus in three directions is averaged to about 79.95GPa, which is close to the 
value of 79.51 GPa obtained by DFT seen in Chapter 3. Similarly, by using BHM 
potential, the influencing rule of loading direction on strain-stress curves during the 
elastic linear strain is close to the results by using ClayFF parameters. The elastic 
moduli in the corresponding x, y, and z directions are 65.61, 82.97, and 85.92 GPa, 
respectively. Moreover, parameters of ClayFF field seem more stable than those of 
BHM field (not shown here). 

Figure 16. 
Results of a crystalline C▬S▬H(I) structure under strain rate of 10�3. 
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4.2.2 Elastic moduli for an amorphous C▬S▬H(I) (C/S = 0.67) in various directions 

With the same force field, the tensile test is then simulated in the three direc-
tions. The stretch and compression process of an amorphous C▬S▬H(I) structure 
(4a ˜ 3b ˜ 1c supercell of 11 Å tobermorite, 5.352 ˜ 4.434 ˜ 4.556 nm3) are 
calculated and analyzed. The corresponding tensile stress-strain curves are in 
Figure 17. 

From Figure 17, the three curves are close to each other, showing the isotropy of 
the supercell as well as its amorphous structure. From these results, by determining 
the slope at the beginning of these curves (in between 10 and 50% of the maximal 

s modulus may be determined: it is found to be ’ stress), the homogeneous Young 

’ 

equal to 59.4 GPa. The annealing process leads to a decrease of this elastic property 
from 79.5 to 59.4 GPa; this result is in agreement with previous results of 

s modulus to Vandamme et al. [65]. This value will be used as homogenized Young 

’ 

calculate the specific heat of monolithic C▬S▬H. 
In a word, in the disordered structure obtained by annealing treatment, the 

anisotropy in three directions significantly decreased. It can be inferred that, if the 
disordered structure becomes much larger, it leads to the isotropic behaviors in a 
certain degree. 

4.2.3 Comparison of crystalline and amorphous C▬S▬H(I) during tensional process 

We can see from Figures 16 and Figures 17 that, under the strain rate of 
10 °3 ps °1, peak stress does not change obviously before and after annealing. Result 
comparison of crystalline and amorphous 11 Å tobermorite supercells during ten-
sional process is shown in Table 5. 

s modulus of From Table 5, we can see that after annealing process, Young 

’ 

C▬S▬H(I) (C/S = 0.67) structure with a size of 2.676 ˜ 2.217 ˜ 2.278 nm3 using 
BHM potential slightly decreased from 78.17 to 68.49 GPa. However, with the 

s modulus after annealing process under ClayFF potential, a decrease of the Young 
the strain rate of 10 °3 has not been pointed out. 

Similarly, by using the ClayFF potential, the influencing role of loading direction 
on strain-stress curves during the elastic linear strain is very close to the results by 
using BHM potential. After annealing treatment on Lammps, the elastic modulus 
using the ClayFF field in the corresponding x, y, and z directions are averaged to be 
67.89, 84.63, and 70.53 GPa, respectively. Moreover, for C▬S▬H(I) structure with 

Figure 17. 
Results of an amorphous C▬S▬H(I) structure after annealing by ClayFF. (a) Supercell structure of 
5.352 ˜ 4.434 ˜ 4.556 nm3 and (b) Comparison of C▬S▬H(I) with different sizes. 
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Crystal/ Initial size ( nm3) Cell/box Method Ex Ey Ez E = (Ex + Ey + Ez)/3 
structure type 

11Å 0.669 ˜ 0.739 ˜ 2.278 Single DFT 79.512 79.512 
tobermorite crystal 

11Å 0.669 ˜ 0.739 ˜ 2.278 Single DFT 78.939 78.939 
tobermorite crystal 
[60] 

C▬S▬H(I) 2.676 ˜ 2.217 ˜ 2.278 Crystalline ClayFF 55.82 86.63 97.40 79.95 
(C/S = 0.67) (MD) 

C▬S▬H(I) 2.676 ˜ 2.217 ˜ 2.278 Disordered ClayFF 67.89 84.63 78.62 77.05 
(C/S = 0.67) (MD) 

C▬S▬H(I) 5.352 ˜ 4.434 ˜ 4.556 Disordered ClayFF 57.85 66.13 54.14 59.37 
(C/S = 0.67) (MD) 

Table 5. 
Elastic modulus comparison of C▬S▬H(I) structures after optimization. 

various sizes at nanoscale in Table 5, it seems that the size has a significant influ-
ence on the Young’s modulus of the amorphous material. 

In all, as a kind of C▬S▬H(I), 11 Å tobermorite supercell (C/S = 0.67) becomes 
a denser and more stable configuration after annealing treatment, which is in 
agreement with the previously proposed quantitative “colloid” model of C▬S▬H 
gel, resulting in an improved understanding of the microstructural changes associ-
ated with drying and heat curing [64]. 

5. Simulation and mechanical properties of an amorphous C▬S▬H(II) 
(C/S = 1.67) 

Before simulation, it must be also noted that the total energy obtained by this 
method (called lattice energy for crystalline systems) has no physical sense for most 
force fields. After repeated tests, ClayFF force field is used to complete the MD 
simulation. 

5.1 Tensional simulation of amorphous C▬S▬H(II) structures 

The stretching of the C▬S▬H structure of 5.352 ˜ 4.434 ˜ 4.556 nm3 at the 
strain rate of 10 °3 ps °1 under various directions is shown in Figure 18. 

Figure 18. 
The stretching C▬S▬H structure at the strain rate of 10 °3 ps °1 under various directions. 
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From Figure 18, the aggregation of water molecules changes in different direc-
tions during the stretching process. The layers of water molecules in the x direction 
are extended and the width of the water molecules layer becomes larger, while the 
water molecule layer in the y direction is narrowed. The water molecules gathered 
toward the center of the structure in the z direction; the different states of aggrega-
tion form of water molecules in various directions cause the anisotropic properties 

3 of C▬S▬H structure with size of 5.352 ˜ 4.434 ˜ 4.556 nm . 

5.2 Elastic moduli of the amorphous C▬S▬H(II) determination 

In order to better understand the influence of size on the performance of 
C▬S▬H(II) structures (C/S = 1.67), the stretching process is simulated to obtain 
stress-strain curves and then to find the influencing rules of these parameters on the 
properties of C▬S▬H(II) structures (C/S = 1.67). 

’ 

5.2.1 Effect of loading direction on strain-stress curves of size 5.352 ˜ 4.434 ˜ 4.556 nm3 

Figure 19 shows the tensional stress-strain curves in x, y, and z directions of an 
amorphous C▬S▬H structure of size 5.352 ˜ 4.434 ˜ 4.556 nm3 under the strain 
rate of 10 °3 ps °1. 

Figure 19(a) shows the strain-stress curves of a supercell structure with size of 
5.352 ˜ 4.434 ˜ 4.556 nm3 under various directions. From Figure 19(b), we can see 
that the maximum stress of tensional stress-strain curve with the size of 
2.676 ˜ 2.217 ˜ 2.278 nm3 is higher than the other size of 5.352 ˜ 4.434 ˜ 4.556 nm3. 
With the increase of size, the peak stress becomes lower. It can also be seen that the 
presence of the maximum stress in stress-strain curves greatly varies due to the 

s modulus with the size of scale effect between atomic interactions. Young 

’ 
’ 

5.352 ˜ 4.434 ˜ 4.556 nm3 is lower than the other size of 2.676 ˜ 2.217 ˜ 2.278 nm3, 
which may be due to the size effect at nanoscale. However, there is little change of 
stress-strain curve slope in the initial elastic stage. Moreover, the averaged modulus 
in three directions is 60.95 GPa under strain rate of 10 °3 at 300 K, which is close to 
the other results of the C▬S▬H structure with the value of 63.50 [25] and 69.01 
GPa [55]. A supercell of 5.352 ˜ 4.434 ˜ 4.556 nm3 as a monolithic full-dense 

s modulus, and it 
s moduli of LD and HD C▬S▬H, which is 

C▬S▬H (globules) appears to be sufficient to determine Young 
can be used to further estimate Young 
the aim of this chapter. 

Figure 19. 
Comparison of supercell structures under various directions by MD simulation. (a) Supercell structure of 
5.352 ˜ 4.434 ˜ 4.556 nm3 and (b) comparison of two supercell structures. 
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Crystal/ 
structure 

Initial size (nm3) Box type Method Ex Ey Ez (Ex + Ey + Ez)/3 

C▬S▬H(I) 
(C/S = 0.67) 

2.676 � 2.217 � 2.278 Crystalline MD 55.82 86.63 97.40 79.95 

C▬S▬H(I) 
(C/S = 0.67) 

5.352 � 4.434 � 4.556 Disordered MD 57.85 66.13 54.14 59.37 

C▬S▬H(II) 
(C/S = 1.67) 

5.352 � 4.434 � 4.556 Disordered MD 55.82 58.89 68.13 60.95 

Table 6. 
Elastic modulus comparison of C▬S▬H structures constructed by 11 Å tobermorite. 

Elastic modulus comparison of C▬S▬H constructed by 11 Å tobermorite is in 
Table 6. 

From Table 6, we can see that the deformation direction has a little influence on 
the mechanical properties of the amorphous C▬S▬H(II) (C/S = 1.67) under the 
strain rate of 10�3 ps�1. Meanwhile, for the structure of C▬S▬H(II) (C/S = 1.67) 
with size of 5.352 � 4.434 � 4.556 nm3, the corresponding averaged elastic modulus 
in y and z directions is higher than that in x direction by the stress-strain curve slope 
within about 0.002–0.055 strain. Moreover, there is only a slight difference between 
elastic moduli of C▬S▬H(I) and C▬S▬H(II). For all results of the C▬S▬H(I) 
structures in three directions mentioned in Table 5, the averaged value is very close 
to each other by using ClayFF parameters. Conversely, the size has a significant 
influence on the Young’s modulus of the amorphous C▬S▬H(II) structure. 

5.2.2 Assessment of the elastic properties of amorphous C▬S▬H structures by MD 

As the solid phase described by Jennings is named by “globules,” which was 
found to have a characteristic size of about 5.6 nm [49]. Here we can use the elastic 
modulus of the CSH(II) structure with a size of 5.352 � 4.434 � 4.556 nm3 to 
approximate the modulus of “globules” so as to investigate the LD C▬S▬H and HD 
C▬S▬H. 

A self-consistent scheme may be used [65]: 

K 4Gð1 � ϕsÞ ¼ (16) 
ks 4G þ 3ksϕs 

G 1 5 3 ¼ � ϕs � rsð3 � ϕsÞ g 2 4 16 s qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 1 � � � � þ 64 � 320ϕs þ 400ϕ2 þ rs 144 � 168ϕs � 120ϕ2 þ r2 81 � 54ϕs þ 9ϕ2 
s s s s 16 

(17) 

2 1ð þ μs Þ where rs ¼ ks ¼ Þ, gs is shear modulus of the monolithic full-dense g 3 1ð � 2μs s 

C▬S▬H (here gs = Es/[2(1 + μs)] with Es = 60.95GPa and μs = 0.25 for C▬S▬H(II) 
found in this work). ks is bulk modulus of the monolithic full-dense C▬S▬H (here 
ks = Es/[3(1 � 2μs)] with Es = 60.95GPa and μs = 0.25 for C▬S▬H(II) structure). 

The Mori-Tanaka scheme may also be used [65]: 

� � ���1 
∑ f kr 1 þ αs 

kr � 1 r 
K ¼ 

r � � 
ks ���1 (18) 

∑ f 1 þ αs 
kr � 1 r r ks 
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Figure 20. 
Young’s modulus evolution of C▬S▬H(II) (C/S = 1.67) according to the porosity. 

G ¼ 

˜ ˜ ° ° �1 gr ∑ f 1 þ βs � 1 r kr r gs ˜ ˜ ° ° �1 gr ∑ f 1 þ βs � 1 r r gs 

(19) 

αs ¼ 
3ks 

3ks þ 4gs 
(20) 

˛ ˝ 

βs ¼ 
6 ks þ 2gs ˛ ˝ (21) 
5 3ks þ 4g s 

where αs and βs are coefficients, fr is the volume fraction, k is the bulk modulus, g 
is the shear modulus. The subscripts “o” stands for the monolithic C▬S▬H. 

Figure 20 presents the evolution of the Young’s modulus according to the porosity. 
As is shown in Figure 20, Young’s modulus of LD C▬S▬H and HD C▬S▬H 

can be estimated by a self-consistent scheme and the Mori-Tanaka scheme. For 
example, with the self-consistent scheme in Eqs. (16) and (17), and assuming a 
porosity of, respectively, 0.35 and 0.24, the Young’s moduli of LD C▬S▬H and HD 
C▬S▬H are found to be equal to 18.11 and 31.45 GPa, which is in agreement with 
the results of Constantinides (2006). Similarly, by using the Mori-Tanaka scheme in 
Eqs. (18)–(21), the values of Young’s moduli of LD C▬S▬H and HD C▬S▬H are, 
respectively, 29.78 and 37.71 GPa. 

6. Conclusions 

In this chapter, the stretch process of a represented amorphous full-dense 
C▬S▬H(I) and C▬S▬H(II) with the Ca/Si ratios of 0.67 and 1.67 is simulated by 
LAMMPS program after setting parameters of related potential functions. Some 
conclusions can be drawn. 

1. For two typical crystalline and amorphous C▬S▬H(I) structures (formula: 
Ca4Si6O14(OH)4�2H2O), the stretch process at a certain strain rate is 
calculated, and the corresponding tensile stress-strain curves are analyzed. The 
results are as follows: 
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• Before annealing process, the crystalline supercell (4a ˜ 3b ˜ 1c) of 
C▬S▬H(I) at nanoscale has the averaged elastic modulus value of 79.95 
GPa by MD simulation, which is similar to the homogenized Young’s 
modulus value of 79.512 GPa by elastic constants of single 11Å tobermorite 
model based on DFT. 

• Through annealing process of the C▬S▬H(I) with a size of 
2.676 ˜ 2.217 ˜ 2.278 nm3, using ClayFF field parameters, the difference 
of Young’s modulus in three directions becomes smaller during the 
tensional deformation, with an averaged value of 77.05 GPa. For the 
C▬S▬H(I) structure with a size of about 5 nm, using MD simulation, the 
averaged Young’s moduli are separately about 59.37 GPa. 

• By comparison of both the crystalline and amorphous C▬S▬H(I) 
structures, it is found that the water molecule in both structures has a 
great influence on tensile strength. 

• After annealing simulation, the annealed structure becomes more 
uniform in three directions. Young’s modulus is very slightly reduced; 
however, we think that with a larger supercell corresponding to globule 
C▬S▬H, such a decrease would be obtained, indicating that the annealed 
supercell with disordered silicon chain is more softened and more 
consistent in x, y and z directions. 

2. A typical C▬S▬H(II) structure (formula: (CaO)1.67(SiO2)(H2O)1.75) is simulated 
by using the ClayFF field. Above all, a layered supercell of 11Å tobermorite of 
Hamid model without water is firstly considered as the initial configuration. 
Then, SiO2 groups in silica tetrahedra have been removed, guided by the NMR 
results to achieve realistic percentages of Q0, Q1, and Q2. Finally, Grand 
Canonical Monte Carlo simulation of water absorption on the dry C▬S▬H 
structure at 300 K is performed to obtain a disordered C▬S▬H structure. 

• The water molecule in the structure has a great influence on tensile 
strength. 

• It is difficult to find a RVE to assess the tensile strength and the postpeak 
part of the tensile curve. However, Young’s modulus of C▬S▬H(II) 
structure with a size of about 5 nm has been identified to be between 55 
and 68 GPa (the averaged modulus in three directions is 60.95 GPa under 
strain rate of 10 °3 ps °1 at 300 K), which is consistent with previous 
literature results. The Young’s modulus in x, y, and z directions is rather 
the same, which suggests that the model is indeed amorphous. 

• The effect of size on the response of the amorphous C▬S▬H structure 
has been also investigated; by the variation of stress-strain curve due to 
the atomic interactions, the presence of scale effect is observed (this 
means that, with the increase of size, the peak stress becomes lower). 
Moreover, Young’s modulus with the size of 5.352 ˜ 4.434 ˜ 4.556 nm3 is 

3 lower than the other size of 2.676 ˜ 2.217 ˜ 2.278 nm . 

• Water layer is an important factor, which affects the mechanical 
properties, showing the weakest loading resistance perpendicular to the 
aqueous layer. 
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Overall, we mainly considered the C/S influencing factor, which has an effect on the 
stiffness and strength of C▬S▬H gel. The presence of impurities in C▬S▬H gel 
(i.e., sulfate or aluminate), porosity, or a specified density should be also considered 
in future work. 

3. The values we have found for the Young’s moduli of amorphous C▬S▬H(I) 
and C▬S▬H(II) are those of the monolithic C▬S▬H (globules). At the upper 
scale, we can deduce the Young’s moduli of LD C▬S▬H and HD C▬S▬H 
assuming a porosity for these two kinds of C▬S▬H. This study is limited to 
the C▬S▬H(II), the kind of C▬S▬H found in the hardened cement pastes 
experimentally tested and simulation results in Chapter 6. We can see that 
there is a significant difference between the two homogenization methods, as 
previously pointed out by Constantinides. 
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Chapter 6 

Nanoindentation Investigation 
of Typical C▬S▬H Structures: 
FEM Simulation 
Jia Fu 

Abstract 

This work focuses on elastic modulus of two main constituents of cement-based 
materials: portlandite (CH) and calcium silicate hydrate (C▬S▬H). The large-scale 
models using QC methods are considered trustworthy and on the ABAQUS software, 
where, on behalf of the purely elastic scene, the unloading curves of the three (CH, 
LD and HD CSH, CSH) models are simulated. Based on the elastic modulus of the 
monolithic C▬S▬H structure by MD simulations, the assessment results on LD 
C▬S▬H and HD C▬S▬H after homogenization are very close to nanoindentation 
simulation data. The findings are as follows: (1) the homogenized elastic properties of 
polycrystals can be obtained by elastic constants of single crystal (using DFT and 
RVH estimation) and thus can be used to explain the relationship between structure 
and mechanical properties of CH from nano- to microscale. (2) It is found that the 
results of comparison of the simulated and experimental unloading curves of CH and 
LD/CH C▬S▬H are essentially coincident and have a very good agreement, show-
ing the feasibility and the rationality of the simulation methods above. Results enable 
to provide useful parameters for composite cement system modeling and a method to 
calculate elastic modulus of other similar structures. 

Keywords: calcium silicate hydrate, elastic modulus, nanoindentation, FEM 

1. Introduction 

Multiscale simulations of atomistic/continuum coupling in computational mate-
rials science have become a hot spot for recent years, and the different scales will be 
considered to reflect the atomic interaction [1]. Multiscale modeling of structural 
concrete performance is presented as a systematic knowledge base of coupled 
cementitious composites and structural mechanics [2]. At the scale of 
micromechanical investigations, the interaction of the various phases is taken into 
account. In this way, for the greater length scale, a unique constitutive behavior is 
extracted that typically cannot be captured fully by standard closed-form contin-
uum models [3]. An illustrative way for denoting these different length scales is the 
micro-, meso-, and macroscale [4]. Among these, the level of components or struc-
tural parts is called macroscale. At present, there are two major directions in 
multiscale modeling [5]: extending the atomistic length scales (spatial multiscale 
methods) and extending the atomistic time scales (temporal multiscale methods). 
For the length scale extension, atomistic-continuum coupling may be applied: 
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atomistic method can be used in the region of localized deformation where resolu-
tion down to atomic scale is desired (fine scale domain), and continuum method 
(e.g., FEM) everywhere else (coarse scale domain). 

In theory, the modulus estimation of deformation involves different types of 
processes, including elastic, plastic, and fracture theories, and its theoretical mech-
anism is very complex [6]. Therefore, the prediction of hardness and mechanical 
modulus of deformation has a lot of difficulties in theory. So, the experimental 
measurements to calculate elastic modulus become the easiest way, mainly a variety 
of indentation experiments [7]. That is why, the nanoindentation experiment has 
been widely used to characterize mineral and metal materials [8]. 

Nanoindentation technology has become an important means to measure mate-
rial properties and is widely used in the fields of medical devices, microelectro 
mechanical systems (MEMS), bioengineering, civil engineering, aircraft, and film 
material research. Indentation technology is the expansion of conventional hardness 
test to microscale (no more than submillimeter) [9], the principle of it is to get 
parameters of microindentation hardness and elasticity modulus, etc., according to 
loading/unloading curves between load and displacement [10, 11]. The disadvan-
tage of the classical plasticity theory is that it has not considered size effect [12, 13]. 
Models commonly used during micro- and nanoindentation process mainly 
include elastic recovery model, Kick model [14], proportioned sample model (PSR), 
Hays-Kendall model, and Taylor dislocation model [15, 16]. In general, the elastic 
moduli of covalent crystals are intrinsic and equivalent to the sum of resistance 
of each bond per unit area to indenter. In this chapter, analytical method is used 
to solve the nanoindentation simulation with indentation depth during 
nanoindentation process and fitting methods are adopted to establish the 
finite-element constitutive model. 

Using backscattered images and point analysis, outer and inner C▬S▬H can be 
distinguished. Figure 1 shows SEM BSE micrograph of different phases in ordinary 
Portland cement (OPC) paste at 7 days of hydration [17] and point’s position of the 
paste with w/c = 0.40 after 28 days of hydration for the EDX-SEM analysis [17]. 

From Figure 1(a, b), it is indicated that the outer C▬S▬H has a brighter gray 
level, while inner C▬S▬H is mainly localized within the original cement grains. As 
is shown in Figure 1(c, d), there are mainly four regions of hydrated products, such 
as: voids region (the cumulative hydration voids), C▬S▬H region (including low 
density and high density), CH phase region, and RC phases region (the residual 
cement in a cement paste). 

Elastic moduli and hardness can be used to understand the extent, to which a 
solid resists both elastic and plastic deformation. C▬S▬H gel has high surface 
areas and shows excellent adhesive characteristics. Nanoindentation can be used to 
understand differences in hydration products that result from water availability for 
clinker during hydration. Ye et al. [18] have simulated the microstructure of 
cementitious materials by using the cement hydration model-HYMOSTRUC. Ulm 
and coworkers [19, 20] have provided the experimental techniques and analysis 
tools to provide reliable, mechanical technical tools to identify the relative volume 
fractions and spatial distributions of cement hydration products in cement paste 
samples produced with conventional cements. Besides, they have illustrated that 
there are three types of C▬S▬H (LD C▬S▬H, HD C▬S▬H, C▬S▬H/CH 
nanocomposite) in hardened cement paste. The average nanoscale material 
responses (e.g., indentation modulus and indentation hardness) for each of these 
three C▬S▬H phases are virtually the same for all Portland cement pastes tested to 
date [21, 22]. 
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Figure 1. 
BSE micrograph of typical phases and the C▬S▬H points in cement paste. (a) SEM BSE micrograph of an 
OPC paste [17]. (b) BSE micrograph map of the inner and outer C▬S▬H points [17]. (c) SEM BSE 
micrograph of the OPC paste [17]. (d) Regional distribution of chemical elements [17]. 

Nanoindentation method may provide a wide variety of mechanical characteris-
tics without substrate effects to obtain information on the mechanical properties of 
hard, soft, brittle, and ductile materials at the nanometer scale. The techniques have 
been widely used in the characterization of small-scale mechanical behavior of 
materials, which provides an ideal approach for measuring phases at nanoscale 
upon a substrate [23, 24]. Although there are many reports on nanoindentation, 
however, these studies are almost based on experimental analysis and its 
numerical calculation at nanoscale has not yet been revealed. Multiscale 
modeling and simulation of atomistic/continuum coupling in computational 
CH, LD C▬S▬H, and HD C▬S▬H structures with the size of nanometer 
unit during nonlinear indentation is considered and simulated to compare the 
results of Keinde [25] and Constantinides [26]. In this chapter, nanoindentation 
simulations are carried out to determine elastic moduli of several phases in 
cement pastes, compared with results of nanoindentation experiments. As the 
volume fraction of main components of CH and C▬S▬H in hydrated 
Portland cement paste separately reach more than 14 and 40%, our main task 
is to predict the Young’s modulus via multiscale simulation and nanoindentation 
experiment. 
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2. Background of theory, principle, and measurement of 
nanoindentation 

2.1 Numerical description of nanoindentation procedure 

During indentation, the load and displacement were continuously monitored 
by a three-plate capacitive force/displacement transducer. Nanoindentation 
hardness is defined as the maximum indentation load Pmax divided by the contact 
area Ac: 

Pmax H ¼ (1) 
AcðhcÞ 

The indenter shape function A (nm2) can be seen as a function of the 
indentation depth hc: 

A ¼ f hð cÞ (2) 

Here, area function selected depends on the function of Oliver and Pharr pro-
posed and modified considering loading system flexibility and curvature radius of 
the indenter tip correction. So, the projected contact area calculation is as: 

2 1=3 1=7 Ap ¼ C0 � hc þ C1 � hc þ C2 � hc þ C3 � hc þ …… (3) 

where C1, C2 … Cn are coefficients describing geometrical shape of indenter, of 
which high major is used to describe deviation degree of relative ideal shape at 
indenter tip. 

The unloading stiffness S is then established by differentiating P at the 
maximum depth of penetration. S is the initial unloading contact stiffness, which 
is represented by the slope of the initial portion of the unloading curve and 
described as: 

˜ °  
dP 

S ¼ (4) 
dh h¼hmax 

The contact area as a function of contact depth hc is calibrated by indenting on a 
standard cement specimen. The contact depth hc can be estimated from the load-
displacement data using Sneddon’s equation [27] and assuming that pile-up is 
negligible: 

Pmax hc ¼ hmax � ε (5) 
S 

where ε is a constant that depends on the indenter geometry; ε = 0.75 for the 
Berkovich indenter, ε = 0.72 for the conical indenter, and ε = 1 for the flat punch. 
Pmax is the maximum load and S is the slope of unloading curve. 

The indentation depth hmax at any time during loading can be described as 
follows: 

Pmax hmax ¼ hc þ hs ¼ hc þ ε � (6) 
S 

where hs is the displacement (nm) over the initial surface nearby the section 
between indenter and tested sample. The reduced modulus of material is defined as: 
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pffiffiffi 
π S 

Er ¼ pffiffiffiffi (7) 
2β A 

which can be further expressed as: 

1 1 � ν2 1 � ν2 
i ¼ þ (8) 

Er E Ei 

where hc is the contact depth, Es and vs are the elastic modulus and Poisson’s ratio 
of the specimen, and Ei and μi are the elastic modulus and Poisson’s ratio of the 
indenter. For a diamond indenter, Ei = 1140 GPa and μi = 0.07. The unloading curve 
defined by Oliver and Pharr is described by a power law relation: 

� �m P ¼ A h  � hf (9) 

where A and m are fitting parameters empirically determined. 
It can also be noted that Young’s modulus E and Poisson coefficient μ are linked 

in Eq. (8), and without any assumption on the value of one of these characteristics, 
the other one cannot be determined by the nanoindentation test. 

2.2 Principle of the finite-element analytical method 

Guillonneau [28] has discussed the process of nanoindentation in detail both the 
measurement and the numerical simulation, where FEM method is used to know 
the deformation distribution in the contact area. 

Figure 2 is a schematic diagram of rigid conical indenter and its geometrically 
necessary dislocations underneath. Assuming that the indenter is rigid, microplastic 
deformation caused by geometric necessary dislocations underneath illustrated in 
Figure 2 can be expressed as follows: 

tan θ ¼ h=a ¼ b=s, s ¼ b � a=h (10) 

where θ is the angle between indenter surface and sample surface, a is indenter 
radius contacted, h is indentation depth, b stands for Burgers vector, and s repre-
sents distance within a slipped step of indentation. 

Huang et al. [29] have developed the model of Nix and Gao [30] and proposed a 
new theoretical model based on the maximum geometric necessary dislocation 
density allowed. Assuming that λ is the total length of dislocation loops, integration 
from r to r + dr within dislocation loops is carried out in the whole contacted radius 
a of indenter and λ can be described as follows: 

ð ð � a a � 2πr h h h � a 2�a λ ¼ dr ¼ � 2πrdr ¼ � πr π (11) �0 ¼ 
s b � a b � a b 0 0 

Considering size effect, the intrinsic material length is introduced. Assuming 
that flow stress is under control of microscale dislocation motion and compliances 
with Taylor hardening relation, the equivalent stress in microscale can be expressed qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 

f 2 ε as: σ ¼ σy ð  Þ þ lη. The model of Nix and Gao et al. [30] on the basis of contin-
uum mechanics can be described as follows: 

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 
σ ¼ K εp 

2n þ lη ¼ K εp 
2n þ l � ðρG � bÞ (12) 
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Figure 2. 
Schematic diagram of rigid conical indenter and its dislocations region underneath [15]. (a) Different schemas 
and different types of indentation points [28]. (b) Schematic diagram of rigid conical indenter and its 
dislocations region underneath [15]. 

where σ represents stress, K is strengthening coefficient, n is strain hardening 
exponent, b is Burgers vector, ρG is geometric dislocation density, εp is the 
peak of effective strain, η is equivalent strain gradient, expressed as η ¼ ρG � b, 
and l is intrinsic material length (microns) and can be expressed as: ˜ ° 2 l ¼ Mαμ=σref � b. 

Assuming that all dislocation loops are within the volume V of hemisphere 
with its radius a, the geometrically necessary dislocation density caused by the 
ideal conical rigid indenter with the sample being pressed can be described as 
follows: 

λ ða � h � πÞ=b 3h 3 
ρG ¼ ¼ ¼ ¼ tan 2θ (13) 

V 2a3 � π=3 2a2 � b 2bh 

where h is the indenter depth, and θ is the angle between indenter surface and 
sample surface with its value 19.7°. 

Assuming that conical indenter is rigid and the contact surface with indenter is 
under friction-free state, the schematic diagrams of load state and displacement state 
brought by conical indenter with material pressed can be expressed in Figure 3. 

The indentation schematic diagrams using Berkovich indenter are shown in 
Figure 3(a). Take the spherical indenter for example, as is illustrated in Figure 3(b), 
the displacement boundary on contact sphere and the contact boundary of interfacial 
nodes at the top of indenter must keep the sliding condition at spherical part. More-
over, the displacement boundary on conical surface and the contact boundary of 
interfacial nodes at conical part of indenter must keep the sliding condition too. So, 
the displacement boundary of node i at spherical part and the incremental displace-
ment of node j at conical part under the incremental calculation step n during 
microindentation process can be described as follows: 
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Figure 3. 
Schematic diagrams of displacement and load during microindentation. (a) Conical indenter. (b) Spherical 
indenter. 

ri �pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi � Δui þ Δvi ¼ �δn (14) 
a2 � ri2 

�Δuj=tgθ þ Δvj ¼ �δn (15) 

where r and z are cylindrical coordinates, (ri, zi) stands for coordinate of node i; 
Δui and Δvi are incremental node displacements in r and z directions, a is the 
hemispherical radius of indenter, δn is incremental displacement caused by indenter 
with material being pressed, θ is half-cone angle, and the value is 70.3° for 
Berkovich indenter. 

Assuming that conical indenter is fully rigid and there is no friction between 
indenter and material [31], as the contact surface stress of sample pressed by 
indenter is at normal direction, so the load of node can be adopted approximately at 
normal direction. The nodal force at node N can be divided into FNr and FNz at 
directions of r and z, so the incremental loads at directions of r and z can be 
separately expressed as ΔFNr and ΔFNz. The incremental loads of spherical contact 
node i and conical contact node j can be separately described as follows: 

ΔFir � cos α þ ΔFiz � cos α ¼ 0 (16) 

ΔFjr þ ΔFjz � tgθ ¼ 0 (17) 

The modified incremental load ΔFe must be added in the direction of radius to 
keep the deformation load along the direction of normal at contact surface required, 
the expression of ΔFe can be described as follows: 

ΔFe ¼ �Fir � Fiz � tgα ¼ 0 (18) 

pffiffiffiffiffiffiffiffiffiffiffiffiffiffi 
where exists the equation: α ¼ arctg ri= a2 � r2 . i 

For the regular resolution of contacted fine-grid section, the incremental finite 
element equation can be described as: 

½K�fΔdg ¼ fΔFg (19) 

where [K] is total stiffness matrix, Δd and ΔF, respectively, represent incre-
mental displacement and load. Insert load boundary conditions and displacement 
boundary conditions of corresponding contact surface nodes into Eq. (19) and 
Eqs. (14), (16), and (18) are inserted for the ball contact surface node i while the 
proportionally conical surface contact node j with Eqs. (15) and (17) inserted, so the 
microindentation hardness obtained ultimately can be resolved by the simultaneous 
equations described as: 
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2 k2i�1,1 þ k2i, 1 � tgα … k2i�1,2i�1 þ k2i,2i�1 � tgα 3 k2i�1,2i þ k2i,2i � tgα 
6 660 66 6 k2j�1,1 þ k2j, 1=tgθ 4 

… 

… 

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi �ri= a2 � r2 
i 

k2j�1,2j�1 þ k2j,2j�1=tgθ 

7 71 777 
k2j�1,2j þ k2j,2j=tgθ 75 

0 2 3 
Δui 

… �1=tgθ 2 3 �Fir � Fiz � tgα 

1 (20) 

6 7 6 6 7 66Δvi 7 66 7 6 � ¼ 6 7 66Δuj 7 64 5 4 

� δn 

0 

7 777 775 

Δvj � δn 

Solving equations of the contact nodes in Eq. (14) as well as noncontact nodes 
treated by conventional computing method, displacement distribution during 
unloading from Pmax can be finally obtained. 

Assuming that the material follow Mises flow law and the Tabor factor [32] is 
equal to 3, the microindentation hardness of material can be converted by equiva-
lent stress described by shear strength with the dislocation density [32] according to 
the model of Nix and Gao [30] described the Taylor hardening relationship by 
dislocation density, so the equation of microindentation hardness can be described 
as follows: 

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi pffiffiffiffiffi pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 
H ¼ 3σ ¼ 3 3τ ¼ 3 3α � μ � b � ρS þ ρG (21) 

where ρS is the statistics stored dislocation density, μ is the shear modulus, and 
α is an empirical constant, whose magnitude order value is one. 

As experimental microindentation hardness values are related with maximum 
load Pmax (mN) and indenter shape function A (nm2), the relationship between 
relative microindentation hardness values and indentation depth considering the 
intrinsic material length l without considering the effect of indentation elastic 
recovery can be expressed as follows: 

rffiffiffiffiffiffiffiffiffiffiffiffiffiffi rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 
H h ∗ h ∗ 

¼ 1 þ ¼ 1 þ k � (22) 
H0 h d 

where H is indentation hardness (GPa), H0 is indentation hardness without 
considering strain gradient effect, h is indentation depth, d is the reciprocal of pffiffi 
indentation diagonal length, k is identified as 4 tan θ= 2, and A is area function. 

The expressions of A, H, H0, and h were separately described as: 
pffiffiffi pffiffiffiffiffi 

H0 ¼ 3 3α � μ � b ρS (23) 

h ∗ ¼ 
81
2 
b � α2 � tan 2α � 

H 
μ 

0 
(24) 

H ¼ Pmax =A (25) 

S 
1=ð2n�1Þ A ¼ Pmax = ∑ Cn � hc (26) 

n¼0 

In case of analytical extraction of elastic properties through nanoindentation 
data, it is possible to assess roughly the yield stress as being directly correlated with 
hardness value according to Tabor [33], and given by: 
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σy ≈ H=C (27) 

where H is indentation hardness (GPa), and C is the contact creep modulus 
(GPa); the coefficient can change in the range of 2.6–3.0. 

3. Nanoindentation modeling and simulation at nano-/microscale 

3.1 Nanoindentation modeling using the QC method 

3.1.1 Representative volume element (RVE) 

In general, elastic properties (Young’s modulus, Poisson ratio, etc.), tensile 
strength, and postfailure tensile stress-displacement are thus the unique data that 
are transferred from cement paste to mortar [34]. Besides, the elastic displacements 
are found in every pixel, and the average strain and stress is computed and averaged 
over the entire microstructure to give the effective elastic properties. Input data of 
these solid phases at the nanoscale are needed. Different scales in structural model-
ing of concrete using HYMOSTRUC model of multiscale structures by UT Delft [35] 
and MuMoCC platform [35, 36] are developed. The representative volume element 
primarily uses numerical approximations of the effective properties of composite. 
Square or cubic RVEs are used for most numerical approximations because of the 
ease of numerically solving boundary value problems with these geometries. The 
difficulties involved in generating statistical information about particle distribu-
tions and concentrations lead to difficulties in the rigorous determination of RVE 
sizes. Sab [37] has shown that if an RVE exists for a random composite material, the 
homogenized properties of the material can be calculated by the simulation of one 
single realization of the medium. The “ergodic” hypothesis assumes that the 
ensemble average is equal to the volume average. The ensemble average is the mean 
of a large number of realizations of the microstructure. The volume average, on the 
other hand, is the average as the RVE volume becomes infinitely large compared to 
the volume of a particle. 

The MuMoCC platform operates in two main steps. The first one consists of 
generating realistic 3-D representative volume elements of concrete and their three 
different scales (cement paste, mortar, and concrete). This hierarchical modeling is 
based on the assumption of scale separation which is for the moment necessary. 
Indeed, because of the wide range of feature size in concrete, it is impossible to 
represent concurrently all these structural features in a single mesomodel and then 
to represent the complete system as one. The NIST 3-D model, CEMHYD3D, is then 
used for this purpose. The MuMoCC platform enables one to couple this well-
known model to the FE software ABAQUS. A set of algorithms has been developed 
in order to convert the voxelized images obtained in this first step by CEMHYD3D 
to FE meshes compatible with ABAQUS. Figure 4 shows a 2-D cross section of the 
generated submesostructure (mortar) and the modeled microstructure (hydrated 
cement paste). 

From Figure 4(a), we can see that, at the mesoscale of mortar, large aggregates 
with interfacial transition zone (ITZ) embedded in a matrix of mortar can typically 
be observed. From Figure 4(b), at microscale, the hydrated cement paste 
corresponding to the considered mortar is modeled using NIST’s CEMHYD3D code. 
As also seen before, this paste is a heterogeneous and complex porous medium in 
which the main solid phases are calcium silicate hydrate (C▬S▬H), Portlandite 
(calcium hydroxides) and hydrated aluminates, and sulfoaluminate phases. The 
solid phases are in chemical equilibrium with an interstitial solution that partially or 
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Figure 4. 
Structural modeling of the meso- and microstructure models [38, 39]. (a) Mesostructure model of mortar 
(125 ˜ 125 μm); (b) microstructure model of the cement paste (1 ˜ 1 μm). 

totally fills the porosity. The second step of the method consists of imposing various 
boundary conditions on the meshed RVE. The failure in mortar is supposed to be 
the consequence of crack initiation and propagation at highly localized regions 
under large tensile stress concentration. Failure in compression is supposed to be 
the consequence of tensile stresses resulting from restrained deformations due to 
the heterogeneous mesostructure of mortar. Thus, the tensile behavior of the hard-
ened cement paste is needed as input data to bridge the scales. 

Thus, the quasicontinuum (QC) method is a mixed continuum and atomistic 
approach for simulating the mechanical response of polycrystalline materials. For 
nanoindentation modeling using the QC method, the representative volume ele-
ment (RVE) is used for nanoindentation simulation. 

3.1.2 The 2-D/3-D modeling and axisymmetric finite element simulations 

The main eight steps of nanoindentation simulation using ABAQUS finite ele-
ment analysis software are mainly divided as: 

1. ABAQUS CAE component module: A solid model composed by indenter and 
the sample is established first. The sample is established as a 2-D/3-D 
axisymmetric deformable part, and the indenter is thought as rigid since the 
hardness and elastic modulus of the indenter material is far greater than the 
sample material. For Berkovich indenter model, the half-cone model with a 
degree of 70.32° is used, thus has the same relation between area and 
penetration of nanoindentation experiment. In order to eliminate the influence 
of outside boundary conditions on result of the indentation region, the sample 
length of each side is set 40 times the indentation depth. 

2. Characteristics module: Material properties (elastic constants, plastic, etc.) are 
defined. 

3. Assembly module: Model instances of indenter and sample are defined and 
assembled. 

4.Grid module: The samples are meshed and defined by certain element types. In 
order to better simulate the deformation behavior of the indentation affected 
zone, setting with a bias grid, unit type is quadrilateral reduced integration 
unit with the type of CPE4R element. 
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5. Analysis step module: The unloading step, time step, and analysis step are 
defined. 

6.Interaction module: Related properties can be defined. In this chapter, indenter 
surface is set as the main surface, and the surface of sample is subjected to the 
main surface. The friction coefficient between contact surfaces may be 
defined. 

7. Load module: The bottom surface of the sample is fixed, the left axis is of 
symmetry, and boundary conditions are applied to the contacted indenter 
point. 

8.Analysis job module: The job is established and then submitted to analysis 
solver. 

The nanoindentation constitutive model with embedded programs was used to 
simulate nanoindentation process by finite element analysis. The meshing diagram 
is shown in Figure 5. 

Based on the steps mentioned above, 2-D/3-D axisymmetric finite element sim-
ulations are performed to investigate the effect of friction on the indentation 
response of phases, e.g., C▬S▬H [38]. The indenter was modeled as a rigid cone 
with half apex angle of 70.32°. Details of the model geometry are shown in Figure 5. 
This conical angle ensures the same contact depth-projected area of contact relation 
as in Vickers and Berkovich pyramidal indenters. 

3.2 Typical P-h curve analysis of the elastic modulus 

The penetration depth is measured in nanometers continuously during the load-
ing process in nanoindentation simulation. Apart from the scale movement, the 
distinguishing feature of most nanoindentation testing is the indirect measurement 
of the contact area (real area where contact is made indenter). In conventional 
indentation test, the contact area is calculated by measuring the size of the residual 
footprint on the surface of the sample after unloading. In the nanoindentation test, 
the contact surface is determined so indirectly from the geometry of the indenter 
and the depth of penetration; meanwhile, the force and the displacement of the 
indentor in the material are continuously recorded and shown in a force-depth 
curve, as in Figure 6. 

Figure 5. 
Indentation simulation on 2-D/3-D models of typical cement paste phases. (a) 2-D geometrical details and 
finite element mesh. (b) 3-D geometrical details and finite element mesh. 

149 

http://dx.doi.org/10.5772/intechopen.84597


Atomistic Simulation of Anistropic Crystal Structures at Nanoscale 

Figure 6. 
Typical load-depth curves in nanoindentation experiment. 

As is shown in Figure 6, S is the initial unloading contact stiffness, hp is the 
residual depth during plastic deformation, hc is the contact depth, Pmax is the 
maximum of loading stress, and hmax is the maximum of indentation depth. The 
typical indentation curve in Figure 6 represents a loading-unloading cycle, not 
superimposed when the test leaves a permanent imprint on the surface. The first 
part is the loading curve corresponding to the penetration of the indentor. This ends 
when the indenter reached its maximum load Pmax or the maximum penetration 
hmax. The second part represents the discharge curve. It corresponds to the with-
drawal of the indenter. The analysis of a cycle gives a lot of information by reading 
the indentation curve total penetration depth hmax and depth of the residual depth 
hp. The area enclosed by load curve, unload curve, and horizontal axis represents 
plastic deformation work, while the area enclosed by unload curve, horizontal axis, 
and the vertical ordinate of maximum load represents elastic deformation work. 

During the nanoindentation simulation, the movement can apply forces from 
micronewtons up to several millinewtons and measurement depths down to a few 
nanometers. To achieve such good resolution at nanometer length, the model 
should be generally placed in a soundproof enclosure on an antivibration table to 
eliminate the negative influence of vibrations and noise so as to obtain the corre-
spondingly accurate load-depth curves which we need. 

4. Nanoindentation technique for CH and C▬S▬H structures by FEM 

Nanoindentation method is a relatively simple and effective technique to evalu-
ate the mechanical properties of material, and it can not only obtain the relevant 
performance parameters of the material but also reflect the mechanism of elastic-
plastic behaviors and reveal relationship between microstructure and macroscopic 
mechanical properties. However, it has a complex problem of contact, which is 
affected by many factors, such as nanoindentation test, the surface roughness, the 
substrate effect, the grain boundary effects, indenter geometry, lattice anisotropy, 
size effect, etc. Even if the nanoindentation process is tested in the same device and 
under the same test conditions, the result cannot be guaranteed repeatability. That 
is why, the investigation of nanoindentation process research using numerical sim-
ulation method is required. 
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4.1 Models of nanoindentation on 2-D/3-D models 

The nanoindentation constitutive model with embedded programs was used to 
simulate nanoindentation process by FE analysis. At the mesoscale, subdomains are 
regarded with locally varying loads, and interaction of the constituents is accounted 
for at the microscale [39]. For simplicity purposes, the Berkovich indenter is com-
monly modeled as a conical indenter with a semiapex angle of 70.32°, where the 
conical cross-sectional area closest to the actual situation [40]. According to litera-
tures [41, 42], 3-D models can be equivalent to an axisymmetric 2-D model and the 
results of two models are consistent with each other. Thus, the nano-indentation 
3-D model is treated as an axial symmetrical 2-D model, shown in Figure 7. 

From Figure 7(a), the 3-D model has a size of 15.0 ˜ 15.0 ˜ 7.5 μm, which has 
the sufficient space so as to compare the experimental results. The CPE4R elements 
with higher accuracy and axisymmetric model are adopted to simulate 
nanoindentation process. Berkovich indenter has an angle of 70.32°. To simplify the 
calculation, Berkovich indenter is assumed to be rigid and the deformation is 
subjected to the Mises yield criterion and isotropic hardening criterion. The size of 
microindentation model regarded as the semiinfinite solid in Figure 7(b) is 
12.0 ˜ 12.0 μm. This continuum space is discretized using four-noded axisymmet-
ric, isoparametric element (CPE4R element). A mesh sensitivity analysis was 
performed to ensure that the simulation results were insensitive to the mesh size in 
the indenter region. To save the computational time, the transitional gird division 
method is adopted. The element size was continuously refined as approaching the 
indenter contact region for greater accuracy, a refined mesh in Figure 7(c) was near 
the tip area (contact zone is 3.0 ˜ 3.0 μm, the number of grid is 300 ˜ 300) in order 
to minimize the computing resource and to maintain the reasonable accuracy. The 
minimum length of elements within the final domain is about 10 nm. 

4.2 Parameters of typical structures in simulation 

Correspondingly, the indentation is simulated by ABAQUS software at the same 
depth from the simulation. The applied displacement force is added. Mechanical 
parameters of typical phases in simulation are found in the previous chapters and 
listed in Tables 1 and 2. 

In the following simulations, as in the reference of Asroun et al. [43], an elastic 
perfectly plastic material model with Von Mises yield criterion σy (GPa) is assumed 
for the indented materials. The yield stresses are considered to be equal to 
0.198 GPa for LD C▬S▬H, 0.347 GPa for HD C▬S▬H, and 0.440 GPa for CH. 

Figure 7. 
Indentation simulation on 3-D and 2-D models of typical cement paste phases. (a) 3-D geometrical model. 
(b) 2-D model with three mesh regions. (c) Partial 2-D model with fine mesh. 
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Phases/parameters LD C▬S▬H  HD C▬S▬H  CH 

E (GPa) 17.35 32.70 39.88 

Friction coefficient f 0.6 0.6 0.6 

μ 0.2–0.3 0.2–0.3 0.2–0.3 

Table 1. 
Mechanical properties and parameters of typical phases and structures used in simulation: parameters of the 
representative experimental CH and C▬S▬H phases. 

Phases/parameters LD C▬S▬H HD C▬S▬H CH 

S-C M-T S-C M-T AFEM DFT + RVH 
scheme scheme scheme scheme 

Elastic modulus E 18.22 29.78 31.63 37.71 43.13 45.46 
(GPa) 

Poisson’s ratio μ 0.25 0.25 0.25 0.25 0.25 0.20 

Friction coefficient f 0.6 0.6 0.6 0.6 0.6 0.6 

Table 2. 
Mechanical properties and parameters of typical phases and structures used in simulation: parameters of the 
CH, LD C▬S▬H, and HD C▬S▬H structures using various simulation techniques. 

Frictional effects in the indenter-material interface were included in the analysis 
through an isotropic model. We assume that the loading rate is slow enough such as 
static friction can securely model the interface response. Simulations are proceeded 
in two steps. The indenter was first subjected to a ramped vertical displacement, 
followed by an indenter retraction to the original position which corresponded to 
complete unloading at zero load. Moreover, only half of the material is chosen to 
simulate nanoindentation with fraction coefficients between indenter and material 
adopted. Axisymmetric boundary conditions were used along the symmetry axis 
beneath the indenter. During simulation, five degrees of freedom are limited except 
y-axis and the bottom plane (constrained vertically) and planes around are fixed, 
then material model is defined. The contact mode is used during loading and 
unloading processes. 

For comparative analysis, the FEM simulation of nanoindentation on the LD 
C▬S▬H, HD C▬S▬H, and CH structures using parameters in Tables 1 and 2 are 
carried out using ABAQUS. 

5. Discussion on elastic moduli by both experiment and simulation 

5.1 Experiment and discussion of elastic moduli of CH and C▬S▬H 

5.1.1 Nanoindentation experiment and regional indentation analysis 

After the sample preparation and chemical composition, nanoindentation 
experiment is done on the instrument of INSA de Rennes, and CSM instrument and 
sample are shown in Figure 8. 

As in Figure 8(a), CSM instruments include: ultrananoindentation tester head, 
nanoindentation tester head, atomic force microscopy, and optical video micro-
scope. Besides, Berkovich indenter is shown in Figure 8(b). Samples with the 
dimension 1.1 ˜ 1.1 ˜ 1.1 cm underwent mechanical polishing and electrolytic 
polishing separately and lapped to a mirror, as shown in Figure 8(c). Parameters 
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Figure 8. 
CSM instrument and cement paste used in experiment. (a) Nanohardness platform. (b) Berkovich indenter. 
(c) Cement paste sample. 

are as: the maximum load is 1.5 mN; velocity after contact with the sample surface is 
10 m/s; continuous maximum load is 5 s; unloading time is 10 s. The speed of 
loading/unloading was 9.6841 mN/s and the P-h data were recorded. The test is 
repeated several times to average. 

5.1.2 Elastic moduli of typical phases in various samples 

Nanoindentation experiments were carried out on CSM microindentation tester 
with conical Berkovich indenter. The process is mainly described as follows: sam-
ples with the dimensions 1.1 ˜ 1.1 ˜ 1.1 cm underwent mechanical polishing and 
electrolytic polishing separately and lapped to a mirror. Then, experimental maxi-
mum loads of 1.5 and 2 mN were mainly selected by loading/unloading with the 
speed of 9.6841 mN/s and the data of load and depth were recorded. Besides, 
indentation diagonal lengths were measured by data collection software on com-
puter. Under each parameter, experiments were repeatedly done five times and 
then averaged to decrease the relative error. By experimentally investigating the 
mechanical properties of cement paste at different length scales provides a means of 
correlating such nanoscale properties to nanoscale applications. The identification 
of the parameters is provided in Table 3. 

For the tested curves of CH phase collected from different samples, the param-
eters of CH phase obtained microindentation experiment are shown in Table 4. 

The representative experimental curves of typical phases characterized by indi-
vidual elastic modulus are averaged. Using the indents of LD C▬S▬H phase under 
different samples, the corresponding P-h curves are found. The representative 
experimental curves of outer LD C▬S▬H phase are given in Figure 9. 

Experimental parameters Unit CEMI CEMIII CEMI_MK CEMI_Sed 

Maximum load Pmax mN 1.5–2.0 1.5 1.5 1.5–2.0 

Strain rate P*/Pmax 
°1 s 0.01 0.01 0.01 0.01— 

Loading and unloading speed mN/min 3–4 3–4 2–5 2–5 

Acquisition frequency rate Hz 10 10 10 10 

Delta slope (%) — 80 80 80 80 

Poisson’s ratio — 0.2 0.2 0.2 0.2 

Total number of indents — 830 363 334 296 

Table 3. 
Characteristics of experimental parameters used in loading programs for samples. 
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Experimental parameters LD HD CH Calcite Clinker 
C▬S▬H C▬S▬H 

Maximum depth hmax (nm) 441.79 278.08 212.98 97.11 99.54 

The projected contact area Ap 4577259.84 1761371.10 977898.05 137943.39 267721.30 
(nm2) 

The unloading stiffness S (mN/nm) 0.0532 0.0559 0.0458 0.0363 0.0588 

The fitting parameter m 4.76 6.01 4.12 1.29 1.66 

Indent number (e.g., CEMIII, etc.) 30 22 56 13 — 

Table 4. 
Experimental parameters and corresponding characteristics of typical phases. 

Figure 9 shows the representative experimental curve of LD C▬S▬H phase, 
with elastic modulus of 17.35 GPa. Similarly, representative experimental curves of 
HD C▬S▬H phase is shown in Figure 10. 

Figure 10 shows the representative experimental curve of HD C▬S▬H phase, 
with elastic modulus of 32.70 GPa. Similarly, the representative corresponding P-h 
curve of CH phases is given in Figure 11. 

Figure 11(b) shows the representative experimental curve of CH phase, with its 
corresponding elastic modulus of 39.88 GPa. 

Figure 9. 
The representative experimental curves of outer LD C▬S▬H phase. (a) Typical curves of outer LD C▬S▬H 
phase. (b) The representative curve of outer LD C▬S▬H phase. 

Figure 10. 
The representative experimental curves of inner HD C▬S▬H phase. (a) Typical curves of inner HD 
C▬S▬H phase. (b) The representative curve of inner HD C▬S▬H phase. 
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Figure 11. 
The representative experimental curves of CH phase. (a) Typical curves of CH phase. (b) The representative 
curve of CH phase. 

Overall, nanoindentation experiments show that the range of elastic modulus 
corresponding to low-density C▬S▬H is 15–26 GPa and the range of elastic moduli 
corresponding to high-density C▬S▬H is 26–39 GPa. The inverse method 
described above is applied to each matrix phase that is what has been called previ-
ously: LD C▬S▬H, HD C▬S▬H, portlandite (CH), and clinker. 

5.2 Simulation and discussion of elastic moduli of CH and C▬S▬H 

There are two methods of applying load in simulation: forced loading and forced 
displacement. Comparison of the load-displacement curves using the forced loading 
and the forced displacement is the same; here, we use the forced displacement 
method. 

5.2.1 Simulation and discussion of elastic modulus of CH phase 

From the load-depth curve of CH phase in nanoindentation experiment, the 
pressure is about 1.5 mN and the maximum indent depth of CH phase is about 
212.98 nm, the representative curve of CH is as in Ref. [44]. CH simulation param-
eters were separately set as: elastic moduli E are separately 45.459 GPa (DFT + RVH 
method, μ = 0.2), 43.13 GPa (AFEM method, μ = 0.25), and 39.880 GPa 
(nanoindentation experiment). The region range of Poisson ratio μ is 0.25–0.30. The 
yield stress can be averaged by the experimental data [21] and the simulated data 
[38], which is 0.440 GPa by the Eq. (27). The contact friction is set about 0.6 [26]. 

Stress distribution and deformed displacement zones of CH are shown in 
Figure 12. 

As is shown in Figure 12, the maximum residual stress after unloading on the 
ideal contact condition distributes just below the indenter, while the maximum 
residual stress after unloading on the friction condition distributes around the top 
of indenter and the residual stress below the indenter is not too large. 

Using ABAQUS software, under the loading force of 1.5 mN, the comparison 
of experimental and simulated unloading P-h curves of CH phase is shown in 
Figure 13. 

As is shown in Figure 13, we can see that the simulated unloading part is close to 
the representative experimental part. It can be seen that the smaller Poisson’s ratio 
is, the smaller the slope of unloading curve will be. Comparison of purely elastic 
unloading curve of CH phase is shown in Figure 13; we can see that DFT methods 
(45.459 GPa, by LDA method) and AFEM method (43.13 GPa) are very consistent 
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Figure 12. 
Stress distribution and displacement zones of CH under various frictions. (a) Stress distribution zone ( f = 0.6). 
(b) Deformed displacement zone ( f = 0.6). 

Figure 13. 
Comparison of experimental and simulated P-h and unloading curves of CH phase. (a) Comparison of 
experiment and AFEM and DFT methods. (b) Unloading curves under various Poisson’s ratio. 

with experimental results (39.880 GPa), which verifies the reliability of simulation 
method. 

For CH structure in this book, the elastic constants have been calculated using 
the AFEM and DFT methods. Then, the homogenized elastic modulus of CH struc-
ture is estimated by the Y parameter, elastic moduli by DFT method (45.459 GPa) 
and by AFEM (43.14 GPa) are very close to the results of Constantinides. In order to 
verify the simulation results of the CH structure, nanoindentation experiments of 
four cement samples are carried out. The averaged Young’s modulus of CH phase is 
39.880 GPa by nanoindentation experiment, which is close to the results of 
40.3 ˜ 4 GPa by Constantinides. Comparison of purely elastic unloading curve of 
CH phase shows that DFT and AFEM methods are very consistent with experimen-
tal results on average, which verifies the reliability of both simulation methods. It 
has demonstrated the reasonableness of simulation conclusions by the reliable 
experiment verification. 

The simulated elastic modulus is close to the average by experiment, which has 
demonstrated the reasonableness of simulation conclusions. Although the mecha-
nism of the complex plastic deformation is still unknown, the yield flow stress 
parameter is still turned to be of certain rationality. The nanoindentation simulation 
of CH phase is done on ABAQUS using the corresponding parameters, thus 
reversely verify the reliability of the initial parameters. The large-scale models using 
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QC methods are considered and verified on ABAQUS software, where, on behalf of 
the purely elastic stage, the unloading curves of the CH model with various 
Poisson’s ratios are simulated. It can be seen that the smaller Poisson’s ratio is, the 
smaller the linear slope of unloading curve will be. 

5.2.2 Simulation and discussion of elastic modulus of LD C▬S▬H 

Firstly, elastic constants of the monoclinic 11 Å tobermorite are calculated by 
DFT. Then, the homogenized elastic modulus is determined to be 79.51 GPa, which 
is close to the other references. However, the ordered 11 Å tobermorite model 
cannot reflect the C▬S▬H structure, and the crystalline C▬S▬H structures— 
C▬S▬H(I) (Ca/Si = 0.67) and the C▬S▬H(II) (Ca/Si = 1.67)—are still far from 
the data in laboratory. That is why, the disordered structure is simulated and 
confirmed. For the monolithic structures of C▬S▬H(I) and C▬S▬H(II), using 
MD simulation, the averaged Young’s moduli are separately about 75.92 and 
60.95 GPa. The last value of C▬S▬H(II) with the size about 5 nm enables to 
evaluate the value of the elastic modulus of LD C▬S▬H and HD C▬S▬H: 18.11 
and 31.45 GPa, using the self-consistent scheme. 

The LD C▬S▬H phase can be modeled assuming a linear elastic and cohesive-
frictional plastic material. The forced displacement method is used as mentioned 
above. 

From the load-depth curve of LD C▬S▬H phase nanoindentation experiment, 
the pressure is about 1.5 mN and the maximum indent depth is about 441.79 nm, the 
representative curve of LD C▬S▬H is in Ref. [44]. The yield stress can be averaged 
by the experimental data [21] and the simulation [38], which is 0.198 GPa. The LD 
C▬S▬H parameters were separately set as follows: elastic moduli E are separately 
18.22 GPa (by the self-consistent scheme, μ = 0.25), 29.78 GPa (by the Mori-Tanaka 
scheme, μ = 0.25), and 17.35 GPa (nanoindentation experiment). The region range 
of Poisson ratio μ is 0.20–0.25 and the contact friction is about 0.6 [26]. 

Stress distribution and deformed displacement zones of LD C▬S▬H are shown 
in Figure 14. 

As is shown in Figure 14, the maximum residual stress after unloading on the 
ideal contact condition distributes just below the indenter, while the maximum 
residual stress after unloading on the friction condition distributes around the top of 
indenter and the residual stress below the indenter is not too large. Similarly, the 

Figure 14. 
Stress distribution and displacement zones of LD C▬S▬H under various frictions. (a) Stress distribution zone 
( f = 0.6). (b) Deformed displacement zone ( f = 0.6). 

157 

https://0.20�0.25
http://dx.doi.org/10.5772/intechopen.84597


Atomistic Simulation of Anistropic Crystal Structures at Nanoscale 

Figure 15. 
Comparison of experimental and simulated unloading P-h curves of LD C▬S▬H phase. (a) Comparison of 
experiment and MD simulation. (b) Unloading curves under various Poisson’s ratio. 

comparison of experimental and simulated unloading P-h curves of LD C▬S▬H 
phase is shown in Figure 15. 

As is shown in Figure 15(a), we can see that the simulated unloading part is close 
to the representative experimental part. It can be seen that the smaller Poisson’s ratio 
is, the smaller the slope of unloading curve will be. Comparison of purely elastic 
unloading curve of LD C▬S▬H phase is shown in Figure 15(b); we can see that, the 
Mori-Tanaka scheme (29.78 GPa, μ = 0.25) and the self-consistent scheme (18.22 GPa, 
μ = 0.25) are very consistent with experimental results (17.35 GPa), which verifies the 
reliability of both simulation methods. Comparison of purely elastic unloading curve 
of LD C▬S▬H phase shows that the simulated P-h curve (18.22 GPa, by the self-
consistent scheme of C▬S▬H(II) structure (C/S = 1.67) with the size about 5 nm 
simulated using MD method in Chapter 5) is close to the experimental curve 
(17.35 GPa), which verifies the reliability of both simulation methods. 

5.2.3 Simulation and discussion of elastic modulus of HD C▬S▬H 

From the representative load-depth curve of HD C▬S▬H phase 
nanoindentation experiment, the pressure is about 1.5 mN and the maximum indent 
depth of HD C▬S▬H phase is about 278.08 nm, the representative curve of HD 
C▬S▬H is in Ref. [44]. Similarly, the HD C▬S▬H parameters were separately 
set as follows: elastic moduli E are separately 31.63 GPa (by the self-consistent 
scheme, μ = 0.25), 37.71 GPa (by the Mori-Tanaka scheme, μ = 0.25), and 32.70 GPa 
(nanoindentation experiment). The region range of Poisson ratio μ is 0.20–0.25, and 
the yield stress in the Eq. (27) is 0.347 GPa [38]. By the Ref. [26], the contact 
friction is about 0.6. 

Stress distribution and deformed displacement zones of HD C▬S▬H are in 
Figure 16. 

As is shown in Figure 16, the maximum residual stress after unloading on the 
ideal contact condition distributes just below the indenter, while the maximum 
residual stress after unloading on the friction condition distributes around the top of 
indenter and the residual stress below the indenter is not too large. 

Using ABAQUS software, under the loading force of 1.5 mN, the comparison of 
experimental and simulated unloading P-h curves of HD C▬S▬H phase is shown 
in Figure 17. 

As is shown in Figure 17(a), we can see that the simulated unloading part is 
close to the representative experimental part. It can be seen that the smaller 
Poisson’s ratio is, the smaller the slope of unloading curve will be. Comparison of 
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Figure 16. 
Stress distribution and displacement zones of HD C▬S▬H under various frictions. (a) Stress distribution zone 
( f = 0.6). (b) Deformed displacement zone ( f = 0.6). 

Figure 17. 
Comparison of experimental and simulated unloading P-h curves of HD C▬S▬H phase. (a) Comparison of 
experiment and MD simulation. (b) Unloading curves under various Poisson’s ratio. 

purely elastic unloading curve of HD C▬S▬H phase is shown in Figure 17(b); we 
can see that the Mori-Tanaka scheme (37.71 GPa, μ = 0.25) and the self-consistent 
scheme (31.36 GPa, μ = 0.25) are very consistent with experimental results 
(32.70 GPa), which verifies the reliability of simulation method. This indicates that 
the selected simulation parameters are reliable to characterize its plastic deforma-
tion behaviors. It is found that the comparison results of the experimental and 
simulated unloading curves are basically coincided and have a quite good agree-
ment. Thus, the comparison of the experimental results and simulated values shows 
the feasibility and rationality of the simulation methods mentioned above. 

In order to verify the simulation results of the structures, especially for the LD 
C▬S▬H, nanoindentation simulation is carried out. The simulated elastic modulus 
is close to the average by experiment, which has demonstrated the reasonableness 
of simulation. From the simulation results and experimental data [44], it indicates 
that the selected simulation parameters are reliable, which thus provides the basis 
and parameters for the multiscale simulation [35, 37]. 

In conclusion, the properties of each phase contained in the cement paste are 
considered in such a way that hydrated and nonhydrated cement phases are 
assumed to be perfectly elastic. The values of the elastic modulus and of the Poisson 
coefficient of these different phases are obtained from nanoindentation 
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Phases Density 
(g/cm3) 

Mixing 
volume 
(%) [45] 

Paste 
volume 
(%)[45] 

E (GPa) 
by 

reference 

E (GPa) by simulation E (GPa) by 
experiment 

C3S 3.15 23.40 1.17 117.6 [47] — — 

C2S 3.28 7.35 0.78 117.6 [47] — — 

C3A 3.03 4.42 0.00 117.6 [47] — — 

C4AF 3.73 2.87 1.39 117.6 [47] — — 

Gypsum 2.32 3.47 0.00 45.7 [48] — — 

Portlandite 
(CH) 

2.24 0.00 13.96 46.6 [49] 43.13 (AFEM); 45.46 
(DFT) 

≈44.7 

C▬S▬H 1.90 0.00 29.03 22.4 [50] Monolithic C▬S▬H: 
C▬S▬H(I) ≈ 75.92; 
C▬S▬H(II) ≈ 60.95 

≈22.05 

C▬S▬H 
pozz 

2.65 0.00 49.99 22.4 [50] By SC scheme: LD 
C▬S▬H = 18.22; HD 
C▬S▬H = 31.63 

≈33.52 

Afm 2.02 0.00 15.12 42.3 [50] — — 

Ettringite 
(AFt) 

1.78 0.00 6.87 22.4 [50] — — 

Porosity 
total 

0 58.49 31.69 0 — — 

Table 5. 
Young’s modulus of phases in Portland cement paste by references and our work. 

measurements. The comparison of elastic modulus between references [45, 46] and 
present work in thesis is shown in Table 5. 

The nanoindentation technique has identified in various phases of the cement 
pates to determine their elastic moduli. The unloading P-h curves under various 
Poisson’s ratio have been finally obtained, which provides basis for theoretical 
guidance and practical analysis. 

6. Conclusions 

Nanoindentation simulation is done on ABQUS to get mechanical properties of 
CH and C▬S▬H, with the comparison of nanoindentation experiment. The effect 
of Poisson’s ratio on the nanoindentation simulation of CH and C▬S▬H has been 
quantified through FE simulations. A numerical model was developed to validate 
and assess the elastic parameters associated with each phase. The P-h curves of the 
simulation are compared to conclude on the feasibility of the methodology. The 
experimental elastic moduli of LD C▬S▬H and HD C▬S▬H deviate up to ˜20% 
in our previous work. The present simulation helps to understand more advanced 
constitutive relations for C▬S▬H (time-dependent deformation, yield-criteria, 
hardening phenomena, etc.). 

1. The simulated Young’s modulus of CH phase is about 45.459 GPa (DFT 
methods, by LDA method) and 43.13 GPa (AFEM method) by 
nanoindentation simulation, which is close to the results of 40.3 ˜ 4 GPa by 
Constantinides. 
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2. Based on the evaluated elastic modulus values of LD C▬S▬H 18.11 GPa and 
HD C▬S▬H 31.45 GPa using the self-consistent scheme of the monolithic 
C▬S▬H(II) structure 60.95 GPa with the size about 5 nm, the simulated 
results for LD C▬S▬H structure 18.22 GPa and HD C▬S▬H structures 
31.63 GPa, which is close to the results of 18.2 ˜ 4.2 and 29.4 ˜ 2.4 GPa by 
Constantinides, thus has demonstrated the reasonableness of simulation 
parameters. 

3. Finally, on behalf of the purely elastic stage, the unloading curves of the three 
(CH, LD C▬S▬H, and HD C▬S▬H structures) models are simulated on 
ABAQUS software. It is found that the comparison results of the experimental 
and simulated unloading curves are basically coincided and have a quite good 
agreement. Thus, the analysis of unloading curves shows the feasibility and 
rationality of the simulation methods mentioned above. 

Overall, as the length scale of C▬S▬H structure with hundreds of nanometers 
can be called C▬S▬H gel, and these colloids have a number of C▬S▬H particles 
having an average particle radius about °5 nm, the C▬S▬H model composed of 
C▬S▬H particles with radius of 5 nm for nanoindentation simulation thus can also 
be precisely described by MD in future, which can be used to compare the results 
using FEM method, although simulation of these models at larger scale is time-
consuming. In the future, the upscaling of the obtained properties at the atomic 
level will be concerned in order to connect this modeling to continuum models by 
using relevant input form at small level, carrying forward the critical information to 
represent the continuum model with the intrinsic nanoscale features incorporated. 
Other mechanical properties may also be investigated, not only fracture properties 
and their upscaling toward upper scales, but also creep behavior of the C▬S▬H 
phase which exhibits such a time-dependent behavior. 
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Multiscale simulations of atomistic/continuum coupling in computational materials 
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