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Preface

The finite element method (FEM) is a widely used technique for numerical 
simulations in many areas of science and engineering. The method has gained 
increased popularity over the years for the solution of complex mathematical 
problems. It is now a powerful and popular numerical method for solving partial 
differential equations, with flexibility in dealing with complex geometric domains 
and various boundary conditions. Although the method has been extensively 
used in the field of structural mechanics, it has also been successfully applied to 
solve several other types of engineering problems, such as heat conduction, fluid 
dynamics, seepage flow, and electric and magnetic fields. In particular, FEM 
has been successfully applied to fluid-structure interaction, thermomechanical, 
thermochemical, and thermo-chemo-mechanical problems, biomechanics, 
biomedical engineering, piezoelectricity, ferroelectricity, electromagnetics, and 
more.

An important advantage of FEM, and the main reason for its popularity among 
academics and industrial developers, is the ability to handle mathematical problems 
on domains with arbitrary geometry. An attractive feature is the ability to generate 
solutions to problems governed by linear and nonlinear differential equations. 
Moreover, FEM enjoys a firm theoretical foundation that is mostly free of ad hoc 
schemes and heuristic numerical approximations, thereby inspiring confidence in 
the physical relevance of the solution.

This book provides several applications of FEM for solving real-world problems. 
It is a useful resource for students in science and engineering, researchers with 
diverse educational background, practicing scientists and engineers, computational 
scientists, and applied mathematicians.

Chapter 1 introduces the method for several one-dimensional and two-dimensional 
model problems. The remaining chapters consider applications of FEM to several 
problems. These applications include fluid problems, magnetostatic and magneto-
dynamic problems, stress predictions of early-age concrete members, application 
on cell migration, dentistry, nanotechnology research, ship composite-based on 
aluminum, and nonlinear solid mechanics. The emphasis of the text is on the 
simulation of several physical phenomena of FEM, but many mathematical and 
numerical aspects to important problems are also given.

Chapter 1 provides a summary of FEM. Since the remaining chapters of this 
textbook are based on FEM, we present it in the first chapter as a general method 
for approximating solutions of ordinary differential equations (ODEs) and partial 
differential equations (PDEs). To be more specific, we use simple one-dimensional 
and two-dimensional model problems to introduce FEM.

Chapter 2 studies the pulsatile flow of blood with different physiological 
pressure conditions and altered gravity. It summarizes the investigation on the 
effects of hypertension in comparison with normal blood pressure on normal 
and stenosed carotid artery bifurcation. In addition, it discusses the effects of 

XII
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altered gravity during the change of posture from sleeping to standing under 
normal blood pressure conditions.

Chapter 3 applies FEM to solve magnetostatic and magnetodynamic problems.

Chapter 4 presents a two-dimensional finite difference scheme for thermal analysis 
of a concrete element. FEM is then used to calculate the thermal stresses in the 
concrete. The analysis results are compared with measurements of actual concrete 
elements. The combined approach can be a simple and useful tool for analyzing 
temperatures and thermal stresses in early-age concrete elements.

Chapter 5 presents a mathematical model for convective heat and mass transfer of 
two immiscible fluids in a vertical channel of variable width with thermo-diffusion, 
diffusion-thermal effects. The governing boundary layer equations generated for 
momentum, angular momentum, energy, and species concentration are solved with 
appropriate boundary conditions using Galerkin FEM. The effects of the pertinent 
parameters are studied in detail. Furthermore, the chapter analyzes the rate of heat 
transfer, mass transfer, and shear stress near both walls.

Chapter 6 introduces a newly developed finite element cellular model to simulate 
collective cell migration and explore the effects of mechanical feedback between 
cells and between cells and substrate. The viscoelastic model represents one cell 
with many triangular elements. Intercellular adhesions between cells are repre-
sented as linear springs. Furthermore, the chapter includes a mechano-chemical 
feedback loop between cell-substrate mechanics and cell migration. The results 
reproduce a set of experimental observations of patterns of collective cell migration 
during epithelial wound healing. In addition, the chapter demonstrates that cell-
substrate-determined mechanics play an important role in regulating persistent and 
oriented collective cell migration. It also illustrates that our finite element cellular 
model can be applied to study a number of tissue-related problems regarding  
cellular dynamic changes at the subcellular level.

Chapter 7 describes FEM coupled with Monte Carlo analysis as a methodology 
for quantification of a particularly important nuclear parameter that is primarily 
influenced by thermal and mechanical phenomena present in nuclear reactors. FEM 
described in this chapter is used to evaluate the reactivity coefficient associated 
with the thermal expansion-driven spacing of the assemblies along with the much 
more complicated reactivity coefficient associated with the thermal expansion and 
mechanical interaction of the fuel assembly hexagonal ducts.

Chapter 8 presents a brief application of FEM in dentistry. It provides an overview 
of several methods.

Chapter 9 presents rolling resistance estimation in the design process of passenger 
car radial tire by using FEM to digitally simulate the tire. The simulation firstly 
computes the deformation of several alternative designs of tires under certain 
loading and then calculates the value of deformation force in each tire component 
during deformation. The total force of deformation is considered as energy loss or 
hysteresis loss resulting in tire rolling resistance. The experiment was carried out 
on three different tire designs: two grooves, three grooves, and four grooves. The 
four-groove tire design gave the smallest rolling resistance coefficient. Finally, the 
simulation was continued to compare different crown radii of the tires and the 
results show that the largest crown radius generates the lowest rolling resistance.

V

Chapter 10 elaborates the applications of FEM in varied applications of nanotechnol-
ogy including carbon nanotubes (CNTs), nanobeams, nanorods, nanobiomaterials, 
graphene-coated materials, nanosensors, nanotips, and curved nanobeams.

Chapter 11 explains the use of alternative materials for ship building, namely 
aluminum-based composite material, which is an aluminum alloy AlSi10Mg (b) 
ship-building material based on the European Nation (EN) Aluminum Casting 
(AC)-43,100, with silicon carbide reinforcement. Composite ship models use 
ANSYS software to determine the distribution of stress.

Chapter 12 proposes a symbolic mathematical approach for the rapid early-phase 
development of finite elements. The algebraic manipulator adopted is MATLAB and 
the applicative context is the analysis of hyperelastic solids or structures under the 
hypothesis of finite deformation kinematics. The work has been finalized through 
the production, in an object-oriented programming style, of three MATLAB 
classes implementing a truss element, tetrahedral element, and plane element. The 
approach proposed, starting with the mathematical formulation and finishing with 
the code implementation, is described and its effectiveness, in terms of minimiza-
tion of the gap between the theoretical formulation and its actual implementation, 
is highlighted.

Chapter 13 investigates the error estimation of numerical approximation to a class 
of semi-linear parabolic problems. More specifically, the time discretization uses 
the backward Euler Galerkin method, and the space discretization uses FEM for 
which the meshes are allowed to change in time. The key idea in the analysis is 
to adapt the elliptic reconstruction technique enabling us to use the a posteriori 
error estimators derived for elliptic models and to obtain optimal order of conver-
gence for Lipschitz and non-Lipschitz nonlinearities. This chapter also addresses 
some challenges dealing with the nonlinear term by employing a continuation 
argument.

Chapter 14 presents a finite element magnetic method for magnetorheological-based 
actuators. We consider several discussions such as necessary magnetostatic using 
free software finite element magnetic method; design consideration for the magnetic 
circuit of the device and case studies of several types of simulation in magnetorheo-
logical material-based devices. During the design process, magnetostatic simulation 
using the finite element magnetic method is carried out to make a better magnetic 
circuit.

We thank all the authors who contributed to this book with their studies that provide 
accessible and excellent explanations of the applications of FEM. This work would 
not have been possible without our excellent contributors. Finally, we express our 
thanks to Author Service Manager Mr. Josip Knapić and the staff at IntechOpen for 
their invaluable support and editorial assistance. 

Mahboub Baccouch
Department of Mathematics,

University of Nebraska at Omaha,
Omaha, Nebraska, USA

XIV



V

Chapter 10 elaborates the applications of FEM in varied applications of nanotechnol-
ogy including carbon nanotubes (CNTs), nanobeams, nanorods, nanobiomaterials, 
graphene-coated materials, nanosensors, nanotips, and curved nanobeams.

Chapter 11 explains the use of alternative materials for ship building, namely 
aluminum-based composite material, which is an aluminum alloy AlSi10Mg (b) 
ship-building material based on the European Nation (EN) Aluminum Casting 
(AC)-43,100, with silicon carbide reinforcement. Composite ship models use 
ANSYS software to determine the distribution of stress.

Chapter 12 proposes a symbolic mathematical approach for the rapid early-phase 
development of finite elements. The algebraic manipulator adopted is MATLAB and 
the applicative context is the analysis of hyperelastic solids or structures under the 
hypothesis of finite deformation kinematics. The work has been finalized through 
the production, in an object-oriented programming style, of three MATLAB 
classes implementing a truss element, tetrahedral element, and plane element. The 
approach proposed, starting with the mathematical formulation and finishing with 
the code implementation, is described and its effectiveness, in terms of minimiza-
tion of the gap between the theoretical formulation and its actual implementation, 
is highlighted.

Chapter 13 investigates the error estimation of numerical approximation to a class 
of semi-linear parabolic problems. More specifically, the time discretization uses 
the backward Euler Galerkin method, and the space discretization uses FEM for 
which the meshes are allowed to change in time. The key idea in the analysis is 
to adapt the elliptic reconstruction technique enabling us to use the a posteriori 
error estimators derived for elliptic models and to obtain optimal order of conver-
gence for Lipschitz and non-Lipschitz nonlinearities. This chapter also addresses 
some challenges dealing with the nonlinear term by employing a continuation 
argument.

Chapter 14 presents a finite element magnetic method for magnetorheological-based 
actuators. We consider several discussions such as necessary magnetostatic using 
free software finite element magnetic method; design consideration for the magnetic 
circuit of the device and case studies of several types of simulation in magnetorheo-
logical material-based devices. During the design process, magnetostatic simulation 
using the finite element magnetic method is carried out to make a better magnetic 
circuit.

We thank all the authors who contributed to this book with their studies that provide 
accessible and excellent explanations of the applications of FEM. This work would 
not have been possible without our excellent contributors. Finally, we express our 
thanks to Author Service Manager Mr. Josip Knapić and the staff at IntechOpen for 
their invaluable support and editorial assistance. 

Mahboub Baccouch
Department of Mathematics,

University of Nebraska at Omaha,
Omaha, Nebraska, USA

XV





Chapter 1

A Brief Summary of the Finite
Element Method for Differential
Equations
Mahboub Baccouch

Abstract

The finite element (FE) method is a numerical technique for computing approxi-
mate solutions to complex mathematical problems described by differential equations.
The method was developed in the 1950s to solve complicated problems in engineering,
notably in elasticity and structural mechanics modeling involving elliptic partial dif-
ferential equations and complicated geometries. But nowadays the range of applica-
tions is quite extensive. In particular, the FE method has been successfully applied to
many problems such as fluid–structure interaction, thermomechanical, thermochemi-
cal, thermo-chemo-mechanical problems, biomechanics, biomedical engineering, pie-
zoelectric, ferroelectric, electromagnetics, and many others. This chapter contains a
summary of the FEmethod. Since the remaining chapters of this textbook are based on
the FE method, we present it in this chapter as a method for approximating solutions
of ordinary differential equations (ODEs) and partial differential equations (PDEs).

Keywords: the finite element method, initial-value problems, boundary-value
problems, Laplace equation, heat equation, wave equation

1. Introduction

1.1 An overview of the finite element method

Differential equations arise in many disciplines such as engineering, mathemat-
ics, sciences, economics, and many other fields. Unfortunately solutions to differ-
ential equations can rarely be expressed by closed formulas and numerical methods
are needed to approximate their solutions. There are many numerical methods for
approximating the solution to differential equations including the finite difference
(FD), finite element (FE), finite volume (FV), spectral, and discontinuous Galerkin
(DG) methods. These methods are used when the mathematical equations are too
complicated to be solved analytically.

The FE method has become the standard numerical scheme for approximating
the solution to many mathematical problems; see [1–9] and the references therein
just to mention a few. In simple words, the FE method is a numerical method to
solve differential equations by discretizing the domain into a finite mesh. Numeri-
cally speaking, a set of differential equations are converted into a set of algebraic
equations to be solved for unknown at the nodes of the mesh. The FE method
originated from the need to solve complex elasticity and structural analysis prob-
lems in civil and aeronautical engineering. The first development can be traced back
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to the work by Hrennikoff in 1941 [10] and Courant in 1943 [11]. Although these
pioneers used different perspectives in their FE approaches, they each identified the
one common and essential characteristic: mesh discretization of a continuous
domain into a set of discrete sub-domains, usually called elements. Another funda-
mental mathematical contribution to the FE method is represented by Gilbert
Strang and George Fix [12]. Since then, the FE method has been generalized for the
numerical modeling of physical systems in many engineering disciplines including
electromagnetism, heat transfer, and fluid dynamics.

The advantages of this method can be summarized as follows:

1.Numerical efficiency: The discretization of the calculation domain with finite
elements yields matrices that are in most cases sparse and symmetric.
Therefore, the system matrix, which is obtained after spatial and time
discretization, is sparse and symmetric too. Both the storage of the system
matrix and the solution of the algebraic system of equations can be performed
in a very efficient way.

2.Treatment of nonlinearities: The modeling of nonlinear material behavior is
well established for the FE method (e.g., nonlinear curves, hysteresis).

3.Complex geometry: By the use of the FE method, any complex domain can be
discretized by triangular elements in 2D and by tetrahedra elements in 3D.

4.Applicable to many field problems: The FE method is suited for structural
analysis, heat transfer, electrical/magnetical analysis, fluid and acoustic
analysis, multi-physics, etc.

COMSOL Multiphysics (known as FEMLAB before 2005) is a commercial FE
software package designed to address a wide range of physical phenomena. It is
widely used in science and industry for research and development. It excels at
modeling almost any multi-physics problem by solving the governing set of PDEs
via the FE method. This software package is able to solve one, two and three-
dimensional problems. It comes with a modern graphical user interface to set up
simulation models and can be scripted from Matlab or via its native Java API.

In this chapter, we introduce the FE method for several one-dimensional and
two-dimensional model problems. Although the FE method has been extensively
used in the field of structural mechanics, it has been successfully applied to solve
several other types of engineering problems, such as heat conduction, fluid dynam-
ics, seepage flow, and electric and magnetic fields. These applications prompted
mathematicians to use this technique for the solution of complicated problems. For
illustration, we will use simple one-dimensional and two-dimensional model
problems to introduce the FE method.

2. The FE method for ODEs

2.1 The FE method for first-order linear IVPs

We first present the FE method as an approximation technique for solving the
following first-order initial-value problem (IVP) using piecewise linear polynomials

u0 ¼ f xð Þ, x∈ a, b½ �, u að Þ ¼ u0: (1)

2
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In order to apply the FE method to solve this problem, we carry out the
following process.

1.Derive a weak form (variational formulation). This can be done

by multiplying the ODE in (1) by a test function v xð Þ∈V0 ¼

v∈L2 a, b½ � : ∥v∥2 þ ∥v0∥2 <∞, v að Þ ¼ 0
n o

, where ∥v∥2 ¼
Ð b
a v

2 xð Þdx,
integrating from a to b, using integration by parts, and applying v að Þ ¼ 0, to get
Ð b
a fvdx ¼

Ð b
a u
0vdx ¼ �

Ð b
a uv

0dxþ u bð Þv bð Þ � u að Þv að Þ ¼ �
Ð b
a uv

0dxþ u bð Þv bð Þ:

2.Generate a triangulation (also called amesh) of the computational domain a, b½ �.
For a one-dimensional problem, amesh is a set of points in the interval a, b½ �, say,
a ¼ x0 ≤ x1 ≤⋯≤ xN ¼ b. The point xi is called a node or nodal point. The length
of the interval (called an element) Ii ¼ xi�1, xi½ � is hi ¼ xi � xi�1. Let h ¼ max

1≤ i≤N
hi

(called amesh size thatmeasures how fine the partition is). If themesh is uniformly
distributed, then xi ¼ aþ ih, i ¼ 0, 1, … ,N, where h ¼ b�a

N .

3.Define a finite dimensional space over the triangulation: Let the solution u be in
the space V. For the model problem (1), the solution space is V ¼ C1 a, b½ �. We
wish to construct a finite dimensional space (subspace) Vh ⊂V based on the
mesh. When the FE space is a subspace of the solution space, the method is
called conforming. It is known that in this case, the FE solution converges to the
true solution provided the FE space approximates the given space in some sense
[3]. Different finite dimensional spaces will generate different FE solutions.

Define the FE space as the set of all continuous piecewise linear polynomials
Vh ¼ fv : vjIi ∈P1 Iið Þ, i ¼ 1, 2, … ,N, v að Þ ¼ 0g, where P1 Iið Þ is the space of
polynomials of degree ≤ 1 on Ii. Functions in Vh are linear on each Ii, and
continuous on the whole interval a, b½ �. An example of such a function is
shown in Figure 1.

We remark that any function v∈Vh is uniquely determined by its nodal values
v xið Þ.

4.Construct a set of basis functions based on the triangulation. Since Vh
has finite dimension, we can find one set of basis functions. A basis for Vh

is ϕ j

n oN

j¼0
, where ϕ j ∈Vh are linearly independent. Then

Figure 1.
A continuous piecewise linear function v.

3

A Brief Summary of the Finite Element Method for Differential Equations
DOI: http://dx.doi.org/10.5772/intechopen.95423



Vh ¼ vh xð Þ∈V, vh xð Þ ¼
PN

j¼0c jϕ j xð Þ
n o

is the space spanned by the basis

functions ϕif gNi¼0. The simplest finite dimensional space is the piecewise
continuous linear function space defined over the triangulation.

Vh ¼ vh xð Þ∈V, vh xð Þ is piecewise continuous linear over a, b½ � with vh að Þ ¼ 0f g:

There are infinite number of sets of basis functions. We should choose a set of
basis functions that are simple, have compact (minimum) support (that is, zero
almost everywhere except for a small region), and meet the regularity require-
ment, that is, they have to be continuous, and differentiable except at nodal
points. The simplest ones are the so-called hat functions satisfying ϕi xið Þ ¼ 1 and
ϕi x j
� �

¼ 0 for i 6¼ j. The analytic form is (see Figure 2)

ϕ0 xð Þ ¼
x1 � x

h
, x∈ I1,

0, else,

(
, ϕN xð Þ ¼

x� xN�1
h

, x∈ IN,

0, else,

(
,

ϕi xð Þ ¼

x� xi�1
h

, x∈ Ii,

xiþ1 � x
h

, x∈ Iiþ1,

0, else:

8>>><
>>>:

5.Approximate the exact solution u by a continuous piecewise linear function
uh xð Þ. The FE method consists of finding uh ∈Vh such that

�
ðb
a
uhv0dxþ uh bð Þv bð Þ ¼

ðb
a
fvdx, ∀ v∈Vh:

This type of FE method (with similar trial and test space) is sometimes called a
Galerkin method, named after the famous Russian mathematician and engineer
Galerkin.

Implementation: The FE solution is a linear combination of the basis functions.
Writing uh xð Þ ¼

PN
j¼0c jϕ j xð Þ, where c0, c1, … , cN are unknowns, and choosing

v ¼ ϕi, i ¼ 1, 2, … ,N to get

�
XN
j¼0

c j
ðb
a
ϕ jϕ

0
idxþ cNϕi bð Þ ¼

ðb
a
fϕidx, i ¼ 1, 2, … ,N,

Figure 2.
A typical hat function ϕi on a mesh. Also shown is the half hat functions ϕ0 and ϕN.
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since uh bð Þ ¼ cN . Note that using the hat functions, we have uh x0ð Þ ¼ 0 and
uh xið Þ ¼

PN
j¼0c jϕ j xið Þ ¼ ciϕi xið Þ ¼ ci for i ¼ 1, 2, … ,N. Thus, we get the following

linear system

�
XN
j¼1

c j
ðb
a
ϕ jϕ

0
idxþ cNϕi bð Þ ¼

ðb
a
ϕ0ϕ

0
idx, i ¼ 1, 2, … ,N:

Finally, we solve the linear system for c1, … , cN . We note that for i ¼
1, 2, … ,N � 1, we have

ðb
a
ϕiϕ

0
idx ¼

ðxiþ1
xi�1

ϕiϕ
0
idx ¼

1
hi

ðxi
xi�1

x� xi�1
hi

� �
dx� 1

hi

ðxiþ1
xi

xiþ1 � x
hi

� �
dx ¼ 0:

However, for i ¼ N, we have

ðb
a
ϕNϕN

0dx ¼
ðxN
xN�1

ϕNϕN
0dx ¼

ðxN
xN�1

x� xN�1
hN

� �
x� xN�1

hN

� �
dx

¼ 1
hN

ðxN
xN�1

x� xN�1
hN

dx ¼ 1
2
:

Similarly, for i ¼ 1, 2, … ,N, we have

ðb
a
ϕi�1ϕ

0
idx ¼

ðxi
xi�1

ϕi�1ϕ
0
idx ¼

ðxi
xi�1

xi � x
hi

� �
x� xi�1

hi

� �
dx ¼ 1

hi

ðxi
xi�1

xi � x
hi

dx ¼ 1
2
,

ðb
a
ϕiþ1ϕ

0
idx ¼

ðxiþ1
xi

ϕiþ1ϕ
0
idx ¼

ðxiþ1
xi

x� xi
hiþ1

� �
xiþ1 � x
hiþ1

� �
dx ¼ � 1

hiþ1

ðxiþ1
xi

x� xi
hiþ1

dx

¼ � 1
2
:

We next calculate
Ð b
a fϕidx. Since it depends on f , we cannot generally expect to

calculate it exactly. However, we can approximate it using a quadrature rule. Using

the Trapezoidal rule
Ð b
a f xð Þdx≈ b�a

2 f að Þ þ f bð Þð Þ and using ϕi xi�1ð Þ ¼ ϕi xiþ1ð Þ ¼ 0
and ϕi xið Þ ¼ 1, we get

ðb
a
fϕidx ¼

ðxi
xi�1

fϕidxþ
ðxiþ1
xi

fϕidx≈
hi þ hiþ1

2
f xið Þ, i ¼ 1, 2, … ,N � 1,

ðb
a
f xð ÞϕNdx ¼

ðxN
xN�1

f xð ÞϕNdx≈
hN
2

f xN�1ð ÞϕN xN�1ð Þ þ f xNð ÞϕN xNð Þð Þ ¼ hN
2
f xNð Þ:

Thus, we obtain the following linear system of equations

0
1
2

0 ⋯ 0

� 1
2

0
1
2

⋱ 0

⋮ ⋱ ⋱ ⋱ ⋮

0 ⋯ � 1
2

0
1
2

0 ⋯ 0 � 1
2

1
2

2
666666666664

3
777777777775

c1
c2
⋮

cN�1
cN

2
6666664

3
7777775
¼

h1 þ h2
2

f x1ð Þ

h2 þ h3
2

f x2ð Þ
⋮

hN�1 þ hN
2

f xN�1ð Þ

hN
2
f xNð Þ

2
6666666666664

3
7777777777775

:
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The determinant of the above matrix is 1
2N
. Thus, the system has a unique

solution c1, c2, … , cN .
Remark 2.1 Suppose that u að Þ ¼ u0, then we let uh xð Þ ¼

PN
j¼0c jϕ j xð Þ. Since u0 ¼

uh x0ð Þ ¼
PN

j¼1c jϕ j x0ð Þ ¼ c0ϕ0 x0ð Þ ¼ c0, we only need to find c1, c2, … , cN. Choosing
v ¼ ϕi, i ¼ 1, 2, … ,N, we get the following linear system

�
XN
j¼1

c j

ðb
a
ϕ jϕ

0
idxþ cNϕi bð Þ ¼

ðb
a
fϕidxþ u0

ðb
a
ϕ0ϕ

0
idx, i ¼ 1, 2, … ,N:

Finally, we solve the linear system for c1, … , cN . We note that
Ð b
a ϕ0ϕ

0
idx ¼ 0 for

i ¼ 2, … ,N and

ðb
a
ϕ0ϕ1

0dx ¼
ðx1
x0

x1 � x
h1

� �
x� x0
h1

� �0
dx ¼ 1

h1

ðx1
x0

x1 � x
h1

dx ¼ 1
2
:

Following the same steps used for the case u að Þ ¼ 0, we obtain the following
linear system of equations

0
1
2

0 ⋯ 0

� 1
2

0
1
2

⋱ 0

⋮ ⋱ ⋱ ⋱ ⋮

0 ⋯ � 1
2

0
1
2

0 ⋯ 0 � 1
2

1
2

2
666666666664

3
777777777775

c1
c2
⋮

cN�1
cN

2
6666664

3
7777775
¼

h1 þ h2
2

f x1ð Þ þ
u0
2

h2 þ h3
2

f x2ð Þ
⋮

hN�1 þ hN
2

f xN�1ð Þ

hN
2
f xNð Þ

2
6666666666664

3
7777777777775

:

2.2 The FE method for first-order nonlinear IVPs

Here, we extend the FE method for the nonlinear IVP using piecewise linear
polynomials

u0 ¼ f x, uð Þ, x∈ a, b½ �, u að Þ ¼ u0: (2)

The FE method consists of finding uh ∈Vh ¼ fv : vjIi ∈P1 Iið Þ,
i ¼ 1, 2, … ,N, v að Þ ¼ 0g, such that

uh bð Þv bð Þ �
ðb
a
uhv0dx ¼

ðb
a
f x, uhð Þvdx, ∀ v∈Vh:

Writing uh xð Þ ¼
PN

j¼0c jϕ j xð Þ and choosing v ¼ ϕi, i ¼ 1, 2, … ,N, we get

cN ϕi �
ðb
a
ϕNϕ

0
idx

� �
�
XN�1
j¼0

c j
ðb
a
ϕ jϕ

0
idx�

ðb
a
f x,

XN
j¼0

c jϕ j

 !
ϕidx ¼ 0,

i ¼ 1, 2, … ,N,

where uh x0ð Þ ¼ c0 ¼ u0. Finally, we solve the nonlinear system for c1, c2, … , cN
using e:g:, Newton’s method for systems of nonlinear equations. The system can be
written as Fi c1, c2, … , cNð Þ ¼ 0, i ¼ 1, 2, … ,N, where

6
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Fi ¼ cN ϕi �
ðb
a
ϕNϕ

0
idx

� �
�
XN�1
j¼0

c j
ðb
a
ϕ jϕ

0
idx�

ðb
a
f x,

XN
j¼0

c jϕ j

 !
ϕidx,

i ¼ 1, 2, … ,N:

Let αi ¼
PN

j¼0c j
Ð b
a ϕ jϕ

0
idx and βi ¼

Ð b
a f x,

PN
j¼0c jϕ j

� �
ϕidx. Then, for i ¼

1, 2, … ,N � 1,

αi ¼ ci�1

ðxi
xi�1

ϕi�1ϕ
0
idxþ ci

ðxi
xi�1

ϕiϕ
0
idxþ

ðxiþ1
xi

ϕiϕ
0
idx

� �
þ ciþ1

ðxiþ1
xi

ϕiþ1ϕ
0
idx

¼ ci�1
ðxi
xi�1

xi � x
h2i

dxþ ci
ðxi
xi�1

x� xi�1
h2i

dx�
ðxiþ1
xi

xiþ1 � x
h2iþ1

dx

 !
� ciþ1

ðxiþ1
xi

x� xi
h2iþ1

dx

¼ 1
2
ci�1 þ ci

1
2
� 1
2

� �
� 1
2
ciþ1 ¼

1
2
ci�1 �

1
2
ciþ1,

αN ¼ cN�1
ðxN
xN�1

ϕN�1ϕN
0dxþ cN

ðxN
xN�1

ϕNϕN
0dx

¼ cN�1
ðxN
xN�1

xN � x
h2N

dxþ cN
ðxN
xN�1

x� xN�1
h2N

dx ¼ 1
2
cN�1 þ

1
2
cN:

Similarly,

βi ¼
ðxiþ1
xi�1

f x,
XN
j¼0

c jϕ j

 !
ϕidx ¼

ðxi
xi�1

f x,
XN
j¼0

c jϕ j

 !
ϕidxþ

ðxiþ1
xi

f x,
XN
j¼0

c jϕ j

 !
ϕidx:

Using Simpson’s Rule
Ð b
a f xð Þdx≈ b�a

6 f að Þ þ 4f aþb
2

� �
þ f bð Þ

� �
, and using

ϕi xi�1ð Þ ¼ ϕi xiþ1ð Þ ¼ 0, ϕi xið Þ ¼ 1,
PN

j¼0c jϕ j xi�1 þ hi
2

� �
¼ ci�1þci

2 , ϕi xi�1 þ hi
2

� �
¼ 1

2,PN
j¼0c jϕ j xið Þ ¼ ci, we have, for i ¼ 1, 2, … ,N � 1,

βi ≈
hi
3
f xi�1 þ

hi
2
,
ci�1 þ ci

2

� �
þ hi þ hiþ1

6
f xi, cið Þ þ hiþ1

3
f xi þ

hiþ1
2

,
ci þ ciþ1

2

� �
:

However, for i ¼ N, we have

βN ≈
hN
6

2f xN�1 þ
h
2
,
cN�1 þ cN

2

� �
þ f xN, cNð Þ

� �
:

Next, we compute the Jacobian matrix with entries

Ji,j ¼
∂Fi

∂c j
¼
ðb
a
ϕ jϕ

0
idx�

ðb
a
f u x,

XN
j¼0

c jϕ j

 !
ϕ jϕi dx ¼ ai,j � bi,j, i ¼ 1, 2, … ,N:

We already computed the entries ai,j as

ai,i�1 ¼
ðb
a
ϕi�1ϕ

0
idx ¼

1
2
, ai,i ¼

ðb
a
ϕiϕ

0
idx ¼ 0, i ¼ 1, 2, … ,N � 1,

aN,N ¼
ðb
a
ϕNϕN

0dx ¼ 1
2
, ai,iþ1 ¼

ðb
a
ϕiþ1ϕ

0
idx ¼ �

1
2
:
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Using Simpson’s Rule, we get

bi,i�1 ¼
ðxi
xi�1

ϕi�1ϕi f u x,
XN
j¼0

c jϕ j

 !
dx≈

hi
6
f u xi�1 þ

hi
2
,
ci�1 þ ci

2

� �
,

bi,iþ1 ¼
ðxiþ1
xi

ϕiþ1ϕi f u x,
XN
j¼0

c jϕ j

 !
dx≈

hiþ1
6

f u xi þ
hiþ1
2

,
ci þ ciþ1

2

� �
,

bi,i ¼
ðxi
xi�1

ϕ2
i f u x,

XN
j¼0

c jϕ j

 !
dxþ

ðxiþ1
xi

ϕ2
i f u x,

XN
j¼0

c jϕ j

 !
dx

≈
hi
6
f u xi�1 þ

hi
2
,
ci�1 þ ci

2

� �
þ hi þ hiþ1

6
f u xi, cið Þ þ hiþ1

6
f u xi þ

hiþ1
2

,
ci þ ciþ1

2

� �
,

bN,N ¼
ðxN
xN�1

ϕ2
N f u x,

XN
j¼0

c jϕ j

 !
dx≈

hN
6

f u xN�1 þ
h
2
,
cN�1 þ cN

2

� �
þ f u xN, cNð Þ

� �
:

2.3 The FE method for two-point BVPs

Here, we shall study the derivation and implementation of the FE method for
two-point boundary-value problems (BVPs). For easy presentation, we consider the
following model problem: Find u∈C2 a, b½ � such that

�u00 þ q xð Þu ¼ f xð Þ, x∈Ω ¼ a, bð Þ, u að Þ ¼ u bð Þ ¼ 0, (3)

where u : Ω ¼ a, b½ � !  is the sought solution, q xð Þ≥0 is a continuous
function on a, b½ �, and f ∈L2 a, b½ �. Under these assumptions, (3) has a unique
solution u∈C2 a, b½ �. For general q xð Þ, it is impossible to find an explicit form
of the solution. Therefore, our goal is to obtain a numerical solution via the FE
method.

2.3.1 Different mathematical formulations for the 1D model

The model problem (3) can be reformulated into three different forms:
(D)-form: the original differential equation (3).
(V)-form: the variational form or weak form:

Ð b
a u
0v0dxþ

Ð b
a quvdx ¼

Ð b
a fvdx,

for any test function v in the Sobolev space H1
0 a, b½ � ¼ v∈L2 a, b½ � :

�

vk k2 þ v0k k2 <∞, v að Þ ¼ v bð Þ ¼ 0
�
, where vk k2 ¼

Ð b
a v

2 xð Þdx. The corresponding
FE method is often called the Galerkin method. In other words, a Galerkin FE
method is a FE method obtained from the variational form.

(M)-form: the minimization form: min v xð Þ∈H1
0 a,b½ �

Ð b
a

1
2 v0ð Þ2 þ 1

2 qv
2 � fv

� �
dx. The

corresponding FE method is often called the Ritz method.
Under some assumptions, the three different forms are equivalent, that is, they

have the same solution as will be explained in the following theorem.
Theorem 2.1 (Mathematical equivalences) Suppose that u00 exists and continuous

on a, b½ �. Then we have the following mathematical equivalences.
(D) is equivalent to (V), (V) is equivalent to (M), and (M) is equivalent to (D).
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2.3.2 Galerkin method of the problem

To solve (3) using the FE method, we carry out the process described below.
Usually, a FE method is always derived from the weak or variational formulation of
the problem at hand.

Weak formulation of the problem: The Galerkin FE method starts by rewriting
(3) in an equivalent variational formulation. To this end, let us define the vector

space H1
0 ¼ v∈L2 a, bð Þ : vk k2 þ v0k k2 <∞, v að Þ ¼ v bð Þ ¼ 0

n o
. Multiplying (3)

by a test function v∈H1
0, integrating from a to b, and using integration by parts,

we get

ðb
a
fvdx ¼

ðb
a
� u00vdxþ

ðb
a
quvdx ¼

ðb
a
u0v0dxþ

ðb
a
quvdx,

since v að Þ ¼ v bð Þ ¼ 0. Hence, the weak (or variational) form of (3) reads: Find
u∈H1

0, such that

ðb
a
u0v0dxþ

ðb
a
quvdx ¼

ðb
a
fvdx, ∀ v∈H1

0: (4)

We want to find u∈H1
0 that satisfies (4). We note that a solution u to (4) is less

regular than the solution u (3). Indeed, (4) has only u0 whereas (3) contains u00.
Furthermore, we can easily verify the following:

1.If u is strong solution (i:e:, solves (3)) then u is also weak solution (i:e:,
solves (4)).

2.Conversely, if u is a weak solution with u∈C2 a, b½ �, it is also strong solution.

3.Existence and uniqueness of weak solutions is obtained by the Lax-Milgram
Theorem.

4.We can consider solutions with lower regularity using the weak formulation.

5.FE method gives an approximation of the weak solution.

From now on, we use the notation vk k ¼ vk kΩ, where Ω ¼ a, b½ �.
The FE formulation: The FE method is based on the variational form (4). We

note that the space H1
0 contains many functions and it is therefore just as hard to

find a function u∈H1
0 which satisfies the variational Eq. (4) as it is to solve the

original problem (3). Next, we study in details a special Galerkin method called the
FE method. Let a ¼ x0 < x1 <⋯< xN ¼ b be a regular partition of a, b½ �. Suppose
that the length of Ii ¼ xi�1, xi½ � is hi ¼ xi � xi�1. We define h ¼ max

i¼1, 2, … ,N
hi to be the

mesh size. We wish to construct a subspace Vh ⊂V ¼ H1
0. Since Vh has finite

dimension, we can find one set of basis functions ϕ j

n oN�1

j¼1
for Vh, where

ϕ j ∈Vh, j ¼ 1, 2, … ,N � 1 are linearly independent. We remark that Vh is the

space spanned by the basis functions i:e:, Vh ¼ vh xð Þ, vh xð Þ ¼
PN�1

j¼1 c jϕ j xð Þ
n o

.

The FE method consists of choosing a basis for the subspace Vh that satisfies the
following properties
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1.The matrix A must be sparse (e:g: traditional or banded matrix). In this case,
iterative methods for solving linear systems can be adapted to obtain an
efficient solution.

2.uh must converge to the solution u of the original problem as h! 0.

It is natural to obtain an approximation uh to u as follows: Find uh ∈Vh
such that

ðb
a
u0hv

0dxþ
ðb
a
quhvdx ¼

ðb
a
fvdx, ∀ v∈Vh: (5)

We call uh the FE approximation of u. We say that (5) is the Galerkin approxi-
mation of (4) and the method used to find uh ∈Vh is called Galerkin method.

FE approximation using Lagrange 1 elements: The simplest finite
dimensional space is the piecewise continuous linear function space defined over
the triangulation

V1
h,0 ¼ vh ∈V, vh is piecewise continuous linear over a, b½ � with vh að Þ ¼ vh bð Þ ¼ 0f g:

It is easy to show that V1
h,0 has a finite dimension even although there are infinite

number of elements in V1
h,0. The approximation of the FE method is therefore to

look for an approximation uh within a small (finite dimensional) subspace V1
h,0 ¼

v∈V1
hj v að Þ ¼ v bð Þ ¼ 0

� �
of H1

0, consisting of piecewise linear polynomials, where

V1
h ¼ v∈C0 a, b½ � vj jIi ∈P1 Iið Þ

n o
.

Let V1
h,0 be the space of all continuous piecewise linear functions, which vanish

at the end points a and b. There are many types of basis functions ϕif gN�1i¼1 . The
simplest ones are the so-called hat functions satisfying ϕi x j

� �
¼ δij, where δij is the

Kronecker symbol. Note especially that there is no need to construct hat functions
ϕ0 and ϕN since any function of V1

h,0 must vanish at the end points x0 ¼ a and
xN ¼ b.

The explicit expressions for the hat function ϕi xð Þ and its derivative ϕ0i xð Þ are
given by

ϕi xð Þ ¼

0, a≤ x≤ xi�1,
x� xi�1

hi
, xi�1 ≤ x≤ xi,

xiþ1 � x
hiþ1

, xi ≤ x≤ xiþ1,

0, xiþ1 ≤ x≤ b,

8>>>>>><
>>>>>>:

, ϕ0i xð Þ ¼

0, a< x< xi�1,
1
hi
, xi�1 < x< xi,

�
hiþ1

, xi < x< xiþ1,

0, xiþ1 < x< b,

8>>>>><
>>>>>:

,

for i ¼ 1, 2, … ,N � 1. The FE approximation of (4) thus reads: Find u∈V1
h,0,

such that

ðb
a
u0hv

0dxþ
ðb
a
quhvdx ¼

ðb
a
fvdx, ∀ v∈V1

h,0: (6)

We call uh the FE approximation of u. We say that (6) is the Galerkin approxi-
mation of (4) and the method used to find uh ∈V1

h,0 is called Galerkin method.
It can be shown that (6) is equivalent to the N � 1 equations
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ðb
a
u0hϕ

0
idxþ

ðb
a
quhϕidx ¼

ðb
a
fϕidx, i ¼ 1, 2, … ,N � 1: (7)

Derivation of the discrete system: Since uh ∈V1
h,0, we can express it as a linear

combination of hat functions i:e:,

uh ¼
XN�1
j¼1

c jϕ j xð Þ, (8)

where c j are real numbers to be determined. We note that the coefficients
c j, j ¼ 1, 2, … ,N � 1 are the N � 1 nodal values of uh to be determined. Note that
the index is only from 1 to N � 1, because of the zero boundary conditions. We
remark that uh að Þ ¼ uh bð Þ ¼ 0 and uh xið Þ ¼ ci. So ci is an approximate solution to
the exact solution at x ¼ xi.

We can use either the weak/variational form (V), or the minimization form
(M), to derive a linear system of equations for the coefficients c j.

Substituting (8) into (7) yields

XN�1
j¼1

c j

ðb
a
ϕ0iϕ

0
jdxþ

ðb
a
qϕiϕ jdx

� �
¼
ðb
a
fϕidx, i ¼ 1, 2, … ,N � 1: (9)

The problem (7) is now equivalent to the following: Find the real numbers
c1, c2, … , cN�1 that satisfy the linear system (9).

We note that the linear system (9) is equivalent to the system in matrix–vector form

Ac ¼ b, (10)

where c ¼ c1, c2, … , cN�1½ �t ∈N�1 is the unknown vector, A is an N � 1ð Þ �
N � 1ð Þmatrix, the so-called stiffness matrix when q ¼ 0, with entries

aij ¼
ðb
a

ϕ0iϕ
0
j þ qϕiϕ j

� �
dx, i, j ¼ 1, 2, … ,N � 1, (11)

and b∈N�1, the so-called load vector, has entries

bi ¼
ðb
a
fϕidx, i ¼ 1, 2, … ,N � 1: (12)

To obtain the approximate solution we need to solve the linear system for the

unknown vector c. We note that aij ¼ a ϕi,ϕ j

� �
and bi ¼ f ,ϕið Þ, where a u, vð Þ ¼

Ð b
a u0v0 þ quvð Þdx is a bi-linear and f , vð Þ ¼

Ð b
a fvdx is a linear form.

2.3.3 Ritz method of the problem

The Ritz method is one of the earliest FE methods. However, not every problem
has a minimization form. The minimization form for the model problem (3) is

min
v xð Þ∈H1

0 a, b½ �
F vð Þ, where F vð Þ ¼

ðb
a

1
2

v0ð Þ2 þ 1
2
qv2 � fv

� �
dx:
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As before, we look for an approximate solution of the form (8). If we plug this
into the functional form above, we get

F uhð Þ ¼
ðb
a

1
2

XN�1
j¼1

c jϕ0j xð Þ
 !2

þ 1
2
q
XN�1
j¼1

c jϕ j xð Þ
 !2

� f
XN�1
j¼1

c jϕ j xð Þ
 !0

@
1
Adx,

which is a multi-variable function of c1, c2, … , cN�1 and can be written as
F uhð Þ ¼ F c1, c2, … , cN�1ð Þ. The necessary conditions for a global minimum are ∂F

∂ci
¼

0, i ¼ 1, 2, … ,N � 1. Taking the partial derivatives directly with respect to ci, we get

ðb
a

ϕ0i xð Þ
XN�1
j¼1

c jϕ0j xð Þ þ qϕi xð Þ
XN�1
j¼1

c jϕ j xð Þ � fϕi xð Þ
 !

dx ¼ 0, i ¼ 1, 2, … ,N � 1:

Exchange the order of integration and the summation, we get

XN�1
j¼1

c j
ðb
a

ϕ0i xð Þϕ0j xð Þ þ qϕi xð Þϕ j xð Þ
� �

dx ¼
ðb
a
fϕi xð Þdx ¼ 0, i ¼ 1, 2, … ,N � 1,

which is exactly the same linear system (9) obtained using the Galerkin method.

2.3.4 Computer implementation

It is straightforward to calculate the entries âi,j ¼
Ð b
a ϕ
0
iϕ
0
jdx. For ∣i� j∣> 1, we

have âi,j ¼ 0, since ϕi and ϕ j lack overlapping support. However, if i ¼ j, then

âi,i ¼
ðb
a
ϕ0i
� �2dx ¼

ðxi
xi�1

1
hi

� �2

dxþ
ðxiþ1
xi

� 1
hiþ1

� �2

dx ¼ 1
hi
þ 1
hiþ1

, i, j ¼ 1, 2, … ,N � 1:

Furthermore, if j ¼ iþ 1, then

âi,iþ1 ¼
ðb
a
ϕ0iϕ

0
iþ1dx ¼

ðxiþ1
xi

� 1
hiþ1

� �
1

hiþ1

� �
dx ¼ � 1

hiþ1
, i, j ¼ 1, 2, … ,N � 2:

(13)

By symmetry, we also have

âiþ1,i ¼
ðb
a
ϕ0iþ1ϕ

0
idx ¼ �

1
hiþ1

, i, j ¼ 1, 2, … ,N � 2:

To obtain ~ai,j ¼
Ð b
a qϕiϕ jdx and bi ¼

Ð b
a fϕidx, we use the composite trapezoidal rule

ðb
a
f xð Þdx ¼

XN
i¼1

ðxi
xi�1

f xð Þdx≈ 1
2

h1f x0ð Þ þ
XN�1
i¼1

hi þ hiþ1ð Þf xið Þ þ hNf xNð Þ
" #

:

So, we can easily verify that

~ai,j ¼
ðb
a
qϕiϕ jdx≈

qi
2

hi þ hiþ1ð Þ, i ¼ j

0, i 6¼ j

(
, bi ¼

ðb
a
fϕidx≈

1
2

hi þ hiþ1ð Þ f i,
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where qi ¼ q xið Þ and f i ¼ f xið Þ. Thus, the matrix A ¼ âi,j þ ~ai,j
� �

is tridiagonal
and has the form

A ¼

1
h1
þ 1
h2
þ q1

2
h1 þ h2ð Þ � 1

h2
0 ⋯ 0

� 1
h2

1
h2
þ 1
h3
þ q2

2
h2 þ h3ð Þ � 1

h3
⋱ 0

0 � 1
h3

⋱ ⋯ 0

⋮ ⋱ ⋱ ⋱ � 1
hN�1

0 ⋯ 0 � 1
hN�1

1
hN�1

þ 1
hN
þ qN�1

2
hN�1 þ hNð Þ

2
6666666666666664

3
7777777777777775

:

Finally, we obtain the following system: c0 ¼ cN ¼ 0 and

� 1
hi
ci�1 þ

1
hi þ hiþ1

ci �
1

hiþ1
ciþ1 þ

qi hi þ hiþ1ð Þ
2

ci ¼
1
2

hi þ hiþ1ð Þ f i, i ¼ 1, 2, … ,N � 1,

Remark 2.2 Suppose that the partition is uniform i:e:, hi ¼ h ¼ b�a
N for all

i ¼ 1, 2, … ,N. Then the stiffness matrix A and the load vector b have the form:

A ¼

2
h
þ hq1 � 1

h
0 ⋯ 0

� 1
h

2
h
þ hq2 � 1

h
⋱ 0

0 � 1
h

⋱ ⋯ 0

⋮ ⋱ ⋱ ⋱ � 1
hN�1

0 ⋯ 0 � 1
h

2
h
þ hqN�1

2
666666666666664

3
777777777777775

, b ¼ h

f 1
f 2
f 3
⋮

f N�1

2
6666664

3
7777775
:

Finally, we obtain the following system: c0 ¼ cN ¼ 0 and

�c j�1 þ 2c j � c jþ1

h
þ hqic j ¼ hf i ) �

c j�1 � 2c j þ c jþ1

h2
þ qic j ¼ f i, i ¼ 1, 2, … ,N � 1,

which is the same system obtained using the finite difference method,
where u00 is approximated using the second-order midpoint formula

u00 x j
� �

≈ u x j�1ð Þ�2u x jð Þþu x jþ1ð Þ
h2

. We conclude that the above FE method using the
composite trapezoidal rule is equivalent to the finite difference method of order 2.

2.3.5 Existence, uniqueness, and basic a priori error estimate

Lemma 2.1 The matrix A with entries ai,j ¼
Ð b
a ϕ
0
iϕ
0
jdx is symmetric positive definite

i:e:, ai,j ¼ aj,i and

xtAx ¼
XN�1
i, j¼1

xiai,jx j >0, for all nonzero x ¼ x1, … , xN�1½ �t ∈N�1:

Theorem 2.2 The linear system (10) obtained using the FE method has a unique
solution. Consequently, the FE method solution uh is unique.
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Next, we state a general convergence result for the Galerkin method. We first
define the following norm and semi-norm: For v∈H1

0, we define

vk k ¼
ðb
a
v2 xð Þdx

� �1=2

, vj j1 ¼ v0k k ¼
ðb
a
v0 xð Þð Þ2dx

� �1=2

:

Theorem 2.3 Suppose that q xð Þ≥0, ∀ x∈ a, b½ �. Let u be the solution to (4) and uh
be the solution to (6). Then there exists a constant C such that

u� uhð Þ0
�� ��≤C u� vhð Þ0

�� ��, ∀ vh ∈V1
h,0, (14)

where C is given by C ¼ 1þ max x∈ a,b½ �∣q xð Þ∣, which is independent of the
choice of V1

h,0.
Remark 2.3 From (14), taking the minimum over all vh ∈V1

h,0, we get
u� uhð Þ0

�� ��≤C min
vh ∈Vh,0

u� vhð Þ0
�� ��. Thus, u� uhj j1 ≤Cmin vh ∈Vh,0 u� vhj j1, where

C ¼ 1þ max x∈ a,b½ �∣q xð Þ∣.
Next, we study the convergence of uh to u. Let u∈H1

0. Define the piecewise
linear interpolant by

πu ¼
XN
j¼1

u x j
� �

ϕ j xð Þ∈V1
h,0, x∈ a, b½ �:

Since πu∈V1
h,0, the estimate (14) gives

u� uhð Þ0
�� ��≤C u� πuð Þ0

�� ��:

This inequality suggest that the error between u and uh is controlled by the
interpolation error u� πu in the �j j1-norm.

Theorem 2.4 (A priori error estimate) Suppose that q xð Þ≥0 ∀ x∈ a, b½ �. Let u
be the solution to (4) and uh be the solution to (6). Then there exists a constant C such
that

u� uhð Þ0
�� ��2 ≤C

XN
i¼1

h2i u00k k2Ii ,

where C is a constant independent of h. Consequently, if h ¼ max ihi, then

u� uhð Þ0
�� ��2 ≤Ch2 u00k k2:

Remark 2.4

1.If the partition is not uniform then we obtain the same error estimate with
h ¼ max i¼1,2,… ,N xi � xi�1ð Þ.

2.The error is expressed in terms of the exact solution u. If it is expressed in
terms of the computed solution uh it is an a posteriori error estimate (this yields
a computable error bound).

3.uh ! u in the v0k k-norm as h ¼ max i hið Þ ! 0. If u� uhð Þ0
�� �� ¼ 0 then u� uh

is constant, but since u 0ð Þ ¼ uh 0ð Þ we also have u� uh ¼ 0 and therefore
uh ¼ u.
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4.uh is the best approximation within the space V1
h,0 with respect to the v0k k-

norm.

5.The norm v0k k is referred to as the energy norm and has often a physical
meaning.

2.3.6 Boundary conditions

In problem (3) we considered a homogeneous Dirichlet boundary conditions.
Here, we extend the FE method to boundary conditions of different types. There
are three important types of boundary conditions (BCs):

1.Dirichlet BCs: u að Þ ¼ α and u bð Þ ¼ β for two real numbers α and β. This BC is
also known as strong BC or essential BC.

2.Neumann BCs: u0 að Þ ¼ α and u0 bð Þ ¼ β for two real numbers α and β. This BC
is also known as natural BCs.

3.Robin BCs: u0 að Þ ¼ αu að Þ and u0 bð Þ ¼ βu bð Þ for two real numbers α and β.

Note that any combination is possible at the two boundary points.
Nonhomogeneous Dirichlet boundary conditions: Let us consider the follow-

ing two-point BVP: find u∈C2 a, bð Þ such that

�u00 ¼ f xð Þ, x∈ a, bð Þ, u að Þ ¼ α, u bð Þ ¼ β, (15)

where α and β are given constants and f ∈C a, bð Þ is a given function. In this case,

the admissible function space H1
0 ¼ v : vk k2 þ v0k k2 <∞, v að Þ ¼ v bð Þ ¼ 0

n o
and

the FE space V1
h,0 defined earlier remain the same. Multiplying (15) by a test

function v∈H1
0 and integrating by parts gives

ðb
a
fvdx ¼

ðb
a
� u00vdx ¼ �u0 bð Þv bð Þ þ u0 að Þv að Þ þ

ðb
a
u0v0dx ¼

ðb
a
u0v0dx,

since v að Þ ¼ v bð Þ ¼ 0. Hence, the weak or variational form of (15) reads: Given

u að Þ ¼ α, u bð Þ ¼ β, find u∈H1 ¼ v : vk k2 þ v0k k2 <∞
n o

, such that

ðb
a
u0v0dx ¼

ðb
a
fvdx, ∀ v∈H1

0: (16)

Let V1
h and V1

h,0, respectively, be the space of all continuous piecewise
linear functions and the space of all continuous piecewise linear functions
which vanish at the endpoints a and b. We also let a ¼ x0 < x1 <⋯< xN ¼ b be a
uniform partition of the interval a, b½ �. Moreover let ϕif g be the set of hat basis
functions of Vh associated with the N þ 1 nodes x j, j ¼ 0, 1, … ,N, such that
ϕi x j
� �

¼ δij. The FE approximation of (16) thus reads: Find uh ∈V1
h such that

uh að Þ ¼ α, uh bð Þ ¼ β, and

ðb
a
u0hv

0dx ¼
ðb
a
fvdx, ∀ v∈V1

h,0: (17)
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It can be shown that (17) is equivalent to the N � 1 equations

ðb
a
u0hϕ

0
idx ¼

ðb
a
fϕidx, i ¼ 1, 2, … ,N � 1: (18)

Expanding uh as a linear combination of hat functions

uh ¼
XN
j¼0

c jϕ j xð Þ ¼ αϕ0 xð Þ þ
XN�1
j¼1

c jϕ j xð Þ þ βϕN xð Þ, (19)

where the coefficients c j, j ¼ 1, 2, … ,N � 1 are the N � 1 nodal values of uh to
be determined.

Substituting (19) into (18) yields

XN�1
j¼1

c j

ðb
a
ϕ0iϕ

0
jdx

� �
¼
ðb
a

fϕi � αϕ00ϕ
0
i � βϕ0Nϕ

0
i

� �
dx, i ¼ 1, 2, … ,N � 1,

which is a N � 1ð Þ � N � 1ð Þ system of equations for c j. In matrix form we write

Ac ¼ b, (20)

where A is a N � 1ð Þ � N � 1ð Þ matrix, the so-called stiffness matrix, with
entries

ai,j ¼
ðb
a
ϕ0iϕ

0
jdx, i, j ¼ 1, 2, … ,N � 1, (21)

c ¼ c1, c2, … , cN�1½ �t is a N � 1ð Þ vector containing the unknown coefficients
c j, j ¼ 1, 2, … ,N � 1, and b is a N � 1ð Þ vector, the so-called load vector, with entries

bi ¼
ðb
a

fϕi � αϕ00ϕ
0
i � βϕ0Nϕ

0
i

� �
dx, i ¼ 1, 2, … ,N � 1: (22)

Computer Implementation: The explicit expression for a hat function ϕi xð Þ is
given by

ϕi xð Þ ¼

0, a≤ x≤ xi�1,
x� xi�1

hi
, xi�1 < x≤ xi,

xiþ1 � x
hiþ1

, xi < x≤ xiþ1,

0, xiþ1 < x≤ b,

8>>>>>>>><
>>>>>>>>:

, i ¼ 1, 2, … ,N � 1,

ϕ0 xð Þ ¼
x1 � x
h1

, x0 < x≤ x1,

0, x1 < x≤ b,

8<
: , ϕN xð Þ ¼

0, x0 < x≤ xN�1,
x� xN�1

hN
, xN�1 < x≤ b:

8<
:

For simplicity we assume the partition is uniform so that hi ¼ h for i ¼ 1, 2, … ,N.
Hence the derivative ϕ0i xð Þ is either � 1

h,
1
h, or 0 depending on the interval.

It is straightforward to calculate the entries of the stiffness matrix. For ∣i� j∣> 1,
we have ai,j ¼ 0, since ϕi and ϕ j lack overlapping support. However, if i ¼ j, then
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ai,j ¼
ðb
a
ϕ0i
� �2dx ¼

ðxi
xi�1

1
h

� �2

dxþ
ðxiþ1
xi

� 1
h

� �2

dx ¼ 2
h
, i, j ¼ 1, 2, … ,N � 1,

where we have used that xi � xi�1 ¼ xiþ1 � xi ¼ h. Furthermore, if j ¼ iþ 1, then

ai,iþ1 ¼
ðb
a
ϕ0iϕ

0
iþ1dx ¼

ðxiþ1
xi

� 1
h

� �
1
h

� �
dx ¼ � 1

h
, i, j ¼ 1, 2, … ,N � 2:

Changing i to i� 1 we also have

ai�1,i ¼
ðb
a
ϕ0i�1ϕidx ¼

ðxi
xi�1

1
h

� �
� 1
h

� �
dx ¼ � 1

h
, i, j ¼ 2, 3, … ,N � 1:

Thus the stiffness matrix is

A ¼ 1
h

2 �1 0 ⋯ 0

�1 2 �1 ⋱ 0

0 �1 2 ⋯ 0

⋮ ⋱ ⋱ ⋱ �1
0 ⋯ 0 �1 2

2
66666664

3
77777775
:

The entries bi of the load vector must often be evaluated using quadrature, since
they involve the function f which can be hard to integrate analytically. For example,
using the trapezoidal rule one obtains the approximate load vector entries

b1 ¼
ðb
a

fϕ1 � αϕ00ϕ
0
1 � βϕ0Nϕ

0
1

� �
dx ¼

ðx1
x0

fϕ1 � α � 1
h

� �
1
h

� �� �
dxþ

ðx2
x1
fϕ1

¼ α

h
þ
ðx2
x0
fϕ1 ≈

α

h
þ hf x1ð Þ,

bi ¼
ðb
a

fϕi � αϕ00ϕ
0
i � βϕ0Nϕ

0
i

� �
dx ¼

ðxiþ1
xi�1

fϕidx≈ hf xið Þ, i ¼ 2, … ,N � 2,

bN�1 ¼
ðb
a

fϕ0N�1 � αϕ00ϕN�1 � βϕ0Nϕ
0
N�1

� �
dx

¼
ðxN�1
xN�2

fϕN�1dxþ
ðxN
xN�1

fϕN�1 � β
1
h

� �
� 1
h

� �� �
dx ¼

ðxN
xN�2

fϕN�1dxþ
β

h
≈ hf xN�1ð Þ þ β

h
:

Assembly: We rewrite (20), (21), (22) as

1
h

2 �1 0 ⋯ 0

�1 2 �1 ⋱ 0

0 �1 2 ⋯ 0

⋮ ⋱ ⋱ ⋱ �1

0 ⋯ 0 �1 2

2
66666666664

3
77777777775

c1

c2

c3

⋮

cN�1

2
66666666664

3
77777777775

¼

hf x1ð Þ þ
α

h

hf x2ð Þ

hf x3ð Þ

⋮

hf xN�1ð Þ þ β

h

2
6666666666664

3
7777777777775
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We note that uh að Þ ¼ α ¼ u að Þ and uh bð Þ ¼ β ¼ u bð Þ. Therefore, we see that the
system matrix A remains the same, and only the first and last entries of the load
vector b need to be modified because of the definition of the basis functions
ϕ0, … ,ϕNf g. An alternative approach is to use all the basis functions ϕ0, … ,ϕNf g to

form a larger system of equation, i:e:, and N þ 1ð Þ � N þ 1ð Þ system. The procedure
for inserting the boundary conditions into the system equation is: enter zeros in the
first and N þ 1ð Þ-th rows of the system matrix A except for unity in the main
diagonal positions of these two rows, and enter α and β in the first and N þ 1ð Þ-th
rows of the vector b, respectively.

General boundary conditions: Let us consider the following two-point BVP:
find u∈C2 a, bð Þ such that

�u00 ¼ f xð Þ, x∈ a, b½ �, u að Þ ¼ α, γu bð Þ þ u0 bð Þ ¼ β, (23)

where α, β and γ are given numbers and f ∈C a, bð Þ is a given function. The
boundary condition at x ¼ b is called a Robin boundary condition (combination and
u and u0 is prescribed at x ¼ b). In this case, the admissible function space is
modified to

H1
0 ¼ v : vk k2 þ v0k k2 <∞, v að Þ ¼ 0

n o
:

Multiplying (23) by a function v∈H1
0 and integrating by parts gives

ðb
a
fvdx ¼

ðb
a
� u00vdx ¼ �u0 bð Þv bð Þ þ u0 að Þv að Þ þ

ðb
a
u0v0dx

¼ � β � γu bð Þð Þv bð Þ þ u0 að Þv að Þ þ
ðb
a
u0v0dx:

Since v að Þ ¼ 0, we are left with

ðb
a
u0v0dxþ γu bð Þv bð Þ ¼

ðb
a
fvdxþ βv bð Þ:

Hence, the weak or variational form of (23) reads: Given u að Þ ¼ α, find the
approximate solution u∈H1

0, such that

ðb
a
u0v0dxþ γu bð Þv bð Þ ¼

ðb
a
fvdxþ βv bð Þ, ∀ v∈H1

0: (24)

The FE space V1
h is now the set of all continuous piecewise linear functions

which vanish at the end point a. The FE approximation of (24) thus reads: Find the
piecewise linear approximation uh to the solution u satisfies

ðb
a
u0hv

0dxþ γuh bð Þv bð Þ ¼
ðb
a
fvdxþ βv bð Þ, ∀ v∈V1

h, (25)

with uh að Þ ¼ α. As before, (25) can be formulated in matrix form.

2.4 Model problem with coefficient and general Robin BCs

Let us consider the following two-point BVP: find u∈C2 a, bð Þ such that
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� p xð Þu0ð Þ0 ¼ f xð Þ, x∈ I ¼ a, b½ �, p að Þu0 að Þ ¼ κ0 u að Þ � αð Þ,
p bð Þu0 bð Þ ¼ κ1 u bð Þ � βð Þ,

(26)

where p ¼ p xð Þ with p xð Þ≥ p0 >0, f ∈L2 Ið Þ, κ0, κ1 ≥0, and α, β are given
numbers. Let

V ¼ v∈C0 Ið Þ : vk k2 þ v0k k2 <∞
n o

:

Multiplying (26) by a function v∈V and integrating by parts gives

ðb
a
fvdx ¼

ðb
a
� pu0ð Þ0vdx ¼

ðb
a
pu0v0dx� p bð Þu0 bð Þv bð Þ þ p að Þu0 að Þv að Þ

¼
ðb
a
pu0v0dx� κ1 u bð Þ � βð Þv bð Þ þ κ0 u að Þ � αð Þv að Þ:

We gather all u-independent terms on the left and obtain

ðb
a
pu0v0dx� κ1u bð Þv bð Þ þ κ0u að Þv að Þ ¼

ðb
a
fvdx� κ1βv bð Þ þ κ0αv að Þ, ∀ v ∈V:

The FEmethod consists of finding uh ∈Vh ¼ v∈C0 a, bð Þ vj jIi ∈P1 Iið Þ
n o

such that

ðb
a
pu0hv

0dx� κ1uh bð Þv bð Þ þ κ0uh að Þv að Þ ¼
ðb
a
fvdx� κ1βv bð Þ þ κ0αv að Þ, ∀v∈Vh:

(27)

Implementation: We need to assemble a stiffness matrix A and a load vector b.
Substituting uh ¼

PN
i¼0ciϕi into (27) and taking v ¼ ϕ j for j ¼ 0, 1, … ,N yields

XN
i¼0

ðb
a
pϕ0iϕ

0
jdx� κ1ϕi bð Þϕ j bð Þ þ κ0ϕi að Þϕ j að Þ ¼

ðb
a
fϕ jdx� κ1βϕ j bð Þ þ κ0αϕ j að Þ,

∀ j ¼ 0, 1, … ,N:

which is a N þ 1ð Þ � N þ 1ð Þ system of equations for ci. In matrix form we write
Ac ¼ b, where c ¼ c0, … , cN½ �t is a N þ 1ð Þ vector containing the unknown coeffi-
cients ci, i ¼ 0, 1, … ,N, A is a N þ 1ð Þ � N þ 1ð Þ matrix with entries

ai,j ¼
ðb
a
pϕ0iϕ

0
jdx� κ1ϕi bð Þϕ j bð Þ þ κ0ϕi að Þϕ j að Þ, i, j ¼ 0, 1, … ,N,

and b is a N þ 1ð Þ vector with entries

b j ¼
ðb
a
fϕ jdx� κ1βϕ j bð Þ þ κ0αϕ j að Þ, j ¼ 0, 1, … ,N:

Let for simplification p ¼ 1. Then the matrix A and the vector b (when using the
trapezoidal rule) are given by
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A ¼

κ0 þ
1
h1

� 1
h1

0 ⋯ 0

� 1
h1

1
h1
þ 1
h2
� 1
h2

⋱ 0

0 � 1
h2

⋱ ⋯ 0

⋮ ⋱ ⋱ ⋱ � 1
hN

0 ⋯ 0 � 1
hN

1
hN
� κ1

2
6666666666666666664

3
7777777777777777775

, b ¼

h1
2

f 0 þ κ0α

h1 þ h2
2

f 1

⋮

hN�1 þ hN
2

f N�1

hN
2

f N � κ1β

2
6666666666666664

3
7777777777777775

:

2.5 The FE method using Lagrange 2 elements

Let a ¼ x0 < x1 <⋯< xN ¼ b be a regular partition of the interval a, b½ �. Suppose
that the length of Ii ¼ xi�1, xi½ � is hi ¼ xi � xi�1. Let Pk ¼ p xð Þ ¼

Pk
j¼0c jx

j, c j ∈
n o

denotes the vector space of polynomials in one variable and of degree less than or
equal to k. The FE method for Lagrange P2 elements involves the discrete space:

V2
h ¼ fv xð Þ∈C0 a, b�, v½ jIi ∈P2 Iið Þ, i ¼ 1, … ,Ng,

and its subspace V2
0,h ¼ v∈V2

hj v að Þ ¼ v bð Þ ¼ 0
� �

: These spaces are composed
of continuous, piecewise parabolic functions (polynomials of degree less than or
equal to 2). The P2 FE method consists in applying the internal variational
approximation approach to these spaces.

Lemma 2.2 The space V2
h is a subspace of H1 a, b½ � of dimension 2N þ 1. Every

function vh ∈V2
h is uniquely defined by its values at the mesh vertices x j, j ¼ 0, 1, … ,N

and at the midpoints x jþ1
2
¼ x jþx jþ1

2 ¼ x j þ h jþ1
2 , j ¼ 0, 1, … ,N � 1, where h jþ1 ¼

x jþ1 � x j:

vh xð Þ ¼
XN
j¼0

vh x j
� �

ϕ j xð Þ þ
XN�1
j¼0

vh x jþ1
2

� �
ϕ jþ1

2
xð Þ, ∀ x∈ a, b½ �,

where ϕ j

n oN

j¼0
is the basis of the shape functions ϕ j defined as:

ϕ j xð Þ ¼ ϕ
x� x j

h jþ1

� �
, j ¼ 0, 1, … ,N, ϕ jþ1

2
xð Þ ¼ ψ

x� x jþ1
2

h jþ1

� �
,

j ¼ 0, 1, … ,N � 1,

with

ϕ ξð Þ ¼
1þ ξð Þ 1þ 2ξð Þ, ξ∈ �1, 0½ �,
1� ξð Þ 1� 2ξð Þ, ξ∈ 0, 1½ �,
0, ∣ξ∣> 1,

8><
>:

ψ ξð Þ ¼
1� 4ξ2, ∣ξ∣ ≤

1
2
,

0, ∣ξ∣>
1
2
,

8><
>:

(28)

Figure 3 shows the global shape functions for the space V2
h and the three

quadratic Lagrange P2 shape functions on the reference interval �1, 1½ �.
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Remark 2.5 Notice that we have:

ϕ j x j
� �

¼ δij, ϕ j x jþ1
2

� �
¼ 0, ϕ jþ1

2
x j
� �

¼ 0, ϕ jþ1
2
x jþ1

2

� �
¼ δij:

Corollary 2.1 The space V2
0,h is a subspace of H1

0 a, b½ � of dimension 2N � 1 and every
function vh ∈V2

0,h is uniquely defined by its values at the mesh vertices x j, j ¼
1, 2, … ,N � 1 and at the midpoints x jþ1

2
, j ¼ 0, 1, … ,N � 1:

vh xð Þ ¼
XN�1
j¼1

vh x j
� �

ϕ j xð Þ þ
XN�1
j¼0

vh x jþ1
2

� �
ϕ jþ1

2
xð Þ, ∀ x∈ a, b½ �,

where ϕ j

n oN

j¼0
is the basis of the shape functions ϕ j defined as:

ϕ j xð Þ ¼ ϕ
x� x j

h jþ1

� �
, j ¼ 0, 1, … ,N, ϕ jþ1

2
xð Þ ¼ ψ

x� x jþ1
2

h jþ1

� �
, j ¼ 0, 1, … ,N � 1,

with ϕ ξð Þ and ψ ξð Þ are defined by (28).

2.5.1 Homogeneous boundary conditions

The variational formulation of the internal approximation of the Dirichlet BVP
(3) consists now in finding uh ∈V2

0,h, such that:

ðb
a
u0hv

0dxþ
ðb
a
quhvdx ¼

ðb
a
fvdx, ∀ v∈V2

h,0:

Here, it is convenient to introduce the notation x j
2
, j ¼ 1, … , 2N � 1 for the mesh

points and ϕ j
2
, j ¼ 1, … , 2N � 1 for the basis of V2

0,h. Using these notations, we have:

uh ¼
X2N�1
j¼1

c j
2
ϕ j

2
xð Þ,

where c j
2
¼ uh x j

2

� �
≈ u x j

2

� �
are the unknowns coefficients. This formulation

leads to solve in 2N�1 a linear system:

Figure 3.
(left) global shape functions for the space V2

h. (right) the three quadratic Lagrange P
2 shape functions on the

reference interval �1, 1½ �.
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Ac ¼ b,

where c ¼ c1
2
, c1, … , cN�1

2

h it
∈2N�1 is the unknown vector containing the coef-

ficients c j
2
, j ¼ 1, 2, … , 2N � 1, A is an 2N � 1ð Þ � 2N � 1ð Þ matrix with entries

aij ¼
ðb
a

ϕ i
2

0ϕ j
2

0 þ qϕ i
2
ϕ j

2

� �
dx, i, j ¼ 1, 2, … , 2N � 1,

and load vector b∈2N�1 has entries

bi
2
¼
ðb
a
fϕ i

2
dx, i ¼ 1, 2, … , 2N � 1:

Since the shape functions ϕi have a small support, the matrix A is mostly
composed of zeros. However, the main difference with the Lagrange P1 FE method,
the matrix A is no longer a tridiagonal matrix.

Computer Implementation: The coefficients of the matrix A can be computed
more easily by considering the following change of variables, for ξ∈ �1, 1½ �:

x ¼
x j þ x j�1

2
þ
x j � x j�1

2
ξ ¼ x j�1

2
þ
x j � x j�1

2
ξ, ∀ x∈ x j�1, x j

� �
,

j ¼ 1, 2, … ,N:

Hence, the shape functions can be reduced to only three basic shape functions
(Figure 3):

ϕ̂�1 ξð Þ ¼ ξ ξ� 1ð Þ
2

, ϕ̂0 ξð Þ ¼ 1� ξð Þ 1þ ξð Þ, ϕ̂1 ξð Þ ¼ ξ ξþ 1ð Þ
2

:

Their respective derivatives are

dϕ̂�1 ξð Þ
dξ

¼ 2ξ� 1
2

,
dϕ̂0 ξð Þ
dξ

¼ �2ξ, dϕ̂1 ξð Þ
dξ

¼ 2ξþ 1
2

:

This approach consists in considering all computations on an interval Ii ¼
xi�1, xi½ � on the reference interval �1, 1½ �. Thus, we have:

dϕi xð Þ
dx

¼
dϕi xi�1=2 þ xi�xi�1

2 ξ
� �

dξ
dξ
dx
¼ 2

xi � xi�1

dϕ̂k ξð Þ
dξ

¼ 2
hi

dϕ̂k ξð Þ
dξ

:

In this case, the elementary contributions of the element Ii to the stiffness matrix
and to the mass matrix are given by the 3� 3 matrices KIi and MIi :

KIi ¼
ð

Ii

ϕ0i�1ϕ
0
i�1 ϕ0i�1ϕ

0
i�1

2
ϕ0i�1ϕ

0
i

ϕ0i�1
2
ϕ0i�1 ϕ0i�1

2
ϕ0i�1

2
ϕ0i�1

2
ϕ0i

ϕ0iϕ
0
i�1 ϕ0iϕ

0
i�1

2
ϕ0iϕ

0
i

2
66664

3
77775
dx ¼ 2

hi

ð1
�1

ϕ̂
0
�1ϕ̂

0
�1 ϕ̂

0
�1ϕ̂

0
0 ϕ̂

0
�1ϕ̂

0
1

ϕ̂
0
0ϕ̂
0
�1 ϕ̂

0
0ϕ̂
0
0 ϕ̂

0
0ϕ̂
0
1

ϕ̂
0
1ϕ̂
0
�1 ϕ̂

0
1ϕ̂
0
0 ϕ̂

0
1ϕ̂
0
1

2
664

3
775dξ

¼ 1
3hi

7 �8 1

�8 16 �8
1 �8 7

2
64

3
75,
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MIi ¼
ð

Ii

ϕi�1ϕi�1 ϕi�1ϕi�1
2

ϕi�1ϕi

ϕi�1
2
ϕi�1 ϕi�1

2
ϕi�1

2
ϕi�1

2
ϕi

ϕiϕi�1 ϕiϕi�1
2

ϕiϕi

2
6664

3
7775dx ¼

hi
2

ð1
�1

ϕ̂�1ϕ̂�1 ϕ̂�1ϕ̂0 ϕ̂�1ϕ̂1

ϕ̂0ϕ̂�1 ϕ̂0ϕ̂0 ϕ̂0ϕ̂1

ϕ̂1ϕ̂�1 ϕ̂�1ϕ̂0 ϕ̂1ϕ̂1

2
6664

3
7775dξ

¼ hi
30

4 2 �1
2 16 2

�1 2 4

2
64

3
75:

Coefficients of the right-hand side b: Usually, the function f is only known by
its values at the mesh points xi

2
, i ¼ 0, 1, … , 2N and thus, we use the decomposition

of f in the basis of shape functions ϕ i
2
, i ¼ 0, 1, … , 2N as f xð Þ ¼

P2N
j¼0f x j

2

� �
ϕ j

2
.

Each component bi
2
of the right-hand side vector is obtained as bi

2
¼
PN

k¼1
Ð xk
xk�1

fϕ i
2
dx.

Using the previous decomposition of f , we obtain:

bi
2
¼
XN

k¼1

ðxk
xk�1

X2N
j¼0

f x j
2

� �
ϕ j

2
ϕ i

2
dx ¼

X2N
j¼0

f x j
2

� � XN

k¼1

ðxk
xk�1

ϕ i
2
ϕ j

2
dx

 !
:

Thus, the problem is reduced to computing the integrals
Ð xk
xk�1

ϕ i
2
ϕ j

2
dx. It is easy to

see that we obtain expressions very similar to that of the mass matrix. More
precisely, the element Ii ¼ xi�1, xi½ � will contribute to only three components of
indices i� 1, i� 1

2 and i as:

bIi ¼ hi
30

4 2 �1
2 16 2

�1 2 4

2
64

3
75

f xi�1ð Þ

f xi�1
2

� �

f xið Þ:

2
664

3
775:

2.5.2 Nonhomogeneous boundary conditions

Consider the following two-point BVP: find u∈C2 a, bð Þ such that

�u00 þ q xð Þu ¼ f xð Þ, x∈ a, b½ �, u að Þ ¼ α, u bð Þ ¼ β, (29)

where α and β are given constants and f ∈C a, bð Þ is a given function.

Multiplying (29) by a function v∈H1
0 ¼ v : vk k2 þ v0k k2 <∞, v að Þ ¼ v bð Þ ¼ 0

n o

and integrating by parts gives

ðb
a
fvdx ¼

ðb
a
�u00 þ quð Þvdx ¼ �u0 bð Þv bð Þ þ u0 að Þv að Þ þ

ðb
a
u0v0 þ quvð Þdx ¼

ðb
a
u0v0dx:

Hence, the weak or variational form of (29) reads: Given u að Þ ¼ α, u bð Þ ¼ β,

find u∈H1 ¼ v : vk k2 þ v0k k2 <∞
n o

, such that

ðb
a
u0v0 þ quvð Þdx ¼

ðb
a
fvdx, ∀ v∈H1

0:

Let V2
h and V2

h,0, respectively, be the space of all continuous piecewise quadratic
functions and the space of all continuous piecewise quadratic functions which
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vanish at the end points a and b, on a uniform partition a ¼ x0 < x1 <⋯< xN ¼ b of
the interval a, b½ �.

The FE method scheme consists of finding uh ∈V2
h, such that:

ðb
a
u0hv

0dxþ
ðb
a
quhvdx ¼

ðb
a
fvdx, ∀ v∈V2

h,0:

Introduce the notation x j
2
, j ¼ 0, 1, … , 2N � 1, 2N for the mesh points and

ϕ j
2
, j ¼ 0, 1, … , 2N � 1, 2N for the basis of V2

h and ϕ j
2
, j ¼ 1, … , 2N � 1 for the

basis of V2
0,h. Using these notations, we have:

uh ¼
X2N
j¼0

c j
2
ϕ j

2
xð Þ,

where c j
2
¼ uh x j

2

� �
≈ u x j

2

� �
are the unknowns coefficients. We note that c0 ¼

uh x0ð Þ ¼ α and c2N ¼ uh xNð Þ ¼ β. This formulation leads to solve in 2N�1 a linear
system:

Ac ¼ b,

where c ¼ c1
2
, c1, … , cN�1

2

h it
∈2N�1 is the unknown vector containing the

coefficients c j
2
, j ¼ 1, 2, … , 2N � 1, A is an 2N � 1ð Þ � 2N � 1ð Þmatrix with entries

aij ¼
ðb
a

ϕ i
2

0ϕ j
2

0 þ qϕ i
2
ϕ j

2

� �
dx, i, j ¼ 1, 2, … , 2N � 1,

and the load vector b∈2N�1 has entries

bi
2
¼
ðb
a
fϕ i

2
dx� α

ðb
a

ϕ i
2

0ϕ00 þ qϕ i
2
ϕ0

� �
dx� β

ðb
a

ϕ i
2

0ϕN
0 þ qϕ i

2
ϕN

� �
dx, i ¼ 1, 2, … , 2N � 1:

Clearly, the only extra terms are given in the vector with entries

~bi
2
¼ �α

ðb
a

ϕ i
2

0ϕ00 þ qϕ i
2
ϕ0

� �
dx� β

ðb
a

ϕ i
2

0ϕN
0 þ qϕ i

2
ϕN

� �
dx, i ¼ 1, 2, … , 2N � 1:

Suppose q ¼ 0 then for N ≥ 2, we have

~b1
2
¼ �α

ðb
a
ϕ01

2
ϕ00dx� β

ðb
a
ϕ01

2
ϕ0Ndx ¼ �α

ðx1
x0
ϕ01

2
ϕ00 ¼

8α
3h1

,

~b1 ¼ �α
ðb
a
ϕ01ϕ

0
0dx� β

ðb
a
ϕ01ϕ

0
Ndx ¼ �α

ðx1
x0
ϕ01ϕ

0
0 ¼ �

α

3h1
,

~bi
2
¼ �α

ðb
a
ϕ0i

2
ϕ00dx� β

ðb
a
ϕ0i

2
ϕ0Ndx ¼ 0, i ¼ 3, … , 2N � 3,

~bN�1 ¼ �α
ðb
a
ϕ0N�1ϕ

0
0dx� β

ðb
a
ϕ0N�1ϕ

0
Ndx ¼ �β

ðxN
xN�1

ϕ0N�1ϕ
0
Ndx ¼ �

β

3h1
,

~bN�1
2
¼ �α

ðb
a
ϕ0N�1

2
ϕ00dx� β

ðb
a
ϕ0N�1

2
ϕ0Ndx ¼ �β

ðxN
xN�1

ϕ0N�1
2
ϕ0Ndx ¼

8β
3h1

:
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3. The FE for elliptic PDEs

Here, we apply the FE method for two-dimensional elliptic problem: Find u
such that

�∇ � a∇uð Þ þ bu ¼ f xð Þ, x∈Ω, a∇u � n ¼ κ g � uð Þ, on ∂Ω, (30)

where a>0, b≥0, κ≥0, f ∈L2 Ωð Þ and g∈C0 ∂Ωð Þ.

3.1 Meshes

Let Ω⊂2 bounded with ∂Ω assumed to be polygonal. A triangulation T h of Ω is
a set of triangles T such that Ω ¼ ⋃T ∈T h

T, and two triangles intersect by either a
common triangle edge, or a corner, or nothing. Corners will be referred to as nodes.
We let hT ¼ diam Tð Þ the length or the largest edge.

Let T h have N nodes and M triangles. The data is stored in two matrices. The
matrix P∈2�N describes the nodes ( x1, y1

� �
, … , xN, yN

� �
Þ and the matrix K ∈3�M

describes the triangles, i:e:, it describes which nodes (numerated from 1 to N) form
a triangle T and how it is orientated:

P ¼
x1 x2 ⋯ xN

y1 y2 ⋯ yN

" #
, K ¼

nα1 nα2 ⋯ nαM

nβ1 nβ2 ⋯ nβM

nγ1 nγ2 ⋯ nγM

2
664

3
775:

This means that triangle Ti is formed by the nodes nαi , n
β
i , and nγi (enumeration

in counter-clockwise direction).
The Delaunay algorithm determine a triangulation with the given points as

triangle nodes. Delaunay triangulations are optimal in the sense that the angles of all
triangles are maximal.

Matlab has a built in toolbox called PDE Toolbox and includes a mesh generation
algorithm.

3.2 Piecewise polynomial spaces

Let T be a triangle with nodes N1 ¼ x1, y1
� �

, N2 ¼ x2, y2
� �

, and N3 ¼ x3, y3
� �

.
We define

P1 Tð Þ ¼ v∈C0 Tð Þj v x, yð Þ ¼ c1 þ c2xþ c3y, c1, c2, c3 ∈
� �

:

Now let vi ¼ v Nið Þ for i ¼ 1, 2, 3. Note that v∈P1 Tð Þ is determined by vif g3i¼1.
Given vi we compute ci by

1 x1 y1

1 x2 y2

1 x3 y3

2
664

3
775

c1

c2

c3

2
664

3
775 ¼

v1

v2

v3

2
664

3
775:

This is solvable due to
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det

1 x1 y1

1 x2 y2

1 x3 y3

2
664

3
775 ¼ 2∣T∣ 6¼ 0,

1 x1 y1
1 x2 y2
1 x3 y3

2
64

3
75
�1

¼ 1
2∣T∣

x2y3 � x3y2 x3y1 � x1y3 x1y2 � x2y1

y2 � y3 y3 � y1 y1 � y2

x3 � x2 x1 � x3 x3 � x1

2
664

3
775,

where ∣T∣ ¼ 1
2 x2y3 � x3y2 � x1y3 þ x3y1 þ x1y2 � x2y1
� �

, which is � the area of
the triangle T.

Let λ j ∈P1 Tð Þ be given by the nodal values λ j Nið Þ ¼ δij, where δij is the
Kronecker symbol. This gives us v x, yð Þ ¼ α1λ1 x, yð Þ þ α2λ2 x, yð Þ þ α3λ3 x, yð Þ, where
αi ¼ v Nið Þ for i ¼ 1, 2, 3: We can compute λi x, yð Þ as follows: Let λi x, yð Þ ¼
ai þ bixþ ciy. Using λ j Nið Þ ¼ δij, we get

1 x1 y1
1 x2 y2
1 x3 y3

2
664

3
775

a1

b1

c1

2
664

3
775 ¼

1

0

0

2
664

3
775,

1 x1 y1
1 x2 y2
1 x3 y3

2
664

3
775

a2

b2

c2

2
664

3
775 ¼

0

1

0

2
664

3
775,

1 x1 y1
1 x2 y2
1 x3 y3

2
664

3
775

a3

b3

c3

2
664

3
775 ¼

0

0

1

2
664

3
775:

Solving the systems, we get

λ1 x, yð Þ ¼ 1
2∣T∣

x2y3 � x3y2 þ y2 � y3
� �

xþ x3 � x2ð Þy
� �

,

λ2 x, yð Þ ¼ 1
2∣T∣

x3y1 � x1y3 þ y3 � y1
� �

xþ x1 � x3ð Þy
� �

,

λ3 x, yð Þ ¼ 1
2∣T∣

x1y2 � x2y1 þ y1 � y2
� �

xþ x3 � x1ð Þy
� �

:

Let T h be a triangulation of Ω, then we let

Vh ¼ v∈C Ωð Þ vj jT ∈P1 Tð Þ, ∀ T ∈ T h
� �

:

Functions in Vh are piecewise linear and continuous. We know that v∈Vh is
uniquely determined by v Nið Þ, i ¼ 1, 2, … ,Nf g. We let ϕ j Nið Þ ¼ δij and let

ϕ j, j ¼ 1, 2, … ,N
n o

⊂Vh be a basis for Vh (hat functions), i:e:,

v x, yð Þ ¼
XN
i¼1

αiϕi x, yð Þ, αi ¼ v Nið Þ, i ¼ 1, 2, … ,N:

3.3 Interpolation

Given u∈C Tð Þ on a single triangle with nodes Ni ¼ xi, yi
� �

, i ¼ 1, 2, 3, we let

πu x, yð Þ ¼
X3
i¼1

u Nið Þϕi x, yð Þ,

in particular πu Nið Þ ¼ u Nið Þ, i ¼ 1, 2, … ,N. We want to estimate the interpola-
tion error u� πu. Let
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uk k2L2 Ωð Þ ¼
ð

Ω
u xð Þj j2dxdy, Duk k2L2 Ωð Þ ¼ uxk k2L2 Ωð Þ þ uy

�� ��2
L2 Ωð Þ,

D2u
�� ��2

L2 Ωð Þ ¼ uxxk k2L2 Ωð Þ þ 2 uxy
�� ��2

L2 Ωð Þ þ uyy
�� ��2

L2 Ωð Þ:

Theorem 3.1 Suppose that u∈C2 Tð Þ. Then the following hold

u� πuk kL2 Tð Þ ≤Ch2T D2u
�� ��

L2 Tð Þ, D u� πuð Þk kL2 Tð Þ ≤ChT D2u
�� ��

L2 Tð Þ,

where C is a generic constant independent of hT and u, but it depends on the
ratio between smallest and largest interior angle of the triangle T.

Now, we consider the piecewise continuous interpolant πu ¼
PN

i¼1u Nið Þϕi.
Theorem 3.2 Suppose that u∈C2 Tð Þ for all T ∈ T h. Then the following hold

u� πuk k2L2 Ωð Þ ≤C
X
T ∈ T h

h4T D2u
�� ��2

L2 Tð Þ, D u� πuð Þk k2L2 Ωð Þ ≤C
X
T ∈ T h

h2T D2u
�� ��2

L2 Tð Þ,

where C is a generic constant independent of h and u, but it depends on the ratio
between smallest and largest interior angle of the triangles of T h. Here
D u� πuð Þk k2L2 Ωð Þ ¼

P
T ∈ T h

D u� πuð Þk k2L2 Tð Þ.

3.4 L2-projection

Let Ω⊂2. We consider the space L2 Ωð Þ ¼ vj
Ð
Ωv

2 x, yð Þdxdy<∞
� �

. Let
u∈L2 Ωð Þ: We define the L2-projection Ph : L2 Ωð Þ ! Vh ¼
v∈C0 Ωð Þ vj jT ∈P1 Tð Þ, ∀ T ∈ T h
� �

by Phu∈Vh such that

ð

Ω
u� Phuð Þvhdxdy ¼ 0, ∀vh ∈Vh:

The problem of finding Phu∈Vh is equivalent to solve the following linear
system

ð

Ω
u� Phuð Þϕidxdy ¼ 0, i ¼ 1, 2… ,N,

where ϕif gNi¼1 is a basis of Vh.
Since Phu∈Vh we can express it as Phu ¼

PN
i¼1ciϕi x, yð Þ, where ci ∈. There-

fore, to find Phu∈Vh we need to find c1, c2, … , cN ∈ such that

XN
i¼1

ci

ð

Ω
ϕiϕ jdxdy ¼

ð

Ω
uϕ jdxdy, j ¼ 1, 2, … ,N:

The problem can be expressed as a linear system of equations Mc ¼ b, where
c ¼ c1, c2, … , cN½ �t and the entries of the matrix M∈N�N and the vector b∈N are
given by

mij ¼
ð

Ω
ϕiϕ jdxdy, b j ¼

ð

Ω
uϕ jdxdy:
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In general, we use a quadrature rule to approximate integrals. The general
form is

ð

T
f x, yð Þdxdy≈

Xn
j¼1

ω jf N j
� �

,

where the ω j
0s denote the weights and the N j

� � 0s the quadrature points.
Lemma 3.1 The mass matrix M with entries mij ¼

Ð
Ωϕiϕ jdxdy is symmetric and

positive definite.
Theorem 3.3 For any u∈L2 Ωð Þ the L2-projection Phu exists and is unique.

3.5 A priori error estimate

Theorem 3.4 Let u∈L2 Ωð Þ and let Phu be the L2-projection of u, then

u� Phuk kL2 Ωð Þ ≤ u� vhk kL2 Ωð Þ, ∀ vh ∈Vh:

Theorem 3.5 Suppose that u∈C2 Ωð Þ with u∈C2 Tð Þ for all T ∈ T h. Then there
exists a constant C such that

u� Phuk k2L2 Ωð Þ ≤C
X
T ∈T h

h4T D2u
�� ��2

L2 Tð Þ:

3.6 The FE method for general elliptic problem

The FE method was designed to approximate solutions to complicated equations
of elasticity and structural mechanics, usually modeled by elliptic type equations,
with complicated geometries. It has been developed for other applications as well.

Consider the following two-dimensional elliptic problem: Find u such that

�∇ � a∇uð Þ þ bu ¼ f , in Ω, a∇u � n ¼ κ g � uð Þ, on ∂Ω, (31)

where a>0, b≥0, κ≥0, f ∈L2 Ωð Þ and g∈C0 ∂Ωð Þ. We seek a weak solution u in

V ¼ H1 Ωð Þ ¼ v∈L2 Ωð Þj v has a weak derivative and vk kL2 Ωð Þ þ ∇vk kL2 Ωð Þ <∞
n o

:

In order to derive the weak formulation, we multiply (31) with v∈V, integrate
over Ω and use Green’s formula to obtain

ð

Ω
fvdxdy ¼ �

ð

Ω
v∇ � a∇uð Þdxdyþ

ð

Ω
buvdxdy

¼
ð

Ω
a∇u � ∇vdxdy�

ð

∂Ω
v a∇uð Þ � ndsþ

ð

Ω
buvdxdy

¼
ð

Ω
a∇u � ∇vdxdyþ

ð

Ω
buvdxdyþ

ð

∂Ω
κ u� gð Þvds:

We obtain the weak form: Find u∈V such that

ð

Ω
a∇u � ∇vdxdyþ

ð

Ω
buvdxdyþ

ð

∂Ω
κuvds ¼

ð

Ω
fvdxdyþ

ð

∂Ω
κgvds, v∈V: (32)

28

Finite Element Methods and Their Applications



We can formulate the method as in the 1D case by using the weak formulation
(32). The FE method in 2D is defined as follows: Find uh ∈Vh such that

ð

Ω
a∇uh � ∇vhdxdyþ

ð

Ω
buhvhdxdyþ

ð

∂Ω
κuhvhds ¼

ð

Ω
fvhdxdyþ

ð

∂Ω
κgvhds, vh ∈Vh,

(33)

where Vh ¼ v∈V vj jT ∈P1 Tð Þ, ∀ T ∈ T h
� �

.

Implementation: Let a ¼ 1 and b ¼ g ¼ 0. Substituting uh ¼
PN

j¼1c jϕ j into (33)
and picking vh ¼ ϕi, we obtain

XN
j¼1

c j

ð

Ω
∇ϕ j � ∇ϕidxdyþ

ð

∂Ω
κϕ jϕids

� �
¼
ð

Ω
fϕidxdy, i ¼ 1, 2, … ,N:

This gives us the system Aþ Rð Þc ¼ b, where c ¼ c1, c2, … , cN½ �t ∈N is the
unknown vector and the entries of A∈N�N, R∈N�N, and b∈N are given by

aij ¼
ð

Ω
∇ϕ j � ∇ϕidxdy, rij ¼

ð

∂Ω
κϕ jϕids, bi ¼

ð

Ω
fϕidxdy, i, j ¼ 1, 2, … ,N:

Assembly of the stiffness matrix A: We can again identify the local contribu-
tions that come form a particular triangle T

aTij ¼
ð

Ω
∇ϕ j � ∇ϕidxdy, i, j ¼ 1, 2, 3:

where T is an arbitrary triangle with vertices Ni ¼ xi, yi
� �

and ϕi are the hat
functions i:e:, ϕ j Nið Þ ¼ δij. Let ϕi x, yð Þ ¼ αi þ βixþ γiy, for i ¼ 1, 2, 3. Then, we
compute αi, βi, γi by

1 x1 y1
1 x2 y2
1 x3 y3

2
664

3
775

α1

β1

γ1

2
664

3
775 ¼

1

0

0

2
664

3
775,

1 x1 y1
1 x2 y2
1 x3 y3

2
664

3
775

α2

β2

γ2

2
664

3
775 ¼

0

1

0

2
664

3
775,

1 x1 y1
1 x2 y2
1 x3 y3

2
664

3
775

α3

β3

γ3

2
664

3
775 ¼

0

0

1

2
664

3
775:

In general we have Bαi ¼ ei for i ¼ 1, 2, 3, where

B ¼
1 x1 y1
1 x2 y2
1 x3 y3

2
64

3
75, αi ¼

αi

βi
γi

2
64

3
75, e1 ¼

1

0

0

2
64

3
75, e2 ¼

0

1

0

2
64

3
75, e3 ¼

0

0

1

2
64

3
75:

Furthermore, we obviously have ∇ϕi ¼ βi, γi½ �t, which gives

aTij ¼
ð

Ω
βiβ j þ γiγ j

� �
dx ¼ βiβ j þ γiγ j

� �
∣T∣, i, j ¼ 1, 2, 3:

Assembly of boundary matrix R: Let Γout
h denote the set of boundary edges of

the triangulation, i:e: Γout
h ¼ Ej E ¼ T ∩ ∂Ω, for T ∈ T hf g. Assume that κ is constant

on E. For an edge E∈Γout
h , we define RE ∈2�2 by the entries
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rEij ¼
ð

E
κϕ jϕids ¼

κ

6
1þ δij
� �

∣E∣, i, j ¼ 1, 2,

where ∣E∣ is the length of E and δij is 1 for i ¼ j and 0 else.
Assembly of load vector: We use a corner quadrature rule for approximating

the integral. We obtain for T ∈ T h

bTi ¼
ð

T
fϕidxdy≈

∣T∣
3

f Nið Þ, i ¼ 1, 2, … ,N:

Given A, R and b, we can solve Aþ Rð Þc ¼ b and write uh ¼
PN

j¼1c jϕ j.

3.7 The Dirichlet problem

Consider the following Dirichlet Problem: Find u such that

�Δu ¼ f , in Ω, u ¼ g, on ∂Ω, (34)

where f ∈L2 Ωð Þ and g∈C0 ∂Ωð Þ. We seek a weak solution u in Vg ¼
v∈V vj j∂Ω ¼ g
� �

: Multiplying (34) by a test function v∈V0 and integrating over Ω,
we get

ð

Ω
fvdxdy ¼ �

ð

Ω
vΔudxdy ¼

ð

Ω
∇u � ∇vdxdy�

ð

∂Ω
v∇u � nds ¼

ð

Ω
∇u � ∇vdxdy:

So the weak problem reads: Find u∈Vg such that

ð

Ω
∇u � ∇vdxdy ¼

ð

Ω
fvdxdy, v∈V0:

Assume that g is piecewise linear on ∂Ω with respect to the triangulation.
Then the FE method in 2D is defined as follows: Find uh ∈Vh,g ¼ v∈Vh vj j∂Ω ¼ g

� �
such that

ð

Ω
∇uh � ∇vhdxdy ¼

ð

Ω
fvhdxdy, vh ∈Vh,0:

Assume that we have N nodes and J boundary nodes, then the matrix form of
the FE method problem reads:

A0,0 A0,g

Ag,0 A0,g

� �
c0
c1

� �
¼

b0

b1

� �
,

where A0,0 ∈ N�Jð Þ� N�Jð Þ, Ag,g ∈J�J, A0,g ∈ N�Jð Þ�J, Ag,0 ∈J� N�Jð Þ. Note that
c1 ∈J is known (it contains the values of g in the boundary nodes). We can therefore
solve the simplified problem reading: find c0 ∈N�J with A0,0c0 ¼ b0 � A0,gc1.

3.8 The Neumann problem

Consider the following Neumann Problem: Find u such that

�Δu ¼ f , in Ω, ∇u � n ¼ g, on ∂Ω, (35)
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where f ∈L2 Ωð Þ and g∈C0 ∂Ωð Þ. Let us try to seek a solution to this problem in

the space V ¼ vj vk kL2 Ωð Þ þ ∇vk kL2 Ωð Þ <∞
n o

. Multiplying (35) by a test function

v∈V, integrating over Ω, and using Green’s formula, we get

ð

Ω
fvdxdy ¼ �

ð

Ω
vΔudxdy ¼

ð

Ω
∇u � ∇vdxdy�

ð

∂Ω
v∇u � nds

¼
ð

Ω
∇u � ∇vdxdy�

ð

∂Ω
vgds:

Thus, the variational formulation reads: find u∈V such that

ð

Ω
∇u � ∇vdxdy�

ð

∂Ω
vgds ¼

ð

Ω
fvdxdy, ∀ v∈V:

In order to guarantee solvability, we note that if v ¼ 1 then we have

0 ¼
ð

Ω
∇u � ∇1dxdy ¼

ð

Ω
fdxdyþ

ð

∂Ω
gds:

Therefore we need to assume the following compatibility condition

ð

Ω
fdxdyþ

ð

∂Ω
gds ¼ 0,

to ensure that a solution can exist. Note that if u exists, it is only determined up
to a constant, since uþ c is a solution if u is a solution and c∈. To fix this constant
and obtain a unique solution a common trick is to impose the additional constraintÐ
Ωudxdy ¼ 0. We therefore define the weak solution space

V̂ ¼ v∈Vj
ð

Ω
vdxdy ¼ 0

� �
,

which contains only functions with a zero mean value. This is a called a quotient
space. This space guarantees a unique weak solution (with weak formulation as
usual with test functions in V). So the weak problem reads: Find u∈ V̂ such that

ð

Ω
∇u � ∇vdxdy�

ð

∂Ω
vgds ¼

ð

Ω
fvdxdy, ∀ v∈V:

Now, the FE method takes the form: find uh ∈ V̂h ⊂ V̂ such that

ð

Ω
∇uh � ∇vhdxdy�

ð

∂Ω
vhgds ¼

ð

Ω
fvhdxdy, ∀ vh ∈ V̂h,

where V̂h is the space of all continuous piecewise linear functions with a zero mean.

3.9 Finite elements for mixed Dirichlet-Neumann conditions

Here we describe briefly how Neumann conditions are handled in two-
dimensional finite elements. Suppose Ω is a domain in either 2 or 3 and assume
that ∂Ω has been partitioned into two disjoint sets: ∂Ω ¼ Γ1 ∪Γ2. We consider the
following BVP:
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�∇ � κ xð Þ∇uð Þ ¼ f xð Þ, x∈ Ω, u ¼ 0, x∈ Γ1, ∇u � n ¼ 0, x∈ Γ2,

(36)

where f ∈L2 Ωð Þ. As for the 1-D case, Dirichlet conditions are termed essential
boundary conditions because they must be explicitly imposed in the FE method,
while Neumann conditions are called natural and need not be mentioned. We
therefore define the space of test functions by

V̂ ¼ v∈C2 Ω
� �

: v xð Þ ¼ 0, x∈Γ1
� �

:

Multiplying (36) by a test function v∈ V̂ and integrating over Ω, we get

ð

Ω
fvdxdy ¼ �

ð

Ω
v∇ � κ xð Þ∇uð Þdxdy ¼

ð

Ω
κ xð Þ∇u � ∇vdxdy�

ð

∂Ω
κ xð Þv∇u � nds

¼
ð

Ω
κ xð Þ∇u � ∇vdxdy�

ð

Γ1

κ xð Þv∇u � nds�
ð

Γ2

κ xð Þv∇u � nds

¼
ð

Ω
κ xð Þ∇u � ∇vdxdy,

since v ¼ 0 on Γ1 and ∇u � n on Γ1. Thus the weak form of (36) is: Find u∈ V̂
such that

ð

Ω
κ xð Þ∇u � ∇vdxdy ¼

ð

Ω
fvdxdy, v∈ V̂: (37)

We now restrict our discussion once more to two-dimensional polygonal
domains. To apply the FE method, we must choose an approximating subspace of
V̂. Since the boundary conditions are mixed, there are at least two points where the
boundary conditions change from Dirichlet to Neumann. We will make the
assumption that the mesh is chosen so that all such points are nodes (and that all
such nodes belong to Γ1, that is, that Γ1 includes its “endpoints”). We can then
choose the approximating subspace of V̂ as follows:

Vh ¼ v∈C Ω
� �

: v is linear on T h, v zð Þ ¼ 0 for all nodes z∈Γ1
� �

:

A basis for Vh is formed by including all basis functions corresponding to
interior boundary nodes that do not belong to Γ1. If the BVP includes only Neumann
conditions, then the stiffness matrix will be singular, reflecting the fact that BVP
either does not have a solution or has infinitely many solutions. Special care must be
taken to compute a meaningful solution to the resulting linear system.

3.10 The method of shifting the data

3.10.1 Inhomogeneous Dirichlet conditions on a rectangle

In a two-dimensional problem, inhomogeneous boundary conditions are han-
dled just as in one dimension. Inhomogeneous Dirichlet conditions are addressed
via the method of shifting the data (with a specially chosen piecewise linear func-
tion), while inhomogeneous Neumann conditions are taken into account directly
when deriving the weak form. Both types of boundary conditions lead to a change
in the load vector.
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The method of shifting the data can be used to transform an inhomogeneous
Dirichlet problem to a homogeneous Dirichlet problem. This technique works just
as it did for a one-dimensional problem, although in two dimensions it is more
difficult to find a function satisfying the boundary conditions. We consider the BVP

�Δu ¼ f xð Þ, x∈ Ω ¼ 0, að Þ � 0, bð Þ, u xð Þ ¼ g xð Þ ¼

g1 xð Þ, x∈Γ1,

g2 xð Þ, x∈Γ2,

g3 xð Þ, x∈Γ3,

g4 xð Þ, x∈Γ4,

8>>><
>>>:

(38)

where Γ1, Γ2, Γ3, and Γ4 are, respectively, the bottom, right, top, and left
boundary edges of the rectangular domain Ω ¼ 0, að Þ � 0, bð Þ. We will assume that
the boundary data are continuous, so

g1 0ð Þ ¼ g4 0ð Þ, g1 að Þ ¼ g2 0ð Þ, g2 bð Þ ¼ g3 að Þ, g3 0ð Þ ¼ g4 bð Þ:

Suppose we find a function w defined on Ω and satisfying w xð Þ ¼ g xð Þ for all
x∈∂Ω. We then define v ¼ u�w and note that

�Δv ¼ �Δuþ Δw ¼ f xð Þ þ Δw ¼ f̂ xð Þ,

and v xð Þ ¼ u xð Þ �w xð Þ ¼ 0 for all x∈∂Ω. We can then solve

�Δv ¼ f̂ xð Þ, x∈ Ω, v xð Þ ¼ 0, x∈∂Ω: (39)

Finally, the solution u will be given by u ¼ vþw.
We now describe a method for computing a function w that satisfies the given

Dirichlet conditions. We first note that there is a polynomial of the form q x, yð Þ ¼
c0 þ c1xþ c2yþ c3xy, which assumes the desired boundary values at the corners:

q 0, 0ð Þ ¼ g1 0ð Þ ¼ g4 0ð Þ, q a, 0ð Þ ¼ g1 að Þ ¼ g2 0ð Þ, q a, bð Þ ¼ g2 bð Þ
¼ g3 að Þ, q 0, bð Þ ¼ g3 0ð Þ ¼ g4 bð Þ:

A direct calculation shows that

c0 ¼ g1 0ð Þ, c1 ¼
g1 að Þ � g1 0ð Þ

a
, c2 ¼

g4 bð Þ � g4 0ð Þ
b

,

c3 ¼
g2 bð Þ þ g1 0ð Þ � g1 að Þ � g4 bð Þ

ab
:

We then define

h xð Þ ¼

h1 xð Þ ¼ g1 xð Þ � g1 0ð Þ þ g1 að Þ � g1 0ð Þ
a

x
� �

, x∈Γ1,

h2 yð Þ ¼ g2 yð Þ � g2 0ð Þ þ g2 bð Þ � g2 0ð Þ
b

y
� �

, x∈Γ2,

h3 xð Þ ¼ g3 xð Þ � g3 0ð Þ þ
g3 að Þ � g3 0ð Þ

a
x

� �
, x∈Γ3,

h4 yð Þ ¼ g4 yð Þ � g4 0ð Þ þ g4 bð Þ � g4 0ð Þ
b

y
� �

, x∈Γ4:

8>>>>>>>>>>>><
>>>>>>>>>>>>:
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We have thus replaced each gi by a function hi which differs from gi by a linear
function, and which has value zero at the two endpoints:

h1 0ð Þ ¼ h1 að Þ ¼ h2 0ð Þ ¼ h2 bð Þ ¼ h3 0ð Þ ¼ h3 að Þ ¼ h4 0ð Þ ¼ h4 bð Þ ¼ 0:

Finally, we define

w x, yð Þ ¼ c0 þ c1xþ c2yþ c3xyð Þ þ h1 xð Þ þ h3 xð Þ � h1 xð Þ
b

y
� �

þ h4 yð Þ þ h2 yð Þ � h4 yð Þ
a

x
� �

:

The reader should notice how the second term interpolates between the bound-
ary values on Γ1 and Γ3, while the third term interpolates between the boundary
values on Γ2 and Γ4. In order for these two terms not to interfere with each other, it
is necessary that the boundary data be zero at the corners. It was for this reason that
we transformed the gi

0s into the hi 0s. The first term in the formula for w undoes this
transformation. It is straightforward to verify that w satisfies the desired boundary
conditions.

3.10.2 Inhomogeneous Neumann conditions on a rectangle

We can also apply the technique of shifting the data to transform a BVP with
inhomogeneous Neumann conditions to a related BVP with homogeneous Neu-
mann conditions. However, the details are somewhat more involved than in the
Dirichlet case. Consider the following BVP with the Neumann conditions

�Δu ¼ f xð Þ, x∈ Ω ¼ 0, að Þ � 0, bð Þ, n � ∇u xð Þ ¼ g xð Þ ¼

g1 xð Þ, x∈Γ1,

g2 xð Þ, x∈Γ2,

g3 xð Þ, x∈Γ3,

g4 xð Þ, x∈Γ4,

8>>><
>>>:

(40)

where Γ1, Γ2, Γ3, and Γ4 are, respectively, the bottom, right, top, and left
boundary edges of the rectangular domain Ω ¼ 0, að Þ � 0, bð Þ. We first note that
this is equivalent to

�uy xð Þ ¼ g1 xð Þ, x∈Γ1, ux xð Þ ¼ g2 yð Þ, x∈Γ2, uy xð Þ
¼ g3 xð Þ, x∈Γ3, � ux xð Þ ¼ g4 yð Þ, x∈Γ4:

We make the following observation: If there is a twice-continuously differentia-
ble function u satisfying the given Neumann conditions, then, since uxy ¼ uyx, we
have

�uxy x, 0ð Þ ¼ g01 xð Þ, � uyx 0, yð Þ ¼ g40 yð Þ,

which together imply that g01 0ð Þ ¼ g40 0ð Þ. By similar reasoning, we have all of the
following conditions:

g01 0ð Þ ¼ g40 0ð Þ, g01 0ð Þ ¼ g40 0ð Þ, � g01 að Þ ¼ g02 0ð Þ, g02 bð Þ ¼ g03 að Þ: (41)

We will assume that (41) holds.
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We now explain how to compute a function that satisfies the desired Neumann
conditions. The method is similar to that used to shift the data in a Dirichlet
problem: we will “interpolate” between the Neumann conditions in each dimension
and arrange things so that the two interpolations do not interfere with each other.
We use the fact that

ψ xð Þ ¼ �αxþ αþ β

2a
x2 satisfies ψ 0 0ð Þ ¼ �α, ψ 0 að Þ ¼ β: (42)

The first step is to transform the boundary data gl xð Þ to a function h1 xð Þ
satisfying h10 0ð Þ ¼ h10 að Þ ¼ 0, and similarly for g2, g3, g4 and h2, h3, h4. Since these
derivatives of the boundary data at the corners are (plus or minus) the mixed partial
derivatives of the desired function at the corners, it suffices to find a function q x, yð Þ
satisfying the conditions

uxy 0, 0ð Þ ¼ �g01 0ð Þ, uxy a, 0ð Þ ¼ �g01 að Þ, uxy 0, bð Þ ¼ �g03 0ð Þ, uxy a, bð Þ ¼ �g02 bð Þ:

We can satisfy these conditions with a function of the form q x, yð Þ ¼ c0xyþ
c1x2yþ c2xy2 þ c3x2y2. The reader can verify that the necessary coefficients are

c0 ¼ �g01 0ð Þ, c1 ¼
g01 0ð Þ � g01 að Þ

2a
, c2 ¼

g03 0ð Þ þ g01 0ð Þ
2b

,

c3 ¼
g02 bð Þ þ g01 að Þ � g03 0ð Þ � g01 0ð Þ

4ab
:

If w is to satisfy the desired Neumann conditions, then w� q ¼ hi on Γi, i ¼
1� 4, where

h1 xð Þ ¼ g1 xð Þ þ c0xþ c1x2, h2 yð Þ ¼ g2 yð Þ � c0 þ 2ac1ð Þy� c2 þ 2ac3ð Þy2,

h3 xð Þ ¼ g3 xð Þ � c0 þ 2bc2ð Þx� c1 þ 2bc3ð Þx2, h4 yð Þ ¼ g4 yð Þ þ c0yþ c2y2:

We can now define w� q by the interpolation described by (42):

w x, yð Þ ¼ q x, yð Þ � h1 xð Þyþ h3 xð Þ þ h1 xð Þ
2b

y2 � h4 yð Þxþ h2 yð Þ þ h4 yð Þ
2a

yx2:

Then w satisfies the original Neumann conditions, as the interested reader can
verify directly.

3.11 Eigenvalue problem

Consider the following Eigenvalue Problem: Find λ∈ and u such that

�Δu ¼ λu, in Ω, ∇u � n ¼ 0, on ∂Ω: (43)

In order to derive the weak formulation, we multiply (43) with v∈V, integrate
over Ω and use Green’s formula to obtain

λ

ð

Ω
uvdxdy ¼ �

ð

Ω
vΔudxdy ¼

ð

Ω
∇u � ∇vdxdy�

ð

∂Ω
v∇u � nds ¼

ð

Ω
∇u � ∇vdxdy:
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We obtain the weak form: Find u∈V such that
ð

Ω
∇u � ∇vdxdy ¼ λ

ð

Ω
uvdxdy, v∈V: (44)

The FE method in 2D is defined as follows: Find λh ∈ and uh ∈Vh such that
ð

Ω
∇uh � ∇vhdxdy ¼ λh

ð

Ω
uhvhdxdy, vh ∈Vh, (45)

where Vh ¼ v∈V vj jT ∈P1 Tð Þ, ∀ T ∈ T h
� �

.

Implementation: Substituting uh ¼
PN

j¼1c jϕ j into (45) and picking vh ¼ ϕi, we
obtain

XN
j¼1

c j
ð

Ω
∇ϕ j � ∇ϕidxdy� λh

ð

Ω
ϕiϕ jdxdy

� �
¼ 0, i ¼ 1, 2, … ,N:

This leads to an algebraic system of the form Ac ¼ λhMc, i:e: an algebraic
eigenvalue problem.

3.12 Error analysis

Consider the following model Problem: Find u such that

�Δu ¼ f , in Ω, u ¼ 0, on ∂Ω:

The weak form: Find u∈V0 such that
ð

Ω
∇u � ∇vdxdy ¼

ð

Ω
fvdxdy, v∈V0:

The FE approximation is defined as follows: Find uh ∈Vh,0 such that
ð

Ω
∇uh � ∇vhdxdy ¼

ð

Ω
fvhdxdy, vh ∈Vh,0,

where Vh ¼ v∈V vj jT ∈P1 Tð Þ, ∀ T ∈ T h
� �

. Expressing uh ¼
PN

j¼1c jϕ j and
picking vh ¼ ϕi, we obtain

XN
j¼1

c j
ð

Ω
∇ϕ j � ∇ϕidxdy

� �
¼
ð

Ω
fϕidxdy, i ¼ 1, 2, … ,N:

This leads to system of the form Ac ¼ b, where the entries of A∈N�N and
b∈N are

aij ¼
ð

Ω
∇ϕ j � ∇ϕidxdy, bi ¼

ð

Ω
fϕidxdy, i, j ¼ 1, 2, … ,N:

Theorem 3.6 The stiffness matrix A is symmetric and positive definite.
Theorem 3.7 (Galerkin orthogonality) Let u∈V0 denote the weak solution and

uh ∈Vh,0 the corresponding FE method approximation. Then
ð

Ω
∇ u� uhð Þ � ∇vhdxdy ¼ 0, vh ∈Vh,0:
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Now, let vj jj jj j2 ¼
Ð
Ω∇v � ∇vdxdy ¼

Ð
Ω ∇vj j2dxdy be the energy norm on V0.

There are two different kinds of error estimates, a priori estimates, where the
error is bounded in terms of the exact solution, and a posteriori error estimates,
where the error is bounded in terms of the computed solution.

Theorem 3.8 (A priori error bound) Let u∈V0 denote the weak solution and
uh ∈Vh,0 the corresponding FE method approximation. Then

u� uhj jj jj j≤ u� vhj jj jj j, vh ∈Vh,0:

Theorem 3.9 Let u∈V0 denote the weak solution and uh ∈Vh,0 the corresponding
FE method approximation. If u∈C2 Ωð Þ, then there exists C independent of hT and u
such that

u� uhj jj jj j2L2 Ωð Þ ≤C
X
T ∈ T h

h2T D2u
�� ��2

L2 Tð Þ:

3.13 The FE method for elliptic problems with a convection term

Consider the following convection-diffusion problem: Find u such that

�∇ � a∇uð Þ þ b � ∇uþ cu ¼ f , in Ω, u ¼ 0, on ∂Ω: (46)

We seek a weak solution u in V0 ¼ v∈V vj j∂Ω ¼ 0
� �

. In order to derive the
weak formulation, we multiply (46) with v∈V0, integrate over Ω and use Green’s
formula to obtain

ð

Ω
fvdxdy ¼ �

ð

Ω
v∇ � a∇uð Þdxdyþ

ð

Ω
vb � ∇udxdyþ

ð

Ω
cuvdxdy

¼
ð

Ω
a∇u � ∇vdxdy�

ð

∂Ω
v∇u � ndsþ

ð

Ω
vb � ∇udxdyþ

ð

Ω
cuvdxdy

¼
ð

Ω
a∇u � ∇vdxdyþ

ð

Ω
vb � ∇udxdyþ

ð

Ω
cuvdxdy:

Note that there is no need to apply Green’s formula to
Ð
Ωvb � ∇udxdy. We obtain

the weak form: Find u∈V0 such that
ð

Ω
a∇u � ∇vdxdyþ

ð

Ω
vb � ∇udxdyþ

ð

Ω
cuvdxdy ¼

ð

Ω
fvdxdy, v∈V0:

The FE method in 2D is defined as follows: Find uh ∈Vh,0 ¼ v∈Vh vj j∂Ω ¼ 0
� �

such that

ð

Ω
a∇uh � ∇vhdxdyþ

ð

Ω
vhb � ∇uhdxdyþ

ð

Ω
cuhvhdxdy ¼

ð

Ω
fvhdxdy, vh ∈Vh,0,

(47)

where Vh ¼ v∈V vj jT ∈P1 Tð Þ, ∀ T ∈ T h
� �

.

Implementation: Substituting uh ¼
PN

j¼1c jϕ j into (47) and picking vh ¼ ϕi, we
obtain

XN
j¼1

c j

ð

Ω
a∇ϕ j � ∇ϕidxdyþ

ð

Ω
ϕib � ∇ϕ jdxdyþ

ð

Ω
cϕiϕ jdxdy

� �
¼
ð

Ω
fϕidxdy, i ¼ 1, 2, … ,N:
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This gives us the system Aþ Bþ Cð Þc ¼ d, where c ¼ c1, … , cN½ �t ∈N is the
unknown vector and the entries of A,B,C∈N�N and d∈N are given by

aij ¼
ð

Ω
a∇ϕ j � ∇ϕidxdy, bij ¼

ð

Ω
ϕib � ∇ϕ jdxdy, cij ¼

ð

Ω
cϕiϕ jdxdy, di ¼

ð

Ω
fϕidxdy,

for i, j ¼ 1, 2, … ,N. Note that B is not symmetric, i:e: bij 6¼ bji.

4. The FE method for the heat equation

Consider the following heat/diffusion problem: Find u x, tð Þ such that

_u� Δu ¼ f , in Ω⊂2, t∈ 0,T½ �, (48)

u �, tð Þ ¼ 0, on ∂Ω and t∈ 0,T½ �, (49)

u x, 0ð Þ ¼ u0 xð Þ, for x∈Ω and t ¼ 0: (50)

We seek a weak solution u in V0 ¼ v vk k þ ∇vk k<∞, vj j∂Ω ¼ 0
� �

. In order to
derive the weak formulation, we multiply (48) with v∈V0, integrate over Ω and
use Green’s formula to obtain, for t∈ 0,T½ �,

ð

Ω
fvdx ¼

ð

Ω
_uvdxþ

ð

Ω
∇u � ∇vdx�

ð

∂Ω
v∇u � nds ¼

ð

Ω
_uvdxþ

ð

Ω
∇u � ∇vdx:

The weak form therefore reads: Find u �, tð Þ∈V0 such that for t>0
ð

Ω
_uvdxþ

ð

Ω
∇u � ∇vdx ¼

ð

Ω
fvdx, v∈V0: (51)

The semi-discrete FE method in 2D is defined as follows: Find uh �, tð Þ∈Vh,0 ¼
v∈Vh vj j∂Ω ¼ 0
� �

such that
ð

Ω
_uhvhdxþ

ð

Ω
∇uh � ∇vhdx ¼

ð

Ω
fvhdx, vh ∈Vh,0, (52)

where Vh ¼ v∈V vj jT ∈P1 Tð Þ, ∀ T ∈ T h
� �

.

Implementation: Substituting uh x, tð Þ ¼
PN

j¼1c j tð Þϕ j xð Þ into (52) and choosing
vh ¼ ϕi, we obtain

XN
j¼1

_c j
ð

Ω
ϕ jϕidxþ

XN
j¼1

c j
ð

Ω
∇ϕ j � ∇ϕidx ¼

ð

Ω
fϕidx, i ¼ 1, 2, … ,N:

This gives us the system of ODEs

M _c tð Þ þ A tð Þc tð Þ ¼ b tð Þ, t∈ 0,Tð �, c 0ð Þ ¼ c0,

where c ¼ c1, c2, … , cN½ �t ¼ uh N1, tð Þ, … , uh NN, tð Þ½ �t ∈N (here Ni denotes the
node that belongs to the basis function ϕi) is the unknown vector and the entries of
M, A∈N�N and b∈N are given by

mij ¼
ð

Ω
ϕiϕ jdx, aij ¼

ð

Ω
∇ϕ j � ∇ϕidx, bi ¼

ð

Ω
fϕidx, i, j ¼ 1, 2, … ,N:
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Finally, the system of ODEs can be solved with e:g:, the backward Euler method
as follows: Let 0 ¼ t0 < t1 <⋯< tM ¼ T be a discretization, let km ¼ tm � tm�1 for
m ¼ 1, 2, … ,M be the time step size and let cm ≈ c tmð Þ for m ¼ 1, 2, … ,M denote
corresponding approximations. Then, we can compute cm using

Mþ kmAmð Þcm ¼ Mcm�1 þ kmbm, m ¼ 1, 2, … ,M,

where c0 is obtained from u0 xð Þ. We can either use c0 ¼ c1 0ð Þ, … , cN 0ð Þ½ �t ¼
u0 N1ð Þ, … , u0 NNð Þ½ �t, or we can let c0 to be the L2-projection of u0. We set u0h ¼PN

j¼1c
0
jϕ j xð Þ and solve for c0j using

XN
j¼1

c0j

ð

Ω
ϕ jϕidx ¼

ð

Ω
u0ϕidx, i ¼ 1, 2, … ,N:

Theorem 4.1 (Stability) There hold continuous and discrete stability estimates

u �, tð Þk k≤ u �, 0ð Þk k þ
ðt
0

f �, sð Þk kds, umh
�� ��≤ um�1h

�� ��þ km fm
�� ��≤ u0h

�� ��þ
Xm
i¼1

ki f i
�� ��:

5. The FE method for the wave equation

Many physical phenomena exhibit wave characteristics. For instance light which
is an electromagnetic wave have the ability to disperse and create diffraction pat-
terns, which is typical of waves.

Consider the following wave problem: Find u x, tð Þ such that

€u� ∇ � ε∇uð Þ ¼ f , in Ω⊂2, t∈ 0,T½ �, (53)

n � ∇u �, tð Þ ¼ 0, on ∂Ω and t∈ 0,T½ �, (54)

u x, 0ð Þ ¼ u0 xð Þ, _u x, 0ð Þ ¼ v0 xð Þ, for x∈Ω and t ¼ 0, (55)

where f is a given load, ε ¼ ε x, tð Þ is a positive parameter, u0 and v0 are a
prescribed initial conditions, and Ω is a bounded domain with boundary ∂Ω and unit
outward normal n.

We seek a weak solution u in V ¼ H1 Ωð Þ ¼ vj vk k þ ∇vk k<∞f g. Multiplying
the wave Eq. (53) with v∈V, integrating over Ω, and using Green’s formula, we
obtain, for t∈ 0,T½ �,
ð

Ω
fvdx ¼

ð

Ω
€uvdx�

ð

Ω
v∇ � ε∇uð Þdx ¼

ð

Ω
€uvdxþ

ð

Ω
ε∇u � ∇vdx�

ð

∂Ω
vε∇u � nds

¼
ð

Ω
€uvdxþ

ð

Ω
ε∇u � ∇vdx:

The weak form (variational formulation) therefore reads: Find u �, tð Þ∈V ¼
H1 Ωð Þ such that for all t>0

ð

Ω
€uvdxþ

ð

Ω
ε∇u � ∇vdx ¼

ð

Ω
fvdx, v∈V: (56)

Let Vh ¼ v∈V vj jT ∈P1 Tð Þ, ∀ T ∈ T h
� �

⊂V be the space of all continuous
piecewise linear functions on a triangle mesh of Ω. The semi-discrete FE method in
2D is defined as follows: Find uh �, tð Þ∈Vh such that
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ð

Ω
€uhvhdxþ

ð

Ω
ε∇uh � ∇vhdx ¼

ð

Ω
fvhdx, vh ∈Vh: (57)

Implementation: Substituting uh x, tð Þ ¼
PN

j¼1c j tð Þϕ j xð Þ into (57) and choosing
vh ¼ ϕi, we obtain

XN
j¼1

€c j
ð

Ω
ϕ jϕidxþ

XN
j¼1

c j
ð

Ω
ε∇ϕ j � ∇ϕidx ¼

ð

Ω
fϕidx, i ¼ 1, 2, … ,N:

This gives us the system

M€c tð Þ þ A tð Þc tð Þ ¼ b tð Þ, t∈ 0,Tð �, (58)

where c ¼ c1, … , cN½ �t ¼ uh N1, tð Þ, … , uh NN, tð Þ½ �t ∈N (here Ni denotes the
node that belongs to the basis function ϕi) is the unknown vector and the entries
of the mass and stiffness matrices M, A∈N�N and the load vector b∈N are
given by

mij ¼
ð

Ω
ϕiϕ jdx, aij ¼

ð

Ω
ε∇ϕ j � ∇ϕidx, bi ¼

ð

Ω
fϕidx, i, j ¼ 1, 2, … ,N:

Eq. (58) is a semi-discretization of the wave equation in the sense that it does not
contain any unknowns with spatial derivatives.

Time discretization: We first transform the system of ODEs into a first-order
system. Let d tð Þ ¼ _c tð Þ, we get the new coupled system

M _c tð Þ �Md tð Þ ¼ 0, M _d tð Þ þ A tð Þc tð Þ ¼ b tð Þ, t∈ 0,Tð �:

Let w ¼ c,d½ �t then the system is equivalent to M̂ _w tð Þ þ Â tð Þw tð Þ ¼ b̂ tð Þ,
t∈ 0,Tð �, where

M̂ ¼
M 0

0 M

� �
, Â ¼

0 �M
A 0

� �
, b̂ ¼

0

b

� �
:

Finally, the system of ODEs can be solved with e:g:, the backward Euler method
as follows: Let 0 ¼ t0 < t1 <⋯< tM ¼ T be a discretization, let km ¼ tm � tm�1 for
m ¼ 1, 2, … ,M be the time step size and let wm ≈w tmð Þ for m ¼ 1, 2, … ,M denote
corresponding approximations. Then, we can compute wm using

M̂þ kmÂm

� �
wm ¼ M̂wm�1 þ kmb̂m, m ¼ 1, 2, … ,M,

where w0 is obtained from u0 xð Þ and v0 xð Þ.
There are several possible choices of initial data. We can either use w0 ¼

w1 0ð Þ, … , c2N 0ð Þ½ �t ¼ u0 N1ð Þ, … , u0 NNð Þ, v0 N1ð Þ, … , v0 NNð Þ½ �t, or we can let w0 ¼
w0

1 ,w
0
2

� �t, where w0
1 and w0

2 are the L
2-projection of u0 and v0, respectively. We set

w0
h,1 ¼

PN
j¼1w

0
j,1ϕ j xð Þ and w0

h,2 ¼
PN

j¼1w
0
j,2ϕ j xð Þ and solve for w0

j,1, w
0
j,2 using

XN
j¼1

w0
j,1

ð

Ω
ϕ jϕidx ¼

ð

Ω
u0ϕidx,

XN
j¼1

w0
j,2

ð

Ω
ϕ jϕidx ¼

ð

Ω
v0ϕidx, i ¼ 1, 2, … ,N:
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We can also use Crank–Nicolson scheme

M̂þ km
2
Âm

� �
wm ¼ M̂� km

2
Âm�1

� �
wm�1 þ km

2
b̂m�1 þ b̂m

� �
� gm:

Theorem 5.1 (Conservation of energy) If f ¼ 0, then

_uh �, tð Þk k2L2 Ωð Þ þ ε ∇uh �, tð Þk k2L2 Ωð Þ ¼ _u �, 0ð Þk k2L2 Ωð Þ þ ε ∇u �, 0ð Þk k2L2 Ωð Þ:

6. Conclusion

In this chapter, we introduced the finite element (FE) method for approxima-
tion the solutions to ODEs and PDEs. More specifically, the FE method is presented
for first-order initial-value problems for OEDs, second-order boundary-value
problems for ODEs, second-order elliptic PDEs, second-order heat and wave equa-
tions. The remaining chapters of this textbook are based on the FE method. The
derivation of the FE method for other problems is straightforward. In the remaining
chapters, the FE method will developed to solve complicated problems in engineer-
ing, notably in elasticity and structural mechanics modeling involving elliptic par-
tial differential equations and complicated geometries. For more details, we refer
the reader to [1–4, 6–9] and the references therein.
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Chapter 2

Fluid Structure Interaction Study
of Stenosed Carotid Artery
Considering the Effects of Blood
Pressure and Altered Gravity
S.M. Abdul Khader, Nitesh Kumar and Raghuvir Pai

Abstract

Atherosclerosis is a very common cardiovascular disease (CVD) causing
increased morbidity. Atherosclerosis is a disease that involves several factors and
usually affects the wall of the arterial bifurcations. Advanced Computational Fluid
Dynamics (CFD) techniques has the potential to shed more light in understanding
of the causes of atherosclerosis and perhaps in its early diagnosis. Fluid Structure
Interaction (FSI) study was carried out on two different three dimensional patient
specific cases (a) Normal carotid bifurcation and (b) Stenosed carotid bifurcation.
Physiological conditions were considered to evaluate hemodynamic parameters and
understand the origin and progression of atherosclerosis in the carotid artery bifur-
cation, first for the normal and then with hypertension disease. Commercial soft-
ware ANSYS and ANSYS CFX (version 19.0) was used to perform a two-way FSI
using a fully implicit second-order backward Euler differencing scheme. Arterial
response was calculated by employing an Arbitrary Lagrangian–Eulerian (ALE)
formulation and using the temporal blood response. The carotid artery bifurcation
caused a velocity reduction and backflow was observed causing a reduction in the
shear stress. A low shear stress resulted due to an oscillatory behavior at the start
point of the internal carotid artery near the carotid sinus. Shear stresses are obtained
by using anatomically realistic 3D geometry and representative physiological con-
ditions. Results of this study agree with those in the literature showing that the
regions with low wall shear stress. Geometry and flow conditions greatly affected
the hemodynamics of the carotid artery. Furthermore, regions of relatively low wall
shear stress were observed post stenosis, which is a known cause of plaque devel-
opment and progression. Under altered gravity conditions the same artery was
studied to determine the flow conditions and predict the progression of plague.

Keywords: fluid structure interaction, stenosis, carotid artery, blood pressure,
altered gravity

1. Introduction

The most important and essential system in human body is the cardiovascular
system, also known as circulatory system. In the circulatory system, the heart acts
as a pump, supplying the blood to different tissues, organs and muscles of the body
through the dense network of ducts: arteries and veins. The normal blood flow
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through arteries can be altered significantly by arterial diseases such as atheroscle-
rosis [1]. The atherosclerosis is characterized by the thickening, narrowing and
stiffening of the arterial walls. The hardened substance along the walls of the
arteries is called plaque and the plaque deposit gradually narrows the artery. The
artery, hereby loses its flexibility, which ultimately leads to the blockage of the
artery [2]. The narrowing of artery will obstruct and severely reduce the blood flow
leading to the organ disfunction [3]. The detailed study of the gradual narrowing or
bulging of the artery will help in understanding the underlying mechanisms for
unusual behavior of blood flow [4]. The fluid mechanical forces due to the interac-
tion of the blood flow and the arterial wall have a strong influence on the initiation
and progression of narrowing or bulging of the artery [5]. Detailed study of hemo-
dynamics in stenosis will be useful in the diagnosis and treatment of vascular
diseases [6]. Clinically analyzing the hemodynamics will not yield the detailed
investigation using current diagnostic imaging options such as angiography, CTA,
MRA or duplex scanning [7]. The detailed information about the hemodynamics in
diseased vessels can be obtained from the numerical simulations, and such simula-
tions will help in obtaining a better insight in predicting the hemodynamics. It was
observed that hemodynamics of the carotid artery was very much affected by the
geometry and flow conditions. Furthermore, regions of relatively low wall shear
stress were observed post stenosis, which is a known cause of plaque development
and progression [8].

Another major cause of stroke is hypertension. Some of the studies have inves-
tigated the effect of hypertension on aneurysms and stenosed arteries. Researchers
observed that hypertension increases the WSS and deformation in aneurysm
regions, which were initiated by extreme stress - strain conditions [9], whereas
Milad et al. [10] experimentally elucidated that the increase in stenosis severity in
the carotid artery. This observation is found to fluctuate the hemodynamic param-
eters especially at throat of the stenosis. All the parameters help predict the loca-
tions of potential plaque growth and these results helped in studying the plaque
growth and arterial remodeling [10]. It is also found that, the effect of hypertension
on the atherosclerotic arteries was studied as it poses a major risk in the rupture of
the plaque [11]. A significant correlation between carotid strain parameters and
peak and mean WSS in hypertension was also observed [11].

Moreover, the numerical study focusing on flow variation due to gravitational
effect during change of different postures such as sitting, sleeping and standing
have been discussed with more focus on clinical aspects [12]. Some of the studies
have justified the variation in flow behavior during change of postures as observed
clinically [13]. The analytical models representing the vascular network in order to
predict the variation in flow and pressure during change of postures were also
developed. [14]. However, most of these studies are investigated for space applica-
tion with different conditions such zero gravity and hyper gravity [15]. In another
attempt, patient specific numerical study is simulated to demonstrate the gravita-
tional effects on the brain circulation under auto-regulation for change of postures
[16]. Hence, the influence of gravity also plays a very vital role in studying the
detailed blood flow analysis because of constant change of postures.

Overall, these numerical simulations will aid in interpreting the existing in-vivo
data, and eventually lead to the development of improved imaging techniques [17].
It is also recognized that narrowing or bulging of arteries are closely related with
blood flow characteristics, such as areas of flow reversal or low and oscillatory
shear stress [18]. Therefore, a detailed understanding of the local hemodynamics
can have useful applications, for instance in predicting potential regions for the
formation and development of atherosclerosis, or the consequences of surgical
intervention [19].
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However, the effect of variation in blood pressure on atherosclerosis has been
limited and few studies have attempted to predict that hypertension increases the
WSS and arterial deformation initiated by extreme stress – strain conditions
[20–22]. The effects of increase blood pressure or hypertension with more focus on
stenosis related to patient specific cases is one of the potential area for numerical
investigation. Also, there are very limited studies with clinical relevance which
supports that a change of posture will certainly cause symptoms/stroke in patients
altered cerebral auto regulation. Due to the risks involved in stroke (plaque
rupture) in patients, studies supporting the change of posture in such patients are
not possible to investigate clinically. Hence, this kind of observation of minor flow
changes in healthy individuals and significant variation in patients with different
postures under the influence of altered gravity are demonstrated in this chapter/
section using numerical simulation approach. This chapter/section, therefore
summarizes the investigation on effects of hypertension in comparison with normal
blood pressure on normal and stenosed carotid artery bifurcation. In addition,
effects of altered gravity is also discussed during change of posture from sleeping to
standing under normal blood pressure condition.

2. Methodology

2.1 FSI theory

The blood flow behavior in both cases (a) and (b) of this study is assumed to be
governed by the Navier–Stokes equations of incompressible flows. The fluid domain
in FSI simulation is solved using modified momentum equation adopting moving
velocity concept along with continuity equation as given in Eq. (1) [2, 11, 12].

∂

∂t

ð

Ω
ρ∂Ωþ

ð

S
ρ υ� υbð Þn∂S ¼

ð

S
τiji j � Pii
� �

n∂Sþ
ð

Ω
bi∂Ω (1)

The artery wall is assumed to be elastic, isotropic, incompressible and homoge-
neous and the transient dynamic structural solution is given by Eq. (2) [4]. The
stiffness matrix is updated in each time step and the Newmark method is adopted in
updating the displacement terms at each time interval and further the stiffness
matrix is solved using direct solver in particular sparse solver for each time step.

M½ � €U
� �

þ C½ � _U
� �

þ K½ � Uf g ¼ Faf g (2)

FSI Algorithm: Based on the Newtonian assumption with incompressible flow
for blood and linear elastic property of arterial wall, the two-way transient FSI
analysis is performed using system coupling FSI solver in ANSYS-18.0.

This coupling solver solves fluid and solid domain separately using ANSYS CFX
and ANSYS STRUCTURAL respectively as shown in the Figure 1. The pressure
loads obtained from initial ANSYS CFX solution is transferred to the structure
through FSI interface and later ANSYS structural domain is solved. Further details
of FSI solver are described in [2, 19].

2.2 Modeling

The present study discuss two different patient specific case, (a) healthy and
normal carotid bifurcation without any symptoms of stroke and (b) stenosis of 75%
at ECA root, while ICA and CCA appears to be normal. The required geometric
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model is generated based on data obtained from CT angio scan. Figure 2 shows the
different views of CT scan data and the encircled area highlights the location of
carotid bifurcation on both left and right side in addition to the 3D geometric model
generated in MIMICS. The 3D fluid and solid models of both these cases left and
right carotid system are generated using MIMICS-16 based on CT angio data. The
solid model is generated using CATIAV5R20.0, versatile geometric modeling soft-
ware and further transferred to ANSYS 18.0 for the meshing. Case-(a) carotid
system consisting of fluid and structural model is meshed with 233,750 and 43,455
hexahedral elements respectively. Similarly, fluid and solid models of case-(b)
carotid system is meshed with 254,220 and 41,760 hexahedral elements as shown in
the Figure 3.

2.3 Analysis

Generally blood is known to be non-Newtonian physiologically, however in the
present study, since the focus in on large arteries, Newtonian assumption is accept-
able as relatively high shear rate occurs [23]. In medium and smaller arteries, non-
Newtonian assumption is valid as shear rate is lower than 100 s�1 and shear stresses
depend non-linearly on the deformation rate [24]. A time varying velocity pulse is
applied at inlet of both the carotid cases based on available literature [8]. A typical
inlet velocity profile as shown in the Figure 4 is applied for both cases (a) and (b)
without altered gravity behavior which contributes to sleeping posture. However,
under altered gravity condition, such as standing posture, the inlet velocity profile
will be as shown in the Figure 4. Under the standing posture condition, the inlet
velocity will change considering the hydrostatic pressure, which is related to gravity
and referred as ρgh, where ρ is fluid density, g is the acceleration due gravity and h
is the height of the hydrostatic column [21]. The height of the column of blood is
always referred at the level of the heart.

Also, to include the peripheral resistance, a time varying pressure wave form is
applied at the outlet as shown in the Figure 4 [5]. The range of pulse pressure is

Figure 1.
Fluid structure interaction algorithm in ANSYS.
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Figure 2.
Different views of CT scan of carotid bifurcation, case-(a) Normal carotid artery model and case-(b) Stenosed
carotid artery model.

Figure 3.
Meshed model of case (a) Normal carotid bifurcation and (b) Stenosed carotid artery model.
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different as the simulation is carried out for both NBP and HBP having 80–125 mm
Hg and 100–170 mm Hg, respectively. Each pulse cycle for a time period of 0.8 s is
discretized into 180 time steps to simulate the flow behavior more accurately. In
this study, blood flow properties in form of density and dynamic viscosity are
considered to be 1050 kg/m3 and 0.004 N-sec/m2 respectively [15]. The arterial wall
is assumed to behave linearly-elastic having elastic modulus is 0.9 MPa and
Poisson’s ratio of 0.40 with density of 1120 kg/m3 [20, 25]. The convergence criteria
of fluid flow and across the fluid-surface interface is set at 10�4 and 10�3 respec-
tively and low Reynolds k-ωmodel is used to model the turbulence behavior [22]. In
this study, with sleeping position as reference, effects of NBP and HBP on flow
behavior are investigated and further altered gravity evaluation is performed for
change of posture from sleeping to standing under NBP condition. These simulation
results provide useful data in quantifying the hemodynamic changes during differ-
ent blood pressures (NBP and HBP) and also during change of posture from
sleeping to standing.

3. Results and discussion

Numerical simulation in this study of both the cases (a) and (b) is carried out for
3 pulse cycle and results obtained in the last cycle is considered for the investigation.
The hemodynamic parameters like velocity, WSS and arterial wall deformation are
studied at specific instants of pulse cycle like peak systole (i), early systole (ii) and
late diastole (iii). Inlet velocity is considered with reference to sleeping position and
effects of variation in pressure parameter is investigated under NBP and HBP
conditions. Under altered gravity assumption, inlet velocity is considered for
change of position from sleeping to standing under NBP condition only. Flow
behavior will be less intense during standing posture in contrast to sleeping condi-
tion. WSS is considered to be the most crucial and interesting hemodynamic
parameters related to the atherosclerotic progression. It varies with time due to the
pulsatility of the flow waveform and the maximum value generally occurs at the
peak systole when the inflow is maximum.

Velocity: The velocity streamlines of the case (a) normal carotid bifurcation
subjected to NBP & HBP is shown in Figure 5. In this case, higher velocity magni-
tude is observed at peak systole for all the blood pressure models. Flow recirculation
region is almost similar at peak systole and early diastole, however, in late diastole,
it is more chaotic at the carotid bulb.

Figure 4.
(i) Normalized inlet velocity waveform and (ii) outlet pressure waveform with NBP and HBP.
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High-velocity gradients is seen at the bifurcation and flow reversals along the
outer wall of the ICA due to bifurcation of the arterial geometry and carotid bulb is
located at the outer wall region of the ICA leading to flow reversals. Similar behav-
ior is observed with higher blood pressure. As compared to NBP, streamlines tends
to be more laminar at higher blood pressure. The flow separation was observed to be
leading to vortices and the vortex shedding was observed at elevated flow rates due
to the increased momentum of flow. At peak systole, higher velocity was observed,
and flow separation was occurring at the upper portion of the CCA due to

Figure 5.
Velocity streamline plot for case (a): Normal carotid artery model under NBP & HBP during (i) peak systole,
(ii) early systole (iii) late diastole.
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bifurcation and due to sudden increase in diameter at carotid sinus. The velocity
magnitude was inversely proportional to the variation in blood pressure. This was
due to higher peripheral resistance due to blood pressure, which also leads to an
increase in arterial deformation. The velocity is higher in the ECA as compared to
the ICA due to the geometry, where the centerline of is almost in line with the CCA.
In case (b) of stenosed carotid artery model, the flow is almost similar at peak
systole, except minor flow recirculation areas at the carotid sinus and post stenotic
region in in ECA which gets magnified with the increase in the blood pressure as
shown in the Figure 6. However, at early diastole and late diastole, the flow turns
chaotic post stenosis and at the carotid sinus. The stenosis further induces abrupt
flow disturbance creating complex vortex formation in the downstream of the
narrowed ECA.

The vortex induced in the downstream is highly complex and extends till the
distal end of the ECA and more prominent in the later part of the cardiac cycle. The
magnitude of the velocity is reduced with an increase in blood pressure at peak
systole and it tends to increase at late diastole at ICA. The flow recirculation region

Figure 6.
Velocity streamline plot for case (b): Stenosed carotid artery model under NBP & HBP during (i) peak systole,
(ii) early systole (iii) late diastole.
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is increased with higher blood pressure at late diastole. Under the altered gravity,
the hemodynamic characteristics in both cases (a) and (b) will be similar to that as
observed during sleeping posture. However, the flow will be less intense during
standing posture in contrast to sleeping condition. The flow changes observed
during sleeping and standing in case-(a) and (b) is plotted in the Figure 7. With the
change of posture from sleeping to standing, the velocity changes abruptly in both
these cases as shown in the Figure 7 with similar pattern. In case (a), the velocity in
standing position decreases 25 to 30% with mild variation in flow separation. How-
ever, in case (b), the variation in magnitude of flow velocity shows the elevated
velocities as compared to case (a). The percentage variation of flow velocity during
the change of posture from sleeping to standing indicates a drop in 30–35%, as
observed in the Figure 7.

Wall Shear Stress:Wall shear stress is a significant parameter as it is related to
degeneration of the arterial wall. Figure 8 shows the WSS contours at peak systole,
early and late diastole phase of the cardiac cycle in case (a) normal carotid artery.
MaximumWSS is observed at NBP and varies inversely with blood pressure and the
lowest WSS magnitude is observed at HBP. In both NBP and HBP cases, the WSS is
concentrated at the bifurcation point towards the inner wall at the stagnation point
due to high velocity gradient. The low WSS at the outer wall of the ICA at the
bifurcation decreases with the increase in blood pressure. At peak systole the flow
separation occurs at the base of the bifurcation near the carotid sinus leading to
lower WSS and leading along the outer wall of the ICA at late diastole.

Significantly lower WSS is observed at late diastole where the flow recirculation
is maximum. The decrease in WSS is due to reduced flow velocity and enlargement
of the arterial wall due to increased blood pressure. Figure 8 shows the WSS
contours for NBP and HBP at different phases of the cardiac cycle in case (b) of
stenosed carotid artery model. Maximum WSS magnitude at peak systole for NBP,
HBP are 10.147 Pa, 10.176 Pa respectively. The WSS tends to concentrate mainly
near the stenosis region at the bifurcation and at the inner wall of the ICA.

At peak systole, the WSS is concentrated mainly at the inner wall of the ICA at
the curved region, whereas the low WSS region is predominant immediately after
the stenosis for both BP cases. The intensity of low shear region increases at early
diastole and it spreads all over the inner wall of ECA at late diastole. The inner wall
of the ECA at the bifurcation zone have traces of low WSS (>2 Pa) which have
slightly reduced influence of progression of atherosclerosis [19]. In addition, at this
instant WSS increases pre stenosis at the neck of the stenosis. Low WSS is also
observed at the carotid sinus and post stenosis regions in the ECA due to flow
recirculation caused by sudden increase in diameter. This low WSS (>0.4 Pa)

Figure 7.
Comparison of velocity during of change of posture from sleeping to standing in case (a) and case (b) in NBP
condition.

51

Fluid Structure Interaction Study of Stenosed Carotid Artery Considering the Effects of Blood…
DOI: http://dx.doi.org/10.5772/intechopen.93908



encourage the progression of atherosclerosis. The low WSS region is at the neck of
the bifurcation below the carotid sinus where there is maximum flow recirculation.
The low WSS at higher BP will certainly trigger atherosclerosis progression and
endothelial cell disorientation [22] (Figure 9).

Even though theWSS pattern across the carotid models in both cases (a) and (b)
will be similar to that of sleeping condition, however, during the change of posture
from sleeping to standing, due to less flow, the maximum variation in WSS is
observed during peak systole as compared to rest of the pulse cycle. WSS changes
observed in both these cases (a) and (b) are compared in the Figure 10 through the
entire pulse cycle. The change of posture from sleeping to standing drops the WSS

Figure 8.
WSS contour plot for case (a): Normal carotid artery model under NBP & HBP during (i) peak systole, (ii)
early systole (iii) late diastole.
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Figure 9.
WSS contour plot for case (b): Stenosed carotid artery model under NBP & HBP during (i) peak systole, (ii)
early systole (iii) late diastole.

Figure 10.
Comparison of WSS during of change of posture from sleeping to standing in case (a) and case (b) in NBP
condition.
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by 40–45%, as observed in case (a). The WSS is found to be less disturbed without
any major complexity due to normal flow behavior. In case (b), the WSS variation
as compared for case (a) substantially drop by 50% during the change of posture
from sleeping to standing. Significant WSS variation during the change of postures
will certainly trigger the damage to arterial wall and induce the plaque rupture [26].

Wall Deformation: Figure 11 shows the arterial wall deformation contours at
normal carotid artery of case (a) at different phases of the cardiac cycles. The
maximum deformation is at the bifurcation region, mainly at the base of the
branching of ICA and ECA due to reduced arterial stiffness because of the curva-
ture. Generally, maximum deformation is at the location where the pressure is
maximum, especially at the apex of the bifurcation. The curvature of the

Figure 11.
WSS contour plot for case (a): Normal carotid artery model under NBP & HBP during (i) peak systole, (ii)
early systole (iii) late diastole.

54

Finite Element Methods and Their Applications



bifurcation reduces the stiffness of the wall, and therefore have high wall deforma-
tion [27]. The outer wall of the ICA is also subjected to moderate deformations
along with the bifurcation region. Low WSS along with higher wall deformation is
one of the possible causes of atherosclerosis development. Maximum deformation
of 0.447 mm, 0.516 mm, is observed at peak systole for NBP, and HBP conditions
respectively.

The maximum arterial deformation occurs at peak systole as observed in the
stenosed carotid bifurcation of case (b) as shown in Figure 10 for both the NBP and
HBP conditions. The location of the maximum deformation is observed to be in the
bifurcation region. The plaque at the root of the ECA has higher stiffness resulting
in reduced elastic deformation. The reduced wall stiffness is localized around the
ECA resulted in reduced wall deformation across the stenosed location. Another
observation is post stenotic deformation in distal side of the ECA because of eccen-
tric stenosis with a lower profile due to increased stiffness of the plaque. The partial
restriction offered for the flow in the ECA diverts the flow through the ICA.
However, the increased pressure in the upstream of the narrowed region to com-
pensate the flow has increased the deformation distribution. Therefore, the

Figure 12.
WSS contour plot for case (b): Stenosed carotid artery model under NBP & HBP during (i) peak systole, (ii)
early systole (iii) late diastole.
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maximum deformation is during the peak systole at the entrance of the ICA in the
bifurcation region. The deformation profile is typical of normal carotid bifurcation
as observed in published literature [28]. There is no significant difference in arterial
deformation between the rheological models considered in the study (Figure 12).

The variation in wall deformation behavior throughout the pulse cycle during
change of postures from sleeping to standing in both the case-(a) and (b) is shown
in the Figure 13. There is no remarkable difference among sleeping and standing
postures in both these cases [29]. The change of position from sleeping to standing
notices a drop of less than 5% and 8% as observed for both case (a) and (b) [13, 30].
The obtained deformation pattern shows considerable change during different pos-
tures and agrees well with the clinical observation [31]. The high pressure in
upstream of stenosis causes the maximum wall deformation and the intense pres-
sure drop at the throat region will result in wall collapse.

4. Conclusion

In this study, the pulsatile flow of blood with different physiological pressure
conditions and altered gravity was studied. In normal carotid bifurcation case (a)
during both NBP and HBP cases, the curvature of the bifurcation has influenced in
reducing the stiffness of the wall resulting in higher wall deformation. The outer
wall of the ICA is also subjected to moderate deformations along with the bifurca-
tion region. TheWSS is found to be concentrated at the bifurcation and intense flow
separation at this zone resulting in lower WSS. However, in case (b), stenosis at the
root of the ECA has higher stiffness resulting in reduced elastic deformation. The
reduced wall stiffness is localized around the ECA resulted in reduced wall defor-
mation across the stenosed location. Another observation is post stenotic deforma-
tion in distal side of the ECA because of eccentric stenosis with a lower profile due
to increased stiffness of the plaque. The WSS tends to concentrate mainly near the
stenosis region at the bifurcation and at the inner wall of the ICA. The low WSS
region is predominant in post stenotic region for both NBP and HBP cases. In both
the cases (a) and (b), low WSS at different regions of carotid bifurcation shall
significantly influences the progression of atherosclerosis. Under the altered grav-
ity, case-1, demonstrated typical flow behavior as that of normal carotid bifurca-
tion, but minor variations are present due to tortuous bifurcation. It is clear from
the results that the wall deformation has dropped by less than 5% during standing
posture. However, velocity and WSS show a considerable drop of 25% and 45%

Figure 13.
Comparison of WSS during of change of posture from sleeping to standing in case (a) and case (b) in NBP
condition.
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respectively during standing. In case (b), the velocity and WSS drops by 30–35%
and 50% while the arterial wall deformation reduces by 8% in standing posture. The
moderately higher WSS at the level of maximum stenosis has slightly reduced the
arterial wall stiffness resulting in low risk factor of disease progression during
standing posture. It can be concluded that risk factors are quite low and the flow
behavior is also within the physiological limits, during the change of postures from
sleeping to standing. Further, the results of this study demonstrate the potential of
numerical simulation in understanding of the causes of atherosclerosis and pave the
way in developing innovative computational solutions to aid the early diagnosis of
atherosclerosis.
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CCA Common Carotid Artery
ICA Internal Carotid Artery
ECA External Carotid Artery
NBP Normal Blood Pressure
HBP High Blood Pressure
WSS Wall Shear Stress
FSI Fluid Structure Interaction
ρ Density
τ Stress tensor
υ Velocity vector
υb Grid velocity
P Pressure
bi Body force at time t
M Structural mass matrix
C Structural damping matrix
K Structural stiffness matrix
Fa Applied load vector
€U Acceleration component
_U Velocity
U Displacement vector
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Chapter 3

The Finite Element Method
Applied to the Magnetostatic and
Magnetodynamic Problems
Dang Quoc Vuong and Bui Minh Dinh

Abstract

Modelling of realistic electromagnetic problems is presented by partial
differential equations (FDEs) that link the magnetic and electric fields and their
sources. Thus, the direct application of the analytic method to realistic electromag-
netic problems is challenging, especially when modeling structures with complex
geometry and/or magnetic parts. In order to overcome this drawback, there are a lot
of numerical techniques available (e.g. the finite element method or the finite
difference method) for the resolution of these PDEs. Amongst these methods, the
finite element method has become the most common technique for magnetostatic
and magnetodynamic problems.

Keywords: finite element method, magnetostastics, magnetodynamics, Maxwell’s
equations, weak formulations

1. Introduction

Mathematical modeling of realistic problems in the framework of electromag-
netics leads to a set of partial derivates equations that have to be solved on a domain
with complex geometry associated with boundary conditions and initial conditions.
This complexity makes any analytical approach unpracticable. In the past (until
1960), people used experimentation (very expensive, sometimes destructive) or
analogic simulation (lack of generality) to solve these problems. Since 1970, the
growth of computer capabilities makes the numerical simulation a tool that is more
and more used by the people interested in solving these complex problems. When
using the computer, the continuous problem is represented with a finite number of
degrees of freedom (d.o.f.). The continuous problem is then replaced by a discrete
problem. There are a lot of numerical techniques available. We will see that the
most common ones can be derived from the same general principle of weighted
residuals.

A continuous formulation of a problem cannot generally be solved analytically
and some numerical methods have to be used in order to obtain quantitative infor-
mation about the solution. The unknown functions of a continuous problem belong
to continuous function spaces which are usually of infinite dimensions, that is,
those functions are usually described by an infinite number of parameters. The basis
of any numerical method is to discretize such a problem in order to obtain a similar
discrete problem, characterized by a finite number of unknowns which are called
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degrees of freedom. This discretization process consists of replacing the considered
continuous function spaces by some discrete function spaces, whose dimensions are
finite, and which are usually subspaces of them. Those spaces are also called
approximation spaces and their elements are called approximation functions.

The function spaces are defined in a particular studied domain. If this one is
discretized, that is, if it is defined as the union of geometric elements of simple
shapes, and if the discrete function spaces are built in such a way that their func-
tions are piecewise defined, then the approximation numerical method is called the
finite element method (FEM). It is this kind of method we are interested in. We can
thus see that the finite element method necessitates a double discretization: a
discretization of some function spaces and a discretization of the studied geometric
domain, which leads to a mesh.

Weak formulations are well adapted to the finite element method, which will
appear in the following. Such formulations make use of several kinds of Green
formulas.

2. Numerical technique

2.1 The Laplacian problem

The formalism used in the case of a Laplacian problem is sufficiently simple to
be very understandable without lack of generality. The description of a Laplacian
problem is presented now. Let us consider a bounded domain Ω and its boundary
Γ ¼ Γh ∪ Γe (Figure 1).

The Laplace equation has to be solved in Ω [1–3]:

Δu xð Þ ¼ ∂
2u
∂x2
þ ∂

2u
∂y2
þ ∂

2u
∂z2
¼ 0, (1)

where u is the unknown field defined at each point x (x, y, z) of the studied
domain. The associated boundary conditions are respectively Dirichlet and
Neumann conditions, that is

u xð Þ ¼ u xð Þ, x∈Γh, (2)

v xð Þ ¼ ∂u xð Þ
∂n
¼ v xð Þ, x∈Γe: (3)

Figure 1.
Studied domain Ω and its boundary Γ = Γh ∪Γe:
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This diffusion equation describes a wide range of physical phenomena. The next
table shows some of these phenomena.

Problems u on Γh on Γe

Thermostatics T (temperature) T fixed thermal flux fixed

Electrostatics V (voltage) V fixed (electrode) fixed flux of electrical
displacement

Perfect fluids ψ (flow function)
I (current function)

Magnetostatics Br (reduced potential) fixed magnetic flux
density

fixed tangential magnetic field

A natural way to discretize the problem is to impose the error on the equation
and on the boundary conditions weighted by a trial function w to be equal to zero,
that is

ð

Ω

Δu w dΩþ
ð

Γh

u� uð Þw dΓe þ
ð

Γe

v� vð Þw dΓh ¼ 0: (4)

Equations (1–3) are then meanly solved, the sense of the mean being the princi-
ple of the numerical method. In fact, the numerical method used (F.D.M, F.E.M or
B.E.M) are directly related to the chosen trial functions.

2.2 Green formulas

The following notations are used for integration of products of scalar or vector
fields over a volume Ω or on a surface Γ, where L2 and L2 are the spaces of square-
summable scalar and vector functions [2, 3]:

u, vð Þ ¼
ð

Ω
u xð Þv xð Þdx, u, v∈L2 Ωð Þ

u, vð Þ ¼
ð

Ω
u xð Þ � v xð Þdx, u, v∈L2 Ωð Þ,

⟨u, v⟩Γ ¼
ð

Γ
u xð Þ � v xð Þds, ⟨u,v⟩Γ ¼

ð

Γ
u xð Þ � v xð Þds,

A first relation of vectorial analysis

u ∙ gradvþ v ∙ div u ¼ div v uð Þ,

integrated in the domain Ω, after applying the divergence theorem, gives the
Green formula said of kind grad-div in Ω, that is

u, grad vð Þ þ div u, vð Þ ¼ < v,n � u> Γ, ∀u∈H1 Ωð Þ,∀v∈H1 Ωð Þ (5)

where H1 Ωð Þ and v∈H1 Ωð Þ are function spaces built for scalar and vector fields,
respectively.

Another relation of vectorial analysis

u:curl v� curl u � v ¼ div v� uð Þ (6)
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integrated in the domain Ω, after applying the divergence theorem, gives the
Green formula said of kind curl-curl in Ω, that is

u, curl vð Þ � curl u, vð Þ ¼ <u� n, v> Γ, : ∀u, v∈H1 Ωð Þ (7)

Note that the surface integral term appearing in this last formula can take the
following similar forms:

⟨u� n, v> Γ ¼ ⟨v� u,n⟩Γ ¼ �⟨v� n,u> Γ

It is possible to define a generalized Green formula by

Lu, vð Þ � u, L ∗ vð Þ ¼
ð

Γ
Q u, vð Þds, ∀u∈ dom Lð Þ and∀v∈ dom L ∗ð Þ, (8)

where L and L* are differential operators of order n which act respectively on
functions u and v defined in �Ω, with �Ω = Ω∪Γ; Q is a bi-linear function of u and v.
The operator L* is called the dual operator of L. It can easily be seen that formulas
(6) and (7) are particular cases of (8).

2.3 Weak formulations

Consider a partial differential problem of the form [4].

L u ¼ f in Ω, (9)

B u ¼ g on Γ ¼ ∂Ω, (10)

where L is a differential operator of order n, B is an operator which defines a
boundary condition, f and g are functions respectively defined in Ω and on its
boundary Γ, and u is an unknown function from a function space U and defined in
�Ω, that is, u ∈ U(�Ω). Note that f can eventually depend on u.

Problems (9 and 10) constitute what is called a classical formulation, or strong
formulation. A function u ∈ U(�Ω) which verifies this problem is called a classical
solution, or strong solution. Particularly, as L is of order n, the function u has to be
n–1 times continuously differentiable, that is, u ∈ Cn–1(Ω).

A weak formulation of problem (9) is defined as having the generalized form.

u, L ∗ vð Þ � f, vð Þ þ
ð

Γ
Qg vð Þds ¼ 0, ∀v∈V Ωð Þ (11)

where L* is the dual operator of L, defined by the generalized Green formula (8),
Qg is a linear form in v which depend on g, and the space V (Ω) is a space of test
functions which has to be defined according to the operator L* and particularly
according to the boundary condition (9 and 10). A function u which satisfies this
equation for any test function v ∈ V (Ω) is called a weak solution.

The generalized Green formula (8) can be applied to formulation (11) in order to
get L instead of L*, which usually consists of performing an integration by parts. It
is then possible to find again, thanks to a judicious choice of test functions, the
equations and relations of the classical formulation of the problem, that is, Eq. (9)
and boundary condition (11).

It is often easy to check that a classical solution is also a weak solution. Neverthe-
less, it is not always straightforward that a weak solution is also a classical solution
because it has to be regular enough in order to be defined at the classic sense.
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One mathematical advantage of weak formulations is that they usually enable to
prove the existence of a solution easier than classical formulations do. The solution
has then to be proved to be regular enough to be also a classical solution. Another
advantage of weak formulations is that they are well adapted to a discretization
using finite elements and then to a numerical solution, which is not the case with
classical formulations.

In some cases, it is possible to define a minimization problem similar to the weak
formulation (11).

2.4 A weak formulation for the magnetodynamic problem

In order to illustrate the notion of weak formulation, consider the
magnetodynamic problem, limited to the domain Ω, with boundary ∂Ω = Γ = Γh∪Γe
(Figure 2), whose equations and material relations are written in Euclidean space
3 [5, 6].

curl h ¼ js (12)

curl e ¼ �jω b (13)

div b ¼ 0 (14)

with behavior relations of materials.

b ¼ μh (15)

j ¼ σe, (16)

where j is called the imaginary unit, b is the magnetic induction (T), e is the
electric field (V/m), js is the current density (A/m2), h is the magnetic field (A/m), μ
is the relative permeability and σ is the electric conductivity (S/m). From the
Eq. (13), the field b can be obtained from a magnetic vector potential ai via the term:

b ¼ curl a: (17)

Combining (15 and 16) into (14), one has curl (eþ ∂taÞ ¼ 0, that leads to the
presentation of an electric scalar potential ν through e ¼ �∂ta� grad υ.

By starting from the Ampere’s law (12), the weak form of magnetic vector
potential is written as [4, 6].

Figure 2.
Studied domain Ω and its boundary.
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μ�1b, curl a0
� �

Ω � σe, a0ð ÞΩc
þ n� b, a0h iΓ ¼ js, a

0� �
Ωs
∀a0 ∈H0

e curl,Ωð Þ (18)

Combining the magnetic vector potential a and the electrical field e, one has

μ�1curl a, curl a0
� �

Ω þ σ∂ta,a0ð ÞΩc
þ σgrad υ, curl a0ð ÞΩc

þ n� h,a0h iΓh

¼ js,a
0� �
Ωs
,∀a0i ∈ F0

e curl,Ωið Þ, (19)

where H0
e curl,Ωð Þ is a function space defined on Ω containing the basis func-

tions for a as well as for the test function a0 (at the discrete level, this space is
defined by edge FEs; notations (�, �) and < �, � > are respectively a volume integral
in and a surface integral of the product of their vector field arguments.

2.5 A weak formulation for the magnetostatic problem

The magnetostatic problem is considered as a simplification of the
magnetodynamic formulation where all time dependent phenomena are neglected.
In a same way, by starting from the Ampere’s law (12), this initial form of the
problem is its classical formulation.

Consider the Green formula of type grad-div in Ω (5) applied to the field b and
to a scalar field ϕ’ to be defined, that is [6–8]

b, grad ϕ0ð Þ þ div b,ϕ0ð Þ ¼ ⟨n ∙ b,ϕ0 > Γ, ∀ϕ0 ∈Φ Ωð Þ: (20)

If the space Φ(Ω) is defined such as

Φ Ωð Þ ¼ ϕ∈H1 Ωð Þ;ϕ∣Γh ¼ 0f g, (21)

then the last term of Eq. (20) is reduced to < n.b, ϕ’ > Γe and is equal to zero if
condition (15) is taken into account. Moreover, the second term of this equation is
equal to zero because of Eq. (16). Eq. (20) can then be reduced to.

b, grad ϕ’ð Þ ¼ 0, ∀ϕ’∈Φ Ωð Þ: (22)

This last form is called a weak formulation of the problem. It has been
established starting from a Green formula but it can be considered now as an a
priori posed form whose enclosed information can be deduced.

In fact, weak formulation (22) contains both Eq. (12) and boundary condition
(15). Indeed, by applying the Green formula of type grad-div to it, we get.

div b,ϕ’ð Þ ¼ ⟨n ∙ b,ϕ0 > Γ,∀ϕ’∈Φ Ωð Þ: (23)

This equation is verified for any test function ϕ’ ∈ Φ(Ω) and thus, particularly,
for any function ϕ’ whose value is equal to zero on Γ, that is, ϕ’ ∈ Φ0 (Ω) because
Φ0(Ω) ⊂ Φ(Ω). Therefore, it comes that (div b, ϕ’) = 0 for any function ϕ’ of this
kind and, consequently, that div b = 0 in Ω, that is, Eq. (12) is satisfied. Then,
Eq. (23) is reduced to ⟨n ∙ b,ϕ0 > Γ = 0, and by considering now all the functions ϕ’ ∈
Φ(Ω) without any restriction, that is, which can vary freely on Γe, it comes that
n ∙ bjΓe

= 0, that is, that condition (13) is satisfied.
It is possible to obtain more information from the weak formulation,

particularly as far as the transmission conditions on surfaces inside Ω are
concerned. Consider for that two subdomains Ω1 and Ω2 of Ω separated by an
interface Σ (Figure 3) [7].
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Let us apply the Green formula of type grad-div (5) to the fields b and ϕ’
successively in both subdomains Ω1 and Ω2. By taking into account that div b = 0 in
Ω, and thus particularly in Ω1 and Ω2, then by summing the obtained relations, we
get the relation [6, 7].

b, grad ϕ’ð ÞΩ1 ≈Ω2 ¼ <n: b1–b2ð Þ,ϕ’>Σþ <n:b,ϕ’> ðΩ1 ≈Ω2Þ,∀ϕ’∈Φ Ωð Þ,
(24)

where b1 and b2 represent the field b on both sides of Σ in the respective domains
Ω1 and Ω2. Considering the test functions ϕ’ whose support is Ω1∪Ω2 and which are
equal to zero on _(Ω1∪Ω2), it remains from (24) the well known transmission
condition n.(b1–b2)∣Σ = 0. Note that the first term of (24) vanishes thanks to
Eq. (22) indeed, the domain of integration Ω1 ∪ Ω2 can be extended to Ω thanks to
the chosen test functions.

The way to establish a weak formulation of Eq. (13) has been described and the
richness of the information enclosed in such a formulation has been shown up.
Using a similar procedure, a weak formulation associated with Eq. (12) can be
established, but we will proceed differently in order to keep some classical
equations.

If the field h is decomposed into a given source component hs, such as curl hs = j,
and a reaction component hr, then curl hr = 0 and hr is therefore of the form
hr = � grad ϕ (if Ω is simply connected). This consists of satisfying Eq. (15)
classically. Taking into account the behavior law (15), we can write
b = μ (hs � grad ϕ) and put this last expression in (24) to obtain.

μ hs � grad ϕð Þ, grad ϕ’ð Þ ¼ 0, ∀ϕ’∈Φ Ωð Þ: (25)

This formulation contains the whole problem (12 and 13). The potential ϕ is the
unknown and all the other fields can be deduced from ϕ thanks to the equations
which have been kept on a classical form. It appears that the potential ϕ belongs to
the same space of the test functions or at least to a space Φr (Ω) which is parallel to
it, that is, where the boundary condition relative to ϕ on Γh is not necessarily
homogeneous, that is, ϕ∣Γh = constant. Note that this boundary condition on Γh is
implicitly taken into account in the space Φ(Ω).

Weak formulation (25) can be considered as a system of an infinite number of
equations with an infinite number of unknowns. It will be seen in the following
how such a problem can be approximated to lead to a numerical solution. This
approximation will constitute the phase of discretization.

A similar minimization problem
It is possible to define a minimization problem associated with (25). For that,

let us define the functional [2, 3].

Figure 3.
Interface Σ between two subdomains Ω1 and Ω2.
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W ϕð Þ ¼ μ hs� grad ϕð Þ, hs � grad ϕð Þ, (26)

and let us pose the following minimization problem:

find ϕ∈Φr Ωð Þ such as W ϕð Þ≤W ϕ’ð Þ,∀ϕ’∈Φr Ωð Þ: (27)

The physical materials are considered having linear magnetic behavior, but the
following can be generalized easily for nonlinear materials.

By stationarizing functional (25) in relation to ϕ, it can be verified that (25) is
obtained. It can also be verified that the solution ϕ of (25) minimizes this functional.
Indeed, let us suppose that ϕ ∈ Φr(Ω) is solution of (25) and let us consider any
function ψ ∈ Φr(Ω); then let us pose η = ψ � ϕ, which implies η ∈ Φ(Ω); we have

W ψð Þ ¼W ϕþ ηð Þ ¼ μ hs � grad ϕþ ηð Þð Þ,hs � grad ϕþ ηð Þð Þ:

and thus.

W ψð Þ ¼W ϕð Þ þ μ grad η, grad ηð Þ þ μ hs � grad ϕð Þ,�grad ηð Þ:

As the second term of this sum is positive or equal to zero and the third term is
equal to zero, because of (25), it comes that W(ψ) and W(ϕ).

Formulations (25) and (27) are then similar. Note that W(ϕ) is the magnetic
coenergy and that the problem actually consists of minimizing this coenergy.

If the continuous function spaces are replaced by discrete spaces, and if the
considered test functions are limited to these spaces, then the information inside a
weak formulation will only be satisfied approximately, or weakly.

The basis of the discretization of weak formulations can be illustrated for the
above magnetostatic problem, whose weak formulation is (25), that is

μ hs � grad ϕð Þ, grad ϕ’ð Þ ¼ 0, ∀ϕ’∈Φ Ωð Þ, (28)

with ϕ ∈ Φ(Ω). The space Φ(Ω) has to be replaced by a discrete space Φh(Ω)
which is a subset of it, that is, Φh(Ω) ⊂ Φ(Ω). This space has a finite dimension,
denoted N, and can then be defined by N linearly independent base functions. The
principle is then to look for the function ϕ in Φh (Ω), which consists of determining
N unknown parameters. This function will be only an approximation of the exact
solution ϕ ∈ Φ (Ω). The more the functions of Φh (Ω) approximate well those of
Φ (Ω), the higher the quality of the approximation is. Each test function ϕ’ will lead
to an equation of the form (28) and, as the number of equations and unknowns has
to be the same, N linearly independent test functions have to be chosen. This choice
can be made on the base functions of Φh (Ω) and the method is called the Galerkine
method. Such base functions are defined thanks to finite elements.

3. Finite elements

3.1 Definition of a finite element

A finite element is defined by the three element set (K, PK, ΣK) where [2, 6, 7]:

• K is a domain of space called a geometric element (usually of simple shape,
that is, a tetrahedron, a hexahedron or a prism);

• PK is a function space of dimension nK, defined in K with base functions;
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• ΣK is a set of nK degrees of freedom represented by nK linear functionals ϕi,
1 ≤ i ≤ nK, defined in space PK;

moreover, any function u ∈ PK must be defined uniquely by the degrees of
freedom of ΣK, which defines the unisolvance of the finite element (K, PK, ΣK).

The role of a finite element is to interpolate a field in a function space of finite
dimension. Several finite elements can be defined on the same geometric element
and then, under certain conditions, can form mixed finite elements. Figure 4 shows
the various spaces which occur in the definition of a finite element; the definition of
the subspace of points κ ⊂ K is actually associated with the definition of the
functionals.

For the most commonly used finite elements, the degrees of freedom are associ-
ated with nodes of K and the functionals ϕi are reduced to functions of the coordi-
nates in K; these elements are called nodal finite elements. Nevertheless, the above
definition is more general thanks to the freedom let in the choice of the functionals.
It will be shown that these can be, in addition to nodal values, integrals along
segments, on surfaces or in volumes; the subspace of points κ ⊂ K (Figure 4) is then
respectively a point, a segment, a surface or a volume.

3.2 Unisolvant finite element

The finite element (K, PK, ΣK) is unisolvant if [6].

∀p∈PK,ϕi pð Þ ¼ 0; ∀ϕi∈ΣK) p � 0:

In this case, for any function u regular enough, one can define a unique inter-
polation uK, called PK-interpolant, such as.

ϕi u� uKð Þ ¼ 0, ∀ϕi∈ΣK;uK ∈PK: (29)

The set ΣK is said PK - unisolvant.
Proof:
Each function p ∈ PK can be written as a linear combination of functions of a

base of PK, denoted {pi, 1 ≤ i ≤ nK}, that is

p ¼
XnK

i¼1
aipi,

where the pi, 1 ≤ i ≤ nK, are called base functions.

Figure 4.
Spaces associated with a finite element (K, PK, ΣK) [6].
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As the functionals ϕj, 1 ≤ j ≤ nK, are linear, we have

ϕj pð Þ ¼
XnK
i¼1

aiϕj pi

� �
, 1≤ j≤nK:

And, as ϕj(p) = 0, 1 ≤ j ≤ nK, leads to p � 0, the determinant of the matrix Φ
(Φji = ϕj(pj), 1 ≤ i, j ≤ nK) is not equal to zero; indeed the solution of the
corresponding system must be identically equal to zero (i.e., ai = 0, 1 ≤ i ≤ nK).
Consequently, the system

ϕj uð Þ ¼ ϕj uKð Þ⇔ϕj uð Þ ¼
XnK
i¼1

aiϕj pi

� �
, 1≤ j≤nK:

has a unique solution (aj, 1 ≤ i ≤ nK).

3.3 Degrees of freedom

The interpolation of a function u, in the space PK and in K, is given by the
expression [4]

uK ¼
XnK
i¼1

aipi, uK ∈PK,

where the nK coefficients aj associated with the base functions pj ∈ PK can be
determined thanks to relations (26), that is, thanks to the solution of the linear
system.

ϕj uð Þ ¼
XnK

i¼1
aiϕj pi

� �
, 1≤ j≤nK,

provided that the function u is sufficiently regular for the ϕj(u), 1 ≤ j ≤ nK,
to exist.

This solution is simplified to the maximum if we define the functionals so that

ϕj pj

� �
¼ δij, 1≤ i, j≤nK (30)

where δi,j is the Kronecker symbol, that is

δij ¼
1 si i ¼ j

0 si i 6¼ j

(

The matrix of the system is then the unit matrix and the solution is

aj ¼ ϕj uð Þ, 1≤ j≤nK

In this case, the interpolation uK ∈ PK is expressed by

uK ¼
XnK
j¼1

ϕj uð Þpj, (31)

where the coefficients ϕj(u) = ϕj(uK), 1 ≤ j ≤ nK, are called degrees of freedom.

72

Finite Element Methods and Their Applications



3.4 Finite element spaces

A finite element space Xh can be built on a set of geometric elements and
associated finite elements. Its definition depends on the mesh Mh of the domain Ω
as well as the knowledge of the finite element (K, PK, ΣK) associated with each
domain K ∈ Mh [6]

Given a function u defined in Ω, regular enough, its interpolant uh ∈ Xh is
uniquely defined such as [6]:

• The restriction uhjK, that is, the form of uh in the geometric element K, belongs
to the space PK;

• The restriction Finite element spaces

A finite element space Xh can be built on a set of geometric elements and
associated finite elements. Its definition depends on the mesh Mh of the domain Ω
as well as the knowledge of the finite element (K, PK, ΣK) associated with each
domain K∈ Mh

Given a function u defined in Ω, regular enough, its interpolant uh ∈ Xh is
uniquely defined such as [6]:

• The restriction uhjK, that is, the form of uh in the geometric element K, belongs
to the space PK;

• The restriction uhjK is entirely determined by the knowledge of the set of
values ΣK(u) of the degrees of freedom of the function u - this is a consequence
of the unisolvance;

Some continuous conditions have to be ensured across the interfaces between
geometric elements, which is the property of conformity.

A mesh Mh of the studied domain Ω is defined as a collection of geometric
elements which have in common either a facet, or an edge, or a node, or nothing
(Figure 5). The elements cannot overlap each other.

The finite element space Xh has a finite dimension, denoted Dh. It can be charac-
terized by a set of degrees of freedom Σh linked up to the sets ΣK,∀K∈ Mh, that is

Σh ¼ ϕh,j, 1≤ j≤Dh

n o
:

Figure 5.
Mesh of a part of a two-dimensional domain Ω.
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It is also possible to define the base functions ph,j, 1 ≤ i ≤ Dh, of the space Xh
from the base functions of the spaces PK, ∀ K∈ Mh. Those have to verify the
relations

ϕj pj

� �
¼ δij, 1≤ i, j≤nK (32)

similar to relations (32). They are actually piecewise defined and their supports
are as “small” as possible, that is, are constituted by a limited number of geometric
elements.

Then, with any function u regular enough so that the degrees of freedom ϕh,j(u),
1 ≤ j ≤ Dh, are well defined, it can be associated a function uh, called
Xh-interpolant, defined by

uh ¼
XDh

j¼1
ϕh,j uð Þph,j (33)

4. Construction of a sequence of finite element spaces

4.1 Geometric elements

A mesh of a domain is considered which is built with a collection of geometric
elements which can be tetrahedra (4 nodes), hexahedra (8 nodes) and prisms
(6 nodes) (Figure 6) [4, 6, 9].

These elements are called volumes and their vertices represent nodes. The sets of
nodes, edges, facets and volumes of this mesh are denoted by N, E, F and V,
respectively. Their sizes are #N, #E, #F and #V.

The i-th node of the mesh is denoted by ni or {i}. The edges and facets can be
defined with ordered sets of nodes. An edge is denoted by eij or {i, j}, a triangular
facet by fijk or {i, j, k}, and a quadrangular facet by fijkl or {i, j, k, l}. These
geometric entities are shown in Figure 7.

Figure 6.
Collection of different geometric elements [6].
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4.2 Base functions of spaces Si

Consider the function pi(x) of coordinates of point x and relative to node ni,
which is equal to 1 at this node, varies continuously in geometric elements having
this node in common, and becomes equal to 0 in other elements without discontinu-
ity (Figure 6). This function is nothing else than the base function, relative to node
ni, of the function space of nodal finite elements built on the considered geometric
elements. The function subspaces associated with each of the finite elements have
respective dimensions 4, 8 or 6, for tetrahedra, hexahedra and prisms [4, 6, 9].

With node ni = {i}, is associated the function

sni xð Þ ¼ pi xð Þ: (34)

The finite dimensional space generated by all sni’s is denoted by S0.
With edge eij = {i, j}, is associated the vector field

seij ¼ pjgrad
X

r∈NF,j�i

pr � pi grad
X

r∈NF,i�j

pr, (35)

where NF,m�n is the set of nodes which belong to the facet of the geometrical
element including evaluation point x, and including node m but not node n; such a
facet is uniquely defined for three-edge-per-node elements. Its determination is
shown in Figure 8, where either a triangular or a quadrangular facet is involved,
and where shown edges belong to the geometric element including point x. Direc-
tions of dotted edges can be modified in order to schematize either a tetrahedron, a
hexahedron or a prism. The defined set of nodes comes into view as being either
{{m}, {o}, {p}} or {{m}, {o}, {p}, {q}}, respectively. The set NF,m�n depends on point
x, thus on elements. Particularly, it is empty (no node) in elements which have not

Figure 7.
Geometric entities: Node, edge and facets (i, j, k, l ∈ N) [6].

Figure 8.
Determination of the facet associated with NF,m�n [6].
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edge {m, n} in common. Consequently, field seij is zero in all the elements non
adjacent to edge eij.

The vector field space generated by all se is denoted by S1.
With facet f = fijk = {i, j, k} = {q1, q2, q3} or f = fijkl = {i, j, k, l} = {q1, q2, q3, q4}, is

associated the vector field

sf ¼ af
X#Nf

c¼1
pqc

grad
X

r∈NF,qc qcþ1
pr

0
@

1
A� grad

X
r∈NF,qc qc�1

pr

0
@

1
A (36)

where #Nf is the number of nodes of facet f, af = 2 if #Nf = 3, af = 1 if #Nf = 4,
and the list of qi’s is made circular by setting q0 � q#Nf and q#Nf + 1 � q1. Field sf is
zero in all the elements non adjacent to facet f.

Vector fields sfijk(l)'s generate the space S
2.

With volume v, is associated the function sv, equal to 1/vol(v) on v and 0
elsewhere. The space S3 is generated by these functions.

Some developments give the following results: sni is equal to 1 at node ni, and to
0 at other nodes; the circulation of seij is equal to 1 along edge eij, and to 0 along
other edges; the flux of sfijk(l) is equal to 1 across facet sfijk(l), and to 0 across other
facets; and the volume integration of sv is equal to 1 over volume v, and to 0 over
other volumes; that is

si xj
� �
¼ δij, ∀i, j∈N (37)

ð

j
si � dl ¼ δij, ∀i, j∈E (38)

ð

j
si � nds ¼ δij, ∀i, j∈F (39)

ð

j
sidv ¼ δij, ∀i, j∈V (40)

where δij = 1 if i = j and δij = 0 if i 6¼ j.
These properties show up various kinds of functionals and involve that functions

sn, se, sf, sv form bases for the spaces they generate. They are then called nodal,
edge, facet and volume base functions. The associated finite elements are called
nodal, edge, facet and volume finite elements.

4.3 Geometric interpretation of edge and facet functions

A geometric interpretation of edge and facet functions may be helpful to verify
some of their properties. The vector field [4, 6, 9]

gradPF,mn ¼ grad
X

r∈NF,mn

pr, (41)

involved in both expressions (31) and (32), should be analyzed at first.
The continuous scalar field,

PF,m�n ¼
X

r∈NF,m�n

pr, (42)

has the characteristic of being equal to 1 at every point on the facet associated
with NF,m�n. This is a property of the nodal base functions. Therefore, vector field
(42) is orthogonal to this facet at every point on it (Figure 9).
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The vector field which is the product of pm and (35),

pm grad
X

r∈NF,m�n

pr, (43)

is considered now. This field is said to be associated with edge {m, n}.
As far as the function pm is concerned, it is equal to 0 on all the edges of the
geometric element including point x, except those which are incident to node {m}.
Therefore, the circulation of (43) is equal to 0 along all the edges except emn;
field (43) is either simply equal to zero on them, or orthogonal to them (Figure 9).
The combination of two fields of form (43) associated with edges {j, i} and {i, j}, as
in (35), leads to a vector field which has the same properties as (43) (Figure 9), and

Figure 9.
Geometric interpretation of the edge function se (35) [6].

Figure 10.
Vector field a � b involved in sf (33) [6].

77

The Finite Element Method Applied to the Magnetostatic and Magnetodynamic Problems
DOI: http://dx.doi.org/10.5772/intechopen.93696



has consequently the announced properties of seij. The fact that its circulation along
edge eij is equal to 1 needs some calculation to be proved.

The vector field

pqc
gradPF,qc�qcþ1 � gradPF,qc�qc�1 (44)

which appears in expression (35) of sf, is considered now. Both gradients in (44)
are shown in Figure 10. Each one is orthogonal to its associated facet and, therefore,
their cross product (i.e., a � b in Figure 10) is parallel to both these facets.

The flux of this cross product, and in consequence the one of (44), is then equal
to 0 across these facets. The term pqc in (44) enables the flux of (44) to be equal to
zero across all other facets except facet f. The summation in (44) keeps the same
property. The flux of sf across facet f is then the only one to differ from zero
(Figure 11).

4.4 Degrees of freedom

The expression of a field in the base of a space Si –S0 or S3 for a scalar field, S1 or
S2 for a vector field– gives scalar coefficients, called degrees of freedom. Fields ϕ ∈
S0, h ∈ S1, j ∈ S2 and ρ ∈ S3 can be expressed as [4, 6, 9]

Φ ¼
X
n∈N

ϕnsn,ϕ∈ S0,ϕn ¼ ϕ xnð Þ, n∈N, (45)

h ¼
X
e∈E

hese,h∈ S1, he ¼
ð

e
h � dl, e∈E (46)

j ¼
X
f ∈F

j f sf , j∈ S2, jf ¼
ð

f
j � nds, f ∈F (47)

σ ¼
X
v∈V

σvsv, ρ∈ S3, σv ¼
ð

v
σdv, v∈V (48)

The degrees of freedom ϕn, he, jf and ρv are thus, respectively, values at nodes,
circulations along edges, fluxes across facets or volume integrals, of the associated
fields. This is a consequence of the base functions. The associated linear functionals,

Figure 11.
Geometric interpretation of the facet function sf (36) [6].
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as mentioned in the definition of finite elements, are thus respectively pointwise
evaluations, line, surface and volume integrals.

4.5 Continuity of base functions across facets

It can be proved that the function sn is continuous across facets. The same holds
true for the tangential component of se and for the normal component of sf. As for
function sv, it is discontinuous. This property, called conformity, allows to take
exactly into account interface conditions for fields used in the modeling of physical
problems. For example, in electromagnetic problems, vector fields of S1 can repre-
sent vector fields like magnetic field h or electric field e whose tangential compo-
nents are continuous across interfaces between materials, and those of S2 can
represent fields like induction field b or current density field j whose normal
components are continuous across interfaces between these materials.

4.6 Spaces Si form a sequence

The notion of incidence is first defined [4, 6, 9]:
The incidence of node n in edge e, denoted by i (n, e), is equal to 1 if n is the

extremity of e, �1 if n is the origin of e, and 0 if n does not belong to e.
Next, the incidence of edge e in facet f is denoted by i(e, f). If e belongs to f, and

if the ordered set of nodes of e appears as a direct subset in the circular set of nodes
of f, then it is equal to 1. It is equal to �1 in the case of an inverse subset. If e does
not belong to f, it is equal to 0.

Finally, the incidence of facet f in volume v is denoted by i(f, v). If f belongs to
v, and if the normal to f, whose direction is given by the ordered set of nodes of f
(right-hand rule), is outer to v, then it is equal to 1. It is equal to �1 in the case of an
inner normal. If f does not belong to v, it is equal to 0.

Thanks to this notion, the following equalities can be proved,

X
e∈E

i n, eð Þse ¼ gradsn (49)

X
f ∈F

i e, fð Þsf ¼ curl se, (50)

X
v∈V

i f, vð Þsv ¼ div sf : (51)

The following inclusions are then verified,

grad S0
� �

⊂ S1, curl S1
� �

⊂ S2, div S2
� �

⊂ S3: (52)

Therefore, the spaces Si, i = 0 to 3, form a sequence, that can be schematized by
the diagram in Figure 12.

These spaces can then constitute approximation spaces for some continuous
spaces Fi, i = 0 to 3, which contain scalar and vector fields associated with electro-
magnetic fields. The associated finite elements can then be called mixed elements.

Figure 12.
The sequence of spaces Si.
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All the established properties of base functions are valid for any collection of
considered geometric elements, that is, for any mixing of tetrahedra, hexahedra
and prisms.

5. Practical information about finite elements

5.1 Isoparametric elements

An isoparametric element is a finite element whose nodal base functions,
which enable the interpolation of scalar fields, are also used to parametrize the
associated geometric element. The base functions are usually piecewise defined, in
each of the geometric elements which cover the studied domain, and some conti-
nuity conditions have to be satisfied at the interfaces between elements. Then, there
will be no discontinuity of the interpolated scalar fields, nor of the coordinates after
transformation from the reference elements towards the real ones. Such base func-
tions are said to be conformal.

Consider a nodal finite element (K, PK, ΣK). If NK is the set of nodes of K,
whose coordinates are xi, i ∈ N, and if the pi(u), i ∈ NK, are its base functions
expressed in the coordinates u of the reference element Kr associated with K, then
the parametrization of K (i.e., x = x(u)) is given by [6]

x ¼
X
i∈NK

xipi uð Þ (53)

where x∈K, u∈Kr; this element is isoparametric.

5.2 Reference elements

We define here the reference elements which are associated with the considered
geometric elements, that is, with tetrahedra, hexahedra and prisms. Nodal, edge,
facet and volume finite elements are defined in these geometric elements.

5.2.1 Reference tetrahedron of type I

The reference tetrahedron of type I is an element with 4 nodes whose coordi-
nates are given in Figure 13. The associated geometric entities, as well as their
notation, are shown in Figure 13. The nodal and edge base functions of this element
are given in Tables 1 and 2. Table 3 shows the notation of facets. The incidence
matrices are given by (53), (54) and (55) (Figure 14).

Figure 13.
Reference tetrahedron of type I [6].
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Edge-node incidence matrix

ð54Þ

Node
i∈N

Nodal base function
pi (u, v, w) = si (u, v, w)

1 1 � u � v � w

2 u

3 v

4 w

Table 1.
Nodal base functions of the tetrahedron of type I.

Edge e = {i, j} se(u), u = (u, v, w)

e∈E i∈N j∈N se,u se,v se,w

1 1 2 1 � v –w u u

2 1 3 v 1 � u –w v

3 1 4 w w 1 � u –v

4 2 3 – v u 0

5 2 4 – w 0 u

6 3 4 0 – w v

Table 2.
Notation of the edges of the tetrahedron of type I and associated edge base functions (se).

Facet f = {i, j, k}

f∈F i∈N j∈N k∈N

1 1 2 4

2 1 3 2

3 1 4 3

4 2 3 4

Table 3.
Notation of the facets of the tetrahedron of type I.

81

The Finite Element Method Applied to the Magnetostatic and Magnetodynamic Problems
DOI: http://dx.doi.org/10.5772/intechopen.93696



Facet-edge incidence matrix

ð55Þ

Volume-facet incidence matrix

ð56Þ

Figure 14.
Geometric entities defined on a tetrahedron of type I [6].

Figure 15.
Reference hexahedron of type I [6].
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5.2.2 Reference hexahedron of type I

The reference hexahedron of type I is an element with 8 nodes whose coordi-
nates are given in Figure 15. The associated geometric entities, as well as their
notation, are shown in Figure 16. The nodal and edge base functions of this element
are given in Tables 4 and 5. Table 6 shows the notation of facets. The incidence
matrices are given by (56), (57) and (58).

Figure 16.
Geometric entities defined on a hexahedron of type I [4].

Node
i∈N

Nodal base function
pi (u, v, w) = si (u, v, w)

1 (1 � u) (1 � v) (1 � w) / 8

2 (1 + u) (1 � v) (1 � w) / 8

3 (1 + u) (1 + v) (1 � w) / 8

4 (1 � u) (1 + v) (1 � w) / 8

5 (1 � u) (1 � v) (1 + w) / 8

6 (1 + u) (1 � v) (1 + w) / 8

7 (1 + u) (1 + v) (1 + w) / 8

8 (1 � u) (1 + v) (1 + w) / 8

Table 4.
Nodal base functions of the hexahedron of type I.
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Edge-node incidence matrix

ð57Þ

Edge e = {i, j} se(u), u = (u, v, w)

e∈E i∈N j∈N se,u se,v se,w

1 1 2 (1 � v) (1 � w) / 8 0 0

2 1 4 0 (1 � u) (1 � w) / 8 0

3 1 5 0 0 (1 � u) (1 � v) / 8

4 2 3 0 (1 + u) (1 � w) / 8 0

5 2 6 0 0 (1 + u) (1 � v) / 8

6 3 4 –(1 + v) (1 � w) / 8 0 0

7 3 7 0 0 (1 + u) (1 + v) / 8

8 4 8 0 0 (1 � u) (1 + v) / 8

9 5 6 (1 � v) (1 + w) / 8 0 0

10 5 8 0 (1 � u) (1 + w) / 8 0

11 6 7 0 (1 + u) (1 + w) / 8 0

12 7 8 –(1 + v) (1 + w) / 8 0 0

Table 5.
Notation of the edges of the hexahedron of type I and associated edge base functions (se).

Facet f = {i, j, k, l}

f∈F i∈N j∈N k∈N l∈N

1 1 2 6 5

2 1 4 3 2

3 1 5 8 4

4 2 3 7 6

5 3 4 8 7

6 5 6 7 8

Table 6.
Notation of the facets of the hexahedron of type I.
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Facet-edge incidence matrix

ð58Þ

Volume-facet incidence matrix

ð59Þ

5.2.3 Reference prism of type I

The reference prism of type I is an element with 6 nodes whose coordinates are
given in Figure 17. The associated geometric entities, as well as their notation, are
shown in Figure 18. The nodal and edge base functions of this element are given in
Tables 7 and 8. Table 9 shows the notation of facets. The incidence matrices are
given by (59), (60) and (61).

Figure 17.
Reference prism of type I [6].
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Edge-node incidence matrix

ð60Þ

Figure 18.
Geometric entities defined on a prism of type I [6].

Node
i∈N

Nodal base function
pi (u, v, w) = si (u, v, w)

1 (1 � u � v) (1 � w) / 2

2 u (1 � w) / 2

3 v (1 � w) / 2

4 (1 � u � v) (1 + w) / 2

5 u (1 + w) / 2

6 v (1 + w) / 2

Table 7.
Nodal base functions of the prism of type I.
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Facet-edge incidence matrix

ð61Þ

Volume-facet incidence matrix

ð62Þ

6. Applications

The practical test problem is a 3-D model based on the benchmark problem 19 of
the TEAM workshop including a stranded inductor (coil) and an aluminum plate
(Figure 19) [10].

Facette f = {i, j, k (, l)}

f∈F i∈N j∈N k∈N l∈N

1 1 2 5 4

2 1 3 2 —

3 1 4 6 3

4 2 3 6 5

5 4 5 6 —

Table 9.
Notation of the facets of the prism of type I.

Edge e = {i, j} se(u), u = (u, v, w)

e∈E i∈N j∈N se,u se,v se,w

1 1 2 (1 � v) (1 � w) / 2 u (1 � w) / 2 0

2 1 3 v (1 � w) / 2 (1 � u) (1 � w) / 2 0

3 1 4 0 0 (1 � u � v) / 2

4 2 3 – v (1 � w) / 2 u (1 � w) / 2 0

5 2 5 0 0 u / 2

6 3 6 0 0 v / 2

7 4 5 (1 � v) (1 + w) / 2 u (1 + w) / 2 0

8 4 6 v (1 + w) / 2 (1 � u) (1 + w) / 2 0

9 5 6 – v (1 + w) / 2 u (1 + w) / 2 0

Table 8.
Notation of the edges of the prism of type I and associated edge base functions (se).
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The coil is excited by a sinusoidal current which generates the distribution of
time varying magnetic fields around the coil (Figure 20). The relative permeability
and electric conductivity of the plate are μr,plate ¼ 1, σr,plate ¼ 35:26 MS=m, respec-
tively. The source of the magnetic field is a sinusoidal current with the maximum
ampere turn being 2742AT. The problem is tested with two cases of frequencies of
the 50 Hz and 200 Hz.

The 3-D dimensional mesh with edge elements is depicted in Figure 21 (left).
The distribution of magnetic flux density generated by the excited electric current
in the coil is pointed out in Figure 21 (right). The computed results on the of the
z-component of the magnetic flux density along the lines A1-B1 and A2-B2
(Figure 19) is checked to be close to the measured results for different frequencies
of exciting currents (already proposed by authors in [10]) are shown in Figure 21.
The mean errors between calculated and measured methods [10] on the magnetic
flux density are lower than 10%.

Figure 19.
Modeling of TEAM problem 7: Coil and conducting plate [10].

Figure 20.
The 3-D mesh model with edge elements of the coil and conducting plate, and the limited boundary [4] (left),
and distribution of magnetic flux density generated by the excited sinusoidal current in the coil, with μr,plate ¼
1, σr,plate ¼ 35:26MS

m and f = 50 Hz.
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The y component of the varying of the eddy current losses with different
frequencies (50 Hz and 200 Hz) along the lines A3-B3 and A4-B4 (Figure 19) is
shown in Figure 22. The computed results are also compared with the measured
results as well [7]. The obtained results from the theory modeling are quite similar
as what measured from the measurements. The maximum error near the end of the
conductor plate on the eddy currents between two methods are below 20% for both
cases (50 Hz and 200 Hz).

7. Conclusions

In the 3D computation of the magnetic flux density and eddy current, thanks to
the set of Maxwell’s equations, it has been successfully developed for two weak
formulations, where the discretization of the fields is performed by Whitney edge
elements [2, 3, 8]: magnetostatic formulation and magnetodynamic formulation.
The developments of the method is validated on the actual problem (TEAM prob-
lem 7) [10]. The numerical error between simlated and measured results on the
magnetic flux densities and eddy current is lower than 10%. This is also proved that
there is a very good validation between two methods. The results have been
achieved by a detailed study of the magnetodynamic formulation.

Figure 21.
The comparison of the calculated results with the measured results on magnetic flux densities at y = 72 mm, with
μr,plate ¼ 1, σr,plate ¼ 35:26MS

m and different frequencies [4].
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Chapter 4

A Combination of Finite
Difference and Finite Element
Methods for Temperature and
Stress Predictions of Early-Age
Concrete Members
Tu Anh Do

Abstract

A combination of finite difference and finite element methods was employed to
develop a model for predicting the temperature development and thermally
induced stresses in early-age concrete members (such as bridge footings, piers,
columns, girders, and slabs). A two-dimensional finite difference (FD) scheme was
utilized for heat generation and transfer within a hydrating concrete member. A
finite element (FE) plane strain model was then established to compute the thermal
stresses in the concrete subjected to the temperature changes. The FD-FE model can
be easily created using any programing language, and the methodology can be used
to predict the temperatures and stresses as well as assess the possibility of early-age
cracking in concrete members.

Keywords: finite difference, finite element, early-age concrete, heat of hydration,
thermal stress, thermal cracking, insulation layer

1. Introduction

Thermal cracking is one of the biggest concerns regarding early-age concrete.
Hydration of a large amount of cement results in higher peak temperatures as well
as larger temperature differences between the concrete surface and the core. Such
large temperature differentials can cause substantial tensile stresses that might
increase the likelihood of early-age cracking in the concrete [1].

In order to control the temperature in early-age concrete structures, thus miti-
gating the risk of thermal cracking, temperature and stress analyses should be
performed beforehand. Different methods have been used for predicting the tem-
peratures and thermal stresses concrete structures at an early age. Among them, the
Schmidt’s method is a simple approach but has been widely used for computing the
temperatures for single nodes in the concrete [1]. The finite difference (FD)
method was also employed in spreadsheet programs [2, 3] or in computer programs
[4, 5] for calculating temperature–time histories in concrete elements. A two-
dimensional model for thermal analysis based on the finite volume method (FVM)
was introduced by Yikici and Chen [6]. The finite element (FE) method has been
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commonly utilized for both thermal and stress analyses of early-age concrete
structures [7–13].

This chapter presents a two-dimensional FD scheme for thermal analysis of a
concrete element. An FE analysis was then used to calculate the temperature-
induced stresses in the concrete. The analysis results were compared with
measurements of actual concrete elements. The combined approach can be a simple
and useful tool for analyzing temperatures and thermal stresses in early-age
concrete elements.

2. FD scheme for solving heat transfer

The heat evolution and temperature in a concrete element can be known by
solving the governing differential equation as described in Eq. (1):

ρcp
∂T
∂t
¼ k

∂
2T
∂x2
þ ∂

2T
∂y2
þ ∂

2T
∂z2

� �
þ _Q (1)

where ρ is density; cp is specific heat; T is temperature; t is time; k is thermal
conductivity; x, y, and z are coordinates; and Q ̇ is heat evolution rate.

The finite difference formulation for any node in the system can be written
as [14]:

X
All sides

_Q
i þ _E

i ¼ ρcpV
T iþ1
m � T i

m

Δt
(2)

where Q ̇i = rate of heat conduction at time step i; Ėi = rate of heat generation at
time step i; Ti

m and Ti+1
m = temperatures of node m at time step i and i + 1,

respectively; and Δt = time interval.
During the actual construction stage of concrete structures, the concrete is

usually covered by formwork and/or insulation materials. Heat generated from
cement hydration is conducted through the formwork and/or insulation layer
before being dissipated to the surroundings by surface convection (Figure 1).

Considering a formwork/insulation layer covering the concrete, and assuming
a unit square mesh for the concrete (Δx = Δy = l) and an insulation thickness
of d (Figure 2), the FD formulation for the interior node can be computed
using Eq. (3).

T iþ1
m,n ¼ τF T i

m�1,n þ T i
mþ1,n þ T i

m,nþ1 þ T i
m,n�1

� �
þ T i

m,n 1� 4τFð Þ þ τF
_em,nl

2

k
(3)

where Ti
m,n = temperatures of node (m,n) at time step i;

T i
m�1,n,T

i
mþ1,n,T

i
m,nþ1,T

i
m,n�1= temperatures at neighboring nodes; and

τF = dimensionless Fourier number,

τF ¼
kΔt
ρcpl

2 (4)

Using Eq. (2), the FD equations for each of the four outer corner nodes of the
insulation can be derived. For instance, the quarter size volume element of the
insulation layer (d � d � 1) represented by the top left outer corner node (1,N) is
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subjected to convection on both sides and to conduction from the right and bottom
nodes, the energy balance relation above (Eq. (2)) becomes:

T iþ1
1,N ¼ T i

1,N 1� 4A1 � 4A1
hd
ks

� �
þ 2A1 T i

1,N�1 þ T i
2,N þ 2Ta

hd
ks

� �
(5)

where ρs = insulation material density; cps = specific heat of insulation material;
ks = thermal conductivity of insulation material; Ta is the ambient temperature; h is
the convection coefficient; and

A1 ¼
ksΔt
ρscpsd

2 (6)

The insulation volume element at the surface node (2,N) adjacent to the top left
outer corner node is subjected to convection at the top and conduction at the left,
right, and bottom surfaces. An energy balance on this element gives:

Figure 1.
FD mesh for heat conduction of concrete covered with insulation layer.

Figure 2.
FE plane triangular element.
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T iþ1
2,N ¼  T i

2,N 1� 2h dþ lð ÞA2

ks
� 2A2 � 2dlA2 �

2 dþ lð ÞA2

d

� �

þ 2A2 T i
1,N þ dlT i

3,N þ
dþ l
d

T i
2,N�1 þ

h dþ lð Þ
ks

Ta

� � (7)

where

A2 ¼
ksΔt

ρscps dþ lð Þd (8)

Similarly, the insulation volume element of half size at a surface node is
subjected to convection at the top and conduction at the left, right, and bottom
surfaces. An energy balance on this element gives:

T iþ1
m,n ¼ T i

m,n 1� 2d
l
A3 �

2l
d
A3 �

2hl
ks

A3

� �

þ A3
d
l
T i
m�1,n þ

d
l
T i
mþ1,n þ

2l
d
T i
m,n�1 þ

2hl
ks

Ta

� �
(9)

where

A3 ¼
ksΔt
ρscpsdl

(10)

The “mixed” volume element at the concrete’s corner node (2,N-1) is subjected
to conduction at the four sides. An energy balance on this element gives:

T iþ1
2,N�1 ¼ T i

2,N�1 1� 4 lþ dð ÞA4

d
� 4dA4

l
� 4kA4

ks

� �
þ

þA4
2 lþ dð Þ

d
T i
1,N�1 þ

2 lþ dð Þ
d

T i
2,N þ 2

d
l
þ k
ks

� �
T i
2,N�2 þ 2

d
l
þ k
ks

� �
T i
3,N�1 þ _e2,N�1

l2

ks

" #

(11)

where

A4 ¼
ksΔt

ρsd dþ 2lð Þcps þ ρcpl
2 (12)

The “mixed” volume element at a concrete’s top surface node is also subjected to
conduction at the four sides. An energy balance on this element gives:

T iþ1
m,N�1 ¼ T i

m,N�1 1� 2ksl
d

A5 �
2ksd
l

A5 � 4kA5

� �
þ

þA5
2ksl
d

T i
m,N þ

ksd
l
þ k

� �
T i
m�1,N�1 þ

ksd
l
þ k

� �
T i
mþ1,N�1 þ 2kT i

m,N�2 þ e:m,N�1l
2

� �

(13)

where

A5 ¼
Δt

ρsdlcps þ ρl2cp
� � (14)
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It is noted that the stability criterion of the explicit method requires all primary
coefficients to be positive or zero for all nodes:

1� 4τF ≥0

1� 4A1 � 4A1
hd
ks

≥0

1� 2h dþ lð ÞA2

ks
� 2A2 � 2dlA2 �

2 dþ lð ÞA2

d
≥0

1� 2d
l
A3 �

2l
d
A3 �

2hl
ks

A3 ≥0

1� 4 lþ dð ÞA4

d
� 4dA4

l
� 4kA4

ks
≥0

1� 2ksl
d

A5 �
2ksd
l

A5 � 4kA5 ≥0

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

(15)

The maximum time step used to solve the problem must satisfy Eq. (15) above.
If an insulation layer is not used, the new corner temperature Ti

m,n+1 will be
simplified to:

T iþ1
m,n ¼ T i

m,n 1� 4τF � 4τF
hcl
k

� �
þ 2τF T i

mþ1,n þ T i
m,n�1 þ 2Ta

hcl
k
þ _em,nl

2

2k

 !
(16)

and the next time step temperature of a top surface node will be simplified to:

T iþ1
m,n ¼ T i

m,n 1� 4τF � 2τF
hcl
k

� �
þ τF T i

m�1,n þ T i
mþ1,n þ 2T i

m,n�1 þ 2Ta
hcl
k
þ _em,nl

2

k

 !

(17)

The maximum time step in this case is as follows:

Δt≤
l2ρcp

4k 1þ hcl
k

� � (18)

2.1 Rate of hydration heat

The rate of heat liberated from cement hydration depends on the temperature of
the concrete element itself. The heat rate can be experimentally determined using
isothermal [10, 15], adiabatic [16, 17], or semi-adiabatic calorimetry [4]. The
experimental adiabatic temperature rise (ATR) can be converted into a maturity-
based heat rate as presented by Ballim and Graham [18], in which the total heat (Q)
liberated at any time (t) is firstly computed from the ATR using the following
relationship:

Q ¼ cp Tt � T0ð Þms

mc
(19)

where Tt = sample temperature at time t; T0 = initial sample temperature;
ms =mass of concrete sample; andmc =mass of the cementitious materials in themix.
The heat rate in the adiabatic condition is then calculated by differentiating Eq. (19):
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qt ¼
dQ
dt

(20)

The “maturity heat rate” (qte), as shown in Eq. (21), is used in a further thermal
analysis of concrete, which considers the maturity of concrete.

qte ¼
dQ
dte

(21)

where te is equivalent age (or maturity) [19]:

te ¼
ðt

0

exp
Ea

R
1
Tr
� 1
Tc tð Þ

� �� �
dt (22)

where Ea is apparent activation energy (J/mol); R is the universal gas constant
(8.314 J/mol-K); Tc(t) is concrete temperature (K); and Tr is reference
temperature (K).

The activation energy (Ea) of a cement blend can be estimated from its chemical
compositions using the following relationship derived by Poole [20]:

Ea ¼ 41230þ 1416000 pC3A þ pC4AF

� �
pcempSO3

pcem � 347000pNa2Oeq

        � 19:8Blaineþ 29600pFApFA‐CaO þ 16200pslag � 51600pSF
(23)

where pFA = % fly ash in the cementing blend; pFA-CaO = % CaO in fly ash;
pslag = % slag in the cementing blend; pSF = percentage of silica fume in the
cementitious materials; Blaine = cement fineness (m2/kg); pi = percentage of i
component in the cement (C3A, C4AF, SO3, cem = cement); and pNa2Oeq = % Na2Oeq

in cement (= 0.658 � %K2O + %Na2O).
The actual heat rate, which will be used in a numerical model, can be

reconstructed from the maturity heat rate using the following equation:

qt ¼ qte
dte
dt

(24)

The maturity-based heat rate curve qte should be built from an isothermal or
adiabatic test, before the actual heat rate can be computed at each time step for the
analysis [18]. The drawback of this method is that the total time of the constructed
maturity-based heat rate is limited by the test duration.

There are several models to mathematically characterize the heat generation
from the cement hydration. The 3-parameter exponential degree of hydration
model show in Eq. (25) [21] has been widely used for predicting temperature
development in concrete since it includes the temperature effect through the
equivalent age:

α teð Þ ¼ αu exp � τ

te

� �β !
(25)

where αu is ultimate degree of hydration; τ and β are hydration parameters.
The total cumulative heat Q(te) is proportional to the degree of hydration α(te)

as expressed in Eq. (26). The rate of heat generation with respect to equivalent age
and real age can be determined using Eqs. (27) and (28), respectively.
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Q teð Þ ¼ Qc:α teð Þ (26)

q teð Þ ¼
dQ
dte
¼ Qc:α teð Þ:

τ

te

� �β

:
β

te
(27)

q tð Þ ¼ dQ
dt
¼ dQ

dte
:
dte
dt
¼ Qc:α teð Þ:

τ

te

� �β

:
β

te
: exp

Ea

R
1
Tr
� 1
Tc tð Þ

� �� �
(28)

where Qc is the total available heat (J/m
3).

The hydration parameters (αu,τ and β) can be determined from the fitted curve,
Eq. (25), using the experimental ATR data. These parameters can also be calculated
from an experimental isothermal cumulative heat curve without converting the real
time into the equivalent age because in the isothermal condition (i.e., at a reference
temperature of 23°C), the test time is identical to the equivalent age.

3. FE method for solving thermal stresses

Since a common concrete structure has one dimension larger than the other two,
the middle cross section should be analyzed; hence, a FE plane strain problem is
selected for the stress computation. A triangular element is chosen with nodes i, j, m
numbered in a counterclockwise order as illustrated in Figure 2 [22]. The strain at
any point within the element is estimated by Eq. (29):

εf g ¼ B½ � aef g (29)

where ae = element displacement vector, and

B½ � ¼ 1
2Δ

bi 0 b j 0 bm 0

0 c i 0 c j 0 cm
c i b i c j b j cm bm

2
64

3
75 (30)

in which ai ¼ x j ym � xmy j; bi ¼ y j � ym; c i ¼ xm � x jwith the other coefficients
obtained by a cycle permutation of the subscripts in the order i, j, m; and Δ is area of
the triangle.

The stress vector in the element can be calculated as:

σf g ¼ σx σy τxy
� �T ¼ D½ � εf g � ε0f gð Þ (31)

where

D½ � ¼ E
1þ νð Þ 1� 2νð Þ

1� ν ν 0

ν 1� ν 0

0 0 1� 2νð Þ=2

2
64

3
75 (32)

and the thermal strain is derived as [22]:

ε0f g ¼ 1þ νð Þαcθe 1 1 0½ �T (33)

in which ν = Poisson’s ratio, αc = coefficient of thermal expansion, and θ e =
temperature change (from the previous time step to the current time step)
subjected to the element. The element stiffness matrix ijm is calculated using the
following equation:
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ke ¼
ð
BTDBttdxdy or ke ¼ BTDBttΔ (34)

where tt = element thickness.
The nodal forces due to thermal strain is computed as follows:

f T
� �

¼
ð

v

B½ �T D½ � ε0f gdv ¼
Eαcθe

2 1� 2νð Þ
bi c i b j c j bm cm
� �T (35)

in which E = elastic modulus. The nodal displacement vector U is derived by
solving the global system of equations:

K½ � Uf g ¼ f T
� �

(36)

Computational Procedure

• FD thermal analysis:

1.Define geometry of the structure (including the nodal grid), initial
material properties, initial temperature and boundary conditions, and
time interval.

2.Compute the nodal degree of hydration and the rate of heat evolution.

3.Compute the new temperature at each node.

4.Iterate (2) & (3) and record the temperatures.

• FE stress analysis:

5.Divide the nodal grid into triangular elements (the vertices coincide with
the FD grid nodes).

6.At t = n (n = 1, 2,… ), calculate average temperature, equivalent age and
degree of hydration of each element.

7.Let i = 1, compute each element’s effective modulus.

8.Compute element stiffness matrix, global stiffness matrix, and
equivalent nodal forces; solve for nodal displacements and element
stresses.

9.Let i = i + 1 and iterate (7) and (8) till i = n. Sum all the stresses at step (8)
to get the total stress.

10.Let n = n + 1. Iterate (6) through (10) until the final time step is achieved.

4. Temperature analysis of bridge pier footing

A bridge pier footing constructed in Orlando, Florida was monitored for tem-
perature development within 7 days after casting (Figure 3). The concrete footing
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had dimensions of 6.71-m � 3.05-m � 1.75-m and was insulated with 25.4-mm thick
polystyrene foam boards at its bottom, top, and sides during 7 days.

The cementitious materials of Mix #1 was experimentally measured for the heat
of hydration using an isothermal calorimeter. The hydration parameters and calcu-
lated activation energy (Ea) for Mix #1 are presented in Table 1.

The concrete had a density of 2238 kg/m3, specific heat of 1045 J/kg-K, and
thermal conductivity of 1.87 W/m-K. The footing was insulated with Styrofoam
that has density, thermal conductivity, and specific heat of 16 kg/m3, 0.04 W/m-K,
and 1200 J/kg-K, respectively [14]. The boundary conditions consist of the initial

Figure 3.
Bridge footing for monitoring in Orlando, Florida.

Mix τ (h) β αu Qc (J/m3) Ea (J/mol)

#1 16.73 0.8764 8.314 1.26 � 108 35,451

#2 14.0 0.94 0.703 1.67 � 108 41,800

Table 1.
Hydration parameters and activation energy.

Figure 4.
Predicted and measured temperature profiles in the footing.
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temperature and the external ambient temperature over time. The air convection
coefficient at the insulation surfaces was assumed to be 13.9 W/m2-K [5, 23].

Two temperature sensors were installed at the center and at the center top
surface of the footing to record temperatures within 7 days after placement. The
measured temperatures at the center and top, and the ambient temperature are
shown in Figure 4. A peak measured temperature of 74°C occurred in the middle
42 hours after concrete casting. Figure 5 shows the temperature distribution in the
footing at 40 h calculated by the FD model. The predicted FD temperatures at the
center and the top of the footing are also plotted in Figure 4. It is clear that the
temperature histories computed using the FD model show very close agreement
with those collected in the field.

5. Temperature and thermal stress predictions of cap beam

A bridge concrete cap beam (pier cap) was analyzed for temperatures and
thermal stresses due to the heat of cement hydration. The cross section of the pier
cap was 1.6-m by 2.1-m. The concrete used in the cap beam is Mix #2 with the
hydration parameters and activation energy listed in Table 1. The concrete coeffi-
cient of thermal expansion (CTE) of 8.5 � 10�6/°C, density of 2287 kg/m3, the

Figure 5.
FD temperature contour in the footing at 40 h (°C).

Figure 6.
Temperature profiles at different points in the cap beam.
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Figure 7.
Temperature distribution of the section at 30 h.

Figure 8.
FE mesh and stress distributions (MPa) in pier cap at 21 h.
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specific heat of 1028 J/kg-K, and thermal conductivity of 1.87W/m-K were assumed
in the analysis.

Figure 6 shows the calculated temperature profiles at the core, corner and side
of the section. The center temperature peaked at 70.7°C approximately 28 hours
after casting. The temperature contours are also depicted in Figure 7.

The thermal analysis was followed by a stress calculation using the FE model
with the element mesh shown in Figure 8a. The 1st principal stress and stress
component σyy contours are shown in Figure 8b and c, respectively. The figure
reveals that the maximum stress is σyy occurring at the mid-sides and having almost
the same magnitude as the 1st principal stress.

The calculated stresses over time at different locations of the pier cap are plotted
in Figure 9. Clearly, the maximum stress is σyy at the mid-sides, while σxx is the
maximum stress at the corner (compared to σyy), thus the middle sides have a
higher risk of cracking.

To assess the model’s accuracy, the computed stress-time histories are compared
with those obtained from the 3-D ABAQUS FE model developed by Lin and Chen
[12]. It is worth noting that the ABAQUS model was validated using measurements
on 2 concrete blocks. Figure 9b shows that the 2-D FE results reasonably match
with those of the 3-D ABAQUS model.

The 3-D ABAQUS results reveal that the maximum stress is the component σzz at
the corner. Nevertheless, the 2-D FE model cannot compute this stress component

Figure 9.
Calculated stresses in the pier cap.
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because it is out-of-plane. The plane element over-predicts σ xx at the corner
compared with that of the 3-D ABAQUS. The maximum stress σzz at the corner
predicted using the 3-D ABAQUS model is about the same magnitude as σyy at the
mid-sides, hence the critical stress magnitude as well as cracking risk can still be
forecast by the 2-D analysis.

6. Conclusions

In this study, FD and FE formulations were created for solving the transient heat
transfer equation and thermal stresses in a concrete element. The results of this
study show that the approach that combines the FD and FE methods can be a useful
and effective tool for predicting temperature evolution and thermally induced
stresses in early-age concrete members with simple geometries. The FD model can
analyze thermal behavior of a concrete placement covered with formwork or an
insulation layer, thus it can help engineers/contractors control concrete
temperature during construction.
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Chapter 5

Convective Heat and Mass
Transfer of Two Fluids in a
Vertical Channel
Suresh Babu Baluguri and G. Srinivas

Abstract

A mathematical model for convective heat and mass transfer of two immiscible
fluids in a vertical channel of variable width with thermo-diffusion, diffusion-
thermal effects is presented. The governing boundary layer equations generated for
momentum, angular momentum, energy and species concentration are solved with
appropriate boundary conditions using Galeriken finite element method. The
effects of the pertinent parameters are studied in detail. Furthermore, the rate of
heat transfer, mass transfer and shear stress near both walls is analyzed.

Keywords: vertical channel, immiscible fluids, finite element method, heat and
mass transfer

1. Introduction

The developments are carried out in the field of fluid dynamics which was
initiated by Euler [1] by proving his famous equations of fluid flow for ideal
(inviscid) fluids. Fluid dynamics is a subset of the science that looks at the materials
in motion. Hydrodynamics deals with the fluids which are in motion. Fluid dynam-
ics comes under science of fluid mechanics along with the other subcategories as
fluid statics, which corresponds to fluids at rest, while fluid dynamics includes
fluids in motion. Fluid is defined as a matter in a gas or liquid state. Fluid dynamics
is governed by the regulations of preservation of mass, energy and linear momen-
tum. These laws state that the total amount in a closed model remains unchangeable
and the energy and mass cannot be formed or demolished. They can deform but will
not disappear. Another governing law is the continuum hypothesis which defines
that they are uninterrupted and their characteristics fluctuate all over. The history
of fluid dynamics can be found in Rouse and Ince [2] and Tokaty [3].

1.1 Micropolar fluid

The subject of micro-polar fluids attained higher degree by many researchers
because when the fluid is with the suspended particles we cannot analyze the
properties of fluid flow by regular Newtonian fluid characteristics. Generally this
fluid is defined as non-Newtonian comprising of small firm cylindrical matters,
polymer liquids, liquefied suspensions, animal blood and such related components.
The existence of dust or smoke especially, gas are characterized as micro-polar
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fluids in fluid dynamics. Eringen [4, 5] had taken the initiation in describing the
subject of micropolar fluids. In his theory he considered the local impacts emerging
from the micro-structure and the inherent movement of the fluid elements.
Peddieson and McNitt [6], Ariman et al. [7] addressed many investigations and
applications of micropolar fluid mechanics, which are also described in the works of
Lukaszewicz [8] and Eringen [9]. A.J. Chamkha et al. [10] analyzed the wholly
established free convection of micropolar fluid in a upright passage.

1.2 Magnetohydrodynamics (MHD)

MHD is the science concerned with the motions of electro fluids and their
interactions with magnetic fields. It is a vital branch and comparatively new in the
field of fluid dynamics. When a conducting fluid is moving along a magnetic field, it
results in induction of an electric field current which in turn produces the body
forces. According to Faraday’s principle, on passage of electric current in a magnetic
area, it experiences a force making to direct it at right angles to the electric field.
Similarly, if the conductor has electromagnetic forces of the same order as the
hydrodynamical and inertial forces, these forces are taken in the equation of motion
along with the other forces. The integration of Navier–Stokes relations of fluid
dynamics and Maxwell’s expressions of electromagnetism describe magneto hydro-
dynamics which are to be solved simultaneously. There are many scientific &
technical applications in the literature: heating and flow control in metal structures,
power production from 2-phase models or seeded high temperature gases, magnetic
constraints of extreme temperature plasma and dynamo that develop magnetic field
in environmental matters.

The concept of MHD flow of the boundary layer in a vertical channel is greatly
considered in present metallurgical and metal processing fields. Most of the metallic
materials are manufactured from the molten state. It is significant to determine the
heat transfer in metals, which are electric conductors. Therefore, a controlled
cooling system is required, so that, it can be regulated through an external
magnetic field.

1.3 Convective heat and mass transference

Convection is the movement of molecules within the fluids. It belongs to the
fundamental means of heat and mass transference that is carried out by ways of
diffusion and random Brownian movement of distinct liquid elements. In our con-
text, convection refers to the totality of advective and diffusive transfer. However,
it is taken for only advective phenomena. A mechanism of transfer of heat occur-
ring due to bulk motion of fluids is regarded as convective heat transfer. Emphasis
is given to heat that is being passed and distributed.

Extensive research has been done over convective heat and mass transference
of the fluid flow in vertical channels and other geometries. The existence of
temperature and concentration differences or gradients lead to the convective
heat and mass transfer and it is regarded as an area of study for broad examination
because it is applied in several engineering issues, which are common in atmo-
spheric buoyancy induced actions, liquid and semi-solid bodies and so on. There
are quite a large number of application in the heat and mass transfer flows like,
rocket nozzles, nuclear power plants, air craft and its re-entry in atmosphere,
chemical and process instruments, mist formation and dispersal, temperature
and humidity circulation over cultivation farms, plants destruction because of
freezing, etc. Packham [11] considered the steady co-current motion of two
immiscible viscous fluids in a parallel tube, the fluid interface being ripple-free
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and plane. Shail [12] considered the Hartmann flow of a conducting fluid in the pass
way between two parallel insulating sheets of unbounded length, there exists a
sheet of non-conductive fluid between the conductive fluid and the upper passage
layer and given the conclusion that considerable increase could be attained in the
conductive fluid velocity for appropriate proportions of the depth and viscosity of
the two fluids. Beckermann et al. [13] conducted a numerical and experimental
study to analyze the fluid motion and heat transfer in a upright rectangular cover
which is occupied partly with a vertical layer of a fluid-saturated absorbent struc-
ture, where it is determined that the fluid quantity entering the fluid area to the
absorbent layer is dependent on the Darcy & Rayleigh numbers. Lohrasbi and
Sahai [14] researched in 2-phase MHD flow and heat transfer with the 1-phase
conductive fluid.

1.4 Viscous dissipation

Viscous dissipation relates to the conversion of kinetic to internal energy
(heating up the fluid) with respect to viscosity. It plays a significant part in normal
convection in numerous units which hold huge deviations of gravitational force
Gebhart [15]. Gebhart and Mollendorf [16] examined viscous dissipation in periph-
eral normal convection by taking in account of exponential deviation of wall tem-
perature using resemblance relation. Fand and Brucker [17] stated that the impact
of viscous dissipation is important in case of normal/natural convection in absor-
bent structure with respect to their investigational correlation for the heat transfer-
ence in peripheral motions. Fand et al. [18] validated the comment for the Darcy
method by experimental and analytical means when predicting the heat transfer
coefficient from a parallel chamber implanted in an absorbent medium. Viscous
dissipation performs as a heat source and heats the medium considerably.
Nakayama and Pop [19] evaluated the influence of viscous dissipation on the
Darcy’s free convection towards an arbitrary shaped non-isothermal matter placed
in a permeable medium. Murthy and Singh [20] observed viscous dissipation on
non-Darcy normal convection from an erect flat sheet in a permeable medium
saturated with Newtonian fluid. It is deduced that heat transfer decreases
significantly with the presence of viscous dissipation effect. El-Amin [21] analyzed
the impact of viscous dissipation and Joule heating on magneto fluid dynamics
forced convection jointly on a non-isothermal straight container fixed in a fluid
saturated permeable membrane. Bejan [22] defined that the calculations are
limitedin examining the dissipation effect by means of a stable, 1-D energy relation,
based on the analogical form with viscous dissipation effect. Pantokratoras [23]
evaluated the viscous dissipation effects in a normal convection using a warmed
straight plate. Seddeek [24] investigated viscous dissipation effect and
thermophoresis on Darcy Forchheimer mixed convection in a fluid saturated per-
meable medium. Duwairi et al. [25] studied the effects of viscous dissipation and
Joule heating employing an isothermal cone in a saturated porous medium. Various
non-Newtonian fluids have high viscosity because the irreparable criterion owing to
viscous dissipation sometimes becomes vital. Hence it motivates investigators to
analyze the effects of viscous dissipation in a non-Newtonian fluid saturated per-
meable medium. Cortell [26] analyzed viscous dissipation effect and thermal
boundary layer radiation on a nonlinear wide plate. Kairi and Murthy [27] analyzed
the viscous dissipation impact over normal convection heat and mass transference
from an upright cone in a non-Newtonian fluid saturated non-Darcy absorbent
structure. Cortell [28] analyzed the influences of suction, viscous dissipation and
thermal radiation over heat transfer of a power-law fluid past a boundless
permeable sheet.
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1.5 Diffusion effects

The diffusion effects namely thermal-diffusion (Soret) and diffusion-thermo
(Dufour) are highly important in fluid mechanics. Soret is the transfer of mass
formed by temperature gradients, i.e. species diversity evolving in a primary
homogeneous blend directed to a thermal gradient. Diffusion-thermo effect is the
heat transfer or the heat flux formed by concentration gradient. The problems
concerned to heat and mass transference and density variations with temperature
and concentration lead to integrated buoyancy convected force. The diffusion
impacts influence the flow field in boundary membrane on an upright channel.

Chapman and Cowling [29] developed the diffusion-thermo and thermal-
diffused heat and mass effects. Eckert and Drake [30] suggested that Dufour effect
has widened magnitude and so this effect should not be ignored. Kafoussias and
Williams [31] included the boundary layer flows with Soret and Dufour effects for
the combined forced-normal convection problem. Anghel et al. [32] analyzed the
Dufour and Soret effects of a free convection boundary layer on a vertical field
inserted in a permeable membrane. Postelnicu [33] evaluated the effects of thermal-
diffusion and diffusion-thermo on combined heat and mass transference in natural
convection boundary layer flow in a Darcian porous media under transverse mag-
netic effect. Alam and Rahman [34] analyzed the effects of thermal-diffusion and
diffusion-thermo on combined and free convection heat and mass transference flow
past an erect permeable flat sheet inserted in a porous membrane with or without
flexible suction. In many studies, Dufour and Soret effects are ignored based on a
minor magnitude order than Fourier’s and Fick’s laws effect. The effect of thermal-
diffusion and diffusion-thermo influences over the motion area in mixed convec-
tion boundary-layer on an upright surface kept in a permeable medium and on
mixed convection flow past a vertical permeable even sheet with varying suction.
Chamkha and Ben-Nakhi [35] studied the combined convection flow in the exis-
tence of thermal radiation with an erect porous layer embedded in an absorbent
media considering thermal-diffusion and diffusion-thermo effects. El-Aziz [36]
examined the Dufour and Soret effects on MHD heat and mass transference on a
porous widening layer in the presence of thermal radiation in a combined manner.
Maleque [37] considered only the diffusion-thermo effect on convective heat and
mass transference past a rotating permeable disk, in where the thermal-diffusion
effect is ignored. Anwar Beg et al. [38] described the thermal-diffusion and
diffusion-thermo impacts by numerically studying the free convection MHD heat
and mass transfer over a stretching layer with saturated permeable structure. Pal
and Chatterjee [39] study shows combined convected magneto hydrodynamic heat
and mass transference past a stretching plate considering Ohmic dissipated
thermal-diffusion and diffusion-thermo impacts with micro-polar fluid. MHD flow
of a pair of immiscible and conducting fluids within isothermal and insulated
moving sheets under an applied electric and inclined magnetic effect and with an
induced magnetic field has been investigated by Stamenkovic et al. [40].

1.6 Two fluid flow

For many years, Scientists and Engineers have been showing interest in two
phase flows, which arise in many industrial applications. The two-phase fluid flow
phenomena are important in pipe flows, fluidized beds, sedimentation, gas purifi-
cation, transport processes and shock waves. The study of dynamics of two phase
fluid system is concerned with the motion of a liquid or gas containing immiscible,
suspended stokesian solid particles. In the equations of motion of two phase fluid
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flows, which are the modified form of Navier-Stoke’s equations, the presence of
dust adds an extra force term which represents the interaction between the dust
and the fluid particles. The modified form of Navier–Stokes equations coupled
with Euler equations of motion for perfect fluids are used as the equations of
motion of fluid phase and particle phase, respectively. Practical application of
these flows may be found in heat exchanges utilizing liquid metal or liquid sodium
coolants in the area of thermal instability in boiling heat transfer studies. Malashetty
and Leela [41, 42] studied two-fluid flow and heat transference in a parallel fluid
passage in both conductive phases. Such investigations are beneficial to understand
the slag layer effects over heat transfer features of a coal-fired magneto hydrody-
namic generator. Vajravelu et al. [43] dealt with the hydromagnetic unstable
motion of two immiscible conducting fluids between two porous media of
different porosity. Malashetty and Umavathi [44] studied 2-phase magnetohydro-
dynamic flow and heat transference in a sloped passage, where 1-phase is conduc-
tive and the transport characteristics of the fluids are assumed to be unvarying.
Srinivasan et al. [45] theoretically studied the two immiscible fluid models in a
permeable membrane by considering the impacts of non-Darcian boundary and
inertia. Malashetty et al. [46] explored the complexities of completely established
2-fluid magneto hydrodynamic flow including and excluding applied electric
field in an slant pass way and described the solution of energy and momentum
equations, using perturbation method for smaller value product of Prandtl and
Eckert number in completely progressed free convection 2-fluid MHD flow of a
tilted passage.

2. Mathematical formulation

The two infinite plates are kept at Y ¼ �h1 and Y ¼ h2 initially as shown in
Figure 1 and the two sheets are isothermal with dissimilar temperatures T1 and T2

respectively. The distance �h1 ≤Y ≤0 represents region-1 and the distance
0≤Y ≤ h2 represents region-2 where the first one occupies micropolar fluid and the
other, viscous fluid. Here the buoyancy force determines the fluid flow.

Figure 1.
Schematic diagram of the problem.
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The governing conditions for the problem are developed based on the
assumptions stated below:

1.The flow is assumed to be 1-D, steady, laminar, immiscible and
incompressible.

2.The transport characteristics of the two fluids are presumed to be constant.

3.The fluid flow is fully developed.

4.The temperature and heat flows are continuous at the interface.

5.T1 >T2,C1 >C2.

3. Governing equations

The governing equations which are derived in Chapter-II under the above
assumptions yields.

Region-1:

dU1

dY
¼ 0 Law of conservation of mass½ � (1)

ρ1 ¼ ρ0 1� β1T T1 � T0ð Þ � β1C C1 � C0ð Þ½ � Physicalstate
� �

(2)

μ1 þ K
ρ1

d2U1

dY2 þ
K
ρ1

dn
dY
þ gβ1T T1 � T0ð Þ þ gβ1C C1 � C0ð Þ � σB0

2U1

ρ1
¼ 0 Momentum½ �

(3)

γ
d2n
dY2 � K 2nþ dU1

dY

� �
¼ 0 Conservation of Angular Momentum½ � (4)

where γ ¼ μ1 þ K
2

� �
j

k1
ρ1Cp

d2T1

dY2 þ
1

ρ1Cp
μ1

dU1

dY

� �2

þ ρ1D1KT1

CS1

d2C1

dY2

" #
¼ 0 Energy

� �
(5)

D1
d2C1

dY2 þ
D1KT1

TM

d2T1

dY2 ¼ 0 Diffusion½ � (6)

Region-2:

dU2

dY
¼ 0 Continuity

� �
(7)

ρ2 ¼ ρ0 1� β2T T2 � T0ð Þ � β2C C2 � C0ð Þ½ � State½ � (8)

μ2
ρ2

d2U2

dY2 þ gβ2T T2 � T0ð Þ þ gβ2C C2 � C0ð Þ � σB0
2U2

ρ2
¼ 0 Momentum½ � (9)

k2
ρ2Cp

d2T2

dY2 þ
1

ρ2Cp
μ2

dU2

dY

� �2

þ ρ2D2KT2

CS2

d2C2

dY2

" #
¼ 0 Energy

� �
(10)

D2
d2C2

dY2 þ
D2KT2

TM

d2T2

dY2 ¼ 0 Diffusion½ � (11)
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The above equation models (1) to (11) are solved by the following boundary and
interface parameters.

U1 ¼ 0 at Y ¼ �h1 , U2 ¼ 0 at Y ¼ h2 ,U1 0ð Þ ¼ U2 0ð Þ,
T ¼ T1 at Y ¼ �h1, T ¼ T2 at Y ¼ h2,T1 0ð Þ ¼ T2 0ð Þ,
C ¼ C1 at Y ¼ �h1, C ¼ C2 at Y ¼ h2,C1 0ð Þ ¼ C2 0ð Þ,
n ¼ 0 atY ¼ �h1, μ1 þ Kð Þ dU1

dY þ Kn ¼ μ2
dU2
dY at Y ¼ 0,

dn
dY ¼ 0 at Y ¼ 0, k1 dT1

dY ¼ k2 dT2
dY atY ¼ 0,D1

dC1
dY ¼ D2

dC2
dY atY ¼ 0.

The following non dimensional variables form the equation systems (1) to (11)
in to dimensionless form:

y ¼ Y
h1
(region-1), y ¼ Y

h2
(region-2), u1 ¼ U1

U0
, u2 ¼ U2

U0
, θ1 ¼ T1�T0

ΔT ,

θ2 ¼ T2�T0
ΔT , N ¼ h1

U0
n, j ¼ h2 (Characteristic length), K0 ¼ K

μ1
, c1 ¼ C1�C0

ΔC , c2 ¼
C2�C0
ΔT , Gr ¼ gβ1TΔTh1

3

ν12
, Gc ¼ gβ1CΔCh1

3

ν12
, R ¼ U0h1

v1
, Sr ¼ D1KT1ΔT

TMΔCU0h1
, Sc ¼ v1

D1
, Du ¼ D1KT1ΔC

CPCS1ν1ΔT
,

M ¼ σB0
2h12

μ1
, Pr ¼ μ1 Cp

k1
, Ec ¼ U0

2

Cp ΔT,

CS ¼ CS1
CS2

, KT ¼ KT1
KT2

, D ¼ D1
D2
, h ¼ h1

h2
, m ¼ μ1

μ2
, α ¼ k1

k2
, ρ ¼ ρ1

ρ2
, b1 ¼ β1T

β2T
, b2 ¼ β1C

β2C
,ν ¼ ν1

ν2
.

The dimensionless forms of governing equations thus obtained are:
Region-1:

d2N
dy2
� 2K0

2þ K 0
2N þ du1

dy

� �
¼ 0 (12)

1þ K0ð Þ d
2u1
dy2
þ K0

dN
dy
þ Gr

R
θ1 þ

Gc
R

c1 �Mu1 ¼ 0 (13)

1
PrR

d2θ1
dy2
þ Ec

R
du1

dy

� �2

þ Du
R

d2c1
dy2
¼ 0 (14)

1
ScR

d2c1
dy2
þ Sr

d2θ1
dy2
¼ 0 (15)

Region �2

d2u2
dy2
þ m
b1ρh

2
Gr
R

θ2 þ
m

b2ρh
2
Gc
R

c2 �
mM

h2
u2 ¼ 0 (16)

ρh
α

1
PrR

d2θ2
dy2
þ ρh

m
Ec
R

du2

dy

� �2

þ csh
DKT

Du

R
d2c2
dy2
¼ 0 (17)

h
D

1
ScR

� �
d2c2
dy2
þ h
KTD

Sr
d2θ2
dy2
¼ 0 (18)

The dimensionless boundary and interface conditions thus formed are:

u1 ¼ 0 at y ¼ �1, u2 ¼ 0 at y ¼ 1, u1 0ð Þ ¼ u2 0ð Þ,
θ1 ¼ 1 at y ¼ �1, θ2 ¼ 0 at y ¼ 1, θ1 0ð Þ ¼ θ2 0ð Þ,
c1 ¼ 1 at y ¼ �1, c2 ¼ 0 at y ¼ 1, c1 0ð Þ ¼ c2 0ð Þ,

N ¼ 0 aty ¼ �1, du1

dy
þ K0

1þ K 0
N ¼ 1

mh 1þ K0ð Þ
du2

dy
at y ¼ 0,

dN
dy
¼ 0 aty ¼ 0,

dθ1
dy
¼ 1

hα
dθ2
dy

at y ¼ 0,
dc1
dy
¼ 1

hD
dc2
dy

at y ¼ 0:

(19)
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4. Solution of the problem

The finite element method as described in Chapter-II is applied in solving the
dimensionless coupled differential equations generated by the fluid flows. For the
problem discussed here, it is considered that each region is classified into 100 linear
elements and each element is 3 nodded.

The element equations associated with Eqs. (12) to (18) is as follows:

ðyiþ1

yi

d2N
dy2

‐ 2K 0

2þ K0
2N þ du1

dy

� � !
ηkdy ¼ 0 (20)

ðyiþ1

yi

1þ K0ð Þ d
2u1
dy2
þ K0

dN
dy
þ Gr

R
θ1 þ

Gc
R

c1 �Mu1

 !
ηkdy ¼ 0 (21)

ðyiþ1

yi

1
PrR

d2θ1
dy2
þ Ec

R
du1
dy

� �2

þ Du
R

d2c1
dy2

 !
ηkdy ¼ 0 (22)

ðyiþ1

yi

1
ScR

d2c1
dy2
þ Sr

d2θ1
dy2

 !
ηkdy ¼ 0 (23)

ðyiþ1

yi

d2u2
dy2
þ m
b1ρh

2
Gr
R

θ2 þ
m

b2ρh
2
Gc
R

c2 �
mM

h2
u2

 !
χkdy ¼ 0 (24)

ðyiþ1

yi

ρh
α

1
PrR

d2θ2
dy2
þ ρh

m
Ec
R

du2

dy

� �2

þ csh
DKT

Du

R
d2c2
dy2

 !
χkdy ¼ 0 (25)

ðyiþ1

yi

h
D

1
ScR

� �
d2c2
dy2
þ h
KTD

Sr
d2θ2
dy2

 !
χkdy ¼ 0 (26)

Where ηk and χk denotes the shape functions of a typical element yi, yiþ1
� �

in the
region 1 and 2 correspondingly.

On integrating the above equations and by replacing the finite element Galerkin
calculations,

ui1 ¼
P3
j¼1

uijη
i
j, c

i
1 ¼

P3
j¼1

cijη
i
j, N

i ¼
P3
j¼1

Ni
jη
i
j, θ

i
1 ¼

P3
j¼1

θijη
i
j,

ui2 ¼
P3
j¼1

uijχ
i
j, c

i
2 ¼

P3
j¼1

cijχ
i
j, θ

i
2 ¼

P3
j¼1

θijχ
i
j.

From Eq. (20) we get

ðyiþ1

yi

dNi

dy
dηk
dy

dyþ 2K0

2þ K 0

ðyiþ1

yi

2Niηkdy‐
dηk
dy

ui1

� �
dy ¼ ηk

dNi

dy
þ ηku

i
1

" #yiþ1

yi

The stiffness matrix equation corresponding to the above is
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aikj
h i

Ni
k

� �
þ bikj
h i

uik
� �

¼ Q1
i
j

h i
(27)

where aikj ¼
Ðyiþ1
yi

dηk
dy

dηij
dy dyþ 2K0

2þK0
Ðyiþ1
yi

2ηkηij
h i

dy

bikj ¼ �
2K0

2þ K0

ðyiþ1

yi

dηij
dy

ηk

" #
dy

Q1
i
j ¼ ηk

dNi

dy
þ ηku

i
1

" #yiþ1

yi

From Eq. (21) we get

ðyiþ1

yi

1þ K0ð Þ dηk
dy

dui1
dy

dyþ
ðyiþ1

yi

K0
dηk
dy

Nidy‐Gr
R

ðyiþ1

yi

ηkθ
i
1dy‐

Gc
R

ðyiþ1

yi

ηkc
i
1 dyþM

ðyiþ1

yi

ηku
i
1 dy ¼ ‐ 1þ K0ð Þηk

dui1
dy
� K0ηkN

i

" #yiþ1

yi

The stiffness matrix equation corresponding to the above is

cikj
h i

uik
� �
þ dikj
h i

Ni
k

� �
þ ℯi

kj

h i
θik
� �
þ f ikj
h i

cik
� �
¼ Q2

i
j

h i
(28)

where cikj ¼
Ðyiþ1
yi

1þ K0ð Þ dη
i
j

dy
dηk
dy dyþM

Ðyiþ1
yi

ηijηkdy, d
i
kj ¼ K0

Ðyiþ1
yi

dηij
dy ηk

� �
dy

ℯi
kj ¼ �

Gr
R

ðyiþ1

yi

ηijηk

h i
dy, f ikj ¼ �

Gc
R

ðyiþ1

yi

ηijηk

h i
dy

Q2
i
j ¼ ‐ 1þ K0ð Þηk

dui
1

dy
� K0ηkN

i

" #yiþ1

yi

From Eq. (22) we get

1
PrR

ðyiþ1

yi

dηk
dy

dθi1
dy

dy� Ec
R

ðyiþ1

yi

ηk
dui

1

dy

 !2

dy‐Du
R

ðyiþ1

yi

dηk
dy

dci1
dy

dy

¼ 1
PrR

ηk
dθi1
dy
� Du

R
ηk

dci1
dy

" #yiþ1

yi

The stiffness matrix equation corresponding to the above is

gikj
h i

θik
� �
þ uik
� �T

hikj
h i

uik
� �
þ mi

kj

h i
cik
� �
¼ Q3

i
j

h i
(29)
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where

gikj ¼
1

PrR

ðyiþ1

yi

dηk
dy

dηij
dy

dy, hikj

¼ �Ec
R

ðyiþ1

yi

dηi1
dy

� �2 dηi1
dy

� �
dηi2
dy

� �
dηi1
dy

� �
dηi3
dy

� �

dηi2
dy

� �
dηi1
dy

� �
dηi2
dy

� �2 dηi2
dy

� �
dηi3
dy

� �

dηi3
dy

� �
dηi1
dy

� �
dηi3
dy

� �
dηi2
dy

� �
dηi3
dy

� �2

2
6666666664

3
7777777775

ηk½ �dy:

mi
kj ¼
�Du
R

ðyiþ1

yi

dηk
dy

dηij
dy

dy,Q3
i
j ¼

1
PrR

ηk
dθi1
dy
� Du

R
ηk

dci1
dy

" #yiþ1

yi

:

From Eq. (23) we get

1
ScR

ðyiþ1

yi

dηk
dy

dci1
dy

dyþ Sr
ðyiþ1

yi

dηk
dy

dθi1
dy

dy ¼ 1
ScR

ηk
dci1
dy
þ Srηk

dθi1
dy

" #yiþ1

yi

The stiffness matrix equation corresponding to the above is

nikj
h i

cik
� �
þ pikj
h i

θik
� �
¼ Q4

i
j

h i
(30)

where nikj ¼ 1
ScR

Ðyiþ1
yi

dηk
dy

dηij
dy dy, p

i
kj ¼ Sr

Ðyiþ1
yi

dηk
dy

dηij
dy dy

Q4
i
j ¼

1
ScR

ηk
dci1
dy
þ Srηk

dθi1
dy

" #yiþ1

yi

From Eq. (24) we get

ðyiþ1

yi

dχk
dy

dui2
dy

dy‐ m
b1ρh

2
Gr
R

ðyiþ1

yi

χkθ
i
2dy‐

m
b2ρh

2
Gc
R

ðyiþ1

yi

χkc
i
2 dy

þmM

h2

ðyiþ1

yi

χku
i
2 dy ¼ ‐χk

dui
2

dy

" #yiþ1

yi

The stiffness matrix equation corresponding to the above is

Ci
kj

h i
uik
� �
þ Di

kj

h i
θik
� �
þ Ei

kj

h i
cik
� �
¼ Q5

i
j

h i
(31)
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where Ci
kj ¼

Ðyiþ1
yi

dχij
dy

dχk
dy dyþ mM

h2
Ðyiþ1
yi

χijχkdy, D
i
kj ¼ � m

b1ρh
2
Gr
R

Ðyiþ1
yi

χijχk

h i
dy,

Ei
kj ¼ � m

b2ρh
2
Gc
R

Ðyiþ1
yi

χijχk

h i
dy, Q5

i
j ¼ ‐χk dui2

dy

h iyiþ1
yi

.

From Eq. (25) we get

ρh
α

1
PrR

ðyiþ1

yi

dχk
dy

dθi2
dy

dy� ρh
m

Ec
R

ðyiþ1

yi

χk
dui

2

dy

 !2

dy‐ csh
DKT

Du
R

ðyiþ1

yi

dχk
dy

dci2
dy

dy ¼

ρh
α

1
PrR

χk
dθi2
dy
� csh
DKT

Du
R

χk
dci2
dy

" #yiþ1

yi

The stiffness matrix equation corresponding to the above is

Fi
kj

h i
θik
� �
þ uik
� �T

Gi
kj

h i
uik
� �
þ Hi

kj

h i
cik
� �
¼ Q6

i
j

h i
(32)

where Fi
kj ¼

ρh
α

1
PrR

Ðyiþ1
yi

dχk
dy

dχij
dy dy,

Gi
kj ¼ �

ρh
m

Ec
R

Ðyiþ1
yi

dχi1
dy

� �2 dχi1
dy

� �
dχi2
dy

� �
dχi1
dy

� �
dχi3
dy

� �

dχi2
dy

� �
dχi1
dy

� �
dχi2
dy

� �2 dχi2
dy

� �
dχi3
dy

� �

dχi3
dy

� �
dχi1
dy

� �
dχi3
dy

� �
dχi2
dy

� �
dχi3
dy

� �2

2
6666666664

3
7777777775

χk½ �dy

Hi
kj ¼ ‐ csh

DKT

Du
R

Ðyiþ1
yi

dχk
dy

dχij
dy dy, Q6

i
j ¼

ρh
α

1
PrR χk

dθi2
dy �

csh
DKT

Du
R χk

dci2
dy

h iyiþ1
yi

.

From Eq. (26) we get

h
D

1
ScR

ðyiþ1

yi

dχk
dy

dci2
dy

dyþ h
KTD

Sr
ðyiþ1

yi

dχk
dy

dθi2
dy

dy ¼ h
D

1
ScR

χk
dci2
dy
þ h
KTD

Srχk
dθi2
dy

" #yiþ1

yi

The stiffness matrix equation corresponding to the above is

Li
kj

h i
cik
� �
þ Mi

kj

h i
θik
� �
¼ Q7

i
j

h i
(33)

where Li
kj ¼ h

D
1

ScR

Ðyiþ1
yi

dχk
dy

dχij
dy dy, M

i
kj ¼ h

KTD
Sr
Ðyiþ1
yi

dχk
dy

dχij
dy dy

Q7
i
j ¼

h
D

1
ScR

χk
dci2
dy
þ h
KTD

Srχk
dθi2
dy

" #yiþ1

yi

The Langrange’s interpolation polynomials are used as the shape functions at
each of the nodes are considered as follows:
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η1i ¼
y� 2i� 101

100

� �� �
y� 2i� 100

100

� �� �

2i� 102
100

� �
� 2i� 101

100

� �� �
2i� 102
100

� �
� 2i� 100

100

� �� � ,

η2i ¼
y� 2i� 102

100

� �� �
y� 2i� 100

100

� �� �

2i� 101
100

� �
� 2i� 102

100

� �� �
2i� 101
100

� �
� 2i� 100

100

� �� � ,

η3i ¼
y� 2i� 101

100

� �� �
y� 2i� 102

100

� �� �

2i� 100
100

� �
� 2i� 102

100

� �� �
2i� 100
100

� �
� 2i� 101

100

� �� � :

and similarly for χ1i , χ
2
i , χ

3
i .

The shear stress values, heat (Nusselt number) and mass transfer rate (Sher-
wood number) are calculated at both walls as per the following relations:

St1 ¼
∂u1
∂y

� �

y¼�1
, St2 ¼

∂u2
∂y

� �

y¼1
, Nu1 ¼

∂θ1
∂y

� �

y¼�1
, Nu2 ¼

∂θ2
∂y

� �

y¼1
, Sh1

¼ ∂c1
∂y

� �

y¼�1
, Sh2 ¼

∂c2
∂y

� �

y¼1
:

5. Results and discussion

The numerical solution of the system of equations is analyzed for several values
of the governing factors and its corresponding graphical representations are
resulted. Thermal Grashof (Gr), Molecular Grashof (Gc) and Reynolds numbers
(R), Magnetic field (M) and Material parameters (K0) and Dufour (Du), Schmidt
(Sc), Soret (Sr) and Eckert numbers (Ec) are fixed as Gr = 5, Gc = 5, R = 3, M = 3,

Figure 2.
(a) Represents behavior of u. (b) Represents behavior of N for Gr. (c) Represents behavior of θ. (d) Represents
behavior of c for Gr.
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K0 = 0.1, Du = 0.08, Sr. = 0.1, Sc = 0.66, Sr. = 0.001 for all the profiles excepting the
varying parameter.

The profiles of all the governing parameters are depicted from Figures 2–10.
The flow in micropolar region is found to be more than the flow in viscous region.
The variations of linear momentum and angular momentum are clear for each and
every governing parameter. The variation of temperature and diffusion are very
narrow except for the parameters R, Du, Sr., and Sc. The temperature and diffusion
are uniform across the channel and are found to be significant at the mid region of

Figure 3.
(a) Represents behavior of u. (b) Represents behavior of N for Gc. (c) Represents behavior of θ. (d) Represents
behavior of c for Gc.

Figure 4.
(a) Represents behavior of u. (b) Represents behavior of N for R. (c) Represents behavior of θ. (d) Represents
behavior of c for R.
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the channel. The diffusion is slightly effected at the interface due to two fluids.
Hence the two fluid flow model has much importance in the real time systems. All
our results are compared with earlier studies and they are validated.

Figure 2(a)–(d) illustrate the effect of Grashof numbers on velocity, angular
velocity, temperature and diffusion. As Gr increases the velocity and angular
velocity increases substantially. The buoyancy enhances the flow in both regions i.e.
thermal buoyancy force dominates the viscous force in both regions of the channel
and it is found to be more in micropolar region. The lowest velocity corresponds to

Figure 5.
(a) Represents behavior of u. (b) Represents behavior of N for M. (c) Represents behavior of θ. (d) Represents
behavior of c for M.

Figure 6.
(a) Represents behavior of u. (b) Represents behavior of N for K0. (c) Represents behavior of θ.
(d) Concentration profiles for K0.
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Gr = 2. Higher Gr values boost up the flow in both regions. As Gr increases the
minute enhancement of temperature and diffusion are observed. Similar observa-
tions are noticed with all the variations of Gc which are plotted in Figure 3(a)–(d).

Figure 4(a)–(d) describe the Reynolds number (R) impact on velocity, angular
velocity, temperature and diffusion. The reduction of velocity is found with increase
of Reynolds number due to domination of inertial force on viscous force in both
regions of the channel and found more drastic in viscous region. Also reduces the
micro rotation with increase of Reynolds number. The effect of inertial forces
enhances the temperature and reduction of the diffusion is shown with increase of R.

Figure 7.
(a) Represents behavior of u. (b) Represents behavior of N for Du. (c) Represents behavior of θ. (d) Represents
behavior of c for Du.

Figure 8.
(a) Represents behavior of u. (b) Represents behavior of N for Sr. (c) Represents behavior of θ. (d) Represents
behavior of c for Sr.
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Figure 5(a)–(d) describe the magnetic field (M) effect on velocity, angular
velocity, temperature and diffusion. They portray that there could be seen reduc-
tion in velocity and angular velocity as M increases. It shows that magnetic field has
a tendency to retard fluid velocity and angular velocity due to the formation of
resistive Lorentz force, where when magnetic effect is applied to the fluid, it tends
to retard the fluid motion. The magnetic field parametric impact on temperature
and diffusion is minute.

Figure 9.
(a) Represents behavior of u. (b) Represents behavior of N for Sc. (c) Represents behavior of θ. (d) Represents
behavior of c for Sc.

Figure 10.
(a) Represents behavior of u. (b) Represents behavior of N for Ec. (c) Represents behavior of θ. (d) Represents
behavior of c for Ec.
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Figure 6(a)–(d) explain the effect of material parameter (K0) on velocity,
angular velocity, temperature and diffusion. The effect of this parameter is very
significant in both velocity and angular velocity, as K0 increases the velocity
decreases significantly and this is reversed with respect to angular velocity. Minute
effect is observed for both temperature and diffusion.

Figure 7(a)–(d) explain the effect of Dufour number (Du) on velocity,
angular velocity, temperature and diffusion. Figure 7(a) depict the fact that as
Du increases, i.e. when molecular diffusivity increases, the velocity is reduced
and leads to reduction of micro rotation also from Figure 7(b) it clearly
indicates the influence of the concentration gradients to the thermal energy
flux in the flow. Figure 7(c) specifies that the temperature reduces with
increase of molecular diffusivity over the thermal diffusivity. It is clear that
the diffusion profiles increase with increase of dufour number as observed in
Figure 7(d).

Figure 8(a)–(d) relates the Soret number (Sr) impact on velocity, angular
velocity, temperature and diffusion. Figure 8(a) shows that as Sr. increases i.e.
thermal diffusivity increases the decrease in velocity is found and micro rotation
also decreases with increase of Sr. from Figure 8(b). Soret number states the impact
of temperature gradients stimulating considerable mass diffusion effects. Here, as
Soret number increases it leads to rise in temperature and shows the decay in the
fluid concentration from Figure 8(c) and (d).

Figure (a)–(d) specify the Schmidt number (Sc) effect on velocity, angular
velocity, temperature and diffusion. Figure 9(a) and (b) show that as Sc increases,
velocity and angular velocity decreases significantly. From Figure 9(c) and (d) it is
found that the temperature increases with increase of Sc and fluid concentration
reduces with increase in Schmidt number.

Figure 10(a)–(d) define the effect of Eckert number (Ec) on velocity, angular
velocity, temperature and diffusion. From all the Figures it is concluded that the
enthalpy is not having much influence over the flow for small variation of enthalpy.
Figure 10(a) and (b) show that the velocity and angular velocity increase when
Eckert number increases. So it is observed that momentum and angular momentum
are inversely proportional to enthalpy. From Figure 10(c) the temperature
increases with increase of kinetic energy. The kinetic energy reduces the concen-
tration of the fluid as shown from Figure 10(d).

Table 1 shows the Shear stress and Nusselt and Sherwood numbers values with
all the effects of all governing functions. From this table, it is observed that the
absolute Shear stress enhances with increase in Gr on both the boundaries y ¼ �1
and y ¼ 1 because of buoyancy forces and similar nature is observed for Gc also. For
increase of Reynolds number, magnetic field and Material parameter and Dufour,
Soret and Schmidt numbers, the stress reduces on both the boundaries. This case is
reversed for dissipation effect. The Nusselt number i.e. rate of heat transfer
decreases on the boundary at y ¼ �1 and increases on the other boundary y ¼ 1 for
the parameters Gr, Gc, R, Sr., Sc and Ec. The rise in convection is leading to
reduction of heat transfer rate on the plate bounding the region �1, the reverse
effect is observed for boundary of the region-2. Drastic heat transfer rate is
observed for the variations of the Reynolds Number. The increase in the Reynolds
number decreases the heat transfer rate on the left plate and enhances on the right
plate. For the other parameters M, K0, Du the effect is reversal. The Sherwood
number i.e. rate of mass transfer increase on the boundary at y ¼ �1 and decrease at
the boundary y ¼ 1 for the parameters Gr, Gc, R, Sr., Sc, Ec. This is because the rise
in convection and inertial forces leading to enhance the concentration. For the other
parameters M, K0, Du the effect is reversal i.e. mass transfer increases at the left
boundary and decreases at the right.
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Gr St-I St-II Nu-I Nu-II Sh-I Sh-II

2 �0.830728 0.238773 0.501802 0.498151 0.674487 0.325508

5 �1.21308 0.367972 0.501705 0.498196 0.674512 0.325473

8 �1.59544 0.497188 0.501571 0.49826 0.674547 0.325425

10 �1.85037 0.583344 0.50146 0.498312 0.674576 0.325385

Gc St-I St-II Nu-I Nu-II Sh-I Sh-II

2 �0.867571 0.276385 0.50179 0.498161 0.674491 0.3255

5 �1.21308 0.367972 0.501705 0.498196 0.674512 0.325473

8 �1.55858 0.459553 0.501593 0.498243 0.674541 0.325438

10 �1.78891 0.520603 0.501504 0.498279 0.674564 0.32541

R St-I St-II Nu-I Nu-II Sh-I Sh-II

1 �3.75411 1.2211 0.51129 0.487749 0.556265 0.443686

2 �1.84876 0.581703 0.507141 0.492627 0.614305 0.385672

3 �1.21308 0.367972 0.501705 0.498196 0.674512 0.325473

5 �0.703233 0.195659 0.489827 0.51014 0.80178 0.198213

M St-I St-II Nu-I Nu-II Sh-I Sh-II

1 �1.56381 0.632044 0.50152 0.498322 0.674563 0.325375

2 �1.35498 0.468803 0.50164 0.498238 0.67453 0.325441

3 �1.21308 0.367972 0.501705 0.498196 0.674512 0.325473

5 �1.02772 0.252261 0.501772 0.498159 0.674494 0.325503

K0 St-I St-II Nu-I Nu-II Sh-I Sh-II

0.05 �1.25054 0.369786 0.501697 0.498198 0.674514 0.325472

0.1 �1.21308 0.367972 0.501705 0.498196 0.674512 0.325473

0.2 �1.1461 0.364131 0.501719 0.498193 0.674509 0.325476

0.3 �1.08773 0.360146 0.501732 0.49819 0.674506 0.325478

Du St-I St-II Nu-I Nu-II Sh-I Sh-II

0.08 �1.21308 0.367972 0.501705 0.498196 0.674512 0.325473

0.1 �1.213 0.36789 0.502207 0.497695 0.674236 0.325748

0.3 �1.21205 0.366921 0.50812 0.491804 0.670989 0.328973

0.5 �1.21073 0.365583 0.516295 0.483705 0.666499 0.333392

Sr St-I St-II Nu-I Nu-II Sh-I Sh-II

0.05 �1.24193 0.397433 0.510133 0.489762 0.584941 0.415051

0.08 �1.22481 0.379948 0.505131 0.494768 0.638104 0.361884

0.1 �1.21308 0.367972 0.501705 0.498196 0.674512 0.325473

0.13 �1.19499 0.349512 0.496423 0.503481 0.730638 0.269345

Sc St-I St-II Nu-I Nu-II Sh-I Sh-II

0.22 �1.25121 0.406909 0.512844 0.487049 0.556131 0.443864

0.66 �1.21308 0.367972 0.501705 0.498196 0.674512 0.325473

1.02 �1.17975 0.333945 0.491969 0.507938 0.777967 0.222014

1.5 �1.13199 0.285191 0.478018 0.521897 0.926194 0.073786

Ec St-I St-II Nu-I Nu-II Sh-I Sh-II
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6. Conclusions

• Significant effect of Soret number on momentum, diffusion are observed

• Diffusion effects are reducing the momentum and are more pronounced in
concentration.

• For enhancement of inertial force the momentum and diffusion reduces to a
higher extent in case of micropolar region than viscous region.

• The diffusion parameters are reducing the magnitude of the shear stress on
both the boundaries.

• For dufour heat transfer rate effect is enhancing on the hot plate and reducing
on the cold plate but reverse effect is observed for rate on mass transfer.
Exactly opposite is observed for Soret number.

• Reduction of heat transference rate on hot plate and enhancement on the cold
plate is observed due to viscous dissipation.
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Gr St-I St-II Nu-I Nu-II Sh-I Sh-II

0.001 �1.21308 0.367972 0.501705 0.498196 0.674512 0.325473

0.002 �1.21309 0.367979 0.501527 0.498276 0.674559 0.325413

0.02 �1.21331 0.368093 0.49832 0.499703 0.675391 0.324325

0.05 �1.21367 0.368285 0.492968 0.502086 0.676779 0.322509

Table 1.
Shear stress, Nusselt number, Sherwood numbers.
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Chapter 6

A Dynamic Finite Element
Cellular Model and Its Application
on Cell Migration
Jieling Zhao

Abstract

While the tissue is formed or regenerated, cells migrate collectively and
remained adherent. However, it is still unclear what are the roles of cell-substrate
and intercellular interactions in regulating collective cell migration. In this chapter,
we introduce our newly developed finite element cellular model to simulate the
collective cell migration and explore the effects of mechanical feedback between
cells and between cell and substrate. Our viscoelastic model represents one cell with
many triangular elements. Intercellular adhesions between cells are represented as
linear springs. Furthermore, we include a mechano-chemical feedback loop
between cell-substrate mechanics and cell migration. Our results reproduce a set of
experimental observation of patterns of collective cell migration during epithelial
wound healing. In addition, we demonstrate that cell-substrate determined
mechanics play an important role in regulating persistent and oriented collective
cell migration. This chapter illustrates that our finite element cellular model can be
applied to study a number of tissue related problems regarding cellular dynamic
changes at subcellular level.

Keywords: finite element model, collective cell migration,
cell-substrate mechanics, intercellular adhesion, model developing

1. Introduction

Thanks to the accurate description of changes in material mechanics, finite
element method has been widely used in the field of bioengineering to study cellular
tissue related problems such as neurulation and epithelial mechanics [1, 2]. How-
ever, majority of current finite element models are only restricted on tissues under-
going changes of shapes and displacements at small scale. In addition, during the
simulation, the cellular tissue is required to be remained as one integrity. These
limitations restrict the traditional finite element method to be applied to study the
essential physiological processes such as morphogenesis, tissue regeneration, tumor
metastasis, and cancer invasion, where cells often migrate collectively as large
coherent strands or tubes. Such large scale of collective cell movement is recognized
as the hallmark of tissue-remodeling events. During the past decade, to overcome
the limitation of traditional finite element method, dynamic finite element method
such as PFEM has been developed to extend the traditional FEM to study mechanics
of materials with more flexibility or undergoing larger scale of motility. The object
domain (either fluid or solid) is represented as nodes tessellated by triangular mesh.
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The mathematical equations governing the physical rules of the mechanical prop-
erty of the discretized domain defined by the mesh connecting nodes are
subsequentially solved in the standard FEM. Under the analysis using dynamic
finite element method, the motion of sub-domain of the object can freely move and
even separate from the main domain [3]. The advancement of dynamic finite
element in achieving both accurate description of material mechanics and large
scale of geometric and topological changes makes it suitable to simulate the physi-
ological processes such as wound healing and cancer invasion. During these physi-
ological processes, cells move in collective fashion and respond with chemical and
mechanical signals through cell–cell junctions and interactions between cells and
their micro-environment.

In this chapter, we introduced our newly developed dynamic finite element
cellular model and its application to study the influence of cell-substrate mechanics
and intercellular adhesions on collective cell migration. Our model represents each
cell as a mesh of triangular elements at sub-cellular level [4]. Each triangular
element exhibits viscoelastic characteristic using a Maxwellian model [5]. The
effects of line tension forces along the cell boundary according to the local curvature
is incorporated [6]. The intercellular adhesions are modeled as elastic springs at
sub-cellular scale [7]. In addition, a mechano-chemical feedback pathway including
focal adhesion, proteins of Paxillin, Rac, PAK, and Merlin, which are all responsible
for cell protrusion [8] is embedded in individual cell. This pathway is collaborated
with another mechano-chemical pathway, which is responsible for transmitting
mechanical cue through intercellular adhesions [9]. Our model is used to study
collective cell migration using a simplified wound tissue. We then compare our
simulation results to an in vitro study [10]. Finally, we discussed and made the
conclusion that the mechanics between cell-substrate play a crucial role in guiding
highly efficient collective cell migration. This guidance cue is well maintained and
transmitted between cells through the intercellular adhesions.

2. Methods

2.1 Cell geometry

In our model, a cell in 2D Ω⊂2 is represented as an oriented polygon including
a number of boundary vertices V∂Ω � vi ∈∂Ω⊂2� �

, where the location of the
vertex vi is denoted as xi. The set of boundary vertices V∂Ω, together with a set of
internal vertices VInt and a set of triangular elements TΩ � τi,j,k : vi, v j, vk ∈

�
V∂Ω ∪VIntg define the geometry of cell Ω (Figure 1a). If two cells are closely in
contact, a set of adhesive springs are generated between them (Figure 1a, red bars
in the dashed blue box). There are several interior vertice on each cell boundary
edge. They are evenly distributed along that edge. These interior vertice are the
potential locations for newly generated adhesive spring to attach on. Any force
applied on that interior vertex through the attached adhesive spring will be mapped
onto its nearest end-node vertex of the corresponding boundary edge.

2.2 Viscoelasticity of the cell

Previous researches have demonstrated that the cell cytoskeleton exhibits visco-
elastic characteristic [14, 15]. Following the studies of [16, 17], we assume that,
during cell deformation and cell migration, linear viscoelasticity is adequate to
describe the mechanical properties of the cell.
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2.2.1 Strain and stress tensors

We use the strain tensor ε x, tð Þ to describe the local cell deformation at x at time
t. ε x, tð Þ takes the form of ε1,1 ¼ ∂u1=∂x1, ε2,2 ¼ ∂u2=∂x2, and ε1,2 ¼ ε2,1 ¼
1
2 ∂u1=∂x2 þ ∂u2=∂x1ð Þ, where u x, tð Þ defined as u1 x, tð Þ, u2 x, tð Þð ÞT ⊂2 is the
displacement of x at time t. We use the stress tensor σ x, tð Þ to describe the local
forces at x at time t. Here σ is correlated with ε by a generalized Maxwell model:
σ x, tð Þ ¼ σ∞ x, tð Þ þ σm x, tð Þ [5, 12, 13], where σ∞ x, tð Þ is the stress of the long-term
elastic element and σm x, tð Þ is the stress of the Maxwell elastic element. E∞, Em, and
ηm denote the long-term elastic modulus, elastic modulus of the Maxwell elastic
element, and viscous coefficient of the Maxwell viscous element, respectively
(Figure 1b). The strain of the Maxwell elastic element ε1 x, tð Þ and the strain of the
viscous element ε2 x, tð Þ sum up to the strain tensor ε x, tð Þ: ε1 x, tð Þ þ ε2 x, tð Þ ¼
ε x, tð Þ.

We assume that the total free energy of a cell is the summation of its elastic
energy, its adhesion energy due to the contact with the substrate, its elastic energy
due to the intercellular adhesions with neighboring cells, and its energy due to the
forces exerting on the boundary.

2.2.2 Cell elastic energy

The elastic energy due to the deformation of the cell Ω is given by

EΩ tð Þ ¼ 1
2

ð

Ω
σ∞ x, tð Þ þ σaδij xð Þ
� �T

ε x, tð Þdxþ 1
2

ð

Ω
σm x, tð ÞTε1 x, tð Þdx, (1)

where σa is a homogeneous contractile pressure following [6].

Figure 1.
The cell geometry and the chemical pathway between cell-substrate and intercellular adhesion. (a) the cell in
our model is represented as following: The cell boundary is defined by an oriented polygon including a number of
boundary vertices. A triangular mesh tiling up a cell is generated based on the method of farthest sampling [11].
The E-cadhesion type of intercellular adhesions between two neighboring cells are represented as elastic springs
(red bars in the blue box, the dashed blue box is for a closer view). (b) each triangular element exhibits
viscoelastic characteristic using a generalized Maxwell model following [5, 12, 13]. (c) the positive feedback
loop between focal adhesion and cell protrusion is built up in each vertex of the triangular mesh following [8].
Such network includes the proteins of integrin, Paxillin, Rac, and PAK. The protein Merlin on the cadherin is
also included to count the effects of intercellular adhesion on cell migration [9].

133

A Dynamic Finite Element Cellular Model and Its Application on Cell Migration
DOI: http://dx.doi.org/10.5772/intechopen.94181



2.2.3 Cell adhesion energy due to the contact with the substrate

The energy due to the adhesion between the cell and the substrate is given by [6].

Y x, tð Þ
2

ð

Ω
u x, tð Þ2dx, (2)

where Y x, tð Þ is the adhesion coefficient at time t and is proportional to the
strength of local focal adhesions [18]: Y x, tð Þ ¼ nx,t

n0
EstYa, where nx,t is the number of

bound integrins at location x at t (more details of calculating nx,t in Model of focal
adhesion), n0 is a normalized constant number, Est is the stiffness of the substrate
and Ya is the basic adhesion constant following [18].

2.2.4 Cell adhesion energy due to intercellular adhesion

The energy due to the intercellular adhesions, which are modeled as elastic
springs, is given by 1

2

P
lklul tð Þ2, where kl is the spring constant of the spring l. Its

orientation angle at time t is denoted as θl tð Þ. Its transformation vector T θð Þ is
denoted as cos θlð Þ, sin θlð Þ,� cos θlð Þ,� sin θlð Þð Þ. So ul tð Þ can be written as ul tð Þ ¼
T θlð Þ u11 tð Þ,ul2 tð Þð Þ, where ul1 tð Þ and ul2 tð Þ are the displacements of the two end-
node vertice x1 and x2 of l at time t. The elastic force of l due to displacement of Δl is
applied on xi and x j as f l ¼ f Δlð Þel and -f Δlð Þel, respectively, where f Δlð Þ is the
magnitude of f l, el is the unit vector of the orientation of l.

2.2.5 Boundary and protrusion forces

Furthermore, the local forces applied on the cell boundary also contribute to the
energy. Following [6], the tension force along the cell boundary is considered. In
addition, we also incorporate the protrusion force on the leading edge of migrating
cell. The contribution of these two forces can be written as

ð

∂Ω
λ x, tð Þ þ f x, tð Þð Þu x, tð Þdx, (3)

where λ x, tð Þ is the line tension force and f x, tð Þ is the protrusion force. Line
tension force is written as λ x, tð Þ ¼ � f mκ x, tð Þn x, tð Þ, where f m is a contractile
force per unit length, κ x, tð Þ is the curvature, and n x, tð Þ is the outward unit normal
at x at time t [6]. Protrusion force is denoted as f x, tð Þ ¼ � f an x, tð Þ, where f a is the
protrusion force per unit length.

2.2.6 The total free energy and its dissipation

In summary, the total free energy of cell Ω at time t is given by

EΩ tð Þ ¼ 1
2

ð

Ω
σ∞ x, tð Þ þ σaδij
� �T

ε x, tð Þ þ σTm x, tð Þε1 x, tð Þ
� �

dxþ 1
2

ð

Ω
σa, σa, 0ð Þε x, tð Þdx

þY x, tð Þ
2

ð

Ω
u x, tð Þ2dxþ 1

2

X
l

klul tð Þ2 þ
ð

∂Ω
λ x, tð Þ þ f x, tð Þ þ f l x, tð Þ
� �

u x, tð ÞdxÞ:

(4)
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The energy dissipation of EΩ tð Þ due to cell viscosity is determined by the viscous

coefficient ηm and the strain of the viscous element ε2 x, tð Þ [19]: �
Ð
Ωηm

∂ ε2
∂t

� �2
dx . The

dissipation of the total free energy of the cell can be written as

∂

∂t
EΩ tð Þ ¼ ∂

∂t
ð1
2

ð

Ω
σ∞ x, tð Þ þ σaδij
� �T

ε x, tð Þ þ σTm x, tð Þε1 x, tð Þ
� �

dxþ 1
2

ð

Ω
σa, σa, 0ð Þε x, tð Þdx

þY x, tð Þ
2

ð

Ω
u x, tð Þ2dxþ 1

2

X
l

klul tð Þ2 þ
ð

∂Ω
λ x, tð Þ þ f x, tð Þ þ f l x, tð Þ
� �

u x, tð ÞdxÞ

¼ �
ð

Ω
ηm

∂ε2 x, tð Þ
∂t

� �2

dx:

(5)

Since ηm
∂ ε2
∂t ¼ Emε1 and σ∞ ¼ E∞ε , and ul tð Þ ¼ T θlð Þ ul1,ul2ð Þ. Eq. (5) can be

rewritten as

ð

Ω
E∞ε x, tð Þ ∂ε x, tð Þ

∂t
dxþ

ð

Ω
σTm x, tð Þ ∂ε x, tð Þ

∂t
dxþ

ð

Ω
σa, σa, 0ð Þ ∂ε x, tð Þ

∂t
dx

þY
ð

Ω
u x, tð Þ ∂u x, tð Þ

∂t
dxþ

X
l

T θlð ÞTT θlð Þkl ul1 tð Þ,ul2 tð Þð Þ ∂u x, tð Þ
∂t

þ
ð

∂Ω
λ x, tð Þ þ f x, tð Þ þ f l x, tð Þ
� � ∂u x, tð Þ

∂t
dx ¼ 0:

(6)

Denoting B ¼
∂=∂x1 0

0 ∂=∂x2
∂=∂x2 ∂=∂x1

0
B@

1
CA, then ε x, tð Þ ¼ Bu x, tð Þ. According to Gauss’

divergence theorem, we rewrote
Ð
Ω σa, σa, 0ð ÞB ∂u x, tð Þ

∂t as
Ð
Ωσa∇ �

∂u x, tð Þ
∂t dx , which

leads to
Ð
∂Ωσan x, tð Þ ∂u x, tð Þ

∂t dx .

Denoting Al ¼

c2l clsl �c2l �clsl
clsl s2l �clsl �s2l
�c2l �clsl c2l clsl
�clsl �s2l clsl s2l

0
BBB@

1
CCCA, where cl ¼ cos θlð Þ and

sl ¼ sin θlð Þ. Eq. (6) can be rewritten as

ð

Ω
BT σ x, tð ÞTdxþ Y

ð

Ω
u x, tð Þdxþ

X
l

Alkl ul1 tð Þ,ul2 tð Þð Þ ¼

�
ð

∂Ω
σan x, tð Þ þ λ x, tð Þ þ f x, tð Þ þ f l x, tð Þdx

(7)

2.2.7 Stress of viscoelastic cell and its update

By using general Maxwell model, the stress σ x, tð Þ can be written as [12, 13, 19]:

E∞ε x, tð Þ þ
ðt
0
Eme

t�s
ηm=E∞

∂ε x, sð Þ
∂s

ds ¼ σ∞ x, tð Þ þ σm x, tð Þ: (8)

During the time interval Δt ¼ tnþ1 � tn, where tn is the n-th time step, σnþ1m xð Þ
can be written as [19]:
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e�
Δt

ηm=E∞ σnm xð Þ þ Em

E∞

ðtnþ1
tn

e�
tnþ1�s
ηm=E∞ds

σnþ1∞ xð Þ � σn∞ xð Þ
Δt

: (9)

Therefore, the stress σn xð Þ at tn can be written as

σn xð Þ ¼ σn∞ xð Þ þ σnm xð Þ (10)

2.2.8 Force balance equation for discretized time step

For each triangular element τi,j,k, Eq. (7) at time step tnþ1 can be rewritten using
Eq. (10) as

ð

τi,j,k

BT E∞Bunþ1 xð Þ þ e�
Δt

ηm=E∞ σnm þ γmAm E∞Bunþ1 xð Þ � E∞Bun xð Þ
� �� �

dx

þY
ð

τi,j,k

unþ1dxþ
X
l∈ τi,j,k

Alkl unþ1
l1 ,unþ1

l2

� �
¼ Fnþ1 xð Þ,

(11)

where γm ¼ Em=E∞, Am ¼ 1�e
� Δt
ηm=E∞
Δt

ηm=E∞
, and Fnþ1 ¼ �

Ð
∂Ωσan x, tð Þ þ λ x, tð Þ þ

f x, tð Þ þ f l x, tð Þdx. Eq. (11) leads to the following linear force-balance equation

Knþ1
τi,j,k

unþ1
τi,j,k
¼ fnþ1τi,j,k

, (12)

where Knþ1
τi,j,k

, unþ1
τi,j,k

, and fnþ1τi,j,k
are the stiffness matrix, displacement vector, and

integrated force vector of τi,j,k at time step tnþ1 (see more details of derivation of
(Eq. 12) in [11]).

We can then assemble the element stiffness matrices of all triangular elements
into one big global stiffness matrix Knþ1. Therefore, the linear relationship between
the concatenated displacement vector unþ1 of all cell vertice and the force vector
f nþ1 on them is given by

Knþ1unþ1 ¼ f nþ1: (13)

Changes in the cell shape at time step tnþ1 can be obtained by solving Eq. (13).
For vertex vi at xi, its new location at next time step is then updated as
xnþ1
i ¼ xni þ unþ1 við Þ.

2.3 Mechano-chemical pathway in the cell

Upon contact with the environment, cells can transfer the mechanical cues into
biochemical signals, which can trigger the initiation of further cellular behaviors
[20]. In our model, we considered a mechano-chemical pathway consisting of two
parts, where one is to regulate the feedback loop between focal adhesion and cell
protrusion and the other is to regulate the transmission of mechanical signal
between adjacent cells through intercellular adhesions.

2.3.1 Model of focal adhesion

For each vertex vi in cell Ω, we assign a constant number of integrin ligand on it.
These integrin molecules can bind or unbind with fibronectin molecules on the

136

Finite Element Methods and Their Applications



substrate underneath. Following [21], the numbers of bound and unbound integrin
ligand molecules are determined by

dRb

dt
¼ k f nsRu � krRb, (14)

where Ru and Rb are the numbers of unbound and bound integrin ligand,
respectively; k f is the binding rate coefficient; ns is the concentration of fibronectin
per cell vertex; kr is the unbinding rate coefficient. kr depends on the magnitude of
the traction force f r applied on vi. Traction force f r x, tð Þ on x at time t is given by
Y x, tð Þu x, tð Þ following [6]. kr is determined by kr ¼ kr0 e�0:04 f r þ 4e� 7e0:2 f r

� �
following [22], where kr0 is a constant. k f is related with the substrate stiffness by
k f ¼ kf0E2

st= E2
st þ E2

st0

� �
[16, 23], where kf0 and Est0 are constants (see Appendix for

choosing Est0).

2.3.2 Model of feedback loop between focal adhesion and cell protrusion

We introduced a simplified model of a positive feedback loop to control the
spatial distribution of the focal adhesions, which governs the direction of cell
protrusion [8, 24]. In our model, this feedback loop involves proteins of Paxillin,
Rac, and PAK (Figure 1c). Upon formation of focal adhesion, Paxillin is activated
by active PAK. The active Paxillin then activates Rac, which in turn triggers the
activation of PAK. The activated Rac is responsible for protruding cells [25]. Since
the protein Merlin on the intercellular cadherin complex also plays a role in acti-
vating Rac [9], we include Merlin in our feedback loop. The protein concentration
over time is updated through a set of differential equations following [8]:

dr
dt
¼ kx,r km

C2
r

C2
r þm2

x� r

 !
(15)

dp
dt
¼ kr,p r� pð Þ (16)

dx
dt
¼ kp,x kx

p2

p2 þ C2
x
n� x

 !
(17)

where x, r, p, m and n are the concentrations of activated Paxillin, activated Rac,
activated PAK, Merlin and bound integrins, respectively. kx,r, kr,p, kp,x, km, kx, Cr,
Cx are the parameters of corresponding rates. The level of activated Rac was used to
determine the protrusion force on the leading edge of the migrating cell (see details
of cell protrusion model in Appendix).

2.3.3 Model of mechanosensing through intercellular adhesion

We added Merlin in the feedback loop (Figure 1c) following a previous study
reporting that Merlin on the intercellular cadherin complex regulates the Rac activ-
ity [26]. As illustrated in Figure 2a, for two adjacent cells C1 and C2 where C1 is the
leader cell and C2 is the follower cell, if both cells are at static state, Merlin
molecules only locate on the cadherin spring (Figure 2b top). As reported by [9],
Merlin suppressed the binding of integrin. Due to such suppression, Rac turns to
inactivated on the Merlin-expressed site. Once cell C1 starts to migrate, tension
force is generated on the cadherin spring between C1 and C2. Merlin is therefore
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delocalized from cadherin-attached site in response to the generated tension force.
As a consequence, Rac is activated there to generate protrusion force to follow the
leader cell (Figure 2b bottom [26]). For simplicity, we introduced the inactive
Merlin phenotype along with the active Merlin phenotype on the two end vertice of
one intercellular cadherin adhesion. The negative feedback loop of Merlin-Rac is
modeled through a set of differential equations following [9, 26], where active
Merlin and inactive Merlin can switch their phenotype, but only active Merlin can
suppress the Rac activity (Figure 1c). The delocalization of Merlin was simply
modeled as Merlin switching to inactive phenotype:

Figure 2.
Mechanosensing through intercellular adhesion and tissue model for collective cell migration. (a) the
intercellular adhesion of the cadherin spring (red springs in the blue box) are responsible for transmitting
mechanical stimulus from leader cell (C1) to its follower cells (C2 and C3). (b) When cells are static, Merlin
which inhibits the Rac activation is bound on the cadherin spring. Once leader cell migrates, stretch is generated
on the cadherin spring, Merlin on the follower cell is delocated. Therefore, Rac is activated on the follower cell.
(c) the size of the wound epithelial tissue is 720 μm � 240 μm. The right boundary is set as the wound edge
(yellow line). Cells can migrate towards the open space on the right. Three measurements are introduced to
measure the collective cell migration: (1) migration persistence p tnð Þ, the ratio of the distance from the current
position at time tn to its initial position (green line), over the length of the traversed path (red curve); (2)
normalized pair separation distance di,j tnð Þ is the separation distance between a pair of cells at time tn (green
lines) divided by the average length of the two cells’ traversed path (red curves); (3) migration direction angle
α tnð Þ is the angle between the migration direction (red arrow) and the direction towards the wound (green
arrow).
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dm
dt
¼ e� δ f t > f t�thr

� �
km,e kp

p2

p2 þ C2
e
þ ke

 !
m

 
(18)

de
dt
¼ δ f t > f t�thr
� �

km,e kp
p2

p2 þ C2
e
þ ke

 !
m

 !
� e (19)

where m, e and p are the concentrations of Merlin, inactive Merlin, and PAK,
respectively. km,e, kp, ke, Ce are the corresponding rate parameters. δ xð Þ is a
kronecker function that δ TRUEð Þ ¼ 1 and δ FALSEð Þ ¼ 0. f t is the tension force
through the cadherin spring and f t�thr is a force threshold.

2.4 Cellular tissue for collective cell migration

In our model, the collective cell migration was modeled using a wound tissue of
epithelial cells. The tissue size is 720 μm � 240 μm. The epithelial cell type is set to
MCF-10A, which is used in the in vitro study [10]. The corresponding epithelial-
specific parameters can be found in Table 1. We arbitrarily set the right boundary
of the tissue as the wound edge, and cells can migrate towards the open space to the
right of the wound edge (Figure 2c). The mechano-chemical pathway was initiated
first in the cells on the wound edge after they migrate. We followed a previous
study [10] to divide the location of cells into four sub-regions according to their
distance to the wound edge: Regions I, II, III, and IV whose distance to the wound
edge is 0–160 μm, 160–320 μm, 320–480 μm, and 480–640 μm, respectively
(Figure 2c). We ran the simulation for 12 biological hours, the same experimental
duration time in the in vitro study [10].

2.5 Measurements of the collective cell migration

In our model, the collective cell migration are measured using four measure-
ments following [10]:

The migration persistence. At time step tn, the length of the straight line between
cell positions at tn and initial time step t0 over the length of the migrating trajectory:

p tnð Þ ¼
∣x tnð Þ � x t0ð Þ∣Pn�1

k¼0∣ x tkþ1ð Þ � x tkð Þ∣
, (20)

where t0 is the initial time, x tið Þ is the position at time step ti (Figure 2c.1).
The normalized separation distance. At time step tn, the separation distance of a

pair of two adjacent cells 1-2, divided by the average length of their migrating
trajectories:

d1,2 tið Þ ¼
kx1 tið Þ � x2 tið Þ∣� ∣x1 t0ð Þ � x2 t0ð Þk

1
2

Pi�1
k¼0jx1 tkþ1ð Þ � x1 tkð Þjþ

Pi�1
k¼0jx2 tkþ1ð Þ � x2 tkð Þj

� � , (21)

where the numerator is the separation distance between cells i and j at time tn,
and the denominator is the average path length of cells i and j at time tn
(Figure 2c.2).

The direction angle. The angle between the cell migration direction and the
direction towards the wound.
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α tnð Þ ¼ arccos uc � uwð Þ � sgn ∥uc � uw∥ð Þ, (22)

where uc is the unit vector of the cell migration direction, uw is the unit vector of
direction from the cell mass center towards the wound, sgn xð Þ is the sign of x
(Figure 2c.3).

3. Results

3.1 Mechanics of cell-substrate is crucial to regulate collective cell migration

3.1.1 Morphology and migration pattern under different substrate stiffness

We fist studied collective cell migration under the mechano-chemical mechanism.
The trajectories of our simulation showed that cells migrate faster and more persis-
tently on stiffer substrate (Figure 3a and b). This is compatible with the observed
pattern from the in vitro study of collective cell migration (Figure 3c and d).
Furthermore, the shape of cell also changes with different substrate stiffness. Cells

Definition Value Reference

Time step lapse 0.1 sec NAa

Cell radius 10 μm [27]

Young’s modulus of cell 5 kPa [28]

Poisson ratio of cell 0.40 [29]

Contractile pressure σa 2 kPa [6]

Adhesion energy constant Ya 0.9 =μm [6]

Spring constant of cadherin spring 3.0 nN=μm NA

Default length of cadherin spring 100 nm [30]

Maximum length of cadherin spring 400 nm [31]

Protrusion force constant f a 2.0 nN=μm [11]

Integrin bound rate k f0 0.5 [22]

Integrin unbound rate kr0 0.4 [22]

Reference substrate stiffness Est0 40 kPa NA

Rac deactivation rate kx,r 4/min [8]

PAK deactivation rate kr,p 10/min [8]

Paxillin dephosphorylation rate kp,x 10/min [8]

Saturation of phosphorylated Paxillin kx 1 [8]

Saturation of PAK activation kp 1 [8]

Saturation of Merlin km 1 NA

Merlin phosphorylation rate km,e 10/min NA

Saturation of phosphorylated Merlin ke 1 e�3 NA

Force threshold of delocating Merlin f t�thr 0.15 nN NA

aEstimated value marked as NA.

Table 1.
Parameters used in the model.

140

Finite Element Methods and Their Applications



adopted a more spherical shape on softer substrate (Figure 4a) while cells were more
elongated on stiffer substrate (Figure 4c). The same pattern of cell morphology was
observed in [10], where cell extended its protrusions in all directions on softer
substrate (Figure 4b) while cell protruded only on the leading edge with a long tail
on stiffer substrate (Figure 4d).

Overall, the patterns of cell trajectory and cell morphology of our simulation are
consistent with that from in vitro study. This indicated that our mechano-chemical
model is valid.

3.1.2 The mechanical signal has long-distance impacts on collective cell migration

We then quantified the cell migration to explore the role of mechanics of
cell-substrate and cell–cell mechanics on collective cell migration using the three
measurements: persistent ratio p tnð Þ, normalized separation distance di,j tnð Þ and
direction angle α tnð Þ.

Figure 3.
Cell migrating trajectories. (a–b) the migrating trajectory in our simulation using two substrate stiffness: 3 and
65 kPa. (c–d) the migrating trajectory from the in vitro study using the same substrate stiffness: 3 and 65 kPa
[10]. The scale bar is 100 μm.

141

A Dynamic Finite Element Cellular Model and Its Application on Cell Migration
DOI: http://dx.doi.org/10.5772/intechopen.94181



We first examined the migrating speed of the cell. In general, cells migrate with
higher speed on stiffer substrate (Figure 5a, more details of cell migration speed can
be found in Appendix). In addition, cells close to the wound edge migrated with
higher speed on both stiffer and softer substrate. This speed decreased gradually as
the distance to the wound edge increased. On substrate with stiffness of 65 kPa, the
migration speed decreased from 0:69� 0:01μm=min in Region I to 0:49�
0:02μm=min in Region IV, while on substrate with stiffness of 3 kPa, the migration

Figure 4.
Cell morphology. (a, c) the cell morphology in our simulation using two substrate stiffness: 3 and 65 kPa. (b, d)
the cell morphology from the in vitro study [10] using the same substrate stiffness: 3 and 65 kPa. The cell
boundary is highlighted in black.

Figure 5.
Measurements of the collective cell migration. (a–c) the cell migration speed, persistence ratio and normalized
separation distance of our simulation and in the in vitro study [10]. (d–g) the migration direction angle of the cells
on the leading edge and more than 500 μm from the wound edge in our simulation and that in the in vitro study
[10] on the substrate with stiffness 65 kPa (d–e) and 3 kPa (f–g). The colors indicating simulation and experiment
are shown in (a). The error bars of our simulation depict the standard deviations of four runs of simulation.
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speed decreased from 0:38� 0:02μm=min in Region I to 0:25� 0:02μm=min in
Region IV (Figure 5a). The cell migration speed of our simulation was consistent
with that from the in vitro study [10]. It is easy to interpret such pattern of cell
migration speed. For cells in Region I, especially on the wound edge, there are fewer
or even no cells ahead. As the distance to the wound edge increased, it was more
crowded and more difficult for cells to migrate forward.

We next examined the migration persistence of the cells. As shown in Figure 5b,
cells migrate more persistently on stiffer substrate. In addition, cells close to the
wound edge migrated with higher migration persistence. For cells on substrate with
stiffness of 65 kPa, the persistence ratio decreased from 82� 2% in Region I to
58� 3% in Region IV, while for cells on substrate with stiffness of 3 kPa, the
persistence ratio decreased from 71� 1% in Region I to 55� 3% in Region IV
(Figure 5b). As shown in Figure 5c, collective cell migration was coordinated better
on stiffer substrate.

In addition, we examined the normalized separation distance of the pairs of
migrating cells. As shown in Figure 5c, the normalized separation distance
increased as the distance to the wound edge increased. In our simulation, for cells
on substrate at stiffness of 65 kPa, the separation distance decreased from 0:15�
0:02 in Region I to 0:11� 0:02 in Region II and then increased to 0:21� 0:03 in
Region IV, while for cells on substrate at stiffness of 3 kPa, the separation distance
decreased from 0:22� 0:02 in Region I to 0:17 � 0:02 in Region II and then
increased to 0:19� 0:04 in Region IV (Figure 5c). This pattern of separation
distance in our simulation was also observed in the in vitro study [10].

Furthermore, we examined the migration direction angle. We compared this
angle for cells on the leading edge of the tissue and cells 500 μm away. Since the cell
migration direction is usually along the cell polarity direction [32], we also com-
pared this direction angle to the cell polarization direction reported in [10]. As
shown in Figure 5d–g, cells exhibit more accurate migration direction towards the
wound on stiffer substrate (65 kPa). Only about 10 % of the cells on the leading
edge had migration direction opposite to the wound (Figure 5d, 90°–270°). For cells
> 500 μm away from the wound edge, 30 % of them had migration direction
opposite to the wound (Figure 5f, 90°–270°). However, for cells on softer substrate
(3 kPa), cell migration deviated more from the direction towards the wound where
35 % of the cells on leading edge had migration direction opposite to the wound
direction (Figure 5e, 90°–270°), while for cells > 500 μm away from the wound
edge, this fraction increased to 45 % (Figure 5g, 90°–270°).

These measurements implied that substrate stiffness is important to guide col-
lective cell migration. Cells on stiffer substrate can migrate with high persistence,
good coordination between cell pairs, and accurate migration direction. Our simu-
lation suggests that the mechano-chemical feedback loop in each cell ensured it to
dictate its migration direction. Furthermore, the individual cell movements were
organized into a global migrative wave through intercellular adhesions.

4. Conclusions

In this chapter, we introduced our novel finite element cellular model to explore
the mechanism behind collective cell migration using a simplified tissue model. This
model includes a detailed mechano-chemical feedback loop, which takes into
account of formation of focal adhesion and cell protrusion initiated by Rac signal-
ing. In addition, our model incorporates the mechanical cue transmitting between
the follower cell and the leader cell. We further examined the effects of
cell-substrate contact and intercellular adhesions on collective cell migration.
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An important result of this study is that we find the cell-substrate mechanics
plays crucial role in guiding collective cell migration with higher persistence,
more accurate direction, and better coordination between cell pairs (Figure 5).
Previous in vitro study has shown that cells tend to have elongated shape on stiffer
substrate while cells tend to have spherical shape on softer substrate [33]. This
is compatible with our simulation (Figure 4a and c). We anticipate that our
finite element cellular model can be applied to a broad of studies of cellular tissue
problems.

Appendix A: cell migration model

In our model, cell migration is initiated and maintained by the protrusion force
on the leading edge and the cell migration speed varies with the cell-substrate
friction following [16].

A.1 Cell-substrate depending on substrate stiffness

The adhesion coefficient Y x, tð Þ of a cell vertex x at time t and set to be
proportional to the strength of focal adhesions [18]: Y x, tð Þ ¼ nx,t

n0
EstYa, where nx,t is

the number of binding integrins at location x at t, n0 is a normalizing constant
number, Est is the stiffness of the substrate, Ya is the basic adhesion constant taken
from [18]. In this way, the cell-substrate friction is related with the stiffness of the
substrate.

A.2 Cell protrusion depends on substrate stiffness

In our model, there is a mechano-chemical pathway dictating the cell protrusion.
The bound integrin initiates the activation of Rac which regulates the cell protru-
sion. At time t, the migration direction of the cell C is sampled from all the
boundary vertice according to their Rac concentration. One vertex vi is stochasti-
cally selected with the probability Rac við ÞP

i
Rac við Þ

. The outward unit normal vector n við Þ of
vi is chosen as the cell migration direction. Any vertex v j whose outward unit
normal vector n v j

� �
is positively aligned with n við Þ, is treated as leading edge

vertex. The protrusion force f a is then applied on each leading edge vertex vi as
f a við Þ ¼ f aR við Þn við Þ, where f a is a constant, R við Þ is the normalized Rac
concentration at vi.

A.3 Calibrating the cell protrusion parameter

As shown in Figure 6a–c, the cell leading edge has higher level of bound
integrin, along with higher level of Rac due to the effect of positive feedback loop.
The Merlin expression is also mechano-dependent. As shown of the pair of cells in
the green box of Figure 6b, after the right cell migrates, the stretch force on the
cadherin spring between them make the Merlin delocate from the left cell. As a
result, the left cell can express Rac to protrude following the right cell. If the pair of
static cell are simply in contact (Figure 6b), the Merlin is expressed on both of
them. Therefore, the Rac expression is inhibited. Both of the two cells do not
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protrude against each other. To fit our cell protrusion model to the in vitro data, we
calibrate the parameter of Est0: when Est0 ¼ 40kPa, the cell migration speed of our
simulation has the best match with the in vitro studies [33, 34] (Figure 6d).
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Figure 6.
The cell protrusion depends on mechano-chemical process. (a–c) the spatial distribution of the normalized
concentration of bound integrin, Merlin, and Rac. The black arrows indicate the migration direction. The
pattern of Merlin expression depends on cell status. Green box in (b): The left cell follows the right one. Merlin
is expressed only on the right cell; Orange box in (b): The two static cells are in contact. Merlin is expressed on
both of them. (d) Cell migration speed of our simulation is consistent with the experimental observation
[33, 34].

145

A Dynamic Finite Element Cellular Model and Its Application on Cell Migration
DOI: http://dx.doi.org/10.5772/intechopen.94181



References

[1] Chen X., Brodland G.W. Multi-scale
finite element modeling allows the
mechanics of amphibian neurulation to
be elucidated. Physical Biology. 2008;5:
015003.

[2] Hutson M.S., Veldhuis J., Ma X.,
Lynch H.E., Cranston P.G., Brodland G.
W. Combining laser microsurgery and
finite element modeling to assess cell-
level epithelial mechanics. Biophysical
Journal. 2009;97:3075–3085.

[3] Oñate E., Idelsohn S., Del Pin F.,
Aubry R. The particle finite element
methodan overview. International
Journal of Computational Methods.
2004;1:267–307.

[4] Zhao J., Manuchehrfar F., Liang J.
Cell-substrate mechanics guide
collective cell migration through
intercellular adhesion: a dynamic finite
element cellular model. Biomechanics
and Modeling in Mechanobiology. 2020;
19(5):1781–1796.

[5] Karcher H., Lammerding J., Huang
H., Lee R.T., Kamm R.D., Kaazempur-
Mofrad M.R. A three-dimensional
viscoelastic model for cell deformation
with experimental verification.
Biophysical Journal. 2003;85(5):
3336–3349.

[6] Oakes P., Banerje S., Marchetti M.
Gardel M. Geometry regulates traction
stresses in adherent cells. Biophysical
Journal. 2014;107:825–833.

[7] Jamali Y., Azimi M., Mofrad M.R. A
sub-cellular viscoelastic model for cell
population mechanics. PLoS One. 2010;
5(8):e12097.

[8] Cirit M., Krajcovic M., Choi C.K.,
Welf E.S., Horwitz A.F., Haugh J.M.
Stochastic model of integrin-mediated
signaling and adhesion dynamics at the
leading edges of migrating cells. PLoS
Comput. Biol. 2010;6(2):e1000688.

[9] Okada T., Lopez-Lago M., Giancotti
F.G. Merlin/nf-2 mediates contact
inhibition of growth by suppressing
recruitment of Rac to the plasma
membrane. J. Cell Biol. 2005;171(2):
361–371.

[10] Ng M.R., Besser A., Danuser G.,
Brugge J.S. Substrate stiffness regulates
cadherin-dependent collective
migration through myosin-II
contractility. The Journal of Cell
Biology. 2012;199(3):545–563.

[11] Zhao J., Cao Y., DiPietro L.A., Liang
J. Dynamic cellular finite-element
method for modelling large-scale cell
migration and proliferation under the
control of mechanical and biochemical
cues: a study of re-epithelialization.
Journal of The Royal Society Interface.
2017;14(129):20160959.

[12] Schoner J.L., Lang J., Seidel H.P.
Measurement-based interactive
simulation of viscoelastic solids.
Computer Graphics Forum. 2004;23:
547–556.

[13] Schwartz J.M., Denninger M.,
Rancourt D., Moisan C. Laurendeau D.
Modelling liver tissue properties using a
non-linear visco-elastic model for
surgery simulation. Medical Image
Analysis. 2005;9(2):103–112.

[14] Rubinstein B., Fournier M.F.,
Jacobson K., Verkhovsky A.B., Mogilner
A. Actin-myosin viscoelastic flow in the
keratocyte lamellipod. Biophysical
Journal. 2009;97(7):1853–1863.

[15] Ladoux B., Mège R.M., Trepat X.
Front–rear polarization by mechanical
cues: From single cells to tissues. Trends
in Cell Biology. 2016;26(6):420–433.

[16] Dokukina I.V. Gracheva M.E. A
model of fibroblast motility on
substrates with different rigidities.
Biophysical Journal. 2010;98(12):
2794–2803.

146

Finite Element Methods and Their Applications



[17] Barnhart E., Lee K.C., Keren K.,
Mogilner A., Theriot J. An adhesion-
dependent switch between mechanisms
that determine motile cell shape. PLoS
Biol. 2011;9(5):e1001059.

[18] Banerjee S., Marchetti M.C.
Contractile stresses in cohesive cell
layers on finite-thickness substrates.
Physical Review Letters. 2012;109(10):
108101.

[19] Sedef M., Samur E., Basdogan C.
Real-time finite-element simulation of
linear viscoelastic tissue behavior based
on experimental data. Computer
Graphics and Applications. 2006;26(6):
58–68.

[20] Holle A.W., Engler A.J. More than a
feeling: discovering, understanding, and
influencing mechanosensing pathways.
Current Opinion in Biotechnology.
2011;22(5):648–654.

[21] DiMilla P., Barbee K., Lauffenburger
D. Mathematical model for the effects of
adhesion and mechanics on cell
migration speed. Biophysical Journal.
1991;60(1):15.

[22] Li Y., Bhimalapuram P., Dinner A.R.
Model for how retrograde actin flow
regulates adhesion traction stresses.
Journal of Physics: Condensed Matter.
2010;22(19):194113.

[23] Yeh Y.C., Ling J.Y., Chen W.C., Lin
H.H., Tang M.J. Mechanotransduction
of matrix stiffness in regulation of focal
adhesion size and number: reciprocal
regulation of caveolin-1 and β1 integrin.
Scientific reports. 2017;7(1):15008.

[24] Stéphanou A., Mylona E., Chaplain
M., Tracqui P. A computational model
of cell migration coupling the growth of
focal adhesions with oscillatory cell
protrusions. Journal of Theoretical
Biology. 2008;253(4):701–716.

[25] Wu Y.I., Frey D., Lungu O.I.,
Jaehrig A., Schlichting I., Kuhlman B.,

Hahn K.M. A genetically encoded
photoactivatable rac controls the
motility of living cells. Nature. 2009;461
(7260):104–108.

[26] Das T., Safferling K., Rausch S.,
Grabe N., Boehm H., Spatz J.P. A
molecular mechanotransduction
pathway regulates collective migration
of epithelial cells. Nature Cell Biology.
2015;17(3):276.

[27] Watt F.M., Green H. Involucrin
synthesis is correlated with cell size in
human epidermal cultures. The Journal
of Cell Biology. 1981;90:738–742.

[28] Hu S., Wang R., Tsang C.M., Tsao S.
W., Sun D., et al. Revealing elasticity of
largely deformed cells flowing along
confining microchannels. RSC
Advances. 2018;8:1030–1038.

[29] Zielinski R., Mihai C., Kniss D.,
Ghadiali S.N. Finite element analysis of
traction force microscopy: Influence of
cell mechanics, adhesion, and
morphology. Journal of Biomechanical
Engineering. 2013;135:071009.

[30] Changede R., Sheetz M. Integrin
and cadherin clusters: A robust way to
organize adhesions for cell mechanics.
BioEssays. 2017;39:1–12.

[31] Nematbakhsh A., Sun W., Brodskiy
P.A., Amiri A., Narciso C., et al. Multi-
scale computational study of the
mechanical regulation of cell mitotic
rounding in epithelia. PLoS
Computational Biology. 2017;13:
e1005533.

[32] Rappel W.J., Edelstein-Keshet L.
Mechanisms of cell polarization.
Current Opinion in Systems Biology.
2017;3:43–53.

[33] Ansardamavandi A., Tafazzoli-
Shadpour M., Shokrgozar M.A.
Behavioral remodeling of normal and
cancerous epithelial cell lines with
differing invasion potential induced by

147

A Dynamic Finite Element Cellular Model and Its Application on Cell Migration
DOI: http://dx.doi.org/10.5772/intechopen.94181



substrate elastic modulus. Cell Adhesion
and Migration. 2018;12(5):472–488.

[34] Cai P., Layani M., Leow W.R.,
Amini S., Liu Z., et al. Bio-inspired
mechanotactic hybrids for orchestrating
traction-mediated epithelial migration.
Advanced Materials. 2016;28:3102–3110.

148

Finite Element Methods and Their Applications



149

Chapter 7

Nuclear Reactor Thermal 
Expansion Reactivity Effect 
Determination Using Finite 
Element Analysis Coupled with 
Monte Carlo Neutron Transport 
Analysis
Chad Pope and Edward Lum

Abstract

The energy released from the nuclear fission process drives thermal expansion 
and mechanical interactions in nuclear reactors. These phenomena cause changes 
in the neutron chain reaction which results in further changes in thermal expan-
sion and mechanical interactions. Coupling finite element analysis with Monte 
Carlo neutron transport analysis provides a pathway to simulate the thermal 
expansion and mechanical interaction to determine a fundamental parameter, 
namely, thermal expansion temperature coefficient of reactivity. Knowing the 
coefficient value allows predictions of how a reactor will behave under transient 
conditions. Using the coupling of finite element analysis and Monte Carlo neutron 
transport analysis, the thermal expansion temperature coefficient of reactivity was 
determined for the Godiva-IV reactor (−2E−05 Δk/k/°C) and the Experimental 
Breeder Reactor-II (EBR-II) (−1.4E−03 $/°C). The Godiva-IV result is within 
3% of the measured result. The thermal expansion and mechanical interactions 
within EBR-II are sufficiently complex that experimentally measuring the isolated 
coefficient of reactivity was not possible. However, the calculated result fits well 
with the integral EBR-II reactivity coefficient measurements. Coupling finite 
element analysis with Monte Carlo neutron transport analysis provides a powerful 
technique that gives reactor operators and designers greater confidence in reactor 
operating characteristics and safety margins.

Keywords: FEA, Monte Carlo, reactivity, temperature coefficient, reactor

1. Introduction

Nuclear reactors exhibit remarkably complicated behavior ultimately originating 
from the energy released through the nuclear fission process. The complicated 
behavior involves many phenomena including nuclear, thermal, and mechanical. 
Individually, these phenomena involve processes that are challenging to quantify, 
measure, and model. When interactions between these phenomena are considered, 
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the quantification, measurement, and modeling challenges become daunting. This 
chapter describes finite element analysis (FEA) coupled with Monte Carlo analysis 
as a methodology for quantification of a particularly important nuclear parameter 
which is primarily influenced by thermal and mechanical phenomena present in 
nuclear reactors.

1.1 Background

The multiplication factor, k, is used to quantify the fission chain reaction in nuclear 
reactors. Numerous definitions exist for k, with each definition applying to a par-
ticular situation. A simple definition of k is that it represents the ratio of the number 
of fissions in one generation to the number of fissions in the preceding generation. 
Through this definition, one can see that if k is less than unity, the number of fissions 
declines over time, and if k is greater than unity, the number of fissions increases over 
time. A unique situation exists when k is exactly equal to one. In that case, the number 
of fissions remains constant over time and is referred to as critical.

A companion parameter to k is reactivity, ρ. Reactivity represents the deviation 
from the critical state, as shown in Eq. (1).

 ( )−
=

1k
k

ρ  (1)

The decimal form of reactivity can be converted to units of $ by dividing the 
decimal value by the fraction of delayed neutrons resulting from the fission process. 
Delayed neutrons are those neutrons emitted during the decay of select radioactive 
fission products rather than being emitted at the moment of fission. For uranium-235, 
the delayed neutron fraction is 0.0065.

When operating a nuclear reactor, frequently, one is interested in knowing the 
change in reactivity resulting from various activities such as control rod move-
ments. Other changes resulting from thermal and mechanical phenomena can 
produce reactivity changes. Frequently, these reactivity changes are quantified in 
terms of the change in reactor temperature. The result is known as a temperature 
coefficient of reactivity defined by Eq. (2).

 ∆
=
∆T T
ρα  (2)

The temperature coefficient of reactivity can be further subdivided into explicit 
subjects such as coolant temperature, fuel temperature, and even thermally driven 
reactor geometry changes.

From a reactor safety perspective, a negative temperature coefficient is indica-
tive of inherently stability. If a reactor transient was initiated that results in a 
temperature increase, the resulting change in reactivity will necessarily be negative, 
which means the multiplication factor will be reduced. Eventually, the temperature 
increase will produce a sufficient reduction in k such that the reactor will shut 
down. Contrarily, a positive reactivity temperature coefficient is indicative of 
inherent instability. With a positive coefficient, a transient resulting in a reactor 
temperature increase will result in a positive reactivity change and a resulting 
increase in the multiplication factor. The increased multiplication factor will be 
accompanied by an increase in the number of fissions and resulting heat release and 
corresponding temperature increase which will subsequently produce an additional 
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positive change in reactivity. The reactor will continue on this path until it is acted 
upon by a more dominate negative action or the reactor will ultimately be damaged 
or even destroyed.

Reactivity coefficients can be determined for numerous phenomena. For 
example, reactivity coefficients can be established for changes in reactor power. 
Thus, as the reactor power is increased, the reactivity change needed to compensate 
for the power change can be identified. Another interesting phenomenon that has 
a significant reactivity effect centers on bubble or void formation as the result of 
coolant boiling. Reactor designers must pay particular attention to the reactivity 
effect associated with coolant bubble formation because it can have a significant 
safety impact.

In the case of reactors that use water as a coolant, the water has a significant 
effect on the overall neutron energy spectrum in the reactor. Neutrons tend to be 
born at high energies on the order of several million electron volts. As the neutrons 
collide with various nuclei in the reactor, they tend to lose energy in a process called 
moderation. As the neutrons lose energy, they become more likely to be absorbed 
in uranium-235, which can then fission and release additional neutrons. Similar to 
the three different regimes for k, there are three regimes for moderation: under-
moderation, optimum-moderation, and over-moderation. If a reactor is designed 
with under-moderation, the loss of coolant through bubble formation will result in 
a reactivity decrease because fewer neutrons will be slowed to energies where they 
are more likely to be absorbed in uranium-235. In the case of a reactor designed with 
over-moderation, the formation of bubbles will tend to result in a reactivity increase 
because more neutrons will be slowed to the point where they will be absorbed by 
uranium-235 causing an increase in the number of fissions.

The most dramatic and tragic demonstration of positive reactivity due to bubble 
formation was seen in the 1986 Chernobyl accident. When operated at low power, 
the Chernobyl reactor had a positive void reactivity coefficient. Thus, if the reactor 
coolant began to boil, the bubbles created by the coolant boiling led to a positive 
reactivity change thereby driving an increase in the multiplication factor and a 
corresponding increase in the number of fissions occurring in the reactor. The heat 
released from the additional fissions led to additional coolant boiling which drove a 
very rapid power increase and subsequent steam explosion and reactor destruction.

Reactivity coefficients tied to geometry changes are of interest in certain situa-
tions because they are typically fast acting and can have important safety implica-
tions. In many cases, thermally driven geometry changes are coupled with resulting 
mechanical interactions that severely complicate quantification and modeling 
approaches. While the change in geometry causes the reactivity change, typically 
temperature is used to quantify the reactivity coefficient since it is a change in tem-
perature that causes thermal expansion and mechanical interaction. Thus, a reactor 
may have a thermal expansion temperature coefficient of reactivity or even more 
specifically a thermal expansion/mechanical interaction temperature coefficient of 
reactivity. The thermal expansion temperature coefficient of reactivity in two reac-
tors is described below followed by a demonstration of using finite element analysis 
to model the thermally driven geometric changes followed by use of a Monte Carlo 
simulation to determine the corresponding multiplication factor value.

1.2 Godiva-IV and Experimental Breeder Reactor-II

Two reactors serve as the test bed for evaluating the analysis approach described 
in this chapter. One reactor a uses comparatively simple design and the other is 
significantly more complicated. The simple reactor design is called Godiva-IV. The 
Godiva-IV reactor, see Figure 1, is unique in that it is designed to provide a burst 
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of neutrons rather than being designed for extended steady state power produc-
tion. The Godiva-IV reactor is very compact with a simple cylindrical shape with a 
178 mm diameter and a 156 mm height. The reactor design uses a solid construction 
of approximately 66 kg of 93% enriched uranium alloyed with 1.5 wt.% molybde-
num. No active cooling arrangement is used. The reactor construction is somewhat 
more complicated than a monolithic cylinder of enriched uranium. The Godiva-IV 
reactor uses six ostensibly equal rings. Three stacked cylinders of differing heights 
are located within the six rings to complete the overall cylindrical shape. Three large 
C-clamps are attached to the outer radius for the reactor to restrain the fuel move-
ment during burst operations.

When the Godiva-IV reactor is operated, a large power pulse occurs and heat 
from the fission process is deposited in the uranium alloy. The heat causes a tem-
perature increase and subsequent thermal expansion. As the individual components 
of the reactor expand, they mechanically interact. As the reactor components 
expand, neutron leakage from the reactor increases which leads to a decrease in the 
multiplication factor and subsequent termination of the reactor power pulse. Thus, 
Godiva-IV has a negative reactivity temperature coefficient. That is, as the reactor 
temperature increases, the resulting reactivity change is negative which provides an 
inherent shutdown mechanism.

The other reactor used to evaluate the analysis approach described in this chapter 
is the Experimental Breeder Reactor-II (EBR-II) [2]. The EBR-II design is signifi-
cantly more complicated than Godiva-IV, see Figure 2. EBR-II uses liquid sodium 
metal as the coolant. The fuel is 67% enriched uranium metal alloyed with a collec-
tion of various metals totaling 5 wt.%. The fuel is formed into individual 3.3-mm 
diameter pins along with stainless steel cladding. The fuel portion of the pins is 
343 mm long while the cladding portion is 638 mm long. The additional length of 
the cladding allows for the containment of fission product gasses. A collection of 91 
fuel pins are arranged into a hexagonal configuration which is commonly referred to 
an assembly. The 91 fuel pins in each assembly are contained within a stainless-steel 
hexagonal duct. The EBR-II reactor core consists of an arrangement of 637 assem-
blies. The core is fundamentally divided into two regions, a driver region containing 
the fissile material, and a blanket region containing depleted uranium. Within 
the driver region there are approximately 100 assemblies including control rods, 
experimental assemblies, stainless steel dummy assemblies, stainless steel reflector 
assemblies, and assemblies that use reduced fuel content. Surrounding the driver 
region is a collection of approximately 500 assemblies constructed of depleted 
uranium. The depleted uranium assemblies absorb neutrons that leak for the driver 
region to transmute depleted uranium to plutonium to breed new reactor fuel.

Figure 1. 
Godiva-IV reactor [1].
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As EBR-II ascends to its operating power, heat from the fission process causes the 
fuel pins, hexagonal ducts, and all other components of the reactor to expand due to 
the temperature increase. The components undergo a complicated process involving 
thermal expansion and mechanical interaction. While the Godiva-IV thermal expan-
sion process which leads to comparatively simple thermal expansion and mechanical 
interaction, the thermal expansion and mechanical interactions in EBR-II are signifi-
cantly more complicated and must be subdivided into different areas. One area that is 
comparatively simple to understand and evaluate is the spacing of the assemblies in 
the hexagonal arrangement. As the reactor temperature increases during the reactor 
assent to power, the grid plate that holds the fuel assemblies thermally expands and 
the spacing between the fuel assemblies increases which results in increased neutron 
leakage and a decrease in the multiplication factor. A much more complicated 
process involves the thermal expansion and mechanical interaction of the stainless-
steel hexagonal assembly ducts. Measuring and calculating the reactivity effect of 
the hexagonal duct thermal expansion and mechanical interaction is particularly 
challenging. The analysis method described in this chapter is used to evaluate the 
reactivity coefficient associated with the thermal expansion driven spacing of the 
assemblies along with the much more complicated reactivity coefficient associ-
ated with the thermal expansion and mechanical interaction of the fuel assembly 
hexagonal ducts.

2. Method

One of the difficulties with quantifying a geometric temperature coefficient 
is the complexity of the thermal expansion. Thermal expansion coefficients are 

Figure 2. 
EBR-II.
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nominally nonlinear, leading to different rates of expansion depending on how 
hot the geometry is in a given location. This leads to nonlinear thermal expansion. 
This is an important concept to understand because it drives the necessity for using 
more complex structural analysis techniques than first principles expansion. This 
is especially true when geometric expansion is mechanically restrained by other 
expanding materials.

The key to successfully quantifying a thermal expansion derived temperature 
coefficient is not the calculation of the coefficient itself, but more the mechanical 
model that is used to derive the geometry changes. To that end, finite element 
analysis is used to provide a high fidelity mechanical input into the Monte Carlo 
simulation [3]. Figure 3 shows the generalized process for quantifying the tempera-
ture coefficient.

Figure 3. 
General process flow.
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2.1 Finite element analysis

Regardless of the source of the geometry information, whether an existing CAD 
model is defeatured or built from scratch, a simplified CAD geometry should be 
generated. The simplified geometry should contain enough information such that 
any complex expansion is captured, but simple enough to reduce the overall element 
count. A common example is removal of bolts and generally any small features from 
large geometries. FEA models in general run the risk of being too-large-to-compute 
without using resources unavailable to the typical engineer. Keeping total element 
count to a minimum is a driving factor when constructing an FEA model.

2.1.1 Mesh size

Exceeding 10 million nodes in a given model almost certainly means the model 
cannot be executed on a workstation in any reasonable amount of time. The reason 
for this is the sheer size of the data generated. A 10 million-node model requires 
10 million positions (x, y, z), temperatures, and displacements (x, y, z) for one 
solution step. A double precision number requires eight bytes leading to each node 
requiring seven-, eight-byte numbers (56 bytes). 56 bytes per node applied to a 
10 million-node mesh leads to 560 MB to store just the results of the model for 1 
timestep or substep, not including the other required parameters for the solution, 
heat flux, power, boundary conditions, structural support, etc. Assuming the 
model requires several hundred timesteps and thousands of substeps, the total data 
requirement becomes multiple terabytes that needs to be loaded into memory. At 
the time of writing, several terabytes of memory was only available on very high-
end workstations and was problematic for large HPC machines due to the memory 
allocation per CPU.

Given the difficulties noted above, simplifying the CAD model to reduce node 
count is critically important. The limited memory should prioritize the expansion 
effects not necessarily geometric fidelity. Even with these reductions, the model 
might take weeks of runtime to complete.

2.1.2 Boundary conditions

Boundary conditions are required as inputs into the FEA models. The boundary 
conditions are what simulate the reactor state that causes the structural change. 
They are divided into two types, thermal and structural.

The thermal boundary conditions consist of heat transfer coefficients and a 
thermal load. The thermal load will nominally be the fission source distribution 
based upon total power output. Determining the heat transfer coefficients can be 
done either using calculated values, measured values or a combination of both. 
Applying this method to a real system generally necessitates both. For example, a 
coolant flow rate is known for the entire reactor but is unknown on an assembly-
by-assembly basis. The main goal of determining boundary conditions is to take 
what is known, and calculate what is needed for the FEA simulation. A similar 
problem exists with the thermal boundary conditions as with the mesh size, 
creating individual boundary conditions for every assembly and coolant channel 
can lead thousands of boundary conditions. It will be up to the user to determine 
if a thermal hydraulic simulation is required to calculate the heat transfer coef-
ficients, or if hand calculations can suffice.

The structural boundary conditions in many ways are easier and less numerous. 
This is because the boundary conditions are only needed to simulate real restrains 
and conditions to aid in FEA convergence. An example of a real restraint is 
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supporting the body in space such that it does not fall forever due to gravity. This is 
known as rigid body movement.

Convergence aids are sometimes required such that the simulation will con-
verge. Convergence aids can be limiting body movement to a reasonable amount or 
declaring that a body cannot move during a particular substep. The primary pitfall 
with structural boundary conditions will be to overconstrain the model such that 
whatever subtle structural effect that drives the thermal coefficient is not nulled by 
the boundary conditions.

The boundary conditions need to be expansive enough to both simulate the 
reactor state and give enough information to allow the model to come to a solution. 
Additionally, the boundary conditions need to not overly constrain the model such 
that multiple solutions exist for a given state.

2.1.3 Timesteps

Selection of timestepping in FEA is another balance of model fidelity and analysis 
time. Finer timestepping leads to more information captured for a given effect, but 
can lead to longer computation times. For example, if the model has 100 steps that 
need a week of computation time to simulate 100 seconds of reactor time, then how 
are those steps distributed such that the necessary effects are captured? Are 90 steps 
used over 2 seconds of reactor time enough to capture the effect, with 10 steps used 
for 98 seconds of reactor time? Answering that question is highly problem dependent 
and takes multiple iterations to refine. Nominally, high fidelity stepping is required 
when the model is undergoing rapid geometry changes. For example, a pulse reactor 
can go from room temperature to several hundred degrees in a matter of millisec-
onds. During that time, many solution steps are required since the model is changing 
significantly between each solution step, whereas during cool-down of that same 
system, the model is changing slowly as conduction takes place.

2.2 Monte Carlo neutron transport

One of the problems stated in a previous section was the lack of modeling fidelity 
to capture subtleties in geometric changes. While the solution for the mechanical 
input utilizes unstructured mesh to define the geometry, Monte Carlo tools use more 
simplified geometry. Some Monte Carlo codes can take an unstructured mesh as an 
input to create their geometries, but nominally, some amount of translation will be 
needed to take the unstructured mesh and import it into a Monte Carlo code. Details 
that were required for the FEA may not be needed for the neutron transport.

Determining the multiplication factor using the Monte Carlo method requires 
four fundamental items, first, explicit geometric and material descriptions, second, 
detailed material nuclear property data, third, mathematical processes for sampling 
nuclear data, and fourth, a method for generating a string of numbers that satisfy 
rigorous tests for randomness. Using the four fundamental items, a simulation can 
be conducted for an individual neutron. The simulation begins by selecting the 
initial birth location for a neutron. The location is initially specified by the analyst 
but is later selected based on the location of fission locations from a prior genera-
tion. Once the birth location is known, the neutron energy can be randomly selected 
using numbers from the string of numbers that satisfy the randomness criteria and 
the mathematical distribution of possible neutron energies. The neutron direction 
can then be determined by randomly selecting an azimuthal and polar direction in 
the case of an isotropic direction assumption. With the neutron energy and direc-
tion being randomly selected, the distance the neutron travels before colliding 
with a nucleus can be randomly determined based on nuclear data associated with 



157

Nuclear Reactor Thermal Expansion Reactivity Effect Determination Using Finite Element…
DOI: http://dx.doi.org/10.5772/intechopen.93762

the probability of interaction, commonly referred to as a cross-section. Once the 
distance traveled is known, the type of interaction (e.g., scattering, absorption, and 
fission) can be randomly determined based on the ratio of cross-sections for the 
various interactions. It is also possible that the selected distance may result in the 
neutron leaking from the system and a new neutron must be generated. In the case of 
a scattering event, a new direction and neutron energy, based on collision mechanics 
and nuclear data, are randomly selected, and a new path length is selected. In the 
case of absorption, tracking of that neutron is discontinued, and a new neutron must 
be generated. If a fission event is selected, the location is recorded, and the number 
of neutrons produced by the fission event is randomly selected [4].

To accelerate the process, the analog simulation described above is modified with 
mathematically justified non-analog variance reduction techniques. These non-analog 
variance reduction techniques are selected based on the trade-off between computa-
tional time and a reduction in the statistical uncertainty of the result. For example, a 
process referred to as survival biasing is commonly applied where neutrons that are 
selected for absorption are only “partially” absorbed thereby allowing the remaining 
portion of the neutron to continue being tracked. The general idea is that it is more 
efficient to track a portion of a neutron than to track a neutron for an extended history 
only to have it eliminated in a meaningless reaction. As long as the variance reduction 
technique maintains a fair game, it can be used. The process, using analog and non-
analog techniques, is repeated a great number of times, and then parameters of interest 
such as the multiplication faction can be inferred. The multiplication factor is inferred 
by the ratio of neutrons generated in one generation to the number of neutrons gener-
ated in the prior generation. A simulation can require more than 1012 random numbers, 
billions of neutrons, and thousands of generations to obtain sufficient statistical 
confidence in the result. For the work discussed in this chapter, the Monte Carlo code 
MCNP® was used for the multiplication factor calculations [5].

2.2.1 FEA interface to neutron transport code

Nominally, the results generated from structural FEA will be nodes that have 
been displaced in space. These nodes will need to be translated to the Monte Carlo 
neutron transport geometry definition. Even using unstructured mesh as an input 
will require some modification and additional geometry because not all of those parts 
were required for the FEA, but might need to be in place for the neutron transport. 
As stated previously, the mesh size will need to be kept to a minimum, hence some 
amount of defeaturing took place. Some of those features will need to be restored 
for the Monte Carlo neutron transport such that the particle population is simulated 
correctly. An example of geometry that would be removed for the FEA, would be 
explicit detail of the fuel pins in a nuclear fuel assembly. The FEA nominally would 
not require such detail, opting instead for bulk heating of the channel. Adding 
geometry after the FEA presents the problem of fitting un-deformed geometry into 
deformed spaces. Resolving this issue requires the use of custom computer codes 
to perform the geometry translation and geometry checking to make sure there are 
no overlaps. These codes nominally are custom to the particular reactor or nuclear 
system. In the following section “A Complex Example,” EBR-II required a code called 
MICKA to perform the Monte Carlo geometry construction and translation [6].

2.2.2 Quasi-static snapshots

Nominally, thermal expansion reactivity coefficients that are nonlinear need 
to be analyzed through the whole power range of the reactor to capture all of the 
possible geometry states. The FEA will calculate the geometry displacement through 
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the power-band and then export the data. That data will be exported and translated 
as a series of geometry snapshots with each snapshot representing the deformation 
of the reactor at particular power level.

2.2.3 Temperature coefficient calculations

The quasi-static snapshots are individually analyzed for their respective mul-
tiplication factor. Each individual snapshot is not intrinsically valuable because 
temperature coefficients in general represent a trend over a particular range. The 
important value to calculate over these snapshots is the change in multiplication 
factor, reactivity. Each reactivity point associated with a particular bulk tempera-
ture of the reactor is plotted. The slope of the linear fit of those reactivity points is 
the temperature coefficient. For nonlinear temperature coefficients, a set of linear 
fits are derived where each coefficient has an associated temperature band where 
the coefficient holds true. Before demonstrating the fitting process, change in 
multiplication from a noncritical state needs to be discussed.

Change in multiplication from critical was shown in Eq. (2). While change from 
critical does have a use, most real multiplying systems are never perfectly critical 
(k = 1), they are nominally slightly super or subcritical. This holds true for analyzed 
systems as well. Monte Carlo methods by definition have uncertainty associated 
with whatever values are calculated and rarely yield k = 1. A more common occur-
rence is k = 0.998 ± 0.004. The previous value would be considered critical in any 
real sense; however, from a calculation perspective it is noncritical. A modification 
to Eq. (2) is needed. Eq. (3) can be used for change in the reactivity.

 ( )−
∆ = 2 1

2 1

k k
k k

ρ  (3)

With an understanding of change in reactivity, a linear temperature coefficient 
can be determined from the Monte Carlo analysis. A linear regression is applied to 
the temperature dependent reactivity. This yields Eq. (4).

 = +y bmx  (4)

The slope of the previous equation is the temperature coefficient. If the particular 
coefficient is nonlinear, multiple regressions will be required. The coefficient can be 
expressed as a nonlinear equation; however, temperature coefficients are traditionally 
expressed as linear quantities over temperature ranges.

3. A simple example

The following sections demonstrate how finite element analysis can be applied 
to nuclear systems to calculate extremely complex phenomena. The tools used in 
these works were ANSYS, for the finite element analysis, and MCNP® was used for 
the neutron transport [5, 7].

3.1 Godiva-IV

Confirmation of the methodology described above begins with a relatively 
simple geometry reactor. While certainly not a homogeneous single component 
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bare cylindrical reactor, the Godiva-IV reactor provides an excellent case to apply 
the methodology described above and compare the modeling results to measured 
results. In particular, the Godiva-IV reactor temperature coefficient of reactivity 
is dominated by thermal expansion with limited mechanical interaction effects. 
Furthermore, the Godiva-IV reactor has been thoroughly characterized and 
detailed descriptions are available to allow construction of both the FEA model as 
well as the Monte Carlo model. Finally, detailed temperature measurements and the 
corresponding reactivity have been recorded which allow for comparison with the 
modeling results.

3.1.1 Thermal analysis

The thermal analysis required several boundary conditions as inputs into the 
model. The most important was the temperature data taken from an experiment 
on the Godiva-IV. The temperature data provided the pulse shape and total mag-
nitude of the temperature rise. It also conveyed the time dependency of the FEA 
model. Experimental measurements are important to creating accurate models. 
They provide a more accurate input, depending on the quality of the measure-
ment, than necessarily calculating and input from first principles. The experiment 
input data were for a 1.029$ reactivity insertion with a 68°C temperature rise over 
300 seconds.

The second type of boundary conditions applied were the heat transfer coef-
ficients, primarily the convection coefficients. These were hand calculated from 
heat and mass transfer equations. Hand-calculating these coefficients is normally 
required because these values are not normally measured for these facilities. For 
Godiva-IV specifically, capturing the thermal expansion temperature coefficient 
means modeling the thermal conduction paths as well as the convection into the 
room. The temperature differential of all of the components as they heat up and 
subsequently cool due to convection to the room is the primary driver to the com-
plexity of the expansion. Figure 4 shows the thermal FEA results and the tempera-
ture differentials. For more information specifically on the boundary conditions, see 
the reference [8].

Given the rapid structural response of the Godiva-IV pulse, the analysis type 
chosen was transient. The solution steps were focused on the pulse. Of the 400 
solution steps, 300 steps surrounded the pulse that consisted of 10s, with the 
other 100 steps covering 290 seconds. The reason for this was that the model was 
rapidly changing during the initial nuclear heating, while the rest of the steps only 
contained relatively slow thermal conduction. After the temperature analysis model 
completed, the temperature data were exported to the structural analysis model.

3.1.2 Structural analysis

As stated previously, the structural boundary conditions are less numerous but 
can be more difficult to determine. For Godiva-IV, the primary structural boundary 
conditions were, support of the safety block, control rods, and providing a fixed 
support for the back side of the clamps. These boundary conditions were more 
straightforward than for typical models, weak springs were not required, and fixed 
supports were the only type of boundary conditions that were necessary. Figure 5 
shows exaggerated displacement at the end of the temperature input data. The exag-
geration was required because the structural displacement on average was 0.2 mm 
and imperceptible to the human eye.

The structural analysis had similar timestepping as the thermal analysis. The 
data generated from the FEA were a set of averaged displacements on particular 
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surfaces. These surfaces surrounded the curved faces of the fuel rings. The fuel 
rings were the focus because only the fuel movement and expansion matters to the 
neutronics of the reactor.

Figure 4. 
GODIVA-IV thermal analysis results.

Figure 5. 
Exaggerated structural displacement.
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3.1.3 Neutron transport

The exported data were applied to the neutron transport model where a series 
of models were created, each with a different set of displacements per an average 
temperature. These results are shown in Figure 6. The slope of the linear regression 
is −2E−05 Δk/k/°C. The comparison to the measured value is shown in Table 1. 
This is the temperature coefficient of the Godiva-IV reactor. The results demon-
strate that a coupling method of FEA and Monte Carlo Neutron Transport has to be 
potential to accurately predict the temperature coefficient.

4. A complex example

4.1 EBR-II

With a comparatively simple application providing excellent comparison results, 
a more challenging application is warranted. As noted above, the EBR-II design 
includes numerous fuel assemblies, molten sodium coolant, and a complicated 
thermal expansion and mechanical interaction process. Detailed characterization 
of the reactor components and materials along with measurements of control rod 
critical positions and corresponding bulk coolant temperatures are available [9]. 
These measured data allow confirmation of the methodology for certain aspects of 
the reactivity coefficients present in EBR-II such as the thermal expansion of the 
reactor grid plate. Extrapolation of the methodology can then occur for the more 
complicated thermal expansion and mechanical interaction of the assembly hex-
agonal flow ducts.

Figure 6. 
Godiva-IV temperature coefficient result.

Source Temperature coefficient (Δk/k/°C)

Measured −1.95E−05

Calculated −2E−05

Table 1. 
Measured and calculated Godiva-IV temperature coefficient.
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While no reliable method of measuring the reactivity coefficient associated with 
the hexagonal duct expansion and mechanical interactions is known to exist, the 
methodology described here can be applied and a reliable estimate of the reactivity 
coefficients can be obtained.

4.1.1 Thermal analysis

EBR-II required more extensive thermal boundary conditions than Godiva-IV 
which was considered the simple system because the heating was simple conduction 
through the materials and the ultimate heat sink was convection into the room air. 
EBR-II was more complicated because there was forced convection using liquid 
sodium that flowed over the fuel elements. The ultimate heat sink was a series of 
heat exchangers that cooled the sodium. Heating was also not symmetric from 
assembly to assembly. Modeling this complex behavior would require a complex 
thermal-hydraulic model to simulate the various coolant channels. Creating this 
model would have substantially complicated the thermal FEA analysis and addi-
tional would require input information that was not measured at EBR-II. Instead, 
a simple cooling model was developed for each assembly. The cooling model stated 

Figure 7. 
EBR-II simplified simulation model.
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that the sodium inside of the duct entered the bottom of the coolant channel as cold 
sodium, and over the part of the channel where the fuel was located, the sodium 
was heated such that the outlet temperature match measurements taken at the 
EBR-II. Each fuel assembly type had a different cooling profile. Figure 7 shows the 
different assembly types in the EBR-II FEA model.

Simplifying the coolant channels in this manner was sufficient because previous 
work done on the EBR-II suggested that duct-bowing was entirely driven by the 
temperature profile of the duct material and not by the internal structures. Thus, 
only the duct needed to be heated correctly.

The power input for EBR-II was derived from a linear interpolation of the ascent 
to power. All of the heat generation inputs were linearly scaled over timesteps. The 
timing did not match the real ascent to power, but that was not necessary since 
the model would be in thermal equilibrium for each calculated step. The more 
important aspect was that the thermal model would be a series of steps, each step 
corresponding to a different power level.

4.1.2 Structural analysis

The structural analysis required a simple boundary condition to hold the model 
in place, as well as a boundary condition to fix the center duct. Fixing the center 
duct meant that it was not allowed to thermally expand and was considered a rigid 
body. This was necessary to achieve convergence. Without fixing the center duct, 
the model could not resolve the contact overlap that existed between the ducts on 
the first solution step.

The structural FEA required significantly more time to solve than Godiva-IV due 
to the sheer size of the model (~5 million nodes) and the complexity of the thermal 
expansion. Figure 8 shows an exaggerated displacement of the ducts. The southeast 
quadrant shows how the differences in the assembly, types, and powers can impact 
thermal expansion. Additionally, it demonstrates why FEA was necessary to 
capture all of the geometric detail of the duct-bowing temperature coefficient.

Figure 8. 
EBR-II exaggerated structural displacement.
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4.1.3 Neutron transport

Similar to the Godiva-IV model, the displacement data were exported out of 
ANSYS and imported into a series of MCNP® models [7]. The major difference was 
in the translation method. The Godiva-IV translation was averaging nodal thermal 
expansion and manually applying the change in radii and heights to the MCNP® 
input files. That approach was prohibitive for EBR-II because the resulting data 
exceeded 1 TB. A custom code called MCNP® Input Card and KCODE Architect 
(MICKA) was written to perform the node translation and MCNP® input construc-
tion. The MCNP® model for the EBR-II was itself expansive and required special 
data handling. More inf0rmation can be found in the reference [6].

One additional difficulty with the translation was that MCNP® cannot model a 
bowed-duct, only a straight hexagonal duct. To overcome this geometry limitation, 

Figure 9. 
Axial sections to simulate a bowed-duct in MCNP®.
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the straight duct was divided into axial sections. Each axial section was moved in 
space to approximate a bowed-duct. Figure 9 shows an example of the axial slices in 
an assembly.

After the translation of the nodal data from the FEA to MCNP®, the analysis 
process was similar to that of Godiva-IV. A series of snapshots at various bulk 
 temperatures were taken and a linear regression was performed to calculate 
the slope of the points. Figure 10 shows the results of the reactivity change per 
degree. The coefficient was calculated to be −1.4E−03 $/°C. While the data had 
a clear linear trend, some nonlinearity existed in sets of data points at lower bulk 
 temperatures. This was consistent with historical measurements at EBR-II where 
lower powers exhibited a nonlinear trend in the reactivity change.

5. Conclusions

The energy released from the nuclear fission process drives complicated thermal 
expansion and mechanical interactions in nuclear reactors. These expansions and 
interactions subsequently cause changes in the neutron chain reaction balance within 
a reactor which results in further changes in thermal expansion and mechanical 
interactions. Measurement of these coupled phenomena occurring within a reactor 
has proven to be elusive. However, coupling finite element analysis with Monte Carlo 
neutron transport analysis provides a pathway to simulate the thermal expansion 
and mechanical interaction driven by the energy released in the neutron-induced 
fission process and then to subsequently determine fundamental nuclear parameters, 
namely, thermal expansion temperature coefficient of reactivity.

There are important safety implications associated with the thermal expansion 
temperature coefficient of reactivity and its relation to other temperature coefficients 
of reactivity. Knowing both the sign and magnitude of individual coefficients allows 
reactor designers to predict how a reactor will behave under transient conditions.

Using the coupling of finite element analysis and Monte Carlo neutron transport 
analysis, the thermal expansion temperature coefficient of reactivity was deter-
mined for the Godiva-IV reactor and found to be within 3% of the experimentally 
measured value.

The coupling technique was also used to determine the thermal expansion tem-
perature coefficient of reactivity for EBR-II. The thermal expansion and mechanical 

Figure 10. 
Temperature coefficient results for duct-bowing coefficient.
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interactions within EBR-II are sufficiently complex that experimentally measuring 
the isolated thermal expansion temperature coefficient of reactivity was not possible. 
However, using the coupling technique, a calculated value of −1.4E−03 $/°C was 
determined for the thermal expansion temperature coefficient of reactivity. This 
result fits well with integral EBR-II reactivity coefficient measurements.

With the Godiva-IV comparison results and the EBR-II results, it can be concluded 
that coupling finite element analysis with Monte Carlo neutron transport analysis 
provides a powerful technique for determining important reactor safety parameters. 
The technique can be applied to existing reactors and reactors proceeding through 
the design process which gives reactor operators and designers greater confidence in 
reactor operating characteristics and safety margins.
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of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 
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Chapter 8

Finite Element Analysis and Its 
Applications in Dentistry
Vinod Bandela and Saraswathi Kanaparthi

Abstract

Finite Element Analysis or Finite Element Method is based on the principle of 
dividing a structure into a finite number of small elements. It is a sophisticated engi-
neering tool, which has been used extensively in design optimization and structural 
analysis first originated in the aerospace industry to study stress in complex airframe 
structures. This method is a way of getting a numerical solution to a specific prob-
lem, used to analyze stresses and strains in complex mechanical systems. It enables 
the mathematical conversion and analysis of mechanical properties of a geometric 
object with wide range of applications in dental and oral health science. It is useful 
for specifying predominantly the mechanical aspects of biomaterials and human 
tissues that cannot be measured in vivo. It has various advantages, can be compared 
with studies on real models, and the tests are repeatable, with accuracy and without 
ethical concerns.

Keywords: finite element analysis, finite element method, stress, dentistry, implants

1. Introduction

Dentistry is the fastest growing branch of medical field, deals with the study of 
diagnosis, prevention, and treatment of diseases, disorders, and conditions of the 
oral cavity. Although primarily associated with teeth, the field of dentistry is not 
limited to teeth but includes other aspects of the craniofacial complex including 
the temporomandibular joint (TMJ) and other supporting, muscular, lymphatic, 
nervous, vascular, and anatomical structures.

Virtually, every phenomenon in nature; whether biological, geological or 
mechanical, can be described with the aid of law of physics, in terms of algebraic, 
differential or integral equations relating various quantities of interest. Finite 
Element Analysis (FEA) or Finite Element Method (FEM) is a computer-based 
numerical method to analyze the structure based on the principle of dividing a 
structure into a finite number of small elements that are connected with each other 
at the corner points called nodes. For each element, its mechanical behaviour can 
be written as the function of displacement of the nodes. These nodes when sub-
jected to certain loading conditions results in behaviour of the model similar to the 
structure it represents. When a computer analysis is performed on this, a system of 
simultaneous equations can be solved to relate all forces and displacement of the 
nodes. From this, stress and strain can be established in each element and the whole 
structure can be evaluated [1].

There were many articles published before on FEA and their uses, this chapter 
mainly focus on the brief application of FEA in dentistry, apart from the historical 
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perspective, planning of analysis, workflow of FE study, merits, shortcomings, 
and future of FEA.

2. Historical perspective

The first researcher who developed this technique was Richard Courant, a 
mathematician with the main goal of minimizing the calculative procedures in gain-
ing absolute solution to bio-mechanical system in early 1940’s. Turner et al., in 1956 
attempted to describe this method by developing broader definition of these numeric 
analyses in aeronautical engineering. Ioannis Argyris and R.W Clough coined the 
term ‘Finite Element’ in 1960. Weinstein et al., in 1976 used this technique in implant 
dentistry to evaluate various loads of occlusion on implant and adjacent bone. Since 
then, evolution of this technique has been observed in a very rapid and sophisticated 
scale in micro-computer as well as analysis of large-scale structural system [1, 2].

3. Planning of analysis

3.1 Pre-processor

In this stage, the material properties are assigned (Figure 1) [1, 2].

3.1.1 Specifying the title

It is specifying the name of the problem. This is optional but very useful, especially 
if a number of design iterations to be completed on the same base model.

3.1.2 Setting the type of analysis

In this, the type of analysis that is going to be used is done. Eg: structural, fluid, 
thermal or electromagnetic etc.

Figure 1. 
Planning of analysis.
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3.1.3 Creating the model

The model is drawn in 1-D (dimensional), 2-D, or 3-D space in the appropriate 
units (M, mm, inch etc.).

3.1.4 Defining the element type

This may be 1-D, 2-D, or 3-D.

3.1.5 Applying a mesh

Mesh generation is the process of dividing the analysis continuum into a number 
of discrete parts or finite elements. The finer the mesh, the better is the result but 
longer the analysis time.

3.1.6 Assigning properties

Material properties (Young’s modulus, Poisson’s ratio, density and if applicable 
coefficient of expansion, friction, thermal conductivity, damping effect, specific heat 
etc.) have to be defined in this step. In addition, element properties may need to be set.

3.1.7 Applying loads

Usually, some type of load is applied to the analysis model. The loading may be in 
the form of a point load, a pressure or a displacement in a stress (displacement) analy-
sis. The loads may be applied to a point, an edge, a surface or even a complete body.

3.1.8 Applying boundary conditions

When applying a load to the model, in order to stop accelerating infinitely 
through the computer’s virtual ether, at least one constraint or boundary condition 
must be applied. A boundary condition may be specified to act in all directions - 
axes (x, y, z) or in certain directions only. They can be placed on nodes, key points, 
areas or on lines.

3.2 Solution

This part is fully automatic and it can be logically divided into three main 
parts: the pre-solver, the mathematical engine and the post-solver. The pre-solver 
reads the model created by the pre-processor and formulates the mathemati-
cal representation of the model. The results are returned to the solver and the 
post-solver is used to calculate strains, stresses, etc., for each node within the 
component or continuum.

3.3 Post-processor

Here the results of the analysis are read and interpreted. They can be presented 
in the form of a contour plot, a table, deformed shape of the component or the 
mode shapes and natural frequencies if frequency analysis is involved. Most post-
processors provide an animation service, which produces an animation and brings 
the model to life. All post-processors now include the calculation of stress and 
strains in any of the x, y or z directions or indeed in a direction at an angle to the  
co-ordinate axes. The principal stresses and strains may also be plotted or if 
required the yield stresses and strains according to the main theories of failure.
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In brief, the FE is a mathematical method for solving differential equations. It 
has the ability to solve complex problems that can be represented in differential 
equation form that occur naturally, in virtually all fields of the physical sciences. 
Accurate modeling is essential to ensure the relevance of the result for the cor-
responding FEA. The results solely depend on the model that has been created. 
Workflow of the entire finite element study is shown in Figure 2.

4. Application of FEA in oral radiology

Oral and maxillofacial radiology is the specialty of dentistry concerned with 
performance and interpretation of diagnostic imaging used in examining the 
dental, craniofacial, and adjacent structures. Use of FEA in this specialty helps for 
proper diagnosis and possibility of knowing iatrogenic effects.

Szücs et al., in 2010 analyzed the effect of removing various amounts of bone 
around an impacted mandibular third molar and predicted the possibility of 
iatrogenic fracture. FEA was used to generate 3-D models of a human mandible 
with impacted third molars. They found highest stress occurred during normal 
clenching if the surgical procedure involved the external oblique ridge. The 
peak stress occurred at the site of removal of the third molar, during contralat-
eral loading of the mandible. They concluded that with FEA they could able to 
identify the accumulation of stress and strain at specific parts of the mandible 
and predicted the responses of bone to mechanical activity. FEA could prove to 
predict the likelihood of iatrogenic fracture of the jaws after surgical removal of 
mandibular bone, such as occurring during the extraction of third molar. This 
allow the dentists to change/modify their approach to tooth removal in certain 
cases [3].

Figure 2. 
Workflow of FE analysis.
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Oenning et al., in 2018 simulated functional forces in a mandible model by 
means of FEA and then assessed the biomechanical response produced by impacted 
third molars on the roots of the second molar. They found areas of high-energy 
dissipation and compression stress in the second molar root, independently of 
the inclination of the impacted third molar. They concluded that, impacted third 
molars in close proximity with the adjacent tooth can generate areas of compression 
concentrated at the site of contact, suggesting an involvement of mechanical factors 
in triggering of resorption lesions [4].

Kihara et al., in 2019 evaluated the longitudinal change quantitatively in man-
dibular volume and configuration in a patient with craniofacial fibrous dysplasia 
(FD). The 3-D models were analyzed morphologically and volumetrically using 
FEA. They found FD lesion in the mandible enlarged non-uniformly and had 
site specificity. They suggested that compression stress induced by the occlusal 
force through the denture may have influence on the direction of enlargement 
in FD [5].

5. Application of FEA in restorative dentistry

Restorative dentistry refers to the diagnosis and integrated management of dis-
eases of the teeth and their supporting structures and rehabilitation of the dentition 
for functional and esthetic requirements of an individual. Restorative dentistry. It is 
a broader term encompasses the dental specialties of endodontics, prosthodontics, 
and periodontics.

Many newer materials have been developed owing to the increasing interest in 
the field of esthetic dental restorations. In order to minimize the stress concentra-
tion of the restorative materials and to decrease the incidence of restorative failure; 
physical properties like modulus of elasticity should be near or equal to that of the 
natural dental tissue. Due to the lack of proper understanding on the biomechanical 
principles of the materials involved in restorative procedure, lead too many detri-
mental effects causing a restorative failure. Therefore, in order to know the behav-
iour of materials and dental tissue, biomechanical studies are very crucial [6, 7].

Goel et al., in 1991 investigated stress variation in the enamel and dentin adja-
cent to the Dentinoenamel Junction (DEJ) on FEM of maxillary first premolar. The 
results suggested that, because of mechanical interlocking between enamel and 
dentin in the cervical region is weaker than in other regions of the DEJ, enamel in 
this region may be susceptible to belated cracking that could eventually contribute 
to the development of cervical caries than other areas of tooth [8].

Rees in 2002 examined the effect of varying position of an occlusal load on the 
stress contour in the cervical region of a lower second premolar using a 2-D plane 
strain FEM. A 500 N load was applied vertically to either of the cusp tips or in vari-
ous positions along the cuspal inclines. He found that, loads applied to the inner 
aspects of the buccal or the lingual cuspal inclines produced maximum principal 
stress values of up to 358 MPa, which is exceeding the known failure stresses for 
enamel [9].

Ausiello et al., in 2002 conducted a 3-D FEA study to identify the thickness and 
flexibility of the teeth adhesively restored with resin-based material. No difference 
in the stress relief between the application of a thin layer of more flexible adhesive 
with low elastic modulus and thick layers of less flexible adhesive of high-elastic 
modulus was found. They observed a relatively small cuspal deformation in all 
the models with increased cusp-stabilizing effect of ceramic inlays compared to 
composite restorations [10].
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Ausiello et al., in 2004 investigated the composite inlay restored class-II MOD 
cavities the effect of differences in the resin-cement elastic modulus on stress-
transmission to ceramic or resin-based during vertical occlusal loading. They found 
better stress dissipation in indirect composite resin-inlays. Glass ceramic inlays 
transferred stresses to the resin cement and adhesive layer [11].

Magne et al., in 2006 described a rapid method of generating FE models of 
dental structures and restorations. They evaluated five models: natural tooth, 
mesial-occlusal (MO), and mesial-occlusal-distal (MOD) cavities, MO, and MOD 
endodontic access preparations and found a progressive loss of cuspal stiffness 
in MO to MOD to endodontic access, as there is loss of tooth structure with these 
type of restorations. The natural tooth and the tooth with the MOD ceramic inlay 
retained 100% cuspal stiffness [7].

Ichim et al., in 2007 investigated the influence of the elastic modulus (E) on the 
failure of cervical restorative materials (Glass ionomer cement (GIC) and composite) 
and identified an E value that minimizes the mechanical failure under clinically 
realistic loading conditions. They found that the materials used in non-carious cervical 
lesions are unsuitable for restorations as they are less resistance to fracture and sug-
gested that the elastic modulus of a restorative material to be in the range of 1 GPa [2].

Asmussen et al., in 2008 analyzed the stresses generated in tooth and restoration 
by occlusal loading of Class-I and Class-II restorations restored with resin compos-
ite; suggested that the occlusal restorations of resin composite should have a high 
modulus of elasticity in order to reduce the risk of marginal deterioration [12].

Coelho et al., in 2008 conducted a study to test the hypothesis that micro-tensile 
bond strength values are inversely proportional to dentin-to-composite adhesive 
layer thickness through laboratory mechanical testing and FEA. They found micro-
tensile bond for Single Bond as increased adhesive layer thickness did not reduce 
Clear fil SE Bond strength [13].

Magne and Oganesyan in 2009 measured cuspal flexure of intact and restored 
maxillary premolars with MOD porcelain, and composite-inlay restorations and 
occlusal contacts (in enamel, at restoration margin, or in restorative material). They 
found a relatively small cuspal deformation in all the models and an increased cusp-
stabilizing effect of ceramic inlays compared with composite ones [9].

5.1 Dental composites

Composites are the resin restorative materials developed to overcome the disad-
vantages of amalgam restorations, which are unaesthetic and toxic. Composites are 
filled resins, exhibit high compressive strength, abrasion resistance, ease of applica-
tion, and high translucency. FEA has been in use to analyze stresses generated in 
teeth and restorations. It is a proven useful tool in understanding biomechanics of 
tooth and the biomimetic approach in restorative dentistry [14].

Lee et al., in 2007 conducted a study to measure the cusp deflection by polymer-
ization shrinkage during composite restoration for MOD cavities in premolars, and 
examined the influence of cavity dimension, C-factor, and restoration method on 
the cusp deflection. They found that, the cusp deflection increased with increas-
ing cavity dimension and C-factor and suggested the use of an incremental filling 
technique or an indirect composite inlay restoration to reduce the cuspal strain [15].

Choi et al., in 2011 analyzed the disintegration of a dental composite restoration 
around the margin due to contraction stress by measuring the circumferential strain 
on the outer surface of a ring-type dental substrate. They found increase in the 
marginal gap size representing the increase in the number of cracking’s along the 
margin due to polymerization contraction [16].
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Jongsma et al., in 2011 studied to find out the rationale of using whether 60% 
increase in push-out strength with a two-step cementation procedure of fiber posts 
is equivalent to the layering technique of composite restorations or not. They found 
two-step cementation of fiber posts lead to a decrease in internal stresses in the 
restoration, resulted in higher failure loads and less microleakage [17].

5.2 Dental ceramics

Dental ceramics are in-organic, non-metallic, and brittle restorative materials 
producing dental prosthesis that are used to replace missing or damaged dental 
structures which has high compressive strength and low tensile strength. FEM 
provides a mathematic analysis to predict strength values without the potential for 
errors in dental ceramics [18].

Tensile stresses tend to be more critical than compressive stresses for ceramic 
materials. The strength of ceramic restorations is significantly affected by the pres-
ence of flaws or other microscopic defects. Tensile stress concentration at cementa-
tion surface of the ceramic layer suggested as the predominant factor controlling 
ceramic failure [6].

Belli et al. in 2005 evaluated the effect of hybrid layer on distribution and 
amount of stress formed under occlusal loading in a premolar tooth restored with 
composite or ceramic inlay. They concluded that the hybrid layer has an effect on 
stress distribution under loading in restored premolar tooth model with composite 
or ceramic inlay [19].

Rezaei et al., in 2011 determined the effect of buccolingual increase of the 
connector width on the stress distribution in posterior FPDs made of IPS Empress. 
Three models of three-unit bridges replacing the first molar were prepared with 
the buccolingual connector width varied from 3.0 to 5.0 mm. They were loaded 
vertically with 600 N at one point on the central fossa of the pontic and a load 
of 225 N at 45° angle from the lingual side. They concluded that, increasing the 
connector width decreases the failure probability when a vertical or angled load is 
applied [20].

Thompson et al., in 2011 compared the inlay supported all-ceramic bridge with 
that of traditional full crown supported all-ceramic bridge. They demonstrated 
peak stresses in the inlay bridge around 20% higher than in the full crown sup-
ported bridge. They suggested the use of an ideal inlay preparation form and an 
optimized bridge design emphasizing on broadening of the gingival embrasure, so 
that the forces derived from mastication can be distributed adequately to a level that 
are within the fracture strength [21].

Matson et al., in 2012 compared the stress distribution generated in a veneer res-
toration of an upper central incisor to intact teeth by applying a 10 N lingual buccal 
load at the incisal edge. Veneers used in restorative rehabilitations for anterior teeth 
are retained by the adhesive systems and resin cements. These restorations are 
mechanically not strong, because they are made of brittle materials, but they have 
good retention due to the resin-dentine bonding. They recommended the use of 
veneers to replace enamel for rehabilitation [22].

6. Application of FEA in endodontics

Endodontology/Endodontics is the branch of dental sciences concerned with the 
form, function, health, injuries to and the diseases of the dental pulp and periradic-
ular region, and their relationship with systemic health and well-being. Endodontic 
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therapy involves either root canal filling techniques by conventional methods; or 
endodontic surgery with the use of biocompatible restorative materials, instru-
ments, and techniques performed. The objective of endodontic instrumentation is 
to produce a tapered continuous preparation that should preserve the anatomy of 
root canal and maintain a good apical seal and foramen as small as possible, without 
any deviation from the original canal curvature [23].

During canal instrumentation, pressure is generated against the dentinal walls 
that may lead to inappropriate canal preparation or microcracks. These microcracks 
may lead to vertical fracture - one of the cause for tooth loss. During instrumenta-
tion, nickel-titanium (NiTi) are the commonly used for shaping the root canal. 
So, in order to perform well and avoid instrument breakage inside the canal, the 
material used and the technique performed should be followed meticulously. FEA 
helps to analyze and predict the treatment outcome [24].

Satappan et al., in 2000 analyzed the type and frequency of defects in NiTi 
rotary endodontic files after routine clinical use and reasons for their failure. They 
found torsional failure by using too much apical force during instrumentation 
as the more frequent cause than flexural fatigue, which resulted from the use in 
curved canals [25].

Hong et al., in 2003 analyzed the stress variations by vertical and lateral conden-
sation on mandibular first molar mesio-buccal root canal by step-back technique. 
They found vertical condensation technique generating high stresses and the reason 
for vertical root fracture was due to over-force and improper operation [2].

Subramaniam et al., in 2007 compared the torsional and bending stresses in two 
simulated models of Ni-Ti rotary instruments, ProTaper and ProFile. They found 
the distribution of stresses was uniform in ProTaper model and stiffer by 30% than 
ProFile model, which shows ProFile is more flexible than ProTaper [26].

Kim et al., in 2008 compared the stress distribution during root canal shap-
ing and estimated the residual stress in three brands of Ni-Ti rotary instruments: 
ProFile, ProTaper, and ProTaper Universal (Dentsply Maillefer). They found 
that the original ProTaper design showed greatest pull in the apical direction and 
highest reaction torque from the root canal wall while, ProFile showed the least. 
The residual stress was highest in ProTaper followed by ProTaper Universal and 
ProFile. In ProTaper, stresses were concentrated at the cutting edge [27].

Lee et al., in 2011 investigated on cyclic fatigue resistance of various Ni-Ti rotary 
files in different root canal curvatures by correlating cyclic fatigue fracture tests. 
They concluded that stiffer instrument had the highest stress concentration and the 
least number of rotations until fracture in the cyclic fatigue test. Increased curva-
ture of the root canal generated higher stresses and shortened the lifetime of Ni-Ti 
files [28].

Belli et al., in 2011 evaluated the effect of interfaces on stress distribution in 
incisor models of primary, secondary, and tertiary monoblocks generated either 
by adhesive resin sealers in combination with a bondable root filling material or by 
different adhesive posts. The concept of creating mechanically homogenous units 
within the root dentine is theoretically excellent, but accomplishing in the canal 
space is challenging because bonding is compromised by volumetric changes in 
resin-based materials to dentine, debris on canal walls, configuration factors, and 
differences in bond strengths. They found stresses within roots increased with an 
increase in the number of the adhesive interfaces [29].

6.1 Application of FEA in post and core

A considerable amount of tooth structure lost due to caries, endodontic therapy, 
and placement of previous restorations will compromise the tooth structure to 
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resume its full function to serve satisfactorily. The type of the tooth restoring and 
the amount of remaining coronal tooth structure are the two factors that influence 
the choice of technique. The second factor is probably the key important indicator 
in determining the prognosis a tooth that is restored. If a substantial amount of 
coronal structure is missing, a cast post and core is indicated [30].

The method of restoring a structurally weakened tooth is post and core system, 
which is most common and widely used. This system can be categorized into two; 
custom cast metal posts and cores that are single piece, and a two component design 
comprising a prefabricated post to which other core materials is subsequently 
adapted. While fabricating a custom post and core, the difference in the elastic 
modulus of dentine and post material may be a source for root structure because 
of stress and debonding of posts due to stress contraction of the cement. Design of 
the post also effects the stress distribution, which was found as the most common 
mode of failure. Ferrule preparation creates a positive effect in reducing the stress 
concentration in an endodontically treated tooth. FEM can be used in various types 
of materials like carbon, metal, glass fiber, and zirconia ceramic and different 
configurations of dowel like smooth and serrated on the stress distribution of the 
teeth [6, 7].

Studies have showed that the increase in elastic modulus of post material cause 
decrease in the stress in dentin. However, Boschian et al., in 2006 have reported 
that higher the elastic modulus of post material than dentin can cause a dangerous, 
non-homogenous stress in root dentin. Also Silva et al., in 2009 reported that the 
stress distribution is more related to endodontically treated teeth restored with 
a post than the post’s external configuration. Therefore, whenever the clinician 
is planning to use a post he has to choose a post material, which has the stiffness 
similar to dentin. They evaluated the stress distribution in maxillary central incisor, 
which is endodontically treated and restored with fiberglass and metallic prefabri-
cated posts [7].

Necchi et al., in 2008 conducted a study on rotary endodontic instruments to 
demonstrate the usefulness of the FEM in improving the knowledge of the mechani-
cal behaviour of Ni-Ti and stainless steel ProTaper F1 instrument during root canal 
preparation. The results found the radius and position of the canal curvature as the 
most critical parameters in determining the stress whilst high stress levels are pro-
duced by decrease in the radius and instrumenting apical to the mid root position. 
They advised to discard the instrument after its use in those type of root canals [31].

The use of glass fiber dowels showed less stress than the metal, carbon, and 
ceramic posts which few researchers found. However, there are some differences 
in the material properties, boundaries and loading conditions. A study by Eraslan 
et al., in 2009 showed a reduction in VM stress in an endodontically treated tooth 
restored with all-ceramic post and core than with zirconium oxide ceramic post and 
fiber post at the dentin wall and within the post [32].

In a study by Zhou et al., in 2009 a mandibular second premolar was used to 
evaluate the stress distribution restored with fiber post and core with various 
shapes and diameter in axial and non-axial loads. They found no significant change 
with the increase in post diameter irrespective of the shape. They recommended 
trapezium and cone fiber posts as the ideal design for restoring the crown and root 
portion as they produced least maximum stress in non-axial loads than in axial 
load [33].

For fixation of post and core to the remaining tooth structure cements like 
zinc-phosphate, glass ionomer, resin-modified glass ionomer, and resin cement 
are used. The difference in elastic modulus of these cements, post materials and 
dentin results in stress concentration under function. In 2010, Soares et al., found 
zinc-phosphate and conventional glass ionomer cement producing high stress 
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concentrations at dentin-cement interface. They also demonstrated that resin 
cement recorded higher fracture resistance values than other cements, which was in 
accordance with the study done by Suzuki et al., in 2008 [7].

A systematic review in 2010 by Al-Omiri et al., discussed the importance of 
ferrule and emphasized the use of adhesive resin-fiber posts and composite cores 
as the best luting technique with respect to the biomechanical behaviour and tooth 
fracture resistance [34].

Al-Omiri et al., in 2011 conducted a study on 3-D FEM of maxillary second premo-
lar restored with an all-ceramic crown supported by a titanium post and a resin-based 
composite core to analyze the stress concentration areas. They found higher incidence 
of deep root fractures in teeth restored with post-retained crowns below the level of 
crestal bone due to the increase in intracanal stresses with horizontal loads generating 
more dentinal stress than vertical loads. Though endodontic posts provide retention 
for coronal restoration, the dentinal stress value was higher than those without posts 
were. Smaller diameter posts with modulus of elasticity similar to dentine were associ-
ated with better stress distribution. More the amount of radicular dentin around the 
post better/reduced dentinal stress concentration within the root [35].

7. Application of FEA in prosthodontics and implantology

The branch of dentistry pertaining to the restoration and maintenance of oral 
function, comfort, appearance, and health of the patient by the restoration of 
natural teeth and/or the replacement of missing teeth and craniofacial tissues with 
artificial substitutes. FEA helps in studying the stress patterns and their distribution 
between the tooth and the material used in restoring the natural or missing tooth/
teeth structure and predicting the favorable outcome with least chance of failure.

Zarone et al., in 2005 conducted a study on maxillary central incisor, the influ-
ence of tooth preparation design restored with alumina porcelain veneer on the 
stress distribution under functional load. They suggested the use of chamfer with 
palatal overlap design when restoring with porcelain veneers as it restored the 
natural distribution of stress than window technique [9].

FEA has been extensively used in implant dentistry to predict the biomechanical 
behaviour of various dental implant designs, as well as the effect of clinical factors for 
predicting the clinical success. Stress patterns in implant components and surrounding 
bone are well studied. The achievement of any FE study depends on the accuracy of 
simulating structures used. They are the material properties of implant and bone, sur-
face characteristics and geometry of the implant and its components, loading method 
and support conditions, and the biomechanical behaviour of implant-bone interface. 
The prime difficulty in simulating the living tissues and the responses to the applied 
load can be successfully achieved with the use of advanced imaging techniques [36].

FEA gives an in-depth idea about the patterns of stress in the implant and more 
importantly in the peri-implant bone and this helps in the betterment of the implant 
design and implant insertion techniques. Several studies had been put forward on the 
effect of material properties of implant, implant number, size (length and diameter), 
thread profile, and on the quality and quantity of surrounding bone on stress distri-
bution. The stresses of various kinds such as von Mises stress, maximum shear stress, 
maximum and minimum principal stress are used to assess the mechanical stress on 
the bone, implant, and bone-implant interface. Amongst, von Mises stress is most 
frequently and mainly used scalar-valued stress invariant to evaluate the yielding, 
and or failure behavior of dental materials. While minimum principal stress gives 
an idea on the compressive stress, maximum principal stress gives on tensile stress. 
Principal stress is used to study both ductile and brittle properties of a bone [36].
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Siegele and Soltesz in 1989 conducted a study using implants of various shapes to 
evaluate the patterns of stress generation in the jawbone found that different shapes 
produced different stress patterns and conical implant showed higher stress than 
screw shaped and cylindrical implants [2].

Mailath et al., in 1989 evaluated the stress values at the level of bone while plac-
ing implants with different designs and shapes (cylindrical and conical). They found 
more desirable stress patterns in the cylindrical implants than conical implants, large 
implant diameters provides more favorable stress distributions and implant materi-
als should have a modulus of elasticity of at least 110,000 N/mm2. Slipping between 
implants and cortical bone is desirable [37].

Geng et al., in 2001 did literature review on the application of FEA in implant 
dentistry. They advised the use of advanced digital imaging technique for prepar-
ing the models with high accuracy, considering anisotropic and non-homogenous 
material and simulating the exact boundary conditions and mimicking the implant 
and its components [7].

Chun et al., in 2002 found that the square thread shape filleted with a small 
radius was more effective in stress distribution than other dental implants used 
in the analyses also maximum effective stress decreased not only as screw pitch 
decreased gradually but also as implant length increased [38].

Himmlova et al., in 2004 conducted a study by taking implants of various 
lengths and diameters to evaluate the stress values produced at implant-bone inter-
face. They found maximum stress at the collar of the implant and an increase in the 
implant diameter decreased the maximum von Mises equivalent stress around the 
implant neck more than an increase in the implant length [39].

Ding et al., in 2009 conducted a study on immediate loading implants showed 
that the masticatory force around the implant neck was decreased with increased 
diameter of an implant. Several studies found higher risk of bone resorption occur-
ring in the implant neck region. By using FEM, authors could able to compare the 
elastic modulus and deformation with different types of bone, and implant materi-
als which helps clinicians to better understand the process of bone remodeling, and 
for further improvements in surgical techniques [40].

Eraslan et al., in 2009 evaluated the effects of different implant thread designs 
on stress distribution characteristics at supporting structures. Four different 
thread-form configurations for a solid screw implant was prepared with supporting 
bone structure. V-thread, buttress, reverse buttress, and square thread designs with 
a 100-N static axial occlusal load applied to occlusal surface of abutment to calcu-
late the stress distribution. They found that the implant thread forms has no effect 
on von Mises stress distribution in the supporting bone, but produced dissimilar 
compressive stress intensities in the bone [7].

Dos Santos et al., in 2011 conducted a study to evaluate the influence of height 
of healing caps and the use of soft liner materials on the stress distribution in 
peri-implant bone during masticatory function in conventional complete dentures 
during the healing period in submerged and non-submerged implants. They found 
non-submerged implants with higher values of stress concentration and soft liner 
materials gave better results. They stated that use of soft liners with submerged 
implants to be the most suitable method to use during the period of osseointegra-
tion [41].

Demenko et al., in 2011 emphasized that, selecting an implant size is one of 
the important factor in determining the load bearing capacity. The most common 
reason of mandibular implant supported overdenture failure was peri-implantitis 
due to the loss of osseointegration without any sign of infection [42].

The increase risk of mechanical failure can occur with the increase in crown to 
implant ratio, which was substantiated by many FE studies. A study by Verri et al., 
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in 2014 found an oblique loading induced high stress on the abutment screw when 
the crown:implant ratio was 1.5:1 which is in agreement with the study done by 
Urdaneta et al., in 2010 on correlation between screw loosening, fracture of pros-
thetic abutments, and crown to implant height [36].

7.1 Prosthesis for maxillectomy or hemi-mandiblectomy

FEA is important in predicting the success of implant supported prosthetic 
rehabilitation of maxillectomy patients. In case of maxillary or partial mandibular 
resection patients, FE models can be used to simulate the resection areas and 
biomechanics of maxillary obturator or mandibular partial or implant supported 
prosthesis can be studied. de Sousa and Mattos in 2014 conducted a study to evalu-
ate the stability and functional stress caused by implanted-supported obturator 
prostheses in simulated maxillary resections of an edentulous maxilla correspond-
ing to Okay Classes Ib, II, and III, with no surgical reconstruction. They found that 
the implant-supported obturator prostheses tended to rotate toward the surgical 
resection site, the region where there is no osseous support. As the osseous support 
and the numbers of implants and clips diminished, the tensile and compressive 
stresses in the gingival mucosa and in the cortical bone increased. They concluded 
that the osseous tensile and compressive stresses resulting from the bar-clip reten-
tion system for Okay Classes Ib, II, and III maxillectomy may not be favorable to the 
survival rate of implants [36].

8. Application of FEA in trauma and fractures

Oral and maxillofacial surgery is one branch of dentistry, which has always been 
associated with biomechanics. Trauma surgery, orthognathic surgery, reconstruc-
tive surgery are the subdivisions where understanding the mechanism of fractures 
and its biological response to the biomechanical change are worth knowing for 
optimal treatment method and outcome [43].

When present technology was not available in the past, cadaveric studies were 
the only way of information and it is not possible to carry out designing and execut-
ing which at present times have ethical issues often challenging to have valid and 
reliable results. Furthermore, post mortem alterations and the age do not match in 
a typical facial trauma cadaver. One such example was René Le Fort, a French army 
surgeon, conducted a series of thorough experiments on the heads of cadavers. His 
work gave rise to a system of classifying facial fractures, now known as Le Fort 
types I, II and III [36, 43].

Since the maxillofacial region has vital anatomical structures, intervention in 
this region needs precise work to be carried out in restoring function and esthetics 
of the tissues in obtaining predictable and favorable long-term outcomes. In the 
field of trauma surgery, to identify the craniofacial region that are potential prone 
to fracture, FEA enables precise mapping of the maxillofacial region to know the 
biomechanics and stress pattern distribution of trauma that helps in evaluation of 
patient and optimizing the surgical protocol for treating the fractures [43].

Today, with the help of FEA mechanical properties of facial hard and soft 
tissues, osteosynthesis materials, implant components for fixing the fractured 
parts, and various biological and synthetic bone substitutes can be easily generated 
and determined due to the advancement in the computing and virtual analysis. It 
allows the testing of various fixation system to prevent the future failure due to its 
improper selection or inappropriate positioning. It made us possible to know the 
impact in biomechanical behaviour of testing materials on the biological responses 
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of the bone tested as well as adjacent anatomical structures more accurate, repeat-
able, time saving, and cost-effective way regardless of their complexity [43].

Isolated orbital floor fracture (IOFF), zygomatic bone fracture are the examples 
of more complex traumas occurring frequently in contact sports and their 
pathomechanism were also studied with the aid of FEA. In relatively rare facial 
traumas like in case of blast or gunshot wounds, FEA helps in exploring, analyzing 
and determining the mechanism of anatomical structures damaged and ways in 
reconstructing them. The pathomechanism underlying the type and method of 
fracture is exceptionally important as it may help in designing the helmets, other 
protecting devices. Rigid fixation is one of the key element in determining the 
long-term success for osseointegration. Inappropriate selection of an osteosynthesis 
component for the biological tissues can cause complication in fusion of bone. 
Therefore, FEA helps in determining and designing various fixation systems and 
methods [44, 45].

Osteosynthesis of condylar fracture and fixing the element is a challenging 
aspect for a maxillofacial surgeon due to its specific anatomy and surgical access. 
Through FEA, it has become possible for the researchers to find the better way 
and an exceptionally handy, easy mountable and durable element for optimal 
stabilizing and fixing the fractured fragments. A new type of “A-shape condylar 
plate” was designed for all levels of neck fractures and it can be used for stabiliza-
tion of existed coronoid process fracture. FEA has proved to be a useful tool in 
investing and thorough evaluation of newer materials and solutions, which are 
more optimized, durable and light weight components before they can be used in 
the clinical situations [46].

Bujtár et al., in 2010 analyzed the stress distribution in detailed models of 
human mandibles at 3 different stages of life (12, 20, and 67 years) with simulation 
of supra normal chewing forces at static conditions. They found higher elasticity 
in younger models in all regions of the mandible whereas higher levels of stress in a 
67 year old at the mandibular neck region of edentulous mandible [47].

Huempfner-Hierl et al., in 2014 showed a pattern of von Mises stresses beyond 
the yield point of bone that corresponded with fractures commonly seen clinically. 
They found Naso-orbitoethmoid fractures account for 5% of all facial fractures. 
They concluded that, FEM can be used to simulate the injuries occurring to the 
human skull that provides information about the pathogenesis of different types of 
fracture [48].

Murakami et al., in 2014 evaluated the strength of mandible after removal of a 
lesion to illustrate the theoretical efficacy of preventive measures against pathologic 
fracture. They found plate application is effective to decrease the stress on the 
mandible after surgical removal of a cyst including third molar [43].

Santos et al., in 2015 analyzed the stress distributions on the symphyseal, 
parasymphyseal, and mandibular body regions in the elderly edentulous mandible 
under applied traumatic loads, which enabled precise mapping of the stress distri-
bution in a human elderly edentulous mandible (neck and mandibular angle) [49].

9. Application of FEA in orthodontics and dentofacial orthopedics

Orthodontics is a specialty of dentistry, which deals with the diagnosis, preven-
tion and correction of malpositioned teeth and jaws. It also focuses on determining 
and modifying the facial growth, known as dentofacial orthopedics. Abnormal 
alignment of the teeth and jaws is common. In the field of Orthodontics and 
Dentofacial Orthopedics, FEM has proved to be a reliable and valid procedure in 
evaluating the applied orthodontic forces.
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Tanne et al., in 1995 did a 3-D FE study to investigate the location of nasomaxillary 
complex centre of resistance (CRe). 9·8 N of force directed anteriorly and inferiorly 
were applied at five different levels, parallel and perpendicular to the occlusal plane. 
When a horizontal force was applied at a point in the horizontal plane, passing through 
the superior ridge of the pterygomaxillary fissure, the complex exhibited a translatory 
displacement of 1·0 μm approximately in forward direction. Whereas, clockwise or 
counter clockwise rotation when the forces were applied at the remaining levels sug-
gesting that CRe of the nasomaxillary complex is located on the postero-superior ridge 
of the pterygomaxillary fissure, registered on the median sagittal plane [2].

Many researchers have developed various FE models in order to understand the 
interaction between tooth mobility and periodontal ligament. Jones et al., in 2001 
validated an FE model and found PDL as the main mediator for orthodontic tooth 
movement and the material properties of PDL are difficult to quantify [7].

The use of the lingual orthodontic technique has increased over time, as adults 
dislike the visibility of orthodontic appliances. Sung et al., in 2003 evaluated the 
effect of compensating curves on canine retraction between the lingual and the 
labial orthodontic techniques. The compensating curve was increased on the .016-in 
stainless steel labial or lingual archwire, and a 150-g force was applied distally on 
the canine. The pattern of tooth movement (with or without a compensating curve) 
was found to be different between labial and lingual techniques. As the amount of 
compensating curve increased (0, 2, and 4 mm) in the archwire, the rotation and 
the distal tipping of the canine was reduced. The anti-tip and anti-rotation action of 
compensating curve on the canine retraction was greater in the labial archwire than 
in the lingual archwire [50].

Cattaneo et al., in 2009 studied on Orthodontic tooth movement (OTM) which 
occurs when an orthodontic force is applied to the brackets. The modeling and 
remodeling process of the supporting structures occurs by alteration in the dis-
tribution of stress/strain in the periodontium. As per the classical OTM theories, 
symmetric zones of compression and tension are present in the periodontium. 
However, they did not consider the complex mechanical properties of the PDL, the 
morphology of alveolar structures’, and magnitude of the applied force. The authors 
could not confirm the classical ideal of symmetrical compressive and tensile areas in 
periodontium as per the OTM scenarios. They found light continuous orthodontics 
forces will be perceived as intermittent by the periodontium. They expressed that, 
as the roots and alveolar bone morphology are patient-specific, FEA should not be 
based on general models [51].

Lingual orthodontics has developed rapidly in recent years; however, research 
on torque control variance of the maxillary incisors in both lingual and labial 
orthodontics is still limited. Liang et al., in 2009 generated maxilla and maxillary 
incisors models to evaluate the torque control during retraction in labial and lingual 
orthodontic technique for maxillary incisors. They found loads of the same magni-
tude produced translation of the maxillary incisor in labial orthodontics but lingual 
crown tipping in lingual orthodontics. This suggested the loss of torque control 
during retraction of the maxillary incisors in extraction patients is more likely in 
lingual orthodontic treatment [52].

Field et al., in 2009 investigated the stress–strain responses of teeth to orth-
odontic loading. Two cases were analyzed, consisting of a single-tooth system 
with a mandibular canine, and a multi-tooth system with mandibular incisor, 
canine, and first premolar that are subjected to orthodontic tipping forces. They 
found stress levels greater in the multi-tooth system than in the single-tooth 
system also, elevated distortion strain energies at the alveolar crest area and 
tensile and compressive stresses at the apical sites clinically associated with root 
resorption [22].
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9.1 Orthognathic surgery

Orthognathic surgery also known as corrective jaw surgery or simply jaw 
surgery is aimed to correct the conditions of jaw and face. They relate to correct the 
structure, growth modification, disorders of TMJ, sleep apnea, malocclusion prob-
lems owing to skeletal disharmonies, or other orthodontic problems that cannot be 
treated with orthodontic braces. It involves the surgical manipulation of the struc-
tures of the facial skeleton in restoring the suitable anatomy and their functional 
relationship with dentofacial skeletal abnormalities for the patient’s sense of self 
and well-being. Successful outcome depend on meticulous preoperative planning 
until finalization of occlusion. Virtual planning promotes a more accurate analysis 
of dentofacial deformity and preoperative planning with the help of computer-
based technique like FEA, an invaluable tool in providing comprehensive patient 
education. Today’s orthognathic treatment consists of standard orthognathic 
procedure in correcting jaw deformities like maxillary and mandibular progna-
thism, open bite, difficulty in chewing and swallowing, TMJ dysfunction pain, 
excessive wear of the teeth, and receding chins. It includes adjunctive procedures 
like genioplasty, septorhinoplasty, and lipectomy of the neck to improve hard and 
soft tissue contours [53].

Chabanas et al., in 2002 presented their study on the treatment protocol – a 
computer aided maxillofacial sequence for orthognathic surgery in the patients 
with large gnathic defects because the treatment protocol is difficult and time 
consuming [43].

Erkmen et al., in 2005 conducted a study and found that the use of 2.0 mm 
lag screws placed in a triangular configuration provided most sufficient stabil-
ity and lesser stress fields at the osteotomy site compared to other rigid fixation 
methods [54].

For successful outcome in any orthognathic surgeries, selection of an appro-
priate bridging element is a key determinant, corrective mandibular surgery like 
bilateral sagittal split osteotomy (BSSO) is not an exception to stabilize the bony 
segments with different fixing elements and FEA is an important tool [43].

Stróżyk et al., in 2011 compared three types of fixation during BSSO using 3-D 
FE model divided into 3 segments with 5 mm gap in between according to BSSO line. 
Three fixation systems were bridged to the osteotomized fragments, a 20 N and 80 N 
force applied at the incisor and molar area respectively. They concluded that the most 
stable bridging after BSSO can be obtained with bicortical screw fixation [55].

Surgically Assisted Palatal Expansion (SARPE) is an orthognathic surgical 
procedure that is performed frequently in the patients with narrower maxilla. De 
Assis et al., in 2014 investigated the stress distribution in maxillae that underwent 
SARPE. They constructed five maxillary models with no osteotomy, Le Fort I oste-
otomy with a step in the zygomaticomaxillary buttress, Le Fort I osteotomy with 
a step in the zygomaticomaxillary buttress and the pterygomaxillary disjunction, 
Le Fort I osteotomy without a step, and Le Fort I osteotomy with pterygomaxillary 
disjunction and no step. The distribution of tensions in maxillae that underwent 
SARPE was simulated by the FEM and they revealed that the steps in the zygomati-
comaxillary buttress and the pterygomaxillary disjunction seems to be important in 
decreasing the harmful dissipation of tensions during SARPE [56].

A more complex surgery involving correction of deformation of both the jaws 
simulating the maxillary and mandibular jaw osteotomy using FEA was also executed. 
Fujii et al., in 2017 conducted a study to determine whether non-linear 3D-FEA can 
be applied to simulate pterygomaxillary dysjunction during Le Fort I osteotomy (LFI) 
not involving a curved osteotome (LFI-non COSep), and to predict potential changes 
in the fracture pattern associated with extending the cutting line. In their study, the 
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rate of agreement between the predicted pterygomaxillary dysjunction patterns and 
those observed in the postoperative 3D-CT images was 87.0%. The predicted inci-
dence of pterygoid process fracture was higher for cutting lines that extended to the 
pterygomaxillary junction than for conventional cutting lines. They also added that, 
3-D FEA can be a useful tool in predicting pterygomaxillary dysjunction patterns and 
provides useful information in selecting safe procedures during LFI-non-COSep [57].

Knoops et al., in 2019 conducted a study to compare the soft tissue predic-
tion accuracy of several available computer programmes like Dolphin, ProPlan 
CMF, and Probabilistic Finite Element Method (PFEM) in patients with Le Fort I 
osteotomy. They concluded that patient or population-specific material properties 
can be defined in PFEM, while no soft tissue parameters are adjustable in ProPlan. 
Therefore, PFEM provides accurate soft tissue prediction and can be a useful tool in 
preoperative patient communication [58].

10. Application of FEA in reconstructive surgery

The FEM technique can also be used in oncosurgeries and reconstructive surgery 
where an extensive resection is needed and reconstruction of jawbones are done. 
The crucial parameter form the postoperative point of view is the amount of bone 
segment removed from the surgical site, which includes size, shape, and loca-
tion. The aim of reconstructing the bone defect should result in restoration of the 
integrity, its anatomy and the functionality of stomatognathic system. With the aid 
of digital technology; modeling, simulation and analysis, it is possible to know and 
compare the stress levels and distribution on and at the bone-graft interface and 
predictable behaviour of the reconstructed site to identify the most suitable trans-
plant for a given clinical situation and to find the appropriate bone fusion under 
favorable conditions in the reconstructed area [43].

Moiduddin et al., in 2017 studied to present an integrated framework model 
in designing and analyzing customized porous reconstruction plate based on the 
selection of implant design techniques. Reconstruction of large mandibular defects 
often leads to complications while using reconstruction plates. Studies proved that 
implants with porous structures can effectively enhances the biological fixation 
to the bone but, no study reported on the design and analysis of the customized 
porous mandibular reconstruction. In their study, two customized implant design 
techniques; mirroring and anatomical were compared. They recommended the use 
of mirror design reconstruction technique in mandibular bone repair, which not 
only improves the stability but also the flexibility of mandibular reconstruction 
under chewing conditions [59].

Hu et al., in 2019 performed a study to characterize the mechanical behaviour 
of 3-D printed anisotropic scaffolds as bone analogs by fused deposition modeling 
(FDM). Using topological optimization and 3-D printing technology, designing and 
manufacturing of a customized graft with porous scaffold structure is necessary 
in repairing large mandibular defects. They used CBCT images of an edentulous 
50-year-old patient. The topological optimized graft provided the best mechanical 
properties. They highlighted the use of numerical simulations and 3-D printing 
technology in designing and manufacturing the artificial porous graft [60].

11. Application of FEA in periodontics

PDL is a highly specialized soft connective tissue that is present between the 
tooth root and the alveolar bone. The primary function is to support the tooth and 
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is the most important component of periodontium. Various studies included and 
investigated on its biomechanics and stress distribution under normal,  masticatory, 
and traumatic loads. PDL is the crucial aspect in designing as it influences the 
properties of a 3-D model, though it is difficult in modeling and not a concern for 
the study. Ignoring the PDL may result in inaccurate values of stress and strain 
distribution [36].

Tuna et al., in 2014 conducted a study and pointed out the advantage of simulat-
ing as a contact model at the interface of tooth root and alveolar process instead of 
a solid meshed FE model with poor geometric morphology or very dense mesh to 
save the time. They reinforced the use of PDL in designing the tooth model and its 
associated structures that increases the accuracy and contribution to the smooth-
ness of interface stress distributions [61].

12. Merits of finite element method

• FEA is a non-invasive method [1, 2, 9, 62].

• Results can be easily interpreted in physical terms as well as it has a strong 
mathematical base.

• Non-homogenous structures also can be dealt by merely assigning different 
properties to different elements.

• It is even possible to vary the properties to different elements and within an 
element according to the polynomial applied.

• It minimizes the requirement for laboratory testing, but not replaces entirely.

• Applicable to linear and non-linear as well as solid and fluid structural 
interactions.

• Any problems can be split into smaller number of problems.

• It is very easy to simulate any biological condition in pre-operative, intra-
operative, and post-operative stages for more accurate and reliable results.

• Reproducibility of the results does not affect the physical properties of the 
materials involved.

• It can replace stereo lithographic models for pre-surgical planning.

• With FEA, static and dynamic analysis is possible.

• It is less time consuming even with the complex structures.

• No extensive instrumentation is required.

• The study can be repeated as many times as the operator wants.

• The systematic generality of finite element procedure makes it a powerful and 
versatile tool for a wide range of problems.
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13. Shortcomings of FEM

• The solution obtained from FEM can be realistic if and only if the material 
properties are known precisely [1, 2, 9, 62].

• The major drawback is sensitivity of the solution on the geometry of the 
 element such as type, size, number, shape and orientation of element used.

• FEM programs yield a large amount of numerical data as results and it is very 
difficult to separate out the required results from the pile of numbers.

• Inability to simulate the biological dynamics of the tooth and its supporting 
structure accurately. For example, in non-carious cervical lesions, due to the 
exposure to oral environment the structure of dentin (tertiary or reparative 
dentin) undergoes variable amount of changes such as attrition, erosion or 
abrasion, which has formed as a response to stimulus.

• Misguided results due to inaccurate data or information or interpretation.

• Due to their complex anatomy and lack of complete knowledge about the 
mechanical behaviour, modeling of human structures are extremely difficult.

• The results depend on the personnel involved in the process due to 
assumptions.

• Until well-defined physical properties of enamel, dentin, PDL, cancellous, 
and cortical bone are available, the progress and the process in the FEA will be 
limited.

14. Advances in FEM

• Early FE models had the difficulty in allocating physical characteristics to the 
different constituent parts of the tooth, as they were considered as isotropic 
which in real are not [1, 2, 9, 62].

• The non-linear simulation and dynamic behaviour of PDL and other soft tissue 
properties has become an increasingly powerful approach that provides preci-
sion and reliability in calculating stress and strain with a wide range of tooth 
movements.

• The transient and residual stresses in dental materials are also included in non-
linear FEM calculations also include. Residual stresses in ceramic and metal 
restorations, contraction stresses in composites, and permanent deformation 
prediction of materials are some to mention for non-linear application to be 
applied and investigated.

• The phenomena of sliding and friction critically affect the stress and strain 
created on the contact surfaces between teeth that play a major role in the 
mechanical behaviour. This non-linear property can be solved by contact 
analysis depend various factors like region of contact, load, material, and 
environment that are highly unpredictable. The frictional response depends on 
the pair of surfaces in contact, temperature, and humidity.
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• Research is also going on polyhedral meshing and mesh-less (or mesh-free) 
analysis for reducing the meshing time. Advantages of polyhedral meshing 
being; less meshing time, high accuracy, and too less number of degrees of 
freedom (DOF).

• Hybrid meshing (hex-pyram-tetra) is a very special option but not all software 
supports its application.

15. Conclusion

The power of the Finite Element Method is its versatility. It is a well-established 
numerical analysis used not only in aerospace, automotive industry and civil 
engineering, but also in health care. It addresses the biomedical problems that 
are challenging due to structural complexity. The structure analyzed may have 
arbitrary shape, arbitrary support, and arbitrary loads therefore; it is ideally suited 
for the analysis of bibliographical structures, which are non-homogeneous. The 
modeling and simulation of the structures and or materials saves time and money in 
conducting the experiment. Therefore, this tool has been successfully employed in 
various areas of dentistry.

A finite element analysis does not produce formula as a solution, nor does it 
solve a class of problems. This method is a way of getting a numerical solution to 
a specific problem. Finite element analysis is an accurate tool in assessing stress 
distribution, only of the given set of values are effective. However, it varies from 
person to person as the situation and biomechanical properties of living structures 
interpretation differs. Hence, the obvious shortcomings should be kept in mind 
before any decision making procedure in experimental as well as clinical dentistry. 
The experiments done are repeatable with no ethical concern and study designs can 
be modified as per the requirement. Certain limitations of FEA do exist. Keeping in 
mind the limitations, FEA research should be accompanied with clinical evaluation.
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Chapter 9

Rolling Resistance Estimation for
PCR Tyre Design Using the Finite
Element Method
Sutisna Nanang Ali

Abstract

This study presents rolling resistance estimation in the design process of
passenger car radial (PCR) tyre by using finite element method. The rolling
resistance coefficient of tyres has been becoming one of main requirements within
the regulation in many countries as it is related to the level of allowable exhaust gas
emission generated by vehicle. Therefore, the tyre being designed must be digitally
simulated using finite element method before the tyre is manufactured to provide
a high confident level and avoid unnecessary cost related to failure physical product
testing. The simulation firstly computes the deformation of several alternative
designs of tyres under certain loading, and then the value of deformation force in
each tyre component during deformation took place is calculated. The total force of
deformation is considered as energy loss or hysteresis loss resulted in tyre rolling
resistance. The experiment was carried out on three different tyre designs: two
grooves, three grooves, and four grooves. The four groove tyre design gave the
smallest rolling resistance coefficient (RRC). Finally, the simulation was continued
to compare different crown radius of the tyres and the result shows that the largest
crown radius generates the lowest rolling resistance.

Keywords: rolling resistance, PCR tyre, design, hysteresis loss,
finite element method

1. Introduction

Passenger car radial (PCR) tyre is one of the most widely used tyres and is
designed to follow the international standard and the regulation in the country
where the tyre is being used. The recent regulation mainly concerns with the
reduction the source of pollution and safety, such as rolling resistance, rolling noise,
and wet grip. This study discusses the finite element simulation of tyre in order to
design PCR tyre having low rolling resistance coefficient that lead to a low energy
consumption tyre.

The energy consumption of vehicle to some extent is contributed by tyres.
According to International Council on Clean Transportation [1], improving tyre
energy efficiency will reduce fuel consumption by 3 to 5% which will reduce
greenhouse gas emission by more than 100 million metric ton annually. Therefore, a
low rolling resistance tyre is highly required to reduce the gas emission produce by
vehicles.
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Tyre rolling resistance is defined as the energy consumed per unit travel distance
when the tyre rolls under load [2]. Therefore, lower energy use of vehicle can be
obtained by using low rolling resistance tyre.

Tyre design process includes conceptual design, benchmarking, detail design,
and design review and analysis. During design review and analysis phase, a simula-
tion was conducted to estimate the value of rolling resistance coefficient. In this
simulation, a finite element model was built by using Abaqus software to simulate
the tyre deformation and calculate a complete energy loss absorbed by the defor-
mation of rolling tyre under certain load and speed. The hysteresis energy loss was
calculated using a user defined subroutine written in Python and is used as Abaqus
plug-in.

2. Rolling resistance

Tyre rolling resistance requirement was outlined in United Nation Economic
Commission for Europe (UNECE) regulation No. 117 Revision 2, together with
rolling sound emission and adhesion on wet surface (wet grip). The country apply-
ing this Regulation may refuse to allow the sale or entry into service of a PCR tyre
(C1 Class) which does not meet the stage 1 rolling resistance requirements from 1
November 2014 and the stage 2 rolling resistance requirements from 1 November
2018 [3].

However, different countries have different policies regarding implementation
standard, date and rating. European Union implements tyre labeling requirement
since 2012, where the label states the rating of Rolling Resistance Coefficient,
Rolling Sound Emission, and Wet Grip. Gulf Cooperation Council implement GSO
standard tyre labeling starting 2014, mandatory for rolling resistance and wet grip.

2.1 Rolling resistance coefficient

UNECE Regulation No. 117–2 defines Rolling Resistance Fr as loss of energy (or
energy consumed) per unit of distance traveled, and Rolling Resistance coefficient
Cr as ratio of the rolling resistance to the load on the tyre (Table 1).

As stated by Tonachel [4], rolling resistance occurs as tyres deform during
rotation. The load within the rubber material and rebar that construct the tyre are
deformed and the loss of energy during these repeated deformations is then dissi-
pated in the form of heat. The dissipation of energy in radial tyre occurs on crown is
estimated about 70%, on sidewall 15%, and bead area 15% [5].

Standard rolling resistance

Stage 1 Stage 2

Tyre class Max value (N/kN) Max value (N/kN)

C1 12.0 10.5

C2 10.5 9.0

C3 8 6.5

For snow tyres, the limits shall be increased by 1 N/kN.

Table 1.
Standard RR coefficient based on ECE R117–2.
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Therefore, the research was focused on the crown area. The simulation was done
on crown initial radius and the stiffness of tread to study their effect on rolling
resistance coefficient Cr.

2.2 Rolling resistance measurement

In this research, the rolling resistance test was conducted according to ISO 28580, i.e.
using force measurement method (Figure 1). In this method, the tyre and drumwheel
assembly is forced toward a drumwheel with the skim load Fpl, and the reaction force at
the axle of tyre and drumwheel assembly Ft is then measured. The rolling resistance Fr
at the contact of tyre and drum can be calculated using the following equation:

Fr ¼ Ft 1þ rL=Rð Þ–Fpl
�

(1)

where Fr Rolling Resistance (N)
Ft Measured force at the spindle (N)
rL Tyre radius (m)
R Drum wheel radius (1.7 m)
Fpl Skim load (N)

3. Design methodology

Tyre design consists of several phases, including conceptual design,
benchmarking, detail design, design review and analysis. Design review and analy-
sis phase is important to ensure that the final product will be in accordance with the
required performance as designed. One of the processes in this phase is doing
simulation by using finite element method with the following steps [7]:

1.Define target performance

2.Tyre Simulation using FEA

3.Validation of FEA simulation result

3.1 Target Performance

The tyre being designed is PCR tyre with size of 175/65 R14, should have
maximum Rolling Resistance Coefficient of 8.5 N/kN and good cornering stability.

Figure 1.
Rolling resistance test method [6].
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3.2 Tyre simulation using FEA

The Finite Element Method is used to analyze the rolling resistance of PCR tyre,
consisting of two steps:

1.Tyre simulation was performed using commercial finite element software
Abaqus. The simulation consists of several steps as follows:

a. FE tyre modeling, using axisymmetric modeling method.

b. Define material properties and material modeling.

c. Static footprint simulation and Radial stiffness.

2.Energy dissipation and rolling resistance were evaluated by using internally
developed python code. The code extracts the strain energy results of the
model and the same is post processed with viscous material data. The
dissipation energy is calculated based on the strain energy function of Yeoh’s
model by taking the product of elastic strain energy and the loss tangent of
materials. Computation of Tyre rolling resistance with its respective
compounds developed for their applications, performed by considering
different crown radius and radial stiffness.

3.2.1 Axisymmetric modeling

To model a tyre in Abaqus we use a cross section area of the tyre drawing and,
imported as IGES file, this modeling technique is well known as axisymmetric
modeling. All tyre component and their material properties are defined in this step.
The tyre components that construct the tyre includes tread, base, wing, inner liner,
side wall, apex, rim cushion, bead, JLB (join less belt), belt, and ply, are shown
Figure 2 and made up from four different types of materials and these are rubber
compounds, textile fabrics, steel cords and bead wire.

The tyre model in Abaqus consists of two part partition: Carcass and Cord.
Carcass and Cord partition were meshed separately, which are modeled in half
axisymmetric model and then mirrored, become a complete assembly. In case the
tread need to be included in the simulation, for instance to evaluate footprint, the

Figure 2.
Sample of Tyre components [7].
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tread is meshed separately in addition to Carcass and Cord. Tread meshing need to
be carefully done so that the nodes on tread and carcass will be matched perfectly.
Later on the rim part is included in the assembly. The axisymmetric model of the
tyre after meshing is illustrated in Figure 3.

The next steps are defining the mounting, creating constraints, defining
boundary conditions, and loading (pressure) prior to running axisymetry function
in Abaqus to form a full tyre. Figure 4 illustrate the axisymmetric tyre with
pressure and a full round of the axisymmetric tyre model.

3.2.2 Material properties and modeling

Material properties need to be input into Abaqus during this simulation step,
each component should have the following material property data including hard-
ness, density, stress, strain, Young’s modulus, mu, Kappa, C10, and D1. Table 2
exhibits the full material properties of all tyre components under study.

A model that represents the stress–strain relationship of the material is needed in
finite element analyses of rubber components. There are several material models
available In Abaqus to describe the mechanical behavior of rubber. The model to be

Figure 3.
Tyre meshing of axisymmetric model in Abaqus [7].

Figure 4.
Pressurized axisymmetric (left) and full axisymmetric Tyre model (right).
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used in the analyses depends on several factors such as availability of experimental
data, strain range, and complexity of loading.

Each tyre component shows different deformation response under external
loading. Rubber exhibits non linear deformation and almost incompressible
response, while fabric cords and steel wire withstand most both tension and com-
pressions loads and therefore produce small strain. For rubber, hyper-elastic mate-
rial models are used to describe high deformation. In this study, Yeoh’s model was
chosen to define hyperelastic property of rubber materials and Marlow model for
reinforcements such as fabric and steel cords. Bead was modeled as an elastic
material.

The Yeoh material model had a cubic form with only I1 dependence and is
applicable to purely incompressible materials. The strain energy density for Yeoh
model is written as

W ¼
X3
i¼1

Ci I1 � 3ð Þi (2)

where Ci are material constants. Ci quantity is 0.5 of the initial shear modulus.
The reason for using the Yeoh’s model in the rubber material model, despite the

fact that Abaqus supports other material models like Neo-Hookean and Mooney-
Rivlin, because it is capable of predicting different deformation modes using data
from a simple deformation mode like uni-axial tension test. A review by Wei et al.
[8] found that most of material models are determined based on the polynomial
expression of strain energy function. Although Mooney-Rivlin energy density
function has been widely applied for tyre dynamic properties analysis, the function
has a limitation that it could not be accurately applied to large deformation prob-
lems of the rubber material. Neo-Hookean material model also has a limitation that
the coefficients derived from uni-axial deformation tests are not suitable to describe
other deformation modes. In order to determine the parameters of rubber
hyperelastic property, most of the material models need to combine three defor-
mation tests (uni-axial, biaxial tension and pure shear), which is recognized as a
complex and time consuming procedure.

No Properties Tread Under
tread

Wing Inner
liner

Side
wall

Apex Rim
cushion

Bead Belt Ply

1 Hardness 74.00 74.00 62.67 67 59 89 73 82 71 69

2 Density 1.16 1.16 1.09 1.221 1.088 1.163 1.162 1.289 1.182 1.114

3 Stress,
Mpa

0.95 0.95 0.49 0.78 0.50 2.00 1.09 1.53 0.84 0.96

4 Strain, % 0.16 0.16 0.16 0.17 0.15 0.17 0.16 0.16 0.16 0.17

5 Young’s
modulus

5.94 5.94 3.06 4.68 3.27 12.04 6.78 9.42 5.36 5.73

6 Poisson
ratio

0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49

7 mu 1.99 1.99 1.03 1.57 1.10 4.04 2.28 3.16 1.80 1.92

8 Kappa 99.01 99.01 50.94 77.97 54.47 200.60 113.02 156.95 89.26 95.53

9 C10 1.00 1.00 0.51 0.78 0.55 2.02 1.14 1.58 0.90 0.96

10 D1 0.02 0.02 0.04 0.03 0.04 0.01 0.02 0.01 0.02 0.02

Table 2.
Material properties.
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3.2.3 Footprint and radial stiffness analysis

After completing the axisymmetric tyre modeling, the next step is the simulation
of tyre under static loading. From this simulation there are two analyses can be
further performed: footprint analysis and radial stiffness analysis. For footprint
analysis, the load needs to be applied on the tyre to represent the normal load
according to the specified load index of the tyre. Figure 5 shows the tyre under
static loading and its respective footprint result.

For designing a new PCR tyre, there are three different tyre were taken for
benchmark. The tyre being simulated is of the size 175/65 R14 and were inflated at
2.1 bar (30.5 psi) with various loads of 100 kg, 150 kg, and 200 kg using three types
of tyre, called tyre A, tyre B, and tyre C. Tyre A has two grooves, tyre B has three
grooves, and tyre C has four grooves.

To obtain more accurate footprint result, the full tyre with tread was modeled
so that the contact pressure distribution on the tread which in contact with the
road can be evaluated. Figure 6 exhibits the footprint comparison of these
three tyres.

In Abaqus, footprint simulation is performed under static loading and needs
several input files for defining geometry, boundary condition, sequence and load of
tyre and rim. The result of Abaqus footprint analysis as it is shown in Figure 6,
suggests that the tyre having two grooves shows the largest contact area at shoulder.
Large contact area on shoulder indicates better cornering stability.

The second simulation result is about radial stiffness of the tyre. The radial
stiffness mainly depends on sidewall stiffness and affects the transversal bending of
tyre. This transversal bending causes the tyre to lose its height by certain value,
from initial radius R becomes deflected radius Rdef, as shown in Figure 7.

The Rdef resulted from simulation of two groove tyre is the largest (see Table 3),
that means that its radial stiffness is also the largest. Larger radial stiffness gives
more cornering stability.

By looking at footprint and radial stiffness, the two groove tyre indicates a better
cornering stability compared to the other tyre types.

Figure 5.
Footprint simulation under static loading.
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Figure 6.
Footprint comparison of benchmark tyres [7].

Figure 7.
Tyre deformation.

2 Groove tyre 3 Groove tyre 4 Groove tyre

R deflection 269.06 mm 268.75 mm 268.54 mm

R initial 291.5 mm

Table 3.
Value of Tyre radius during deflection.

200

Finite Element Methods and Their Applications



3.3 Rolling resistance analysis

Rolling resistance force in tyre is mainly generated by friction force, drag force,
and hysteresis loss. This study will only discuss rolling resistance force generated by
hysteresis loss inside the rubber and cord. The analysis was performed in two main
steps, those are static tyre simulation (footprint and radial stiffness) and calculation
of strain energy loss to find rolling resistance force.

With review of a number of tyre rolling resistance simulations, it is found that
rolling resistance calculation is based on the strain energy loss during a traveled
distance. Aldhufairi et al. [9] used a script of Abaqus to extract the 3D tyre model
data as input and an analytical rigid road drum with a straight and smooth surface
was added to the model, equivalent to that used in the experiment, due to the
limitation of the testing machine the travel speed was limited to 30 km/h. Ghosh
et al. [10] suggested a method that implements a steady state rolling simulation
using Abaqus software to obtained the strain energy and principal strains, together
with the loss factors (Tan d) of the material obtained separately in the laboratory,
are used to estimate the energy dissipation of a rolling tyre through post processing.
The internal code was developed to perform such a task.

Lind [11] suggested three sequential steps for solving the rolling resistance
model; inflation, footprint and rolling. The last rolling step was performed using a
dynamic solver setting where the center node was moved in the x-direction with a
prescribed acceleration up to a target speed. The rolling resistance was from the
FE-simulation result computed in two different ways. The first method uses the
contact forces from each node multiplied with its distance from the wheel centre;
the second method uses the reaction forces from the constrained middle node and
computes the rolling resistance. The result presented for the material model and for
the rolling resistance does not aim toward representing any specific tyre rubber
compound or tyre.

While the others used FE tyre model without tread, Cho et al. [12] Included the
tread in FE tyre model. The hysteretic loss during one revolution was computed
with the maximum principal value of the half-amplitudes of six strain components,
and the temperature distribution of tyre was obtained by the steady-state heat
transfer analysis. The static tyre deformation analysis is performed by ABAQUS/
Standard in the deformation module and the strain and stress results are input into
the in-house dissipation module where the hysteretic loss, rolling resistance and
heat generation rate are computed.

In this study, the footprint analysis was carried out with patterned tyre model
and for rolling resistance simulation used tyre model without pattern for the sake of
computing time. However, the accuracy is a little sacrificed but still acceptable i.e.
6.2% error as describe in the Section 3.4.

The rolling resistance analysis was based on hysteresis of rubber and cord where
the phase of stress lags behind the strain as it is shown in Figure 8. The hysteretic
loss ΔW per unit volume during a period Tc = 2π=ω is:

ΔW ¼
ðTc

0
σ τð Þ dε τð Þ

d τð Þ dτ ¼
ðTc

0
σ0ε0 sin ωτ þ δð Þ cos ωτð Þdτ: ¼ πσ0ε0 sin δ (3)

where σ0 and ε0 being the stress and strain amplitudes and ω being the excitation
frequency.

In engineering application, as suggested by Cho et.al [9] 3D viscoelastic bodies
are subjected to more complicated multi-axial cyclic excitations, so the time histo-
ries of strains and stresses are neither one-dimensional nor sinusoidal.
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Therefore, the hysteretic loss is expressed in a generalized form:

ΔW ¼
ðTc

0
σij τð Þ

dεij τð Þ
d τð Þ dτ (4)

The hysteretic loss can be converted to the heat generation, and the heat gener-
ation rate Q per unit volume during a cycle is:

Q ¼ ΔW
Tc
¼ 1

Tc

ðTc

0
σij τð Þ

dεij τð Þ
d τð Þ dτ (5)

In order to calculate the energy loss during deformation, curve interpolation and
FFT function were developed. Abaqus python contains NumPy which can do FFT.
A python scripting is used to read signal curve, perform the FFT and create a new
curve, i.e. amplitude vs. frequency, for plotting in Abaqus.

def interpolation(curve):
myCurve = []
i = 0
n = len(curce)
myCurve.append(0.0,curve[0])
while i < n:
myCurve.append(myAngle[i], curve[i])
i = (i + 1)

myCurve.append(360.0,curve[-1])
i = 0
n = len(myCurve)
NewCurve = []
while i < (n - 1):
angle_A = (myAngle[i + 1][1] - myAngle[i][1]) /

(myAngle[i + 1][0] - myAngle[i][0])
yo = myAngle[i][1]
xo = myAngle[i][0]
j = myAngle[i][0]
while j < myAngle[(i + 1)][0]:

newAngle.append(yo + (angle_A * (j - xo)))
j = (j + delta)
i = (i + 1)
if i == (n - 1) and newAngle.append(myAngle[i][1]):

pass

Figure 8.
Stress - strain phase.

202

Finite Element Methods and Their Applications



return newAngle
def fourier(sigma, epsilon):

FFT1 = 2 * abs(fft.fft(sigma)) / len(sigma)
FFT2 = 2 * abs(fft.fft(epsilon)) / len(epsilon)
k = 0
total = 0
while k < (len(FFT1) / 2):
total = total + (FFT1[k] * FFT2[k]) * k
k = k + 1

return total

The input for sigma and epsilon are the interpolated stress and the interpolated
strain respectively.

In a rolling tyre, the rubber compounds exhibit the complicated 3D dynamic
viscoelastic deformation. The strains and stresses are constituted in terms of the
complex modulus G* = G’ + iG”. In this case, G’ is called the storage modulus and G”
is the loss modulus. The complex modulus is a function of the strain amplitude εo,
frequency f, and temperature T. The correlation between storage and loss modulus
in terms of the phase difference δ as follows:

Tan δ ¼ G”
G’

:and G” ¼ G ∗ sin δ (6)

In Abaqus simulation the complex modulus G* can be obtained by extracting
axisymmetric element data and therefore the heat dissipation from energy loss G”
can be calculated by multiplying G and sin δ, and in terms of Python coding is
written as follows:

heat_dissipation ¼ energy ∗ sin tandð Þ (7)

Where energy is extracted from previous axisymmetric simulation element data
and tand is from input data.

The rolling resistance force generated by the hysteretic loss is computed as the
total hysteretic loss of the rolling tyre during one revolution divided by the traveling
distance of tyre during the same period of time, hence:

FRR ¼
W
2πr

(8)

where W ¼
Ð
ΩΔW dV

r = effective radius of tyre
Ω = material volume of tyre
Rolling resistance coefficient Cr is the indication of how large the rolling

resistance is for a given load upon which it is rolling and is calculated by:

Cr ¼
Total force Nð Þ x 1000

Load Nð Þ N=kN (9)

Total force is meant the sum of force caused by hysteresis loss in each tyre
component material.

To analyze the force produced by tyre component materials, a Python code was
developed as plugin in Abaqus software. The process of analyzing the rolling resis-
tance is describe in the following steps and is shown in Figure 9.
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1.Prepare input files, i.e.:

• Axisymmetric input file (axi.inp)

• Full tyre input file (full.inp)

2.Running full tyre model simulation in Abaqus using the input files in step 1 in
command prompt with the following command:

Abaqus job = full oldjob = axi cpus = 4

Figure 9.
Rolling resistance analysis process using Abaqus plugin.
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3.Writing axi_heat input file:

• Copy axi, inp and rename it to axi_heat.inp

• Change the tyre element type from cgax into dcax

• Delete input of tyre_coord and rim

• Delete all properties in each material and replace with:

*conductivity: 0.2

• Delete all existing steps and boundary conditions and replace with steps
and boundary conditions necessary for rolling resistance simulation

4.Copy axi.odb and rename it into axi_result.odb

5.Input data needed for running rolling resistance simulation:

a. Input files:

• axi.inp

• axi-heat.inp

• sequence.inp

b. Odb files:

• axi. Odb

• axi_result.odb

• full.odb

c. Tan delta data: tand.txt.

Below is tan-δ example of tread compound.
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6.Running rolling resistance calculation using Abaqus plugin after specifying the
required data as mentioned in step 5 in the pop up menu and other information
needed for running the simulation such as:

• Select how energy is interpolated from coordinate element to bulk
elements

• Define speed of tyre [km/h]

• Define error limit for heat transfer [%]

• Define interpolation parameter [deg]

• Define parameter for tyre radius calculation.

7.After completing the calculation the output data will be presented in
axi_RR_result file (see Figure 10), and the Rolling Resistance Coefficient (Cr)
is then calculated using equation (9):

Cr ¼
Total force Nð Þ x 1000

Load Nð Þ N=kN

The example of the simulation result is shown below:
Results:
Force produced by material I40 is 2.08360116975 N
Force produced by material A02 is 1.29144915874 N
Force produced by material T61 is 18.8669933222 N
Force produced by material BW08 is 0.0 N
Force produced by material T61 is 1.67943517041 N
Force produced by material Z80 is 1.13411378677 N
Force produced by material S70 is 0.41902012456 N
Force produced by material S70 is 3.82462665603 N
Force produced by material R50 is 1.72655457713 N
Force produced by material N20 is 0.883588825178 N
Force produced by material C32 is 1.62535580812 N
Total force is 33.5347385989 N
Since load index of the tyre is 82, the maximum tyre load is equal to 475 kg.

According to ETRTO standard, the tyre load for rolling resistance calculation is 80%

Figure 10.
Temperature distribution of 2 groove tyre.

206

Finite Element Methods and Their Applications



of maximum load which is 380 kg or 3728 N, and then the rolling resistance
coefficient is equal to:

Cr ¼
33:5347 x 1000

3728
¼ 9 N=kN

Using the same calculation for tyre B and C, we obtain the following result:
tyre A produces Cr = 9 N/kN
tyre B produces Cr = 8.77 N/kN
tyre C produces Cr = 8.4 N/kN

3.4 Validation of rolling resistance simulation result

The rolling resistance simulation result obtained from an Abaqus plugin code
need to be validated by comparing the result with the actual test result. The actual
test has been carried out using 14 different tyres that has been tested on RR machine
conducted by certified bodies, such as TUV, and the results are compared with the
RR result from simulation, as shown in Figure 11.

In average, the simulation result is higher than the actual testing result by 0.46
or 6.2%.

3.5 Rolling resistance on different radial stiffness and crown radius

The radial stiffness of tyre significantly affects the rolling resistance. Table 4
shows that smaller stiffness of sidewall (indicated by higher R deflection) resulted
in higher rolling resistance. This phenomenon explain that to deform a higher
stiffness material needs more energy, meaning that the energy loss is higher and
eventually the rolling resistance is also higher.

Tyre tread contour has a great influence on rolling resistance. To study this, the
simulation was performed on three tyres with different crown radiuses, i.e.:

Tyre A: R1 = 250 mm and R2 = 150 mm,
Tyre B: R1 = 550 mm and R2 = 300 mm, and
Tyre C: R1 = 900 mm and R2 = 300 mm, as it is shown in Figure 12.

Figure 11.
Rolling resistance coefficient test result.
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4. Conclusion

During the PCR tyre design and development, there is several tyre performance
parameters need to be considered, including rolling resistance, wet adhesion, noise,
and cornering stability. In this study, a Finite Element simulation was carried out to
perform prediction of rolling resistance and cornering stability.

The simulation was performed in two stages: steady state rolling simulation
using Abaqus build in function and rolling resistance calculation using internally
developed Python code as Abaqus plugin.

The validation was done by comparing the simulation result and actual test on
RR machine and the average discrepancy of Cr is 0.46 or 6.2%. In addition, the RR

2 groove tyre 3 groove tyre 4 groove tyre

R deflection 269.06 mm 268.75 mm 268.54 mm

Rolling resistance coef. 9 N/kN 8.77 N/kN 8.4 N/kN

Table 4.
Correlation between radial stiffness and rolling resistance.

Figure 12.
Crown radius relation with footprint and rolling resistance [7].
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plugin only need between 10 and 15 minutes to run, it is very short compared to pre
processing time.

The simulation result suggests that the best estimated rolling resistance is four
groove tyre with crown radiuses of R1 = 900 mm and R2 = 300 mm. However, two
grooves tyre provides larger shoulder contact area which in turn gives better
cornering stability, but has rolling resistance coefficient of 9 N/kN.

Considering that the rolling resistance coefficient (Cr) of two groove tyre is
within the allowable value for stage 2 requirement of UNECE regulation No. 117–2
(the maximum Cr is 10 N/kN), so the suggested PCR tyre should have the following
specification to meet the performance target: low rolling resistance and good
cornering stability:

• Two grooves

• Crown radius R1 = 900 mm and R2 = 300 mm
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Chapter 10

Finite Element Analysis in 
Nanotechnology Research
RameshBabu Chandran

Abstract

The Finite Element Analysis in the field of Nanotechnology is continually 
contributing to the areas ranging from electronics, micro computing, material 
science, quantum science, engineering, biotechnology, medicine, aerospace, and 
environment and in computational nanotechnology. The finite element method 
(FEM) is widely used for solving problems of traditional fields of engineering 
and Nano research where experimental analysis is unaffordable. This numerical 
technique can provide accurate solution to complex engineering problems. Over 
decades this method has become the noted research area for the mathematicians. 
The popularity of FEM is due to the advent of computer FEA software such as 
NASTRAN, ANSYS, ABAQUS, Matlab, OPEN Foam, Simscale and the like. With 
the development of nanoscience, the researchers found difficulties in spending 
funds for nano related projects. The FEA has evolved as the affordable methodology 
and offers solutions to all complicated systems of research.

Keywords: nanotechnology, FEM, FEA, research, nanoscience

1. Introduction

“To move precisely in nanoworld, you donot succeed by perfecting proven 
techniques”.- Handelsblat. [1] . As stated, the nano research requires newer 
methodologies and techniques to be worked out to succeed. The microtechnol-
ogy to nanotechnology needs a factor of thousand for size reduction. Different 
methodologies exist to club cooperation between macro, micro and nano robots 
and analytical based FEM for static, modal, harmonic and transient analysis of 
structures. Clubbed with multiparametric optimization and neural networks, 
FEM had developed as an optimal solution to all complicated problems of engi-
neering, science, technology, medicine and research. The “bottom up” technology 
of late twentieth century promises the use of robotics for micro/nano manipula-
tion processing [1]. The revolution of computers had led to development of closed 
form solutions which are extremely difficult to be obtained for any engineering 
problems [2]. This urge leads to adopting any one of the numerical techniques. 
FEA had been one of the options of researchers and choice of the method 
depends on the familiarity of the users. FEM exploits the research methodologies 
using direct approach, variational approach, direct approach, energy approach, 
weighted residual approach, Isoparametric formulation, static condensation and 
nonlinear analysis [2]. Numerical approximations can be reached by differential 
equations and PDE for various mathematical and nano technology problems 
of applied physics. FEM explores checking the validity of analytical studies of 
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nanotechnology. Moreover the unaffordable experimental setup of nanoresearch 
could be replaced with FEA software as observed by engineers and scientists 
working on the field [2].

2. Applications of FEM in nano research

2.1 Electrospun nanofibrous Mats under biaxial tension

The nanofibrous mats can be used as freestanding electrodes in energy storage 
devices. These mats have non uniform material properties [3] with each and every 
single fiber having nonlinear characteristics. The research came up with two macro-
scopic continuum models with uniform or oriented nanofibre distribution to exactly 
replicate the nanofibrous mats under biaxial tension. The mechanical response of 
electrospun SF/PCL nanofibrous mats was explored. The model simulated by FEM 
exposed the deformation of nanofibrous mats and the gradual damage mechanism 
along with the microstructure.

2.2 Carbon nanotube reinforced composite’s stress transfer

The improvement [4] in mechanical properties of hybrid composite system 
strongly depends on interfacial mechanical properties (interfacial stress transfer 
efficiency). The interfaces are zones of structural, compositional and property 
gradients. The width varies from single atom to micrometers. The properties of the 
composite depend on the surface of the single fiber and the resin used for bonding. 
The stress transfer of SWNT reinforced composite was studied using hybrid FEM 
approach. Three dimensional REV (representative elementary volume method) 
had been used along with Molecular Dynamics (MD) to exploit the stress transfer 
mechanism of CNT reinforced composite. The [4] effects of fiber volume fraction, 
interfacial stiffness and elastic modulus on the stress of the matrix were explored. 
The analytical models are difficult along with experiments in nanoscale as they are 
too expensive. Hence FEM simulated models were used to predict the stress transfer 
and found to be accurate on validation.

2.3  Formulation of 3D finite element implementation for adhesive contact at 
nanoscale

A research was carried out [5] for three dimensional nanoscale contact problems 
with strong adhesion. The contact description was based on Lennard Jonnes [5] 
description suitable to explain Vanderwaals attraction between interacting bodies. By 
incorporating the potential into nonlinear continuum mechanics, formulations had 
been arrived for surface force and body force. Based on these formulations, overall 
contact algorithm had been arrived using FEM. This model has an application in 
biomechanics as denoted by adhesion of gecko spatula [5]. Efficient FE formulation 
was arrived based on surface traction. The behavior of contact model described by 
SF formulation was more efficient than BF formulation for strong adhesive existence.

2.4  Finite element simulation of micromachining of nanosized silicon: carbide 
particle reinforced composite

The nanosized silicon – carbide – particle (SICp) reinforced aluminum matrix 
composite’s micromachining process had been studied [6] using finite element 
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method. The parameters of cohesive zone model had been found from stress – 
displacement curves of the molecular dynamics (MD) simulation. The model 
represented exactly the random properties of silicon – carbide particle distribu-
tion and the interfacial bonding between SICp and matrix [6]. The mechanism of 
machining was analyzed as per chip morphology, stress variation, temperature and 
cutting force. The FE simulation projected the fact that SICp caused non uniform 
interaction between the tool and reinforcement. The deformation mechanics [6] led 
to inhomogeneous stress variation and irregular cutting force.

2.5 FE modeling of double walled CNT based sensor

The Carbon Nanotubes (CNTs) are widely used for designing nano sensors, 
nano resonators and actuators [7]. The mass sensing characteristics of defective 
Double Walled Carbon nanotubes (DWNTs) were studied using FEM. Various 
finite element simulations covering chiral, zigzag and arm chair nanotubes 
with cantilever and bridged conditions using molecular [7] structural dynamics 
approach. The defects have been subdivided in to 6 missing atoms (A type) and 24 
(B type) missing atoms on the outer wall of DWNT. COMBIN 14 element had been 
used for simulation of defective DWNTs with weak Vanderwaals force. The study 
revealed the fact that the frequency of defective DWNT reduced with increase in 
chiral angle. Also the frequency reduced with increase in pinhole defects.

2.6 Perspective on nanotips

Numerous methods have been fabricated for developing ultra-sharp tips for 
scanning probe microscopy and [8] electron microscopy. It has been observed 
that the sharp end terminates with very single atom in field ion microscope 
(FIM). The last atom had been intended to form atomic channel of electrons in 
field emission mode which would self-collimate a coherent electron beam with an 
outstanding brightness. Hence nanotips are found to behave as a source of self-
collimated electron or ion beam. In this research [8] the distribution of electric 
field in the vicinity of nanotip apex that holds the topmost single atom had been 
studied analytically and numerically. The tip base was found to dominate nano 
protrusions which enhance electric field. The study revealed that nanotips with 
broad bases produce even less field than modest tips at the same voltage. This 
pronounced the fact that the tip base accounts for high voltages needed at imaging 
threshold field.

2.7 Axial vibration of embedded love – Bishop nanorods

In this research, nonlocal free vibration of axial rods embedded in elastic 
medium had been studied using Love – Bishop rod theory with FEM. Constitutive 
modeling for rod formulation using kinematic relations and dynamic equilibrium 
had been analyzed. Equation [9] of motion and boundary conditions were obtained 
by varying total potential of nano rod and were solved using separation of varia-
tion. Frequency equations of 4 types of nanorods were obtained. Size dependent 
FEM formulation was synthesized based on weighted residual method. The four 
parameters mode number, non-local parameter, rod length, and slenderness ratio 
were used to study the frequency parameters of nanorods. The free vibration 
frequencies of the simple axial rods had been found to be higher than that of Love 
bishop rods. These were evaluated by frequencies of two rod theories in higher 
modes.
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2.8 Bending analysis of embedded nano plates using FEM

Eringen’s nonlocal elasticity theory is capable to capture small length scale 
effect. Hence it is widely used to explore the mechanical behavior of nanostructures 
[10]. Instead of using differential form, the integral form should be used to avoid 
inconsistency in results. Arbitrary kernel functions are used for general form. The 
first order [10] shear deformation theory is used to model the nanoplates. The 
study evaluates the first order shear deformable embedded nanoplates for bending 
using Erignen’s nonlocal theory. Using FEM approach the maximum deflection of 
the structure was evaluated. The results pronounced that the clamped or simply 
supported boundary conditions provided same trend for the effects of non-local 
parameter on the bending analysis of nano plate for Erignen’s integral and differ-
ential formulation. Also the results proved that the elastic foundation increased the 
stiffness of the structure and decreased the influence of nonlocal parameter.

2.9 Stresses at bone: particle reinforced nano composite interface

The biomaterial should satisfy its bio functionality and biocompatibility. The 
tissue – implant interface plays a huge role in both the parameters. Nanobioceramics 
is a newer technology that had widened [11] range of biomedical and dental 
applications including increased bioactivity for tissue regeneration and engineer-
ing, drug and gene delivery, treatment of viral infections and implantable surface 
modified medical devices for [11] better hard and soft tissue attachments. FEA had 
been accepted for simulations in biomechanics for analyzing stresses and strains 
in dental implants and surrounding bone structures. The tissue engineering needs 
combining 3D scaffolds with living cells to deliver the much needed cells to damage 
sites in the human body. This scaffold should be capable of making cells to attach 
and multiply. Hence the design of scaffold is a challenging task which could be 
narrated by the finite element analysis. Also the nanotechnology had revolution-
ized nanobiomaterials, tissue engineering nano scaffold, nano – drug delivery and 
dental nanocomposites [11].

2.10 Elastic plastic analysis of ultrafine grained Si2N2O – Si3N4 composites

The development of micro/nanotechnology [12] had led to characterization of 
the mechanical properties at micro- and nano- scales. The nano indentation test 
has a diamond indenter to produce indentation load and the penetration depth 
from which load – penetration curve (P-h) is obtained. The P-h curve can be used 
to define mechanical properties including hardness, elastic modulus and toughness 
[12]. Only few studies had been reported on elastic–plastic property of brittle bulk 
ceramics. There are two methods to derive material properties from loading and 
unloading indentation curves. One of the curves involves the use of unloading curves 
and classical elastic solution of infinite half space [12]. This method is suitable for 
calculating the hardness and elastic modulus of materials. Another methodology 
involves producing loading and unloading response curves for various parameters 
through finite element modeling. Stress strain relations can be produced by using 
the nanoindentation experiment. The ultra-fine – grained Si2 N2O – Si3N4 had been 
produced by hot press sintering of amorphous nano – sized silicon nitride powders at 
1600, 1650 and 1700 Deg Celsius with nanosized additives. After evaluating by nano 
identation through finite element formulation, the elastic modulus and P-h curve are 
obtained. A newer theoretical methodology for evaluating stress strain relation of 
brittle ceramic materials had been identified. Numerous coefficients in theoretical 
calculation formula had been found using calculation and simulation results.
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2.11 Torsional statics and dynamics of circular nanostructures

Newer technologies for developing advanced materials [13] and structures 
are advancing towards a minute length scale (i.1., micro – or nano – scale). This 
is the root of nanotechnology. By reducing the size of the materials, the materials 
exhibit specific and interesting non classical mechanical, chemical and electrical 
properties. The classical continuum theories fail to replicate the minute length scale 
[13]. Hence explicitly new continuum mechanics /atomic dynamic simulation are 
required. Erignen developed Non local elasticity theory as one of the continuum 
models. In this research, the torsional static and dynamic nonlocal effects for 
circular nanostructures for concentrated and distributed torques were investigated 
based on nonlocal elasticity stress theory [13]. Variational energy principle is 
obtained to derive governing differential equation and strain energy and kinetic 
energy components are obtained. A new nonlocal finite element method (NL-FEM) 
had been developed to solve integral nonlocal equation. The statics and dynamics 
of nonlocal nanoshafts, nanorods, and nanotubes with various loads and bound-
ary conditions revealed possible numerical solutions which were compared with 
analytical solutions.

2.12 Elastic properties of coiled CNT reinforced Nano composite

With the invention of Carbon nanotube with advanced material properties, 
various nano composites had been developed [14]. A new algorithmic representa-
tive volume element (RVE) and finite element method had been formulated to find 
the elastic properties of coiled Carbon NanoTubes (CCNT). The elastic properties 
had been explored with the respect to interphase, fiber volume fraction, orienta-
tion, number of coils, tube diameter, coil diameter and helix angle using FEM. The 
elastic moduli of the nanocomposites were found to decrease with increase in the 
number of coils. Also it had been found that SWNT offers better reinforcement 
when compared with CCNT reinforcement.

2.13  Elastic and fracture characteristics of graphene – silicon nanosheet 
composites

Graphene and its composites find application in various fields of aerospace, bio-
electric sensors, bio engineering, electronics, energy technology, and lithium batteries 
due to appreciable electrical, mechanical and thermal properties. The single layer gra-
phene sheets (SLG) needs an appropriate substrate which should not alter the proper-
ties of graphene. In this research, an efficient method was developed for evaluating 
nonlinear stress strain behavior and fracture strength of graphene – silicon nanosheet 
composites. Nonlinear finite element model [15] had been evolved to obtain constitu-
tive model of the problem which are computed using molecular dynamics (MD) 
simulations. Graphene is modeled as multilinear elastic and silicon is simulated as 
isotropic material. Using this model nonlinear behavior of graphene, silicon and their 
stress strain curve including inflection point leading to failure had been arrived. The 
results of stress strain curves and elastic modulus and the critical stress of single layer 
graphene (SLG), silicon nanosheet and their composites with different thickness of 
silicon nanosheet agrees with that of the molecular dynamics [15].

2.14 Thermo electric bulk and nanostructured materials

Numerous analytical solutions had been formulated [16] for coupled nonlinear 
behavior of thermoelectric device in one dimension. These devices are used in 
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refrigeration and energy harvesting. In this research, a nonlinear model of thermo-
electricity was developed using finite element method. The simulated model takes 
in to account Seebeck, Peltier and Thomson effects [16]. The FEM is represented 
in potential variables i.e., voltage and temperature and solved using Newton 
method by formulating stiffness and Jacobian matrices. The results were verified 
with simulated one dimensional model. The FEM is then implemented to estimate 
energy conversion of nanostructured thermoelectric materials. Thus the advantages 
of nanostructured materials lie in the increased performance and miniaturization.

2.15 FEM of nano: indentation to characterize thin film coatings

Thin film coatings [17] are used in tribological, corrosion resistance of mechani-
cal components, tooling, biomedical implants, electronics, microsystem packaging, 
cutting tool coatings and magnetic devices. The film coatings are explicitly used for 
reducing wear and tear. It is a current need to investigate the thin film coatings for 
critical loads that lead to ultimate fracture. Since nanoindentation is a nondestruc-
tive one, it is preferred and imperatively it could be simulated by finite element 
method (FEM). Using FEM, the hardness, elastic modulus, endurance loads, 
optimal thickness, optimal critical load, stress distribution and contact pressure 
between substrate and layer could be found.

2.16 Electric field gradients and bipolar electrochemistry effects

The effects of electric field in alternating (AC) and direct (DC)voltages had 
been explored in vivo and vitro with [18] electrodes in connection with tissues and 
implanted cells. The electro simulation through noncontact wireless settings by 
dipoles by bipolar chemistry is highly possible. FEM studies with same configura-
tion that of experimental studies had proved that the voltage profiles are in qualita-
tive agreement with known bipolar effects. There exist [18] a clear mapping of 
charge gradients at the material surface leading to growth of neurons. The insulat-
ing materials distort the electric space distribution while the dipole at the border 
of implanted conducting material extends along the material surface and much 
smoother in intercalation materials.

2.17 Elastic stability of curved nanobeam by finite element approach

The elastic stability of curved nanobeam had been investigated using Eringen’s 
strain driven model [19] coupled with higher order shear deformation theory. The 
influence of different structural theories and analyses of nanobeam is taken into 
account while deducing the model. The governing differential equation is solved by 
finite element method using 3 –noded curved beam. The model had been validated 
using analytical/numerical solutions. The parameters such as thickness ratio, 
beam length, rise of curved beam, boundary conditions and size dependent [19] 
or nonlocal are analyzed based on buckling behavior of curved nanobeams. The 
results prove that the type of buckling mode corresponding to lowest critical value 
would be varying based on geometrical and internal material length scale param-
eter and boundary conditions [19].

2.18 Tensile modulus of CNT reinforced polypropylene composite

The reinforcing efficiency of carbon nanotubes (CNTs) in polymers had been 
found using finite element modeling. The probability distribution functions [20] of 
CNT diameter, orientation, dispersion and waviness had been incorporated in the 



217

Finite Element Analysis in Nanotechnology Research
DOI: http://dx.doi.org/10.5772/intechopen.94590

finite element model to derive how the CNT characteristics affect the tensile modu-
lus of CNT reinforced polypropylene composite. The scanning electron microscopy 
images of CNT/PP composites made by melt mixing and injection molding had 
been used by image analysis approach [20]. The predicted model had been found to 
be experimentally correct as per ASTM D638.

3. Conclusion

The FE methods had been used to study thermo-electrical–mechanical coupled 
model. The integrity of lumped element, distributed element and system level 
element for design, modeling and simulation of nano/micro mechanical systems 
(N/MEMS) had been achieved by FEM. The nanostructures, nanocomposites and 
CNTs and their composites had been modeled using FEA. Further FEM had been 
applied in nanomaterials and systems used in medicine, dental science, biotech-
nology and electric field in the form of electrospinning.

The investigation of material properties with 1 – 100 nm dimensions had been 
achieved by nanoscience and technology. Thanks to nanotechnology and FEM, one of 
the dimensional materials such as CNTs, silica carbide nanotube, nanowire, nanorod 
and nanobeam had been dream of innovation. The field effective transistors, gas 
sensors, nanoactuators, nanocantilevers are the live examples. It has been found 
that these structures have varied applications in nano/micro – electro – mechanical 
systems (NEMS /MEMS). Ultra capacitors had been found application in hybrid cars. 
This chapter elaborated the applications of finite element method in varied applica-
tions of nanotechnology including CNTs, nano beams, nanorods, nanobiomaterials, 
graphene coated materials, nanosensors, nanotips and curved nanobeams. Apart 
from these applications the nanotechnology extends hands to day to day applications 
such as self-cleansing walls, wall claddings, reinforcement to cement matrix. The 
FEM could be extended to these materials which had not been extensively covered. 
A correct mechanical model simulated by finite element modeling would replicate 
the exact experimental setup and provide solutions to constitutive modeling and 
all engineering problems. The best example is the usage of CNTs as reinforcements 
in composites and cementitious materials. The CNTs are costlier that almost 85% 
of the CNT reinforcement is studies using FEA software by the researchers instead 
of experimental studies. The last few decades had been dedicated to CNTs, sen-
sors, diagnostic probes and multifunctional materials based on CNTs, electronic 
devices and energy storage devices. The sensors could be used to monitor all kind of 
structures including cracks in bridges and structural collapses of civil engineering 
structures. The replacement of silicon based sensors and transistors with CNT based 
printed transistors are future challenge and already researches are on using FEM 
and FEA software. With advent of computers and FEA software such as ANSYS, 
ABAQUS, NASTRAN the unaffordable experimental analysis of nanoscience had 
been replaced with analytical studies using FEM.
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Chapter 11

Finite Element Method for Ship
Composite-Based on Aluminum
Prantasi Harmi Tjahjanti and Septia Hardy Sujiatanti

Abstract

The structure and construction of ships made of aluminum alloy, generally of
the type of wrought aluminum alloy, when experiencing fatigue failure caused by
cracking of the ship structure, is a serious problem. Judging from the ‘weaknesses’
of aluminum material for ships, this chapter will explain the use of alternative
materials for ship building, namely aluminum-based composite material which is an
aluminum alloy AlSi10Mg (b) ship building material based on the European Nation
(EN) Aluminum Casting (AC) - 43,100, with silicon carbide (SiC) reinforcement
which has been treated with an optimum composition of 15%, so that the composite
material is written with EN AC-43100 (AlSi10Mg (b) + SiC * / 15p. Composite ship
model using ANSYS (ANalysis SYStem) software to determine the distribution of
stress. The overall result of the voltage distribution has a value that does not exceed
the allowable stress (sigma 0.2) and has a factor of safety above the minimum
allowable limit, so it is safe to use. The reduction in plate thickness on the EN AC-
43100 (AlSi10Mg (b)) + SiC * /15p composite vessel is significant enough to reduce
the ship’s weight, so it will increase the speed of the ship.

Keywords: ship composite based on aluminum, EN AC-43100 (AlSi10Mg
(b) + SiC*/15p, software ANSYS, stress distribution

1. Introduction

The choice of material for ship building is carried out with several consider-
ations, including physical properties, mechanical properties, material prices, and
labor skills needed for the production process. Based on the material used to build
ships, in fact it can be divided into two major parts, namely (a) steel ships and (b)
non-steel ships. Non-steel ship materials include aluminum alloys which have been
developing for more than 30 years and have replaced steel, namely in the use of
commercial ships and on surface warships, especially for the deck and superstruc-
ture [1]. Even in Indonesia, on 18 December 2008, the Indonesian Navy (AL)
launched its first warship (KRI), named KRI Krait-827 made of aluminum, with a
speed of 25 knots. This warship is lighter than ships made of iron/steel (Jawa Pos,
Desember 2008). The purpose of using aluminum/aluminum alloy is due to the
density and modulus of aluminum 1/3 of the steel, thus significantly reducing the
overall weight of the ship. The use of aluminum has become an alternative material
used as a hull material in ship construction. Almost all of them use wrought alumi-
num with aluminum of marine grade: main alloy part magnesium (Mg) (alloys of
marine grade), marine grade aluminum 5052 (used only for above water), marine
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grade a luminum 5083 (used for underwater hulls), marine grade aluminum 5086,
and marine grade structure of aluminum 6061.

However, the structure of a ship made of aluminum alloy, if it experiences
fatigue failure caused by cracks in the ship’s structure, it is a serious problem.
Cracking itself is usually caused by a combination of rotational stress (torque) and
stress concentration interacting with areas of the weak material [2]. The rate of
structural cracking in aluminum is 30 times faster than the crack rate in steel when
tested at the same stress with the same crack size [3]. On the other hand, the wear
resistance on aluminum is also low [4], because aluminum is classified as a “soft”
material compared to other metals.

To ‘fix’ the aluminum material into a strong and hard material, namely adding/
mixing it with a reinforcing material, which is a research to get a new material,
called Composite Material is grouped in Metal Matrix Composite (MMC) [5–7].
If the method of mixing between the matrix and the reinforcement uses the casting
method, it is called Metal Matrix Cast Composite (MMCC). Furthermore, if the
metal used is aluminum-based, it is called Aluminum Metal Matrix Cast Composite
(AMMCC).

Centered on the ‘weaknesses’ of ship aluminum sheet, this chapter offers an
alternative sheet for shipbuilding, namely silicon carbide (SiC) reinforcement com-
posite material based on aluminum. This aluminum alloy is made by casting alumi-
num alloy. Aluminum casting (AC) alloy is written: AlSi10Mg (b) in accordance
with DIN EN (European Nation) 1706 expressed in chemical symbols written as EN
AC-AlSi10Mg (b) and expressed in numeric, written EN AC-43100, so that the
writing is combined to become EN AC-43100 (AlSi10Mg (b)). Reinforcement is SiC
which has been treated with an optimum composition of 15% (written SiC*), so that
the composite material is written with EN AC-43100 (AlSi10Mg (b) + SiC*/15p.

From the background above, this chapter will explain about making a numerical
model of ships from the composite material EN AC-43100 (AlSi10Mg (b) + SiC */
15p with the help of ANSYS ver.12.0 software to find out how the stresses are
distributed. Wave input given is still water and dynamic waves (induced wave), not
wave spectrum. Can be applied therein. From the results, it will be known which
part of the ship building, the composite material AlSi10Mg (b) + SiC */15p can be
applied therein.

2. Ship composite base on aluminum

2.1 Aluminum alloy EN AC-43100 (AlSi10Mg(b)) as matrix

EN AC43100 (AlSi10Mg(b)) alloy is an alloy of silicon aluminum which cannot
be heat treated. It has strong flowability in a liquid state and almost no cracks occur
in the freezing process [8]. This alloy is commonly used in the welding of aluminum
alloys, both cast and wrought alloys as a welding medium or metal [Bergsma &
Kassner, 1996]. The physical and mechanical properties of AlSi10Mg (b) can be
seen in Table 1.

While the mechanical properties of aluminum casting EN AC-43100 (AlSi10Mg
(b)) are summarized in Table 2.

2.2 Silicon carbide (SiC) ceramic particles as reinforcement

Silicon Carbide is a chemical compound composed of carbon and silicon alone.
Created by electrochemical sand and carbon reactions at high temperature s. Silicon
carbide has excellent abrasive properties, and has been developed and
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manufactured for over a hundred years into grinding wheels and other abrasive
goods. High power, low heat expansion, high thermal conductivity, high hardnes,
high elasticity modulus, excellent heat shock resistance and superior chemical
inertness are the general properties of silicon carbide.In a crystal lattice, silicon
carbide with a tetrahedral chemical structure of carbon and silicon atoms has a
strong bond which results in a very hard and strong material. Silicon carbide pre-
vents acids or alkaline salts to strike. In air, SiC forms a protective layer of silicon
oxide at 1200° C, which can be used up to 1600°C. The high thermal conductivity
combined with low thermal expansion and high strength gives this material excep-
tional resistance to heat shock.

Nowadays, silicon carbide has grown into a high technological quality ceramic
with outstanding mechanical properties. Applications are commonly used in abra-
sive materials, refractories, electrical conductors and have resistance heating, igni-
tion, and electronic component applications. The engineering properties of silicone
carbide are shown in Table 3.

In fact, numerical modeling of wrought aluminum vessels has never been
possible. It existed until recently, because small ships are already set and included.
So it is necessary to decide if the material can be used for shipbuilding. Ship
composite EN ACAlSi10Mg(b) + SiC*/15p must be numerically rendered Ship
Modeling. Analysis of numerical computation using ANSYS software version 12.00
for seeing the stress distribution that occurs does not surpass the stress permits (0.2
sigma with that obtained from the tensile test), and also if it is safe for factor
protection. The provided wave input is still induced by water and wave (the
quasi-static one).

3. Numerical modeling ship

3.1 Type and sizes ship

Type of composite boats (EN AC-AlSi10Mg (b) + SiC*/15p) to be modeled
numerically using software ANSYS version 12.0 is Fast Patrol Boats with length over
all (LOA) is 42.0 meters. Ship size is as follows:

Physical and mechanical properties of aluminum AlSi10Mg (b) Grade

Density (gr/cm3) 2703

Crystal lattice FCC

Melting Temperature (°C) 660,22

Boiling Temperature (°C) 2500

Elasticity modulus (GPa) 70,000

Tensile Strengh (Rm) (MPa) 180

Yield Strength (Rp0,2) (MPa) 90

Elongation crack (%) 2,5

Hardness (Brinnel) 55

Source: MKB-material standards.

Table 1.
Physical and mechanical properties of aluminum AlSi10Mg (b) (casting material).
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• Length over all (LOA) = 42,00 m

• Length between perpendiculars (LBP) = 39,00 m

• Breadth (b) = 7,00 m

• Height (H) = 4,00 m

• Draft (T) = 1,8 m

• Maximum speed = 24,0 knot

• Crew of ship = 18 person

Shape hull of Fast Patrol Boat is known as V shaped hull, especially on the
front (Figure 1). Planning regulations adapted to use the class from the Bureau
Classification Indonesia (BKI) [10].

3.2 Ship model making

ANSYS modeling can be done in two ways, namely direct generation and solid
modeling. In direct creation, element creation is done directly by defining the nodes
required for an element. This method is best used if only a small number of ele-
ments are planned. But for complex shipbuilding with a large number of elements,
this method was impractical. Whereas in solid modeling, the definition of the model
is from the points (keypoint) serving a line. From these lines an area can be made
and then the area can be formed by volume.

Properties of silicon carbide (SiC)

Mechanical SI/Metric (Imperial) SI/Metric (Imperial)

Density gm/cc (lb/ft3) 3.1 (193.5)

Porosity % (%) 0 (0)

Color — black —

Flexural Strength MPa (lb/in2x103) 550 (80)

Elastic Modulus GPa (lb/in2x106) 470 (64.5)

Shear Modulus GPa (lb/in2x106) — —

Bulk Modulus GPa (lb/in2x106) — —

Poisson‘s Ratio — 0.14 (0.14)

Compressive Strength MPa (lb/in2x103) 3900 (566)

Hardness Kg/mm2 2800 —

Fracture Toughness KIC MPa•m1/2 4.6 —

Maximum Use Temperature (no load) °C (°F) 1650 (3000)

Thermal

Thermal Conductivity W/m•°K (BTU•in/ft2•hr.•°F) 120 (830)

Coefficient of Thermal 10�6/°C (10�6/°F) 4.0 (2.2)

Expansion

Specific Heat J/Kg•°K (Btu/lb.•°F) 750 (0.18)

Source: Silicon Carbide datasheet.

Table 3.
Technical properties of silicon carbide.
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To make a ship model by means of solid modeling, the first thing to do is
redrawing it. In this case, the drawing data obtained from AutoCAD is redrawn in
ANSYS. This is done because it is difficult to make repairs if the drawing from
AutoCAD is imported directly into ANSYS. In addition, this redrawing is done to
avoid the possibility that there are parts that cannot be read in ANSYS during the
model import process. Redrawing begins by entering the keypoint coordinates
obtained from the AutoCAD drawing. The first keypoint coordinates entered are
the lines plan coordinates followed by the accommodation deck coordinates. The
keypoint formed is connected to a line. Then from these lines an area is made. So
that the area formed consists of keypoints and lines. The area used for plate and line
modeling is used for the modeling of the reinforcements (ivory and supports).

From the line plan drawing (station) from AutoCAD which is then converted
into a line plan (ivory), the coordinates of the points that form the body plan curve
can be obtained. The coordinates of these points are entered into ANSYS as a
keypoint. Furthermore, the keypoints are connected into a curve to form an ivory
curve (transom to ivory 84). These curves are then linked into areas. The area
formed consists of keypoints and lines. Henceforth, the area formed is used for plate
modeling and the curved lines forming the area are used as an enforcer (ivory).

After the hull area is formed, it is continued with the construction of the super-
structure. Furthermore, from the geometric model formed, an element known as
meshing is created. Before the meshing process is carried out, the element size must
first be planned. In addition, it must also be determined the type of element and
material properties to be used.

3.2.1 Selection and determination of elements

The elements contained in ANSYS can be categorized into 2D (2 dimensional)
and or 3D (3 dimensional) element types. ANSYS elements consist of point ele-
ments, line elements, area elements, and solid elements. Several LINE elements in
ANSYS can be selected according to your needs and analysis to be carried out.

For the modeling of the supports, supports, flanges, ivory, deck beams and other
profiles used Beam 189_Quadratic Finite Strain Beam. Beam 189 is an element

Figure 1.
Ship scheme. Source: (Model Fast Patrol Boat (FPB) 42m).
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suitable for use in slender structure analysis to slightly thick structures of beams.
This element is based on Timoshenko’s beam theory [10]. The deformation effect of
shear forces is also included. Beam 189 is a quadratic (3-Node) beam element in 3-D
space. Beam 189 has six degrees of freedom, consisting of three translations and
three rotations. This element is good for linear, large rotational or nonlinear strain
applications.

Beam 189 is used for modeling ivory, beam, reinforcement, support, large ivory,
flange and pillar because it has the ability to be a beam. In addition, the quadratic
form gives more accurate results than the linear form.

3.2.2 3D Shell

The ANSYS element library contains many types of shell elements. As with line
elements, these types of shell elements can be used according to needs and analysis
to be carried out. For modeling composite ship plate, Shell 93_8node Structural
Shell is used. Shell 93 is particularly good for modeling curved plates. This element
has six degrees of freedom at each node: translation in the x, y and z directions and
rotation in the x, y and z axes. The deformed form is quadratic in the plane of the
element.

Shell 93 is used in ship plate modeling mainly because of its ability to model
mostly curved ship plates. Also the deformed quadratic shape allows calculations
in the middle of the element (mid-side node) to be more accurate. Element is
formed by 8 nodes, 4 thicknesses and orthotropic material. Mid-side nodes on
elements cannot be removed and thus these elements are only compatible
with quadratic form elements. The orthotropic direction of the material
corresponds to the direction of the element’s coordinate system. All ship plates
are modeled using shell 93, including flat parts such as on the superstructure or on
the deck.

3.2.3 Structural mass

Mass modeling is carried out on the main engine, auxiliary engines, gear boxes,
pumps, bollards, windlass, windlass foundations, hydraulic steering engines,
anchors, anchor chains, and equipment with a large enough mass. These masses
need to be modeled because they are part of the ship structure that must be included
in the calculation. Mass modeling uses Mass 21, a point element that has six degrees
of freedom and is a centered mass element.

3.2.4 Real constant and section determination

In determining the constants, the Real Constant set is used in accordance with
the selection of elements used in modeling. The Real Constant set for Shell 93 is
used to determine the plate thickness. Meanwhile, to determine the mass of each
element, the Real Constant set for mass 21 is used. In addition to determining the
constants, the beam and shell elements need to be defined sections.

In determining this section, the element size is determined in the cross section of
the profile (beam) and plate (shell). For profiles, the thickness and size of the
profiles are defined using the beam tool, while for plates the thickness is only
defined using the real constant set for shell 93. The Real Constant set for shell 93 is
used to determine the thickness of the plate. The Real Constant set for mass 21 is
used to determine the mass of each element. Figure 2 shows the beam section for
the T profile.
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3.3 Determination of material properties

In determining the material properties, this depends on the material used for the
ship structure. The material in question is one that has a modulus of elasticity
(Young’s modulus), a poisson ratio and a certain density.

3.4 Finite element making (mesh density)

Determining the size of the element (mesh density) is very important. If the size
of the element (mesh) is too coarse, the result may deviate considerably and may
even result in an error. However, if the mesh is too fine then we will only waste
computer resources, the time required to run is very long, or even the model is too
large to be completed on the computer used [11].

The FPB 42 m fast boat model with a length of 42 m that has been made, has
155,988 degrees of freedom so it is hoped that the model can represent it well. The
elements are tried to be the same as the example model above, namely all plate
elements are expected to have a square shape, but because of the difficulties faced if
all of them have to be squared, then there are elements that are made triangles or
rectangles with a ratio of length to maximum width of 2.

The size of the largest element that can be created is limited by the following:

• The ivory spacing, which varies from 500 mm to 600 mm.

• Comparison of the length and width of the element for the plate in relation to
the shape of the element which is good in this case the ratio of length to width
is taken. 2. (Model fast boat FPB 42 m).

In the current model, it only consists of line and area elements, so only free mesh
andmappedmesh are used. For themeshing area, this time,we usemoremeshing (free
mesh) with the element length determined or the line division determined in advance.
This is easier and you get the desired results. Meanwhile, for elements with identical
shapes, meshing is performed using the mappedmesh, which is one of the elements
that has beenmeshed for the first time as a reference using the freemesh. Then the next
element can bemeshed using a mappedmesh, with the size of the formed element the

Figure 2.
Beam section for T profile.
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result will be the same as the element that was first meshed. However, not all areas can
easily be elemented in this way. This is due to the size of the area that is too small and
the various geometric shapes of themodel. Thus, inmaking elements it is not possible to
create elements with the size planned above. For that, a smaller element size is deter-
mined. If this still cannot be done, the area is redefined, that is, it is made the same area
with a smaller line division but still close to the desired element shape.

To make a beam element, a line is needed, because the beam is a LINE element.
The way to make it is almost the same as the meshing process on the plate elements,
namely by first determining the element attributes, then meshing it using free mesh.
It’s just that in this meshing beam there is no need to divide the lines or determine the
length of the elements, because this has been done during the meshing area. In
addition, the meshing beam also has an orientation keypoint. Namely the keypoint
that is used to determine the direction of the mesh section. Each line has a normal
direction so that in making beam elements, the beam direction (node I and J) is
meshed following the normal direction of the line. If after the mesh the beam direc-
tion is not as desired, the line must be reversed (reverse normal line). Because on a
ship the entire profile faces the midship, whether the profile is on the base, deck,
ivory or reinforcement, the orientation of the keypoint placement is attempted to be
able to direct the section of the mesh beam (Figure 3) to face the midship.

For mass elements only a keypoint is needed. And for the manufacturing pro-
cess, namely by selecting the keypoint closest to the location of the mass or center of
gravity of the mass being modeled, then the keypoint is used as a mass element. The
masses being modeled include the main motor, auxiliary motor, gear box, and other
equipment which has a relatively large mass.

After the meshing process is complete, it is necessary to check the shell element
whether the elements that have been made are in good condition or not. The
maximum warping factor for the Shell 93 warning element is “none”, the element
may curve outward from the plane of the plate. From all existing tests it has been
shown that all elements are in good condition, there are no warning elements or
error elements. So that the model made, namely the EN AC-4310 (AlSi10Mg
(b)) + SiC composite material ship, has represented the ship well, as shown in
Figure 4 is the image of the overall ship model.

The ability of a ship to float is based on Archimedes’ law, the buoyancy force
obtained is proportional to the weight of the water it displaces (hydrostatic support).
Generally these ships are referred to as ships with hull displacement. The displace-
ment weight is the volume weight of water displaced by the hull. So the weight of the
volume of water displaced is the weight of the ship (Eq. 1) (Taggart, 1980):

ΔB Newtonð Þ ¼ LxBxTxCBxgxρ (1)

Figure 3.
Beam elements (beam and deck supports).
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If it is used as mass displacement (ton) then it is divided by g, so that Eq. (2)

Δm tonð Þ ¼ LxBxTxCBxρ (2)

Information:

ΔB = weight of displasmen (Newton)
Δm = mass displacement (ton)
L = lenght karene
B = wide karene (is the shape of the hull that is below water level, excluding:

hull thickness, keel thickness, rudder, propeller and other equipment sub-
merged below water level).

T = loaded with ships (is the vertical distance measured from the lowest point
hull to the waterline).

CB = block Coefficient (is the ratio between the content of karene and the
volume of blocks with length L, width B and height T).

ρ = water density (sea water = 1025 ton/m3, fresh water = 1 ton/m3)

3.5 Ship’s displacement weight components

The ship displacement weight component consists of the ship’s dead weight
(DWT) and the weight of the empty vessel (light weight). Deadweight is the carrying
capacity of a ship including the weight of: cargo, fuel, lubricating oil, drinking water,
foodstuffs, crew + passengers and the goods they carry. Meanwhile, the weight of an
empty ship can be divided into three major parts, namely: 1) Structural weight,
consisting of ship weight, superstructures, and deck houses. 2) Equipment weight,
consisting of anchors, anchor chains, windlass, rigging, capstans, steering machines,
winches, derrick booms, masts, vents, navigation tools, lifeboats, davits, and other. 3)
The weight of the motor and its auxiliary installations consists of the main motor,
auxiliary engine, boiler, pumps, compressors, separators, pressure vessels, coolers,
intermediate shaft, propeller, propeller shaft, shaft bearing, reduction gear, and all
equipment in the engine room. The complete component of ship displacement weight
is shown in Table 4 (composite vessel). Table 5 shows the weight of the engine and
electrical parts, the hull weight and the interior for the composite ship.

3.6 Drawing of ship models

Modeling a ship made in conditions of calm water (still wet) and wavy (waves),
then modeling the behavior of water (calm and wavy water) by considering water

Figure 4.
Draw the whole ship model.
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No. Ship dead weight Value (ton)

1. Composite ship weight (6 mm thick) 61.347

2 Machinery and electric weight

a. Engine room equipment 37,49

b. Pump in engine room 2.463

c. Seat of pump 0,193

d. Deck equipment 0,35

e. Air conditioning room 0,35

3 Weight of Hull Outfitting 24.219

4 Weight of Interior 7.611

5 Fuel Weight 36,96

6 Freshwater Weight 16,2

7 Ship Crew Weight (ABK) 2,6

TOTAL 189.783

Table 4.
Force weight on composite ship.

1. M4CHINERY & ELECTRICITY PART WEIGHT

No. ITEM Weight
(ton)

AE-G
(m)

moment
(ton.m)

KG
(m)

moment
(ton.m)

ENGINE ROOM
EQUIPMENT

1 Main engine: 2 MTU 16 V4000
M9o

with ZF7550 gear boxes (wet
weight)

19.130 11.052 211.432 2.147 41.074

3 Propeller shaft 2.486 5.441 13.527 0.846 2.104

4 Propeller 0.998 1.975 1.971 0.222 0.222

5 Boss bracket 1.270 2.531 3.215 0.950 1.207

6 Stern tube 1.310 6.554 8.586 1.003 1.313

7 Genset Yanmar 6HAL2-N 1.380 15.602 21.531 1.954 2.697

8 Genset Yanmar 6HAL2-N 1.380 15.602 21.531 1.954 2.697

9 Piping and valves 6.736 16.110 108.516 2.404 16.192

10 Steering gear 2.800 1.250 3.500 2.650 7.420

PUMP IN ENGINE ROOM

1 Bilge pump 0.250 7.661 1.915 1.570 0.393

2 Ballast pump 0.250 7.661 1.915 1.570 0.393

3 General service/fire pump 0.620 7.661 4.750 1.570 0.973

4 Fresh water pump 0.108 15.180 1.639 1.570 0.170

5 Fresh water hydrophore 0.020 13.566 0.271 2.100 0.042

6 Sea water hydrophore 0.020 13.566 0.271 2.100 0.042

7 Oil water separator 0.120 6.602 0.792 1.760 0.211
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1. M4CHINERY & ELECTRICITY PART WEIGHT

No. ITEM Weight
(ton)

AE-G
(m)

moment
(ton.m)

KG
(m)

moment
(ton.m)

8 FO transfer pump (PS) 0.228 15.402 3.512 1.600 0.365

FO transfer pump (SB) 0.228 15.902 3.626 1.600 0.365

9 Main switch board 0.120 16.913 2.030 2.500 0.300

10 Lubricating oil pump 0.039 16.376 0.639 1.650 0.064

11 Air compressor 0.400 6.690 2.676 1.700 0.680

12 Compressed air tank 0.060 5.450 0.327 1.800 0.108

SEAT OF PUMP

1 Seat of FO transfer pump (PS) 0.015 15.402 0.237 1.400 0.022

2 Seat of FO transfer pump (SB) 0.015 15.902 0.245 1.400 0.022

3 Seat of bilge pump 0.045 7.661 0.348 1.400 0.064

4 Seat of ballast pump 0.050 7.661 0.383 1.400 0.070

5 Seat of fire GS pump 0.040 7.661 0.305 1.400 0.056

6 Seat of fresh water pump 0.028 15.180 0.431 1.400 0.040

DECK EQUIPMENT

1 Windlass 0.350 37.313 13.060 5.510 1.928

AIR CONDITIONING ROOM

1 A.C. engine 0.350 20.000 7.000 3.500 1.225

Σ Weight = 40.848 10.776 440.182 2.019 82.456

2. HULL OUTFITTING PART WEIGHT

No. ITEM Weight
(ton)

AE-G
(m)

moment
(ton.m)

KG
(m)

moment
(ton.m)

1 Stairway 0.083 20.400 1.690 4.505 0.373

2 Mounting gun 0.441 32.830 14.462 5.905 2.601

3 Wooden lining in chain locker 0.992 36.999 36.703 2.701 2.680

4 Windlass foundation 0.085 37.000 3.145 4.896 0.416

5 Bollard 0.712 20.500 14.588 4.910 3.494

6 Hatch coaming 0.222 18.235 4.039 4.793 1.062

7 Under main deck 0.073 20.524 1.499 1.792 0.131

8 On main deck and navigation
deck

3.824 33.481 128.037 3.787 14.480

9 Safety equipment 1.768 9.980 17.645 4.950 8.752

10 Ventilation 1.389 18.536 25.746 3.330 4.625

11 Equipment on wheelhouse 0.426 22.880 9.747 7.194 3.065

12 Radar mast 0.226 19.750 4.459 10.356 2.338

13 Floor 11.448 21.624 247.549 4.602 52.686

14 Emergency genset & battery 0.286 19.000 5.438 7.256 2.077

15 Ceiling & wall covering 2.244 23.751 53.304 4.958 11.128

Σ Weight = 24.218 23.456 568.051 4.538 109.908
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as a series of linear-elastic springs (springs) that are not related to one another. In
the depiction of this model ship, the number of springs ‘fixed’ is placed on the entire
hull as shown in Figure 5. In the figure, the distance between the ivory (frame)
with symbols h and a is the width of each section. So that the water surface area
(wáter plan are/Awl) can be calculated by Eq. 4. The overall volume is the surface
area of the water multiplied by the displacement / displacement of the water which
is analogous to the distance (x) spring motion, shown in Eq. 4

Awl ¼ h:a (3)

V ¼ Awl:a:x (4)

So that the value of the spring constant (k) can be obtained from the spring force
(Fs) shown in Eq. (5)

3. INTERIOR

No. ITEM Weight
(ton)

AE-G
(m)

moment
(ton.m)

KG
(m)

moment
(ton.m)

1 Wooden door 1.029 22.326 22.967 4.383 4.509

2 Furniture under main deck 2.352 27.562 64.830 2.635 6.199

3 Furniture on main deck 2.447 21.880 53.531 4.974 12.170

4 Furniture on navigation
deck

0.577 20.996 12.112 7.371 4.253

5 Partition wall 0.636 24.987 15.899 4.598 2.925

7 Steel door 0.382 18.778 7.169 5.715 2.182

8 Steering gear construction 0.188 1.023 0.192 1.946 0.366

Σ Weight = 7.611 23.218 176.702 4.284 32.605

Table 5.
Force/weight on composite composite.

Figure 5.
Modeling of a series of springs on the hull.
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Fs ¼ k:x (5)

m:g ¼ k:x (6)

Given the density equation (ρ), is:

ρ ¼ m
V

(7)

so that with the substitution of Eqs. (4), (5) and (6), the value of the spring
constant is shown in Eq. (8):

k ¼ Awl:ρ:g (8)

Information:
Wáter plan area (Awl) = water surface area (meter2)

k = spring constant (Newton/meter)
Fs = spring force (Newton)
x = displacement (meter)
h = distance between frame (meter)
a = width of each section (meter)
m = mass (kg)
ρ = density (kg/m3)

g = gravity = 9806 m
detik2

� �

V = volume (m3)

3.7 Properties of material

Determining the properties of the materials to be used is taken from all the
composite stress mechanical test results data (EN AC-43100 (AlSi10Mg
(b)) + SiC*/15p) as numerical input modeling vessel, which are summarized in
Table 6.

Data Composite Material

EN AC-43100

AlSi10Mg(b)) + SiC*/15p

Density 2.904 (gram/cm3)

Modulus Elastisity 98,902.44 (MPa)

Poisson Ratio 0.3

Tensile Strength 225.39 (Rm) (MPa)

Permit Stress

(sigma 0,2) 59.30 (MPa)

Ship weight

(thick plate 6 mm) 61,347 (ton)

Source: Tensile test.

Table 6.
Data for composite ship (EN AC-43100 (AlSi10Mg (b)) + SiC */15p).
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3.8 Loading

Generally, loads are estimated using the classification rules or direct hydrody-
namic calculations. The loads that make the ANSYS version12,0 composite ship (EN
AC43100 (AlSi10Mg(b)) + SiC*/15p) can be roughly divided in to two parts. Static
Loads (still water) This consists of loads that do not differ with time, or even if they
differ, the impact of time may be neglected; This category includes hydrostatic
pressure, ship part weights, cargo and ballast loads. Besides these wave moments
and forces resulting from ship components are often known as static loads. Wave
Induced (Quasi Static) to consider water as a sequence of linear-elastic springs
which are not connected to each other. In model ship numerics, the number of
springs ‘mounted’ is put on the ship’s entire body. Therefore it becomes important
to properly understand the loads and evaluate the structure accordingly. Using
ANSYS version12,0 makes the load application method very quick and manageable,
also the chances of errors in combining the loads is eliminated.

Loads of wave induced (quasi static) what count is Coefficient Calculation,
Bending Moment Wave Induced Load consists of Vertical Wave Bending Moment
(MWV) or (B.M.W.V), Shear Force Wave Induced Load consists of Vertical Wave
Shear Force (QWV) or (S.W.S.F), Permissible Bending Moment (S.W.B.M) and
Vertical Wave Shear Force (S.F.W.V).

3.9 Component weight displacement ship

Weight component displacement vessel consists of Death Weight Tonnage /
DWT and the full weight of the displacement weight component aluminum vessel
and composites vessel is shown in Table 7. Values for the same weight, with
uniform weight distribution, both for aluminum ship and composite ships.

Death Weight Tonnage (Ton)

Weight of body aluminum ship (thick 6 mm) 54.865

Weight of body composite ship (thick 6 mm) 61.347

Weight of machinery and electricity

a. Engine room equipment 37.49

b. Pump in engine room 2463

c. Seat of pump 0.193

d. Deck equipment 0.35

e. Air conditioning room 0.35

Weight Hull Outfitting 24,219

Weight Interior 7611

Weight fuel 36.96

Weight freshwater 16.2

Weight Crew of ship 2.6

Weight Machinery and electricity part weight consists of engine room equipment, pump in
engine room, seat of pump, deck equipment, air conditioning room

40,848

Source: Fast Patrol Boats.

Table 7.
Loads on aluminum ships and composite ship.
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Differential value between aluminum ship body weight and composite ship. Body
weight composite ship heavier than aluminum ship, so the expected stress distribu-
tion that occurs between the aluminum ship and the composite ship is not the same.

4. Discussion

4.1 Result loads of wave induced (Quasi Static)

Summary results of the calculation of wave loads induced (quasi static) in
Table 8 while the chart figure of wave induce in condition hogging and sagging
shown in Figure 6 condition S.F.W.V, Figure 7 for B.M.W.V and Figure 8
condition for wave induced stress.

Figures 9 and 10 show the distribution of stress in the composite ship numerical
model EN AC43100 (AlSi10Mg(b) + SiC*/15p) for water and wave condition
induced for the entire ship body, and the plate thickness of 6 mm was used.The
maximum stress occurring in composite ship numeric models is 7.24 MPa. While
the maximum stress that occurs in numerical composite ship models for the condi-
tions induced by the wave is 14.1 MPa.

Ship numerical model for base (bottom) construction, shown in Figure 11 for
still water condition and Figure 12 for wave-induced condition. The maximum
stress in numerical composite ship models, when still water conditions are
7.24 MPa. While the maximum stress that occurs in numerical composite ship
models reaches 19.1 MPa for the wave induced conditions.

Distribution of stress in main deck on Figure 13 for still water condition and
Figure 14 for wave induced condition. The maximum stress that occurs in numer-
ical models of composite ship when conditions still water is 6.67 MPa. While for the

Condition S.W.S.F S.W.B.M S.F.W.V B.M.W.V

Max. 7593.59 0.3 969.63 622.4

Min. 2.30 0.0 �348.46 �249.5

Table 8.
The calculation of wave loads induced (quasi static).

Figure 6.
Condition S.F.W.V.
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wave induced conditions, the maximum stress that occurs in numerical models of
composite ship of 16.8 MPa.

Overall the above results are summarized in Table 9. From the results of the
stress distribution shows that the maximum stress that occurs in induced wave
conditions have higher value compared to still water conditions. This is because the
load is included in the wave induced more numerous and complex than a given load
on the still water. Composite ship (EN AC-43100 (AlSi10Mg (b)) + SiC*/15p), more
weight than aluminum ship because in composite ship there have SiC as reinforce-
ment, which causes the composite more heavier than the aluminum ship (for the
same thickness = 6 mm). Conversely, aluminum ship lighter, so it automatically
receives the maximum stress is greater than that received by a composite ship, for
input the same load and the plate of the same thickness.

Figure 7.
Condition M.B.W.V.

Figure 8.
Condition for wave induced stress.

Figure 9.
Distribution of stress in model of numerical of ship composite EN AC-43100 (AlSi10Mg (b)) + SiC*/15p for
the full ship body for condition still water (maximum stress = 7,24 MPa).
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Table 9 shows the maximum stress that occurs in composite ship more smaller
than the ship of aluminum, this happens because the weight of ship of composite is
heavier than ship of aluminum. So that when receiving weight distribution uniform,
ship of composite are stronger hold so the impact on the value of the stress maxi-
mum is smaller. It seems that all the results obtained showed the maximum stress

Figure 10.
Distribution of stress in model of numerical of shicomposite EN AC-43100 (AlSi10Mg (b)) + SiC*/15p for full
ship body for wave induced condition (maximum stress = 14,1 MPa).

Figure 11.
Distribution of stress in model of numerical of ship composite EN AC-43100 (AlSi10Mg (b)) + SiC*/15p for
the hull and construction of the base (bottom) for still wave condition (maximum stress = 7,42 MPa).

Figure 12.
Distribution of stress in model of numerical of ship composite EN AC-43100 (AlSi10Mg (b)) + SiC*/15p for
the hull and construction of the base (bottom) for wave induced condition (maximum stress = 19,1 MPa).
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does not exceed the value of the stress permits (0.2 sigma = 59.30 MPa) for com-
posite materials. This means that composite materials EN AC-43100 (AlSi10Mg
(b)) + SiC */15p) can be used throughout the full of body ship. This condition is
amplified by a factor of safety which is the ratio between the material strength with

Figure 13.
Distribution of stress in model of numerical of ship composite EN AC-43100 (AlSi10Mg (b) + SiC*/15p for
main deck for still water condition (maximum stress = 6.67 MPa).

Figure 14.
Distribution of stress in model of numerical of ship composite EN AC-43100 (AlSi10Mg (b)) + SiC*/15p for
main deck for wave induced condition (maximum stress = 16.8 MPa).

Distribusion stress Composite material EN AC-43100 (AlSi10Mg(b)) + SiC*/15p (thickness
plate 6 mm)

Still Water
(MPa)

Wave Induce
(MPa)

Full body ship area 7.24 14.1

Hull and construction

of the base (bottom)

area 7.24 19.1

Main deck area 6.67 16.8

Table 9.
Value of máximum stress of model of numerical of aluminum ships and the ship of composite.
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strength design, where material strength is the stress permits (sigma 0.2) and the
design strength is the maximum stress from the program ANSYS (FEM calculation).
Factor of safety more than to 1. Factor of safety values are shown in Table 10
indicated that the factor of safety for all conditions in still water and wave induced,
has value above 1.00, so the overall material composite EN AC-43100 (AlSi10Mg
(b) + SiC*/15p is safe to use.

4.2 Application analysis of modeling composite ship EN AC-AlSi10Mg
(b) + SiC*/15p

Furthermore with using ANSYS software version 12.0, this research will analyze
the application of composite materials EN AC-AlSi10Mg (b) + SiC*/15p that can use
in ship building. Overall composite ship modeling EN AC 43100(AlSi10Mg
(b)) + SiC*/15p), shows that the stress does not exceed the value limit stress 0.2
sigma. It means that this material can actually be applied to the entire body of the
ship. But because it is brittle, then the selection of applications on the ship also
should look at the nature of this material. Selected applications on top of the
building wall (superstructure) that the wall plate height (h) = 2.2 meters and width
(b) = 1.5, composite thick ship plate is 5 mm (Figure 15) and building applications
on the deck plate (superstructure decks) on the size of 1 m x 1 m and thickness of
6 mm (Figure 16).

The maximum stress that occurs in ship composite EN AC 43100(AlSi10Mg
(b)) + SiC*/15p) for building walls on the plate thickness 5 mm at 9.43 MPa and the
deck superstructure with plate thickness 6 mm to obtain the wave-induced stress
conditions maximum 10.7 MPa. Both of these results when compared with alumi-
num ship for the two applications (on the wall of the building) with the height and
width the same, but with a thickness of 5 mm, the maximum stress value will be
9.26 MPa (Figure 17) and for the superstructure deck of the same size but the
greater thickness of 7 mm is obtained at 10.8 MPa maximum stress (Figure 18). It
means that the results obtained by the maximum strees between the composite ship

Factor of Safety

Composite material

EN AC-43100

(AlSi10Mg(b)) + SiC*/15p

(thickness plate 6 mm)

Still Water:

1. Full body ship 8.19

2.Hull and construction

3. of the base (bottom) 8.19

Main Deck 8.89

Wave Induced:

1. Full body ship 4.21

2.Hull and construction of the base (bottom) 3.11

3.Main Deck 3.53

Table 10.
Value factor of safety.
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with aluminum ship are not a significant difference, in fact it can be said the
maximum stress value approaching the same value.

Actually the main core of ship composite EN AC43100(AlSi10Mg(b)) + SiC*/15p)
as an alternative material for building ships with reduced thickness is used in the
composite material will impact on the weight loss, heavy displacement ship will be
reduced, then for the length, width, and height of the vessel remains, laden vessel will
be reduced. With a large reduction in the laden ship, the wetted surface area / WSA
of the hull is submerged in water will also be reduced. This will reduce the size of the
total water barriers experienced by vessels which in turn thrust (powering) ship
engine fixed, it will increase the speed of the ship. Or conversely, if the desired speed
of the ship is made permanent, this will lower the powering of the vessel and it will
certainly reduce the relatively large ship main engine. So in general can decrease the
volume of the cylinder marine engine. Thus the fuel consumption becomes smaller,
thus making the vessel operating expenses generally become more efficient.

Figure 15.
Distribution stress of composite shipEN AC 43100(AlSi10Mg(b)) + SiC*/15p) in superstructure wall with
plate thick 5 mm (max. Stress =9.43 MPa).

Figure 16.
Distribution stress of composite ship EN AC 43100(AlSi10Mg(b)) + SiC*/15p) on superstructure deck with
plate thick 6 mm for induced wave condition (max. Stress = 10.7 MPa).

241

Finite Element Method for Ship Composite-Based on Aluminum
DOI: http://dx.doi.org/10.5772/intechopen.94973



5. Conclusion

The conclusion of this chapter is Numerical modeling of composite ship EN AC-
43100 (AlSi10Mg (b)) + SiC*/15p) has successfully demonstrated the distribution
stress to the full body ship, construction of the base (bottom), and main deck, for
still water and wave conditions induced. The overall results of the stress distribution
of model numerical of ship, its value does not exceed the stress permits (sigma 0.2)
and have a factor of safety above the minimum allowable limit, so it is safe to use.In
numerical modeling, the ship composite materials EN AC-43100 (AlSi10Mg
(b)) + SiC*/15p) can be used as an alternative material for ship building, however is
still needed comprehensive testing in the field. Reducing the thickness of the com-
posite plate EN AC- 43100 (AlSi10Mg (b) + SiC*/15p) to be significant enough to
reduce the weight of ship structure thus reducing the total water resistance

Figure 17.
Distribution stress of ship aluminum EN AC-43100(AlSi10Mg(b)) with plate thick 6 mm (max.
Stress = 9.26 MPa).

Figure 18.
Distribution stress of ship aluminum EN AC-43100(AlSi10Mg(b)) on superstructure deck with plate thick
7 mm for induced wave condition (max. Stress = 10.8 MPa).
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experienced by the ship as a result of thrust force ship engine fixed, it will increase
the speed of the ship. Conversely, if the speed of the ship is stable it will lower the
thrust of force ship, so that the consumption of fuel becomes smaller, the effect on
vessel operating expenses are generally becoming more efficient Generally ship-
building from composite materials EN AC-43100 (AlSi10Mg (b) + SiC*/15p) can be
made good, by using modeling ANSYS program ver.12, 0, used as an alternative
material for ship building.
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Chapter 12

A MATLAB-Based Symbolic
Approach for the Quick
Developing of Nonlinear Solid
Mechanics Finite Elements
Antonio Bilotta

Abstract

A symbolic mathematical approach for the rapid early phase developing of finite
elements is proposed. The algebraic manipulator adopted is MATLAB® and the
applicative context is the analysis of hyperelastic solids or structures under the
hypothesis of finite deformation kinematics. The work has been finalized through
the production, in an object-oriented programming style, of three MATLAB® clas-
ses implementing a truss element, a tetrahedral element and plane element. The
approach proposed, starting from the mathematical formulation and finishing with
the code implementation, is described and its effectiveness, in terms of minimiza-
tion of the gap between the theoretical formulation and its actual implementation, is
highlighted.

Keywords: FEM, nonlinear solid mechanics, MATLAB®, Symbolic Math
Toolbox™, object oriented

1. Introduction

The developing of finite element formulations, standard or new ones, requires a
lengthy process which involves several steps.

The typical starting point is the formulation of a mathematical model where the
main physical or real world phenomena to be described are established. At present
time the definition of a mathematical model is at the basis of any serious attempt
to obtain previsions in any engineering application [1–3], but not only in the
engineering field [4, 5].

The subsequent step is the introduction of a numerical approximation technique.
The most popular technique is the Finite Element Method (FEM), see [6–8], but
now the number of computational approximation techniques is very large and a
synthetic summary can be tried only by citing some of these less conventional
methods: mixed finite element methods [9–13]; partition of unity-based discontin-
uous finite elements [14, 15]; meshless methods [16]; discontinuous Galerkin
methods [17]. This operation leads to the identification of the needed discrete
operators which define the computational model. For example, in the case of the
analysis of solid mechanics problems by FEM, important discrete operators are the
mechanical response vector of the finite element and its tangent stiffness matrix.
This phase is characterised by the evaluation and the analysis of these operators
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through an algebraic manipulator such as MATLAB® [18]. MATLAB® is certainly
one of the state-of-the-art mathematical softwares available for performing
numeric or symbolic analyses, but it is not the only one and a quite long list, see
[19], of packages offering very similar features is available.

The discrete model so defined is usually inserted into a prototype code, often by
using again an algebraic manipulator but the use of compiled programming lan-
guages is also possible if not common. This prototype code allows to perform basic
tests with the aim to check the effectiveness of the adopted model with respect to
well known situations and to check for the presence of bugs. Often this phase can
highlight also flaws in the mathematical model or in the discretization technique. In
any case it is necessary to go back and to repeat the process just described.

The additional last step can be the production of an executable by using com-
piled programming languages such as C/C++ or fortran. This makes possible to
extend the validation of the conceived numerical model by performing the analysis
of larger sized problems.

As already said, the previously described work-flow is lengthy and it is often
characterised by a gap between the theoretical formulation and its implementation
in a numerical code. However some solutions capable to assist the developer in this
process already exist ant it is worth to mention some ones. Such solutions typically
refer to a specific context by keeping fixed the physical problem but letting open
the specific instance of discretization technique which, however, is fixed too. This is
the case of open source FEM libraries or commercial packages listed in [20]. In both
cases the user must define the procedures or functions needed in order to assign the
desired new finite element to be used within the analysis framework already avail-
able in the library. Other packages instead solves a generic system of Partial Differ-
ential Equations (PDEs) subjected to boundary and initial conditions. Inside this
generic form the specific differential problem to be solved must to be fitted by the
user, see for example [21, 22], but usually with no control over the discretization
technique used by the solver.

The present work, quite far from being an alternative to the hugely developed
and rich packages previously cited, proposes a basic approach for the quick early
phase developing of solid mechanics finite elements formulation. Its intent is to
show how to use MATLAB®, in particular by exploiting the capabilities of the
Symbolic Math Toolbox™ [23], to produce numerical approximations of a given
solid mechanics problem in a way that the usual gap between the theoretical for-
mulation and its actual implementation in a code is not perceived. This result is
obtained by condensing the development process going from the mathematical
formulation to the prototype code implementation in a few lines of MATLAB®
symbolic instructions. The applicative context is the nonlinear analysis of solids and
structures, see [24, 25], by showing the formulation and the subsequent MATLAB®
coding of some typical structural and solid finite elements. The mechanical formu-
lation is based on the kinematics of finite deformation and, for the description of
the material behaviour, on isotropic hyperelasticity, i.e. the stress solution is found
as a derivative of some potential energy function. This allows to express the
mechanical problem at hand in terms of the stationary condition of the Total
Potential Energy (TPE). The stationary condition, assuming a fem discretization of
the given domain, is then easily translated into a nonlinear algebraic problem whose
unknowns are the position vectors of the nodes of the mesh used in the
discretization.

The following finite elements are discussed: a truss element, a 3D tetrahedral
element with four nodes and a four nodes quadrangular element subjected to plane
strain condition. The choice allows to discuss gradually the main ingredients present
in a finite element formulation and how these can be framed inside the proposed
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MATLAB® approach. The latter is based on the definition of MATLAB® classes
which share the same structuring and which differ only for the particular mechan-
ical response to be implemented. In particular the generic class is structured as
shown by the following instructions (Listing 1.1).

Listing 1.1. Generic class.
classdef Element

properties (SetAccess = private)
% symbolic properties

% numeric properties
end

methods
function E = Element()
end

function E = Initialize (E,D, i)
end

function E = Compute(E)
end

function sig = Stress(E,gx)
end
end

end

The properties section contains a group of symbolic properties devoted to handle
the unknowns and the quantities depending on them used in the description of the
element mechanical behaviour. The other group of numeric properties are used to
handle quantities that are known and then they can have a numeric value. Beyond
the constructor, that must to be present in any class, we have the function Initialize,
belonging to the pre-processing phase of a FEM code, whose main task is the
inizialization of the i-th element on the basis of the assigned data structure D. This is
the moment also for evaluating the element operators, in a symbolic format, needed
to the analysis. In the subsequent analysis phase, the function Compute evaluates the
numeric instances of the symbolic operators previously prepared. The function
Stress is typical of the post-processing phase of any FEM code and its task is to
compute the stress solution inside the generic element starting from the kinematic
global solution represented by vector gx.

Before proceeding with the description of the proposed work, it is noteworthy to
observe that the use of MATLAB® to performmathematical and numeric analyses is
not certainly new and several books are dedicated to this subject, see [26–28] just to cite
a few. Moreover the already cited book [24] employs MATLAB® for the implementa-
tion of a FEM software. However the present less comprehensive work is different
because it carry out the formulation of the FEM operators by exploiting the potentiality
of the symbolic manipulator and advising an object-oriented programming style.

A last further annotation regards the use of the symbolic approach which, with
respect to the expected performance of final codes, represents a weakness. This
aspect however is to be considered less important in a work regarding the early
phase developing of a FEM formulation. Nevertheless techniques, [29–31], for the
automatic generation of efficient and highly compressed code is a research theme
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which is attracting increasingly interest, making viable the up-scaling of the pro-
posed approach.

The chapter is organised as follows. Section 2 presents the FEM formulation of
the Total Potential Energy for a generic structure or solid, showing also the evalua-
tion of the gradient needed to define the discrete equilibrium equations and the
evaluation of the Jacobian necessary for their solution. Sections 3, 4 and 5 describes,
respectively, the truss element, the tetrahedral element and plane quadrangular
element. The closing section furnishes some additional final comments.

2. Total Potential Energy

An effective description of a generic mechanical problem can be obtained
through the stationary condition of its Total Potential Energy (TPE) which, see for
example [24], can be expressed as follows

Y
xð Þ �

Y
int

xð Þ þ
Y
ext

xð Þ ¼ stat: (1)

x is the global vector of the current positions of the nodal points defining the
mesh used to describe the geometry of the solid.

Q
int xð Þ, excluding dynamic and

dissipative effects, is given only by the strain energy obtained by summing all the
contribution from all the finite elements, i. e.

Y
int

xð Þ ¼
X
e
Ψe xð Þ, (2)

being Ψe xð Þ the hyperelastic strain energy relative to the generic finite element.Q
ext xð Þ is the potential energy of external forces. For simplicity the case of a solid

body subjected only to external punctual forces will be considered, in this case the
potential energy can be written as

Y
ext

xð Þ ¼ �f � x, (3)

where f is the global vector of the applied forces in each node of the mesh. f has
the same length of x, however it is mainly composed by null entries.

On this basis the equilibrium equations can be easily formulated with respect the
degrees of freedom involved in the FEM description of the body. In particular, by
imposing the stationary condition (1), the equilibrium equations can be derived,
obtaining

A
e
ge xð Þ � f ¼ 0: (4)

where the assembly operator A is used to build up the global response vector by
using the gradient vector of each finite element strain energy contribution, i.e.

ge xð Þ ¼ ∂Ψe xð Þ
∂x

: (5)

The solution of Eq. (4), a typically nonlinear algebraic system whose unknowns
are the components of vector x, is based on a Newton–Raphson iteration which can
be formulated as follows
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A
e
Je x j
� �

x jþ1 � x j
� �

¼ � A
e
ge x j
� �

� f
� �

, (6)

where xj and x jþ1 are the estimated solutions at j-th and (j + 1)-th iterations and
Je xð Þ is the Jacobian matrix of the finite element given by

Je xð Þ ¼ ∂ge xð Þ
∂x

: (7)

The gradient vector ge xð Þ and the Jacobian matrix Je xð Þ can be used as basic
building blocks for the finite element formulation. This is the approach at the basis
of the MATLAB® implementations to be described in the following sections.

3. Truss element

The strain energy of the truss element is defined, see [24], as follows

Ψe xð Þ ¼ 1
2
Eε2V, ε ¼ ε xð Þ ¼ ln

l
L

� �
, (8)

where E is the Young modulus, L and V are the length and the volume of the bar
in the reference configuration, l is the length of the bar in the current configuration.
The geometric quantities just described are depicted in Figure 1 where the coordi-
nate vectors of the nodal points are also shown.

The implementation of the MATLAB® class Truss can stem from the properties
reported in Listing 1.2. Some of them, those describing the reference configuration,
can be numeric because are fixed. The other properties, which describe the current
configuration, are expressed in symbolic form in order to be used as quantities
whose the strain energy of truss element depends on.

Listing 1.2. Truss class: properties.
properties (SetAccess = private)

% symbolic properties
xa % current coordinates of node a
xb % current coordinates of node b
xe % current element coordinates
ge % gradient g (xe)
Je % Jacobian J (xe)
eps % strain eps (xe)
N % axial force N (xe)

% numeric properties
a % node a global index
b % node b global index
Xe % reference element coordinates
% …

end

During the pre-processing phase the numeric properties of the class are appro-
priately assigned and the symbolic properties are evaluated as shown in the follow-
ing listing (Listing 1.3). This happens inside the function Initialize belonging to the
methods of the class.
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Listing 1.3. Truss class: function Initialize.
function T = Initialize (T,D, i)

% D brings all the problem data and its use
% is not shown here
T. xa = sym ('xa', [3 l], 'real');
T. xb = sym ('xb', [3 1], 'rea1');
T. xe = [T. xa; T. xb];

% reference configuration
L = dot(Xb–Xa, Xb–Xa);
L = sqrt(L);

% current configuration
1 = dot (T. xb–T. xa, T. xb–T. xa);
1 = sqrt(1);

T. eps = log(1/L);
Psi = 1/2 * E * T.eps^2 * (L*A);
T. ge = gradient(Psi, T.xe);
T. Je = jacobian (T.ge, T.xe);

% preliminary symbolic evaluation of N
T .N = E*A*T. eps;

end

Listing 1.3 shows that, after the computation of the strain energy using Eq. (8),
symbolic properties ge and Je are evaluated on the basis of Eqs. (5) and (7), respec-
tively, by simply calling the function gradient and the function jacobian both
belonging to the Symbolic Math Toolbox™. This highlights the short distance
between the formulation and its code implementation.

After having prepared each Truss object in the way described above, it is possible
to evaluate, whenever it is needed during the solution of the nonlinear equilibrium
equations, the gradient and the Jacobian of the generic element with respect to
estimated solution xj, see Eq. (6), by calling the following class method (Listing 1.4).

Listing 1.4. Truss class: function Compute.
function T = Compute(T)

Figure 1.
Truss element: definition of the geometric quantities relative to the reference configuration (upper-case letters)
and the current configuration (lower-case letters).
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T.se = subs (T.ge, T.xe, T.xxe);
T.Ke = subs (T.Je, T.xe, T.xxe);

end

The function Compute uses the numeric property T.xxe previously filled with
the current nodal coordinates values and it stores the resulting numeric expressions
of the gradient and Jacobian in the class properties se and Ke. The desired result is
obtained by calling MATLAB® function subs which substitutes the symbolic vari-
able T.xe with its numeric value T.xxe.

The post-processing phase of any FEM codes certainly comprehends the evalua-
tion of the stress solution. In the case of the truss element, the axial force must to be
computed with respect to each vector x calculated by the solution of the equilibrium
Eqs. (4). Listing 1.5 shows the very simple function implementing the required
computation.

Listing 1.5. Truss class: function Stress.
function N = Stress (T,gx)

% extraction of local vector lx from global gx
N = subs(T.N, T.xe, lx);

end

The complete listing of the class can be found in [32].

4. Tetrahedral element

The discussion of the implementation of a tetrahedral element, in particular a 4
nodes tetrahedron, allows to introduce an important ingredient of all finite element
formulations: the interpolation chosen for the kinematic description. Standard
approaches are hinged on the interpolation of the displacement field, in the present
approach the focus is on the interpolation of the element coordinates in the refer-
ence configuration and in the current one. In the previous section regarding the
truss element, this aspect remained hidden because the element elongation is easily
formulated with respect to the element nodal coordinates.

Another important aspect which the tetrahedral element bring into play is the
use of the continuum mechanics instruments, see [24, 25], and how these can be
smoothly framed inside the proposed MATLAB® implementation.

Let us consider the geometry of the 4 node tetrahedron as illustrated in Figure 2.
The description of the reference and current configurations of the tetrahedron are
as follows.

X ζ1, ζ2, ζ3, ζ4ð Þ ¼ N1X1 þN2X2 þN3X3 þN4X4

¼ ζ1X1 þ ζ2X2 þ ζ3X3 þ ζ4X4,
(9)

x ζ1, ζ2, ζ3, ζ4ð Þ ¼ N1x1 þN2x2 þN3x3 þN4x4

¼ ζ1x1 þ ζ2x2 þ ζ3x3 þ ζ4x4:
(10)

The element local coordinates ζ ¼ ζ1 ζ2 ζ3 ζ4½ �T are the standard tetrahedral
coordinates whose definition can be found in several resources, for example [6, 8].
On this basis the description of the deformation gradient over the tetrahedron can
be formulated as follows
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F ¼ ∂x
∂X
¼ ∂x

∂ ζ
∂ ζ
∂X
¼ ∂x

∂ζ
∂X
∂ ζ

� ��1
¼ F xð Þ, (11)

with the operator

∂x
∂ζ
¼ x1x2x3x4½ � (12)

containing in its columns the four coordinate vectors relative to the current
configuration, unknown vectors to be expressed in MATLAB® symbolic format,
and the operator

∂X
∂ζ
¼ X1X2X3X4½ � (13)

containing the four coordinate vectors relative to the reference configuration to
be evaluated numerically for each tetrahedron of the mesh. The apparent problem

represented by the evaluation of inverse ∂X
∂ ζ

� ��1
starting from a 3 � 4 matrix is a

standard matter in FEM procedures, see for example [6], and it can be easily
calculated as shown in Appendix A.

The geometric formulation described above is directly inserted inside the Tetra4
class which can be implemented by following the same scheme already adopted for
the class Truss. In particular the geometrical properties of the class are listed below
(Listing 1.6).

Listing 1.6. Tetra4 class: properties.
properties (SetAccess = private)

% symbolic propetries
xl % current coordinates of node 1
x2 % current coordinates of node 2
x3 % current coordinates of node 3
x4 % current coordinates of node 4
xe % current element coordinates
Fe % deformation gradient

Figure 2.
Tetrahedral element: definition of the geometric quantities relative to the reference configuration (upper-case
letters) and the current configuration (lower-case letters).
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% numeric properties
Xe % reference element coordinates

end

On this basis the evaluation of the deformation gradient can be performed
during the initialisation of the generic element by carrying out the following
instructions (Listing 1.7).

Listing 1.7. Tetra4 class:function Initialize (evaluation of the deformation
gradient).

function T = Initialize (T,D, i)
% D brings all the problem data and its use
% is not shown here …

% reference configuration
dXdzeta = [X1 X2 X3 X4];
A = [1 1 1 1; dXdzeta];
V = det(A)/6;
iA = inv(A);
dzetadX = iA(1:4 ,2:4);

% current configuration (symbolic)
dxdzeta = [T.xl T.x2 T.x3 T.x4];

% deformation gradient
T.Fe = dxdzeta*dzetadX;

% …

end

It is now possibile to discuss the strain energy of the tetrahedral element. The
choice is for a compressible neo-Hookean material, see [25], which allows to express
the strain energy of the generic tetrahedron as follows

Ψe xð Þ ¼
ð

Ωe

Ψ Cð ÞdV ¼ μ

2
I1 � 3ð Þ � μ ln J þ λ

2
ln Jð Þ2

� �
V: (14)

C ¼ C xð Þ ¼ FTF is the right Cauchy strain tensor and I1 its first invariant, J = det
F, λ and μ are the Lamè parameters of the material. Thanks to the constant pattern of
F over the element domain Ωe, the strain energy of the element is simply given by the
product between the strain energy density and the reference volume of the element.
Such a evaluation, together with the derivation of the gradient vector and Jacobian
matrix is implemented inside the function Initialize as shown in Listing 1.8.

Listing 1.8. Tetra4 class: function Initialize (strain energy).
function T = Initialize (T,D, i )

% …

C = T. Fe.'*T.Fe;
Il = trace (C);
J = det (T.Fe);

Psi = (mi/2*(Il-3)-mi*log(J) + lam/2*log (J)^2) *V;
T.ge = gradient(Psi, T.xe);
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T.Je = jacobian(T.ge, T.xe);
% …

end

The symbolic gradient vector and Jacobian matrix evaluated in the initialization
phase are then numerically computed during the analysis using a function identical
to the function already presented in Listing 1.4 for the Truss class.

The basic operation of the post-processing is the computation of the Cauchy
stress solution which, as F, is constant over the element domain. This step requires
the evaluation of the second Piola-Kirchhoff stress tensor

S ¼ 2
∂Ψ
∂C
¼ S Cð Þ (15)

and, by applying a push-forward operation to S [24, 25], the computation of the
Cauchy stress tensor is

σ ¼ J�1FS Cð ÞFT: (16)

The MATLAB® implementation of Eqs. (15) requires the introduction of a
symbolic matrix for C to be used to perform another evaluation of the strain energy
depending, this time, from the components of C. The obtained expression, Ψ Cð Þ,
can be derived in order obtain S. This step can be performed only one time during
the initialisation of the Tetra4 class. Listing 1.9 shows these instructions together
with the declaration of the necessary symbolic properties.

Listing 1.9. Tetra4 class: function Initialize (second Piola-Kirchhoff stress
tensor).

properties (SetAccess = private)
% …

% symbolic properties
Se % second Piola-Kirchhof stress tensor S(C)
Ce % symbolic tensor C from which Se depends

end

function T = Initialize (T,D, i )
% …

T.Ce = sym ('C', [3, 3], 'real');
I1 = trace (T. Ce);
I3 = det (T.Ce);
Psi = mi/2*(Il – 3)–mi*log ( sqrt (I3))+ …

lam/2*log (sqrt( I3))^2;
T.Se = reshape (2* gradient (Psi ,T.Ce (:)) ,3 ,3 );

end

Eq. (16) is used to compute the stress solution for each tetrahedron with respect
to all the solutions x found by means of equilibrium equations (6). The class
function implementing the required operations is reported in Listing 1.10.

Listing 1.10. Tetra4 class: function Stress.
function sig = Stress (T,gx)

% extraction of local vector lx from global gx
F = subs (T.Fe, T.xe, lx);
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C = F.'*F;
sig = F*subs (T.Se, T.Ce, C)*F.'/det(F);

end

The complete listing of the class can be found in [33].

5. Plane strain 4 nodes element

The use of finite elements specifically formulated for the analysis of problems
which admit a 2D reduction is very common and quadrangular elements play an
important role in the case of simple geometries. In this section a 4 nodes quadran-
gular element subjected to plain strain condition is discussed. The element is very
basic but it allows to discuss also the use of the Gauss integration points in the
calculation of the required FEM operators. The use of the Gauss integration point is
an important cornerstone for all finite element formulations.

Plane strain condition stems from the following assumption on the transforma-
tion defining the new configuration of each point of the body

x1 ¼ x1 X1,X2ð Þ, (17)

x2 ¼ x2 X1,X2ð Þ, (18)

x3 ¼ X3: (19)

Consequently, the associated deformation gradient takes the following form

F ¼
F11 F12 0

F21 F22 0

0 0 1

2
64

3
75,F2�2

F11 F12

F21 F22

� �
: (20)

Eqs. (18)–(20) allow the dealing with a 2D kinematic description. The stress
solution, however, is not strictly plane because Eq. (19) constitutes an internal
constraint determining also the presence of the component σ33. This component
anyway depends only from the 2D kinematic solution as it will be shown in the
following.

The standard shape function of the four nodes plane element are

N1 ¼
1
4

1� ζ1ð Þ 1� ζ2ð Þ,N2 ¼
1
4

1þ ζ1ð Þ 1� ζ2ð Þ

N3 ¼
1
4

1þ ζ1ð Þ 1þ ζ2ð Þ,N4 ¼
1
4

1� ζ1ð Þ 1þ ζ2ð Þ
(21)

being ζ ¼ ζ1ζ2½ �T the element local coordinates used for quadrangular elements,
see for example [6]. Shape functions (21) can be properly used to describe, see
Figure 3, the reference configuration and the current configuration of the element
giving

X ζ1, ζ2ð Þ ¼ N1X1 þN2X2 þN3X3 þN4X4: (22)

x ζ1, ζ2ð Þ ¼ N1x1 þN2x2 þN3x3 þN4x4: (23)
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We have exactly the same pattern of the tetrahedron element, see Eqs. (9)
and (10), except for the meaning of the shape function and the 2D dimension
of the symbolic vectors xi i ¼ 1… 4ð Þ and numeric vectors Xi i ¼ 1… 4ð Þ. The
deformation gradient can be evaluated using always Eq. (11) where now the
operators are

∂x
∂ζ
¼ � 1� ζ2ð Þ

4
x1 þ

1� ζ2ð Þ
4

x2 þ
1þ ζ2ð Þ
4

x3 �
1þ ζ2ð Þ
4

x4

� ��

� 1� ζ1ð Þ
4

x1 �
1þ ζ1ð Þ
4

x2 þ
1þ ζ1ð Þ
4

x3 þ
1� ζ1ð Þ
4

x4

� �� (24)

and

∂X
∂ζ
¼ � 1� ζ2ð Þ

4
X1 þ

1� ζ2ð Þ
4

X2 þ
1þ ζ2ð Þ
4

X3 �
1þ ζ2ð Þ
4

X4

� ��

� 1� ζ1ð Þ
4

X1 �
1þ ζ1ð Þ
4

X2 þ
1þ ζ1ð Þ
4

X3 þ
1� ζ1ð Þ
4

X4

� �� (25)

are 2 � 2 matrices depending on the local coordinates of the element. Then the
necessity to use the Gauss integration points in the evaluation of the strain energy of
the element and, as a consequence, of the gradient and Jacobian of the element, see
Eqs. (5) and (7). In particular four Gauss points are used, their coordinates and
weights can be found in any FEM text book and are also shown in the complete
listing of the class available in [34].

Previous discussion introduces the implementation details of the MATLAB®
class PF4, PF stays for Plane F, whose kinematic properties, see Listing 1.11,
are similar to those used for the class Tetra4 plus other properties required
for the Gauss integration points. These properties are used to implement
Eqs. (11), (24) and (25) which must to be evaluated in each Gauss point
(bulky details are not shown but they can be found in the complete listing of the
class, see [34]).

Listing 1.11. PF4 class: kinematic properties and evaluation of F.
properties (Constant)

Figure 3.
Four nodes plane element: definition of the geometric quantities relative to the reference configuration
(uppercase letters) and the current configuration (lower-case letters).
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nG = 4;
xiG = % Gauss coordinates , values not shown here
wG = [1 1 1 1];

end

properties (SetAccess = private)
% symbolic properties
xl % current coordinates of node 1
x2 % current coordinates of node 2
x3 % current coordinates of node 3
x4 % current coordinates of node 4
xe % current element coordinates
Fe % deformation gradient F(xe) (nGP times)

% numeric properties
Xe % reference element coordinates

end

function PF = Initialize (PF,D, i)
% D brings all the problem data and its use
% is not shown here

PF . Fe = sym( zeros (2 ,2 ,PF .nG));
for g = l:PF.nG
% dzetadX evaluation in g
% …

% dxdzeta evaluation in g
% …

% F in g
F = dxdzeta * dzetadX;
PF.Fe(:, :, g) = F;

% …

end
end

In each Gauss integration point the strain energy, the compressible neo-Hookean
form is used again, must to be evaluated by taking into account the simplification
determined by the plane form assumed by tensor F, then

J ¼ detF ¼ detF2�2, (26)

and by tensor C

C ¼

C11 C12 0

C21 C22 0

0 0 1

2
66664

3
77775
, C2�2 ¼

C11 C12

C21 C22

" #
, (27)
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from which

I1 ¼ trC ¼ trC22 þ 1: (28)

Then the expression of the strain energy density valid for the plane strain
condition is

ΨPF ¼
μ

2
I1 � 2ð Þ � μ ln J þ λ

2
ln Jð Þ2, (29)

where I1 and J are calculated on the basis of the plane form of kinematic tensors.
The resulting strain energy of the generic element can be then evaluated by using
the following formula

Ψe xð Þ ¼
ð

Ωe

ΨPF dV ¼
X4
g¼1

ΨPF½ �Ag thwg ¼
X4
g¼1

Ψg, (30)

where Ag ¼ det ∂X
∂ζ

h i
g
is the part of the reference domain pertaining to the Gauss

point, wg is the Gauss point weight and th is the domain thickness usually assumed
unitary under plane strain condition. Using Eq. (30), (5), and (7) the following
results are valid for the generic element

ge ¼
X4
g¼1

∂Ψg

∂x
¼
X4
g¼1

gg, Je ¼
X4
g¼1

∂gg
∂x
¼
X4
g¼1

Jg, (31)

where gg and Jg are the gradient and Jacobian, respectively, pertaining to the
generic Gauss point.

The following MATLAB® instructions, Listing 1.12, implements, inside the
function Initialize of PF4 class, the operations required by Eq. (31).

Listing 1.12. PF4 class: evaluation of ge and Je.
function PF = Initialize (PF,D, i)

% …

PF. Je = sym (zeros (8 ,8 , PF .nG));
PF. Fe = sym ( zeros (2 ,2 ,PF .nG));
for g = l:PF.nG
% …

C = F.'*F;
I1 = trace (C);
J = det (F);
Psi = (mi/2*(Il–2)–mi*log(J) + lam/2*log (J)^2) …

A*PF.wG(g)*th;
PF.ge(: , 1, g) = gradient (Psi, PF. xe);
PF.Je(:, :, g) = jacobian (PF. ge(: , 1, g), PF. xe);
% …

end
% …

end

During the analysis the main task to be performed by the element is the numer-
ical evaluation of ge and Je that now must to be performed, see Eq. (31), on the basis
of the following implementation of the class function Compute.
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Listing 1.13. PF4 class:function Compute.
function PF = Compute(PF)

PF. se = zeros (8, 1);
PF. Ke = zeros (8, 8);
for g = l:PF.nG
PF.se = PF.se + subs (PF.ge(:, 1, g), PF.xe, PF.xxe);
PF.Ke = PF.Ke + subs (PF.Je(:, :, g), PF.xe, PF.xxe);

end
end

The last part of the class to be discussed regards the evaluation of stress solution.
As already observed in the beginning of this section, Eq. (19) constitutes an internal
constraint determining the presence of also the stress component σ33 to be evaluated
together with the plane part of the stress tensor. The plane part can be calculated
using Eqs. (15) and (16) where the plane version of C and F must be used starting
from the strain energy expression given by Eq. (29). The σ33 component, stems
from the plane solution, and is given by

σ33 ¼ J�1S33 ¼ J�1
λ

2
ln detCð Þ (32)

A simple derivation of this expression through MATLAB® is reported in
Appendix A. The implementation of the operations required for the evaluation of
the stress solution are reported below, Listing 1.14.

Listing 1.14. PF4 class: function Stress.
function sig = Stress (T, gx)

% retrieve local vector lx from global
% solution gx
sig = zeros(3, 3, PF.nG);
for g = l:PF.nG
F = subs (PF.Fe(:, :, g), PF.xe, lx);
C = F.'*F;
sig(l:2, l:2, g) = F*subs (PF. Se, PF.Ce,C)*F.'/det(F);
sig (3, 3, g) = subs (PF.Se33, PF.Ce, C)/det (F);

end
end

Listing 1.14 shows the use of the symbolic properties PF.Se which is initialised in
way similar to the property T.Se shown in Listing 1.9 for the tetrahedral element.
Anyway the complete listing of the class can be found in [34].

6. Conclusions

The early phase developing of finite elements can be a lengthy and error prone
processes involving the use of different tools. The MATLAB® symbolic approach
here presented can be effectively used to test a produce new finite element formu-
lation reducing a lot the distance between the formulation and its actual implemen-
tation. In order to be more illustrative the presentation regarded basic solid
mechanics finite elements, a truss, tetrahedral and plane quadrangular element, but
the developing of finite elements for more specific engineering applications is an
objective worth to be pursued and it is the subject of the author’s current work.
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The weakness of the proposed approach is the low performance of the final
codes making difficult the analysis of real sized problems by using common hard-
ware resources which, however, are adequate if small but significative test cases are
chosen. A workaround, already tested by the author but not presented here, is the
generation and storing on files of MATLAB® functions for the evaluation of the
element operators. This must happens before, and one time for all, the execution of
the analysis. The MATLAB® functions so obtained can be called during the analysis
for evaluating the required finite element operators avoiding the calls to time-
consuming function subs. Anyway the tuning of this operation is less automatic
because the generation of the required MATLAB® functions can be, depending on
the size of the operator to be translated into a MATLAB® function, time consum-
ing, specially if the optimization flag is active. Then techniques quite common in the
field of the symbolic and /or algorithmic differentiation should be exploited for the
most intricate cases.

A. Appendix

A.1 Tetrahedron reference configuration operator inversion

The problem of the evaluation of the inverse of matrix ∂X
∂ ζ present in Eq. (11) is

circumvented by evaluating the Jacobian of the following system of equations

1 ¼ ζ1 þ ζ2 þ ζ3 þ ζ4
X ζ1, ζ2, ζ3, ζ4ð Þ ¼ ζ1X1 þ ζ2X2 þ ζ3X3 þ ζ4X4

(33)

whose linearisation gives

0

dX

� �
¼

1 1 1 1

X1 X2 X3 X4

� �
dζ½ �: (34)

By inverting this relationship, i. e.

dζ½ � ¼
1 1 1 1

X1 X2 X3 X4

� ��1 0

dX

� �
¼

� ∂ζ1
∂X1

∂ζ1
∂X2

∂ζ1
∂X3

� ∂ζ2
∂X1

∂ζ2
∂X2

∂ζ2
∂X3

� ∂ζ3
∂X1

∂ζ3
∂X2

∂ζ3
∂X3

� ∂ζ4
∂X1

∂ζ4
∂X2

∂ζ4
∂X3

2
666666666666664

3
777777777777775

0

dX

� �
: (35)

the evaluation of the desired 4� 3 matrix, ∂X
∂ζ

� ��1
, is obtained. Moreover the

volume of the tetrahedron in its reference configuration is an additional result
thanks to relationship

6V ¼ det
1 1 1 1

X1 X2 X3 X4

� �
: (36)
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A.2 Out-of-plane normal component for the plane strain condition

The following MATLAB® instructions allow to find an explicit expression of the
S33 component, from which σ33 ¼ J�1S33.

syms lam mi 'real'
syms C [3 3] 'real'
C(l, 3) = 0; C(3, l) = 0; C(3, 2) = 0; C(2, 3) = 0;
I1 = trace(C); I3 = det(C);
Psi = mi/2*(I1–3)–mi*log(sqrt (I3))+ …

lam/2*log (sqrt (13))^2;
S33 = simplify (2*diff (Psi ,C(3, 3)));
S33 = subs(S33, C(3, 3), 1);
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Chapter 13

A Posteriori Error Analysis in
Finite Element Approximation for
Fully Discrete Semilinear
Parabolic Problems
Younis Abid Sabawi

Abstract

This Chapter aims to investigate the error estimation of numerical
approximation to a class of semilinear parabolic problems. More specifically, the
time discretization uses the backward Euler Galerkin method and the space
discretization uses the finite element method for which the meshes are allowed to
change in time. The key idea in our analysis is to adapt the elliptic reconstruction
technique, introduced by Makridakis and Nochetto 2003, enabling us to use the a
posteriori error estimators derived for elliptic models and to obtain optimal order
in L∞ H1� �

for Lipschitz and non-Lipschitz nonlinearities. In this Chapter, some
challenges will be addressed to deal with nonlinear term by employing a
continuation argument.

Keywords: A posteriori error estimates, semilinear parabolic problems, finite
element approximation, L∞ (H1) bounds in finite element approximation, fully
discrete semilinear parabolic approximation

1. Introduction

The finite element method (FEM) consider is the most of flexibility common
technique used for dealing with various kinds of application in many fields, for
instance, in engineering, in chemistry and in biology. The derivation of a posteriori
error estimates for linear and nonlinear parabolic problems are gaining increasing
interest and there is a significant implementation of the method now are under-
standable and available in the literature [1–9]. However, There is less progress has
been made comparatively in the proving of a posteriori error bounds for semilinear
parabolic problems [10–13]. These estimations play a crucial rule in designing
adaptive mesh refinement algorithms and consequently leading to a good accuracy
while reducing the computational cost of the scheme.

The key technique used in the proofs is the elliptic reconstruction idea, intro-
duced by Makridakis and Nochetto for spatially discrete conforming FEM [2] and
extended to fully discrete conforming FEM by Lakkis and Makridakis [3] These
ideas have been carried forward also to fully discrete schemes involving spatially
non-conforming/dG methods in [14]. The choice of this technique for deriving a
posteriori error for parabolic problem is motivated by the following factors.
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First, elliptic reconstruction allows us to utilise the readily available elliptic a
posteriori estimates [2] to bound the main part of the spatial error. Second, this
technique combines the energy approach and appropriate pointwise representation
of the error in order to arrive to optimal order a posteriori estimators in the L∞ L2� �

-
norm. As a result, this approach will lead to optimal order in both L2 H1� �

and
L∞ L2� �

-type norms, while the results obtained by the standard energy methods are
only optimal order in L2 H1� �

-type norms.
The aim of this Chapter is to derive a posteriori error bounds for the fully

discrete in two cases Lipschitz and non Lipschitz. Continuation Argument will be
used to deal with nonlinear forcing terms.

2. Preliminaries

Before we proceed with the error analysis, we require some auxiliary results that
will be used in our analysis.

2.1 Functional spaces

Let z t, xð Þ is a function of time t and space χ, we introduce the Bochner space
LP 0, T, � Xð Þ where (X is some real Banach space equipped with the norm ∥ � ∥XÞ
which is the collection of all measurable functions v: 0, Tð Þ ! X, more precisely,
for any number r≥ 1

LP 0, T; Xð Þ ¼ z : 0, Tð Þ ! X :

ðT
0
∥z∥2dt≤∞

� �
, (1)

such that

∥z∥LP 0,T;Xð Þ≔
ðT
0
∥z∥2dt

� �1=2

<∞ for 1≤ p<∞,

∥z∥LP 0,T;Xð Þ≔ max
t∈ 0,T½ �

∥z tð Þ∥X <∞ forp ¼ ∞:
(2)

Lemma 1.1 (Continuous Gronwall inequality). Let C0, C1 ∈L1 0, Tð Þ for all
T >0 and z∈W1,1, then for almost every t∈ 0, Tð �, reads

z0 tð Þ≤C0 tð Þ þ C1 tð Þz tð Þ , (3)

then

z tð Þ≤F 0, Tð Þz 0ð Þ þ
ðT
0
F 0, Tð Þz sð Þds, (4)

where F 0, Tð Þ ¼ exp
Ð T
0 C1 ξ tð Þdξð Þ

�
. Furthermore, if C0 and C1 are non-

negatives, gives

z Tð Þ≤F 0, Tð Þ z 0ð Þ þ
ðT
0
C0 sð Þds

� �
: (5)

Proof: See [15].
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Theorem 1.2 Given some p≥ 2, we have

∥v∥pLp Ωð Þ ≤C∥∇v∥
pd�2d

2 ∥v∥
2pþ2d�pd

2

∥v∥pLp Ωð Þp≤C∥∇v∥p�2∥v∥2, d ¼ 2

∥v∥pLp Ωð Þp≤C∥∇v∥
3p�6
2 ∥v∥

6�p
2 , d ¼ 3, p≤ 6:

Proof: See [16].

3. Model problem

Consider the semilinear parabolic problem as

∂u
∂t
� Δu ¼ f uð Þ, in Ω∪ 0, T½ �,

u ¼ 0, on ∂Ω,

u 0, xð Þ ¼ u0 xð Þ, on 0f g � Ω,

(6)

where Ω is a plane convex domain subset of k, Ω⊂k with smooth boundary
condition ∂Ω, where ut ¼ ∂u=∂t, T >0 and f ∈C1 ð Þ. Let Lp ωð Þ, 1≤ p≤∞ and
Hr ωð Þ, r∈, denote the standard Lebesgue and Hilbertian Sobolev spaces on a
domain ω⊂Ω. For brevity, the norm of L2 ωð Þ � H0 ωð Þ, ω⊂Ω, will be denoted by
∥ � ∥ω, and is induced by the standard L2 ωð Þ-inner product, denoted by �, �ð Þω; when
ω ¼ Ω, we shall use the abbreviations ∥ � ∥ � ∥ � ∥Ω and �, �ð Þ � �, �ð ÞΩ.

Returning to the (6), multiplying by a test function v∈H1
0 Ωð Þ and then

integrate by parts, we arrive to (7) in weak form, which reads: find u∈
L2 0, T,H1

0

� �
Ωð Þ∩H1

0 0, T, L2 Ωð Þð for almost every t∈ 0, Tð �, this becomes

ð

Ω

∂z
∂t

vdxþD t; z, vð Þ ¼
ð

Ω
f zð Þvdx, (7)

for all v∈H1
0 Ωð Þ. Here,

D t; z, vð Þ ¼
ð

Ω
∇z � ∇vdx: (8)

By using Cauchy-Schwarz inequality, the convercitivity and continuity of the
bilnear form D, viz.

D v, vð Þ≥Ccoer∥∇v∥2 for allv∈H1
0 Ωð Þ,

∣D v, wð Þ∣ ≤Ccont∥∇v∥∥∇w∥ for all v, w∈H1
0 Ωð Þ,

(9)

with Ccont,Ccoer positive constants independent of w,  v.

4. Fully discrete backward Euler formulation

To introduce a backward Euler approximation of the time derivative paired with
the standard conforming finite element method of the spatial operator. To this end,
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we will discretize the time interval 0, T½ � into subintervals tn�1, tnð �, n ¼
1, … , N with t0 ¼ 0 and tN ¼ T, and we denote by κn ¼ tn � tn�1 the local time
step. We associate to each time-step tN a spatial mesh T n and the respective finite
element space Vn; ¼ Vp

h T
nð Þ. The fully discrete scheme is defined as follows. Set

Z 0ð Þ to be a projection of z0 onto some space V0 subordinate to a mesh T 0

employed for the discretization of the initial condition. For k ¼ 1, … , n, find
Z ∈ Sn such that the fully discrete, then reads as follows

Zn � Zn�1

Kn
, ϕn

� �
þD Zn, ϕnð Þ ¼ f n Znð Þ, ϕnð Þ, ∀ϕn ∈Vn (10)

where Dn �, �ð Þ ¼ D tn, �, �ð Þ denotes the cG bilinear form defined on the mesh
T n

. Since Zn ∈Vn, there exist αi tð Þ∈, j ¼ 0, 1, 2, … , Nh, so that

Zn x, tð Þ ¼
XNlocNel

j¼0
αnj tð ÞΦ j xð Þ, Φ j, j ¼ 0, 1, 2…Nh (11)

is the basis functions. After plugging (11) into (10), yields a nonlinear system of
ordinary differential equations

M þ κnAð Þαnj tð Þ ¼ Mαn�1j tð Þ þ κnF

α 0ð Þ ¼ δ,
(12)

where Mi,j ¼ Φ j, Φ j
� �

and Ai,j ¼ D Φ j, Φ j
� �

are called the mass and stiffness
matrices with element F j,k ¼ f Φ j

� �
, Φk

� �
. We define the piecewise linear

interpolant Z and time-dependent elliptic reconstruction w tð Þ as by the linear
interpolant with respect to t of the values Zn�1 and Zn, viz.,

Z tð Þ≔ℓn�1 tð ÞZn�1 þ ℓn tð ÞZn, w tð Þ≔ℓn�1Rn�1
be Zn�1 þ ℓnRn

beZ
n, (13)

where ℓn�1,ℓnf g denotes the linear Lagrange interpolation basis on the interval
In are defined as

ℓn ≔
tn � t
Kn

, ℓn�1 ≔
t� tn�1
Kn

: (14)

We give here some essential definitions in the error analysis of the discrete
parabolic equations.

i. L2 projection operator Πn
0; The operator defined Πn

0: L
2 ! Vn, 1≤ n≤N

such that

Πn
0v, ϕn� �

¼ v, ϕnð Þ ∀ϕn ∈Vn, (15)

for all v∈L2 Ωð Þ.

ii. Discrete elliptic operator: The elliptic operator defined An
h: H

1
0 Ωð Þ ! Vn

such that for v∈H1
0 Ωð Þ, reads

An
hv, ϕn� �

¼ D v, ϕnð Þ ∀ϕn ∈Vn: (16)
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Using the above projections, (10) can be expressed in distributional form as

Zn � Πn
0Z

n�1

Kn
þ An

hZ
n ¼ Πn

0 f
n Znð Þ: (17)

5. Elliptic reconstruction

The aim of this section will be introduced the elliptic reconstruction operator
and then discuss the related aposteriori error analysis for the backward Euler
approximation. To do this, we define the elliptic reconstruction Rn

be ∈ H1
0 Ωð Þ of Zn

as the solution of elliptic problem

D Rn
bev, ϕ

� �
¼ gn, ϕð Þ, (18)

for a given v∈Vn and gn ¼ Πn
0 f

n Znð Þ � Zn�Πn
0Z

n�1

kn
. The crucial property, this

operator Rn
be is orthogonal with respect to D such that

D u� Rn
beu, v

� �
¼ 0 u, v∈Vn: (19)

The following lemma is the elliptic reconstruction error bound in the H1 and
L2-norms To see the proof, we refer the reader to [3] for details.

Lemma 1.3 (Posteriori error estimates). For any Zn ∈Vn, the following elliptic a
posteriori bounds hold:

∥hRn
beZ

n � Zn∥≤CΦ2
n,L2

∥∇ hRn
beZ

n � Zn
� �

∥≤CΦ2
n,H1

(20)

where

Φ2
n,L2

≔∥h2n gn þ ΔnZnð Þ∥þ ∥h3=2n ½½Zn��∥Σn
,

Φ2
n,H1 ≔∥hn gn þ ΔnZnð Þ∥þ ∥h1=2n ½½Zn��∥Σn

,
(21)

and gn defined in (18).
Lemma 1.4 (Main semilinear parabolic error equation). The following error

bounds hold

∂ρ

∂t
, ψ

� �
þD ρ, ϕð Þ ¼ f zð Þ � f n Znð Þ, ϕð Þ þ ∂ε

∂t
, ϕ

� �
þD w� wn, ϕð Þ

þ Πn
0 f

n Znð Þ � f n Znð Þ þ Πn
0Z

n�1 � Zn�1

Kn
, ϕ

� �
:

(22)

Proof: To begin with, we first decompose the error as

e≔ ρ� ε, ρ≔ z�w, ε≔w� Z: (23)

By recalling (17), this becomes

∂Z
∂t

, ϕ

� �
þD wn, ϕð Þ ¼ Πn

0Z
n�1 � Zn�1

kn
, ϕ

� �
þ Πn

0 f
n Znð Þ, ϕ

� �
∀ϕ∈H1

0 Ωð Þ, (24)
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where ∂Z
∂t ¼ Zn�1�Zn

κn
. Subtracting (24) from (7), gives

∂

∂t
Z � z½ �, ϕ

� �
þD wn � z, ϕð Þ ¼ Πn

0 f
n Znð Þ � f zð Þ, ϕ

� �
þ Πn

0Z
n�1 � Zn�1

κn
, ϕ

� �
:

(25)

Using elliptic reconstruction to split the error, gives

∂

∂t
�z� wþ wþ Zn½ �, ϕ

� �
þD wn � wþ w� z, ϕð Þ ¼ Πn

0 f
n Znð Þ � f n Znð Þ, ϕ

� �

þ f n Znð Þ � f zð Þ, ϕð Þ þ Πn
0Z

n�1 � Zn�1

Kn
, ϕ

� �
:

(26)

After using triangle inequality, the proof will be concluded.
The proof of the following Lemmas 1.5, 1.6, 1.7 in details, we refer to [3].
Lemma 1.5 (Temarol error estimate). Let Tn,1, 1≤ n≤N be given by

Tn,1 ≔
ðtn
tn�1

D w�wn,
∂ρ

∂t

� �����
����dt, (27)

then

Tn,1 ≤
ðtn
tn�1

∂ρ

∂t

����
����
2

dt

 !1=2

κnð Þ1=2Φn,2, (28)

where

Φn,2 ≔

ffiffiffi
3
p

3
∂

Yn

0
f n Znð Þ � Zn �

Qn
0Z

n�1

kn

����
����

� �
forn∈ 2 : N½ �,

ffiffiffi
3
p

3

Y1

0
f 1 Z1� �

� Z1 �
Q1

0Z
0

k1

�����

�����

 !
forn ¼ 1:

8>>>><
>>>>:

(29)

Lemma 1.6 (Space-mesh error estimate). Let Tn,2, 1≤ n≤N is defined by

Tn,2 ≔
ðtn
tn�1

∂ε

∂t
,
∂ρ

∂t

� �����
����dt, (30)

we have

Tn,2 ≤
ðtn
tn�1

∂ρ

∂t

����
����
2

dt

 !1=2

κnð Þ1=2ϒn,2, (31)

where

ϒn, 2 ≔C
d
dt

∥h2n gn þ ΔnZnð Þ∥
� �

þ C∥~h
3=2
n ½½Zn � Zn�1��∥~Σn

þ C∥~h
3=2

n
½½Zn � Zn�1��∥~Σn Σ̂n

: (32)

Lemma 1.7 (Mesh change estimates). Let Tn,3, 1≤ n≤N is given by

Tn,3 ≔
ðtn
tn�1

Πn
0 f

n Znð Þ � f n Znð Þ þ Πn
0Z

n�1 � Zn�1

κn
,
∂ρ

∂t

� �����
����dt, (33)
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such that

Tn,3 ≤ κn max
t∈ 0, tm½ �

∥∇ρ∥ δn,∞ þ
Xm
n¼2

κnδn,1 þ δ∞,1

 !
, (34)

where

δn,1 ≔∥h∧n∂ Πn
0 � I

� �
f n Znð Þ � κnZn�1� �

∥,

δn,∞ ≔∥hn Πn
0 � I

� �
f n Znð Þ � κnZn�1� �

∥:
(35)

6. A posteriori error bound for fully discrete semilinear parabolic
problems

The aim of this section is to study a posteriori error bound in L∞ H1� �
-norm for

nonlinear forcing terms. Both globally and locally Lipschitz continuous nonlinear-
ities are considered.

6.1 A posteriori error analysis for the globally Lipschitz continuity case

Let us suppose that f is defined on the whole of and satisfies globally Lipschitz
continuous

∣f z1ð Þ � f z2ð Þ∣ ≤Cg∣z1 � z2∣, (36)

where ∣ � ∣ denotes the standard Euclidean norm on R≥ 1ð Þ.
Lemma 1.8 (Data approximation error estimate). Suppose that the nonlinear

reaction f satisfying the globally Lipschitz continuous defined in (36), then, the
following error bounds hold:

Tn,4 ¼
ðtn
tn�1

f zð Þ � f n Znð Þ, ∂ρ
∂t

� �����
����dt≤

ffiffiffiffiffiffi
Cg

p
2β

κn∥∇ρ∥2 þ
β
ffiffiffiffiffiffi
Cg

p
2

ðtn
tn�1

∂ρ

∂t

����
����
2

dt

þκnΨn,1

ðtn
tn�1

∂ρ

∂t

����
����
2

dt

 !1=2

þ κnΨn,2

ðtn
tn�1

∂ρ

∂t

����
����
2

dt

 !1=2

,

(37)

where

Ψn,1 ≔
ffiffiffiffiffiffi
Cg

p
∥εn�1∥, ∥εn∥
� �

,

Ψn,2 ≔
1
κn

ðtn
tn�1

∣f Zð Þ � f n Znð Þ∥:

8><
>:

(38)

Proof: Using triangle inequality, Tn,4 written as

Tn,4 ¼
ðtn
tn�1

f zð Þ � f n Znð Þ, ∂ρ
∂t

� �����
����dt≤

ðtn
tn�1

f zð Þ � f wð Þ, ∂ρ

∂t

� �����
����dt

þ
ðtn
tn�1

f wð Þ � f Zð Þ, ∂ρ
∂t

� �����
����dtþ

ðtn
tn�1

f Zð Þ � f n Znð Þ, ∂ρ

∂t

� �����
����dt

≔Ln,1 þ Ln,2 þ Ln,3:

(39)
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Applying Cauchy–Schwarz inequality and (36) along with Young’s inequality
and Poincar’e-Friedrichs inequality, Ln,1 gives

Ln,1 ¼
ðtn
tn�1

f zð Þ � f wð Þ, ∂ρ
∂t

� �����
����dt≤

ðtn
tn�1

f zð Þ � f wð Þk k ∂ρ

∂t

����
����dt

≤
ffiffiffiffiffiffi
Cg

p
2β

κn∥∇ρ∥2 þ
β
ffiffiffiffiffiffi
Cg

p
2

ðtn
tn�1

∂ρ

∂t

����
����
2

dt:

(40)

The second term Ln,2, reads

Ln,2 ¼
ðtn
tn�1

f wð Þ � f Zð Þ, ∂ρ
∂t

� �����
����dt≤

ðtn
tn�1

∥w� Z∥
∂ρ

∂t

����
����dt

≤
ffiffiffiffiffiffi
Cg

q ðtn
tn�1

tn � t
κn

����
����∥εn�1∥þ

t� tn�1
κn

����
����∥εn∥

� �
∂ρ

∂t

����
����dt

≤
ffiffiffiffiffiffi
Cg

p
2

κn ∥εn�1∥þ ∥εn∥
� � ðtn

tn�1

∂ρ

∂t

����
����
2

dtÞ
 !1=2

:

(41)

Finally, Ln,3 can be bounded by using Cauchy–Schwarz inequality, to obtain

Ln,3 ¼
ðtn
tn�1

f Zð Þ � f n Znð Þ, ∂ρ
∂t

� �����
����dt≤∥f Zð Þ � f n Znð Þ∥

ðtn
tn�1

∂ρ

∂t

����
����
2

dtÞ
 !1=2

: (42)

Collecting all the results together, the proof will be finished.
Lemma 1.9 Let z be the exact solution of (7) and let Zn be its finite element

approximation obtained by the backward Euler approximation (10). Then, for
1≤ n≤N, the following a posteriori error bounds hold:

max
t∈ 0, tm½ �

∥∇ρ tð Þ∥2 þ
ðtm
0

∂ρ

∂t

����
����
2

dt

 !1=2

≤ 2EG mð Þ∥∇ρ∥2g
� �1=2 þ 2EG mð Þ F 2

1,m þ F 2
2,m

� �
(43)

where

F 1,m ≔ 2 max
t∈ 0, tm½ �

δm,∞ þ 2
Xm
n¼2

κnδn,1,

F 2
2,m ≔

Xm
n¼1

κn Φ2
n,2 þ ϒ2

n,2 þ Ψ2
n,1 þ Ψ2

n,2

� �
:

(44)

Proof: Now, setting ϕ ¼ ∂ρ
∂t in 22, gives

1
2
d
dt

∥∇ρ tð Þ∥2 þ Ccoer

2
∂ρ

∂t

����
����
2

≤
∂ε

∂t
,
∂ρ

∂t

� �����
����þ f zð Þ � f n Znð Þ, ∂ρ

∂t

� �����
����þ D w�wn,

∂ρ

∂t

� �����
����

þ Πn
0f Znð Þ � f n Znð Þ þ Pn

0Z
n�1 � Zn�1

kn
,
∂ρ

∂t

� �����
����:

(45)
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Integrate the above from tn�1 to tn then, we have

1
2
∥∇ρ tnð Þ∥2 �

1
2
∥∇ρ tn�1ð Þ∥2 þ Ccoer

2

ðtn
tn�1

∂ρ

∂t

����
����
2

dt≤Tn,1 þ Tn,2 þ Tn,3 þ Tn,4, (46)

where Tn,i, i ¼ 1, 2, 3, 4 defined in Lemmas 1.5, 1.6, 1.7 and 1.8, respectively.
Summing up over n ¼ 1: m so that

∥∇ρ tmð Þ∥2 þ Ccoer

ðtm
0

∂ρ

∂t

����
����
2

dt≤∥∇ρ 0ð Þ∥2 þ 2
Xm
n¼1

Tn,1 þ Tn,2 þ Tn,3 þ Tn,4ð Þ: (47)

By introducing

∥∇ ρ ∗
m

� �
∥; ¼ ∥∇ρ t ∗m

� �
∥ ¼ max

t∈ 0, tm½ �
∥∇ρ tð Þ∥, (48)

therefore

max
t∈ 0, tm½ �

∥∇ρ tð Þ∥þ Ccoer

ðtm
0

∂ρ

∂t

����
����
2

dt≤ 2∥∇ρ 0ð Þ∥2 þ 4
Xm
n¼1

Tn,1 þ Tn,2 þ Tn,3 þ Tn,4ð Þ:

(49)

Now, using Lemmas 1.5, 1.6, 1.7 and 1.8, reads

max
t∈ 0, tm½ �

∥∇ρ tð Þ∥2 ≤ 2∥∇ρ 0ð Þ∥2 þ 2β
ffiffiffiffiffiffi
Cg

q
� Ccoer

� �ðtm
0

∂ρ

∂t

����
����
2

dtþ 2 max
t∈ 0, tm½ �

∥∇ρ tð Þ∥F 1,m

þ
2
ffiffiffiffiffiffi
Cg

p
β

Xm
n¼1

Kn max
t∈ 0, tm½ �

∥∇ρ tð Þ∥2 þ 4
ðtn
tn�1

∂ρ

∂t

����
����
2

dt

 !1=2

κnð Þ1=2 Φn,2 þ ϒn,2 þ Ψn,1 þ Ψn,2ð Þ:

(50)

Selecting now β>0 be such that 2β
ffiffiffiffiffiffi
Cg

p
� Ccoer

� �
>0 and using Gronwall’s

inequality, imply

max
t∈ 0, tm½ �

∥∇ρ tð Þ∥2 þ EG mð Þ
ðtm
0

∂ρ

∂t

����
����
2

dt≤ 2EG mð Þ∥∇ρ 0ð Þ∥2 þ 2EG mð Þ max
t∈ 0, tm½ �

∥∇ξ tð Þ∥F 1,m

þ4EG mð Þ
Xm
n¼1

ðtn
tn�1

∂ρ

∂t

����
����
2

dt

 !1=2

κnð Þ1=2 Φn,2 þ ϒn,2 þΨn,1 þ Ψn,2ð Þ,

(51)

with EG mð Þ≔ 1,
Pm
n¼1

2
ffiffiffiffi
Cg
p
β κn exp

2
ffiffiffiffi
Cg
p
β Σn< j<mk j
� �� �� �

. To finish the proof of

lemma, we use a standard inequlty. For a0, a1, … , anð Þ, b0, b1, … , bnð Þ∈mþ1
.

aj j2 ≤ c2 þ ab, (52)

then

∣a∣ ≤ ∣c∣þ ∣b∣, (53)
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and by taking

a0 ≔ max
t∈ 0, tm½ �

∥∇ρ tð Þ∥, an ≔ EG mð Þ
ðtm
0

∂ρ

∂t

����
����
2

dt

( )1=2

, c≔ 2EG mð Þ∥∇ρ 0ð Þ∥2
� �1=2

b0 ≔
ffiffiffi
2
p
EG mð ÞF 1,m, bn ≔4EG mð Þ

Xm
n¼1

κnð Þ1=2 Φn,2 þ ϒn,2 þ Ψn,1 þΨn,2ð Þ:
(54)

The proof already will be finished.
Theorem 1.10 Let z be the exact solution of (7) and let Zn be its finite element

approximation obtained by the backward Euler approximation (10). Then, for
1≤ n≤N, the following a posteriori error bounds hold:

max
t∈ 0, tm½ �

∥∇ z tð Þ � Z tð Þð Þ∥2 ≤ 2EG mð Þ Φ2
n,H1 0ð Þ þ ∥∇ z 0ð Þ � Z 0ð Þð Þ∥2

� �

þ2EG mð Þ F 2
1,m þF 2

2,mÞ
� �

þ 2 max
t∈ 0, tm½ �

Φ2
n,H1 ,

(55)

where Φ2
n,H1 defined in (20).

Proof: By decomposing Z tð Þ � z tð Þ into ρ and ε, so that

∥∇ Z tð Þ � z tð Þð Þ∥2 ≤ 2∥∇ε∥2 þ 2∥∇ρ∥2: (56)

To be able to bound the first term on the right hand side of (56), using (13), this
becomes

∥∇ε tð Þ∥2 ¼ ∥∇ w tð Þ � Z tð Þð Þ∥2 ¼ ∥∇ ℓnRn
beZ

n þ ℓn�1Rn�1
be Zn�1 � ℓn�1 tð ÞZn�1 � ℓn tð ÞZn� �

∥2

≤ℓn∥∇ Rn
beZ

n � Zn� �
∥2 þ ℓn�1∥∇ Rn�1

be Zn � Zn�1� �
∥2

≤ max
t∈ 0, tm½ �

∇ Rn�1
be Zn�1 � Zn�1� ��� ��2, ∇ Rn

beZ
n � Zn� ��� ��2n o

≤ max
t∈ 0, tm½ �

∥∇ Rn
beZ

n � Zn� �
∥2

� �

≤ max
t∈ 0, tm½ �

Φ2
n,H1 :

(57)

and ∥∇ρ 0ð Þ∥2 ¼ ∥∇ w 0ð Þ � z 0ð Þð Þ∥2 ≤ 2∥∇ε 0ð Þ∥2 þ 2∥∇ z 0ð Þ � Z 0ð Þð Þ∥2. Finally,
the second term on the right hand side of (56) will be estimated via Lemma 1.9.

6.2 A posteriori error analysis for the locally Lipschitz continuity case

Let f : R! R is locally Lipschitz continuous for a.e. x, tð Þ∈Ω∪ 0, T½ �, in the
sense that there exist real numbers CL >0 and γ ≥0 such that

∣f uð Þ � f vð Þ∣ ¼ CL tð Þ 1þ uj jγ þ vj jγð Þ∣u� v∣: (58)

Lemma 1.11 (Estimation of the nonlinear term). If the nonlinear reaction f is
satisfying the growth condition (58) with 0≤ r< 2 for d ¼ 2, and with 0≤ r≤4=3
for d ¼ 3, we have the bound

f zð Þ � f n Znð Þk k≤N 1 tð Þ N 2 Zð Þ ∥ρ∥þ ∥ε∥ð Þ þ
ffiffiffi
3
p

∥ρ∥∥∇ρ∥γ þ
ffiffiffi
5
p

∥ε∥∥∇ε∥γ
n o

þΘn,3

ðtn
tn�1

∂ρ

∂t

����
����
2

dt

 !1=2

,
(59)
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where N 1 tð Þ≔ 1ffiffi
2
p CL tð Þmax 1, 4γf g, N Zð Þ≔ 1ffiffi

2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4γ Zj j2γ∞

q
and

Θn,3 ≔
1
κn

ðtn
tn�1

f Zð Þ � f n Znð Þð k:k

Proof: Applying triangle inequality, reads

TL,4 ¼
ðtn
tn�1

f zð Þ � f n Znð Þ, ∂ρ
∂t

� �����
����dt≤

ðtn
tn�1

f zð Þ � f Zð Þ, ∂ρ

∂t

� �����
����dt

þ
ðtn
tn�1

f Zð Þ � f n Znð Þ, ∂ρ
∂t

� �����
����dt≔J n,1 þ J n,2:

(60)

J n,1 can be bounded as follows

J n,1 ¼
ðtn
tn�1

f zð Þ � f Zð Þ, ∂ρ
∂t

� �
≤
ðtn
tn�1
ðf zð Þ � f Zð Þk k ∂ρ

∂t

����
����dt

≤
1
2

f zð Þ � f Zð Þð k2 þ 1
2

ðtn
tn�1

∂ρ

∂t

����
����
2

dt:

�����
(61)

Now, we have

∥f zð Þ � f Zð Þ∥2 ¼
ðtn
tn�1

∥f zð Þ � f Zð Þ∥2dt≤
ðtn
tn�1

∥f zð Þ � f wð Þ∥2dtþ
ðtn
tn�1

∥f wð Þ � f Zð Þ∥2dt

≔Z1,n þ Z2,n:

(62)

To estimate Z1,n on the first term in the right hand side of (62), we use the
Cauchy–Schwarz inequality and (58) to obtain

Z1,n ¼
ðtn
tn�1

∥f zð Þ � f wð Þ∥2dt ¼ C2
L tð Þ
ðtn
tn�1

1þ zj j2γ þ wj j2γ
� �

z�wj j2

≤
ðtn
tn�1

1þ zj j2γ
� �

z� wj j2dtþ
ðtn
tn�1

wj j2γ z� wj j2dt:
(63)

Applying the elementary inequality Ca þ Cbj j2α ≤C Caj j2α þ Cbj j2α
� �

with Ca ¼
z�w and Cb ¼ w, so that zj j2α ≤C z�wj j2α þ C wj j2α, this becomes

Z1,n ≤C2
L tð ÞC

ðtn
tn�1

1þ z�wj j2γ
� �

z� wj j2dtþ C2
L tð ÞC

ðtn
tn�1

2 w� Zj j2γ þ 2 Zj j2γ
� �

z�wj j2dt

≤C2
L tð ÞCmax 1, 16γf g 1þ 4γ Zj j2r

� �
∥ρ∥2 þ ∥ρ∥2þ2γ2þ2γ þ 2

ðtn
tn�1

∥ε∥2γ∥ρ∥2
� �

:

(64)

Similarly, Z2,n follows as

Z2,n ¼
ðtn
tn�1

∥f wð Þ � f Zð Þ∥2dt ¼ C2
L tð ÞC

ðtn
tn�1

1þ wj j2γ þ Zj j2γ
� �

w� Zj j2

≤C2
L tð ÞCmax 1, 16γf g 1þ 4r Zj j2γ∞

� �
∥ε∥2 þ ∥ε∥2þ2γ2þ2γ

� �
:

(65)
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Collecting all these terms, we obtain

∥f zð Þ � f Zð Þ∥2 ≤C2
L tð ÞCmax 1, 16γf g 1þ 4γ Zj j2γ∞

� �
∥ρ∥2 þ ∥ε∥2
� �

þC2
L tð ÞCmax 1, 16γf g ∥ρ∥2þ2γ2þ2γ þ 3∥ε∥2þ2γ2þ2γ þ 2

ðtn
tn�1

∥ε∥2∥ρ∥2γdt
� �

:
(66)

Using Holder’s inequality and Young’s inequality, we deduce that

ðtn
tn�1

∥α∥2r∥β∥2dx≤
∥α∥2þ2r2þ2r
rþ 1

þ
r∥β∥2þ2r2þ2r
rþ 1

: (67)

Therefore,

ðtn
tn�1

∥ε∥2r∥ρ∥2 ≤
∥ε∥2þ2γ2þ2γ
γ þ 1

þ
γ∥ρ∥2þ2γ2þ2γ
γ þ 1

≤∥ε∥2þ2γ2þ2γ þ ∥ρ∥2þ2γ2þ2γ:

(68)

Substituting this into our grand inequality yields

∥f zð Þ � f Zð Þ∥2 ≤N 2
1 tð Þ N 2

2 Zð Þ ∥ρ∥2 þ ∥ε∥2
� �

þ 3∥ρ∥2þ2γ2þ2γ þ 5∥ε∥2þ2γ2þ2γ

� �
, (69)

where N 2
1 tð Þ ¼ 1

2C
2
L tð ÞCmax 1, 16γf g and N 2

2 Zð Þ ¼ 1
2 1þ 4r Zj j2r∞
� �

. From

Gagliardo-Nirenberg inequality in Theorem 1.2, implies that

∥ρ∥2þ2γ ≤C∥∇ρ∥
2þ2γð Þd�2d

2 ρk k
4þ4γþ2d�2d�2dγ

2 , (70)

valid for all γ ≥0 for d ¼ 2 and 0≤ γ ≤ 2 for d ¼ 3. Combining this with the
Poincar’e-Friedrichs inequality ∥ρ∥≤C∥∇ρ∥, yields

∥ρ∥2þ2γ ≤C∥∇ρ∥: (71)

Finally,

J n,2 ¼
ðtn
tn�1

f Zð Þ � f n Znð Þ, ∂ρ
∂t

� �����
����dt≤ f Zð Þ � f n Znð Þð k

ðtn
tn�1

∂ρ

∂t

����
����
2

dt

 !1=2

:

������
(72)

Putting all of the results together the proof will be finished.
Theorem 1.12 Let z be the exact solution of (7) and let Zn be its finite element

approximation obtained by the backward Euler approximation (10). Then, for
1≤ n≤N, the following a posteriori error bounds hold

max
t∈ 0, tm½ �

∥∇ z tð Þ � Z tð Þð Þ∥2 ≤ 4E tn, Zð Þ ∥∇ z 0ð Þ � Z 0ð Þð Þ∥2 þΦ2
n,H1 0ð Þ

� �

þ4E tn,Zð Þ
Xm
n¼1
F 2

1,m þ 4E tn, Zð Þ
Xm
n¼1

κ2n Φ2
n,2 þ ϒ2

n,2 þ Ψ2
n,1 þ Ψ2

n,2

� �

þ4N 2
1 tð ÞE tn, Zð Þ

Xm
n¼1
N 2

2 Zð ÞΦ2
n,L2
þΦ2

n,L2
Φ2γ

n,H1

� �
þ 2 max

t∈ 0, tm½ �
Φ2

n,H1 ,

(73)

where Φ2
n,L2

and Φ2
n,H1 are given in (20).
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Proof: Now, setting v ¼ ∂ρ
∂t in 22, and integrate from tn�1 to tn along with

summing up over n ¼ 1: m we have

max
t∈ 0, tm½ �

∥∇ρ tð Þ∥2þCcoer

ðtm
0
∥
∂ρ

∂t
∥2dt≤∥∇ρ 0ð Þ∥2 þ 2

Xm
n¼1

ðtn
tn�1

∣f zð Þ � f n Znð Þ∥2

þ2
Xm
n¼1

Tn,1 þ Tn,2 þ Tn,3ð Þ:
(74)

Using Lemma 1.11, along with lemmas 1.3, 1.5, 1.6 and 1.7, imply

max
t∈ 0, tm½ �

∥∇ρ tð Þ∥2 þ
ðtm
0

∂ρ

∂t

����
����
2

dt≤∥∇ρ 0ð Þ∥2 þ
Xm
n¼1
F 2

1,m

þ
Xm
n¼1

κ2n Φ2
n,2 þ ϒ2

n,2 þ Ψ2
n,1 þΨ2

n,2

� �
þN 2

1 tð Þ
Xm

n¼1 N
2
2 Zð ÞΦ2

n,L2
þ 5Φ2

n,L2
Φ2γ

n,H1

� �

þ
Xm
n¼1

ðtn
tn�1
N 2

1 tð ÞN 2
2 Zð Þ∥∇ρ∥2 þ 3N 2

1 tð Þ∥ρ∥2∥∇ρ∥2γ
� �

:

(75)

Setting

F tn, Z, εð Þ2 ≔∥∇ρ 0ð Þ∥2 þ
Xm
n¼1
F 2

1,m þ
Xm
n¼1

κ2n Φ2
n,2 þ ϒ2

n,2 þΨ2
n,1 þ Ψ2

n,2

� �

þN 2
1 tð Þ

Xm
n¼1
N 2

2 Zð ÞΦ2
n,L2
þ 5Φ2

n,L2
Φ2γ

n,H1

� �
:

(76)

Upon observing that

ðtn
tn�1

∥∇ρ∥2r∥ρ∥2 ≤ max
t∈ 0, tm½ �

∥∇ρ∥2γ
ðtn
tn�1

∥ρ∥2Þds

≤ max
t∈ 0, tm½ �

∥∇ρ∥2 þ
ðtn
tn�1

∥ρ∥2
� �

dtÞγþ1:

(77)

Now combining two equations, we obtain

max
t∈ 0, tm½ �

∥∇ρ tð Þ∥2 þ
ðtm
0

∂ρ

∂t

����
����
2

dt≤F tm, Z, εð Þ2 þ
Xm
n¼1

ðtn
tn�1
N 2

1 tð ÞN 2
2 Zð Þ∥∇ρ∥2

þ3N 2
1 tð Þ

Xm
n¼1

max
t∈ 0, tm½ �

∥∇ρ tð Þ∥2 þ
ðtn
tn�1

∥ρ∥2dtÞ
� �γþ1

:

(78)

To bound of the nonlinear term of above equation, we shall employ a
continuation argument in the spirit of [17, 18]. To do that, we consider the set

Mn ¼ lim
t∈ 0, tm½ �

∥∇ρ tð Þ∥2 þ Ccoer

ðtm
0

∂ρ

∂t

����
����
2

dt≤ 4Fðtm, Z, εÞ2Eðtm,ZÞ
( )

, (79)
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where E tm, Zð Þ ¼ exp
Ð tm
0 N

2
1 tð ÞN 2

2 Zð Þdt
� �

. Since the left hand side of (78)

depends continuously on t, and our aim is to show thatMn ¼ 0, T½ �. To do this,
assuming t ∗m ¼ maxMn >0 and t ∗m <T, imply

max
t∈ 0, t ∗m½ �

∥∇ρ tð Þ∥2þ
ðt ∗m
0

∂ρ

∂t

����
����
2

dt≤F tn, Z, εð Þ2 þ 4F tm, Z, εð ÞEðtm, ZÞf gγþ1

þN 2
1 tð ÞN 2

2 Zð Þ
ðt ∗m
0
∥∇ρ∥2dt,

(80)

and Grönwall inequality, thus, implies

max
t∈ 0, t ∗m½ �

∥∇ρ tð Þ∥2 þ
ðt ∗m
0

∂ρ

∂t

����
����
2

dt≤

E tm, Zð Þ 4N 2
1 tð ÞF tm,Z, εÞ2E tm,ZÞð Þγþ1 þF 2 tm, Z, εð Þ2

� o
:

�n (81)

Since E t ∗m , Z
� �

≤ E tm, Zð Þ and, suppose that the maximum size hmax of the mesh
is small enough that, for h< hmax, satisfy

F tm,Z, εð Þ≤ 1

N 2
1 tð Þ

 !γ
1

4F tm,Z, εð Þ2E tm,Zð Þ

 !γþ1

: (82)

This leads to

N 2
1 tð Þ 4F tm, Z, εð Þ2E tm,ZÞð Þγþ1 ≤F tm, Z, εð Þ2:

�
(83)

Then, (81), becomes

max
t∈ 0, t ∗m½ �

∥∇ρ tð Þ∥2 þ
ðt ∗m
0

∂ρ

∂t

����
����
2

dt≤ 2E tm, Zð ÞF tm, Z, εð Þ2: (84)

This leads to contradictions, because of t ∗m suppose to be t ∗m ¼ maxMn.
The triangle inequality along with Lemma 1.3, imply that

max
t∈ 0, tm½ �

∥∇e∥2 ≤ 2 max
t∈ 0, tm½ �

∥∇ρ∥2 þ 2 max
t∈ 0, tm½ �

∥∇ε∥2

≤ 4F tm, Z, εð Þ2E tm,Zð Þ þ 2 max
t∈ 0, tm½ �

Φ2
n,H1 :

(85)

By recalling (76), the proof already finished.

7. Adaptive algorithms

This section aims to explain an adaptive algorithm aiming to investigate the
performance of the presented a posteriori bound from Theorems 1.10 and 1.12 for
the backward-Euler cG method for the semilinear parabolic problem (6). To this
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end, the implementation of the adaptive algorithm will be based on the deal. II finite
element library [19] to the present setting of semilinear problems. We shall write
algorithm for Theorem 1.10. For the Theorem 1.12 will follow the same with some
modifcations. To begin with, we have

Ψ j
ini ≔∥∇ z 0ð Þ � Z 0ð Þð Þ∥þ ∥∇ε 0ð Þ∥

Ψ j
time ≔

Xm
j¼1

κ j

ffiffiffi
3
p

3
∂ Π j

0 f
j Z j� �

� Z j � Π j
0Z

j�1

κ j

�����

�����þ
ðt j
t j�1

∥f Zð Þ � f j Z j� �
∥

 !

Ψ j
space ≔∥h j g j þ Δ jZ j� �

∥þ ∥h1=2j ½Z j� �
�∥Σj:

(86)

The adaptive algorithm from [15], starts with an initial uniform mesh in space
and with a given initial time step. Starting from a uniform square mesh of 16� 16
elements, the algorithm adapts the mesh to improve approximation to the initial
condition using the initial condition estimator Ψini until some tolerance is satisfied.
To adapt the timestep κ j, the algorithm bisects a time interval not satisfying a user-

defined temporal tolerance Ψ j
time ≤ ttol, and leaves a time-interval unchanged if

ϒ j
time ≤ ttol.
Once the time-step is adapted, the algorithm performs spatial mesh refinement

and coarsening, determined by the space indicator Ψ j
space using the user-defined

tolerances stolþ and stol�, corresponding to refinement and coarsening, respec-
tively. More specifically, we select the elements with the largest local contributions
which result to Ψ j

space > stolþ for refinement. The spatial coarsening threshold is set

to stol� ¼ 0:001 ∗ stolþ; we select the elements with the smallest local contribu-
tions which result to Ψ j

space < stol� for coarsening. The algorithm iterates for each
time-step. We refer to [15] for the algorithm’s workflow and all implementation
details. The following two algorithms give the backward Euler method to the ODE
system (12) and space-time adaptivity for Theorem 1.10.

Algorithm 1. The backward Euler method for solving the semilinear parabolic
equation

1: Create a mesh with n elements on the interval In.
2: We disctize In as 0 ¼ t1 < t2 < t3,… ,< tn ¼ T, where n is time step defined as
κn ¼ tn � tn�1.

3: Setting α0 ¼ α 0ð Þ.
4: for k ¼ 1, 2, … , n do
5: Calculate the mass and stiffness matrices M and A, and the load vector F with
entries

Mi,j ¼
ð

In
ϕ jϕidx, Ai,j ¼

ð

In
ϕ0jϕ

0
idx, Fi,j ¼

ð

In
f ϕ j

� �
ϕidx: (87)

6: Solve

Mþ κnAð Þαni tð Þ ¼Mαn�1i tð Þ þ κnF: (88)

7: end for

279

A Posteriori Error Analysis in Finite Element Approximation for Fully Discrete Semilinear…
DOI: http://dx.doi.org/10.5772/intechopen.94369



Algorithm 2. Space-time adaptivity.

1: Input a, b, f , z0, T, Ω, n, T , ttol, stolþ, stol�

2: Pick κ1, … , κn ¼ T
n.

3: Compute Z0
.

4: Compute Z1 from Z0
.

5: while Ψ1
time

� �2
> ttolþ or max Ψ1

space

� �2
> stolþ do bisction T 0 by refining all

elements such that Ψ1
space

� �2
> stolþ and coarsening all elements such that

Ψ1
space

� �2
< stol�

6: if Ψ1
time

� �2
> ttol, then.

7: n� 1 n.
8: Kn¼Kn�1, … , κ2 ¼ κ1.
9: κ2 ¼ κ1

2 .
10: κ1  κ1

2 .
11: end if.
12: Compute Z0

.

13: Compute Z1 from Z0
.

14: end while
15: put j ¼ 1,  T 1 ¼ T 0,  time ¼ κ1.
16: while time<T do
17: Calculute Z j from Z j�1.

18: while Ψi
time

� �2
> ttol do

19: if Ψ1
time

� �2
> ttol then

20: n� 1 n.
21; κn ¼ κn�1, … , κ jþ2 ¼ κ jþ1.
22: κ jþ1 ¼ κ j

2 .
23; κ j  κ j

2 .
24: end if
25: Compute Z j from Z j�1

.

26: end while

27: Create T j from T j�1 by refining all elements such that Ψi
space

� �2
> stolþ and

coarsening all elements such that Ψi
space

� �2
< stol�.

28: Compute Z j from Z j�1.
29: time timeþ κ j.
30: j� 1 j.
31: end while

8. Conclusion

The aim of this Chapter is to derive an optimal order a posteriori error estimates
in term of the L∞ H1� �

for the fully semilinear parabolic problems in two cases when
f uð Þ Lipschitz and non Lipschitz are proved. The crucial tools in proving this error is
the elliptic reconstruction techniques introduced by Makridakis and Nochetto 2003.
This is consequently enabling us to use a posteriori error estimators derived for
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elliptic equation to obtain optimal order in terms of L∞ H1� �
norm for Lipschitz and

non-Lipschitz nonlinearities. Some challenges have to be overcome due to non-
linearity on the forcing term depending on Gronwall’s Lemma and Sobolev embed-
ding through continuation argument. Furthermore, this will give insight about
designing adaptive algorithm, which allow use to control the cost of computations.
In the future, this Chapter can be extended to the fully discrete case for semilinear
parabolic interface problems in L∞ L2ð Þ þ L2 H1� �

and L∞ L2ð Þ norms [18, 20–22].
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Chapter 14

Finite Element Magnetic Method 
for Magnetorheological Based 
Actuators
Ubaidillah and Bhre Wangsa Lenggana

Abstract

Magnetorheological materials based actuators have been currently exciting 
research topic for more than half-decades. Some actuators have been developed 
based on magnetorheological fluids and elastomers such as dampers, brakes, haptic 
devices, clutches, mountings, etc. These devices have their exciting properties 
which are capable of changing characteristic based on the amount of magnetic flux 
applied to them. Due to this capability, they are usually called semi-active devices. 
These devices employ an electromagnetic coil for magnetic flux production. 
Therefore, during the design process, magnetostatic simulation using the finite 
element method magnetic is carried out to make a better magnetic circuit. This 
chapter will consider several discussions such as necessary magnetostatic using free 
software finite element method magnetic (FEMM); design consideration for the 
magnetic circuit of the device and case studies of several type simulation in magne-
torheological materials based devices.

Keywords: finite element, magnetostatic, magnetorheology, actuator, magnetic flux

1. Introduction

The finite element method (F.E.M.) is a numerical procedure that can be applied 
to solve various problems in engineering and science. In general, this method is 
used to solve steady, transient, linear, and nonlinear problems in electromagnetics, 
structural analysis, and fluid dynamics [1]. The finite element method has the main 
advantage of being able to handle all kinds of geometries and non-homogeneous 
materials without the need to change computer code formulations. The idea of 
this method is to break the problem into a large number of areas, each with simple 
geometry to facilitate problem-solving. As a result, the domain breaks down into 
a number of small elements, and the problem goes from small but challenging to 
solve into large and relatively easy to solve. Through the process of discretization, 
linear algebra problems are formed with many unknowns. In the case of electro-
magnetics, a discretization scheme, as implied by F.E.M., which implicitly com-
bines most of the theoretical features of the problem analyzed is the best solution 
for obtaining accurate results in problems with complex, nonlinear geometries, 
etc. [2, 3]. This method can also be used for complex differential equations that are 
very difficult to solve. In the case of electromagnetic or magnetic fields, the finite 
element method is also known as FEMM.
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FEMM is a suite of programs for solving low-frequency electromagnetic 
problems on two-dimensional planar and axisymmetric domains. The program 
currently addresses linear/nonlinear magnetostatic problems, linear/nonlinear 
time-harmonic magnetic problems, linear electrostatic problems, and steady-state 
heat flow problems. In the problem of this method, there are generally three parts to 
the problem [4].

Interactive shell program is a Multiple Document Interface pre-processor and a 
post-processor for various types of problems that are solved by FEMM. This case is 
a CAD-like interface for laying out the geometry of the problem to be solved and for 
defining material properties and boundary conditions [5]. The program also allows 
the user to inspect a field at specific points, as well as evaluate several different 
integrals and plot varying amounts of interest along with a user-defined contour 
[6]. Triangle breaks down the solution region into a large number of triangles, a 
vital part of the finite element process. Furthermore, Solvers, each solver takes a set 
of data files that describe problems and solves the relevant partial differential equa-
tions to obtain values for the desired field throughout the solution domain [7].

Finite Element Method Magnetics (FEMM) software has been developed for 
reasons of dealing with some of the limiting cases of Maxwell equations. The mag-
netic problem that is handled can be considered as a low frequency (L.F.) problem. 
In some cases, this problem can ignore displacement currents. This program 
discusses 2D planar and 3D axisymmetric linear and nonlinear harmonic magnetic, 
magnetostatic, and linear electrostatic problems [8].

Computer-assisted field distribution analysis for electromagnetic devices or 
component performance has become a simple, profitable, and fast method with 
good accuracy [9]. The magnetic field calculation problem aims to determine the 
value of one or more unknown functions, such as magnetic field intensity, magnetic 
flux density, scalar magnetic potential, and magnetic vector potential.

From a mathematical point of view, Maxwell equations can generally explain 
physical electromagnetic phenomena. Specifically, this point of view is a differential 
equation with specific boundary conditions. With this method, the correct solution to 
the problem is obtained. It is an analytical method that can be used to solve problems 
[10]. Analytical methods (method of appropriate representation, method of vari-
able separation) are often applied to solve relatively simple problems. However, the 
problems that occur in practice are sometimes more complex regarding loading con-
ditions, boundary conditions, geometric construction, and material heterogeneity, 
so that the integration of differential equations is challenging to solve by analytical 
methods. Therefore, the analytic solution can only be done by making a simplified 
model that allows the integration of the differential Equations [11]. Sometimes it is 
better to come up with a more realistic estimate of the value, rather than a precise 
solution from a simplified model. The approximate solution by the finite element 
method obtained by the numerical method reflects reality better than the exact solu-
tion of the simplified model [12].

Specific forms of electromagnetic field law for static magnetic fields are over-
come by considering solving the magnetic problem through FEMM. Some of them 
are considering the model of the relationship between magnetic induction and the 
intensity of its magnetic field, the enunciation of static magnetic fields, passing 
conditions through discontinuity surfaces, enunciation of scalar magnetic potential - 
magnetostatic field problems and enunciation using magnetic vector potentials 
[13]. Some geometric configurations conform to the general formula for the unique 
conditions of a particular shape. The solution to this problem also depends on the 
relationship between magnetic intensity and magnetic field induction, the choice 
of material types such as linear and non-isotropic materials, linear and isotropic 
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materials, nonlinear and non-isotropic materials with hysteresis, and nonlinear and 
isotropic materials, without permanent magnetization [14].

In other cases, such as in the development of magnetorheological devices 
(dampers, brakes, mounting, etc.), FEMM is used to solve the problem of magnetic 
flux density. Using the help of FEMM, solving magnetic problems can be solved 
quickly. The magnetic flux density, which is complex and challenging to be solved 
by numerical methods, can be determined by simulating the FEMM by using the 
material properties data to obtain the magnitude of the magnetic flux density. 
The simulation results are then used to determine the predicted values such as the 
pressure difference (in the case of the damper valve) using numerical or calculation 
methods [15].

2. General description of M.R. devices

The magnetorheology (M.R.) device is a device that implements intelligent 
materials as a working medium such as magnetorheological fluids (MRFs) and 
magnetorheological elastomers (M.R.E.s). M.R. devices are types of the controllable 
(semi-active) category. During its development, this device has been developed into 
a working medium such as M.R. damper, brake, and mounting for various applica-
tions. On the commercialization side, this device is not popular enough because of 
several things such as higher costs, more difficult production levels, and still under 
development. However, compared to other types of devices in its application (active 
and passive), M.R. devices have more advantages. MRFs and M.R.E.s are materials 
that are often used for research and development of M.R. devices.

As new technologies are developed, these materials have been discovered and 
developed in several applications. This material is unique because external stimuli 
can alter it. In this case, magnetorheological fluids are materials with properties that 
can be controlled by magnetic fields [16]. The MR fluids condition can be altered by 
using a varying magnitude of the magnetic field. This fluid is composed of magnetic 
particles that are pressed into a viscosity fluid. The absence of a magnetic field in 
this fluid causes its lower viscosity. These particles have a tiny size, ranging from 3 
to 10 microns [17]. The magnetic particles of M.R. fluids are equipped with a special 
coating to weaken their magnetism and reduce the tendency to bond with each 
other between the particles. One of the weaknesses in M.R. fluid is the deposition, 
which occurs due to differences in density and gravitational force so that the fluid 
only focuses on the point where it is treated. Another disadvantage is the possibility 
of leakage into unwanted areas in the mechanism and thickening after long-term 
use, so component replacement is required. However, the application of M.R. fluid 
is extensive due to its precise control capabilities and dynamic response [17, 18]. The 
resulting output is relatively faster and more accurate because it uses an electric cur-
rent as a conductor when compared to conventional mechanical mechanisms [19].

The structure and properties of the M.R. fluid outside or under the influence 
of the magnetic field are shown in Figure 1. The changes that occur when the M.R. 
fluid is under the influence of a magnetic field occurs in less than ten milliseconds. 
M.R. fluids regain their properties in the temperature range − 40 to 150 C, while the 
yield points of M.R. fluids range from 50 to 100 kPa [20].

The particle chain blocks the flow and converts the liquid to a semi-solid state 
in milliseconds. This phenomenon develops yield stress which increases with 
the magnitude of the applied magnetic field [21]. M.R. devices typically consist 
of hydraulic cylinders containing micron-sized magnetically polarized particles 
suspended in the fluid [17, 18].
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M.R. fluids work in several modes, including shear mode, valve mode, and 
squeeze mode [22]. MRF has been widely applied through shear mode and valve 
mode. Meanwhile, the application of MRFs which work with the new squeeze 
mode, has recently been developed. Also, MRFs can be operated in a combination of 
common MRFs working modes.

The shear mode is an operating mode in which the MRFs are influenced by a 
magnetic field between two parallel surfaces. One of the surfaces will move, and 
the other will be in a fixed condition. The shear mode is mostly applied to brakes 
and clutches. However, some dampers use a shear mode. The second is flow mode or 
valve mode; this mode is an operating mode in which the MRFs flow between two 
parallel surfaces that are at rest and simultaneously subjected to a magnetic field 
perpendicular to the direction of flow. Many applications of valve mode are found 
in dampers. Squeeze mode is an operational mode in which the MRFs flow-through 
two parallel surfaces and are subjected to a magnetic field that is perpendicular to 
the direction of flow. Squeeze mode is different from shear mode, the force exerted 
by one of the surfaces is the compression force, while in the shear mode it provides 
the shear force. Figure 2 shows an illustration of the working principle of each 
MRFs working mode.

The commercialization of the use of MRFs technology was first used in 1995 for 
braking on stationary bicycles. MRFs technology tends to be cheaper and easier to 
use when compared to previous eddy-current-based braking technologies [24]. The 
world is full of potential applications for MRFs. Systems that require fluid motion 
control by changing viscosity, solutions based on MRFs technology may be applied 
to save functionality as well as costs. Simple and smart technology that can produce 
better products is the crucial factor of MRFs technology. Superior features such as 
fast response, simple application of electrical power input and mechanical power 
output, and controllability make MRFs technology the choice of many engineering 

Figure 1. 
Structures of M.R. fluid, ferromagnetic particles in silicon oil suspension: (a) without magnetic field effect, 
and (b) with magnetic field effect [17].

Figure 2. 
MRFs working mode; (a) shear mode; (b) flow mode; (c) squeeze mode [23].



289

Finite Element Magnetic Method for Magnetorheological Based Actuators
DOI: http://dx.doi.org/10.5772/intechopen.94223

technologies. The sliding mode (used in brake and clutch) and valve mode (used in 
shock breakers) have been thoroughly studied, and several products are already on 
the market [25].

Besides MRFs, magnetorheological elastomers (M.R.E.s) are also intelligent 
materials that are currently a topic of development. In the last 20 years, the number 
of publications related to the creation, characterization, and application of M.R.E. 
has increased significantly. This significant increase occurred after 1995 regarding 
the viscoelasticity properties of M.R.E. initiated by Rigby and Jilken in their 1983 
publication [26] when it is compared with the number of publications in the field of 
MRF and MRF applications.

The development of intelligent components based on M.R.E.s must pay attention 
to the composition of M.R.E.s because it can be formed with a variety of fill materials. 
The characteristics of the pre-blended matrix greatly influence the physical proper-
ties of M.R.E.s, which can make M.R.E.s solid or hollow. However, in general, M.R.E.s 
use a non-hollow matrix. To obtain a non-hollow matrix, the degassing method can 
be used to remove air bubbles or voids in the matrix. The magnetizable particles have 
an essential role in the magnetic induction properties of M.R.E.s. Much research 
has focused on these magnetized particles to achieve better rheological properties. 
Particles that are generally used are iron particles because they have a high permeabil-
ity value and can be magnetized well [27]. M.R. effect is greatest due to the relation-
ship between iron particles, this property can be achieved with high permeability 
and particle saturation. However, high saturation is also followed by an increase in 
the residual magnetic field that appears [28]. Therefore, the use of alloy particles in 
M.R.E.s, such as iron and cobalt or nickel alloys, is not as widely used as the use of 
C.I.P. The residual magnetic field in the particles will remain after the magnetic field 
has been lost so that the M.R. properties cannot return to their original state [29]. The 
size of the particles must be considered because it affects the properties of M.R.E. in 
receiving several magnetic domains.

3. Reluctance circuit for M.R. devices

Magnetic reluctance, or magnetic resistance, is a concept used in the analysis 
of magnetic circuits. It is defined as the ratio of magnetomotive force (mmf) to 
magnetic flux. It represents the opposition to magnetic flux and depends on the 
geometry and composition of an object.

Magnetic reluctance in a magnetic circuit is analogous to electrical resistance 
in an electrical circuit in that resistance is a measure of the opposition to the 
electric current. The definition of magnetic reluctance is analogous to Ohm law 
in this respect. However, the magnetic flux passing through a reluctance does not 
give rise to the dissipation of heat as it does for current through a resistance. Thus, 
the analogy cannot be used for modeling energy flow in systems where energy 
crosses between the magnetic and electrical domains. An alternative analogy to 
the reluctance model, which correctly represents energy flows is the gyrator–
capacitor model. The magnetic circuit is derived using Kirchoff law, as illustrated 
in Figure 3 [30, 31].

The symbols 1 dan Mrfluid are used to illustrate the reluctance of the design. So 
that it can be obtained as in the Eq. (1):

 L
Aµ

ℜ =  (1)
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where L is the effective distance that magnetic flux passes in each slice, μ is 
the magnetization property, and A is the effective area of the magnetic flux. Eq. 2 
shows the total magnetomotive force generated from the sum of the magnetomotive 
force on all parts contained in one loop. So that we get the direct magnetomotive 
force for magnetic flux and reluctance as illustrated below,

 ( ) ( )1 2 12 2 0mrfluidΦ +Φ − ℜ − ℜ =  (2)

Magnetic flux depends on a large number of copper coils and the current  
flowing in the coil so that Eq. (2) can be rewritten as Eq. (3),

 ( ) ( )12 2 0mrfluidNI − ℜ − ℜ =  (3)

where N and I are the numbers of copper turns on the coil and the current  
flowing in the coil.

4. FEMM simulation procedure

4.1 Two-dimensional device sketch

The dimensions of the M.R. device depend on the target performance 
required, the function, and the space to be used. Dimensions determine the 
level of difficulty or ease in the M.R. device manufacturing process. Besides, 
according to the control classification of M.R. devices, dimensions will affect 
the value of pressure drop and damping force as well as the appearance of the 
device. One example is the configuration of a geometric arrangement that relies 
on the length of the fluid flow path in the equation to determine the predicted 
value for pressure drop.

Figure 3. 
Illustration of reluctance circuit on M.R. device.
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4.2 Considering the target to achieve the predicted value

In this case, suppose that the target to be achieved is the pressure drop and 
damping force. The target pressure drop and damping force should be considered 
according to the needs and functions of the device. The milestones are related to the 
dimensions of the devices that have been designed. It is the determination of the 
number of devices that must be used with the available space and the targets that 
must be achieved.

4.3 FEMM simulation

FEMM can be simulated with some software. In general, all simulation proce-
dures in some software are almost the same, such as FEMM and Ansoft Maxwell. 
The simulation process starts by making a design that will be simulated in a two-
dimensional sketch. However, to perform a FEMM simulation, in general, the 
design to be simulated is made in two dimensions. Next is the material selection 
stage, coil configuration, meshing, and simulating as described below:

4.3.1 Set the initial simulation settings in the FEMM software

The initial settings made in the FEMM software are problem settings to be 
simulated. In this case, the problem to be simulated is a magnetic problem with 
axisymmetric.

4.3.2 Material selection

After making the initial setup and exporting the 2D design, then select the 
material according to the design that has been made. Material selection can be done 

Figure 4. 
Material selection.
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by taking the existing software library or creating materials that have not been 
provided by FEMM by inputting all material property data to be used. Material 
selection can be seen in Figure 4 above.

4.3.3 Coil configuration

The coil that will be used is inserted when performing the magnetic simulation 
with the FEMM software. In determining the coil, it is needed to input the type of 
wire, the number of turns, and the current that will be used.

4.3.4 Meshing

This process is an essential part of the simulation. The meshing process is a process 
of dividing an area which is divided into several areas to simplify the simulation 
process. Figure 5 shows the results of the FEMM simulation meshing.

4.3.5 Running and plotting the result

The simulation software used is the Finite Element Method Magnetics (FEMM). 
The software is used to simulate the magnetic valve design that has been made. 
2D designs that have been created are then exported to FEMM. Next, the problem 
setting to be simulated is determined, namely the magnetic problem with the sym-
metrical type. After the basic settings for the simulation are carried out, then adjust 
the material selection and coil selection according to the design that has been made.

The materials selection in the valve circuit is considered to get optimal results. 
Material selection is based on a predetermined valve design. Thus the direction of 
magnetic flux can be bent by nonmagnetic materials and produce a magnetic flux 
direction that is perpendicular to the direction of fluid flow. This is under the coil 

Figure 5. 
Meshing result.
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configuration, and the fluid flow path geometry arrangement used to obtain the 
magnetic flux direction perpendicular to the fluid direction.

After all the parameters have been adjusted, proceed with the meshing process 
and simulate to get the magnetic flux density (B) results, as shown in Figure 6.

5. M.R. devices simulation

5.1 Magnetorheological multi-coil brake

This study describes a 3D magnetic simulation design of a magnetorheological 
multi-coil brake (M.R.B.). The design used in this study is an axial M.R.B. design with 
a configuration of more than one coil that is placed outside the casing. The placement 
of the device aims to simplify the brake maintenance process. Figure 7 shows the 
multi-coil M.R. brake design in vertical and horizontal views. The simulation process 
is only carried out on a pair of coils that represent the entire coil and can distribute the 
magnetic flux to the entire electromagnetic part. The purpose of this simulation is to 
determine the results of the magnetic flux on the surface of the disc brake rotor. This 
simulation uses the FEMM modeling approach assisted by Ansoft Maxwell software.

Figure 6. 
(a) Magnetic flux density results from the FEMM simulation; (b) magnetic flux density plot.

Figure 7. 
Multi-coil MR brake design; (a) vertical view; (b) horizontal view.
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The result is that the magnetic flux value of M.R.B. with a multi-coil configu-
ration is higher than the magnetic flux value in conventional M.R.B. which only 
uses one coil with a larger size. Furthermore, the simulation results that have been 
obtained are used to determine the effect of different fluids on each variation. This 
study used several types of magnetorheological fluids (MRFs), MRF-122EG, MRF-
132DG, and MRF-140CG, which were injected into each device design. Variations 
in the electric current input of 0.25 amperes, 0.50 amperes, 0.75 amperes, and 
1.00 amperes are given in the simulation process. The results of magnetic flux 
distribution for MRF-132DG with the difference in current input can be seen in 
Figure 8 below.

The resulting magnetic flux values were obtained from the FEMM simulation. 
The simulation is carried out by taking several variations of the electric current 
input and the difference in the fluid flow gap given to the device. The results show 
an increase in magnetic flux with each increase in electric current input and an 
increase with each narrower gap. As an example is the MRF-132DG design simula-
tion for the MRF-132DG type, as shown in Figure 9 below.

5.2  Fabrication and morphological characterization of anisotropic 
magnetorheological elastomer (M.R.E.)

In this study, silicone R.T.V. based anisotropic magnetorheological elastomer 
with 70% weight fraction of iron particle were fabricated using a validated mold 
and capable of aligning the particle in several angles (0°, 45°, dan 90°). This study 
begins with the fabrication of anisotropic M.R.E. curing mold, which covers the 
stage of design, simulation, prototype fabrication, and validation. Anisotropic 
M.R.E. mold was designed using Autodesk Fusion 360. To determine the value of 
magnetic flux density and distribution throughout the print, it was examined using 
simulations on Ansoft Maxwell. The simulation results show that the best magnetic 
flux density value on the mold is 0.3 T to form a good particle alignment in the 
matrix. At the same time, the magnetic flux density value of 0.3 T can be achieved 
by providing an electric current input of 0.2, 0.1, and 1 ampere respectively for the 
mold angles of 0°, 45°, and 90° during the curing chamber. This curing process is 
carried out for three hours under a magnetic field and left for one day before the 
sample is taken.

Magnetostatic simulation has a vital role in this research. The simulation process 
is carried out using Ansoft Maxwell software. This simulation is useful in estimating 
the magnetic flux density value in the curing chamber and knowing the direction of 
the magnetic field vector formed. The mold design that has been made will be simu-
lated with various current values so that it can be seen as the current value needed to 

Figure 8. 
Comparison of magnetic flux distribution to variation of MRFs; (a) 0.5 amperes; (b) 0.75 amperes;  
(c) 1 ampere.
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generate a magnetic flux density value of 0.3 T in the curing chamber. The magnetic 
properties data from V.S.M. are used to create new materials in the simulation. Thus, 
the material formed in the simulation is the same as the material used as the mold 
material. After the material in the simulation is the same as the actual condition, it 
is expected that the results of the simulation will not differ much from the measure-
ment using a gauss-meter.

The simulation was carried out by providing variations in the angle of formation 
of M.R.E. with 0°, 45°, and 90°. One of the simulation results using an angle of 45° 
is shown in Figure 10 below.

Figure 10 shows the distribution of the magnetic flux over a 45° curing space. 
The distribution of magnetic flux density in the curing chamber is marked in 
green color, which means that the value of the magnetic flux density in the area is 
medium. By changing the angle of the curing space by 45° relative to the direction 
of the magnetic field vector, anisotropic M.R.E. with a particle arrangement of 45° 
can be produced. After simulating several current values, the current required to 
produce 0.3 T in the curing chamber is 0.1 A. The graph in Figure 11 shows the low 
magnetic flux density values on the left and right of the graph. This is because the 
measuring line of the magnetic flux density value touches the wall of the curing 
chamber, which is made of nonmagnetic aluminum.

5.3 Characterization torque of T-shaped magnetorheological brake

In recent research, M.R.B. T-shaped usually used more than one wire coil 
electromagnetic to maximize magnetic flux reaching all Magnetorheological 
Fluids (MRFs) gap. This research was focused on the reduction of wire coil on 
Magnetorheological Brake (M.R.B.). Serpentine flux was used to maximize all 
MRFs gaps that only use a single coil. The research was begun by designing M.R.B. 
design, followed by magnetostatic simulation using Finite Element Method 
Magnetics, calculate braking torque based on simulation, prototyping M.R.B. to get 
real braking torque measurement, and the last was measure braking torque using a 
torque sensor with constant angular velocity. The result of magnetostatic simulation 
shows the magnetic flux that reaches all MRFs gap. The most excellent magnetic 
flux density was 0,45 T at 1 A current on the outer annular. This result was used to 

Figure 9. 
FEMM simulation results for magnetic flux.
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calculate shear stress based on Bingham Model that would generate braking torque. 
The braking torque generated on modeling torque and experiment was 1,51 Nm 
and 1,91 Nm at 1 A current with 20% difference, respectively. Figure 12 shows an 
exploded design of M.R. brake.

Figure 10. 
Simulation results of a 45°: Vector magnetic (a) distribution of magnetic flux and (b) vector.

Figure 11. 
Magnetic flux density distribution values in a 45° curing chamber at a current of 0.1; 0.2; 0.3; 0.5; and 1 A.
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The use of an electric current greatly affects the magnetic flux density. The 
greater the electric current used, the greater the magnetic flux density produced. It 
can be illustrated in Figure 13. The results given show the change in the resulting 
magnetic flux density, which is marked in a darker color, accompanied by more flux 
lines produced. The change has a limit point due to the ability of the material [32] as 
well as the flux that attaches to a particular component.

Figure 14 shows the distribution of magnetic flux density along the MRF gap 
with different variations of electric current. At current 1 A, the greatest magnetic 
flux density value exceeds 0.45 T, which is in the outer annular part. The higher the 

Figure 12. 
Exploded design of M.R. brake.

Figure 13. 
Simulation results for magnetostatics: (a) 0.1 A; (b) 0.5 A and (c) 1 A.

Figure 14. 
Distribution of magnetic flux density along the MRF gap at variations of electric current 0.1–1 A.
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current applied, the lower the increase in magnetic flux density. This is because the 
direction of the magnetic flux is getting closer to the wall so that the resulting flux 
is limited. The ability of the copper wire to distribute magnetic flux also affects 
the result.

5.4 Performance prediction of magnetorheological damper for seismic

The new concept of a magnetorheological (M.R.) damping device used in the 
seismic building is discussed in this paper. The damper is aimed to deliver a com-
parable damping performance with the existing semi-active seismic damper design 
but with lower M.R. fluids volume requirement. This capability is achieved through 
the improvement in the M.R. valve performance using a meandering flow structure 
which was placed in the bypass line. Figure 15 shows the sectional design of M.R. 
damper for seismic building and its valve.

This research is focused on the performance analysis of the M.R. valve pres-
sure drop using an analytical approach. There are two main steps needed for the 
analytical approach, the magnetic field simulation, and the analytical pressure drop 
calculation. The simulation work of the M.R. valve magnetic circuit performance 
was carried out using finite element method magnetic (FEMM) software to calcu-
late the distribution of magnetic flux density values. The simulated magnetic field 
density values would then be matched with the M.R. fluids characteristics data to 
predict the yield stress value of the fluids to be used in the pressure drop calcula-
tion. As a result, the M.R. valve is predicted to generate maximum off-state pressure 
drop of 5.35 MPa and a piston speed of 0.184 m/s. Meanwhile, at on-state condition 
(1.4 A), the valve is generating pressure drop up to 9.13 MPa at a piston speed of 
0.184 m/s. The generated total pressure drop of the M.R. valve reaches 16.39 MPa. 
The MR fluids that are used in this design are only 1.5 x 10−4 m3. From the generated 
total pressure drop, the peak of the damping force is obtained with 1.4 A, which is 
32.19 kN. Meanwhile, the calculation result of the seismic force is 125.3 kN. Thus, it 
can be concluded that with the peak generated damping force, this seismic damper 
design will be capable of providing a damping performance which is appropriate to 
the seismic force with four parallel devices.

In this study, the FEMM simulation was used to obtain the magnetic flux density 
value in the valve section. The magnetic flux density value is used to calculate the 
predicted yield stress value, which is then used to predict the value of the pressure 
drop and the damping force. Yield stress is obtained through magnetic simulation 
using FEMM software which aims to obtain a magnetic flux density graph. Then the 

Figure 15. 
M.R. damper for seismic building design.
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resulting magnetic flux density value is included in the calculation to get the yield 
stress value. The simulation process used is a magnetic simulation of the working 
fluid with a viscosity of 0.112 Pa.s which is obtained from the MRF132-DG property 
data by Lord Corp [33]. Figure 16 shows the results of 2D magnetic simulations 
with FEMM and magnetic flux density graphs obtained through the simulation 
process.

Figure 17 above is obtained from a FEMM simulation based on a 2D design 
with an MRF132-DG working fluid and 900 coils. The wire used uses copper wire 
28 A.W.G. with a diameter of 0.3211 mm with a resistance of 213 Ω/km. The graph 
shows the results of the magnetic flux density at the annular and radial channel 
against the variation of current input 0.5 A; 0.75 A; 1.0 A; 1.4 A.

6. Conclusion

Finite element magnetic is a method that can be used to facilitate an intricate 
work or may not even be completed by other methods. In this case, the field of 
magnetorheology is an example of a problem by using the finite element method 
solution. The magnetorheological device is a device that uses iron particle materials 

Figure 16. 
Result of FEMM simulation.

Figure 17. 
Magnetic flux density result.
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whose working principle is to change its rheological properties due to the influence 
of a magnetic field. This magnetic field gives rise to a magnetic flux density in the 
device whose magnitude can be determined by solving the finite element method. 
To find out the magnitude of the magnetic flux density value, some finite element 
method magnetics software can be used, such as FEMM and Ansoft Maxwell. 
The solution to these problems can be resolved with the existence of boundary 
conditions and initial setups that are following the procedure, such as the type of 
problem, the use of materials, and a clear design configuration. Thus, problems 
requiring the finite element method can be resolved with good accuracy. Problem-
solving with the finite element method simulation is considered more accurate than 
other methods. In the case of magnetorheological devices, magnetic simulation 
with the finite element method is very helpful to achieve the research objectives.
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