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Preface

The meaning of complexity is a subject of intense debate in exact sciences, systems 
biology, and social science. Systems of many components, such as proteins at the 
cellular level, cells at the organ level, or agents at the social level, provide complexity 
science a ubiquity that has percolated all branches of knowledge. In all these cases, 
emergent behaviors result from the coordinated action of different components and 
constitute new global system properties. These new properties allow the system 
to adapt to the environment in an organized manner that will continue to demand 
new features for its survival. This leads to the evolution of systems as a natural 
consequence of the complexity associated with them.

This book intends to deepen the general meaning of complexity from different 
points of view, to inquire about the different statistical and computational valid 
paradigms in social and natural systems. The first part focuses on social systems 
and includes chapters on different approaches to the traveling salesman problem 
(Chapter 1 by Weiqi Li), models of opinion dynamics creation (Chapter 2 by Prieto 
Curiel), and a universal theory for knowledge formation in children (Chapter 3 by 
Droboniku, Kloos, et al.). The second part addresses different natural systems from 
a complexity perspective, in particular, the evaluation of landscape organization 
and dynamics through information entropy indicators (Chapter 4 by Piqueira et al.) 
and the study of the performance of wind farms with the use of artificial neural 
networks (Chapter 5 by Velázquez-Medina and Portero-Ajenjo). All these chapters 
present some new perspectives and applications within the broad field of complexity 
science. We hope that this book will be useful as a guide to an audience interested in 
the different problems and approaches within the theory of complexity.

As the editor of this book, I would like to thank all the authors who have contributed 
to this volume. I must also express my gratitude to the editorial staff at IntechOpen, 
particularly Author Service Manager Ms. Marijana Francetic. I am also grateful to 
my family, friends, and advisors. Finally, I would like to dedicate this book to the 
victims of COVID-19.

Ricardo López-Ruiz
University of Zaragoza,

Spain
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Chapter 1

How to Solve the Traveling
Salesman Problem
Weiqi Li

Abstract

The Traveling Salesman Problem (TSP) is believed to be an intractable problem
and have no practically efficient algorithm to solve it. The intrinsic difficulty of the
TSP is associated with the combinatorial explosion of potential solutions in the
solution space. When a TSP instance is large, the number of possible solutions in the
solution space is so large as to forbid an exhaustive search for the optimal solutions.
The seemingly “limitless” increase of computational power will not resolve its
genuine intractability. Do we need to explore all the possibilities in the solution
space to find the optimal solutions? This chapter offers a novel perspective trying to
overcome the combinatorial complexity of the TSP. When we design an algorithm
to solve an optimization problem, we usually ask the critical question: “How can we
find all exact optimal solutions and how do we know that they are optimal in the
solution space?” This chapter introduces the Attractor-Based Search System (ABSS)
that is specifically designed for the TSP. This chapter explains how the ABSS answer
this critical question. The computing complexity of the ABSS is also discussed.

Keywords: combinatorial optimization, global optimization, heuristic local search,
computational complexity, traveling salesman problem, multimodal optimization,
dynamical systems, attractor

1. Introduction

The TSP is one of the most intensively investigated optimization problems and
often treated as the prototypical combinatorial optimization problem that has pro-
vided much motivation for design of new search algorithms, development of com-
plexity theory, and analysis of solution space and search space [1, 2]. The TSP is
defined as a complete graph Q ¼ V,E,Cð Þ, where V ¼ vi : i ¼ 1, 2, … , nf g is a set of
n nodes, E ¼ e i, jð Þ : i, j ¼ 1, 2, … , n; i 6¼ jf gn�n is an edge matrix containing the set
of edges that connects the n nodes, and C ¼ c i, jð Þ : i, j ¼ 1, 2, … , n; i 6¼ jf gn�n is a
cost matrix holding a set of traveling costs associated with the set of edges. The
solution space S contains a finite set of all feasible tours that a salesman may
traverse. A tour s∈ S is a closed route that visits every node exactly once and returns
to the starting node at the end. Like many real-world optimization problems, the
TSP is inherently multimodal; that is, it may contain multiple optimal tours in its
solution space. We assume that a TSP instance Q contains h ≥ 1ð Þ optimal tours in S.
We denote f(s) as the objective function, s ∗ ¼ min s∈ Sf sð Þ as an optimal tour and S ∗

as the set of h optimal tours. The objective of the TSP is to find all h optimal tours in
the solution space, that is, S ∗ ⊂ S. Therefore, the argument is

3



Chapter 1

How to Solve the Traveling
Salesman Problem
Weiqi Li

Abstract

The Traveling Salesman Problem (TSP) is believed to be an intractable problem
and have no practically efficient algorithm to solve it. The intrinsic difficulty of the
TSP is associated with the combinatorial explosion of potential solutions in the
solution space. When a TSP instance is large, the number of possible solutions in the
solution space is so large as to forbid an exhaustive search for the optimal solutions.
The seemingly “limitless” increase of computational power will not resolve its
genuine intractability. Do we need to explore all the possibilities in the solution
space to find the optimal solutions? This chapter offers a novel perspective trying to
overcome the combinatorial complexity of the TSP. When we design an algorithm
to solve an optimization problem, we usually ask the critical question: “How can we
find all exact optimal solutions and how do we know that they are optimal in the
solution space?” This chapter introduces the Attractor-Based Search System (ABSS)
that is specifically designed for the TSP. This chapter explains how the ABSS answer
this critical question. The computing complexity of the ABSS is also discussed.

Keywords: combinatorial optimization, global optimization, heuristic local search,
computational complexity, traveling salesman problem, multimodal optimization,
dynamical systems, attractor

1. Introduction

The TSP is one of the most intensively investigated optimization problems and
often treated as the prototypical combinatorial optimization problem that has pro-
vided much motivation for design of new search algorithms, development of com-
plexity theory, and analysis of solution space and search space [1, 2]. The TSP is
defined as a complete graph Q ¼ V,E,Cð Þ, where V ¼ vi : i ¼ 1, 2, … , nf g is a set of
n nodes, E ¼ e i, jð Þ : i, j ¼ 1, 2, … , n; i 6¼ jf gn�n is an edge matrix containing the set
of edges that connects the n nodes, and C ¼ c i, jð Þ : i, j ¼ 1, 2, … , n; i 6¼ jf gn�n is a
cost matrix holding a set of traveling costs associated with the set of edges. The
solution space S contains a finite set of all feasible tours that a salesman may
traverse. A tour s∈ S is a closed route that visits every node exactly once and returns
to the starting node at the end. Like many real-world optimization problems, the
TSP is inherently multimodal; that is, it may contain multiple optimal tours in its
solution space. We assume that a TSP instance Q contains h ≥ 1ð Þ optimal tours in S.
We denote f(s) as the objective function, s ∗ ¼ min s∈ Sf sð Þ as an optimal tour and S ∗

as the set of h optimal tours. The objective of the TSP is to find all h optimal tours in
the solution space, that is, S ∗ ⊂ S. Therefore, the argument is

3



arg min
s∈ S

f sð Þ
� �

¼ S ∗ ¼ s ∗1 , s
∗
2 , … , s ∗h

� �
(1)

Under this definition, the salesman wants to know what all best alternative tours
are available. Finding all optimal solutions is the essential requirement for an opti-
mization search algorithm. In practice, knowledge of multiple optimal solutions is
extremely helpful, providing the decision-maker with multiple options, especially
when the sensitivity of the objective function to small changes in its variables may
be different at the alternative optimal points. Obviously, this TSP definition is
elegantly simple but full of challenge to the optimization researchers and
practitioners.

Optimization has been a fundamental tool in all scientific and engineering areas.
The goal of optimization is to find the best set of the admissible conditions to
achieve our objective in our decision-making process. Therefore, the fundamental
requirement for an optimization search algorithm is to find all optimal solutions
within a reasonable amount of computing time. The focus of computational complex-
ity theory is to analyze the intrinsic difficulty of an optimization problem and the
asymptotic property of a search algorithm to solve it. The complexity theory
attempts to address this question: “How efficient is a search algorithm for a
particular optimization problem, as the number of variables gets large?”

The TSP is known to be NP-hard [2, 3]. The problems in NP-hard class are said
to be intractable because these problems have no asymptotically efficient algorithm,
even the seemingly “limitless” increase of computational power will not resolve
their genuine intractability. The intrinsic difficulty of the TSP is that the solution
space increases exponentially as the problem size increases, which makes the
exhaustive search infeasible. When a TSP instance is large, the number of possible
tours in the solution space is so large to forbid an exhaustive search for the optimal
tours. A feasible search algorithm for the TSP is one that comes with a guarantee to
find all best tours in time at most proportional to nk for some power k.

Do we need to explore all the possibilities in the solution space to find the
optimal solutions? Imagine that searching for the optimal solution in the solution
space is like treasure hunting. We are trying to hunt for a hidden treasure in the
whole world. If we are “blindfolded”without any guidance, it is a silly idea to search
every single square inch of the extremely large space. We may have to perform a
random search process, which is usually not effective. However, if we are able to
use various clues to locate the small village where the treasure was placed, we will
then directly go to that village and search every corner of the village to find the
hidden treasure. The philosophy behind this treasure-hunting case for optimization
is that: if we do not know where the optimal point is in the solution space, we can
try to identify the small region that contains the optimal point and then search that
small region thoroughly to find that optimal point.

Optimization researchers have developed many optimization algorithms to solve
the TSP. Deterministic approaches such as exhaustive enumeration and branch-
and-bound can find exact optimal solutions, but they are very expensive from the
computational point of view. Stochastic optimization algorithms, such as simple
heuristic local search, Evolutionary Algorithms, Particle Swarm Optimization and
many other metaheuristics, can find hopefully a good solution to the TSP [1, 4–7].
The stochastic search algorithms trade in guaranteed correctness of the optimal
solution for a shorter computing time. In practice, most stochastic search algorithms
are based on the heuristic local search technique [8]. Heuristics are functions that
help us decide which one of a set of possible solutions is to be selected next [9]. A
local search algorithm iteratively explores the neighborhoods of solutions trying to
improve the current solution by a local change. However, the scope of local search is
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limited by the neighborhood definition. Therefore, heuristic local search algorithms
are locally convergent. The final solution may deviate from the optimal solution.
Such a final solution is called a locally optimal solution, denoted as s0 in this chapter.
To distinguish from locally optimal solutions, the optimal solution s ∗ in the solution
space is usually called the globally optimal solution.

This chapter studies the TSP from a novel perspective and presents a new search
algorithm for the TSP. This chapter is organized in the following sections. Section 2
presents the ABSS algorithm for the TSP. Section 3 describes the important data
structure that is a critical player in solving the TSP. Section 4 discusses the nature of
heuristic local search algorithm and introduces the concept of solution attractor.
Section 5 describes the global optimization features of the ABSS. Section 6 discusses
the computational complexity of the ABSS. Section 7 concludes this chapter.

2. The attractor-based search system for the TSP

Figure 1 presents the Attractor-Based Search System (ABSS) for the TSP. In this
algorithm, Q is a TSP instance with the edge matrix E and cost matrix C. At
beginning of search, the matrix E is initialized by assigning zeros to all elements of
E. The function InitialTour() constructs an initial tour si using any tour-
construction technique. The function LocalSearch() takes si as an input, performs
local search using any type of local search technique, and returns a locally optimal
tour s j. The function UpdateE() updates the matrix E by recording the edge config-
uration of tour s j into the matrix. K is the number of search trajectories. After the
edge configurations of K locally optimal tours are stored in the matrix E, the
function ExhaustedSearch() searches E completely using the depth-first tree search
technique, which is a simple recursive search method that traverses a directed graph
starting from a node and then searches adjacent nodes recursively. Finally, the ABSS
outputs a set of all best tours S ∗ found in the edge configuration of E. The search
strategy in the ABSS is straightforward: generating K locally optimal tours, storing
their edge configurations in the matrix E, and then identifying the best tours by
evaluating all tours represented by the edge configuration of E. The ABSS is a simple
and efficient computer program that can solve the TSP effectively. This search
algorithm shows strong features of effectiveness, flexibility, adaptability, scalability
and efficiency. The computational model of the ABSS is inherently parallel, facili-
tating implementation on concurrent processors. It can be implemented in many
different ways: series, parallel, distributed, or hybrid.

Figure 1.
The ABSS algorithm for the TSP.
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Figure 2 uses a 10-node instance as an example to illustrate how the ABSS
works. We randomly generate K ¼ 6n ¼ 60 initial tours, which edge configurations
hit all elements of the matrix E (marked as black color), as shown in Figure 2(a). It
means that these 60 random tours hit all 45 edges that represent all 181440 tours in
the solution space. We let each of the search trajectories run 5000 iterations and
obtain 60 locally optimal tours. However, due to the small size of the instance, most
locally optimal tours have identical edge configurations. Among the 60 locally
optimal tours, we find only four distinct locally optimal tours as shown in
Figure 2(b). Figure 2(c) shows the union of the edge configurations of the 60
locally optimal tours, in which 18 edges are hit. Then we use the depth-first tree
search, as illustrated in Figure 2(d), to identify all five tours in the edge configura-
tion of E, which are listed in Figure 2(e). In fact, one of the five tours is the globally
optimal tour. This simple example indicates that (1) local search trajectories con-
verge to small set of edges, and (2) the union of the edge configurations of K locally
optimal tours is not just a countable union of the edge configurations of the these
tours, but also include the edge configurations of other locally optimal tours. The
ABSS consists of two search phases: local search phase and exhaustive search phase.

Figure 2.
A simple example of the ABSS algorithm. (a) Union of the edge configurations of 60 random initial tours, (b)
four distinct locally optimal tours, (c) union of the edge configurations of the 60 locally optimal tours, (d) the
depth-first tree search on the edge configuration of E, and (e) five tours found in E.
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The task of the local search phase is to identify the region that globally optimal tour
is located (i.e. the village hiding the treasure), and the task of the exhaustive search
phase is to find the globally optimal tour (i.e. find the hidden treasure). The
remaining sections will briefly explain the features of the ABSS.

In all experiments mentioned in the chapter, we generate symmetric TSP
instances with n nodes. The element c i, jð Þ of the cost matrix C is assigned a random
integer independently drawn from a uniform distribution of the range [1, 1000].
The triangle inequality c i, jð Þ þ c j, kð Þ≥ c i, kð Þ is not assumed in the instances.
Although this type of problem instances is application-free, it is mathematically
significant. A TSP instance without triangle inequality cannot be approximated
within any constant factor. A heuristic local search algorithm usually performs
much worse for this type of TSP instances, which offers a strikingly challenge to
solving them [2, 3, 6, 10, 11]. We use the 2-opt local search technique in the local
search phase. The 2-opt neighborhood can be characterized as the neighborhood
that induces the greatest correlation between function values of neighboring tours,
because neighboring tours differ in the minimum possible four edges. Along the
same reasoning line, the 2-opt may have the smallest expected number of locally
optimal points [12]. The local search process randomly selects a solution in the
neighborhood of the current solution. A move that gives the first improvement is
chosen. The great advantage of the first-improvement pivoting rule is to produce
randomized locally optimal points. The software program written for the experi-
ments use several different programming languages and are run in PCs with
different versions of Window operating system.

3. The edge matrix E

Usually the edge matrix E is not necessary to be included in the TSP definition
because the TSP is a complete graph. However, the edge matrix E is an effective
data structure that can help us understand the search behavior of a local search
system. General local search algorithm may not require much problem-specific
knowledge in order to generate good solutions. However, it may be unreasonable to
expect a search algorithm to be able to solve any problem without taking into
account the data structure and properties of the problem at hand.

To solve a problem, the first step is to create a manipulatable description of the
problem itself. For many problems, the choice of data structure for representing a
solution plays a critical role in the analysis of search behavior and design of new
search algorithm. For the TSP, a tour can be represented by an ordered list of nodes
or an edge configuration of a tour in the edge matrix E, as illustrated in Figure 3.
The improvement of the current tour represents the change in the order of the
nodes or the edge configuration of a tour.

Observing the behavior of search trajectories in a local search system can be
quite challenging. The edge matrix E is a natural data structure that can help us
trace the search trajectories and understand the dynamics of a local search system.
An edge e i, jð Þ is the most basic element of a tour, but contains a piece of informa-
tion about each of n� 2ð Þ! tours that go through it. Essentially, the nature of local
search for the TSP is an edge-selection process: preservation of good edges and
rejection of bad edges according to the objective function f sð Þ. Each edge has an
implicit probability to be selected by a locally optimal tour. A better edge has higher
probability to be included in a locally optimal tour. Therefore, the edges in E can be
divided into three groups: globally superior edges, G-edges, and bad edges. A
globally superior edge is the edge that occurs in many or all locally optimal tours.
Although each of these locally optimal tours selects this edge based on its own
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Figure 2 uses a 10-node instance as an example to illustrate how the ABSS
works. We randomly generate K ¼ 6n ¼ 60 initial tours, which edge configurations
hit all elements of the matrix E (marked as black color), as shown in Figure 2(a). It
means that these 60 random tours hit all 45 edges that represent all 181440 tours in
the solution space. We let each of the search trajectories run 5000 iterations and
obtain 60 locally optimal tours. However, due to the small size of the instance, most
locally optimal tours have identical edge configurations. Among the 60 locally
optimal tours, we find only four distinct locally optimal tours as shown in
Figure 2(b). Figure 2(c) shows the union of the edge configurations of the 60
locally optimal tours, in which 18 edges are hit. Then we use the depth-first tree
search, as illustrated in Figure 2(d), to identify all five tours in the edge configura-
tion of E, which are listed in Figure 2(e). In fact, one of the five tours is the globally
optimal tour. This simple example indicates that (1) local search trajectories con-
verge to small set of edges, and (2) the union of the edge configurations of K locally
optimal tours is not just a countable union of the edge configurations of the these
tours, but also include the edge configurations of other locally optimal tours. The
ABSS consists of two search phases: local search phase and exhaustive search phase.

Figure 2.
A simple example of the ABSS algorithm. (a) Union of the edge configurations of 60 random initial tours, (b)
four distinct locally optimal tours, (c) union of the edge configurations of the 60 locally optimal tours, (d) the
depth-first tree search on the edge configuration of E, and (e) five tours found in E.
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search trajectory, the edge is globally superior since the edge is selected by these
individual tours from different search trajectories going through different search
regions. The globally superior edges have higher probability to be selected by a
locally optimal tour. A G-edge is the edge that is included in a globally optimal tour.
All G-edges are globally superior edges and can be treated as a special subset of the
globally superior edges. The edges that are discarded by all search trajectories or
selected by only few locally optimal tours are bad edges. A bad edge is impossible to
be included in a globally optimal tour. A locally optimal tour usually consists of
some G-edges, some globally superior edges and a few bad edges.

The changes of the edge configuration of the matrix E represent the transfor-
mations of the search trajectories in a local search system. When all search trajecto-
ries reach their end points, the final edge configuration of E represents the final
state of the local search system. For a tour sk, we define an element e i, jð Þ of E as

e i, jð Þ ¼ 1 if the element e i, jð Þ is in the tour sk
0 otherwise

�
(2)

Then the hit-frequency value eij in the element e i, jð Þ is defined as the number of
occurrence of the element in K tours, that is

eij ¼
XK

k¼1

e i, jð Þk (3)

When K search trajectories reach their end points, the value eij þ eji
� �

=K can
represent the probability of the edge e i, jð Þ being hit by a locally optimal tour. We
can use graphical technique to observe the convergent behavior of the search
trajectories through the matrix E. The hit-frequency value eij can be easily
converted into a unit of half-tone information in a computer, a value that we
interpret as a number Hij somewhere between 0 and 1. The value 1 corresponds to
black color, 0 to white color, and any value in between to a gray level. Let K be the
number of search trajectories, the half-tone information Hij on a computer screen
can be represented by the hit-frequency eij in the element e i, jð Þ of E:

Hij ¼
eij
K

(4)

Figure 3.
Two representations of a tour: an ordered list of nodes and an edge configuration of a tour.
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Figure 4 illustrates a simple example of visualization showing the convergent
behavior of 100 search trajectories for a 50-node instance. Figure 4(a) shows the
image of the edge configurations of 100 random initial tours. Since each element of
E has equal chance to be hit by these initial tours, almost all elements are hit by
these initial tours, and all elements have very low Hij values, ranging from 0.00 to
0.02. When the local search system starts searching, the search trajectories con-
stantly change their edge configurations, and therefore the colors in the elements of
E are changed accordingly. As the search continues, more and more elements
become white (i.e. they are discarded by all search trajectories) and other elements
become darker (i.e. they are selected by more search trajectories). When all search
trajectories reach their end points, the colored elements represent the final edge
configuration of the search system. Figure 4(b) and (c) show the images of edge
configuration of E when all search trajectories completed 2000 iterations and 5000
iterations, respectively. At 5000th iteration, the range of Hij values in the elements
of E is from 0.00 to 0.42. The value 0.42 means that 42% of the search trajectories
select this element. Majority of the elements of E become white color.

This simple example has great explanatory power about the global dynamics of
the local search system for the TSP. As search trajectories continue searching, the
number of edges hit by them becomes smaller and smaller, and better edges are hit
by more and more search trajectories. This edge-convergence phenomenon means
that all search trajectories are moving closer and closer to each other, and their edge
configurations become increasingly similar. This phenomenon describes the glob-
ally asymptotic behavior of the local search system.

It is easily verified that under certain conditons, a local search system is able to
find the set of the globally optimal tours S ∗ when the number of search trajectories
is unlimited, i.e.

lim
K!∞

P S ∗ ⊂ S½ � ¼ 1 (5)

However, the required search effort may be very huge – equivalent to enumer-
ating all tours in the solution space. Now one question for the ABSS is “How many
search trajectories in the search system do we need to find all globally optimal
tours?” The matrix E consists of n n� 1ð Þ elements (excluding the diagonal ele-
ments). When we randomly construct a tour and record its edge configuration in E,
n elements of E will be hit by this tour. If we construct more random tours and
record their edge configurations in E, more elements will be hit. We define K as the
number of randomly-constructed initial tours, whose edge configurations together

Figure 4.
Visualization of the convergent dynamics of local search system. (a) the image of the edge configurations of 100
initial tours, (b) and (c) the images of edge configurations when the search trajectories are at 2000th and
5000th iteration, respectively.
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search trajectory, the edge is globally superior since the edge is selected by these
individual tours from different search trajectories going through different search
regions. The globally superior edges have higher probability to be selected by a
locally optimal tour. A G-edge is the edge that is included in a globally optimal tour.
All G-edges are globally superior edges and can be treated as a special subset of the
globally superior edges. The edges that are discarded by all search trajectories or
selected by only few locally optimal tours are bad edges. A bad edge is impossible to
be included in a globally optimal tour. A locally optimal tour usually consists of
some G-edges, some globally superior edges and a few bad edges.

The changes of the edge configuration of the matrix E represent the transfor-
mations of the search trajectories in a local search system. When all search trajecto-
ries reach their end points, the final edge configuration of E represents the final
state of the local search system. For a tour sk, we define an element e i, jð Þ of E as

e i, jð Þ ¼ 1 if the element e i, jð Þ is in the tour sk
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Figure 4 illustrates a simple example of visualization showing the convergent
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E has equal chance to be hit by these initial tours, almost all elements are hit by
these initial tours, and all elements have very low Hij values, ranging from 0.00 to
0.02. When the local search system starts searching, the search trajectories con-
stantly change their edge configurations, and therefore the colors in the elements of
E are changed accordingly. As the search continues, more and more elements
become white (i.e. they are discarded by all search trajectories) and other elements
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of E is from 0.00 to 0.42. The value 0.42 means that 42% of the search trajectories
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the local search system for the TSP. As search trajectories continue searching, the
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that all search trajectories are moving closer and closer to each other, and their edge
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will hit all elements of E. We know that all elements of E represent all combinatorial
possibilities in the solution space. Therefore, K is the number of search trajectories
such that the union of edge configurations of ther initial tours covers the entire
solution space. In our experiments, we found that the edge configurations of at most
6n randomly-constructed tours can guarantee to hit all elements of E. From the tour
perspective, K ¼ 6n random tours represent only a small set of the tours in the
solution space. However, from the view of edge-configuration, the union of the
edge configurations of 6n random tours represents the edge configurations of all
tours in the solution space. It reveals an amazing fact: the union of the edge config-
urations of only 6n random tours contains the edge configurations of all n n� 1ð Þ!=2
tours in the solution space. It reflects the combinatorial nature of the TSP: the tours
in the solution space are formed by different combinations of the edges. The union
of the edge configurations of a set of tours contains information about many other
tours because one tour shares its edges with many other tours. One fundamental
theory that can help us explain this phenomenon is the information theory [13].
According to the information theory, each solution point contains some information
about its neighboring solutions that can be modeled as a function, called information
function or influence function. The influence function of the ith solution point in the
solution space S is defined as a function Ωi : S ! R, such that Ωi is a decreasing
function of the distance from a solution point to the ith solution point. The notion of
influence function has been extensively used in datamining, data clustering, and
pattern recognition.

4. The nature of heuristic local search

Heuristic local search is based on the concept of neighborhood search. A neigh-
borhood of a solution si, denoted as N sið Þ, is a set of solutions that are in some sense
close to si. For the TSP, a neighborhood of a tour si is defined as a set of tours that
can be reached from si in one single transition. From edge-configuration perspec-
tive, all tours in N sið Þ are very similar because they share significant number of
edges with si. The basic operation of local search is iterative improvement, which
starts with an initial tour and searches the neighborhood of the current tour for a
better tour. If such a tour is found, it replaces the current tour and the search
continues until no improvement can be made. The local search algorithm returns a
locally optimal tour.

The behavior of a local search trajectory can be understood as a process
of iterating a search function g sð Þ. We denote s0 as an initial point of search and
gt sð Þ as the tth iteration of the search function g sð Þ. A search trajectory
s0, g s0ð Þ, g2 s0ð Þ, … , gt s0ð Þ, … converges to a locally optimal point s0 as its limit,
that is,

g lim
t!∞

gt s0ð Þ
� �

¼ lim
t!∞

gtþ1 s0ð Þ ¼ s0 (6)

Therefore, a search trajectory will reach an end point (a locally optimal point)
and will stays at this point forever.

In a heuristic local search algorithm, there is a great variety of ways to construct
initial tour, choose candidate moves, and define criteria for accepting candidate
moves. Most heuristic local search algorithms are based on randomization. In this
sense, a heuristic local search algoorithm is a randomized system. There are no two
search trajectories that are exactly alike in such a search system. Different search
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trajectories explore different regions of the solution space and stop at different final
points. Therefore, local optimality depends on the initial points, the neighborhood
function, randomness in the search process, and time spent on search process. On
the other hand, however, a local search algorithm essentially is deterministic and
not random in nature. If we observe the motion of all search trajectories, we will see
that the search trajectories go towards the same direction, move closer to each
other, and eventually converge into a small region in the solution space.

Heuristic local search algorithms are essentially in the domain of dynamical
systems. A heuristic local search algorithm is a discrete dynamical system, which
has a solution space S (the state space), a set of times T (search iterations), and a
search function g : S� T ! S that gives the consequents to a solution s∈ S in the
form of stþ1 ¼ g stð Þ. A search trajectory is the sequence of states of a single search
process at successive time-steps, which represents the part of the solution space
searched by this search trajectory. The questions about the behavior of a local search
system over time are actually the questions about its search trajectories. The most
basic question about the search trajectories is “Where do they go in the solution
space and what do they do when they get there?”

The attractor theory of dynamical systems is a natural paradigm that can be used
to describe the search behavior of a heuristic local search system. The theory of
dynamical systems is an extremely broad area of study. A dynamical system is a
model of describing the temporal evolution of a system in its state space. The goal of
dynamical system analysis is to capture the distinctive properties of certain points
or regions in the state space of a given dynamical system. The theory of dynamical
systems has discovered that many dynamical systems exhibt attracting behavior in
the state space [14–22]. In such a system, all initial states tend to evolve towards a
single final point or a set of points. The term attractor is used to describe this single
point or the set of points in the state space. The attractor theory of dynamical
systems describes the asymptotic behavior of typical trajectories in the dynamical
system. Therefore, the attractor theory provides the theoretical foundation to study
the search behavior of a heuristic lcoal search system.

In a local search system for the TSP, no matter where we start a search trajectory
in the solution space, all search trajectories will converge to a small region in the
solution space for a unimodal TSP instance or h small regions for a h-model TSP. We
call this small region a solution attractor of the local search system for a given TSP
instance, denoted as A. Therefore, the solution attractor of a local search system for
the TSP can be defined as an invariant set A⊂ S consisting of all locally optimal
tours and the globally optimal tours. A single search trajectory typically converges
to either one of the points in the solution attractor. A search trajectory that is in the
solution attractor will remain within the solution attractor forward in time. Because
a globally optimal tour s ∗ is a special case of locally optimal tours, it is undoubtedly
embodied in the solutioin attractor, that is, s ∗ ∈A. For a h-modal TSP instance, a
local search system will generate h solution attractors A1,A2, … ,Ahð Þ that attract all
search trajectories. Each of the solution attractors has its own set of locally optimal
tours, surrounding a globally optimal tour s ∗i i ¼ 1, 2, … , hð Þ. A particular search
trajectory will converge into one of the h solution attractors. All locally optimal
tours will be distributed to these solution attractors. According to dynamical sys-
tems theory [20], the closure of an arbitrary union of attractors is still an attractor.
Therefore, the solution attractor A of a local search system for a h-modal TSP is a
complete collection of h solution attractors A ¼ A1 ∪A2 ∪ … ∪Ah.

The concept of solution attractor of local search system describes where the
search trajectories actually go and where their final points actually stay in the
solution space. Figure 5 visually summarizes the concepts of search trajectories and
solution attractors in a local search system for a multimodal optimization problem,
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will hit all elements of E. We know that all elements of E represent all combinatorial
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edge configurations of 6n random tours represents the edge configurations of all
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urations of only 6n random tours contains the edge configurations of all n n� 1ð Þ!=2
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function or influence function. The influence function of the ith solution point in the
solution space S is defined as a function Ωi : S ! R, such that Ωi is a decreasing
function of the distance from a solution point to the ith solution point. The notion of
influence function has been extensively used in datamining, data clustering, and
pattern recognition.

4. The nature of heuristic local search

Heuristic local search is based on the concept of neighborhood search. A neigh-
borhood of a solution si, denoted as N sið Þ, is a set of solutions that are in some sense
close to si. For the TSP, a neighborhood of a tour si is defined as a set of tours that
can be reached from si in one single transition. From edge-configuration perspec-
tive, all tours in N sið Þ are very similar because they share significant number of
edges with si. The basic operation of local search is iterative improvement, which
starts with an initial tour and searches the neighborhood of the current tour for a
better tour. If such a tour is found, it replaces the current tour and the search
continues until no improvement can be made. The local search algorithm returns a
locally optimal tour.

The behavior of a local search trajectory can be understood as a process
of iterating a search function g sð Þ. We denote s0 as an initial point of search and
gt sð Þ as the tth iteration of the search function g sð Þ. A search trajectory
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and will stays at this point forever.

In a heuristic local search algorithm, there is a great variety of ways to construct
initial tour, choose candidate moves, and define criteria for accepting candidate
moves. Most heuristic local search algorithms are based on randomization. In this
sense, a heuristic local search algoorithm is a randomized system. There are no two
search trajectories that are exactly alike in such a search system. Different search
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trajectories explore different regions of the solution space and stop at different final
points. Therefore, local optimality depends on the initial points, the neighborhood
function, randomness in the search process, and time spent on search process. On
the other hand, however, a local search algorithm essentially is deterministic and
not random in nature. If we observe the motion of all search trajectories, we will see
that the search trajectories go towards the same direction, move closer to each
other, and eventually converge into a small region in the solution space.

Heuristic local search algorithms are essentially in the domain of dynamical
systems. A heuristic local search algorithm is a discrete dynamical system, which
has a solution space S (the state space), a set of times T (search iterations), and a
search function g : S� T ! S that gives the consequents to a solution s∈ S in the
form of stþ1 ¼ g stð Þ. A search trajectory is the sequence of states of a single search
process at successive time-steps, which represents the part of the solution space
searched by this search trajectory. The questions about the behavior of a local search
system over time are actually the questions about its search trajectories. The most
basic question about the search trajectories is “Where do they go in the solution
space and what do they do when they get there?”

The attractor theory of dynamical systems is a natural paradigm that can be used
to describe the search behavior of a heuristic local search system. The theory of
dynamical systems is an extremely broad area of study. A dynamical system is a
model of describing the temporal evolution of a system in its state space. The goal of
dynamical system analysis is to capture the distinctive properties of certain points
or regions in the state space of a given dynamical system. The theory of dynamical
systems has discovered that many dynamical systems exhibt attracting behavior in
the state space [14–22]. In such a system, all initial states tend to evolve towards a
single final point or a set of points. The term attractor is used to describe this single
point or the set of points in the state space. The attractor theory of dynamical
systems describes the asymptotic behavior of typical trajectories in the dynamical
system. Therefore, the attractor theory provides the theoretical foundation to study
the search behavior of a heuristic lcoal search system.

In a local search system for the TSP, no matter where we start a search trajectory
in the solution space, all search trajectories will converge to a small region in the
solution space for a unimodal TSP instance or h small regions for a h-model TSP. We
call this small region a solution attractor of the local search system for a given TSP
instance, denoted as A. Therefore, the solution attractor of a local search system for
the TSP can be defined as an invariant set A⊂ S consisting of all locally optimal
tours and the globally optimal tours. A single search trajectory typically converges
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solution attractor will remain within the solution attractor forward in time. Because
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The concept of solution attractor of local search system describes where the
search trajectories actually go and where their final points actually stay in the
solution space. Figure 5 visually summarizes the concepts of search trajectories and
solution attractors in a local search system for a multimodal optimization problem,
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describing how search trajectories converge and how solution attractors are formed.
In summary, let g sð Þ be a search function in a local search system for the TSP, the
solution attractor of the search system has the following properties [23–25]:

1.Convexity, i.e. ∀si ∈ S, gt sið Þ∈A for sufficient long t;

2.Centrality, i.e. the globally optimal tour s ∗i is located centrally with respect to
the other locally optimal tours in Ai i ¼ 1, 2, … hð Þ;

3. Invariance, i.e. ∀s0 ∈A, gt s0ð Þ ¼ s0 and gt Að Þ ¼ A for all time t;

4. Inreducibility, i.e. the solution attractor A contains a limit number of invariant
locally optimal tours.

A search trajectory in a local search system changes its edge configuration during
the search according to the objective function f sð Þ and its neighborhood structure.
The matrix E can follow the “footprints” of search trajectories to capture the
dynamics of the local search system. When all search trajectories reach their end
points – the locally optimal tours, the edge configuration of the matrix E will
become fixed, which is the edge configuration of the solution attractor A. This fixed
edge configuration contains two groups of edges: the edges that are not hit by any of
locally optimal tours (non-hit edges) and the edges that are hit by at least one of the
locally optimal tours (hit edges). Figure 6 shows the edge grouping in the edge
configuration of E when all search trajectories stop at their final points.

In the ABSS, we use K search trajectories in the local search phase. Different sets
of K search trajectories will generate different final edge configuration of E. Suppose
that, we start the local search from a set of K initial points and obtain a edge
configurationMa in E when the local search phase is terminated. Then we start the
local search process again from a different set of K initial points and obtains a little
different edge configurationMb in E. Which edge configuration truly describes the
edge configuration of the real solution attractor? Actually,Ma andMb are structurally

Figure 5.
Illustration of the concepts of serch trajectories and solution attractors in a local search system for a multimodal
optimization problem.
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equivalent because they are different only in the set of bad edges, thusMa precisely
replicates the dynamical properties ofMb. The final edge configuration of the
constructed solution attractor generated from K search trajectories is not sensitive to
the selection of K search trajectories. This property indicates that a heuristic local
search system actually is a deterministic system: although a single search trajectory
appears stochastic, all search trajectories from differeitn initial points will be always
trapped into the same small region in the solution space and the final edge configu-
ration of E will always converge to the same set of the globally optimal edges.

The convergence of the search trajectories can be measured by the change in the
edge configuration of the matrix E. In the local search process, search trajectories
collect all available topology information about the quality of the edges from their
search experience and record such information in the matrix E. The changes in the
edge configuration of E fully reflects the real search evolution of the search system.
A state of convergence is achieved once no any more local search trajectory can
change the edge configuration of E. For a set of search trajectories to be converging,
they must be getting closer and closer to each other, that is, their edge configura-
tions become increasingly similar. As a result, the edge configurations of the search
trajectories converge to a small set of edges that contains all globally superior edges
and some bad edges. Let W denote total number of edges in E, α tð Þ the number of
the edges that are hit by all search trajectories at time t, β tð Þ the number of the edges
that are hit by one or some of the search trajectories, and γ tð Þ the number of edges
that have no hit at all, then at any time t, we have

W ¼ α tð Þ þ β tð Þ þ γ tð Þ (7)

For a given TSP instance, W is a constant value W ¼ n n� 1ð Þ=2 for a symmetric
instance or W ¼ n n� 1ð Þ for an asymmetric instance. During the local search
process, the values for α tð Þ and γ tð Þwill increase and the value for β tð Þwill decrease.
However, these values cannot increase or decrease foreover. At certain point of
time, they will become constant values, that is,

W ¼ lim
t!∞

α tð Þ þ lim
t!∞

β tð Þ þ lim
t!∞

γ tð Þ ¼ Αþ Bþ Γ (8)

Our experiments confirmed this inference about α tð Þ, β tð Þ and γ tð Þ. Figure 7
illustrates the patterns of α tð Þ, β tð Þ and γ tð Þ curves generated in our experiments.
Our experiments also found that, for unimodal TSP instances, the ratio γ tð Þ=W
could approach to 0.70 quickly for different sizes of TSP instances. For multimodal
TSP instances, this ratio depends on the number of the globally optimal points.
However, the set of hit edges is still very small.

Figure 6.
The grouping of the edges in E when all search trajectories reach their end points.
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In summary, we assume a TSP instance Q has a solution space with h ≥ 1ð Þ
globally optimal tours (s ∗1 , s

∗
2 , … , s ∗h ), and correspondingly there exist h set of

G-edges G1,G2, … ,Ghð Þ: A local search system for the Q will generate h solution
attractors A1,A2, … ,Ahð Þ that attract all search trajectories. The edge configuration
of the solution attractor A is the union of the edge configurations of the h solution
attractors. The final edge configuration of E represents the edge configuration of A
with three properties:

1. It contains all locally optimal tours;

2. It contains a complete collection of solution attractors, i.e. A ¼
A1 ∪A2 ∪ … ∪Ah;

3. It contains a complete collection of G-edges, i.e. G ¼ G1 ∪G2 ∪ … ∪Gh.

From this analysis, we can see that the edge matrix E is an extremely useful data
structure that not only collcets the information about search trajectories, but also
convert local search behavor of individual search trajectories into global search
behavor of the search system. The global convergence and deterministic property of
the search trajectories make the local search system always converge to the same
solution attractors and the edge configurations of the search trajectories always
converge to the same set of globally superior edges. The matrix E shows us clearly
where the search trajectories go and where all locally optimal points are located. We
found the village! However, it is still difficult to identify all G-edges among the
globally superior edges. The ABSS uses the exhaustive search phase to find all tours
in the solution attractor. Since the local search phase has significantly reduced the
size of the search space for the exhaustive search phase, the complete search in the
solution attractor becomes feasible.

5. Global optimization feature of the ABSS

The task of a global optimization system is to find all absolutely best solutions in
the solution space. There are two major tasks performed by a global optimization
system: (1) finding all globally optimal points in the solution space and (2) making
sure that they are globally optimal. So far we do not have any effective and efficient

Figure 7.
The α tð Þ, β tð Þ and γ tð Þ curves with search iterations.
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global search algorithm to solve NP-hard combinatorial problems. We do not even
have well-developed theory or analysis tool to help us design efficient algorithms to
perform these two tasks. One critical question in global optimization is how to
recognize the globally optimal solutions. Modern search algorithms lack practical
criteria that decides when a locally optimal solution is a globally optimal one. What
is the necessary and sufficient condition for a feasible point si to be globally optimal
point? The mathematical condition for the TSP is ∀s∈ S, f s ∗ð Þ≤ f sð Þ. To meet this
condition, an efficient global search system should have the following properties:

1.The search system should be globally convergent.

2.The search system should be deterministic and have a rigorous guarantee for
finding all globally optimal solutions without excessive computational burden.

3.The optimality criterion in the system must be based on information on the
global behavior of the search system.

The ABSS combines beautifully two crucial aspects in search: exploration and
exploitation. In the local search phase, K search trajectories explore the full solution
space to identify the globally superior edges, which form the edge configuration of
the solution attractor. These K search trajectories are independently and invidually
executed, and therefore they create and maintain diversity from beginning to the
end. The local search phase is a randomized process due to randomization in the
local search function g sð Þ. In this sense, the K search trajectories actually perform
the Monte Carlo simulation to sample locally optimal tours. The essential idea of
Monte Carlo method is using randomness to solve problems that might be deter-
ministic in principle [26]. In the ABSS, K search trajectories start a sample of initial
points from a uniform distribution over the solution space S, and, through the
randomized local search process, generate a sample of locally optimal points uni-
formly distributed in the solution attractor A. The edge configuration of E is actu-
ally constructed through this Monte Carlo sampling process.

Each of the K search trajectories passes throughmany neighborhoods on its way to
the final point. For any tour si, the size of N sið Þ is greater than n

2

� �
! [12]. Let N s0i

� �
denote the neighborhood of the final point s0i of the i

th search trajectory andΩN stranð Þi
as the union of the neighborhoods of all transition points of the search trajectory, then
we can believe that the search space covered by K search trajectories is

N s01
� �

∪ΩN stranð Þ1 ∪N s02
� �

∪ΩN stranð Þ2 … ∪N s0K
� �

∪ΩN stranð ÞK ¼ S (9)

That is, the solution attractor A is formed through the entire solution space S.
The solution attractor A contains h unique minimal “convex” sets Ai i ¼ 1, 2, … , hð Þ.
Each Ai has a unique best tour s ∗i surrounded by a set of locally optimal tours. The
tour s ∗i in Ai satisfies f s ∗i

� �
< f sð Þ for all s∈Ai and f s ∗1

� � ¼ f s ∗2
� � ¼ … ¼ f s ∗h

� �
.

We see that the matrix E plays a critical role to transform local search process of
the individual search trajectories into a collective global search process of the sys-
tem. Each time when a local search trajectory finds a better tour and updates the
edge configuraton of E, the conditional distribution on the edges are updated. More
values are attached to the globally superior edges, and bad edges are discarded. Let
W be the complete set of the edges in E and WA the set of edges in the edge
configuration of the solution attractor A such that g Wð Þ is contained in the interior
of W. Then the intersection WA of the nested sequence of sets is

W ⊃ g Wð Þ⊃ g2 Wð Þ⊃ … ⊃ gt Wð Þ⊃ … ⊃WA (10)
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have well-developed theory or analysis tool to help us design efficient algorithms to
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recognize the globally optimal solutions. Modern search algorithms lack practical
criteria that decides when a locally optimal solution is a globally optimal one. What
is the necessary and sufficient condition for a feasible point si to be globally optimal
point? The mathematical condition for the TSP is ∀s∈ S, f s ∗ð Þ≤ f sð Þ. To meet this
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1.The search system should be globally convergent.
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finding all globally optimal solutions without excessive computational burden.
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global behavior of the search system.
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and lim t!∞gt WAð Þ ¼ WA. As a result, the edge configurations of K search
trajectories converge to a small set of edges.

The “convexity” property of the solution attractor A allows the propagation of
the minimum property of s ∗i in the solution attractor Ai to the whole solution space
S through the following conditions:

1.∀s∈Ai, f s ∗i
� �

< f sð Þ

2. f s ∗1
� � ¼ f s ∗2

� � ¼ … ¼ f s ∗h
� �

3. min
s∈A

f sð Þ ¼ min
s∈ S

f sð Þ

Therefore the global convergence and deterministic property of the search tra-
jectories in the local search phase make the ABSS always find the same set of
globally optimal tours. We conducted several experiments to confirm this argument
empirically. In our experiments, for a given TSP instance, the ABSS performed the
same search process on the instance several times, each time using a different set of
K search trajectories. The ABSS outputed the same set of the best tours in all trials.

Table 1 shows the results of two experiments. One experiment generated
n ¼ 1000 instance Q1000, the other generated n ¼ 10000 instance Q10000.

Trial number Number of tours in A Range of tour cost Number of best tours in A

Q1000 (6000 search trajectories)

1 6475824 [3241, 4236] 1

2 6509386 [3241, 3986] 1

3 6395678 [3241, 4027] 1

4 6477859 [3241, 4123] 1

5 6456239 [3241, 3980] 1

6 6457298 [3241, 3892] 1

7 6399867 [3241, 4025] 1

8 6423189 [3241, 3924] 1

9 6500086 [3241, 3948] 1

10 6423181 [3241, 3867] 1

Q10000 (60000 search trajectories)

1 8645248 [69718, 87623] 4

2 8657129 [69718, 86453] 4

3 8603242 [69718, 86875] 4

4 8625449 [69718, 87053] 4

5 8621594 [69718, 87129] 4

6 8650429 [69718, 86978] 4

7 8624950 [69718, 86933] 4

8 8679949 [69718, 86984] 4

9 8679824 [69718, 87044] 4

10 8677249 [69718, 87127] 4

Table 1.
Tours in constructed solution attractor A for Q1000 and Q10000.

16

Theory of Complexity - Definitions, Models, and Applications

We conducted 10 trials on each of the instances respectively. In each trial, the ABSS
used K ¼ 6n search trajectories. Each search trajectory stopped when no improve-
ment was made during 10n iterations. The matrix E stored the edge configurations
of the K final tours and then was searched completely using the depth-first tree
search process. Table 1 lists the number of tours found in the constructed solution
attractor A, the cost range of these tours, and the number of the best tours found in
the constructed solution attractor. For instance, in trial 1 for Q1000, the ABSS found
6475824 tours with the cost range [3241, 4136] in the constructed solution attractor.
There was a single best tour in the solution attractor. The ABSS found the same best
tour in all 10 trials. For the instance Q10000, the ABSS found the same set of four best
tours in all 10 trials. These four best tours have the same cost value, but with different
edge configurations. If any trial had generated a different set of the best tours, we
could immediately make a conclusion that the best tours in the constructed solution
attractor may not be the globally optimal tours. From practical perspective, the fact
that the same set of the best tours was detected in all trials provides an empirical
evidence of the global optimality of these tours. The fact also indicates that the ABSS
converges in solution. Convergence in solutionmeans that the search system can iden-
tify all optimal solutions repeatedly. Always finding the same set of optimal solutions
actually is the fundamental requirement for global optimization systems.

6. Computing complexity of the ABSS

With current search technology, the TSP is an infeasible problem because it is
not solvable in a reasonable amount of time. Faster computers will not help. A
feasible search algorithm for the TSP is one that comes with a guarantee to find all
best tours in time at most proportional to nk for some power k. The ABSS can
guarantee to find all globally optimal tours for the TSP. Now the question is how
efficient it is?

The core idea of the ABSS is that, if we have to use exhaustive search to confirm
the globally optimal points, we should first find a way to quickly reduce the effec-
tive search space for the exhaustive search. When a local search trajectory finds a
better tour, we can say that the local search trajectory finds some better edges. It is
an inclusive view. We also can say that the local search trajectory discards some bad
edges. It is an exclusive view. The ABSS uses the exclusive strategy to conquer the
TSP. The local search phase in the ABSS quickly prunes out large number of edges
that cannot possibly be included in any of the globally optimal tours. Thus, a large
useless area of the solution space is excluded. When the first edge is discarded by all
K search trajectories, n� 2ð Þ! tours that go through that edge are removed from the
search space for the exhaustive search phase. Each time when an edge is removed,
large number of tours are removed from the search space. Although the complexity
of finding a true locally optimal tour is still open, and we even do not know any
nontrivial upper bounds on the number of iterations that may be needed to reach
local optimality [27, 28], decades of empirical evidence and practical research have
found that heuristic local search converges quickly, within low order polynomial
time [1, 8, 27, 29]. In practice, we are rarely able to find perfect locally optimal tour
because we simply do not allow the local search process to run enough long time.
Usually we let a local search process run a predefined number of iterations, accept
whatever tour it generates, and treat it as a locally optimal tour. Therefore, the size
of the constructed solution attractor depends not only on the problem structure and
the neighborhood function, but also on the amount of search time invested in the
local search process. As we increase local search time, we will constructe a smaller
and stronger solution attractor. The local search phase in the ABSS can significantly
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and lim t!∞gt WAð Þ ¼ WA. As a result, the edge configurations of K search
trajectories converge to a small set of edges.

The “convexity” property of the solution attractor A allows the propagation of
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� � ¼ … ¼ f s ∗h
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3. min
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f sð Þ

Therefore the global convergence and deterministic property of the search tra-
jectories in the local search phase make the ABSS always find the same set of
globally optimal tours. We conducted several experiments to confirm this argument
empirically. In our experiments, for a given TSP instance, the ABSS performed the
same search process on the instance several times, each time using a different set of
K search trajectories. The ABSS outputed the same set of the best tours in all trials.

Table 1 shows the results of two experiments. One experiment generated
n ¼ 1000 instance Q1000, the other generated n ¼ 10000 instance Q10000.

Trial number Number of tours in A Range of tour cost Number of best tours in A

Q1000 (6000 search trajectories)

1 6475824 [3241, 4236] 1

2 6509386 [3241, 3986] 1

3 6395678 [3241, 4027] 1

4 6477859 [3241, 4123] 1

5 6456239 [3241, 3980] 1

6 6457298 [3241, 3892] 1

7 6399867 [3241, 4025] 1

8 6423189 [3241, 3924] 1

9 6500086 [3241, 3948] 1

10 6423181 [3241, 3867] 1

Q10000 (60000 search trajectories)

1 8645248 [69718, 87623] 4

2 8657129 [69718, 86453] 4

3 8603242 [69718, 86875] 4

4 8625449 [69718, 87053] 4

5 8621594 [69718, 87129] 4

6 8650429 [69718, 86978] 4

7 8624950 [69718, 86933] 4

8 8679949 [69718, 86984] 4

9 8679824 [69718, 87044] 4

10 8677249 [69718, 87127] 4

Table 1.
Tours in constructed solution attractor A for Q1000 and Q10000.
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We conducted 10 trials on each of the instances respectively. In each trial, the ABSS
used K ¼ 6n search trajectories. Each search trajectory stopped when no improve-
ment was made during 10n iterations. The matrix E stored the edge configurations
of the K final tours and then was searched completely using the depth-first tree
search process. Table 1 lists the number of tours found in the constructed solution
attractor A, the cost range of these tours, and the number of the best tours found in
the constructed solution attractor. For instance, in trial 1 for Q1000, the ABSS found
6475824 tours with the cost range [3241, 4136] in the constructed solution attractor.
There was a single best tour in the solution attractor. The ABSS found the same best
tour in all 10 trials. For the instance Q10000, the ABSS found the same set of four best
tours in all 10 trials. These four best tours have the same cost value, but with different
edge configurations. If any trial had generated a different set of the best tours, we
could immediately make a conclusion that the best tours in the constructed solution
attractor may not be the globally optimal tours. From practical perspective, the fact
that the same set of the best tours was detected in all trials provides an empirical
evidence of the global optimality of these tours. The fact also indicates that the ABSS
converges in solution. Convergence in solutionmeans that the search system can iden-
tify all optimal solutions repeatedly. Always finding the same set of optimal solutions
actually is the fundamental requirement for global optimization systems.

6. Computing complexity of the ABSS

With current search technology, the TSP is an infeasible problem because it is
not solvable in a reasonable amount of time. Faster computers will not help. A
feasible search algorithm for the TSP is one that comes with a guarantee to find all
best tours in time at most proportional to nk for some power k. The ABSS can
guarantee to find all globally optimal tours for the TSP. Now the question is how
efficient it is?

The core idea of the ABSS is that, if we have to use exhaustive search to confirm
the globally optimal points, we should first find a way to quickly reduce the effec-
tive search space for the exhaustive search. When a local search trajectory finds a
better tour, we can say that the local search trajectory finds some better edges. It is
an inclusive view. We also can say that the local search trajectory discards some bad
edges. It is an exclusive view. The ABSS uses the exclusive strategy to conquer the
TSP. The local search phase in the ABSS quickly prunes out large number of edges
that cannot possibly be included in any of the globally optimal tours. Thus, a large
useless area of the solution space is excluded. When the first edge is discarded by all
K search trajectories, n� 2ð Þ! tours that go through that edge are removed from the
search space for the exhaustive search phase. Each time when an edge is removed,
large number of tours are removed from the search space. Although the complexity
of finding a true locally optimal tour is still open, and we even do not know any
nontrivial upper bounds on the number of iterations that may be needed to reach
local optimality [27, 28], decades of empirical evidence and practical research have
found that heuristic local search converges quickly, within low order polynomial
time [1, 8, 27, 29]. In practice, we are rarely able to find perfect locally optimal tour
because we simply do not allow the local search process to run enough long time.
Usually we let a local search process run a predefined number of iterations, accept
whatever tour it generates, and treat it as a locally optimal tour. Therefore, the size
of the constructed solution attractor depends not only on the problem structure and
the neighborhood function, but also on the amount of search time invested in the
local search process. As we increase local search time, we will constructe a smaller
and stronger solution attractor. The local search phase in the ABSS can significantly
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reduce the search space for the exhaustive search phase by excluding a large num-
ber of edges. Usually the local search phase can remove about 60% of edges of the
matrix E in O n2ð Þ.

Now an essential question is naturally raised: What is the relationship between
the size of the constructed solution attractor and the size of the problem instance?
Unfortunately, there is no theoretical analysis tool available in the literature that can
be used to answer this question. We have to depend on empirical results to lend
some insights. We conducted several experiments to observe the relationship
between the size of the constructed solution attractor and the TSP instance size.
Figures 8–10 show the results of one of our experiments. All other similar experi-
ments reveal the same pattern. In this experiment, we generated 10 unimodal TSP
instances in the size from 1000 to 10000 nodes with 1000-node increment. For

Figure 8.
The number of discarded edges at the end of local search phase.

Figure 9.
Relationship between the size of the constructed solution attractor and instance size.
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each instance, the ABSS generated K ¼ 6n search trajectories. We first let each
search trajectory stop when no tour improvement was made during 10000 itera-
tions regardless of the size of the instance (named “fixed search time”). Then we
did the same search procedures on these instances again. This time we made each
search trajectory stop when no improvement was made during 10n iterations
(named “varied search time 1”) and 100n iterations (named “varied search time 2”)
respectively. Figure 8 shows the number of the edges that were discarded at the end
of local search phase. Figure 9 shows the number of tours in the constructed
solution attractor for each instance, and Figure 10 shows the effective branching
factors in the exhaustive search phase.

In Figure 8, we can see that the search trajectories can quickly converge to a
small set of edges. In the fixed-search-time case, about 60% of the edges were
discarded by search trajectories for the 1000-node instance, but this percentage
decreases as instance size increases. For the 10000-node instance, only about 46%
of the edges are discarded. However, if we increase the local search time linearly
when the instance size increases, we can keep the same percentage of discarded-
edge for all instance sizes. In the varied-search-time-1 case, about 60% of the edges
are abandoned for all different instance sizes. In the varied-search-time-2 case, this
percentage increases to 68% for all instances. Higher percentage of abandoned
edges means that majority of the branches are removed from the search tree.

Figure 9 shows the number of tours exist in the constructed solution attractor
for these instances. All curves in the chart appear to be linear relationship between
the size of constructed solution attractor and the size of the problem instance,
and the varied-search-time curves have much flatter slope because longer local
search time makes a smaller constructed solution attractor. Figures 8 and 9 indicate
that the search trajectories in the local search phase can effectively and efficiently
reduce the search space for the exhaustive search, and the size of the solution
attractor increases linearly as the size of the problem instance increases. Therefore,
the local search phase in the ABSS is an efficiently asymptotical search process that
produces an extremely small search space for further exhaustive search.

The completely searching of the constructed solution attractor is delegated to the
exhaustive search phase. This phase may still need to examine tens or hundreds of
millions of tours but nothing a computer processor cannot handle, as opposed to the

Figure 10.
The b ∗ values for different instance size n in our experiment.
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huge number of total possibilities in the solution space. The exhaustive search phase
can find the exact globally optimal tours for the problem instance after a limited
number of search steps.

The exhaustive search phase can use any enumerative technique. However, the
edge configuration of E can be easily searched by the depth-first tree search algo-
rithm. One of the advantages of depth-first tree search is less memory requirement
since only the nodes on the current path are stored. When using tree-search algo-
rithm, we usually use branching factor, average branching factor, or effective
branching factor to measure the computing complexity of the algorithm [30–33]. In
the data structure of search tree, the branching factor is the number of successors
generated by a given node. If this value is not uniform, an average branching factor
can be calculated. An effective branching factor b ∗ is the number of sucessors
generated by a typical node for a given tree-search problem. We use the following
definition to calculate effective brancing factor b ∗ for the exhaustive search phase:

N ¼ b ∗ þ b ∗ð Þ2 þ … þ b ∗ð Þn (11)

where n is the size of the TSP instance, representing the depth of the tree, and N
is total number of nodes generated in the tree from the origin node. In our experi-
ments, the tree-search process always starts from node 1 (the first row of E). N is
total number of nodes that are processed to construct all valid tours and incomplete
(therefore abandoned) tours in E. N does not count the node 1 (the origin node),
but includes the node 1 as the end node of a valid tour. We use Figure 2(d) as an
example. The depth-first search process searches the edge configuration of E and
will generate N ¼ 58 nodes. Therefore, b ∗ ≈ 1:3080, that is, 58≈ 1:3080þ
1:30802 þ … þ 1:308010. Figure 10 shows the effective branching factor b ∗ in our
experiment. The low values of b ∗ indicates that the edge configuration of the
solution attractor represents a tree with extremely sparse branches, and the degree
of sparseness does not changes as the problem size increase if we linearly increase
local search time in the local search phase for a large instance. The search time in the
exhaustive search phase is probably in O n2ð Þ since the size of the constructed
solution attractor might be linearly increased with the problem size n and the
number of edges in E is polynomially increased with the problem size. Our experi-
ments shows that the ABSS can significantly reduce the computational complexity
for the TSP and solve the TSP efficiently with global optimality guarantee.

Therefore, the ABSS is a simple algorithm that increases in computational diffi-
culty polynomially with the size of the TSP. In the ABSS, the objective pursued by the
local search phase is “quickly eliminating unnecessary search space as much as possi-
ble.” It can provide an answer to the question “In which small region of the solution
space is the optimal solution located?” in time of O n2ð Þ. The objective of the exhaus-
tive search phase is “identifying the best tour in the remaining search space.” It can
provide an anwer to the question “Which is the best tour in this small region?” in time
of O n2ð Þ. All together, the ABSS can answer the question “Is this tour the best tour in
the solution space?” in time of O n2ð Þ. Therefore, the ABSS is probably with comput-
ing complexity of O n2ð Þ and memory space requirement of O n2ð Þ. This suggests that
the TSP might not be as complex as we might have expected.

7. Conclusion

Advances in computational techniques on the determination of the global opti-
mum for an optimization problem can have great impact on many scientific and
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engineering fields. Although both the TSP and heuristic local search algorithms
have huge literature, there is still a variety of open problems. Numerous experts
have made huge advance on the TSP research, but two fundamental questions of the
TSP remain essentially open: “How can we find the optimal tours in the solution
space, and how do we know they are optimal?”

The P-vs-NP problem is about how fast we can search through a huge number of
solutions in the solution space [34]. Do we ever need to explore all the possibilities
of the problem to find the optimal one? Actually, the P-vs-NP problem asks
whether, in general, we can find a method that completely searches only the region
where the optimal points are located [34–36]. Most people believe P 6¼ NP because
we have made little fundamental progress in the area of exhaustive search. Modern
computers can greatly speed up the search, but the extremely large solution space
would still require geologic search time to find the exact optimal solution on the
fastest machines imaginable. A new point of view is needed to improve our capacity
to tackle these difficulty problems. This paper describe a new idea: using efficient
local search process to effectively reduce the search space for exhaustive search. The
concept of solution attractor in heuristic local search systems may change the way
we think about both local search and exhaustive search. Heuristic local search is an
efficient search system, while exhaustive search is an effective search system. The
key is how we combines these two systems into one system beautifully to conquer
the fundamental issues of the hard optimization problems. In the TSP case, the edge
matrix E, a problem-specific data structure, plays a critical role of reducing the
search space and transforming local search to global search.

The ABSS is designed for the TSP. However, the concepts and formulation
behind the search algorithm can be used for any combinatorial optimization
problem requiring the search of a node permutation in a graph.

Author details

Weiqi Li
School of Management, University of Michigan-Flint, Flint, USA

*Address all correspondence to: weli@umich.edu

©2021 TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

21

How to Solve the Traveling Salesman Problem
DOI: http://dx.doi.org/10.5772/intechopen.96129



huge number of total possibilities in the solution space. The exhaustive search phase
can find the exact globally optimal tours for the problem instance after a limited
number of search steps.

The exhaustive search phase can use any enumerative technique. However, the
edge configuration of E can be easily searched by the depth-first tree search algo-
rithm. One of the advantages of depth-first tree search is less memory requirement
since only the nodes on the current path are stored. When using tree-search algo-
rithm, we usually use branching factor, average branching factor, or effective
branching factor to measure the computing complexity of the algorithm [30–33]. In
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Chapter 2

Opinion Dynamics and the
Inevitability of a Polarised and
Homophilic Society
Rafael Prieto Curiel

Abstract

A polarised society is frequently observed among ideological extremes, despite
individual and collective efforts to reach a consensual opinion. Human factors, such
as the tendency to interact with similar people and the reinforcement of such
homophilic interactions or the selective exposure and assimilation to distinct views
are some of the mechanisms why opinions might evolve into a more divergent
distribution. A complex model in which individuals are exposed to alternating
waves of propaganda which fully support different extreme views is considered
here within an opinion dynamics model. People exposed to different extreme nar-
ratives adopt and share them with their peers based on the persuasiveness of the
propaganda and are mixed with their previous opinions based on the volatility of
opinions to form a new individual view. Social networks help capture elements such
as homophily, whilst persuasiveness and memory capture bias assimilation and the
exposure to ideas inside and outside echo chambers. The social levels of homophily
and polarisation after iterations of people being exposed to extreme narratives
define distinct trajectories of society becoming more or less homophilic and
reaching extremism or consensus. There is extreme sensitivity to the parameters so
that a small perturbation to the persuasiveness or the memory of a network in
which consensus is reached could lead to the polarisation of opinions, but there is
also unpredictability of the system since even under the same starting point, a
society could follow substantially different trajectories and end with a consensual
opinion or with extreme polarising views.

Keywords: Opinion dynamics, polarisation, homophily, consensus, diffusion,
interaction network

1. Introduction

Modelling some aspects of our society is challenging at an individual and at a
collective level. Every idea, every human feeling and every interaction is so unique
that measuring and modelling human constructs such as freedom, love, traditions,
friendship, power, or fear is defying from its basis. Obtaining a generalisation or an
abstraction, such as physical laws, which apply at a social level is frequently not
feasible. Two equal drops of water will act the same under similar circumstances,
but no two individuals are so similar as to ensure they feel the same, think the same
or react the same to some circumstances. Social settings, as opposed to physical

25



Chapter 2

Opinion Dynamics and the
Inevitability of a Polarised and
Homophilic Society
Rafael Prieto Curiel

Abstract

A polarised society is frequently observed among ideological extremes, despite
individual and collective efforts to reach a consensual opinion. Human factors, such
as the tendency to interact with similar people and the reinforcement of such
homophilic interactions or the selective exposure and assimilation to distinct views
are some of the mechanisms why opinions might evolve into a more divergent
distribution. A complex model in which individuals are exposed to alternating
waves of propaganda which fully support different extreme views is considered
here within an opinion dynamics model. People exposed to different extreme nar-
ratives adopt and share them with their peers based on the persuasiveness of the
propaganda and are mixed with their previous opinions based on the volatility of
opinions to form a new individual view. Social networks help capture elements such
as homophily, whilst persuasiveness and memory capture bias assimilation and the
exposure to ideas inside and outside echo chambers. The social levels of homophily
and polarisation after iterations of people being exposed to extreme narratives
define distinct trajectories of society becoming more or less homophilic and
reaching extremism or consensus. There is extreme sensitivity to the parameters so
that a small perturbation to the persuasiveness or the memory of a network in
which consensus is reached could lead to the polarisation of opinions, but there is
also unpredictability of the system since even under the same starting point, a
society could follow substantially different trajectories and end with a consensual
opinion or with extreme polarising views.

Keywords: Opinion dynamics, polarisation, homophily, consensus, diffusion,
interaction network

1. Introduction

Modelling some aspects of our society is challenging at an individual and at a
collective level. Every idea, every human feeling and every interaction is so unique
that measuring and modelling human constructs such as freedom, love, traditions,
friendship, power, or fear is defying from its basis. Obtaining a generalisation or an
abstraction, such as physical laws, which apply at a social level is frequently not
feasible. Two equal drops of water will act the same under similar circumstances,
but no two individuals are so similar as to ensure they feel the same, think the same
or react the same to some circumstances. Social settings, as opposed to physical

25



observed ones, often lack of measuring instruments and units, it is almost impossi-
ble to repeat experiments and so transforming our knowledge about society into
simple, absolute, and universal descriptions is often unimaginable [1]. Social models
are inevitably incomplete and inaccurate, because of scientific limitations and a lack
of data [2] and because conventional scientific approaches cannot be applied to
many of the problems faced by our society [3]. Furthermore, just a few years ago it
was impossible to use the right amount of data or to model more than just a few
aspects of the individuals, but today we are capable of simulating large human
systems [4] with more complex interactions between its members and its environ-
ment [5]; to understand the emergence of crowd behaviour in different situations
and to challenge and, in some cases, to measure, some of the theories which are
frequently applied across some scientific fields [6]. Models of collective human
behaviour have gained interest as the need for them grows, their results get more
and more applied in policy and decision-making and their implications are spread
throughout more widely.

Models of social behaviour are complex. Many features observed at a social level
are an emergent behaviour that results from interactions at a personal level and
feedbacks between society and its individuals. Social behaviours are the result of
collective individual actions. People adapt rapidly to new circumstances,
transforming society as a whole on that process, for instance, by making it normal
to maintain some physical distance with others or by wearing a facemask during the
COVID-19 pandemic, but some of these social features synchronise our behaviours
as well, by the constant feedback others provide.

Modelling society usually requires a substantial level of simplification at the
microscopic, individual level in the hope to resemble the macroscopic, social
behaviour [7]. The mathematical approach is usually to study the emergent collec-
tive patterns when thousands or millions of people -or events- are considered. For
instance, a crime might be regarded as a point on a map, a friendship could be
considered as a link in a network, or a driver could be modelled by its position and
its speed; however, these simplifications made within a social context have helped
us to understand the emergent patterns of criminal hotspots [8], the small-world
phenomena observed in many social networks [9] or the formation of traffic jams
despite efforts from drivers to avoid them [10].

Opinions and the ways they are updated is a complex social system. In general,
individuals have an opinion about a specific topic, which is somehow updated when
they are confronted with other ideas. Usually, a person gains some confidence in
their views when they are reinforced by exposure to similar ideas or challenges their
beliefs when they are exposed to different opinions. The exposure to distinct views
is a social process and therefore, updating beliefs is mostly a social process as well,
which happens perhaps during a simple conversation with others, when listening to
what others say on the news, or what they publish on social media. And, as with
other complex social systems, individuals transform their society with their opin-
ion, but society transforms individuals as well. There are feedbacks between indi-
vidual opinions and their collective perceptions and ideas.

1.1 Polarised opinions

Polarisation and the way it emerges is one of the key questions in opinion
dynamics models [11]. An increasingly polarised society is observed in attitudes
towards the COVID-19 pandemic, views in favour or against a vaccine [12], the
consumption of media outlets, opinions on social media and many more. Increased
exposure to ideas within an homogeneous community intensifies their tendency to
be credulous, whether it is to scientific evidence, unsubstantiated rumours,
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inconclusive evidence or even fake news. Polarised opinions might foster confir-
mation bias, so that people with more extreme opinions tend to become more
certain in their beliefs [13] and therefore, it contributes to the proliferation of fake
news, whereby once an idea is adopted, is rarely corrected [14].

Frequently, individuals want to persuade others -even unintentionally- to adopt
an idea and so there are active efforts to reach a consensual opinion. observing
opinion dynamics only at a global scale and ignoring individual dynamics often lead
opinions to a consensus state [15], in a similar way in which temperature differences
tend to vanish. Yet, two or more contrasting ideas might be highly popular, even
if all individual efforts try to reach a consensual opinion. Polarisation, or even
fragmentation among many opinions, might be one of the emergent states of
collective opinion dynamics, where contrasting ideas might co-exist as a steady
state in a society.

Human factors such as the frequency at which we form ties with similar people
(homophily), the tendency of having similar opinions as a result of social interac-
tions (social influence), the fact that when presented with mixed evidence, indi-
viduals might perceive it as positive feedback for their initial position (biased
assimilation), or interpreting the acceptance of an idea as reinforcement when
sharing an opinion in a social environment (social feedback) are some of the causal
mechanisms why the process in which ideas are updated might be polarising,
meaning that final opinions are more divergent than initial opinions [11, 16].

1.2 Homophilic opinions

Usually, a person interacts with others of similar age, income or other
sociodemographic, behavioural, and intrapersonal characteristics, including opin-
ions or views on a certain topic [17, 18]. If a population has polarised opinions, it
means that, at a global level, there is a high probability that when two individuals
are randomly picked, they share extreme different views. However, little is known
with respect to the actual interactions. Individuals from a highly polarised society
could almost always interact with people who share similar views if polarised
bubbles rarely interact with each other. Yet, a different opinion process within the
same polarised society is observed when people frequently interact with others who
shared opposite views. On a polarised population, opinions have high homophily if
most of the individuals interact with people with similar views, and opinions are not
homophilic if people with different views interact frequently. See Figure 1, where
opinions are represented by the intensity of the colour of a node.

Polarisation between two opinions -or fragmentation among many- is detected
when opinions are observed at a global scale, but to detect if opinions are
homophilic, more local information with respect to the interactions is needed. For
instance, in the 2016 UK referendum to remain in the European Union, 52% of the
votes were to leave (a highly polarised election), but at a more local level, the area
which voted most heavily in favour of one of the options was Gibraltar (where
nearly 96% of the votes were to remain), whereas in Watford results were evenly
distributed among leave and remain. Thus, Gibraltar had the lowest polarisation,
where there was a near consensus for one of the options, but Watford had the
highest polarisation between the leave and remain options. In Watford, however,
with their highly polarised election outcome, interactions could still happen very
frequently between people with similar views, if the opinion sharing process is
highly homophilic and there are little interactions between the two voter groups.

A slightly polarised society does not have homophilic opinions, but a polarised
society might have homophilic opinions, or not, depending on how individuals
interact and the opinion profile. The relevance of opinion homophily stems from
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the fact that in a highly polarised population, most individuals might not be aware
that so many people with different views even exist, whereas in a polarised society
with little levels of homophily, encounters between people with opposite views
happen frequently. Furthermore, a highly polarised society might be a steady state
of some opinion dynamics but given the right circumstances (parameters) that state
could be highly homophilic or a state in which most individuals interact frequently
with people with different views.

Social media and other technological changes could increase exposure to diverse
perspectives [19], but at the same time facilitate some mechanisms, such as the
creation of links or friendships in the network, filter algorithms and rank informa-
tion which may accelerate the formation of homophilic communities [16, 20]. Peo-
ple frequently aggregate in groups of interest, and those existent communities
frequently adopt narratives from different topics, reinforcing polarisation across
distinct themes, for instance, political ideology and perceptions with respect to the
COVID-19 pandemic [21, 22]. People interacting with homogeneous communities
tend to grow more extreme opinions and become more certain in their beliefs [13]
which can favour the spread of misinformation from partisan media and increase
animosity within the population [23]. For COVID-19, for example, most of the
misinformation detected involves reconfigurations, where existing (often true)
facts are adjusted to fit different narratives [24] which are then reproduced by large
homophilic groups as facts. Massive misinformation is becoming one of the main
threats to our society [14, 25, 26] which might be fostered by an increasingly
homophilic opinion dynamic process and a polarised society.

Figure 1.
Opinions (represented by the different colours of the nodes) are shared between individuals who interact (if
there is a link between the nodes). Different states in which opinions are distributed show a small polarisation
(left part, where most individuals have similar views) or high polarisation (right part, where opinions are split
in half) and might show low homophily (bottom part, where opposite opinions are frequently shared among
interacting individuals) or high homophily (top part, where opposite opinions are rarely shared among
connected nodes).
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2. Modelling opinions and its dynamics

Opinion formation has been studied from many angles and different mathemat-
ical techniques, including mean-field theory and kinetic models of opinion forma-
tion [27], or by agents on a social network. Individual opinions on a certain topic are
usually modelled as a single-valued number contained in some closed interval which
represents extreme (opposing) opinions, for example, left–right leaning voters [28],
the level of production of an employee in a plant [7] or perceptions between
security and insecurity [29]. The process of opinion updating then is modelled as
the result of interaction with other views, a process of self-thinking, some memory
loss, or external factors. Interactions between individuals are usually modelled on
some social structure, such as a network, considering some spatial proximity, or
considering some social aspects, such as the level of influence of one individual to
others [30]. A long-term, steady distribution of opinions is usually obtained, either
as an analytical solution to some differential equations or through simulations,
which reveals among others, the formation of opinion clusters, political segregation
[31], vaccine hesitancy [12], the use of certain tools [32], the spread of fear of crime
more as a result of opinion dynamics than crime itself [29] or even the diffusion of
fake news [14].

2.1 The key ingredients in opinion dynamics models

There are four ingredients in opinion dynamics models [30, 31]:

1.Individual opinions - Modelled usually as a number, say si tð Þ∈ �1, 1½ � for
individual i at time t, based on the extremes of an interval, �1 and þ1, which
are identified as opposing opinions, for instance, the levels of support or
opposition for an idea, perceptions of security or insecurity, or left–right
leaning political views. Other approaches include multi-dimensional views or
discrete opinions.

2.External or individual forces - External forces such as exposure to news
sources [33], or events such as suffering a crime [29] or an accident, and
individual forces, such as memory loss may cause an individual to update their
views about certain topics.

3.Updating process as interactions with others - Exposure to different ideas is
frequently considered as the updating mechanism of opinions. Frequently,
through interactions with others, person i finds a distinct opinion, s j tð Þ, and
might update their own views according to some function based on their
opinion si tð Þ and the “new” one, as si tþ 1ð Þ ¼ f si tð Þ, s j tð Þ

� �
, where usually the

function f is assumed to get opinion si closer to s j as a result of some consensus
effort. Interactions are frequently modelled on some network, where two
connected nodes (individuals) share opinions with (some) of its adjacent
nodes. The network structure and whether it is directional thus play a role in
the updating process.

4.Metrics - From the collective opinions, or “opinion profile”, S tð Þ ¼
s1 tð Þ, s2 tð Þ, … , sN tð Þð Þ, usually its mean S tð Þ and other metrics are frequently
analysed, perhaps dividing by some population groups or node attributes,
usually as a long-run behaviour of the dynamics.
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� �
, where usually the

function f is assumed to get opinion si closer to s j as a result of some consensus
effort. Interactions are frequently modelled on some network, where two
connected nodes (individuals) share opinions with (some) of its adjacent
nodes. The network structure and whether it is directional thus play a role in
the updating process.

4.Metrics - From the collective opinions, or “opinion profile”, S tð Þ ¼
s1 tð Þ, s2 tð Þ, … , sN tð Þð Þ, usually its mean S tð Þ and other metrics are frequently
analysed, perhaps dividing by some population groups or node attributes,
usually as a long-run behaviour of the dynamics.
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Although some analytical results are available [27, 28], the dynamics are usually
simulated on a network. The technique allows considering individual aspects, such
as assertiveness, persuasiveness, supportiveness, extremists or opinion volatility
[28, 31, 34, 35].

2.1.1 Measuring polarisation and homophily

A group might reach an agreement or consensus on some opinions if the majority
of the individuals share similar views, whereas a group might be polarised if opin-
ions are divergent, with extremism being the state in which opinions are mostly
concentrated among the two extremes. One way to measure the level of polarisation
in a population by the variance of the opinion profile, where a large variance means
a more polarised society and a small variance means consensus. Formally, the
polarisation Φ of an opinion profile S is given by

Φ Sð Þ ¼ Var Sð Þ ¼ 1
N

XN
i¼1

si � sð Þ2: (1)

For opinions bounded inside the �1,þ1½ � interval, very small populations could
have Φ Sð Þ values larger than 1, but for a population with more than 100 individuals,
Φ< 1:01 and so for large enough populations, it might be considered that Φ obtains
values in the 0 (if there is consensus) to 1 (if there is extremism) interval. If a
random opinion is sampled for each individual sk 0ð Þ∈ �1,þ1½ �, a 95% interval of the
polarisation is Φ Sð Þ∈ 0:327, 0:338½ � and therefore, the distribution of opinions S is
classified as consensus if Φ Sð Þ≈0; consensual if Φ Sð Þ< 1=3; homogeneous if Φ Sð Þ≈ 1=3,
so that the polarisation is similar to a random distribution of opinions; polarising if
Φ Sð Þ> 1=3 and as extremism if Φ Sð Þ≈ 1 (Figure 2).

The process of opinion dynamics has a high level of homophily if most of the
interactions happen between individuals of similar views and has a low level other-
wise. Formally, if Ai are the adjacent nodes of i, then the average opinion distance
D i experienced by i is given by

D i ¼ 1
di

X
j∈Ai

∣si � s j∣, (2)

where di is the degree of i, so that Di gives the average opinion distance from a
node to its adjacent neighbours (and define D i ¼ 0 if i has no neighbours). The
opinion homophily Λ Sð Þ is defined as

Figure 2.
Classification of collective opinions according to their distribution (represented as the height of each colour bar),
from consensus (left) where Φ Sð Þ≈0, to extremism (right) where Φ Sð Þ≈1.
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Λ Sð Þ ¼ 1� 1
N

XN
i¼1

D i, (3)

a metric suited for measuring homophily based on a continuous node attribute,
such as opinions, with high values if individuals interact with others of similar
views and has lower values (possibly negative) if interactions are more frequent
between individuals of very different views. Notice that the metric depends on the
opinion profile but also on the network topology. On a linear network, for instance,
where all nodes have two neighbours, except for the two extremes, opinions in the
�1,þ1½ � interval are highly polarised (or have extremism) if half of the individuals
have �1 and the other half have þ1 as opinions, and Φ Sð Þ≈ 1. Such opinion profile is
not homophilic with alternating opinions, S ¼ þ1,�1,þ1,�1, … ,�1ð Þ, and Λ Sð Þ ¼
�1, but a high level of homophily is observed when opposite opinions are located on
the two extremes of the network, so S ¼ þ1,þ1, … ,þ1,�1, … ,�1,�1ð Þ, in which
case, only the two neighbouring individuals located at the boundary between the
opinion groups have an interaction with a person who has a distinct opinion than
their own and so Λ Sð Þ ¼ 1� 2=N ≈ 1. The expected opinion distance between two
randomly selected opinions is 2=3, from which Λ Sð Þ≈ 1 means preferential
interactions between individuals of similar views; Λ Sð Þ> 1=3 means homophilic
interactions; Λ Sð Þ≈ 1=3 means random interactions; and Λ Sð Þ< 1=3 means
discouraged interactions between people of similar views.

2.2 An opinion dynamics model

Consider a diffusion process of opinions on a network, where the four key
ingredients (individual opinions, updating process due to individual or external
forces, interactions, and the corresponding metrics) are defined as follows. Initially,
N individuals have a randomly-distributed opinion si 0ð Þ∈ �1,þ1½ �, which represent
two extreme views on a certain topic. As external forces in the dynamics, we
consider exposure from the individuals to some “propaganda” in favour of one of
the views. Each time step, a randomly selected group of 1% of the individuals are
exposed, in an alternative sequence, to some supporting mechanism in favour of
any of the two views. It is assumed that the views fully favour one of the two
extreme opinions, so that they are considered as v1 ¼ þ1, the first force which
favours view þ1, and then v2 ¼ �1, which supports view �1 and so on, with vk ¼
� �1ð Þk. As opinion dynamics, individuals who are exposed to any of the views
(vk ¼ �1) decide whether to “trust” or to “dismiss” the views based on their current
opinion and on the persuasiveness of the views θ, where θ∈ 0, 1½ � is a parameter
which captures how seductive are the views (where large values of θ mean that
views are more seductive and individuals are more inclined to trust them and
smaller values mean that views are likely to be dismissed). Due to confirmation
bias, individuals with opinion closer to þ1 are more likely to trust a vk ¼ þ1
propaganda, as it confirms their views and more likely to ignore vl ¼ �1 propa-
ganda for the same reason. To capture confirmation bias, it is assumed that person i
with opinion si trusts view vk with probability

1þ sið Þθ
2

if vk ¼ þ1, and (4)

1� sið Þθ
2

if vk ¼ �1: (5)
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Although some analytical results are available [27, 28], the dynamics are usually
simulated on a network. The technique allows considering individual aspects, such
as assertiveness, persuasiveness, supportiveness, extremists or opinion volatility
[28, 31, 34, 35].

2.1.1 Measuring polarisation and homophily

A group might reach an agreement or consensus on some opinions if the majority
of the individuals share similar views, whereas a group might be polarised if opin-
ions are divergent, with extremism being the state in which opinions are mostly
concentrated among the two extremes. One way to measure the level of polarisation
in a population by the variance of the opinion profile, where a large variance means
a more polarised society and a small variance means consensus. Formally, the
polarisation Φ of an opinion profile S is given by

Φ Sð Þ ¼ Var Sð Þ ¼ 1
N

XN
i¼1

si � sð Þ2: (1)

For opinions bounded inside the �1,þ1½ � interval, very small populations could
have Φ Sð Þ values larger than 1, but for a population with more than 100 individuals,
Φ< 1:01 and so for large enough populations, it might be considered that Φ obtains
values in the 0 (if there is consensus) to 1 (if there is extremism) interval. If a
random opinion is sampled for each individual sk 0ð Þ∈ �1,þ1½ �, a 95% interval of the
polarisation is Φ Sð Þ∈ 0:327, 0:338½ � and therefore, the distribution of opinions S is
classified as consensus if Φ Sð Þ≈0; consensual if Φ Sð Þ< 1=3; homogeneous if Φ Sð Þ≈ 1=3,
so that the polarisation is similar to a random distribution of opinions; polarising if
Φ Sð Þ> 1=3 and as extremism if Φ Sð Þ≈ 1 (Figure 2).

The process of opinion dynamics has a high level of homophily if most of the
interactions happen between individuals of similar views and has a low level other-
wise. Formally, if Ai are the adjacent nodes of i, then the average opinion distance
D i experienced by i is given by

D i ¼ 1
di

X
j∈Ai

∣si � s j∣, (2)

where di is the degree of i, so that Di gives the average opinion distance from a
node to its adjacent neighbours (and define D i ¼ 0 if i has no neighbours). The
opinion homophily Λ Sð Þ is defined as

Figure 2.
Classification of collective opinions according to their distribution (represented as the height of each colour bar),
from consensus (left) where Φ Sð Þ≈0, to extremism (right) where Φ Sð Þ≈1.
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Λ Sð Þ ¼ 1� 1
N

XN
i¼1

D i, (3)

a metric suited for measuring homophily based on a continuous node attribute,
such as opinions, with high values if individuals interact with others of similar
views and has lower values (possibly negative) if interactions are more frequent
between individuals of very different views. Notice that the metric depends on the
opinion profile but also on the network topology. On a linear network, for instance,
where all nodes have two neighbours, except for the two extremes, opinions in the
�1,þ1½ � interval are highly polarised (or have extremism) if half of the individuals
have �1 and the other half have þ1 as opinions, and Φ Sð Þ≈ 1. Such opinion profile is
not homophilic with alternating opinions, S ¼ þ1,�1,þ1,�1, … ,�1ð Þ, and Λ Sð Þ ¼
�1, but a high level of homophily is observed when opposite opinions are located on
the two extremes of the network, so S ¼ þ1,þ1, … ,þ1,�1, … ,�1,�1ð Þ, in which
case, only the two neighbouring individuals located at the boundary between the
opinion groups have an interaction with a person who has a distinct opinion than
their own and so Λ Sð Þ ¼ 1� 2=N ≈ 1. The expected opinion distance between two
randomly selected opinions is 2=3, from which Λ Sð Þ≈ 1 means preferential
interactions between individuals of similar views; Λ Sð Þ> 1=3 means homophilic
interactions; Λ Sð Þ≈ 1=3 means random interactions; and Λ Sð Þ< 1=3 means
discouraged interactions between people of similar views.

2.2 An opinion dynamics model

Consider a diffusion process of opinions on a network, where the four key
ingredients (individual opinions, updating process due to individual or external
forces, interactions, and the corresponding metrics) are defined as follows. Initially,
N individuals have a randomly-distributed opinion si 0ð Þ∈ �1,þ1½ �, which represent
two extreme views on a certain topic. As external forces in the dynamics, we
consider exposure from the individuals to some “propaganda” in favour of one of
the views. Each time step, a randomly selected group of 1% of the individuals are
exposed, in an alternative sequence, to some supporting mechanism in favour of
any of the two views. It is assumed that the views fully favour one of the two
extreme opinions, so that they are considered as v1 ¼ þ1, the first force which
favours view þ1, and then v2 ¼ �1, which supports view �1 and so on, with vk ¼
� �1ð Þk. As opinion dynamics, individuals who are exposed to any of the views
(vk ¼ �1) decide whether to “trust” or to “dismiss” the views based on their current
opinion and on the persuasiveness of the views θ, where θ∈ 0, 1½ � is a parameter
which captures how seductive are the views (where large values of θ mean that
views are more seductive and individuals are more inclined to trust them and
smaller values mean that views are likely to be dismissed). Due to confirmation
bias, individuals with opinion closer to þ1 are more likely to trust a vk ¼ þ1
propaganda, as it confirms their views and more likely to ignore vl ¼ �1 propa-
ganda for the same reason. To capture confirmation bias, it is assumed that person i
with opinion si trusts view vk with probability

1þ sið Þθ
2

if vk ¼ þ1, and (4)

1� sið Þθ
2

if vk ¼ �1: (5)
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With this condition, a person with opinion si ¼ 0:4 trusts view vk ¼ þ1 with
probability 0:7θ, but trust view v j ¼ �1 with probability 0:3θ, for some θ which
depends on how seductive the corresponding propaganda is, so that individuals are
more inclined to trust views which favour their own opinions. Individuals who are
seduced by any propaganda, share it with all their contacts as an active effort to
persuade them, say by sharing or posting the views on social media. Individuals who
dismiss propaganda, make a permanent decision to ignore it, do not update their
views and do not share it with their contacts. Thus, when individuals are exposed
for the first time to the views, they make a permanent choice whether to accept it
(and update their views and share it) or to ignore it (and do nothing). Therefore,
after 1% of the individuals are first exposed to propaganda, some individuals trust
and share it with their contacts and so on until no one is exposed for the first time to
that propaganda. It is assumed that the sharing mechanism (social media, say)
works faster than the creation of new propaganda, so that by the time a new view
vkþ1 is created and distributed, the dynamics of the previous (opposing) propa-
ganda vk has finished. Each wave of propaganda follows a similar diffusion process
as the SIR model used in epidemics, where a small percentage of the individuals are
initially exposed. The “infection” (the propaganda) passes through individuals, and
the distribution of the recovered individuals is observed [12, 32].

Individuals who accept some propaganda at time t update their views according
to the volatility of their opinions, μ∈ 0, 1½ �, such that individuals who accepted view
vk update their opinion between t and tþ 1 according to

si tþ 1ð Þ ¼ μvk þ 1� μð Þsi tð Þ, (6)

so that if opinions are volatile (that is, individuals easily update their views, with
a large value of μ), then most of their opinion at time tþ 1 depends only on the
views of the propaganda they accepted, but with more rigid opinions (individuals
change little their past views, with small μ), then the impact of propaganda becomes
small. For example, for view vk ¼ þ1 and with volatility μ ¼ 0:5, a person with
opinion si tð Þ ¼ 0:8 updates their view to si tþ 1ð Þ ¼ 0:9 if they accept vk, whereas a
person with view s j tð Þ ¼ �0:8 updates their view to s j tþ 1ð Þ ¼ 0:1, meaning that a
person with very different views from certain propaganda is more difficult to
convince, but once convinced, the impact in their opinion is larger (Figure 3).

A crucial element in the opinion models is the way in which interactions
between individuals are structured. Society has opinion clusters -for example, a

Figure 3.
Probability of trusting any of the two types of propaganda, vk ¼ �1, represented as the two triangles on the left,
based on the individual opinions, represented as the colour of the nodes and based on how seductive are two
views, θ. Propaganda which supports the views of a person is more likely to be trusted by the person, but still, all
propaganda has a certain level of persuasiveness, θ (the maximum height of the triangles). The impact of
trusting some propaganda on individual opinions is higher if opinions are more volatile, that is, higher values of
μ and has little impact if opinions are more rigid, which is shown as a slight colour change for rigid opinions and
a drastic colour change for volatile opinions on the right.
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social media group in which information flows easily-, has opinion hubs -
influencers, for example, who reach a large population- is likely to be strongly
connected with many shortcuts between people who are not directly connected and
therefore, the network in which propaganda is shared is also a key element in the
model. Four network topologies withN ¼ 2, 000 nodes are analysed here: (1) a fully
connected network; (2) a proximity network (nodes are located randomly on a
square and pairs at a distance smaller than a certain threshold are connected); (3) a
small-world network and (4) a scale-free network.

The model has two parameters: the persuasiveness θ, which is assumed to be the
same for all propaganda, and the volatility of opinions μ, which is assumed to be the
same for all individuals. For some values of θ and μ and for some randomly assigned
initial opinions, individuals are exposed to a total of 128 waves of propaganda (64
supporting each view).

3. Results

The trajectory of a society in terms of its polarisation Φ and its homophily Λ
after each round of propaganda shows that for different network topologies,
opinion dynamics yields different states. On a fully connected network, in which
there is no relevant network structure, each round of propaganda reaches all indi-
viduals (if at least one person trusted it) and seduce some of them based only on
their current opinion (Figure 4). After some propaganda rounds, most individuals
have an opinion either close to þ1 or to �1 so that polarisation is eventually
maximum. Also, since all individuals interact with others, the homophily is reduced
when polarisation increases. However, on some other topologies, there is a different
impact of each wave of propaganda, particularly after repetition. On a proximity
network, most rounds of propaganda tend to increase the level of polarisation, but
after repetition, most of the propaganda rounds also increase the level of
homophily. Thus, after many rounds, the network has regions with similar
(extreme) views and therefore, at a local level, nodes are mostly connected to others
with similar views. On a small-world network and a scale-free network, most
rounds of propaganda increase the level of polarisation, but the presence of network
shortcuts and hubs reduce considerably the homophily so that most of the trajecto-
ries are less homophilic than its initial levels after 128 rounds of propaganda.

Figure 4.
Trajectories of social polarisation (horizontal axis) and homophily (vertical axis) simulated in four different
network topologies. Each realisation for some persuasiveness, θ and opinion volatility μ is marked with a curve.
All curves or realisations have a nearby starting point, which marks the polarisation and homophily of a
random distribution of opinions. For each topology, the four quadrants with a higher (or lower) polarisation
and a higher (or lower) homophily are coloured and the three trajectories with the highest and lowest
polarisation and the highest homophily are marked with thick curves.
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With this condition, a person with opinion si ¼ 0:4 trusts view vk ¼ þ1 with
probability 0:7θ, but trust view v j ¼ �1 with probability 0:3θ, for some θ which
depends on how seductive the corresponding propaganda is, so that individuals are
more inclined to trust views which favour their own opinions. Individuals who are
seduced by any propaganda, share it with all their contacts as an active effort to
persuade them, say by sharing or posting the views on social media. Individuals who
dismiss propaganda, make a permanent decision to ignore it, do not update their
views and do not share it with their contacts. Thus, when individuals are exposed
for the first time to the views, they make a permanent choice whether to accept it
(and update their views and share it) or to ignore it (and do nothing). Therefore,
after 1% of the individuals are first exposed to propaganda, some individuals trust
and share it with their contacts and so on until no one is exposed for the first time to
that propaganda. It is assumed that the sharing mechanism (social media, say)
works faster than the creation of new propaganda, so that by the time a new view
vkþ1 is created and distributed, the dynamics of the previous (opposing) propa-
ganda vk has finished. Each wave of propaganda follows a similar diffusion process
as the SIR model used in epidemics, where a small percentage of the individuals are
initially exposed. The “infection” (the propaganda) passes through individuals, and
the distribution of the recovered individuals is observed [12, 32].

Individuals who accept some propaganda at time t update their views according
to the volatility of their opinions, μ∈ 0, 1½ �, such that individuals who accepted view
vk update their opinion between t and tþ 1 according to

si tþ 1ð Þ ¼ μvk þ 1� μð Þsi tð Þ, (6)

so that if opinions are volatile (that is, individuals easily update their views, with
a large value of μ), then most of their opinion at time tþ 1 depends only on the
views of the propaganda they accepted, but with more rigid opinions (individuals
change little their past views, with small μ), then the impact of propaganda becomes
small. For example, for view vk ¼ þ1 and with volatility μ ¼ 0:5, a person with
opinion si tð Þ ¼ 0:8 updates their view to si tþ 1ð Þ ¼ 0:9 if they accept vk, whereas a
person with view s j tð Þ ¼ �0:8 updates their view to s j tþ 1ð Þ ¼ 0:1, meaning that a
person with very different views from certain propaganda is more difficult to
convince, but once convinced, the impact in their opinion is larger (Figure 3).

A crucial element in the opinion models is the way in which interactions
between individuals are structured. Society has opinion clusters -for example, a

Figure 3.
Probability of trusting any of the two types of propaganda, vk ¼ �1, represented as the two triangles on the left,
based on the individual opinions, represented as the colour of the nodes and based on how seductive are two
views, θ. Propaganda which supports the views of a person is more likely to be trusted by the person, but still, all
propaganda has a certain level of persuasiveness, θ (the maximum height of the triangles). The impact of
trusting some propaganda on individual opinions is higher if opinions are more volatile, that is, higher values of
μ and has little impact if opinions are more rigid, which is shown as a slight colour change for rigid opinions and
a drastic colour change for volatile opinions on the right.
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social media group in which information flows easily-, has opinion hubs -
influencers, for example, who reach a large population- is likely to be strongly
connected with many shortcuts between people who are not directly connected and
therefore, the network in which propaganda is shared is also a key element in the
model. Four network topologies withN ¼ 2, 000 nodes are analysed here: (1) a fully
connected network; (2) a proximity network (nodes are located randomly on a
square and pairs at a distance smaller than a certain threshold are connected); (3) a
small-world network and (4) a scale-free network.

The model has two parameters: the persuasiveness θ, which is assumed to be the
same for all propaganda, and the volatility of opinions μ, which is assumed to be the
same for all individuals. For some values of θ and μ and for some randomly assigned
initial opinions, individuals are exposed to a total of 128 waves of propaganda (64
supporting each view).

3. Results

The trajectory of a society in terms of its polarisation Φ and its homophily Λ
after each round of propaganda shows that for different network topologies,
opinion dynamics yields different states. On a fully connected network, in which
there is no relevant network structure, each round of propaganda reaches all indi-
viduals (if at least one person trusted it) and seduce some of them based only on
their current opinion (Figure 4). After some propaganda rounds, most individuals
have an opinion either close to þ1 or to �1 so that polarisation is eventually
maximum. Also, since all individuals interact with others, the homophily is reduced
when polarisation increases. However, on some other topologies, there is a different
impact of each wave of propaganda, particularly after repetition. On a proximity
network, most rounds of propaganda tend to increase the level of polarisation, but
after repetition, most of the propaganda rounds also increase the level of
homophily. Thus, after many rounds, the network has regions with similar
(extreme) views and therefore, at a local level, nodes are mostly connected to others
with similar views. On a small-world network and a scale-free network, most
rounds of propaganda increase the level of polarisation, but the presence of network
shortcuts and hubs reduce considerably the homophily so that most of the trajecto-
ries are less homophilic than its initial levels after 128 rounds of propaganda.

Figure 4.
Trajectories of social polarisation (horizontal axis) and homophily (vertical axis) simulated in four different
network topologies. Each realisation for some persuasiveness, θ and opinion volatility μ is marked with a curve.
All curves or realisations have a nearby starting point, which marks the polarisation and homophily of a
random distribution of opinions. For each topology, the four quadrants with a higher (or lower) polarisation
and a higher (or lower) homophily are coloured and the three trajectories with the highest and lowest
polarisation and the highest homophily are marked with thick curves.
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For some of the trajectories, it is observed that the first few rounds of propa-
ganda increase the polarisation and decrease the homophily. After many rounds of
propaganda, the level of homophily might increase, indicating the formation of
clusters of nodes with similar opinions, particularly on a proximity network. In
some cases, polarisation might be decreased, but only after homophily has
decreased (and not the other way around), meaning that first, the observed changes
in opinion dynamics happen at a local level and then, they might be perceived at a
global scale. Notice, however, that very few trajectories reach less polarisation than
their starting point. Thus, propaganda or similar external forces tend to increase
polarisation and frequently will produce a higher level of polarisation than the one
observed with a random distribution of opinions.

3.1 Parameter space

The observed levels of polarisation and homophily depend on the persuasiveness
of the propaganda θ, and the opinion volatility μ. On a proximity network, for
instance, with highly persuasive propaganda (θ≈ 1) and volatile opinions (μ≈ 1)
after only a few rounds of propaganda, there is a highly polarised society, with
highly homophilic interactions. However, if propaganda is not as seductive or if
individuals do not update their views easily, it takes several rounds of propaganda
to observe a polarised society (Figure 5).

For some values of θ and μ, there is extreme sensitivity to the parameters. On a
proximity network, with higher values of the persuasiveness of propaganda θ,

Figure 5.
Observed levels of polarisation (left) and homophily (middle) on a proximity network according to some values of
the persuasiveness of propaganda θ (horizontal axis) and the volatility of opinions μ (vertical axis) after 8, 32 and
128 rounds of propaganda. Higher levels of polarisation and homophily are darker, representing extreme views and
a homophilic society respectively, and lower levels of polarisation and homophily are lighter, representing consensus
and frequent exchanges between people with different views. For the same values of θ ¼ 0:85 and μ ¼ 0:35, with
the same initial (random) opinions, 250 realisations of the dynamics follow different trajectories (right), where the
levels of polarisation and homophily after 8, 32 and 128 rounds of propaganda are highlighted.
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society might be alternatively highly polarised or close to a consensus after many
rounds of propaganda with very small changes in the two parameters. Furthermore,
even with the same initial opinions and with the same values of θ and μ, society
might reach very different levels of polarisation and homophily (right part of
Figure 5). Individuals exposed to propaganda are randomly picked and according to
their opinion, they might be seduced by it and share it with their contacts, or ignore
it, thus, altering the outcome after that round of propaganda. With only a few
waves of propaganda, the outcome might be similar, but those small changes are
cumulative and so after many rounds, the outcome might be a society close to
extremism or even close to consensus, even if the starting point is the same.

The first rounds of propaganda decrease the homophily of society so that people
with some extreme view have frequent interactions with others with different
views. As the number of propaganda rounds evolves, opinion clusters are formed,
and so interactions become more and more frequent between individuals with
similar views. Thus, even if at a global scale the level of polarisation is increasing,
after many rounds of propaganda, people might be less aware of the existence and
abundance of different views. Extreme opinions might become more frequent
because of propaganda. A similar -although less pronounced- polarising and
homophilic society might be frequently observed on a scale-free and a small-world
network, although the presence of hubs and shortcuts in the network reduces the
creation of opinion clusters (Figure 6).

The fully-connected network helps to observe the dynamics of opinions without
any relevant network structure. With some level of persuasiveness θ, and opinion
volatility μ, society eventually reach polarisation. With more rounds of propaganda,
polarisation increases up to extremism, and only with no persuasiveness (θ ¼ 0) or
no volatility (μ ¼ 0) society remains without extremism. However, for different
network topologies, propaganda might have a different impact. Particularly in the
case of a proximity network (with high values of θ) and in the case of a scale-free
network (with medium values of θ) propaganda might increase homophily and in
some cases, reduce polarisation.

Figure 6.
Observed levels of polarisation (top) and homophily (bottom) according to some values of the persuasiveness of
propaganda θ (horizontal axis) and the volatility of opinions μ (vertical axis) after 128 rounds of propaganda.
Four network topologies are considered, a fully-connected, a proximity, a small-world and a scale-free network
from left to right.
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For some of the trajectories, it is observed that the first few rounds of propa-
ganda increase the polarisation and decrease the homophily. After many rounds of
propaganda, the level of homophily might increase, indicating the formation of
clusters of nodes with similar opinions, particularly on a proximity network. In
some cases, polarisation might be decreased, but only after homophily has
decreased (and not the other way around), meaning that first, the observed changes
in opinion dynamics happen at a local level and then, they might be perceived at a
global scale. Notice, however, that very few trajectories reach less polarisation than
their starting point. Thus, propaganda or similar external forces tend to increase
polarisation and frequently will produce a higher level of polarisation than the one
observed with a random distribution of opinions.

3.1 Parameter space

The observed levels of polarisation and homophily depend on the persuasiveness
of the propaganda θ, and the opinion volatility μ. On a proximity network, for
instance, with highly persuasive propaganda (θ≈ 1) and volatile opinions (μ≈ 1)
after only a few rounds of propaganda, there is a highly polarised society, with
highly homophilic interactions. However, if propaganda is not as seductive or if
individuals do not update their views easily, it takes several rounds of propaganda
to observe a polarised society (Figure 5).

For some values of θ and μ, there is extreme sensitivity to the parameters. On a
proximity network, with higher values of the persuasiveness of propaganda θ,

Figure 5.
Observed levels of polarisation (left) and homophily (middle) on a proximity network according to some values of
the persuasiveness of propaganda θ (horizontal axis) and the volatility of opinions μ (vertical axis) after 8, 32 and
128 rounds of propaganda. Higher levels of polarisation and homophily are darker, representing extreme views and
a homophilic society respectively, and lower levels of polarisation and homophily are lighter, representing consensus
and frequent exchanges between people with different views. For the same values of θ ¼ 0:85 and μ ¼ 0:35, with
the same initial (random) opinions, 250 realisations of the dynamics follow different trajectories (right), where the
levels of polarisation and homophily after 8, 32 and 128 rounds of propaganda are highlighted.
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society might be alternatively highly polarised or close to a consensus after many
rounds of propaganda with very small changes in the two parameters. Furthermore,
even with the same initial opinions and with the same values of θ and μ, society
might reach very different levels of polarisation and homophily (right part of
Figure 5). Individuals exposed to propaganda are randomly picked and according to
their opinion, they might be seduced by it and share it with their contacts, or ignore
it, thus, altering the outcome after that round of propaganda. With only a few
waves of propaganda, the outcome might be similar, but those small changes are
cumulative and so after many rounds, the outcome might be a society close to
extremism or even close to consensus, even if the starting point is the same.

The first rounds of propaganda decrease the homophily of society so that people
with some extreme view have frequent interactions with others with different
views. As the number of propaganda rounds evolves, opinion clusters are formed,
and so interactions become more and more frequent between individuals with
similar views. Thus, even if at a global scale the level of polarisation is increasing,
after many rounds of propaganda, people might be less aware of the existence and
abundance of different views. Extreme opinions might become more frequent
because of propaganda. A similar -although less pronounced- polarising and
homophilic society might be frequently observed on a scale-free and a small-world
network, although the presence of hubs and shortcuts in the network reduces the
creation of opinion clusters (Figure 6).

The fully-connected network helps to observe the dynamics of opinions without
any relevant network structure. With some level of persuasiveness θ, and opinion
volatility μ, society eventually reach polarisation. With more rounds of propaganda,
polarisation increases up to extremism, and only with no persuasiveness (θ ¼ 0) or
no volatility (μ ¼ 0) society remains without extremism. However, for different
network topologies, propaganda might have a different impact. Particularly in the
case of a proximity network (with high values of θ) and in the case of a scale-free
network (with medium values of θ) propaganda might increase homophily and in
some cases, reduce polarisation.

Figure 6.
Observed levels of polarisation (top) and homophily (bottom) according to some values of the persuasiveness of
propaganda θ (horizontal axis) and the volatility of opinions μ (vertical axis) after 128 rounds of propaganda.
Four network topologies are considered, a fully-connected, a proximity, a small-world and a scale-free network
from left to right.
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4. Conclusions

Social models are a simplification of very complex processes which happen at an
individual level but might be able to capture some collective emergent aspects. In
terms of opinion dynamics, modelling individual views as a number, simplifying
external forces such as propaganda, simulating interactions and a process of opinion
updating let us detect emergent patterns, including an increase in the global levels
of polarisation and the frequency of homophilic interactions between individuals.

The network structure plays a significant role, as the emergence of homophilic
clusters which reinforce their opinions is detected, particularly on a network where
there is a large distance between nodes, such as a proximity network.

The observed results in terms of the trajectories and the observed levels of
polarisation and homophily after many rounds of propaganda show that there
might be a high sensitivity concerning the parameters. Two simulations under the
same network structure and even the same initial opinions and parameters might
follow different trajectories and end with substantially distinct levels of homophily
and polarisation. The model initially exposes 1% of the population to some propa-
ganda and depending on who is exposed, the dynamic changes and eventually reach
very different states. For some regions in the parameter space, there is
unpredictability in the state in which society will be after propaganda.

In the simulated networks, the average degree is 7.6 for the proximity network
and 10 for the small-world and the scale-free network. The intensity of interactions,
measured as the degree of the nodes, accelerates or frictions the diffusion of propa-
ganda, and thus, accelerates of frictions polarisation and homophily as well. A less-
connected society is more prone to the creation of homophilic clusters.

4.1 What is different between a highly polarised society and one with little
polarisation

On a highly polarised society, individuals become “immune” to propaganda
which does not support their views and dismiss it easily, whereas propaganda which
supports their views is confirmation of their beliefs and takes individuals into even
more extreme and plarised views. On a polarised society, even with little levels of
homophily (meaning that individuals are likely to be exposed to both types of
propaganda), individuals are eventually too biased in favour of any of the extreme
views, which becomes too difficult to change.

On a society with little levels of polarisation, views could either have a consensus
on one of the two extremes, in which case, propaganda in favour of any of the
opinions has little impact. This case happens when one of the two views becomes
dominant at early stages, in which case, individuals also become “immune” to
propaganda (and since the first propaganda they are exposed is þ1, that view is
slightly more likely to become dominant in the long run).

However, the most frequently observed consensus is one in which barely anyone
has extreme views, propaganda in favour of the two views flows between most
individuals and they update their opinion accordingly, but not enough to reject
further waves of propaganda and keep updating their opinion.
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Exploring Links between 
Complexity Constructs and 
Children’s Knowledge Formation: 
Implications for Science Learning
Michael J. Droboniku, Heidi Kloos, Dieter Vanderelst  
and Blair Eberhart

Abstract

This essay brings together two lines of work—that of children’s cognition and 
that of complexity science. These two lines of work have been linked repeatedly in 
the past, including in the field of science education. Nevertheless, questions remain 
about how complexity constructs can be used to support children’s learning. This 
uncertainty is particularly troublesome given the ongoing controversy about how 
to promote children’s understanding of scientifically valid insights. We therefore 
seek to specify the knowledge–complexity link systematically. Our approach started 
with a preliminary step—namely, to consider issues of knowledge formation 
separately from issues of complexity. To this end, we defined central characteristics 
of knowledge formation (without considerations of complexity), and we defined 
central characteristics of complex systems (without considerations of cognition). 
This preliminary step allowed us to systematically explore the degree of alignment 
between these two lists of characteristics. The outcome of this analysis revealed 
a close correspondence between knowledge truisms and complexity constructs, 
though to various degrees. Equipped with this insight, we derive complexity 
answers to open questions relevant to science learning.

Keywords: cognitive development, science education, conceptual change,  
complex adaptive systems, thermodynamics, interdisciplinary theory

1. Introduction

We need to move toward a systems view that describes scientific concepts as 
complex.

– Andrea A. diSessa [1]

It has long been accepted that children’s knowledge formation defies straightfor-
ward processes of passive attention and associative learning [2, 3]. For example, rather 
than absorbing information indiscriminately, children will actively seek out some 
aspects of information, while ignoring others. Children can also imagine alternative 
realities, even fantasies that lack a grounding in reality [4]. This poses a problem when 
it comes to the question of how to improve children’s knowledge. For example, it 
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a close correspondence between knowledge truisms and complexity constructs, 
though to various degrees. Equipped with this insight, we derive complexity 
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1. Introduction

We need to move toward a systems view that describes scientific concepts as 
complex.

– Andrea A. diSessa [1]

It has long been accepted that children’s knowledge formation defies straightfor-
ward processes of passive attention and associative learning [2, 3]. For example, rather 
than absorbing information indiscriminately, children will actively seek out some 
aspects of information, while ignoring others. Children can also imagine alternative 
realities, even fantasies that lack a grounding in reality [4]. This poses a problem when 
it comes to the question of how to improve children’s knowledge. For example, it 
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remains unclear how to support the learning of abstract science concepts, especially 
when children hold incorrect naïve beliefs about the pertinent science phenomenon 
[5]. In the current paper, we seek to contribute to this conversation by systematically 
exploring links between knowledge formation and complexity constructs.

In order to offer a relatively unbiased discussion of the complexity of knowl-
edge, we first identified central truisms about knowledge formation that are broadly 
supported by the literature. We then provided a glossary of complexity constructs 
that are potentially useful in understanding knowledge formation. Equipped with 
these two lists, we then evaluated whether facts about knowledge formation are 
anticipated by complexity constructs. In turn, this cross-tabulation served as a 
theoretical anchor to derive answers from complexity to open questions on chil-
dren’s science learning.

2. Established insights about knowledge formation

Picture a child trying to balance a beam on a fulcrum. The principle of physics 
that matters in this task is that of weight distribution in the beam. While children 
are capable of detecting the beam’s weight distribution, they sometimes focus on 
the beam’s visual symmetry instead. The result is that children have trouble balanc-
ing beams with asymmetrical weight distribution; they try to balance them at their 
geometric center instead of their center of mass. This finding illustrates established 
facts about (1) the nature of knowledge, (2) the process of knowledge acquisition, 
and (3) the process by which knowledge is changed (see Table 1 for an overview).

2.1 Nature of knowledge

A child who insists that a beam should balance at the geometric center is said to 
hold the mistaken belief that objects balance in the middle [6]. The nature of such 
a belief (or knowledge, more generally) is necessarily elusive, as it cannot be seen 
directly. For this reason, numerous models of knowledge have been proposed to 
rectify phenomenological and empirical findings (e.g., [7, 8]). Considered in the 
aggregate, the models largely agree on two characteristics of knowledge: (i) that 
knowledge is organized into structures, and (ii) that there are different kinds of 
knowledge structures. We elaborate on each of these characteristics next.

2.1.1 Truism 1: Knowledge is organized into structures

Rather than existing as encapsulated factoids, knowledge consists of interlined 
representations of experiences, also referred to as schemas or mental models [9–11]. 
Early evidence for such knowledge organization came from children’s systematic 
errors in Piaget’s classical conservation tasks [12]. Children spontaneously and 
consistently honed in on a particular variable to respond, suggesting the presence 
of mental structures that make one variable more salient than another. Numerous 
additional examples stem from errors in categorization tasks [13], causal-reasoning 
tasks [14], and learning tasks [15]. They suggest that knowledge needs to be concep-
tualized as an ordered set. A child’s belief about beam-balancing is an example of 
such a knowledge structure.

2.1.2 Truism 2: There are different types of knowledge structures

Agreement also exists that there are qualitative differences in knowledge orga-
nization. A prominent distinction is between implicit and explicit knowledge: Only 
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explicit, not implicit knowledge, can be reported on [16, 17]. Another example is 
the distinction between surface knowledge and deep knowledge: Only deep knowl-
edge, not surface knowledge, can be transferred to new situations [18, 19]. And 
yet another example is the distinction between preconceptions and misconceptions 
(e.g., [20]): While both types of knowledge lead to mistaken performance, only 
misconceptions, not preconceptions, persist [21]. These and other distinctions 
proved useful in capturing unexpected behavior, including that of balance-beam 
tasks [22].

2.2 Acquisition of knowledge

The child presented with a balance-beam task will eventually realize the rel-
evance of weight distribution and succeed in balancing off-center beams. That is to 
say, the child will eventually learn. This process of learning, like knowledge itself, 
cannot be seen directly [23]. Sure enough, there are numerous open questions and 
disagreements about how to best describe the process by which knowledge is formed 
[24]. There are, however, two characteristics of learning that are broadly agreed 
upon: (i) that knowledge is construed through the child’s activity, and (ii) that 
aspects of the context strongly affect what is being learned. We elaborate on each of 
these characteristics next.

2.2.1 Truism 3: Knowledge is construed

At first glance, knowledge appears to reflect outside information, as if outside 
information was transported into the mind directly. There is indeed suggestive 
evidence in support of such passive learning [25]. On the other hand, however, 
there is widespread agreement that learning requires an active mind. Piaget coined 
the term ‘constructivism’ to capture this idea: The mind, rather than passively 
soaking up information, must actively build knowledge. As a result of such con-
strual, knowledge structures might come into existence nonlinearly, reflected in 
the aha-moment of sense-making (see also abduction; [26]). DiSessa [1] captured 
this nonlinearity in the proposed trajectory from a naïve learner to the conceptually 
competent individual (see Figure 1 for a schematic illustration of the suggested 
nonlinearity).

Nature of Knowledge

Structure Knowledge is organized coherently, rather than consisting of incoherent bits.

Diversity Knowledge differs in various aspects, including implicit versus explicit, superficial 
versus deep, or narrow versus broad.

Acquisition of Knowledge

Holistic construal Knowledge is actively construed (abducted), rather than being a direct reflection 
of experiences.

Context dependence The details of knowledge depend on various contextual factors, including the social 
context, the nature of specific tasks, and the available tools.

Change of Knowledge

Persistence Mistaken beliefs often persist, even to the point of affecting perception, despite 
their obvious shortcomings.

Role of conflict Presenting children with the shortcomings of their naïve beliefs creates a conflict 
that can lead to conceptual change.

Table 1. 
Central characteristics of knowledge formation.
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consistently honed in on a particular variable to respond, suggesting the presence 
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additional examples stem from errors in categorization tasks [13], causal-reasoning 
tasks [14], and learning tasks [15]. They suggest that knowledge needs to be concep-
tualized as an ordered set. A child’s belief about beam-balancing is an example of 
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explicit, not implicit knowledge, can be reported on [16, 17]. Another example is 
the distinction between surface knowledge and deep knowledge: Only deep knowl-
edge, not surface knowledge, can be transferred to new situations [18, 19]. And 
yet another example is the distinction between preconceptions and misconceptions 
(e.g., [20]): While both types of knowledge lead to mistaken performance, only 
misconceptions, not preconceptions, persist [21]. These and other distinctions 
proved useful in capturing unexpected behavior, including that of balance-beam 
tasks [22].

2.2 Acquisition of knowledge

The child presented with a balance-beam task will eventually realize the rel-
evance of weight distribution and succeed in balancing off-center beams. That is to 
say, the child will eventually learn. This process of learning, like knowledge itself, 
cannot be seen directly [23]. Sure enough, there are numerous open questions and 
disagreements about how to best describe the process by which knowledge is formed 
[24]. There are, however, two characteristics of learning that are broadly agreed 
upon: (i) that knowledge is construed through the child’s activity, and (ii) that 
aspects of the context strongly affect what is being learned. We elaborate on each of 
these characteristics next.

2.2.1 Truism 3: Knowledge is construed

At first glance, knowledge appears to reflect outside information, as if outside 
information was transported into the mind directly. There is indeed suggestive 
evidence in support of such passive learning [25]. On the other hand, however, 
there is widespread agreement that learning requires an active mind. Piaget coined 
the term ‘constructivism’ to capture this idea: The mind, rather than passively 
soaking up information, must actively build knowledge. As a result of such con-
strual, knowledge structures might come into existence nonlinearly, reflected in 
the aha-moment of sense-making (see also abduction; [26]). DiSessa [1] captured 
this nonlinearity in the proposed trajectory from a naïve learner to the conceptually 
competent individual (see Figure 1 for a schematic illustration of the suggested 
nonlinearity).

Nature of Knowledge

Structure Knowledge is organized coherently, rather than consisting of incoherent bits.

Diversity Knowledge differs in various aspects, including implicit versus explicit, superficial 
versus deep, or narrow versus broad.

Acquisition of Knowledge

Holistic construal Knowledge is actively construed (abducted), rather than being a direct reflection 
of experiences.

Context dependence The details of knowledge depend on various contextual factors, including the social 
context, the nature of specific tasks, and the available tools.

Change of Knowledge

Persistence Mistaken beliefs often persist, even to the point of affecting perception, despite 
their obvious shortcomings.

Role of conflict Presenting children with the shortcomings of their naïve beliefs creates a conflict 
that can lead to conceptual change.

Table 1. 
Central characteristics of knowledge formation.
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2.2.2 Truism 4: Knowledge formation depends on the context

Evidence suggests that learning is strongly dependent on the context, even 
when the context appears irrelevant to the specifics of what needs to be learned. 
Illustrative evidence of such context dependence can again be found with Piaget’s 
conservation tasks: Despite showing robust performance in the classical version of 
the task, the mere number of times children were asked for a comparative judgment 
affected their performance (e.g., [27]). Evidence also comes from the balance-beam 
task: Children managed to balance the beams better with their eyes closed than 
with their eyes open [6]. Overall, context (e.g., cultural, societal, physical) has the 
ability to influence how the information ends up being utilized within the system of 
knowledge [28, 29].

2.3 Change of knowledge

A child presented with the balance-beam task is unlikely to enter the situation 
without prior knowledge. It might pertain to general ideas about what to expect, 
or it can pertain to very specific ideas about how to solve a task (e.g., the belief 
that beams balance at their center). For science learning to take place, incorrect 
prior knowledge has to be replaced, a process also known as conceptual change [30]. 
Exactly how to promote conceptual change remains a challenge in science educa-
tion [31]. At the same time, there are two characteristics of conceptual change that 
are broadly acknowledged: (i) that existing knowledge structures have a strong 
tendency to persist, and (ii) that the experience of conflict can prompt conceptual 
change. We elaborate on each of these characteristics next.

2.3.1 Truism 5: Knowledge structures resist change

There is wide-spread agreement that existing knowledge structures can persist 
despite strategic changes in the learning context. The domain of science learning 
is packed with examples of such persistence of mistaken beliefs [32]. It appears as 
though existing knowledge can affect how one perceives the surroundings, even to 
the point of inventing improbable experiences (e.g., [33]). The example of beam-
balancing illustrates this peculiarity: It is as if children’s beliefs about beam-balanc-
ing impedes their ability to take in conflicting experiences. In fact, Karmiloff-Smith 
and Inhelder [6] described children who actively ignored the evidence of a beam 
tipping over when they attempted to balance it in the middle.

2.3.2 Truism 6: Perceived conflict facilitates conceptual change

Conceptual change is possible when a pedagogy is used that highlights the short-
comings of the existing belief [34, 35]. The power of conflict can be traced to the 
work of Piaget [36], Festinger [37], and Dewey [38]. The argument is that perceived 
contractions generate conceptual conflict, which, in turn, serves as a catalyst for 
deeper forms of cognitive processing [39]. Presumably, children who hold a naïve 
belief about beam-balancing can experience conflict as they continue to play with 
the beams, which, in turn, might prompt them to replace their naïve belief.

2.4 Summary of central characteristics of knowledge formation

In the first part of this preliminary section, we sought to systematize the vast 
literature on knowledge formation in a way that highlights central characteristics 
of this process. On the question of the nature of knowledge, we honed in on the 
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ideas that knowledge is organized (rather than existing as an isolated fixture) and 
that several distinct types of organization exist (rather than differing merely in 
content). On the question of learning, we honed in on the ideas that knowledge 
emerges via the active involvement of the learner (as opposed to being transmit-
ted passively) and that learning is affected by the context, whether relevant or not 
(rather than be affected merely by what matters most). On the question of concep-
tual change, we highlighted the persistence of mistaken beliefs and the power of 
conflict to prompt conceptual change.

3. Glossary of central complexity constructs

There are excellent sources available to introduce complexity science (e.g., 
[40–44]). The field of complexity science can nevertheless appear unorganized, 
featuring constructs that are not fully integrated with each other. It is not immedi-
ately obvious, for example, how constructs such as attractors, scale-free patterns, 
or synchrony relate to one another (or differ from each other, for that matter). This 
hinders progress on how complexity theory could help with knowledge formation. 
For this reason, we provide a review of selected complexity constructs. We have 
organized the list by the type of system that best exemplifies the selected con-
structs: (1) non-living systems, (2) living systems, and (3) thermodynamic systems 
(see Table 2 for an overview).

3.1 Constructs from the study of non-living systems

There are several non-living systems that have been used as model domains 
to explore complex systems, including cellular automata [45], oscillators [46], or 
electricity grids [47]. Common to all of these systems is that their elements interact 
with each other. The nature of this interaction is fixed, as is the nature of the ele-
ments in these systems. Yet, despite this simplicity, non-living systems can behave 
in complex ways. Constructs that have been explored in these systems include self-
organization, chaos, hysteresis, attractors, autocatalysis, self-organized criticality, 
and scale-free patterns. We describe these constructs next.

3.1.1 Self-organization

Arguably at the heart of complexity science, self-organization is the process 
by which global patterns form through local interaction of the system’s elements 

Figure 1. 
Proposed illustration of knowledge at three stages of the learning process (adapted from [1]). Shapes are 
thought to be exemplars of experiences represented in the mind. They become organized as conceptually 
competent knowledge develops. Complexity constructs provide further suggestions to consider.
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Constructs from Non-Living 
Systems

Brief Definition Living 
Systems

Thermo- 
dynamics

Self-organization The emergence of spatiotemporal 
patterns through the interaction 
of system elements.

X X

Chaos Behavior is highly sensitive to 
initial conditions because of 
the amplification of interacting 
constraints.

X X

Hysteresis A nonlinear shift takes place at a 
moment in time that is affected 
by the cumulative history of the 
system.

X

Attractors A behavior toward which the 
system navigates.

X

Self-organized criticality A state of the system in which 
several behavioral options are 
available.

X

Self-similarity (e.g., scale-free 
patterns, pink noise, fractals)

Patterns are composed of 
elements that look similar or 
identical to the patterns they 
make up.

X

Constructs from Living 
Systems

Brief Definition Non-Living 
Systems

Thermo- 
dynamics

Affordance Sense-making of the 
surrounding depends on the 
action of the individual.

Synchrony System elements mutually 
constrain each other as they 
interact in a circular way.

X

Self-preservation (e.g., 
autopoiesis, centripetality)

The system carries out processes 
that contribute to its own 
self-maintenance.

X

Constructs from 
Thermodynamic Systems

Brief Definition Non-Living 
Systems

Living 
Systems

Balance/Equilibrium The system settles on an 
organization that is most 
probable given the existing 
distribution of energy.

Dissipation pressure System elements organize 
themselves into patterns to 
dissipate the gradient established 
by energy clusters.

Autocatakinetics System elements become 
increasingly more organized in 
the service of the dissipation 
pressure.

X

Teleodynamics The coming together of mutually 
constraining processes that 
perpetuate each other, seemingly 
bestowing agency to structures.

X X

Note: While the complexity constructs are listed under only one type of system, they apply to other systems as well 
(marked by X in the last two columns of the table).

Table 2. 
Overview of selected complexity constructs, separated by type of system that exemplifies them best.
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[48]. When ordered structures are caused by self-organization, there is no 
blueprint or central control. Instead, the observed pattern is an emergent prop-
erty [49]. The marking of sand dunes is an example of such self-organization. It 
stems from the “interplay of windborne transport, collision-driven piling up, and 
slope-shaving avalanches” ([50], p. 1084). Another example is the synchroniza-
tion of adjacent metronomes that are initially out of sync. Eventually, the metro-
nomes settle on a synchronized rhythm by virtue of sharing the surface they are 
placed on [51]. In each of these cases, the interaction among individual elements 
gives rise to overarching patterns that could be reduced neither to the elements 
nor the outside.

3.1.2 Chaos

In chaotic systems, future behavior is sensitive to the initial conditions [52]. 
Chaos can be illustrated with the butterfly effect as a metaphor: A butterfly flut-
tering its wings over a flower in China can, in principle, cause a hurricane in 
the Caribbean [53]. A simple system that exhibits chaotic behavior is the double 
pendulum: Small differences in the initial angles of the pendulum arms are ampli-
fied several orders of magnitude in the course of just a few seconds [54]. Chaotic 
behavior is the result of the coming together of various factors that allow a change 
to become amplified (or dampened) as the change reverberates through the system. 
The result is unpredictable behavior of the system, despite having fully determinis-
tic links among its individual elements.

3.1.3 Hysteresis

Hysteresis describes a sudden change in behavior that is modulated by the 
system’s history. Relevant here is the direction in which an outside parameter 
changes (from low to high, or from high to low). A thermostat provides an illus-
trative example of this phenomenon: Its function is to detect the temperature of 
the surrounding to control whether the heat should be on or off. Importantly, the 
change in the system’s on–off status is not necessarily the result of an absolute 
outside temperature. Instead, the thermostat might have a different temperature 
threshold for switching the heating on than for switching it off [55]. This allows 
the thermostat to avoid repeatedly switching the heating on and off when the 
temperature hovers around the set point. The mathematical branch of catastrophe 
theory provides further specifications of the patterns of hysteresis, including how 
the presence of an additional outside parameter can modulate hysteresis (see also 
cusp-catastrophe; [56]).

3.1.4 Attractors

An attractor is a state to which the system returns after having been perturbed 
away from it. Attractors come in several forms, the simplest of which is a point 
attractor. Consider, for example, a damped harmonic oscillator. The behavior of 
the oscillator depends on its mass, the spring stiffness, and the damping coef-
ficient—all of which are referred to as control parameters. These parameters 
determine the details of the oscillator’s resting states. If the oscillator were to be 
pushed away from its resting state, it will eventually return to it, thus demonstrat-
ing the state as an attractor for the system [57]. Other forms of attractors are 
periodic attractors (i.e., the cyclical moving through several stable states; limit 
cycle) and strange attractors (i.e., the non-periodic or chaotic movement through 
several states).
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X
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X X

Note: While the complexity constructs are listed under only one type of system, they apply to other systems as well 
(marked by X in the last two columns of the table).

Table 2. 
Overview of selected complexity constructs, separated by type of system that exemplifies them best.
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[48]. When ordered structures are caused by self-organization, there is no 
blueprint or central control. Instead, the observed pattern is an emergent prop-
erty [49]. The marking of sand dunes is an example of such self-organization. It 
stems from the “interplay of windborne transport, collision-driven piling up, and 
slope-shaving avalanches” ([50], p. 1084). Another example is the synchroniza-
tion of adjacent metronomes that are initially out of sync. Eventually, the metro-
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3.1.3 Hysteresis

Hysteresis describes a sudden change in behavior that is modulated by the 
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3.1.4 Attractors

An attractor is a state to which the system returns after having been perturbed 
away from it. Attractors come in several forms, the simplest of which is a point 
attractor. Consider, for example, a damped harmonic oscillator. The behavior of 
the oscillator depends on its mass, the spring stiffness, and the damping coef-
ficient—all of which are referred to as control parameters. These parameters 
determine the details of the oscillator’s resting states. If the oscillator were to be 
pushed away from its resting state, it will eventually return to it, thus demonstrat-
ing the state as an attractor for the system [57]. Other forms of attractors are 
periodic attractors (i.e., the cyclical moving through several stable states; limit 
cycle) and strange attractors (i.e., the non-periodic or chaotic movement through 
several states).
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3.1.5 Self-organized criticality

Self-organized criticality combines the ideas of self-organization and attrac-
tors, stating that systems maneuver themselves into a specific state, referred to as 
the critical state [58]. In a critical state, small perturbations can lead to large-scale 
or catastrophic changes in the system (e.g., [59]). Bak and Chen [59] proposed 
that the systems attracted to a critical state exhibit 1/f noise. The spectral density 
of the system’s response to perturbation can be approximated as: Df ≈ 1/fα (with 
0.50 < α < 1.50). A well-studied example includes earthquakes, both simulated and 
real ones.

3.1.6 Self-similarity

Self-similarity is present when the elements the elements resemble the very pat-
tern that they make up [60]. The geometric shape known as the Sierpiński triangle 
is a famous example: Upon zooming in, the parts of the triangle resemble the tri-
angle itself. The relevance of self-similarity lies in the relation among hierarchically 
nested patterns. In a self-similar pattern, there are no unique ‘starter’ elements, as 
each element is itself composed of entire patterns. That is to say, there is no charac-
teristic scale at which the behavior of a system resides, an idea captured in scale-free 
patterns (see also cumulative advantage; [61, 62]). Self-similar patterns are relevant 
in the understanding of fractals and power-law distributions, also referred to as 
pink noise. Common to these terms is the idea that there is a long-range dependence 
among the different levels of organization in a system.

3.2 Constructs from the study of living systems

Like non-living systems, living systems consist of interacting elements that give 
rise to patterns of organization. Obvious examples include systems of individual 
animals (e.g., a school of fish, a flock of birds, an ant hill, a group of synchronizing 
fireflies) or of entire species (e.g., ecosystem). There are also systems within an 
individual animal, like when cells organize into an organ system [63, 64]. Given 
the interaction among elements, all of the complexity constructs identified for 
non-living systems apply here as well. For example, the organizations observed in 
these systems (e.g., nest building, foraging routes, behavior of crowds) stem from 
processes of self-organization. There is also evidence of hysteresis (e.g., the switch 
from fight to flight) and the presence of self-similar patterns (e.g., the branching 
of trees).

There is, however, a crucial difference between living and non-living systems: 
Rather than being fixed, elements in a living system can change (see also complex 
adaptive systems vs. complex physical systems; [41]). In other words, “living” elements 
can learn, adapt, and evolve, which, in turn, changes the relation they have to each 
other. In an ecological niche, for example, entirely new elements can appear (e.g., a 
new individual in a group), yielding new interactions and configurations. For this 
reason, some complexity constructs pertain only to living systems. We consider the 
constructs of affordance, synchrony, and self-preservation.

3.2.1 Affordance

An affordance is the opportunity for action that is made possible by the envi-
ronment. The construct was developed by James Gibson as an explanation to how 
animals make sense of and navigate their surroundings [65]. An example of an 
affordance is the optic flow, a vector field of the perceived motion of static objects 
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that is established through the movement of an animal. The optic flow does not 
exist entirely in the surrounding, nor is it a process of internal mental symbol 
manipulation. Instead, it is caused by the relative motion between an agent and 
the scene. Many insects have visual systems that are specialized for extracting 
optic flow. For example, a bee flying through a tapering corridor would experi-
ence an increase in translational flow as the corridor narrows, unless the bee slows 
down [66].

3.2.2 Synchrony

Synchrony refers to the coordination that takes place among the elements of a 
system (see also circularity, interdependence, coupling). While it can be found in non-
living systems (e.g., coupled metronomes), it has been studied extensively in living 
systems, including in the behavior of molecules, plants, animals, neurons, muscles, 
bodily regulations, and human relations [67, 68]. There is, in fact, an entire subfield 
of mathematics focused on theories related to synchrony—namely, to capture the 
degree to which elements affect each other’s behavior in interdependent ways (see 
also coupling strength). When a system is tightly coupled, its elements coordinate 
closely with each other. In contrast, when a system is loosely coupled, its elements 
have little to no effect on each other.

3.2.3 Self-preservation

Living systems appear to perpetuate their own organization autonomously, 
what Darwin famously referred to as a “struggle for existence” [69]. There are 
a number of complexity constructs that can be used to describe this process of 
self-preservation. The concept of agency, for example, captures the tendency to act 
on one’s own behalf, thus contributing to a system’s ability to maintain itself [70]. 
The concept of autopoiesis is another example of self-preservation. An example is 
the process by which the cells of an organism are able to reproduce and maintain 
themselves via the production of and interaction between individual elements 
[71]. Some autopoietic systems can even undergo recursive self-maintenance in 
which the agent is able to select from a variety of processes, depending on their 
environmental circumstances [72]. Yet another construct that captures self-
preservation is that of centripetality. This refers to a system’s capacity to produce 
and maintain its own complexity by attracting resources into its circular patterns 
of self-organization [73].

3.3 Constructs from the study of thermodynamic systems

A third set of complexity constructs stems from thermodynamic systems—sys-
tems that illustrate the laws of thermodynamics [74–76]. These systems consist of 
an energy source, a set of elements that are sensitive to the outside energy source, 
and a mutually constraining coupling among elements. An illustrative example 
is a pot of water placed on a burner: The heat from the burner constitutes the 
energy source; the water molecules are the elements (sensitive to the heat); and the 
push–pull movement among the water molecules captures their coupling strengths. 
Another example is an ecosystem [77]: The resources available in the surround-
ing constitute the energy source; the species of the ecosystem are the elements 
(sensitive to these resources); and the relations among the species (predator–prey; 
symbiotic) capture their coupling strength. Relevant constructs from these systems 
are that of balance, gradient dissipation, autocatakinetics, and teleodynamics. We 
describe these next.
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a number of complexity constructs that can be used to describe this process of 
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the process by which the cells of an organism are able to reproduce and maintain 
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[71]. Some autopoietic systems can even undergo recursive self-maintenance in 
which the agent is able to select from a variety of processes, depending on their 
environmental circumstances [72]. Yet another construct that captures self-
preservation is that of centripetality. This refers to a system’s capacity to produce 
and maintain its own complexity by attracting resources into its circular patterns 
of self-organization [73].

3.3 Constructs from the study of thermodynamic systems

A third set of complexity constructs stems from thermodynamic systems—sys-
tems that illustrate the laws of thermodynamics [74–76]. These systems consist of 
an energy source, a set of elements that are sensitive to the outside energy source, 
and a mutually constraining coupling among elements. An illustrative example 
is a pot of water placed on a burner: The heat from the burner constitutes the 
energy source; the water molecules are the elements (sensitive to the heat); and the 
push–pull movement among the water molecules captures their coupling strengths. 
Another example is an ecosystem [77]: The resources available in the surround-
ing constitute the energy source; the species of the ecosystem are the elements 
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symbiotic) capture their coupling strength. Relevant constructs from these systems 
are that of balance, gradient dissipation, autocatakinetics, and teleodynamics. We 
describe these next.
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3.3.1 Balance

Thermodynamic systems move toward a state in which forces are balanced (also 
referred to as homeostasis or equilibrium). Grounded in fundamental laws of physics, 
balance exists when there is no longer any net change in forces, influences, and/or 
reactions. In that sense, thermodynamics offers a traceable endpoint to behavior (a 
purpose, so to speak), namely, in achieving balance. Outside of physics, balance is 
also used to indicate steady or stationary conditions in branches such as evolution, 
economy, and social sciences [78]. An example of balance is captured in the term 
of ascendancy, which is the degree of relative stability in an ecosystem, shown to 
increase over evolutionary timescales [79–81].

3.3.2 Dissipation pressure

In addition to endowing systems with the purpose of reaching a balance, ther-
modynamics also identifies the conditions necessary for systems to do so: The push 
toward balance comes from the presence of clustered energy. This is because the pres-
ence of clustered energy, in addition to affecting the system, also sets up a gradient 
that needs to be dissipated (captured in the second law of thermodynamics; [82]). 
For example, the mere presence of clustered heat in a cup of tea sets up a gradient 
to be dissipated (i.e., the heat clustered in the cup will eventually disperse to reach 
thermal equilibrium). This pressure to dissipate an energy gradient can push the 
system to create micro-clusters of energy. In boiling water, for example, water mol-
ecules organize themselves into vapor pockets that contain some of the heat (see also 
morphodynamics; [83]). Put differently, the pressure to dissipate an energy gradient 
provides opportunities for the system to organize itself (see also antifragility; [84]).

3.3.3 Autocatakinetics

Under some circumstances, systems become increasingly more ordered, seem-
ingly going against the push for dissipation of clustered energy. Animals and plants, 
for example, appear to pursue the survival of their species, coming up with increas-
ingly more efficient ways to harness and retain resources. These systems are known 
to be autocatakinetic [85]. Figure 2, adapted from Swenson [85], illustrates how 
the emergence of progressively more organized forms of a system is possible under 
the law of maximum entropy production. An external energy source (i.e., one that 
is outside of a local, open system) clusters to create an energy gradient that must be 
dissipated in order to reach entropic balance in the broader (closed) global system. 
In moving toward dissipation, a second cluster of energy emerges in the local 
system, composed of the self-organized behavior of the system’s elements. This 
energy cluster, in turn, defines another energy gradient, hence another push toward 
dissipation that contributes to the entropic balance of the global system.

3.3.4 Teleodynamics

Teleodynamics is yet another principle that seeks to explain how elements of 
a system become increasingly more ordered, despite the push toward maximum 
entropy [83, 86]. The idea is that order is perpetuated when mutually supporting 
processes come together. A so-called autocell (or autogen) is a model system that can 
illustrate this idea. This model is based on two processes, that of autocatalysis (i.e., 
the mutual facilitation of two or more chemical reactions) and that of containment 
(i.e., the forming of enclosures from the biproduct of the autocatalytic reactions). 
The interaction of these two processes (i.e., autocatalysis and containment) allows 
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each of them to continue, even as reactants are used up and the enclosures break 
apart. The outcome is a self-repair and self-replication of sorts (also see hypercycles, 
autogenesis, negentropy ratchet; [87–89]).

3.4 Summary of central complexity constructs

In the second part of this preliminary section, we sought to review central com-
plexity constructs in a way that facilitates the attempted link between complexity 
and knowledge formation. In total, we selected over a dozen complexity constructs, 
some of which apply to all systems (e.g., self-organization, attractors), and some 
of which apply to some systems exclusively (e.g., agency, hysteresis). For each of 
these terms, we offered an explanation at the level of phenomenology, bypassing 
mathematical advances. Emphasis was placed on providing a general sense of the 
concepts with explanations that were broad enough to subsume several complexity 
constructs (e.g., synchrony vs. coordination).

4. Cross-tabulation of knowledge and complexity

The link between cognition and complexity is invoked often, as the quote at 
the top of the paper suggests (see also [90–94]). However, it is not always clear if 
the ideas are applied consistently, as neither the field of cognition nor the field 
of complexity is straightforward. Having provided an organization of both areas 
(Sections 2 and 3 above), we are in the position to address the link systematically. 
Table 3 provides an overview of our cross-tabulation.

4.1 Complexity links to the truisms of knowledge formation

4.1.1 Link 1: Complexity in the structural organization of knowledge

There are several complexity constructs that anticipate knowledge being 
organized. Self-organization is one of those constructs—the idea that elements of a 

Figure 2. 
Illustration of autocatakinetic closure, adapted from Swenson [85]. The solid frame defines the boundary of 
a global (closed) system. The dashed circle defines the boundary of a local (open) system within the global 
one. The energy source E1 defines an energy gradient (ΔE1) that needs to be dissipated (F1) to reach entropic 
balance (ΔS). In moving toward dissipation, a second cluster of energy emerges (E2), which consists of the 
self-organized behavior of the system’s elements. This second energy cluster, in turn, defines an energy gradient 
(ΔE2) and, thus, another push toward dissipation (F2).
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complex system organize themselves. There is indeed evidence of self-organization 
in cognitive activity. For example, the idea of self-organization has been invoked to 
address the origins of language (e.g., [70]), to observe the emergence of knowledge 
(e.g., [95]), to explain the systematic problem-solving behaviors of infants (e.g., 
[96, 97]), and to apply effective pedagogy [98]. Hence, it is reasonable to assume 
that knowledge is self-organized.

Another complexity construct that anticipates knowledge organization is 
self-similarity—the idea that an organized pattern repeats itself at various nested 
levels. Here too there is evidence that self-similarity applies to cognition. It was 
studied primarily by looking for scale-free patterns in cognitive behavior [99]. 
The signature of scale-free pattern is a 1/f scaling, also known as pink noise (e.g., 
[100, 101]). Analyses of the variability in reaction time have revealed pink-noise 
patterns, indicating that the variability in a short time series is similar to that in a 
longer time series (e.g., [102]). Hence, it is reasonable to assume that knowledge is 
organized in scale-free patterns.

4.1.2 Link 2: Complexity in the qualitative difference in knowledge structures

There is no obvious complexity construct that capture the distinctions between 
different types of knowledge. At the same time, the complexity angle constrains the 

Nature of Knowledge Acquisition of Knowledge Change of Knowledge

Structure Diversity Construal Context Persistence Conflict

Constructs from Non-Living Systems

Self-
organization

X X

Chaos X

Hysteresis X X

Attractors X

Self-organized 
criticality

X X

Self-similarity X

Constructs from Living Systems

Affordance X

Synchrony X

Self-preservation X

Constructs from Thermodynamic Systems

Balance/ 
Equilibrium

X X

Dissipation 
pressure

X

Autocata  
kinetics/ 
Teleodynamics

X

Note: The columns correspond to the six knowledge truisms described in Table 1. The rows correspond to the 
complexity constructs described in Table 2. The X marks the proposed relevance of a complexity construct for a given 
knowledge truism.

Table 3. 
Relevance of complexity constructs to knowledge formation.
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ways in which organizations can differ. For example, given that complex systems 
consist of elements that interact with each other, differences need to be limited 
to the elements (e.g., number, type) or the way elements interact (e.g., coupling 
strength). Graph theory can specify the number of connections, thus distinguishing 
between qualitatively different networks (e.g., small-world networks, scale-free 
networks). And ascendency can capture the coupling strength among elements, thus 
differentiating systems of various stabilities [80].

Applied to cognition, several complexity measures have been developed to 
capture coupling strength [103, 104]. These include a child’s reasoning during a 
gear-turning task [105], a child’s predictions of the faster sinking object [106], 
and a child’s attempts to balance beams on a fulcrum [107]. Thus, it is reasonable 
to assume that knowledge structures can differ in the number of mental elements 
and/or in how the mental elements combine. The organization of preconceptions, 
for example, might be more restricted than the organization of misconceptions.

4.1.3 Link 3: Complexity in the construal of knowledge

There are several complexity constructs that capture the idea of knowledge 
construal. Self-organization is one of these constructs: It states that the system’s 
organized behavior emerges without a direct linear cause–effect relation. Thus, 
it rejects the idea that an outside force can specify the exact details of the system’s 
organization. Work on children’s stepping behavior has provided early evidence for 
this conceptualization [108]. More generally, knowledge construal is likely to be 
self-organized, too.

Affordance is another complexity construct that emphasizes the separation 
between outside forces and internal organization. This construct rejects the idea 
altogether that there is objective outside information. Affordances are instead intri-
cately linked to the agent’s actions and action capabilities, and thus exist as part of 
the agent’s knowledge structure. In the field of cognition, the concept of affordance 
can be seen in research of networks that explain decision making, working memory, 
and mental representations [109–111]. Thus, it is possible that knowledge construal 
is analogous to the emergence of an affordance.

The construct of synchrony hints at a possible mechanism by which a system’s 
organization could be construed. It captures the idea that elements affect each other 
in a mutually constraining way. This resulting interdependence of elements can 
amplify the initial coordination to the point that it no longer reflects the outside that 
gave rise to it (see also interaction-dominant cognition; [112, 113]). Synchrony has 
been used to map out neural connections (see also connectome; [114]) and the neural 
networks that give rise to cognitive performance [115–117]. More generally, there is 
evidence of synchronization between brain activity and the body/physiology that 
has been used to capture cognition (e.g., [118, 119]).

4.1.4 Link 4: Complexity in the context dependence of knowledge acquisition

There are several complexity constructs that anticipate context effects (i.e., that 
seemingly irrelevant changes in context can affect children’s learning). Consider, for 
example, the construct of self-organized criticality. This construct describes a system 
that has several different possible organizations available, which are decided upon 
by only miniscule changes in the context. Thus, context effects are at the essence of 
this complexity construct. Indeed, there is evidence that self-organized criticality 
plays a role in knowledge formation ([113, 120, 121]; see also metastability; multista-
bility; [122, 123]). Therefore, the context effects seen during learning might be the 
result of such self-organized criticality.
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complex system organize themselves. There is indeed evidence of self-organization 
in cognitive activity. For example, the idea of self-organization has been invoked to 
address the origins of language (e.g., [70]), to observe the emergence of knowledge 
(e.g., [95]), to explain the systematic problem-solving behaviors of infants (e.g., 
[96, 97]), and to apply effective pedagogy [98]. Hence, it is reasonable to assume 
that knowledge is self-organized.

Another complexity construct that anticipates knowledge organization is 
self-similarity—the idea that an organized pattern repeats itself at various nested 
levels. Here too there is evidence that self-similarity applies to cognition. It was 
studied primarily by looking for scale-free patterns in cognitive behavior [99]. 
The signature of scale-free pattern is a 1/f scaling, also known as pink noise (e.g., 
[100, 101]). Analyses of the variability in reaction time have revealed pink-noise 
patterns, indicating that the variability in a short time series is similar to that in a 
longer time series (e.g., [102]). Hence, it is reasonable to assume that knowledge is 
organized in scale-free patterns.

4.1.2 Link 2: Complexity in the qualitative difference in knowledge structures

There is no obvious complexity construct that capture the distinctions between 
different types of knowledge. At the same time, the complexity angle constrains the 

Nature of Knowledge Acquisition of Knowledge Change of Knowledge

Structure Diversity Construal Context Persistence Conflict

Constructs from Non-Living Systems

Self-
organization

X X

Chaos X

Hysteresis X X

Attractors X

Self-organized 
criticality

X X

Self-similarity X

Constructs from Living Systems

Affordance X

Synchrony X

Self-preservation X

Constructs from Thermodynamic Systems

Balance/ 
Equilibrium

X X

Dissipation 
pressure

X

Autocata  
kinetics/ 
Teleodynamics

X

Note: The columns correspond to the six knowledge truisms described in Table 1. The rows correspond to the 
complexity constructs described in Table 2. The X marks the proposed relevance of a complexity construct for a given 
knowledge truism.

Table 3. 
Relevance of complexity constructs to knowledge formation.
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ways in which organizations can differ. For example, given that complex systems 
consist of elements that interact with each other, differences need to be limited 
to the elements (e.g., number, type) or the way elements interact (e.g., coupling 
strength). Graph theory can specify the number of connections, thus distinguishing 
between qualitatively different networks (e.g., small-world networks, scale-free 
networks). And ascendency can capture the coupling strength among elements, thus 
differentiating systems of various stabilities [80].

Applied to cognition, several complexity measures have been developed to 
capture coupling strength [103, 104]. These include a child’s reasoning during a 
gear-turning task [105], a child’s predictions of the faster sinking object [106], 
and a child’s attempts to balance beams on a fulcrum [107]. Thus, it is reasonable 
to assume that knowledge structures can differ in the number of mental elements 
and/or in how the mental elements combine. The organization of preconceptions, 
for example, might be more restricted than the organization of misconceptions.

4.1.3 Link 3: Complexity in the construal of knowledge

There are several complexity constructs that capture the idea of knowledge 
construal. Self-organization is one of these constructs: It states that the system’s 
organized behavior emerges without a direct linear cause–effect relation. Thus, 
it rejects the idea that an outside force can specify the exact details of the system’s 
organization. Work on children’s stepping behavior has provided early evidence for 
this conceptualization [108]. More generally, knowledge construal is likely to be 
self-organized, too.

Affordance is another complexity construct that emphasizes the separation 
between outside forces and internal organization. This construct rejects the idea 
altogether that there is objective outside information. Affordances are instead intri-
cately linked to the agent’s actions and action capabilities, and thus exist as part of 
the agent’s knowledge structure. In the field of cognition, the concept of affordance 
can be seen in research of networks that explain decision making, working memory, 
and mental representations [109–111]. Thus, it is possible that knowledge construal 
is analogous to the emergence of an affordance.

The construct of synchrony hints at a possible mechanism by which a system’s 
organization could be construed. It captures the idea that elements affect each other 
in a mutually constraining way. This resulting interdependence of elements can 
amplify the initial coordination to the point that it no longer reflects the outside that 
gave rise to it (see also interaction-dominant cognition; [112, 113]). Synchrony has 
been used to map out neural connections (see also connectome; [114]) and the neural 
networks that give rise to cognitive performance [115–117]. More generally, there is 
evidence of synchronization between brain activity and the body/physiology that 
has been used to capture cognition (e.g., [118, 119]).

4.1.4 Link 4: Complexity in the context dependence of knowledge acquisition

There are several complexity constructs that anticipate context effects (i.e., that 
seemingly irrelevant changes in context can affect children’s learning). Consider, for 
example, the construct of self-organized criticality. This construct describes a system 
that has several different possible organizations available, which are decided upon 
by only miniscule changes in the context. Thus, context effects are at the essence of 
this complexity construct. Indeed, there is evidence that self-organized criticality 
plays a role in knowledge formation ([113, 120, 121]; see also metastability; multista-
bility; [122, 123]). Therefore, the context effects seen during learning might be the 
result of such self-organized criticality.
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More generally, the power of seemingly irrelevant aspects of the outside are 
highlighted by the constructs of chaos (i.e., sensitivity to initial conditions) and hys-
teresis (i.e., sensitivity to the history of the system). Here again there is evidence that 
these concepts are applicable to cognitive processes [124]. Stamovlasis [125], for 
example, has demonstrated hysteresis in students’ science learning, modulated by 
parameters such as logical thinking ability. Thus, it is possible that context effects 
seen during learning might be the result of the inherent complexity of knowledge 
formation.

4.1.5 Link 5: Complexity in the persistence of knowledge structures

There are several complexity constructs that anticipate persistence in the orga-
nization of a system’s elements. Hysteresis is an example of such a construct, namely, 
because it captures the lingering of a specific organization past outside changes. 
The construct of attractors captures the idea of persistence more generally—that a 
system’s organization can resist perturbation and return to its preferred behavior 
once the perturbation ends. Applied to children’s cognition, the idea of an attractor 
was used to explain perseverative search behavior [126]. It has also been examined 
in the study of recurrent neural networks [127, 128]. Thus, it is reasonable to assume 
that knowledge persistence is the result of an attractor.

The constructs of agency, autopoiesis, autocatakinetics, and teleodynamics have 
also been linked to human behavior [129, 130] and mental activity (e.g., [83, 85, 
130–134]). In fact, Barab et al. [131] have applied the idea of autocatakinetics 
specifically to children’s science learning.

4.1.6 Link 6: Complexity in the role of conflict in conceptual change

There are two complexity constructs that anticipate the power of conflict to 
change a system’s organization: that of balance and dissipation pressure. Both of these 
constructs stem from the study of thermodynamic systems. Under this framework, 
the perceived conflict can be conceptualized as something that changes the balance 
of forces and, thus, changes the dissipation pressure. These changes, in turn, affect 
the likelihood that an existing organization can no longer dissipate the pressure, 
ushering the change in organization.

The concept of balance is not foreign to work on children’s cognition [135]. For 
instance, Piaget’s constructivist account of cognitive disequilibrium highlighted the 
interplay of the counteracting processes of transformation and conservation [136, 137]. 
Also, Piaget’s notion of adaptation is seen as a process of equilibration between processes 
of assimilation and accommodation [138]. The role of perceived conflict fits well within 
this line of work. Thus, the complexity angle offers a way of conceptualizing the role of 
conflict in ways that are consistent with systemic laws.

4.2 Summary of how complexity is linked to knowledge formation

In this section, we sought to explore the extent to which selected knowledge tru-
isms align with complexity constructs. Our analysis showed that this link is indeed 
present, though to various degrees: Most prevalently, complexity anticipates the 
organization of elements and the persistence of knowledge. It also anticipates the 
influence of the outside context and the impact of conflict on conceptual change. 
Note, however, that complexity constructs differed in how well they covered 
knowledge truisms. For example, the idea of knowledge construal was covered by 
several complexity constructs, while the idea of knowledge persistence was covered 
primarily by thermodynamic constructs. It remains to be seen if this disparity 
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identifies a shortcoming of the current theorization of complexity or our interpre-
tation of knowledge findings.

5. Implications for science learning

Having provided an alignment between complexity constructs and knowledge 
formation, we now derive complexity answers to the ongoing questions related to 
children’s science learning. We specifically focus on questions of (1) how to best 
define knowledge, (2) how to support children’s learning, and (3) how to replace 
children’s mistaken beliefs with scientifically valid insights.

5.1 How to best define knowledge and its elements

While it is widely accepted that knowledge is more than a set of isolated factoids, 
there is uncertainty about how to best conceptualize such interconnected whole. 
Complexity provides important constraints for the depiction of knowledge. By this 
conceptualization, knowledge is defined as the coordination among elements, analo-
gous to a set of synchronizing metronomes, a flock of birds, or an ecosystem. That is 
to say, knowledge is stable only in the continuous interaction among mental elements. 
Accordingly, Figure 1 might need to be revised: Whether understanding is naïve or 
competent, mutually constraining interactions among elements are required in both. 
Even elements might be synchronized patterns of interacting parts.

There is also uncertainty about how to capture different types of knowledge 
unequivocally—for example, between novices and experts. In the balance-beam 
task, for example, it is still debated whether the difference between implicit and 
explicit knowledge spans four levels [139], seven levels [140], or none at all [141]. 
Complexity sheds light on the matter by specifying the ways in which structures can 
differ. Correspondingly, implicit knowledge might consist of few elements that are 
constrained to a local action. Explicit knowledge, in contrast, might involve ele-
ments that span various circumstances and thus couple with each other on the basis 
of symbolic correspondences that can be verbalized.

5.2 How to support children’s learning

There is no agreed-upon understanding of the processes that turn information 
into knowledge. Complexity science specifies that this process involves the synchro-
nization of experiences into a self-sustaining whole. Furthermore, thermodynamic 
constructs show that such synchronized aggregations emerge when there is a bal-
ance between clustered energy and pressure. Thus, to decide on the ideal pedagogy, 
one must first identify the ‘clustered energy’ in the learning context, as well as the 
nature of ‘pressure’. One must then ensure that these two aspects are in some sort of 
equilibrium to allow for learning.

Applied to the balance-beam task, clustered energy could be conceptualized 
as information about the beams (visual, haptic). There is also information across 
trials, for example, that some of the beams balance at their geometric center. The 
pressure, on the other hand, could be conceptualized as the task that children are 
asked to complete: to balance individual beams on a fulcrum. The narrower the 
fulcrum, the more pressure there is on the system to organize its elements. For 
pedagogy to be effective, therefore, the salience of the beam’s weight distribution 
must be calibrated with the narrowness of the fulcrum upon which the beam should 
be balanced. This calibration between information and task pressure has to fit the 
competence of the individual child and adjust flexibly to changing competences.
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More generally, the power of seemingly irrelevant aspects of the outside are 
highlighted by the constructs of chaos (i.e., sensitivity to initial conditions) and hys-
teresis (i.e., sensitivity to the history of the system). Here again there is evidence that 
these concepts are applicable to cognitive processes [124]. Stamovlasis [125], for 
example, has demonstrated hysteresis in students’ science learning, modulated by 
parameters such as logical thinking ability. Thus, it is possible that context effects 
seen during learning might be the result of the inherent complexity of knowledge 
formation.

4.1.5 Link 5: Complexity in the persistence of knowledge structures

There are several complexity constructs that anticipate persistence in the orga-
nization of a system’s elements. Hysteresis is an example of such a construct, namely, 
because it captures the lingering of a specific organization past outside changes. 
The construct of attractors captures the idea of persistence more generally—that a 
system’s organization can resist perturbation and return to its preferred behavior 
once the perturbation ends. Applied to children’s cognition, the idea of an attractor 
was used to explain perseverative search behavior [126]. It has also been examined 
in the study of recurrent neural networks [127, 128]. Thus, it is reasonable to assume 
that knowledge persistence is the result of an attractor.

The constructs of agency, autopoiesis, autocatakinetics, and teleodynamics have 
also been linked to human behavior [129, 130] and mental activity (e.g., [83, 85, 
130–134]). In fact, Barab et al. [131] have applied the idea of autocatakinetics 
specifically to children’s science learning.

4.1.6 Link 6: Complexity in the role of conflict in conceptual change

There are two complexity constructs that anticipate the power of conflict to 
change a system’s organization: that of balance and dissipation pressure. Both of these 
constructs stem from the study of thermodynamic systems. Under this framework, 
the perceived conflict can be conceptualized as something that changes the balance 
of forces and, thus, changes the dissipation pressure. These changes, in turn, affect 
the likelihood that an existing organization can no longer dissipate the pressure, 
ushering the change in organization.

The concept of balance is not foreign to work on children’s cognition [135]. For 
instance, Piaget’s constructivist account of cognitive disequilibrium highlighted the 
interplay of the counteracting processes of transformation and conservation [136, 137]. 
Also, Piaget’s notion of adaptation is seen as a process of equilibration between processes 
of assimilation and accommodation [138]. The role of perceived conflict fits well within 
this line of work. Thus, the complexity angle offers a way of conceptualizing the role of 
conflict in ways that are consistent with systemic laws.

4.2 Summary of how complexity is linked to knowledge formation

In this section, we sought to explore the extent to which selected knowledge tru-
isms align with complexity constructs. Our analysis showed that this link is indeed 
present, though to various degrees: Most prevalently, complexity anticipates the 
organization of elements and the persistence of knowledge. It also anticipates the 
influence of the outside context and the impact of conflict on conceptual change. 
Note, however, that complexity constructs differed in how well they covered 
knowledge truisms. For example, the idea of knowledge construal was covered by 
several complexity constructs, while the idea of knowledge persistence was covered 
primarily by thermodynamic constructs. It remains to be seen if this disparity 
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identifies a shortcoming of the current theorization of complexity or our interpre-
tation of knowledge findings.

5. Implications for science learning

Having provided an alignment between complexity constructs and knowledge 
formation, we now derive complexity answers to the ongoing questions related to 
children’s science learning. We specifically focus on questions of (1) how to best 
define knowledge, (2) how to support children’s learning, and (3) how to replace 
children’s mistaken beliefs with scientifically valid insights.

5.1 How to best define knowledge and its elements

While it is widely accepted that knowledge is more than a set of isolated factoids, 
there is uncertainty about how to best conceptualize such interconnected whole. 
Complexity provides important constraints for the depiction of knowledge. By this 
conceptualization, knowledge is defined as the coordination among elements, analo-
gous to a set of synchronizing metronomes, a flock of birds, or an ecosystem. That is 
to say, knowledge is stable only in the continuous interaction among mental elements. 
Accordingly, Figure 1 might need to be revised: Whether understanding is naïve or 
competent, mutually constraining interactions among elements are required in both. 
Even elements might be synchronized patterns of interacting parts.

There is also uncertainty about how to capture different types of knowledge 
unequivocally—for example, between novices and experts. In the balance-beam 
task, for example, it is still debated whether the difference between implicit and 
explicit knowledge spans four levels [139], seven levels [140], or none at all [141]. 
Complexity sheds light on the matter by specifying the ways in which structures can 
differ. Correspondingly, implicit knowledge might consist of few elements that are 
constrained to a local action. Explicit knowledge, in contrast, might involve ele-
ments that span various circumstances and thus couple with each other on the basis 
of symbolic correspondences that can be verbalized.

5.2 How to support children’s learning

There is no agreed-upon understanding of the processes that turn information 
into knowledge. Complexity science specifies that this process involves the synchro-
nization of experiences into a self-sustaining whole. Furthermore, thermodynamic 
constructs show that such synchronized aggregations emerge when there is a bal-
ance between clustered energy and pressure. Thus, to decide on the ideal pedagogy, 
one must first identify the ‘clustered energy’ in the learning context, as well as the 
nature of ‘pressure’. One must then ensure that these two aspects are in some sort of 
equilibrium to allow for learning.

Applied to the balance-beam task, clustered energy could be conceptualized 
as information about the beams (visual, haptic). There is also information across 
trials, for example, that some of the beams balance at their geometric center. The 
pressure, on the other hand, could be conceptualized as the task that children are 
asked to complete: to balance individual beams on a fulcrum. The narrower the 
fulcrum, the more pressure there is on the system to organize its elements. For 
pedagogy to be effective, therefore, the salience of the beam’s weight distribution 
must be calibrated with the narrowness of the fulcrum upon which the beam should 
be balanced. This calibration between information and task pressure has to fit the 
competence of the individual child and adjust flexibly to changing competences.
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5.3 How to replace mistaken beliefs with scientifically valid insights

The challenge in science education has been largely attributed to the presence of 
mistaken beliefs. However, the results are mixed on the recommendation to assess 
existing beliefs first, prior to administering a science lesson [142–144]. Complexity 
science can again shed light on the issue. Specifically, lessons derived from ther-
modynamics provide a cautionary note to the logic of first providing children with 
an assessment. This is because, in the language of complexity, assessments are 
equivalent to the pressure on the system to organize itself. This pressure might force 
children to come up with ordered behavior that resembles a belief. The risk, there-
fore, is that the assessment pushes the learner to form an ad-hoc belief, rather than 
assessing the presence of an already existing belief.

The solution lies in combining pressure (the assessment) with support (the 
information relevant to the solution), rather than offering the assessment on its 
own. This recommendation is in line with the resubsumption theory [144, 145]. It 
is also in line with the finding that a child’s explicit goal to change mistaken beliefs 
has a positive effect on learning [146–148]. This is because such explicit buy-in from 
the learner shifts the nature of the pressure in ways that allows children to actively 
search for scientifically valid patterns (vs. latch onto the most obvious patterns to 
coordinate experiences).

Ultimately, the complexity viewpoint implies that the challenge of science 
learning lies in the nature of science itself, rather than in the presence of mistaken 
beliefs. This is because the patterns of order relevant to science concepts are often 
hidden behind more salient but irrelevant science concepts. For example, in the case 
of balance beams, visual features are likely to have priority over haptic features, 
making the irrelevant aspect of the beam’s shape more readily available than the rel-
evant weight distribution. Therefore, to improve science learning, one would need 
to invest in ways of making relevant patterns of order more salient than irrelevant 
ones, paired with gearing children’s action toward detecting these relevant patterns.

5.4 Summary of complexity-based answers to open questions

In this section, we sought to address practical implications of a complexity view 
of learning. On the question of the nature of knowledge, for example, complexity 
science provides details on how to conceptualize the interaction of mental elements 
that gives rise to knowledge. And on the question of learning, complexity science 
can pin down the pedagogy that could help children ignore irrelevant aspects of the 
context. The complexity angle can even address questions about conceptual change: 
It undermines the common suggestion of assessing children’s naïve beliefs in the 
absence of instruction; and it highlights strategies that can help children learn about 
abstract science concepts. While these suggestions are merely hinted at, they can 
offer an important impetus to science-education research.

6. Conclusion

In line with the volume’s goal of deepening the meaning of complexity, we 
traced the connection between complexity constructs and children’s learning. Our 
specific focus was on children’s science education, a topic with remaining open 
questions despite previous attempts to apply complexity ideas. Our rationale was 
that neither the field of complexity nor the field of children’s learning are stream-
lined: Both areas feature inconsistencies and gaps [149]. The synthesis we offered 
was designed to substantiate this link, potentially fostering progress in both fields.
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Our approach started with a preliminary step—namely, to consider issues of 
cognition separately from issues of complexity. To this end, we defined central 
characteristics of knowledge formation without considerations of complexity; and 
we defined central characteristics of complex systems without considerations of 
cognition. This two-pronged preliminary step made it possible to explore the link 
between complexity and learning in a principled way, rather than trying to prove 
a-priori assumptions about it. Thus, by cross-tabulating the list of knowledge 
truisms with the list of complexity constructs, we were able to substantiate the 
knowledge–complexity link in a relatively objective way.

The cross-tabulation shows that our chosen knowledge truisms were anticipated 
robustly by complexity constructs. Building on this alignment, we were able to 
derive answers relevant to science education. For example, the knowledge-complex-
ity alignment specifies that knowledge is a mental synchronization of experiences. 
Such synchronization can emerge when there is a balance between direct instruc-
tion and active learning that is calibrated to highlight relevant patterns of order 
(vs. irrelevant patterns of order). This calibration can be difficult to establish when 
relevant patterns are inherently hidden, as is the case in abstract science concepts. 
In turn, this difficulty can explain the challenge of science education, going against 
the prevailing assumption that science-education challenges stem from children’s 
misconceptions.

A limitation of this work pertains to taking some shortcuts when generating the 
two initial lists. For example, we settled on six knowledge truisms, potentially at the 
expense of important nuances. And we prioritized prominent complexity con-
structs, potentially at the expense of lesser-known constructs. We also overlooked 
ongoing controversies, for example on the topic of constructivism, on self-orga-
nized criticality, or on how to apply thermodynamics to cognitive processes. For 
these reasons, our lists are undoubtedly incomplete. Nevertheless, this work offers 
a starting point from which to develop a complexity-based framework for children’s 
learning.
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5.3 How to replace mistaken beliefs with scientifically valid insights

The challenge in science education has been largely attributed to the presence of 
mistaken beliefs. However, the results are mixed on the recommendation to assess 
existing beliefs first, prior to administering a science lesson [142–144]. Complexity 
science can again shed light on the issue. Specifically, lessons derived from ther-
modynamics provide a cautionary note to the logic of first providing children with 
an assessment. This is because, in the language of complexity, assessments are 
equivalent to the pressure on the system to organize itself. This pressure might force 
children to come up with ordered behavior that resembles a belief. The risk, there-
fore, is that the assessment pushes the learner to form an ad-hoc belief, rather than 
assessing the presence of an already existing belief.

The solution lies in combining pressure (the assessment) with support (the 
information relevant to the solution), rather than offering the assessment on its 
own. This recommendation is in line with the resubsumption theory [144, 145]. It 
is also in line with the finding that a child’s explicit goal to change mistaken beliefs 
has a positive effect on learning [146–148]. This is because such explicit buy-in from 
the learner shifts the nature of the pressure in ways that allows children to actively 
search for scientifically valid patterns (vs. latch onto the most obvious patterns to 
coordinate experiences).

Ultimately, the complexity viewpoint implies that the challenge of science 
learning lies in the nature of science itself, rather than in the presence of mistaken 
beliefs. This is because the patterns of order relevant to science concepts are often 
hidden behind more salient but irrelevant science concepts. For example, in the case 
of balance beams, visual features are likely to have priority over haptic features, 
making the irrelevant aspect of the beam’s shape more readily available than the rel-
evant weight distribution. Therefore, to improve science learning, one would need 
to invest in ways of making relevant patterns of order more salient than irrelevant 
ones, paired with gearing children’s action toward detecting these relevant patterns.

5.4 Summary of complexity-based answers to open questions

In this section, we sought to address practical implications of a complexity view 
of learning. On the question of the nature of knowledge, for example, complexity 
science provides details on how to conceptualize the interaction of mental elements 
that gives rise to knowledge. And on the question of learning, complexity science 
can pin down the pedagogy that could help children ignore irrelevant aspects of the 
context. The complexity angle can even address questions about conceptual change: 
It undermines the common suggestion of assessing children’s naïve beliefs in the 
absence of instruction; and it highlights strategies that can help children learn about 
abstract science concepts. While these suggestions are merely hinted at, they can 
offer an important impetus to science-education research.

6. Conclusion

In line with the volume’s goal of deepening the meaning of complexity, we 
traced the connection between complexity constructs and children’s learning. Our 
specific focus was on children’s science education, a topic with remaining open 
questions despite previous attempts to apply complexity ideas. Our rationale was 
that neither the field of complexity nor the field of children’s learning are stream-
lined: Both areas feature inconsistencies and gaps [149]. The synthesis we offered 
was designed to substantiate this link, potentially fostering progress in both fields.
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characteristics of knowledge formation without considerations of complexity; and 
we defined central characteristics of complex systems without considerations of 
cognition. This two-pronged preliminary step made it possible to explore the link 
between complexity and learning in a principled way, rather than trying to prove 
a-priori assumptions about it. Thus, by cross-tabulating the list of knowledge 
truisms with the list of complexity constructs, we were able to substantiate the 
knowledge–complexity link in a relatively objective way.

The cross-tabulation shows that our chosen knowledge truisms were anticipated 
robustly by complexity constructs. Building on this alignment, we were able to 
derive answers relevant to science education. For example, the knowledge-complex-
ity alignment specifies that knowledge is a mental synchronization of experiences. 
Such synchronization can emerge when there is a balance between direct instruc-
tion and active learning that is calibrated to highlight relevant patterns of order 
(vs. irrelevant patterns of order). This calibration can be difficult to establish when 
relevant patterns are inherently hidden, as is the case in abstract science concepts. 
In turn, this difficulty can explain the challenge of science education, going against 
the prevailing assumption that science-education challenges stem from children’s 
misconceptions.

A limitation of this work pertains to taking some shortcuts when generating the 
two initial lists. For example, we settled on six knowledge truisms, potentially at the 
expense of important nuances. And we prioritized prominent complexity con-
structs, potentially at the expense of lesser-known constructs. We also overlooked 
ongoing controversies, for example on the topic of constructivism, on self-orga-
nized criticality, or on how to apply thermodynamics to cognitive processes. For 
these reasons, our lists are undoubtedly incomplete. Nevertheless, this work offers 
a starting point from which to develop a complexity-based framework for children’s 
learning.

© 2021 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 
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Abstract

Information entropy concept is the base for many measures used to evaluate the
complexity of complex environmental systems. Its application has great potential to
evaluate landscape organization and dynamics, especially if we consider that there
is a direct relation between their patterns and processes: the spatial arrangement
(structure) of units within a mosaic reflects on system functions. Consequently,
changes on structure reflects on functions and vice versa. Here, we exemplify how
three measures based on information entropy – LMC and SDL complexity measures
and He/Hmax variability measure – could be applied to evaluating the degree of
complexity of a landscape and its components by associating their heterogeneity
with the diversity of information acquired from the remote sensors’ images. For
this, we developed two scripts for a Geographical Information System (QGIS): (1)
CompPlex HeROI, that compares the complexity of a landscape patch with others
and also with their transition areas; and (2) CompPlex Janus, which analyzes how
complexity varies in the landscape over space and time, generating landscape com-
plexity maps. We also use LMC and SDL complexity measures and He/Hmax vari-
ability measure to evaluate complexity time series of environmental variables, as
rain and temperature, which allow to evaluate how their variations along time and
space affects landscape dynamics. Therefore, application of such metrics in multi-
temporal studies of landscape dynamics provides indicators of landscape resilience
and the degree of conservation or degradation of its different fragments due to
anthropic impacts related to land uses.

Keywords: complexity, Information entropy, landscape metrics

1. Introduction

From the perspective of the Complexity Paradigm [1], the landscape can be
interpreted as a complex environmental system that is established from the
interdependence relationships of the physical-natural system (that is, by the ele-
ments and processes present in nature) and the socioeconomic system (that is, the
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elements and processes linked to human societies in their cultural, economic and
social aspects). When these two systems interact, they are considered as subsystems
of a system with a higher level of ecological organization: the landscape. Landscape
can be considered the 2nd level of ecological organization, characterized by a set of
interrelated ecosystems and formed, as the other levels, by the interactions between
society and nature (Figure 1).

As is typical of complex adaptive system, the landscape presents non-linear
negative and positive feedback processes generated from self-organization of its
elements in interaction networks. The structure and dynamics of the landscape are
affected and affect the other three levels (holons) constituents of this holarchic
organization through bottom-up and top-down processes (Figure 1). The evidence
of these interactions can be seen in landscape’s patterns, as in this type of system,
there is a direct relationship between its patterns and processes [4]: the spatial
arrangement (structure) of units within a mosaic influence system functions. Con-
sequently, changes in structure reflects on functions and vice versa, therefore
affecting landscape resilience and integrity.

Thus, the complexity of a landscape and of the units that comprise the mosaic
can be associated with the heterogeneities of its spatial, temporal, and structural
patterns, with greater complexities being represented by patterns located in regions
of intermediate heterogeneity in a gradient that goes from totally ordered patterns
up to those completely disordered [5, 6]. To capture this typical signature of com-
plex environmental systems not only qualitatively, it is necessary to use indicators
capable of representing it in a quantitative way. This can be done through measures
based on information entropy, which can be applied to assess the structure and
dynamics of landscapes, as done by Mattos et al. [7] and Piqueira et al. [8] in

Figure 1.
Holarchic organization levels of complex environmental systems (inpired in: [2, 3].
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relation to ecological interactions between their populations or by Piqueira &
Mattos [9] for abiotic factors present in them.

Here, the application of measures based on information entropy for two pur-
poses is demonstrated. The first is to assess the complexity of climatic time series.
The other is both in comparing the complexity of a landscape patch with others and
also with their transition areas, as well as allowing to verify as complexity varies in
the landscape over space and time.

2. Use of measures based on information entropy to evaluate landscapes
complexity

Remote sensor images can be used to identify landscape patterns in two differ-
ent ways. The first one is related to the degree of roughness caused by the variability
of tone or color, which provides image geometry and texture from targets [10–12].
The other is by examining the image spectral features, analyzing the values (e.g.,
surface reflectance, radiance, digital numbers) for each wavelength interval (i.e.,
band) vs. matrix pixels obtained for a specific target, which provides the spectral
signature of a specific target [11, 13].

Several methods have been developed for both texture and spectral analysis to
recognize patterns in remote sensing data [14–16]. Generally, many measures (also
called metrics) derived from these methods have the same purposes: identifying
similar patterns that occur in different places and distinguishing different patterns
within a landscape. Although theoretically simple, in practice, this objective is not
always easily achieved. Here, we discuss the use of three metrics derived from
information entropy to measure the complexity of landscape patterns and show
their applications to some case studies.

2.1 Information entropy applied to landscape patterns recognition and the
evaluation of their level of complexity

Several metrics applied to textural and spectral analysis try to capture landscape
patterns by using approaches deriving from theories and methods associated to the
complexity paradigm, such as General System Theory, Cybernetic, Theory of Dis-
sipative Structures, Hierarchy Theory, Percolation Theory, Self-Organized Critical-
ity, Catastrophe Theory and Fractal Geometry [17–20].

Information entropy and other measures derived from it are also extensively
used to quantify landscape heterogeneity and, consequently, to evaluate its organi-
zation level and complexity [18, 21]. According to Shiner et al. [22], there are three
broad categories in which complexity measures based on information entropy may
be classified: the first is composed of measures that consider complexity as a direct
function of disorder (as is the case of very popular Shannon diversity index). So,
measures of this category attribute lower values of complexity to ordered states and
higher values to disordered states [22, 23]. Another category inverts this interpre-
tation by associating higher complexity to most ordered states [22].

However, both measure categories are considered inadequate since there is no
real complexity in situations that present zero or maximum entropy [23]. This fact
is particularly applicable in Landscape Ecology, since, as mentioned by Parrot [24],
more spatially complex landscapes are those in which the spatial pattern is situated
in regions of intermediary heterogeneity, between order and disorder patterns.
Thus, the maximum complexity would be located between these two extreme
situations, which could be mathematically expressed as a convex function of disor-
der, as are the measures belonging to the third category defined by Shiner et al. [22].
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However, both measure categories are considered inadequate since there is no
real complexity in situations that present zero or maximum entropy [23]. This fact
is particularly applicable in Landscape Ecology, since, as mentioned by Parrot [24],
more spatially complex landscapes are those in which the spatial pattern is situated
in regions of intermediary heterogeneity, between order and disorder patterns.
Thus, the maximum complexity would be located between these two extreme
situations, which could be mathematically expressed as a convex function of disor-
der, as are the measures belonging to the third category defined by Shiner et al. [22].
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This is the case of the LMC and SDL measures, proposed initially by López-Ruiz
et al. [25] and Shiner et al. [22], respectively. In both definitions, the two
complementary parameters – disorder and order – are combined to obtain a
complexity measure.

2.1.1 He/Hmax, LMC and SDL complexity measures and their application to remote
sensing images

Shannon’s Information Theory [26] could be applied to reflectance data in a
remote sensing image band. These data are represented by their discretization in
single digital numbers (DN), each DN representing a pixel value related to the
intensity of the radiation in a particular wavelength at the sensor [11]. As the
occurrence of certain DN values becomes more likely than other values, the entropy
of the image decreases.

The variability measure He/Hmax is related to Shannon entropy, and it belongs to
the first category mentioned by Shiner et al. [22]; therefore, considering that com-
plexity increases as a function of increasing the system disorder. This measure is
useful to verify if a landscape and its patches are near the ordered/homogeneous or
the disordered/heterogeneous patterns. To use this measure, it is necessary first to
define system extension (N), given by the system’s total number of possible states.
In the case of remote sensing images, N corresponds to the number of different DN
values present in the region of interest (ROI). As the maximum entropy value of a
ROI could only be reached when the occurrence of the DNs values (i.e., states) is
equiprobable, the maximum entropy (Hmax) is calculated considering all DNs
values with the same probability as follows (Eq.(1)):

Hmax ¼ log 2N: (1)

Dividing the number of pixels that have a determined DN value by the total DN
values present in the ROI, we have the probability p of the ith DN value of occur-
rence of this value within the ROI. The Boltzmann-Gibbs-Shannon entropy (He) for
ROI is then calculated as (Eq.(2)):

He ¼ �
X

DN ∈N

P DNð Þ log 2P DNð Þ: (2)

Finally, the variability measure (V) is obtained by dividing the information
entropy calculated (He) by the maximum entropy (Hmax), as follows (Eq.(3)):

V ¼ He

Hmax
: (3)

It can be deduced that complexity values for this measure range between 0 and
1, with complexity values associated with disorder (thermodynamic equilibrium).

Differently from the variability measure He/Hmax, SDL and LMC belong to the
third category of complexity measures defined by Shiner et al. [22], considering that
the highest complexity is situated between order/homogeneous and disorder/het-
erogeneous patterns, that is, regions of intermediary heterogeneity associated with
a high degree of self-organization. A convex function of information entropy may
mathematically represent this assumption.

SDL measure is composed of two terms: disorder and order, i.e. (Eq.(4)):

SDL ¼ He=Hmaxð Þ 1� He=Hmaxð Þ½ �: (4)
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For the LMC measure, the order term is substituted by another term, called
disequilibrium (D), which measures the distance between the system probability
and the uniform distribution [27] (Eq.(5)):

D ¼
XN
i¼1

P DNð Þ � 1
N

� �2

: (5)

Consequently, LMC is given by (Eq.(6))

LMC ¼ He=Hmaxð Þ½1� He=Hmaxð Þ� (6)

or by (Eq.(7)):

LMC ¼ He=Hmaxð ÞD (7)

Zero is the minimum value for both measures, while 0.25 and 0.15 are the
maximum values for SDL and LMC, respectively. These maximun values occur
when the DN distribution is uniform [27].

To apply these measures based on information entropy to the remote sensing
images, we developed two scripts in Phyton language to be executed as plugins in
QGIS, an open-source Geographic Information System. The first one is CompPlex
HeROI, which calculates He/Hmax, LMC, and SDL complexity measures of a ROI
and compares them with others patches and their transition areas. The other plugin
is CompPlex Janus, composed of a sliding window that runs through the image,
calculating those three measures for the set of pixels inside it. CompPlex Janus then
generates complexity maps, allowing verification as complexity varies in the land-
scape over space and time.

Here we present examples illustrating the application of CompPlex HeROI to
evaluate the complexity of several ROIs (Example 1) and the use of CompPlex Janus
to evaluate the spatial distribution of landscape patterns complexity (Example 2),
highlighting in both cases the efficiency of the measures based on the information
entropy presented.

2.1.1.1 Example 1: CompPlex HeROI applied to evaluate patterns of different land uses

In this example, we show how CompPlex HeROI had been applied to evaluate,
by using metrics based on information entropy, the complexity of spatial patterns
with different land uses present in two river neighbor basins located at municipality
of São Carlos (São Paulo state, Brazil – Figure 2), especially as indicators of the
resilience of its green areas, to help establishing a free space system for this region.
Land uses inside these river basins had been identified using images from CBERS 4
remote sensor (Figure 3), and six categories of use were selected to be evaluated by
CompPlex HeROI. Results obtained for ROIs of these categories are shown in
Table 1, where they are compared for each measure and each band used.

Colors associated with values presented in Table 1 help to identify tendencies of
each land use complexity pattern. In general, ROIs of exposed soil, urban areas, and
pasture have high values for He, Hmax, and He/Hmax measures and low values for
SDL and LMC measures, indicating that these land uses have more disordered
patterns. In turn, agricultural use varies from low to relatively high values for He,
Hmax, and He/Hmax measures, but has, in most cases, low values for SDL and LMC
measures. Finally, vegetation areas have low values for the first three measures (He,
Hmax and He/Hmax) and high values for SDL and LMC measures that use convex
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function of disorder to associate more complexity with patterns situated in a
zone between ordered and disordered patterns. Therefore, these results are coher-
ent and consistent with the Landscape Ecology assumption that more complexity is
found in intermediary heterogeneity patterns [5, 6], as is the case of vegetation
areas present in the two neighbor river basins studied. High values for SDL and
LMC obtained by these areas could be related to their high levels of self-
organization and resilience.

Figure 3.
Land use and land cover on study area (municipality of São Carlos, São Paulo state, Brazil).

Figure 2.
Localization of study area in São Carlos’s municipality (São Paulo state, Brazil).
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2.1.1.2 Example 2: CompPlex Janus and landscape complexity maps

To exemplify how CompPlex Janus works to generate landscape complexity
maps, here is presented a case study of sensor images from the Assis Ecological
Station and its boundaries (located at Assis, São Paulo State, Brazil – Figure 4).
Several tests varying the sliding window size, sensor band, and number of color
classes had been performed to compare results obtained by He, He/Hmax, SDL, and
LMC measures. Some of these results are shown in Figures 5 and 6.

Comparing the four examples of maps of He, we observe that for sliding window
of 3x3 pixels sides (Figure 5A and B), this measure highlights borders among
different land uses and, especially for the image of band 3 (Figure 5A), the appar-
ent homogeneity of natural vegetation is broken. For this same measure, but for
sliding window of 9x9 pixels sides results are shown in Figure 5C and D. On the
other side, these edges are blurred for the 9x9 pixel window. However, areas with
higher values for this measurement (visualized by more intense red tones) are
found around natural vegetation areas, possibly indicating areas of greater risk to
their integrity and resilience.

Table 1.
Results obtained by CompPlex HeROI for six land use and land cover categories in the study area (municipality
of São Carlos, São Paulo state, Brazil).
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For He/Hmax measure, we can perceive a significant difference between
maps generated by a window of 3x3 pixels sides (Figure 5E and F) and those of
9x9 pixels (Figure 5G and H). Due to the reduced amount of pixels in the smaller
window, there is less diversity of information, and the interval between minimum
and maximum values is high. As occurred with the He measurement, a larger
window (9x9 pixels) generated a more extensive range for the minimum and
maximum values, highlighting possible areas that represent greater risks to natural
vegetation.

In Figure 6A-H, we show, respectively, some results obtained by Complex Janus
to SDL and LMC measure. For a window of 3x3 pixels sides (Figure 6A, B, E and F),
these measures allow identifying punctual areas with higher values within natural
vegetation regions. This effect is best observed on images generated by windows of

Figure 4.
Localization of Assis Ecological Station and surroundings (municipality of Assis, State of São Paulo, Brazil).

Figure 5.
Some complexity maps for He and He/Hmax entropy measures generated by CompPlex Janus to study area.
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9x9 pixels (Figure 6C, D, G, and H), where areas of natural vegetation have a more
variable value gradient and areas with other land uses are ‘homogenized’ with low
values for both measures. In general, SDL and LMC measures assign higher values to
natural vegetation, consistent with the assumption of Landscape Ecology that more
complex patterns are associated with intermediary spatial heterogeneity.

3. Measures based on information entropy applied to analyze climatic
time series

Information entropy measures are also useful to verify complexity (in the sense
of variability) of time series, as shown by Piqueira and Mattos [9]. To exemplify
how these measures can be utilized for this purpose, here we show an application of
He/Hmax, SDL, and LMC measures for a time series corresponding to the maximum
daily temperatures that occurred in each January from 1980 to 2017 in the munici-
pality of São Carlos (São Paulo State, Brazil).

To calculate the measures, daily maximum temperature data for each January of
the entire time series were used to define its quartiles. Then, for the January data for
each year, we check the number of days that belonged to each quartile, which
allowed us to calculate the probability p for each interval. The system extension (N)
corresponded to the number of quartiles that presented at least one data.

With these values, it was possible to calculate the measures He/Hmax, SDL, and
LMC for data from January of each year, according to the equations previously
presented. The results obtained are shown in Table 2. To compare the performance
of measures and to try to identify any patterns from results for each measure we
group each of them in decreasing order of value and organize in four classes. Table 3
shows pairwise comparisons between the measures to verify whether or not a given
year occupies the same class and the same position for both measures. Through these
comparisons, it is evident that He/Hmax and SDL have the same behavior, while LMC
measure behavior differs from them, revealing the differences in the relations
between order and disorder terms present in these measures’ equations.

Figure 6.
Some complexity maps for SDL and LMC entropy measures generated by CompPlex Janus to study area.
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Table 2.
Results obtained by applying entropy measures for daily maximum temperature data of municipality of São
Carlos (São Paulo state, Brazil) for each January from 1980 to 2017.
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4. Conclusions

In addition to exploring results obtained from case studies here presented, we
intended to show why and how measures based on information entropy can con-
tribute to understanding complexity of landscapes patterns and processes. As
shown in the first example, He/Hmax, SDL, and LMC are complexity measures that
represent useful tools for evaluating landscape patterns. He/Hmax allows identifying
ordered and disordered targets, while SDL and LMC are related to intermediary
heterogeneity patterns presented by landscape patches. Comparing the landscape
metrics used here with the spectral decomposition methods proposed in Mustard
and Sunshine [13], they prove to be quite efficient in comparing the complexity of
the patterns of different patches as well as their variation over the entire landscape.
Based on this example, the application of such metrics is proposed for multi-
temporal studies of landscape dynamics, for evaluating resilience and the degree of
degradation of different fragments, for estimating the degree of the anthropic
impact due to alterations on land usage, among other applications.

In the second example, we highlight the use of these measures to evaluate
complexity in climatic time series. Our future studies involve the application of
these measures as alternatives for classical statistical analysis, using them to assess
the influences of both natural processes, such as El Niño and La Niña, and those
resulting from anthropic processes, such as the increase in temperature and fre-
quency of extreme weather events, such as severe droughts and heavier rains.
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4. Conclusions

In addition to exploring results obtained from case studies here presented, we
intended to show why and how measures based on information entropy can con-
tribute to understanding complexity of landscapes patterns and processes. As
shown in the first example, He/Hmax, SDL, and LMC are complexity measures that
represent useful tools for evaluating landscape patterns. He/Hmax allows identifying
ordered and disordered targets, while SDL and LMC are related to intermediary
heterogeneity patterns presented by landscape patches. Comparing the landscape
metrics used here with the spectral decomposition methods proposed in Mustard
and Sunshine [13], they prove to be quite efficient in comparing the complexity of
the patterns of different patches as well as their variation over the entire landscape.
Based on this example, the application of such metrics is proposed for multi-
temporal studies of landscape dynamics, for evaluating resilience and the degree of
degradation of different fragments, for estimating the degree of the anthropic
impact due to alterations on land usage, among other applications.

In the second example, we highlight the use of these measures to evaluate
complexity in climatic time series. Our future studies involve the application of
these measures as alternatives for classical statistical analysis, using them to assess
the influences of both natural processes, such as El Niño and La Niña, and those
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Chapter 5

Optimization of the ANNs Models 
Performance in the Short-Term 
Forecasting of the Wind Power of 
Wind Farms
Sergio Velázquez-Medina and Ulises Portero-Ajenjo

Abstract

Due to the low dispatchability of wind power, the massive integration of this 
energy source in electrical systems requires short-term and very short-term wind 
farm power output forecasting models to be as efficient and stable as possible. A 
study is conducted in the present paper of potential improvements to the perfor-
mance of artificial neural network (ANN) models in terms of efficiency and stabil-
ity. Generally, current ANN models have been developed by considering exclusively 
the meteorological information of the wind farm reference station, in addition to 
selecting a fixed number of time periods prior to the forecasting. In this respect, 
new ANN models are proposed in this paper, which are developed by: varying the 
number of prior 1-h periods (periods prior to the prediction hour) chosen for the 
input layer parameters; and/or incorporating in the input layers data from a second 
weather station in addition to the wind farm reference station. It has been found 
that the model performance is always improved when data from a second weather 
station are incorporated. The mean absolute relative error (MARE) of the new 
models is reduced by up to 7.5%. Furthermore, the longer the forecast horizon, the 
greater the degree of improvement.

Keywords: Artificial neural networks (ANN), wind power forecasting,  
model performance, wind farm power output

1. Introduction

A major impediment to the large-scale integration of wind power in electrical 
systems is the low dispatchability of this energy source. The effects of variations 
in wind speed, and hence wind power, are not only observed on a year-to-year or 
season-to-season scale, but also on a within-day scale [1–5]. A strategy that can be 
employed to improve wind energy integration in electrical systems is to optimize 
the performance of short-term forecasting models of wind farm power production. 
This strategy is the focus of the present study.

The direct consequences of the low dispatchability of wind power on electrical 
systems can be both technical and economic. Supply and demand adjustments in 
electrical systems are made 24–36 hours in advance. Any mismatches that might 
arise between supply and demand forecasting are subsequently corrected on the day 
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1. Introduction

A major impediment to the large-scale integration of wind power in electrical 
systems is the low dispatchability of this energy source. The effects of variations 
in wind speed, and hence wind power, are not only observed on a year-to-year or 
season-to-season scale, but also on a within-day scale [1–5]. A strategy that can be 
employed to improve wind energy integration in electrical systems is to optimize 
the performance of short-term forecasting models of wind farm power production. 
This strategy is the focus of the present study.

The direct consequences of the low dispatchability of wind power on electrical 
systems can be both technical and economic. Supply and demand adjustments in 
electrical systems are made 24–36 hours in advance. Any mismatches that might 
arise between supply and demand forecasting are subsequently corrected on the day 
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itself [6–9]. The mismatch correction as the result of imprecise forecasting entails 
additional costs for the electrical system [7, 10]. These extra costs are generally 
absorbed by the end user and/or electricity producer, with the latter thus burdened 
by an additional production cost.

Other strategies have been used to minimize the problem described above. One 
involves the direct estimation of the net energy demand of the electrical system, 
which can be understood as the difference between total demand and the energy 
generated by renewable sources. In [11–12], a model is proposed for direct forecast-
ing of net energy demand which is validated with data from different electrical 
systems. Reference [13] compares a direct forecasting model of net energy demand 
with different indirect forecasting strategies.

In the electricity market, the matching of supply and demand is generally 
performed for 1 h periods. For this reason, in an analysis of model forecasting 
performance, it is very important to evaluate the error for 1 h periods, to study 
model performance for different forecast horizons, and to evaluate the stability of 
the error in the time horizon in which the forecasting is made.

Numerous studies can be found in the literature on the development of 
short-term forecasting models. Different techniques and approaches have been 
analyzed and proposed. In most cases, good performances for specific forecast-
ing horizons have been obtained. The techniques that have been used range from 
simple heuristics [14–20] to systems which employ artificial intelligence [21–34]. 
The study developed in the present paper focuses on models which employ the 
technique of artificial neural networks (ANNs) to forecast wind farm power 
production [21, 22, 26], [27, 29–31, 33, 34].

In [34], the proposed forecasting model is developed on the basis of improve-
ments made to the kriging interpolation method and empirical mode decomposi-
tion, using a new forecasting engine based on neural networks. To analyze the 
results, the mean absolute percentage error (MAPE), normalized mean absolute 
error (NMAE) and normalized root mean square error (NRMSE) metrics are 
used, calculated as the mean value in the forecasting horizons (24 h and 6 h). As 
in [34], models have been developed for different forecasting horizons [26, 27, 33]. 
However, an extensive analysis of the literature conducted by the authors of the 
present study has found that the models developed to date only consider a specific 
and fixed number of prior 1-h periods (periods prior to the prediction hour). It 
should also be noted that, in all the studies consulted, the meteorological data used 
as input layer parameters correspond exclusively to the reference weather station 
(WS) of the wind farm. In no case is the meteorological information used from 
additional WSs other than the reference WS of the wind farm. Finally, the metrics 
used to assess model performance in all these studies are obtained as the mean value 
of the forecasting time horizon. As previously stated, given that the matching of 
supply and demand in the electricity market is performed for 1 h periods, there is an 
additional interest in the study of the possible variation of the metrics within that 
time frame for each of the hourly periods.

The present study considers possible improvements, in terms of efficiency and 
stability, to the performance of ANN-based models for wind power forecasting. 
For this purpose, an analysis is made on the improvement of model performance 
of: ① varying the number of prior 1-h periods (periods prior to the forecasting 
hour) chosen for the ANN input layer parameters; and/or ② incorporating in the 
input layer data from a second weather station in addition to the data from the wind 
farm reference station. The analysis is undertaken for a wide range of forecasting 
horizons. Based on the above, a total of up to 175 ANN models are generated, and 
the results are compared by applying the models to two actual wind farms located in 
the Canary Islands, Spain.
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The aim of this paper is to make the following original contributions to the 
scientific body of knowledge:

1. A study of improvement in the efficiency and stability of ANN models of 
varying the number of 1-h prior periods (periods prior to the prediction hour 
and hereinafter referred to as n), chosen for incorporation of the input layer 
parameters.

2. A study of improvement in ANN model performance of the additional incor-
poration in the input layer of meteorological data from WSs other than the 
wind farm reference station.

Both effects are analyzed for different forecasting horizons.

2. Methodology

Figure 1 shows the methodology followed in the present study for the implemen-
tation of different ANN models generated. It shows the combination of parameters 
which are considered for the input and output layer neurons in the generation process 
of different ANN models. The various parameters are defined as follows: ti is the time 
instant on the basis of which the forecast is made, and Vti, Dti and Pti are the wind 
speed, wind direction and the wind farm power output, respectively, in the instant ti.

The following data are used in all the models: historical wind speed and direction 
data obtained from the wind farm reference WS, and historical power production 

Figure 1. 
Methodology to obtain forecasting models.
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data of the wind farm. In some models, as will subsequently be explained, the 
historical wind speed and direction data of a second WS are used in addition to the 
data of the wind farm reference station.

The output layer is comprised of the power output values for different forecasting 
horizons.

The number of hours prior to the prediction hour, n, and the length of the 
forecasting horizon that is being forecasted, m, are variable.

2.1 Architecture of ANN employed

The ANNs used to generate the models are comprised of three layers with 
feedforward connections. For this purpose, multi-layer perceptron (MLP) topolo-
gies have been used [35, 36]. In order not to increase the length of the training 
period excessively, a single layer of hidden neurons is used. This architecture has 
been shown to have the capacity to satisfactorily approximate any continuous 
transformation [35, 36]. Various prior tests have been carried out to choose the 
number of hidden neurons, varying the number of input signals. It is found that 
using more than 20 neurons merely increases the time required for model training 
and validation without improving the results. It is therefore decided to use a total of 
20 neurons in the hidden layer.

The architectures are trained using the backpropagation algorithm with sigmoi-
dal activation function [31, 32]. The Levenberg–Marquardt algorithm is used to 
minimize the mean square error committed in the learning process [35, 37].

To carry out the training and validation stages used to generate the model and 
the test stage of the network, the available annual data series for each parameter 
are divided into random and different subsets (Figure 1). The proportion of data 
selected for each of the stages is 75%, 15% and 10%, respectively.

As can be seen in Figure 1, the training and validation data subsets are used to 
generate the model. The test data subset is used to evaluate the performance of the 
model generated.

The 10-fold cross-validation technique is used for the process of model genera-
tion and evaluation. The test stage data subset is used in each of the iterations. The 
error assigned to each model is the arithmetic mean of those obtained in the test 
stage for each of the iterations.

The various studies are performed using neural network tools available in the 
MATLAB software package.

2.2 Study cases

1. Case A: Comparison of efficiency and stability of different ANN models obtained 
when varying the number of periods prior to the prediction hour (n) chosen for 
incorporation of different parameters in the input layer

The number of prior periods, n, and the number of forecast horizon periods, m, 
are study variables. The different combinations of n and m generate different mod-
els whose performances will be analyzed. For Case A, both n and m are permitted to 
take the values 3, 6, 12, 24 and 36. That is to say, five different models are generated 
for each forecasting horizon, and thus the total number of generated models is 25. 
This methodology is applied to the two wind farms of the study.

To study the models in terms of the stability of forecasting, the results obtained 
for each of the periods within the forecasting horizon, m, are compared.

Figure 2 shows the structure of the neural network for this study case. The num-
ber of neurons of the output layer depends on the forecasting horizon, and will thus 
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fluctuate between 3 and 36 neurons. For the input layer, the number of neurons will 
also vary depending on the value of n, from 9 (n = 3) to 108 (n = 36) neurons.

2. Case B: Comparison of performance of ANN models when additionally incorpo-
rating in the input layer the data from a second WS other than the reference station 
of wind farm.

For Case B, both n and m could take the same values as indicated for Case A.
Figure 3 shows the structure of the neural network for the generation of models 

in Case B.
In Case B, the input layer of the ANN incorporates the data from a second WS in 

addition to that of the reference WS of the wind farm. To generate different models, 

Figure 2. 
Schematic representation of neural network for generation of forecasting models in case A.

Figure 3. 
Schematic representation of neural network for generation of forecasting models in case B.
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incorporation of different parameters in the input layer

The number of prior periods, n, and the number of forecast horizon periods, m, 
are study variables. The different combinations of n and m generate different mod-
els whose performances will be analyzed. For Case A, both n and m are permitted to 
take the values 3, 6, 12, 24 and 36. That is to say, five different models are generated 
for each forecasting horizon, and thus the total number of generated models is 25. 
This methodology is applied to the two wind farms of the study.

To study the models in terms of the stability of forecasting, the results obtained 
for each of the periods within the forecasting horizon, m, are compared.

Figure 2 shows the structure of the neural network for this study case. The num-
ber of neurons of the output layer depends on the forecasting horizon, and will thus 
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fluctuate between 3 and 36 neurons. For the input layer, the number of neurons will 
also vary depending on the value of n, from 9 (n = 3) to 108 (n = 36) neurons.

2. Case B: Comparison of performance of ANN models when additionally incorpo-
rating in the input layer the data from a second WS other than the reference station 
of wind farm.

For Case B, both n and m could take the same values as indicated for Case A.
Figure 3 shows the structure of the neural network for the generation of models 

in Case B.
In Case B, the input layer of the ANN incorporates the data from a second WS in 

addition to that of the reference WS of the wind farm. To generate different models, 

Figure 2. 
Schematic representation of neural network for generation of forecasting models in case A.

Figure 3. 
Schematic representation of neural network for generation of forecasting models in case B.
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the data of the reference WS of each wind farm (WS1 and WS9) are combined 
with the data of each of the seven other weather stations, WS-2 to WS-8 (Table 1). 
Therefore, for Case B, 175 different models are generated (25 × 7). After applying 
these models to each wind farm, their results are then compared.

The number of neurons in the input layer also varies, depending on the value of 
n, from 15 (n = 3) to 180 (n = 36).

The variation in the number of output layer neurons is the same as in Case A.

2.3 Metrics used to compare the different models

To compare the performance of the different models generated for Cases A and 
B, metrics (1) and (2) were used:
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where: MARE is the mean absolute relative error for the forecast horizon; T is 
the number of data in the test stage (see Figure 1); r = T-m-n; MAREj is the mean 
absolute relative error for the forecasting period j; Pj and 

jP are the actual and 
estimated wind farm power output in the forecasting period j, respectively; R is the 
mean value of Pearson’s coefficient of correlation between the estimated and actual 
wind farm power output for the forecast horizon; and Rj is the mean Pearson 
correlation coefficient between the estimated and actual wind farm power output 
values for the forecasting period j.

Code Height (magl) Latitude
(north)

Longitude
(west)

Altitude
(m)

WS1 40 27°54′08” 15°23′17” 16

WS2 10 27°51′36” 15°23′13” 3

WS3 10 28°27′10” 13°51′54” 24

WS4 10 28°57′07” 13°36′00” 10

WS5 13 28°01′36” 15°23′16” 5

WS6 10 28°07′30” 15°40′37” 472

WS7 10 27°56′08” 15°25′24” 186

WS8 10 28°02′35” 16°34′16” 51

WS9 40 29°05′47” 13°30′21” 457

Table 1. 
Weather stations used in study.
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The combined use of the two previous metrics is considered sufficient for 
the evaluation of the performance of the models and they have been widely used 
[38–41]. Alternatively, for the evaluation of future models, combinations of other 
metrics could be used [42]. For example, a combination of the Normalized Mean 
Absolute Error (NMAE) and the Index of Agreement (IoA) could be used.

3. Materials

The meteorological data (wind speed and direction) recorded by nine WSs 
located in four of the seven islands of the Canary Archipelago (Table 1) are used 
in this study. The mean hourly wind speed and direction data from 2008 are 
used in all cases. The heights of the WSs are expressed in metres above ground 
level (magl).

To validate and compare the results obtained with the different models, infor-
mation corresponding to two wind farms (WF) located on two of the seven islands 
of the Canary Archipelago is used. Tables 2 and 3 shows the geographic coordinates 
of the wind turbines (WT) of the two wind farms (WF1 and WF2). The hourly 
wind farm power output data for 2008 are used for this study.

Stations WS1 and WS9 (Table 1) are the reference weather stations of wind 
farms WF1 and WF2, respectively. The WS1 and WS9 data and the wind power pro-
duction values are provided by the respective owners of the wind farms. The data 
from the seven additional WSs used in the study are provided by the Canary Islands 
Technological Institute (Spanish initials: ITC), a publicly owned R&D company run 
by the Regional Government of the Canary Islands and Spain’s State Meteorological 
Agency (Spanish initials: AEMET).

Table 4 shows the results obtained for the coefficients of linear correlation (3) 
between the mean hourly wind speeds of the different WSs.
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where CC is the Pearson’s coefficient of correlation between the wind speeds of 
two WSs; NG is the total number of data of the series. In this case, as a series of 
hourly data equivalent to one year is available, NG is equal to 8760. Vi and iV

′  are 
the speeds at instant i of the two WSs subject to correlation; V  and V ′  are the 
mean wind speeds of the two WSs subject to correlation for the available data series.

Code x (m) y (m) z (m)

WF1-WT1 461764 3086314 3

WF1-WT2 461839 3086301 1

WF1-WT3 461681 3086067 5

WF1-WT4 461753 3086038 2

Table 2. 
Geographic coordinates of wind turbines in WF1.
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the speeds at instant i of the two WSs subject to correlation; V  and V ′  are the 
mean wind speeds of the two WSs subject to correlation for the available data series.

Code x (m) y (m) z (m)
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No. Coefficient of linear correlation

WS1 WS2 WS3 WS4 WS5 WS6 WS7 WS8 WS9

WS1 1.00 0.84 0.27 0.34 0.74 0.73 0.77 0.50 0.51

WS2 0.81 1.00 0.19 0.25 0.79 0.74 0.87 0.44 0.54

WS3 0.27 0.19 1.00 0.70 0.16 0.16 0.18 0.16 0.11

WS4 0.34 0.25 0.70 1.00 0.20 0.21 0.22 0.20 0.11

WS5 0.74 0.79 0.16 0.20 1.00 0.49 0.78 0.21 0.44

WS6 0.73 0.74 0.16 0.21 0.49 1.00 0.61 0.62 0.54

WS7 0.77 0.87 0.18 0.22 0.78 0.61 1.00 0.39 0.46

WS8 0.50 0.44 0.16 0.20 0.21 0.62 0.39 1.00 0.35

WS9 0.51 0.54 0.11 0.11 0.44 0.54 0.46 0.35 1.00

Table 4. 
Coefficient of linear correlation between wind speeds of different weather stations in 2008.

4. Results and discussion

The discussion of the results centres on the two cases proposed in the methodol-
ogy. For the various figures corresponding to the results, t-3 indicates that 2 periods 
prior to the forecasting period are chosen in addition to the forecasting period (ti, 
ti-1, ti-2), and t + 3 indicates a forecasting horizon of 3 periods, ti + 1, ti + 2, ti + 3, 
starting from the period for which the forecasting is being made, and so on for all 
combinations.

4.1 Discussion of results for case A

Figures 4 and 5 show the results for the MARE and R metrics for the 25 gener-
ated models. In practically all cases, the MARE and R values improve as n increases. 
The only exception is for case t-36 in comparison with t-24, where the improvement 
is minimal or not observed. In addition, the degree of improvement increases as m 
increases (t + 12, t + 24 and t + 36).

Code x (m) y (m) z (m)

WF2-WT1 645043 3219819 486

WF2-WT2 645147 3219752 478

WF2-WT3 645186 3219638 473

WF2-WT4 645264 3219548 464

WF2-WT5 645333 3219462 456

WF2-WT6 645403 3219369 448

WF2-WT7 645406 3219213 440

WF2-WT8 645554 3219194 425

WF2-WT9 645664 3219133 405

Table 3. 
Geographic coordinates of wind turbines in WF2.
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For the forecasting horizons t + 12, t + 24, t + 36, the maximum improvements 
obtained for MARE between the values for n = 3 and n = 36, are 13.3%, 11.2% and 
10%, respectively. For the same cases but for R, the corresponding improvements 
are 7.9%, 8.9% and 9.2%, respectively.

To study the forecasting stability, an analysis has been made of the specific 
case of forecasting horizon t + 24, in which the number of periods to forecast is 
significant. Figure 6 shows, for this specific case and differentiated according to n, 
the results of the variation of the relative error in the different forecasting periods, 
MAREj. It can be seen how the relative error stabilizes earlier as n increases.

The forecasting stability is analyzed for all the forecasting horizons (Figure 7). 
This analysis is made on the basis of the standard deviation of relative error in the 
forecasting horizon:.
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where SDV is the mean standard deviation of the MARE for a forecasting time 
horizon m.

It can be seen in Figure 7 that for all the forecasting horizons, the SDV/MARE 
value decreases significantly as the number of prior hours n increases. This signifi-
cant improvement in the stability of models is observed even for the lowest fore-
casting horizons. Only for the particular case of forecasting horizon t + 3 and when 
the horizon passes from t-24 to t-36, no improvement is observed.

Figure 4. 
MARE results in case A.

Figure 5. 
R results in case A.
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Figure 6. 
MARE variation of different prediction periods: Case of a forecasting horizon t + 24.

Figure 7. 
Stability of relative error SDV in forecasting horizon.

By way of example, we will now proceed to analyze the specific cases of the 
forecasting models t + 12 and t + 24. To date, in the ANN models studied in the 
literature, the number of prior periods n chosen to generate the models has 
always been fixed. Assume that the n chosen for a standard model is 12. In this 
case, the MARE value is 0.2866 for the t + 12 model and 0.3382 for the t + 24 
model (Figure 4). The corresponding values for the stability of the relative error 
are 17.4% and 14.4% (Figure 7), respectively. According to the analysis made 
with Case A, the performance of these models can be improved by choosing a 
higher value of n. If n is 24, the MARE values decrease to 0.2783 and 0.3206, 
respectively (Figure 4). Similarly, for an n of 24, the stability of the relative 
error in the forecasting improves to the values of 15.8% and 12.8%, respectively 
(Figure 7).

4.2 Discussion of results for case B

For the analysis of Case B, the MARE and R results of this case, with two WSs, 
are compared with those of Case A, with one WS. For this purpose, (5) and (6) 
are used.
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It can be seen in Figures 8 and 9 how all the models generated for Case B obtain 
an additional improvement in performance to that already obtained for Case A. 
This additional improvement is in relation to ANN models developed to date which 
always use exclusive data from a single WS.

It can also be observed that, in general, the degree of improvement increases 
as m increases. This degree of improvement slows down for forecasting horizons 
longer than 24 hours.

The maximum additional improvements in model performance are seen in fore-
casting horizons t + 24 and t + 36 (7.5% and 5.5% for MARE and 3.7% and 5.4% for R, 
respectively). Even for the shortest forecasting horizons, t + 3 and t + 6, the maxi-
mum improvements in the MARE metric are significant (3% and 4.9%, respectively).

Continuing with the specific example proposed in the analysis of results for Case 
A (using models t + 12 and t + 24), Figure 10 shows the additional improvements 
in performance that can be obtained through the incorporation in the input layer of 
data from a second WS (Case B).

Figure 8. 
Comparison of MARE results for cases A and B.

Figure 9. 
Comparison of results obtained for R for cases A and B.
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Points A and B represent the error obtained when using a fixed n of 12 and 
only data from the reference WS of the wind farm. Points A1 and B1 represent the 
improvements obtained in the error when n is increased to 24. Points A2 and B2 
represent the additional improvements obtained in the error when, in Case B, the 
data from a second WS are incorporated in the input layer of the ANN. For the two 
specific examples given, the overall improvements obtained by combining Cases A 
and B amount to 8.78% and 6.04%, respectively.

5. Conclusion

A series of interesting conclusions can be drawn from the results of this study 
with respect to possible improvements in the performance of ANN models for the 
short-term forecasting of wind farm power output.

The performance of the new ANN models generated for each forecast horizon 
improves with the increase in the number of prior 1-h periods (periods prior to the 
prediction hour), n, chosen for incorporation of the input layer parameters. For the 
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for MARE are 13.3%, 11.2% and 10%, respectively; and for R, the corresponding 
improvements are 7.9%, 8.9% and 9.2%, respectively.

A study is also made of the stability of the mean relative error for the different 
forecasting periods and for each forecasting horizon m. As n increases the stability 
of the error in the forecasting improves significantly for all forecasting horizons.

Additionally, in all the new models generated, the incorporation in the input 
layer of ANN of meteorological data from a second WS also improves the perfor-
mance of the traditional models generated exclusively with data from the reference 
station of the wind farm. In general terms, the degree of improvement in model 
performance increases with m, attaining improvements in the MARE and R of up to 
7.5% and 5.4%, respectively.

In view of the conclusions drawn from the present study, the original contribu-
tions described in this manuscript could be implemented in existing ANN models to 
optimize their results.
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