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Preface

Cheminformatics has emerged as an applied branch of Chemistry that involves 
multidisciplinary knowledge, connecting related fields such as chemistry, 
computer science, biology, pharmacology, physics, and mathematical statistics. 
Computational methods are used to visualize simple structures or macromo-
lecular assemblies, to model properties by mathematical and statistical models, 
to create, store and process chemical data (databases, data mining), to realize 
virtual screening of large compound libraries and to analyze the chemical infor-
mation and optimize structure in order to develop novel compounds, materials, 
or processes.

The book is organized in two sections, covering plural aspects related to advances in 
the development of informatic tools and their specific use in compound databases 
and concerted efforts to link them in research platforms and networks with various 
purposes and applications in life sciences. Applications in medicinal chemistry, 
for identification and development of new therapeutically active molecules are 
described, but the book is not limited to these topics. For instance, the chapter titled 
“Visible Evolution from Primitive Organisms to Homo sapiens” covers the area of 
genomic analysis and development of evolutionary equations based on genome 
structure. It represents an important approach to explain the origin and evolution 
of life, providing mathematical proofs on the genomic amino acid composition 
homogeneity. It illustrates the use of mathematics to explain biological organisms’ 
evolution and reduces complex structural genetic information to simple linear 
regression relationships. This chapter allows inexperienced readers to understand 
the basic concepts and theory, but also invites them to go forward, offering deep 
biological and chemical molecular insights.

The chapter titled “Semantic similarity in cheminformatics” presents a great 
overview of chemical ontologies, explaining how it works, how the relationships 
between different chemical or biological entities are constructed in order to bind 
chemical information given by structures with other aspects as chemical classifica-
tions, reaction mechanisms, metabolites, toxicity, biological pathways and so on. 
The authors describe the fundamental concepts of ontology-based semantic simi-
larity, pointing to the applications in cheminformatics and discussing the efforts in 
ontology development to link chemical databases with related fields such as medical 
chemistry, genomics, or proteomics.

Computational tools of chemometrics and pattern recognition techniques are 
used for the design of various compounds. Such examples are illustrated in the 
chapter titled “Molecular Electrostatic Potential and Chemometric Techniques as 
Tools to Design of Bioactive Compounds”, where authors use ab initio calculation 
of properties based on charge density and topological indices for the design of 
nitrofurans derivatives. The key features and descriptors, acting in the recognition 
process with the biological target, are elucidated and can be further used to design 
new biologically active molecules.
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IV

The next chapter (“Chemical reactivity properties and bioactivity scores of the 
Angiotensin II vasoconstrictor octapeptide”) emphasizes the reactivity descrip-
tors, drug-likeness assessment, and prediction of oral bioavailability scores as 
preliminary steps for the development of new drugs based on specific peptide 
analogues, achieving a comparison of prediction realized with different quantum 
mechanical modelling methods.

Molecular complexity, flexibility, and other structural features and properties are 
used in a cheminformatic analysis of natural and synthetic compounds, based 
on similarity, in a case study of products originating from Panama, in an attempt 
to find and optimize lead compounds with antimalarial activity, in the chapter 
“Cheminformatic Approach: The Case of Natural Products of Panama”.

In the chapter titled “Accelerating chemical tool discovery by academic collaborative 
models”, the authors highlight the international efforts of academia and industrial 
pharmacists to generate consortia in the interdisciplinary field of chemical biology, to 
connect their knowledge, compound libraries and facilities, having the important goal 
to create open access information. The principal aim remains the development of new 
therapeutic compounds using the knowledge from multidisciplinary fields in academic 
and public and private media, thus helping researchers to solve mechanistical issues in 
life sciences.

The chapter “Chemical Biology Toolsets for Drug Discovery and Target 
Identification” is an overview of chemical techniques and methodologies imple-
mented in the study of biological systems, metabolic pathways, drug-target 
complex interactions, and other biochemical process, all with the common goal 
to understand the action and all biochemical implications of the introduction in 
therapeutics of a new drug. Different complementary instrumental techniques 
and methodologies aiming to provide deep insights into the chemical structure 
are discussed alongside validation methods and techniques of selection of a new 
drug candidate. 

Machine learning and deep learning are aspects covered in the chapter titled 
”Machine-learning based drug discovery and design”, presenting a detailed view 
of their theoretical aspects and applications related to de novo drug design, QSAR 
analysis, and chemical space visualization 

The chapter titled “Cell Penetrating Peptides”, as its title suggests, emphasizes their 
biomedical applications as transport vectors for different therapeutic agents across 
cell membranes. The authors describe the origin and the classifications of CPPs, 
their uptake mechanisms, and their promising clinical efficacity in various cancer 
therapies.

With all information and conclusive examples presented above, this book is a 
valuable learning resource for readers from the scientific community, students, 
researchers both beginners and experienced in the field of chemistry/bioinfor-
matics and related domains. By taking note of these chapters, I hope readers 
will feel encouraged, inspired, and motivated to continue new research and 
discoveries.

V

I thank all authors for their substantial contributions to this book, for sharing 
their knowledge, and for opening new opportunities and perspectives in such an 
evolving field as cheminformatics is.

Amalia Stefaniu
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Ghulam Hussain 
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Chapter 1

Prologue: Deep Insights 
of Chemical Structures by 
Chemoinformatics Tools, Let’s  
Think Forward!
Amalia Stefaniu

1. Introduction - Multidisciplinary context

The constant need of chemical scientists to understand complex phenomena 
and process and to achieve a rational structural design by controlling the synthesis 
to obtain compounds with improved properties or materials with enhanced quality, 
together with advances in information technology, has led to development of a new 
branch of chemistry—chemoinformatics—with strong implications in life sciences 
such as molecular biology or biochemistry, with major interest in medicine, phar-
maceutical and food science industries.

Mainly, these interdisciplinary efforts are focused on the medical and pharmaceu-
tical area, aiming to improve the quality and standard of life, and have applications 
in drug design and development of new therapeutic strategies. Chemoinformatics, 
as new discipline, covers a broad spectrum of aspects including all applications of 
information technology to chemistry involving: constructing and archiving big 
compound libraries (small molecules and proteins) containing structural properties 
and molecular descriptors, spectra, X-ray crystallography data and so on; informa-
tion processing; large-scale chemical data mining; computational tools for structure 
and interactions visualisation, computational models for predicting interactions, 
to calculate properties and bioactivity, molecular docking and dynamic simulations 
methodologies, virtual screening, pharmacophore modelling, fragments similarity 
analysis, estimation of ADME (absorption, distribution, metabolism and excretion) 
characteristics, toxicity alerting, etc. [1–4]. The integration of chemical information 
and its transformation involves mathematical models and statistical data analysis.

Due to web servers and open data initiatives, large amount of chemical data from 
screening libraries are now available [5] and facilitate the drug discovery process. 
There are numerous chemoinformatics databases which contain various experimen-
tal and/or predicted properties of small molecules (ligands), peptides, proteins and 
data about their interactions (drug-drug interactions, ligand-protein interactions, 
protein-protein interactions, RNA-ligand interactions), chemical toxicity, bioactiv-
ity, adverse drug reactions, drug pathways, toxicogenomics, secondary metabolites, 
pharmacokinetics, etc. The existing data could help to build new structures and 
new models and to make new in silico predictions about physico-chemical proper-
ties and behaviour.

To raise awareness of the outstanding importance and impact of chemoinfor-
matics research, exemplified below are some of its applications in life sciences, 
preponderant in medicinal chemistry.
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2. Applications of chemoinformatics in medicinal chemistry

Novel druggable protein targets are a subject of research in order to develop new 
therapeutic strategies against various diseases (scleroderma, Alzheimer’s disease, 
infections, etc.). Investigations include methods such as quantitative structure-
activity relationships (QSAR), similarity search, pharmacophore modelling, 
molecular docking and dynamic simulations and toxicity assessment.

2.1 Anticancer therapy design

To fight against malignancies, new screening methods aim to identify and 
develop novel chemical antiproliferative agents, with promising results. As 
example, biomolecular modelling techniques are used to identify potential kinase 
inhibitor targets. The mitogen-activated protein kinase (MAPK) plays a key role in 
tumorigenesis; that is why it is considered a priority druggable target candidate for 
anticancer therapy. The interactions of cancer-related MAPK kinases and potential 
inhibitors are investigated by in silico tools. Molecular docking calculations are 
employed to predict the inhibitor-bound active sites and the binding modes for 
actual and potential anticancer drugs [6].

2.2 Parkinson’s disease

Researchers’ efforts to improve medication for Parkinson’s disease benefit from 
chemoinformatics and molecular docking tools to identify new potential neuropro-
tective compounds able to effectively treat the disease, by inhibition of oligomeriza-
tion process of α-synuclein protein. By computational techniques, the protein in 
its dimer and oligomer forms can be studied, and multiple molecules are subject of 
computational simulations in order to identify potential inhibitors of α-synuclein 
aggregation [7].

2.3 Alzheimer’s disease

Chemoinformatics approaches including molecular docking, dynamic simula-
tions, lead optimization and quantum chemical characterisation are used to achieve 
the inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) 
enzymes, responsible for cholinergic dysfunctions associated with the cognitive 
and behavioural abnormalities in dementing illness, in order to design and develop 
new therapeutic agents against this disease [8–11]. Other approaches focus on 
the amyloid-beta aggregation process, trying to stop the formation of neurotoxic 
species, and the design of new inhibitors, the study being also facilitated by compu-
tational techniques such as QSAR modelling and assessment of inhibition efficiency 
by predicting stability and binding modes of potential inhibitors through combined 
computational techniques including structure-activity relationships analysis, dock-
ing and molecular dynamic simulations [12–15].

2.4 Antimicrobial agents

Researchers focus their studies to block the activity of DNA gyrase and topoi-
somerase IV, which are essential bacterial enzymes involved in replication and 
recombination processes. The design of novel antibacterial agents that act against 
these enzymes can be realised by molecular docking techniques and bioactivity 
evaluation. That is the case of quinolones, which act equally against DNA gyrase 
and topoisomerase IV [16–19].
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Pharmacokinetics/ADMET properties such as absorption, distribution, metabo-
lism, excretion and toxicity of designed structures are assessed through computational 
approaches too, aiming to predict the therapeutic potential of the lead compound. 
Biochemical properties and drug-likeness according Lipinski’s rule of five (RO5) [20] 
and the molecular flexibility, as key descriptors to describe the oral bioavailability 
of drugs, are also predicted using computational tools. Thus, computer-aided drug 
design, coupled with in silico ADMET studies, helps to select the drug candidate 
molecules with possible better efficacy and less side effects (poor hepatotoxic effects).

3.  Application in identification and quantification of substances  
of abuse

Recent researches report the application of chemometric tools in correlation with 
spectrometric techniques (near-infrared spectroscopy) for onsite analysis of can-
nabinoids or amphetamine compounds (with portable and handheld NIR devices). 
The chemometric tools allow the user to compare collection of spectra, to develop 
prediction models and to achieve a real-time detection of sample contamination. Such 
method could become an alternative way of detection of illicit drugs, determined in 
oral fluids, being non-invasive, rapid and accurate test, completely automated [21, 22].

4. Applications in food chemistry

Food chemical data sets can be manipulated and analysed also by computational 
resources similar with those for drugs and nutraceuticals. The interest in this area 
is growing because of the food-related industrial challenges. Thus, an emerging 
field of research has arisen: foodinformatics [23]. In silico quantitative approaches 
are used to assess genotoxicity and carcinogenicity of food additives (flavours, 
colourants, contaminants, etc.) or cosmetic ingredients [24–26], in the attempts of 
safety evaluation for the human health. All these computational approaches must 
be verified by in vitro methods.

This section is a collection of advanced studies focusing on topics of interest in 
the context of chemoinformatics applications in drug discovery and design of new 
molecules.

© 2020 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 
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Chapter 2

Visible Evolution from Primitive 
Organisms to Homo sapiens
Kenji Sorimachi

Abstract

The ratios of amino acids to the total amino acids deduced from the complete 
genome and those of nucleotides to the total nucleotides in the genome are useful 
indexes to characterize various large genomes among different species from bacteria 
to Homo sapiens. These indexes are not only independent of species but also of genome 
size. Using these indexes, the following results were obtained: (1) primitive life forms 
appeared to have similar amino acid compositions to present day organisms; (2) 
cellular amino acid compositions that are similar among various species and between 
whole cells and complete genomes; (3) genome structure that is homogeneously 
constructed from putative small units encoding proteins of similar amino acid compo-
sitions, followed by synchronous mutations over the genome; (4) all organisms can be 
classified into two groups, “GC-rich” and “AT-rich,” based on their nucleotide contents, 
or “terrestrial” and “aquatic vertebrates” based on natural selection by cluster analyses 
using amino acid contents as the traits; and (5) evolution based on nucleotide content 
alterations can be expressed by definitive equations. Thus, the ratios of amino acids 
or nucleotides to their total contents are useful indexes for characterizing genomes, 
regardless of species differences and genome sizes. The two normalized nucleotide 
contents are universally expressed regression line.

Keywords: genome, mitochondria, codons, Chargaff’s parity rules, cluster analysis, 
normalization, phylogenetic trees, evolution

1. Introduction

The origin of life has long been interested to human since old times. Indeed, 
Aristotle proposed “spontaneous generation” more than 2000 years ago, although 
this idea was disproved by Louis Pasteur in experiments using “swan neck flasks.” 
Our great interest in the origin of life might be expressed by the following philo-
sophical words: Where do we come from? What are we? Where are we going? These 
words were written by French artist Paul Gauguin on his canvas in Tahiti in 1897.

The development of nucleotide sequencing technology [1, 2] has contributed to 
progress in molecular biology, including the analysis of a complete bacterial genome 
first carried out in 1995 [3], and, subsequently, the draft human genome, which 
was reported in 2001 [4, 5]. At present (June 19, 2019), 498 eukaryote, 5159 bacte-
rial, and 296 archaeal complete genomes were determined. However, the origin of 
life is still unclear. Assuming that the replacement rates of nucleotides or amino 
acids in genes are constant [6], phylogenetic trees were drawn [6–11]. However, we 
know that their exact replacement rates differ between genes and between spe-
cies. Studies based on nucleotide or amino acid sequences are applicable to genes 
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whose nucleotide or amino acid numbers are much smaller than those of complete 
genomes, but not to genomes consisting of huge numbers of nucleotides and many 
genes. Of course, simple comparison of sequence differences between genes in the 
same species and the same genes in different species is useful.

2. Normalization

Intraspecies nucleotide contents were first analyzed in 1950 by Chargaff, who 
reported that G = C, A = T, and [(G + A) = (C + T)] [12], which was named as 
Chargaff’s first parity rule. This rule is understandable based on the double-stranded 
DNA structure [13]. Additionally, this rule is applicable to single-stranded DNA 
obtained from a single species nucleus, termed Chargaff’s second parity rule [14]. As 
the rules are based on normalized values to 1 (G + C + A + T = 1), nucleotide contents 
are expressed by their ratios. However, the second parity rule is more difficult to 
understand because we could not image how G and C or T and A pairs are formed in 
the single DNA strand. Recently, this puzzle has been solved mathematically, using the 
similarity of the forward and reverse strands and homogeneity of the DNA strand over 
the genome structure [15]. Although Chargaff’s parity rules represent original intra-
species phenomena, the rules can be expanded to inter-species phenomena using data 
from a large number of complete genomes [16]: the second parity rule is applicable 
only to a single DNA strand from a double-stranded DNA molecule.

Sueoka [17] was the first to analyze the cellular amino acid composition in 
bacteria, and our laboratory has independently analyzed the cellular amino acid 
compositions of bacteria, archaea, and eukaryotes [18]. Graphical representation 
or a diagrammatic approach to the study of complicated biological systems can 
provide an intuitive picture and provide useful insights [19, 20]. Using certain 
graphical presentations, huge data sets from genomes can be easily recognized as 
simple patterns representing complicated organisms. Indeed, using a radar chart to 
express cellular amino acid compositions, their patterns, a “star-shape,” are similar 
among various organisms, and their differences seem to reflect biological evolution 
[18]. In addition, the amino acid compositions deduced from complete genomes 
resemble those obtained from amino acid analyses of cell lysates [21]. These results 
suggest that the ratios of amino acids to the total amino acids and those of nucleo-
tides to the total nucleotide content are useful indices to characterize whole genome 
structures [21].

3. Patternalization of amino acid compositions

In general, there are 20 amino acids that can form proteins, and the amino acid 
sequences are strictly controlled by 64 codons consisting of three nucleotides, a 
triplet. Thus, differences in amino acid sequences of the same kind of proteins 
reflect biological evolution among species, although differences among different 
kinds of proteins seem not to be significant. Furthermore, sequence comparisons of 
protein mixtures are theoretically too complex to consider given currently avail-
able tools. Conversely, the amino acid composition predicted from protein(s) can 
characterize protein(s) from a different point of view, not only among the same 
organisms, but also among different organisms. In fact, the cellular amino acid 
compositions of various bacteria have been analyzed [17]. Based on the 20 amino 
acids that comprise proteins, there were 20 traits that could be evaluated, which, 
at first glance, seemed too many to provide meaningful information for cells. 
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However, using a radar chart to present the amino acid compositions, the data could 
be patternalized, and the amino acid composition was observed to represent certain 
cellular characteristics, as shown in Figure 1. The patterns of bacteria (Escherichia 
coli) and of humans (Homo sapiens) resemble each other, although there is a great 
evolutionary distance between these two organisms. Microorganisms’ fossils were 
found in 550–2800-million-year-old rocks [22–24], and it is thought that bacteria 
are evolutionarily close to primitive life forms. Therefore, it seemed that the primi-
tive life forms might have similar amino acid compositions [21]. This “star-shape” 
cellular amino acid composition pattern must have been conserved from primitive 
organisms to those current organisms.

4. Chronological precedence of protein formation over codon formation

To understand the establishment of primitive organisms, the chronological 
precedence of protein and codon formation is a very important subject in bio-
logical evolution. Unfortunately, this theory has not yet been proven, because 
primitive organisms were formed under so many unknown factors an extremely 
long time ago. However, a simulation analysis based on a random choice of amino 
acids or nucleotides was carried out, which assumed that their polymerization 
depended on their free monomer concentrations, according to the chemical 
reaction rule that governs natural phenomena. Amino acid polymerizations pro-
duced a protein which reflected original free amino acid concentrations without 
codons, while nucleotide polymerizations did not produce functional proteins, 
even after considering the codon table, as shown in Figure 2 [25]. Therefore, it 
seems difficult to predict “the RNA world” which presumes that RNA polymers 
formed primitive life forms [26]. Additionally, the possibility of the accumula-
tion of RNA, which has a UV absorbance at around 250 nm, might be very low 
under the strong UV irradiation present on the primitive Earth. These results 
suggest that protein formation might chronologically precede codon  formation 
at the end of prebiotic evolution, although we have no explanation of how 
the nucleotide sequence information necessary for proteins might have been 
transmitted to the nucleotide polymerization that established the codons. The 

Figure 1. 
Radar charts of cellular amino acid compositions of Escherichia coli and Homo sapiens. Amino acid 
compositions are expressed as the percentage of total amino acids. Gln and Asn are combined with Glu and 
Asp, respectively, because the former two are converted into the latter two during hydrolysis [18].
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“amino acid world” [21] seems a better fit for primitive life forms rather than 
the “RNA world.” There are several hypotheses for codon  formation [27–29], but 
the  process of codon formation has not yet been determined.

According to our simulation analyses [25], proteins that were components 
of primitive life forms might reflect the free amino acid concentrations on the 
primitive Earth. As shown in Figure 1, the cellular basic amino acid composi-
tion, the “star-shape,” is characterized by comparatively high concentrations of 
hydrophobic amino acids, such as valine, leucine, and isoleucine. The glycine and 
alanine contents were also comparatively high. The former might contribute to 
self-aggregation of proteins via hydrophobicity to form primitive life forms under 
low protein concentrations, and the latter might reflect their easy formation on the 
primitive Earth. In fact, simple amino acids such as glycine and alanine have been 
identified in meteorites [30, 31] and can be formed by electrical discharge in an 
atmosphere presumed to reflect primitive Earth [32]. Conversely, the phenylala-
nine, tryptophan, and tyrosine content, which can absorb ultraviolet light, were 
quite low. Strong ultraviolet irradiation might induce photodegradation of these 
amino acids. The differences in amino acid contents in cellular amino acid composi-
tions seem to reflect the presumed free amino acid concentrations on the primitive 
Earth and eventually resulted in the formation of the “star-shaped” cellular amino 
acid compositions (Figure 1).

5. Amino acid compositions deduced from complete genomes

Initially, amino acid compositions were deduced from complete genomes by 
assuming that each gene is equally expressed in a whole cell [21]. This resulted in 
the amino acid composition deduced from the complete genome resembling the cel-
lular amino acid composition obtained from the amino acid analyses of cell lysates 
[21], as shown in Figure 3. This coincidence is difficult to understand because of 
the different origins of both values, until the genome structure has been clarified, as 
shown in the next section.

Figure 2. 
Computational amino acid compositions of an Ureaplasma urealyticum gene. Upper panel: random choice 
of amino acids was carried out in the original gene (5005 amino acid pool). Lower panel: random choice of 
nucleotides was carried out in the original gene (15,018 nucleotides). In the simulation using nucleotides, the 
stop codon and Trp were discarded from the calculation of amino acid compositions, and a triplet formed was 
immediately counted as an amino acid. This figure was adapted from Sorimachi and Okayasu [25].
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6. Homogeneity of genome structure

Each gene has its characteristic amino acid or nucleotide sequence, and its 
amino acid or nucleotide composition differs not only in inter-species but also 
in intraspecies. Conversely, gene assemblies encoding 3000–7000 amino acid 

Figure 3. 
Radar charts of cellular and genomic amino acid compositions. Values are expressed as the percentages of total 
amino acids. Pyrococcus horikoshii was examined. The cellular amino acid composition was obtained from 
three independent analyses. In genomic calculations, Gln and Asn were also incorporated into Glu and Asp, 
respectively, to compare with data based on amino acid analysis.

Figure 4. 
Radar charts of amino acid compositions calculated from various units of the complete genome of 
Methanobacterium thermoautotrophicum. (A) The complete genome structure of M. thermoautotrophicum 
(B) radar charts of amino acid compositions calculated from the complete genome, and (C) from various units. 
The complete genome, comprising 1869 protein genes, was divided into 10 or 20 units. Ten units (1–10); based on 
186 and 195 genes, half size units (1-H–9-H); based on 93 genes, single genes (1-F–9-F); based on the first single 
gene of each unit. Glutamine and asparagine were calculated as glutamic acid and aspartic acid, respectively, 
and tryptophan (<1%) was omitted in the radar charts [18]. This figure was adapted from Sorimachi [36].



Cheminformatics and Its Applications

12

“amino acid world” [21] seems a better fit for primitive life forms rather than 
the “RNA world.” There are several hypotheses for codon  formation [27–29], but 
the  process of codon formation has not yet been determined.

According to our simulation analyses [25], proteins that were components 
of primitive life forms might reflect the free amino acid concentrations on the 
primitive Earth. As shown in Figure 1, the cellular basic amino acid composi-
tion, the “star-shape,” is characterized by comparatively high concentrations of 
hydrophobic amino acids, such as valine, leucine, and isoleucine. The glycine and 
alanine contents were also comparatively high. The former might contribute to 
self-aggregation of proteins via hydrophobicity to form primitive life forms under 
low protein concentrations, and the latter might reflect their easy formation on the 
primitive Earth. In fact, simple amino acids such as glycine and alanine have been 
identified in meteorites [30, 31] and can be formed by electrical discharge in an 
atmosphere presumed to reflect primitive Earth [32]. Conversely, the phenylala-
nine, tryptophan, and tyrosine content, which can absorb ultraviolet light, were 
quite low. Strong ultraviolet irradiation might induce photodegradation of these 
amino acids. The differences in amino acid contents in cellular amino acid composi-
tions seem to reflect the presumed free amino acid concentrations on the primitive 
Earth and eventually resulted in the formation of the “star-shaped” cellular amino 
acid compositions (Figure 1).

5. Amino acid compositions deduced from complete genomes

Initially, amino acid compositions were deduced from complete genomes by 
assuming that each gene is equally expressed in a whole cell [21]. This resulted in 
the amino acid composition deduced from the complete genome resembling the cel-
lular amino acid composition obtained from the amino acid analyses of cell lysates 
[21], as shown in Figure 3. This coincidence is difficult to understand because of 
the different origins of both values, until the genome structure has been clarified, as 
shown in the next section.

Figure 2. 
Computational amino acid compositions of an Ureaplasma urealyticum gene. Upper panel: random choice 
of amino acids was carried out in the original gene (5005 amino acid pool). Lower panel: random choice of 
nucleotides was carried out in the original gene (15,018 nucleotides). In the simulation using nucleotides, the 
stop codon and Trp were discarded from the calculation of amino acid compositions, and a triplet formed was 
immediately counted as an amino acid. This figure was adapted from Sorimachi and Okayasu [25].

13

Visible Evolution from Primitive Organisms to Homo sapiens
DOI: http://dx.doi.org/10.5772/intechopen.91170

6. Homogeneity of genome structure

Each gene has its characteristic amino acid or nucleotide sequence, and its 
amino acid or nucleotide composition differs not only in inter-species but also 
in intraspecies. Conversely, gene assemblies encoding 3000–7000 amino acid 

Figure 3. 
Radar charts of cellular and genomic amino acid compositions. Values are expressed as the percentages of total 
amino acids. Pyrococcus horikoshii was examined. The cellular amino acid composition was obtained from 
three independent analyses. In genomic calculations, Gln and Asn were also incorporated into Glu and Asp, 
respectively, to compare with data based on amino acid analysis.

Figure 4. 
Radar charts of amino acid compositions calculated from various units of the complete genome of 
Methanobacterium thermoautotrophicum. (A) The complete genome structure of M. thermoautotrophicum 
(B) radar charts of amino acid compositions calculated from the complete genome, and (C) from various units. 
The complete genome, comprising 1869 protein genes, was divided into 10 or 20 units. Ten units (1–10); based on 
186 and 195 genes, half size units (1-H–9-H); based on 93 genes, single genes (1-F–9-F); based on the first single 
gene of each unit. Glutamine and asparagine were calculated as glutamic acid and aspartic acid, respectively, 
and tryptophan (<1%) was omitted in the radar charts [18]. This figure was adapted from Sorimachi [36].



Cheminformatics and Its Applications

14

residues show very similar amino acid compositions [33] and nucleotide compo-
sitions [34] in intraspecies examinations. Consistent results were obtained from 
whole chromosomes consisting of putative small units of 3000–7000 amino acid 
residues [33]. Additionally, it has been shown mathematically that 3000–7000 
amino acid residues represent the amino acid composition of a certain amino 
acid pool [35]. Thus, genome structure, which is constructed homogeneously 
from putative similar small units, can be represented by a “pearl-necklace,” as 
shown in Figure 4. The fact that the structure of a genome is homogeneously 
constructed with putative similar small units indicates that micro-alterations of 
nucleotide sequences are canceled out within the small unit and that the small 
unit represents the whole genome characteristics. Macro-alterations represented 
by the small unit, and based on species differences, occur synchronously over 
the genome [33]. This conclusion has never been obtained from the analysis of 
nucleotide or amino acid sequences of actual genes. Based on these results, the 
ratios of amino acids to the total amino acids or those of nucleotides to the total 
nucleotides form useful indices for characterizing a genome whose nucleotide 
numbers differ among species.

7. Nucleotide compositions

As described above, the intraspecies rule of nucleotide composition was 
reported by Chargaff in 1950, as the first parity rule [12], and a similar parity 
rule regarding the single DNA strand was reported by the same group in 1968, as 
the second parity rule [14]. Using the normalized values to 1 (G + C + T + A = 1), 
the following relationships are obtained: G = C, T = A, and [(G + A) = (C + T)]. 
Recently, Mitchell and Bridge [16] reported that Chargaff ’s second parity rule 
is applicable to a single DNA strand comprising a double-stranded DNA, based 
on many complete genome data among various species. Conversely, we showed 
that chloroplast and plant mitochondrial DNA and nuclear DNA obey Chargaff ’s 
second parity rule as an inter-species rule [37], and that the second parity rule 
was applicable to the nucleotide relationships not only in the coding region, but 
also in non-coding regions compared with those of the complete single DNA 
strand [37, 38]. When invertebrate mitochondrial DNA is classified into two 
groups, high C/G and low C/G ratios, nucleotide content relationships may be 
expressed by linear formulae [37]. However, organellar DNA deviated from 
Chargaff ’s second parity rule and nucleotide relationships were heteroskedastic 
[16, 39, 40]. The fact that all regression lines based on different kingdoms closed 
at the same single point suggests that all species descended from a single origin 
[41]. This is the first demonstration based on scientific evidence that all species 
were descended from a single origin of life. This concept has been presumed 
since Darwin’s theory “Origin of Species” was published in 1859. Charles Darwin 
discussed evolution over the course of generations via the presence of “Natural 
Selection” in “On the Origin of Species by Means of Natural Selection, or the 
Preservation of Favoured Races in the Struggle for Life”; however, he discussed 
neither “a single origin” nor “a common ancestor” of species. The two regres-
sion lines of nucleotide relationships based on coding and non-coding regions 
closed to form a wedge-shape, because both fragments exist on the same DNA 
strand [37]. Similarly, the two regression lines based on chloroplast and plant 
mitochondrial DNA also closed to form a wedge-shape [37]. Thus, both organel-
lar DNA independently descended from the same origin in biological evolution. 
Quite recently, it has been shown that vertebrates are descended from a certain 
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invertebrate [42]. However, although the phylogenetic trees [7–11] have an 
apparent single origin, these “facts” are merely mathematical calculation results.

8. Diagonal genome universe

Chargaff ’s parity rules were originally based on intraspecies phenomena [12, 
14], and the rules are applicable to inter-species evolutionary phenomena for 
nuclear, chloroplast, and plant mitochondria as mentioned above. The rules are 
represented by the following equations: G = C, T = A, [(G + A) = (C + T)]. As 
all values are normalized to 1, Chargaff ’s parity rule can also be represented as: 
2G + 2A = 1, A = 0.5 – G, T = 0.5 – G, C = G, G = (G). The lines G and C overlap and 
the lines A and T overlap, and the former is line symmetrical to the latter against 
the line y = 0.25, as shown in Figure 5. These equations mean that four nucleotide 
contents can be expressed by just one nucleotide content using regression lines 
(Figure 5), and the two duplicate nucleotide contents (G or C and T or A) are sym-
metrical. Thus, the four nucleotide contents (two duplicate points) move strictly 
on the diagonal of 0.5 of a square in nuclear, chloroplast, and mitochondrial DNA, 
which obey Chargaff ’s second parity rule. Therefore, biological evolution caused 
by nucleotide alterations is expressed on the diagonal of a 0.5 square: the “diagonal 
genome universe” [36], although biological  evolution shows a wide spectrum of 
phenotypic expressions over a 3.5-billion-year period.

Figure 5. 
The “Diagonal Genome Universe.” Plotting four nucleotide contents normalized to 1 against certain nucleotide 
content (i.e., G or C content), G and C contents are expressed by (G = G) and (G = C), respectively, and T 
and A contents are expressed by (T = 0.5 − G) and (A = 0.5 − G), respectively. For example, if G = 0.1 (white 
dashed line), C = 0.1, T = 0.4, and A = 0.4. White open square, A or T; pink closed square, C or G. The white 
dotted line represents the line of symmetry (y = 0.25). Similarly, plotting nucleotide contents against T or A 
content, (T = T), (T = A), (C = 0.5 – T or A), and (G = 0.5 − T or A) are obtained. This figure was adapted 
from Sorimachi [36].
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9. Codon evolution

The 20 amino acids are encoded by genes using nucleotide triplets; therefore, 
these sequences are determined according to triplet sequences. Additionally, amino 
acid sequences differ not only inter-gene but also intraspecies. These facts indicate 
that a comparison of codon evolution based on the complete genome, which com-
prises large numbers of different genes, would not be significant. Indeed, no clear 
evaluation has been obtained, despite the attempted explanations of many scientists 
[27–29]. However, as described in the previous section, it has been clarified that 
a whole genome is constructed from putative small units that encode proteins of 
similar amino acid composition. This suggests that the total codon usage deduced 
from the complete genome is stable and represents the whole genome characteristic. 
According to this concept, correlationships of nucleotide contents in a complete 
genome can be expressed by the linear formula, y = ax + b; where “y” and “x” are 
nucleotide contents, and “a” and “b” are constant values. In addition, as each codon 
usage is expressed by a linear formula among various organisms, the determination 
of any one nucleotide content in certain organism can essentially estimate other 
three nucleotide contents and, therefore, the 64 codon usages (Figure 6). The 
estimated codon usage patterns and amino acid compositions are almost the same 
between the original experimental results and estimated results. The codon usage 
patterns clearly indicate that codon usages changed synchronously among the 64 
codons during biological evolution.

10.  Natural selection in biological evolution based on amino  
acid contents

The above mentioned theories have been described in previous review articles 
[36, 43]; therefore, in this section, unique applications based on the amino acid 
compositions or nucleotide contents in the construction of phylogenetic trees to 
study evolution are presented using recent data.

The theory of natural selection was promoted by Charles Darwin and Alfred 
Wallace 150 years ago. This theory was derived from specific differences or simi-
larities in the phenotypes of organisms that lived on geologically isolated islands. 

Figure 6. 
Codon usage patterns and amino acid compositions of Homo sapience. Codon usage (bar) and amino acid 
composition (radar chart) are expressed as a percent of total codons and amino acids, respectively. Upper and 
lower panels represent genomic and estimated data, respectively. This figure was reproduced from Sorimachi 
and Okayasu [38].
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Figure 7. 
Phylogenetic tree generated using Ward’s cluster analysis method [48] from the predicted amino acid 
composition of the complete mitochondrial genomes of 26 invertebrates (blue), 3 hemichordates (black), and 63 
vertebrates (red). This figure first appeared in Ref. [49] and is reproduced with permission.



Cheminformatics and Its Applications

16

9. Codon evolution

The 20 amino acids are encoded by genes using nucleotide triplets; therefore, 
these sequences are determined according to triplet sequences. Additionally, amino 
acid sequences differ not only inter-gene but also intraspecies. These facts indicate 
that a comparison of codon evolution based on the complete genome, which com-
prises large numbers of different genes, would not be significant. Indeed, no clear 
evaluation has been obtained, despite the attempted explanations of many scientists 
[27–29]. However, as described in the previous section, it has been clarified that 
a whole genome is constructed from putative small units that encode proteins of 
similar amino acid composition. This suggests that the total codon usage deduced 
from the complete genome is stable and represents the whole genome characteristic. 
According to this concept, correlationships of nucleotide contents in a complete 
genome can be expressed by the linear formula, y = ax + b; where “y” and “x” are 
nucleotide contents, and “a” and “b” are constant values. In addition, as each codon 
usage is expressed by a linear formula among various organisms, the determination 
of any one nucleotide content in certain organism can essentially estimate other 
three nucleotide contents and, therefore, the 64 codon usages (Figure 6). The 
estimated codon usage patterns and amino acid compositions are almost the same 
between the original experimental results and estimated results. The codon usage 
patterns clearly indicate that codon usages changed synchronously among the 64 
codons during biological evolution.

10.  Natural selection in biological evolution based on amino  
acid contents

The above mentioned theories have been described in previous review articles 
[36, 43]; therefore, in this section, unique applications based on the amino acid 
compositions or nucleotide contents in the construction of phylogenetic trees to 
study evolution are presented using recent data.

The theory of natural selection was promoted by Charles Darwin and Alfred 
Wallace 150 years ago. This theory was derived from specific differences or simi-
larities in the phenotypes of organisms that lived on geologically isolated islands. 

Figure 6. 
Codon usage patterns and amino acid compositions of Homo sapience. Codon usage (bar) and amino acid 
composition (radar chart) are expressed as a percent of total codons and amino acids, respectively. Upper and 
lower panels represent genomic and estimated data, respectively. This figure was reproduced from Sorimachi 
and Okayasu [38].

17

Visible Evolution from Primitive Organisms to Homo sapiens
DOI: http://dx.doi.org/10.5772/intechopen.91170

Figure 7. 
Phylogenetic tree generated using Ward’s cluster analysis method [48] from the predicted amino acid 
composition of the complete mitochondrial genomes of 26 invertebrates (blue), 3 hemichordates (black), and 63 
vertebrates (red). This figure first appeared in Ref. [49] and is reproduced with permission.



Cheminformatics and Its Applications

18

The theory of biological evolution has been further developed by paleontology 
[44], using phenotypic changes in fossils, and by molecular biology [6], using 
genotypic modifications (nucleotides or amino acids) of genes in living organisms.

Generally, the nucleotide or amino acid sequences of a particular gene or genes 
have been the focus of biological evolution studies, and many phylogenetic trees 
have been constructed using nucleotide or amino acid sequences [7–11, 27, 29, 45]. 
Conversely, the amino acid compositions or nucleotide contents have been rarely 
used for whole genome research. However, these indices have been used to clas-
sify bacteria, archaea, and eukaryotes [46] and recently vertebrate evolution [47]. 
In those studies, all organisms could be classified into two types, “GC-rich” and 
“AT-rich,” and the vertebrates examined were further classified into two groups: 
terrestrial and aquatic vertebrates, based on natural selection. A similar result was 
obtained from an analysis based on 16S rRNA sequences [45, 47].

When the normalized amino acid compositions of vertebrate and invertebrate 
complete mitochondrial genomes were used, the groups were separated cleanly into 
two large clusters, vertebrates and invertebrates (Figure 7). In invertebrates, star-
fish (Echinodermata) formed a small cluster, and squids and octopus (Mollusca) 
were grouped into the same cluster. Vertebrates were further classified into three 
major clusters, mammals, fish, and a mixture of reptiles and amphibians. For 
example, primates (human, chimpanzee, and gorilla) formed a small cluster. Thus, 

Figure 8. 
Phylogenetic tree of complete vertebrate mitochondrial genomes based on cluster analysis [51] using amino acid 
compositions as the trait. Green and blue characters represent terrestrial and aquatic vertebrates, respectively. 
This figure was adapted from Sorimachi et al. [47].
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close species fell into the same cluster and did not split into different clusters. These 
results indicate that the normalized values of amino acid and nucleotide contents 
calculated from complete genomes could be used to characterize organisms and to 
construct phylogenetic trees. Our results based on complete mitochondrial genomes 
revealed that hemichordates (Balanoglossus carnosus and Saccoglossus kowalevskii) 
and Xenoturbella bocki, which were classified into the low G/C content invertebrates 
group, were closer to vertebrates than to invertebrates [49]. Protists (Monosiga 
brevicollis) and cephalochordate (Branchiostoma belcheri) were classified into the 
low G/C and high G/C content invertebrate groups, respectively [49].

In a previous study to classify vertebrates [49, 50], as organisms were chosen at 
random without any preposition, it was difficult to evaluate whether the classification 
results were reasonable in the phylogenetic trees. Using the amino acid composition as 
the trait, the vertebrates examined were separated into two major clusters (Figure 8), 
terrestrial and aquatic vertebrates. The exceptions were the hagfish (Eptatretus burgeri), 
which fell into the terrestrial vertebrate cluster, and the black spotted frog (Rana 
nigromaculata), which clustered with the aquatic vertebrates [47]. The clustering of the 

Figure 9. 
Phylogenetic tree of 16S rRNA. The phylogenetic tree was constructed by the neighbor-joining method [48] using 
nucleotide sequences. Green and blue characters represent terrestrial and aquatic vertebrates, respectively. This 
figure was adapted from Sorimachi et al. [47].
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hagfish (E. burgeri) with the terrestrial vertebrates may reflect the controversy over  
the classification of this fish [52]. If the hagfish truly belongs to the terrestrial group, 
it suggests that hagfish still possesses some primitive mitochondrial characteristics 
that were present before its evolution. The frog (R. nigromaculata) was consistently 
grouped with the aquatic vertebrates which may reflect the conservation of tadpole 
characteristics after metamorphosis. The coelacanth (Latimeria chalumnae), the 
Queensland lungfish (Neoceratodus forsteri), which is a living fossil and one of the oldest 
living vertebrate genera, and the American paddlefish (Polyodon spathula), which is 
the oldest living animal species in North America, all belonged to an additional small 
cluster. Using the G, C, A, and T content of the coding regions, non-coding regions, and 
complete mitochondrial genomes as the traits in cluster analyses, similar results were 
obtained, but with some additional exceptions [50].

Single genes have been used to construct phylogenetic trees [7–11], and 16S rRNA 
has been frequently examined [27, 29]. The phylogenetic tree based on 16S rRNA 
sequences of various vertebrates is shown in Figure 9. The tree is consistent with 
that based on nucleotide contents. The hagfish (E. burgeri) fell into the terrestrial 
vertebrates, while the black spotted frog (R. nigromaculata) belonged to the terrestrial 
vertebrates. These results indicate that vertebrate evolution is controlled by natural 
selection under both an internal bias resulting nucleotide replacement rules and by an 
external bias caused by environmental biospheric conditions. In addition, based on 
amino acid composition or nucleotide content of complete mitochondrial genomes, 
Hemichordates (Balanoglossus carnosus and Saccoglossus kowalevskii) and Xenoturbella 
were classified into vertebrates not into invertebrates [49].

11. Organelle evolution

In Chargaff’s first parity rule [12], G = C and A = T in a double DNA strand, while 
in the second parity rule [14], G ≈ C and A ≈ T in a complete single DNA strand. 
Based on Chargaff’s second parity rule, nucleotide content differences such as (G – C) 
and (A – T) reflect biological evolution. In addition, the other nucleotide content 
differences, (G – A, G – T, C – A, and C – T), also reflect biological evolution [34, 53].

Six nucleotide content differences among the complete mitochondria of the four 
species (M. brevicollis, P. pallidum, D. discoideum, and R. Americana) were examined 
(Figure 10, left panel). The GC and AT skew are expressed by the ratios of (G – C)/
(G + C) and (A – T)/(A + T), respectively [54]. The skew seems to be due to differ-
ences in replication processes between the leading and lagging strands [55]. In the 
replication of the lagging strand, the deamination of cytosine increases the probability 
of mutations, and the inversion of nucleotide content differences reflects biological 
divergence. Similarly, these phenomena are observed in mitochondria, consisting 
of heavy (H) and light (L) chains [56–58]. When the GC skew was plotted against G 
content, animal mitochondria were classified into two groups: high and low C/G [59].

To allow simple comparison of inter- and intraspecies genome structures, 
genomes were divided into three fragments throughout subsequent analyses, from 
which three separate patterns emerged. There is no inversion of nucleotide content 
differences that was observed in the mtDNA of M. brevicollis (G: 0.081, C: 0.059), 
the mycetozoan Polysphondylium pallidum (G: 0.143, C: 0.085), or Dictyostelium 
discoideum (G: 0.171, C: 0.104) (Figure 10), whereas differences in (G – C) and 
(T – A) values for M. brevicollis mtDNA were the lowest among these species. 
Choanoflagellates are most closely related to animals based on genome sequencing 
[60]. The fact that the nucleotide content difference patterns of the three frag-
ments were almost identical for these three species indicates that their nucleotide 
distributions were homogeneous, and that the nucleotide content was symmetrical. 
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Based on these results, these mitochondria are likely to be primitive. Consistent 
results were obtained from Ward’s clustering analysis using amino acid composi-
tions predicted from complete mitochondrial genomes as traits [59]. Thus, the 
M. brevicollis mitochondrion is the most primitive among the three. Although the 
Reclinomonas americana mtDNA (G: 0.148, C: 0.114) has previously been proposed 
as a mitochondrial ancestor [61], AT inversion was observed in the third fragment. 
In addition, differences in (G – C) and (T – A) values in R. americana mtDNA were 
smaller than those in the mtDNA of the previous three organisms. The unsym-
metrical nucleotide content causes significant differences in nucleotide content 

Figure 10. 
Nucleotide content differences in complete mitochondrial genomes (left side) and the three fragments of each 
mitochondrial genome (right side). Left to right: (G – C), (G – T), (G – A), (C – T), (C – A), and (T – A).
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patterns as a result of nucleotide content inversion. Judging from these results, 
the R. americana mitochondrion is probably more evolved than the former three 
mitochondria. In addition, AT inversion occurred in the following more highly 
evolved organisms: Mollusca species, squid (Todarodes pacificus), octopus (Octopus 
vulgaris), Echinodermata species, sea urchin (Paracentrotus lividus), water flea 
(Daphnia pulex), hermit crab (Pagurus longicarpus), and Humboldt squid (Dosidicus 
gigas) [53, 62]. In addition, large positive (G – A) values in the three fragments 
were observed in Paragonimus westermani, while large positive (G – C) and (A – T) 
values in the three fragments were observed for the mtDNA of representatives 
of the following phyla: Cnidaria (Pavona clavus), Platyhelminthes (Schistosoma 
mansoni), Porifera (Geodia neptuni), Arthropoda (Tigriopus californicus), and 
Chordata (Branchiostoma belcheri) [53]. Furthermore, the following invertebrate 

Figure 11. 
Nucleotide differences in the three fragments of each primate mitochondrial genome. Left to right: (G – C), 
(G – T), (G – A), (C – T), (C – A), and (T – A).
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mitochondria were also examined: Acanthaster planci, Haliotis rubra, Lampsilis 
ornate, and the mtDNA of hemichordates, Saccoglossus kowalevskii, Balanoglossus 
carnosus, and Xenoturbella bocki was examined [53].

In the mtDNA of primate species H. sapiens, P. troglodytes, G. gorilla, Macaca 
mulatta, Daubentonia madagascariensis, Nycticebus coucang, and Tupaia belangeri, 
nucleotide content difference patterns were quite similar in the first four species, 
and large positive increases in (C – T) differences in the three fragments clearly 
indicated evolutionary divergence (Figure 11). The positive (C – T) differences in 
all three fragments were characteristic of these four primate mitochondria, while 
positive increases in (C – T) values were only observed in the third fragment of N. 
coucang and T. belangeri mtDNA. In contrast, nucleotide content difference pat-
terns of the prosimian Lemur catta completely differed from those of the primates, 
although TA inversion was observed in the second fragment. The primate mtDNA 
nucleotide content patterns were also completely different from that of hemichor-
date B. carnosus, although their C contents were the highest among all organisms 
examined [59]. This finding indicates that mitochondrial structures respect epig-
enomic evolutionary functions.

12. Definitive universal equations

In the normalization of nucleotide contents (G + C + A + T = 1), as (G = C) and 
(A = T) based on Chargaff ’s parity rules, (2G + 2A = 1) is obtained. This equation is 
altered to (A = 0.5 – G) and then (A – G = 0.5 – 2G). Finally, G – A = 2G – 0.5. The 
relationship between (G – A) and (G) is linear when both (G) and (A) are expressed 
by linear functions. In animal mitochondria, only the correlations between the two 
purines (A versus G) or the two pyrimidines (C versus T) are linear, while the cor-
relations between purines and pyrimidines (A or G versus T or C) are weak or not 
correlated at all [62]. For example, when plotting (G – C), (G – T), (G – A), (C – T), 
(C – A), and (T – C) against G content, only (G – A) versus G content was linear 
in vertebrate mitochondria [59]. In invertebrate mitochondria, plotting nucleotide 
content differences against G content was weakly linear.

Plotting (X – Y)/(X + Y) against (X – Y), the following linear relationship was 
obtained in mitochondria, chloroplasts, and chromosomes (Figure 12): (X – Y)/
(X + Y) = a (X – Y) + b, where X and Y are nucleotide contents, and (a) and (b) 
are constants. As (b) was almost null and (a) was ~2.0, (X – Y)/(X + Y) ≈ 2.0 
(X – Y). In these genome analyses, which are independent of Chargaff ’s parity 
rules, the values of (a) for (G, C), (G, A), (G, T), (C, T), (C, A), and (A, T) were 
2.5858, 1.85558, 1.9908, 1.9771, 1.9968, and 1.5689, respectively, in our previ-
ous results [53, 54]. Based on these results, (G + C), (G + A), (G + T), (C + A), 
(C + T), and (A + T) were 0.39, 0.54, 0.50, 0.51, 0.50, and 0.64, respectively. In 
virus genome analyses [53, 54], the constant values for (a) were 1.9–2.1, and the 
values for (X + Y) were 0.47–0.53. In contrast, in the normalization of nucleotide 
contents (G + C + A + T = 1), as (G = C) and (A = T) based on Chargaff ’s parity 
rules, (2G + 2A = 1) is obtained. This equation is altered to (G + A = 0.5). This 
value is consistent with the value obtained above from genome analyses. Similarly, 
(G + T = 0.5), (C + A = 0.5), and (C + T = 0.5), although (G + C) and (A + T) 
cannot be determined. Therefore, the four nucleotide contents are expressed by 
the following regression lines, plotted against G content: A = 0.5 – G, T = 0.5 – G, 
C = G, and G = G. Lines G and C overlap, as do lines A and T, and the former line 
is symmetrical to the latter against line (y = 0.25). The intercepts of lines G and C 
are close to the origin, while those of lines A and T are close to 0.5 at the vertical 
and horizontal axes. All organisms from bacteria to H. sapiens are located on the 
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(A = T) based on Chargaff ’s parity rules, (2G + 2A = 1) is obtained. This equation is 
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(X + Y) = a (X – Y) + b, where X and Y are nucleotide contents, and (a) and (b) 
are constants. As (b) was almost null and (a) was ~2.0, (X – Y)/(X + Y) ≈ 2.0 
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ous results [53, 54]. Based on these results, (G + C), (G + A), (G + T), (C + A), 
(C + T), and (A + T) were 0.39, 0.54, 0.50, 0.51, 0.50, and 0.64, respectively. In 
virus genome analyses [53, 54], the constant values for (a) were 1.9–2.1, and the 
values for (X + Y) were 0.47–0.53. In contrast, in the normalization of nucleotide 
contents (G + C + A + T = 1), as (G = C) and (A = T) based on Chargaff ’s parity 
rules, (2G + 2A = 1) is obtained. This equation is altered to (G + A = 0.5). This 
value is consistent with the value obtained above from genome analyses. Similarly, 
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cannot be determined. Therefore, the four nucleotide contents are expressed by 
the following regression lines, plotted against G content: A = 0.5 – G, T = 0.5 – G, 
C = G, and G = G. Lines G and C overlap, as do lines A and T, and the former line 
is symmetrical to the latter against line (y = 0.25). The intercepts of lines G and C 
are close to the origin, while those of lines A and T are close to 0.5 at the vertical 
and horizontal axes. All organisms from bacteria to H. sapiens are located on the 
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diagonal lines of a 0.5 square, termed the “Diagonal Genome Universe,” using the 
normalized values that obey Chargaff ’s first parity rule [12]. These relationships 
lead to (G or C) + (A or T) = 0.5. The present results indicate that a linear regression 
line equation, (X – Y)/(X + Y) = a (X – Y) + b, universally represents all normal-
ized values, including the values deviating from Chargaff ’s parity rules. This newly 
discovered equation clearly reflects not only Chargaff ’s first parity rules, based on 
hydrogen bonding between two nucleotides, but also natural rule.

Figure 12. 
Universal rules. The following genome samples were examined: mitochondria of vertebrates (65), invertebrates 
(54), and non-animals (42), chloroplasts (28), prokaryote chromosomes (21), and eukaryote chromosomes (15). 
Left side: relationship between (X – Y) and (X – Y)/(X + Y) and right side: relationship between (X/Y) and 
(X – Y)/(X + Y).
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A linear regression line was not obtained when using randomly chosen value 
(Figure 12A). Furthermore, plotting (X – Y)/(X + Y) against (X/Y), the fol-
lowing logarithmic function was obtained for all tested genomes as well as when 
using randomly chosen values (Figure 12B): (X – Y)/(X + Y) = a ln (X/Y) + b. As 
(b) was almost null and (a) was ~0.5, (X – Y)/(X + Y) ≈ 0.5 ln (X/Y). The ratio 
between two values, (X/Y), can be expressed by a logarithmic function, ~0.5 ln 
(X/Y) ≈ (X – Y)/(X + Y). Plotting the GC skew vs. G content, animal mitochon-
dria were classified into two groups: high and low C/G [59]. This fact indicates 
that the ratio C/G and the GC skew are evolutionarily related to each other. Any 
change can be expressed universally by a definitive logarithmic function, (X – 
Y)/(X + Y) = a ln (X/Y) + b. The present results indicate that cellular organelle 
evolution is strictly controlled under these characteristic rules, although non-
animal mitochondria, chloroplasts, and chromosomes are controlled under 
Chargaff ’s parity rules [12, 14]. The present study clearly shows that biological 
evolution, which seems to be based on complicated processes, is governed by 
simple universal equations.

13. Conclusions

The ratios of amino acids to the total amino acids or of nucleotides to total 
nucleotides predicted from complete genomes consisting of huge number of 
nucleotides can characterize a whole organism. In addition, as these values 
are independent of species and genome size, these indexes are very useful for 
genome research, as well as single gene research. The validity of these indexes is 
clearly based on the homogeneity of genomic structures. In addition, patternal-
ization of values after simple calculations based on large data sets can provide 
an intuitive picture and provide useful insights, revealing the homogeneity of 
genomic structures followed by synchronous alterations over the genome. In 
addition, any change between two values, X and Y, including biological evolu-
tion can be expressed definitively by a linear regression line equation, (X – Y)/
(X + Y) = a (X – Y) + b, where X and Y are nucleotide contents, and (a) and (b) 
are constants, and by a logarithmic function, (X – Y)/(X + Y) = a′ ln (X/Y) + b′, 
where (a′) and (b′) are constants. As the present review is based on the endeav-
ors and data of numerous scientists from all over the world, the author would 
like to express finally his following feeling as one of scientists. (Human being is 
an organism of huge numbers of organisms on the Earth, and we are not ranked 
as a special species above all organisms as a result of long evolution.) However, 
we have made the present modern civilization based on fossil energy usage which 
seems to induce climate changes. Thus, we must be responsible to establish 
sustainable development not only for Human being but also for other organisms. 
The Earth is for all organisms, not only for Human being.
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Abstract

Similarity in chemistry has been applied to a variety of problems: to predict bio-
chemical properties of molecules, to disambiguate chemical compound references 
in natural language, to understand the evolution of metabolic pathways, to predict 
drug-drug interactions, to predict therapeutic substitution of antibiotics, to esti-
mate whether a compound is harmful, etc. While measures of similarity have been 
created that make use of the structural properties of the molecules, some ontologies 
(the Chemical Entities of Biological Interest (ChEBI) being one of the most rel-
evant) capture chemistry knowledge in machine-readable formats and can be used 
to improve our notions of molecular similarity. Ontologies in the biomedical domain 
have been extensively used to compare entities of biological interest, a technique 
known as ontology-based semantic similarity. This has been applied to various bio-
logically relevant entities, such as genes, proteins, diseases, and anatomical struc-
tures, as well as in the chemical domain. This chapter introduces the fundamental 
concepts of ontology-based semantic similarity, its application in cheminformatics, 
its relevance in previous studies, and future potential. It also discusses the existing 
challenges in this area, tracing a parallel with other domains, particularly genomics, 
where this technique has been used more often and for longer.

Keywords: semantic similarity, ontologies, ChEBI, prediction of molecule properties, 
databases

1. Introduction

With the unprecedented amount of data being generated today, we must start 
(and in some cases have already started) to rely on automatic systems to process, 
analyse, and understand all the scientific information that we produce. For some 
examples in chemistry, consider the number of drugs represented in DrugBank, 
which grew from 3909 in 2006 to 9688 [1], about 13% each year; the number 
of metabolites in the Human Metabolite Database grew from 2180 in 2007 to 
114,100 in 2017 [2], approximately 39% per year (although at some point this 
database imported a large number of metabolites at once, artificially increasing 
this statistic); ChemSpider had 25 million compounds in 2010 [3] and now has 
63 million (10% a year); and PubChem grew from 19 million compound structures 
in 2008 [4] to 96.5 million in August 2018 [5] (16% a year). These numbers usually 
grow exponentially [6], reflecting the fact that the amount of knowledge the scien-
tific community produces is proportional to the amount of knowledge we discover.
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With such high volumes of data, it is imperative that we categorise this informa-
tion in ways that assist us in the tasks of consuming that information, specifically 
through categorisation schemas that abstract away the less useful details of reality 
and increase the manageability of this information. As we will see later in this 
chapter, ontologies can perform that goal: they are computational artefacts (files, 
tables in a database, etc.) whose goal is to encode real-world knowledge in machine-
readable logical axioms that can be used by automatic systems to manipulate the 
knowledge inferred and potentially derivable from the data we have.

Furthermore, like most other scientific knowledge, chemistry ideas and notions 
are inferred from comparing entities and finding their similarities and differences. 
For instance, compound similarity has been used to (i) develop pharmacophores 
[7, 8], (ii) estimate whether a compound is harmful without in vivo experimenta-
tion [9], (iii) understand the evolution of metabolic pathways [10], (iv) predict 
adverse side effects of drugs [11], and (v) perform pharmacological profiling of 
compounds in drug design [12].

As we explore in this chapter, ontologies provide one way to measure similarity 
of chemistry entities (compounds, substances, mixtures, reactions, etc.), a tech-
nique known as ontology-based semantic similarity (shortened to semantic similar-
ity in this chapter). This idea is already widely used in genomics and proteomics, 
but its full potential still needs to be brought over to other domains. While some 
research has successfully used this methodology in the cheminformatics domain 
(which we discuss below), there is still space for improvement and further method-
ological development.

In this chapter, we explore the ideas and concepts behind semantic similarity 
and chemistry ontologies, explore some past applications that use those concepts to 
further our knowledge of the chemical domain, and expose some limitations and 
challenges that this technique still needs to overcome for its whole potential to be 
released.

2. Measures of similarity in chemistry

Similarity, in its nature, is a notion that produces a number. In that sense, it 
is mathematical. However, chemical knowledge cannot be trivially reduced to 
mathematical form. For example, given two molecules, how should one compare 
them and assign a number to represent their similarity? And even if specific cases 
can be handled by humans, we still need an automatic way to perform comparison. 
However, to a certain extent, computers can only manipulate objects that can be 
represented mathematically (e.g., vectors) or as strings of characters (e.g., gene 
sequences, SMILES). But the algorithms that are used with these structures are 
context-free: they usually transform the structures without any knowledge of what 
they represent.

Many mechanisms exist to deal with this issue. For example, graph similarity 
can be used to find common substructures in two molecules as a basis for similarity 
calculations (see, e.g., [13, 14]), but these methods tend to be slow and computa-
tionally expensive. There is also the possibility to reduce a molecular structure into 
a fingerprint, which is a binary vector where each position represents the presence 
(with a 1) or absence (with a 0) of a certain feature in the structure. For example, 
the presence of a carboxyl group could be indicated with a 1 in some position of 
the vector. Similarity can then be computed by measuring the overlap in those 
vectors [15, 16].

These methods provide a high similarity value when the structures of the two 
molecules are high. Under the quantitative structure-activity relationship (QSAR) 
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premise, this means that, in general, two molecules with a high similarity score (as 
defined by these methods) tend to have similar biological role, similar chemical 
properties (such as melting point, optical parameters, and mass spectroscopy spec-
tra), similar safety warnings, similar appearance, etc. But this is not always true. For 
instance, while L-amino acids are used to synthesise proteins, D-amino acids are 
much less frequent in nature, and their role is quite different [17]. From a biological 
point of view, they are distinct; however, to capture their structural differences, 
one needs to use three-dimensional methods, and even with that consideration, 
the structural similarity will be high, because both molecules have the same atoms 
and bonds. Another possibility includes simulation of docking with target proteins, 
but these methods are quite expensive computationally. Furthermore, not only can 
similar molecules perform different biological roles, different molecules can per-
form similar roles. For example, both clavulanic acid and salsalate are β-lactamase 
inhibitors, despite their different structures (see Figure 1).

Another way to measure similarity is by means of the semantics attached to the 
chemical compounds. Here, we use the term semantics to mean the knowledge that 
exists about a compound. This includes not only the structure of the molecule itself 
(e.g., the atomic connectivity, the number of oxygen atoms, the presence of triple 
bonds) but also other types of contextual knowledge, such as its chemical role 
(e.g., whether it is an electron donor, a solvent, or an explosive), biological role 
(e.g., whether it is a poison, a cofactor, or a vitamin), its applications (as a drug, 
fertiliser, fuel, etc.), its relationship to other molecules (such as being enantiomers, 
parent hydrides, etc.), and so on.

The difficulty with this is that knowledge is not directly machine-readable. 
Indeed, established facts have been traditionally published in plain text, which 
enables some humans to understand them; however, natural language processing 
techniques are not yet fully capable of converting scientific text into actionable 
formats (e.g., formats that allow automatic reasoning). Therefore, to enable the 
application of computerised processing power to knowledge manipulation, it is 
essential to find ways to represent knowledge in machine-readable formats.

3. Ontologies

Ontologies are the solution to this problem. An ontology is a representation of 
concepts from a domain of knowledge and the relationship between them and is 
usually visualised as a directed acyclic graph (DAG), where nodes are the concepts, 
edges are the relationships, and there are no cycles in the graph. See, for example, 

Figure 1. 
Chemical structure of two semantically related compounds. The two molecular structures in the figure are quite 
different structures, and yet both present the same biological activity, namely, they inhibit β-lactamase enzymes.
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Figure 2, a toy exampled based on a real-world ontology that encodes the fact that 
“acetate” is the conjugate base of “acetic acid” and that “acetic acid” is the conjugate 
acid of “acetate” and then organises these concepts in a hierarchy that contains 
concepts like “ion”, “molecule”, “organic acid”, and “organic molecular entity”, and 
ends up in the most generic “molecular entity” concept.

There are many ontologies whose purpose is to encode the chemical knowledge, 
but one of the most comprehensive and used is the ontology for Chemical Entities 
of Biological Interest (ChEBI) [18]. This ontology represents in a machine-readable 
format about 114 thousand concepts, including not only the chemical compounds 
but also their biological and chemical roles. Other ontologies that encode this or 
related domains include (i) Interlinking Ontology for Biological Concepts, (ii) 
Current Procedural Terminology, (iii) SNOMED CT, (iv) Chemical Information 
Ontology, and (v) Chemical Methods Ontology.

It is important to notice that, even though the notion of ontologies usually 
requires some logic concepts (such as axioms, predicates, etc.), some classifica-
tion hierarchies are also sometimes named “ontologies”. MeSH, the system used 

Figure 2. 
A toy example of an ontology for chemical compounds, based on ChEBI. The ontology shows “is-a” relationships 
with solid lines, and a relationship between acid/base conjugates with a dotted line. The green shaded concepts 
are those that subsume both the yellow and the blue ones.
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by PubMed to classify publications, is a hierarchy of concepts that possesses 
many of the same properties that ontologies do, namely, that it can be repre-
sented as a directed acyclic graph. However, one of the differences is that the 
relationship between two concepts does not always carry the same meaning. For 
example, “Head” is categorised under “Body Regions”, and “Ear” is categorised 
under “Head”, but while heads are body regions, ears are not heads; they are 
instead parts of the head. This illustrates the informality of MeSH: only one rela-
tionship type exists and it is used to express different notions. Another system 
in this category is the Anatomical Therapeutic Chemical (ATC) Classification 
System.

BioPortal [19], a repository of ontologies for the biomedical domain, contains 
a collection of 948 ontologies at the time of this writing. As an illustration of its 
magnitude, consider that 19 ontologies represent the concept “lidocaine”. This 
reflects the effort being currently spent to represent human knowledge in machine-
readable ontologies. In fact, while ontologies such as ChEBI are massive, BioPortal 
allows their users to submit new ontologies, even if small, focussed on a specific 
domain, and created with a specific application in mind other than pure knowledge 
representation (e.g., there is an ontology specific for cardiovascular drug adverse 
events, with 3 thousand concepts).

Other efforts have been set into place to aggregate ontologies in a single source 
of knowledge. For example, the Open Biological and Biomedical Ontology (OBO) 
Foundry [20] developed the OBO file format to represent ontologies and currently 
defines principles of quality for ontologies in biomedical domain that prescribe 
good practices for ontology development, such as being open, being reusable, 
being developed with collaboration in mind, containing both textual and logical 
definitions (for the benefit of both humans and machines), etc. They contain more 
than 200 ontologies as of this writing, 10 of which fully adhere to those principles 
(ChEBI being one of them). The OBO Foundry is tightly coupled with Ontobee 
[21], a web service that uses the principles of linked data to serve as a linked data 
server specifically targeted for ontologies and their concepts.

4. Semantic similarity

Using a formal representation of knowledge, computers are given the ability to 
manipulate concepts that are difficult to represent, in a way that preserves their 
“semantics”. Ontologies provide the appropriate support for automatic manipula-
tion of information. In this context, semantic similarity is a technique that assigns 
a numeric value to a pair of concepts based on the similarity of their meaning, 
extracted from the ontology.

For example, there is no directly obvious way to compare two roles. However, 
considering the illustration in Figure 3, it is possible to intuitively understand that, 
because both “hallucinogen” and “antifungal drug” are examples of “drugs”, they 
are more similar than “hallucinogen” and “fossil fuel”. This measure makes use of 
the meaning of the concepts, implicitly represented in the ontologies through the 
relations between the concepts. Ontologies function as a proxy for that meaning 
and enable its manipulation and ultimately comparison.

Several formulas and ideas have been proposed, implemented and tested in 
the past to compute semantic similarity. A full exposition on such measures and 
algorithms is beyond the scope of this chapter. The reader is encouraged to expand 
on this topic by reading works such as [22–25]. As such, the following is an abridged 
version of how ontology-based semantic similarity has been computed. In this 
discussion, consider the ontology in Figure 3.
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Figure 2, a toy exampled based on a real-world ontology that encodes the fact that 
“acetate” is the conjugate base of “acetic acid” and that “acetic acid” is the conjugate 
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Current Procedural Terminology, (iii) SNOMED CT, (iv) Chemical Information 
Ontology, and (v) Chemical Methods Ontology.

It is important to notice that, even though the notion of ontologies usually 
requires some logic concepts (such as axioms, predicates, etc.), some classifica-
tion hierarchies are also sometimes named “ontologies”. MeSH, the system used 

Figure 2. 
A toy example of an ontology for chemical compounds, based on ChEBI. The ontology shows “is-a” relationships 
with solid lines, and a relationship between acid/base conjugates with a dotted line. The green shaded concepts 
are those that subsume both the yellow and the blue ones.

35

Semantic Similarity in Cheminformatics
DOI: http://dx.doi.org/10.5772/intechopen.89032

by PubMed to classify publications, is a hierarchy of concepts that possesses 
many of the same properties that ontologies do, namely, that it can be repre-
sented as a directed acyclic graph. However, one of the differences is that the 
relationship between two concepts does not always carry the same meaning. For 
example, “Head” is categorised under “Body Regions”, and “Ear” is categorised 
under “Head”, but while heads are body regions, ears are not heads; they are 
instead parts of the head. This illustrates the informality of MeSH: only one rela-
tionship type exists and it is used to express different notions. Another system 
in this category is the Anatomical Therapeutic Chemical (ATC) Classification 
System.

BioPortal [19], a repository of ontologies for the biomedical domain, contains 
a collection of 948 ontologies at the time of this writing. As an illustration of its 
magnitude, consider that 19 ontologies represent the concept “lidocaine”. This 
reflects the effort being currently spent to represent human knowledge in machine-
readable ontologies. In fact, while ontologies such as ChEBI are massive, BioPortal 
allows their users to submit new ontologies, even if small, focussed on a specific 
domain, and created with a specific application in mind other than pure knowledge 
representation (e.g., there is an ontology specific for cardiovascular drug adverse 
events, with 3 thousand concepts).

Other efforts have been set into place to aggregate ontologies in a single source 
of knowledge. For example, the Open Biological and Biomedical Ontology (OBO) 
Foundry [20] developed the OBO file format to represent ontologies and currently 
defines principles of quality for ontologies in biomedical domain that prescribe 
good practices for ontology development, such as being open, being reusable, 
being developed with collaboration in mind, containing both textual and logical 
definitions (for the benefit of both humans and machines), etc. They contain more 
than 200 ontologies as of this writing, 10 of which fully adhere to those principles 
(ChEBI being one of them). The OBO Foundry is tightly coupled with Ontobee 
[21], a web service that uses the principles of linked data to serve as a linked data 
server specifically targeted for ontologies and their concepts.

4. Semantic similarity

Using a formal representation of knowledge, computers are given the ability to 
manipulate concepts that are difficult to represent, in a way that preserves their 
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because both “hallucinogen” and “antifungal drug” are examples of “drugs”, they 
are more similar than “hallucinogen” and “fossil fuel”. This measure makes use of 
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Measures of similarity based on ontologies can roughly be divided into edge-
based and node-based. An example of an edge-based measure is counting how 
many relations must be traversed to connect the two concepts being compared. 
Rada et al. [26] define distance as the number of edges in the smallest path 
between two nodes composed only of “is-a” relations. In this case, the distance 
between “hallucinogen” and “antimicrobial agent” would be three (“hallucino
gen”→“drug”→“antifungal drug”→“antimicrobial agent”). While this type of 
approach is intuitive, it assumes that all nodes and all edges are equally important 
in terms of their semantics (e.g., that all edges weigh the same), which is gener-
ally not true in ontologies in life sciences. For instance, the “is-a” relation between 
“hallucinogen” and “drug” does not necessarily convey the same amount of 
information as the inverse “is-a” relation between “drug” and “antifungal drug”.

One way to solve this is to introduce node-based methods, a technique that 
weighs nodes based on their information content (IC) [27]. The IC of a node 
is a numeric value based that reflects how informative its presence is and is 
calculated based on its frequency of use, since concepts that appear more fre-
quently are generally less informative. The first formula proposed to measure 
IC was

  IC (c)  = − log f (c)   (1)

where f(c) is the relative frequency with which the concept c and all its descen-
dants appear in a corpus (in the example ontology, we can use the fraction of 
chemical concepts in ChEBI annotated as performing each of those roles). The 
intuition behind this idea is the following: consider a document (e.g., a scientific 
article) that uses the sentence “rodents have fur”. The term “rodent” is used in such 
a way that every other concept that can be categorised under it also possesses the 
declared property. In fact, whenever a concept is used (in text, in logical axioms, 
etc.), it must be interpreted as including the set of all concepts recursively catego-
rised under it.

The similarity between two concepts can be computed as the IC of the most 
informative common ancestor (usually abbreviated as MICA) between them

   sim  Resnik   ( c  1  ,  c  2  )  = IC (MICA ( c  1  ,  c  2  ) ) .  (2)

Figure 3. 
A second toy example of an ontology representing chemical roles, also based on ChEBI.
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This idea has been iterated upon with some additions and adaptations.

• The IC measure can be normalised so that it ranges from 0.0 to 1.0 (originally, 
the measure is unbounded above);

• The IC measure has been computed from multiple sources, such as (i) text 
corpora (as in the original), (ii) frequency of usage of the ontology concepts in 
external sources [28], or (iii) the ontology itself, where frequency can be com-
puted based on the number of descendants (direct or indirect) of a concept 
[29], the number of leaf descendants of a concept [30], or other topological 
properties of the graph representation of the ontology [31].

• The semantic similarity measure itself can be normalised. Notice that the original 
measure gives the same similarity to the pair “application”/“biological role” 
(both generic concepts) and “fossil fuel”/“antiviral agent”, which goes against the 
intuition that the first pair should be more similar. Lin [32] uses this idea to define

   sim  Lin   ( c  1  ,  c  2  )  =   2 ⋅ IC (MICA ( c  1  ,  c  2  ) )   _______________  IC ( c  1  )  + IC ( c  2  )    ;  (3)

• The notion of shared information content (originally measured as the informa-
tion content of the MICA of the two concepts) has also been tuned to take into 
account the fact that concepts can have multiple parents [33], which is necessary in 
many life science fields since it is in the nature of biomedical ontologies that some 
concepts are categorised under multiple parents, (see https://github.com/lasige-
BioTM/DiShIn for an example of software that computes this type of measure) 
or the fact that ontologies have disjointness axioms that encode the fact that two 
concepts cannot share any descendants [34], also important because life science 
ontologies, and especially chemistry ones, make use of those types of axioms [35].

• The way to measure shared information content has also been completely re-
implemented to use not the IC of the most informative common ancestor but a 
metric based on the set of all ancestors of the concepts [36].

These measures are able to compare one concept with another. It is also possible 
to compare sets of concepts. For this, one takes the matrix of pairwise similarities 
between concepts in the first set and concepts in the second set and mathemati-
cally manipulates it to produce a single number, taking, for example, the average, 
the maximum, or the “best match average”, an approach that averages the highest 
values in each row and column [22]. There are other approaches that convert a set of 
concepts into the set of all their ancestors and take the intersection of those sets as a 
measure of similarity (two examples are simUI and simGIC [22]).

Finally, there is a difference in measuring the similarity or the relatedness between 
concepts. Similarity is a term that is generally applied to the notion that two con-
cepts are “alike” and is usually computed based on “is-a” hierarchies; relatedness is 
more general: two related concepts can be related based on their categorisation on 
a hierarchy or on any number of other non-hierarchical relations. This distinction 
is important in chemistry, and ChEBI in particular, since many chemistry concepts 
are related via relations such as “has-role”, “has-part”, “is-enantiomer-of”, etc.

Notice that when nothing is known about a chemical compound other than its 
structure, semantic methods can still be used, because one of the ways ontologies 
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• The IC measure can be normalised so that it ranges from 0.0 to 1.0 (originally, 
the measure is unbounded above);

• The IC measure has been computed from multiple sources, such as (i) text 
corpora (as in the original), (ii) frequency of usage of the ontology concepts in 
external sources [28], or (iii) the ontology itself, where frequency can be com-
puted based on the number of descendants (direct or indirect) of a concept 
[29], the number of leaf descendants of a concept [30], or other topological 
properties of the graph representation of the ontology [31].

• The semantic similarity measure itself can be normalised. Notice that the original 
measure gives the same similarity to the pair “application”/“biological role” 
(both generic concepts) and “fossil fuel”/“antiviral agent”, which goes against the 
intuition that the first pair should be more similar. Lin [32] uses this idea to define
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• The notion of shared information content (originally measured as the informa-
tion content of the MICA of the two concepts) has also been tuned to take into 
account the fact that concepts can have multiple parents [33], which is necessary in 
many life science fields since it is in the nature of biomedical ontologies that some 
concepts are categorised under multiple parents, (see https://github.com/lasige-
BioTM/DiShIn for an example of software that computes this type of measure) 
or the fact that ontologies have disjointness axioms that encode the fact that two 
concepts cannot share any descendants [34], also important because life science 
ontologies, and especially chemistry ones, make use of those types of axioms [35].

• The way to measure shared information content has also been completely re-
implemented to use not the IC of the most informative common ancestor but a 
metric based on the set of all ancestors of the concepts [36].

These measures are able to compare one concept with another. It is also possible 
to compare sets of concepts. For this, one takes the matrix of pairwise similarities 
between concepts in the first set and concepts in the second set and mathemati-
cally manipulates it to produce a single number, taking, for example, the average, 
the maximum, or the “best match average”, an approach that averages the highest 
values in each row and column [22]. There are other approaches that convert a set of 
concepts into the set of all their ancestors and take the intersection of those sets as a 
measure of similarity (two examples are simUI and simGIC [22]).
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is important in chemistry, and ChEBI in particular, since many chemistry concepts 
are related via relations such as “has-role”, “has-part”, “is-enantiomer-of”, etc.

Notice that when nothing is known about a chemical compound other than its 
structure, semantic methods can still be used, because one of the ways ontologies 
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(especially ChEBI) classify molecules is based on their structure. For example, 
ChEBI has a concept “carboxylic acid” which is an ancestor of all molecules that 
have one or more carboxylic acid groups (e.g., benzoic acid, all amino acids, all 
penicillins, etc.). This, however, is not conceptually different from measuring struc-
tural similarity, and such a setting would lack the enrichment provided by other 
types of knowledge (e.g., the knowledge of the chemical and biological roles of the 
molecule).

5. Applications

Since 2003, when Lord et al. [28] introduced the idea of ontology-based 
semantic similarity in the gene ontology (GO), several results have been achieved 
using this technique, proving beyond doubt that it is sound and useful and has 
real-life applications. In genomics and proteomics, semantic similarity based on 
GO has been used to (i) cluster proteins [37], (ii) find protein-protein interactions 
[38], (iii) interpret microarray data [39], (iv) predict protein functions [40], (v) 
prioritise candidate disease genes [41], etc. Other uses outside GO include predict-
ing disease-related phenotypes [42] and predicting clinical diagnosis from a set of 
phenotype abnormalities [43].

The uses in chemistry-related areas have been scarce, but nonetheless existing 
and with real-world applications. We collected three research studies of semantic 
similarity in cheminformatics, which show its use in this area.

5.1 Predict biochemical properties of molecules

In 2010, ontology-based semantic similarity was applied to ChEBI [44] using a 
methodology named Chym. Chym shows for the first time that semantic similar-
ity is useful in biomedical chemistry, by applying these ideas to predict whether a 
molecule (i) is capable of crossing the blood brain barrier, (ii) is a substrate of the 
P-glycoprotein, and (iii) binds to an oestrogen receptor. These properties are at 
least partially intrinsically related to the three-dimensional structure of the mol-
ecules and also of the proteins that perform the biochemical role in the organism. 
However, the work shows that structural similarity alone can be improved if it is 
coupled with semantic similarity.

Chym used daylight fingerprints for structural similarity and simUI and simGIC 
for semantic similarity, using ChEBI as the ontology. For all the three properties 
mentioned above, Chym was able to clearly outperform what were then the state-of-
the-art prediction techniques for those properties.

Notice that this means that the two ideas presented here, structural similarity 
and semantic similarity, are not orthogonal and can be applied simultaneously with 
good results. This is not surprising, as ontologies can complement the knowledge 
that can be inferred form the structure alone, without needing to resort to wet-lab 
experiments.

5.2 Disambiguate chemical compound references in natural language

As the amount of textual chemistry information increases, particularly in the 
form of drug leaflets, articles, patents, and other types of communications, the 
need to develop mechanisms to automatically read these texts and extract tractable 
information from them increases as well. In this context, named entity recognition 
is a text mining task whose goal is to identify the entities mentioned in text.
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There have been many attempts to create such systems in the chemical 
domain (see, e.g., the review [45]). In one of those attempts [46], semantic 
similarity has been used to improve the precision of existing methodologies by 
successfully identifying some false positives and removing them from the final 
result set. The idea of that work is that, within a scope of text (e.g., a sentence 
or a paragraph), chemical entities mentioned in that scope share some degree 
of semantic similarity that is higher than average. When entity recognition 
algorithms offer more than one possible ChEBI identifier for an excerpt of text, 
similarity with other ChEBI concepts can be used to disambiguate which is the 
correct entity.

5.3 Drug repurposing

Drug repurposing is the process by which drug that have therapeutic applica-
tion are computationally tested to find other therapeutic applications. This reduces 
costs and improves the drug development pipeline and as such is important for the 
pharmaceutical industry.

The work presented in [47] couples similarity between the three-dimensional 
molecular structure with semantic similarity between the drug targets to find new 
indications for known drugs. The ontology used here is not a chemistry-specific 
one, but GO.

The main methodology of this work was:

1. Select a drug d and a potential target protein p.

2. Find drugs similar to this one (up to a threshold) with a structural similarity meas-
ure. Store these structural similarity values in a vector   X  str   =  ( d  1  ,  d  2  , … ,  d  m  )  .

3. For each similar drug di, find its interacting proteins, compare them with p 
using GO-based semantic similarity, and sum the results. Call this value pi. We 
have now a vector   X  sem   =  ( p  1  ,  p  2  , … ,  p  m  )  .

4. The drug-protein association is assigned a score that depends on the correla-
tion between the vectors Xstr and Xsem. For a set of N proteins, each drug was 
then assigned a vector of N drug-protein association values, called the drug’s 
“expression profile”.

5. The drug-drug similarity measure was computed based on the correlation 
between the “expression profiles” of the two drugs.

The similarity between drugs was then used to construct a network of similari-
ties, where clusters of highly connected drugs were indicative of potential drug 
repurposing.

A related work [48] also uses semantic similarity to predict drug-protein inter-
action. In this work, probabilistic similarity logic is used to construct models that 
are based on a notion of “similarity triads”: triples of the form “drug-target-drug” 
with similar drugs or “target-drug-target” with similar targets. The whole work 
was based on the assumption that similar targets tend to interact with the same 
drug and similar drugs tend to interact with the same target. Here, several protein 
similarity methods (including semantic similarity based on GO) and drug similarity 
method (including semantic similarity based on ATC) were used to build a probabi-
listic model that predicts whether drugs and proteins interact.
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However, the work shows that structural similarity alone can be improved if it is 
coupled with semantic similarity.
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for semantic similarity, using ChEBI as the ontology. For all the three properties 
mentioned above, Chym was able to clearly outperform what were then the state-of-
the-art prediction techniques for those properties.

Notice that this means that the two ideas presented here, structural similarity 
and semantic similarity, are not orthogonal and can be applied simultaneously with 
good results. This is not surprising, as ontologies can complement the knowledge 
that can be inferred form the structure alone, without needing to resort to wet-lab 
experiments.

5.2 Disambiguate chemical compound references in natural language

As the amount of textual chemistry information increases, particularly in the 
form of drug leaflets, articles, patents, and other types of communications, the 
need to develop mechanisms to automatically read these texts and extract tractable 
information from them increases as well. In this context, named entity recognition 
is a text mining task whose goal is to identify the entities mentioned in text.
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There have been many attempts to create such systems in the chemical 
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similarity has been used to improve the precision of existing methodologies by 
successfully identifying some false positives and removing them from the final 
result set. The idea of that work is that, within a scope of text (e.g., a sentence 
or a paragraph), chemical entities mentioned in that scope share some degree 
of semantic similarity that is higher than average. When entity recognition 
algorithms offer more than one possible ChEBI identifier for an excerpt of text, 
similarity with other ChEBI concepts can be used to disambiguate which is the 
correct entity.

5.3 Drug repurposing

Drug repurposing is the process by which drug that have therapeutic applica-
tion are computationally tested to find other therapeutic applications. This reduces 
costs and improves the drug development pipeline and as such is important for the 
pharmaceutical industry.

The work presented in [47] couples similarity between the three-dimensional 
molecular structure with semantic similarity between the drug targets to find new 
indications for known drugs. The ontology used here is not a chemistry-specific 
one, but GO.

The main methodology of this work was:

1. Select a drug d and a potential target protein p.

2. Find drugs similar to this one (up to a threshold) with a structural similarity meas-
ure. Store these structural similarity values in a vector   X  str   =  ( d  1  ,  d  2  , … ,  d  m  )  .
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4. The drug-protein association is assigned a score that depends on the correla-
tion between the vectors Xstr and Xsem. For a set of N proteins, each drug was 
then assigned a vector of N drug-protein association values, called the drug’s 
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5. The drug-drug similarity measure was computed based on the correlation 
between the “expression profiles” of the two drugs.

The similarity between drugs was then used to construct a network of similari-
ties, where clusters of highly connected drugs were indicative of potential drug 
repurposing.

A related work [48] also uses semantic similarity to predict drug-protein inter-
action. In this work, probabilistic similarity logic is used to construct models that 
are based on a notion of “similarity triads”: triples of the form “drug-target-drug” 
with similar drugs or “target-drug-target” with similar targets. The whole work 
was based on the assumption that similar targets tend to interact with the same 
drug and similar drugs tend to interact with the same target. Here, several protein 
similarity methods (including semantic similarity based on GO) and drug similarity 
method (including semantic similarity based on ATC) were used to build a probabi-
listic model that predicts whether drugs and proteins interact.
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6. Challenges and future work

Semantic similarity in cheminformatics has been slow to keep with the pace of 
equivalent research in other life science fields, such as genomics and proteomics. We 
posit that this is in some ways related to general and specific challenges associated 
with the application of this methodology in chemistry.

First, the state of ontology development and the more general knowledge rep-
resentation area is very active, specifically in the biomedical fields. This means that 
many people have the motivation to develop their own ontology, with specific views 
of the reality embedded in it. However, as many people create their own knowledge 
representation artefacts, many different ontologies start to appear that overlap in 
domain, which means that it is not always obvious which ontology (or ontologies) 
to choose for a specific goal. Furthermore, these ontologies are not easy to reconcile, 
because they encode different and disjoint points of view. While efforts have been 
made to attenuate this problem, such as ontology matching (the process by which 
ontologies of the same domain are automatically merged into a single ontology) 
and the establishment of community standards (in chemistry, e.g., it is standard 
practice to reuse ChEBI concepts rather than create new concepts in new ontolo-
gies), the problem still persists.

Second, metrics of semantic similarity have been mostly developed and tested 
in the fields of natural language processing and genomics/proteomics. While these 
seem to have good enough results when used with ChEBI, we still do not know if 
they are the most adequate measures in this domain. Ferreira et al. [34] developed 
and validated a measure on the chemical domain, but more work needs to be done 
in this area. In particular, what role should the non-hierarchical relationship types 
(“is-enantiomer-of”, “is-conjugate-acid-of”, etc.) have in semantic similarity?

The third challenge is one of similarity profiles. It is not always obvious which 
details or properties of a molecule should be used for comparing. Should a pair 
of chemical compounds that differ only in the presence of an oxygen atom (e.g., 
methane vs. methanol) be more similar than a pair of molecules that differ only in 
charge (e.g., NO2 vs. NO2

−) or only in their three-dimensional conformation (e.g., 
L-serine vs. D-serine)? This problem must be solved based on context: determining 
what the similarity measure will be used for and then deciding which features are 
important. This includes deciding, for example, which relationship types should 
be taken into account, how to weight them, etc. Maggiora et al. [49] touch on the 
fact that chemoinformaticians and medicinal chemists typically perceive similar-
ity differently and we need to find ways to capture those differences in actionable 
measures of similarity.

The fourth challenge is the necessity of taking into account multiple domains 
of knowledge: drugs interact with proteins, treat and cause diseases, are produced 
by different methods (industrial or otherwise), have side effects, participate in 
metabolic reactions, etc. These concepts from other domains can also be compared 
semantically (many are even already represented in appropriate ontologies, includ-
ing diseases, proteins, types of molecular interaction, manufacturing procedures, 
side effects, and pathways). The question now is how to take advantage of these 
other ontologies in order to implement a useful and accurate measure of chemical 
similarity. This issue is even related to the previous one, since by tuning the weight 
of these other domains, we can create new profiles of similarity more pertinent to 
some goals than others.

Another challenge is the absence of a standardised way to validate the mea-
sures that are proposed. In practice, for each new measure being proposed by 
some research group, that same group validates the new measure by comparing 
them with previous ones or by using it to show that the new measure can find 
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hidden knowledge in some dataset. However, the ad hoc way these validations are 
performed means that frequently the measures are neither comparable nor inter-
changeable and that they can only be used for the goal used to validate them. Thus, 
a general but useful validation strategy should also be developed to bring cohesion 
to this field.

7. Conclusion

This chapter introduces the ideas behind ontology-based semantic similarity 
measures, how they are applied in life sciences, and some of their uses in chemistry-
related research endeavours. The main idea that we exposed is that these methods, 
having been used in other biomedical fields, can help cheminformatics in several 
fronts. We described three applications of where this methodology has been applied 
directly in cheminformatics research efforts and expect that this number grows as 
more people are exposed to this idea and its use cases.

We also exposed some of the future challenges in this area, which can serve 
as a starting point to anyone wishing to improve on the work already published, 
and provided general guidelines that should be taken into account for the further 
improvement of cheminformatics as a scientific field. In particular, we emphasise 
the need to explore the multidomain potential in semantic similarity, as well as the 
need to standardise the ways to validate measures of semantic similarity.
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Abstract

In this chapter, firstly, we briefly review aspects of the approximation of 
quantum chemistry, molecular electrostatic potential (MEP), and chemometrics 
techniques, which are accredited as important tools in the development of chemi-
cal science and are frequently used in the study and design of bioactive com-
pounds. Ultimately, we use MEP and pattern recognition (PR) techniques as tools 
to design nitrofuran compounds with biological activity against Trypanosoma cruzi 
(T. cruzi). PR models (PCA, HCA, KNN, SDA, and SIMCA) were constructed 
and demonstrated that 23 nitrofurans can be classified into two classes or groups: 
more active and less active according to their degrees of activity against T. cruzi. 
Properties such as charge on the N atom of the nitro group (QN1); the difference 
between the highest occupied molecular orbital (HOMO) energy and the lowest 
unoccupied molecular orbital (LUMO) energy (GAP energy); molecular repre-
sentation of structure based on electron diffraction code of signal 5, unweighted 
(Mor05u); and Moriguchi water–octanol partition coefficient (MlogP) are respon-
sible for the classification into more active and less active studied nitrofurans. 
It is interesting to notice that these properties represent three distinct classes of 
interactions between the nitrofurans and the biological receptor: electronic (QN1 
and GAP energy), steric (Mor05u), and hydrophobic (MlogP). The results of the 
application of PR models on the validation set evidenced two nitrofuran com-
pounds (compounds 25 and 30) as more promising for synthesis and biological 
assays, which in the future can be used to validate our PR models.
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1. Introduction

Reports of theoretical bases of MEP and the development of efficient computa-
tional methods state that MEP has become an important reactivity index in studies 
of a large variety of molecular interactions [1]. The usefulness of this theoretical 
approach in studies and interpretation of chemical, biochemical, and related 
phenomena is well documented [2–18].

Chemometrics is a discipline that collects mathematical, statistical, information 
theory, and computer science tools to deal with complex chemical data [19–22]. 
PR techniques were introduced in the chemistry, at the beginning of the 1970s, to 
analyze various types of spectroscopic data. Since then, PR became part of chemo-
metrics and has been an excellent tool to aid in the interpretation of chemical data 
to obtain relevant information in different application sectors of chemical science 
[19, 20]. PR techniques are especially useful for the classification of objects into 
discrete classes on the basis of measured features. A set of characteristic features of 
an object is considered as an abstract pattern that contains information about a not 
directly measured property of the object [19].

The MEP and PR techniques have been used as independent strategies in the 
study of active compounds and lead to the proposal of new molecules for synthesis 
and biological testing. The joint applications of these powerful tools were described 
carefully, to unravel the structure-activity relationship of bioactive compounds, 
consequently proposing new molecules. Therefore, a more intense exploration of its 
potentials is needed in order to design biologically active compounds.

The design of molecules with a desired property is one of the objectives of 
chemoinformatics. In this chapter, we present a study of the application of MEP and 
PR techniques to design nitrofuran compounds with potential activity against T. 
cruzi. In the first step of our study, MEP maps will be used in an attempt to identify 
the key structural features of nitrofuran compounds that are necessary for their 
activities and investigate their probable interactions with a molecular receptor 
through recognition in a biological process. Subsequently, PR techniques are used 
to construct models that will be applied later to a forecast set constructed with the 
accumulated perceptions in the MEP studies.

2.  MEP and chemometrics techniques as tools for the design  
of bioactive compounds: a brief review

According to the literature, MEP [1, 3] has been a tool of quantum chemistry 
used by researchers for several decades to study and understand the relationships 
between structure and activity of molecules. Among the papers that point out the 
importance of this tool in the matter, and consequently in the planning of bioac-
tive compounds, we can mention those reported by Bernardinelli et al. [23] and by 
Jefford et al. [24].

Another tool, in the form of a set of techniques has been used emphatically over 
the years in the understanding of the structure-activity relationship of molecules is 
Chemometrics [25–27]. This set of techniques has also enables the planning of new 
biologically active compounds, and most of the developed research is focused on 
the construction of QSAR (quantitative structure-activity relationship) models.

The combination of MEP and chemometrics as tools for designing new bioactive 
compounds has almost always been focused on the elaboration of quantitative mod-
els, for example, the CoMFA methodology [28]. This methodology was developed 
in the late 1980s by Cramer et al. [29]. Its application is richly extensive and recently 
it has been used in several studies of structure–activity relationships of bioactive 
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compounds. Chatbar et al. conducted a study of triazine morpholino derivatives 
as mTOR inhibitors for the treatment of breast cancer [30]. Pourbasheer et al. 
performed 3D-QSAR and 2D-QSAR analyses on the series of compounds hepatitis C 
virus NS5B polymerase inhibitors [31]. Cramer applied the CoMFA methodology for 
a large majority of 116 biological targets and obtained acceptable 3D-QSAR models 
[32]. Cramer et al. introduced in the literature a novel alignment methodology for 
training or test set structures in 3D-QSAR [33]. Dong et al. performed QSAR analy-
ses of aromatic heterocycle thiosemicarbazone analogues for finding novel tyrosi-
nase inhibitors [34]. Dong et al. built 3D-QSAR models of dabigatran analogues as 
thrombin inhibitors [35]. Ding et al. performed 3D-QSAR models of 6-aryl-5-cyano-
pyrimidine derivatives to explore the structure requirements of LSD1 inhibitors [36].

Applications of MEP to investigate the key features of compounds that are 
necessary for their biological activities and thus proposing new derivatives as 
well as the construction of chemometric models as indicative of the most promis-
ing among the new derivatives for syntheses and biological assays were reported 
by us in literature [37–43]. Pinheiro et al. stated the use of MEP and partial least 
squares regression (PLS) method in the design of new artemisinin derivatives with 
activities against Plasmodium falciparum [37]. Cardoso et al., using MEP maps and 
multivariate QSAR, designed new artemisinin derivatives with antimalarial activity 
[38]. Ferreira et al., through MEP maps and multivariate analysis, designed antima-
larial artemisinins [39]. Figueiredo et al. designed new derivatives of dispiro-1,2,4-
trioxolones with activity against falciparum malaria [40]. Carvalho et al., through 
maps of MEP and pattern recognition methods, proposed new artemisinin 
derivatives with activity against Leishmania donovani [41]. Barbosa et al. used MEP 
maps and pattern recognition techniques to plan new derivatives of artemisinin 
anticancer HepG2 [42]. Cristino et al. proposed new derivatives of 10-substituted 
Deoartemisinis with activity against P. falciparum [43] through the use of MEP 
maps and pattern recognition techniques.

3.  MEP and PR techniques as tools to design nitrofuran compounds  
with biological activity against T. cruzi

3.1 Computational

3.1.1  Biological recognition process ligand/receptor through the molecular 
electrostatic potential

The MEP is also suitable for analyzing processes based on the “recognition” of 
one molecule by another as in drug-receptor and enzyme-substrate interactions, 
because it is through their potentials that the two species first “see” each other  
[2, 3, 44–46].

MEP for the electronic density is a very useful property for understanding the 
site of electrophilic attack and nucleophilic reactions as well as the hydrogen bond-
ing interactions [46]. The MEP at a given point (x, y, z) in the vicinity of a molecule 
is defined in terms of the interaction energy between the electrical charge gener-
ated from the molecule’s electrons and nuclei and a positive charge test (a proton) 
located at    →  r   . Being a real physical property, MEP can be determined experimentally 
by diffraction or by computational tools [3]. For the studied nitrofuran molecules, 
the MEP values were computed through Eq. (1) [45]

  V (  → r  )  =  ∑ 
j=1

  
K
       Z  j   _ 

 |  →  R  j    −   → r  | 
   − ∫   ρ (   → r   ′  ) d   → r   ′   _ 

 |  → r  ′−   → r  | 
     (1)
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maps of MEP and pattern recognition methods, proposed new artemisinin 
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anticancer HepG2 [42]. Cristino et al. proposed new derivatives of 10-substituted 
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3.  MEP and PR techniques as tools to design nitrofuran compounds  
with biological activity against T. cruzi

3.1 Computational

3.1.1  Biological recognition process ligand/receptor through the molecular 
electrostatic potential

The MEP is also suitable for analyzing processes based on the “recognition” of 
one molecule by another as in drug-receptor and enzyme-substrate interactions, 
because it is through their potentials that the two species first “see” each other  
[2, 3, 44–46].

MEP for the electronic density is a very useful property for understanding the 
site of electrophilic attack and nucleophilic reactions as well as the hydrogen bond-
ing interactions [46]. The MEP at a given point (x, y, z) in the vicinity of a molecule 
is defined in terms of the interaction energy between the electrical charge gener-
ated from the molecule’s electrons and nuclei and a positive charge test (a proton) 
located at    →  r   . Being a real physical property, MEP can be determined experimentally 
by diffraction or by computational tools [3]. For the studied nitrofuran molecules, 
the MEP values were computed through Eq. (1) [45]

  V (  → r  )  =  ∑ 
j=1

  
K
       Z  j   _ 

 |  →  R  j    −   → r  | 
   − ∫   ρ (   → r   ′  ) d   → r   ′   _ 

 |  → r  ′−   → r  | 
     (1)
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where K is the number of nuclei with charges Zj, located at position Rj and ρ (   
→
 r   ) 

is the electronic charge density. The first term on the right side of Eq. (1) represents 
the contribution of the nuclei, which is positive; the second term brings in the 
effect of the electrons, which is negative. In the investigation of the reactive sites of 
nitrofuran compounds, the MEP was evaluated through of the HF/6-31G method.

3.1.2 RP techniques

In this section, we will make a brief presentation of the PR techniques used 
in this chapter. A deeper and detailed description of these matters can be found 
elsewhere [47–66].

3.1.2.1 Principal component analysis (PCA) technique

When computing large multivariate data, it is mandatory to find and reduce 
unknown data trends using exploratory tools. The main idea of the PCA technique 
is to reduce the dimensionality of a data set consisting of large numbers of inter-
related variables while retaining the variation present in the data set as much as 
possible. This can be achieved by transforming them into a new set of variables, 
the PCs, which are uncorrelated and ordered so that the first few retain most of the 
variation present in all of the original variables. As the final result, the PCA tech-
nique performs the selection of a small number of variables (molecular properties) 
considered better related to the dependent property or feature [67], in this study, 
the biological activity against T. cruzi.

3.1.2.2 Hierarchical cluster analysis (HCA) technique

This technique has become, together with PCA, another important tool in 
pattern recognition [67]. The purpose of using it is to display the data in such a way 
as to emphasize its natural clusters and patterns in a two-dimensional space. The 
results are presented as dendrograms. In HCA technique, the distances between 
objects or variables are calculated and computed through the similarity index which 
ranges from zero, that is, no similarity and large distance among objects, to one, for 
identical objects.

3.1.2.3 K-nearest neighbor (KNN) technique

The KNN technique [67] classifies the objects based on distance comparison 
among them. The multivariate Euclidean distances between every pair of objects 
with known class membership are calculated. The closest K objects are used to build 
the model. The optimal K is determined by cross-validation applied to the training 
set objects. The classification of a test object is determined based on the multivariate 
distance of this object with respect to the K objects in the training set. In this tech-
nique no assumption is made about the size and shape of the training set classes.

3.1.2.4 Stepwise discriminant analysis (SDA) technique

This technique separates objects from distinct populations and allocates new 
objects into populations previously defined. It uses a stepwise procedure in which, 
at each step, the most powerful variable is entered into the discriminant function. 
The SDA technique is anchored in the F-test for the significance of variables and 
at each step selects a variable based on its significance, and, after several steps, the 
most significant variables are extracted from the set in question [20, 68].

51

Molecular Electrostatic Potential and Chemometric Techniques as Tools to Design Bioactive…
DOI: http://dx.doi.org/10.5772/intechopen.89113

3.1.2.5 Soft independent modeling of class analogy (SIMCA) technique

This SIMCA technique develops principal component models for each training 
set category. Its main objective is the reliable classification of new samples. When 
a prediction is made with the SIMCA technique, new samples insufficiently close 
to the PC space of a class are considered nonmembers. Furthermore, the technique 
requires that each training sample be pre-assigned to one of Q different categories, 
where Q is typically greater than one. It provides three possible outcome predic-
tions: the sample fits only one pre-defined category, the sample does not fit any 
of the pre-defined categories, and the sample fits into more than one pre-defined 
category [67].

3.1.3 Computers, software, compounds, and molecular descriptors

For the present chapter, we performed molecular calculations on an AMD 
PHENOM 955 X4 2.2 GHz processor with 4 Gb of RAM with the Gaussian 98 
program package [69]. The MEP was computed from the electronic density, and the 
maps were displayed using the MOLEKEL software [70], while the PR models were 
carried out on a PC Pentium machine with the Pirouette program [71].

Figure 1 shows the 2D structure of the 5-nitrofuran-2-aldoxim molecule [72] 
used in the selection of method/basis set (see Section 3.1.3.1). In Figures 2 and 3  
the 2D structures of the nitrofuran compounds from the training [73–75] and 
prediction sets are displayed, respectively. In this work, the nitrofuran molecules 
were defined as more active against T. cruzi, when in vitro growth rate inhibi-
tion (GR) T. cruzi ≥ 75, and as less active when in vitro growth rate inhibition T. 
cruzi < 75.

In general, the structure–activity relationship shows that for the compounds 
1–6, the increase in the carbon chain improves the activity against T. cruzi. The 
comparison between compounds 3 and 2 evidences increased activity by the 
substitution of the N atom by O. We can also notice that increasing the number 
of unsaturations and returning the nitrogen to the chain will lead to a decrease 
in biological activity (7, 8). Still in relation to compound 1, increasing the 
unsaturations, returning the atom of O, and increasing the carbon chain length 
(9–12) substantially increase the activity against T. cruzi. On the other hand, in 
compounds 13 and 14, returning to an unsaturation in the main chain and intro-
ducing electron-withdrawing groups and more electronegative atoms, there is a 
decrease in chagasic activity. This evidence can also be verified for compounds 
16, 17, 19–22.

The molecular descriptors were obtained for the most stable conformation of 
each compound. These descriptors were computed to give information about the 
influence of electronic, steric, hydrophilic, and hydrophobic features on the anti-
trypanosomal activity of the studied nitrofurans. The atomic charges in this work 
were derived from the electrostatic potential obtained with HF/6-31G method/basis 

Figure 1. 
2D molecular structure for 5-nitrofuran-2-aldoxime.



Cheminformatics and Its Applications

50

where K is the number of nuclei with charges Zj, located at position Rj and ρ (   
→
 r   ) 
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The SDA technique is anchored in the F-test for the significance of variables and 
at each step selects a variable based on its significance, and, after several steps, the 
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decrease in chagasic activity. This evidence can also be verified for compounds 
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The molecular descriptors were obtained for the most stable conformation of 
each compound. These descriptors were computed to give information about the 
influence of electronic, steric, hydrophilic, and hydrophobic features on the anti-
trypanosomal activity of the studied nitrofurans. The atomic charges in this work 
were derived from the electrostatic potential obtained with HF/6-31G method/basis 

Figure 1. 
2D molecular structure for 5-nitrofuran-2-aldoxime.
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set as implemented in the Gaussian program package. The electrostatic potential 
is obtained through the calculation of a set of punctual atomic charges so that it 
represents the possible best quantum molecular electrostatic potential for a set of 
points defined around the molecule [76, 77]. The charges derived from electrostatic 
potential present the advantage of being, in general, physically more satisfactory 
than the charges of Mülliken [78], especially with regard to biological activity.

The quantum–chemical descriptors employed and obtained with the Gaussian 
98 program package [69] were total energy of molecules (TE), highest occupied 
molecular orbital (HOMO) energy, one level below to highest occupied molecular 
orbital (HOMO–1) energy; lowest unoccupied molecular orbital (LUMO) energy, 
one level about lowest unoccupied molecular orbital (LUMO+1) energy, HOMO 
energy–LUMO energy (gap energy), total dipole moment (μ), Mulliken’s electro-
negativity (χ), atomic charges on the Nth atom (QN), molecular hardness (HD), 
and molecular softness (MS).

The physicochemical descriptors obtained with ChemPlus module [79] were 
total surface area (TSA), molecular volume (VOL), molecular refractivity (MR), 
and molecule hydration energy (MHE).

Molecular holistic (MH) descriptors were included with the purpose of repre-
senting different sources of chemical information in terms of molecular size, sym-
metry, and distribution of atoms in molecules. Also, we include topologic indices, 
connectivity indices, geometric descriptors, 3D-MoRSE descriptors, and Moriguchi 
octanol–water partition coefficient (MlogP). These descriptors were calculated with 
the Dragon software [80].

Figure 2. 
2D molecular structure for nitrofurans (training set).
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3.1.3.1 Theoretical approach and basis set used in the molecular calculations

In the calculations with the nitrofuran compounds (Figure 1), quantum–chemi-
cal approaches were used [81–87]. We use Becke’s three-parameter hybrid methods 
[81], the Lee-Yang-Parr (LYP) correlation functional [82], B3LYP and Becke’s 1988 
functional (BLYP) [83], Hartree-Fock (HF) method [84], Austin model 1 (AM1) 
method [85], Parametric Method Number 3 (PM3) [86], and standard basis sets 
[87] available in the Gaussian program package. In 5-nitrofuran-2-aldoxim, geom-
etry optimization was carried out by B3LYP/6-21G, B3LYP/6-21G*, B3LYP/6-31G, 
B3LYP/6-31-G*, BLYP/6-21G, BLYP/6-21G*, BLYP/6-31G, BLYP/6-31G*, HF/6-
21G, HF/6-21G*, HF/6-31G, and HF/6-31G* approaches [81–84] and basis sets 
[87] and AM1 and PM3 approaches [85, 86] . The calculations were performed to 
find the approach and basis set that would present the best compromise between 

Figure 3. 
2D molecular structures for nitrofurans for the prediction set.
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computational time and accuracy of the information relative to the experimental 
data. The experimental structure of 5-nitrofuran-2-aldoxim molecule was retrieved 
from the Cambridge Structural Database CSD [72]. PCA and HCA techniques were 
used to compare the computed structures with different methods/basis sets of quan-
tum chemistry with the experimental structure of 5-nitrofuran-2-aldoxim molecule 
to identify the appropriate method and the basis set for further calculations. The 
analyzes were carried out on an auto-scaled data matrix with dimension 26 × 5, 
where each row was associate 26 computed and 1 experimental geometry, and each 
column represented one of 5 geometrical parameters of the 5-nitrofuran-2-aldoxim 
molecule (bond lengths and bond angles). In order to compute all structures and 
perform calculations to obtain the molecular properties, the HF/6-31G method has 
selected (see Results and discussion section); the initial geometries of the nitrofurans 
(Figures 2 and 3) were built with the optimized geometry of the 5-nitrofuran-2-al-
doxim molecule selected by PCA and HCA techniques. A conformational analysis for 
each compound was carried out with the MM+ algorithm [79], and the lowest energy 
conformation was submitted to a conformational search with the Gaussian program.

3.2 Results and discussion

3.2.1  Quantum–chemical approach and basis set selection for the description  
of the geometries of nitrofurans

The advantage in using the PCA and HCA techniques in this step was that all 
structural information are considered simultaneously and it takes into account 
the correlations among them. Table 1 shows the theoretical and experimental 
structural information (bond lengths and bond angles) of the geometry of the 
5-nitrofuran-2-aldoxim molecule. It was used with the aim to select using PCA and 
HCA techniques, which quantum–chemical approach and basis set give results 
closest to the experimental data [72].

The first two principal components explain 86.02% of the original informa-
tion as follows: PC1 = 58.01% and PC2 = 28.02%. The PC1 versus PC2 scores plot is 
shown in Figure 4, from which it can be seen that the methods are discriminated 
into two classes according to PC2. The semiempirical approaches (AM1 and PM3) 
are at the top of the graph, while the other theoretical (HF, BLYP, and B3LYP) 
approaches and experimental data are at the bottom. Moreover, it can be seen that 
the HF/6-31G approach/basis set is the closest to the experimental data, indicating 
that they should be used in the development of this work.

Also, to investigate the most appropriate approach and basis set for further 
calculations, we used HCA. Figure 5 shows the dendrogram obtained with com-
plete linkage method; from this figure, we conclude that the theoretical approaches 
are distributed in a similar way as in PCA, i.e., HCA confirmed the PCA results. 
Moreover, we can observe that the HF/6-31G approach/basis set is closer to the 
experimental data therefore being the most suitable to carry out this work.

3.2.2 MEP maps for compounds of the training set

Figure 6 shows the MEP maps for the nitrofurans in the training set. The 
analysis of these maps reveals that the most active compounds, in general, have the 
following characteristics:

(i) Compounds with an unsaturation and presenting O atom neighboring the 
carbonyl in the carbonic chain present greater electron density in the proximities of the 
furan ring with the decrease of the chain size. In these compounds (4, 5, and 6), MEP 
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computational time and accuracy of the information relative to the experimental 
data. The experimental structure of 5-nitrofuran-2-aldoxim molecule was retrieved 
from the Cambridge Structural Database CSD [72]. PCA and HCA techniques were 
used to compare the computed structures with different methods/basis sets of quan-
tum chemistry with the experimental structure of 5-nitrofuran-2-aldoxim molecule 
to identify the appropriate method and the basis set for further calculations. The 
analyzes were carried out on an auto-scaled data matrix with dimension 26 × 5, 
where each row was associate 26 computed and 1 experimental geometry, and each 
column represented one of 5 geometrical parameters of the 5-nitrofuran-2-aldoxim 
molecule (bond lengths and bond angles). In order to compute all structures and 
perform calculations to obtain the molecular properties, the HF/6-31G method has 
selected (see Results and discussion section); the initial geometries of the nitrofurans 
(Figures 2 and 3) were built with the optimized geometry of the 5-nitrofuran-2-al-
doxim molecule selected by PCA and HCA techniques. A conformational analysis for 
each compound was carried out with the MM+ algorithm [79], and the lowest energy 
conformation was submitted to a conformational search with the Gaussian program.

3.2 Results and discussion

3.2.1  Quantum–chemical approach and basis set selection for the description  
of the geometries of nitrofurans

The advantage in using the PCA and HCA techniques in this step was that all 
structural information are considered simultaneously and it takes into account 
the correlations among them. Table 1 shows the theoretical and experimental 
structural information (bond lengths and bond angles) of the geometry of the 
5-nitrofuran-2-aldoxim molecule. It was used with the aim to select using PCA and 
HCA techniques, which quantum–chemical approach and basis set give results 
closest to the experimental data [72].

The first two principal components explain 86.02% of the original informa-
tion as follows: PC1 = 58.01% and PC2 = 28.02%. The PC1 versus PC2 scores plot is 
shown in Figure 4, from which it can be seen that the methods are discriminated 
into two classes according to PC2. The semiempirical approaches (AM1 and PM3) 
are at the top of the graph, while the other theoretical (HF, BLYP, and B3LYP) 
approaches and experimental data are at the bottom. Moreover, it can be seen that 
the HF/6-31G approach/basis set is the closest to the experimental data, indicating 
that they should be used in the development of this work.

Also, to investigate the most appropriate approach and basis set for further 
calculations, we used HCA. Figure 5 shows the dendrogram obtained with com-
plete linkage method; from this figure, we conclude that the theoretical approaches 
are distributed in a similar way as in PCA, i.e., HCA confirmed the PCA results. 
Moreover, we can observe that the HF/6-31G approach/basis set is closer to the 
experimental data therefore being the most suitable to carry out this work.

3.2.2 MEP maps for compounds of the training set

Figure 6 shows the MEP maps for the nitrofurans in the training set. The 
analysis of these maps reveals that the most active compounds, in general, have the 
following characteristics:

(i) Compounds with an unsaturation and presenting O atom neighboring the 
carbonyl in the carbonic chain present greater electron density in the proximities of the 
furan ring with the decrease of the chain size. In these compounds (4, 5, and 6), MEP 

55

Molecular Electrostatic Potential and Chemometric Techniques as Tools to Design Bioactive…
DOI: http://dx.doi.org/10.5772/intechopen.89113

A
pp

ro
ac

he
s/

ba
si

s s
et

G
eo

m
et

ri
c 

pa
ra

m
et

er
s

B3
LY

P/
6-

21
G

B3
LY

P/
6-

21
G

*
B3

LY
P/

6-
31

G
B3

LY
P/

6-
31

G
*

BL
Y

P/
6-

21
G

BL
Y

P/
6-

21
G

*
BL

Y
P/

6-
31

G
BL

Y
P/

6-
31

G
*

H
F/

6-
21

G
H

F/
6-

21
G

*
H

F/
6-

31
G

H
F/

6-
31

G
*

A
M

1
PM

3
Ex

p 
[7

2]

Bo
nd

 le
ng

th
 (Å

)

C 2
C 3

1.4
2

1.4
2

1.4
2

1.4
2

1.4
3

1.4
7

1.4
3

1.4
2

1.4
3

1.4
3

1.4
3

1.4
3

1.4
3

1.4
3

1.4
1

C 4
C 5

1.
36

1.
36

1.
37

1.
37

1.
38

1.
38

1.
39

1.
38

1.
34

1.
39

1.
34

1.
34

1.4
0

1.
39

1.
34

C 1
C 2

1.
38

1.
38

1.
38

1.
38

1.
39

1.
39

1.4
0

1.
39

1.
35

1.
35

1.
35

1.
35

1.
33

1.
38

1.
36

C 1
O

1
1.4

0
1.

37
1.

39
1.

36
1.4

2
1.

39
1.4

2
1.

38
1.

37
1.

39
1.

37
1.

33
1.

34
1.

37
1.

37

C 4
O

1
1.

38
1.

35
1.

38
1.

35
1.4

1
1.

37
1.4

0
1.

37
1.

36
1.

37
1.

35
1.

33
1.4

0
1.

38
1.

35

C 4
N

1
1.4

1
1.4

3
1.4

1
1.4

3
1.4

3
1.4

4
1.4

3
1.4

9
1.4

0
1.4

3
1.4

0
1.4

2
1.4

5
1.4

8
1.4

2

N
1O

2
1.4

1
1.4

3
1.4

1
1.4

3
1.4

3
1.4

4
1.4

3
1.4

8
1.4

0
1.4

3
1.4

1
1.4

2
1.4

6
1.4

7
1.4

2

N
1O

3
1.

28
1.

23
1.

26
1.

23
1.

31
1.

25
1.

29
1.

25
1.

24
1.1

9
1.

22
1.1

9
1.1

9
1.

21
1.

22

C 1
C 5

1;
29

1.
23

1.
27

1.
23

1.
32

1.
26

1.
30

1.
26

1.
26

1.
20

1.
23

1.
20

1.
20

1.
22

1.
22

C 5
N

2
1.4

3
1.4

4
1.4

3
1.4

4
1.4

4
1.4

5
1.4

4
1.4

5
1.4

5
1.4

6
1.4

5
1.4

6
1.4

5
1.4

5
1.4

5

N
2O

4
1.

29
1.

28
1.

29
1.

28
1.

32
1.

31
1.

31
1.

30
1.

26
1.

25
1.

26
1.

25
1.

31
1.

29
1.

27

O
4H

1
1.4

7
1.4

0
1.4

4
1.

39
1.

50
1.4

2
1.4

7
1.4

1
1.4

4
1.

37
1.4

0
1.

36
1.

31
1.

39
1.

38

Bo
nd

 an
gl

e (
°)

C 1
O

1C
4

10
5.3

10
5.6

10
6.

0
10

6.
1

10
4.

7
10

5.3
10

5.5
10

5.8
10

5.4
10

6.
3

10
5.8

10
6.

9
10

5.3
10

6.
3

10
4.

5

O
1C

1C
2

10
9.

5
11

0.
2

10
9.

2
11

0.
1

10
9.

5
11

0.
0

10
9.

2
10

9.9
10

9.1
10

9.6
11

0.
7

10
9.4

10
5.

2
10

6.
0

10
4.

8

O
1C

1C
5

11
9.3

11
8.

7
11

9.8
11

9.
5

11
9.

2
11

8.
8

11
9.7

11
9.6

11
9.

5
11

9.4
11

8.
5

11
9.8

11
0.

6
11

0.
7

11
0.

2

C 5
C 1

C 2
13

1.
2

13
1.

0
13

0.
9

13
0.

4
13

1.
3

13
1.1

13
1.1

13
0.

5
13

1.
3

13
0.

9
13

0.
6

13
0.

9
11

9.
5

12
0.

4
11

4.
1

C 5
N

2O
2

12
1.

2
12

0.
6

12
1.8

12
1.

3
12

1.
2

12
0.

7
12

1.9
12

1.4
12

2.
0

12
0.

9
12

0.
1

12
1.

7
12

9.7
12

8.
8

13
5.6

C 1
O

1C
4

10
7.9

11
0.

0
10

9.
5

11
0.

6
10

7.1
10

9.
2

10
8.

5
10

9.8
10

8.
8

10
9.6

11
1.

2
11

1.4
12

2.
8

12
0.

4
12

7.8

N
2O

4H
1

10
0.

7
10

0.
8

10
3.6

10
2.

7
99

.3
99

.8
10

2.
0

10
1.6

10
2.4

10
3.

7
10

2.
1

10
6.

9
11

5.
2

11
6.

7
11

2.
2



Cheminformatics and Its Applications

56

C 1
C 2

C 3
10

7.5
10

6.
6

10
7.5

10
6.

6
10

7.7
10

6.
8

10
7.7

10
6.

9
10

7.8
10

6.
9

10
6.

0
10

6.
9

10
4.

2
10

1.6
10

6

O
1C

4C
3

11
1.

5
11

2.
3

11
1.

2
11

2.
0

11
1.

5
11

2.
2

11
1.

2
11

1.9
11

1.1
11

1.4
11

2.
8

11
1.1

10
5.9

10
6.

0
10

5.1

C 3
C 4

N
1

13
0.

2
12

9.9
13

0.
6

13
0.

2
13

0.
1

13
0.

0
13

0.
9

13
0.

5
13

0.
9

13
0.

3
12

9.
5

13
0.

4
11

1.1
11

0.
6

11
3.

2

O
1C

4N
1

11
8.4

11
7.8

11
8.

1
11

7.6
11

8.
3

11
7.7

11
7.9

11
7.5

11
7.8

11
8.

2
11

7.5
11

8.4
13

1.4
13

1.4
12

9.8

C 4
N

1O
2

11
5.

0
11

4.
9

11
5.8

11
5.6

11
4.

6
11

4.
6

11
5.9

11
5.5

11
5.7

11
5.4

11
5.

0
11

6.
0

11
7.4

11
7.8

11
6.

9

C 4
N

1O
3

11
7.7

11
7.2

11
8.

9
11

8.
1

11
7.6

11
7.2

11
5.6

11
8.

2
11

8.
9

11
8.

1
11

7.2
11

9.
2

11
7.3

11
7.5

11
6.

3

O
2N

1O
3

12
7.3

12
7.9

12
5.3

12
6.

2
12

7.7
12

8.
1

11
8.

8
12

6.
2

12
5.

2
12

6.
4

12
7.6

12
6.

4
11

9.6
12

0.
1

11
8.

8

*R
ef

er
s t

o 
th

e b
as

e s
et

s c
ite

d 
in

 th
e c

or
re

sp
on

di
ng

 re
fer

en
ce

s.

Ta
bl

e 
1.

 
Ex

pe
ri

m
en

ta
l a

nd
 th

eo
re

tic
al

 st
ru

ct
ur

al
 p

ar
am

et
er

 o
f t

he
 5-

ni
ro

fu
ra

n-
2-

al
do

xi
m

e.

57

Molecular Electrostatic Potential and Chemometric Techniques as Tools to Design Bioactive…
DOI: http://dx.doi.org/10.5772/intechopen.89113

maps show negative regions ranging from −82.99 to −4.87 kcal/mol. In the most active 
compound (6), as can be seen, the most negative values are in the nitro group, the O atom 
of the furan ring and the O atoms of the ester group (red and yellow). Also, the MEP 
maps of these compounds exhibit positive regions between the +4.54 and + 76.96 kcal/
mol values (green and blue). Compounds with double unsaturation, containing N 
atom next to the carbonyl, raise the electronic density with the increase of the carbonic 
chain. In the most active compound (7), the MEP map shows a region of negative values 
between −77.74 and − 1.31 kcal/mol, with the electron density concentrating mainly on 
the atoms of the nitro group, on the O atom of the furanic ring and on the N and O atoms 
of the amide group (red and yellow). According to the MEP map, these compounds pres-
ent positive MEP between +5.64 and 61.21 kcal/mol (green and blue).

(ii) Compounds with double unsaturation, containing O atom neighboring the 
carbonyl, raising the carbon chain, increase the electron density in the atoms of the 

Figure 4. 
Score plots of the two first PCs, PC1 and PC2, for the separation of the approaches basis sets into classes: 
semiempirical and semiempirical not.

Figure 5. 
Dendrogram obtained with HCA technique for the separation of the approach basis set into two classes: 
semiempirical and semiempirical not.
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maps show negative regions ranging from −82.99 to −4.87 kcal/mol. In the most active 
compound (6), as can be seen, the most negative values are in the nitro group, the O atom 
of the furan ring and the O atoms of the ester group (red and yellow). Also, the MEP 
maps of these compounds exhibit positive regions between the +4.54 and + 76.96 kcal/
mol values (green and blue). Compounds with double unsaturation, containing N 
atom next to the carbonyl, raise the electronic density with the increase of the carbonic 
chain. In the most active compound (7), the MEP map shows a region of negative values 
between −77.74 and − 1.31 kcal/mol, with the electron density concentrating mainly on 
the atoms of the nitro group, on the O atom of the furanic ring and on the N and O atoms 
of the amide group (red and yellow). According to the MEP map, these compounds pres-
ent positive MEP between +5.64 and 61.21 kcal/mol (green and blue).

(ii) Compounds with double unsaturation, containing O atom neighboring the 
carbonyl, raising the carbon chain, increase the electron density in the atoms of the 

Figure 4. 
Score plots of the two first PCs, PC1 and PC2, for the separation of the approaches basis sets into classes: 
semiempirical and semiempirical not.

Figure 5. 
Dendrogram obtained with HCA technique for the separation of the approach basis set into two classes: 
semiempirical and semiempirical not.
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nitro group, extending through the O atom of the furan ring to the O atoms of  
the ester group following the unsaturated chain. In these compounds (10–12), the 
MEP maps exhibit more negative values between −76.18 and − 6.36 kcal/mol (red 
and yellow). They exhibit positive MEP in the range of +0.63 to 67.42 kcal/mol 
(green and blue)

(iii) Compound with an unsaturation, N atom neighboring the carbonyl in the 
carbonic chain and bulky substituents, has higher electron density in the vicinity 
of the furan ring and in the N and O atoms of the amide group. In this compound 

Figure 6. 
MEP maps (kcal/mol) for nitrofurans (training set).
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(23), the MEP map shows a negative region (red and yellow) between −73.10 
and − 1.59 kcal/mol on the mentioned atoms and positive region between +5.56 and 
69.91 kcal/mol (green and blue). The electron density around the nitro group, the O 
atom of the furan ring, and other atoms may induce the nitrofurans to show anti-
trypanosomal activity, suggesting the complexation in those regions with the active 
site of the receptor in a biological recognition process.

From the above discussion, as a rule, to plan more active nitrofurans, we can 
assume we resort to one of the basic structures of the most active compounds 
and introduce groups of atoms or substituents electron donors enhancing the key 
structural features that are necessary for their activities.

3.2.3 Chemometric modeling

To perform the chemometric modeling, all variables were auto-scaled as pre-
processing so that they could be standardized and so they could have the same 
importance regarding the scale. Furthermore, given a large quantity of multivariate 
data available, it was necessary to reduce the number of variables. Thus if any two 
descriptors had a high Pearson correlation coefficient (r ˃ 0.8), one of the two was 
excluded from the matrix at random, since theoretically they describe the same 
property [88]; they also have a high correlation with antitrypanosomal activity, and 
only one of them is enough to be used as independent variable in a predictive model.

3.2.3.1 PCA model

Four molecular descriptors were selected for PCA model. The molecular descrip-
tors (QN1, gap energy, Mor05u, and MlogP), in vitro T. cruzi growth inhibition 
(experimental data), and activity and correlation matrix including all data for 23 
nitrofurans can be seen in Table 2. The correlation between descriptors is less than 
0.786. The first three principal components (PCs) describing 96.48 of the original 
information for the 23 are as follows: 45.70, 30.91, and 19.87%. PC1-PC2 scores for 
the samples are shown in Figure 7. From this figure, we can see that the nitrofurans 
are distributed into two distinct regions in PC1. The more active compounds are on 
the left side (4–7, 10–12, 18, and 23) and the less active on the right side (1–3, 8, 9, 
13–17, and 19–22). According to Figure 8, the MlogP descriptor is responsible for 
displaying more active compounds on the left side, while the gap energy, QN1, and 
Mor05u descriptors displayed fewer active compounds for the right side from this 
figure.

Table 3 shows the loading vectors for PC1, PC2, and PC3. According to this 
table, PC1 can be expressed through the following equation:

  PC1 = 0.20  (QN1)  + 0.06  (Gap energy)  + 0.71  (Mor05u)  − 68  (MlogP) .  (2)

From this equation, more active nitrofurans, in general, can be obtained when 
we have lower values for the QN1 combined with lower values for Gap energy and 
Mor05u and higher values for MlogP.

3.2.3.2 HCA model

The results of the HCA model are displayed in the dendrogram in Figure 9 and 
are similar to those of PCA model. The nitrofurans are fairly well grouped according 
to their activity. From this figure, the two clusters (+ and −) mirror the same two 
classes displayed by PCA model (Figure 7).
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nitro group, extending through the O atom of the furan ring to the O atoms of  
the ester group following the unsaturated chain. In these compounds (10–12), the 
MEP maps exhibit more negative values between −76.18 and − 6.36 kcal/mol (red 
and yellow). They exhibit positive MEP in the range of +0.63 to 67.42 kcal/mol 
(green and blue)

(iii) Compound with an unsaturation, N atom neighboring the carbonyl in the 
carbonic chain and bulky substituents, has higher electron density in the vicinity 
of the furan ring and in the N and O atoms of the amide group. In this compound 

Figure 6. 
MEP maps (kcal/mol) for nitrofurans (training set).
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3.2.3.3 KNN model

Table 4 shows the results for the KNN models obtained with the KNN technique 
and constructed with one (1NN) to four (4NN) nearest neighbors. To all models the 
percentage of correct information was 100%. We used the model 4NN because the 
greater the number of the nearest neighbors, the better the reliability of the KNN 
technique, and the same was used for validation of the training set from Figure 2.

3.2.3.4 SDA model

In the construction of the SDA model, the discrimination functions for groups 
more active and less active, respectively, are given below:

Nitrofurans QN1 Gap 
energy 

(kcal/mol)

Mor05u MlogP % in vitro 
T. cruzi 
growth 

inhibitiona,b

Activityc

1− 0.201 220.9 −3.966 1.135 30 LA

2− 0.201 220.9 −2.938 1.708 20 LA

3− 0.165 220.9 −2.723 0.181 32 LA

4+ 0.165 226.5 −6.869 1.980 92.7 MA

5+ 0.165 225.3 −7.439 3.155 83.7 MA

6+ 0.169 229.7 −0.016 1.708 96.2 MA

7+ 0.164 208.3 −7.439 1.889 81.9 MA

8− 0.164 205.2 −4.854 0.334 26.7 LA

9− 0.166 215.9 −3.292 0.478 58 LA

10+ 0.166 215.9 −7.470 2.146 90 MA

11+ 0.164 208.3 −5.674 1.354 87.4 MA

12+ 0.164 208.3 −8.435 3.307 92.3 MA

13− 0.167 195.2 −4.338 0.751 12 LA

14− 0.161 203.3 −2.872 0.501 3 LA

15− 0.167 208.3 −4.217 0.411 30 LA

16− 0.167 225.3 −2.373 0.609 20 LA

17− 0.167 225.9 −4.054 1.063 6 LA

18+ 0.167 225.3 −6.339 2.001 75 MA

19− 0.166 225.3 −4.145 0.398 31 LA

20− 0.167 226.5 −4.786 0.667 35 LA

21− 0.167 225.3 −3.398 1.157 23 LA

22− 0.166 218.4 −3.876 0.802 14 LA

23+ 0.166 224.6 −6.314 3.014 90.5 MA

Gap energy −0.171

Mor05u 0.27 −0.006

MlogP 0.026 −0.184 −0.785
aInhibitor concentration of 5 μM. bGrowth inhibition ≥ 75, more active (MA)c, and growth inhibition < 75, less active 
(LA)c.

Table 2. 
Values for the four most important descriptors which classify the studied nitrofuran compounds, in vitro T. cruzi 
growth inhibition (experimental data), activity, and correlation matrix.
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Group MA (more active):

  0.51 (QN1)  + 0.43Gap energy + 3.05Mor05u − 1 . 5MlogP–0.62  (3)

Group LA (less active):

  − 0.80QN1 − 0.67Gap energy − 4.75Mor05u + 2.34MlogP − 3.92  (4)

Also, through the discrimination functions, Eqs. (3) and (4), and of the value 
of each descriptor for the nitrofurans, we obtain the classification matrix by using 
all compounds from the training set (Table 5). The classification error was 0.00% 
resulting in a satisfactory separation of more active and less active compounds. 
From SDA model, the allocation rule was derived when the activity against T. cruzi 
of new nitrofurans is investigated: (a) initially calculate, for the new compound, 
the value of the most important descriptors obtained in the construction of the 
SDA model, (b) put these auto-scaled values in the two discrimination functions 

Figure 7. 
Score plots of the two first PCs, PC1 and PC2, responsible for the separation of the 23 nitrofurans (training set) 
into two classes: (+) more active and (−) less active against T. cruzi.

Figure 8. 
Loading vector plots of the first PCs, PC1 and PC2, for four variables responsible for the separation of the 23 
nitrofurans (training set) into two classes: (+) more active and (−) less active against T. cruzi.
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performed in this work, and (c) check which discrimination function, Eq. (3) or 
Eq. (4), presents higher value. The new compound is more active if it is related to 
discrimination function of group more active and vice versa.

In order to check the reliability of the model, the “leave-one-out technique” was 
employed. One nitrofuran compound is excluded from the data set, and the remain-
ing compounds are used in building the classification functions.

Subsequently, the removed analogue is classified according the generated clas-
sification functions. In the further step, the omitted compound is included, and 
a new nitrofuran is removed, and the procedure goes on until the last compound 
is removed. In Table 6 the results obtained with the cross-validation model are 
summarized.

Figure 9. 
Dendrogram obtained with HCA technique for the separation of the nitrofurans into two classes: (+) more 
active and (−) less active against T. cruzi.

Category Number of compounds Compounds incorrectly classified

1NN 2NN 3NN 4NN

Class:more active 9 0 0 0 0

Class: less active 14 0 0 0 0

Total 23 0 0 0 0

% Correct information 100 100 100 100

Table 4. 
Classification obtained with the KKN technique.

Variable PC1 PC2 PC3

QN1 0.20 0.66 0.69

Gap energy 0.06 −0.70 0.70

Mor05u 0.71 0.11 −0.10

MlogP −0.68 0.26 0.17

Table 3. 
Variables matrix for the first three principal components.
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3.2.3.5 SIMCA model

The SIMCA model were built with the same descriptors as PCA, HCA, KNN, 
and SDA models and used two (2) PCs in the modeling of the two classes: more 
active nitrofurans (4–7, 10–12, 18, and 23) and less active (1–3, 8, 9, 13–17, and 
19–22) nitrofurans. In Table 7, the obtained results for the SIMCA model are 
shown. In this case, the information percentage was also 100%. According to the 
PCA, HCA, KNN, SDA, and SIMCA models, we can also notice that the QN1, gap 
energy, Mor05u, and MlogP descriptors are key properties for explaining the anti-T. 
cruzi activity of the nitrofurans training set (Figure 2).

As QN1, gap energy, Mor05u, and MlogP properties were selected in the 
chemometric modeling as the most important characteristics to describe the 
antitrypanosomal activity, some considerations about them may be relevant to 
the understanding of the behavior of more active nitrofurans. According to clas-
sical chemical theory, chemical interactions can be classified in two categories: 
electrostatic (polar) or orbital (covalent). Electrical charges in the molecule are 
indubitably the impelling cause of electrostatic interactions. It has been demon-
strated that local electron densities or charges are important in many chemical 
reactions, physicochemical properties, and ligand–receptor interactions [89, 90]. 
Thus, charge-based parameters have been widely employed as chemical reactivity 
indices or as measures of weak intermolecular interactions. Many quantum–chemi-
cal descriptors are derived from the partial charge distribution in a molecule or 
from the electron densities on particular atoms [91]. From Table 2, we can observe 
that, in general, QN1 for more active analogues must present lower values than the 
less active ones. This is an indication that biological processes can occur through 
electrostatic interactions between the more active nitrofurans and an eventual 
biological receptor.

Gap energy is an important stability index. A large gap energy implies high 
stability for the molecule in the sense of its lower reactivity in chemical reactions. 

True group

Classification group or class Number of compounds More active Less active

Group (Class): more active 9 9 0

Group (Class): less active 14 0 14

Total 23 9 14

% Correct information — 100 100

Table 5. 
Classification matrix obtained using SDA technique.

True group

Classification group or class Number of compounds More active Less active

Group (class): more active 9 9 0

Group (class): less active 14 0 14

Total 23 9 14

% correct information — 100 100

Table 6. 
Classification matrix obtained by using SDA technique with cross-validation technique.
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that, in general, QN1 for more active analogues must present lower values than the 
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electrostatic interactions between the more active nitrofurans and an eventual 
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It is an approximation of the lowest excitation energy of the molecule and can be 
used for the definition of absolute and activation hardness [89, 90]. In Table 2, we 
can observe that, in general, the more active nitrofurans present lower gap energy 
than the less active ones. This indicates that the more active nitrofurans have a great 
probability of interacting with the biological receptor through a charge transfer 
mechanism.

Mor05u is a 3D-MoRSE descriptor based on the idea of obtaining information 
from 3D atomic coordinates through the transformed used in electrons diffrac-
tion studies [91] and is strictly related to the stereochemistry of the compounds 
[92]. According to Table 2, the more active nitrofurans present lower values of 
Mor5u. This may be, in general, an indication of the importance of the stereo-
chemical properties of the more active nitrofurans in a possible mechanism of 
action of its own.

MlogP is an important hydrophobic descriptor in diverse biochemical, phar-
macological, and toxicological processes involved in drug absorption [93]. As 
identified in Table 2, the more active reported nitrofurans exhibit the higher MlogP 
values. This is an indication that in processes involving nitrofurans and a biological 
receptor, hydrophobic interactions may be important in the mechanism of action of 
these compounds.

Knowing the performance of the RP models constructed for the 23 studied 
nitrofurans, we decided to apply them to a series of eight compounds (Figure 3) 
designed to maintain the key structural features that are necessary for their biologi-
cal activities evidenced by the MEP maps of the compounds of the training set. The 
basic nucleus of these compounds corresponds to that of the most active nitrofurans 
with double unsaturation, containing vicinal O atom to carbonyl (see compounds 
10–12). The eight molecules proposed for the study of prediction of activity were 
drawn with the help of one of the collaborators of this work, who belong to the 
research group in organic chemistry of the Federal University of Pará, Brazil, and 
the most promising syntheses are in progress. In the future, antitrypanosomal tests 
with the most promising nitrofurans can be used to validate our RP models.

The results obtained of the application of the PR models (PCA, HCA, KNN, 
SDA, and SIMCA) and the descriptors for the compounds of the prediction set are 
summarized in Tables 8 and 9, respectively. In Table 8, the compounds 25 and 30 
were predicted as more active against T. cruzi with the five models. Only the KNN 
model predicted compound 26 as the most active. Meanwhile, only the PCA and 
HCA models predicted compound 31 as the most active. On the other hand, all 
models, except the SDA model, predicted compounds 24, 27, and 28 as the most 
active. In turn, the SIMCA model did not classify compounds 29 and 31 into any 
of the two classes. Thus, we can consider nitrofurans 25 and 30 as potentially more 
active in a future test against T. cruzi. For the values reported for compounds 25 and 
30 (Table 9), it can be shown that in order to design more active nitrofurans we 
must combine smaller values for the descriptors QN1, gap energy, and Mor05u with 
higher value for the descriptor MlogP.

Category Number of compounds Correct classification

Class: more active 9 9

Class: less active 14 14

TOTAL 23

% correct information 100

Table 7. 
Classification obtained by using SIMCA technique.

65

Molecular Electrostatic Potential and Chemometric Techniques as Tools to Design Bioactive…
DOI: http://dx.doi.org/10.5772/intechopen.89113

3.2.4 MEP maps for compounds of the prediction set

Figure 10 shows the MEP maps for the most active nitrofurans in the valida-
tion set (25 and 30). Also, in these compounds, as can be seen, raising the carbon 
chain increases the electron density in the atoms of the nitro group, extending 
through the O of the furan ring to the O atoms of the ester group accompanying the 
unsaturated chain. In these compounds, the MEP maps show more negative values 
between −74.27 and − 1.76 kcal/mol (red and yellow). They exhibit positive MEP in 
the range + 4.84 to +57.58 kcal/mol (green and blue).

The negative MEP region of compounds 25 and 30, similar to the more active 
compounds in the training set, is susceptible to attack in a biological recognition 
process.

3.3 Concluding remarks

MEP and chemometric techniques in the last decades have become efficient tools 
in the study of the structure–activity relationships of bioactive molecules. The use 
of such tools has occurred through the inherent principles of each or combining 
their potentials to more efficiently unravel information about the structure–activity 
relationships of pharmacologically interesting compounds. This chapter is circum-
scribed in this second possibility. MEP maps were constructed for 23 nitrofurans 
with activity against T. cruzi reported in the literature. The key structural features 

Nitrofuran PCA model HCA model KNN model SDA model SIMCA model

24 MA MA MA LA MA

25 MA MA MA MA MA

26 LA LA MA LA LA

27 MA MA MA LA MA

28 MA MA MA LA MA

29 MA MA MA MA 0

30 MA MA MA MA MA

31 MA MA LA LA 0

Table 8. 
Results of application of chemometric models for the nitrofurans of the prediction set.

Nitrofuran QN1 Gap energy (kcal/mol) Mor05u MLogP

24 0.165 205.2 −6.352 3.155

25 0.165 203.3 −7.332 2.250

26 0.165 204.6 −5.835 1.146

27 0.169 203.9 −6.164 2.508

28 0.166 203.9 −7.146 1.875

29 0.164 229.7 −8.201 3.854

30 0.164 229.7 −6.421 3.373

31 0.164 223.4 −5.525 2.167

Table 9. 
Values for descriptors for the prediction set.
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identified in Table 2, the more active reported nitrofurans exhibit the higher MlogP 
values. This is an indication that in processes involving nitrofurans and a biological 
receptor, hydrophobic interactions may be important in the mechanism of action of 
these compounds.

Knowing the performance of the RP models constructed for the 23 studied 
nitrofurans, we decided to apply them to a series of eight compounds (Figure 3) 
designed to maintain the key structural features that are necessary for their biologi-
cal activities evidenced by the MEP maps of the compounds of the training set. The 
basic nucleus of these compounds corresponds to that of the most active nitrofurans 
with double unsaturation, containing vicinal O atom to carbonyl (see compounds 
10–12). The eight molecules proposed for the study of prediction of activity were 
drawn with the help of one of the collaborators of this work, who belong to the 
research group in organic chemistry of the Federal University of Pará, Brazil, and 
the most promising syntheses are in progress. In the future, antitrypanosomal tests 
with the most promising nitrofurans can be used to validate our RP models.

The results obtained of the application of the PR models (PCA, HCA, KNN, 
SDA, and SIMCA) and the descriptors for the compounds of the prediction set are 
summarized in Tables 8 and 9, respectively. In Table 8, the compounds 25 and 30 
were predicted as more active against T. cruzi with the five models. Only the KNN 
model predicted compound 26 as the most active. Meanwhile, only the PCA and 
HCA models predicted compound 31 as the most active. On the other hand, all 
models, except the SDA model, predicted compounds 24, 27, and 28 as the most 
active. In turn, the SIMCA model did not classify compounds 29 and 31 into any 
of the two classes. Thus, we can consider nitrofurans 25 and 30 as potentially more 
active in a future test against T. cruzi. For the values reported for compounds 25 and 
30 (Table 9), it can be shown that in order to design more active nitrofurans we 
must combine smaller values for the descriptors QN1, gap energy, and Mor05u with 
higher value for the descriptor MlogP.

Category Number of compounds Correct classification

Class: more active 9 9

Class: less active 14 14

TOTAL 23

% correct information 100

Table 7. 
Classification obtained by using SIMCA technique.
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3.2.4 MEP maps for compounds of the prediction set

Figure 10 shows the MEP maps for the most active nitrofurans in the valida-
tion set (25 and 30). Also, in these compounds, as can be seen, raising the carbon 
chain increases the electron density in the atoms of the nitro group, extending 
through the O of the furan ring to the O atoms of the ester group accompanying the 
unsaturated chain. In these compounds, the MEP maps show more negative values 
between −74.27 and − 1.76 kcal/mol (red and yellow). They exhibit positive MEP in 
the range + 4.84 to +57.58 kcal/mol (green and blue).

The negative MEP region of compounds 25 and 30, similar to the more active 
compounds in the training set, is susceptible to attack in a biological recognition 
process.

3.3 Concluding remarks

MEP and chemometric techniques in the last decades have become efficient tools 
in the study of the structure–activity relationships of bioactive molecules. The use 
of such tools has occurred through the inherent principles of each or combining 
their potentials to more efficiently unravel information about the structure–activity 
relationships of pharmacologically interesting compounds. This chapter is circum-
scribed in this second possibility. MEP maps were constructed for 23 nitrofurans 
with activity against T. cruzi reported in the literature. The key structural features 

Nitrofuran PCA model HCA model KNN model SDA model SIMCA model

24 MA MA MA LA MA

25 MA MA MA MA MA

26 LA LA MA LA LA

27 MA MA MA LA MA

28 MA MA MA LA MA

29 MA MA MA MA 0

30 MA MA MA MA MA

31 MA MA LA LA 0

Table 8. 
Results of application of chemometric models for the nitrofurans of the prediction set.

Nitrofuran QN1 Gap energy (kcal/mol) Mor05u MLogP

24 0.165 205.2 −6.352 3.155

25 0.165 203.3 −7.332 2.250

26 0.165 204.6 −5.835 1.146

27 0.169 203.9 −6.164 2.508

28 0.166 203.9 −7.146 1.875

29 0.164 229.7 −8.201 3.854

30 0.164 229.7 −6.421 3.373

31 0.164 223.4 −5.525 2.167

Table 9. 
Values for descriptors for the prediction set.
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required for antitrypanosomal activity, along with chemical intuition, allowed the 
introduction of substituents in one of the most active nitrofurans in the training set 
to obtain eight new derivatives.

PR models (PCA, HCA, KNN, SDA, and SIMCA) were constructed and 
demonstrated that 23 nitrofurans can be classified into two classes or groups: more 
active and less active according to their degrees of activity against T. cruzi. The 
properties QN1, gap energy, Mor05u, and MlogP are responsible for the classifica-
tion into more active and less active studied nitrofurans. It is interesting to notice 
that these properties represent three distinct classes of interactions between the 
nitrofurans and the biological receptor: electronic (QN1 and gap energy), steric 
(Mor05u), and hydrophobic (MlogP). Here it is important to mention that Paulino 
et al., studying the influence of molecular parameters on the activity of 5-nitrofu-
rans against T. cruzi, reported the importance of electronic properties and molecu-
lar hydrophobicity as well as the variation of the nitrofurans electronic structure to 
explain the greater activity of these compounds as inhibitors of the growth of this 
protozoan [94].

The results of the application of PR models on the validation set evidenced two 
nitrofurans (25 and 30) as more promising for synthesis and biological assays, 
which in the future can be used to validate our PR models.
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Chapter 5

Chemical Reactivity Properties
and Bioactivity Scores of the
Angiotensin II Vasoconstrictor
Octapeptide
Norma Flores-Holguín, Juan Frau
and Daniel Glossman-Mitnik

Abstract

Eight density functionals, CAM-B3LYP, LC-ωPBE, M11, MN12SX, N12SX,
ωB97, ωB97X, and ωB97XD, in connection with the Def2TZVP basis set were
assessed together with the SMD solvation model for the calculation of the molecular
and chemical reactivity properties of the angiotensin II vasoconstrictor octapeptide
in the presence of water. All the chemical reactivity descriptors for the systems
were calculated via conceptual density functional theory (CDFT). The potential
bioavailability and druggability as well as the bioactivity scores for angiotensin II
were predicted through different methodologies already reported in the literature
which have been previously validated during the study of different peptidic
systems.

Keywords: angiotensin II, conceptual DFT, chemical reactivity, drug-likeness
features, bioactivity scores

1. Introduction

In order to consider peptides and related compounds as the starting point for the
development of medical drugs, it is mandatory to acquire a knowledge about their
chemical reactivity properties as well as the bioactivity associated with them. From
the basics of medicinal chemistry, it is known that drugs exert their effect by
interacting with the active site of a receptor which is generally a protein [1]. These
interactions rely on the different kinds of bindings between the pharmacophore and
the chemical groups present in the active site and thus intimately related to their
chemical reactivity from a molecular perspective [2, 3]. One of the most powerful
tools to understand the chemical reactivity of interacting molecular systems within
computational chemistry is probably the conceptual density functional theory
(CDFT) [4, 5], also called chemical reactivity theory, which allows to accomplish
this task by resorting to several global and local descriptors which are in turn related
to variations in the electronic densities of the studied systems.

On the basis of the previous considerations, the objective of this work is to study
the chemical reactivity of an octapeptide known as angiotensin II that acts
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constricting the blood vessels and retaining the fluid in the kidneys [1], using the
techniques of the conceptual DFT, determining their global reactivity properties,
that is, of the molecule as a whole. Moreover, during the process of the development
of new drugs, there is a need to learn about the drug-like properties of the involved
molecular systems [6]. Thus, the descriptors of bioavailability and bioactivity
(bioactivity scores) will be calculated through different procedures described in
the literature [7, 8] trying to relate them with the calculated conceptual DFT
descriptors.

2. Computational methodology

In the same way as we have proceeded in our recent studies [9–16], the compu-
tational tasks in this work have been done by considering the popular Gaussian 09
software [17]. Following the conclusions obtained from those studies, eight density
functionals have been chosen, CAM-B3LYP, LC-ωPBE, M11, MN12SX [18], N12SX,
ωB97, ωB97X, and ωB97XD, because they can be considered to be well-behaved for
our purposes according to our proposed KID (for Koopmans in DFT) criteria
[19–23] related to the approximate validity of the Koopmans’ theorem within DFT
[19–23]. For the calculation of the electronic properties, several model chemistries
have been considered, based on the mentioned density functionals in connection
with the Def2TZVP basis set, while a smaller Def2SVP was considered for the
prediction of the most stable structures [24, 25]. In order to obtain accurate results,
all calculations were performed using water, which is the universal biological sol-
vent, simulated with the SMD model [26].

3. Results and discussion

The molecular structures of the conformers of the angiotensin II vasoconstrictor
octapeptide graphically presented in Figure 1 were optimized in the gas phase by
means of the DFTBA model available in the software and then reoptimized with the
eight density functionals described previously, the Def2SVP basis set, and water as
the solvent. The calculation of the electronic properties was performed by using the
same model chemistries but changing the basis set with the Def2TZVP one.

In order to verify the fulfillment of our proposed KID procedure, it is necessary
to perform a comparison of the orbital energies with the results obtained by means
of the vertical I and A through the ΔSCF criterium. To this end, the three main
descriptors are linked by εH with �I, εL with �A, and their behavior in describing
the HOMO-LUMO gap as JI ¼ ∣εH þ Egs N � 1ð Þ � Egs Nð Þ∣,

Figure 1.
Graphical sketch of the angiotensin II molecule.
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JA ¼ ∣εL þ Egs Nð Þ � Egs N þ 1ð Þ∣, and JHL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
JI
2 þ JA

2
p

. Another descriptor, ΔSL
(the difference between the SOMO and the LUMO), was also designed to guide in
verifying the accuracy of the approximation [9–15]. The results of this analysis are
presented in Table 1.

The overall conclusion that can be extracted from the inspection of the results
presented in Table 1 is that, in agreement with our previous studies on melanoidins
and peptides, the model chemistries involving the MN12SX and N12SX density
functionals are the best for verifying our proposed criteria of well-behavior.

3.1 Calculation of the global reactivity descriptors

By taking into account the KID procedure presented in our previous works
together with the finite difference approximation, the global reactivity descriptors
can be expressed as

Electronegativity χ ¼ � 1
2 I þ Að Þ≈ 1

2 εL þ εHð Þ [4, 5]

Global hardness η ¼ I � Að Þ≈ εL � εHð Þ [4, 5]

Electrophilicity ω ¼ μ2

2η ¼ IþAð Þ2
4 I�Að Þ ≈

εLþεHð Þ2
4 εL�εHð Þ

[27]

Electrodonating power ω� ¼ 3IþAð Þ2
16 I�Að Þ ≈

3εHþεLð Þ2
16η

[28]

Electroaccepting power ωþ ¼ Iþ3Að Þ2
16 I�Að Þ ≈

εHþ3εLð Þ2
16η

[28]

Net electrophilicity Δω� ¼ ωþ � �ω�ð Þ ¼ ωþ þ ω� [29]

Eo E+ E� HOMO LUMO

CAM-B3LYP �1887.465 �1887.246 �1887.489 �7.462 0.828

LC-wBPE �1887.192 �1886.966 �1887.223 �8.786 1.767

M11 �1887.317 �1887.090 �1887.345 �8.601 1.582

MN12SX �1886.668 �1886.440 �1886.699 �6.164 �0.832

N12SX �1887.505 �1887.288 �1887.531 �5.881 �0.679

ωB97 �1888.093 �1887.871 �1888.118 �8.658 1.890

ωB97X �1887.933 �1887.711 �1887.959 �8.474 1.724

ωB97XD �1887.814 �1887.592 �1887.840 �8.087 1.374

SOMO JI JA JHL ΔSL

CAM-B3LYP �2.205 1.497 1.498 2.117 3.033

LC-wBPE �3.509 2.635 2.619 3.715 5.276

M11 �3.124 2.412 2.333 3.356 4.706

MN12SX �0.869 0.021 0.017 0.028 0.038

N12SX �0.785 0.000 0.053 0.053 0.106

ωB97 �3.303 2.619 2.575 3.673 5.192

ωB97X �3.144 2.432 2.410 3.424 4.868

ωB97XD �2.809 2.059 2.073 2.922 4.183

Table 1.
Total electronic energies of angiotensin II (in au) for the neutral and charged species, the corresponding orbital
energies (in eV), and the KID-related descriptors obtained with the five density functionals, the Def2TZVP
basis set, and water as the solvent.
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where I is the ionization potential and A the electronic affinity, while εH and εL
are the energies of the HOMO and LUMO, respectively.

The results for the global reactivity descriptors for the angiotensin II octapeptide
based on the values of the HOMO and LUMO energies calculated with the MN12SX
and N12SX density functionals are presented in Table 2.

As expected from the molecular structure of this peptide, its electrodonating
ability is more important that its electroaccepting character. It can be seen that
MN12SX and N12SX density functionals (which verify the KID criteria) give results
different than those obtained from the calculation with the other three density
functionals.

3.2 Bioactivity scores

The molecular properties that are related to the concept of drug-likeness and in
particular those associated with the criteria proposed by Lipinski et al. [30, 31] for
the prediction of oral bioavailability have been calculated by feeding the
corresponding SMILES notations into the Molinspiration software readily available
online (Slovensky Grob, Slovak Republic: https://www.mol inspiration.com). The
results are presented in Table 3.

However, what the Lipinski’s rule of five really measures is the oral bioavailabil-
ity of a potential drug because this is the desired property for a molecule having
drug-like character. Then, a different approach was followed by considering simi-
larity searches in the chemical space of compounds with structures that can be

Electronegativity (χ) Chemical hardness (η) Electrophilicity (ω)

MN12SX 3.3286 4.9685 1.1150

N12SX 3.1472 4.7664 1.0391

Electrodonating power
(ω�)

Electroaccepting power
(ωþ)

Net electrophilicity
(Δω�)

MN12SX 2.4725 1.1286 3.6011

N12SX 2.3225 1.0468 3.3693

Table 2.
Global reactivity descriptors for the angiotensin II molecule calculated with the MN12SX and N12SX density
functionals with the Def2TZVP basis set and the SMD solvation model using water as the solvent.

Molecule Angiotensin II

miLogP �3.91

TPSA 406.33

nAtoms 75

nON 25

nOHNH 16

nviol 3

nrotb 30

volume 955.57

MW 1046.20

Table 3.
Molecular properties of the angiotensin II peptide calculated to verify the Lipinski’s rule of five.
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compared to those that are being studied and with known pharmacological proper-
ties. The same software was used for the calculation of the bioactivity scores which
are a measure of the ability of the potential drug to interact with the different
receptors, that is, to act as GPCR ligands or kinase inhibitors, to perform as ion
channel modulators, or to interact with enzymes and nuclear receptors. The values
of the bioactivity scores for angiotensin II are presented in Table 4.

These bioactivity scores for organic molecules can be interpreted as active
(when the bioactivity score > 0), moderately active (when the bioactivity score lies
between �5.0 and 0.0), and inactive (when the bioactivity score < �5.0). The
angiotensin II peptide was found to be moderately bioactive toward the protease
inhibitor and the GPCR ligand considered in the study.

4. Conclusions

In this chapter we have presented a new study performed on the chemical
reactivity of the angiotensin II vasoconstrictor octapeptide based on the conceptual
DFT as a tool to explain the molecular interactions.

The knowledge of the values of the global descriptors of the molecular reactivity
of angiotensin II could be useful in the development of new drugs based on this
compound or some analogs.

Finally, the molecular properties related to bioavailability and drug-likeness
have been predicted using a proven methodology already described in the literature,
and the descriptors used for the quantification of the bioactivity allowed to charac-
terize the studied molecule as being moderately bioactive toward the protease
inhibitor and the GPCR ligand considered in this study.
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Molecule Angiotensin II

GPCR ligand �3.59

Ion channel modulator �3.74

Kinase inhibitor �3.78

Nuclear receptor ligand �3.85

Protease inhibitor �3.25

Enzyme inhibitor �3.67

Table 4.
Bioactivity scores of the angiotensin II molecule calculated on the basis of GPCR ligand, ion channel modulator,
nuclear receptor ligand, kinase inhibitor, protease inhibitor, and enzyme inhibitor interactions.
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However, what the Lipinski’s rule of five really measures is the oral bioavailabil-
ity of a potential drug because this is the desired property for a molecule having
drug-like character. Then, a different approach was followed by considering simi-
larity searches in the chemical space of compounds with structures that can be

Electronegativity (χ) Chemical hardness (η) Electrophilicity (ω)

MN12SX 3.3286 4.9685 1.1150

N12SX 3.1472 4.7664 1.0391

Electrodonating power
(ω�)

Electroaccepting power
(ωþ)

Net electrophilicity
(Δω�)

MN12SX 2.4725 1.1286 3.6011

N12SX 2.3225 1.0468 3.3693

Table 2.
Global reactivity descriptors for the angiotensin II molecule calculated with the MN12SX and N12SX density
functionals with the Def2TZVP basis set and the SMD solvation model using water as the solvent.

Molecule Angiotensin II

miLogP �3.91

TPSA 406.33

nAtoms 75

nON 25

nOHNH 16

nviol 3

nrotb 30

volume 955.57

MW 1046.20

Table 3.
Molecular properties of the angiotensin II peptide calculated to verify the Lipinski’s rule of five.
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compared to those that are being studied and with known pharmacological proper-
ties. The same software was used for the calculation of the bioactivity scores which
are a measure of the ability of the potential drug to interact with the different
receptors, that is, to act as GPCR ligands or kinase inhibitors, to perform as ion
channel modulators, or to interact with enzymes and nuclear receptors. The values
of the bioactivity scores for angiotensin II are presented in Table 4.

These bioactivity scores for organic molecules can be interpreted as active
(when the bioactivity score > 0), moderately active (when the bioactivity score lies
between �5.0 and 0.0), and inactive (when the bioactivity score < �5.0). The
angiotensin II peptide was found to be moderately bioactive toward the protease
inhibitor and the GPCR ligand considered in the study.

4. Conclusions

In this chapter we have presented a new study performed on the chemical
reactivity of the angiotensin II vasoconstrictor octapeptide based on the conceptual
DFT as a tool to explain the molecular interactions.

The knowledge of the values of the global descriptors of the molecular reactivity
of angiotensin II could be useful in the development of new drugs based on this
compound or some analogs.

Finally, the molecular properties related to bioavailability and drug-likeness
have been predicted using a proven methodology already described in the literature,
and the descriptors used for the quantification of the bioactivity allowed to charac-
terize the studied molecule as being moderately bioactive toward the protease
inhibitor and the GPCR ligand considered in this study.

Acknowledgements

Norma Flores-Holguín and Daniel Glossman-Mitnik are researchers of CIMAV
and CONACYT from which partial support is gratefully acknowledged. Daniel
Glossman-Mitnik conducted this work while being a visiting lecturer at the Uni-
versity of the Balearic Islands. This work was also cofunded by the Ministerio de
Economía y Competitividad (MINECO) and the European Fund for Regional
Development (FEDER).

Conflict of interest

The authors declare no conflict of interest regarding the publication of this chapter.

Molecule Angiotensin II

GPCR ligand �3.59

Ion channel modulator �3.74

Kinase inhibitor �3.78

Nuclear receptor ligand �3.85

Protease inhibitor �3.25

Enzyme inhibitor �3.67

Table 4.
Bioactivity scores of the angiotensin II molecule calculated on the basis of GPCR ligand, ion channel modulator,
nuclear receptor ligand, kinase inhibitor, protease inhibitor, and enzyme inhibitor interactions.
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Chapter 6

Chemoinformatic Approach: 
The Case of Natural Products of 
Panama
Dionisio A. Olmedo and José L. Medina-Franco

Abstract

Chemoinformatic analysis was used to characterize a compound database of 
natural products from Panama and other reference collections. Data mining allowed 
to compare drug-likeness properties with public and commercial software and to 
achieve a statistical analysis of the physicochemical properties. Visualization of the 
chemical space in 3D indicates a high structural similarity. Molecular flexibility and 
complexity were evaluated using 2D descriptors, whereas the molecular scaffold 
was obtained using the Murcko method, and these showed few differences between 
the explored data set. In this chapter, we also present and discuss an example of the 
application of the chemoinformatic approach using the concept of modeling the 
activity landscape to study the structure-activity relationships (SARs) of com-
pounds with activity against Plasmodium falciparum.

Keywords: chemoinformatic, complexity, data mining, physicochemical properties, 
scaffold

1. Introduction

Natural products (NPs) and their derivatives constitute a significant fraction of 
approved drugs [1–3], bioactive compounds [4–8], and lead compounds for drug dis-
covery [9]. NP fragment has been used to guide the synthesis of bioactive compounds 
and generate BIOS combinatorial libraries [10–15]. NPs have structures with different 
substituent patterns, giving rise to different biological activities for compounds with 
very similar structures [16–19]. These bioactive metabolites have greater affinity for 
biological targets and, overall, may have better bioavailability than synthetic com-
pounds, and the presence of pan-assay interference compounds (PAIN) is less frequent 
in this type of product [20]. The chemoinformatic analysis of several databases of NPs 
developed by academic institutions and private companies [21] has been carried out 
in different countries. Thus, the following databases were obtained: BIOFACQUIM 
[22], CIFPMA [23], NuBBE [24, 25], NANPDB [26], TCM [27], HIT [28], and NPACT 
[29]. The application of chemoinformatic tools involves the generation, manipulation, 
and analysis of data set of chemical substances. This allows us through mathematical 
calculations to order, develop, and evaluate structural information that can be visual-
ized in 2D and 3D [30]. The determination of the physicochemical properties carried 
out on different databases of NPs and principal component analysis (PCA) was used as 
an approximation to display the chemical spaces [22–24, 31–37].



[19] Borghi G, Ferretti A, Nguyen NL,
Dabo I, Marzari N. Koopmans-
compliant functionals and their
performance against reference
molecular data. Physical Review B.
2014;90(7):1

[20] Dabo I, Ferretti A, Poilvert N, Li Y,
Marzari N, Cococcioni M. Koopmans’
condition for density-functional theory.
Physical Review B. 2010;82(11):115121

[21] Kar R, Song J-W, Hirao K. Long-
range corrected functionals satisfy
Koopmans’ theorem: Calculation of
correlation and relaxation energies.
Journal of Computational Chemistry.
2013;34(11):958-964

[22] Salzner U, Baer R. Koopmans’
springs to life. The Journal of Chemical
Physics. 2009;131(23):231101

[23] Vanfleteren D, Van Neck D, Ayers
PW, Morrison RC, Bultinck P. Exact
ionization potentials from wavefunction
asymptotics: The extended Koopmans’
theorem, revisited. The Journal of
Chemical Physics. 2009;130(19):194104

[24] Weigend F, Ahlrichs R. Balanced
basis sets of split valence, triple zeta
valence and quadruple zeta valence
quality for H to Rn: Design and
assessment of accuracy. Physical
Chemistry Chemical Physics. 2005;7:
3297-3305

[25] Weigend F. Accurate Coulomb-
fitting basis sets for H to R. Physical
Chemistry Chemical Physics. 2006;8:
1057-1065

[26] Marenich AV, Cramer CJ, Truhlar
DG. Universal solvation model based on
solute electron density and a continuum
model of the solvent defined by the bulk
dielectric constant and atomic surface
tensions. Journal of Physical Chemistry
B. 2009;113:6378-6396

[27] Parr RG, Szentpaly LV, Liu SB.
Electrophilicity index. Journal of the

American Chemical Society. 1999;121:
1922-1924

[28] Gázquez JL, Cedillo A, Vela A.
Electrodonating and electroaccepting
powers. Journal of Physical Chemistry
A. 2007;111(10):1966-1970

[29] Chattaraj PK, Chakraborty A, Giri S.
Net electrophilicity. Journal of Physical
Chemistry A. 2009;113(37):
10068-10074

[30] Lipinski CA, Lombardo F, Dominy
BW, Feeney PJ. Experimental and
computational approaches to estimate
solubility and permeability in drug
discovery and development settings.
Advanced Drug Delivery Reviews.
2001;46:3-26

[31] Leeson P. Drug discovery: Chemical
beauty contest. Nature. 2012;481(7382):
455-456

82

Cheminformatics and Its Applications

83

Chapter 6

Chemoinformatic Approach: 
The Case of Natural Products of 
Panama
Dionisio A. Olmedo and José L. Medina-Franco

Abstract

Chemoinformatic analysis was used to characterize a compound database of 
natural products from Panama and other reference collections. Data mining allowed 
to compare drug-likeness properties with public and commercial software and to 
achieve a statistical analysis of the physicochemical properties. Visualization of the 
chemical space in 3D indicates a high structural similarity. Molecular flexibility and 
complexity were evaluated using 2D descriptors, whereas the molecular scaffold 
was obtained using the Murcko method, and these showed few differences between 
the explored data set. In this chapter, we also present and discuss an example of the 
application of the chemoinformatic approach using the concept of modeling the 
activity landscape to study the structure-activity relationships (SARs) of com-
pounds with activity against Plasmodium falciparum.

Keywords: chemoinformatic, complexity, data mining, physicochemical properties, 
scaffold

1. Introduction

Natural products (NPs) and their derivatives constitute a significant fraction of 
approved drugs [1–3], bioactive compounds [4–8], and lead compounds for drug dis-
covery [9]. NP fragment has been used to guide the synthesis of bioactive compounds 
and generate BIOS combinatorial libraries [10–15]. NPs have structures with different 
substituent patterns, giving rise to different biological activities for compounds with 
very similar structures [16–19]. These bioactive metabolites have greater affinity for 
biological targets and, overall, may have better bioavailability than synthetic com-
pounds, and the presence of pan-assay interference compounds (PAIN) is less frequent 
in this type of product [20]. The chemoinformatic analysis of several databases of NPs 
developed by academic institutions and private companies [21] has been carried out 
in different countries. Thus, the following databases were obtained: BIOFACQUIM 
[22], CIFPMA [23], NuBBE [24, 25], NANPDB [26], TCM [27], HIT [28], and NPACT 
[29]. The application of chemoinformatic tools involves the generation, manipulation, 
and analysis of data set of chemical substances. This allows us through mathematical 
calculations to order, develop, and evaluate structural information that can be visual-
ized in 2D and 3D [30]. The determination of the physicochemical properties carried 
out on different databases of NPs and principal component analysis (PCA) was used as 
an approximation to display the chemical spaces [22–24, 31–37].



Cheminformatics and Its Applications

84

Computational exploration of NPs has increased in recent years, giving greater 
relevance to studies that include structural diversity metrics calculated with param-
eters based on distances such as Euclidean distance, Manhattan distances, and 
Cosine distance. Other criteria are based on circular fingerprint (ECFP-4, ECFP-6) 
[22–24, 38–45] and fingerprint based on substructure (MACCS, PubChem) [22–24, 
39–45]. Another metric used in NPs is the comparison by similarity that uses the 
Tanimoto index/Tanimoto coefficient [22–24, 45–49].

In this study, the molecular scaffolds of natural products have been obtained 
using the Murcko method [22–24, 50–57]. Meanwhile, the molecular complexity is 
frequently evaluated by descriptors in 2D such as fraction of sp3 hybridized carbons 
(Fsp3) [23], fraction of chiral centers (FCC) [23], and globularity [22–24, 58–63].

An update of the Natural Products Database from the University of Panama 
(UPMA) containing 454 compounds (Unpublished data) has been evaluated against 
different therapeutic targets such as cytotoxicity bioassay in cell lines, antifungal 
assay in vitro, parasites of tropical diseases (Leishmania sp., Plasmodium falciparum, 
and Trypanosoma cruzi), and the bioassay against HIV-1 virus, demonstrating an 
inhibitor effect on protease, reverse transcriptase, nuclear factor NFkappaB, and 
Tat protein affecting the viral replication. These are the most significant biological 
targets in which the natural products from Panama present bioactivity. The values 
of their biological activities are represented as percentages in Figure 1.

2.  Application of chemoinformatic antimalarial databases: case of 
natural products from Panama

2.1 Preparation curated and processing of data set

In this chapter, we present a chemoinformatic analysis of natural products with 
antimalarial activities (in vitro), expressed as pIC50 against sensitive and resistant 

Figure 1. 
Biological endpoints and targets in which natural products from Panama present bioactivity.
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strains. Databases of natural products with antimalarial activity (NPAs) were 
constructed in-house by reviewing published articles including those compounds 
that were isolated and characterized by spectroscopic techniques of nuclear 
magnetic resonance. Around 1312 compounds were compared to 8 reference data 
sets: an open database, DrugBank (antimalarial drug), European Bioinformatics 
Institute. (CHEMBL drug indications) (antimalarial activities), Open Source Drug 
Discovery (OSDD) Malaria, Malaria Box (Medicines for Malaria Venture (MMV)), 
St. Jude Children’s Research Hospital (St. Jude), Novartis (GNF Malaria Box), and 
GlaxoSmithKline (GSK) Tres Cantos antimalarial set. All data sets were curated 
using the “Wash” function implemented in the Molecular Operating Environment 
(MOE2018.0101) software [64]. The structure of the studied compounds was rep-
resented by simplified molecular input line entry system (SMILES) notation, thus 
obtaining 20,364 unique molecules that are summarized in Table 1. The difference 
between initial compounds and unique compounds is due to the fact that during the 
data preparation (curation process), the duplicate compounds are eliminated, those 
that have positive or negative partial loads have neutralized their protonation states, 
the metals are disconnected, and the energy is minimized using the molecular 
mechanistic force field (MMFF94). The result of the data curation is the reduction 
of the initial number of molecules present in the databases evaluated in this work.

2.2 Molecular descriptors

The descriptors of physicochemical properties, hydrogen bond acceptors 
(HBAs), hydrogen bond donors (HBDs), number of rotatable bonds (NRBs), the 
octanol/water partition coefficient (logP), topological polar surface area (TPSA), 

Databases Initial 
compounds

Unique 
compounds

Source

Natural Products Antimalarial 
(NPAs)

1353 1312 Databases of NP in house

DrugBank Version 5.0. (Drug 
Antimalarial)

26 4 https://www.drugbank.ca

European Bioinformatics Institute. 
(CHEMBL Drugs Indications) 
(Antimalarial activities

27 24 [https://www.ebi.ac.uk/
chembl]

Open Source Drug Discovery 
(OSDD) Malaria

93 88 http://opensourcemalaria.
org/

Malaria Box-Medicine of Malaria 
Venture (MMV)

124 124 https://www.ebi.ac.uk/
chembl/malaria/source

St. Jude Children’s Research 
Hospital’s

1.478 1.478 https://www.ebi.ac.uk/
chemblntd

Novartis-GNF Malaria Box 4.878 4.868 Available in: https://www.
ncbi.nlm.nih.gov/pmc/
articles/PMC3941073/
Available in: https://www.ebi.
ac.uk/chemblntd

GlaxoSmithKline Tres Cantos 
Antimalarial

12.470 12.466 Open Source Malaria 
(GSK-TCMDC). Available 
in: https://www.ebi.ac.uk/
chemblntd

Table 1. 
Databases analyzed with chemoinformatic tools.
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St. Jude Children’s Research Hospital (St. Jude), Novartis (GNF Malaria Box), and 
GlaxoSmithKline (GSK) Tres Cantos antimalarial set. All data sets were curated 
using the “Wash” function implemented in the Molecular Operating Environment 
(MOE2018.0101) software [64]. The structure of the studied compounds was rep-
resented by simplified molecular input line entry system (SMILES) notation, thus 
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2.2 Molecular descriptors
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(HBAs), hydrogen bond donors (HBDs), number of rotatable bonds (NRBs), the 
octanol/water partition coefficient (logP), topological polar surface area (TPSA), 

Databases Initial 
compounds

Unique 
compounds

Source

Natural Products Antimalarial 
(NPAs)

1353 1312 Databases of NP in house

DrugBank Version 5.0. (Drug 
Antimalarial)

26 4 https://www.drugbank.ca

European Bioinformatics Institute. 
(CHEMBL Drugs Indications) 
(Antimalarial activities

27 24 [https://www.ebi.ac.uk/
chembl]

Open Source Drug Discovery 
(OSDD) Malaria

93 88 http://opensourcemalaria.
org/

Malaria Box-Medicine of Malaria 
Venture (MMV)

124 124 https://www.ebi.ac.uk/
chembl/malaria/source

St. Jude Children’s Research 
Hospital’s

1.478 1.478 https://www.ebi.ac.uk/
chemblntd

Novartis-GNF Malaria Box 4.878 4.868 Available in: https://www.
ncbi.nlm.nih.gov/pmc/
articles/PMC3941073/
Available in: https://www.ebi.
ac.uk/chemblntd

GlaxoSmithKline Tres Cantos 
Antimalarial

12.470 12.466 Open Source Malaria 
(GSK-TCMDC). Available 
in: https://www.ebi.ac.uk/
chemblntd

Table 1. 
Databases analyzed with chemoinformatic tools.
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Figure 2. 
3D visualization of the chemical space of natural product databases.

and molecular weight (MW), or others such as molar refractivity, are important 
physicochemical parameters for quantitative structure-activity relationship (QSAR) 
analysis. These molecular descriptors are based on Lipinski’s rule and Verger’s rule 
regarding the prediction of the pharmacological similarity of orally active pharma-
cological potential [65–67]. The statistical analysis of the physicochemical proper-
ties was realized with RStudio Software 1.0.136 AGPL [68].

2.3 3D visualization of chemical space of compounds with antimalarial activity

PCAs were done with MOE software [64], and the dominant characteristics are 
expressed as covariance and visualized with the corresponding 2D or 3D graphic 
score plot with DataWarrior program v. 5.0 [69]. Figures 2–8 showed the distribu-
tion of different compounds with antimalarial activities in the chemical spaces.

In Figures 2–8 we observed that NPs, drugs, and synthetic compounds occupy, in 
general, similar chemical space and are overlapping in most of the evaluated databases.

2.4 Molecular diversity based on fingerprints

Three binary molecular fingerprints were calculated with RStudio package rcdk: 
Extended connectivity fingerprints with diameter 4 (ECFP-4) for similarity search-
ing, molecular access system (MACCS) keys of 166 bits for determining similarity 
and molecular diversity, and PubChem keys of 881 bits for encoding molecular 
fragment information [42–44]. The similarity of fingerprints by structural pairs 
of compounds was calculated with the Tanimoto coefficient and analyzed with the 
cumulative distribution function (CDF). This approach has been used to calculate, 
measure, and represent the molecular variety of compound data sets [23].

Figures 9–11 show the CDFs of the pairwise similarity of the different data sets 
evaluated with Tanimoto coefficient and ECPF-4, MACCS keys, and PubChem 
fingerprints, respectively.

87

Chemoinformatic Approach: The Case of Natural Products of Panama
DOI: http://dx.doi.org/10.5772/intechopen.87779

Figures 9–11 provide information on the structural diversity of the six data-
bases. Similar approach has been previously published [23]; the curves obtained 
with ECFP-4 did not prove to be a suitable fingerprint representation for these 
data sets. In the three similarity graphs based on fingerprints, it is shown that the 
database of natural products with antimalarial activity, OMS, and MMV has the 
lowest molecular diversity, while GSK DB was the most diverse.

In Tables 2–4, the statistical values of the pairwise Tanimoto similarity with the 
data sets analyzed are shown. In these tables, CHEMBL and DrugBank databases 
are excluded from our analysis, due to the small amount of data.

Figure 3. 
3D visualization of the chemical space of synthetic compounds.

Figure 4. 
3D visualization of the chemical spaces of natural products and GNF DBs.
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2.5 Molecular scaffolds: content and diversity

2.5.1 Scaffold content

Murcko scaffolds were calculated with the program Molecular Equivalent 
Indices (MEQI) [50, 51] and DataWarrior program [69]. MEQI has been used to 
obtain the codes corresponding to the chemotypes most frequently analyzed in the 
databases. [23, 45, 52–55]. The distribution and diversity of the molecular scaf-
folds present in the data sets were calculated and analyzed using the cyclic system 

Figure 6. 
3D visualization of the chemical spaces of natural products and DBK DBs.

Figure 5. 
3D visualization of the chemical spaces of natural products and TCMDC DBs.
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retrieval (CSR) curves [42]. These curves were obtained by plotting the fraction of 
scaffold and the fraction of compounds that contain cyclic systems [43, 44].

Table 5 indicates that the MMV DB (0.491) was the most diverse in scaffold 
content taken as reference the F50 values compared to the data set from GSK (0.183), 
NPs (0.168), and GNF (0.161), respectively. CSR curves on Figure 12 further 
confirm the relative scaffold variety of the eight databases. The analysis of area 
under curve (AUC) metrics associated with the CSR curves is reported in Table 5. 
The CSR curves showed that MMV has more variety in scaffold content with AUC 
value of 0.507. In contrast OSM, NPs, GNF, GSK, St. Jude, and CHEMBL were 
the least diverse (e.g., AUC scores of 0.745, 0.712, 0.705, 0.698, 0.655 and 0.607, 

Figure 7. 
3D visualization of the chemical spaces of natural products, OSM and St. Jude.

Figure 8. 
3D visualization of the chemical spaces of all databases.
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respectively). The CSR curves provide information on the diversity of the most 
frequent scaffolds in all databases.

2.5.2 Shannon entropy (SE) and scaled Shannon entropy (SSE)

The Shannon entropy has been adapted to measure the scaffold diversity based 
on the (N) number of most recurrent scaffolds [70]. The scaled Shannon entropy 
is a normalized value that measures the most common chemotypes present in a 

database. Thus, SSE closer to 1 indicates higher scaffold diversity, while SSE closer 
to zero (0) indicates lower diversity. In this study, we calculated the SSE for values 
ranging from N = 10 to N = 40.

Figure 10. 
Curve for cumulative frequency distribution based on MACCS keys.

Figure 11. 
Curve for cumulative frequency distribution based on PubChem.

Figure 9. 
Curve for cumulative frequency distribution (CFD) based on ECFP-4.
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Figure 13 shows a histogram with the distribution of the 40 most populated 
scaffolds in NPAs. The histogram includes the corresponding chemotype code. The 
comparison of the scaffolds of the NPAs allowed the identification of the 68MBD 
chemotype as one of the most active compounds in this database.

Figure 12. 
Cyclic system retrieval curves for all databases evaluated in this study.

Similarity ECFP-4/Tanimoto coefficient

DBs Min. 1st Qu. Median Mean 3rd Qu. Max.

GSK 0.01724 0.05789 0.08844 0.11490 0.12245 0.82353

NPs 0.00000 0.07826 0.09910 0.10565 0.12389 1.00000

OSM 0.00000 0.07826 0.09917 0.10607 0.12397 1.00000

MMV 0.00000 0.07826 0.09924 0.10615 0.12403 1.00000

ST JUDE 0.00000 0.08197 0.10345 0.10980 0.12857 1.00000

GNF 0.00000 0.08209 0.10345 0.10772 0.12739 1.00000

Table 2. 
The statistical values of the similarity of the Tanimoto coefficient with ECFP-4.

Similarity MACCS keys/Tanimoto coefficient

DBs Min. 1st Qu. Median Mean 3rd Qu. Max.

GSK 0.07813 0.25682 0.33333 0.37009 0.45581 0.92683

NPs 0.00000 0.34426 0.43636 0.44673 0.54545 1.00000

OSM 0.00000 0.34483 0.43636 0.44693 0.54545 1.00000

MMV 0.00000 0.34483 0.43636 0.44677 0.54412 1.00000

ST JUDE 0.00000 0.33333 0.41250 0.42313 0.50000 1.00000

GNF 0.00000 0.31746 0.39437 0.39999 0.47619 1.00000

Table 3. 
The statistical values of the similarity of the Tanimoto coefficient with MACCS keys.
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2.5.3 Molecular complexity and flexibility

The structural descriptors used to quantify fraction of sp3 hybridized car-
bons (Fsp3) [23, 58, 63, 70], fraction of chiral centers (CCF) [23, 59, 63, 70], 
fraction of aromatic atoms (Faro-atm), globularity [60], principal moments of 
inertia (PMI), normalized principal moments of inertia ratio (NRP)  
[61, 62], molecular complexity, shape index of Kier, and molecular flexibility 
were calculated with DataWarrior program [69] and MOE 2018.0101 [64]. 
Figures 14–19 showed the descriptors utilized to evaluate the complexity and 
the molecular flexibility.

Tables 6–8 summarize the statistics of the distribution of Fsp3, FCC, and Faro-
atm of NPs and reference data sets. These results indicate that the NP data set has 
the largest complexity molecular in Fsp3 (0.63) and CCF (0.16) and a low distribu-
tion of Faro-atm (0.67–0.78). In contrast, GNF, MMV, St. Jude, and GSK DBs are 
very similar in these three metrics with values between 0.25 and 0.37, 0.27 and 0.37, 
and 0.014 and 0.025, respectively. In contrast, the structural flexibility was evalu-
ated with the index of form presenting all databases in the range of 0.41–0.58 indi-
cating that many of the compounds present sphericity and intermediate molecular 
flexibility (data not presented).

DBs Number of 
Compounds 

(M)

Unique  
chemotypes 

(N)

FN/M NSING FNSING/M FNSING/
NS

AUC F50

NPs 1298 629 0.4846 400 0.3082 0.6359 0.7125 0.1685

DBK 5 5 1.0000 5 1.0000 1.0000 0.4800 0.4000

CHEMBL 24 18 0.7500 16 0.6667 0.8889 0.6072 0.3333

OSM 89 39 0.4382 27 0.3034 0.6923 0.7453 0.1025

MMV 124 122 0.9839 120 0.9677 0.9836 0.5079 0.4918

St. JUDE 915 479 0.5235 325 0.3552 0.6785 0.6551 0.2474

GNF 4860 3229 0.6644 2690 0.5535 0.8331 0.7054 0.1615

GSK 12,463 6703 0.5378 5009 0.4019 0.7473 0.6982 0.1837

M = number of molecules in the BD, N = number of chemotypes or substructures, FN/M = chemotype 
diversity fraction, NSING = singleton number, FNSING/M = singleton fraction between total molecules, 
FNSING/N = fraction of singleton among total chemotypes, AUC = area under the curve, F50 = fraction of 
chemotype required to recover 50% of the molecules.

Table 5. 
Summary of the scaffold diversity of the eight databases analyzed in this work.

Similarity PubChem/Tanimoto coefficient

DBs Min. 1st Qu. Median Mean 3rd Qu. Max.

GSK 0.08125 0.24500 0.37555 0.40263 0.54002 1.00000

NPs 0.03684 0.32298 0.43802 0.46184 0.58621 1.00000

OSM 0.03684 0.32340 0.43902 0.46253 0.58730 1.00000

MMV 0.03684 0.32444 0.44033 0.46321 0.58791 1.00000

ST JUDE 0.03684 0.38224 0.47143 0.47624 0.56195 1.00000

GNF 0.00000 0.40598 0.48117 0.47800 0.55446 1.00000

Table 4. 
The statistical values of the similarity of the Tanimoto coefficient with PubChem.
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The descriptors globularity, PMI, and NRP did not prove to be suitable metrics 
to measure and differentiate the molecular complexity in the data sets evaluated. 
This is because the corresponding values computed for all data sets were very low 

Figure 13. 
Scaled Shannon entropy of the most frequent scaffolds with values ranging from 10 to 40 in natural products.

Figure 14. 
Distribution of the fraction of sp3 hybridized carbons in different databases.

Figure 15. 
Distribution of the fraction of chiral centers in different databases.
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Figure 16. 
Distribution of the fraction of aromatic atoms (Faro-atm) in different databases.

Figure 17. 
Shape index distribution of different databases.

Figure 18. 
Distribution of the molecular flexibility in different databases.

Figure 19. 
Distribution of the molecular complexity in different databases.
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(close to zero) and did not differentiate the data sets (data not shown). The large 
molecular complexity of NPs measured is in agreement with previous studies using 
similar metrics [23, 63, 71].

Fraction of sp3 hybridized atoms (Fsp3)

DBs Min 1qst median mean 3qrt max dev.st

NPs 0.000 0.481 0.636 0.656 0.833 2.000 0.254

CHEMBL 0.167 0.342 0.536 0.621 0.627 1.333 0.374

MMV 0.000 0.167 0.300 0.316 0.402 0.800 0.190

OSM 0.000 0.174 0.255 0.277 0.338 0.893 0.145

DBK 0.250 0.438 0.519 0.463 0.545 0.565 0.175

GNF 0.000 0.227 0.364 0.377 0.500 2.667 0.207

STJUDE 0.000 0.222 0.333 0.353 0.471 1.136 0.178

GSK 0.000 0.250 0.375 0.372 0.500 1.500 0.180

Table 6. 
Distribution of Fsp3 in different databases.

Fraction of chiral centers (CCF)

DBs min 1qst median mean 3qrt max dev.st

NPs 0.000 0.033 0.139 0.161 0.267 0.656 0.145

CHEMBL 0.000 0.000 0.036 0.128 0.141 0.533 0.192

MMV 0.000 0.000 0.000 0.014 0.000 0.111 0.028

OSM 0.000 0.000 0.000 0.008 0.000 0.286 0.035

DBK 0.000 0.000 0.019 0.020 0.040 0.043 0.024

GNF 0.000 0.000 0.000 0.025 0.040 0.556 0.053

STJUDE 0.000 0.000 0.000 0.024 0.045 0.217 0.037

GSK 0.000 0.000 0.000 0.017 0.034 0.500 0.033

Table 7. 
Distribution of FCC in different databases.

Fraction of aromatic atoms (Faro-atm)

DBs min 1qst median mean 3qrt max dev.st

NPs 0.000 0.000 0.324 0.341 0.600 1.133 0.294

CHEMBL 0.000 0.299 0.556 0.509 0.690 1.091 0.321

MMV 0.261 0.682 0.826 0.817 0.956 1.429 0.230

OSM 0.000 0.677 0.733 0.786 0.860 1.500 0.232

DBK 0.538 0.591 0.733 0.720 0.862 0.875 0.171

GNF 0.000 0.522 0.667 0.670 0.818 1.714 0.235

STJUDE 0.000 0.553 0.712 0.708 0.857 1.556 0.216

GSK 0.000 0.571 0.706 0.713 0.857 1.400 0.208

Table 8. 
Distribution of fraction of aromatic atoms.
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(close to zero) and did not differentiate the data sets (data not shown). The large 
molecular complexity of NPs measured is in agreement with previous studies using 
similar metrics [23, 63, 71].

Fraction of sp3 hybridized atoms (Fsp3)

DBs Min 1qst median mean 3qrt max dev.st

NPs 0.000 0.481 0.636 0.656 0.833 2.000 0.254

CHEMBL 0.167 0.342 0.536 0.621 0.627 1.333 0.374

MMV 0.000 0.167 0.300 0.316 0.402 0.800 0.190

OSM 0.000 0.174 0.255 0.277 0.338 0.893 0.145

DBK 0.250 0.438 0.519 0.463 0.545 0.565 0.175

GNF 0.000 0.227 0.364 0.377 0.500 2.667 0.207

STJUDE 0.000 0.222 0.333 0.353 0.471 1.136 0.178

GSK 0.000 0.250 0.375 0.372 0.500 1.500 0.180

Table 6. 
Distribution of Fsp3 in different databases.

Fraction of chiral centers (CCF)

DBs min 1qst median mean 3qrt max dev.st

NPs 0.000 0.033 0.139 0.161 0.267 0.656 0.145

CHEMBL 0.000 0.000 0.036 0.128 0.141 0.533 0.192

MMV 0.000 0.000 0.000 0.014 0.000 0.111 0.028

OSM 0.000 0.000 0.000 0.008 0.000 0.286 0.035

DBK 0.000 0.000 0.019 0.020 0.040 0.043 0.024

GNF 0.000 0.000 0.000 0.025 0.040 0.556 0.053

STJUDE 0.000 0.000 0.000 0.024 0.045 0.217 0.037

GSK 0.000 0.000 0.000 0.017 0.034 0.500 0.033

Table 7. 
Distribution of FCC in different databases.

Fraction of aromatic atoms (Faro-atm)

DBs min 1qst median mean 3qrt max dev.st

NPs 0.000 0.000 0.324 0.341 0.600 1.133 0.294

CHEMBL 0.000 0.299 0.556 0.509 0.690 1.091 0.321

MMV 0.261 0.682 0.826 0.817 0.956 1.429 0.230

OSM 0.000 0.677 0.733 0.786 0.860 1.500 0.232

DBK 0.538 0.591 0.733 0.720 0.862 0.875 0.171

GNF 0.000 0.522 0.667 0.670 0.818 1.714 0.235

STJUDE 0.000 0.553 0.712 0.708 0.857 1.556 0.216

GSK 0.000 0.571 0.706 0.713 0.857 1.400 0.208

Table 8. 
Distribution of fraction of aromatic atoms.



Cheminformatics and Its Applications

96

3. Activity landscape modeling

The methods of modeling the landscape based on properties of the compounds 
(property landscape modeling (PLM)) is at the interface between experimental 
sciences and computational chemistry, being a frequent strategy to systematically 
describe the structure-property relationships (SPR) of the compound data set 
[72]. PLM have been used in medicinal chemistry in the stages of drug discovery 
with a quantitative, descriptive, and statistical approach to activity cliffs [72–74]. 
Structure-activity relationships (SARs), using the concept of modeling the activity 
landscape (activity landscape modeling ALM), are an increasing common practice 
in the drug discovery process to identify the activity cliffs, guide the optimization of 
compound hits, and to avoid the deleterious effects of the activity cliffs in the stud-
ies of the classic models of QSAR and in the search of structural similarity. In this 

Figure 21. 
Structural similarity compared with activity cliffs in GSK and Novartis (GNF).

Figure 20. 
Structural similarity compared with activity cliffs in NPAs.
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research we analyze, through the web tool Activity Landscape Plotter (ALP) [72], a 
set of data from NPs from Panama with antimalarial activity against four strains of 

Figure 22. 
SAS maps of compounds with antimalarial activity ((a), (b), and (c)) through the web tool activity landscape 
plotter.
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research we analyze, through the web tool Activity Landscape Plotter (ALP) [72], a 
set of data from NPs from Panama with antimalarial activity against four strains of 

Figure 22. 
SAS maps of compounds with antimalarial activity ((a), (b), and (c)) through the web tool activity landscape 
plotter.



Cheminformatics and Its Applications

98

Plasmodium falciparum in the erythrocyte gametocyte stage (Figures 20 and 24).
The generation and comparison of structure-activity pairs, by structure- activity 

similarity maps (SAS map). The SAS map has been used to link up structure and 
biological activity, based on a systematic pairwise comparison of all the compounds 
in a data set analyzed. We compare the values of structure-activity similarity, 
the activity difference, and structure-activity landscape index (SALI) to find the 
pairs of compounds with high molecular similarity and the activity difference that 
are located in the upper right quadrant of the SAS map (activity cliffs) [72–76]. 
Figures 17–21 show SAS map in NP of Panama, NP published, GSK, and GNF. In 
SAS maps, data points are colored by density (Figure 22).

The SAS maps using the molecular fingerprints EFCP-4, MACCS keys, and 
PubChem led to the identification of a total of 26 pairs of compounds with 
 structure-activity similarity ratios >0.50 and structure-activity landscape index 
values varying between 0.3 and 5.0. The web application Activity Landscape Plotter 
[72] is a tool that allows us to perform QSAR. The SAS generated represent 55 natural 
products isolated in Panama with antimalarial activity which were analyzed and 
compared the biological activities against strains of Plasmodium falciparum sensitive, 
resistant and multiresistant. The analysis with the parameters the (SAS / Tanimoto 
index / ECFP-4), a total of twenty-six pairs of compounds showed similarity values 
greater than 70%, sixteen pairs greater than 80% and only two pairs of compounds 
gave a similarity greater than 85%. While with activity cliffs, only three pairs of 
compounds show structural similarity correlated with the values of pIC50 activity 
[72, 77].

SAS maps are color-coded according to their intensity and we observe that most 
pairs of compounds with antimalarial activity show an intense red color. A nalyzed 
are located in the region of little structural similarity, indicating that the natural 
products have high structural diversity and low difference in activity, attributed to 
having similar functional groups in their molecules.

Figure 23. 
DAS map with MACCS key fingerprint.
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DAS maps represent the pairwise activity differences for each possible pair of 
compounds in an evaluated data set, against two biological targets. These maps 
permitted to differentiate if a structural modification can increase or decrease the 
activity under one target or other (Figure 23).

With this web application, we have carried out a QSAR study in a fast, simple, 
and easily interpretable way, obtaining three natural products as leading compu-
tational compounds for their optimization as Plasmodium falciparum blockers, 
which exhibit a gametocidal activity [78] (Figure 24).

4. Conclusion

The chemoinformatic analysis of the 20,364 compounds (1312 NPs and 19,052 
synthetic (MMV, OSM, GNF, St. Jude, GSK, CHEMBL, and DrugBank)) indicates 
that so many natural products and synthetic products (S) share the same chemi-
cal space showing molecules that have similar structural properties. NPs present 
a greater diversity based on fingerprint than the synthetic compounds. Also, 
NPs have a higher proportion of chiral carbons and atoms with sp3 hybridization 
and greater complexity, while synthetic products contain a greater proportion of 
aromatic atoms. Finally, concerning the properties related to cyclicity, relative 
shape, and flexibility, all have very similar values, which could explain the antima-
larial activity of computationally determined compound hits in this work against 
Plasmodium falciparum-sensitive (3D7, D6, poW, D10) and chloroquine-resistant 
strains (W2, Dd).
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Chapter 7

Prologue: Cheminformatics and Its 
Applications
Azhar Rasul

1. Introduction

Cheminformatics is a field of information technology that uses informational 
and computational techniques to provide a deeper understanding and solutions of 
problems of chemistry. Cheminformatics strategies originally emerged as vehicle 
in drug discovery where large libraries of compounds are evaluated for specific 
functionality or therapeutic effects [1].

Drug discovery is a highly systematic multistep procedure for the identification 
of new medicines [2]. Chemical toolsets including chemical probes, RNAi, and 
chemoproteomics have helped scientists to identify and validate novel druggable 
targets for therapeutic interventions [3–6]. Target validation is of pivotal impor-
tance in determining the suitability of a new target for further clinical evaluation. 
Following the process of target validation, hit identification and lead discovery 
process involves establishment of high throughput screening (HTS) systems as well 
as development of chemical tool compound libraries [2]. The next critical phase of 
the drug discovery process is pharmacokinetics and pharmacodynamic profiling 
of lead compounds [7] and investigation of Absorption, Distribution, Metabolism, 
Excretion and Toxicity (ADMET) properties [8]. Various critical steps in drug 
discovery involve the applications of cheminformatics such as compound selection, 
virtual library generation, in silico-based screening, HTS, HTS data mining, and in 
silico ADMET profiling [9].

In addition, cheminformatics have also helped the scientists to develop and 
optimize delivery of molecules to intracellular targets for therapeutic implications 
[10], thus, provided solutions for various unmet medical needs.

Conjugation of therapeutic entities with peptide delivery molecules, especially 
cell-penetrating peptides (CPPs), has the potential to increase the therapeutic 
efficacy by enhancing the ability of therapeutics to reach specific intracellular 
targets [11]. Preclinical evaluations of CPP-mediated therapeutics have shown 
promising results in disease models that also prompted clinical trials in some cases. 
These outcomes have, thus, opened new perspectives for CPPs in the development 
of well-tolerated and specifically targeted human therapies [12]. Thus, insights into 
current approaches and potential of CPP-based drug delivery systems are presented 
for greater understanding of readers about powerful promises and clinical efficacy 
of CPP-based therapeutics.

Cheminformatics and its applications presents the applications of two fields, 
chemical biology and bioinformatics, in drug discovery, thus, providing compre-
hensive description of modern technologies such as structure-based drug design, 
molecular docking, high throughput screening, and pharmaceutical profiling, 
which are all critical steps for the development of successful marketable drugs. 
With the invention of advanced and modern techniques in bioinformatics, the 
process of drug discovery has become faster and economical. Bioinformatics-based 
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computational techniques have provided platform for large-scale screening of small 
molecules and chemical biology has served pharmaceutics for the validation of 
obtained data from computer-aided techniques, thus, both of the fields go hand in 
hand to revolutionize the field of drug discovery. Keeping in view of the emerging 
trends on cheminformatics in drug discovery, this book is designed to enable scien-
tists to understand the fundamentals of drug discovery. Beginning with the high-
lights of the historical timeline of drug discovery, this book simply and succinctly 
educates its readers about screening methods, medicinal chemistry strategies in 
drug design, lead generation, testing the bioactivity of leads, lead optimization, 
clinical trial basics, as well as challenges of drug discovery such as cell-penetrating 
peptides and acceleration of chemical tool discovery by academic collaborations. 
This book will provide a clearer picture of cheminformatics and its applications 
and will be useful for scientific community working in the arena of drug discovery. 
Several recent developments are also overviewed, which will make it valuable for 
academicians and scientists.

© 2020 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 
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Abstract

The development of chemical tool compounds becomes increasingly impor-
tant for chemical biology research projects in many disciplines of life sciences. In 
addition, they form essential parts in both academic and industrial drug discovery 
efforts. The required expertise and technology platforms for the identification and 
optimization of these potent and target-selective small molecules often exceed the 
capabilities of academic groups and smaller companies. Over the years, several 
initiatives were created all over the world which address this issue by either creat-
ing networks or consortia of academic institutes, public-private partnerships with 
industry, or even dedicated new research infrastructures for chemical biology. 
Several of these organizations and their different access models will be described. 
We will focus in particular on the model of EU-OPENSCREEN ERIC, a new 
European Research Infrastructure which was founded in 2018 and consists of more 
than 20 partner institutes from eight countries.

Keywords: academic consortia, chemical tools, drug, pharmacological screening

1. Introduction

In the last decade, the interdisciplinary field of chemical biology has emerged 
from the need to better understand the role of proteins or signaling pathways in 
cellular systems and whole organisms than it was previously feasible with more 
classical genetic tools or methods. Rather than changing the levels of proteins, or 
blocking completely their expression or activity, by deleting or overexpressing their 
respective DNA or RNA sequences, it is now becoming more and more possible to 
precisely modulate their function in a time- and concentration-dependent manner 
using potent, selective and cell-permeable chemical compounds. Although the 
relevance of these so-called chemical tool compounds or probes for solving basic 
mechanistical questions in life sciences is indisputable [1], their role often extends 
into the fields of pharmacology and molecular medicine. In fact, chemical tools 
are playing an important role in the validation of newly identified drug targets in 
pharmaceutical companies, and might even serve as starting points for the develop-
ment of new therapeutics.

Despite recent technological advances in areas such as cryo-electron microscopy 
(Cryo-EM) [2], the major approach for identifying bioactive substances is still the 
systematic testing of compound collections, often comprising many thousands or 
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even millions of individual substances, with target- or pathway-specific biological 
assays which are designed to produce reproducible biological activities with high 
signal-to-noise ratios under experimental conditions which are fast, miniatur-
ized and therefore cost-effective [3]. This approach is technically and logistically 
challenging and, in the past, could only be performed by large pharmaceutical 
companies. In addition to experienced personnel, it requires large facilities with 
often expensive equipment for compound storage, automated liquid handling and 
sensitive detection of biological reactions. In recent years, however, this picture 
started to change. In the wake of the sequencing of the human genome, mostly 
larger academic institutions started to create their own screening and translational 
drug discovery centers because many new potential drug targets were suddenly 
becoming available for which a solid understanding of their physiological roles and 
molecular mechanisms were missing. At the same time, pharmaceutical companies 
faced increased pressures due to high drug development costs, often resulting in 
down-sized research budgets and cost cutting exercises combined with a general 
trend of becoming risk-averse towards innovative drug targets with potential high 
failure rates [4]. As a result, many experienced industrial ‘drug hunters’ found 
employment in academic chemical probe discovery centers, supporting their efforts 
and helping to alleviate some of the initial issues these centers faced [5].

In this chapter we describe some of these new initiatives which were created to 
develop chemical tool compounds outside of the traditional pharmaceutical indus-
try, highlighting their particular strengths, challenges and access models for the 
mostly academic scientific community.

2. Developing chemical probes in academic networks

At the beginning of the 21st century, academic institutions first began to imple-
ment dedicated assay development and screening centers which were soon followed 
by reports on the systematic testing of small molecule compound libraries in the US 
[6]. Comparable efforts in Europe’s research institutes immediately received much 
attention, fostering collaborations between chemistry and biology groups and the 
establishment of academic screening platforms of diverse size. However, single plat-
forms alone could not support comprehensively the needs of academic or industrial 
users due to limited chemical diversity of their compound collections and/or limited 
technical capabilities, and big pharma platforms were at that time not open to 
academic users. Pooling and coordination of public resources and expertise became 
imperative. Therefore, the efforts in the US were replicated with similar initiatives 
in countries such as France (Chimiothèque Nationale), Germany (ChemBioNet), 
Spain (ChemBioBank) and several others. Some years later, long-term coopera-
tions between academic centers from different countries as well as public-private 
partnerships were established. We will describe some of these initiatives in more 
detail and will put particular emphasis on the collaborative model of the youngest 
organization for chemical biology, the EU-OPENSCREEN ERIC.

2.1 The molecular libraries program (MLP) in the US

The large, NIH-funded MLP was created in 2004 with the ambitious goal 
of creating a small molecule probe for every human protein in order to define 
the functions of genes, cells, and whole organisms in health and disease. The 
three components of the initiative were essentially: (a) a network of compre-
hensive and specialized screening centers plus specialized chemistry centers, 
(b) several cheminformatics approaches which included also a newly created 
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public compound database called PubChem with assay metadata, and (c) initia-
tives to generally advance technologies in the fields of chemical diversity, assay 
development and screening [6]. The aim was always to publish the new chemical 
probes and associated data immediately so that compounds could be used by the 
academic scientific community not only for basic research questions, but also 
for mechanistic validation of potentially disease-relevant drug targets and drug 
development.

Individual scientists could apply for funding to the NIH for their assay develop-
ment and screening projects. Successfully, peer-reviewed projects were taken on 
board by one of the MLP centers, and high-throughput screens were conducted 
with a library which, by the end of the program, consisted of 390.000 compounds. 
About 5% of these molecules with often novel scaffolds were delivered by the 
academic synthetic chemistry community. In many cases, further chemical opti-
mization yielded probes against protein targets which were deemed challenging or 
even ‘undruggable’. Overall, during the 10-year period of the program, a total of 375 
chemical tool compounds were developed against a broad range of target classes. 
18 of these compounds were considered sufficiently interesting to serve as starting 
points for the development of therapeutics against a total of eight disease targets 
or target classes, and were licensed to biotech and pharmaceutical companies [7]. 
In light of the investment into the MLP it is debatable whether the ratio of probes 
to drug candidates can be regarded as a success or a disappointment but it certainly 
highlights the difficulties that chemical biologists are facing when they want to keep 
up with the speed of biological discoveries while translating academic findings into 
therapeutics.

2.2 The chemical biology consortium Sweden (CBCS)

Although much smaller than the MLP in the US, this example of a national 
consortium can highlight very well the particular strengths of a focused organiza-
tion with only a few members. CBCS, with two nodes at the Karolinska Institutet 
and Umeå University, was founded as a non-for-profit research infrastructure for 
chemical biology in 2010 [8] by researchers from Biovitrum (former Pharmacia 
and Upjohn) and became an integrated platform of SciLifeLab, an already existing 
national centre for molecular biosciences, in 2013 [9]. The combined platform can 
investigate both chemical and genetic perturbations in biological systems. CBCS 
wants to enable high level basic research with open access publications while at the 
same time linking up academic and industrial groups. Complementary to CBCS, 
SciLifeLab offers a dedicated platform for drug discovery and development, with 
the clear goal of accelerating projects with translational potential. After nearly 
10 years of operation, the consortium has produced more than 130 co-authored 
publications and 11 patent applications while scientific data provided the basis of 
six start-up companies [10].

Users are encouraged to discuss in more detail project proposals with the CBCS 
staff prior to the submission of the official application. A proposal template, user 
agreements and estimated costs of typical screening and chemistry projects are 
available online. Project proposals are evaluated by an independent ‘Project Review 
Committee’ (PRC), which meets biannually. Prioritized projects may be subsidized, 
with the remaining costs covered by the applicant. Implemented projects are periodi-
cally re-evaluated by the Project Review Committee as they progress to pre-defined 
milestones. A project plan for a so-called “large collaborative project” may run over a 
maximum of 2 years for which the user is expected to cover the costs for all reagents 
and consumables, including a compound access fee for plating of library compounds. 
There are also “small collaborative projects” which involve only limited CBCS 
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wants to enable high level basic research with open access publications while at the 
same time linking up academic and industrial groups. Complementary to CBCS, 
SciLifeLab offers a dedicated platform for drug discovery and development, with 
the clear goal of accelerating projects with translational potential. After nearly 
10 years of operation, the consortium has produced more than 130 co-authored 
publications and 11 patent applications while scientific data provided the basis of 
six start-up companies [10].

Users are encouraged to discuss in more detail project proposals with the CBCS 
staff prior to the submission of the official application. A proposal template, user 
agreements and estimated costs of typical screening and chemistry projects are 
available online. Project proposals are evaluated by an independent ‘Project Review 
Committee’ (PRC), which meets biannually. Prioritized projects may be subsidized, 
with the remaining costs covered by the applicant. Implemented projects are periodi-
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milestones. A project plan for a so-called “large collaborative project” may run over a 
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There are also “small collaborative projects” which involve only limited CBCS 



Cheminformatics and Its Applications

116

support for maximal 2 weeks, e.g. a short-term access to a specialized instrument 
such as an imaging plate reader. For these projects, no PRC application is required 
but they are undertaken with a “first come—first served” policy based on available 
resources [10]. In line with the open access data policy of the CBCS, the applicant 
and the CBCS agree upon a clear publication strategy before the implementation 
of the project. The target user group of CBCS are academic researchers at Swedish 
research institutions, who aim to develop chemical probes on a collaborative basis.

It is worth looking in more detail into the services CBCS can offer to their aca-
demic customers. The consortium assists in assay development for both biochemi-
cal and cell-based assays, gives access to the SciLifeLab compound collection and 
provides medicinal and computational chemistry expertise for hit validation and 
optimization. This model is very similar to the service offerings of the much larger 
European research infrastructure EU-OPENSCREEN which is being discussed 
below. In addition, mechanism-of-action studies can be performed with often 
specialized technologies such as cellular thermal shift assays (CETSA) [11]. In fact, 
the development of CETSA is a good example on how an expert consortium such 
as CBCS can impact and further develop disrupting technologies in collaboration 
with local academic groups and commercial partners (here: Pelago Biosciences). 
Starting life as a low throughput assay, CETSA is now amenable to high throughput 
screening [12]. Scientists usually come to the CBCS with the concept for a biological 
assay and first experimental data. They have then the chance to work further on the 
assay in the CBCS laboratories under guidance of their expert scientists, enabling in 
parallel scientific services and the education of users [10].

The CBCS compound collection consists of more than 200.000 compounds with 
high chemical diversity which are routinely quality controlled. While many of these 
compounds were donated by the pharmaceutical company Biovitrum, the library 
was further expanded with sets from commercial vendors and donations by other 
biotech companies. Importantly, the strategy has always been to build a modular 
collection of sub-libraries which can be adapted to the needs of each academic 
screening project, based mainly on assay throughput and cost per data point. For 
instance, in addition to a diverse primary screening set of 35.000 compounds, there 
are also focused libraries for particular target classes such as kinases, G-protein 
coupled receptors, agrochemicals etc., as well as a set of approved drugs [10]. This 
is very different to the concept of EU-OPENSCREEN which offers a high through-
put screening set of 100.000 commercial compounds to their users, with the goal 
to have that set screened in almost all projects so that each compound becomes 
associated with “positive” and “negative” screening data from as many projects as 
possible (see below).

Overall, between 2010 and 2018 more than 400 collaborative projects with 236 
individual users in Sweden were discussed. User interest grew continuously during 
these 8 years, currently leading to approximately one new project discussion per 
week. About 25% of discussions result in large project PRC applications while oth-
ers obtain small project limited support, all documented in, on average, 20 publica-
tions per year [10].

2.3 Public private initiatives: SGC and ELF

In industry, chemical tool compounds play an important role as pharmaceuti-
cal modulators of novel drug targets. Typically, they are being used for testing 
a particular disease hypothesis and for validating the chemical tractability of 
newly discovered candidate proteins or signaling pathways for which otherwise 
comparatively little information is available. Sometimes their properties are even 
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sufficient to act as starting points for drug discovery programs. The development 
of compounds with required potency and, most importantly, selectivity towards 
individual members of a protein class can be a formidable task even for larger 
pharmaceutical or biotech companies. It came therefore as no surprise that in 2009 
several industrial partners decided to collaborate in a pre-competitive manner and 
initiated a public-private partnership (PPP) with leading academic institutes in 
the field of chemical biology. The aim was to develop high-quality chemical tool 
compounds for families of understudied proteins of potential therapeutic value, for 
instance epigenetic and other transcriptional modulators.

The chosen academic partners in that particular PPP were the universities of 
Oxford and Toronto which had already formed the so-called Structural Genomics 
Consortium (SGC) in 2004 with the goal of determining the three-dimensional 
structures of proteins with therapeutic relevance. The SGC advocates open access 
partnerships between industry and academia and is committed to make their 
chemical tool compounds available without any restrictions. In the last 10 years, 
and with financial support by several pharmaceutical companies, more than 50 
chemical probes in the areas of epigenetics and kinase signaling were developed 
[13, 14]. Furthermore, seven pharmaceutical companies made their chemical tool 
compounds from older research programs available to the scientific community, 
including protocols, controls and associated data [15]. Efforts are now underway, 
under the umbrella of the Innovative Medicines Initiative (IMI), to expand the 
initial collection of compounds further by focusing not only on the protein classes 
which were selected in the past but also on the development of new technologies, 
making the identification and profiling of tool compounds generally faster and 
more cost-effective [16].

Another PPP initiative supported by the IMI is the European Lead Factory (ELF) 
[17] which is a consortium of 20 partners, currently among them the universities 
of Oxford and Dundee while several other universities, research organizations and 
companies in the UK, Netherlands and Germany were former partners. The project 
was launched in 2013 and came to an end in 2018, with a follow-up five-year project 
funded in the same year [18]. During its lifetime, the ELF established a selection 
of about 550.000 compounds which are generally not commercially available. 
300.000 of these were donated by seven participating pharmaceutical companies, 
while the rest was synthesized by medicinal chemistry partner companies during 
the last 5 years. Both the compound management facility in the UK and the high 
throughput screening center in the Netherlands were formerly part of pharmaceuti-
cal companies and able to perform screening operations and chemistry services 
such as hit optimization and modeling according to industry standards. The Oxford 
Biotechnology group of the SGC was selected as a key contributor of 3D co-crystal 
structures which are essential for compound optimization. During the lifetime of 
the project, more than 80 drug discovery programs across most therapeutic areas 
were pursued. By March 2018, two partnering deals between the respective project 
owner and one of the pharmaceutical company partners had emerged. Importantly, 
the ELF protects the IP rights of their academic collaborators against the pharma-
ceutical companies, ensuring that the academic researchers can always search for 
external partners in case that no development deal between them and one of the 
ELF industry partners could be fixed. This was one of the main concerns when the 
project started in 2013 [19].

It remains to be seen though if and how academic groups really benefit from 
these ambitious initiatives, especially when own research interests show little 
overlap with the essentially commercial interests of the participating pharmaceuti-
cal companies.
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2.4  The European research infrastructure consortium (ERIC) 
EU-OPENSCREEN

EU-OPENSCREEN [20] is a community-driven, bottom-up initiative in Europe, 
which brings together 21 partner sites, i.e. technology platforms and research 
groups at various universities and research institutions, to form an open-access 
research infrastructure for chemical biology and early drug discovery. Instead of 
building an ivory tower, the aim of EU-OPENSCREEN is to establish and operate 
an infrastructure that facilitates and encourages the engagement with the broader 
scientific community. In the framework of EU-OPENSCREEN, the partner sites 
and external researchers collaboratively develop novel tool compounds (or chemi-
cal ‘probes’) that allow researchers to interrogate and study fundamental cellular 
processes, such as signaling or metabolic pathways.

EU-OPENSCREEN is one of 55 research infrastructures listed on the current 
ESFRI (European Strategy Forum on Research Infrastructures) Roadmap [21] as an 
‘ESFRI Landmark Project’, demonstrating the relevance for the European scientific 
community and the European Research Area (ERA). It is jointly funded by the 
research ministries of eight countries (the Czech Republic, Denmark, Finland, 
Germany, Latvia, Norway, Poland, Spain) and the European Commission. Since 
April 2018, it operates a European, not-for-profit organization (‘European Research 
Infrastructure Consortium’), which is based in Berlin, Germany, and is legally 
independent from any university or research institute. EU-OPENSCREEN, and 
the European Research Infrastructures in general, promote open science and open 
innovation [22].

Many technology platforms at universities and research institutes predominantly 
work with the colleagues at their hosting institution. Larger European initiatives 
often engage with scientists from Western European countries, where these initia-
tives are based. Reaching out to, and encourage the active participation of, scientists 
from regions, which are often underrepresented in chemical biology and early drug 
discovery research, requires a different approach. Through its distributed network 
of partner sites across its member countries, EU-OPENSCREEN aims to have a more 
balanced engagement of local science communities. In each member country, a local 
partner establishes and coordinates a national network—e.g. CZ-OPENSCREEN 
in the Czech Republic, PL-OPENSCREEN in Poland, NOR-OPENSCREEN in 
Norway, Drug Discovery and Chemical Biology Consortium (DDCB) in Finland, 
ChemBioNet in Germany—to raise awareness about the initiative and to efficiently 
encourage scientists at the local level to participate.

2.4.1 The research infrastructure

The EU-OPENSCREEN infrastructure provides open-access to compound 
libraries, assay development and screening facilities, and medicinal chemistry and 
informatics platforms. It provides training and serves as a platform for industry 
engagement.

2.4.1.1 Compound collection

The EU-OPENSCREEN compound collection is a diversity library, which has 
been designed in a collaborative effort of several partner sites. The library is jointly 
used by affiliated EU-OPENSCREEN partner sites for primary screening against 
biological targets solicited from external researchers who developed the appro-
priate assays. During the design of the library, 100,000 commercially available 
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compounds were selected, with an emphasis on chemical stability, absence of reac-
tive compounds, screening-compliant physico-chemical properties, and maximal 
diversity/coverage of chemical space. Furthermore, EU-OPENSCREEN crowd-
sources compounds from external chemists worldwide, in a federated approach 
through its national chemical biology networks. This collection of academic 
compounds will, over time, add increasing uniqueness to the EU-OPENSCREEN 
compound collection. The ambitious goal is to gather up to 40,000 compounds 
over the next years and to realize the vision of a truly European compound collec-
tion. In this context, the EU-OPENSCREEN compound collection will be dynamic 
and expanding. In analogy to the ‘FAIR’ (FAIR stands for findability, accessibility, 
interoperability, and reusability) data principles (described below), structural com-
pound information and quality control data will be available online in an interoper-
able format (interoperability), unique identifier codes for each compound will be 
employed (findability), quality control will ensure the identity and purity of the 
compounds (reproducibility), and their distribution partner sites where they are 
accessible to external scientists and used in screening projects (accessibility). All 
compounds of the collections are carefully characterized and annotated for basic 
physico-chemical (e.g. solubility, light absorbance and fluorescence) and biological 
properties (e.g. cytotoxicity, antibiotic activity) by ‘profiling’ them in a standard 
panel of assays. These bioprofiling data increase the reliability and reproducibility 
of screening results, and identify compounds with properties that could potentially 
perturb specific bioassay read-out technologies (e.g. auto-fluorescence, luciferase 
inhibition, etc.) in order to reduce false-positive results. For chemists who provide 
compounds to be incorporated in the compound collection, these profiling data 
are an important incentive, in addition to the bioactivity data from the screening 
projects.

The jointly used compound collection is stored centrally by the Compound 
Collection Management Facility (CCMF) in Berlin, Germany, and aliquots are 
distributed to the affiliated EU-OPENSCREEN partner sites, which are located 
in the eight EU-OPENSCREEN member countries. The CCMF is responsible for 
the acquisition, selection, maintenance and storage of the central collection and 
quality-controls of the compounds. The CCMF provides the screening and biopro-
filing sites with copies of the compound collection (including, where necessary, 
cherry-picking for confirmatory and counter-screening activities).

2.4.1.2 Database

In many cases, primary screening data—even from publicly funded programs—
are not openly accessible by the scientific community. While private organizations, 
contract research organizations (CROs) and many public-private partnerships 
do not reveal data on a routine basis, EU-OPENSCREEN is committed to maxi-
mizing the re-use and impact of generated bioactivity data for the benefit of the 
wider scientific community. Therefore, EU-OPENSCREEN’s ECBD adheres to the 
FAIR principles [23] and is closely linked to the ChEMBL [24] database, which 
will raise the discoverability and re-use of EU-OPENSCREEN’s data. Via ECBD 
and ChEMBL, database users will be drawn from across the global biological and 
chemical science communities, both from academia and industry. Together with 
other European life sciences-research infrastructures, EU-OPENSCREEN partners 
also contribute towards the optimization of technological implementation, inte-
gration and interoperability of data and tools within the European Open Science 
Cloud (EOSC) and participate in the Horizon 2020-funded ‘EOSC-Life’ project 
(www.eosc-life.eu/). Another initiative, to which the EU-OPENSCREEN partner 
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Fraunhofer IME actively contributes, is the Innovative Medicines Initiative (IMI) 
funded ‘FAIRplus’ project (https://fairplus-project.eu/), which aims to facilitate the 
application of FAIR principles to data from certain IMI projects and datasets from 
pharmaceutical companies.

The ECBD is the central database for the integration of screening data from 
EU-OPENSCREEN projects with advanced search, analysis, and visualization tools. 
There will be three levels of data management and access: First, bioactivity data 
generation of compounds in screening projects, implemented at the individual 
EU-OPENSCREEN screening sites, using assays provided by the external collabora-
tion partners; second, the integration of these screening datasets from partner sites 
into the ECBD; and, third, public dissemination of the data through established 
databases like ChEMBL [24] and PubChem [25, 26]. The ECBD is hosted by Petr 
Bartunek, the coordinator of CZ-OPENSCREEN, and his team at the Institute of 
Molecular Genetics of the ASCR in Prague, Czech Republic, who have developed 
the open data resource Probes & Drugs portal [27] as well as other databases such 
as the Zebrabase [28]. The e-infrastructure CESNET provides cloud-based hosting, 
backup and security.

An important aspect in the context of integrating complex and diverse screening 
data, when dealing with datasets from various affiliated, but legally independent 
sites that jointly use the compound collection, is the implementation of harmonized 
data standards and data curation. The ECBD adheres to well-established ontologies 
and identifiers, for example, the BioAssay Ontology (BAO) [29] for the classifica-
tion and description of assays, which are commonly used by other similar open data 
repositories, such as ChEMBL or PubChem BioAssay. Only officially accredited 
partner sites have permission to upload data into the ECBD and uploaded data will 
be curated both automatically (e.g. file format, column values) as well as manu-
ally (e.g. data inspection) by the ECBD team. In case of ambiguities, the ECBD 
team contacts the data provider to resolve the issue. The ECBD team provides user 
support and help desk functions. Webinars on data deposition, the use of ECBD for 
data searching, visualizations and analysis are planned and dedicated workshops 
will be organized to demonstrate database users all ECBD capabilities and to share 
best practices in the community.

A grace period of up to 3 years between the completion of the primary screen 
and data publication in the EU-OPENSCREEN database is provided, during which 
the bioactivity datasets are not publicly accessible. This grace period allows for 
follow-up studies, publication in peer-review scientific journals and securing of 
intellectual property.

Assay development and screening facilities, and medicinal chemistry 
groups: EU-OPENSCREEN’s affiliated screening partner sites implement the 
EU-OPENSCREEN high-throughput screening (HTS) and High-content screening 
(HCS) projects by using the EU-OPENSCREEN chemical compound collection, 
in collaboration with the external assay developer. They have been operational as 
local groups collaborating with external researchers over the past years, even before 
the EU-OPENSCREEN ERIC has been established. A recent publication showcases 
several successful projects, which have been realized by individual partner sites, as 
an example of the capabilities and expertise within the research infrastructure [20]. 
The chemistry groups have an excellent, proven track record in medicinal chemis-
try and hit-to-lead/tool optimization. As part of the collaborations with external 
researchers, they provide services ranging from the re-synthesis of hit compounds 
and chemical optimization by synthesis of focused libraries containing structurally 
similar analogues, elaboration of structure activity relationships (SAR), and NMR 
and TOF-LC-MS analytics.
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2.4.1.3 Training

The EU-OPENSCREEN partner sites have been operational as local screen-
ing platforms for many years. During this time, they predominantly work with 
their colleagues from the hosting institution and university. By working with the 
same collaborators over a longer time period, both sides could, over the time, 
increasingly gain practical experience and build a knowledge base, for example, 
in developing miniaturized, robust assays which are amendable to screening large 
compound collections. One of the aims of EU-OPENSCREEN is to enable as-yet 
under-served and under-represented user communities, which, by definition, did 
not yet have the opportunity to gain practical experience in these areas. Therefore, 
EU-OPENSCREEN will offer training courses, for example in assay development 
and other aspects of high-throughput screening. Furthermore, staff exchanges at 
established partner sites for scientists from prospective sites in countries that are not 
yet members of EU-OPENSCREEN promote convergence in technical capacities.

2.4.2 Access to the research infrastructure for external researchers

External scientists have open access to a chemical library, assay development and 
screening facilities, medicinal chemistry and informatics platforms. There are three 
main groups of researchers who will benefit from EU-OPENSCREEN:

First, molecular and cell biologists, biochemists, microbiologists, plant biolo-
gists etc. who develop assays which are amendable to screening and are interested 
in developing a chemical ‘tool’ compound for their biological target or pathway 
of interest to answer a biological question or, in the case of disease-relevant tar-
gets, develop new therapeutic approaches to addressing unmet medical needs for 
patients. These scientists benefit from the open access to the screening capabilities 
of EU-OPENSCREEN’s screening partner sites. They are encouraged to contact and 
consult the central office of EU-OPENSCREEN, which acts as a single point of con-
tact for external scientists, prior to submitting a project proposal. Depending on the 
proposal and project requirements, the central office identifies one or more partner 
sites within the network, which offer the appropriate technology and expertise. The 
technical feasibility and scientific novelty will be evaluated. After the project pro-
posal has been accepted, the project is initiated in collaboration with a partner site 
by transferring the assay onto the screening platform. This process often involves 
further optimization and miniaturization into a 384-well or 1536-well plate format, 
with the external scientist, who developed the assay, being actively involved in 
this process at the screening facility. After the screening of the EU-OPENSCREEN 
compound collection at the EU-OPENSCREEN screening site, data analysis and hit 
validation, a list with the validated hits will be available to the assay developer. The 
validated hits will be further optimized either with an EU-OPENSCREEN chem-
istry site or, if the assay provider already has an established collaboration for the 
hit-to-lead/tool optimization, with an external chemist.

Second, organic and medicinal chemists and pharmacologists who seek to 
expose their compounds to a large number of screens, and thereby a wide range of 
biological targets. They provide their compounds to EU-OPENSCREEN, so that 
their compounds are ‘bio-profiled’ and tested as part of the screening collection at 
the EU-OPENSCREEN partner sites. As chemists often have only limited opportu-
nities to systematically annotate their compounds, their incentive to provide their 
compounds to EU-OPENSCREEN is the possibility to identify novel biological 
activities of their compounds. A similar approach to crowd-sourcing academic com-
pounds has been applied over more than a decade within the French Chimiothèque 
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Nationale [30]. Another, more recent opportunity for chemists to screen their 
compounds is the CO-ADD (Community for Open Antimicrobial Drug Discovery) 
[31, 32] initiative, where chemists can test their compounds for antimicrobial activ-
ity against ESKAPE pathogens. These initiatives demonstrate that the prospect of 
receiving bioactivity data is a strong incentive for chemists to donate, and disclose 
the structure and associated bioactivity data of, their compounds.

Third, database users who use EU-OPENSCREEN’s European Chemical Biology 
Database (ECBD) to access the bioactivity datasets generated during the screening 
projects. Importantly, the data will also be accessible through other established open 
data repositories including the ChEMBL database. Assay providers who screen the 
EU-OPENSCREEN compound library benefit from the ECBD for their own projects 
by having access to the public bioactivity data from previous projects, and at the 
same time, they also contribute to worldwide efforts on open science.

2.4.2.1 Access policy and procedure

The democratization of access to state-of-the-art technology platforms, 
resources and expertise is the key objective of all European research infrastruc-
ture. Importantly, as a European open access research infrastructure, a com-
mon access policy and procedure is applied across its network of partner sites. 
EU-OPENSCREEN is accessible to researchers from academia and industry world-
wide. The access to EU-OPENSCREEN by external researchers is in line with the 
‘European Charter for Access to Research Infrastructures—Principles and Guidelines 
for Access and Related Services’ [33] published by the European Commission 
in 2016. The charter’s guidelines describe three access modes, by which access to 
research infrastructures may be provided—these are excellence-driven, market-
driven and wide access. Excellence-driven access is provided to the majority of 
scientists who developed an assay and collaborate with EU-OPENSCREEN to imple-
ment a screening and/or hit optimization project as well as to chemists who provide 
their compounds to be incorporated in the EU-OPENSCREEN compound collection. 
Scientists who use the ECBD will be provided wide access to the bioactivity data.

3. Conclusions

In this book chapter, we described various academic collaboration models which 
aim to accelerate chemical too discovery. These initiatives differ in many aspects, 
for example in structure (e.g. individual academic research groups, public-private 
partnerships, research infrastructures; single-site vs. distributed/multinational), 
operational model (e.g. closed consortia, open-access research infrastructures), 
user communities, funding model (e.g. institutional funding, third-party funding 
over a defined funding period, long-term funding by member countries), access 
and data publication policies. Each of these initiatives complement each other and 
supports academic chemical biology and drug discovery.
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Abstract

Chemical biology is the scientific discipline that deals with the application of 
chemical techniques and often small molecules produced through synthetic chem-
istry, to the manipulation and study of biological systems. Its working framework 
ranges from simple chemical entities to complex drugs by employing the principles 
of biological origin. This chapter particularly focuses on the principles and working 
models of chemical biology to discover new drug leads. Drug discovery is an extensive 
and multifaceted complex process. Chemical biology uses both natural and synthetic 
compounds with the best therapeutic potential and verifies them by employing the 
best possible chemical toolsets. Screening of compounds is done by the use of pheno-
typic as well as the target-based screening to identify and characterize the potent hits. 
After the identification of target, it is characterized, and validated by extensive test-
ing. The next step is the validation of hits obtained, and lead compounds are tested in 
clinical trials before introducing them for commercial application.

Keywords: chemical biology, drug discovery, target identification, target validation, 
phenotypic screening

1. Introduction to chemical biology and history

Chemical biology flourished as a discipline of science which makes use of several 
aspects of chemistry to understand biology [1]. Chemical biology includes a wide 
range of fundamental problems related to the understanding of complex biological 
processes by the development of synthetic frameworks to generate selective and 
active lead compounds [2].

The roots of history of chemical biology lie in the emergence of chemistry and 
biology as separate disciplines. Chemical biology flourished as a separate discipline 
of science because of newer challenges and questions for the study of chemi-
cal methods employed on living bodies. This branch of study is concerned with 
advanced molecular concepts of biology harnessed to the use of chemical entities. 
In spite of the newness of this concept, the history of chemical biology extends 
up to two centuries, considering the foundations of chemistry and biology. Here 
only a brief account of history of chemical biology is discussed. Joseph Priestley 
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discovered nitrous oxide gas in 1772 and incubated the mice with “airs” (the gases 
discovered till that time). He used 10 gases including nitrous oxide on experimental 
mice. His experiments on mice faced a strong mass discontent from Americans 
who showed a sympathetic behavior towards animal rights. Thus, the first chemical 
biologist fell a prey to angry mob due to his experiment on mice [3].

Afterwards, another chemist, Humphry Davy, worked (1778–1829) on the newly 
isolated and unfamiliar gases at that time. Frightened by the previous experiment, 
Humphry completely omitted the use of mice and decided to carry out the research 
on himself. It was not a matter of surprise that one of the gases, carbon monoxide, 
proved fatal for the scientist, but the pleasant effect of nitrous oxide made him 
name this gas, “the laughing gas.” He also investigated the use of this gas in medical 
surgeries. Samuel Taylor also documented this gas as a pleasure-making gas [4], 
but the practical use of this gas in medicine was described in 1844 by an American 

Figure 1. 
History of chemical biology with its eminent events.
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dentist, Horace Wells [5]. In 1998, three scientists, namely, Ferid Murad, Robert 
Furchgott, and Louis Ignarro, won Nobel Prize for the demonstration of significant 
role of nitric acid in cell signaling [6].

Wöhler is a well-known scientist in the history of chemical biology. He attempted 
to lay the basis of chemical biology by carrying out his research on vitalism. He 
prepared urea from inorganic chemicals and rejected the famous “vital force theory” 
in 1828 [7]. The next important event in the history of chemical biology “cellular 
imaging” was revolutionized by utilizing the chemical approaches during the nine-
teenth century. John Hershel invented the cyanotype process which was brought into 
practice by Anna Atkins to prepare delicate botanical specimens. This noble lady also 
published her book entitled as Photographs of British Algae: Cyanotype Impressions [8].

Ehrlich (1854–1915) is thought to be the pioneer of the earliest forms of chemo-
therapy and drug therapy. He carried out numerous experiments on aniline based 
dyes and proposed the idea of “magic bullets.” He said that these magic bullets 
are capable of targeting specific pathogens. He discovered a chemical compound 
Salvarsan, a drug used against syphilis. This compound is also called as Ehrlich’s 
606th compound, it was named so because of the successful compound he discovered 
after 605 failed target compounds. The discovery of this compound paved a way for 
the discovery of new chemical entities or the new “magic bullets” [6, 9] (Figure 1).

Chemical biology flourished as an eminent scientific discipline due to significant 
contributions of Koehler (pioneer of various chemical screening approaches), 
Saghatelian (discovery and characterization of lipids and peptides), Wang (use of 
chemoproteomics in determination of electrophilically lipidated cellular proteins), 
and Patti and Northen (metabolomics analysis) [1].

2. Chemical biology tools

2.1 Chemical probes

Chemical probes are the small molecules which bind to the specific targeted sites 
and initiate their cellular activities. These archetypal tools act as highly valued reagents 
for molecular- and genetic-level biological research. Chemical probes are helpful in the 
accurate investigation of biological pathways and their associated targets [10].

2.2 Antisense and RNAi technologies

Many tools have been involved in target validation since the 1980s. Target iden-
tification and validation are long procedures. They were mainly based on structure-
activity relationship. The drug discovery system becomes the most important 
approach towards the targeted cells [11]. Traditional antisense and RNA interference 
(RNAi) technologies are the robust tools used in multidimensional phases to discover 
and validate the potential drug targets. This approach elaborates the potentially 
selective cleavage of a targeted messenger RNA. This targeting technique enables the 
researchers to explore the protein-based expression on phenotypes [12].

2.3 Protein degradation strategies

2.3.1 Induced protein degradation

Induced protein degradation is an event-driven approach which depends on drug 
binding and eliminating the target protein after tagging it. This approach is gaining 
attention in recent times because of the selective degradation of the target proteins. 
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Drug discovery based on small molecules focuses on the loss of function of proteins 
due to the already-occupied binding sites ultimately making the proteins unable to 
target. In this approach, there is a need of high drug exposure in vivo to avoid target 
inhibition conditions which may lead to potentially harmful side effects of that 
drug. Proteolysis-targeting chimeras (PROTACS) use the cellular quality control 
setup to degrade the selective proteins as their targets. This protein degradation 
system reduces the quantity of drug to be exposed to the living systems which are to 
be used for halting the protein functions. These proteins may belong to regulatory 
proteins, transcription factors, and scaffolding proteins [13, 14].

2.3.2 Chemoproteomics

Chemoproteomics is employed as a chemical tool for target identification. It can 
be used to investigate the signal transductions. This particular field of study has 
flourished as a key technology to characterize the action mechanism of chemical 
probes and drugs which can act as pharmacological modulators, hence validating 
the cellular targets of several therapeutic drug candidates. Chemoproteomics can 
be further characterized as affinity- and activity-based chemical proteomics [15]. 
In some cases when probe development is a difficult task, multiple kinase inhibitors 
are used for targeting the kinome effectively [16].

3. Drug discovery

Drug discovery is a hectic multistep procedure comprising of highly systematic 
approaches to identify, and characterize different compounds leading towards 
the development of hits and validate them extensively via utilization of chemical 
toolsets to attain the status of a commercial therapeutic drug status. The important 
steps of drug discovery are mentioned in Figure 2.

3.1 Screening

There are two fundamental approaches which can be used for the purpose 
of drug discovery, namely, phenotypic screening and target-based screening. 

Figure 2. 
A diagram representing the summary of key notes regarding drug discovery from natural products.
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The first one looks at the effects of phenotype that the compound induces on cell, 
tissue or whole organism, and the second one evaluates the effects of a compound 
on a purified target protein.

3.1.1 Phenotypic screening

In the early twentieth century, drug development started with the advancements 
in pharmacology and synthetic and therapeutic chemistry. In the 1950s and 1960s, 
enzyme kinetics has provided methods for accurate computation of compound’s 
effectiveness and enzyme competence [17].

Between 1999 and 2008, the US Food and Drug Administration (FDA) approved 
new drug discovery approaches. During this period, 75 small molecules were dis-
covered and analyzed. Out of these, 28 drugs were discovered through phenotypic 
selection, and 17 drugs were identified by target dependent selection [18].

“Alemtuzumab” was the first antibody that was been obtained by using hybridoma 
technology in combination with phenotypic identification. It was previously reported 
against relapse of multiple sclerosis and chronic lymphocytic leukemia (CLL). The 
CD44 antigen (cell surface glycoprotein) antagonist, RG7356, was isolated with the 
help of function F.I.R.S.T™ platform. Therefore, functional assays antibodies were 
used to check effects on cell signaling, proliferation, and programmed cell death [19].

Large combinatorial antibody libraries are the sources of human monoclonal 
antibodies, successfully used in medical and phenotypic screening. For example, 
BI-505 was isolated by using F.I.R.S.T™ platform. Improved versions of antibodies 
were ultimately used in simulation studies of tumor cell death assay and for selec-
tive B-lymphoma cell surface binding. Soon after the isolation of BI-505, its molecu-
lar target was identified as ICAM-1, which were found to be involved in apoptosis of 
B-lymphoma cells. BI-505 has a broad antimyeloma activity [20].

By using phenotypic screening technology, patients can increase their effective 
antibody response like B-cell repertoire. For example, from a healthcare worker, 
anti-respiratory syncytial virus (RSV) antibody, D25, was isolated. On the virus 
coat, D25 neutralizes RSV, and perfusion structure of the F protein was expressed 
which was not identified by target-based screening [21]. The use of phenotypic 
screening in various experiments is outlined in Table 1.

Disease Cells Assay type Time 
duration

References

Breast cancer MCF7-RFP
MDA-RFP

Cytochemical and 
immunohistochemical staining 
analyses

8–10 days [22]

Idiopathic 
pulmonary 
fibrosis

Alveolar 
epithelial 
type II cells

Immunofluorescence staining for 
in vitro, Western blot, FACs, ELISA, 
in vitro biochemical kinase assay, 
migration assay

13 days [23]

Respiratory 
papillomatosis

Lung tumor 
cells

Cell viability assay 48 hours [24]

Cystic fibrosis Bronchial 
epithelial cell

Western blots 18–24 days [25]

Huntington’s 
disease

PC12 Protease release assay 48 hours [26]

Familial 
dysautonomia

Neural crest 
precursors

RT-PCR assay 48 hours [27]

Table 1. 
Phenotypic screening used in some experiments.
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3.1.2 Target-based screening

Target-based screening of natural compounds and synthetic chemicals is being 
considered as a significant innovation for anticancer drug development [28]. In 
2007, Lysine demethylase 5B (KDM5B) and Histone demethylase were recognized, 
which are liable for the removal of H3K4me2/3 activation marker. Thus, for cancer 
therapy, KDM5B is regarded as a promising drug target, but the elevated levels of 
KDM5B were found in many human cancers [29].

The respiratory chain of Streptococcus agalactiae consists of two enzymes; 
type 2-NADH dehydrogenase (NDH-2) and cytochrome bd oxygen reductase. 
S.  agalactiae is considered as the primary cause of sepsis and meningitis in neonates 
as well as considerable cause of pneumonia and urinary tract infection [30]. The 
difference between phenotypic and target-based screening is shown in Figure 3.

Some of the target-based screening methods are mentioned as follows.

3.1.2.1 Mass spectrometry-based method

Mass spectrometry is known to be a highly efficient technique for the identification 
and structural characterization of natural products derived from herbal medicine [31].

Target-based method relies on mass spectrometry to search for active com-
pounds, and this technology can be used for identification, structural characteriza-
tion, quantitative elemental analysis, tracking of key intermediate compounds in 
a chemical reaction, analysis of pharmaceuticals and metabolites, and elucidation 
of unknown structures in drug development. All these achievements can be finally 
used in various applications like pharmaceutics (drug developments, pharma-
cokinetics, metabolic pathways), clinical screening, etc. On the basis of MS data 
information of compounds, the UniFi™ platform has been built for more detailed 
analysis of structures [32].

3.1.2.2 Liquid chromatography-mass spectrometry (LC-MS)

LC-MS is an analytical technique for separating different complex mixtures 
into their components using liquid chromatography. These assays check the cor-
rect synthesis, purity, various physical and chemical properties like their volatility 
and active functionalities present in the newly synthesized chemical entities [33]. 
During drug discovery, LC-MS hyphenated technique is used for seperation and 
structural characterization of compounds [34].

Figure 3. 
The action potential of phenotypic as well as target-based screening of compounds to validate the hits and leads 
from natural and synthetic compounds.
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3.1.2.3 Gas chromatography-mass spectrometry (GC-MS)

GC-MS is another hyphenated technique for the identification and structure elu-
cidation of unknown compounds derived from natural products [35]. For example, 
by using GC-MS technique, comprising a gas chromatograph (GC) coupled to a mass 
spectrometer (MS), complex components of natural oils mixtures may be separated, 
identified, and quantified, e.g., oils extracted from Apiaceae family (Anethum 
graveolens, Carum carvi, Cuminum cyminum, Coriandrum sativum, Pimpinella anisum, 
Daucus carota, Apium graveolens, Foeniculum vulgare, and Ammi visnaga). As a result 
of this separation technique, petroselinic acid was the major fatty acid from all other 
palmitic, palmitoleic, stearic, petroselinic, linoleic, linolinic, and arachidic acids [36].

3.1.2.4 Ultra-performance liquid chromatography-mass spectrometry (UPLC-MS)

Currently, UPLC-MS is one of the most adaptable hyphenated techniques. 
Proteomics and metabolomics have proved to be useful concepts for understand-
ing the causes of different diseases. This technology aims to seperate and identify 
proteins and metabolites for cellular signaling pathways and to discover biomarkers 
for screening and diagnosis as well as determining response to a specific treatment 
[37]. For example, vancomycin (VCM) is clinically used for the treatment of human 
intracranial infections. The treatment concentration of vanomycin greatly varies 
among the patients. UPLC-MS technique was  developed and used for the analysis of 
VCM in human cerebrospinal fluid [38].

3.1.2.5 Nuclear magnetic resonance spectroscopy (NMR)

Among the common techniques of metabolomics, NMR has evolved the most. 
Unlike mass spectroscopy, NMR is also used for quantitative analysis, but it does not 
require extra steps for sample preparation [39]. It is commonly used to analyze the 3D 
structures of biomacromolecules and their interactions. It has been proved a valuable 
tool for the reliable identification of small molecules that bind to proteins and for 
hit-to-lead optimization. Mainly, NMR spectroscopy is suitable for the analysis of bulk 
metabolites [40]. NMR has been used for analyzing the structure of protein, nucleic 
acid, and small molecule [41]. NMR has been proven to be a useful tool in target-based 
drug discovery in the step of hit identification and lead optimization [42]. For example, 
NMR spectroscopy is used to understand the structure of G-quadruplexes, which are 
noncanonical, four standard nucleic acids with consecutive sequences of guanines [43].

3.1.2.6 Thermal shift or calorimetry-based method

Isothermal titration calorimetry (ITC) is the only technique which is currently 
available for the direct determination of enthalpy, ΔH, of a ligand binding to a 
protein [44]. Thermodynamic evaluation might be useful to provide information 
about specificity, agonist versus antagonist effects of ligands, and other important 
properties [45]. Fragment-based drug discovery (FBDD) is an approach of par-
ticular interest and relevance here. Fragments are molecules smaller than typical 
drugs, and they generally bind with lower affinity than conventional drug screen-
ing hits [46]. Measuring the contributions of enthalpy and entropy to the free 
energy of binding provides information that can be useful in fragment elaboration 
and subsequent medicinal chemistry work [47]. ITC is a uniquely powerful tool 
for characterization of the thermodynamics of test compounds binding to target 
proteins. Interaction between the compound and protein leads to release or uptake 
of small amounts of heat, while the mixture is held at a close approximation to 



Cheminformatics and Its Applications

132

3.1.2 Target-based screening

Target-based screening of natural compounds and synthetic chemicals is being 
considered as a significant innovation for anticancer drug development [28]. In 
2007, Lysine demethylase 5B (KDM5B) and Histone demethylase were recognized, 
which are liable for the removal of H3K4me2/3 activation marker. Thus, for cancer 
therapy, KDM5B is regarded as a promising drug target, but the elevated levels of 
KDM5B were found in many human cancers [29].

The respiratory chain of Streptococcus agalactiae consists of two enzymes; 
type 2-NADH dehydrogenase (NDH-2) and cytochrome bd oxygen reductase. 
S.  agalactiae is considered as the primary cause of sepsis and meningitis in neonates 
as well as considerable cause of pneumonia and urinary tract infection [30]. The 
difference between phenotypic and target-based screening is shown in Figure 3.

Some of the target-based screening methods are mentioned as follows.

3.1.2.1 Mass spectrometry-based method

Mass spectrometry is known to be a highly efficient technique for the identification 
and structural characterization of natural products derived from herbal medicine [31].

Target-based method relies on mass spectrometry to search for active com-
pounds, and this technology can be used for identification, structural characteriza-
tion, quantitative elemental analysis, tracking of key intermediate compounds in 
a chemical reaction, analysis of pharmaceuticals and metabolites, and elucidation 
of unknown structures in drug development. All these achievements can be finally 
used in various applications like pharmaceutics (drug developments, pharma-
cokinetics, metabolic pathways), clinical screening, etc. On the basis of MS data 
information of compounds, the UniFi™ platform has been built for more detailed 
analysis of structures [32].

3.1.2.2 Liquid chromatography-mass spectrometry (LC-MS)

LC-MS is an analytical technique for separating different complex mixtures 
into their components using liquid chromatography. These assays check the cor-
rect synthesis, purity, various physical and chemical properties like their volatility 
and active functionalities present in the newly synthesized chemical entities [33]. 
During drug discovery, LC-MS hyphenated technique is used for seperation and 
structural characterization of compounds [34].

Figure 3. 
The action potential of phenotypic as well as target-based screening of compounds to validate the hits and leads 
from natural and synthetic compounds.
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3.1.2.3 Gas chromatography-mass spectrometry (GC-MS)

GC-MS is another hyphenated technique for the identification and structure elu-
cidation of unknown compounds derived from natural products [35]. For example, 
by using GC-MS technique, comprising a gas chromatograph (GC) coupled to a mass 
spectrometer (MS), complex components of natural oils mixtures may be separated, 
identified, and quantified, e.g., oils extracted from Apiaceae family (Anethum 
graveolens, Carum carvi, Cuminum cyminum, Coriandrum sativum, Pimpinella anisum, 
Daucus carota, Apium graveolens, Foeniculum vulgare, and Ammi visnaga). As a result 
of this separation technique, petroselinic acid was the major fatty acid from all other 
palmitic, palmitoleic, stearic, petroselinic, linoleic, linolinic, and arachidic acids [36].

3.1.2.4 Ultra-performance liquid chromatography-mass spectrometry (UPLC-MS)

Currently, UPLC-MS is one of the most adaptable hyphenated techniques. 
Proteomics and metabolomics have proved to be useful concepts for understand-
ing the causes of different diseases. This technology aims to seperate and identify 
proteins and metabolites for cellular signaling pathways and to discover biomarkers 
for screening and diagnosis as well as determining response to a specific treatment 
[37]. For example, vancomycin (VCM) is clinically used for the treatment of human 
intracranial infections. The treatment concentration of vanomycin greatly varies 
among the patients. UPLC-MS technique was  developed and used for the analysis of 
VCM in human cerebrospinal fluid [38].

3.1.2.5 Nuclear magnetic resonance spectroscopy (NMR)

Among the common techniques of metabolomics, NMR has evolved the most. 
Unlike mass spectroscopy, NMR is also used for quantitative analysis, but it does not 
require extra steps for sample preparation [39]. It is commonly used to analyze the 3D 
structures of biomacromolecules and their interactions. It has been proved a valuable 
tool for the reliable identification of small molecules that bind to proteins and for 
hit-to-lead optimization. Mainly, NMR spectroscopy is suitable for the analysis of bulk 
metabolites [40]. NMR has been used for analyzing the structure of protein, nucleic 
acid, and small molecule [41]. NMR has been proven to be a useful tool in target-based 
drug discovery in the step of hit identification and lead optimization [42]. For example, 
NMR spectroscopy is used to understand the structure of G-quadruplexes, which are 
noncanonical, four standard nucleic acids with consecutive sequences of guanines [43].

3.1.2.6 Thermal shift or calorimetry-based method

Isothermal titration calorimetry (ITC) is the only technique which is currently 
available for the direct determination of enthalpy, ΔH, of a ligand binding to a 
protein [44]. Thermodynamic evaluation might be useful to provide information 
about specificity, agonist versus antagonist effects of ligands, and other important 
properties [45]. Fragment-based drug discovery (FBDD) is an approach of par-
ticular interest and relevance here. Fragments are molecules smaller than typical 
drugs, and they generally bind with lower affinity than conventional drug screen-
ing hits [46]. Measuring the contributions of enthalpy and entropy to the free 
energy of binding provides information that can be useful in fragment elaboration 
and subsequent medicinal chemistry work [47]. ITC is a uniquely powerful tool 
for characterization of the thermodynamics of test compounds binding to target 
proteins. Interaction between the compound and protein leads to release or uptake 
of small amounts of heat, while the mixture is held at a close approximation to 
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constant temperature [48]. Thermal shift screening methods has allowed to identify 
compounds that interact with Trypanosoma brucei choline kinase (TBCK) and 
inhibit TBCK, a validated drug target against African sleeping sickness [49].

3.1.2.7 Affinity-based methods

The methods regarding affinity-based immobilized proteins have vital role in 
understanding the connections between small molecules and their biological targets 
[50]. Affinity-based technologies are divided into two groups: (1) direct detection 
of noncovalent macromolecule-ligand complex and (2) indirect detection of nonco-
valent macromolecule-ligand complex. The negative aspect of this approach is that 
it recognizes chemical entities basically based on their binding affinities for a target 
irrespective of whether or not the biological function of the target is affected. In the 
late 1980s, matrix-assisted laser desorption ionization (MALDI) and electrospray 
ionization (ESI) techniques were used to analyze proteins and nucleic acids. Both 
phenotypic screening and target-based screening are comparable to each other in 
terms of benefits and drawbacks. This fact has been illustrated in Figure 4.

4. Target identification and characterization

Target identification and elucidation of its action mechanism have played vital 
roles in probing small molecules and drug discovery. Target identification has been 
based on biological and technologically advanced cell-based assays [51].

4.1 Disease association and target validation

Identification of the molecules and their underlying pathophysiological mecha-
nisms contribute towards the discovery of targets that can be modulated therapeuti-
cally [52]. Each drug target is linked to a disease using integrated genome-wide data 
from a broad range of data sources. The target validation reveals the evidence that 
associates a target with a disease [53].

Figure 4. 
Comparison between the advantages and disadvantages of target-based and phenotypic screening based upon 
the different features such as molecular target of disease, its mechanism of action, confirmation methods, SAR 
optimization methods, and hypothesis limitation.
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4.2 Bioactive small molecules

Bioactive small molecules are preferred as lead structures for the target valida-
tion. These small molecules isolated from phenotypic screen play a crucial role in 
chemical biology [54, 55]. Many genomic, proteomic, and bioinformatic technolo-
gies have been developed for validation of the drugs.

4.3 Protein interactions

To identify the selective potent drugs, the first step is to find the protein 
interference. In signal transductions, protein-protein interactions are involved 
in the complex cellular networks that govern the different processes [56]. The 
deregulated transcription factors are involved in playing significant roles in 
human pathological abnormalities, but the complicated nature of protein-protein 
networks has made the transcription-targeted therapeutics impractical. Recent 
technological advancements are the ray of hope regarding the modulation of 
protein interaction networks [57].

4.4 Cell-based models and target validation

Exosomes are highly adequate for drug carriers as a cell-based model. Due to 
the association of multiple proteins with cellular membranes, the exosomes are 
well-known in cell to cell communication, and they are the novel approach for the 
delivery of potent drugs. Exosome-based drug technique is applied for a variety of 
disorders such as cancer and various neurodegenerative disorders [58].

5. Target validation

Drug target discovery and validation demand complicated and expensive frame-
works which may pose heavy financial load on pharmaceutical industry. Target valida-
tion is referred to as the direct involvement of a certain molecular target in pathological 
conformity; hence, its reversal or inflection may have a therapeutic effect [12].

5.1 Approaches to target validation

The following approaches are used in target validation during the discovery and 
development of drug.

5.1.1 Antibodies

Firstly access the antibody fitness towards a specific target. Then, standardized 
procedures are obligatory to ensure the quality of the sample in test procedures; 
hence, utilizing only a single approach will not work in all situations [59]. Mass 
spectrometry is used to identify the validation of the antibody. This type of tech-
nique confirms the validity for antibodies or their fragments against the targets. 
The antibody is able to bind to its natural antigen in cell lysates among thousands of 
other proteins, DNA, RNA, and other cellular components [60].

5.1.2 Cellular thermal shift assay (CETSA)

CETSA is used to assess the capability of a ligand to bind with its targets (cells or 
tissue samples). The basis of this method lies on the ligand-induced thermodynamic 
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tion. These small molecules isolated from phenotypic screen play a crucial role in 
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gies have been developed for validation of the drugs.
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To identify the selective potent drugs, the first step is to find the protein 
interference. In signal transductions, protein-protein interactions are involved 
in the complex cellular networks that govern the different processes [56]. The 
deregulated transcription factors are involved in playing significant roles in 
human pathological abnormalities, but the complicated nature of protein-protein 
networks has made the transcription-targeted therapeutics impractical. Recent 
technological advancements are the ray of hope regarding the modulation of 
protein interaction networks [57].

4.4 Cell-based models and target validation

Exosomes are highly adequate for drug carriers as a cell-based model. Due to 
the association of multiple proteins with cellular membranes, the exosomes are 
well-known in cell to cell communication, and they are the novel approach for the 
delivery of potent drugs. Exosome-based drug technique is applied for a variety of 
disorders such as cancer and various neurodegenerative disorders [58].

5. Target validation

Drug target discovery and validation demand complicated and expensive frame-
works which may pose heavy financial load on pharmaceutical industry. Target valida-
tion is referred to as the direct involvement of a certain molecular target in pathological 
conformity; hence, its reversal or inflection may have a therapeutic effect [12].

5.1 Approaches to target validation

The following approaches are used in target validation during the discovery and 
development of drug.

5.1.1 Antibodies

Firstly access the antibody fitness towards a specific target. Then, standardized 
procedures are obligatory to ensure the quality of the sample in test procedures; 
hence, utilizing only a single approach will not work in all situations [59]. Mass 
spectrometry is used to identify the validation of the antibody. This type of tech-
nique confirms the validity for antibodies or their fragments against the targets. 
The antibody is able to bind to its natural antigen in cell lysates among thousands of 
other proteins, DNA, RNA, and other cellular components [60].

5.1.2 Cellular thermal shift assay (CETSA)

CETSA is used to assess the capability of a ligand to bind with its targets (cells or 
tissue samples). The basis of this method lies on the ligand-induced thermodynamic 
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stabilization of target proteins. The compound-treated cell lysates and intact cells 
were heated to different temperatures, and in the soluble fractions, the target 
protein was separated from destabilized protein and detected by Western blotting. 
SPROX is a method of target validation based on identification of ligand-induced 
stabilization of target proteins. It evaluates the levels of methionine oxidation of 
target proteins [61].

5.1.3 Drug affinity responsive target stability (DARTS)

DARTS has been used for the identification of the targeted proteins. It is based 
on ligand binding interaction with proteins forming a complex which changes the 
structural stability of target protein. There alteration is measured by SDS page/
liquid chromatography. DARTS is also involved in the analysis of the low affinity 
interactions [61].

6. Hit generation

Hit identification is considered as the significant bottleneck for lead generation 
success and for new medicines. An example for random hit identification is physical 
and biochemical testing [62]. The journey of a compound from the hit status to lead 
status follows a series of steps which have been briefly illustrated in Figure 5. The 
figure describes a note of possible techniques which could be utilized for the selec-
tion of lead compounds and proceeding them through lead optimization preclinical 
and clinical phase trials.

Figure 5. 
A diagram elaborating the significant steps of lead optimization proceeding to clinical phase of natural 
compounds.
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7. Development of lead drug

Pharmaceutical companies are facing constant economic pressure to bring efficacy 
in drug discovery and development process. Lists of compounds obtained after hit 
optimization are further subjected to refining process in order to find out the lead 
compounds that can be analyzed for production at commercial scale. During this “hit-
to-lead” refining process, many compounds are dropped out due to inadequate absorp-
tion, distribution, metabolism, excretion, and toxicity/ADMET characteristics [63].

Refining of hit compounds to lead compound is done through the process of 
secondary screening. Almost 50% of all drug candidates thin out during optimiza-
tion and preclinical and clinical trials [64].

There are many approaches available for the discovery and development of drug 
which might follow different pathways to optimize the compounds into bioavailable 
drugs. All these pathways must have a common origin; they all begin with a lead 
compound. It is necessary to go through the phylogeny study of all the compounds 
because there are some properties like solubility, target affinity, toxicity, ease of 
synthesis, and bioavailability, all of which are highly dependent on the initial lead 
selection and the method of identification [65].

7.1 Techniques of lead selection

A rational approach is used to select lead drug candidate after optimization 
of hit compounds. There are many methods which can be used for screening of 
compounds. Selection of techniques depends upon the source of hit compounds and 
types of their solvents as well. The following techniques are useful in selection.

7.1.1 QSAR model development

Quantitative structure-activity relationship model is used to compare chemical 
structures by using database of prior selected active compounds. Different software 
like ChemBioOffice Ultra 1.11 is used to generate two-dimensional and three-
dimensional structures. The results of QSAR can be validated by using statistical 
approaches like correlation coefficient and regression coefficient [66].

7.1.2 Visualization of SAR activity

It is called as Bayesian approach. It provides with proficient understanding of 
shape features, hydrophobic nature, and electrostatic properties of the compounds. 
All of these features lie under the structure–activity relationship of selected com-
pounds from hits. Structure data analysis of SAR is obtained in 3D form. Other 
results are obtained in diverse type of interrelated biochemical data, i.e., average of 
activities and region explored analysis. The results obtained from average activity 
show a common part in active compounds, and region explored data exhibit the 
areas of fully explored compounds [67].

7.1.3 Fragment-based drug discovery

It is a powerful method which is used to find out the proportion of ligands with 
high affinity to target proteins. The compounds which are found to have low ligand 
binding ability are eliminated, and the compounds with high ligand ability move 
forward to the precision of compounds. FBDD consists of the techniques such as 
NMR, SAR, X-ray crystallography, and surface plasmon resonance (SPR).
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of hit compounds. There are many methods which can be used for screening of 
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types of their solvents as well. The following techniques are useful in selection.

7.1.1 QSAR model development

Quantitative structure-activity relationship model is used to compare chemical 
structures by using database of prior selected active compounds. Different software 
like ChemBioOffice Ultra 1.11 is used to generate two-dimensional and three-
dimensional structures. The results of QSAR can be validated by using statistical 
approaches like correlation coefficient and regression coefficient [66].

7.1.2 Visualization of SAR activity

It is called as Bayesian approach. It provides with proficient understanding of 
shape features, hydrophobic nature, and electrostatic properties of the compounds. 
All of these features lie under the structure–activity relationship of selected com-
pounds from hits. Structure data analysis of SAR is obtained in 3D form. Other 
results are obtained in diverse type of interrelated biochemical data, i.e., average of 
activities and region explored analysis. The results obtained from average activity 
show a common part in active compounds, and region explored data exhibit the 
areas of fully explored compounds [67].

7.1.3 Fragment-based drug discovery

It is a powerful method which is used to find out the proportion of ligands with 
high affinity to target proteins. The compounds which are found to have low ligand 
binding ability are eliminated, and the compounds with high ligand ability move 
forward to the precision of compounds. FBDD consists of the techniques such as 
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7.1.3.1 X-ray crystallography

It can ascertain the binding sites and modes of ligand binding to protein [68].

7.1.3.2 Surface plasmon resonance (SPR)

Surface plasmon resonance is known as a nonlabel technology that can iden-
tify, screen, and quantify intermolecular interactions in actual time. It is applied 
to quantify binding affinities. SPR-dependent biosensors work by detecting the 
ligands and immobilized target molecular interactions and supply appropriate 
information on kinetics of biomolecular interactions. The output information 
can be utilized to provide comprehensive functional data on binding actions 
such as specificity, kinetics, concentration, and affinity [69]. Scientific litera-
ture study revealed Biacore tools as mainly used SPR technology at commercial 
levels [70].

7.2 Preclinical trials

In the last 2 years, different methodologies based on high-throughput screening 
and their combinations with chemistry have been developed in order to manufac-
ture versatile compounds by limiting the resources. Among these methodologies, 
several other in vitro and in silico supplementary approaches have also come 
forward for the identification and potential evaluation of these compounds as lead 
candidate validation. Those compounds which are selected as “hits” during this 
screening procedure are further analyzed and subjected to in vivo toxicity and effi-
cacy profiling. During preclinical stage of drug development, simple formulation 
approaches are favored. Combinatorial chemistry and high-throughput approaches 
have been appraised in several publications [71].

PLOTs are preclinical lead optimization technologies that should be rapid 
enough to edge with high-throughput discovery screenings without causing 
further delay and should be predictive and cost-effective. PLOT platform usu-
ally comprised of in vitro systems, small and acquiescent to mechanization, and 
that is why it is easy to achieve the mandatory throughput with minimum use of 
compound use [72].

7.2.1 Tools of preclinical drug development

Selection of methodology and tools for selection of preclinical drug candidates is 
a rigorous process. Sequential approach of preclinical to clinical is practiced to sort 
out the long list of target selected compounds. This streamline strategy provides with 
deeper understanding of action of the drug prior to its progress to the next steps [73].

7.2.2  Pharmacokinetics and pharmacodynamics (PK/PD) during preclinical drug 
evaluation

Pharmacodynamics involves the study of effect of drug in dose- and time-
dependent manner. Pharmacokinetics is the study of absorption, metaboliza-
tion, distribution, and excretion of a drug over time. PK/PD is a program at 
early phase of lead drug development which acts as a bridge between drug 
discovery and preclinical drug development. This stage set aims for further 
development activities, and information obtained at this stage act as a key to 
subsequent steps.
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It is necessary because of the following reasons:

a. It provides potency-based intrinsic activity of the compound rather than dose.

b. It characterizes the compounds on the basis of dose concentration and effect 
relationship.

c. It allows the investigation of tolerance phenomenon of compounds on the basis 
of physiological parameters [74].

7.3 Lead optimization

Optimization of a drug is a multifaceted process. It usually involves various 
types of screening methods which tend to find out the metabolism and pharmaco-
kinetic properties of selected compounds or drugs [75].

7.3.1 ADME

This is the final stage of preclinical trials; after this the optimized drug is 
further processed towards the clinical trial. Absorption, distribution, metabo-
lism, and excretion screening is performed at this stage. The primary goal of 
ADME is to develop a competitive drug with adequate safety avoiding PK failure 
in clinical phase.

7.3.2 ADME properties

Ideal properties of a drug in ADME testing involve the good oral bioavailability, 
blood clearance and volume of convenient dosing, and low potential of drug-drug 
interaction. All of these properties are assessed at early stage of drug discovery [76].

7.3.3 DRUGeff

Drug effect is a parameter which determines the concentration of a drug which 
do not cause any harm at the site of action. In other words at this stage, toxicity of 
a drug is tested to find out the minimum safe dosage potency. In vitro DRUGeff 
testing of all compounds show interaction with the target treatment, until a 
small portion of dose gets to select according to biophase levels. Concentration of 
treatment dose maximization per unit of biophase acts as a key objective for lead 
optimization. The drugs qualifying this test enter into the clinical phase [77].

7.4 Clinical phase of drug discovery

The final step of drug discovery and development is referred to as the clinical 
trial. At this stage, the data regarding safety and efficacy of the new drug must be 
proven by application to humans directly in different phases. After the successful 
trials, research data is sent to the FDA for approval for commercial manufacturing 
and marketing (Figure 6) [78].

7.4.1 Clinical phase I

The first phase of clinical trial normally takes several weeks to some months. 
At this stage application of optimized drug is tested on a small group of volunteers. 
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7.4 Clinical phase of drug discovery

The final step of drug discovery and development is referred to as the clinical 
trial. At this stage, the data regarding safety and efficacy of the new drug must be 
proven by application to humans directly in different phases. After the successful 
trials, research data is sent to the FDA for approval for commercial manufacturing 
and marketing (Figure 6) [78].

7.4.1 Clinical phase I

The first phase of clinical trial normally takes several weeks to some months. 
At this stage application of optimized drug is tested on a small group of volunteers. 



Cheminformatics and Its Applications

140

They may or may not get paid for their participation in drug trial studies. This mini 
trial is useful in determining the absorption and side effect of drug in relation to its 
dose concentration [17].

7.4.2 Clinical phase II

The second phase of clinical trial may last up to 2 years. It is a totally randomized 
study which involves the application of drug on a relatively large group of patients. 
This trial study is divided into two groups of patients, one receiving experimental 
drug and the other receiving placebo. Sometimes it may be named as a blind 
application trial. This type of random application of drug allows investigators and 
pharmaceutics to prove the success and safety of drug to the FDA with comparative 
information [79].

7.4.3 Clinical phase III

It is a large-scale testing of drugs on hundreds of patients. This third stage 
testing provides with a more thorough understanding and effectiveness of useful 
drugs to the FDA and pharmaceutical companies. The pharmaceutical company 
can request for the approval for commercial synthesis of drug after phase III is 
completed [80].

7.4.4 Clinical phase IV

After the approval of a drug for commercial consumption, clinical phase IV 
trials are used as post marketing surveillance trials. This trial system is based upon 
the various objectives at commercial levels, i.e., the comparison of newly approved 
and already-available drugs in market, to evaluate the chronic effects on patients’ 
quality of life and to estimate the economical comparison of newly approved and 
already-present drugs as well as the traditional system of medication [81].

Figure 6. 
The journey of potential leads from preclinical to clinical trials.
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Abstract

The drug discovery process from hit-to-lead has been a challenging task that 
requires simultaneously optimizing numerous factors from maximizing compound 
activity, efficacy to minimizing toxicity and adverse reactions. Recently, the 
advance of artificial intelligence technique enables drugs to be efficiently purposed 
in silico prior to chemical synthesis and experimental evaluation. In this chapter, we 
present fundamental concepts of artificial intelligence and their application in drug 
design and discovery. The emphasis will be on machine learning and deep learning, 
which demonstrated extensive utility in many branches of computer-aided drug 
discovery including de novo drug design, QSAR (Quantitative Structure–Activity 
Relationship) analysis, drug repurposing and chemical space visualization. We will 
demonstrate how artificial intelligence techniques can be leveraged for developing 
chemoinformatics pipelines and presented with real-world case studies and practi-
cal applications in drug design and discovery. Finally, we will discuss limitations 
and future direction to guide this rapidly evolving field.

Keywords: artificial intelligence, chemoinformatics, data mining, drug discovery

1. Introduction

The path of drug discovery from small molecule ligands to drugs that can be 
utilized clinically has been a long and arduous process. Starting with a hit com-
pound, the drugs need to be evaluated through multiple in vitro and cell-based 
assays to improve the mechanism of actions followed by mouse models to demon-
strate appropriate in vivo and transport properties. Mechanistically, the drugs not 
only need to exert enough binding affinity to the disease targets, but also neces-
sitate proper transport through multiple physiological barriers to enable access to 
these targets. Other problems like chemical toxicity, often induced by off-targets 
interactions with unintended proteins as well as pharmacogenetic, where genetic 
variation influences drug responses all need to be considered in drug design. 
Therefore, these multifaceted problems in drug discovery often posed significant 
challenges for drug designers. Recently, the rise of artificial intelligence approach 
saw potential solutions to these challenges. A sub-umbrella of artificial intelligence 
called machine-learning has taken a central stage in many R&D sectors of phar-
maceutical companies that allows drugs to be developed more efficiently and at the 
same time mitigate the cost associated with the required experiments [1]. Given 
some observations of chemical data, machine learning can be used to construct a 
predictor by learning compound properties from extracted features of compound 
structures and interactions. Because this approach does not require a mechanistic 
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The path of drug discovery from small molecule ligands to drugs that can be 
utilized clinically has been a long and arduous process. Starting with a hit com-
pound, the drugs need to be evaluated through multiple in vitro and cell-based 
assays to improve the mechanism of actions followed by mouse models to demon-
strate appropriate in vivo and transport properties. Mechanistically, the drugs not 
only need to exert enough binding affinity to the disease targets, but also neces-
sitate proper transport through multiple physiological barriers to enable access to 
these targets. Other problems like chemical toxicity, often induced by off-targets 
interactions with unintended proteins as well as pharmacogenetic, where genetic 
variation influences drug responses all need to be considered in drug design. 
Therefore, these multifaceted problems in drug discovery often posed significant 
challenges for drug designers. Recently, the rise of artificial intelligence approach 
saw potential solutions to these challenges. A sub-umbrella of artificial intelligence 
called machine-learning has taken a central stage in many R&D sectors of phar-
maceutical companies that allows drugs to be developed more efficiently and at the 
same time mitigate the cost associated with the required experiments [1]. Given 
some observations of chemical data, machine learning can be used to construct a 
predictor by learning compound properties from extracted features of compound 
structures and interactions. Because this approach does not require a mechanistic 
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understanding of how drugs behave, many compound properties like binding 
affinity and other transport and toxicity problems can be accurately forecasted in 
this way before they are synthesized [2]. Furthermore, by simultaneously tackling 
the Pharmacokinetics/Pharmacodynamics (PK/PD) problems using artificial intel-
ligence, we can expect that the effort and time required to bring a drug from bench 
to bedside can be substantially reduced. In this regard, the artificial intelligence 
approach has now become an essential tool to facilitate the drug discovery process.

2. Chemoinformatic for drug discovery

2.1 Chemical formats

To facilitate the discussion on artificial intelligence and machine learning in 
drug discovery and design, it is necessary to understand the type of format and 
data presentation commonly used for chemical compounds in chemoinformatics. 
Chemoinformatics is a broad field that studying the application of computers in 
storing, processing and analyzing chemical data. The field already has more than 
30 years of development with focuses on subjects such as chemical representation, 
chemical descriptors analysis, library design, QSAR analysis and computer-aided 
drug design [3]. Along with these developments, several popular chemical data 
formats for data processing has been proposed. Intuitively, the chemical compound 
is best represented by graphs, also known as “chemical graph” or “molecular graph” 
where nodes represent atoms and edges represent bonds. The molecular graph is 
useful for distinguishing different structural isomers but does not contain 3D con-
formation of the molecules. To store 2D or 3D coordinates of compounds, chemical 
file formats such as Structure Data Format (SDF), MDL (Molfile), and Protein Data 
Bank (PDB) formats can be used. In contrast to the PDB file that simply store struc-
tural data, the SDF format provides additional advantages of recording descriptors 
and other chemical properties thus offers better functionality for cheminformatics 
analysis. Due to the limited memory capacity for handling large compound data-
base, several chemical line notations have also been introduced. One such format is 
the simplified molecular-input line-entry system (SMILES) format pioneered by 
Weininger et al [4]. Other linear notations include Wiswesser line notation (WLN), 
ROSDAL, and SYBYL Line Notation (SLN). Instead of recording compound 
coordinates directly, the SMILES format store compound structure using simpler 
ASCII codes. While memory-efficient, there is no unique strings for representing 
chemical compound particularly for large and structurally complex molecules. To 
address this, canonical SMILES was proposed that applied the Morgan algorithm 
for consistent labeling and ordering of chemical structures [5]. Another limitation 
is the loss of coordinate information and necessitate structural generation programs 
like PRODRG to predict native molecular geometry [6]. Recently, the need to 
exchange chemical data over the world wide web (WWW) also saw the develop-
ment of chemical markup language (CML) similar to the XML format. Despite the 
development of multiple chemical file formats, many commercial and open source 
packages have allowed convenient file format conversion using Obabel and RDKit 
softwares [7, 8].

2.2 Chemical representations

The ability to represent chemical compounds by machine-learning features that 
fully captured wide ranges of chemical and physical properties of the target mol-
ecule has been an active area of research in chemoinformatics and chemical biology 
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[9, 10]. These chemical features, also known as chemical descriptors, provide the 
ability to extract essential characteristic of the compound and offer the possibility 
of developing predictor that can classify novel structures with similar properties. 
Broadly speaking, the chemical descriptors can be classified as 0D, 1D, 2D, 3D, and 
4D [11]. 0D and 1D descriptors like molecular mass, atom number counts can be 
easily extracted from the molecular formula but does not provide much discrimina-
tory power for compound classification. In practice, 2D and 3D chemical descrip-
tors are the most commonly used molecular features for cheminformatics analysis 
[12]. Since chemical compound can be viewed as different arrangements of atoms 
and chemical bond, 2D descriptors can be generated from the molecular graph 
based on different connectivity of the molecules. Notable 2D descriptors include 
Weiner index, Balaban index, Randic index and others [1]. Beyond 2D descriptors, 
3D descriptors leverage information from molecular surfaces, volumes, and shapes 
to provide a higher level of chemical representation. The dependency of ligand 
conformations also prompts the development of 4D descriptors, which accounts 
for different conformations of the molecules generated over a trajectory from 
the molecular dynamics simulation [13]. However, the requirement of correct 3D 
conformation makes 3D and 4D descriptors limited in several aspects. Another type 
of high dimensional descriptors is molecular interaction field (MIF) developed by 
Goodford and colleagues [14]. The MIF aims to capture the molecular environment 
of the ligand based on several properties by placing probes in a rectangular grid 
surround the target compound. At each grid point, hypothetical probes corre-
sponding to different types of energetic interactions (hydrophobic, electrostatic) 
were evaluated. The comparison of MIF of compounds enables the identification 
of critical functional groups for kinase drug-target interactions and drug design 
[15]. Furthermore, correlating these field values to compound activity enable 
comparative molecular field analysis (CoMFA), an extended form of 3D-QSAR 
[16]. Altman’s group at Stanford University took a different approach by inspect-
ing ligand environment using amino acid microenvironment. This Feature-based 
approach lead to direct applications in pocket similarity comparison for identifying 
novel microtubule binding activity of several anti-estrogenic compounds as well 
as kinase off-target binding activity [17, 18]. Chemical descriptors can likewise be 
generated based on the biological phenotypes. For example, drug-induced cell cycle 
profile changes of compound have been recently utilized to identify DNA-targeting 
properties of several microtubule destabilizing agents [19].

Besides chemical descriptors, the chemical fingerprint is another important 
chemical representation where the compounds are represented by a binary vector 
indicating the presence or absence of chemical features [20]. Common 2D chemi-
cal fingerprints include path-based fingerprint which detected all possible linear 
paths consisting of bonds and atoms of a structure given certain bond lengths. For 
a given pattern, several bits in a bit string is set. While path-based fingerprints like 
ECFP (Extended Connectivity Fingerprint) have a higher specificity, the potential 
limitation is “bit collision” where the number of possible patterns exceeds the bit 
capacity resulting in multiple patterns mapped to the same set of bits. Another 
type of fingerprint is substructure fingerprints. In the substructure fingerprint like 
(Molecular ACCess System) MACCS keys, the substructures are predefined and 
each bit in a bit string is set for specific chemical patterns. Although bit collision is 
less of an issue, the requirement to encompass all fragment space within a bit string 
often demands a larger memory size. Recently, the proposal of circular fingerprints 
represents the state-of-the-art in chemical fingerprint development [21]. In the 
circular fingerprint, each layer’s feature is constructed by applying a fixed hash 
function to the concatenated features of the neighborhood in the previous layer 
and the results from the hashed function were mapped to bit string representing 
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specific substructures. A modified version of the circular fingerprint, known as 
graph convolution fingerprint, has recently been proposed where the hashed func-
tion is replaced by a differential neural network and a local filter is applied to each 
atom and neighborhoods similar to that of a convolution neural network. Many of 
the mentioned fingerprints has been implemented by several open source chemoin-
formatics package such as Chemoinformatics Development Kit (CDK) and RDKit 
and saw wide applications in compound database search and other computer-aided 
drug discovery tasks [22].

3. Artificial intelligence in drug discovery

The rise of artificial intelligence and, in particular, machine learning and deep 
learning has given rise to a tsunami of applications in drug discovery and design 
[23, 24]. Here, we provide an overview of machine learning concepts and tech-
niques commonly applied for chemoinformatics analysis. In a nutshell, machine 
learning aims to build predictive models based on several features derived from the 
chemical data, many of which are measured experimentally, such as lipophilicity, 
water solubility while others are purely theoretical, such as chemical descriptors 
and molecular fields derived from the chemical graph or 3D structure data. With 
chemical features on one hand, on the other hand of the equation is the proper-
ties that the model intended to learn, which can take on categorical or continuous 
values and usually pertaining to compound activity in question. Given every pair 
of features and labels, the model can be trained by identifying an optimal set of 
parameters that minimizes certain objective functions. Following the training 
phase, the best model can then be applied to predict the properties of new com-
pounds (Figure 1).

Although machine learning has just recently gained in popularity, its applica-
tion in chemistry is not new. The pioneering work of Alexander Crum-Brown and 
Thomas Fraser in elucidating the effects of different alkaloids on muscle paralysis 
results in the proposal of the first general equation for a structure–activity rela-
tionship, which intended to bridge biological activity as a function of chemical 
structure [25]. Early QSAR models such as Hansch analysis were mostly linear or 
quadratic model of physicochemical parameters that required extensive experi-
mental measurement. This model was succeeded by the Free-Wilson model, which 
considers the parameters generated from the chemical structure and is more closely 
resemble the QSAR model in use today. Machine learning techniques in chemin-
formatics analysis can be broadly classified as supervised learning, unsupervised 
learning, and reinforcement learning. However, new learning algorithms through 
a combination of these approaches are continuing being developed. Many of these 
approaches have already found wide application in QSAR/QSPR prediction, de novo 
drug design, drug repurposing, and retrosynthetic planning [26–28].

3.1 Supervised learning

3.1.1 Linear regression analysis

Supervised learning has a long history of development in QSAR analysis [29]. 
The supervised learning task can include classification, to determine whether a 
compound class belong to a certain class label, or regression, to predict the bioactiv-
ity of a compound over a continuous range of values. A well-known supervised 
learning approach is the linear regression model, and often the first-line method for 
exploratory data analysis among statistician. The goal of linear regression is to find 
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a linear function such that a fitted line that minimizes the distance to the outcome 
variables. When the logistic function is applied to the linear model, the model can 
also be applicable for binary classification. A direct extension of linear regression is 
polynomial regression that model relationships between independent and indepen-
dent variable as high-degree polynomial of the same or different combination of 
chemical features. In the case of model underfitting, polynomial regression pro-
vides a useful alternative for feature augmentation for the linear model. Both linear 
and polynomial regression formed the basis of classical Hansch and Free-Wilson 
analysis [30]. Interestingly, today’s situation is completely reversed. With the rapid 
explosion of chemical descriptors and fingerprints available at chemoinformati-
cian’s disposal, twin curse of dimensionality and collinearity has now become a 
significant issue.

Several approaches have been developed to tackle high dimensional data. One 
potential solution is to exhaustively explore all the possible combination of features 
to identify the best subset of predictors. However, this approach is inevitably 

Figure 1. 
Chemoinformatics prediction using artificial intelligence. Starting with a compound, the chemical feature is 
extracted from the compound 2D graph. The chemical features then serve as input for the machine learning 
model and trained based on the compound activity. The trained model with fitted parameters can then be used 
to predict activity of new compounds.
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specific substructures. A modified version of the circular fingerprint, known as 
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and molecular fields derived from the chemical graph or 3D structure data. With 
chemical features on one hand, on the other hand of the equation is the proper-
ties that the model intended to learn, which can take on categorical or continuous 
values and usually pertaining to compound activity in question. Given every pair 
of features and labels, the model can be trained by identifying an optimal set of 
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phase, the best model can then be applied to predict the properties of new com-
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mental measurement. This model was succeeded by the Free-Wilson model, which 
considers the parameters generated from the chemical structure and is more closely 
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a combination of these approaches are continuing being developed. Many of these 
approaches have already found wide application in QSAR/QSPR prediction, de novo 
drug design, drug repurposing, and retrosynthetic planning [26–28].
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3.1.1 Linear regression analysis

Supervised learning has a long history of development in QSAR analysis [29]. 
The supervised learning task can include classification, to determine whether a 
compound class belong to a certain class label, or regression, to predict the bioactiv-
ity of a compound over a continuous range of values. A well-known supervised 
learning approach is the linear regression model, and often the first-line method for 
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computationally infeasible for large feature space. To solve this, heuristic approach 
like forward and backward feature selection were developed where each feature 
was added to the predictors in a stepwise manner and only features that contribute 
greatest to the fit are kept [31]. An alternative approach for feature selection is 
dimensional reduction where a smaller set of uncorrelated features can be cre-
ated as a combination of a larger set of correlated variables. One commonly used 
dimensional reduction technique is principal component analysis (PCA) that 
identifies new variables with the largest variances in the dataset [32]. Recently, 
variable shrinkage method like regularization and evolutionary algorithm has 
allowed feature selection during the model fitting phase. In the model regulariza-
tion step, a penalty term is introduced to the objective function to control model 
complexity. The lasso regularization is one such approach that used an L1 penalty 
term to constraint objective function along the parameter axis, thus enable effec-
tive elimination of redundant features [33]. The evolutionary algorithm is another 
feature selection approach that encodes features as genes and through successive 
combination, the algorithm identifies the best set of features measured by a fitness 
score. Recently, elastic net combines penalties of the lasso and ridge regression 
and shows promise in variable selection when the number of predictors (p) is 
much bigger than the number of observations (n) [34]. Although linear regression 
analysis formed the backbone of early QSAR analysis, the simple linear assumption 
of feature vector space is a major limitation for modeling more complex system.

3.1.2 Artificial neural network and deep learning

The requirement to parameterize the QSAR model in a non-linear way saw the 
widespread application of artificial neural network (ANN) in the chemoinformatic 
analysis. The ANN, first developed by Bernard Widrow of Stanford University in 
the 1950s, is inspired by the architecture of a human brain, which consisting of 
multiple layers of interconnecting nodes analogous to biological neurons. The early 
neural network model is called “perceptron” that consists of a single layer of inputs 
and a single layer of output neurons connected by different weights and activation 
functions [35]. However, it was soon recognized that the one-layer perceptron 
cannot correctly solve the XOR logical relationship [36]. This limitation prompts 
the development of multi-layer perceptron, where additional hidden layers were 
introduced into the model and the weights were estimated using the backpropaga-
tion algorithm [37]. As a direct extension of ANN, several deep learning techniques 
like deep neural network (DNN) has been introduced to process high dimensional 
data as well as unstructured data for machine vision and natural language process-
ing (NLP). In multiple studies, DNN outperformed several classical machine 
learning methods in predicting biological activity, solubility, ADMET properties 
and compound toxicity [38, 39].

To handle high-dimensional data, several feature extraction and dimension 
reduction mechanisms has been integrated into diverse deep learning frameworks 
(Figure 2). In particular, the convolution neural network is a popular deep learning 
framework for imaging analysis [40]. A convolution neural network consists of 
convolution layers, max-pooling layers, and fully connected multilayer perceptron. 
The purpose of the convolution and max-pooling layer is to extracted local recur-
ring patterns from the image data to fit the input dimension of the fully connected 
layers. This utility has recently been extended for protein structure analysis in the 
3D-CNN approach where protein structures are treated as 3D images [41]. Other 
deep learning approaches include autoencoder and embedding representation. 
Autoencoder (AE) is a data-driven approach to obtain a latent presentation of high 
dimensional data using a smaller set of hidden neurons [42, 43]. An autoencoder 
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consists of encoder and decoder. In the encoding step, the input signal is forward 
propagated to smaller and smaller sets of hidden layers thus effective map the data 
to low dimensional space. The training is achieved so that the hidden layers can 
propagate back to a larger set of output nodes to recover the original signal. A spe-
cific form of AE called variational AE (VAE) has recently been applied to de-novo 
drug design application where latent space was first constructed from the ZINC 
database from which novel compounds can be recovered by sampling such subspace 
[44]. In the context of NLP, word embedding such as word2vec implementation is 
a dimensional reduction technique to learn word presentation that preserves the 
similarity between data in low-dimension. This formulation has been extended 
to identify chemical representation in the analogous mol2vec program [45]. The 
requirement to model sequential data also prompted the development of recurrent 
neural networks (RNN). The RNN is a variant of artificial neural network where 
the output from the previous state is used as input for the current state. Therefore, 
this formulation has a classical analogy to the hidden Markov model (HMM), a type 
of belief network. RNN has been applied for de novo molecule design by “memo-
rizing” from SMILES string in sequential order and generated novel SMILES by 
sampling from the underlying probability distribution [46]. By tuning the sampling 
parameters, it is found that RNN can oftentimes generated valid SMILES string not 
found in the original training set.

3.1.3 Instance-based learning

In contrast to parametrized learning that required extensive efforts in model 
tuning and parameter estimation, instance-based learning, also known as memory-
based learning, is a different type of machine learning strategy that generates 
hypothesis from the training data directly [47]. Therefore, the model complexity 

Figure 2. 
Deep learning architectures for drug discovery. Four common types of deep learning network for supervised 
and supervised learning including deep neural network (DNN), convolutional neural network (CNN), 
autoencoder (AE) and recurrent neural network (RNN).
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computationally infeasible for large feature space. To solve this, heuristic approach 
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variable shrinkage method like regularization and evolutionary algorithm has 
allowed feature selection during the model fitting phase. In the model regulariza-
tion step, a penalty term is introduced to the objective function to control model 
complexity. The lasso regularization is one such approach that used an L1 penalty 
term to constraint objective function along the parameter axis, thus enable effec-
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the 1950s, is inspired by the architecture of a human brain, which consisting of 
multiple layers of interconnecting nodes analogous to biological neurons. The early 
neural network model is called “perceptron” that consists of a single layer of inputs 
and a single layer of output neurons connected by different weights and activation 
functions [35]. However, it was soon recognized that the one-layer perceptron 
cannot correctly solve the XOR logical relationship [36]. This limitation prompts 
the development of multi-layer perceptron, where additional hidden layers were 
introduced into the model and the weights were estimated using the backpropaga-
tion algorithm [37]. As a direct extension of ANN, several deep learning techniques 
like deep neural network (DNN) has been introduced to process high dimensional 
data as well as unstructured data for machine vision and natural language process-
ing (NLP). In multiple studies, DNN outperformed several classical machine 
learning methods in predicting biological activity, solubility, ADMET properties 
and compound toxicity [38, 39].

To handle high-dimensional data, several feature extraction and dimension 
reduction mechanisms has been integrated into diverse deep learning frameworks 
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convolution layers, max-pooling layers, and fully connected multilayer perceptron. 
The purpose of the convolution and max-pooling layer is to extracted local recur-
ring patterns from the image data to fit the input dimension of the fully connected 
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is highly dependent on the size and quality of the dataset. Notable instance-based 
learning method includes the k-Nearest Neighbor (kNN) prediction, commonly 
known as “guilt-by-association” or “like-predicts-like”. In the kNN algorithm, a 
majority voting rule is applied to predict the properties of a given data, based on 
the k nearest neighbor within certain metric distance [48]. Using this approach, the 
properties of the data can be inferred from the dominant properties shared among 
its nearest neighbors. In the field cheminformatics, chemical similarity principle is 
a direct application of kNN where the similarity between chemical structures can 
be used to infer similar biological activity [49]. For analyzing large compound set, 
chemical similarity networks, or chemical space networks, can be used to identify 
chemical subtypes and estimate chemical diversity [50, 51]. Furthermore, the 
similarity concept is commonly applied in computational chemical database search 
to identify similar compounds from a lead series [52]. A major limitation of kNN is 
the correct determination of the number of nearest neighbors since that too high or 
low of such parameter can lead to either high false positive and false negative rates.

In the case of binary classification, such as compound activity discrimination, 
support vector machine (SVM) is a popular non-parametrized machine learning 
model [53]. For given binary data labels, SVM intended to find a hyperplane such 
that it has the largest distance (margin) to the nearest training data point of two 
classes. Furthermore, kernel trick allows mapping data points to high dimensional 
feature space that are linearly inseparable. For multilabel classification problems, 
other instance-learning models such as radial basis neural network (RBNN), deci-
sion trees and Bayesian learning are generally applicable [54]. In RBNN, several 
radial basis functions, which often depict as bell shape regions over the feature 
space, are used to approximate the distribution of the data set. Other approaches 
like decision tree, such as the Classification And Regression Tree (CART) algo-
rithm, can also be applied for multi-variable classification and regression and has 
been used to differentiate active estrogen compound from inactives [55]. In the 
decision tree model, the algorithm provides explanations for the observed pattern 
by identifying predictors that maximize the homogeneity of the dataset through 
successive binary partitions (splits). The Bayesian classifier is yet another powerful 
supervised learning approach that predicts future events based on past observations 
known as prior. In essence, Bayes’ theorem allows the incorporation of prior prob-
ability distributions to generate posterior probabilities. In the case of multi-variable 
classification, a special form of Bayesian learner known as the naïve Bayes learner 
greatly simplify the computational complexity with independence assumption 
between features. PASS Online is an example of a Bayesian approach to predict over 
4000 kinds of biological activity, including pharmacological effects, mechanisms of 
action, toxic and adverse effects [56]. In another study, DRABAL, a novel multiple 
label classification method that incorporates structure learning of a Bayesian 
network, was developed for processing more than 1.4 million interactions of over 
400,000 compounds and analyze the existing relationships between five large HTS 
assays from the PubChem BioAssay Database [57].

While instance-based learning encompasses a diverse set of methodology 
and present unique advantages in constantly adapting to new data, this approach 
is nevertheless limited by the memory storage requirement and, as the dataset 
grows, data navigation becomes increasingly inefficient. To address this, data 
pre-segmentation technique such as KD tree is a common approach for instance 
reduction and memory complexity improvement [58]. In another aspect, the 
ability to assemble different classifiers into a meta-classifier that will potentially 
have superior generalization performance than individual classifier also led to the 
development of ensemble learning. The ensemble learning algorithm can include 
models that combine multiple types of classifier or sub-sample data from a single 
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model. A notable example of ensemble learning is the random forest algorithm, 
which combines multiple decision trees and makes predictions via a majority voting 
rule for compound activity classification and QSAR modeling [59].

3.2 Unsupervised learning

Given a compound dataset, unsupervised learning can include tasks such as 
detecting subpopulation to determine the number of chemotypes to estimate 
chemical diversity and chemical space visualization. Putting in a broader perspec-
tive, the purpose of unsupervised learning is to understand the underlying pattern 
of the datasets. Another important problem stem from unsupervised learning is the 
ability to define appropriate metrics that can be used to quantify the similarity of 
data distributed over feature space. These metrics can be useful for chemometrics 
application including measuring the similarity between pairs of compounds.

3.2.1 Clustering

For unsupervised clustering, one popular approach is K-means clustering [60]. 
K-means clustering aims to partition the dataset into K-centroid. This is achieved 
by constantly minimizing the within-cluster distances and updating new centroids 
until the location of the K-centroids converges. K-means clustering has the advan-
tage of operating at linear time but does not guarantee convergence to a global 
minimum. Another limitation is the requirement of a pre-determined number of 
clusters, which may not correspond to the optimal clusters for the data. To identify 
the optimal k values, one solution is called the “elbow method”, which determine 
a k value with the largest change in the sum of distances as the k value increases. 
One study applied K-means clustering to estimate the diversity of compounds that 
inhibit cytochrome 3A4 activity [61]. Besides K-mean clustering, conventional 
clustering like hierarchical clustering is also commonly used. Hierarchical cluster-
ing can include agglomerative clustering, which merges smaller data objects to form 
larger clusters or divisive clustering, which generate smaller clusters by splitting 
from a large cluster. The hierarchical clustering has been demonstrated for their 
ability to classify large compound and enrich ICE inhibitors from specific clusters as 
well as for virtual screening application [62, 63].

Although hierarchical clustering is suitable for initial exploratory analysis, it is 
limited by several shortcomings such as high space and time complexity and lack 
of robustness to noise. Supervised clustering using artificial networks include the 
self-organization map (SOM), also known as Kohonen network [64]. The purpose 
of SOM is to transform the input signal into a two-dimensional map (topological 
map) where input features that are similar to each other are mapped to similar 
regions of the map. The learning algorithm is achieved by competitive learning 
through a discriminant function that determines the closest (winning) neuron. 
During each training iteration, the winning neuron has its weight updated such that 
it moves closer to the corresponding input vector until the position of each neuron 
converges. The advantages of SOM are the ability to directly visualize the high-
dimensional data on low dimensional grid. Furthermore, the neural network makes 
SOM more robust to the noisy data and reduces the time complexity to the linear 
range. SOMs cover such diverse fields of drug discovery as screening library design, 
scaffold-hopping, and repurposing [65].

Recently, manifold learning has gained tremendous traction due to the ability 
to perform dimensional reduction while preserving inter-point distances in lower 
dimension space for large-scale data visualization. Manifold learning algorithm 
includes ISOMAP, which build a sparse graph for high dimensional data and 
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classes. Furthermore, kernel trick allows mapping data points to high dimensional 
feature space that are linearly inseparable. For multilabel classification problems, 
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supervised learning approach that predicts future events based on past observations 
known as prior. In essence, Bayes’ theorem allows the incorporation of prior prob-
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have superior generalization performance than individual classifier also led to the 
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models that combine multiple types of classifier or sub-sample data from a single 
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model. A notable example of ensemble learning is the random forest algorithm, 
which combines multiple decision trees and makes predictions via a majority voting 
rule for compound activity classification and QSAR modeling [59].

3.2 Unsupervised learning

Given a compound dataset, unsupervised learning can include tasks such as 
detecting subpopulation to determine the number of chemotypes to estimate 
chemical diversity and chemical space visualization. Putting in a broader perspec-
tive, the purpose of unsupervised learning is to understand the underlying pattern 
of the datasets. Another important problem stem from unsupervised learning is the 
ability to define appropriate metrics that can be used to quantify the similarity of 
data distributed over feature space. These metrics can be useful for chemometrics 
application including measuring the similarity between pairs of compounds.

3.2.1 Clustering

For unsupervised clustering, one popular approach is K-means clustering [60]. 
K-means clustering aims to partition the dataset into K-centroid. This is achieved 
by constantly minimizing the within-cluster distances and updating new centroids 
until the location of the K-centroids converges. K-means clustering has the advan-
tage of operating at linear time but does not guarantee convergence to a global 
minimum. Another limitation is the requirement of a pre-determined number of 
clusters, which may not correspond to the optimal clusters for the data. To identify 
the optimal k values, one solution is called the “elbow method”, which determine 
a k value with the largest change in the sum of distances as the k value increases. 
One study applied K-means clustering to estimate the diversity of compounds that 
inhibit cytochrome 3A4 activity [61]. Besides K-mean clustering, conventional 
clustering like hierarchical clustering is also commonly used. Hierarchical cluster-
ing can include agglomerative clustering, which merges smaller data objects to form 
larger clusters or divisive clustering, which generate smaller clusters by splitting 
from a large cluster. The hierarchical clustering has been demonstrated for their 
ability to classify large compound and enrich ICE inhibitors from specific clusters as 
well as for virtual screening application [62, 63].

Although hierarchical clustering is suitable for initial exploratory analysis, it is 
limited by several shortcomings such as high space and time complexity and lack 
of robustness to noise. Supervised clustering using artificial networks include the 
self-organization map (SOM), also known as Kohonen network [64]. The purpose 
of SOM is to transform the input signal into a two-dimensional map (topological 
map) where input features that are similar to each other are mapped to similar 
regions of the map. The learning algorithm is achieved by competitive learning 
through a discriminant function that determines the closest (winning) neuron. 
During each training iteration, the winning neuron has its weight updated such that 
it moves closer to the corresponding input vector until the position of each neuron 
converges. The advantages of SOM are the ability to directly visualize the high-
dimensional data on low dimensional grid. Furthermore, the neural network makes 
SOM more robust to the noisy data and reduces the time complexity to the linear 
range. SOMs cover such diverse fields of drug discovery as screening library design, 
scaffold-hopping, and repurposing [65].

Recently, manifold learning has gained tremendous traction due to the ability 
to perform dimensional reduction while preserving inter-point distances in lower 
dimension space for large-scale data visualization. Manifold learning algorithm 
includes ISOMAP, which build a sparse graph for high dimensional data and 
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identify the shortest distance that best preserves the original distance matrix in 
low dimensional space [66]. While ISOMAP requires very few parameters, the 
approach is nevertheless computational expensive due to an expensive dense 
matrix eigen-reduction process. More efficient approaches such as Locally Linear 
Embedding (LLE) has been proposed for QSAR analysis [67]. LLE assumes that the 
high dimensional structure can be approximated by a linear structure that preserves 
the local relationship with neighbors. A related approach is t-distributed stochastic 
neighbor embedding (tSNE), which relies on the pair-wise probability distribution 
of data points to preserve local distance [68].

3.2.2 Similarity

The ability to measure data similarity is as important as the ability to discern the 
number of categories from a dataset. One approach for measuring data similarity 
is by determining the distance of two data points in the high-dimensional feature 
space. Intuitively, the similarity between two data points is inversely related to 
the measured distance between them. Commonly used distance metrics include 
Euclidean distance, Manhattan distance, Chebyshev distance [60]. All of these 
metrics is a specialized form of Minkowski distance, a generalized distance metrics 
defined in the norm space. Other important similarity measures such as the cosine 
similarity and Pearson’s correlation coefficient, are commonly used to measure gene 
expression data or word embedding vector, when the magnitude of the vector is not 
essential. For binary features, metrics that measured shared bits between vectors 
can be used. For example, Tanimoto index, also known as the Jaccard coefficient, 
is one of the most commonly used metrics to measuring the similarity between 
two fingerprints in many cheminformatics applications. Tanimoto index has been 
extended to measure the similarity of 3D molecular volume and pharmacophore, 
such as those generated from the ligand structural alignment [69]. A generalized 
form of similarity metric is the kernel such as RBF or Gaussian kernel, which is a 
function that maps a pair of input vectors to high dimensional space and is an effec-
tive approach to tackle non-linearly separable case for discriminating analysis. The 
selection of an optimal similarity metrics can be achieved by clustering analysis, 
including comparing the clustering result and assess the quality of the clusters by 
different similarity measures.

3.3 Reinforcement learning

Reinforcement Learning came into the spotlight from the famous chess competi-
tion between professional chess player and AlphaGo that demonstrated the ability 
of AI to outcompete human intelligence [70]. Differ from supervised and unsuper-
vised learning, the reinforcement learning focused on optimization of rewards and 
the output is dependent on the sequence of input. A basic reinforcement learning 
is modeled based on the Markov decision process and consists of a set of environ-
ment and agent state, a set of actions and transitional probability between states. At 
each time step, the agent interacts with the environment with a chosen action and a 
given reward. Several learning strategies have been developed to guide the action in 
each state. The most well-known algorithm is called the Q-learning algorithm [71]. 
The Q-learning predicts an expected reward of an action in a given state and as the 
agent interacts with the environment, the Q value function becomes progressively 
better at approximate the value of an action in a given state. Another approach for 
guiding the action for reinforcement learning is called policy learning, which aims 
to create a map that suggests the best action for a given state. The policy can be con-
structed using a deep neural network. Recently, deep Q-network (DQN) has been 
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constructed that approximate the Q value-functions using a deep neural network 
[72]. One recent example of using deep reinforcement learning in de novo design is 
demonstrated by the ReLeaSE (Reinforcement Learning for Structural Evolution), 
which integrates both predictive and generative model for targeted library design 
based on SMILES string. The generative model is used to generate chemically 
feasible compound while the predictive model is then used to forecast the desired 
properties. The ReLeaSE method can be used to design chemical libraries with a 
bias toward structural complexity or toward compounds with a specific range of 
physical properties as well as inhibitory activity against Janus protein kinase 2 [73].

4. Conclusion

The path of drug discovery from small molecule ligand to drug that can be 
utilized clinically is a long and arduous process. The fundamental concept of arti-
ficial intelligence and the application in drug design and discovery presented will 
facilitate this process. In particular, the machine learning and deep learning, which 
demonstrated great utility in many branches of computer-aided drug discovery like 
de novo drug design, QSAR analysis, chemical space visualization.

In this chapter, we presented the fundamental concept of artificial intelligence 
and their application in drug design and discovery. We first focused on chemoin-
formatics, a broad field that studying the application of computers in storing, 
processing, and analyzing chemical data. This field already has more than 30 years 
of development with focuses on subjects ranging from chemical representation, 
chemical descriptors analysis, library design, QSAR analysis, and retrosynthetic 
planning. We then discussed how artificial intelligence techniques can be leveraged 
for developing more effective chemoinformatics pipelines and presented with real-
world case studies. From the algorithmic aspects, we mentioned three major class of 
machine learning algorithms including supervised learning, unsupervised learning, 
and reinforcement learning, each with their own strength and weakness as well as 
cover different areas of chemoinformatic applications.

As AI techniques gradually become indispensable tools for drug designer to solve 
their day-to-day problems, an emerging trend is to learn how to flexibly integrate 
these algorithms in the computational pipelines suitable for the problem at hand. 
For example, the process can start with an unsupervised learning to discerning 
the number of chemotypes followed by a supervised learning approach to predict 
multi-target activities. Furthermore, with the increasing computational power, 
deep learning network with increasing number layers and complexity will be also 
developed. Another potential development is the marriage between chemical big 
data and AI to mine the chemical “universe” for drug screening applications. The 
potential extensibility of AI in drug discovery and design is virtually boundless and 
awaits drug designer to further explore this exciting field.
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demonstrated by the ReLeaSE (Reinforcement Learning for Structural Evolution), 
which integrates both predictive and generative model for targeted library design 
based on SMILES string. The generative model is used to generate chemically 
feasible compound while the predictive model is then used to forecast the desired 
properties. The ReLeaSE method can be used to design chemical libraries with a 
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formatics, a broad field that studying the application of computers in storing, 
processing, and analyzing chemical data. This field already has more than 30 years 
of development with focuses on subjects ranging from chemical representation, 
chemical descriptors analysis, library design, QSAR analysis, and retrosynthetic 
planning. We then discussed how artificial intelligence techniques can be leveraged 
for developing more effective chemoinformatics pipelines and presented with real-
world case studies. From the algorithmic aspects, we mentioned three major class of 
machine learning algorithms including supervised learning, unsupervised learning, 
and reinforcement learning, each with their own strength and weakness as well as 
cover different areas of chemoinformatic applications.

As AI techniques gradually become indispensable tools for drug designer to solve 
their day-to-day problems, an emerging trend is to learn how to flexibly integrate 
these algorithms in the computational pipelines suitable for the problem at hand. 
For example, the process can start with an unsupervised learning to discerning 
the number of chemotypes followed by a supervised learning approach to predict 
multi-target activities. Furthermore, with the increasing computational power, 
deep learning network with increasing number layers and complexity will be also 
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data and AI to mine the chemical “universe” for drug screening applications. The 
potential extensibility of AI in drug discovery and design is virtually boundless and 
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Chapter 11

Cell-Penetrating Peptides: 
A Challenge for Drug Delivery
Sonia Aroui and Abderraouf Kenani

Abstract

Cell-penetrating peptide (CPP) is a term that describes relatively short amphipa-
thic and cationic peptides (7–30 amino acid residues) with rapid translocation 
across the cell membrane. They can be used to deliver molecular bioactive cargoes 
due to their efficacy in cellular internalization and also to their low cytotoxicity. 
In this review we provide an overview of the current approaches and describe the 
potential of CPP-based drug delivery systems and indicate their powerful promise 
for clinical efficacy.

Keywords: cell-penetrating peptides, drugs

1. Introduction

A novel approach to overcome cell membrane impermeability and to deliver a 
large variety of particles and macromolecules into cells has been recently emerged, 
which is called cell-penetrating peptides (CPPs), also known as protein transduc-
tion domains (PTDs) [1, 2]. CPPs are generally short (up to 30 amino acids in 
length) water-soluble, cationic, and/or amphipathic peptides which make them 
promising vectors for therapeutic delivery, leading to a considerable amount of 
research focused on the intracellular delivery of drugs [3–5]. There are two principal 
types of CPPs that have been utilized for this purpose: (i) cationic CPPs, composed 
of short sequence of amino acids (arginine, lysine, and histidine). The indicated 
amino acids give the cationic charge to the peptide and permit its interaction with 
anionic motifs on the plasma membrane by a receptor-independent mechanism. (ii) 
amphipathic peptides, which have lipophilic and hydrophilic tails that are respon-
sible for a direct peptide translocation mechanism across the plasma membrane [6].

The most important characteristic of CPPs is that they are able to translocate the 
plasma membrane at low micromolar concentrations in vivo and in vitro without 
using any receptors and without causing any significant membrane damage [7, 8]. 
Other benefits of using CPPs for therapeutic delivery are the absence of toxicity as 
compared to other cytoplasmic delivery devices, such as liposomes, polymers, etc. 
[6]. The mechanism for the CPP-facilitated cellular uptake remains not clear and 
depends on cargo and cellular type [9]. Due to its high density of basic amino acid 
residues (Arg and Lys), the large charge at physiological pH excludes the passive 
diffusion of CPPs across the lipid bilayer. Furthermore, it seems that classical 
uptake mechanisms such as protein-based receptors and transporters are not 
involved. On the contrary, endocytosis was shown as a common uptake mechanism, 
but is controversial at the same time. For example, in a number of reports, CPP 
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uptake was not inhibited at 4°C or in the presence of inhibitors of endocytosis; in 
contrast, a capture of CPPs in the endocytotic vesicles was observed when soluble 
heparin sulfate was added [9, 10]. Many other studies indicate that aggregation of 
the cell surface glycosaminoglycan heparan sulfate (HS) is an important element 
in the uptake mechanism [2]. The challenge of the strategy using CPPs should take 
into consideration the size, stability, nonspecific versus specific associations, and 
potency versus toxicity that all play an important role for the selection of delivery 
systems [5].

2. History and origin of CPPs

The CPPs are initially discovered in 1965 when it was observed that histones 
and cationic polyamines such as polylysine stimulate the uptake of albumin by 
tumor cells in culture. It was shown that the conjugation of polylysine to albumin 
and other proteins enhances their transport into cells. Moreover, a comparison 
study of different homopolymers of cationic amino acids demonstrates that 
medium-length polymers of arginine enter cells more effective than similar-
length polymers composed of lysine, ornithine, or histidine [11]. In 1988, it was 
discovered that the human immunodeficiency virus type 1 (HIV-1) encoded 
trans-acting activator of transcription (Tat) peptide which also translocates cell 
membranes and gains intracellular mammalian cells [12, 13]. Covalently the con-
jugation of Tat peptide to proteins or fluorescent markers allowed these molecules 
to gain into the cell. A few years later, another discovery was followed when poly-
cationic peptide of natural (VP22 and AntP) and synthetic origin (transportan) 
was used for the delivery of genes, proteins, small exogenous peptide, or even 
nanoparticles. Furthermore, it was demonstrated that small domains in these 
peptides are often responsible for cellular entry [14]. Thus, these translocation 
sequences could be shortened to a few amino acids in comparison with the first 
Tat peptide, without affecting cell penetration efficiency [13]. Since that time, 
the list of synthetic CPPs has increased sharply, and the number continues to rise 
(Table 1). In the last decade, another peptide was described named maurocalcine 
(MCa), a 33 amino acid residue peptide that has been isolated from the venom of 
the Tunisian chactid scorpion Scorpio maurus palmatus. It folds according to an 
“inhibitor cystine knot” (ICK) motif and contains three disulfide bridges con-
nected by the following pattern: C1–C4, C2–C5, and C3– C6 [15]. MCa acts on 
ryanodine receptors resulting in pharmacological activation. These receptors are 
calcium channels located in the membrane of the endoplasmic reticulum. They 
control Ca2+ release from internal stores and therefore a large number of cell 
functions [16, 17].

This peptide possesses vector properties when coupled to fluorescent streptavi-
din. This complex was shown to enter various cell types within minutes and in all 
cell types tested, a common feature of CPPs. A variety of mutants of MCa were then 
designed in order to unravel the most active residues for its pharmacological and 
penetration activities (Figure 1) [18, 19].

3. Therapeutic applications of CPPs

3.1 CPP-cargo complex internalization mechanisms

Two distinct advances were shown to be used to bind CPPs to molecular cargoes. 
One process is non-covalently which connect CPP to its cargoes using electrostatic 
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uptake was not inhibited at 4°C or in the presence of inhibitors of endocytosis; in 
contrast, a capture of CPPs in the endocytotic vesicles was observed when soluble 
heparin sulfate was added [9, 10]. Many other studies indicate that aggregation of 
the cell surface glycosaminoglycan heparan sulfate (HS) is an important element 
in the uptake mechanism [2]. The challenge of the strategy using CPPs should take 
into consideration the size, stability, nonspecific versus specific associations, and 
potency versus toxicity that all play an important role for the selection of delivery 
systems [5].

2. History and origin of CPPs

The CPPs are initially discovered in 1965 when it was observed that histones 
and cationic polyamines such as polylysine stimulate the uptake of albumin by 
tumor cells in culture. It was shown that the conjugation of polylysine to albumin 
and other proteins enhances their transport into cells. Moreover, a comparison 
study of different homopolymers of cationic amino acids demonstrates that 
medium-length polymers of arginine enter cells more effective than similar-
length polymers composed of lysine, ornithine, or histidine [11]. In 1988, it was 
discovered that the human immunodeficiency virus type 1 (HIV-1) encoded 
trans-acting activator of transcription (Tat) peptide which also translocates cell 
membranes and gains intracellular mammalian cells [12, 13]. Covalently the con-
jugation of Tat peptide to proteins or fluorescent markers allowed these molecules 
to gain into the cell. A few years later, another discovery was followed when poly-
cationic peptide of natural (VP22 and AntP) and synthetic origin (transportan) 
was used for the delivery of genes, proteins, small exogenous peptide, or even 
nanoparticles. Furthermore, it was demonstrated that small domains in these 
peptides are often responsible for cellular entry [14]. Thus, these translocation 
sequences could be shortened to a few amino acids in comparison with the first 
Tat peptide, without affecting cell penetration efficiency [13]. Since that time, 
the list of synthetic CPPs has increased sharply, and the number continues to rise 
(Table 1). In the last decade, another peptide was described named maurocalcine 
(MCa), a 33 amino acid residue peptide that has been isolated from the venom of 
the Tunisian chactid scorpion Scorpio maurus palmatus. It folds according to an 
“inhibitor cystine knot” (ICK) motif and contains three disulfide bridges con-
nected by the following pattern: C1–C4, C2–C5, and C3– C6 [15]. MCa acts on 
ryanodine receptors resulting in pharmacological activation. These receptors are 
calcium channels located in the membrane of the endoplasmic reticulum. They 
control Ca2+ release from internal stores and therefore a large number of cell 
functions [16, 17].

This peptide possesses vector properties when coupled to fluorescent streptavi-
din. This complex was shown to enter various cell types within minutes and in all 
cell types tested, a common feature of CPPs. A variety of mutants of MCa were then 
designed in order to unravel the most active residues for its pharmacological and 
penetration activities (Figure 1) [18, 19].

3. Therapeutic applications of CPPs

3.1 CPP-cargo complex internalization mechanisms

Two distinct advances were shown to be used to bind CPPs to molecular cargoes. 
One process is non-covalently which connect CPP to its cargoes using electrostatic 
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Figure 1. 
Example of origin of four CPPs: Maurocalcine, penetratin, tat, and polyarginine. Maurocalcine, penetratin, 
and tat are derived from natural sequences, but polyarginine was produced by de novo conception in order to 
obtain a good cellular penetration.

interactions, such as MPG and Pep-1, amphipathic peptides carriers, which link to 
cargoes beyond any cross linking or chemical changes [20]. The second approach is 
more frequent and uses a covalent relation between the two compounds. This means 
has been widely used by different teams and has demonstrated positive advances, 
especially with TAT, penetratin, or polyarginines [21].

Various mechanisms for CPP internalization have been suggested, but the exact 
one is still not well known. Yet, many data approve that the energy-dependent tool 
(endocytosis) and the energy-independent mechanism (direct translocation) or 
both are involved in the cellular uptake progress [22].

For direct penetration, various mechanisms have been described: the carpet-like 
model (membrane destabilization) [23] and the pore formation model (barrel-
stave) [24]. Positively charged CPPs interact with negatively charged membrane 
components like phospholipid bilayer or heparan sulfate. Such interaction is dwell-
ing on the first stage of all of these mechanisms, followed by destabilization of the 
membrane and finished by crossing of the CPP on the lipid membrane.

For endocytosis transduction or cellular digestion, pinocytosis, phagocytosis, 
and receptor-mediated endocytosis have been reported [25, 26]. A sum-up of CPP 
transduction systems is shown in Figure 2. In pinocytosis, the plasma membrane 
absorbs solutes, while in phagocytosis it takes great particles. In clathrin-mediated 
endocytosis, clathrin and also caveolin, which are receptor-mediated endocytosis 
and cover the intracellular part of the biomembranes, possess a key role in the 
uptake mechanism. These protein structures are pivotal for the membrane invagi-
nation and for the construction of the vesicles after bounding the extracellular 
molecule to the membrane receptor. Clathrin has a great diameter in comparison 
with caveolin-coated vesicles and was also considered as a selective route for the 
translocation of compounds into cells through specific receptors on the surface of 
the cell [27].

Many determinants influence the internalization process, such as the nature 
of CPP or the cell type, the cargo, and the experimental conditions (temperature 
and pH) [22].
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3.2 Delivery of chemotherapeutic agents

Chemotherapy used for treatment of cancer has a lot of defects because of the 
toxicity of the drugs to normal healthy cells and also to resistance developed by 
tumor cells to the anticancer drug [28]. The major inconveniences with used cancer 
chemotherapy are the absence of specificity target to tumor cells and thus poor 
antitumor effect. The challenge in cancer therapy is to know how to deliver a drug 
intact to the cytosol of every cancer cell, sparing healthy cells.

It was shown that polyarginines carry cargoes that exceed 500 Da by molecular 
electroporation across the cell membrane which may solve part of the drug deliv-
ery problem [29]. However, the use of well-chosen linkers and anions can help 
target cancer cells and contribute to successful conjugation process. For example, 
the CXC chemokine receptor 4 (CXCR4) is overexpressed in different types of 
cancer, including prostate, breast, colon, and small-cell lung cancer. Snyder et al. 
linked the CXCR4 receptor ligand, DV3, to two transducible anticancer peptides: a 
p53-activating peptide (DV3-TATp53C′) and a cyclin-dependent kinase 2 antagonist 
peptide (DV3-TAT-RxL). Treatment of tumor cells expressing the CXCR4 recep-
tor with either the DV3-TATp53C′ or DV3-TAT-RxL targeted peptides resulted in 
an enhancement of tumor cell killing compared with treatment with nontargeted 
parental peptides [30]. Furthermore, hypoxia-inducible factor-1 (HIF), the 
transcription factor central to oxygen homeostasis, is regulated via the oxygen-
dependent degradation domains (ODD) of its α isoforms (HIFα). The amino- and 
carboxyl-terminal sequences of ODD (NODD and CODD) were fused to TAT and 
injected into sponges implanted subcutaneously (s.c.) in mice by William et al. They 
demonstrated that this injection causes a markedly accelerated local angiogenic 
response and induction of glucose transporter-1 gene expression, thus opening 
additional therapeutic avenues for ischemic diseases [31].

In some cancer cells, such as melanoma (common eye cancers in adults), p53 
seems to be inhibited by overexpression of HDM2. A transducible peptide that 
inhibits HDM2 and Bcl-2 for their ability to induce tumor-specific apoptosis in 

Figure 2. 
CPP translocation mechanisms.
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an enhancement of tumor cell killing compared with treatment with nontargeted 
parental peptides [30]. Furthermore, hypoxia-inducible factor-1 (HIF), the 
transcription factor central to oxygen homeostasis, is regulated via the oxygen-
dependent degradation domains (ODD) of its α isoforms (HIFα). The amino- and 
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Figure 2. 
CPP translocation mechanisms.
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these cells was tested [30]. In this study, it was demonstrated that the anti-Bcl-2 
peptide induced apoptosis in tumor cells but also caused variable levels of toxicity in 
normal cells and tissues. On the contrary, the anti-HDM2 peptide induced apoptosis 
in tumor cells, with little effect on normal cells in a therapeutic dose range. This 
peptide also caused regression of retinoblastoma in rabbit eyes, with minimal dam-
age to normal ocular tissues. They conclude that the inhibition of HDM2 may be a 
promising strategy for the treatment of uveal melanoma and retinoblastoma, and 
that strategy may be an effective technology for local delivery of anticancer therapy 
to the eye.

Most of the patients with sporadic renal cell carcinomas (RCCs) exhibit muta-
tion of the Hippel-Lindau (VHL) tumor suppressor gene. Conjugation of the pro-
tein transduction domain of HIV-TAT protein to the amino acid sequence (104–123) 
in the beta-domain of the VHL gene product (pVHL) arrested and then reduced 
proliferation and invasion of 786-O renal cancer cells in vitro. Besides, daily i.p. 
injections with the conjugate put off and, in some cases, caused partial regression of 
renal tumors that were implanted in the dorsal flank of nude mice [32].

The tumor suppressor gene p16INK4A, an inhibitor of cdk3 4, is often inacti-
vated via intragenic mutation, homozygous deletion, and methylation-associated 
transcriptional silencing in a large number of human cancers, mainly in pancreatic 
cancer. Treated animals with the p16-derived synthetic peptide coupled with the 
Antennapedia carrier sequence, in which we designated as Trojan p16 peptide, 
showed reduced AsPC-1 and BxPC-3 s.c. tumors, respectively. Thus, we conclude 
that Trojan p16 peptide system, a gene-oriented peptide coupled with a peptide 
vector, functions for experimental pancreatic cancer therapy [33].

Recently, it was shown by Sonia et al. that coupling doxorubicin (Dox) to three 
cell-penetrating peptides Tat, penetratin, and maurocalcine (Dox-CPPs) is a good 
strategy to overcome Dox resistance in MDA-MB 231 breast cancer cells and CHO 
cells (Figure 3) [3, 34]. We also reported that all conjugates are able to promote cell 
apoptosis in the breast cancer-resistant cells MDA-MB 231 at lesser concentration 
needed for Dox alone. Indeed, apoptosis death was shown to be correlated with 
ladder-internucleosomal degradation, chromatin contraction, caspase activation, 
Bad and Bax activation by oligomerization on the mitochondrial membrane, and 
liberation of cytochrome c. Despite the effective Bcl-2 overexpression in apoptosis 
induced by the Dox alone, such potency was shown to be insufficient in case of 
Dox-CPP-triggered cell apoptotic death. Otherwise, these results suggest that there 
are other apoptotic signaling pathways, independent of mitochondrial one, which 
are implicated in Dox-CPP apoptosis. Moreover, greater effectiveness of Dox when 
coupled to CPPs is not due only to its higher accumulation on the cells but also to 
the incitement of other signaling pathways. These pathways include death receptors 
and activation of the JNK pathway [4, 35].

Figure 3. 
Cellular internalization of Dox by MCa. MDA-MB231 cells treated with (a) RPMI, (B) Dox alone (red), and 
(C) Dox coupled to Dox at the same concentration (red).
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Another study led by Leslie Walker et al. showed that conjugated Dox to both 
ELP and SynB1 prevents tumor development in mice. In fact, conjugation of Dox to 
SynB1-ELP was more efficient in tumor inhibition under hyperthermic condition 
than Dox alone, which was twofold higher. Such conception was considered hope-
ful peptide candidates for drug delivery [36]. The anticancer activity of Dox was 
also enhanced when constructed a drug delivery system by developing 25 nm gold 
nanospheres (GNSs) conjugated to four α-helical CPPs [37].

A thermally sensitive quantum dot that exhibits an “on-demand” cellular uptake 
behavior via temperature-induced “shielding/deshielding” of CPP on the surface 
was synthesized. Poly(N-isopropylacrylamide) (PNIPAAm) and CPP were biotinyl-
ated at their terminal ends and co-immobilized onto the surface of streptavidin-
coated quantum dots (QDs-Strep) through biotin-streptavidin interaction. Namely, 
under a lower critical solution temperature (LCST), the hydrated PNIPAAm chains 
blocked CPP cellular uptake. This effect was broken down when the LCST was 
raised to allow CPP moieties to be exposed on the cell surface, leading to QD cel-
lular uptake.

Additionally, the “shielding/deshielding” temperature of CPP was also used for 
siRNA delivery system. Biotinylated siRNA was coupled to the surface of TSQDs. 
Indeed, the amount of corresponding gene silencing was increased due to the 
surface exposure of CPP within a rising temperature above the LCST [38].

4.  Optimization methods for CPP-mediated cancer therapy and 
diagnosis

Over the last decade, a great attention has been assigned to the importance of 
CPP on drug transportation of bioactive molecules in various preclinical studies. In 
fact, novel computational basics have been made in order to develop knowledge on 
CPPs [39].

Previously, different researchers have developed a few in silico algorithm 
approaches for CPP prediction (CPPpred) and screening to facilitate throughput 
CPP-based research. The in silico screening/prediction methods aimed on the use 
of scales of chemical characteristic, such as z-descriptors [40, 41]. It is generally 
followed by experimental validation to make it reliable with less cost and time-
consuming approach. Later on, other CPP prediction applied neural network (NN) 
strategies were developed and consist on introducing an N-to-1 NN. The network 
proceeds by a sequence of 5 to 30 amino acids in length, as input, and gives a predic-
tion of how probably each peptide is to be cell penetrating [42]. This CPPpred offers 
an advantage since it was developed with repetition-reduced training and test sets.

Over the years, the commitment therapeutic importance of CPPs motivated 
other teams to develop the first version of CPP database, i.e., CPPsite which sup-
ports broad information on the promising use of CPPs [43]. The CPPsite manually 
created database of 843 experimentally described CPPs. Each consulting gives us 
data of the peptide involving peptide sequence, peptide name, nature of peptide, 
origin, chirality, uptake efficiency, subcellular localization, etc. A deep area of user-
friendly tools has been integrated in this database like analyzing and browsing tools. 
Moreover, they have introduced other informations concerning peptide sequences 
such as secondary/tertiary structure and physicochemical properties of peptides.

This database version was then developed and updated as a CPPsite 2.0 and 
holds 1855 entries, including 1012 recent new entries [44]. The renovated version 
contains further data concerning chemically modified CPPs used on the in vivo 
model. In addition to other informations on delivered cargoes by CPPs (proteins, 
molecules, nanoparticles, DNA, RNA, etc.), secondary and tertiary structures of 
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natural and chemical CPPs (including CPP with D-amino acids) were also pre-
dicted in view of their important role in the functionality of CPPs and stored in 
the database. Numerous tools for information browse and analysis are combined in 
this database and considered as a useful resource since it is compatible for all users, 
including smartphone and tablet.

CPP prediction sites are a promising assist to the researchers to design cell pen-
etrating peptide, as well as making different modification and to investigate their 
effect on cell penetration potency [45].

5. Conclusion

The progressive and continuous application of CPPs shows that they are effi-
cient delivery vectors. Because of the need to ameliorate the drug delivery, a great 
number of CPP-based applications are still drawing the attention of researchers.

In this review, the current tendency in drug delivery by CPPs is summed up. 
Conjugation with CPP increases cell-surface affinity and eventual cellular uptake of 
bioactive molecules.

© 2020 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 
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