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Preface

The eld of Stochastic Optimization produces intelligent algorithms that succeed in 
seeing the optimal for the uncertain. Such methods aim to insightfully search for 
global optima within probabilistic numerical environments, often highly multidimen-
sional, nonlinear, and noisy.

In the context of stochastic optimization, the term “stochastic” is better described if
approached via its classical meaning. From the Greek “stokhastikos” (στοχαστικός),
it describes a meditative state of mind targeted to intuitively make sense of uncertain 
parameters that determine a future outcome. It is even att ributed a avor of a mind
sharpening exercise requiring intense and deep thinking, far more perplexing than 
deterministic thinking.

Modern stochastic optimization algorithms, as a subset of articial intelligence, strive
to incorporate all aspects of optimal stochasticity and have found important applica-
tions in diverse elds. Their most pragmatic application is probably when incorporated 
within simulation based optimization frames. If virtual experiment grade simulations 
are performed then stochastic optimization algorithms can design spectacularly opti-
mized systems at minimal cost.

Prior to presenting an overview of the material covered by each of the nineteen chap-
ters, I believe it would be practical to present an algorithm and application eld map-
ping of this book.

Firstly the plethora of algorithms presented:

• Genetic algorithm:   Chapters 1-5, 15, 18
• Non dominated sorting genetic algorithm:  Chapter 5
• Mesh adaptive direct search:  Chapter 15
• Enhanced and stochastically perturbed 

Nelder-Mead method:  Chapter 15
• Harmony search: Chapters 18, 19
• Stochastic processes and Monte Carlo 

instances:  Chapters 6-8
• Shuffled complex evolution algorithm: Chapter 17
• Fast Monte Carlo algorithms:  Chapter 16
• Articial chemical process:  Chapter 16
• Generalized pattern search: Chapter 15
• Particle swarm: Chapter 3
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XIV Preface

• Random search technique: Chapter 17
• Tribes: Chapter 3
• Diff erential evolution: Chapter 3
• Improved harmony search: Chapter 19
• Global harmony search: Chapter 19
• Least squares Monte Carlo: Chapter 6
• Markov chain Monte Carlo: Chapter 7
• Simultaneous perturbation stochastic

approximation: Chapter 9
• Particle  ltering: Chapter 9
• Integral analysis method: Chapter 10
• Simulated annealing: Chapters 11, 18
• Chance constrained programming: Chapter 13
• Lagrangian relaxation technique: Chapter 14

Secondly the diverse  elds of application:

• Physics: Chapter 1
• Optics and photonics: Chapters 2, 15
• Electronics engineering: Chapters 4, 8
• Electrical engineering: Chapters 3, 5
• Investment management: Chapter 6
• Telecommunications: Chapter 7
• Merchandise transportation: Chapter 10
• Medical chemistry / drug discovery: Chapter 11
• Risk management: Chapter 12
• Energy management: Chapter 13
• Project management: Chapter 14
• Chemical kinetics: Chapter 16
• Hydrography: Chapter 17
• Industrial distillation: Chapter 18
• Thermodynamics: Chapter 19

Thirdly the comparative tests made:

• Generalized patt ern search -versus- Mesh adaptive direct search -versus-
Genetic algorithm -versus- Enhanced and stochastically perturbed Nelder&Mead
method:  Chapter 15
• Arti cial chemical process -versus- Fast Monte Carlo algorithms: Chapter 16
• Random search technique -versus- Shuffl  ed complex evolution algorithm:
Chapter 17
• Genetic algorithm -versus- Harmony search -versus- Simulated annealing:
Chapter 18
• Standard harmony search -versus- Global harmony search -versus- Improved
harmony search:  Chapter 19

And lastly a short description of the individual chapters:

• Chapter 1: Describes the application of a genetic algorithm in the  eld of ex-
perimental physics. More speci cally, a genetic algorithm is placed in the closed loop
between computer control and the analyses of ultra cold gases. The target is to optimize

XIPreface

the various experimental tasks.
• Chapter 2: A genetic algorithm handles the optimization of the construction 
parameters of a multilayer optical system’s theoretical model
• Chapter 3: The author summarizes some of his experience in the stochastic op-
timization of electromagnetic systems. Two algorithms are presented: the “diff erential
evolution algorithm” and the “tribes”, a particle swarm algorithm.
• Chapter 4: Proposes the optimization of a test pattern generator via a genetic 
algorithm
• Chapter 5: Employs the “non dominated sorting genetic algorithm” to solve a 
very practical problem: The reduction of noise in electrical machines
• Chapter 6: The decomposition and evaluation of real options based on stochas-
tic chronological simulations via the “least square Monte Carlo” method is the essence 
of this chapter.
• Chapter 7: Elaborates on the subject of network tomography and brings forth 
the “Markov chain Monte Carlo” method to generate link performance parameters.
• Chapter 8: Applies a Monte Carlo method to optimize power networks in very 
large scale integrated circuits.
• Chapter 9: Adopts a theoretical view and proposing an adaptive estimation 
algorithm for non-linear dynamic systems. The effort combines the particle  ltering
and simultaneous perturbation stochastic approximation techniques. 
• Chapter 10: Uses the “integral analysis method” to optimally load containers 
so to minimize wasted space.
• Chapter 11: Applies the “simulated annealing method” to the drug discovery 
eld of medical chemistry
• Chapter 12: Approaches stochastically the problem of hedging against risks in 
electricity markets
• Chapter 13: Energy management is a crucial topic and this chapter attempts to 
apply “chance constrained programming” to stochastically optimize the  eld.
• Chapter 14: Develops a simulation based optimization technique based on the 
“Lagrangian relaxation technique” and applies that in the eld of project evaluation.
• Chapter 15: Compares several direct search methods and proposes a stochastic
simplex search approach in optimizing optical ber structures. The global optimizers
found are the outcome of simulation based optimization at very high dimensions.
• Chapter 16: Focuses on chemical kinetic problems and compares the “arti cial
chemical process method” with the “fast Monte Carlo” algorithm and hybrids.
• Chapter 17: Discusses hydrological modeling and compares the “random 
search technique” with the “shuffled complex evolution algorithm”.
• Chapter 18: Compares the “genetic algorithm” with the “harmony search” and 
“simulated annealing” methods applied in the eld of industrial distillation.
• Chapter 19: Presents a direct comparison of the “standard harmony search”,
“global harmony search”, and “improved harmony search” techniques applied to phase 
equilibrium modeling for non-reactive systems.

I would like to thank all the authors for their excellent contributions to this book; a 
truly insightful reading.

Dr. Ioannis Dritsas
City University London 

UK
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W. Rohringer, D. Fischer, M. Trupke, J. Schmiedmayer, T. Schumm
Vienna Center for Quantum Science and Technology, Atominstitut,

TU Wien, 1020 Vienna
Austria

1. Introduction

In 1924/25, Satyendranath Bose and Albert Einstein predicted that particles of integer
spin (today called bosons) should undergo a quantum statistical phase transition when
cooled to temperatures very close to absolute zero (Bose, 1924; Einstein, 1925). This
phenomenon, nowadays called Bose-Einstein condensation, has been experimentally
observed seventy years later using ultracold (nanokelvin temperatures) gases of bosonic
neutral atoms (Anderson et al., 1995; Bradley et al., 1995; Davis et al., 1995c). This spectacular
experimental achievement was awarded the Nobel price in 1995 and has triggered a new
research direction "ultracold quantum gases" with more than 200 groups worldwide today. 1

Bose-Einstein condensates (BEC) of ultracold atomic gases represent a fascinating exotic state
of matter with properties entirely determined by the laws of quantum mechanics. Although
they consisting of several thousands up to millions of atoms, the quantum state can in most
cases be described by a single collective wave function with a common quantum phase. This
wave function usually has a spatial extent ranging between 1-100 microns, allowing us to
observe quantum mechanics essentially by eye using basic magnification optics.
The Bose-Einstein condensate can be described as a coherent matter wave in close analogy
to the optical field emitted by (or inside) a laser. This analogy has brought about the field of
"quantum-atom-optics" which aims to implement standard elements and experiments known
from laser optics using matter waves. As heavy rest mass particles, such as atoms, are very
sensitive to gravity or acceleration/rotations, matter-wave interferometers promise orders of
magnitude in sensitivity gain compared to their photonic counterparts (Berman, 1996).
Over the last decade, experimental tools for the creation and manipulation of ultracold
quantum matter have reached an impressive degree of sophistication. This allows the
construction of tailored Hamiltonians for the system and the "quantum simulation" of
more general physical situations, not connected to atomic physics alone. Optical lattice
potentials allow to mimic solid state physics with a high degree of control over essentially
all experimental parameters. Particle interactions can be tuned via Feshbach resonances,
allowing the study of superconductivity, superfluidity and the formation of ultracold

1 (n.d.). see atom traps world wide: http://www.uibk.ac.at/exphys/ultracold/atomtraps.html and links
therein.

Stochastic Optimization of Bose-Einstein 
Condensation Using a Genetic Algorithm 

1
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molecules. One-dimensional and two-dimensional quantum systems have been realized with
ultracold gases in constrained geometries. Experiments have also been extended to fermionic
atoms which follow completely different quantum statistics at low temperatures and will one
day allow to simulate electrons.
The creation of an ultracold gas of atoms is a complex and delicate procedure which
involves many steps like laser cooling, conservative atom trapping, evaporative cooling etc.
The fundamental steps common to most experimental approaches will briefly be outlined
in section 2. Together with the actual experiment to be performed and the detection, a
whole experimental sequence takes between several tens of seconds and a few minutes.
Some operations within this sequence take place (and have to be timed) on a microsecond
timescale, hence a computer based experimental control is inevitable. As the detection of
the system is almost always destructive, the experimental cycle has to be repeated many
times to accumulate statistics or vary experimental parameters. Complex optimizations or
multi-parameter scans can require several days of continuous operation.
In most setups working with ultracold atoms the result of an experiment is an image of the
atomic density distribution (see section 2.2 for details). These images are acquired using
computer controlled CCD cameras, yielding a graphical file for immediate data processing.
With modern computers and efficient algorithms, the analysis of a single result image takes
a few seconds, usually much faster than the entire experimental cycle. Hence effectively
real-time analysis for various feedback schemes is available, which is the basis for the
stochastic optimization methods described herein.
In our work, we close the loop between computer-based experimental control and equally
computer-based real-time analysis to automatically optimize various experimental tasks using
a genetic algorithm (GA). These tasks range from optimizing specific parts of the experimental
sequence for optimal result parameters (atom number, temperature, phase space density) to
complex ramp shapes that produce quantum gases in specific external or internal states. To
our knowledge, there are very few implementations of stochastic optimization to physical
systems. Aside from our experiment (Rohringer et al., 2008; Wilzbach et al., 2009), some
examples are the optimization of the temporal shape of laser pulses (Baumert et al., 1997), or
the tailoring of pulse shapes to control chemical reactions (Assion et al., 1998).
We wish to underline that none of the methods described here is specific to our experimental
setup or physical system. This approach is applicable in a large variety of fields of
experimental and industrial research.
The following chapter will start with a brief and general introduction to experiments with
ultracold atoms in section 2. In section 3 we describe the implementation and internal
structure of the GA. Examples of stochastic optimizations on various levels are given in
section 4. For comparison, a brief overview of purely computer-based optimization tasks is
given in section 5. In section 6 we close with a summary and outlook on further developments.

2. Experiments with ultracold quantum gases

This section will give a brief introduction to experiments with ultracold atoms. Since the first
realization of Bose-Einstein condensation in 1995, experimental techniques have evolved and
diversified. We will focus on the major steps which are still common to most approaches and
which are necessary to understand the optimizations performed and presented in section 4.
For simplicity, we divide an experimental cycle into two main phases: first the preparation of
the ultracold gas or Bose-Einstein condensate, which in itself consists of several stages. The
second phase concerns the detection of the sample after manipulation, and the acquisition

4 Stochastic Optimization - Seeing the Optimal for the Uncertain

of significant physical quantities. These allow an evaluation of the experiment run and
the chosen experimental parameters. This analysis is the starting point for the genetic
optimization routines described in sections 3 and 4. For a more comprehensive review on
the creation and characterization of ultracold Bose and Fermi gases see (Ketterle et al., 1998)
and (Ketterle & Zwierlein, 2008) .

2.1 Preparation of ultracold atomic gases
In the following, we characterize a gas of neutral atoms by its temperature T, and by the
corresponding de Broglie wavelength λdB = (2πh̄2/mkBT)1/2, where m is the mass of the
atom and kB is Boltzmanns constant.
The de Broglie wavelength can be regarded as the size of a quantum mechanical wave function
of an individual atom of the gas. It increases as the gas gets colder. The gas density n is related
to the average distance d between atoms through n = d−1/3. The quantum phase transition
to a Bose-Einstein condensate takes place when bosonic atoms are cooled to a point where
the atomic wavepackets start to overlap, more precisely at a critical temperature Tc where the
phase space density nλ3

dB ≈ 2.612. This temperature Tc is typically between 100 nK and 1 μK,
the atomic density is between 1013 cm−3 and 1014 cm−3 (compare figure 1).
The starting point for experiments with ultracold quantum gases is usually a thermally
activated source of neutral atoms, providing particles at temperatures around 500 K and
densities of 108 cm−3. 2 Therefore to reach Bose-Einstein condensation the temperature has to
be reduced by 9 orders of magnitude, while the atomic density needs to be increased by up
to 6 orders of magnitude. This enourmous cooling power is attained by using a combination
of extremely efficient techniques which will be briefly outlined in the following. A schematic
trajectory through phase space on the path towards Bose-Einstein condensation is depicted in
figure 1.

Fig. 1. Schematic representation of a typical trajectory through phase space in a Bose-Einstein
condensation experiment. The various steps are explained in the text.

2 The densities at the starting point of the experiment vary significantly depending on the specific
approach, they may reach 1014 cm−3 in high flux Zeeman slowers.
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2.1.1 Laser cooling
Laser cooling and trapping relies on light forces, emerging when a (near-) resonant laser
interacts with atomic transitions (see (Metcalf, 1999) for a detailed description). When an
atom absorbs a photon of energy hνatom, its momentum changes by h̄k = 2πνatom/c where k
is the wave vector of the laser. When (spontaneously) emitting the photon again, the atom
momentum changes again by h̄k. While the momentum "kick" in emission is in random
direction and averages out over many absorption-emission cycles, the momentum transfer
in absorption is directive, pointing in the direction of the laser (light pressure). Hence,
on average, one recoil momentum of 2πνatom/c is transferred to the atom per cycle. The
interaction with the laser changes the momentum of an atom, which is the action of a "light
force". This force is only determined by the frequency νatom and the scattering rate R of the
atom: F = ṗ = h̄kR with

R =
Γ
2

s0

1 + s0 + (2Δ/Γ)2 (1)

where Γ = 1/τ is the transition linewidth, s0 = I/Isat is the saturation parameter, Isat is the
saturation intensity of the atomic transition and Δ = νatom − νlaser the laser detuning with
respect to the atomic transtion frequency νatom. The maximum light force amounts to Fmax =
Γh̄k/2 on resonance and is hence mainly determined by the linewidth of the used atomic
transition. For the 780 nm D2 transition of 87Rubidium used in the experiments presented
here, the acceleration of an atom at rest by a resonant laser is a ≈ 105 m/s2, four orders of
magnitudes higher than gravity!
Under the influence of the light force, the atom changes its velocity v quickly, giving rise to the
Doppler effect. The laser now interacts with an effective detuning Δe f f = Δ+ kv. After a series
of absorption-emission cycles, (≈ 800 in the case of 87Rubidium), the effective detuning is so
large that no further interaction with the laser takes place. Turning this argument around,
choosing the detuning of the laser allows to selectively address a specific velocity class of
atoms, making the light force velocity-dependent. If the laser frequency is tuned below the
atomic resonance frequency νatom ("red" detuning), the laser preferably interacts with atoms
moving towards the laser, slowing them down. This method is routinely employed to slow
down atomic beams coming from a hot thermal source (Metcalf, 1999).
If two counterpropagating laser beams of equal intensity and frequency are used on the atoms,
the resulting light force has a dispersion-like shape. Around zero velocity, the force can be
approximated to

F = h̄k2 8s0Δ/Γ
(1 + (2Δ/Γ)2)2 v. (2)

The light force takes the form of a friction or "molasses” force (optical molasses, see below).
The cooling strength can be adjusted again by adjusting the detuning Δ. A smaller (red)
detuning leads to colder temperatures. However a more narrow velocity class is then
addressed by the laser, leading to a lower number of cooled atoms. Therefore a compromise
between number and temperature has to be found experimentally. An optimization of laser
cooling parameters using a stochastic GA can be found in section 4.
The above description takes place entirely in momentum/velocity space, so far no spatial
dependence and hence no trapping is introduced. To render the optical cooling force spatially
dependent, the magnetic Zeemann effect is employed. Using a quadrupole magnetic field (e.g.
generated by coils in anti-Helmholtz configuration) the atomic transition is shifted, depending
on the position. With the right laser detuning (and polarization) and the right quadrupole field
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the effective cooling force can be designed so that it points towards zero magnetic field, where
the atoms will accumulate. The scheme can easily be extended to three dimensions, realizing
a true 3d trapping of neutral atoms in free space.
The combination of optical and magnetic fields to at the same time cool and spatially trap
atoms is called magneto-optical-trap (MOT) and has become a standard tool in atomic physics.
Its development, together with a thorough theoretical explanation of the relevant effects, led
to the award of a Nobel price in 1997 (Chu, 1998; Cohen-Tannoudji, 1998; Phillips, 1998).
A MOT usually catches atoms from the low-velocity tail (≈ 10 m/s) of the thermal distribution
of a background gas at room temperature or from a slowed atomic beam. Typical total atom
numbers (87Rubidium) are 108 − 109 with a density of 1011 cm−3 and a temperature of ≈
200 μK. This constitutes a significant step towards Bose-Einstein condensation, as illustrated
in figure 1. Almost all experiments with ultracold gases start with a phase of magneto-optical
trapping.

2.1.2 Optical molasses
As described above, the experimental settings used in a magneto-optical trap are usually
optimized for trapping high number of atoms, rather than for obtaining the lowest possible
temperatures. Before loading atoms from a MOT into a conservative trapping scheme, a short
phase of "optical molasses" (1-100 ms) is employed to further lower the temperature of the
gas. Here, the magnetic fields are quickly switched off, extinguishing the spatial trapping.
The lasers are adjusted to different detunings (usually significantly further from the atomic
resonance) and amplitudes to provide an optimal optical molasses. Atoms hence expand in
the laser field, but reduce their kinetic energy (and hence the temperature of the sample, once
recaptured in a conservative trap). As the atoms fulfill a damped Brownian motion, they will
ultimately diffuse out of the volume that can be captured by a conservative trap. Again a
compromise has to be found between temperature (favoring long molasses times) and atom
number (favoring short molasses times) to be transferred.
Several different processes contribute to the enhanced cooling in the optical molasses, such as
Sisyphus cooling or dark state effects which go beyond the simple model of Doppler cooling
described above. For a comprehensive overview see (Metcalf, 1999).

2.1.3 Conservative atom trapping
Even though laser cooling and optical molasses allow an enormous gain in phase space
density, there are fundamental limits. As all optical forces rely on absorption and successive
emission of photons, the random momentum transfer in spontaneous emission induces a
heating mechanism which limits the temperatures that can be achieved. A lower bound,
termed the recoil limit, can be obtained by calculating the energy associated with a single
photon recoil:

Erecoil = kBTrecoil =
h̄2k2

2m
. (3)

For 87Rubidium atoms and the standard 780 nm D2 transition, this corresponds to a
temperature of 0.4 μK.
Therefore to confine and further cool the gas, another trapping scheme has to be employed
which does not rely on photon exchange. Such traps can be constructed using the interaction
of an electric3 or magnetic dipole moment with external electric or magnetic fields. These

3 Note that most experiments with ultracold atoms are performed with alkali atoms, where the electric
dipole moment is only induced in the presence of en external electric field.
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Fig. 2. (a) Schematic representation of a magnetic wire trap. The combination of a
homogeneous external magnetic field and the magnetic field of a current carrying wire gives
rise to a three-dimensional potential minimum above the wire, that can be used to trap and
manipulate neutral atoms. (b) Experimental implementation of a wire trap using an atom
chip. The position of the central trapping wire is indicated in red. Optical fibres used for
on-chip fluorescence detection can also be seen.

fields give rise to a shift of the internal atomic energy via the Stark or Zeemann effect which
acts as an effective potential for the atoms. As the experiments described in the following only
employ magnetic interactions, we will concentrate on magnetic trapping. A comprehensive
review on optical trapping relying on the electric interaction can be found in (Grimm et al.,
2000).
The interaction of an atomic magnetic moment �μ with an external, inhomogeneous magnetic
field �B(�r) gives rise to the potential V(�r) = −�μ�B(�r). Solving the Zeeman Hamiltonian within
an adiabatic approximation gives rise to the magnetic quantum numbers mF and we can
write the potential V(�r) = mFgFμB|B(�r)|, where gF is the Landé factor and μB the Bohr
magneton. For atomic states where mFgF > 0 atoms are attracted to a spatial minimum of the
magnetic field ("low-field seekers") whereas for mFgF < 0 atoms are attracted to a magnetic
field maximum ("high-field seekers")4. From Maxwell’s equations, one can derive that only
a minimum of magnetic field can be created in free space, hence only low-field seekers can
be trapped magnetically (Wing, 1984). All experiments described in the following are in the
|F = 2, mF = 2 > state of 87Rubidium, where gF = 1/2.
To give an order of magnitude: a magnetic field of 1 Gauss (10−4 Tesla) leads to a potential
energy of kB × 67 μK. As magnetic traps usually work with tens of Gauss, atomic clouds
prepared by laser cooling and optical molasses (≈ 50 μK) can easily be captured. However,
directly catching from room temperature background gas would require hundreds of Tesla.
A plethora of magnetic field configurations has been developed over time to trap atoms
and reviewing them here is beyond the scope of this chapter. An overview can be found
in (Ketterle et al., 1998). A simple and elegant way to produce magnetic traps with strong
spatial confinement are wire traps as used in the experiments described below (Folman et al.,
2002; Fortagh & Zimmermann, 2007). In brief, combining the magnetic field of a current
carrying wire and homogeneous fields produced by external coils creates a magnetic trap
following the geometry of the wire (compare figure 2). Integrating these trapping wires
by using techniques from electronic circuit lithography ("atom chips") allows the creation of
potential landscapes and provides a high degree of spatial control over the atomic gas, with

4 Obviously, atoms in the mF = 0 state are insensitive to magnetic fields
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high temporal resolution. Bose-Einstein condensation on a chip was first demonstrated in
2001 (Hänsel et al., 2001; Ott et al., 2001; Schneider et al., 2003), and atom chips have since
then become a standard tool in ultracold atom research.

2.1.4 Evaporative cooling
Magnetic trapping as described above provides a means to confine neutral atoms of a
specific temperature in free space. However, as magnetic (and also electric) potentials
are conservative, no cooling takes place. The temperature of the gas can be changed by
(adiabatically) changing the atomic confinement, however, phase space density is maintained
and hence no progress towards Bose-Einstein condensation can be made.

Fig. 3. (a) Principle of evaporative cooling. A thermal Maxwell-Boltzmann distribution
characterized by a temperature Ti is truncated at energy Etrunc with Etrunc > kBTi. The
truncated system relaxes to thermal equilibrium at a lower temperature Tf . (b) Selective
removal of hot atoms by adjusting the frequency ωRF driving spin flip transitions to
untrapped states.

To gain in phase space density and decrease the gas temperature in a steady trap, an additional
cooling mechanism termed "evaporative cooling" is employed. Similar to blowing onto a
coffee cup, evaporative cooling relies on the selective removal of energetic (hot) particles. The
system successively relaxes back to thermodynamic equilibrium (via particle collisions) at a
lower temperature (see figure 3).
To selectively remove hot atoms from the magnetic trap, spin-flip transitions between trapped
and untrapped Zeeman states are induced using radio frequency (RF) fields. By choosing the
RF-field’s frequency, the transitions occur at distinct regions in space (magnetic equipotential
surfaces). The "hottest" atoms with highest kinetic energy explore the outwardmost regions
of the magnetic trap, so these can be removed selectively ("RF knife"). As the system
re-thermalizes at lower temperature, the frequency of the RF field has to be adjusted. This
leads to dynamic forced evaporative cooling with time (Davis et al., 1995b; Luiten et al., 1996).
As illustrated in figure 1, evaporative cooling allows to reduce the temperature of a
gas by another two orders of magnitude and has enabled the creation of Bose-Einstein
condensates (Davis et al., 1995a). However, the atom number is reduced by a similar factor.
So far, no cooling method able to achieve such low temperatures while maintaining the
initial atom number has been found. The details of the evaporative cooling process crucially
depend on the details of the experimental implementation, in particular on the lifetime of
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cooling mechanism termed "evaporative cooling" is employed. Similar to blowing onto a
coffee cup, evaporative cooling relies on the selective removal of energetic (hot) particles. The
system successively relaxes back to thermodynamic equilibrium (via particle collisions) at a
lower temperature (see figure 3).
To selectively remove hot atoms from the magnetic trap, spin-flip transitions between trapped
and untrapped Zeeman states are induced using radio frequency (RF) fields. By choosing the
RF-field’s frequency, the transitions occur at distinct regions in space (magnetic equipotential
surfaces). The "hottest" atoms with highest kinetic energy explore the outwardmost regions
of the magnetic trap, so these can be removed selectively ("RF knife"). As the system
re-thermalizes at lower temperature, the frequency of the RF field has to be adjusted. This
leads to dynamic forced evaporative cooling with time (Davis et al., 1995b; Luiten et al., 1996).
As illustrated in figure 1, evaporative cooling allows to reduce the temperature of a
gas by another two orders of magnitude and has enabled the creation of Bose-Einstein
condensates (Davis et al., 1995a). However, the atom number is reduced by a similar factor.
So far, no cooling method able to achieve such low temperatures while maintaining the
initial atom number has been found. The details of the evaporative cooling process crucially
depend on the details of the experimental implementation, in particular on the lifetime of
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the magnetically trapped atoms and the collision and hence re-thermalization rate. The
optimization of evaporative cooling using a stochastic GA is described in section 4.

2.2 Detection
Most information in ultracold atom experiments is gained through the interaction of atoms
with light. Although several non-optical methods for specific applications or unique atom
species (Santos et al., 2002) are in use, optical imaging is currently the main detection method
for cold atomic gases. As far as imaging is concerned, atom-light interactions can be divided
into three processes: absorption, re-emission and phase alteration of incident light, giving
rise to three detection methods, two of which - absorption and fluorescence imaging - are
used in our experiment5. Both methods result in a picture of the atom cloud, destroying
it in the process. Quantities characterizing the state of the cloud can be extracted either
from a single picture or from a series of images taken while varying one of the experimental
parameters from shot to shot. The following section will describe these quantities and how to
measure them. Suitable light sources for excitation of atoms are lasers tunable in the frequency
range near an atomic transition, while CCD - cameras are ideal detectors for light (or lack
thereof) whenever time resolution is not a critical factor.6 In order to reach the resolutions
needed for the examination of structures like interference fringes or vortices inside cold atomic
clouds, it is neccessary to put special emphasis on the imaging optics, which usually has to be
custom-built for each experiment.

2.2.1 Absorption imaging
This method consists in recording the shadow which an atom cloud casts onto a detector
due to the absorption of a certain fraction of photons when irradiated with laser light. By
comparison with the intensity of the beam in absence of the atomic cloud, the atoms’ density
distribution and a series of other parameters discussed in section 2.2.3 can be calculated. The
detection beam can be absorbed almost completely if the density of the atom cloud becomes
sufficiently high. These optically dense clouds make a quantitative analysis of an absorption
image difficult. In order to compensate for this, it is possible to detune the laser light from
resonance, lowering the absorption cross-section. The former introduces diffraction as well as
a phase shift of the transmitted light, and going to high detunings as well as filtering out the
unscattered transmitted light components leads to dispersive imaging. Absorption imaging
introduces heating: Since each absorbed photon transfers a momentum h̄k to the atom, the
cloud is literally blown away by the imaging light, making absorption imaging a destructive
technique.

2.2.2 Fluorescence imaging
In fluorescence imaging, the atom cloud is also irradiated with a laser beam. However now it
is not the transmitted intensity that is measured, but the number of photons scattered into the
solid angle Ω covered by the detector. If Ω were equal to 4π, fluorescence imaging would just
collect all the photons missing from an absorption picture. However, since the detector usually
has a coverage factor fc =

Ω
4π of a few percent, in comparison the fluorescence signal is about

a factor 100 weaker. Yet, fluorescence imaging has two advantages: In situations where the

5 For a review of dispersive imaging methods, see for example (Ketterle et al., 1998) and references
therein.

6 For fast detection, photomultipliers or avalanche photodiodes are required, trading their advantages
for lower detection efficiency and, in most cases, lower spatial resolution.
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dissipative light force is used to trap the atoms - the MOT and optical molasses phase in our
experiment - fluorescence photons come “for free” and allow non-destructive measurements.
Additionally, fluorescence imaging has favourable properties for imaging dilute atom clouds.
A comparison of the signal to noise ratio (SNR) - neglecting all noise sources except atomic
shot noise - for absorption and fluorescence imaging yields:

SNR f

SNRa
=

√
fc

OD
. (4)

Thus, if the cloud’s optical density OD drops below the coverage factor, fluorescence imaging
becomes better in terms of SNR, at least as long as other noise sources deliver a comparable
contribution for both methods. Hence, fluorescence imaging is the preferred technique for
detecting extremely dilute clouds. In contrast to absorption imaging, fluorescence detectors
need not be exposed to the high light intensities of the source laser illuminating the atoms. As
a consequence, highly sensitive detectors like EMCCD cameras and avalanche photodiode
- based single photon counting modules can be employed. Several techniques based on
fluorescence, like lightsheet imaging (Bücker et al., 2009; Rottmann, 2006) or fiber-based
detection methods allow to detect atomic clouds with single atom sensitivity.

2.2.3 Evaluating absorption images
The intensity of a monochromatic light beam travelling in y - direction through an opaque
medium is attenuated with

dI
dy

= −σIn (5)

where σ denotes the scattering cross-section and n the density of the atomic cloud. As long as
the cross-section is a constant with respect to intensity, i.e. in the case of linear optics defined
by low intensities7, this equation can simply be integrated to yield Lambert - Beer’s law as result:

I = I0e−σn. (6)

If we allow a density distribution in the (x, z) direction, this gives I(x, z) = I0(x, z)e−σnc(x,z),
with column density nc(x, z) =

∫
dy n(x, y, z). The scattering cross-section depends on the

detuning Δ, with σ(Δ) = σ0/
(

1 + (2Δ/Γ)2
)

. The column density can then be expressed as:

nc(x, z) = σ(Δ) ln
(

I0(x, z)
It(x, z)

)
. (7)

This measured column density allows to deduce important basic properties of the dilute
atomic cloud:

• Total atom number
In the continuous case, the total atom number can be obtained by integrating the column
density:

N =
∫

nc(x, z) dx dz. (8)

In the experiment, we have to consider that x and z are discrete, their step size defined
by the area A imaged onto a single CCD pixel, with the magnification M. Therefore, for

7 For high intensities, stimulated emission begins to play a role, leading to an enhanced forward
scattering rate
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the magnetically trapped atoms and the collision and hence re-thermalization rate. The
optimization of evaporative cooling using a stochastic GA is described in section 4.
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cloud is literally blown away by the imaging light, making absorption imaging a destructive
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In fluorescence imaging, the atom cloud is also irradiated with a laser beam. However now it
is not the transmitted intensity that is measured, but the number of photons scattered into the
solid angle Ω covered by the detector. If Ω were equal to 4π, fluorescence imaging would just
collect all the photons missing from an absorption picture. However, since the detector usually
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a factor 100 weaker. Yet, fluorescence imaging has two advantages: In situations where the
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dissipative light force is used to trap the atoms - the MOT and optical molasses phase in our
experiment - fluorescence photons come “for free” and allow non-destructive measurements.
Additionally, fluorescence imaging has favourable properties for imaging dilute atom clouds.
A comparison of the signal to noise ratio (SNR) - neglecting all noise sources except atomic
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becomes better in terms of SNR, at least as long as other noise sources deliver a comparable
contribution for both methods. Hence, fluorescence imaging is the preferred technique for
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need not be exposed to the high light intensities of the source laser illuminating the atoms. As
a consequence, highly sensitive detectors like EMCCD cameras and avalanche photodiode
- based single photon counting modules can be employed. Several techniques based on
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detection methods allow to detect atomic clouds with single atom sensitivity.
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The intensity of a monochromatic light beam travelling in y - direction through an opaque
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dI
dy

= −σIn (5)

where σ denotes the scattering cross-section and n the density of the atomic cloud. As long as
the cross-section is a constant with respect to intensity, i.e. in the case of linear optics defined
by low intensities7, this equation can simply be integrated to yield Lambert - Beer’s law as result:

I = I0e−σn. (6)

If we allow a density distribution in the (x, z) direction, this gives I(x, z) = I0(x, z)e−σnc(x,z),
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. The column density can then be expressed as:
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This measured column density allows to deduce important basic properties of the dilute
atomic cloud:

• Total atom number
In the continuous case, the total atom number can be obtained by integrating the column
density:

N =
∫

nc(x, z) dx dz. (8)

In the experiment, we have to consider that x and z are discrete, their step size defined
by the area A imaged onto a single CCD pixel, with the magnification M. Therefore, for

7 For high intensities, stimulated emission begins to play a role, leading to an enhanced forward
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a square region of interest containing p pixels, equation 8 becomes the discrete sum over
these pixels:

N = A ∑
p

np(x, y) =
ΔxPixelΔyPixel

M2 ∑
p

np(x, y). (9)

• Thermal Atom Density in the Trap
In order to derive temperature or temperature-dependent quantities like phase space
density, or to gain information about the trapping potential, we need a model which
describes the density distribution of the atoms in the trap, as well as its evolution
after releasing the cloud from the trap. Since thermal atom clouds and Bose - Einstein
condensates represent different thermodynamic phases, where density is closely linked to
the phase transition’s order parameter, one expects different behaviour in the two regimes.
Trapping potentials created by static magnetic fields are harmonic around the field
minimum:

V(x, y, z) =
m
2

(
ω2

xx2 + ω2
yy2 + ω2

z z2
)

. (10)

For a thermal cloud of bosons, the density distribution for high temperatures can be
expressed as (Ketterle et al., 1998; Reichl, 1998)

n(r) =

(
2πh̄2

mkBT

)3/2

g3/2 (z (r)) (11)

with z = e(μ−V(x,y,z))/kBT . Here, gj(z) = ∑i
zi

ij is the Bose function, introducing Bose
enhancement, which means increased density compared to the classical case, where the
distribution would be Gaussian. For high temperatures or low densities, we can neglect

Bose enhancement, and with the halfwidths wi =

√
2kBT
mω2

i
, i = x, y, z and zero chemical

potential, we recover a Gaussian distribution:

n(x, y, z) = n0e
−
(

x2

w2
x
+ y2

w2
y
+ z2

w2
z

)

. (12)

Experimentally, we only have access to column densities:

nc(x, z) =
∫

dy n(x, y, z) = n0
√

πwye
−
(

x2

w2
x
+ z2

w2
z

)

= ñ0e
−
(

x2

w2
x
+ z2

w2
z

)

. (13)

We can determine ñ0 by normalization with respect to the atom number:

N =
∫

dx dz nc(x, z) ⇒ ñ0 =
N

πwxwz
. (14)

By comparison with equation 13 we can calculate the peak density of the thermal cloud:

n0 =
ñ0√
πwy

. (15)
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Equivalently, n0 can be determined directly from normalization of equation 12. Since the
picture is integrated along y, we need an assumption about the density distribution on this
axis. Our magnetic traps yield cigar-shaped atom clouds, therefore it usually holds that
wy = wz.

• Temperature
A thermal atom cloud released from a trap by suddenly (non-adiabatically) switching
off the trapping potential expands isotropically, the intitial isotropic velocity distribution
being conserved. The evolution of the cloud’s half-width is given by

wri (t)
2 =

2kBT
mω2

i
+

2kBT
m

t2. (16)

By repeatedly measuring w2
ri

at different times of flight t2 and plotting the two quantities

against each other, the temperature can be determined by the resulting line’s slope 2kBT2

m .
For t = 0, an estimation of the trap frequency in direction ri is possible.

• Phase Space Density
The important quantity which has to reach a treshold value of 2.612 in order to achieve
Bose–Einstein condensation is the phase space density of the atomic cloud:

D = n0 λ3
dB (17)

comprising the peak density n0 and the thermal de Broglie wavelength λdB =
√

2πh̄2

mkBT .

3. Stochastic optimization in an ultracold atom experiment

3.1 Setup of the feedback loop
The goal of our experiment is the investigation of ultracold 87Rubidium clouds in chip - based
magnetic traps, employing all steps involving preparation, manipulation and detection of the
atoms described in the previous sections. The focus lies on the application of fiber optics
integrated directly on the chip as a tool for the detection of ultracold atoms (Heine et al.,
2010).
Figure 4 illustrates our hardware feedback loop. A real-time control system governs the
behavior of the experimental apparatus via 30 output channels providing analog control
voltage signals, as well as 28 digital TTL channels, with a time resolution of 25 μs. The
control channels allow us to manipulate practically all aformentioned experimental quantities,
including laser detunings and intensities, magnetic field strengths and radio frequency fields,
both in timing and magnitude. User input is collected by an interface software written in
MATLAB.
Our absorption images of atomic clouds are taken with a Pixelfly QE interline CCD
camera, read out and evaluated by a MATLAB program on a dedicated computer. The
algorithm providing feedback between acquisition and control software is also implemented
in MATLAB as part of the acquisition software, and communication between acquisition and
control hardware is established via a UDP interface provided by MATLAB.
Briefly, our experimental sequence consists of a magneto-optical trap followed by a molasses
stage. The atoms are then loaded into a magnetic trap created using a macroscopic
wire structure located behind the atom chip, and subsequently cooled using RF-induced
evaporation. All data discussed in section 4 was obtained by absorption imaging of atomic
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integrated directly on the chip as a tool for the detection of ultracold atoms (Heine et al.,
2010).
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camera, read out and evaluated by a MATLAB program on a dedicated computer. The
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in MATLAB as part of the acquisition software, and communication between acquisition and
control hardware is established via a UDP interface provided by MATLAB.
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stage. The atoms are then loaded into a magnetic trap created using a macroscopic
wire structure located behind the atom chip, and subsequently cooled using RF-induced
evaporation. All data discussed in section 4 was obtained by absorption imaging of atomic
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clouds released from the magnetic trap at this experimental stage. This point in the sequence
is crucial as it determines the atomic phase space density available for experiments using the
chip structures, including condensation in the chip trap and transport to the fiber detector.

control system experiment setup analysis system

sequence
parameters

control
hardware

imaging
systems

event
evalua�on

gene�c algorithm

Fig. 4. Scheme of the hardware feedback loop.

In order to perform an experiment, the right set of input parameters for all the devices
integrated within the experiment must be found. While for some devices optimal values can
be directly calculated or gained through simulations, usually it is only possible to constrain
the range of useful values to a certain extent. Within this value range, optimization is
necessary. The typical approach is to scan one variable while fixing all others, and repeating
this procedure for all variables, in some cases iteratively, until satisfactory conditions for
the experiment are met. This is a time consuming task, and inefficient if subsets of these
parameters are coupled.
Instead of performing this task manually, we implement an automatic optimization scheme.
With the availability of a control system allowing relevant parameters to be set via a program
running on a PC, evaluation software capable of automatically acquiring measurements as
well as extracting all interesting information and with the possibility of communication
between these two programs, the technical requirements for the implementation of an
automated optimization scheme directly into a hardware feedback loop are met.
The big number of different optimization problems arising in our setup, depending on the
choice of parameters to optimize, makes the implementation of a deterministic algorithm
unfeasible. On the other hand, stochastic optimization algorithms have been successfully
used in many applications.

3.2 Choice of algorithm
The question can be raised whether it is possible to build an optimal algorithm, outperforming
all the others on all possible optimization problems. However, according to a ’No Free Lunch’
- theorem for search and optimization (Wolpert & Macready, 1995; 1997) there is no such
intrinsically optimal algorithm. This can be expressed as follows:
All algorithms that search for an extremum of an objective function perform exactly the same, when
averaged over all possible objective functions. In particular, if algorithm A outperforms algorithm B on
some objective functions, then loosely speaking there must exist exactly as many other functions where
B outperforms A. (Wolpert & Macready, 1995)
In order to define a performance measure for an algorithm a, let P (dm| f , m, a) be the
conditional probability of obtaining a particular sample dm by iterating an algorithm a m times
on an objective function f . For a finite problem space and a finite space of objective function
values, it can be shown (Wolpert & Macready, 1997) that for any two algorithms a1 and a2 it
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applies that
∑

f
P (dm| f , m, a1) = ∑

f
P (dm| f , m, a2) . (18)

Therefore in order to deliver optimal performance, optimization algorithms have to be
matched or tailored to specific problems. The main point in this context is the balance
between what is called ’exploration versus exploitation’. Any random search mechanisms
within an algorithm contribute to exploration, while gradient search - based elements exploit
the parameter space structure in order to find the optimum. As a consequence, picking an
algorithm and choosing its parameters to fit the problem at hand is as valid an approach as
choosing a specific algorithm.
Out of the many different methods available, we choose to implement a real coded genetic
algorithm (RCGA). Belonging to the first stochastic optimization methods developed, the
convergence behavior of genetic algorithms is well documented for different classes of
problem spaces. They belong to the class of global optimization algorithms, exploiting
information from different parts of the problem space in parallel as opposed to local
algorithms like e.g. stochastic hill climbing or simulated annealing. This property reduces
the probability of premature convergence towards local optima. RCGAs allow to define
states directly from real valued optimization parameters, without any intermediate encoding,
which is simple and intuitive. While early literature suggests that binary encoding is key
to the convergence properties of genetic algorithms, more recent studies, backed up by an
increasing number of applications, have shown that real coded algorithms suffer from no
general disadvantages as compared to other encoding schemes, and even perform better for
many applications.

3.3 Implementation
The basic concept of the algorithm, as depicted in figure 5, is the same as applies to the
initial canonical genetic algorithm and most subsequent implementations. After generation
of a random starting population of states, real valued parameter vectors, the experiment is
performed and evaluated for each state with respect to a measured value representing the
objective function of the optimization problem. Based on the measurement results, the states
are ranked and fitness values are assigned accordingly. The fitness values determine the
probability for each state to be selected as a parent for a recombination procedure providing
the next generation of states. After recombination, each state undergoes mutation, a stochastic
alteration of one of its parameter values, with a preset probability. Subsequently, the next
iteration begins by evaluating the resulting parameter vectors by experiment.
The time consuming process in this setup is evaluating the objective function, which means
performing the experiment, with a duration of 35 seconds. Even more so than in purely
computational applications of GAs, it is crucial to minimize the number of iterations before
finding the optimum. Since runtime crucially depends on the number of states within each
generation, the population size, the design goal is to keep this number as low as possible
while preventing premature convergence due to rapidly decreasing diversity of the states.
Simulations, backed up by our experiments, indicate that with proper adjustment of the
genetic operators, as described in the next section, a population size of 20 states can ensure
reliable convergence behavior for realistic problem spaces.
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clouds released from the magnetic trap at this experimental stage. This point in the sequence
is crucial as it determines the atomic phase space density available for experiments using the
chip structures, including condensation in the chip trap and transport to the fiber detector.
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All algorithms that search for an extremum of an objective function perform exactly the same, when
averaged over all possible objective functions. In particular, if algorithm A outperforms algorithm B on
some objective functions, then loosely speaking there must exist exactly as many other functions where
B outperforms A. (Wolpert & Macready, 1995)
In order to define a performance measure for an algorithm a, let P (dm| f , m, a) be the
conditional probability of obtaining a particular sample dm by iterating an algorithm a m times
on an objective function f . For a finite problem space and a finite space of objective function
values, it can be shown (Wolpert & Macready, 1997) that for any two algorithms a1 and a2 it
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applies that
∑

f
P (dm| f , m, a1) = ∑

f
P (dm| f , m, a2) . (18)

Therefore in order to deliver optimal performance, optimization algorithms have to be
matched or tailored to specific problems. The main point in this context is the balance
between what is called ’exploration versus exploitation’. Any random search mechanisms
within an algorithm contribute to exploration, while gradient search - based elements exploit
the parameter space structure in order to find the optimum. As a consequence, picking an
algorithm and choosing its parameters to fit the problem at hand is as valid an approach as
choosing a specific algorithm.
Out of the many different methods available, we choose to implement a real coded genetic
algorithm (RCGA). Belonging to the first stochastic optimization methods developed, the
convergence behavior of genetic algorithms is well documented for different classes of
problem spaces. They belong to the class of global optimization algorithms, exploiting
information from different parts of the problem space in parallel as opposed to local
algorithms like e.g. stochastic hill climbing or simulated annealing. This property reduces
the probability of premature convergence towards local optima. RCGAs allow to define
states directly from real valued optimization parameters, without any intermediate encoding,
which is simple and intuitive. While early literature suggests that binary encoding is key
to the convergence properties of genetic algorithms, more recent studies, backed up by an
increasing number of applications, have shown that real coded algorithms suffer from no
general disadvantages as compared to other encoding schemes, and even perform better for
many applications.

3.3 Implementation
The basic concept of the algorithm, as depicted in figure 5, is the same as applies to the
initial canonical genetic algorithm and most subsequent implementations. After generation
of a random starting population of states, real valued parameter vectors, the experiment is
performed and evaluated for each state with respect to a measured value representing the
objective function of the optimization problem. Based on the measurement results, the states
are ranked and fitness values are assigned accordingly. The fitness values determine the
probability for each state to be selected as a parent for a recombination procedure providing
the next generation of states. After recombination, each state undergoes mutation, a stochastic
alteration of one of its parameter values, with a preset probability. Subsequently, the next
iteration begins by evaluating the resulting parameter vectors by experiment.
The time consuming process in this setup is evaluating the objective function, which means
performing the experiment, with a duration of 35 seconds. Even more so than in purely
computational applications of GAs, it is crucial to minimize the number of iterations before
finding the optimum. Since runtime crucially depends on the number of states within each
generation, the population size, the design goal is to keep this number as low as possible
while preventing premature convergence due to rapidly decreasing diversity of the states.
Simulations, backed up by our experiments, indicate that with proper adjustment of the
genetic operators, as described in the next section, a population size of 20 states can ensure
reliable convergence behavior for realistic problem spaces.
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3.3.1 Fitness assignment
Most fitness assignment schemes developed for genetic algorithms can be devided into two
different classes: ranking based fitness assignment and proportional fitness assignment. The
latter class has been shown to suffer from two problems, premature convergence and stagnation
(Herrera et al., 1998; Pohlheim, 1999; Weicker, 2002, 2.Auflage 2007).
Ranking - based fitness assignment (Baker, 1985) avoids the two stated problems by
distributing fitness values independently from the actual objective function values. A simple
implementation chosen in our algorithm is linear ranking. Here, the sorted population
members Si, i ∈ {1...Np} are assigned a fittness given by

F (Si) =
2

Np

(
1 − i − 1

Np − 1

)
, (19)

where Np is the population size. This redistributes the fitness values linearly between 0 and 1.
Several nonlinear ranking methods can be applied to shift recombination probability towards
good or bad states.

3.3.2 Selection
Out of several available selection schemes, we chose Stochastic Universal Sampling (SUS), a
variant of roulette selection. Given that each state has a fitness value F (Si) between 0 and
1 with a total fitness of 1, one can interprete the total fitness as the area of a roulette wheel
devided into Np sections with area F (Si). Creating a random number between 0 and 1 and
selecting the state occupying the area including the random number is equivalent to spinning
a roulette wheel and waiting for the pointer to stop in one of the sections. In this picture, SUS
represents a roulette wheel which is spun once with n pointers equally partitioned between 0
and 1. SUS results in zero bias and minimum spread and is a widely used selection method.
In order to speed up convergence, the best 20 percent of the parent states are taken over into
the next generation, providing an elitist selection scheme.

3.3.3 Recombination
Generally, recombination is a genetic operator using two parent states to generate a new state.
For binary strings, this means breaking each of the two strings at specific points and creating
a new string by concatenating fragments stemming from different parents. The only option to
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vary in this case is the number of fragments the parents are broken in, leading to single-point,
multi-point or uniform crossover. The latter represents simply an extreme case of multi-point
crossover, where the m - bit parent states are decomposed into n fragments.
For RCGAs, the state is represented by a string or vector of real numbers. Translating the
idea of crossover to this situation gives what is called discrete recombination. One method
to implement this is to decide for each vector component vj of the child state SC

i (vj) which
parent (P1 or P2) contributes the variable value:

vC
j = vP1

j aj + vP2
j

(
1 − aj

)
. (20)

Here, aj is randomly chosen to be 0 or 1 for each vC
j separately and j ∈ {1, ..., m}, where m

denotes the total number of variables.
With discrete recombination, only variable values already realized in the starting population
can be reached. In order to gain access to new value regions, real number represented
states allow interpolation between two values. The most general recombination scheme to
be derived this way is intermediary recombination. It can be implemented with equation 20,
but an aj picked from the interval [−d, 1 + d] with uniformly distributed probability for each
variable separately. This operator is also called BLX - α (blend crossover), where α equals 2d.
The hypercuboid of possible new values has a volume of

VC
PS = (1 + 2d)

m

∏
j=1

lj (21)

with lj as length of the value region spanned by the variables vP1,P2
j and a total of m variables.

For d = 0, the hypercuboid containing the possible children values is as big as the one spanned
by the parent variables. Since the probability for a child value to lie inside the cuboid is higher
than the probability to lie on its bounds, the cuboid volume will decrease with a growing
number of iterations in this case, restricting the accessible part of the problem space without
any influence of selection. By stretching the children’s value space by the factor (1 + 2d)
one can compensate for this effect. Empirically, a value of d = 0.25 (BLX-0.5) has proven to
conserve the cuboid volume in the limit of a large iteration number.
If aj is not chosen for each variable separately, but rather once in the beginning of the
recombination phase and kept the same for all variables, the linear recombination can be
recovered as special case of intermediary recombination.
Since intermediary recombination with d = 0.25 (BLX-0.5) gives optimal convergence
behaviour in many computer experiments Herrera et al. (1998); Pohlheim (1999), it has been
chosen for our algorithm. Since it delivers real numbers as variable values while our stepsizes
imposes a whole number representation, the routine’s results are rounded to match the nearest
allowed variable value.

3.3.4 Mutation
Mutation in an RGCA means randomly changing values in the state vector. A commonly
used mutation routine has been presented in Mühlenbein & Schlierkamp-Voosen (1993) and
Mühlenbein & Schlierkamp-Voosen (1995), and can be described as follows:

vmut
j = vj + sj · rDj · 2−uκm . (22)
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3.3.4 Mutation
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Here, vmut
j and vj denote the mutated and source states respectively, while sj randomly

chooses the sign of the mutation step, r defines the mutation range as fraction of the variable
definition domain Dj. The last term designates the used distribution characterized by the
random number u which is uniformly distributed in the interval [−1, 1] and the mutation
precision κm. The latter defines a lower limit of 1

2
−κm for the mutation step size. Favoring

small mutation steps over big ones, nonuniform mutation operators like this have shown to
be advantageous for RCGAs in computer experiments.
From runs on test problems, our algorithm with population sizes between 20 and 30 has
given good results with κm = 10, r = 0.2 and an overall mutation rate of 10 percent. This
is consistent with literature suggesting that optimal mutation rates are inversely proportional
to population size Haupt (2000).

4. Examples of stochastic optimization

4.1 Optimization of an optical molasses
The measurement presented here allows a simple comparison of a grid scan to the
genetic-algorithm approach. The optical molasses has already been briefly described in
section 2.1.2. In this phase, it is possible to reduce the temperature of 87Rubidium atoms
from the magneto-optical trap by an order of magnitude to ensure that a large fraction of the
cloud has low enough energy to be trapped in a conservative magnetic trapping potential.
This phase relies purely on the interaction of atoms with laser light. In our measurement,
the optimized quantity is the atom number within the magnetic trap after the molasses
phase, and the optimized parameters are molasses duration and laser detuning. Variations
in the experimental conditions due for example to environmental noise, lead to a statistical
uncertainty in the measured value. We therefore average over multiple experimental runs to
reduce this uncertainty. The successful optimization of this experimental stage is shown in
figure 6. In the 2d grid scan, we changed the detuning in steps of 5 MHz and the molasses
duration in steps of 0.2 ms, and computed the average of 4 atom-number measurements at
each pair of values, resulting in a scan duration of approximately 17 hours. For the GA
optimization, we used a population size of 20 states and recorded the convergence over
16 generations. In this case, we only averaged over 3 atom number measurements. This
optimization approach led to a reduction of the runtime to approximately 9 hours. The set of
surviving parameters has already clustered near the optimum after this time, demonstrating
the efficiency of the approach.

4.2 Optimization of evaporative cooling in a magnetic trap
The goal of evaporative cooling in a magnetic trap is to increase phase space density (see
sections 2.1.4 and 2.2) of the atomic cloud as efficiently as possible. Efficiency means
maximizing the amount of removed energy per removed atom. Technically, evaporative
cooling as described in 2.1.4 is implemented with the help of an RF source that is tunable in
frequency and therefore can create RF - cooling ramps by lowering the frequency of the applied
field on timescales ranging from milliseconds to seconds. Frequencies from 10 MHz down to
the 100 kHz range with sub - kHz stability and corresponding resolution have to be provided.
In an ideal system, efficiency grows with ramp duration. The slower the ramp, the more time
the system has to stochastically produce atoms with high energy that are removed by the RF
field, while fast cooling means removing more atoms with lower energy. In reality, constraints
for the steepness of these ramps are imposed mainly by two mechanisms: On the one hand,
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Fig. 6. Results of the optical molasses optimization. (a) Plot of the mean fitness per
generation. (b) State Evolution. Blue points correspond to times given in milliseconds,
whereas green points represent laser detunings, in MHz. (c) The plot depicts atom number as
a function of duration and laser detuning. The points indicate the set of surviving
parameters found by the algorithm.

evaporative cooling competes with different loss or heating mechanisms leading to decreasing
phase space density by removal of cold atoms, providing an upper limit for the duration of
useful cooling ramps. On the other hand, it is necessary to ensure that the atomic cloud has
sufficient time to thermalize by interatomic collisions, which provides a lower bound for ramp
duration. The optimum depends critically on technical details and usually has to be found
empirically.
We optimize our RF-cooling ramp to yield a maximum in a dimensionless parameter PSD ∝
N1/3/T, which therefore requires a simultaneous measurement of the atom number N and the
cloud temperature T. The temperature is determined from the expansion of the atom cloud
as it is released from the trap 2. Ours is a cloud with a normal density distribution in the
x-direction, described by

nx ∝ Exp

[
−

(
x

σN(x)

)2
]

. (23)

Here σ is the 1/e−radius of the cloud. The temporal evolution of its spatial extent is given by

σN(x, t) =
√

σ2
N(x, 0) + (σ(vx)× t)2. (24)

The velocity distribution is related to the temperature with σ2(vx) = 2kBTx/m. The
same relationships hold for expansion along the other directions. However, because of the
anisotropy of the trap, the initial cloud size as well as the velocity distribution will be different
along each axis. The trap shape is near-identical along the x- and z-directions, but rather more
elongated along the y-axis. To measure the expansion, we record four absorption images of
the cloud at 4, 8, 12 and 16 ms after release from the trap. These two-dimensional images
allow us to extract the expansion rate for the x- and y− axes, and give us four measurements
of the atom number for a particular set of GA parameters. The fitness of a given parameter set
is determined by averaging over the measured temperatures in the x- and y− axes, as well as
averaging over the atom numbers from the four images.
The cooling ramp under consideration consists of two linear segments determined by three
RF - frequencies and two times (see fig. 7 a). We present two measurements:
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Here, vmut
j and vj denote the mutated and source states respectively, while sj randomly
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useful cooling ramps. On the other hand, it is necessary to ensure that the atomic cloud has
sufficient time to thermalize by interatomic collisions, which provides a lower bound for ramp
duration. The optimum depends critically on technical details and usually has to be found
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We optimize our RF-cooling ramp to yield a maximum in a dimensionless parameter PSD ∝
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same relationships hold for expansion along the other directions. However, because of the
anisotropy of the trap, the initial cloud size as well as the velocity distribution will be different
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allow us to extract the expansion rate for the x- and y− axes, and give us four measurements
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Fig. 7. Example of data for one population member. a) Schematic of an RF - ramp, depicting
the used optimization parameters. Arrows indicate the RF frequencies modified in the 2d -
optimization run. In the 4d scan, the cooling ramp was optimized over the rectangular areas
spanning duration and frequency of the two stages. b) Fits to equation (24) for the x- and y−
axes in red and blue, respectively. The inset panels show absorption images of the atom
cloud as it falls and expands after release from the magnetic trap, at the corresponding times.
Each panel shows a region of approximately 1.5 mm× 1.8 mm.

• A 2d measurement, where the algorithm adjusts the intermediate and final value of the RF
frequency. The values ranges from 0 to 10 and 0 to 1 MHz, respectively.

• A 4d measurement, where the algorithm adjusts both field values from the 2d
measurement as well as both times. RF values range from 2 to 6 and 0.3 to 0.6 MHz
respectively, in steps of 0.01 MHz. The times for the first and second ramp segment can
take values each from 500 to 2000 ms (duration 1) and 500 to 3500 ms (duration 2), in steps
of 1 ms.

The results are summarized in figure 8. Unlike the molasses optimization described above, we
have not compared this measurement to a grid scan. In the case of the 4d-optimization this is
simply not feasible, given that the explored parameter space contains of over 1011 individual
points corresponding to over 10000 years of experiment runtime. Even by reducing the time
resolution to 10 ms as well and changing the frequency steps to 0.05 MHz, the measurement
duration remains large, at roughly 50 years. Unless an optimization approach like ours is
implemented, only physical arguments and a certain degree of parameter separability can be
used to find useful working points for ramp parameters for this and similar problems, leading
to a labor-intensive manual search.
For the 2d measurement, the algorithm finds values of 3 MHz and 0.65 MHz for the RF
- ramp frequencies. Although we cannot make a quantitative statement about the quality
of this solution without knowledge of the parameter space, these values are similar to the
cooling ramp values which have been successfully used before GA - optimization as well as
the corresponding phase space densities. Note that the algorithm has not fully converged for
the intermediate RF value; a competing subpopulation with 2 MHz RF - value is still present
in the last generation.
For the 4d measurement, the algorithm also finds an intermediate value of 3 MHz, but a lower
end frequency of 0.47 MHz. Objective function values, especially those of the best performing
states within the run, are only slightly inferior to those in the last generations of the 2d
measurement. It is interesting to see however that performance increases towards the end
of the run, at the same time when the competing subpopulation for short times of duration 1
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(e) 4d optimization run.

Fig. 8. Results of the RF - cooling ramp optimization. The parameters in (a) and (b) are
frequencies of the RF field during the ramp, given in MHz. In (c), parameters are times in
milliseconds. The parameters represented in (b) and (c) belong to states consisting of two
times and two frequencies, but are presented in distinct graphs due to the different unit
scales. (e), (f). Mean fitness per generation for the 2d and 4d optimization runs.

(green points) vanishes and duration 2 (blue points) begins to develop a trend towards bigger
values. A noteworthy point, however, is that overall ramp duration for these results with 3.7
seconds is significantly shorter than the preset 4.5 seconds, with only marginally worse phase
space densities.
In summary the algorithm has found useful working points in both optimization runs,
reproducing optimal values found with the help of other experiments in one case, and
significantly shortening the cooling ramp with only a small tradeoff in phase space density
in the second measurement.

5. Computer experiments

As stated above, algorithm runtime as part of the hardware feedback loop is on the order of a
few hours due to the duration of an experimental sequence of 35 seconds. As a consequence,
in order to characterize the algorithms performance and for parameter tuning, computer
experiments on several test problems have been carried out, with runtimes of seconds to
minutes and full knowledge of the parameter space.
The tests go from simple, unimodal problems in two dimensions to complicated,
multidimensional functions commonly used as test functions for stochastic optimization
problems. In each case, the algorithms task was to find the global maximum or minimum
of the respective test function.
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Fig. 7. Example of data for one population member. a) Schematic of an RF - ramp, depicting
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optimization run. In the 4d scan, the cooling ramp was optimized over the rectangular areas
spanning duration and frequency of the two stages. b) Fits to equation (24) for the x- and y−
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• A 2d measurement, where the algorithm adjusts the intermediate and final value of the RF
frequency. The values ranges from 0 to 10 and 0 to 1 MHz, respectively.

• A 4d measurement, where the algorithm adjusts both field values from the 2d
measurement as well as both times. RF values range from 2 to 6 and 0.3 to 0.6 MHz
respectively, in steps of 0.01 MHz. The times for the first and second ramp segment can
take values each from 500 to 2000 ms (duration 1) and 500 to 3500 ms (duration 2), in steps
of 1 ms.

The results are summarized in figure 8. Unlike the molasses optimization described above, we
have not compared this measurement to a grid scan. In the case of the 4d-optimization this is
simply not feasible, given that the explored parameter space contains of over 1011 individual
points corresponding to over 10000 years of experiment runtime. Even by reducing the time
resolution to 10 ms as well and changing the frequency steps to 0.05 MHz, the measurement
duration remains large, at roughly 50 years. Unless an optimization approach like ours is
implemented, only physical arguments and a certain degree of parameter separability can be
used to find useful working points for ramp parameters for this and similar problems, leading
to a labor-intensive manual search.
For the 2d measurement, the algorithm finds values of 3 MHz and 0.65 MHz for the RF
- ramp frequencies. Although we cannot make a quantitative statement about the quality
of this solution without knowledge of the parameter space, these values are similar to the
cooling ramp values which have been successfully used before GA - optimization as well as
the corresponding phase space densities. Note that the algorithm has not fully converged for
the intermediate RF value; a competing subpopulation with 2 MHz RF - value is still present
in the last generation.
For the 4d measurement, the algorithm also finds an intermediate value of 3 MHz, but a lower
end frequency of 0.47 MHz. Objective function values, especially those of the best performing
states within the run, are only slightly inferior to those in the last generations of the 2d
measurement. It is interesting to see however that performance increases towards the end
of the run, at the same time when the competing subpopulation for short times of duration 1
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Fig. 8. Results of the RF - cooling ramp optimization. The parameters in (a) and (b) are
frequencies of the RF field during the ramp, given in MHz. In (c), parameters are times in
milliseconds. The parameters represented in (b) and (c) belong to states consisting of two
times and two frequencies, but are presented in distinct graphs due to the different unit
scales. (e), (f). Mean fitness per generation for the 2d and 4d optimization runs.

(green points) vanishes and duration 2 (blue points) begins to develop a trend towards bigger
values. A noteworthy point, however, is that overall ramp duration for these results with 3.7
seconds is significantly shorter than the preset 4.5 seconds, with only marginally worse phase
space densities.
In summary the algorithm has found useful working points in both optimization runs,
reproducing optimal values found with the help of other experiments in one case, and
significantly shortening the cooling ramp with only a small tradeoff in phase space density
in the second measurement.

5. Computer experiments

As stated above, algorithm runtime as part of the hardware feedback loop is on the order of a
few hours due to the duration of an experimental sequence of 35 seconds. As a consequence,
in order to characterize the algorithms performance and for parameter tuning, computer
experiments on several test problems have been carried out, with runtimes of seconds to
minutes and full knowledge of the parameter space.
The tests go from simple, unimodal problems in two dimensions to complicated,
multidimensional functions commonly used as test functions for stochastic optimization
problems. In each case, the algorithms task was to find the global maximum or minimum
of the respective test function.

21Stochastic Optimization of Bose-Einstein Condensation Using a Genetic Algorithm



Representative for all optimization problems, figure 9 illustrates the algorithm’s walk through
the parameter space of the 2d Rastrigin function (see section 5.2) through a subset of stages
out of a total of 48 generations.
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Fig. 9. Population in parameter space in generations 1, 32 and 48.

5.1 Unimodal test functions
A first, very simple function is

f (xi) =
n

∑
i=1

x2
i (25)

which is known as De Jong’s first function as benchmark for optimization algorithms. It
is continuous, convex and unimodal. As second problem, we used a bivariate normal
distribution, creating a peaked structure in an otherwise flat parameter space as depicted in
figure 10. This problem is slightly more difficult since the algorithm can find an exploitable
gradient only in the vicinity of the optimum.

(a) Peaked 2d distribution (b) De Jong F1 - Function

Fig. 10. 2d representations of the used unimodal test functions.

5.1.1 Results
In this benchmark, the algorithm was supposed to minimize De Jong’s function in three and
five dimensions as well as the bivariate Gaussian distribution. Each task was repeated 50
times in order to gain statistics about the convergence behavior.

22 Stochastic Optimization - Seeing the Optimal for the Uncertain

As an example, the first two panels in figure 11 show the properties of one typical optimization
run.
In the different fitness graphs, the value of the objective function is plotted as fitness measure.
With exception of the bivariate normal distribution, all functions had to be minimized, thus
smaller values correspond to better states.
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Fig. 11. Results for De Jong’s function in three dimensions. Panel 1 contains the mean fitness
of each generation within one typical optimization run. Error bars show the standard
deviation, corresponding to the spread of different states within the generation, with the
fitness of each generation’s best state depicted in the inset. The evolution of states is given in
Panel 3. Different colors correspond to different variables, i. e. components of the state
vectors. Panel 3 contain the fitness of each generation averaged over the total number of 50
runs and the fitness of each generation’s best state averaged over the total number of 50 runs
in the inset. The spread in expected convergence time is related to the fitness variance
expressed through the bars.

The results demonstrate the algorithm’s ability to converge towards the global optimum
located at the center of the parameter space on a scale of 20 to 30 generations, while finding
the optimum takes 10 - 20 generations.
Figure 12 summarizes convergence behavior for the same function, but in 5 dimensions. For
the data presented in figure 12 a), the population size was set to 20 states per generation, as
opposed to 30 states per generation for b). The additional degrees of freedom cause bigger
fitness spreads and hence slower convergence for both settings, although the effect is not
as pronounced for the runs with larger population size. The results underline the tradeoff
between population size and convergence time in terms of generations one is confronted with
in large parameter spaces.
To conclude, the results on the bivariate Gaussian distribution are presented in figure 12 c).
For this problem, the algorithm had to find a sharp maximum with an objective function value
of 3.5. The peaked structure also represents itself in a fitness spread, since even states close to
the minimum achieve a significantly lower objective function value than maximally possible.

5.2 Multimodal test functions
The first multimodal benchmark used is known as Rastrigin’s function:

f (xi) = 10 · n +
n

∑
i=1

[
x2

i − 10 · cos (2πxi)
]
. (26)

Both this form and the 2d representation given in figure 13 show that this is an overall convex
function with a sinusoidal modulation, creating a large number of local optima.
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A first, very simple function is

f (xi) =
n

∑
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which is known as De Jong’s first function as benchmark for optimization algorithms. It
is continuous, convex and unimodal. As second problem, we used a bivariate normal
distribution, creating a peaked structure in an otherwise flat parameter space as depicted in
figure 10. This problem is slightly more difficult since the algorithm can find an exploitable
gradient only in the vicinity of the optimum.
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5.1.1 Results
In this benchmark, the algorithm was supposed to minimize De Jong’s function in three and
five dimensions as well as the bivariate Gaussian distribution. Each task was repeated 50
times in order to gain statistics about the convergence behavior.
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of each generation within one typical optimization run. Error bars show the standard
deviation, corresponding to the spread of different states within the generation, with the
fitness of each generation’s best state depicted in the inset. The evolution of states is given in
Panel 3. Different colors correspond to different variables, i. e. components of the state
vectors. Panel 3 contain the fitness of each generation averaged over the total number of 50
runs and the fitness of each generation’s best state averaged over the total number of 50 runs
in the inset. The spread in expected convergence time is related to the fitness variance
expressed through the bars.

The results demonstrate the algorithm’s ability to converge towards the global optimum
located at the center of the parameter space on a scale of 20 to 30 generations, while finding
the optimum takes 10 - 20 generations.
Figure 12 summarizes convergence behavior for the same function, but in 5 dimensions. For
the data presented in figure 12 a), the population size was set to 20 states per generation, as
opposed to 30 states per generation for b). The additional degrees of freedom cause bigger
fitness spreads and hence slower convergence for both settings, although the effect is not
as pronounced for the runs with larger population size. The results underline the tradeoff
between population size and convergence time in terms of generations one is confronted with
in large parameter spaces.
To conclude, the results on the bivariate Gaussian distribution are presented in figure 12 c).
For this problem, the algorithm had to find a sharp maximum with an objective function value
of 3.5. The peaked structure also represents itself in a fitness spread, since even states close to
the minimum achieve a significantly lower objective function value than maximally possible.

5.2 Multimodal test functions
The first multimodal benchmark used is known as Rastrigin’s function:

f (xi) = 10 · n +
n

∑
i=1

[
x2

i − 10 · cos (2πxi)
]
. (26)

Both this form and the 2d representation given in figure 13 show that this is an overall convex
function with a sinusoidal modulation, creating a large number of local optima.
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Fig. 12. Results for De Jong’s function in five dimensions. Figures (a) and (b) represent results
gained with a population size of 20 states and 30 states respectively. (c) Results for the
optimization of a 2d bivariate Gaussian function.

As a second benchmark, we use the function

f (xi) =
n

∑
i=1

[
−xi · sin

(√
|xi|

)]
, (27)

also known as Schwefel’s function. It does not feature as many local extrema as Rastrigin’s
function within the search space under consideration, however it is a deceptive function in that
the global minimum is distant in parameter space from the next best local minima.

(a) Rastrigin’s function (b) Schwefel’s F6 function

Fig. 13. 2d representations of the used multimodal test functions.

5.2.1 Results
Results on the 2d and 5d Rastrigin function are summarized in figure 14. While the algorithm
can locate the global optimum of this complicated test problem in 2d, for the 5d problem
with a population size of 20 states in most of the cases the optimization gets stuck in a local
minimum. Raising population size to 50 states shows a clear improvement. Evolution of the
fitness per generation as well as each generation’s best state’s fitness for these cases are shown
in figure 14 a, b and c and the insets, respectively.
The last test problem presented here is optimization of Schwefel’s function. The global
minimum has a function value of −418 · d, where d represents the number of dimensions.
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Fig. 14. Convergence behavior for Rastrigin’s function (see text).

Similarly to the case of Rastrigin’s function, a population of 20 states per generation still
locates the global minimum in 60 % of runs for 2d (figure 15 a), while in five dimensions
(figure 15 b), the algorithm usually converges towards a local optimum.
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Fig. 15. Evolution of the fitness per generation as well as each generation’s best state’s fitness
in 2d (a), and 5d (b).

In summary, the computer experiments suggest that for moderately complex optimization
problems, our simple RCGA can perform optimization tasks even with comparatively small
population sizes. In complicated problems with many local optima, bigger population sizes
cannot be avoided.

6. Summary and outlook

In this chapter, we have described the implementation of shot-to-shot real-time stochastic
optimization of a physics experiment. Our approach is broadly applicable and can be
implemented for all computer-controlled parameters of any given physical apparatus. As
with most implementations of GA optimization, the approach is particularly useful for
multidimensional parameter spaces with multiple local optima and little or no quantitative
predictions of their coordinates. This is a situation which arises often in atomic physics as
well as in other branches of experimental research, and is usually tackled by making use of
intuition, physical arguments and a certain degree of parameter separability to restrict the
initial parameter space. This approach often amounts to a human-controlled, semi-stochastic
search which is usually time-consuming and has no guarantee of yielding a global optimum.
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Fig. 12. Results for De Jong’s function in five dimensions. Figures (a) and (b) represent results
gained with a population size of 20 states and 30 states respectively. (c) Results for the
optimization of a 2d bivariate Gaussian function.
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f (xi) =
n
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[
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)]
, (27)
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function within the search space under consideration, however it is a deceptive function in that
the global minimum is distant in parameter space from the next best local minima.
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Fig. 13. 2d representations of the used multimodal test functions.

5.2.1 Results
Results on the 2d and 5d Rastrigin function are summarized in figure 14. While the algorithm
can locate the global optimum of this complicated test problem in 2d, for the 5d problem
with a population size of 20 states in most of the cases the optimization gets stuck in a local
minimum. Raising population size to 50 states shows a clear improvement. Evolution of the
fitness per generation as well as each generation’s best state’s fitness for these cases are shown
in figure 14 a, b and c and the insets, respectively.
The last test problem presented here is optimization of Schwefel’s function. The global
minimum has a function value of −418 · d, where d represents the number of dimensions.
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Fig. 14. Convergence behavior for Rastrigin’s function (see text).

Similarly to the case of Rastrigin’s function, a population of 20 states per generation still
locates the global minimum in 60 % of runs for 2d (figure 15 a), while in five dimensions
(figure 15 b), the algorithm usually converges towards a local optimum.
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Fig. 15. Evolution of the fitness per generation as well as each generation’s best state’s fitness
in 2d (a), and 5d (b).

In summary, the computer experiments suggest that for moderately complex optimization
problems, our simple RCGA can perform optimization tasks even with comparatively small
population sizes. In complicated problems with many local optima, bigger population sizes
cannot be avoided.

6. Summary and outlook

In this chapter, we have described the implementation of shot-to-shot real-time stochastic
optimization of a physics experiment. Our approach is broadly applicable and can be
implemented for all computer-controlled parameters of any given physical apparatus. As
with most implementations of GA optimization, the approach is particularly useful for
multidimensional parameter spaces with multiple local optima and little or no quantitative
predictions of their coordinates. This is a situation which arises often in atomic physics as
well as in other branches of experimental research, and is usually tackled by making use of
intuition, physical arguments and a certain degree of parameter separability to restrict the
initial parameter space. This approach often amounts to a human-controlled, semi-stochastic
search which is usually time-consuming and has no guarantee of yielding a global optimum.
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Using the genetic-algorithm approach, we have seen rapid convergence to optimal parameters
in 2- and 4-dimensional parameter spaces, and that the approach is robust even in the presence
of local optima and experimental noise. We envisage a number of possible augmentations
for future implementations. Among these are the weighting of the fitness of a population
member according to its experimental uncertainty, and the inclusion of qualitative physical
predictions in some implementations. These predictions can then be progressively quantified
with each generation and used to steer mutations to speed up the search convergence. In
future implementations, this method may also be extended to perform "optimal experimental
control" that automatically finds the best experimental sequence to produce a defined target
quantum state. In conclusion, optimization using a genetic algorithm can be an efficient tool
to improve the performance of a ‘real-life’ apparatus.
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Using the genetic-algorithm approach, we have seen rapid convergence to optimal parameters
in 2- and 4-dimensional parameter spaces, and that the approach is robust even in the presence
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for future implementations. Among these are the weighting of the fitness of a population
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1. Introduction    
Present state in investigation of complicated physical systems is connected in many cases 
with the numerical analysis of studied phenomena. Equations used for the description of 
given system are often complicated and have to be modified very often to reach adequate 
coincidence with observed behaviour of modeled system. Constructed theoretical model 
contains a lot of assumptions, it tries to describe various influences connected with his own 
structure as well as with interactions of given system with his environment. In consequence 
of this model complexity the searching for reliable and comfortable techniques for studying 
these systems is important. In our approach a theoretical model of physical system is 
constructed in two steps. Initial estimation of model parameters is performed in graphical 
user interface and obtained theoretical model is then refined by the genetic algorithm. This 
enables comfortable realization of changes in theoretical model, implementation of 
subjective decisions and restrictions as well as controlled refinement of searched model 
parameters. In this chapter we use this approach for study of optical properties of multilayer 
system. 

2. Optical properties of solids 
Detailed knowledge of the optical properties of materials and structures are important for a 
number of industrial and research applications, especially for optoelectronics, photovoltaics, 
optical communications, senzorics, laser technology and so on. Optical properties are 
studied by analysis of light and matter interactions. The phenomena that occur while light 
propagates through an optical medium can be classified into several groups. The simplest 
are reflection, propagation and transmission. Some of the light beam incident on an front 
surface of the medium is reflected, while the rest enters the medium, propagates through it 
and can reach the back surface of the media. Here it can be reflected again, or it can be 
transmitted through to the next medium. When a light propagates through the optical 
medium several other phenomena occur: refraction, luminiscence, scattering and if the 
intensity of the beam is very high other nonlinear phenomena can occur.  
Refraction causes the light waves propagate with a smaller velocity than in free space. 
Refraction does not affect the intensity of the light wave.  
Absorption occurs if the frequency of the light is resonant with the transition frequencies of 
the atoms in the medium. The light beam is attenuated as it progresses in this case. The 
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transmission of the medium is therefore related to the absorption, selective absorption is 
responsible for the colouration of material. 
Luminiscence denotes all processes connected to the spontaneous emission of light by excited 
atoms in a solid state material. It can accompany the propagation of light in an absorbing 
medium, light is emitted in all directions and contains the different frequencies. 
During scattering the light changes direction and possibly also its frequency after interacting 
with the medium. The total number of photons is unchanged but the light is redirected in 
other directions. 

2.1 The complex refractive index  
The optical phenomena described above can be quantified by several parameters that 
determine the properties of the medium at the macroscopic level. The reflection at the 
surface is described by the reflectivity R and is defined as the ratio of the reflected power to 
the power incident on the surface. The propagation of the light through the medium is 
described by the refractive index n, defined as the ratio of the velocity of light in free space 
to the velocity of light in the medium. The refraction index depends on the frequency of the 
light. This is called dispersion.  The absorption of light by an optical medium is described by 
its absorption coefficient α . According to the Beer’s law the intensity of light (optical power 
per unit area) at position z in the propagation direction is given by the equation 

 ( ) α−= (0) zI z I e  (1) 

 

The absorption coefficient strongly depends on frequency. The absorption and the refraction 
can be incorporated into a single quantity called complex refractive index n  

 κ= +n n i  (2) 

The real part of complex refractive index is refractive index n and the imaginary part κ , 
called the extinction coefficient, is directly proportional to the absorption coefficient α  of 
the medium 

 πκα
λ

=
0
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where λ0  is the free space wavelength of the light. We can relate the complex refractive 
index to the complex relative dielectric constant ε ε ε= +1 2r i  
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The microscopic models usually enable calculation of complex dielectric function. The 
measurable optical parameters are then determined by converting ε1  and ε2  to n and κ . 
The reflectivity R of given surface depends on both n and κ . Reflectivity between the 
medium and the vacuum at normal direction is given by 
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In a transparent material in the visible region of the spectrum, the absorption coefficient is 
very small, ε2  and  κ  values are neligible. If there is significant absorption, then we need to 
know both the real and imaginary parts of  n  and ε . 

2.2 Thin film system 
Thin film systems are widely used in various branches of applied research and industry. 
Analytical expressions describing the spectral dependencies of the optical parameters of the 
thin film have important applications in semiconductor devices development. Such 
analytical expressions can be used to analyse optical data and extract material parameters. 
The values of parameters deduced from the optical experiment include the atomic oscillator 
properties and provide information on composition and microstructure of the sample. To be 
able to determine the optical properties of the thin film system in a wide spectral region an 
adequate microstructural and physical model of this system have to be created. Spectral 
dependencies of the optical quantities depend on the electronic structure and existing bonds 
and thus provide information useful for the material structure and its properties 
understanding. A lot of consideration was devoted to the gap and interface states and 
methods developed for their passivation are studied to increase quality of the thin film 
systems in the semiconductor devices. 
Properties of the amorphous hydrogenated silicon (a-Si:H) samples prepared for the solar 
cell and  TFT applications by various techniques were analysed in our laboratory. The main 
goals of these studies are the defect states in the thin film structure determination and 
improvement of the structural, electrical and optical material properties for the device 
construction. In this chapter a mathematical background and implementation of a new 
method of the optical properties of the thin film system analysis is presented. Optical 
properties of the thin film system are determined by computer modeling of the optical 
transitions connected with the electronic states. The properties of the developed method as 
well as experimental results obtained by analysis of the experimental spectral reflectance of 
the a-Si:H samples will be described. 
The interaction of photons and matter is explained by quantum electrodynamics. Adequate 
description of this interaction for the purposes of the optical properties analysis can be also 
obtained by using the classical theory of electricity and magnetism.  The wavelength of light 
wave λ   in material is determined by  

   λ
με ω

=
2 , (6) 

where ω  is the angular frequency, μ  is the permeability and ε  is the permitivity of the 
material. Both μ  and ε  depend on the medium properties and therefore the wavelength 
depends on the material the light is propagating through.  
Electron can be considered as harmonic oscillator coupled to a fixed nucleus. The electron - 
nucleus interaction is modeled by a spring force that implies a harmonic oscillator frequency 
ω0 .  A physical motivation of the spring force model is the coulombic force that binds the 
electron to the nucleus. There is also a damping force that is proportional to the velocity of 



 Stochastic Optimization - Seeing the Optimal for the Uncertain 

 

30 

transmission of the medium is therefore related to the absorption, selective absorption is 
responsible for the colouration of material. 
Luminiscence denotes all processes connected to the spontaneous emission of light by excited 
atoms in a solid state material. It can accompany the propagation of light in an absorbing 
medium, light is emitted in all directions and contains the different frequencies. 
During scattering the light changes direction and possibly also its frequency after interacting 
with the medium. The total number of photons is unchanged but the light is redirected in 
other directions. 

2.1 The complex refractive index  
The optical phenomena described above can be quantified by several parameters that 
determine the properties of the medium at the macroscopic level. The reflection at the 
surface is described by the reflectivity R and is defined as the ratio of the reflected power to 
the power incident on the surface. The propagation of the light through the medium is 
described by the refractive index n, defined as the ratio of the velocity of light in free space 
to the velocity of light in the medium. The refraction index depends on the frequency of the 
light. This is called dispersion.  The absorption of light by an optical medium is described by 
its absorption coefficient α . According to the Beer’s law the intensity of light (optical power 
per unit area) at position z in the propagation direction is given by the equation 

 ( ) α−= (0) zI z I e  (1) 

 

The absorption coefficient strongly depends on frequency. The absorption and the refraction 
can be incorporated into a single quantity called complex refractive index n  

 κ= +n n i  (2) 

The real part of complex refractive index is refractive index n and the imaginary part κ , 
called the extinction coefficient, is directly proportional to the absorption coefficient α  of 
the medium 

 πκα
λ

=
0

4  (3) 

where λ0  is the free space wavelength of the light. We can relate the complex refractive 
index to the complex relative dielectric constant ε ε ε= +1 2r i  

 
ε
εκ

=

=

1

2

2

n

n

 (4) 

 

The microscopic models usually enable calculation of complex dielectric function. The 
measurable optical parameters are then determined by converting ε1  and ε2  to n and κ . 
The reflectivity R of given surface depends on both n and κ . Reflectivity between the 
medium and the vacuum at normal direction is given by 

Theoretical Model of the Physical System: Optimization by the Genetic Algorithm   

 

31 

 ( )
( )

κ

κ

− +−
= =

+ + +

2 2 2

2 2

11
1 1

nnR
n n

. (5) 

In a transparent material in the visible region of the spectrum, the absorption coefficient is 
very small, ε2  and  κ  values are neligible. If there is significant absorption, then we need to 
know both the real and imaginary parts of  n  and ε . 

2.2 Thin film system 
Thin film systems are widely used in various branches of applied research and industry. 
Analytical expressions describing the spectral dependencies of the optical parameters of the 
thin film have important applications in semiconductor devices development. Such 
analytical expressions can be used to analyse optical data and extract material parameters. 
The values of parameters deduced from the optical experiment include the atomic oscillator 
properties and provide information on composition and microstructure of the sample. To be 
able to determine the optical properties of the thin film system in a wide spectral region an 
adequate microstructural and physical model of this system have to be created. Spectral 
dependencies of the optical quantities depend on the electronic structure and existing bonds 
and thus provide information useful for the material structure and its properties 
understanding. A lot of consideration was devoted to the gap and interface states and 
methods developed for their passivation are studied to increase quality of the thin film 
systems in the semiconductor devices. 
Properties of the amorphous hydrogenated silicon (a-Si:H) samples prepared for the solar 
cell and  TFT applications by various techniques were analysed in our laboratory. The main 
goals of these studies are the defect states in the thin film structure determination and 
improvement of the structural, electrical and optical material properties for the device 
construction. In this chapter a mathematical background and implementation of a new 
method of the optical properties of the thin film system analysis is presented. Optical 
properties of the thin film system are determined by computer modeling of the optical 
transitions connected with the electronic states. The properties of the developed method as 
well as experimental results obtained by analysis of the experimental spectral reflectance of 
the a-Si:H samples will be described. 
The interaction of photons and matter is explained by quantum electrodynamics. Adequate 
description of this interaction for the purposes of the optical properties analysis can be also 
obtained by using the classical theory of electricity and magnetism.  The wavelength of light 
wave λ   in material is determined by  

   λ
με ω

=
2 , (6) 

where ω  is the angular frequency, μ  is the permeability and ε  is the permitivity of the 
material. Both μ  and ε  depend on the medium properties and therefore the wavelength 
depends on the material the light is propagating through.  
Electron can be considered as harmonic oscillator coupled to a fixed nucleus. The electron - 
nucleus interaction is modeled by a spring force that implies a harmonic oscillator frequency 
ω0 .  A physical motivation of the spring force model is the coulombic force that binds the 
electron to the nucleus. There is also a damping force that is proportional to the velocity of 
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the electron movement. The frequency that the electron moves depends on the distance 
from the nucleus. The distance of the electron from the nucleus is related to the energy of the 
electron state. The nucleus is assumed to be fixed and motionless and does not interact with 
photons. Each electron in an atom has a resonating frequency ω0  that is associated with the 
energy of the electron state.  
The interaction of photon with frequencyω  and a single electron with an oscillating 
frequencyω0 can be described by Maxwell's equations. The displacement of the electron by 
the electric field component of the light creates a dipole moment in the atom. The time-
dependent dipole moment ( )p t  created by the movement of the electron is  
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where em  is the mass of an electron, e is the charge of an electron, γ j  is a damping factor, 
and 0E is the amplitude of the electric field. In real material electrons may oscillate at one of 
several different oscillating frequencies that are material specific. If there are N atoms per 
unit volume, and there is a fraction jf  of the electrons with frequency ω j  and damping 
factor γ j , the complex permitivity of material takes the form 
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The term fj  is called the oscillator strength. It is the measure of how one electron contributes 
to the overall response of the material to the incident light wave at given frequency. The 
electronic structure of a material determines the energies with which the electrons are 
bound to the nuclei and the bonds with the surrounding atoms. The optical properties of 
materials in the UV region of the spectrum depend primarily on the core electrons. The 
bonded valence electrons do not significantly affect the inner electrons. The bonding of the 
valence electrons to the surrounding atoms does not significantly change the optical 
constants at energies above 100 eV. In the visible and infrared region the interaction of light 
depends on the energies of the valence electrons. The bonds of the valence electrons with 
valence electrons in the neighbor atoms determine the energy of valence electrons in a bulk 
material. The oscillator properties of the core electrons do not play significant role in this 
case. In the visible and IR region the optical properties are determined mainly by the states 
of the valence electrons in bonding orbitals. Important role play also vibrational and 
rotational movements of molecules. Interaction of incident electromagnetic wave with 
molecules leads to rotational and vibrational spectra in infrared and microwave regions. 
The refractive index and the extinction coefficient are experimentally accessible by reflective 
and absorptive spectroscopies. Theoretical formulations of the refractive index n and the 
extinction coefficient κ  for the semiconductor materials can be obtained from the energy-
dependent dielectric function. Jellison and Modine derived the analytical expression for the 

( )ε2 E  function in the form 
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where Γ 0, ,A E  are amplitude, broadening and resonance energy. gE  denotes the 
semiconductor band gap, E is the photon energy. The function ( )L E  is a lineshape function 
and the ( )G E  function describes ( )ε2 E  for ≈ gE E . The real part of the dielectric function  

( )ε1 E can be expressed by  
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ε ε ε ε
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2 s s ds
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where ε ∞1  accounts for possible high-energy transitions and K  is the Kramers-Kronig 
integral. Within the Jellison-Modine dispersion model the absorption connected with the 
localized states in the band gap of the semiconductor material is not accounted.  The band-
to-band transitions are only respected. To obtain better expression for the dielectric function 
applicable to various types of semiconductors the ( )G E  function was modified. In the 
Urbach-Tauc-Lorentz model the imaginary part of the dielectric function ( )ε2 E  was changed 
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where ≈P gE E  is a variable parameter. Function ( )G E  in this dispersion model improves 
the theoretical dielectric function values for the photon energies above the band gap. The 
real part of the dielectric function ( )ε1 E  is given by the Kramers-Kronig integral too. 
Forouhi and Bloomer derived a formula for the extinction coefficient and the refractive index 
in the forms 
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where 0 0, , , ,A B B C C  are model parameters. The extinction coefficient in the Forouhi-
Bloomer dispersion model does not comply with f-sum rules. f-sum rules are important 
constraints for the analysis of optical quantities and involve all absorption processes 
including valence-band excitations and inner-shell ionizations over the entire energy 
interval. The Forouhi-Bloomer dispersion model cannot be therefore applied to photon 
energies above the resonant values.  
Typical spectrum of the optical quantity of semiconductor material usually reveals 
separated peaks due to different absorption processes. For example the spectral dependency 
of the refractive index of crystalline silicon is in Fig. 1. 
Theoretical derivations of the optical parameters dispersion relations assume zero energy 
breadth in the interband transitions. This assumption leads to the Dirac δ − function 
dependence of the extinction coefficient on photon energy 
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the electron movement. The frequency that the electron moves depends on the distance 
from the nucleus. The distance of the electron from the nucleus is related to the energy of the 
electron state. The nucleus is assumed to be fixed and motionless and does not interact with 
photons. Each electron in an atom has a resonating frequency ω0  that is associated with the 
energy of the electron state.  
The interaction of photon with frequencyω  and a single electron with an oscillating 
frequencyω0 can be described by Maxwell's equations. The displacement of the electron by 
the electric field component of the light creates a dipole moment in the atom. The time-
dependent dipole moment ( )p t  created by the movement of the electron is  
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several different oscillating frequencies that are material specific. If there are N atoms per 
unit volume, and there is a fraction jf  of the electrons with frequency ω j  and damping 
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valence electrons in the neighbor atoms determine the energy of valence electrons in a bulk 
material. The oscillator properties of the core electrons do not play significant role in this 
case. In the visible and IR region the optical properties are determined mainly by the states 
of the valence electrons in bonding orbitals. Important role play also vibrational and 
rotational movements of molecules. Interaction of incident electromagnetic wave with 
molecules leads to rotational and vibrational spectra in infrared and microwave regions. 
The refractive index and the extinction coefficient are experimentally accessible by reflective 
and absorptive spectroscopies. Theoretical formulations of the refractive index n and the 
extinction coefficient κ  for the semiconductor materials can be obtained from the energy-
dependent dielectric function. Jellison and Modine derived the analytical expression for the 
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where Γ 0, ,A E  are amplitude, broadening and resonance energy. gE  denotes the 
semiconductor band gap, E is the photon energy. The function ( )L E  is a lineshape function 
and the ( )G E  function describes ( )ε2 E  for ≈ gE E . The real part of the dielectric function  

( )ε1 E can be expressed by  
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where ε ∞1  accounts for possible high-energy transitions and K  is the Kramers-Kronig 
integral. Within the Jellison-Modine dispersion model the absorption connected with the 
localized states in the band gap of the semiconductor material is not accounted.  The band-
to-band transitions are only respected. To obtain better expression for the dielectric function 
applicable to various types of semiconductors the ( )G E  function was modified. In the 
Urbach-Tauc-Lorentz model the imaginary part of the dielectric function ( )ε2 E  was changed 
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where 0 0, , , ,A B B C C  are model parameters. The extinction coefficient in the Forouhi-
Bloomer dispersion model does not comply with f-sum rules. f-sum rules are important 
constraints for the analysis of optical quantities and involve all absorption processes 
including valence-band excitations and inner-shell ionizations over the entire energy 
interval. The Forouhi-Bloomer dispersion model cannot be therefore applied to photon 
energies above the resonant values.  
Typical spectrum of the optical quantity of semiconductor material usually reveals 
separated peaks due to different absorption processes. For example the spectral dependency 
of the refractive index of crystalline silicon is in Fig. 1. 
Theoretical derivations of the optical parameters dispersion relations assume zero energy 
breadth in the interband transitions. This assumption leads to the Dirac δ − function 
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where 0f  is  the dipole oscillator strength and ω0  is  the transition frequency. The refractive 
index is given by the Kramers - Kronig integral of ( ).κ ω  In reality, the spontaneous 
emission produces the damping of excited states in agreement with the Heisenberg 
relations. To accommodate the damping effect, the δ − functions can be replaced by the 
Cauchy functions.   

 
Fig. 1. Refractive index and absorption coefficient of crystalline silicon (www.ioffe.ru). 
Theoretical expressions for the refractive index and the extinction coefficient after 
incorporating the damping effect then take the form 
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In these equations s denotes the total number of transitions from the valence to the 
conduction bands, bn  is the background refractive index due to the contribution from core 
electrons in inner shells 
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The broadening of the spectral line describing the optical transition is in this dispersion 
model expressed by the Cauchy function (Chen et al., 1993).  
A computation of the spectral reflectance for a plane electromagnetic wave incident upon a 
multilayer structure can be described by Fig. 2. In a case of a finite number of homogeneous 
and isotropic layers the determination of the theoretical spectral reflectance is efficient for 

Theoretical Model of the Physical System: Optimization by the Genetic Algorithm   

 

35 

the experimental reflectance interpretation and enables spectral dependencies of the optical 
parameters calculations. For the optical field of the layered media calculations the matrix 
method is usually applied (Abeles, 1950; Lekner, 1987). 
 

 
Fig. 2. Waves reflected and transmitted by a multilayer system. 

The matrix procedure for calculating the reflectance from multilayers in transverse electric 
(TE) mode uses convention shown in Fig. 3. 
Similar convention is used for the transverse magnetic TM mode. The TE reflection 
coefficient is given by 
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where xxm  are the elements of the matrix M 
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Fig. 3. Description of TE mode. I-incident wave, R reflected wave, T- transmitted wave. 
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and the subscript k denotes the layer number (Hecht, 2002; Born & Wolf, 2002; Furman & 
Tikhonravov, 1992).   The spectral reflectance is then defined by 

 = =
2 *
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for TE mode or  
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for TM mode. The spectral transmittance can be derived by the similar way. 
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2.3 The inhomogeneity of the layer material 
Optical properties of inhomogeneous material can differ from the homogeneous media. In a 
multilayer structure we can observe inhomogeneous overlayers or transition layers 
consisting of the mix of materials of adjacent layers. A powerful way to handle the optical 
properties of such composite materials is the effective medium approximation (EMA) 
theory. Three famous EMA models can be jointly expressed by  

 
ε εε ε

ε γε ε γε
−−

=
+ +∑ j hh

j
jh j h

f  (25) 

 

where ε  is the permitivity of the effective medium, εh  is the permitivity of the host 
medium, ε j  and jf  is the permitivity of the thj constituent and its fraction, and γ  is a factor 
related to the screening and shape of the inclusions (for example, γ = 2   for 3-dimensional 
spheres) (Tompkins & Irene, 2005). Within the structure of this equation the three EMA 
models are: 
• Lorentz-Lorentz: ε =1h , where the host material is air. This EMA model assumes that 

the individual constituents are mixed on the atomic scale. Real materials tend to be 
mixed on a larger scale and therefore this model is of limited usefulness. 

• Maxwell-Garnett (MG): ε ε=h l , where the host material is the material that has the 
largest constituent fraction. MG EMA is the most realistic model when the fraction of 
inclusions is significantly less than the fraction of host material (Sihvola, 1993;  
Weiglhofer &  Lakhtakia, 2003). 

• Bruggemann: ε ε=h , where the host material is just the effective dielectric function. 

The Bruggemann EMA makes no assumption concerning the material that has the 
highest constituent fraction. It is very useful when no constituent forms a majority of 
the material. It can be used for modeling the surface roughness by using a mix of 
approximately 50% voids and 50% host material. 

When applying the EMA model for computation of optical properties one has to pay 
attention to the limitations of individual EMA model. More sophisticated models take into 
account the multiple scattering theories, statistical distributions of densities of scatterers as 
well as the finite-size effects of the scatterers. For most of these expressions the MG EMA is 
found to be the limiting case as the size of the inclusions goes to zero. The Monte Carlo 
simulations for configurations that correspond to random defects in periodic composite 
materials and investigate the role of multiple scattering and the influence of the statistical 
distribution of scatterers show that the MG EMA model remains accurate also at very high 
density of scatterers  (Mallet et al., 2006). 
The complications with the multivalued inversion of a complex functions in the EMA 
models can be avoided by re-parametrization of  Eq. (25) due to (Roussel et al., 1993). The 
effective value of the permitivity is in this EMA model given by 
 

 ε ε ε= 1 2z  (26) 

where  
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2.4 Visual modelling and stochastic optimization (VIMSO) method 
Determination of the optical properties of multilayer structure consists, in our approach, of  
constructing of appropriate structural and physical model and of fitting this model to the 
experimental data. The theoretical model of the spectral reflectance SR is estimated and 
refined in steps depicted in Fig. 4. 
 

 
Fig. 4. Construction of theoretical model of spectral reflectance. 

In this scheme DME is the visual modeling step used for the dynamic estimation of initial 
values of the theoretical model parameters, GASE is genetic algorithm search of these initial 
values, GAR is the genetic algorithm refinement step, NMSR and MLR are Nelder-Mead 
simplex method and Marquard-Levenberg optimization method used for the refinement of 
initial estimation. Implementation details of NMSR and MLR methods are not involved in 
this chapter. In the dispersion relations part the number of layers is fixed, and basic 
structure concerning the contents of each layer is set – material, thickness and homogeneity 
model. The dispersion relations describing the spectral behaviour of optical quantities for 
individual layers are defined. Here existing experimental data sets or suitable 
parametrization of the dispersion model are used. The last step consists of the optimization 
process. Here we need to estimate the values of model parameters, estimate the errors and 
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obtain a suitable measure of goodness of fit. Resulting theoretical model describing the 
spectral reflectance of multilayer structure contains a lot of unknown parameters. We 
divided the process of determination of the optical properties into two procedures. The first 
step consists of visual estimation of the structural model, dispersion relations of the optical 
parameters and the initial estimation of values of constructed theoretical model parameters. 
In the following step the values of parameters of theoretical model estimated in previous 
procedure are refined by the genetic algorithm. We used this approach also for solving 
problems in x-ray diffraction analysis (Jurečka et al., 2004), in analysis of the ion transport 
processes in glassy electrolytes (Bury et al., 2004) and in other applications. We use an 
abbreviation VIMSO for this visual modeling and stochastic optimization method. 
In order to make this approach to the optical properties determination more comfortable, 
the graphical user interface (GUI) was built. This GUI contains: 
• a table with the structure of layers, 
• a list of dispersion models, 
• a list of EMA models, 
• a list of roughness model, 
• a table of fixed parameters, 
• a table of values of parameters of the theoretical model, 
• a table describing the environment of the GA optimization process, 
• control elements for setting the values of parameters of theoretical model, 
• graphs with the experimental and theoretical data, 
• a goodness of fit value. 
GUI layout built in the NetBeans IDE 6.7 (SUN) is in shown Fig. 5. 
 

 
Fig. 5. GUI for determination of optical properties of multilayer structure. 
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In the first step of determination of the optical properties of multilayer system a suitable 
dispersion model is selected in a list of dispersion models. GUI structures with the 
dispersion models, layer homogeneity and surface roughness models are shown in Fig. 6. By 
selecting some cell in a column of dispersion models in a table of structure layers (see Fig. 7) 
the dispersion model selected in a list of dispersion models is assigned to the given layer. 
The same dispersion model can be assigned to several other layers in the structure. 
 

 
  

(a) (b) © 

Fig. 6. GUI structures with a) layers dispersion models, b) homogeneity models, c) surface 
roughness models. 

Similar way of the definition of layer structure properties is used for the description of 
homogeneity and other structure parameters. 
 

 
Fig. 7. GUI structure with a table defining the layer structure. 

In this first step the dispersion relations for individual layers are defined. According the 
selected layer the columns with the variables of corresponding dispersion relation are set in 
a table of parameters (see Fig. 8). 
The value of selected parameter p can be directly written into the table cell or modified by 
clicking on corresponding cell of the parameters table. Parameter table mouse event listener 
triggers modification of clicked parameter by adding a value, defined in the control panel. 
Control panel contains two spinners, spinner_1 and spinner_2. Value added to the modified 
model parameter ′p  is computed by equation ′ = ± ±_ 1( ) ( _ 2( ))p spinner value E spinner value . 
We can study the influence of chosen theoretical model parameter onto the model behaviour 
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Fig. 8. Table with dispersion model parameters 

in a wide range of values very comfortable by this way. Alternatively we can modify 
selected parameter smoothly by using spinner_3. The value of this spinner defines new 
correction value by the equation ′′ ′= _ 3 *p spinner p . Control panel with these spinners is 
shown in Fig. 5 under the structure settings table. By this way we estimate the composition 
of multilayer structure and initial values of theoretical model variables. When developing 
the structure model and estimate the parameter value the theoretical model curve and 
experimental data are compared  graphically at a GUI panel with plots (see Fig. 5). The 
figure of merit of the instant theoretical model is characterized by the χ 2  value defined by 
the equation 
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where N is the total number of data points, m is the number of model parameters, expR  is the 
experimental reflectance, theorR  is theoretical spectral reflectance, and σ 2  is the variance of 
experimental data. The χ 2  value is shown at the control panel after modification of 
specified model parameter value. The variance limits obtained by an optimization 
procedure using χ 2  value is related to the actual variance limits of the fitted parameters. 

3. GA optimization of theoretical model: chromosomes and fitness function 
The optimization of theoretical model is complicated by the variability of suggested 
structure models and models of suitable dispersion relations. The number of parameters 
assigned for optimization is determined by the complexity of theoretical model. For 
optimization of theoretical model constructed and initialised in a visual modeling step of 
VIMSO method the genetic algorithm (Koza, 1992; Coley, 1999) is very useful. Individual 
parameters of theoretical model are represented by genes of the chromosome in the GA 
algorithm. We represented chromosome genes by the binary strings of 16 bits in our first GA 
implementation. The chromosome was then constructed by a concatenation of these binary 
strings. The number of binary strings in a chromosome was modified in accordance to 
proposed theoretical model. Reprogramming of the genetic operators and computation of 
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the chromosome fitness after changing the chromosome length is necessary too. This 
progress of work is laborious and requires detailed checkout. To make the procedure of the 
theoretical model estimation more comfortable the program packages designed for 
implementation of genetic algorithms enabling the object-oriented programming 
(Hawlitzek, 2000) are suitable. We decided to implement JGAP - a genetic algorithms and 
genetic programming component provided as a JAVA framework (JGAP). JGAP is designed 
to be flexible and modular. It is possible to create specific chromosome, genetic operators, 
random number generator, natural selection and other. To support these possibilities JGAP 
uses a Configuration object. Setting the Configuration object with all these new definitions 
prior running the genetic search is the first task. It is necessary to provide three extra pieces 
of information here: what fitness function will be used, how the Chromosomes are set and 
how many Chromosomes creates a population. These steps are implemented in void 
solveGa(.), shown in Listing 1. 

Listing 1. 
 

//=========================================================   solveGA 
 public static void solveGa(double[] parametreModelu, double[] wavelengths, double[] 
experimentalData, double[] sigma, boolean[] fixedParams) throws Exception     
    { 
        double[] Rexp = new double[wavelengths.length]; //experimental reflectance Rexp 
        double[] tempE = new double[wavelengths.length]; //theoretical reflectance Rtheor 
        double[] initParametre = new double[parametreModelu.length]; //model parameters 
        double[] thick = new double[10]; //layer thicknesses 
        int generations = (int) parametreModelu[60];  
        int numchroms = (int) parametreModelu[61];  
        double delta = parametreModelu[68]; 
         
      //configuration of GA environment: 
        Configuration conf = new DefaultConfiguration(); 
 
      //elitism: 
        conf.setPreservFittestIndividual(true); 
         
      //instantiate & register fitness function: 

FitnessFunction fitnesFunkcia = new modelFitness(parametreModelu, wavelengths, 
experimentalData, sigma, fixedParams); 

        conf.setFitnessFunction(fitnesFunkcia); 
           
      //set number of genes: 
        int geneCount = (int) fixedParams.length; 
        for(int r=0; r<fixedParams.length; r++){ 
            if (fixedParams[r]) {geneCount--;}  
        } 

//genecount = the number of genes, representing released parameters, max 
fixedParams.length 
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            //allocate genes: 
        Gene[] mGene = new Gene[geneCount]; 
        int geneIndx = 0; 
        for(int r=0; r< parametreModelu.length; r++){ 
            if (!fixedParams[r]) { 
              //use structure DoubleGene(configuration, minBound, maxBound), double precision   
              //delta = permitted interval for modification of suggested variable, percent   
              try {   

mGene[geneIndx] = new DoubleGene(conf, parametreModelu[r]-
delta*parametreModelu[r]/100, 
parametreModelu[r]+delta*parametreModelu[r]/100); 

                 geneIndx++; 
              } 
              catch (InvalidConfigurationException iex) { 

System.out.println("Invalid configuration: gene creation");}  
             }  
        } 
 
      //instantiate model Chromosome mChromosome: 
        IChromosome mChromosome;     
        try { 
           mChromosome = new Chromosome(conf, mGene);  
         }   

catch (InvalidConfigurationException iex)  
  {System.out.println("Invalid configuration: Instantiate mChromosome");}  

  
      //register chromosome structure -> configuration 
        try {      
          conf.setSampleChromosome(mChromosome); 
        } 
        catch (InvalidConfigurationException iex)  
          {System.out.println("Invalid configuration: register Chromosome");}  
         
      //set number of Chromosomes/population 
        try {  
          conf.setPopulationSize(numchroms); // user defined 
        }   
        catch (InvalidConfigurationException iex)  
          {System.out.println("Invalid configuration: Population size");}  
         
      //seed zero population: 
        Genotype population;  
        population = Genotype.randomInitialGenotype(conf);//random seed 
      
      //timing:   
        long startTime = System.currentTimeMillis(); 
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      //run GA process: 
        for( int i = 0; i < generations; i++ ) {  
            population.evolve(); 
        } 
         
         long endTime = System.currentTimeMillis(); 
         System.out.println("\n"+"Total optimization time: " + (endTime - startTime)+ " ms"); 
         ... 
    } 

3.1 Construction of GA chromosome 
For the GA optimization process some of defined parameters of theoretical model can be fixed 
(by selection in a table of fixed parameters) and parameters released for optimization are then 
assigned to genes of constructed chromosome. In previous listing void solveGA(.) receives 
information about fixed parameters in boolean[] fixedParams. Then array fixedParams is used 
for the determination of number of genes and construction of chromosomes: 
 
      //set number of genes: 
        int geneCount = (int) fixedParams.length; 
        for(int r=0; r<fixedParams.length; r++){ 
            if (fixedParams[r]) {geneCount--;}  
        } 
      //genecount = the number of genes, representing released parameters, max 
fixedParams.length 
       
      //allocate genes: 
        Gene[] mGene = new Gene[geneCount]; 
        int geneIndx = 0; 
        for(int r=0; r< parametreModelu.length; r++){ 
            if (!fixedParams[r]) { 
              //use structure DoubleGene(configuration, minBound, maxBound), double precision   
              //delta = permitted interval for modification of suggested variable, percent   
              try {   

mGene[geneIndx] = new DoubleGene(conf, parametreModelu[r]-
delta*parametreModelu[r]/100, 
parametreModelu[r]+delta*parametreModelu[r]/100); 

                 geneIndx++; 
              } 
             ... 
 

In  this definition a genes of chromosome are defined as double precision data type and are 
created only for parameters released for GA optimization. The size of the chromosome is 
therefore defined according to the number of released parameters. Parameter of theoretical 
model parametreModelu[r] represented by given gene is used also for determination of 
bound interval (minBound, maxBound) defining the interval of acceptable change of 
parametreModelu[r] value. We use special parameter delta defined in range (0,100) for 
determination of the bound interval as percentage of the parametreModelu[r] value. Value 
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delta is taken from an array parametreModelu[68]. User defined parameters for the GA 
optimization are taken from parametreModelu[60] (number of  evolution steps) and 
parametreModelu[61] (number of chromosomes in a population). Information about 
inserting of the fittest chromosome into new population (elitism) is provided to the JGAP 
Configuration object by conf.setPreservFittestIndividual(true) statement. 

3.2 Computation of fitness 
The name of the fitness function (fitnesFunkcia) is provided to the Configuration object in a 
statement conf.setFitnessFunction(fitnesFunkcia). In our JGAP implementation fitnesFunkcia 
is defined in a public class modelFitness.java. This class extends FitnessFunction class of 
JGAP. From given chromosome it reconstructs (in public double evaluate(.)) the values of  
parameters coded in genes of proposed chromosome and calls getActualFitness(.). This is 
illustrated in Listing 2. 

Listing 2. 
 

public double evaluate(IChromosome chromParametre, double[] parametre, double[] 
wavelength,  double[] experimentalData, double[] sigma, boolean[] fixedParams){ 

     
      for(int r=0; r<this.fixedParams.length; r++){ 
         if (!this.fixedParams[r])  
        {this.parametre[r]=((Double) 
chromParametre.getGene(g).getAllele()).doubleValue();} 

  } 
        fitnessE=getActualFitness( 
                       
this.parametre,this.wavelength,this.experimentalData,this.sigma,this.fixedParams); 
 
        return fitnessE; 
       } 
  
Public double getActualFitness( this.parametre, this.wavelength, this.experimentalData, 
this.sigma, this.fixedParams)  receives in this.parametre a set of parameters for reconstruction 
of theoretical model of spectral reflectance. These values are proposed by the GA for testing 
of improvement of theoretical model. In getActualFitness(.) the value of proposed model 
fitness is computed by using Eq. (28), with passed experimental spectral reflectance in 
experimentalData at wavelengths passed in wavelength with dispersion sigma. 

4. VIMSO method application: study of optical properties of amorphous 
silicon thin films 
Undoped amorphous silicon thin films passivated by hydrogen are important for the 
applications in photovoltaics and optoelectronics. Plasma-enhanced chemical vapour 
deposition (PECVD) and hot-wire assisted chemical vapour deposition are techniques often 
used to deposit amorphous silicon thin films (a-Si). Amorphous a-Si thin films suffer from 
light-induced metastability of the microscopic origin. In optical applications based on 
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JGAP. From given chromosome it reconstructs (in public double evaluate(.)) the values of  
parameters coded in genes of proposed chromosome and calls getActualFitness(.). This is 
illustrated in Listing 2. 

Listing 2. 
 

public double evaluate(IChromosome chromParametre, double[] parametre, double[] 
wavelength,  double[] experimentalData, double[] sigma, boolean[] fixedParams){ 

     
      for(int r=0; r<this.fixedParams.length; r++){ 
         if (!this.fixedParams[r])  
        {this.parametre[r]=((Double) 
chromParametre.getGene(g).getAllele()).doubleValue();} 

  } 
        fitnessE=getActualFitness( 
                       
this.parametre,this.wavelength,this.experimentalData,this.sigma,this.fixedParams); 
 
        return fitnessE; 
       } 
  
Public double getActualFitness( this.parametre, this.wavelength, this.experimentalData, 
this.sigma, this.fixedParams)  receives in this.parametre a set of parameters for reconstruction 
of theoretical model of spectral reflectance. These values are proposed by the GA for testing 
of improvement of theoretical model. In getActualFitness(.) the value of proposed model 
fitness is computed by using Eq. (28), with passed experimental spectral reflectance in 
experimentalData at wavelengths passed in wavelength with dispersion sigma. 

4. VIMSO method application: study of optical properties of amorphous 
silicon thin films 
Undoped amorphous silicon thin films passivated by hydrogen are important for the 
applications in photovoltaics and optoelectronics. Plasma-enhanced chemical vapour 
deposition (PECVD) and hot-wire assisted chemical vapour deposition are techniques often 
used to deposit amorphous silicon thin films (a-Si). Amorphous a-Si thin films suffer from 
light-induced metastability of the microscopic origin. In optical applications based on 
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hydrogenated amorphous silicon, control of the optical properties is crucial to obtain well 
functioning devices.  
Thin films deposited from hydrogen diluted silane plasma (a-Si:H) have improved stability 
against prolonged light soaking when compared with films deposited from pure silane 
(SiH4). Hydrogen plays a central role in modifying the electrical and optical properties of 
amorphous Si for the photovoltaic and optical sensor applications. It is important to have a-
Si:H with high optical absorption and with high content of hydrogen in the material to get 
sufficient electrical quality. The introduction of hydrogen modifies the silicon layer structure 
by changes in short and intermediate-range order (network bond-length and angle 
distributions). The presence of Si-H bonds also results in the creation of new states in the 
electron and phonon densities of states and in modifications of densities of electronic and 
vibrational states of Si. We have examined a series of a-Si:H films grown under varying 
PECVD deposition conditions with different hydrogen dilution, the film thickness or the 
substrate material. Material properties are strongly dependent on the deposition conditions 
and therefore a systematic investigation of sample properties connected with these 
deposition and passivation procedures is necessary. In this part we shall describe results, 
obtained by implementation of VIMSO method for determination of optical properties of the 
a-Si:H thin films deposited on glass from hydrogen diluted silane plasma. 

4.1 Experiment 
Hydrogenated amorphous silicon (a-Si:H) films have been deposited under a wide range of 
deposition conditions on a Corning 1737 glass substrates by 13.5 MHz rf excited parallel 
plate PECVD deposition system (Müllerová, 2005). The rf power was 13.5 W, the substrate 
temperature 194 °C and the total chamber pressure 200 Pa. The samples were deposited 
from the hydrogen (H2) diluted silane (SiH4) plasma under varied H2/SiH4 gas flows (the 
dilution D). The sample series  deposited under varying dilution is described in a Table 1. 
All the samples were prepared with approximately the same thickness (~ 400 nm) to avoid 
the film thickness influence on the sample properties. 
 

sample dilution D thickness 
[nm] 

rms roughness 
[nm] 

s1 0 390 - 
s2 10 394 0.756 
s3 20 385 1.013 
s4 30 388 3.629 
s5 40 402 5.476 
s6 50 397 5.021 

Table 1. Samples under study. 

UV-VIS spectral reflectance measurements were performed with Pye Unicam/Philips PU 
8800 spectrophotometer in the single beam mode with 2 nm slit at nearly normal incidence 
and at room temperature. The spectral region was set to (300 – 800) nm The probed sample 
areas were ~ 0.2 cm2. A freshly evaporated aluminium sample was used for the reference 
reflectance data collection. Surface roughness was measured by the atomic force microscope 
NT - MDT SPM Solver P7 LS operating in the contact repulsive mode using a silicon tip 
cantilever. The lateral resolution of AFM measurements was ~ (1 – 2) nm, the vertical 
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resolution 0.01 nm. Standard rms roughness values were determined from the measured 
surface height function at area (2 x 2) 2μm . Experimental spectral reflectances of a-Si:H thin 
films are shown in Fig. 9. 
 

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

300 350 400 450 500 550 600 650 700 750 800
λ  [nm]

R

10 20 50 0

 
Fig. 9. Experimental spectral reflectances R of a-Si:H thin films prepared with hydrogen 
dilution D = 0, 10, 20, 50. 

4.2 Theoretical model of a-Si:H thin film reflectance 
The VIMSO method is based on two step optimization procedure, used for the construction 
and refinement of theoretical model of the spectral reflectance or trasmittance of the 
analysed structure. In the first step the microstructural model of the layered system is 
constructed in graphical interface. Here the materials, thickness and homogeneity of 
individual layers are defined and the initial estimation of theoretical model variables is 
obtained. In our approach a set of dispersion relations commonly used for the determination 
of optical properties of semiconductor and dielectric materials is implemented. The values 
of the theoretical model variables are modified interactively and temporary defined 
theoretical model is graphically compared to the experimental data. Simultaneously the 
numerical value of the 2χ  value defined by Eq.(28) is used as a goodness of fit measure. 
Proposed structural model describing the optical and structural properties of investigated 
samples is shown in Fig. 10. It consists of the overlayer, a-Si:H and transition layer on a glass 
substrate. 
In the following step the values of theoretical model parameters are numerically refined by 
the genetic algorithm. In our implementation the environment for the GA optimization is 
interactively modified (the probabilities of the genetic operators, number of chromosomes in 
population, number of populations, maximal interval for changing selected value, and 
other). It is possible to fix some selected parameters and not allow the GA to change these 
fixed values. This enables avoiding the influence of the mutual correlation of theoretical 
model variables onto the convergence properties of the optimization process and 
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hydrogenated amorphous silicon, control of the optical properties is crucial to obtain well 
functioning devices.  
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obtained by implementation of VIMSO method for determination of optical properties of the 
a-Si:H thin films deposited on glass from hydrogen diluted silane plasma. 
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from the hydrogen (H2) diluted silane (SiH4) plasma under varied H2/SiH4 gas flows (the 
dilution D). The sample series  deposited under varying dilution is described in a Table 1. 
All the samples were prepared with approximately the same thickness (~ 400 nm) to avoid 
the film thickness influence on the sample properties. 
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UV-VIS spectral reflectance measurements were performed with Pye Unicam/Philips PU 
8800 spectrophotometer in the single beam mode with 2 nm slit at nearly normal incidence 
and at room temperature. The spectral region was set to (300 – 800) nm The probed sample 
areas were ~ 0.2 cm2. A freshly evaporated aluminium sample was used for the reference 
reflectance data collection. Surface roughness was measured by the atomic force microscope 
NT - MDT SPM Solver P7 LS operating in the contact repulsive mode using a silicon tip 
cantilever. The lateral resolution of AFM measurements was ~ (1 – 2) nm, the vertical 
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resolution 0.01 nm. Standard rms roughness values were determined from the measured 
surface height function at area (2 x 2) 2μm . Experimental spectral reflectances of a-Si:H thin 
films are shown in Fig. 9. 
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Fig. 9. Experimental spectral reflectances R of a-Si:H thin films prepared with hydrogen 
dilution D = 0, 10, 20, 50. 

4.2 Theoretical model of a-Si:H thin film reflectance 
The VIMSO method is based on two step optimization procedure, used for the construction 
and refinement of theoretical model of the spectral reflectance or trasmittance of the 
analysed structure. In the first step the microstructural model of the layered system is 
constructed in graphical interface. Here the materials, thickness and homogeneity of 
individual layers are defined and the initial estimation of theoretical model variables is 
obtained. In our approach a set of dispersion relations commonly used for the determination 
of optical properties of semiconductor and dielectric materials is implemented. The values 
of the theoretical model variables are modified interactively and temporary defined 
theoretical model is graphically compared to the experimental data. Simultaneously the 
numerical value of the 2χ  value defined by Eq.(28) is used as a goodness of fit measure. 
Proposed structural model describing the optical and structural properties of investigated 
samples is shown in Fig. 10. It consists of the overlayer, a-Si:H and transition layer on a glass 
substrate. 
In the following step the values of theoretical model parameters are numerically refined by 
the genetic algorithm. In our implementation the environment for the GA optimization is 
interactively modified (the probabilities of the genetic operators, number of chromosomes in 
population, number of populations, maximal interval for changing selected value, and 
other). It is possible to fix some selected parameters and not allow the GA to change these 
fixed values. This enables avoiding the influence of the mutual correlation of theoretical 
model variables onto the convergence properties of the optimization process and 
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Fig. 10. Structural model proposed for analysis of optical properties of a-Si:H thin films. 

implementation of the subjective decisions concerning the importance of individual 
variables for the problem solution. This combination of visual modeling followed by the 
stochastic optimization of theoretical model speeds up the solution of the structure 
theoretical model. The set of possible dispersion relations contains analytical models, 
derived by the quantum theory of interaction of light and matter as well as 
phenomenological equations and experimentally obtained data were implemented.  
For the description of  the spectral dependency of the refractive index n and the extinction 
coefficient κ  of amorphous a-Si:H layer we proposed a simple polynomial model  
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The optical properties of overlayer and transition layer are described by a Bruggeman 
model of the effective media approximation with the fraction f of the embedded phase 
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where ε ε ε1 2, , eff  are permitivities of the embedded phase, of a matrix material and resulting 
effective permitivity of the a-Si:H layer respectively. The overlayer is used to account for the 
natural oxide layer influence and the transition layer describes local changes of the optical 
properties at the a-Si:H/glass substrate interface. The ambient is air and the substrate is 
Corning 1737 glass. Theoretical spectral reflectance theorR of proposed structural model is 
computed from multilayer reflection coefficients by equation Eq.(23-24). 
The theoretical spectral reflectance of the whole structure is corrected for the surface 
roughness by the equation 
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where 1 2andc c  are real constants. Theoretical model of spectral reflectance ( )λcorrR  
contains in this approach 20 unknown parameters: … …0 6 0 6 1 2 1 2 3, , , , , , , , , , ,a a b b c c f d d d . 

4.3 Results 
Resulting theoretical model of spectral reflectance for sample s3 obtained by the VIMSO 
method is in Fig. 11. Similar results were obtained also for other analysed samples. 
Refractive indices and extinction coefficients reconstructed from ( )λcorrR   models are in Fig. 
12 and Fig. 13. 
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Fig. 11. Fit of theoretical model of spectral reflectance of sample s3 (blue squares), and 
experimental reflectance function (red line). 
By using of proposed theoretical model the spectral reflectance function can be modeled in 
agreement with the experimental data.  
The size of the surface structural objects measured by the AFM increases with increasing 
dilution. We suppose that with increasing dilution D the a-Si:H structure becomes 
polycrystalline. The samples prepared at the dilution under 20 remain amorphous. The films 
prepared at D ≥ 30 show polycrystalline features. The protocrystalline regime occurs 
between the dilutions 20 and 30. Reduction of the refractive index and extinction coefficient 
of a-Si:H layers with increasing dilution  can be explained by the development of a void 
fraction in the structure. These voids are created under hydrogenation and creation of the 
polycrystalline phase. Remarkable changes of the optical properties connected with these 
processes can be observed under dilution D ≥ 30 as can be seen in Fig. 12 and Fig. 13. 
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By using of proposed theoretical model the spectral reflectance function can be modeled in 
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Fig. 12. Reconstructed spectral refractive indices of a-Si:H thin films. 
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Fig. 13. Reconstructed spectral extinction coefficients of a-Si:H thin films. 

5. Conclusion 
Theoretical model of physical system is constructed in our approach in two steps. 
Microstructural and optical properties of multilayer system are proposed in visual 
environment and then the initial estimation of model parameters is refined by the genetic 
algorithm. It enables comfortable modification of proposed theoretical model, incorporating 
of subjective criteria, testing of mutual correlation of model parameters and control of  
convergence abilities of resulting numerical model. The VIMSO method is implemented in 
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JAVA language in NET Beans IDE. For the GA optimization of estimated numerical model 
the JAVA JGAP package is used. It is based on object-oriented  programming and provides 
all benefit from this property – implementation of data abstraction, modularity, 
encapsulation and inheritance. It is possible to define special chromosomes and fitness 
function suitable for solving of specified problem. By using of the VIMSO method adequate 
description of experimental spectral reflectance of semiconductor thin film samples was 
reached. It is supported by implementation of several dispersion models for semiconductors 
and dielectrics, suitable effective media approximation models, surface roughness 
correction, and by the "user friendly" philosophy applied to building of the layer structure 
and modification of model variables. 
Changes in optical properties of real a-Si:H thin films due to the increasing hydrogen 
dilution were analysed by optimising of the spectral reflectance theoretical model. Proposed 
microstructural and dispersion theoretical model was successfully optimised by comparison 
to the experimental data. Development of the spectral index of refraction and extinction 
coefficient with change of the deposition conditions was obtained. Changes in optical 
properties of a-Si:H samples determined by using the VIMSO method provide reliable tool 
for making conclusions about development of the material structure and about interaction 
of light and prepared optical media. 
Beside of the refractive index and extinction coefficient a set of other important parameters 
describing the structure and optical properties can be extracted from fitted theoretical 
model. Very useful is information about the thicknesses of individual layers, influence of the 
effective media approximation, connection of surface roughness and spectral reflectance and 
other parameters extracted from the resulting fit. The combination of visual estimation of 
initial theoretical model and refinement of this estimation by the genetic algorithm is 
suitable tool for modeling of complex physical systems. It enables reliable incorporation of 
new phenomena into theoretical model in order to explain the experimental data. When 
solving this task correlated parameters can be easily fixed and suitable restrictions of 
remaining parameters can be effectively implemented. 
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Fig. 12. Reconstructed spectral refractive indices of a-Si:H thin films. 
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Fig. 13. Reconstructed spectral extinction coefficients of a-Si:H thin films. 

5. Conclusion 
Theoretical model of physical system is constructed in our approach in two steps. 
Microstructural and optical properties of multilayer system are proposed in visual 
environment and then the initial estimation of model parameters is refined by the genetic 
algorithm. It enables comfortable modification of proposed theoretical model, incorporating 
of subjective criteria, testing of mutual correlation of model parameters and control of  
convergence abilities of resulting numerical model. The VIMSO method is implemented in 
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1. Introduction 
Device optimization using metaheuristic methods has been successfully applied to 
electromagnetic devices since their development in the early 1980s. Some recent examples of 
the application of metaheuristics in electromagnetic device design include, among others, 
genetic algorithms [Zaoui2007], evolution strategies [Coelho2007], Tabu search 
[Cogotti2000], artificial immune systems [Campelo2006], particle swarm optimization (PSO) 
[Ciuprina2002]. 
In this chapter the author summarizes some of his experiences in the use of two stochastic 
optimization techniques which are very suitable to typical electromagnetic devices and 
systems. First the algorithms are briefly introduced and then their application to typical 
challenging problems, including Polymer Exchange Membrane Fuel Cells (PEMFC), high-
field-uniformity solenoids and Superconducting Magnetic Energy Storage (SMES) systems, 
is presented.  

2. Algorithm 1: differential evolution 
Evolutionary algorithms (EAs) are a class of nonlinear optimization approaches which 
somehow mimic features of biological systems and Darwin’s principle of the survival of the 
fittest. EAs have some particular advantages such as robustness, parallelism, and global 
search capability, which make them applicable and attractive within a wide range of 
engineering problems including electromagnetic optimization. 
DE is a powerful and simple EA which improves a population of individuals over several 
generations through the operators of mutation, crossover and selection. DE presents good 
convergence characteristics and requires few control parameters. The most important 
operation in DE is its offspring-generating scheme, namely, each offspring is generated by 
differential mutation and probabilistic crossover from the current population. 
 In the context of EAs, an attractive and repulsive (AR) approach was introduced in 
[Ursem2002], [Ursem2003] within the framework of particle swarm optimization. AR uses a 
diversity measure to control the population and the result is a powerful algorithm which 
alternates between phases of attraction (exploitation) and repulsion (exploration).  
Such a diversity measure can be applied within the framework of Differential Evolution 
(DE) in order to improve both the global convergence as well as the local search 
performance. The DE approach showed here uses an attractive-repulsive, diversity-guided 
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electromagnetic devices since their development in the early 1980s. Some recent examples of 
the application of metaheuristics in electromagnetic device design include, among others, 
genetic algorithms [Zaoui2007], evolution strategies [Coelho2007], Tabu search 
[Cogotti2000], artificial immune systems [Campelo2006], particle swarm optimization (PSO) 
[Ciuprina2002]. 
In this chapter the author summarizes some of his experiences in the use of two stochastic 
optimization techniques which are very suitable to typical electromagnetic devices and 
systems. First the algorithms are briefly introduced and then their application to typical 
challenging problems, including Polymer Exchange Membrane Fuel Cells (PEMFC), high-
field-uniformity solenoids and Superconducting Magnetic Energy Storage (SMES) systems, 
is presented.  

2. Algorithm 1: differential evolution 
Evolutionary algorithms (EAs) are a class of nonlinear optimization approaches which 
somehow mimic features of biological systems and Darwin’s principle of the survival of the 
fittest. EAs have some particular advantages such as robustness, parallelism, and global 
search capability, which make them applicable and attractive within a wide range of 
engineering problems including electromagnetic optimization. 
DE is a powerful and simple EA which improves a population of individuals over several 
generations through the operators of mutation, crossover and selection. DE presents good 
convergence characteristics and requires few control parameters. The most important 
operation in DE is its offspring-generating scheme, namely, each offspring is generated by 
differential mutation and probabilistic crossover from the current population. 
 In the context of EAs, an attractive and repulsive (AR) approach was introduced in 
[Ursem2002], [Ursem2003] within the framework of particle swarm optimization. AR uses a 
diversity measure to control the population and the result is a powerful algorithm which 
alternates between phases of attraction (exploitation) and repulsion (exploration).  
Such a diversity measure can be applied within the framework of Differential Evolution 
(DE) in order to improve both the global convergence as well as the local search 
performance. The DE approach showed here uses an attractive-repulsive, diversity-guided 
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operator (ARDGDE) prevents the fluctuation of the estimated parameters during the 
evolution procedure. ARDGDE will be applied on the well-known TEAM workshop 
problem 22 which has been solved with a number of different techniques in the past 
[Magele1993], [Alotto1998], [Saldanha1999], [Magele 2007]. The benchmark consists in 
determining the optimal design of a superconducting magnetic energy storage (SMES) 
device in order to store a significant amount of energy in the magnetic field with a fairly 
simple and economical coil arrangement which can be rather easily scaled up in size.  

2.1 Classical DE 
The fundamental idea behind DE is the scheme which generates the trial parameter vectors. 
DE, at each time step, mutates vectors by adding weighted, random difference vectors to 
them. If the cost (objective function value) of the trial vector is better than that of the target, 
the target vector is replaced by trial vector in the next generation. This greedy behavior lies 
at the heart of the efficiency of DE. 
In 1995 Storn and Price [Storn1995] proposed several variants of the basic DE which are 
identified by the notation DE/ind/num/mode, where vec indicates the individual to be 
mutated (i.e. either a randomly chosen individual, rand, or the best individual of the current 
generation, best), num is the number of difference vectors used in the mutation (i.e. either 1 
or 2) and mode is the method of crossover used. For independent binomial experiments of 
the degrees of freedom, this is set to bin, whereas independent exponential experiments are 
indicated by exp. 
Studies have shown that for general problems two of the most effective strategies are 
DE/rand/1/bin and DE/best/2/bin. The variant implemented here is the DE/rand/1/bin 
given by the following steps: 
i. Initialize a population of M individuals (real-valued solution vectors) xi(t), i=1,…,M, 

with random values generated according to a uniform probability distribution in the n 
dimensional problem space. In this step, t = 0. 

ii. For each individual, evaluate its fitness (objective function value), F.  
iii. Mutate individuals according to following equation: 

 
1 2 3

( 1) ( ) [ ( ) ( )]i r m r rt t f t t+ = + ⋅ −z x x x  (I.1)     

where r1, r2 and r3 are three mutually different random integers in [1,M], and fm > 0 is a 
real parameter, called mutation factor, which controls the amplification of the difference 
between two individuals and is usually taken in the range [0.1, 1]. Practically, each mutant 
individual irradiates from a current individual by addition of a vector depending on the 
weighted difference between randomly chosen population members (Fig. I.1). 

iv. Following the mutation operation, crossover is applied to the population. For each 
mutant vector, zi(t+1), an index 1,ir M∈⎡ ⎤⎣ ⎦  is randomly chosen using a uniform 
distribution, and a trial vector, ( 1)i t +u , is generated (component by component) by 
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where rj is the j-th evaluation of a uniform random number generation within [0, 1] and 
CR is a recombination or crossover rate in the range [0, 1]. It has been shown that the 
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Fig. I.1. Generation of mutants according to the DE/best/1/exp approach. 

performance of DE does not depend very critically upon the choice of CR. To decide 
whether or not the vector ui(t+1) should be a member of the population comprising the 
next generation, it is compared to the corresponding vector  xi( t ). In this context, if F is 
the objective function subject to  minimization, then 
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v. Update t = t + 1. Loop to step (ii) until a stopping criterion is met, usually a maximum 
number of iterations (generations), tmax. 

Usually, the performance of a DE algorithm depends on the population size M, the mutation 
factor fm, and the crossover rate CR. Various studies have shown that the mutation factor is 
the parameter which most critically influences the performance and robustness of DE. 

2.2 DE using diversity-guided operator 
Population diversity is a key issue in the performance of evolutionary algorithms. A 
common hypothesis is that high diversity is important to avoid premature convergence and 
to escape local optima. Various diversity measures have been used to analyze algorithms, 
but so far few algorithms have used a measure to guide the search. 
To improve the control over the population diversity, Ursem introduced a diversity guided 
evolutionary algorithm (DGEA) [Ursem2002], [Ursem2003]. The idea behind DGEA is 
simple. Unlike most other evolutionary algorithms DGEA uses a diversity measure to 
alternate between exploiting and exploring behaviors. These behaviors are also called 
attraction and repulsion, hence the acronym AR. To use a measure for this purpose it has to 
be robust with respect to the population size, the dimensionality of the problem, and the 
search range of each of the variables. An immediate measure for N-dimensional numerical 
problems is the “distance-to-midpoint” measure, which is defined as: 
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operator (ARDGDE) prevents the fluctuation of the estimated parameters during the 
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device in order to store a significant amount of energy in the magnetic field with a fairly 
simple and economical coil arrangement which can be rather easily scaled up in size.  
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generation, best), num is the number of difference vectors used in the mutation (i.e. either 1 
or 2) and mode is the method of crossover used. For independent binomial experiments of 
the degrees of freedom, this is set to bin, whereas independent exponential experiments are 
indicated by exp. 
Studies have shown that for general problems two of the most effective strategies are 
DE/rand/1/bin and DE/best/2/bin. The variant implemented here is the DE/rand/1/bin 
given by the following steps: 
i. Initialize a population of M individuals (real-valued solution vectors) xi(t), i=1,…,M, 

with random values generated according to a uniform probability distribution in the n 
dimensional problem space. In this step, t = 0. 

ii. For each individual, evaluate its fitness (objective function value), F.  
iii. Mutate individuals according to following equation: 
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where r1, r2 and r3 are three mutually different random integers in [1,M], and fm > 0 is a 
real parameter, called mutation factor, which controls the amplification of the difference 
between two individuals and is usually taken in the range [0.1, 1]. Practically, each mutant 
individual irradiates from a current individual by addition of a vector depending on the 
weighted difference between randomly chosen population members (Fig. I.1). 
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Fig. I.1. Generation of mutants according to the DE/best/1/exp approach. 
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v. Update t = t + 1. Loop to step (ii) until a stopping criterion is met, usually a maximum 
number of iterations (generations), tmax. 

Usually, the performance of a DE algorithm depends on the population size M, the mutation 
factor fm, and the crossover rate CR. Various studies have shown that the mutation factor is 
the parameter which most critically influences the performance and robustness of DE. 

2.2 DE using diversity-guided operator 
Population diversity is a key issue in the performance of evolutionary algorithms. A 
common hypothesis is that high diversity is important to avoid premature convergence and 
to escape local optima. Various diversity measures have been used to analyze algorithms, 
but so far few algorithms have used a measure to guide the search. 
To improve the control over the population diversity, Ursem introduced a diversity guided 
evolutionary algorithm (DGEA) [Ursem2002], [Ursem2003]. The idea behind DGEA is 
simple. Unlike most other evolutionary algorithms DGEA uses a diversity measure to 
alternate between exploiting and exploring behaviors. These behaviors are also called 
attraction and repulsion, hence the acronym AR. To use a measure for this purpose it has to 
be robust with respect to the population size, the dimensionality of the problem, and the 
search range of each of the variables. An immediate measure for N-dimensional numerical 
problems is the “distance-to-midpoint” measure, which is defined as: 
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where |D| is the length of the diagonal (assuming that each design variable is in a finite 
range) in the search space X∈ℜn, P is the population, M is the population size, n is the 
dimensionality of the problem, xij is the j-th component of the i-th individual, and jx  is the j-
th component of the midpoint x .  
Based on this diversity concept, a modified attractive-repulsive diversity guided DE 
(ARDGDE) is used here. The pseudocode for ARDGDE based on DE/rand/1/bin is listed in 
Fig. I.2. The diversity measure is given by 

 ( )2
1 1

1 M n

i ij j
i i j

diversity(P ) x x
D M = =
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The ARDGDE algorithm has an adaptive mutation factor which alternates between phases 
of attraction and repulsion. The diversity analysis of 

2
( )i,rx t  and 

3
( )i,rx t  determines which 

phase ARDGDE is currently in, simply by setting sign-variables, d1 and d2, either to 1 or -1 
depending on the diversity. Here the lower and higher bounds of diversity measure, dlow 
and dhigh, are set to 0.05 and 0.25, respectively. 

3. Algorithm 2: Tribes 
3.1 Motivation 
As will be shown in the sections devoted to typical electromagnetic applications, most 
realistic problems have a rather high number of parameters and highly non-linear objective 
functions. In some cases appropriate models of modest computational cost can be built and 
in these cases robust and possibly parameter free (self-adapting) stochastic optimizers can 
be used.  
The Tribes algorithm, proposed in [Clerc2006][Cooren2006], and which has attracted 
attention from researchers in different application areas such as the optimization of milling 
operations [Onwubolu2005], flow shop scheduling [Onwubolu2005], and molecular docking 
[Chen2006], seems to be the particularly suitable for solving this kind of problems. 

3.2 Particles 
The population in Tribes is called swarm and each individual is called particle. Each particle 
flies around in a multi-dimensional problem search space. In other words, a swarm consists 
of N particles moving around in a D-dimensional search space. 

3.3 Informers 
An informer for a given particle P is a particle Q that can pass some information to P. 
Typically this information includes the best position ever found by Q and the function value 
at this best position. The informer Q, therefore, influences the behavior of P. 
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ARDGDE main 
{ 
   Generation t = 0; 
   Initialize the direction variables d1=1 and d2=1; 
   Initialize the population P(t) of individuals; 
   While (stopping criterion is not met), 
        Evaluate the fitness of population;  
        Update the generation number, t = t + 1; 
        Apply mutation operator given by: 
        Select the indices r1, r2 and r3 

        Update the adaptive mutation factor using max( ) 0.5 ( / ) 0.3mf t t t= ⋅ +  
        If rand > 0.5     (where rand is a random number generated using uniform probability 
        distribution function) 
           If  diversity (

2
( )i,rP t ) < dlow 

                d1 = 1; 
            Else if diversity(

2
( )i,rP t ) > dhigh 

                d1 = -1; 
             Endif 
            

1 2 31( 1) ( ) ( ) ( ) ( )i i,r m i,r i,rz t x t d f t x t x t+ = + ⋅ ⋅ −  

       Else if      
           If  diversity (

3
( )i,rP t ) < dlow 

               d2 = 1; 
           Else if diversity(

3
( )i,rP t ) > dhigh 

                d2 = -1; 
            End if 
            

1 2 32( 1) ( ) ( ) ( ) ( )i i,r m i,r i,rz t x t d f t x t x t+ = + ⋅ ⋅ −  

       End if 
       Apply crossover operator 
   End while 
} 

Fig. I.2. Pseudocode of ARDGDE with adaptive mutation factor. 

3.4 Tribes 
A tribe is a sub-swarm formed by particles which have the property that all particles 
inform all others belonging to the tribe (a symmetrical clique in graph theoretical 
language). The concept is therefore related to the “cultural vicinity” (information 
neighborhood) and not on “spatial vicinity” (parameter-space neighborhood). It should be 
noted that, due to the above definition, the set of informers of a particle (its so-called i-
group) contains the whole of its tribe but is not limited to it. This is shown in Fig. II.1 
where the i-group of particle B1 contains all particles of its tribe (black) and particle W1 
belonging to the white tribe. 
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Fig. II.1. Tribal relationships 

3.5 Optimization procedure 
The Tribes mechanism is auto-parametrising. The principles of Tribes are: i) the swarm is 
divided in tribes; ii) at the beginning, the swarm is composed of only one particle; iii) 
according to tribes’ behaviors, particles are added or removed; and iv) according to the 
performances of the particles, their displacement strategies are adapted. The so-called 
structural adaptation rules describe when a particle is created or removed and when a 
particle becomes the informer of another, whereas so-called moving strategies indicate how 
particles modify their positions. 

3.6 Structural adaption rules 
The most important structural adaption rule is that “good” tribes may benefit from the 
removal of their weakest member, since they already possess good problem solutions and 
thus may afford to reduce their population; “bad” tribes, on the other hand, may benefit 
from the addition of a new member, increasing the possibility of improvement. In Tribes, for 
each “bad” tribe, the best particle generates a new particle using uniform probability 
distribution and becomes its informer. Particles generated in one iteration step are 
interconnected into a tribe and provide inter-tribe exchange of information. 
Crucial for the above steps is the definition of “good” and “bad” tribes: the more “good” 
particles a tribe has, the more “good” the tribe is. This behavior is obtained by generating a 
random number between 1 and Ntribe–the number of particles in a tribe–, and checking if it is 
less than or equal to Gtribe–the number of “good” particles in the tribe.  
In contrast to most standard PSO approaches, particles keep memory of their last two 
previous cost function values. The particle is said to be “good” if the last movement 
produces an improvement of the objective function, “excellent” if both the last two 
movements produce an improvement, otherwise the particle is “neutral”.  
Structural adaptation should not take place after each iteration since some time (iterations) 
are necessary for information to propagate throughout the swarm. 
In his original algorithm Clerc proposes to reevaluate and modify the population structure 
every L/2 iterations, where L is the dynamically changing number of links in the population. 
In fact, a more sophisticated approach would be to compute the length of all shortest paths 
between all couples of particles and the longest of such paths would indicate the number of 
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iterations it would take to propagate information through the whole swarm. Since such 
algorithm could quickly become expensive in the case of large swarms the above heuristic, 
which has been tested to give similar results to the more complex one, is implemented 
instead. 
As a result, Fig. II.2 shows the dynamics of tribe and particle creation/deletion for the μ-
DMFC optimization problem described later. 
 

 
Fig. II.2. Tribe and particle creation/deletions vs. number of iterations. 

3.7 Moving strategies 
In contrast with standard PSO algorithms particles do not have explicit associated velocities: 
their position is updated according to history only. “Excellent” particles are updated 
according to the “simple pivot” strategy [Serra1997], whereas “good” and “neutral” 
particles evolve according to the “noisy pivot” method.  
In the “simple pivot” method two positions are used: the best position  p of a given particle 
P and the best position q of its informer Q. Then two hyperspheres of radius |p-q| are 
created around p and q and the new position is generated inside the intersection of the two 
hyperspheres in such a way that the newly generated point is most likely to be nearer to the 
best between p and q. In order to obtain such behavior two weights w1 and w2 proportional 
to the relative fatnesses of P and Q are generated and the new position is obtained by 
w1hp+w2hq., where hp and he are two randomly generated points in the hyperspheres 
surrounding p and q respectively. 
In the “noisy pivot” method the same procedure is applied but random noise is added to the 
obtained position in such a way that exploration beyond the hyperspheres becomes 
possible.  
The combined use of these strategies has a twofold effect: very good particles search in their 
close neighborhood (exploitation) whereas all other sample wider regions of parameter 
space (exploration). 
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Fig. II.1. Tribal relationships 
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iterations it would take to propagate information through the whole swarm. Since such 
algorithm could quickly become expensive in the case of large swarms the above heuristic, 
which has been tested to give similar results to the more complex one, is implemented 
instead. 
As a result, Fig. II.2 shows the dynamics of tribe and particle creation/deletion for the μ-
DMFC optimization problem described later. 
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3.8 Brief description of the algorithm 
Summarizing, the Tribes algorithm consists of following steps: 

Initialization of swarm  

Set iteration t=1. Initialize a population of 1 particle (real-valued D-dimensional vector) and 
1 tribe with random values generated according to a uniform probability distribution within 
given upper and lower bounds. 

Evaluation of each particle in the swarm 

Evaluate the fitness (objective function) value of each particle.  

Swarm moves 

Apply the moving strategies (“simple pivot” or “noisy pivot”) according to the quality of 
particles (“excellent”, “good” or “bad”). 

Adaptation scheme 

After every L/2 iterations, where L is the number of links in the population, adapt the 
structure of the swarm by applying the above described structural adaptation rules. 

Stopping criterion 

Set the generation number for t = t + 1. Proceed to step Evaluation of each particle in the swarm 
until a stopping criterion is met, usually a maximum number of iterations or a maximum 
number of objective function evaluations.  

4. Application 1: fuel cells 
Recently, small-scale direct methanol fuel cells (μ-DMFCs) have gained considerable 
attention as power sources with potentially higher energy density compared to traditional 
Li-ion batteries [Larminie2003]. This feature, together with the low operating temperature 
and low weight, makes μ-DMFCs particularly suited for supplying low-power portable 
devices such as laptops, PDAs, or mobile phones.  
Several factors contribute to the overall cell performance, e.g., methanol concentration, load 
current, room humidity and temperature, membrane conductivity and permeability, catalyst 
loadings. Modeling and optimizing the cell performance becomes particularly complex since 
electro-chemical coupled problems are fully non-linear. 
To date design procedures have been developed mainly for polymer electrolyte fuel cells 
(PEMFC) [Katykatoglu2007][Cheng2006]. Here a one-dimensional analytical model of a 
μ-DMFC that accounts for current generation, mass transport, electronic and protonic 
electrical conduction, and electrochemical reactions is shown. 

4.1 Direct methanol fuel cell modeling 
A small-scale direct methanol fuel cell consists of a proton exchange membrane (PEM) 
sandwiched between the anode and cathode electrodes (Fig. III.1). In passive fuel cells 
methanol is stored in a tank, while oxygen is taken from the atmosphere. Reactants are 
distributed through diffusion layers to catalyst layers, where the electro-chemical energy 
conversion occurs. Electrons generated at the anode catalyst layer flow to the external circuit 
by means of a current collector.  

Electromagnetic Device Optimization with Stochastic Methods   

 

61 

The model takes into account the following physical phenomena: electrochemical reactions, 
electronic and protonic conduction, methanol crossover through the PEM, diffusion of 
reactants inside the substrates, and electric current generation.  
In the following sections the static and dynamic modeling of the μ-DMFC are treated 
separately.    

4.2 Static modeling of a μ-DMFC  
The electric steady-state external characteristic of the fuel cell is obtained from mass 
transport and electro-chemical relations under the assumption of a one-dimensional 
geometry.  
 

 
Fig. III.1. DMFC schematic (a=anode, c=cathode, pem=proton exchange membrane, 
dl=diffusion layer, cl=catalyst layer).   

The external circuit is coupled to the cell by the following generalized continuity equations 
that apply at catalyst layers:  
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where superscripts indicate protons and electrons, , gρ ρ the stored/ generated charge 
densities, and J  the current density.  
Current densities at the anode and cathode are computed by Butler-Volmer’s equation, 
neglecting the concentrations of reduced (anode) and oxidized species (cathode), as 
[Bard2001]: 
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where concentrations ,a cC C  and over-voltages ,a cv v  are independent variables, and the 
other quantities are constant.  
Reactant concentrations at both catalyst layers depend on the diffusion rate across diffusion 
layers by Fick’s law: 

 D C= − ∇N  (III.3) 

where N  is the reactant molar flow, and D is the diffusivity. Using (3) methanol flow from 
the tank can be expressed as:  

 0,( )ad a a acN K C C= −  (III.4) 

assuming very thin layers and a one-dimensional mass flow. In the same way, oxygen flow 
at the cathode can be expressed as:   

 0,( )cd c c ccN K C C= −  (III.5) 

where ,a cK K are the mass transfer coefficients, 0,aC  and 0,cC  the methanol and oxygen 
concentrations in the tank and in the ambient, and ,ac ccC C  those at catalyst layers.  
Due to electro-osmosis and concentration gradient effects, part of the methanol does not 
react completely at the anode and flows through the membrane. This effect is the so-called 
crossover, causing significant voltage loss and waste of fuel. The anode current density aJ  is 
related to crossover mN , as: 

  6 ( )a ad mJ F N N= −  (III.6) 

where F is the Faraday’s constant (96.485 C mol-1). At the cathode side, current density cJ  
can be derived as: 

 3
24 ( )c ad mJ F N N= −  (III.7) 

The methanol crossover in (III.6) and (III.7) can be computed by means of the following 
mass balance equation:  

 /m m d aD C n F= − ∇ +N J  (III.8) 

where mD  is the methanol diffusivity on the membrane, and dn  the electro-osmotic drag 
coefficient.  
The anode activation over-voltage is obtained by combining (III.4) and (III.6) with (III.2), as: 
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where thickness mδ is defined in Fig. III.1.  
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Similarly, the cathode over-voltage can be computed by combining (III.5) and (III.7) as: 
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Anode and cathode current densities in (III.9) and (III.10) can be related to load current 
density J on the external circuit, as: 
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which states that the electron flow at the anode equates the proton flow, while at the 
cathode the electron flow from methanol crossover oxidation must be considered as well.  
Finally, the fuel cell voltage at the collector is obtained from anode and cathode over-
voltages in (III.9) and (III.10), as 

  ( ) ( )eq eqV J E J R J= −  (III.12) 

where 0( ) ( ) ( )eq a cE J E v J v J= − −  is the equivalent fem, 0E  the standard cell voltage,  

/eq m m cR Rδ σ= +  the equivalent resistance, mσ  the PEM non-linear conductivity, and cR  
the contact resistance between collectors and diffusion layers.  

4.3 Dynamic modeling of a μ-DMFC  
The fuel cell dynamics on the long time scale is dominated by the consumption of the 
methanol in the reservoir, which can be computed by using the mass conservation law 
[Bard2001]:  

 0tC∇ ⋅ + ∂ =N  (III.13) 

where t∂  is the time derivative. The voltage discharge of the DMFC is evaluated for a 
constant load current density.  
The state variable model is obtained by assembling (III.4), (III.6) and (III.13) into the 
following ODE system: 

 1 2+ =M x M x g  (III.14) 
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Similarly, the cathode over-voltage can be computed by combining (III.5) and (III.7) as: 
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Anode and cathode current densities in (III.9) and (III.10) can be related to load current 
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and 0δ  is the tank thickness indicated in Fig. III.1. This system is solved numerically by the 
so-called θ-method, which consists in the following iterative scheme: 

 2 2
1 1 1( 1)k kθ θ

τ τ+
⎛ ⎞ ⎡ ⎤+ = − + +⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎣ ⎦

M MM x M x g  (III.15) 

where τ  is the time integration step, and the parameter θ  is set to 2/3 in order to ensure 
unconditional stability.  
As an example, Fig. III.2 shows the voltage discharge profiles computed at different load 
current densities and for an initial methanol concentration in the reservoir of 3 M. 
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Fig. III.2. Voltage discharge profiles at constant current densities. 

4.4 Particle swarm optimization 
In order to optimize the cell performance two conflicting objectives were considered, i.e., the 
maximization of the cell duration between two consecutive fuel recharges – obtained from 
(15) – and the minimization of the methanol crossover. The importance of the second 
objective is twofold: on one hand crossover is obviously a waste of (limited) fuel, on the 
other hand fuel cell life-time is shortened by catalyst poisoning due to the carbon monoxide 
produced at the cathode from crossover methanol oxidation.  
Both the objectives depend on the following parameters: methanol concentration in the tank, 
diffusion/catalyst layer thicknesses, membrane thickness, current density, and room 
temperature.  
The above-described Tribes algorithm was applied to the μ-DMFC model with a maximum 
number of 5000 objective function evaluations as a stopping criterion.  
It was observed that the optimization procedure identifies quite rapidly the shape of the 
Pareto front, and then further refines it. Fig. III.3 shows that the Pareto front is coarsely 
identified when number of individuals on the front first reaches one hundred (triangular 
markers). This happens after roughly 300 function evaluations. In the remaining iterations 
the algorithm spreads out individuals along the front. 
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Fig. III.4 shows that particles are very well distributed on the front. The corresponding 
positions in parameter space, i.e., the Pareto set, show that the solutions forming the Pareto 
front lie in completely different positions. These correspond to really different design 
solutions. For instance, Fig. III.5 shows the Pareto set in the three-dimensional subspace 
( 0,aC , adδ , acδ ).  

 
Fig. III.3. Evolution of the Pareto front during iteration. 
 

 
Fig. III.4. Final Pareto front. 
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Once the front has been identified it is the responsibility of a decision-maker to choose one 
or more particular designs which emphasize one of the two objectives with respect to the 
other depending on the specific application field of the DMFC. 
 

 
Fig. III.5. Pareto set (three parameters only) 

5. Application 2: solenoid design 
The electrical engineering literature has several references to optimization approaches 
which have been used to solve Loney’s solenoid design problem [Cogotti2000], 
[Ciuprina2000].  
Appropriately stated, Loney’s solenoid design problem consists in determining the position 
and size of two correcting coils in order to generate a uniform magnetic flux density B 
within a given interval on the axis of a main solenoid.  
 

 
Fig. IV.1. Axial cross-section of Loney’s solenoid 

The upper half plane of the axial cross-section of the system is presented in Fig. IV.1. The 
interval of the axis, where the magnetic flux density B must be as uniform as possible is (-zo, 
zo). The separation s and the length l of the correcting coils are to be determined while all other 
dimensions are given. Both s and l are bounded in [0,0.2] according to the problem definition. 
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The field behavior along the axis can in principle be computed by several means, but in 
order to allow for a fair comparison between different methods we chose to follow the same 
route followed by other research groups, namely to represent each coil by four coaxial 
current sheets. 
The optimization problem to be solved is: 

 min F(s,l) (IV.1) 

where the objective function F is given by: 

 
0

F −
= max minB B

B
 (IV.2) 

where Bmax and Bmin are the maximum and minimum values of the magnetic flux density in 
the interval (-zo, zo) and B0 is the flux density at z=0. 
Due to the peculiar way in which the field is computed (coils are represented by four 
current sheets) and due to the way Bmax and Bmin are evaluated (five uniformly spaced points 
in [-z0,0]) the objective function is very noisy. 
Three different basins of attraction of local minima can be recognized in the domain of F 
with values of F > 4·10-8 (high level region: HL), 3·10-8 < F < 4·10-8 (low level region: LL), and 
F < 3·10-8 (very low level region - global minimum region: VL). The very low level region is a 
small ellipsoidally shaped area within the thin low-level valley. In both VL and LL small 
changes in one of the parameters can give rise to changes in objective function values of 
several orders of magnitude.   
Tribes was run with a stopping criterion of either 1000 or 2000 objective function evaluations.  
Table IV.1 summarizes the behavior of the swarm size and number of tribes at convergence. 
It is interesting to note that the adaptive mechanism practically always generates the same 
number of tribes for a given number of function calls. The overall swarm size is also quite 
stable.  
 

F calls S=Swarm Size, T=Number of tribes 

 Smin Savg Smax Sstdev Tmin Tavg Tmax Tstdev 
2000 22 34,9 56 6,2 9 9,7 10 0,48 
1000 13 27,8 43 5,8 8 8,1 9 0,29 

Table IV.1 Simulation Results of F in 100 runs 

Table IV.2 summarizes the behavior of the algorithm in terms of the best objective function 
value found in 100 independent runs of the algorithm. The last three columns show the 
number of optima lying in the above-defined basins of attraction.  
Results are very good also in the case of just 1000 function evaluations. A more detailed 
representation of the distribution of optima for both convergence criteria can be seen in Fig. 
IV.1, while Fig. IV.2 shows the location of the 100 optima for the case of 2000 function 
evaluations.  
Tribes, like all stochastic optimizers, can be successfully coupled to a deterministic optimizer, 
like the derivative-free SolvOpt [Kappel2000] method which is based on Shor’s method and is 
very well suited to noisy objective functions. Furthermore, SolvoOpt was chosen because lack 
of derivative information was hypothesizes also for the stochastic optimizer. 
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F calls HL=High Level, LL=Low Level, VL=Very Low Level 

 Fmin 

10-8 
Favg 

10-8 
Fmax 

10-8 
Fstdev 

10-9 
N 
VL 

N 
LL 

N 
HL 

2000 2,0574 3,4870 3,9526 5,23 18 82 0 
1000 2,2732 3,6450 4,5052 4,18 9 88 3 

Table IV.2 Simulation Results of F in 100 runs 
 

 
Fig. IV.1. Distribution of optima in 100 runs 
 

 
Fig. IV.2. Location of optimal solutions in 100 runs 
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Results of this coupling are shown in Fig. 5. Tribes was run with increasingly high numbers 
of function evaluations as stopping criterion (20, 40, 80, 160, 320, 640, 1200, 2400) and the 
best, average and worst optimal solutions are shown in Fig. IV.3. The algorithm improves 
only minimally after about 1200 function evaluations.  
 

 
Fig. IV.3. Convergence of TRIBES and TRIBES+Solvopt 

Tribes was then coupled to Solvopt and the deterministic optimizer was executed after the 
convergence of Tribes with stopping criteria of 20, 40,  320, 640 evaluations, respectively.  
It can be seen that, for a given number of evaluations, the coupling of the two optimizers 
gives improvements for the first three cases but becomes practically useless afterwards (in 
fact the coupled optimizer becomes worse since it increases evaluations without improving 
the objective). It should also be noted that while the best and average optimal values 
improve, the worst values are almost always much worse, indicating misconvergence 
(remaining trapped in a local minimum) of the deterministic optimizer in some cases. 

6. Application 3: superconducting magnetic energy storage 
TEAM workshop problem 22 is a continuous, eight-parameter benchmark. Mathematically, 
this optimization problem has an objective function consisting of the weighted average of 
two conflicting goals (energy and stray field requirements). The optimization problem to be 
solved is the following: 

 
2

2min  
refstray

refnormal

Energy EB
OF w

EB

−
= + ⋅  (V.1) 

where OF is the objective function to be minimized; the reference stored energy and stray 
field are Eref= 180 MJ, Bnormal = 200 μT, and w is a penalty factor with value equals to 100. The 
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introduction of the penalty factor w is a deviation from the problem definition in which 
w=1.0. The penalty factor was introduced to make the stray field and energy error terms of 
roughly the same magnitude in order to achieve better convergence of the algorithm (failure 
to introduce w slightly worsen the average results). It should be noted, however, that results 
reported in Table 3 include reference to the original problem definition for ease of 
comparison with other approaches. 

2
strayB  is defined as 

 
,

22 2

2 1

22

stray i
i

stray

B
B ==

∑
 (V.2) 

where 
,stray i

B  is evaluated along 22 equidistant points along line a and line b in Fig V.1. Both 

the energy and the stray field are calculated using an integral formulation for the solution of 
the forward problem (Biot-Savart law). The bounds of the optimization parameters are 
shown in Table V.1. 
 

 
Fig. V.1. Setup of the SMES device (TEAM workshop problem 22). 

 
Variables R1 [m] R2 [m] h1/2 [m] h2/2 [m] 
Minimum 1.00 1.80 0.10 0.10 
Maximum 4.00 5.00 1.80 1.80 
Variables d1 [m] d2 [m] J1 [A/mm2] J2 [A/mm2] 
Minimum 0.10 0.10 10.0 -30.0 
Maximum 0.80 0.80 30.0 10.0 

Table V.1. Limits of the optimization Parameters for the SMES Device. 
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Finding the optimal design is not an easy task because, besides usual geometrical 
constraints, there is a material related constraint: the given current density and the 
maximum magnetic flux density value on the coil must not violate the superconducting 
quench condition which can be well represented by a linear relationship shown in Fig. V.2. 
In the TEAM 22 workshop study used to investigate the performance of the classical DE and 
ARDGDE approaches, the population size M was 15 and the stopping criterion tmax was 100. 
 

 
Fig. V.2. Critical curve of the superconductor. 

Table V.2 reveals that ARDGDE2 provides better solutions than the DE1, DE2, and 
ARDGDE1 for the TEAM 22 workshop problem, particularly in terms of mean and best OF 
values. In Table 3 the best results of each tested approach (mentioned with statistical details 
in Table V.2) are shown (OFstd refers to OF with w=1). 
It should also be noted that the “2” variants (adaptive fm) always beat the respective “1” 
variants (constant fm) and that the ARDG variants (attractive/repulsive diversity guided) 
always beat the respective standard non-ARDG variants. 
 

DE Description Objective Function OF in 30 Runs 

approach  Max 
(Worst) Mean Min 

(Best) 
Standard 
Deviation 

DE1 classical DE with  
fm = 0.4 69.4793 38.7011 2.9292 24.5652 

DE2 
classical DE with 

adaptive 
mutation factor 

19.5515 5.4716 0.3967 6.4238 

ARDGDE1 ARDGDE with 
fm = 0.4 105.1539 46.0814 2.2359 35.1500 

ARDGDE2 
ARDGDE with 

adaptive 
mutation factor 

8.1377 2.2967 0.2296 2.5668 

Table V.2. Best Results (30 runs) for TEAM Workshop Problem 22. 
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Parameter DE1 DE2 ARDGDE1 ARDGDE2 
R1 [m] 3.1339 1.2387 1.3248 1.2173 
R2 [m] 3.5174 1.8000 1.8080 1.8424 

h1/2[ m] 0.4174 0.9366 0.3185 0.4367 
h2/2 [m] 1.1600 1.1986 1.7944 0.9577 

d1 [m] 0.5912 0.4303 0.7919 0.7999 
d2 [m] 0.2627 0.3801 0.1377 0.4184 

J1 (A/mm2) 20.8337 23.8491 29.9255 24.5171 
J2 (A/mm2) -13.461 -10.079 -16.4139 -9.6477 
Energy [MJ] 180.017 179.831 180.012 179.847 
BStray [mT] 341.762 110.069 298.607 76.107 

OF 2.9292 0.3967 2.2359 0.2296 
OFstd 2.9201 0.3038 2.2292 0.1457 

Table V.3. Best Results (30 runs) for TEAM Workshop Problem 22. 
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1. Introduction

The fast growing complexity of modern integrated circuits and rapid changes in technology
pose a number of challenges in testing of electronic products. With the introduction of surface
mounted devices, small pitch packaging becomes prevalent, which makes the access to the
test points on a board either impossible or at least very costly. Traditional in-circuit test
techniques that utilize a bed-of-nails to make contact to individual leads on a printed circuit
board have become inadequate. This forced the development of a boundary-scan approach
that is already widely adopted in practice (Khalil et al., 2002; Parker, 2003). But, a limited
number of input/output pins represents a bottleneck in testing of complex embedded cores
where transfers of large amounts of test patterns and test results between the automatic test
equipment (ATE) and the unit-under-test (UUT) are required. However, the implementation
of a built-in self-test (BIST) (Garvie & Thompson, 2003) of the UUT with on-chip test pattern
generation (TPG) and on-chip output response analysis logic presents an efficient solution.
Then the communication with external ATE is reduced to test initiation and transfer of test
results. This approach has the drawback, while BIST implementation leads to the area
overhead, causing longer signal routing paths. Therefore, we need to minimize this BIST
logic.
Different TPG structures have been proposed in the past. In general, they can be classified
as ROM-based deterministic, algorithmic, exhaustive and pseudo-random. In the first
approach, deterministic patterns are stored in a ROM and a counter is used for their
addressing, (Edirisooriya & Robinson, 1992). The approach is limited to small test pattern
sets. Algorithmic TPG are mostly used for testing regular structures such as RAMs (van de
Goor, 1991). Exhaustive TPG is counter-based approach that is not able to generate specific
sequence of test vectors. With some modifications, however, counter-based solutions are able
to generate deterministic test patterns, (Chakrabarty et al., 2000). Pseudo-random TPG is
most commonly applied technique in practice; here Linear Feedback Shift Register (LFSR) or
Cellular Automata (CA) are employed to generate pseudo-random test patterns. In order to
decrease the complexity of a TPG, designers usually try to embed deterministic test patterns
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into the vector sequence generated by some linear register. Such embedding can be done
either by re-seeding a TPG or modifying its feedback function (Hellebrand et al., 1995). Some
solutions also modify or transform the vector sequence produced by a LFSR in such a way
that it contains deterministic test patterns (Bellos et al., 2002; Fiser, 2007; Hakmi et al., 2007;
Touba & McCluskey, 2001).
Regarding the way the test patterns are delivered to the UUT, there are also different
approaches. In the test-per-scan approach each test pattern first needs to be shifted in a scan
path during several clock cycles before it is applied to the inputs of the UUT (Hakmi et al.,
2007; Touba & McCluskey, 2001). This usually leads to long testing times. If a shorter test
duration is required, test-per-clock method has to be adopted (Chakrabarty et al., 2000; Fiser,
2007; Garbolino & Papa, 2008), so that each test pattern is produced and stimulates the UUT
inputs in a single clock cycle.
Some types of non-concurrent on-line BIST (Aktouf et al., 1999) may require TPG structures
that are capable to generate the set of precomputed deterministic test patterns in the minimum
number of clock cycles. In one of the first approaches the set of predefined test vectors is
encoded into an appropriately designed network of the OR gates (Dufaza et al., 1993). In
turn, the solution proposed in (Bellos et al., 2002) uses a network of XOR gates to transform
a sequence of consecutive vectors produced by a LFSR into a sequence of deterministic
test patterns. In (Garbolino & Papa, 2008; 2010) a Multi-Input Signature Register (MISR) is
combined with a combinational logic which modifies its state diagram in such a way that the
MISR generates a sequence of expected deterministic test patterns. A method of designing a
deterministic TPG based on non-uniform CA was proposed in (Cao et al., 2008), while another
solution employs a group of small Finite State Machines (FSMs) to generate a relatively short
vector sequence that contains all deterministic test patterns (Sudireddy et al., 2008).
The proposed LFSR structures are based on D-type flip-flops, while in recent years LFSR
composed of D-type and T-type flip-flops or even of T-type flip-flops only, has been gaining
popularity. The main reason is its low area overhead and high operating speed (Garbolino
& Hlawiczka, 1999; Garbolino et al., 2000). Some applications of such a type of LFSRs can
be found in (Garbolino & Hlawiczka, 2002; Garbolino & Papa, 2008; Novák et al., 2004).
In particular, works (Garbolino & Hlawiczka, 2002) and (Garbolino & Papa, 2008) present
some concepts of optimizing the LFSR structure containing D-type and T-type flip-flops for
generation of deterministic test pattern sets.
Evolutionary stochastic techniques for the optimization of hardware are widely used (Bolzani
et al., 2007; Drechsler & Drechsler, 2002; Guo et al., 2007; Mazumder & Rudnick, 1999).
In (Sanchez & Squillero, 2007) a software-based methodology that automatically generates
test programs is described. The methodology is based on an evolutionary algorithm able
to generate test programs for different microprocessor cores. In (Corno et al., 2000) an
automatic approach, based on genetic algorithm (GA), targeting processor cores is described
that computes a test program able to attain high fault coverage figures.
GA has also been used for the derivation of test pattern sets for target UUTs (Corno, Prinetto,
Rebaudengo & Sonza Reorda, 1996), and for optimization of test sequence for weighted
pseudo-random test generation to achieve the best test efficiency (Favalli & Dalpasso, 2002).
As regards the synthesis of the TPG logic for actual generation of the derived test patters, GA
approach has also been used for the solutions based on CA (Corno, Prinetto & Sonza Reorda,
1996). A detailed summary and analysis of various test pattern generation techniques based
on GA is presented in (Fin & Fummi, 2003).
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The work presents a design approach of a deterministic TPG logic based on a LFSR, that is
composed of D-type and T-type flip-flops. The use of LFSR for TPG eliminates the need of
a ROM for storing the seeds since a LFSR itself jumps from a state to the next required state
(seed) by inverting the logic value of some of the bits of its next state. In contrast to (Garbolino
& Papa, 2010) here the counter is connected to the inputs of the modification function. The
search for the proper LFSR employs a GA to find an acceptable practical solution in a large
space of possible LFSR implementations, where the goal is to develop a TPG that would
generate only the required test vectors. Here, we concurrently optimize the TPG structure
(type of flip-flops, presence of inverters), the order of patterns in test sequence, and the
bit-order of a test pattern.
The rest of the chapter is organized as follows: in Section 2 we describe the TPG structure,
and give an example of area minimization through the modification of the TPG structure and
its test vectors; in Section 3 we describe the GA and the work of its operators; in Section 4 we
describe the optimization process and evaluate it; and in Section 5 we draw the conclusion.

2. TPG structure

A TPG is initialized with a given deterministic seed and run until the desired fault coverage is
achieved. The test application time using an LFSR is significantly larger than what is required
for applying the test set generated using a deterministic TPG; vector set generated by a LFSR
includes not only useful vectors but also many other vectors that do not contribute to the fault
coverage. In our approach, the goal is to develop a TPG that would generate only the required
test vectors (i.e., with no intermittent non-useful vectors).

Fig. 1. Block diagram of the n-bit TPG.

A general block diagram of the proposed n bit test pattern generator is shown in Figure 1. A
TPG contains k MSIRs which operation is synchronized by a common clock signal clk. A MISR
is a variant of a LFSR that is additionally equipped with parallel inputs. A bit vector applied to
the parallel inputs of a MISR influences the sequence of vectors produced at the outputs of the
register. The k� MISRs have width N while the width of k” remaining registers is N + 1, where
N = n/k , k” = (n MOD k) and k� = k − k”. Parallel inputs of all MISRs are connected to
the outputs of the common block of a combinational logic, which is called a modifying logic
because its aim is to modify the MISRs’ state diagrams. Outputs of all registers are in turn
fed back to the inputs of the modifying logic block. Moreover, the modifying logic may be
optionally fed by the outputs of a test pattern counter (TPC), which anyway has to be present
in any BIST structure. We expect that the latter property should simplify optimization of the
modifying logic and enable its further reduction by a synthesis tool. In this study we take into
account two types of TPCs, namely binary and one-hot counter.
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Fig. 2. Scheme of the j-th N-bit MISR.

A scheme in Figure 2 shows an internal structure of the MSIR and interconnections between
the register and the modifying logic. The MISR is composed of N cells connected in series and
always has a global feedback path connecting the serial output (SO) of the last stage to the
serial input (SI) of the first stage. Some other cells, depending on their internal structure, may
also have their feedback tap (FT) inputs connected to the global feedback path (connections
marked by a dotted line). The parallel input (PI) of each cell is controlled by an output of the
modifying logic. Parallel outputs (PO) of the cells constitute the actual outputs of a TPG and
at the same time they are fed back to the inputs of the modifying logic module.
A general scheme of the i-th cell of the MISR is presented in Figure 3. The cell contains a
D- or T-type flip-flop. The input of the flip-flop is fed by the logic implementing a XOR or
XNOR function of the cell’s inputs: serial input SI, parallel input PI and - in a case of some cell
structures - feedback tap input FT. The output Q of the flip-flop is connected to the parallel
output PO of the cell either directly or via an inverter. It is also connected to the serial output
SO of the cell. All elements of the cell that are optional and may or may not be present in
its particular configuration are marked grey in Figure 3. Thus, a single cell may have 16
different structures. An exception are the first and the last cell of a MISR, which have only 8
different structures. In consequence, the number α of different structures of a N-bit MISR is
α = 16N−2 + 82 = 24N−2.

Fig. 3. A general scheme of an i-th cell of a MISR.

The modifying logic - which is a simple combinational logic and acts as a decoder - allows
that in the subsequent clock cycles the contents of the MISR assumes the values specified by
the target test pattern set. Hence the MISR and the modifying logic are application specific:
they are synthesized according to the required test pattern set.
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Particularly important parameter in the case of deterministic test pattern generators is the area
overhead, which is influenced by:

• a structure of each stage in each MISR,

• an order of the test patterns in a test sequence,

• a bit-order of the test patterns,

• a number of MISRs in a TPG.

The first factor influences the complexity of both the MISR and the modifying logic, only. The
relationships are illustrated below with the use of a simple TPG designed for TSMC 0.35 μm
technology.

Initial structure and test vectors

Having the set of seven 5-bit vectors the resulting structure of a TPG is shown in Figure 4.
It is assumed that all flip-flops in the scheme are scannable. A T-type flip-flops comprise a
scannable D-type flip-flop and a XOR gate. The total complexity of the initial structure of a
TPG is 55 equivalent gates.

Fig. 4. TPG structure modification: initial solution.

Flip-flop type replacement

Replacing the T-type flip-flop with the D-type one in the stage No. 4 of a TPG, the new
configuration of a TPG is presented in Figure 5. The replacement of the type of the flip-flop
has lead to reduction of the total complexity of a TPG structure to 51 equivalent gates.

Column permutation

Permutation of columns of the test pattern sequence further decreases the area of a TPG. If
we permute columns in the test sequence as illustrated in Figure 6, a TPG is simplified to the
structure with the area of 49 equivalent gates.

Vectors permutation

Further we can permute test patterns in the test sequence. Exchanging the order of test
patterns in the test sequence, like shown in Figure 7, simplifies a TPG structure to the area
of 38 equivalent gates.
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has lead to reduction of the total complexity of a TPG structure to 51 equivalent gates.

Column permutation

Permutation of columns of the test pattern sequence further decreases the area of a TPG. If
we permute columns in the test sequence as illustrated in Figure 6, a TPG is simplified to the
structure with the area of 49 equivalent gates.

Vectors permutation

Further we can permute test patterns in the test sequence. Exchanging the order of test
patterns in the test sequence, like shown in Figure 7, simplifies a TPG structure to the area
of 38 equivalent gates.
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Fig. 5. TPG structure modification: after replacing the flip-flop type.

Fig. 6. TPG structure modification: after permutating columns.

Fig. 7. TPG structure modification: after permutating vectors.

Fig. 8. TPG structure modification: after MSIR structure splitting.
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Structure splitting

Splitting a MISR structure into several parts (Figure 8) may potentially lead to the further
reduction of its area. Implementing the exemplar TPG in the form of two independent MISRs
results in the structure whose complexity is only 35 equivalent gates.
A change of the MISR structure, the order of the test patterns in a test sequence, the bit-order
of the test patterns and the number of parts a MISR is split to may result in a substantial
reduction of the TPG area. The solution space is very broad: for an n-bit TPG producing the
sequence of m test patterns there are about 24n−2km!n!n possible solutions; therefore, effective
optimization procedure is required to find an acceptable practical solution.

3. Genetic algorithm

The intelligent stochastic optimization is implemented through genetic algorithm (GA)
(Goldberg, 1989). The GA’s intrinsic parallelism allows searching within a broad database
of solutions in the search space simultaneously. There is some risk of converging to a local
optimum, but efficient results in other optimization problem areas (Korošec & Šilc, 2008;
Papa & Koroušić-Seljak, 2005; Papa & Šilc, 2002) encouraged us to use GA approach in TPG
synthesis optimization. Our version of the GA, which was already presented in (Garbolino
& Papa, 2010), is adapted to the problem to be able to optimize multiple design aspects, i.e.,
type of flip-flops, presence of inverters, order of patterns in test sequence, and bit-order of a
test pattern.

3.1 TPG encoding
In the initialization phase of the GA the structure of a TPG, order of test patterns, and their
bit order are encoded with three different chromosomes. These three chromosomes do not
interact with each other, but are used to concurrently optimize the structure of a TPG, the order
of the test patterns, and the bit order of test patterns. They have to be optimized concurrently
since their influence on the final solution is interdependent.
The first chromosome, which encodes the structure of n-bit TPG, looks like

C1 = i11i12i13i14 . . . in1in2in3in4, (1)

where ijx represents a binary value; j (j = 1, 2, . . . , n) determines each flip-flop and x
determines the properties of a flip-flop (see Table 1).

position property value 0 value 1
1 flip-flop type D-type T-type
2 inverted input no inverter inverter
3 feedback input no feedback feedback
4 inverted output no inverter inverter

Table 1. Flip-flop properties

The second and third chromosome, which encode the order of the test patterns, and the bit
order of test patterns, look like

C2 = a1a2 . . . am, (2)
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Fig. 8. TPG structure modification: after MSIR structure splitting.
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Fig. 9. Crossover: TPG configuration (top), pattern and bit orders (bottom).

where m is the number of test vectors and aj (j = 1, 2, . . . , m) is the label number of the test
vector from the initial vector list, and

C3 = b1b2 . . . bn, (3)

where n is the number of flip-flops in the structure and bj (j = 1, 2, . . . , n) is the label number
of the bit order of the initial test patterns.

3.2 Population initialization
The population consists of N chromosomes, of each type. Depending on requirements and
input settings, the initial chromosome of the configuration can be set as (i) random values on
all positions, (ii) with values 0 on all positions, (iii) with values 1 on all positions, (iv) based
on some input configuration. For the last three possibilities the values are permutated with
some given probability to avoid identical chromosomes.
The initial chromosomes for orders are set as (i) random distribution of order values or (ii)
consecutive order of numbers. In the latest case some chromosomes are permutated to ensure
versatile chromosomes. While the numbers in these two chromosomes represent the order
of patterns or bits in patterns, their values cannot be duplicated and also consecutive values
cannot be missed; both conditions must be considered during the initialization.

3.3 Genetic operators
The elitism strategy prevents losing the best found solution by memorizing it. Better
solutions have more influence on the new generation due to the substitution of the least-fit
chromosomes with the equal number of the best-ranked chromosomes. The ratio of all
chromosomes in the population to be replaced is set by r.
In a two-point crossover scheme, chromosome mates are chosen randomly and, with a
probability pc, all values between two randomly chosen positions are swapped. This leads
to the two new solutions that replace the original solutions. Figure 9(top) shows the example
of crossover with crossover points on positions 3 and 12.
The crossover in case of test patterns order and bit-order of the test patterns is performed with
the interchange of positions that store the ordered numbers within the range (order-based
crossover); for an example within the range [2, 4], see Figure 9(bottom).
In the mutation process each value of the chromosome mutates with a probability pm . Since
a high mutation rate results in a random walk through GA search space, pm has to be low
enough. Two different types of mutation are applied (see Figure 10 for details): bit inversion
that changes the configuration for the first chromosome and position-based mutation for the
other two chromosomes, where pattern order and bit order are changed.
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Fig. 10. Mutation: TPG configuration (top), pattern and bit orders (bottom).

3.4 Fitness evaluation
After modifying the solutions, the whole new population is ready to be evaluated. The
external evaluation tool is used to evaluate each new chromosome created by GA, and TPG
cost approximation is obtained for each solution. The obtained cost approximation does not
exactly represent an area overhead of the given solution. It rather reflects in quantitative
form some set of properties of TPG that make its structure either more or less susceptible for
effective area reduction during actual synthesis process.
On the basis of the equations for the register’s next-state, values of the outputs of the
modifying logic for each vector but last in the test sequence can be derived. In (Garbolino
& Papa, 2008) an Espresso (UC Berkeley, 1988) boolean optimization software was used for
approximate cost estimation of the modifying logic. On the one hand, the cost approximation
provided by the Espresso software was quite accurate in majority of cases. On the other hand,
however, its use led to long computation times of a GA what limited the applicability of the
complete tool to small and medium size circuits only. Moreover, the approach proposed
in (Garbolino & Papa, 2008) was focused on reducing an area of the modifying logic only,
neglecting the complexity of MISR at all.
In this work the authors used a new function fc for cost evaluation of the TPG, which
was already proposed in (Garbolino & Papa, 2010). The detailed formula of the function is
provided below:

fc(TPGi) = CMISR
xi

X
+ CMF

bi

B

1 − li

n

1 − ei

n
, (4)

where

• n is the width of test patterns, the number of stages of the TPG, the maximum number of
outputs of the module implementing modification function;

• m is the number of patterns in a test sequence;

• i is the index of the given individual in the population, i.e. the index for the TPG structure
and its parameters;

• TPGi is the structure of the TPG corresponding to the i-th individual in the population;

• CMF and CMISR are the coefficients that enable a user to control whether to put more stress
on minimizing the complexity of modifying logic or a MISR, respectively;

• xi is the number of XOR gates required to implement the MISR for the TPGi structure;

• X is the maximum number of XOR gates that may be used to built up the n-bit MISR
composed of D- and T-type flip-flops (X = 3n − 1 in the case where there is a T-type
flip-flop, feedback tap and parallel input in every stage of the MISR);

• bi is the total number of bit flips at the outputs of the module implementing modification
function for the TPGi structure, produced during the generation of deterministic test
patterns in consecutive m clock cycles;
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Fig. 9. Crossover: TPG configuration (top), pattern and bit orders (bottom).
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Fig. 10. Mutation: TPG configuration (top), pattern and bit orders (bottom).

3.4 Fitness evaluation
After modifying the solutions, the whole new population is ready to be evaluated. The
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cost approximation is obtained for each solution. The obtained cost approximation does not
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on minimizing the complexity of modifying logic or a MISR, respectively;

• xi is the number of XOR gates required to implement the MISR for the TPGi structure;

• X is the maximum number of XOR gates that may be used to built up the n-bit MISR
composed of D- and T-type flip-flops (X = 3n − 1 in the case where there is a T-type
flip-flop, feedback tap and parallel input in every stage of the MISR);

• bi is the total number of bit flips at the outputs of the module implementing modification
function for the TPGi structure, produced during the generation of deterministic test
patterns in consecutive m clock cycles;

83Stochastic Approach to Test Pattern Generator Design



• B is the maximum possible number of bit flips at the outputs of the module implementing
modification function during m consecutive clock cycles (B = n(m − 2));

• li is the number of the outputs of the module implementing modification function for the
TPGi structure that keep constant value during generating deterministic test patterns in
consecutive m clock cycles;

• ei is the total number of MISR inputs that can be fed from the same output of the module
implementing modification function for the TPGi structure.

The cost evaluation function aims at reducing the size of the modifying logic module by
minimizing the number of bit flips bi at the outputs of the module. In addition, it favors
such structures of the TPG in which some number (li) of parallel inputs of the MISR can
be driven by a constant value or where several (ei) parallel inputs of the MISR can be
driven by the same output of the modifying logic module. At the same time the function
promotes the less complex structures of the MISR by reducing the number xi of XOR gates
that are necessary to construct the register. Through appropriately setting the values of CMF

and CMISR coefficients, the user may decide whether the function will put more stress on
minimizing the complexity of modifying logic or a MISR.
Note that the functionality of the inverter at the input of the flip-flop can be implemented by
substituting the XOR gate with the XNOR one, or vice versa. Similarly, instead of adding the
NOT gate at the Q output of the flip-flop, the complemented output Q can be used. Therefore,
an employment of the inverted inputs or outputs of the MISR does not influence the cost of
the register and that is why the number of inverters has not been involved in the TPG cost
evaluation function fc.
It turned out that the TPG structures with lower value of the cost evaluation function tend to
have lower area overhead than those with higher value of the function. Moreover, although
the function delivers less accurate cost approximation than Espresso software, it is much faster
and it tries to reduce the area overhead of the whole TPG instead of modifying logic only.

4. Results

The initial TPG structure is based on the desired sequence of test patterns. The GA operators
try to make new configuration while checking the allowed TPG structure and using the
external evaluation tool. The evaluation tool calculates the cost of a given structure. The
best structure, found during the optimization, is chosen and implemented.
Considering the chromosome length and short pre-experimental tests we set GA parameters
to give the results in an acceptable computing time. Population size for each circuit was in the
range from 60 to 300 (depending on circuit complexity), while the number of generations was
about 5 times the population size. Crossover and mutation probabilities did not change with
circuits and were 0.8 and 0.01, respectively.
The results are presented for all ISCAS’85 and some ISCAS’89 test benchmark circuits.
These circuits are used to benchmark various test pattern generation systems. ISCAS
benchmark suite has been introduced in simple netlist format at the International Symposium
of Circuits and Systems in 1985 (ISCAS’85), and was expanded with additional circuits at 1989
Symposium. ISCAS’85 benchmarks are purely combinational circuits while these belonging
to the ISCAS’89 set are sequential structures equipped with a scan path.
The compact sets of deterministic test patterns for ISCAS’85 and ISCAS’89 circuits were
obtained from MINTEST ATPG tool (Hamzaoglu & Patel, 1998). For each benchmark, the
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Circuit Test Number
pattern of test
width patterns

c432 36 27
c499 41 52
c880 60 16
c1355 41 84
c1908 33 106
c2670 233 44
c3540 50 84
c5315 178 37
c6288 32 12
c7552 207 73
s349 24 13
s382 24 25
s386 13 63
s400 24 24
s444 24 24
s510 25 54
s526 24 49
s1196 32 113
s1238 32 121
s1494 14 100
s5378 214 97
s9234 247 105

Table 2. Benchmark properties.

test pattern width (number of inputs of the circuit under test) and the number of test
patterns (number of test vectors that are mutually different and together provide 100% fault
coverage of stuck-at faults in the circuit) are given in the second and third column of Table 2,
respectively.
Table 3 presents the results of the approach used in (Garbolino & Papa, 2010). Here, the total
cost - in terms of equivalent gates - for the optimized TPG structure is presented. It is common
assumption that TPG shares D-type flip-flops with the circuit under test. The cost of the
combinational logic part of a TPG only was taken into account, while it represents a real area
overhead for the given TPG (excluding area of the output D-type flip-flops, multiplexers and
the binary pattern counter, since these elements need to be in any TPG). An initial solution
was derived by randomly choosing a structure of the MISR as well as order of vectors in
a test sequence and order of bits in test vectors. Synthesis of TPGs was carried out using
a commercial synthesis tool and a standard cell library for a 0.35 μm technology. The last
column of Table 3 shows the achieved improvement. Note that each of the last two columns of
the table contains several numbers (subcolumns) for each benchmark circuit. These numbers
correspond to the best, the worst and the average solution, respectively, obtained during 10
independent runs of the genetic algorithm.
Tables 4-6 show the synthesis results for the TPG structure proposed in this study. The first,
second and third column of the table contain, respectively, the name of the benchmark, the
number of parts a MISR is split to (1, 2 or 4) and the type of the TPG structure (NC or OHC).
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Circuit Optimized Improvement
TPG in %

best worst average best worst average

c432 329.3 358.9 347.5 12.2 4.3 7.4
c499 448.7 517.9 485.7 20.9 8.7 14.4
c880 345.6 402.2 367.9 11.4 -3.1 5.7
c1355 698.9 789.4 747.8 2.1 -10.6 -4.8
c1908 1078.8 1165.2 1127.8 12.0 5.0 8.0
c2670 2669.4 2777.5 2727.9 -0.8 -4.9 -3.0
c3540 1353.8 1437.3 1395.5 4.5 -1.4 1.5
c5315 1744.7 1845.2 1807.4 8.7 3.4 5.4
c6288 128.7 173.0 146.0 30.9 7.1 21.6
c7552 3876.6 4048.6 3948.9 0.3 -4.1 -1.6
s349 85.2 175.3 103.5 47.9 -7.3 36.6
s382 180.3 207.6 196.6 28.7 17.9 22.2
s386 280.7 310.0 295.2 15.5 6.7 11.2
s400 173.6 199.3 184.6 32.8 22.9 28.6
s444 176.6 194.6 188.0 29.1 21.9 24.5
s510 438.1 473.3 458.0 16.0 9.2 12.1
s526 362.6 400.2 380.3 17.2 8.7 13.2
s1196 1195.5 1279.7 1244.9 5.8 -0.8 1.9
s1238 1271.0 1314.9 1292.0 7.3 4.1 5.7
s1494 487.3 537.9 515.5 8.3 -1.2 3.0
s5378 4909.4 5107.7 4963.6 7.0 3.3 6.0
s9234 5994.8 6405.6 6150.4 7.1 0.8 4.7

Table 3. Results of TPG area based on the approach in (Garbolino & Papa, 2010).

The label NC denotes the TPG which modifying logic is fed solely by the outputs of a MISR
or MISRs while the label OHC is a symbol of the TPG that contains the one-hot counter. For
the sake of clarity the TPG structure discussed in (Garbolino & Papa, 2010) as well as the
two proposed in this study are henceforth denoted as TPG+BC, TPG+NC and TPG+OHC,
respectively.
Columns 4 and 5 of Tables 4-6 include the cost - in terms of equivalent gates - of the initial
and optimized TPG structure, respectively. An initial solution was derived in the same way
like in (Garbolino & Papa, 2010). The same synthesis tool and target technology were also
used to carry out synthesis of TPGs. The achieved improvement is shown in the last column
of each of the tables. Similarly to Table 3 each of the last two columns of Tables 4-6 contains
several numbers (subcolumns) for each benchmark circuit. These numbers correspond to the
best, the worst and the average solution, respectively, obtained during 10 independent runs
of the genetic algorithm. In the case of the TPG+NC structure the cost of the combinational
logic part of a TPG only is taken into account, excluding area of the output D-type flip-flops,
multiplexers and binary pattern counter, since these elements need to be in any TPG. The cost
of the TPG+OHC structure is calculated in a similar way but it also includes the area of the
one-hot counter. The obtained value is further diminished by the area of the binary counter.
The last step results from the fact that in the TPG+OHC structure the one-hot counter replaces
the binary counter in a role of a test pattern counter. Since the area of a test pattern counter
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Circuit Initial Optimized Improvement
TPG TPG in %

best worst average best worst average
c432 1 NC 389.9 261.8 288.7 270.1 32.8 25.9 30.7

OHC 486.7 358.6 385.5 366.9 26.3 20.8 24.6
2 NC 381.2 255.5 281.1 266.0 33.0 26.3 30.2

OHC 478.0 352.3 377.9 362.8 26.3 20.9 24.1
4 NC 372.9 243.8 294.1 259.5 34.6 21.1 30.4

OHC 469.7 340.6 390.9 356.3 27.5 16.8 24.2
c499 1 NC 564.8 361.6 404.8 384.1 36.0 28.3 32.0

OHC 784.7 581.4 624.7 604.0 25.9 20.4 23.0
2 NC 569.8 364.9 403.5 387.8 36.0 29.2 31.9

OHC 789.7 584.8 623.3 607.6 25.9 21.1 23.1
4 NC 525.6 363.9 399.5 386.4 30.8 24.0 26.5

OHC 745.4 583.8 619.4 606.3 21.7 16.9 18.7
c880 1 NC 392.2 188.9 204.2 198.1 51.8 47.9 49.5

OHC 440.4 237.2 252.5 246.3 46.1 42.7 44.1
2 NC 398.8 185.6 207.2 197.9 53.5 48.0 50.4

OHC 447.1 233.9 255.5 246.2 47.7 42.9 44.9
4 NC 388.5 190.6 224.2 201.6 50.9 42.3 48.1

OHC 436.8 238.9 272.5 249.9 45.3 37.6 42.8
c1355 1 NC 761.1 514.3 549.2 535.6 32.4 27.8 29.6

OHC 1141.2 894.4 929.4 915.8 21.6 18.6 19.8
2 NC 739.1 513.9 554.2 536.9 30.5 25.0 27.4

OHC 1119.3 894.1 933.0 916.9 20.1 16.6 18.1
4 NC 772.7 518.6 560.5 542.8 32.9 27.5 29.8

OHC 1152.9 898.8 940.7 923.0 22.0 18.4 19.9
c1908 1 NC 1206.8 1048.1 1110.0 1071.7 13.1 8.0 11.2

OHC 1704.1 1545.4 1607.3 1568.9 9.3 5.7 7.9
2 NC 1235.1 971.0 1103.4 1051.7 21.4 10.7 14.9

OHC 1732.3 1468.2 1600.6 1548.9 15.2 7.6 10.6
4 NC 1189.2 1005.2 1134.3 1040.6 15.5 4.6 12.5

OHC 1686.4 1502.5 1631.6 1537.8 10.9 3.3 8.8
c2670 1 NC 2772.2 2040.4 2079.3 2049.2 26.4 25.0 26.1

OHC 2949.5 2217.7 2256.6 2226.5 24.8 23.5 24.5
2 NC 2668.4 2030.4 2092.6 2051.3 23.9 21.6 23.1

OHC 2845.7 2207.7 2269.9 2228.5 22.4 20.2 21.7
c3540 1 NC 1422.7 1204.5 1292.3 1261.4 15.3 9.2 11.3

OHC 1802.9 1584.7 1672.5 1641.6 12.1 7.2 8.9
2 NC 1439.0 1240.4 1306.3 1267.1 13.8 9.2 11.9

OHC 1819.2 1620.6 1686.4 1647.2 10.9 7.3 9.5
4 NC 1405.1 1242.4 1314.3 1271.4 11.6 6.5 9.5

OHC 1785.2 1622.6 1694.4 1651.6 9.1 5.1 7.5

Table 4. Results of TPG area (part 1).
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Circuit Optimized Improvement
TPG in %

best worst average best worst average

c432 329.3 358.9 347.5 12.2 4.3 7.4
c499 448.7 517.9 485.7 20.9 8.7 14.4
c880 345.6 402.2 367.9 11.4 -3.1 5.7
c1355 698.9 789.4 747.8 2.1 -10.6 -4.8
c1908 1078.8 1165.2 1127.8 12.0 5.0 8.0
c2670 2669.4 2777.5 2727.9 -0.8 -4.9 -3.0
c3540 1353.8 1437.3 1395.5 4.5 -1.4 1.5
c5315 1744.7 1845.2 1807.4 8.7 3.4 5.4
c6288 128.7 173.0 146.0 30.9 7.1 21.6
c7552 3876.6 4048.6 3948.9 0.3 -4.1 -1.6
s349 85.2 175.3 103.5 47.9 -7.3 36.6
s382 180.3 207.6 196.6 28.7 17.9 22.2
s386 280.7 310.0 295.2 15.5 6.7 11.2
s400 173.6 199.3 184.6 32.8 22.9 28.6
s444 176.6 194.6 188.0 29.1 21.9 24.5
s510 438.1 473.3 458.0 16.0 9.2 12.1
s526 362.6 400.2 380.3 17.2 8.7 13.2
s1196 1195.5 1279.7 1244.9 5.8 -0.8 1.9
s1238 1271.0 1314.9 1292.0 7.3 4.1 5.7
s1494 487.3 537.9 515.5 8.3 -1.2 3.0
s5378 4909.4 5107.7 4963.6 7.0 3.3 6.0
s9234 5994.8 6405.6 6150.4 7.1 0.8 4.7

Table 3. Results of TPG area based on the approach in (Garbolino & Papa, 2010).

The label NC denotes the TPG which modifying logic is fed solely by the outputs of a MISR
or MISRs while the label OHC is a symbol of the TPG that contains the one-hot counter. For
the sake of clarity the TPG structure discussed in (Garbolino & Papa, 2010) as well as the
two proposed in this study are henceforth denoted as TPG+BC, TPG+NC and TPG+OHC,
respectively.
Columns 4 and 5 of Tables 4-6 include the cost - in terms of equivalent gates - of the initial
and optimized TPG structure, respectively. An initial solution was derived in the same way
like in (Garbolino & Papa, 2010). The same synthesis tool and target technology were also
used to carry out synthesis of TPGs. The achieved improvement is shown in the last column
of each of the tables. Similarly to Table 3 each of the last two columns of Tables 4-6 contains
several numbers (subcolumns) for each benchmark circuit. These numbers correspond to the
best, the worst and the average solution, respectively, obtained during 10 independent runs
of the genetic algorithm. In the case of the TPG+NC structure the cost of the combinational
logic part of a TPG only is taken into account, excluding area of the output D-type flip-flops,
multiplexers and binary pattern counter, since these elements need to be in any TPG. The cost
of the TPG+OHC structure is calculated in a similar way but it also includes the area of the
one-hot counter. The obtained value is further diminished by the area of the binary counter.
The last step results from the fact that in the TPG+OHC structure the one-hot counter replaces
the binary counter in a role of a test pattern counter. Since the area of a test pattern counter

86 Stochastic Optimization - Seeing the Optimal for the Uncertain

Circuit Initial Optimized Improvement
TPG TPG in %

best worst average best worst average
c432 1 NC 389.9 261.8 288.7 270.1 32.8 25.9 30.7

OHC 486.7 358.6 385.5 366.9 26.3 20.8 24.6
2 NC 381.2 255.5 281.1 266.0 33.0 26.3 30.2

OHC 478.0 352.3 377.9 362.8 26.3 20.9 24.1
4 NC 372.9 243.8 294.1 259.5 34.6 21.1 30.4

OHC 469.7 340.6 390.9 356.3 27.5 16.8 24.2
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OHC 745.4 583.8 619.4 606.3 21.7 16.9 18.7
c880 1 NC 392.2 188.9 204.2 198.1 51.8 47.9 49.5

OHC 440.4 237.2 252.5 246.3 46.1 42.7 44.1
2 NC 398.8 185.6 207.2 197.9 53.5 48.0 50.4

OHC 447.1 233.9 255.5 246.2 47.7 42.9 44.9
4 NC 388.5 190.6 224.2 201.6 50.9 42.3 48.1

OHC 436.8 238.9 272.5 249.9 45.3 37.6 42.8
c1355 1 NC 761.1 514.3 549.2 535.6 32.4 27.8 29.6

OHC 1141.2 894.4 929.4 915.8 21.6 18.6 19.8
2 NC 739.1 513.9 554.2 536.9 30.5 25.0 27.4

OHC 1119.3 894.1 933.0 916.9 20.1 16.6 18.1
4 NC 772.7 518.6 560.5 542.8 32.9 27.5 29.8

OHC 1152.9 898.8 940.7 923.0 22.0 18.4 19.9
c1908 1 NC 1206.8 1048.1 1110.0 1071.7 13.1 8.0 11.2

OHC 1704.1 1545.4 1607.3 1568.9 9.3 5.7 7.9
2 NC 1235.1 971.0 1103.4 1051.7 21.4 10.7 14.9

OHC 1732.3 1468.2 1600.6 1548.9 15.2 7.6 10.6
4 NC 1189.2 1005.2 1134.3 1040.6 15.5 4.6 12.5

OHC 1686.4 1502.5 1631.6 1537.8 10.9 3.3 8.8
c2670 1 NC 2772.2 2040.4 2079.3 2049.2 26.4 25.0 26.1

OHC 2949.5 2217.7 2256.6 2226.5 24.8 23.5 24.5
2 NC 2668.4 2030.4 2092.6 2051.3 23.9 21.6 23.1

OHC 2845.7 2207.7 2269.9 2228.5 22.4 20.2 21.7
c3540 1 NC 1422.7 1204.5 1292.3 1261.4 15.3 9.2 11.3

OHC 1802.9 1584.7 1672.5 1641.6 12.1 7.2 8.9
2 NC 1439.0 1240.4 1306.3 1267.1 13.8 9.2 11.9

OHC 1819.2 1620.6 1686.4 1647.2 10.9 7.3 9.5
4 NC 1405.1 1242.4 1314.3 1271.4 11.6 6.5 9.5

OHC 1785.2 1622.6 1694.4 1651.6 9.1 5.1 7.5

Table 4. Results of TPG area (part 1).
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Circuit Initial Optimized Improvement
TPG TPG in %

best worst average best worst average
c5315 1 NC 1884.7 1384.8 1424.4 1401.9 26.5 24.4 25.6

OHC 2024.8 1524.8 1564.4 1541.9 24.7 22.7 23.8
2 NC 1849.1 1374.5 1408.7 1394.5 25.7 23.8 24.6

OHC 1989.2 1514.5 1548.8 1534.5 23.9 22.1 22.9
4 NC 1909.4 1390.8 1418.4 1403.0 27.2 25.7 26.5

OHC 2049.4 1530.8 1558.4 1543.0 25.3 24.0 24.7
c6288 1 NC 186.6 80.2 90.1 84.5 57.0 51.7 54.7

OHC 213.6 107.1 117.1 111.5 49.8 45.2 47.8
2 NC 192.6 77.5 91.5 84.5 59.8 52.5 56.1

OHC 219.6 104.5 118.4 111.3 52.4 46.1 49.3
4 NC 182.0 73.2 91.1 82.1 59.8 49.9 54.9

OHC 208.9 100.1 118.1 108.7 52.1 43.5 48.0
c7552 1 NC 3857.3 3218.6 3225.6 3219.3 16.6 16.4 16.5

OHC 4178.9 3540.2 3547.2 3540.9 15.3 15.1 15.3
2 NC 3861.3 3183.0 3218.3 3214.8 17.6 16.7 16.7

OHC 4182.9 3504.7 3539.9 3536.4 16.2 15.4 15.5
s349 1 NC 153.3 72.8 94.1 84.2 52.5 38.6 45.1

OHC 185.6 105.1 126.4 116.5 43.4 31.9 37.2
2 NC 153.3 73.8 90.1 81.9 51.8 41.2 46.6

OHC 185.6 106.1 122.4 114.2 42.8 34.0 38.5
4 NC 159.7 76.8 92.8 83.5 51.9 41.9 47.7

OHC 192.0 109.1 125.1 115.8 43.1 34.8 39.7
s382 1 NC 249.1 170.6 186.3 178.2 31.5 25.2 28.5

OHC 335.3 256.8 272.4 264.3 23.4 18.7 21.2
2 NC 262.8 172.3 192.9 181.2 34.4 26.6 31.0

OHC 348.9 258.5 279.1 267.4 25.9 20.0 23.4
4 NC 257.1 164.7 191.3 176.5 36.0 25.6 31.3

OHC 343.3 250.8 277.4 262.7 26.9 19.2 23.5
s386 1 NC 332.0 268.8 287.7 278.9 19.0 13.3 16.0

OHC 610.4 547.2 566.1 557.3 10.4 7.2 8.7
2 NC 324.3 253.5 288.7 269.1 21.8 11.0 17.0

OHC 602.7 531.9 567.1 547.5 11.8 5.9 9.2
s400 1 NC 243.2 152.0 193.3 172.5 37.5 20.5 29.1

OHC 324.0 232.9 274.1 253.3 28.1 15.4 21.8
2 NC 233.5 154.7 181.3 169.6 33.8 22.4 27.4

OHC 314.3 235.5 262.1 250.4 25.1 16.6 20.3
4 NC 225.2 154.7 184.9 171.8 31.3 17.9 23.7

OHC 306.0 235.5 265.8 252.7 23.0 13.2 17.4

Table 5. Results of TPG area (part 2).
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Circuit Initial Optimized Improvement
TPG TPG in %

best worst average best worst average
s444 1 NC 223.5 151.4 185.9 168.0 32.3 16.8 24.8

OHC 304.4 232.2 266.8 248.9 23.7 12.3 18.2
2 NC 226.5 156.0 182.0 171.1 31.1 19.7 24.4

OHC 307.4 236.8 264.5 252.3 22.9 14.0 17.9
4 NC 234.2 158.7 176.3 169.5 32.2 24.7 27.6

OHC 315.0 239.5 257.1 250.3 24.0 18.4 20.5
s510 1 NC 508.6 406.2 452.4 436.6 20.1 11.1 14.2

OHC 739.1 636.7 682.9 667.1 13.9 7.6 9.7
2 NC 546.9 409.8 453.7 433.3 25.1 17.0 20.8

OHC 777.4 640.3 684.2 663.8 17.6 12.0 14.6
4 NC 513.9 417.5 460.4 439.6 18.8 10.4 14.5

OHC 744.4 648.0 690.9 670.1 13.0 7.2 10.0
s526 1 NC 471.4 341.3 384.2 360.4 27.6 18.5 23.5

OHC 675.2 545.2 588.1 564.3 19.3 12.9 16.4
2 NC 433.8 343.6 385.5 361.3 20.8 11.1 16.7

OHC 637.7 547.5 589.4 565.2 14.1 7.6 11.4
4 NC 455.1 340.6 378.5 357.3 25.1 16.8 21.5

OHC 658.9 544.5 582.4 561.2 17.4 11.6 14.8
s1196 1 NC 1266.0 1113.7 1175.9 1141.5 12.0 7.1 9.8

OHC 1800.5 1648.2 1710.4 1676.0 8.5 5.0 6.9
2 NC 1259.0 1108.7 1184.9 1143.8 11.9 5.9 9.1

OHC 1793.6 1643.2 1719.4 1678.4 8.4 4.1 6.4
4 NC 1266.0 1117.3 1178.5 1154.9 11.7 6.9 8.8

OHC 1800.5 1651.9 1713.1 1689.4 8.3 4.9 6.2
s1238 1 NC 1367.2 1213.1 1286.3 1236.6 11.3 5.9 9.5

OHC 1944.2 1790.2 1863.4 1813.7 7.9 4.2 6.7
2 NC 1333.6 1202.8 1285.3 1251.9 9.8 3.6 6.1

OHC 1910.6 1779.9 1862.4 1829.0 6.8 2.5 4.3
4 NC 1376.1 1209.8 1259.7 1230.3 12.1 8.5 10.6

OHC 1953.2 1786.9 1836.8 1807.4 8.5 6.0 7.5
s1494 1 NC 546.9 448.1 488.6 466.9 18.1 10.6 14.6

OHC 1012.2 913.4 954.0 932.2 9.8 5.8 7.9
2 NC 535.9 448.7 494.0 470.3 16.3 7.8 12.2

OHC 1001.2 914.1 959.3 935.6 8.7 4.2 6.6
s5378 1 NC 5344.9 4741.1 4741.1 4741.1 11.3 11.3 11.3

OHC 5794.2 5190.5 5190.5 5190.5 10.4 10.4 10.4
s9234 1 NC 6374.0 5738.4 5749.7 5740.4 10.0 9.8 9.9

OHC 6866.0 6230.3 6241.6 6232.3 9.3 9.1 9.2
2 NC 6444.2 5761.0 5761.0 5761.0 10.6 10.6 10.6

OHC 6936.2 6252.9 6252.9 6252.9 9.9 9.9 9.9

Table 6. Results of TPG area (part 3).
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Circuit Initial Optimized Improvement
TPG TPG in %

best worst average best worst average
c5315 1 NC 1884.7 1384.8 1424.4 1401.9 26.5 24.4 25.6

OHC 2024.8 1524.8 1564.4 1541.9 24.7 22.7 23.8
2 NC 1849.1 1374.5 1408.7 1394.5 25.7 23.8 24.6

OHC 1989.2 1514.5 1548.8 1534.5 23.9 22.1 22.9
4 NC 1909.4 1390.8 1418.4 1403.0 27.2 25.7 26.5

OHC 2049.4 1530.8 1558.4 1543.0 25.3 24.0 24.7
c6288 1 NC 186.6 80.2 90.1 84.5 57.0 51.7 54.7

OHC 213.6 107.1 117.1 111.5 49.8 45.2 47.8
2 NC 192.6 77.5 91.5 84.5 59.8 52.5 56.1

OHC 219.6 104.5 118.4 111.3 52.4 46.1 49.3
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OHC 610.4 547.2 566.1 557.3 10.4 7.2 8.7
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s400 1 NC 243.2 152.0 193.3 172.5 37.5 20.5 29.1
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2 NC 233.5 154.7 181.3 169.6 33.8 22.4 27.4
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Circuit Initial Optimized Improvement
TPG TPG in %

best worst average best worst average
s444 1 NC 223.5 151.4 185.9 168.0 32.3 16.8 24.8
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OHC 1800.5 1648.2 1710.4 1676.0 8.5 5.0 6.9
2 NC 1259.0 1108.7 1184.9 1143.8 11.9 5.9 9.1

OHC 1793.6 1643.2 1719.4 1678.4 8.4 4.1 6.4
4 NC 1266.0 1117.3 1178.5 1154.9 11.7 6.9 8.8
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2 NC 1333.6 1202.8 1285.3 1251.9 9.8 3.6 6.1

OHC 1910.6 1779.9 1862.4 1829.0 6.8 2.5 4.3
4 NC 1376.1 1209.8 1259.7 1230.3 12.1 8.5 10.6

OHC 1953.2 1786.9 1836.8 1807.4 8.5 6.0 7.5
s1494 1 NC 546.9 448.1 488.6 466.9 18.1 10.6 14.6

OHC 1012.2 913.4 954.0 932.2 9.8 5.8 7.9
2 NC 535.9 448.7 494.0 470.3 16.3 7.8 12.2

OHC 1001.2 914.1 959.3 935.6 8.7 4.2 6.6
s5378 1 NC 5344.9 4741.1 4741.1 4741.1 11.3 11.3 11.3

OHC 5794.2 5190.5 5190.5 5190.5 10.4 10.4 10.4
s9234 1 NC 6374.0 5738.4 5749.7 5740.4 10.0 9.8 9.9

OHC 6866.0 6230.3 6241.6 6232.3 9.3 9.1 9.2
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is excluded from the cost calculation for the TPG+BC and TPG+NC structures, it seems to be
justified to subtract its area from the total cost of the TPG+OHC structure as well.
Analysis of the contents of Tables 3-6 leads to the following observations.

• Average improvement values are positive for all benchmarks except three in the case of
the TPG+BC structure and for all benchmarks in the case of the TPG+NC and TPG+OHC
structures. Therefore, an application of the proposed optimization algorithm leads to
reduction in area overhead of the TPG in majority of cases. Moreover, if the result is
negative (increase in area overhead in comparison with an initial solution) there is high
probability that running GA tool again will provide improvement in results.

• The TPG+NC is the structure that is the most susceptible for a significant area reduction by
an application of the proposed optimization algorithm while the TPG+BC structure seems
to be the most resistive for optimization.

• The degree of TPG area optimization is much better in the case of small and medium size
test patterns sets (e.g. more than 50% improvement). This may partially result from the
fact that in the case of large pattern sets the population size and the number of generations
were limited so that the runtime of GA tool was acceptable.

• A huge reduction of TPG area is possible for particular test sets - like in the case of c880,
c6288 and s349 benchmarks. A closer examination of these cases revealed that GA tool
found TPG structures where some parallel inputs of the MISR can be tied either to the
power supply or to the ground while several other PIs of the MISR are fed from the same
output of the modifying logic.

• Dividing the MISR into several shorter registers may lead to a further reduction of the TPG
area. However, an improvement is rather insignificant.

In the framework of this study all experiments were carried out on a PC equipped with the
quad-core Intel 2.66 GHz microprocessor and 4 GB of RAM. Computation time, that varies
from several seconds up to several hours for different circuits, is proportional to the number
of patterns in a test set and the number of bits in test patterns as well as the size of population
and the number of generations of GA. However, in order to obtain satisfactory results of
GA execution the population size and the number of generations need to be proportionally
increased with the growth of the size of a test pattern set. Thus, the size of a test pattern set
influences computation time both directly and indirectly through the parameters of GA.
On the other hand, since TPG design is off-line and one-time optimization process,
optimization effectiveness is considered more important than reducing the computation time.
Therefore execution times that are less than one day are still acceptable. Moreover, according
to the observations for large test pattern sets containing more than several vectors some time
consuming procedures of the evaluation software can be turned off (it was actually done in
(Garbolino & Papa, 2010)) without a significant influence on the final result. In consequence,
this will lead to essential reduction of computation time.
In order to evaluate the TPG+NC structure optimized by the GA algorithm, which has been
proposed in this study, the authors compared it with some other state-of-the-art solutions
(Bellos et al., 2002) and (Cao et al., 2008) as well as with TPGs presented in some of their
previous works (Garbolino & Papa, 2008) and (Garbolino & Papa, 2010). Table 7 reports the
area overhead of all the above-mentioned TPG structures for several benchmarks. Because
test pattern sets that were used in (Bellos et al., 2002) and (Cao et al., 2008) differ from those
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a) b) c) d) e)
c432 0.47 N/A 0.11 0.34 0.25
c499 0.47 0.23 0.10 0.21 0.17
c880 0.44 N/A 0.29 0.36 0.19
c1355 0.44 0.25 0.09 0.20 0.15
c1908 0.44 0.38 0.32 0.31 0.28
c2670 0.36 0.17 N/A 0.26 0.20
c3540 0.46 N/A N/A 0.32 0.29
c5315 0.40 N/A N/A 0.26 0.21
c6288 0.48 0.67 0.54 0.34 0.19
c7552 0.37 0.28 N/A 0.26 0.21

Table 7. A comparison of different approaches through area_per_bit: a) (Bellos et al., 2002), b)
(Cao et al., 2008), c) (Garbolino & Papa, 2008), d) (Garbolino & Papa, 2010), and e) this study.

exploited in (Garbolino & Papa, 2008) and (Garbolino & Papa, 2010), the area is expressed
in terms of equivalent gates per bit of a test pattern set. The calculation for area_per_bit is
performed with the following equation, as already defined and used in (Garbolino & Papa,
2008) and (Garbolino & Papa, 2010):

area_per_bit =
area

test_pattern_width × number_o f _test_patterns
. (5)

The TPG+NC structure outperforms TPGs worked out in (Bellos et al., 2002) and (Garbolino
& Papa, 2010) for all considered benchmarks. It has also lower area overhead than solutions
presented in (Cao et al., 2008) and (Garbolino & Papa, 2008) for all benchmarks but one (c2670
and c1355, respectively).
Thus, a MISR combined with combinational logic that modifies the state diagram of the
register proves to be an effective TPG solution, particularly after its structure has been
optimized by the GA algorithm proposed by the authors. On the other hand, feeding the
inputs of the modifying logic block from the outputs of a counter in addition to the outputs of
the MISR seems to be a wrong approach because it leads to deterioration of the results.

5. Conclusion

Whenever a TPG fails to provide the desired fault coverage within the given test length,
application specific deterministic TPGs are employed. Deterministic TPGs are more complex
than pseudo random TPGs since they employ additional logic to prevent generation of
non-useful test patterns. Area overhead is one of the important issues in the design of
deterministic TPGs. In this work, a deterministic TPG is presented that is based on a single
MISR or several MISRs composed of D and T-type flip-flops, XOR and XNOR two input gates
and inverters.
Artificial intelligence structure optimization of a TPG is performed by a genetic algorithm
combined with a relatively fast but simple cost approximation function. Instead of performing
actual boolean optimization or synthesis of a TPG the function only examines some properties
of the components of a TPG (i.e. a MISR and a modifying logic) that influence their area and
expresses these properties in a numerical form.
Among a few TPG structures that have been considered in this study and which are all based
on the above-mentioned concept, one turns out to be particularly susceptible to reduction
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influences computation time both directly and indirectly through the parameters of GA.
On the other hand, since TPG design is off-line and one-time optimization process,
optimization effectiveness is considered more important than reducing the computation time.
Therefore execution times that are less than one day are still acceptable. Moreover, according
to the observations for large test pattern sets containing more than several vectors some time
consuming procedures of the evaluation software can be turned off (it was actually done in
(Garbolino & Papa, 2010)) without a significant influence on the final result. In consequence,
this will lead to essential reduction of computation time.
In order to evaluate the TPG+NC structure optimized by the GA algorithm, which has been
proposed in this study, the authors compared it with some other state-of-the-art solutions
(Bellos et al., 2002) and (Cao et al., 2008) as well as with TPGs presented in some of their
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area overhead of all the above-mentioned TPG structures for several benchmarks. Because
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performed with the following equation, as already defined and used in (Garbolino & Papa,
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The TPG+NC structure outperforms TPGs worked out in (Bellos et al., 2002) and (Garbolino
& Papa, 2010) for all considered benchmarks. It has also lower area overhead than solutions
presented in (Cao et al., 2008) and (Garbolino & Papa, 2008) for all benchmarks but one (c2670
and c1355, respectively).
Thus, a MISR combined with combinational logic that modifies the state diagram of the
register proves to be an effective TPG solution, particularly after its structure has been
optimized by the GA algorithm proposed by the authors. On the other hand, feeding the
inputs of the modifying logic block from the outputs of a counter in addition to the outputs of
the MISR seems to be a wrong approach because it leads to deterioration of the results.

5. Conclusion

Whenever a TPG fails to provide the desired fault coverage within the given test length,
application specific deterministic TPGs are employed. Deterministic TPGs are more complex
than pseudo random TPGs since they employ additional logic to prevent generation of
non-useful test patterns. Area overhead is one of the important issues in the design of
deterministic TPGs. In this work, a deterministic TPG is presented that is based on a single
MISR or several MISRs composed of D and T-type flip-flops, XOR and XNOR two input gates
and inverters.
Artificial intelligence structure optimization of a TPG is performed by a genetic algorithm
combined with a relatively fast but simple cost approximation function. Instead of performing
actual boolean optimization or synthesis of a TPG the function only examines some properties
of the components of a TPG (i.e. a MISR and a modifying logic) that influence their area and
expresses these properties in a numerical form.
Among a few TPG structures that have been considered in this study and which are all based
on the above-mentioned concept, one turns out to be particularly susceptible to reduction
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of its area by the use of the proposed GA-based tool. Experimental results prove that this
TPG structure outperforms - with respect to the area overhead - several other state-of-the art
solutions.
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Papa, G. & Koroušić-Seljak, B. (2005). An artificial intelligence approach to the efficiency
improvement of a universal motor, Eng. Appl. Artif. Intell. 18(1): 47–55.

93Stochastic Approach to Test Pattern Generator Design



Papa, G. & Šilc, J. (2002). Automatic large-scale integrated circuit synthesis
using allocation-based scheduling algorithm, Microprocessors and Microsystems
26(3): 139–147.

Parker, K. (2003). The boundary-scan handbook, Third edition, Kluwer Academic Publishers.
Sanchez, E. & Squillero, G. (2007). Evolutionary techniques applied to hardware optimization

problems: Test and verification of advanced processors, in L. Jain, V. Palade &
D. Srinivasan (eds), Advances in Evolutionary Computing for System Design, Vol. 66 of
Studies in Computational Intelligence, Springer Berlin / Heidelberg, pp. 303–326.

Sudireddy, S., Kakade, J. & Kagaris, D. (2008). Deterministic built-in tpg with segmented fsms,
pp. 261 –266.

Touba, N. & McCluskey, E. (2001). Bit-fixing in pseudorandom sequences for scan bist, IEEE
Transactions on Computer-Aided Design of Integrated Circuits And Systems 20(4): 545–555.

UC Berkeley (1988). Espresso, http://www-cad.eecs.berkeley.edu:80/software/
software.html.

van de Goor, A. J. (1991). Testing semiconductor memories: theory and practice, John Wiley & Sons,
Inc., New York, NY, USA.

94 Stochastic Optimization - Seeing the Optimal for the Uncertain

5 

Optimal Design and Placement of  
Piezoelectric Actuators using Genetic 

Algorithm: Application to Switched  
Reluctance Machine Noise Reduction  

Ojeda Javier1,3, Mininger Xavier2, Gabsi Mohamed1 and Li Yongdong3 
1SATIE, ENS Cachan, Paris XI, CNRS, UniverSud,  

61, av President Wilson, F-94230 Cachan,  
2LGEP, CNRS UMR 8507; SUPELEC; UPMC Univ Paris 06; Univ Paris-Sud;  

11 rue Joliot-Curie, Plateau de Moulon, F-91192 Gif-sur-Yvette Cedex,  
3IPEMC, Dept. Electrical Engineering, Tsinghua University, 100084 Beijing,  

1,2France  
3China  

1. Introduction    
Thanks to a good robustness, an easy production and high performances, switched 
reluctance machine (SRM) is an interesting drive for electro vehicular applications (Rahman 
et al., 2000) (Wang et al., 2005) or high speed applications (Kub et al., 2007). However, noise 
and vibrations generated by the SRM limit its integration. Previous studies on vibration 
reduction have considered SRM supplied by a pulsed current source. In this context, many 
solutions have been successfully applied to this problem such as adapted control schemes 
(Hong, 2002) and optimized stator design (Blaabjerg et al., 1994). However, these methods 
are less efficient in high speed operation zones. This chapter deals with the optimal 
placement and design of piezoelectric actuators used to reduce the noise and vibration 
generated by a SRM. Piezoelectric actuators are stuck on the SRM stator and controlled in 
order to reduce the generated vibrations. The design and placement are achieved by a 
genetic algorithm, NSGA II (Deb et al, 2002), with multi contradictory objectives in order to 
obtain a set of optimal solutions. Considering the number of actuators and the minimization 
of final displacement energy as contradictory objectives, a set of optima is found and a 
solution is chosen in order to be experimentally tested on a SRM.  
In electrical machines, noise and vibrations are mainly due to aerodynamic (Fiedler et al., 
2005), mechanical and magnetic issues. Aerodynamic vibrations are due to air displacement 
along rotating rotor (laminar flow) and vortices (turbulent flow) on SRM air gaps. These 
vibrations are located on inner surface of SRM stator. Mechanical vibrations are generated 
by relative movement between machine part and shock inside ball bearing. These vibrations 
are un-located on SRM. At last, magnetic vibrations are due to permeability gradient and 
generated on stator air-gap interface. Such sources can excite mechanical resonances of the 
structure and then generate vibratory displacement on the structure. Each source of noise 

5



Papa, G. & Šilc, J. (2002). Automatic large-scale integrated circuit synthesis
using allocation-based scheduling algorithm, Microprocessors and Microsystems
26(3): 139–147.

Parker, K. (2003). The boundary-scan handbook, Third edition, Kluwer Academic Publishers.
Sanchez, E. & Squillero, G. (2007). Evolutionary techniques applied to hardware optimization

problems: Test and verification of advanced processors, in L. Jain, V. Palade &
D. Srinivasan (eds), Advances in Evolutionary Computing for System Design, Vol. 66 of
Studies in Computational Intelligence, Springer Berlin / Heidelberg, pp. 303–326.

Sudireddy, S., Kakade, J. & Kagaris, D. (2008). Deterministic built-in tpg with segmented fsms,
pp. 261 –266.

Touba, N. & McCluskey, E. (2001). Bit-fixing in pseudorandom sequences for scan bist, IEEE
Transactions on Computer-Aided Design of Integrated Circuits And Systems 20(4): 545–555.

UC Berkeley (1988). Espresso, http://www-cad.eecs.berkeley.edu:80/software/
software.html.

van de Goor, A. J. (1991). Testing semiconductor memories: theory and practice, John Wiley & Sons,
Inc., New York, NY, USA.

94 Stochastic Optimization - Seeing the Optimal for the Uncertain

5 

Optimal Design and Placement of  
Piezoelectric Actuators using Genetic 

Algorithm: Application to Switched  
Reluctance Machine Noise Reduction  

Ojeda Javier1,3, Mininger Xavier2, Gabsi Mohamed1 and Li Yongdong3 
1SATIE, ENS Cachan, Paris XI, CNRS, UniverSud,  

61, av President Wilson, F-94230 Cachan,  
2LGEP, CNRS UMR 8507; SUPELEC; UPMC Univ Paris 06; Univ Paris-Sud;  

11 rue Joliot-Curie, Plateau de Moulon, F-91192 Gif-sur-Yvette Cedex,  
3IPEMC, Dept. Electrical Engineering, Tsinghua University, 100084 Beijing,  

1,2France  
3China  

1. Introduction    
Thanks to a good robustness, an easy production and high performances, switched 
reluctance machine (SRM) is an interesting drive for electro vehicular applications (Rahman 
et al., 2000) (Wang et al., 2005) or high speed applications (Kub et al., 2007). However, noise 
and vibrations generated by the SRM limit its integration. Previous studies on vibration 
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solutions have been successfully applied to this problem such as adapted control schemes 
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placement and design of piezoelectric actuators used to reduce the noise and vibration 
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genetic algorithm, NSGA II (Deb et al, 2002), with multi contradictory objectives in order to 
obtain a set of optimal solutions. Considering the number of actuators and the minimization 
of final displacement energy as contradictory objectives, a set of optima is found and a 
solution is chosen in order to be experimentally tested on a SRM.  
In electrical machines, noise and vibrations are mainly due to aerodynamic (Fiedler et al., 
2005), mechanical and magnetic issues. Aerodynamic vibrations are due to air displacement 
along rotating rotor (laminar flow) and vortices (turbulent flow) on SRM air gaps. These 
vibrations are located on inner surface of SRM stator. Mechanical vibrations are generated 
by relative movement between machine part and shock inside ball bearing. These vibrations 
are un-located on SRM. At last, magnetic vibrations are due to permeability gradient and 
generated on stator air-gap interface. Such sources can excite mechanical resonances of the 
structure and then generate vibratory displacement on the structure. Each source of noise 
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contributes to the measured vibratory displacement with two different ways. On the one 
hand, forces generated by one part of sources such as magnetic forces or rotating flow on the 
SRM excite the mechanical behavior by a deterministic excitation depending on the 
rotational speed. On the other hand, these sources excite the mechanical behavior by a 
random excitation, like shocks inside ball bearing or the turbulent flow. In both cases, the 
vibratory displacement can be described by modal superposition theory as follow (Mininger 
et al., 2007), figure 1: 
 

 (1)
 

where dext is the measured vibratory displacement,  the angular position of measurement 
on SRM stator, i the considered vibration mode, i the resonance frequency associated with 
the mode i and Dxi the amplitude of excitation sources for each mode i. 
 

 
Fig. 1. Mode 2 resonance of SRM 

This chapter is organized as follows: The first part deals with the optimization of 
dimensions and placement of piezoelectric actuators in the aim of reducing the generated 
vibrations. In this paragraph, the purpose and formulation used for the stochastic 
optimization is detailed. The second part deals with the validation of the optimization 
results by the mean of finite element simulations and experimental tests on a switched 
reluctance machine with piezoelectric actuators.  

2. Optimal design and placement by genetic algorithm 
2.1 Purpose of the optimization 
The non dominated sorting genetic algorithm (NSGA-II) is an efficient multiobjective 
evolutionary algorithm based on both genetic laws and Darwin evolution (Deb and al, 
2002). From an initial population composed of individuals and with crossover, mutation, 
and selection sequences for these individuals, a final optimal population is created. This 
final population constitutes a set of optimal solutions of the initial problem that respect the 
constraints and minimize objectives. NSGA-II algorithm includes the selection of 
individuals in the objective functions. In order to determine this function, one approach is 
suggested. This approach, based on final displacement minimization, corresponds to an 
electrical engineering approach and takes into account modeling both the electrical feed and 
the rotational speed. 
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Genetic algorithm, NSGA-II, has been efficiently applied on other applications (Besnerais et 
al., 2007) (Qiu et al, 2007) due to its performances and its implementation on non linear 
problems. From a random initial population corresponding to a set of configurations 
(placement and design), an optimal set of solutions is found by best individual selections, 
crossovers and mutations. The main topic of this chapter is the design and placement of PZT 
actuators in order to reduce the SRM vibrations and, consequently, the level of noise 
generated. These design and placement steps are performed in the presence of constraints 
(no overlap of actuators, maximum actuator number) and opposite objectives: minimizing 
the number of actuators, while maximizing vibration damping. Thus, not only one single 
optimal solution exists, but also a set of optimal solutions (Pareto front). The simulation 
scheme is given in figure 2.  
 

 
Fig. 2. NSGA II optimization scheme (Np: Number of actuators, Lpzt: length of an actuator) 

Under these conditions, a genetic algorithm is more suitable than a determinist one. 

2.2 Optimization formulation for active damping 
Optimization is achieved with two opposite objectives used for individual selection: the 
number of PZT actuators (J1) and the resulting RMS global displacement (J2) after active 
damping. The minimization of the two objectives J1 and J2 allows the selection of the 
actuators optimal configuration. 
 

 (2) 
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diext is the modal displacement due to disturbance external forces (aerodynamic, mechanical 
and magnetic) on the SRM stator for a vibration mode i. diPZT is the controlled modal 
displacement due to designed and placed PZT actuators for a mode i. According to linear 
modeling of piezoelectric actuators, the vibratory displacement generated is expressed with 
the expression (1) (Young et al., 2003): 
 

 (3)
 

KiPZT is the PZT conversion coefficient which depends on the geometry and material 
properties (Young’s modulus, piezoelectric coefficient d31…) for the considered mode. ViPZT 
is the voltage applied to the piezoelectric actuator for the considered mode. i and i are 
mechanical angle (angular placement of the actuator) and the electrical phase applied to the 
actuator for the considered mode, respectively. 
Each individual is composed by the number of actuators and corresponding dimensions 
(length, thickness and angular position). The associated population size (1000 individuals) 
and the number of generation (1000 generations) are designed in order to have good 
constitution heterogeneity of individuals and enough iterations for convergence. The 
optimization result is a set of best individuals minimizing the two objectives and 
represented by a Pareto front. 
The minimization problem is realized with constraints. First, overlap between two actuators 
is not allowed (same angular position) and second, geometrical parameters (actuators 
thickness, length and height) have limited range. The experimental actuator control is 
realized by a Matlab Simulink platform. Thus, the actuator voltage is also limited to ±10V. 
Figure 3 represents the Pareto front of optima individuals according to selection functions J1 
and J2 considering 4 modes: mode 2 at 5000 Hz, mode 3 at 12600Hz, mode 4 at 21400 Hz and 
mode 5 at 29700 Hz. 
 

 
Fig. 3. Pareto configuration optima for actuator placement with an example of optimal 
individuals 

After optimization, all dimensions for each configuration of actuators are the same: length, 
40mm; thickness, 2.4 mm; height, 12 mm and correspond to analytical optima. As the 
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optimum placement, for the control of mode 2, does not correspond to optimum placement 
considering the other modes, thus, the angular placement is a compromise between the 
damping of each mode. It is the main reason to use the genetic algorithm (compared to 
determinist algorithm) because many optima exist. Considering one actuator the best 
placement is obtained on modes anti-nodes. However, only few positions correspond to 
antinodes for several modes. Thus, in the Pareto front the number of actuators increasing from 
one to two actuators decreases strongly the vibratory displacement reduction. However, when 
the number of actuators increases from four to five actuators, the displacement energy 
decreasing is less efficient. The final decision for one configuration of actuators depends on 
designer criterions, as the price or the manufacturing ease. In our application, the optimal 
solution with 3 actuators has been chosen. In order to keep the 180° symmetry of the structure, 
3 more actuators have been placed at 180° with the same dimension of the others. The final 
SRM with PZT actuators is represented on the following figure 4. 
 

 
Fig. 4. Final design and placement of PZT actuators 

3. Finite element and experimental validation 
3.1 Finite element active damping results 
For this configuration of actuators, finite element simulations allow the validation of the 
placement and the design of piezoelectric actuators for several vibration excitations. Forces 
exciting one or multiple modes are imposed on the stator and adequate voltages are applied 
to the actuators in order to reduce the resulting vibratory acceleration. Different voltage 
amplitudes are tested so as to conclude on the efficiency of this active damping method.  
On Figure 5, a sinusoidal force corresponding to the mode 2 resonance of stator is applied 
on stator teeth. For the first phase, the associated vibratory displacement can be described 
by: 
 

(4)
 

Displacements associated with the two phases are deduced from the first phase applying a 
mechanical and electrical phase of ±120°. These forces generate a vibratory displacement on 
the stator (curve VPZT=0V). Voltages, which temporal phases opposite to the ones of the 
forces on the teeth, are applied on PZT actuators (VPZT=5V and VPZT=10V). The electrical 
phase between two pairs of actuators is equal to 120°. For the first pair of actuators, the 
vibratory displacement generated is: 
 

(5)
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Fig. 5. Mode 2 active damping on SRM stator (4.6 KHz) 

The vibratory displacement is reduced due to actuator interactions on structure (Mininger et 
al., 2007). The more the PZT voltage is increased, the more the vibratory displacement is 
reduced until the vibratory displacement is cancelled. In order to validate the superposition 
hypothesis, a multimodal configuration is considered. Figure 6 presents two sinusoidal 
forces corresponding to mode 2 and mode 4 resonances, which are applied on stator teeth of 
each phase: 
 

 (6)
 

 
Fig. 6. Mode 2 and Mode 4 active damping on SRM stator (red: open loop, blue: closed loop) 

Figure 7 is a Fast Fourier Transformation of the previous result. Without PZT voltage, the 
spectrum is composed by two excitations corresponding to mode 2 and mode 4. With a 
mode 2 excitation of PZT actuators, only the mode 2 resonance is reduced. Thus, each mode 
can be treated separately. It is the starting point so as to design a controller for active 
damping so as to separately control the different modes. 
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Fig. 7. Vibratory displacement FFT 

3.2 Experimental results with MIMO controller 
The experimental test bench, figure 8, is composed by two motors sharing the same shaft: a 
Permanent Magnet (PM) one and the SRM. Using the PM motor, it is possible to obtain the 
rotation of the SRM without magnetic excitation of this one. In this case, only mechanical 
and aerodynamic disturbances are considered. The frame has been designed in order to 
minimize the vibration exchange between the two motors. Holes and slops on the frame are 
equivalent to multiple springs and are use to filter the vibration between the two motors. 
 

 
Fig. 8. Experimental test bench (left motor: PM motor, right motor: SRM) 
The PZT voltage control is a multi-input multi-output system, figure 9. 
On figure 9, the inputs of the control system are the vibratory displacements deduced from 
the vibratory acceleration measured on two stator points. The system outputs are the 3 PZT 
voltages applied to PZT phase 1, 2 and 3. Each PZT phase is composed by two PZT 
actuators controlled by the same voltage.  
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Fig. 9. Scheme representation of actuators and sensors placement 

Considering only the piezoelectric excitation, the vibratory measurements in CH1 and CH2 
depend on the voltage applied to the PZT phase 1, 2 and 3. In this case, the mode 2 vibratory 
displacement measurements in CH1 and CH2 can be expressed by: 
 

 (7)

 

One can see that one pair of actuators is more efficient than the two others to act on the 
displacement associated to one d2CH (e.g. PZT 3 for d2CH1). Indeed, it is placed on the 
corresponding antinode for mode 2, the controller is then realized so as to un-correlate each 
PZT with each measurement point and on the same time maximizes the influence of the 
measured vibratory displacement to the corresponding PZT phase. 
Often used on active damping problem and resonant system, the Positive Position Feedback 
(PPF), is an efficient controller for one input one output system (Preumont, 2002). The 
controller described in this paper is based on three PPF controllers (Moheimani et al., 2005), 
and each PPF controller controls only one PZT phase. The uncoupling between each phase 
(e.g. PZT 3 acting only on d2CH1) on measurement points is realized by a matrix gain (G). 
 

 (8)

 

Assuming, a third virtual measurement point CH3 exists defined by the relation d2CH1+ d2 
CH2+ d2CH3=0, the system can be defined by: 

 (9)

 

The filter HPPF(s) is design by Mac Ever method (McEver, 1999) and is defined as: 

 (10)
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The PPF filter has an only significant action on vibratory problem around a central 
frequency, increasing the equivalent damping ratio around this frequency. Thus, it has been 
designed in order to reduce the vibratory acceleration, and consequently the vibratory 
displacement, around the mode 2 resonance frequency (5000 Hz).  The controller scheme is 
given in figure 10. 
 

 
Fig. 10. PPF controller scheme for active damping 
So as to test the active damping robustness, an experimental test has been realized on the 
more disadvantageous case. In this case, the vibration generated on the SRM stator is 
generated by aerodynamic and mechanical excitations. On figure 11, the active damping has 
been tested at 10 000 rpm. 

 
Fig. 11. Experimental active damping at 10 000 rpm 

A significant reduction of the vibratory acceleration has been measured. With this principle, 
a vibratory reduction from 15 dB is obtained around the PPF filter frequency from a large 
range of rotational speed from 1 rpm to 15 000 rpm. This method is efficient on both low and 
high speed operation range. Moreover, the method has been successfully applied with all 
kind of excitations (Ojeda et al., 2007). 

4. Conclusion 
In this chapter, design and placement of piezoelectric actuators by genetic algorithm have 
been presented in the aim of SRM noise damping. A formulation based on the vibratory 
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been tested at 10 000 rpm. 

 
Fig. 11. Experimental active damping at 10 000 rpm 

A significant reduction of the vibratory acceleration has been measured. With this principle, 
a vibratory reduction from 15 dB is obtained around the PPF filter frequency from a large 
range of rotational speed from 1 rpm to 15 000 rpm. This method is efficient on both low and 
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4. Conclusion 
In this chapter, design and placement of piezoelectric actuators by genetic algorithm have 
been presented in the aim of SRM noise damping. A formulation based on the vibratory 
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displacement energy reduction has been successfully applied so as to select optimal 
configuration of actuators. Piezoelectric actuators have been used in order to reduce the 
noise generated by SRM functioning in a large operation range. Optimal placement and 
design allow the reduction of all vibration sources by the actuator voltage control. This 
compensation method with optimized design and placement allows a 15dB noise reduction 
in audible frequencies. It could be efficiently applied on all low vibration applications using 
electrical machines, like compressors or flight direction. 
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1. Introduction 
Investment could be defined as the act of incurring immediate costs with the expectation of 
future returns. An investment project, as every asset has a value. Thus, for successfully 
investing in and managing these assets is crucial not only recognizing what the value is but 
also the sources of this value (Damodaran, 2002). 
Most investment decisions share three important characteristics in different degrees. First, 
investments are partially or totally irreversible. Roughly speaking, the initial investment 
cost is at least partially sunk; i.e. it is impossible to recover all the expenditures if the 
decision-maker changes her mind. Second, there is uncertainty in the revenues from the 
investment, and therefore, risk associated with this. Third, all decision-making has some 
leeway about the timing of the investment. It is possible to defer the decision making to get 
more information about the future. These three features interact to determine the optimal 
decisions of investors on a given investment project (Dixit & Pindick, 1994).  
Transmission utilities are faced with investments, which hold these three characteristics 
significantly: irreversibility, uncertainty and the choice of timing. In this context, an efficient 
decision making process is, therefore, based on managing the uncertainties and 
understanding the relationships between risks and opportunities in order to achieve a well-
timed investment execution.  
Therefore, strategic flexibility for seizing opportunities and cutting losses contingent upon the 
market evolution is of huge value. Strategic flexibility is a risk management method that is 
gaining ongoing research attention as it enables properly coping major uncertainties, which 
are unsolved at the time of making decisions. Hence, valuing added flexibility in transmission 
investment portfolios, for instance, by investing in power electronic-based controller 
meanwhile transmission line projects are deferred, is necessary to make optimal upgrading. 
However, expressing the value of flexibility in economic terms is not a trivial task and 
requires new, sophisticated valuing tools, since the traditional investment theory has not 
recognized the implications of the interaction between the three aforementioned investment 
features. Any attempt to quantify investment flexibility almost naturally leads to the concept 
of Real Options (RO). The RO technique provides a well-founded framework -based on the 
theory of financial options, and consequently, stochastic dynamic programming- to assess 
strategic investments under uncertainty (Trigeorgis, 1996). 
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In the first RO applications (Myers, 1977), valuation was normally confined to the 
investment options that can be easily assimilated to financial options, for which solutions 
are well-known and readily available (Rodriguez & Rocha, 2006). Nevertheless, an investor 
confront with a diverse set of opportunities. From this point of view, investment projects 
can be seen as a portfolio of options, where its value is driven by several stochastic variables.  
The introduction of multiple interacting options into real options models highly increases 
the problem complexity, making the utilization of traditional analytical approaches 
unfeasible. However recently, simulation procedures for solving multiple American options 
have been successfully proposed. One of the most promising approaches is the Least Square 
Monte Carlo (LSM) method proposed by Longstaff and Schwartz (2001). LSM method is 
based on stochastic chronological simulation and uses least squares linear regression to 
determine the optimal stopping time (optimal path) in the decision making process.  
This chapter lays out a general background about key concepts -uncertainty and risk- and 
the most usual risk management techniques in transmission investment are provided. Then, 
the concept of strategic flexibility is introduced in order to set its ability for dealing with the 
uncertainties involved in the investment problem. In addition, new criteria and advantages 
of the ROV approach compared with classical probabilistic choice are presented. A LSM-
based method for decomposing and evaluating the complex real option problem involved in 
flexible transmission investments under uncertainties is developed. 
The proposed methodology is applied to a study case, based on (Blanco et al., 2010a), which 
evaluates an interconnection reinforcement on the European interconnected power system, 
showing how the valuation of flexibility is a key task for making efficient and well-timed 
investments in the transmission network. The impact of two network upgrades on the 
system-wide welfare is analyzed within the proposed framework. These upgrades are the 
development of a new transmission line and the installation of a power electronic-based 
controller. Both upgrades represent measures to strengthen the German transmission 
network due to the fact that these are among the most important corridors within the 
Central Western European (CWE) region. Hence, a transmission project, which is currently 
under study, is compared to flexible investment in order to shed some light on the influence 
of the strategic flexibility on the optimal decision-making process. The research is focused 
on assessing the impact of the uncertainty of the demand growth, generation cost evolution 
and the evolution of the installed wind capacity on the decision-making process.  

2. Risks and uncertainties in the investment decision-making process 
According to Webster’s dictionary, the word risk is defined as “possibility of loss or injury, 
someone or something that creates or suggests a hazard”. Accordingly, risk is normally 
perceived in negative terms. In finance, the definition of risk is different and broader. Thus, 
risk refers to the probability of receiving a return on an investment different from expected 
return. Therefore, risk includes not only negative results, i.e. results that are lower than 
expected, but also positive results, i.e. returns that are higher than expected. In fact, it may 
refer to the former as downside risk and upside risk to the latter, but are considered both in 
the measurement of risk (Damodaran, 2002). 
Thus, risk management procedures aim to develop a model to quantify the investment risk 
and then try to turn it into an opportunity that is necessary to compensate for the hazards. 
On the other hand, uncertainty is the randomness of the external environment. Investors 
cannot change their level. Uncertainty is an input into the valuation of investments. 
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Exposure of an investment to uncertainty -the sensitivity of returns and the value of the 
investment against a source of uncertainty- is determined by a number of factors, including 
business line, the structure cost and nature of the markets of the investment. Through 
investment, the managers are able to change the level exposure of assets, with a resulting 
economic impact, the risk. 
Thus, although in the literature uncertainty and risk are often used interchangeably, it is 
relevant to note the difference between them. Uncertainty refers to an unstructured 
collection of randomness and risk to the situation in which a result can be specified and may 
be assigned a probability of occurrence. 
In general terms, there are variables involved in the valuation investment process whose 
evolution is gravitating to the generation of worth of the investment project. If these 
variables have uncertainties on their unfolding, it is generated a certain level of risk 
associated with the project value.  
The identification and quantification of the project´s risk must be obtained within the 
evaluation process. This risk assessment is fundamental for making optimal decisions as 
well as providing the needed inputs that properly replicate the uncertain behavior of the 
driving variables for conducting an active risk management throughout the project 
development.  

2.1 Implication of risk and uncertainty within the traditional decision tool 
Nowadays, markets require strategic decisions to invest in highly uncertain environments, 
characterized by the unknown of relevant aspects such as: market size, development costs or 
movements of the competing players. Therefore, there is currently a broad gap between 
what managers want to do and the capabilities of the available information and the decision 
tools (Olafsson, 2003).  
In current decision tools, there are two main features that stand out as significant problems. 
The first one is that most of the tools require a forecast of future returns. Since the analysis 
often uses a single or point forecast, this is very subjective. Is this an overly optimistic 
projection of the defender of a project? , what are the growth rate and profit margin foreseen 
in the projection? In this context, managers consider often the forecast as reality, creating the 
illusion of certainty in relation to the results. To improve this, some practitioners try to 
extend the analysis to a set of projections or scenarios. These efforts seem sound knowledge 
to the authors, however, arbitrary to everybody else. Both, single stage or in the various 
scenarios, forecasting cash flow, under these conditions, becomes a subjective input 
(Damadaran, 2002).  
The second problem of decision-making tools -most commonly used- is that future 
investment decisions are determined from the outset. Managers update and revise the 
investment plans, but the analysis, according to the structure of most of the tools, only 
includes the initial plan. Therefore, the world changes, but its model does not. As the gap 
between the tools and reality becomes bigger, the instruments are discarded, and important 
decisions are made in terms of strategic considerations and management expertise (Amran 
& Kulatilaka, 1998).  
Accordingly, alternative actions in response to changed conditions or new information, 
which emerge in the lifetime of the project are not accounted for. Commonly, the only 
decision made at the beginning is to go ahead with the project, or not. Thereafter 
management remains passive to a fixed operating strategy. Clearly, this approach is 
unsuitable in a competitive world, characterized by continuous change and uncertainty. 
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Consequently, an efficient decision tool needs to take account of the volatility in project 
profits and remain flexible in response to unforeseen events (Olafsson, 2003). 

2.2 Risk and uncertainties in the worth creation 
Once the uncertainty and flexibility are explicitly included in the valuation of investments, 
there is a complete change of paradigms within the decision making process. From an active 
and strategic management of the uncertainties, one of the most important transformations in 
the way of visualizing a decision on an uncertain environment is derived: uncertainty 
creates worth. Consequently, by rethinking strategic investments, decision-makers must try 
to consider their markets taking into account the origin, history and evolution of the 
uncertainty, to determine the degree of exposure of their investments (how external events 
are reflected in profit and loss), then respond by positioning their investments, so that they 
can take full advantage of uncertainty.  
From the traditional point of view, the higher the uncertainty level the lower value of the 
project. However, under an approach which manages the uncertainties actively and 
strategically, greater uncertainties may lead to higher asset value. For doing this, decision-
makers strive to identify and using their strategic options to flexibly respond to uncertainty 
developments.  
An intuitive way to analyze this interaction between uncertainty and risk within the 
investment problem is by the see-saw investment metaphor. By visualizing the performance 
of an investment as a weighing-scale (Fig. 1), where the externalities are weighted according 
to the threats and opportunities of an investment, it could reveal the interaction between its 
final return range and the uncertainties. If it contemplates the uncertainty as the base of this 
scale, the level of risk -i.e. fluctuations around the expected return- clearly is constrained by 
the magnitude of the uncertainties that the investment is exposed to (Blanco, 2010b). 
 
 

 
Fig. 1. Interaction between uncertainty and risk in investment performance 

Therefore, if the investment is exposed to lower uncertainty, it would be exposed to lower 
extraordinary losses, but also, at the same time, would be less likely to seize extraordinary 
profits (Fig. 2). 
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Fig. 2. Sensitivity of risk related to the uncertainties 

However, the use of contingent claims (strategic flexibility of the investment) may limit the 
level of extraordinary losses, but remaining open a significant likelihood of extraordinary 
profits (Fig. 3).  
 

 
Fig. 3. Effect of Flexibility in the value of investments under uncertainty 

Thus, through the optimal use of the flexibility of investments, it is possible to increase the 
value of the investment project with increasing uncertainties. Therefore, the key is flexibility 
in dealing with the uncertainties by having various options in place that can be exercised as 
new information emerges. The options derive their value from the fact that they establish a 
floor under possible project losses. 

2.3 Risk and uncertainties in the electric power system  
Nowadays, the risk analysis theory is widely used by decision-makers who face investment 
decision problems under uncertainty, since it provides a systematic and logical approach for 
the decision making process (Vásquez, 2009). In the context of restructuring the electricity 
supply business, the problem of valuing transmission system expansions could be 



 Stochastic Optimization - Seeing the Optimal for the Uncertain 

 

110 

Consequently, an efficient decision tool needs to take account of the volatility in project 
profits and remain flexible in response to unforeseen events (Olafsson, 2003). 

2.2 Risk and uncertainties in the worth creation 
Once the uncertainty and flexibility are explicitly included in the valuation of investments, 
there is a complete change of paradigms within the decision making process. From an active 
and strategic management of the uncertainties, one of the most important transformations in 
the way of visualizing a decision on an uncertain environment is derived: uncertainty 
creates worth. Consequently, by rethinking strategic investments, decision-makers must try 
to consider their markets taking into account the origin, history and evolution of the 
uncertainty, to determine the degree of exposure of their investments (how external events 
are reflected in profit and loss), then respond by positioning their investments, so that they 
can take full advantage of uncertainty.  
From the traditional point of view, the higher the uncertainty level the lower value of the 
project. However, under an approach which manages the uncertainties actively and 
strategically, greater uncertainties may lead to higher asset value. For doing this, decision-
makers strive to identify and using their strategic options to flexibly respond to uncertainty 
developments.  
An intuitive way to analyze this interaction between uncertainty and risk within the 
investment problem is by the see-saw investment metaphor. By visualizing the performance 
of an investment as a weighing-scale (Fig. 1), where the externalities are weighted according 
to the threats and opportunities of an investment, it could reveal the interaction between its 
final return range and the uncertainties. If it contemplates the uncertainty as the base of this 
scale, the level of risk -i.e. fluctuations around the expected return- clearly is constrained by 
the magnitude of the uncertainties that the investment is exposed to (Blanco, 2010b). 
 
 

 
Fig. 1. Interaction between uncertainty and risk in investment performance 

Therefore, if the investment is exposed to lower uncertainty, it would be exposed to lower 
extraordinary losses, but also, at the same time, would be less likely to seize extraordinary 
profits (Fig. 2). 
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Fig. 2. Sensitivity of risk related to the uncertainties 

However, the use of contingent claims (strategic flexibility of the investment) may limit the 
level of extraordinary losses, but remaining open a significant likelihood of extraordinary 
profits (Fig. 3).  
 

 
Fig. 3. Effect of Flexibility in the value of investments under uncertainty 

Thus, through the optimal use of the flexibility of investments, it is possible to increase the 
value of the investment project with increasing uncertainties. Therefore, the key is flexibility 
in dealing with the uncertainties by having various options in place that can be exercised as 
new information emerges. The options derive their value from the fact that they establish a 
floor under possible project losses. 

2.3 Risk and uncertainties in the electric power system  
Nowadays, the risk analysis theory is widely used by decision-makers who face investment 
decision problems under uncertainty, since it provides a systematic and logical approach for 
the decision making process (Vásquez, 2009). In the context of restructuring the electricity 
supply business, the problem of valuing transmission system expansions could be 
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addressed as a risk management problem (Blumsack, 2006), seeking to formulate a 
transmission expansion plan that led the planner to make adjustments in an easy, economic 
way for seizing opportunities or cutting losses according to the evolution of the uncertain 
variables. 
Therefore, the uncertainties variables play a key role in the valuation of transmission 
investments, and consequently, their behavior should be properly replicated within the 
assessment models1. In what follows, the main uncertainties of transmission system 
expansion are briefly analyzed:   
• Evolution of demand. The evolution of the electricity demand is a key variable heavily 

influencing the performance of transmission investments2. The uncertainty over its 
future evolution is often represented according to a growth rate of demand in each 
period of the analysis horizon.   

• Generation costs. Most of the electricity generated worldwide is produced from one of 
the following primary energy carriers: coal, oil, gas, nuclear and renewable (hydro, 
wind, solar, etc.). No public markets or trading platforms exist for renewable, nuclear 
and hydro. On the other hand, there are market prices for coal, oil and gas, which could 
be subject to considerable fluctuations over the long-run3. Therefore, the main 
uncertainty over generation cost could be related to thermal-units. Many of these plants 
use fossil fuels as primary energy sources. Thus, generation costs can be closely 
correlated with the fuel prices. The significant volatility present in the fuel market 
makes this uncertainty relevant exerting a profound influence on investment decisions 
in the transport system. 

• Discount rates. The discount rates usually allow transferring temporal cash flow to the 
present or future. From a financial point of view, these rates represent the returns 
expected by the investor, and are strongly related to their risk perception over a given 
project. Uncertainty over the discount rate can have two effects on an investment 
decision. First, random fluctuation in interest rates can enhance the expected value of a 
future payoff from investing. However, uncertainty over future interest rates can also 
lead to a postponement of investment. The reason is that uncertainty over futures 
discount rates creates a value to waiting for new information (to see whether interest 
rates rise or fall) (Dixit & Pindick, 1994). Hence, there are two opposite effects of 
uncertainties over the discount rates, which should be carefully analyzed in order to 
make optimal investment decisions. 

• Investment costs of transmission projects. The uncertainty in the evolution of prices of the 
raw material of the transmission equipment such as: steel, aluminium, copper and 
insulation has a considerable impact on investment costs in transmission projects and 

                                                 
1 The stochastic model of the uncertain variables of the transmission investment problem -taken into 
account in this chapter- is discussed in detail later. 
2 Over the last years, electricity demand has grown only slowly in most developed countries. However, 
this growth has been far from certain and subject to stochastic fluctuations. Especially in the longer run, 
uncertainty on electricity demand growth has therefore also to be taken into consideration (Weber, 
2004). 
3 For example, crude oil prices have risen by a factor of two between the beginning of 2007 and the 
middle of 2008, and have again dropped by factor of three at the beginning of 2009. The price of coal has 
not been more stable in comparison; it has varied by about a factor of three between 2008 and 2009. The 
factor for the same time-window for the natural gas is two (http://tinyurl.com/27ns7ut). 
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therefore affects decisions on expansion. It also was mentioned earlier that the costs of 
FACTS devices have a tendency to decrease, which must also be considered.  

• Availability of system components. States of operation with unavailability of some 
components is frequent in the large-scale power systems. Therefore, they are relevant 
within the transmission investment assessment. The reason of this is that the price 
spikes, which appear in energy markets under perfect competition during deficit 
conditions, would provide, in theoretical terms, substantial revenues to attract the 
investment needed to ensure the optimal level of adequacy over the long-term. 
Notwithstanding, although these profits under deficit conditions are very significant, 
they occur infrequently and are very difficult to predict. This situation often encourages 
the investors, usually risk-averse, to postpone or discard investments that are needed 
for ensuring the adequacy of the system (Olsina et al., 2007). Therefore, these variables 
are relevant to investment analysis and should be considered.  

Several approaches for assessing transmission investment have been proposed (Latorre et 
al., 2003), defining the evolution of the variables of the problem with certainty. These models 
are known as deterministic and represent the variables aforementioned by their expected 
values. These assumptions often make these models unsuitable for evaluating investment 
strategies in practice (Garver, 1970; Seifu et al., 1989; Romero & Monticelli, 1994). There are 
also stochastic models that consider the random behavior of some input parameters (Yu et 
al., 1999). However, there are only a few antecedents regarding the management of risk 
associated with financial performance, despite, its profound influence on the new market 
structures (Vásquez & Olsina, 2007). Thus, the theory and tools for assessing transmission 
investments (TI) are still below the practical requirements of the new power markets. This is 
particularly true in aspects such as the transmission investment flexibility and the 
introduction of transmission controllers. 

3. Basic Net Present Value (NPV) calculations 
A classic NPV analysis works as follows. Let consider an immediate investment of I0 today 
will generate cash flow Cj for the next n years. As cash flow obtained in the future does not 
have the same value as cash flow received today, then future cash flow requires discounting. 
The discount rate represents the opportunity cost of capital, k (Brealey, 2001). 
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addressed as a risk management problem (Blumsack, 2006), seeking to formulate a 
transmission expansion plan that led the planner to make adjustments in an easy, economic 
way for seizing opportunities or cutting losses according to the evolution of the uncertain 
variables. 
Therefore, the uncertainties variables play a key role in the valuation of transmission 
investments, and consequently, their behavior should be properly replicated within the 
assessment models1. In what follows, the main uncertainties of transmission system 
expansion are briefly analyzed:   
• Evolution of demand. The evolution of the electricity demand is a key variable heavily 

influencing the performance of transmission investments2. The uncertainty over its 
future evolution is often represented according to a growth rate of demand in each 
period of the analysis horizon.   

• Generation costs. Most of the electricity generated worldwide is produced from one of 
the following primary energy carriers: coal, oil, gas, nuclear and renewable (hydro, 
wind, solar, etc.). No public markets or trading platforms exist for renewable, nuclear 
and hydro. On the other hand, there are market prices for coal, oil and gas, which could 
be subject to considerable fluctuations over the long-run3. Therefore, the main 
uncertainty over generation cost could be related to thermal-units. Many of these plants 
use fossil fuels as primary energy sources. Thus, generation costs can be closely 
correlated with the fuel prices. The significant volatility present in the fuel market 
makes this uncertainty relevant exerting a profound influence on investment decisions 
in the transport system. 

• Discount rates. The discount rates usually allow transferring temporal cash flow to the 
present or future. From a financial point of view, these rates represent the returns 
expected by the investor, and are strongly related to their risk perception over a given 
project. Uncertainty over the discount rate can have two effects on an investment 
decision. First, random fluctuation in interest rates can enhance the expected value of a 
future payoff from investing. However, uncertainty over future interest rates can also 
lead to a postponement of investment. The reason is that uncertainty over futures 
discount rates creates a value to waiting for new information (to see whether interest 
rates rise or fall) (Dixit & Pindick, 1994). Hence, there are two opposite effects of 
uncertainties over the discount rates, which should be carefully analyzed in order to 
make optimal investment decisions. 

• Investment costs of transmission projects. The uncertainty in the evolution of prices of the 
raw material of the transmission equipment such as: steel, aluminium, copper and 
insulation has a considerable impact on investment costs in transmission projects and 

                                                 
1 The stochastic model of the uncertain variables of the transmission investment problem -taken into 
account in this chapter- is discussed in detail later. 
2 Over the last years, electricity demand has grown only slowly in most developed countries. However, 
this growth has been far from certain and subject to stochastic fluctuations. Especially in the longer run, 
uncertainty on electricity demand growth has therefore also to be taken into consideration (Weber, 
2004). 
3 For example, crude oil prices have risen by a factor of two between the beginning of 2007 and the 
middle of 2008, and have again dropped by factor of three at the beginning of 2009. The price of coal has 
not been more stable in comparison; it has varied by about a factor of three between 2008 and 2009. The 
factor for the same time-window for the natural gas is two (http://tinyurl.com/27ns7ut). 
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therefore affects decisions on expansion. It also was mentioned earlier that the costs of 
FACTS devices have a tendency to decrease, which must also be considered.  

• Availability of system components. States of operation with unavailability of some 
components is frequent in the large-scale power systems. Therefore, they are relevant 
within the transmission investment assessment. The reason of this is that the price 
spikes, which appear in energy markets under perfect competition during deficit 
conditions, would provide, in theoretical terms, substantial revenues to attract the 
investment needed to ensure the optimal level of adequacy over the long-term. 
Notwithstanding, although these profits under deficit conditions are very significant, 
they occur infrequently and are very difficult to predict. This situation often encourages 
the investors, usually risk-averse, to postpone or discard investments that are needed 
for ensuring the adequacy of the system (Olsina et al., 2007). Therefore, these variables 
are relevant to investment analysis and should be considered.  

Several approaches for assessing transmission investment have been proposed (Latorre et 
al., 2003), defining the evolution of the variables of the problem with certainty. These models 
are known as deterministic and represent the variables aforementioned by their expected 
values. These assumptions often make these models unsuitable for evaluating investment 
strategies in practice (Garver, 1970; Seifu et al., 1989; Romero & Monticelli, 1994). There are 
also stochastic models that consider the random behavior of some input parameters (Yu et 
al., 1999). However, there are only a few antecedents regarding the management of risk 
associated with financial performance, despite, its profound influence on the new market 
structures (Vásquez & Olsina, 2007). Thus, the theory and tools for assessing transmission 
investments (TI) are still below the practical requirements of the new power markets. This is 
particularly true in aspects such as the transmission investment flexibility and the 
introduction of transmission controllers. 

3. Basic Net Present Value (NPV) calculations 
A classic NPV analysis works as follows. Let consider an immediate investment of I0 today 
will generate cash flow Cj for the next n years. As cash flow obtained in the future does not 
have the same value as cash flow received today, then future cash flow requires discounting. 
The discount rate represents the opportunity cost of capital, k (Brealey, 2001). 
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where FFj is the cash flow of the year j and N is the investment horizon. Note that in general, 
the discount rate may differ from year to year. This is considered by the subscripts in 
discount rates. As was aforementioned this rate equals the opportunity cost or the cost of 
capital of the company making the investment. Therefore, it should reflect the level of 
project risk. This rate is also known as hurdle rate, that is, a minimum acceptable rate of 
return for investing resources in a project. 

3.1 Flaws & drawbacks of the NPV approach under uncertainties 
The net present value rule is implicitly based on some assumptions that are often 
overlooked. The most important is that either investment are entirely reversible4, that is, it 
can be undone and the capital outlays invested fully recovered if market conditions unfold 
unfavorably; or if it is irreversible, this is a proposition of a now-or-never opportunity, i.e. if 
the decision-maker does not execute the investment now, he will not be able to execute it in 
the future (Dixit & Pindick, 1994). 
Even though some investments fulfill these hypotheses, not all do. In practice, decision-
makers have the ability to adapt their investment strategies in response to undesired events, 
and therefore, limit the downside effects of the uncertainties. However, under the NPV 
framework, the only decision made at the beginning is to execute the investment, or not. 
Thereafter the decision-maker remains immovable to a fixed operating strategy. 
Consequently, a major shortcoming the NPV approach is that these strategic options, which 
are often embedded into the project, are disregarded. Hence, contingent measures in 
response to changed conditions or new information, which emerge in the lifespan of the 
project, are simply overlooked.  
The inevitable uncertainties associated with the transmission investments are better 
managed with investments that provide flexibility. As new information arrives, investors 
need the flexibility to alter operating strategies to seize favorable opportunities or to cut 
losses in the case of adverse scenarios. This flexibility may include various actions at 
different stages of the planning horizon, such as the options to defer, expand, reduce or even 
abandon the project. This flexibility to adapt to changing market conditions has a substantial 
value, which has to be considered when an investment implementation is being decided. It 
is thus essential that flexibility be properly quantified. Any attempt to quantify investment 
flexibility almost naturally leads to the notion of Real Options (Olafsson, 2003). 
The ROV technique provides a well-founded framework–based on the theory of financial 
options- to assess strategic investments under uncertainty. It quantitatively takes into 
account investment risks and the value of the open options for planners. The next sections 
provide a detailed background about the option theory and its applications into the capital 
investment evaluations. 

4. Option valuations applied to flexible investments 
The paradigm behind the real option concept is simple and straightforward. On one hand, it 
is simple because there is a strong analogy between the options on financial assets and the 
opportunities to acquire real assets. On the other hand, straightforward, because the theory 
of valuing derivative assets in financial markets, option pricing theory, offers powerful tools 

                                                 
4 Investment expenditures are sunk costs when they are firm or industry specific (Dixit & Pindick, 1994) 
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that can be applied to value real options accurately. The sense of real options lies on 
quantifying the worth generated by the intrinsic flexibility embedded into an investment 
project, thereby providing a correct basis for making strategic investment decisions (Brosch, 
2001). 
Strategic flexibility emphasizes the inherent asymmetry between gains and losses in the 
structure of a project. The real option concept extends the conventional (static) NPV 
approach by including the value associated with the flexibility inherent in a project. 
Therefore, the static NPV is augmented to become flexible NPV (Olafsson, 2003): 

Flexible NPV = Static NPV + Value of flexibility 

Since the value of flexibility always is positive, it adds value to the project; its value is the 
key concept in the real options approach. Therefore, the availability of these options will 
generally impact on the actual decision-making process, and consequently, must be fairly 
quantified. 

4.1 Financial options5 
An option is the right but not the obligation, to make a particular decision in the future. In 
general, one can say that the options are bilateral contracts by which a party pays a sum of 
money to another to acquire the right (option) to conduct a transaction (purchase and sale) 
or claim a specific sum of money in the future. 
In this context, a financial option entitles the holder the right to buy or sell an asset at a 
specified price on or before a certain date. The set price is called the strike or exercise price 
and the date on or before which the right can be exercised is called maturity.  
Financial options are a particular type of financial assets called derivative securities. The 
value of the derivative depends on the value of another asset on which is based on it, called 
the underlying asset. This means, the value of a derivative security derives from the value of 
another elemental asset. 
There are essentially two different types of financial options. An option to buy -call option- 
entitles the holder to acquire an asset at a specified price on or before a certain date and the 
option to sell -put option- gives the holder the right to sell an asset at a specified price on or 
before a certain date.  
In addition, financial options can be classified as American or European. When the option 
holder can exercise the option on a certain future date, it is implying that he can only use his 
right at that moment (on the date of expiry or maturity), and neither before nor after that, 
the derivative security is an European option.  
Moreover, when the holder can exercise his contract until a specified future date, it means 
that the option holder can use his right until the expiration date; in this case, the financial 
option is an American option.  
The holder of the right to exercise an option is said to have a long position (long position) in 
an option contract. The issuer (seller) of an option takes a short position (short position), and 
the obligation to buy or sell the asset (underlying) at the exercise price to or from the holder 
of the right (the long position), who should wish to take advantage of his rights. 
Instead of buying the assets directly (i.e. take long position in the underlying), the investor 
can defer the investment by purchasing a call option to buy the asset at a later stage a certain 

                                                 
5 This section closely follows (Olafsson, 2003). 
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where FFj is the cash flow of the year j and N is the investment horizon. Note that in general, 
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project risk. This rate is also known as hurdle rate, that is, a minimum acceptable rate of 
return for investing resources in a project. 
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losses in the case of adverse scenarios. This flexibility may include various actions at 
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value, which has to be considered when an investment implementation is being decided. It 
is thus essential that flexibility be properly quantified. Any attempt to quantify investment 
flexibility almost naturally leads to the notion of Real Options (Olafsson, 2003). 
The ROV technique provides a well-founded framework–based on the theory of financial 
options- to assess strategic investments under uncertainty. It quantitatively takes into 
account investment risks and the value of the open options for planners. The next sections 
provide a detailed background about the option theory and its applications into the capital 
investment evaluations. 

4. Option valuations applied to flexible investments 
The paradigm behind the real option concept is simple and straightforward. On one hand, it 
is simple because there is a strong analogy between the options on financial assets and the 
opportunities to acquire real assets. On the other hand, straightforward, because the theory 
of valuing derivative assets in financial markets, option pricing theory, offers powerful tools 
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that can be applied to value real options accurately. The sense of real options lies on 
quantifying the worth generated by the intrinsic flexibility embedded into an investment 
project, thereby providing a correct basis for making strategic investment decisions (Brosch, 
2001). 
Strategic flexibility emphasizes the inherent asymmetry between gains and losses in the 
structure of a project. The real option concept extends the conventional (static) NPV 
approach by including the value associated with the flexibility inherent in a project. 
Therefore, the static NPV is augmented to become flexible NPV (Olafsson, 2003): 

Flexible NPV = Static NPV + Value of flexibility 

Since the value of flexibility always is positive, it adds value to the project; its value is the 
key concept in the real options approach. Therefore, the availability of these options will 
generally impact on the actual decision-making process, and consequently, must be fairly 
quantified. 

4.1 Financial options5 
An option is the right but not the obligation, to make a particular decision in the future. In 
general, one can say that the options are bilateral contracts by which a party pays a sum of 
money to another to acquire the right (option) to conduct a transaction (purchase and sale) 
or claim a specific sum of money in the future. 
In this context, a financial option entitles the holder the right to buy or sell an asset at a 
specified price on or before a certain date. The set price is called the strike or exercise price 
and the date on or before which the right can be exercised is called maturity.  
Financial options are a particular type of financial assets called derivative securities. The 
value of the derivative depends on the value of another asset on which is based on it, called 
the underlying asset. This means, the value of a derivative security derives from the value of 
another elemental asset. 
There are essentially two different types of financial options. An option to buy -call option- 
entitles the holder to acquire an asset at a specified price on or before a certain date and the 
option to sell -put option- gives the holder the right to sell an asset at a specified price on or 
before a certain date.  
In addition, financial options can be classified as American or European. When the option 
holder can exercise the option on a certain future date, it is implying that he can only use his 
right at that moment (on the date of expiry or maturity), and neither before nor after that, 
the derivative security is an European option.  
Moreover, when the holder can exercise his contract until a specified future date, it means 
that the option holder can use his right until the expiration date; in this case, the financial 
option is an American option.  
The holder of the right to exercise an option is said to have a long position (long position) in 
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the obligation to buy or sell the asset (underlying) at the exercise price to or from the holder 
of the right (the long position), who should wish to take advantage of his rights. 
Instead of buying the assets directly (i.e. take long position in the underlying), the investor 
can defer the investment by purchasing a call option to buy the asset at a later stage a certain 

                                                 
5 This section closely follows (Olafsson, 2003). 
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strike price. The holder of the option pays a premium to the call issuer for this entitlement. 
This premium is the price for the risk assumed by the issuer to take a short position 
(Olafsson, 2003). 
A long position in an asset has a return (profit) profile, which is limited below by the price 
of the asset but has no upper limit. The profile of return for a long position in a call option, 
on the other hand, has a limit to the loss equal to the premium paid for the option. As long 
as the asset price rises above the purchase price there is gain, which increases linearly with 
the asset price. Similarly, when the price falls below the purchase price there is loss, which 
increases linearly with the dropping price. This is simply because the investor retains the 
asset.  
The return profile for a long position in a call is quite different. When the asset price 
increases and exceeds the exercise price, it is said that the call option is in-the-money. If a 
call in-the-money is exercised, the gain (ignoring the premium) is given by the expression:  

 ( )max ,0LCIV S X= −  (3) 

where S is the underlying asset price, X the exercise price. The difference between both 
values is called the intrinsic value of the purchase option. Any increase in the asset price 
also leads to an increase in the intrinsic value of the option. However, before an option is 
exercised, the market value is generally higher than its intrinsic value. For this reason it is 
usually more profitable to sell the option instead of exercising it. This is an important point 
to be discussed in more detail later. If the underlying price falls below the strike price, out-
the-money, the intrinsic value of the call also falls, but only to the floor set by the premium 
paid for the long position. In other words, the premium is the maximum loss that a long 
position in a call may suffer. 

4.2 Real options 
Real options are based on the concepts of financial options discussed in the previous section. 
The real option approach applies financial option theory to theories of decision making for 
investment in capital projects.  
The traditional NPV approach does not seize the intangible aspect of these high-risk 
investments with potential extraordinary returns. Hence, the key issue is the use of the 
available options, to set a lower limit to potential losses while the possibility of these profit 
remaining open. In fact, a firm may have a portfolio of options which defines its 
performance profile. The real options approach can therefore be extended to a portfolio 
management of the underlying project together with all available flexibility options. Some 
examples of the possible options are presented below. 
According to Copeland et al. (2003), real options can be classified into:  
Postponement option: It represents the right of an owner to postpone an investment for a 
period of time while waiting for new information that arrives to the market. In exchange for 
this, the decision-maker rejects the cash flow that would generate the project on the future, if 
it is executed immediately. From a financial point of view, it can be interpreted as an 
American call option. 
Abandonment Option: It allows ending activities and selling off assets that originally 
composed the capital investment (plant and equipment). This option is analogous to an 
American put option with a strike price equal to the scrap value of the project. 
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Expansion or growth option: It allows expanding production capacity and/or accelerating the 
use of available resources, if the market conditions that occur after one has performed some 
initial investment, are more favourable than expected. This option is equivalent to an 
American call option.  
Reduction or contraction option: This option provides the holder the right to reduce the size of 
operations if conditions are unfavourable; a project which can be reduced is more worth 
than the same project without that opportunity. Financially, it is equivalent to an American 
put option.  
Extension or pre-cancellation option: It is the possibility to extend (reduce) the lifespan of an 
asset or the term of a contract by the payment of some monetary amount. The extension 
option is equivalent to an American call option while the possibility of shortening is 
analogous to a put American type.  
Switch option: It offers the possibility of using the same assets and inputs to produce 
different products. Furthermore, it is available when an alternative is to change the primary 
inputs without altering the final product. These options are equivalent to a portfolio of 
financial options with both call and put American options.  
Closing and reopening option: It provides the ability to stop and restart the operation of a 
project according to market conditions. Restart operations that previously have been turned 
off is equivalent to an American call option. Cancelling initiated operations previously, it is 
equivalent to an American put option.  

5. Real options valuation 
Different methods were developed to value financial options but their applications in the 
real options setting are conditioned to the particular characteristics of each problem. In 
practice, the underlying assumptions of traditional option valuation methods often do not 
hold when assessing capital investment projects. There are three general solution methods: 
Stochastic differential equations: This method solves a partial differential equation (PDE). 
It mathematically expresses the dynamics of the option value for specific conditions. The 
analytic solution of the PDE provides the option value as a direct function of the inputs. The 
Black-Scholes's equation is the best known analytic formulation (Black & Scholes, 1973). 
A major advantage of this analytical solutions is that there are many available tools and 
algorithms are quite fast. 
A disadvantage is that computational complexity increases as more sources of uncertainty 
are incorporated. Furthermore, it usually works as a black-box, making it difficult to 
interpret the consequence and effects of the contingent decisions. 
Stochastic dynamic programming: As it shown by Dixit & Pindick (1994), dynamic 
programming is a very useful approach for dynamic optimization problems under 
uncertainties. It decomposes a whole decision sequence into two components: the 
immediate decision and a valuation function that encapsulates the consequences of all 
subsequent decisions, starting with the position that results from the immediate decision.  
The more popular method is the binomial lattice, introduced by Cox et al. (1979). 
The advantages of the binomial lattice are: it can analyze a large number of applications of 
real options; it is practical because it retains the appearance of the analysis of discounted 
cash flow; uncertainty and contingent consequences of decisions are described in a natural 
way; therefore, the model binomial generates a good picture of the problem and the decision 
can be easily traced. 



 Stochastic Optimization - Seeing the Optimal for the Uncertain 

 

116 
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This premium is the price for the risk assumed by the issuer to take a short position 
(Olafsson, 2003). 
A long position in an asset has a return (profit) profile, which is limited below by the price 
of the asset but has no upper limit. The profile of return for a long position in a call option, 
on the other hand, has a limit to the loss equal to the premium paid for the option. As long 
as the asset price rises above the purchase price there is gain, which increases linearly with 
the asset price. Similarly, when the price falls below the purchase price there is loss, which 
increases linearly with the dropping price. This is simply because the investor retains the 
asset.  
The return profile for a long position in a call is quite different. When the asset price 
increases and exceeds the exercise price, it is said that the call option is in-the-money. If a 
call in-the-money is exercised, the gain (ignoring the premium) is given by the expression:  

 ( )max ,0LCIV S X= −  (3) 

where S is the underlying asset price, X the exercise price. The difference between both 
values is called the intrinsic value of the purchase option. Any increase in the asset price 
also leads to an increase in the intrinsic value of the option. However, before an option is 
exercised, the market value is generally higher than its intrinsic value. For this reason it is 
usually more profitable to sell the option instead of exercising it. This is an important point 
to be discussed in more detail later. If the underlying price falls below the strike price, out-
the-money, the intrinsic value of the call also falls, but only to the floor set by the premium 
paid for the long position. In other words, the premium is the maximum loss that a long 
position in a call may suffer. 

4.2 Real options 
Real options are based on the concepts of financial options discussed in the previous section. 
The real option approach applies financial option theory to theories of decision making for 
investment in capital projects.  
The traditional NPV approach does not seize the intangible aspect of these high-risk 
investments with potential extraordinary returns. Hence, the key issue is the use of the 
available options, to set a lower limit to potential losses while the possibility of these profit 
remaining open. In fact, a firm may have a portfolio of options which defines its 
performance profile. The real options approach can therefore be extended to a portfolio 
management of the underlying project together with all available flexibility options. Some 
examples of the possible options are presented below. 
According to Copeland et al. (2003), real options can be classified into:  
Postponement option: It represents the right of an owner to postpone an investment for a 
period of time while waiting for new information that arrives to the market. In exchange for 
this, the decision-maker rejects the cash flow that would generate the project on the future, if 
it is executed immediately. From a financial point of view, it can be interpreted as an 
American call option. 
Abandonment Option: It allows ending activities and selling off assets that originally 
composed the capital investment (plant and equipment). This option is analogous to an 
American put option with a strike price equal to the scrap value of the project. 
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analytic solution of the PDE provides the option value as a direct function of the inputs. The 
Black-Scholes's equation is the best known analytic formulation (Black & Scholes, 1973). 
A major advantage of this analytical solutions is that there are many available tools and 
algorithms are quite fast. 
A disadvantage is that computational complexity increases as more sources of uncertainty 
are incorporated. Furthermore, it usually works as a black-box, making it difficult to 
interpret the consequence and effects of the contingent decisions. 
Stochastic dynamic programming: As it shown by Dixit & Pindick (1994), dynamic 
programming is a very useful approach for dynamic optimization problems under 
uncertainties. It decomposes a whole decision sequence into two components: the 
immediate decision and a valuation function that encapsulates the consequences of all 
subsequent decisions, starting with the position that results from the immediate decision.  
The more popular method is the binomial lattice, introduced by Cox et al. (1979). 
The advantages of the binomial lattice are: it can analyze a large number of applications of 
real options; it is practical because it retains the appearance of the analysis of discounted 
cash flow; uncertainty and contingent consequences of decisions are described in a natural 
way; therefore, the model binomial generates a good picture of the problem and the decision 
can be easily traced. 
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The disadvantages of binomial trees are: the method is developed based on a number of 
assumptions and these should be fulfilled by the options discussed. The most important 
assumptions are: perfect financial market; possibility of buying or selling short; constant 
short-term risk-free interest rate throughout the period under analysis; perfectly divisible 
assets; changes in the underlying asset price according to a multiplicative binomial process 
that follows a GBM (probability distribution of the underlying lognormal and the volatility 
grows linearly with time). 
Stochastic simulation models: In this case the model takes several possible paths of the 
underlying asset evolution into account from current date to the moment of decision. The 
commonly used method is Monte Carlo simulation. At the end of each path, the optimal 
investment sequence for this particular realization can be obtained, and the income of the 
project can be calculated. 
As it was aforementioned, the advantages of Monte Carlo simulation method are: it can 
handle various aspects of real world applications, allows direct processing of all types of 
assets, whatever the number and kind of stochastic behavior of the sources of uncertainties. 
In addition, including new source of uncertainty is much simpler than in the case of other 
numerical models. The disadvantage inherent in the implementation of this method is that it 
requires a large amount of calculations, which involves extensive computing resources and 
is quite expensive in computation time. However, this disadvantage is being overcome daily 
with the progress of software and hardware. 

5.1 Least Square Monte Carlo (LSM) method 
In the early stages of the ROV, valuation was normally confined to the options for which 
solutions of the financial could directly be applied. This was done mainly using few 
underlying assets and simple options with European features or American perpetual 
options (Rodriguez & Rocha, 2006). However, an investor is normally confronted with a vast 
opportunity set. Hence investment projects are a portfolio of options; frequently depending 
on several stochastic variables.  
The introduction of multiple interacting options into the real options models substantially 
increases the difficulty of solving them, making traditional numerical approaches 
inadequate. Nevertheless, simulation procedures for successfully solving multiple American 
options have been proposed. One of the most promising approaches is the Least Square 
Monte Carlo (LSM) method proposed by Longstaff and Schwartz (2001). 
LSM method is based on Monte Carlo simulation and uses least squares linear regression to 
determine the optimal stopping time in the decision making process. Moreover, this 
approach has proven to be a very intuitive and flexible tool. 
The value of an American option, with a state variable Xτ , payoff ( ),XττΠ  where Π  is a 
known function6, and that can be exercised from t until maturity T, is equal to: 

 ( ) ( ){ }*( , ) max , (1 ) t
tT

F t X X τ
τ ττ

τ ρ − −

∈
⎡ ⎤= Π ⋅ +⎢ ⎥⎣ ⎦

E  (4) 

                                                 
6 In formal mathematical terms, ( )2 , ,Π ∈ Ξ QL F is the space of square-integrable functions with 

respect to Q , where Ξ  represents the space of all feasible states of the economy, F is the filtration 
generated by the state variables and Q  is the equilibrium probability measure on F . 
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where τ  is the optimal stopping time ( [ , ])t Tτ ∈  and the operator *
tE  [.] represents the risk 

neutral expectation conditional on the information set available at t. The discount factor 
between any two periods is 1(1 )df ρ −= + , where ρ is the risk adjusted discount rate. 
As is exposed in (Rodriguez & Rocha, 2006), the LSM approach proposed a Monte Carlo 
simulation algorithm to estimate the option value stated in (Cortazar et al., 2006). Eq. (4) can 
be expressed in a discrete time splitting the maturity time T in N discrete intervals. Then, 
sample paths of the underlying asset stochastic evolution are generated by means of Monte 
Carlo simulation techniques. 
It is assumed that the option can only be exercised in discrete times into a restricted set of 
dates:  0 1[ 0, , , . ]Nt t t t N t T= = Δ = Δ = . The optimal stopping policy -along the path ω - can 
be derived by applying the Bellman`s principle of optimality: “An optimal policy has the 
property that, whatever the initial action, the remaining choices constitute an optimal policy with 
respect  to the sub-problem starting at the state that results from the initial action” (Dixit & Pindick, 
1994). This statement can mathematically be expressed as follows: 

 ( ) ( ){ }1

*
1( , ) max , , , .

n n n nn t n t t n tF t X t X F t X df
++

⎡ ⎤= Π ⎣ ⎦E  (6) 

By using this equation, we can determine the path-wise optimal policy, restricted to the 
given dates, by comparing the continuation value, 

 ( ) ( )1

*
1, , .

n n nn t t n tt X F t X df
++

⎡ ⎤Φ = ⎣ ⎦E  (7) 

with the payoff ( , )
nn tt XΠ . Hence, the optimal stopping time for the ω -th realization, is 

found, beginning at T and working backwards, applying the following condition: 

 ( ) ( )if    , ( ) , ( )   then  ( )=   
n nn t n t nt X t X tω ω τ ωΦ ≤ Π  (8) 

At the maturity time, the options are no longer available, therefore, the continuation value 
equals zero ( ( , ) 0)TT XΦ = , consequently (8) holds as long as the payoff value is positive. 
Prior to T at tn, the option holder must compare the payoff obtained from the immediate 
exercise ( ( , ( )))

nn tt X ωΠ  with the continuation value ( ( , ( )))
nn tt X ωΦ . When the decision rule 

(8) holds the stopping time  is updated. Finally, ( ( ) )ntτ ω = the value of the American option 
is then calculated as the average of the values over all realizations (Longstaff & Schwartz, 
2001):  

 ( ) ( )( )
( )

1

1(0, ) ( ), .(1 )
w

F x X r τ ω
τ ωτ ω

Ω
−

=
= Π +
Ω ∑  (9) 

Then, the problem reduces to one of finding the expected continuation value at (t,Xt), in 
order to apply the rule (8). Here is where the LSM method makes its main contribution. This 
method estimate the continuation for all previous time-stages by regressing from the 
discounted future option values on a linear combination of functional forms of current state 
variables. Considering that the functional forms are not evident, the most common 
implementation of the method is simple powers of the state variable (monomial) (Longstaff 
& Schwartz, 2001). 
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where τ  is the optimal stopping time ( [ , ])t Tτ ∈  and the operator *
tE  [.] represents the risk 

neutral expectation conditional on the information set available at t. The discount factor 
between any two periods is 1(1 )df ρ −= + , where ρ is the risk adjusted discount rate. 
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As exposed in (Cortazar et al., 2006), let define Lj, with j=1,2,…,J as the orthonormal basis of 
the state variable Xt used as regressors to explain the occurred present value in the ω-th 
realization, then the least square regression is equivalent to solve the following optimization 
problem: 

 ( )
2

1
1 1

min 1, ( ) . ( ( ))
J

t j j t
w j

t X df L X
ϕ

ω ϕ ω
Ω

+
= =

⎡ ⎤
⎢ ⎥Π + −
⎢ ⎥⎣ ⎦

∑ ∑   (10) 

Then the resulting optimal coefficients *ϕ  from solving (10) are utilized to estimate the 
expected continuation value *( , ( ))tt X ωΦ applying the following expression: 

 ( ) ( )* *

1
, ( ) ( )

J

t j j t
j

t X L Xω ϕ ω
=

Φ = ∑   (11) 

Working backwards until t =0, the optimal decision policy on each sample path -choosing 
the largest between the immediate exercise and the expected continuation value- can be 
determined. Finally, by applying (9) the value of the American option can be computed. 
Fig. 4 represents the process described for an individual deferral option for two periods. 
Recently, Gamba (2003) proposed a model which extending the LSM approach decomposes 
complex multiple real options (with interacting options) into simple hierarchical sets of 
individual options. The decomposition principle can be used by applying any kind of 
methodology based on dynamic programming and Bellman equation (Cortazar et al., 2006). 

5.2 Multi-option investment problems 
As mentioned before, Gamba(2003) has presented an extension of the LSM method to value 
independent, compound and mutually exclusive options. According to that approach, 
options can be classified as (Rodriguez & Rocha, 2006): 
Independent options: The value of a portfolio comprising only independent options is 
equal to the sum of each individual option value, computed by the LSM method. Only in 
this situation, the additivity property holds, even when the underlying assets might not be 
independent. 
Compound options: Let a portfolio of H compounded options, where the execution of h-th 
option creates the right to exercise the subsequent (h+1)-th option. A typical example of this 
kind of sequential options is the right to expand capacity, which is just originated when the 
initial investment option is exercised. The payoff ( , )h tt XΠ  of the h-th option, must take into 
account the value of the option (h+1)-th. These options can be valued by applying the LSM 
approach. Consequently, the value of the h-th option is calculated according to: 
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( , ) max , , .
n

h
h t t h ht T

F t X X F X dfτ τ
τ

τ τ+
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The Bellman equation for a set of sequential real options can be formulated as following: 
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Fig. 4. Optimization of exercising time of an option to defer investment using LSM 

Mutually exclusive options: A set of options are mutually exclusive when the exercise of 
one of them eliminates the opportunity of execution of the remainder. The expansion and 
abandon options are common examples of mutually exclusive options. Thus, the problem is 
extended to find both the optimal stopping time and optimal option to be exercised. 
Therefore, the control variable is a bi-dimensional variable (τ ,ζ), where τ  is a exercising 
time in [t, Th] and ζ ∈ {1, 2,…, H}. The value of the option, choosing the best among H 
mutually exclusive options, is: 
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Thus, the Bellman equation of a portfolio of mutually exclusive options is given by: 
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Each ( , )
nh n tF t X  and the continuation value (Φn) is estimated by the LSM approach as 

explained before. 

6. Decision making of flexible investment portfolios in transmission system 
This section addresses the problem of assessing flexible transmission investment portfolios 
under uncertainty on the basis of the social welfare of the electricity market. It proposes a 
methodology based on the real options approach for valuing the flexibility of strategic 
investments in the transmission network and finding the optimal timing of the execution of 
the investment alternatives.  
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Each ( , )
nh n tF t X  and the continuation value (Φn) is estimated by the LSM approach as 

explained before. 

6. Decision making of flexible investment portfolios in transmission system 
This section addresses the problem of assessing flexible transmission investment portfolios 
under uncertainty on the basis of the social welfare of the electricity market. It proposes a 
methodology based on the real options approach for valuing the flexibility of strategic 
investments in the transmission network and finding the optimal timing of the execution of 
the investment alternatives.  
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Within this model, the research work develops a suitable approach for assessment of 
Transmission Investment Portfolios (TIPs) considering Flexible Alternative Current 
Transmission Systems (FACTS) devices. FACTS are power electronics–based devices for the 
control of voltages and/or currents, enhancing controllability and increasing power transfer 
capability (Zhang et al., 2006). In addition, FACTS could add flexibility to the investment 
portfolio through new strategic options such as relocation and abandon. 
The evolution of fundamental uncertain variables is modelled through appropriate 
stochastic processes. Some of these are: 
• power demand growth, 
• power generation costs, 
• penetration level of renewable generation. 
The reduction of the system costs incurred for serving the load demand over the 
optimization horizon is used as the measure to evaluate the economic performance of the 
proposed network upgrades.  
Under this framework, the value of a TIP is defined by the increase (or decrease) of the 
social welfare resulting from executing the investments considered in the portfolio. Taking 
into account an inelastic demand, the incremental social welfare should be quantified 
through the generation cost savings between the base scenario (BS, without investment) and 
the investment scenario (IS, with the investment executed). 

6.1 Stochastic simulation of the transmission investment in power market 
The study case analyzes aims to present a method for assessing flexible investments in a 
reduced European interconnected transmission system model under uncertain scenarios. 
This section takes FACTS devices into account again, which add flexibility to the investment 
portfolio through new strategic options such as relocation and abandonment. These 
investment alternatives are evaluated according to the Real Option method by applying the 
LSM approach.  
The proposed methodology is applied in a study case which evaluates a reinforcement at 
the German transmission network, by showing how the valuation of flexibility is a key task 
for making efficient and well-timed investment in the transmission network.  
This study case is an extension of the paper (Blanco et al., 2010a), incorporating the model of 
an uncertain cumulative growth of the installed wind capacity according to a stochastic 
logistic growth law. 
Moreover, the stochastic behaviour of system components, demand growth and generation 
cost evolution is simulated through the Monte Carlo method. In order to determine the 
operation cost for each hour of the investment horizon under the BS and the IS, an Direct 
Current Optimal Power Flow (DC-OPF) model is applied. The cost difference between both 
scenarios defines the underlying asset. 
The OPF model has been widely used in many pool-based deregulated electricity markets to 
calculate the generation dispatch based on the bids submitted by generators and loads, also 
taking into account the network constraints. 
 Normally, the objective is to maximize the social welfare or to minimize the generation cost 
if loads are inelastic. Evidently, the OPF calculation often neglects some characteristics of the 
real market behaviour within the regarded system. For instance, national borders and the 
respective cross-border trading cannot be regarded explicitly but is incorporated by the 
capacity limits of the lines.  
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The advantage of the OPF calculation is that the results represent the true value of network 
upgrades irrespective of the actual market behaviour (Blanco et al., 2010a).  
Thus, the optimization problem can be mathematically formulated as follows: 
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where gC is the supplier bid curve as well as i
gP  and i

dP are the power generated and 
demanded by unit g and load d, respectively at node i. The power flow through all 
transmission lines connected to node i is denoted by lF . The operation limits of each 
generator unit are stated by ,min,maxi

gP and the network restrictions are set by min,max
lF .  

This research analyses the FACTS devices called Thyristor Controlled Series Compensator 
(TCSC) under steady state operation For static implementations, these FACTS devices can 
be modelled by power injection models (PIM) (Wang et al., 2002). The PIM model depicts 
FACTS as devices that inject a certain amount of active and reactive power into its nodal 
connections; meaning that this controller operation is replicated by these injection flows. 
Constrains c) and d) are related to this model of operation of the FACTS devices connected 
between the nodes i and j.  
The stochastic behaviour of the power market model contemplated in this chapter can be 
defined as a fundamental or bottom-up model, since annual generation costs are directly 
influenced by the long-term stochastic movements of the uncertain variables. Hence, a 
several realizations are necessary to conduct Monte Carlo simulations with accurate 
statistical estimations.  
From the economical point of view, the stochastic cash flow, defined by the annual 
generation cost saving for each realization, is applied in order to evaluate the performance 
of the transmission investment. Setting the investment cost and discount rate, stochastic 
discounted cash flow calculations are performed. Finally, real option techniques are applied 
for adding the flexibility value of each investment alternative, and the optimal investment 
decision is pointed out.  

Load growth modelling  
The growth of the electricity demand is a key variable largely influencing the performance 
of transmission investments. This growth of electricity demand is stochastic by nature. 
Certainly, climate changes, acceleration and downturns of the economic cycle as well as 
population dynamics turn random deviations out around the long-run expected value of the 
growth rate (Olsina et al., 2006).  
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where gC is the supplier bid curve as well as i
gP  and i

dP are the power generated and 
demanded by unit g and load d, respectively at node i. The power flow through all 
transmission lines connected to node i is denoted by lF . The operation limits of each 
generator unit are stated by ,min,maxi

gP and the network restrictions are set by min,max
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(TCSC) under steady state operation For static implementations, these FACTS devices can 
be modelled by power injection models (PIM) (Wang et al., 2002). The PIM model depicts 
FACTS as devices that inject a certain amount of active and reactive power into its nodal 
connections; meaning that this controller operation is replicated by these injection flows. 
Constrains c) and d) are related to this model of operation of the FACTS devices connected 
between the nodes i and j.  
The stochastic behaviour of the power market model contemplated in this chapter can be 
defined as a fundamental or bottom-up model, since annual generation costs are directly 
influenced by the long-term stochastic movements of the uncertain variables. Hence, a 
several realizations are necessary to conduct Monte Carlo simulations with accurate 
statistical estimations.  
From the economical point of view, the stochastic cash flow, defined by the annual 
generation cost saving for each realization, is applied in order to evaluate the performance 
of the transmission investment. Setting the investment cost and discount rate, stochastic 
discounted cash flow calculations are performed. Finally, real option techniques are applied 
for adding the flexibility value of each investment alternative, and the optimal investment 
decision is pointed out.  

Load growth modelling  
The growth of the electricity demand is a key variable largely influencing the performance 
of transmission investments. This growth of electricity demand is stochastic by nature. 
Certainly, climate changes, acceleration and downturns of the economic cycle as well as 
population dynamics turn random deviations out around the long-run expected value of the 
growth rate (Olsina et al., 2006).  
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These random deviations of the growth rate around the expected values of the annual drift, 
interpreted as an error of forecasted growth, are commonly assumed to be Gaussian -
according to the Central Limit Theorem- by following a generalized Wiener process. This 
process might be formulated as shown below: 

 dw dtε=   (16) 

where the variation in the variable w during a short period tΔ  is defined by the product of a 
random variable and the square root of the period length. ε  is so-called white noise, i.e. a 
random variable which has a Gaussian distribution with an expected value equal to 0 and a 
variance of 1. A Wiener process can be classified as a particular form of a Markov-process, 
i.e. it is a stochastic process, where the current value contains all the information retrievable 
from the random variable wander (Weber, 2004). 
Then, the stochastic model of the demand growth rate can be represented by a generalized 
Brownian Motion (BM) according to the following expression: 

 ( ), ( , ) ( )j R RdR t n t n dt n dwμ σ= ⋅ + ⋅    (17) 

Thereby the estimated unconditional mean load growth rate at the n–th node, at the instant t 
is ( , )R t nμ ; ( )R nσ  is the estimated unconditional standard deviation for this period and dw  
is the Wiener process. 
Within this work, the demand growth of the German power system is taken as an uncertain 
variable. The demand growth within the other regarded countries are taken as covered by 
new local generation, this is due to the lack of information about the generation capacity 
expansion in those countries. Nevertheless, a stochastic fluctuation around this null growth 
is taken into account, representing the possible inability of new generation entrance. The 
parameters used into the stochastic process are exposed in (Blanco et al., 2010a). 
 

Country 
(0)

   [%]
i

peak
Lμ  

i

peak
Lσ  (0)

  [%]
i

base
Lμ  

i

base
Lσ  

Germany 1.5 0.15 1.5 0.1 

Benelux 
countries 0 0.1 0 0.1 

Table I. Demand Growth Parameters (ENTSO, 2009). 
Generation cost modelling  
The main impact of a transmission investment on the social welfare is reflected as 
generation cost savings by bringing down the network-related system operational costs such 
as out-of-merit generation costs caused by network bottlenecks. Fluctuations of the 
transmission investment performance, according to this benchmark, are mainly related to 
generation cost fluctuations of the thermal units, which are strongly correlated with their 
own fuel prices. Commonly, the average marginal cost of generation of the unit generator g  

at each instant t, denoted as ( )gMC t , can be derived from the average thermal efficiency 

( )g tη  and the prevailing fuel prices F
gp  at that moment: 
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Therefore, the uncertainty over the generation cost savings are strongly linked with fuel 
price uncertainties. A reasonable and realistic way to replicate the uncertain evolution of the 
fuel prices is through a mean-reverting stochastic process. A mean-reverting process is one 
where the stochastic paths evolve fluctuating around a known long-run mean. The simplest 
mean-reverting process, called Ornstein-Uhlenbeck stochastic process, is expressed below: 

 ( ) ( ) ln ( )ln ( ) ln ln ( )
F
gp tF F F

g g gd p t p p t dWα σ= − +  (19) 

where α is the speed of reversion to the mean, ln ( )F
gp tσ  is the volatility of natural logarithmic 

of fuel prices, and F
gp  is the normal level of the natural logarithmic of fuel price ( )F

gp t , i.e. 
the level to which F

gp  tends to revert. 
Within this work, the stochastic paths of fossil fuel prices are simulated according to the 
exposed process. The historical as well as the forecast data (IER, 2009) on costs and prices 
have been used to estimate the numerical parameters of Eq. 19. These parameters are listed 
in Table II. In the simulations, nuclear fuel cost prices are assumed constant over the time 
horizon. The main fundamental of this assumption is based on the fact that the uranium cost 
is only a small fraction of the total variable cost (around 5 %) in nuclear plants and the 
deviations around the expected value are quite narrow in comparison to the fuel price 
fluctuations (Webber, 2005). Furthermore, nuclear power stations seldom are the marginal 
units setting the market clearing price. 
 

Fuel Type 
(0)F

gp  

€/MW 

F
gp  

€/MW 
ln ( )F

gp tσ %

Gas 12.46 17.94 0.129 
Oil 20.99 28.21 0.3 

Coal 5.51 6.64 0.14 

Table II. Mean Reversion Process Parameters  
Network model 
The optimal power flow calculations are performed on the reduced network model 
presented in (Blanco et al., 2010a), which is built in order to replicate realistic scenarios of the 
transmission system in the Central Western European (CWE) region (Belgium, France, 
Germany, Luxembourg, and the Netherlands). Nodes are also modelled in Austria, the 
Czech Republic, Poland, and Switzerland in order to taking possible loop-flows into 
account. The detailed characteristics of the network model and the data which have been 
used are presented in (Waniek et al., 2009). Figure 5 gives a general view of the configuration 
of the network model. Within Germany, 31 nodes are allocated to the 16 federal states. This 
data is useful as relevant statistical informations are often divided up into the federal states. 
These statistics include current and expected values of installed capacity in renewable 
energies like wind energy, photovoltaics, biomass, etc. as well as the use of combined heat 
and power. The large conventional power plants are explicitly allocated to the network 
nodes utilizing a detailed data base. 
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The model accuracy of the other regarded regions and markets is nearly the same as for 
Germany although the focus of the entire model is the implications for the German market 
and the transmission system. The numbers of nodes of the other regions are the following: 
Belgium: 4 nodes, France: 13 nodes and, The Netherlands: 9 nodes. 
In addition, the feed-in from conventional power plants and its future development is 
crucial in order to replicate possible future congestions. A detailed dataset of the power 
plants in the modelled regions presented in (Blanco et al., 2010a) is utilized for the present 
situation. The included units can be differentiated by installed capacity, fuel type, and age. 
These units are assigned to the nodes of the sample network using geographical 
information. 
The net generating capacity of the conventional power plants in Germany is almost constant 
until 2020 by raising capacities of hard coal and natural gas-fired plants. This is mainly due 
to the closure of nuclear plants which is currently under discussion and could end up being 
postponed. In addition, the use of renewable energies, especially wind energy, is expected to 
increase further. The intermittent in-feed is modelled with different situations which are 
explained later on. 
Regarding the pumping storage plants, the complexity in the modelling of these units 
results from the interdependency of the pumping and generating process. Units without any 
natural inflow can only generate that amount of electricity that was stored before, taking 
into account the limited process efficiency. Within the presented approach, this problem is 
solved by a sequential simulation of the base load situation first, followed by the peak load 
situation. During the different base load situations, the pumping storage units are 
considered as dispatchable loads in the OPF. Depending on the price, a certain amount of 
electricity is stored in the reservoir. The assumed size of the reservoir results from the 
assumption that every unit is able to generate maximum power during all peak load hours. 
The formal formulation of this approach can be founded in (Blanco et al., 2010a). 
 

 2007 2010 2015 2020 
Nuclear 20.5 16.5 13.0 1.3 
Lignite 20.5 22.6 22.0 22.0 

Hard Coal 30.5 33.0 34.6 32.8 
Natural 

Gas 25.3 27.8 33.6 42.8 

Total 96.8 99.9 103.4 98.9 

Table III. Development of the power plant mix in Germany (in GW) 
Wind scenarios 
Two demand scenarios (base load and peak load) and three wind situations are regarded, in 
order to reduce the number of calculated situations for each realization and each year. The 
probability of each wind situation occurring is determined according to the empirical 
histogram shown in Fig. 6.  
The underlying data are actual values of the wind feed-in in Germany during 2006 in a 15 
minute resolution.. The histogram is split into three sections. The first region on the left-
hand side, low wind, covers 50% of all values. The next 30% of the values are in the second 
region, medium wind, and the third 20% correspond to a high wind condition. 
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Fig. 5. Structure of the network ENTSO-E model (Waniek et al., 2009) 
Hence, the wind feed-in that is used in the calculations is defined as the median in these 
three sections. The matrix shown in Table IV of the six possible combinations is obtained 
under the assumption that 70% of the year can be represented by a base load situation. 
Consequently, for each realization and each year, six situations are calculated and weighted 
according to their probability of occurrence in order to get representative results of one year. 
 

 low 
wind 

medium 
wind 

high 
wind  

peak load 15 % 9 % 6 % 30 % 
base load 35 % 21 % 14 % 70 % 

 50 % 30 % 20 % 100 % 
 feed-in 6 % 19 % 46 %  

Table IV. Weighting of the Wind feed-in Scenarios 
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Two demand scenarios (base load and peak load) and three wind situations are regarded, in 
order to reduce the number of calculated situations for each realization and each year. The 
probability of each wind situation occurring is determined according to the empirical 
histogram shown in Fig. 6.  
The underlying data are actual values of the wind feed-in in Germany during 2006 in a 15 
minute resolution.. The histogram is split into three sections. The first region on the left-
hand side, low wind, covers 50% of all values. The next 30% of the values are in the second 
region, medium wind, and the third 20% correspond to a high wind condition. 
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Fig. 5. Structure of the network ENTSO-E model (Waniek et al., 2009) 
Hence, the wind feed-in that is used in the calculations is defined as the median in these 
three sections. The matrix shown in Table IV of the six possible combinations is obtained 
under the assumption that 70% of the year can be represented by a base load situation. 
Consequently, for each realization and each year, six situations are calculated and weighted 
according to their probability of occurrence in order to get representative results of one year. 
 

 low 
wind 

medium 
wind 

high 
wind  

peak load 15 % 9 % 6 % 30 % 
base load 35 % 21 % 14 % 70 % 

 50 % 30 % 20 % 100 % 
 feed-in 6 % 19 % 46 %  

Table IV. Weighting of the Wind feed-in Scenarios 
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Fig. 6. Weighting of the calculations based on the frequency distribution of the wind feed-in 
Modeling wind capacity development 
The future development of wind capacity installations in Germany is possibly the single 
most important uncertain factor affecting investment decisions in transmission 
infrastructure. At the end of year 2009, a total of 21164 wind turbines with a cumulated 
rated power of 25.7 GW were installed in Germany (Ender, 2010). Although onshore wind 
development already shows some symptoms of stagnation, the focus of further wind 
capacity additions is now on offshore wind farm installations in the North Sea and the Baltic 
Sea. Specialized agencies predict that installed wind power capacity could reach to about 65 
GW in Germany by 2030 (DEWI, 2008).  
The massive addition of wind power registered in Germany in the last decade and the 
foreseen huge offshore wind capacity integration to the existing networks make necessary 
major reinforcements of the transmission network. However, actual offshore wind 
development depends on a number of complex factors (technology advancements, cost 
development, regulatory framework, etc.) that make long-term forecasts highly uncertain. 
Given the high irreversibility and costs involved in major network upgrades, transmission 
expansion strategies that retain flexibility in order to adapt to unexpected or unlikely wind 
scenarios are particularly attractive. In order to properly assess the various investment 
alternatives, a wind capacity model that account for the ongoing uncertainties is required. 
This section presents a novel stochastic model for simulating possible paths of the aggregate 
wind capacity development in Germany up to year 2030. The model specifically takes into 
consideration the different stages of maturity and development of onshore and offshore 
wind technology. Whereas onshore wind capacity growth is slowing down since peaked in 
2002 and some constraints to further development are already evident (e.g. permits, land 
use, network restrictions, etc.), offshore wind development in Germany is in the very early 
stage and some rapid adoption rate it is expected for the coming years.  
In order to model the penetration rates of wind energy technology, a stochastic logistic 
diffusion model is proposed for both, the onshore and the offshore capacity development 
processes. Besides population dynamics modeling, logistic curves have been widely used 
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for modeling adoption rates and market penetration of many energy technologies (Lund, 
2006, Lund, 2008; Usha Rao & Kishore, 2010). Recently, S-shaped logistic growth have been 
extensively applied for modeling wind development trends in India and China (Carolin 
Mabel & Fernandez, 2008; Changliang & Zhanfeng, 2009; Pillai & Banerjee , 2009; Usha Rao 
& Kishore, 2009). 
The logistic diffusion (Verhulst-Pearl) process is mathematically represented by the 
following first-order non-linear ordinary differential equation: 

 ( ) 1dP t PP
dt K

β ⎛ ⎞= −⎜ ⎟
⎝ ⎠

 whose solution is given by 0

0

( )
( 1)

t

t
KP eP t

K P e

β

β=
+ −

 (20) 

where ( )P t is the wind power capacity installed at time t, 0P is the capacity already installed 
at initial time t0, β is the mean adoption rate and K the saturation level or maximum 
carrying capacity that the system can support.  
Most of these mentioned logistic models assume a maximum capacity K given by the wind 
potential of the relevant geographic region. While wind conditions play an important role, 
this maximum capacity should actually be regarded as an extreme upper bound to the wind 
development. In fact, in most circumstances, the maximum achievable capacity is 
significantly lower than this level and it is instead determined by other factors, such as site 
permits, regulatory framework, subsidizing mechanisms and grid and operational 
constraints, etc. The saturation level depends on the context and it might not be well 
correlated to the geographical wind potential. Unlike models establishing an exogenous 
maximum capacity, we use a rather different approach to establish the saturation level K. 
For onshore wind capacity, we estimate the adoption rate and the saturation level from the 
observed wind development itself and for offshore wind capacity installations from 
available forecast data. 
By expressing the logistic differential equation in terms of its finite difference approximation 
we obtain: 

 1 1t t t t
t

P P P PP
t t K

β+Δ − ⎛ ⎞= = −⎜ ⎟Δ Δ ⎝ ⎠
; solving for 1tP+ we get 1 1 t

t t t

PP P t P
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what forms the basis for implementing a numerical simulation model of the wind capacity 
development. We can estimate parameters β and K by expressing the observed fractional 
growth rate ( )/t tP P tΔ Δ in terms of the linear regression model where tε  is a zero-mean 
independent normally distributed error residual term with finite variance 2σ : 

 1 ˆ ˆ )  (0,t
t t t

t

P P
P t

Nβ λ ε ε σΔ
= − +

Δ
∼  where 

ˆˆ
K̂
βλ =  (22) 

Fig. 7 illustrates the observations, the regressed line and the estimated parameters as well as 
the obtained regression residuum. Analysis of residuals shown in Fig. 8 conforms to the 
hypothesis of Gaussianity and independence required by the linear regression model. 
Based on the linear regression model stated above, we can numerically generate sample 
development paths for the installed wind capacity by adding the stochastic error term 

(0, )t Nε σ∼  to the logistic difference equation. Fig. 9 depicts the observed and expected  
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Fig. 7. Estimated logistic model of wind power capacity in Germany and resulting 
regression residuals 
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Fig. 8. Normal probability plot, Jarque-Bera/Lilliefors test statistics and autocorrelation of 
residuals 
onshore wind capacity development in the future along with the 95% confidence bounds. It 
should be noticed that for the current conditions, the logistic growth model suggests that 
onshore wind development in Germany is already near saturation. Furthermore, 
uncertainty on future evolution of onshore capacity is not a severe issue as the logistic 
process is almost complete. 
The diffusion process of the offshore wind technology in Germany is right in its beginning 
and therefore the ongoing uncertainties on the future development are huge. The substantial 
involved uncertainties are evident from the large spread shown by wind capacity forecasts 
for Germany collected from a number of agencies and institutions (Nitsch, 2005), as 
illustrated in Fig. 10 (left). The logistic regression model is applied to the prediction 
ensemble data in order to estimate the adoption rate and the capacity saturation level 
implied by forecasts (see Fig. 10 right). As it can be noticed from the scatter plot and 
residuals, predictions on the future offshore wind capacity development are subjected to 
high uncertainties. 
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Fig. 9. Uncertainty on the future development of onshore wind power 
 

2000 2005 2010 2015 2020 2025 2030 2035 2040 2045 2050
1.5

2

2.5

3

3.5

4

4.5

5

5.5

6
x 104

time [yr]

cu
m

ul
at

ed
 w

in
d 

ca
pa

ci
ty

 [M
W

]

  
1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

x 104

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

cumulated wind capacity [MW]

Δ
P

/(P
Δ

t)

 

 
R2 = 0.22667

β = 0.092616
K = 71273.0068 MW

Observed
Regression model

 
Fig. 10. Wind capacity forecast ensemble and estimated logistic model to forecast data 

As there are still no available observations, the describe approach unfortunately does not 
apply to the stochastic simulation of the possible scenarios of offshore wind power capacity. 
However, the estimated parameters β̂  and λ̂  in the offshore logistic model are actually 
independent random variables normally distributed, for which confidence intervals can be 
computed from the Student΄s T-distribution. This confidence bounds allows estimating the 
standard deviation of each estimated parameter, ˆ

βσ  and ˆ
λσ respectively. These confidence 

intervals represent the uncertainty implied by the currently available forecasts.  We can 
generate different logistic development paths for the offshore wind capacity by properly 
sampling model parameters values for their corresponding normal distributions, ˆ( , )N ββ σ  
and ˆ ˆ( , )N λλ σ .  
After computing a large number of sample paths, Fig. 11 shows the resulting expected 
development of the total (onshore + offshore) wind power capacity in Germany up to year 
2030 along with the rather wide 95% confidence bound, which in turns reflect the 
substantial current uncertainties on offshore wind installations. It is worth to mention, that 
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The diffusion process of the offshore wind technology in Germany is right in its beginning 
and therefore the ongoing uncertainties on the future development are huge. The substantial 
involved uncertainties are evident from the large spread shown by wind capacity forecasts 
for Germany collected from a number of agencies and institutions (Nitsch, 2005), as 
illustrated in Fig. 10 (left). The logistic regression model is applied to the prediction 
ensemble data in order to estimate the adoption rate and the capacity saturation level 
implied by forecasts (see Fig. 10 right). As it can be noticed from the scatter plot and 
residuals, predictions on the future offshore wind capacity development are subjected to 
high uncertainties. 
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Fig. 9. Uncertainty on the future development of onshore wind power 
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As there are still no available observations, the describe approach unfortunately does not 
apply to the stochastic simulation of the possible scenarios of offshore wind power capacity. 
However, the estimated parameters β̂  and λ̂  in the offshore logistic model are actually 
independent random variables normally distributed, for which confidence intervals can be 
computed from the Student΄s T-distribution. This confidence bounds allows estimating the 
standard deviation of each estimated parameter, ˆ

βσ  and ˆ
λσ respectively. These confidence 

intervals represent the uncertainty implied by the currently available forecasts.  We can 
generate different logistic development paths for the offshore wind capacity by properly 
sampling model parameters values for their corresponding normal distributions, ˆ( , )N ββ σ  
and ˆ ˆ( , )N λλ σ .  
After computing a large number of sample paths, Fig. 11 shows the resulting expected 
development of the total (onshore + offshore) wind power capacity in Germany up to year 
2030 along with the rather wide 95% confidence bound, which in turns reflect the 
substantial current uncertainties on offshore wind installations. It is worth to mention, that 
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the logistic offshore model suggest a much slow adoption of the offshore wind technology 
as conventionally reported. 
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Fig. 11. Stochastic logistic simulations of the total wind power capacity development in 
Germany 

6.2 Valuing flexible investment portfolios in the transmission system 
The cost savings (CS) are estimated for each realization on the investment horizon by means 
of the Monte Carlo simulation. A stochastic cash flow for the investment projects can be 
numerically simulated. The resulting cash flow of each Monte Carlo realization is composed 
of the annual cost saving ,

s
iCS ω , investments costs ( , ns tI ) and operation cost ( , ns tOC ). 

Later on, this cash flow is discounted by the hurdle rate of the investment (ρ) in order to 
obtain the present value of the Incremental Social Welfare (ISW), which can be stated as 
following: 
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where ,
s
iCS ω  and ,s iI are the generation cost savings and the investment cost respectively in 

the ω realization, ( ),
j

s kPV ISW and ( ),
j

s kNPV ISW  are the Present Value (PV) and Net Present 
Value (NPV) of the ISW by executing the investment strategy s in the year nt  and by M the 
investment horizon, finally, ( ) , , ns tE NPV ISW ω

⎡ ⎤
⎢ ⎥⎣ ⎦

 is its expected value for Ω Monte Carlo 
realizations. In each case, the subscripts correspond to the h-th hour, i-th year, ω-th 
realization of the Monte Carlo power system simulation. 
Within this chapter, the following have been considered as investment alternatives: firstly, a 
FACTS device and afterwards, a transmission line (TL). Therefore, the available investment 
options either invest in the FACTS first, in the line first or both in the FACTS and the line. 
The strategic flexibility of postponing both investments as well as abandoning or relocating 
the FACTS device are compounded options. Hence, these available options are valued by 
means of the LSM method, by applying the following Bellman’s equations (Blanco, 2010): 
1. Option to invest in the FACTS first: 
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2. Option to invest in the line first: 
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3. Option to invest both in the FACTS and the line: 
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where ( , )
n

n
m n tF t X is the option value and ( , )

n

n
m n tt XΠ the profit value, both for the option m 

(F: FACTS, TL: transmission line, R: FACTS relocation, A: FACTS abandon) in the state n (F: 
FACTS investment done, TL: line investment done, Ab: FACTS abandon done. Expanding 
the equation (26): 
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the logistic offshore model suggest a much slow adoption of the offshore wind technology 
as conventionally reported. 
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Fig. 11. Stochastic logistic simulations of the total wind power capacity development in 
Germany 

6.2 Valuing flexible investment portfolios in the transmission system 
The cost savings (CS) are estimated for each realization on the investment horizon by means 
of the Monte Carlo simulation. A stochastic cash flow for the investment projects can be 
numerically simulated. The resulting cash flow of each Monte Carlo realization is composed 
of the annual cost saving ,

s
iCS ω , investments costs ( , ns tI ) and operation cost ( , ns tOC ). 

Later on, this cash flow is discounted by the hurdle rate of the investment (ρ) in order to 
obtain the present value of the Incremental Social Welfare (ISW), which can be stated as 
following: 
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where ,
s
iCS ω  and ,s iI are the generation cost savings and the investment cost respectively in 

the ω realization, ( ),
j

s kPV ISW and ( ),
j

s kNPV ISW  are the Present Value (PV) and Net Present 
Value (NPV) of the ISW by executing the investment strategy s in the year nt  and by M the 
investment horizon, finally, ( ) , , ns tE NPV ISW ω

⎡ ⎤
⎢ ⎥⎣ ⎦

 is its expected value for Ω Monte Carlo 
realizations. In each case, the subscripts correspond to the h-th hour, i-th year, ω-th 
realization of the Monte Carlo power system simulation. 
Within this chapter, the following have been considered as investment alternatives: firstly, a 
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2. Option to invest in the line first: 
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3. Option to invest both in the FACTS and the line: 
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where ( , )
n

n
m n tF t X is the option value and ( , )

n

n
m n tt XΠ the profit value, both for the option m 

(F: FACTS, TL: transmission line, R: FACTS relocation, A: FACTS abandon) in the state n (F: 
FACTS investment done, TL: line investment done, Ab: FACTS abandon done. Expanding 
the equation (26): 
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Likewise, expanding the equations (29) and (30): 
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For the investment option exercising: 
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where , ,ns tI ω  is the investment cost of the s-th investment strategy at the nt -th year. On the 
other hand, in the relocation and abandon cases: 
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where ,ntCR ω is the relocation cost and ,ntSV ω is the scrap value of the FACTS devices by the 
nt -th year.  

The resulting cash flow is estimated according to each available investment strategy. It is 
relevant to remark that all possible investment strategies and their intrinsic real options are 
evaluated exhaustively, so that all possible combinations among the available flexibility 
options are assessed.  
The option values for each strategy are calculated by applying this procedure. Hence, the 
optimal investment strategy is the one with the highest value. It is important to note that the 
optimal decision policy obtained by the LSM approach is not a deterministic one. In fact, 
there is an optimal policy for each simulated path. Consequently, a probability density 
function of option values can be determined. 
The precision of the estimation value of the options might be improved by increasing the 
number of time steps N and the number of simulated path  Ω. In this sense, the Monte 
Carlo stop criterion applied is the control of the relative error (Fishman, 2005). Setting 

10%δ =  entails demanding a confidence level in the attributes assessment of 95%. 
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where 1φ− is the inverse of the Standard Normal Distribution (SND), ( )1 /2δ−  the 
confidence level specified, ( )1 1 /2φ δ− −  the critical value of a SND with mean 0 and 
standard deviation 1 and (0)m

nFσ  the volatility of the expected option value. In this chapter it 

is assumed as maximum relative error 1%. 

7. Study cases 
The influence of two network upgrades on the out-of-merit cost is evaluated based on the 
approach presented in the previous section. These reinforcements projects are the 
development of a new 380-kV-double circuit and/or the installation of a FACTS controller. 
Both upgrades represent measures to strengthen the German network. Hence, a static and 
inflexible expansion project, which is currently under study, is compared to flexible 
investment in order to shed some light on the impact of the strategic flexibility on the 
optimal decision making process. The reinforcement alternatives have the following 
characteristics: 
• Reinforcement 1: Development of a new 380-kV- double circuit on a length of 167 km 

between nodes 20 and 25, leading to investment costs of about 117 M€. 
• Reinforcement 2: Installation of a TCSC devices of 286/-80 MVar between nodes 21 and 

25, with the option to further relocate it between the nodes 20 and 25, leading to 
investment costs of about 47,63 M€ (Schaffner, 2004). Moreover, the relocation cost of 
the FACTS controller and its residual value are taken equal to 40% and 20% of the total 
FACTS cost respectively. 

Thus, as starting point, there are three mutually exclusive alternatives (options) to be 
assessed, namely: 
• Investing in the FACTS device first (S1), 
• investing in the transmission line first (S2) or, 
• investing in the FACTS and line jointly (S3). 
Maturity is set for all investments options equal to three years and 15 years as the 
investment horizon. Lead construction time is assumed to be one year and discount rate is 
considered to 8% per year, for all considered investment alternatives. 
The network and data described in the previous sections is applied to compute 1000 sample 
realizations for ensuring the maximum relative error established before. Hence, several OPF 
calculations are performed for each scenario (base and investment). By this means, the 
stochastic annual generation cost savings are estimated.  
The results of the investment evaluations are depicted in Table V. The traditional NPV 
appraisal suggests S3 as the optimal investment choice. Conversely, the real option valuation 
determines S1 as the optimal decision by taking into account the strategic flexibility 
provided on each strategy. Since the option value can be calculated according to (9), the 
economic value of the flexibility of each investment strategy is given by subtracting the 
expected NPV of the expected option value.  
It should be highlighted that the investment alternative with the higher flexibility value is S1, 

investing in FACTS first. This can be explained by noting that the flexibility of FACTS 
remains after the investment option has been exercising allowing a better adaption to 
possible adverse scenarios in the long-term. 
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where 1φ− is the inverse of the Standard Normal Distribution (SND), ( )1 /2δ−  the 
confidence level specified, ( )1 1 /2φ δ− −  the critical value of a SND with mean 0 and 
standard deviation 1 and (0)m

nFσ  the volatility of the expected option value. In this chapter it 

is assumed as maximum relative error 1%. 

7. Study cases 
The influence of two network upgrades on the out-of-merit cost is evaluated based on the 
approach presented in the previous section. These reinforcements projects are the 
development of a new 380-kV-double circuit and/or the installation of a FACTS controller. 
Both upgrades represent measures to strengthen the German network. Hence, a static and 
inflexible expansion project, which is currently under study, is compared to flexible 
investment in order to shed some light on the impact of the strategic flexibility on the 
optimal decision making process. The reinforcement alternatives have the following 
characteristics: 
• Reinforcement 1: Development of a new 380-kV- double circuit on a length of 167 km 

between nodes 20 and 25, leading to investment costs of about 117 M€. 
• Reinforcement 2: Installation of a TCSC devices of 286/-80 MVar between nodes 21 and 

25, with the option to further relocate it between the nodes 20 and 25, leading to 
investment costs of about 47,63 M€ (Schaffner, 2004). Moreover, the relocation cost of 
the FACTS controller and its residual value are taken equal to 40% and 20% of the total 
FACTS cost respectively. 

Thus, as starting point, there are three mutually exclusive alternatives (options) to be 
assessed, namely: 
• Investing in the FACTS device first (S1), 
• investing in the transmission line first (S2) or, 
• investing in the FACTS and line jointly (S3). 
Maturity is set for all investments options equal to three years and 15 years as the 
investment horizon. Lead construction time is assumed to be one year and discount rate is 
considered to 8% per year, for all considered investment alternatives. 
The network and data described in the previous sections is applied to compute 1000 sample 
realizations for ensuring the maximum relative error established before. Hence, several OPF 
calculations are performed for each scenario (base and investment). By this means, the 
stochastic annual generation cost savings are estimated.  
The results of the investment evaluations are depicted in Table V. The traditional NPV 
appraisal suggests S3 as the optimal investment choice. Conversely, the real option valuation 
determines S1 as the optimal decision by taking into account the strategic flexibility 
provided on each strategy. Since the option value can be calculated according to (9), the 
economic value of the flexibility of each investment strategy is given by subtracting the 
expected NPV of the expected option value.  
It should be highlighted that the investment alternative with the higher flexibility value is S1, 

investing in FACTS first. This can be explained by noting that the flexibility of FACTS 
remains after the investment option has been exercising allowing a better adaption to 
possible adverse scenarios in the long-term. 
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Strategy E [Option Value] (M€) E[NPV value] (M€) Flexibility (M€) 

S1 140.14 (1st) 48.26 (3rd) 91.882 (1st) 
S2 91.03 (2nd) 57.347 (2nd) 33.782 (2nd) 
S3 90.447 (3rd) 90.441 (1nd) 0.006 (3rd) 

Table V. Ranking of expansion strategies by applying the proposed evaluation approach 
and the traditional appraisal 

Table VI portrays the feasible structure of the RO portfolios and its respective value. Thus, 
for instance, the structure TL-F-R-A implies that the option to invest in the TL, FACTS, 
relocation and abandon are available. It is important to notice that in all the RO portfolios, 
the deferral option is considered available. 
As can be also seen, the S1 value decreases when are unavailable the abandon and relocation 
options. This means that these options are worth and its valuation is relevant. Thus, in the 
situation where the relocation option is unavailable, the optimal decision is to invest in the 
TL first. 
In a portfolio which includes FACTS, an important option is the option to defer the new TL. 
This can be observed by comparing the option values with (TL-F-R-A) and without (F-R-A) 
in their set of options. By comparing this value with the flexibility value of S1 is easy to note 
that the largest flexibility of the strategic to invest in FACTS first is the TL deferral option. 
On the other hand, the value of the deferral option of the TL can be obtained from the option 
by subtracting the S2 (TL) portfolio value minus the static NPV(S2) of Table V. In this 
particular study case, this value is low. Therefore, it possible to conclude that if the FACTS 
device is not regarded as an investment strategy the execution of the TL is probably going to 
be executed. 
 

Available Options Value [M€] Strategy 
TL-F-R-A TL-F-R TL-F-A TL-F F-R-A F-R F-A F TL 

S1 140.14 96.18 88.807 88.44 70.52 70.51 48.27 48.26  
S2 91.03 90.742 91.02 90.74     58.6 
S3 90.45 89.04 90.45 89.04      

Table VI. Option Value and the composition of the option portfolio. 

The probability density function (PDF) of the option value is illustrated in Fig. 12. By mean 
of this figure, it can be observed that both S2 and S3 have a relevant downside risk in 
comparison with S1. This risk acquires more relevance due to the facts that the TL 
expansions are irreversible investments. For that reason, the inclusion of flexibility in the TI 
problem is needed. In this sense, FACTS devices allow making expansions, retaining 
flexibility for properly managing uncertainties of the TI problem. 

8. Conclusion 
In this chapter, the application of a new approach has been developed for assessing flexible 
options embedded in investments projects. The option values have their roots in the fact that 
they put a floor against possible project losses. It has been shown that static NPV methods 
may be inappropriate for assessing flexible investments, since the existence of uncertainties 
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Fig. 12. Probability density function (PDF) of the analyzed strategies. 
significantly increment the value of the strategic flexibility embedded in the decision-
making process. In this sense, a RO framework has been developed, using the novel LSM 
simulation approach for solving the stochastic optimization problem. 
The proposed appraisal framework was focused on the economic quantification of the main 
flexibility options in transmission investments projects. Particularly, flexible options of 
FACTS devices, i.e. postponement of large transmission project execution, relocation and 
abandonment of the controller was analyzed. The main uncertain variables and risks to 
which transmission projects are exposed, have been modelled. Long-term uncertainties have 
properly been handled by incorporating flexible expansion projects aiming at improving 
investment risk profiles. Particularly, this chapter included a novel modeling approach 
based on logistic diffusion process to the generation of future wind capacity scenarios.  
Finally, the flexibility value has been quantified for the postponement, relocation or 
abandonment of an investment project. 
In a study case, it has been shown that more flexible investment strategies can be obtained 
and the adaptability to uncertain future scenarios is considerably improved by suitably 
combining FACTS controllers and conventional investments in transmission lines over the 
considered time horizon. In addition, it has been illustrated how the optimal decision could 
be misleaded under the traditional NPV investment rule. Hence, by applying the proposed 
RO valuation approach an important but yet uninvestigated feature of FACTS devices has 
been remarked: inducing investment execution in stages and postponing large and 
irreversible transmission line projects. 

9. References 
Amram, M., & Kulatilaka N. (1998). Real Options: Managing Strategic Investment in an 

Uncertain World. Oxford University Press, ISBN-10: 0875848451, USA.  



 Stochastic Optimization - Seeing the Optimal for the Uncertain 

 

136 

Strategy E [Option Value] (M€) E[NPV value] (M€) Flexibility (M€) 

S1 140.14 (1st) 48.26 (3rd) 91.882 (1st) 
S2 91.03 (2nd) 57.347 (2nd) 33.782 (2nd) 
S3 90.447 (3rd) 90.441 (1nd) 0.006 (3rd) 

Table V. Ranking of expansion strategies by applying the proposed evaluation approach 
and the traditional appraisal 

Table VI portrays the feasible structure of the RO portfolios and its respective value. Thus, 
for instance, the structure TL-F-R-A implies that the option to invest in the TL, FACTS, 
relocation and abandon are available. It is important to notice that in all the RO portfolios, 
the deferral option is considered available. 
As can be also seen, the S1 value decreases when are unavailable the abandon and relocation 
options. This means that these options are worth and its valuation is relevant. Thus, in the 
situation where the relocation option is unavailable, the optimal decision is to invest in the 
TL first. 
In a portfolio which includes FACTS, an important option is the option to defer the new TL. 
This can be observed by comparing the option values with (TL-F-R-A) and without (F-R-A) 
in their set of options. By comparing this value with the flexibility value of S1 is easy to note 
that the largest flexibility of the strategic to invest in FACTS first is the TL deferral option. 
On the other hand, the value of the deferral option of the TL can be obtained from the option 
by subtracting the S2 (TL) portfolio value minus the static NPV(S2) of Table V. In this 
particular study case, this value is low. Therefore, it possible to conclude that if the FACTS 
device is not regarded as an investment strategy the execution of the TL is probably going to 
be executed. 
 

Available Options Value [M€] Strategy 
TL-F-R-A TL-F-R TL-F-A TL-F F-R-A F-R F-A F TL 

S1 140.14 96.18 88.807 88.44 70.52 70.51 48.27 48.26  
S2 91.03 90.742 91.02 90.74     58.6 
S3 90.45 89.04 90.45 89.04      

Table VI. Option Value and the composition of the option portfolio. 

The probability density function (PDF) of the option value is illustrated in Fig. 12. By mean 
of this figure, it can be observed that both S2 and S3 have a relevant downside risk in 
comparison with S1. This risk acquires more relevance due to the facts that the TL 
expansions are irreversible investments. For that reason, the inclusion of flexibility in the TI 
problem is needed. In this sense, FACTS devices allow making expansions, retaining 
flexibility for properly managing uncertainties of the TI problem. 

8. Conclusion 
In this chapter, the application of a new approach has been developed for assessing flexible 
options embedded in investments projects. The option values have their roots in the fact that 
they put a floor against possible project losses. It has been shown that static NPV methods 
may be inappropriate for assessing flexible investments, since the existence of uncertainties 
 

Optimal Decision-Making under Uncertainty - Application to Power Transmission Investments   

 

137 

-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
8

0

1

2

3

4

5

6

7 x 10
-9

Option Value [€]

Pr
ob

ab
ilt

y 
de

ns
ity

 

 

Option FACTS first
Option Line first
Option Line & FACTS

 
Fig. 12. Probability density function (PDF) of the analyzed strategies. 
significantly increment the value of the strategic flexibility embedded in the decision-
making process. In this sense, a RO framework has been developed, using the novel LSM 
simulation approach for solving the stochastic optimization problem. 
The proposed appraisal framework was focused on the economic quantification of the main 
flexibility options in transmission investments projects. Particularly, flexible options of 
FACTS devices, i.e. postponement of large transmission project execution, relocation and 
abandonment of the controller was analyzed. The main uncertain variables and risks to 
which transmission projects are exposed, have been modelled. Long-term uncertainties have 
properly been handled by incorporating flexible expansion projects aiming at improving 
investment risk profiles. Particularly, this chapter included a novel modeling approach 
based on logistic diffusion process to the generation of future wind capacity scenarios.  
Finally, the flexibility value has been quantified for the postponement, relocation or 
abandonment of an investment project. 
In a study case, it has been shown that more flexible investment strategies can be obtained 
and the adaptability to uncertain future scenarios is considerably improved by suitably 
combining FACTS controllers and conventional investments in transmission lines over the 
considered time horizon. In addition, it has been illustrated how the optimal decision could 
be misleaded under the traditional NPV investment rule. Hence, by applying the proposed 
RO valuation approach an important but yet uninvestigated feature of FACTS devices has 
been remarked: inducing investment execution in stages and postponing large and 
irreversible transmission line projects. 
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1. Introduction 
Network measurement depends on certain measurement method, technique and standard 
to obtain measurement sample based on measurement devices or tools, which applies the 
network performance analysis model to identify network topology architecture, and to infer 
performance parameter and traffic characteristics that provides the scientific decision for 
network resources optimization deployment, network management, failure point position, 
and so on[1~3]. For the wired network with solid infrastructures, such as Internet, it often 
adopts a interior direct measurement method that is also defined as traditional 
measurement technique in the chapter.  
During the middle period of 90 years in last century, NT measurement technique was 
brought forward by Y. Vardi[4],which used the end-to-end measurement sample to infer 
network link performance parameters. Traditional network measurement technique is often 
applied in Internet with solid infrastructure, which does not need the interior nodes to 
collaborate with each other in the same autonomous area, but requires some IP network 
standard protocols to help, such as SNMP, ICMP, and so on. NT measurement technique 
could adopt the active or passive measurement method, and analyzes statistically the end-
to-end network performance sample to infer link performance parameters, topology 
architecture or traffic characteristics. The objective of NT measurement technique mainly 
focuses on link delay or loss rate inference, link bandwidth and throughput inference, 
network topology architecture identification and traffic matrix estimate[6~13].  
The measurement process in NT technique consists of three steps[14,15]. At first, measurement 
system model must be built on, including measurement topology model and performance 
analysis model, which generally adopts logic tree network topology model, and makes use of 
the relationship between nodes in measurement topology model and packet transmission 
behavior to build on performance analysis model. Secondly, active or passive measurement 
method is used to obtain the end-to-end measurement sample, then to evaluate the temporal 
and spacial independence of measurement sample.  At last, the mathematics and statistics 
theory are used to analyze and evaluate the measurement sample based on performance 
analysis model to infer link performance or to identify topology architecture, etc. 

1.1 NT measurement topolgy model 
Measurement topology model is the basis on NT measurement technique. If the number of 
source node which has the chance to send measurement probes, is only one in measurement 
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process, that of leaf nodes collecting measurement sample is more than one, where exists 
one-to-many relationship between source node and leaf nodes, this measurement style is 
often called as single-source measurement model, and often uses tree topology 
measurement model to descript as the figure 1(a). Otherwise, if the source nodes and leaf 
nodes exit many-to-many relationship, this measurement style is generally called as multi-
source measurement and often uses the non-loop graph topology measurement model to 
descipt as the figure 1(b).  
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(a)  single-source measurement system model   (b) multi-source measurement system model 

Fig. 1. NT measurement topology model 
In the tree topology measurement model, Let T=(V, L) denotes a reverse tree with the node 
set V and link set L. V could be finely classified as { , , }V S M R= , where S denotes the set of 
source nodes, M the set of interior forwarding nodes and R the set of leaf nodes(or receiver 
nodes). As in figure 1(a), {0}S = , Because there is only one source node to send the probes. 
However, leaf nodes 4,5,6,7 has the chance to collect the measurement sample. The link set 
contains ordered pairs (i, j) such that node i sends its data to node j directly, destined for the 
leaf node r( r R∈ ). The link (i, j) is simply denoted by ,li j ( ,l Li j ∈ ). Howerver, the path from 

the node i to j is denoted by ,Pi j , Let  f(i)  denote the father set of the node i.  The ancestor 

set of node i could be denoted as: 1 2( ) { ( ), ( ),..., ( )| ( ) }n nf f f fF i i i i i S= ∈ , noted that there exists 

the following rules: 0( )f i i=  , 1( ) ( )f i f i= and 1( ) ( ( ))( 1)n nf fi f i n−= ≥ . In the multi-source 
measurement model as in figure 1(b), there are more than one source nodes which has the 
chance to send probes, such as {0, }S i= . If the number of source nodes and leaf nodes are M 
and N respectively, the network architecture in multi-source measurement is called as M-
by-N topology architecture[16]. 

1.2 NT measurement analysis model 
NT measurement analysis model mainly consists of performance analysis model and 
network topology architecture identification model, the former focuses on link loss rate and 
delay inference, and the latter on topology architecture identification. 

1.2.1 Link loss rate analysis model 
It is to use the mathematical method to describe the relationship between the link and path 
performance. For example, Bernoulli model[17,18] and Gilbert model[19,20] are often used 
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in link loss rate inference. The former supposes that the loss of packets in one mobile node is 
independent of each other, which actually is a Bernoulli stochastic process. Stochastic 
process ( )X xr= ( r R∈ ) is used to describe state of the leaf node r  receiving probes, 1xr =  
denotes node r  receiving a probe, otherwise 0xr = . For the N probes, the receiving state of 
leaf node r  could be denoted as ( ){ }nX xr r= ( 1 n N≤ ≤ ). If the link loss rate parameter is 
presented as ( )( )Llrlrα α= ∈ , where rα  is the loss rate of link lr , the aim of  Bernoulli model 
is to obtain the maximum pre estimate: arg ( | , )Max P X Tr Rα αα

∗ = ∈ . However, the latter 
considers that there exits time dependence correlation between the consecutive probes. For 
instance, if the probe with sequence one is lost in one mobile node, the probability of probe 
with sequence two in the same mobile node being lost is higher. Gilbert model uses two 
states Markov process to describe this temporal dependence, 1 denotes probe loss and  0 not 
loss. In Gilbert model as in figure 2, p  denotes that the probability of current probe is not 
lost where the one after which is lost, while q  denotes that the probability of current probe 
is lost where the one after which is not lost. If 1p q+ =  is satisfied, Gilbert model could be 
changed into Bernoulli model. 

1.2.2 Link delay analysis model 
In link delay anlysis model, we often suppose that the system clocks in each nodes are 
synchronous, and discrete delay mode and continuous delay one are often used. In general, 
the discrete delay model adopts the discrete time method to study the probability 
distribution of link delay based on NT. However, the continuous delay time model often 
uses the cumulate generating function (abbreviated as CGF) to infer link delay parameters. 
Owing to using the logarithmic operation in CGF for its un-linear correlation, there exists 
some variances in the inference result, and even sometimes the variance is high. In order to 
reduce and correct the variance, Yolanda et al. [21] adopts a linear optimization method to 
correct the variance estimation of inference results.  Network delay includes the fixed delay 
time and variational one, the sending delay( Tt )and transmission one ( Tg ) composes the 
former, and the process delay( Tp ) and queuing delay ( Tq )the latter. Link delay analysis 
model could be presented as the formula 1, where m is the number of link, ,,0 ,0T Tt g  
denotes the sending delay of source node and transmission delay of the first link 
respectively.  

 ( ),0 ,0 , , , , ,
1

m
Delay T T T T T T Tt g t n g n p n q n q d

n
∑= + + + + + +
=

 (1) 

1.2.3 Network topology inference analysis model 
Network topology inference analysis model is founded on the basis of the following 
hypothesis, that the correlative degree between brother nodes is stronger than that between 
non- brother nodes. [22,23] bring forth a bias relationship of probe receiving to infer 
network topology architecture, which defined a hamming distance of probes receiving 
between node i  and j  as the formula 2. where n  is the number of measurement. 

 ( , ) ( ), ,
1

n m md i j x i j Vxi jm
∑= ⊕ ∈
=

 (2) 



 Stochastic Optimization - Seeing the Optimal for the Uncertain 

 

142 

process, that of leaf nodes collecting measurement sample is more than one, where exists 
one-to-many relationship between source node and leaf nodes, this measurement style is 
often called as single-source measurement model, and often uses tree topology 
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in link loss rate inference. The former supposes that the loss of packets in one mobile node is 
independent of each other, which actually is a Bernoulli stochastic process. Stochastic 
process ( )X xr= ( r R∈ ) is used to describe state of the leaf node r  receiving probes, 1xr =  
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leaf node r  could be denoted as ( ){ }nX xr r= ( 1 n N≤ ≤ ). If the link loss rate parameter is 
presented as ( )( )Llrlrα α= ∈ , where rα  is the loss rate of link lr , the aim of  Bernoulli model 
is to obtain the maximum pre estimate: arg ( | , )Max P X Tr Rα αα

∗ = ∈ . However, the latter 
considers that there exits time dependence correlation between the consecutive probes. For 
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states Markov process to describe this temporal dependence, 1 denotes probe loss and  0 not 
loss. In Gilbert model as in figure 2, p  denotes that the probability of current probe is not 
lost where the one after which is lost, while q  denotes that the probability of current probe 
is lost where the one after which is not lost. If 1p q+ =  is satisfied, Gilbert model could be 
changed into Bernoulli model. 

1.2.2 Link delay analysis model 
In link delay anlysis model, we often suppose that the system clocks in each nodes are 
synchronous, and discrete delay mode and continuous delay one are often used. In general, 
the discrete delay model adopts the discrete time method to study the probability 
distribution of link delay based on NT. However, the continuous delay time model often 
uses the cumulate generating function (abbreviated as CGF) to infer link delay parameters. 
Owing to using the logarithmic operation in CGF for its un-linear correlation, there exists 
some variances in the inference result, and even sometimes the variance is high. In order to 
reduce and correct the variance, Yolanda et al. [21] adopts a linear optimization method to 
correct the variance estimation of inference results.  Network delay includes the fixed delay 
time and variational one, the sending delay( Tt )and transmission one ( Tg ) composes the 
former, and the process delay( Tp ) and queuing delay ( Tq )the latter. Link delay analysis 
model could be presented as the formula 1, where m is the number of link, ,,0 ,0T Tt g  
denotes the sending delay of source node and transmission delay of the first link 
respectively.  

 ( ),0 ,0 , , , , ,
1

m
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n
∑= + + + + + +
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1.2.3 Network topology inference analysis model 
Network topology inference analysis model is founded on the basis of the following 
hypothesis, that the correlative degree between brother nodes is stronger than that between 
non- brother nodes. [22,23] bring forth a bias relationship of probe receiving to infer 
network topology architecture, which defined a hamming distance of probes receiving 
between node i  and j  as the formula 2. where n  is the number of measurement. 
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If ( , )d i j ε<  is satisfied, node i  and j  are deemed to brother node, and ε  is a liminal value. 
Therefore, network topology architecture could be inferred through computing the ( , )d i j  
between nodes, which is a bin-tree architecture. However, a tree topology architecture could 
be inferred by expanding the method above. 

1.3 NT measurement probes 
unicast probe  Unicast probe is transmitted by the source node to the leaf nodes according to 
a certain sample rule as in figure 2(a). Link loss rate and delay could be inferred on the basis 
of the number of unicast probes and that the leaf node receiving, end-to-end delay, and so 
on. Owing to unicast communication is supported by many networks, the merit of unicast 
probe is its broad application scope. Although the interval between unicast probes accords 
with a certain sample rule, which could reduce the influence brought by active 
measurement in a certain extent, it will destroy the correlation of the two conterminous 
unicast probes and reduce the precision of measurement. As in figure 2(a), the source node 0 
sends unicast probe, since the leaf node 3 and 4 receive unicast probe dependently, if the 
node 3 receive a unicast probe, but node 4 not, it is difficult to judge where the unicast probe 
is lost. 
multi-cast probe  In order to settle the limitation of unicast probe, the multicast probe is put 
forward in network measurement. As in figure 2(b), the source node 0 transmits the 
multicast probe to a group of leaf nodes, such as node 4,5,6 and 7. Since the multicast probes 
have the same communication characteristic in the shared path, it will resolve the problem 
the correlation of probes and improve the precision of measurement. If node 3 receives the 
multicast probe, but node 4 not, it is easy to infer that the probe is lost in the link l4. Of 
course, there are much limitation on municast probes, one is that some network devices,  
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such as switcher and router, do not support or configure multicast communication 
protocols, which will influent its application scope, another is some network devices adopt 
difference process method on unicast and multicast, which will also affect the measurement 
precison in some extent. 
packet pair probe Nowak Robert et al. brings forth to using packet pair to measurement 
network performance as in figure 2(c).  Packet pair comprised of two unicast probes with 
small interval, which is smaller than that between different packet pairs. In figure 2(c), 
source node 0 sends one packet pair to node 3 and 4, if the first unicast probe arrives at node 
3 successfully, the we could safely guess that the probability of node 4 receiving the second 
unicast probe is near to 100%. Therefore, packet pair not only has the properties of multicast 
probe, but also extends the application scope of unicast probe. However, packet pair only 
takes into account the correlation between unicast probe, it is just used for bin-tree 
measurement analysis model. 
packet stripes probe In order to resolve the limitation of packet pair, N.G. Duffield introduce 
the packet strips into network measurement, which extends the number of unicast probes 
from two to many as in figure 2(d). From the other point of view, the packet strip could be 
considered as many packet pairs, which supports the different packet pairs with correlation 
in the shared path. However, when the number of unicast probes is more enough, packet 
strip could be changed as unicast probes. 

1.4 NT measurement inference method  
NT measurement inference method is to use end-to-end network performance measurement 
sample to infer the probability distribution of link performance based on measurement 
analysis model and performance analysis model, which mainly composed of Maximum 
Likelihood Estimate(MLE), Expectation Maximization method(EM) and Bayesian estimate. 
Maximum Likelihood Estimate Method  MLE[24] is one of the elementary method on parameter 
estimate, which supposes that link performance parameter accords with distribution ( ; )f X Θ , 
where ( , , , )1 2Θ nθ θ θ=  is the estimated parameter. If end-to-end measurement sample is 
denoted as { , , , }1 2y y yn , supposing that they follows the same distribution rule 
independently, the distribution function of path performance parameter Y could be 
expressed as ( ; )Y p Y Θ= , then the pseudo function follows the formula 3 

 
1

( ; ) ( ; )
n

i
i

L Y Θ p y Θ
=

=∏  (3) 

The objective of MLE is to find the value of the parameter Θ  when ( ; )L Y Θ  obtains its 
maximum value, which could be denoted as ˆ arg ( ; )Θ MaxL Y Θ= . Nevertheless, it is difficult to 
find the transcendent distribution function ( ; )f X Θ  of network link performance parameter 
X. Even though it was founded, there are high computing complexity degree of pseudo 
parameter estimate for the complexity of pseudo function with large network scale. 
Expectation Maximization method EM algorithm[25,26] is to use partial measurement sample 
to infer maximum pseudo value of link performance distribution function, including two 
procedures, that is, E-step and M-step. The main problem about EM algorithm is that it 
could obtain the partially optimized solution, not the unitary optimized one. For the sake of 
computing complexity increasing by the scale of network, Pseudo-EM Algorithm[4] 
decomposes a large scale problem to several small scale ones. The maximum likelihood of 
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multicast probe, but node 4 not, it is easy to infer that the probe is lost in the link l4. Of 
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such as switcher and router, do not support or configure multicast communication 
protocols, which will influent its application scope, another is some network devices adopt 
difference process method on unicast and multicast, which will also affect the measurement 
precison in some extent. 
packet pair probe Nowak Robert et al. brings forth to using packet pair to measurement 
network performance as in figure 2(c).  Packet pair comprised of two unicast probes with 
small interval, which is smaller than that between different packet pairs. In figure 2(c), 
source node 0 sends one packet pair to node 3 and 4, if the first unicast probe arrives at node 
3 successfully, the we could safely guess that the probability of node 4 receiving the second 
unicast probe is near to 100%. Therefore, packet pair not only has the properties of multicast 
probe, but also extends the application scope of unicast probe. However, packet pair only 
takes into account the correlation between unicast probe, it is just used for bin-tree 
measurement analysis model. 
packet stripes probe In order to resolve the limitation of packet pair, N.G. Duffield introduce 
the packet strips into network measurement, which extends the number of unicast probes 
from two to many as in figure 2(d). From the other point of view, the packet strip could be 
considered as many packet pairs, which supports the different packet pairs with correlation 
in the shared path. However, when the number of unicast probes is more enough, packet 
strip could be changed as unicast probes. 

1.4 NT measurement inference method  
NT measurement inference method is to use end-to-end network performance measurement 
sample to infer the probability distribution of link performance based on measurement 
analysis model and performance analysis model, which mainly composed of Maximum 
Likelihood Estimate(MLE), Expectation Maximization method(EM) and Bayesian estimate. 
Maximum Likelihood Estimate Method  MLE[24] is one of the elementary method on parameter 
estimate, which supposes that link performance parameter accords with distribution ( ; )f X Θ , 
where ( , , , )1 2Θ nθ θ θ=  is the estimated parameter. If end-to-end measurement sample is 
denoted as { , , , }1 2y y yn , supposing that they follows the same distribution rule 
independently, the distribution function of path performance parameter Y could be 
expressed as ( ; )Y p Y Θ= , then the pseudo function follows the formula 3 
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The objective of MLE is to find the value of the parameter Θ  when ( ; )L Y Θ  obtains its 
maximum value, which could be denoted as ˆ arg ( ; )Θ MaxL Y Θ= . Nevertheless, it is difficult to 
find the transcendent distribution function ( ; )f X Θ  of network link performance parameter 
X. Even though it was founded, there are high computing complexity degree of pseudo 
parameter estimate for the complexity of pseudo function with large network scale. 
Expectation Maximization method EM algorithm[25,26] is to use partial measurement sample 
to infer maximum pseudo value of link performance distribution function, including two 
procedures, that is, E-step and M-step. The main problem about EM algorithm is that it 
could obtain the partially optimized solution, not the unitary optimized one. For the sake of 
computing complexity increasing by the scale of network, Pseudo-EM Algorithm[4] 
decomposes a large scale problem to several small scale ones. The maximum likelihood of 



 Stochastic Optimization - Seeing the Optimal for the Uncertain 

 

146 

these small scale problems could be expressed as formula 4, where S is set of all small scale 
problems. 

 ( , , ..., ; ) ( ; )1 2
1

n s s sL Y Y Y X P Y Xn ii s S
∏= ∏
= ∈

 (4) 

Bayesian estimate method It uses the transcendent probability distribution of link performance 
to infer the posterior one. However, how to get the former probability distribution is a 
difficult work. It is also difficult  for Bayesian estimate method to obtain the link 
performance parameter with large network scale for its computing complexity. In order to 
solve this problem, Markov Chain Monte Carlo method is brought forth to infer link 
performance parameters by using Gibbs and Metropolis-Hasting sample rule based on 
Bernoulli and Gilbert probability model[27]. 
In short, MLE and Bayesian estimate methods needs to know the transcendent distribution, 
but it is very difficult to obtain in practice. EM resolves the problem of computing the 
estimated parameter of network link performance in math, but it is easy to converge on a 
partially optimized solution.  

2. NT measurement technique in WSNs  
Recent technological advances have made the development of low cost sensor nodes 
possible, and this allows the deployment of the large-scale sensor network to be feasible. 
The accurate network performance plays an important role in the successful design, 
deployment and management of sensor networks. However, the inherent stringent 
bandwidth and energy constraints of sensors create challenging problems in the network 
performance measurement. Motivated by the needs of accurate sensor network performance 
measurement and the inherent constraint of sensor network, in this section, we concentrate 
on: (1) the problem of efficiently estimating the internal link loss Cumulant Generating 
Function (CGF); (2) the problem of efficiently estimating the internal link loss rate from the 
passive end-to-end measurement.  
There has been much research in the field of network tomography for the wireless sensor 
network .In [28], Li et al. proposed a simple method based on the hamming distance of 
sequences on receipt/loss of aggregated data between each pair of parent-child node to 
identify the lossy nodes. Under the assumptions that the link losses are mutually 
independent, Li et al. [29] formulated the problem of link loss estimation as a Bayesian 
inference problem and propose a Markov Chain Monte Carlo algorithm to inferring the 
internal link loss characteristics from passive end-to-end measurement. In [30] this problem 
was formulated as a Maximum-Likelihood Estimation problem and used the Expectation-
Maximization algorithm to solve it. Almost existed methods used the iterative 
approximating approach to estimate the loss rate that requires a long execution time. In 
addition, iterative approach may trap into a local maximum. To overcome this problem, a 
simple up-bottom approach [31] and a bottom-up [32] to estimate loss rate in wireless sensor 
network were proposed, which identifies parameters of loss probability model based on the 
observations collected in the sink node. Knowledge of sensor network topology is a crucial 
component of sensor network tomography techniques. Based on the partial ordering 
relation on the packet receipt/loss between a node and its descendant nodes in the data 
aggregation process, Li et al. [33][34] formulated the problem of sensor network topology 
identification as a topological sorting problem and proposed a topological sorting algorithm 
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to solve it. In [35], an algorithm that named hamming distance and hop count based 
classification algorithm (HHC), to infer network topology by using end-to-end data in 
sensor network. 

2.1 Loss cumulate generating function inference method 
Each link loss CGF preserves all the statistical information of the loss since it is the log of the 
Fourier transform of the link loss probability density function. We can accurately infer many 
features of the link loss distribution from loss CGF[36]. 

2.1.1 Cumulate generating function 
We suppose the link losses Xi  are mutually independent, 1, ,i n= . Define the end-to-end 

loss cumulate generating function (CGF) of the path i  log
tYiK E eYi

= ⎡ ⎤
⎢ ⎥⎣ ⎦

 and the link loss CGF 

log
tXiK E eXi

= ⎡ ⎤
⎢ ⎥⎣ ⎦

, with CGF parameter t , ( ),t∈ −∞ ∞ . The CGF of Y can therefore be 

expressed as 
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where ( )iA  denotes the ith  row of the matrix A  and  ( ) ( ) ( ), ,
1

T
K t K t K tX X Xn= ⎡ ⎤

⎣ ⎦  ( T denotes 

transpose). Thus the vector of end-to-end CGF’s ( ) ( ) ( ), ,
1

T
K t K t K tY Y Yn= ⎡ ⎤

⎣ ⎦  can be 

expressed by the following linear relation 

 ( ) ( )K t A K tXY = ⋅  (6) 

There are n  links and n  paths in the sensor network, so the matrix A  is full rank. The 
relation (2) is invertible and the link loss CGF ( )K tX  can be determined from the end-to-end 
loss CGF ( )K tY as the following equation 
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these small scale problems could be expressed as formula 4, where S is set of all small scale 
problems. 
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The accurate network performance plays an important role in the successful design, 
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2.1.2 Loss CGF inference 
Let N be the number of data collection trial, then the estimated value of 

iYM  can be 
obtained using the following equation 

 ( ) 1ˆ
1

kN tYiM t eYi kN
∑=
=

 (9) 

where k
iY  is the end-to-end loss of  path i  in the kth  data collection trial. We obtain 

estimates of the vector ( )K tX  from ( ) ( ) ( )ˆ ˆ ˆ, ,
1

T
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⎣ ⎦ . Note that M̂Yi
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unbiased estimate of the MGF
iYM . According to equation (8), we have 
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following equation: 
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2.1.3 Simulation study and application 
The ns2 simulator was extended to perform the simulation of the sensor network.and 
simulate the data flow through sensor network. For each data collection round, whether a 
node successfully received data sent to it by its child nodes was determined randomly but 
with a specified intended loss rate for each link. That is, as the number of data collection 
rounds increases the actual loss rate of each link should converge to the intended loss rate. 
Two networks were used in the simulations. One consisted of 120 nodes while the other 
contained 9 nodes. Figure 3 shows the topology of the 9-node network. An intended success 
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2.1.3 Simulation study and application 
The ns2 simulator was extended to perform the simulation of the sensor network.and 
simulate the data flow through sensor network. For each data collection round, whether a 
node successfully received data sent to it by its child nodes was determined randomly but 
with a specified intended loss rate for each link. That is, as the number of data collection 
rounds increases the actual loss rate of each link should converge to the intended loss rate. 
Two networks were used in the simulations. One consisted of 120 nodes while the other 
contained 9 nodes. Figure 3 shows the topology of the 9-node network. An intended success 
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rate of 0.9 was chosen for all normally links in the simulation network. Each simulation 
consisted of 1200 data collection trials. Once all of the data was collected, each link loss CGF 
was inferred using the approach presented in Section 4. To estimate the loss CGF, we set the 
window size W to be 400, and the window shift step size S to be 10. 
 

s

1

2 3

4 5 6 7 8  
Fig. 3. A 9-node data aggregation tree 

Two possible scenarios were simulated that may occur in a real sensor network. These 
scenarios were: (1) Equal losses throughout the network; (2) Cascaded losses. i.e., Heavy 
losses at links on the same path to the sink. The cascaded losses scenario was simulated by 
setting the intended success rates of links 2 and 5 to be 0.7.  
Because each internal link loss CGF preserves all the statistical information of the link loss, 
we can accurately estimate many features of the link loss distribution from the link loss 
CGF. Here we give an example of lossy link detection. We define a lossy link in sensor 
network as the link whose loss rate exceeds a predefined threshold δ.  In practical 
application, we can infer a link as the lossy link when the probability of a link loss rate 
exceeding δ exceeds a predefined threshold P. By the Chernoff Bound [38], 

( )
tX jtP X e E e Pi j

δδ −≥ ≤ =
⎡ ⎤
⎢ ⎥⎣ ⎦

 

By appropriately selecting the threshold δ and threshold P close to 1, we can detect a lossy 
link by testing whether Pj > P.  In Table 3, we show the Chernoff Bounds for P(Xj ≥ 0.3) 
which were estimated from the simulation in Cascaded losses scenario. By setting the 
threshold P to 0.95, we can identify link 2 and 5 as the lossy link. This accord with the 
simulation configures. 
 

Link 1 2 3 4 5 6 7 8 
P(Xj ≥ 0.3) 0.66952 0.99671 0.67041 0.66942 0.99918 0.67060 0.66826 0.66684 

Table 1. Chernoff Bound for each link in Cascaded losses scenario 

2.2 Loss temporal dependency characteristic inference method 
Here we concentrate on the problem of efficiently estimating the internal link loss rate from 
the passive end-to-end measurement. We use the Bayesian inference problem to formulate 
the sensor network loss inference problem and use the Metropolis-Hastings Sampling to 
find out link-level characteristics. 

2.2.1 Loss inference based on gilbert model 
In our proposed approach, firstly the unobservable data is inferred based on the link 
relationship and the observable data collected at the sink node. Once the unobservable data 
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has been identified, for every link this proposed approach uses Metropolis-Hastings 
algorithm to generate a sequence of samples of Gilbert model parameter. We iterate the 
unobservable data inference process and the sampling process until it reaches the given 
number of the samples. The following two subsections are used to detail the proposed 
algorithm for unobservable data and sampling algorithm, respectively. Without loss of 
generality, we also take the figure 1 for instance in this subsection.  

2.2.2 Unobservable data inference 
We employ the up-down approach to infer the unobservable data. Firstly, we infer the 
unobservable data of the node 1, the reception or loss of the packets sent from the children 
node of the node 1 to node 1, and then we move one level down to estimate the 
unobservable data of the lower level nodes that are children node of node 1. The process is 
continued until it reaches the leaf nodes. 
Assume that one of children nodes of node i is node j. Using the similar method as 
presented above, we have the conditional posterior distribution of j,i
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According to the conditional posterior distribution of m
j,iy  as described above, we can draw a 

sequence of samples of m
j,iy . 

2.2.3 Loss performance parameter inference 
We infer the Gilbert model parameters Θ  according to the samples of m

j,iy  and the 
observable data X . As the problem formulation describes, the estimated value Θ̂  should 
agree with the posterior distribution ( | )p X,YΘ . However, the posterior distribution ( | )p X,YΘ  
is not a closed-form expression. That is, the value of Θ̂  can’t be calculated from the data 
X and Y  directly. In this paper, we consider the Metropolis-Hastings algorithm for 

sampling the parameters {( , ), }k kp q k ∈V . Here we do not pay much attention on choosing the 
proposal distribution and the initial value of parameters, but concern that how to sample the 
parameters using Metropolis-Hastings algorithm. In [39], it is discussed in detail that 
choosing the proposal distribution and the initial value of parameters 
We can choose a random walk proposal distribution for the proposed sampler, e.g. 

 - σ( 1) ( ) ( 1) ( 1)( , ) ( , )j j j j
k k k kg p p U p p σ− − − +∼  (20) 
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rate of 0.9 was chosen for all normally links in the simulation network. Each simulation 
consisted of 1200 data collection trials. Once all of the data was collected, each link loss CGF 
was inferred using the approach presented in Section 4. To estimate the loss CGF, we set the 
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That is, we draw a sample ( )j
kp  based on the above proposal distribution and accept it with 

probability 
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where by assuming uniform prior on kp , we have 
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Using the formula (21)(22)(23), we can draw the random samples of kp  based on the 
samples of the unobservable data Y and observable data X . Similarly, we can also draw 
the random samples of kq  where  

0 ,1 0 ,00
, ( )( | , , \ ) ( , | ) ( ) (1 )n n

k k k f k kkp q q p p y q q∝ ∝ ⋅ ⋅ −(j) (j)X Y X YΘ Θ (23) 

The proposed sampler iterates between sampling m
j,iy  from the observable data X  and 

sampling the Gilbert model parameters ( kp , kq ) based on the above sampler. After the 
sample procedure is finished, we can calculate the estimated value of ˆ {( , ), }k kp q kΘ = ∈V . For 
a general sensor network, we can similarly infer link loss rate as in this simple example 
described above, and expand the sampling strategy as an up-bottom approach where we 
start from the child node of the sink node, followed by their child nodes, and so on, until we 
reach the leaf nodes. 

2.2.4 Algorithm description 
Suppose the total number of samples is J=J0+J1, where J0 is the number of samples as ‘burn-
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Denote the size of sensor network as | |V . From the algorithm described as above, we can 
get the time complexity of this proposed algorithm is ( | |)O J N× × V . 

2.2.5 Simulation study 
NS2 was used to perform the simulation of the sensor network. The ns2 was extended to 
simulate the data flow through sensor network. For each data collection round, whether a 
node successfully received data sent to it by its child nodes was determined randomly but 
with a specified intended loss performance for each link. The inference algorithm is 
implemented in MATLAB. 
Two networks were used in the simulations. One consisted of 120 nodes while the other 
contained 9 nodes. Figure 3 shows the topology of the 9-node network. We used the Gilbert 
error model to model the link loss performance with parameters (p, q) as (0.1, 0.85) for all 
normally links in the simulation network. Each simulation consisted of 1000 data collection 
trials.  
In the 9-node simulation network, we simulated two possible scenarios that may occur in a 
real sensor network. These scenarios were: 1) Equal losses throughout the network; 2) 
Heavy losses at some links. The second scenario was simulated by setting the loss 
parameters of links 2, 5 and 7 to be (0.15, 0.80).  
Four plots of the inferred and sampled internal link loss performance parameters for all 
links are shown in Fig.4-Fig.7, respectively. The inferred link loss performance value is very 
close to the sampled link loss performance value. In the second scenario the error was 
significant since some of the losses that should have been attributed to link 2 were instead 
attributed evenly amongst link 2’s child links. However, it is still possible to infer that these 
lossy links is in fact experiencing the heavy losses. 
 

    
Fig. 4. True Value vs. Inferred Value in the equal loss scenarios for p 
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Fig. 5. True Value vs. Inferred Value in the equal loss scenarios for q 

 

 
Fig. 6. True Value vs. Inferred Value in the heavy loss scenarios for p 

 

 
Fig. 7. True Value vs. Inferred Value in the heavy loss scenarios for q 

Take the link 2 for instance. Figure 8 shows the relationship between the convergence 
speeds of the estimated loss performance value and the number of samples. Before the burn-
in period was over, the error between the estimated value and the true value is significant. 
With the sample number increases, the estimated value is approaching to the true value. 
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Fig. 8. Inferred Value vs. Sample Number in equal loss scenarios for q of link 2 

Table1 provides the simulation result in 120-node network. It shows that the inferred link 
loss performance value is close to its true value. In the two simulation scenarios, the 
maximum error of link loss estimation is only 0.027 and 0.0312, respectively. These results 
show that our loss rate inference algorithm scales well. 
 

p 0.043 Mean 
Error q 0.021 

p 0.070 Equal losses 
Max Error q 0.052 

p 0.058 Mean 
Error q 0.027 

p 0.089 
Heavy losses on 
some links Max Error q 0.061 

Table 2. Absolute errors: 120-node network 

3. NT measurement technique in ad hoc network 
NT measurement technique adopts Edge nodes not only as the source sender to send the 
measurement packets, but also as the receivers to receive the measurement data sample 
used for inferring link performance parameters in Ad Hoc network. Since it is independent 
of network infrastructure and protocols, NT measurement outweighs internal network 
measurement in Ad Hoc network. Of course, there will appear new problems for 
introducing the NT technique to Ad Hoc network measurement. 
The dynamic characteristic of Ad Hoc network topology is the main obstacle to use NT 
technique in Ad Hoc network measurement, because it effects the correctness not only of the 
measurement results, but also of the link performance parameters inference results. 
Therefore, the following problems must be resolved at first: (1) to put forward a feasible 
analysis method on dynamic characteristic of Ad Hoc network so as to meet the requirement 
of NT technique. (2) to found the Ad Hoc network measurement topology architecture and 
link performance inference model. (3) to chose the proper measurement method so as to 
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obtain measurement sample of performance parameters based on End-to-End. (4) to bring 
forth a link performance inference method so as to infer the link performance parameters by 
using measurement data sample, link performance inference model , mathematical and 
statistical theory. 

3.1 Ad hoc network topology dynamic characteristics  
Although researches have focused on the dynamic characteristics of mobility models in Ad 
Hoc network and taken much achievements recently[40], little attention was paid on the link 
topology dynamic characteristics of mobile models. Narayannan Sadagopan et al. [41]puts 
forward a statistical method to obtain the dynamic characteristic of MM, which includes 
how to obtain the probability density distribution of link and path connection time. 
Nevertheless, the research mainly focus on the viewpoint of the influence of dynamic 
characteristic on the performance of active network protocols, not on that of the Ad Hoc 
network measurement. At the same time, statistical analysis method is only applicable for 
the certain mobility models with one time to change its’ velocity or direction in one second, 
such as RPGM, Freeway and Manhattan mobility model, not for the other mobility models 
in NS-2 tool, such as RW and RWP. Although Tian et al. [42]brings forward a link 
connection time model which could be used to compute the link connection minimum time, 
and further to obtain the minimum value of network topology lifetime. However, the 
computing model is too complicated for not being simplified. Besides, it is only adaptable 
for the RWP mobility model, not for the other mobility models in Ad Hoc networks. Wang 
et al. [43] brings forth a circle mobility model, in which when the initialization position of 
mobile nodes is known, the network topology architecture of Ad Hoc network could be 
computed according to the rules of nodes’ movement. Specially, the minimum of network 
topology lifetime could also be obtained statistically. However, this research on NT 
measurement technique in Ad Hoc network mainly focus on circle mobility model,  it fails 
to be useful for other mobility models. Therefore, How to put forward a analysis technique 
on the dynamic characteristic of Ad Hoc network topology , which could be used for all the 
mobility model as are supported in NS-2 tool, is an interesting issue to be solved. 
In order to resolve the above problem, Yao et al.[44] presents a network topology snapshots 
capture method to obtain the Ad Hoc network topology architecture at any moment on the 
basis of analysis on the scene files of mobility models in Ad Hoc network. Through 
analyzing on the Ad Hoc network topology snapshots, the times of network topology in 
steady state or unsteady state during a certain time t could be obtained statistically, as well 
as the durative time of network topology in steady state or unsteady state during the whole 
simulation time. Furthermore, Yao et al.[45] adopts the discrete time and continuous time 
Markov stochastic process theory to predict the probability of the network topology 
invariability event happening and that of the network topology variability event happening, 
and the experiential formula of the probability of the network topology invariability and 
variability was deduced. The simulation result shows that the statistical analysis technique 
on Ad Hoc network topology dynamic characteristic not only is effective, but also has the 
general attribute, which could be used in the statistical analysis technique on Ad Hoc 
network topology dynamic characteristic under any mobility model. 

3.1.1 Formalized description on mobility model 
All the mobility models supported by NS-2 [46]have the same format of scene files produced 
by setdest tool.  Through analysis on the scene files we could arrive at the conclusion that 
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there is a certain spatial relativity among mobile nodes. That is, the destination position of 
node j at time i is its current position at time i + 1 on condition that j

V i equals zero, where 
j

V i denotes the velocity of node j from time i to i + 1. Furthermore, during the period from 

time i to i + 1, node j moves along a line at the velocity of j
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Ci denotes current position of node j at time i, ,

j
cx i  and ,

j
cy i  the x 

position and y position respectively of node j at time i, j
Di the destination position of node j 

at time i.  Then the spatial relativity of mobile nodes could be expressed as formula (24). 
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If let γ  denote the snapshot time slot, the relativity between velocity and spatial position 
could be expressed as formula (25). 
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where ,
jvi x  and ,

j
vi y  denote the x-axis and y-axis value of speed j

vi  at time i, which could be 

obtained by using  position j
Ci , j

Di  and j
vi . Thus it can be seen, the state information of node 

j at time i could be expressed as a three tuple , ,
jj jC VDi i i

〈 〉 . Furthermore, position snapshots of 

mobile nodes at any moment could be derived from formula (25). The method how to get 
physical topology snapshot is to compute the Euclid distance R between node j and 

( \ { })l l V j∈  at each time, where V denotes the node set of Ad Hoc network. If R is smaller 
than the transmission range of mobile node denoted as r, illuminating that there is a chance 
for the node  j and l to build up a wireless connection at link layer, the state of link between 
node  j and l could be set as 1, otherwise, as 0. If the same operation is implemented between 
any mobile nodes at each snapshot time, we could achieve the physical topology snapshot. 
At last, the steady and un-steady period of Ad Hoc network topology can be obtained by 
computing all the physically topology snapshots statistically. 

3.1.2 Simulation study 
Through analyzing on the Ad Hoc network topology snapshots with RW and RWP mobility 
model, the relation of the link topology in steady or un-steady state and link topology 
varying ratio varying with time are shown as in Fig. 9(a~d). Next, we will explain the three 
concepts used in Fig. 9. Link connection ratio is the ratio of the links having a wireless 
connection with each other to all links in Ad Hoc networks in each one topology snapshot. 
Topology varying ratio is the ratio of the number of links that the state of which has varied  
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                  (e) snapshot time = 0.25 in Freeway         (f)  snapshot time = 0.25 in Manhattan 
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to all links between the two consecutive topology snapshots. Topology lifetime is the time 
during which the Ad Hoc network topology does not vary. Actually the curve of topology 
lifetime is equivalent to that of the topology varying ratio in Fig.9, since when the value of 
topology varying ratio between the two consecutive topology snapshots is not equal to zero, 
the topology lifetime is set as two, otherwise set as zero to denote that the Ad Hoc network 
topology does not vary between the two consecutive topology snapshots. The mobile scene 
is set as the following parameters in NS-2: There are all 50 mobile nodes, and the stop time is 
0s in RW and 5s in RWP respectively. The maximum velocity of mobile nodes is 20m/s, 
simulation being 900s, and the scene covers a square area with 1200m*1200m. The wireless 
communication coverage range is set as a circle with radius being 250m. 
According to the result of analysis on the RW, RWP mobility model as in Fig. 9(a~d)[47], 
and that on the Freeway, Manhattan and RPGM mobility model in Fig.9(e~i)[48], we could 
safely arrive at the conclusion: The steady and un-steady period appear in turn during all 
simulation time, and the number of the steady and un-steady state, and the duration time in 
each state vary with different mobility models and the parameters of movement scenes. 

3.1.3 Statistical characteristic of the steady period number 
In a certain time t, the number of steady period (or un-steady period) is a discrete stochastic 
variable X. Through analyzing on the stochastic variable X, we could obtain the frequency of 
the steady period (or un-steady period) appearing in a certain time. We used the data in Fig. 
9(d) as an example to obtain the probability distribution chart of the number of steady 
period appearing in 10t = s, 15t = s and 20t = s as in the Fig. (a), (b) and (c) respectively.  
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                 (a) 10t = s                                    (b) 15t = s                                  (c) 20t = s 

Fig. 10. Probability distribution chart of the number of steady period 

From the Fig. 10, we could likely arrive at the inconclusive hypothesis that the number of 
steady period appearing in a certain time approximately follows the poison distribution, 
and for different time there exists different parameter λ . Next, we will use 2χ  Fit 
hypothesis testing method to verify this hypothesis. At first, we put forward the following 
hypothesis test problem: 

0H : The number of steady period follows the poison distribution, 
1H : The number of steady period does not follow the poison distribution. 

If the statistical time is set as 10t = s, that is, we will count the number of steady period once 
per 10 seconds. Through processing the data in Fig. 10(a), about 90 statistical data is 
obtained as in the table 3.  
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to all links between the two consecutive topology snapshots. Topology lifetime is the time 
during which the Ad Hoc network topology does not vary. Actually the curve of topology 
lifetime is equivalent to that of the topology varying ratio in Fig.9, since when the value of 
topology varying ratio between the two consecutive topology snapshots is not equal to zero, 
the topology lifetime is set as two, otherwise set as zero to denote that the Ad Hoc network 
topology does not vary between the two consecutive topology snapshots. The mobile scene 
is set as the following parameters in NS-2: There are all 50 mobile nodes, and the stop time is 
0s in RW and 5s in RWP respectively. The maximum velocity of mobile nodes is 20m/s, 
simulation being 900s, and the scene covers a square area with 1200m*1200m. The wireless 
communication coverage range is set as a circle with radius being 250m. 
According to the result of analysis on the RW, RWP mobility model as in Fig. 9(a~d)[47], 
and that on the Freeway, Manhattan and RPGM mobility model in Fig.9(e~i)[48], we could 
safely arrive at the conclusion: The steady and un-steady period appear in turn during all 
simulation time, and the number of the steady and un-steady state, and the duration time in 
each state vary with different mobility models and the parameters of movement scenes. 

3.1.3 Statistical characteristic of the steady period number 
In a certain time t, the number of steady period (or un-steady period) is a discrete stochastic 
variable X. Through analyzing on the stochastic variable X, we could obtain the frequency of 
the steady period (or un-steady period) appearing in a certain time. We used the data in Fig. 
9(d) as an example to obtain the probability distribution chart of the number of steady 
period appearing in 10t = s, 15t = s and 20t = s as in the Fig. (a), (b) and (c) respectively.  
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Fig. 10. Probability distribution chart of the number of steady period 

From the Fig. 10, we could likely arrive at the inconclusive hypothesis that the number of 
steady period appearing in a certain time approximately follows the poison distribution, 
and for different time there exists different parameter λ . Next, we will use 2χ  Fit 
hypothesis testing method to verify this hypothesis. At first, we put forward the following 
hypothesis test problem: 

0H : The number of steady period follows the poison distribution, 
1H : The number of steady period does not follow the poison distribution. 

If the statistical time is set as 10t = s, that is, we will count the number of steady period once 
per 10 seconds. Through processing the data in Fig. 10(a), about 90 statistical data is 
obtained as in the table 3.  
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i 0 1 2 3 4 5 6 7 8 
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Table 3. 2χ  fit hypothesis testing table about the number of steady period 

And then, we discuss how to verify the hypothesis test problem in the following three steps. 
Step 1. To compute parameter λ  in poison distribution by using the maximum likelihood 

estimate under the condition that hypothesis 0H  is true. 
If the sample of stochastic variable X is denoted as xi , 0,1,..., ( 89)i n n= = , the 
maximum likelihood function about parameter λ  could be expressed as formula (26). 

 1( ) ( )!1 ( !)
1

n
xin xi inL e e nxii xi

i

λλ λ λλ
∑
=− −= =∏

= ∏
=

  (26) 

Though implementing the logarithmic operation on both sides of the formula (26), 
the logarithmic maximum likelihood function could be expressed as formula (27). 

 ln ( ) ln ln( !)
1 1

n n
L n x xi i

i i
λ λ λ= − + −∑ ∑

= =
 (27) 

In order to let the formula (27) equal to its maximum, we implement the differential 
coefficient operation for parameter λ  on both sides of formula (27), and let it equal 
to zero as the formula (28). 

  ln ( ) 1 0
1

nd L n xid i
λ

λλ = − + =∑
=

 (28) 

Through computing the formula (28), the maximum likelihood estimate of 
parameter λ  in poison distribution could be expressed as the following:  

1

1

n
xin i

λ = ∑
=

. 

Noted that the maximum likelihood estimator of parameter λ  has the attributes, 
such as, an un-bias and effective estimate.  According to the data in table 1, we 
could easily obtain the estimate value of parameter λ as λ :  

1 4.14
1

n
ivin i

λ = =∑
=

. 
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Step 2. To compute the test statistic variable V as is expressed in formula (29).  
According to analysis on the data in table 1, we could obtain the value of the test 
statistic variable: 7.40v = . 

                 
2( )

1

n pnmi iV pn ii
−

= ∑
=

  (29) 

Step 3. Under the condition that significance levelα  equal to 0.05, we could get the in-
equation relation between the theoretical value and statistical one as the following:  

  2 2( 1) (9 1) 15.507 7.400.05rχ χα − = − = >  

This in-equation relation means that the test statistic variable v does not belong to 
the reject range, therefore, we have to accept the hypothesis 0H , and to refuse 
another hypothesis 1H . It is reasonable for us to believe that the number of steady 
period appearing in 10 seconds follows the poison distribution with 4.21λ = , when 
we choose RWP mobility model in a certain mobile scene as our research object. 

At the same time, that the number of un-steady period appearing in 10 seconds follows the 
poison distribution with 4.21λ =  could also be verified as the method above. When the 
statistical time is equal to different values, such as 15s, 20s, and so on, or when we choose 
other different mobility models, such as RW, Freeway, Manhattan and RPGM, we could also 
safely arrive at the conclusion that the number of steady or un-steady period appearing in a 
certain time also follows the poison distribution with different parameter λ . The paper does 
not discuss these for the limit to its length. 

3.1.4 Statistical characteristic of the steady or un-steady duration time 
When Ad Hoc network topology is in the steady state, the duration of which is called as 
steady duration time, otherwise, called as un-steady duration time. Because the steady 
duration time is a continuous stochastic variable, the statistical analysis method on the data 
about steady duration time in Fig. 9(d) is different from that on the number of steady period 
appearing in a certain time. Therefore, we divide the analysis method into three steps as the 
followings. 
Step 1. To coordinate the data. 

At first, we should coordinate the data about steady duration time,  such as 
, ,...,1 2x x xn , in the sort ascending order as ...(1) (2) ( )x x x n≤ ≤ ≤ , where n is the 

scale size of data sample about steady duration time, (1)x  is the minimal value of 
the steady duration time, and ( )x n  the maximal one. 

Step 2. To discrete the zone , ][ ( )(1)x x n . 

Secondly, the zone , ][ ( )(1)x x n  is discrete to l  smaller zones or groups as 
(1 )i lIi ≤ ≤  according to the scale size of data sample about steady duration time n. 

In general, if 100n ≥ , the value of l  belongs to the zone [10,20] ; when n is equal to 
50 or so, l  usually is set as 5 or 6. Since in Fig.1(d), 332 100n = ≥  comes into 
existence, we set the value of l  as 10. The case of small zones about the data in 
Fig.1(d) is processed and analyzed as in table 4. 
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Step 2. To compute the test statistic variable V as is expressed in formula (29).  
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statistic variable: 7.40v = . 
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the reject range, therefore, we have to accept the hypothesis 0H , and to refuse 
another hypothesis 1H . It is reasonable for us to believe that the number of steady 
period appearing in 10 seconds follows the poison distribution with 4.21λ = , when 
we choose RWP mobility model in a certain mobile scene as our research object. 

At the same time, that the number of un-steady period appearing in 10 seconds follows the 
poison distribution with 4.21λ =  could also be verified as the method above. When the 
statistical time is equal to different values, such as 15s, 20s, and so on, or when we choose 
other different mobility models, such as RW, Freeway, Manhattan and RPGM, we could also 
safely arrive at the conclusion that the number of steady or un-steady period appearing in a 
certain time also follows the poison distribution with different parameter λ . The paper does 
not discuss these for the limit to its length. 

3.1.4 Statistical characteristic of the steady or un-steady duration time 
When Ad Hoc network topology is in the steady state, the duration of which is called as 
steady duration time, otherwise, called as un-steady duration time. Because the steady 
duration time is a continuous stochastic variable, the statistical analysis method on the data 
about steady duration time in Fig. 9(d) is different from that on the number of steady period 
appearing in a certain time. Therefore, we divide the analysis method into three steps as the 
followings. 
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Zone number: i 1 2 3 4 5 6 7 8 9 10 
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| |pnmi i−  15.0 10.6 13.8 9.2 2.2 2.5 0.3 0.6 0.5 0.1 

2
( )pnmi i

pn i

−
 1.43 1.28 3.90 3.11 0.32 0.74 0.02 0.14 0.17 0.01 

Table 4. 2χ fit hypothesis testing table about steady duration time 

Step 3. To analyze on the steady duration time 
According to the data in the anterior three lines in table 4, the probability distribution of 
steady and un-steady duration time in Fig. 9(d) is shown as the Fig. 11 and Fig. 12 
respectively. If we connect the middle points in the upper side line of the each rectangle to 
construct a fold line, when n and l are big enough, the fold line is approximate to the PDF 
curve of the stochastic variable, the steady or un-steady duration time, according to the 
probability statistic theory as in Fig. 11 and 12.  
The larger is the scale size of data sample, the steady duration time, the smaller is the each 
zone, and PDF curve of the steady duration time of Ad Hoc network topology is more 
precise. According to the curve in Fig. 11, we could also likely arrive at the inconclusive 
hypothesis that the steady duration time approximately follows the exponential 
distribution. Next, we will use 2χ  fit hypothesis testing method to verify this hypothesis. At 
first, we put forward the following hypothesis test problem. 
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Fig. 12. PDF of un-steady duration time 

0H : The steady duration time follows the exponential distribution, 

1H : The steady duration time does not follow the exponential distribution. 
According to analysis on the data in Fig. 9(d), we could obtain 332 data sample about the 
steady duration time. The analysis result about the 332 data sample is shown as in the table 
2. Next, we will discuss the hypothesis test problem in the following three steps as the 
similar to that in section 3.1. 
Step 1. To compute parameter λ  in exponential distribution by using the maximum 

likelihood estimate under the condition that hypothesis 0H  is true. 
If the sample of stochastic variable X , the steady duration time, is denoted as 
xi , 0,1,..., ( 331)i n n= = , the maximum likelihood function about parameter λ  
could be expressed as formula (30). 

              ( ) exp( )
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i

λ λλ= − ∑
=

 (30) 

Though implementing the logarithmic operation on both sides of formula (30), the 
logarithmic maximum likelihood function could be expressed as formula (31). 

              ln ( ) ln
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n
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i
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=
  (31) 

In order to let the formula (31) equal to its maximum, we implement the differential 
coefficient operation for parameter λ on both sides of formula (31), and let it equal 
to zero as the formula (32). 
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2
( )pnmi i

pn i

−
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Table 4. 2χ fit hypothesis testing table about steady duration time 
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Fig. 12. PDF of un-steady duration time 

0H : The steady duration time follows the exponential distribution, 

1H : The steady duration time does not follow the exponential distribution. 
According to analysis on the data in Fig. 9(d), we could obtain 332 data sample about the 
steady duration time. The analysis result about the 332 data sample is shown as in the table 
2. Next, we will discuss the hypothesis test problem in the following three steps as the 
similar to that in section 3.1. 
Step 1. To compute parameter λ  in exponential distribution by using the maximum 

likelihood estimate under the condition that hypothesis 0H  is true. 
If the sample of stochastic variable X , the steady duration time, is denoted as 
xi , 0,1,..., ( 331)i n n= = , the maximum likelihood function about parameter λ  
could be expressed as formula (30). 

              ( ) exp( )
1

nnL xi
i

λ λλ= − ∑
=

 (30) 

Though implementing the logarithmic operation on both sides of formula (30), the 
logarithmic maximum likelihood function could be expressed as formula (31). 

              ln ( ) ln
1

n
L n xi

i
λ λ λ= − ∑

=
  (31) 

In order to let the formula (31) equal to its maximum, we implement the differential 
coefficient operation for parameter λ on both sides of formula (31), and let it equal 
to zero as the formula (32). 

                ln ( ) 0
( ) 1

nd L n
xid i

λ
λ λ

= − =∑
=

  (32) 
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  Through computing the formula (32), the maximum likelihood estimator of 
parameter λ  in exponential distribution could be expressed as formula (33). 

  1 1

1

n Xnxi
i

λ = =

∑
=

  (33)       

Noted that the maximum likelihood estimate of parameter λ  also has two 
attributes, such as, an un-bias and effective estimate. To the limit of this paper, we 
ignore its proof. According to analysis on data in table 4, we could easily obtain the 
estimate value of parameter λ as λ :   

1 1
1.7131

1

n
ivin i

λ = =

∑
=

 

Step 2. To compute the test statistic variable: 
2( )

1

n pnmi iV
pni i

−
= ∑

=
. According to analysis on 

the data in table 4,  the value of the test statistic variable could be obtained as 
11.12v = . 

Step 3.  Under the condition that significance levelα  is equal to 0.05, there exists the 
inequation relation between the theoretical value and the statistical one as 

2 2( 1) (9 1) 15.5070.05r vχ χα − = − = > . 
This in-equation relation means that the test statistic variable v does not belong to the reject 
range, therefore, we have to refuse the hypothesis 1H , and accept another hypothesis 0H . It 
is reasonable for us to believe that the steady duration time follows the exponential 
distribution with the 1

1.713λ = =0.584, when we choose RWP mobility model in a certain 

mobile scene as our research object. At the same time, we could also prove that the un-
steady duration time in the whole simulation time follows the exponential distribution 
with 1.276λ = . In the same way, when the statistical time is equal to different values, such 
as 15s, 20s, and so on, or when we choose other different mobility models, such as RW, 
Freeway, Manhattan and RPGM, we could also safely arrive at the conclusion that the 
steady or un-steady duration time follows the exponential distribution with different 
parameter λ . The paper does not discuss these for the limit to its length. 

3.1.5 Markov stochastic process analysis method 
According to the analysis result above, the dynamic characteristic of Ad Hoc network 
topology mainly embodies the following two points: one is that there is two states about Ad 
Hoc network topology, that is, the steady state and the un-steady state. Specially, the 
number of steady state or un-steady state appearing in a certain time follows the poison 
distribution with parameter λ . Another is that the steady or un-steady duration time 
follows the exponential distribution with parameter 'λ . Therefore, we could easily arrive at 
the theorem 1. 
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Theorem 1 The dynamic varying process of Ad Hoc network topology is actually a 
continuous time and discrete state Markov stochastic one. 
Proof: 
When the data of Ad Hoc network topology snapshots with the snapshot time set as 0.25s is 
compared with that snapshot time set as 0.125s about RWP, RW, RPGM, Freeway and 
Manhattan mobility models, we find that the absolute error between them is less than 1%. 
Therefore, it is reasonable for us to consider that when the snapshot time is small enough, 
the states of the two consecutive Ad Hoc network topology snapshots does not vary except 
of the skip varying of state. This shows that time of MM is comprised of a serial of the 
steady and un-steady duration time periodically as in Fig. 13,  where t1~t4 represent each 
different steady duration time, and s1~s4 the different un-steady ones , which could be 
achieved by counting the states of all the Ad Hoc network topology snapshots with small 
snapshot time. 
 

T

t1 t2 t3 t4s1 s2 s3 s4

 
T: time, t1~t4: the steady duration time, s1~s4: the un-steady duration time 

Fig. 13. Time sequence 

If the state space is set as { , 0}( {0,1})I ni in n= ≥ ∈ , where “0” denotes the steady state and 
“1” the un-steady state, for any time 0 ...1 2 1t t t tn n≤ < < < < +  and the its corresponding 
states 1, 2,..., , 1 Ii i i in n ∈+ , there exists the following formula:  

    { ( ) | ( ) , ( ) ,..., ( ) }1 1 1 1 2 2P X X X Xt i t i t i t in n n n= = = =+ +  

 { ( ) | ( ) }1 1P X Xt i t in n n n= = =+ +   (34) 

According to formula (34), the state of Ad Hoc network topology snapshot is not only 
correlative merely to that of its former one, but also a discrete stochastic variable. Further 
more, the duration time of each state, that is, the steady or un-steady duration time is a 
continuous ones. Therefore, the theorem 1 is proved. 
According to the analysis results in above section, if the Ad Hoc network topology is in 
steady state (denoted as “0”)now, after a steady duration time in this state, it transfers to the 
un-steady state (denoted as “1”), and the un-steady duration time keeps to the exponential 
distribution with parameter 1λ . However, the steady duration time follows the same 
distribution with parameter 2λ . Therefore, the density matrix of this Markov stochastic 
process could be denoted as the following Q . 

 
1λ1λ−

2λ 2λ−
 

According to the forward differential equation of continuous time Markov stochastic 
process[19,20], '( ) ( )t P t QP = , the following differential equations (35) could be obtained. 
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' ( ) ( ) ( )1 200 00 01p p pt t tλ λ= − +
' ( ) ( ) ( )1 201 00 01p p pt t tλ λ= −
' ( ) ( ) ( )1 210 10 11p p pt t tλ λ= +−
' ( ) ( ) ( )1 211 10 11p p pt t tλ λ= −

 

  

(35)

 
According to the probability theory, there exists the following restriction condition. 

              

( ) 1 ( )00 01p pt t= −

( ) 1 ( )11 10p pt t= −

 

                       
If we use the equation ( ) 1 ( )01 00p pt t= −  to replace the ( )01p t  in the first differential 
equation of formula (35), then the following equation could be obtained. 

' ( ) ( ) ( )2 1 200 00p pt tλ λ λ= − +  

Let ( )00 tQ  be equal to ( )1 2 ( )00
tp te λ λ+ , that is, ( )( ) 1 2 ( )00 00

tpt tQ e λ λ+= ,Then to 
implement the differential coefficient operation on both sides of this equation for the 
parameter t , we could get the formula (36). 

                '' ( ) ( )( ) ( ) 1 2 ( ) 1 2 ( )1 200 00 00
t tp pt t tQ e eλ λ λ λλ λ + += + +  (36) 

To multiply the first equation of the formula (35) by ( )1 2 te λ λ+  on its both sides, the 
formula (36) could be simplified as the following formula (37). 

 ' ( )( ) 1 2200
ttQ e λ λλ +=  (37) 

Through implementing the integral operation on the both sides of the formula (37) and 
adopting the initial condition: (0) 100p = , we could finally obtain the following forecast 
experimental formula (38) and (39).  

         2 ( )( ) (1 1 2 )00 1 2
tp t eλ λ λ

λ λ
− += +

+
  (38) 

         1 ( )( ) ( 1 2 )1 211 1 2
tp t e λ λλ λ

λ λ
− += +

+
 (39) 

Formula (38) means that if the Ad Hoc network topology is in the steady state now, after 
time t, the probability that it is still in steady state is ( )00p t . Formula (39) means that if the 
Ad Hoc network topology is in the un-steady state now, after time t, the probability that it is 
still in un-steady state is ( )11p t . Therefore, formula (38) and (39) are called as the Ad Hoc 
network topology steady and un-steady duration time forecast experimental formula 
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respectively. Next, we use the concept of opposite events in probability theory to obtain 
warning experimental formal (40) and (41). 

          1 ( )( ) 1 ( ) (1 1 2 )01 00 1 2
tp t p t eλ λ λ

λ λ
− += − = −

+
 (40) 

 2 ( )( ) 1 ( ) (1 1 2 )10 11 1 2
tp t p t eλ λ λ

λ λ
− += − = −

+
 (41) 

Formula (40) means that if the Ad Hoc network topology is in the steady state now, after 
time t, the probability that its state varies as un-steady one is ( )01p t . While formula (41) 
means that if the Ad Hoc network topology is in the un-steady state now, after time t, the 
probability that its state varies as steady one is ( )10p t . When time is set as 4s and 10s 
respectively, the experimental probability about state keeping invariable and varying  is 
shown as the Fig. 14,15and 16 according to the forecast formula (38),(39)and the  warning 
formula (40),(41), where x axis denotes the parameter of exponential distribution 1λ , y axis 
the parameter 2λ , and z axis denotes the probability value. 
In order to understand the rule that the parameter of exponential distribution , 1λ  and 2λ , 
varies with time , we set 2λ  as 1.276  and 1λ  as 0.584 which are the same values as the 
analysis results in section 3.2, the experimental probability about state keeping invariable 
and varying with 1λ or 2λ  and time could also be obtained according to the forecast 
formula (38),(39), and the warning formula (40),(41), but  they are not shown for the limited 
length of paper. 
As shown in Fig 14~16, we could safely arrive at the following conclusion: (1) P01 and P11 
increases, while P00 and P10 decrease with the increment of parameter 1λ . (2) P00 and P10 
increase, while P01 and P11 decrease with the increment of parameter 2λ . (3) P01 and P10 
increases, while P00 and P11 decrease with the increment of time t.  
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Fig. 14. Experimental probability about forecast and warning formula with t=4s 
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Fig. 14. Experimental probability about forecast and warning formula with t=4s 
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Fig. 15. Experimental probability about forecast and warning formula with t=8s 
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Fig. 16. Experimental probability about forecast and warning formula with t=10s 

If the number of steady period appearing in a certain time is larger than 2, with the 
increment of parameter 1λ  in passion distribution, the number of steady period appearing 
will becomes smaller according to the progression theory, that is, the probability of Ad Hoc 
network topology keeping steady period will decrease. Therefore, P01 and P11 increases, 
while P00 and P10 decrease with the increment of 1λ  in a certain time. If steady duration 
time is lager than 1.0s, with the increment of parameter 2λ  in exponential distribution, the 
steady duration time will become larger according to the progression theory, that is, the 
probability of Ad Hoc network topology keeping steady period will increase. Therefore, P01 
and P11 decreases, while P00 and P10 increase with the increment of parameter 2λ in a 
certain time. With the increment of time t, the probability of Ad Hoc network topology 
keeping its former state(i.e., steady state or un-steady state) will become smaller. Therefore, 
P01 and P10 increase, while P00 and P11 decrease with the increment of time t with a certain 
parameters 1λ and 2λ .  
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In a practical Ad Hoc network application system, we could use GPS or other position 
location technology to obtain the position of mobile nodes in any moment, instead of 
analyzing on the scene file. Next we could use the computing and analysis method in the 
paper to obtain the dynamic characteristic of Ad Hoc network topology, which could be 
used for performance evaluation and optimization of Ad Hoc network.  

3.2 Performance inference method in ad hoc network 
At present, Ad Hoc network performance measurement mainly focus on traditional network 
intra-measurement technique. [49][50] bring forth to use active probing in Ad Hoc network to 
measure available bandwidth. [51] puts forward a DEAN (Delay Estimation in Ad Hoc 
Networks) protocol, in which neighbor nodes uses Hello message to exchange delay time 
between each other, that is, to measuring delay time needs the collaboration of intra-nodes. All 
the research above actually is traditional intra-measurement, which has many faults as 
described above. Above all, there are many theory problems to be solved in Ad Hoc network 
measurement. At fist, how to deal with the influence of dynamic characteristic of network 
topology on performance measurement is a key issue. Second, measurement model and 
inference method is another key issue to be dealt with in NT measurement of Ad Hoc network. 

3.3 Performance inference based on linear analysis model 
In the process of the performance measurement on Ad Hoc network based on End-to-End 
measurement technology, the dynamic characteristic of link topology directly influences the 
measurement results. Yao et al. [52] consider that if the measurement could be completed 
under the condition that link topology remains relatively invariable, which maybe improve 
the veracity and precision of performance measurement. In his pervious works, the 
positions of mobile nodes in Ad Hoc networks at any moment could be obtained through 
link topology snapshots capturing algorithms according to analyzing on the scenario files of 
mobility models, and then the serials of snapshots of physical topology could be archived. 
The different periods during which physical topology is invariable can be gained by 
analyzing on the snapshots statistically, which is called as measurement window time in 
this paper. According to the results of analysis on the scenario files of RW, RWP, RGMP, 
and Manhattan mobility models, we could safely arrive at the conclusion: measurement 
window time will appear periodically in the whole simulation time. 
During measurement window time, since the state of link in Ad Hoc network could not 
vary, the inference results of link performance based on the samples of End-to-End 
measurement could reflect the interior link characteristics effectively. Yao et al.[52] call this 
phenomenon as time validity in the measurement of Ad Hoc network. The next section  
presents a interior link delay reference algorithm of Ad Hoc network on the basis of End-to-
End measurement method[53]. The main content of this algorithm is as followings: First to 
obtain the measurement time window through a link topology snapshot algorithm, Second 
to build up a measurement model and linear delay analysis model for Ad Hoc networks, 
Third to complete End-to-End measurement, Forth to refer interior link delay of Ad Hoc 
network according to measurement data sample, correlation among mobile nodes in Ad 
Hoc network topology, linear delay analysis model and mathematical statistics theory. 

3.3.1 Link delay linear analysis model 
On the assumption that we have done the measurement experiments m rounds. Each round 
we could get the End-to-End delay vector of receiver i  denoted as { , ,..., },1 ,2 ,y y yYi i i i m=  
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Fig. 15. Experimental probability about forecast and warning formula with t=8s 
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Fig. 16. Experimental probability about forecast and warning formula with t=10s 

If the number of steady period appearing in a certain time is larger than 2, with the 
increment of parameter 1λ  in passion distribution, the number of steady period appearing 
will becomes smaller according to the progression theory, that is, the probability of Ad Hoc 
network topology keeping steady period will decrease. Therefore, P01 and P11 increases, 
while P00 and P10 decrease with the increment of 1λ  in a certain time. If steady duration 
time is lager than 1.0s, with the increment of parameter 2λ  in exponential distribution, the 
steady duration time will become larger according to the progression theory, that is, the 
probability of Ad Hoc network topology keeping steady period will increase. Therefore, P01 
and P11 decreases, while P00 and P10 increase with the increment of parameter 2λ in a 
certain time. With the increment of time t, the probability of Ad Hoc network topology 
keeping its former state(i.e., steady state or un-steady state) will become smaller. Therefore, 
P01 and P10 increase, while P00 and P11 decrease with the increment of time t with a certain 
parameters 1λ and 2λ .  
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In a practical Ad Hoc network application system, we could use GPS or other position 
location technology to obtain the position of mobile nodes in any moment, instead of 
analyzing on the scene file. Next we could use the computing and analysis method in the 
paper to obtain the dynamic characteristic of Ad Hoc network topology, which could be 
used for performance evaluation and optimization of Ad Hoc network.  

3.2 Performance inference method in ad hoc network 
At present, Ad Hoc network performance measurement mainly focus on traditional network 
intra-measurement technique. [49][50] bring forth to use active probing in Ad Hoc network to 
measure available bandwidth. [51] puts forward a DEAN (Delay Estimation in Ad Hoc 
Networks) protocol, in which neighbor nodes uses Hello message to exchange delay time 
between each other, that is, to measuring delay time needs the collaboration of intra-nodes. All 
the research above actually is traditional intra-measurement, which has many faults as 
described above. Above all, there are many theory problems to be solved in Ad Hoc network 
measurement. At fist, how to deal with the influence of dynamic characteristic of network 
topology on performance measurement is a key issue. Second, measurement model and 
inference method is another key issue to be dealt with in NT measurement of Ad Hoc network. 

3.3 Performance inference based on linear analysis model 
In the process of the performance measurement on Ad Hoc network based on End-to-End 
measurement technology, the dynamic characteristic of link topology directly influences the 
measurement results. Yao et al. [52] consider that if the measurement could be completed 
under the condition that link topology remains relatively invariable, which maybe improve 
the veracity and precision of performance measurement. In his pervious works, the 
positions of mobile nodes in Ad Hoc networks at any moment could be obtained through 
link topology snapshots capturing algorithms according to analyzing on the scenario files of 
mobility models, and then the serials of snapshots of physical topology could be archived. 
The different periods during which physical topology is invariable can be gained by 
analyzing on the snapshots statistically, which is called as measurement window time in 
this paper. According to the results of analysis on the scenario files of RW, RWP, RGMP, 
and Manhattan mobility models, we could safely arrive at the conclusion: measurement 
window time will appear periodically in the whole simulation time. 
During measurement window time, since the state of link in Ad Hoc network could not 
vary, the inference results of link performance based on the samples of End-to-End 
measurement could reflect the interior link characteristics effectively. Yao et al.[52] call this 
phenomenon as time validity in the measurement of Ad Hoc network. The next section  
presents a interior link delay reference algorithm of Ad Hoc network on the basis of End-to-
End measurement method[53]. The main content of this algorithm is as followings: First to 
obtain the measurement time window through a link topology snapshot algorithm, Second 
to build up a measurement model and linear delay analysis model for Ad Hoc networks, 
Third to complete End-to-End measurement, Forth to refer interior link delay of Ad Hoc 
network according to measurement data sample, correlation among mobile nodes in Ad 
Hoc network topology, linear delay analysis model and mathematical statistics theory. 

3.3.1 Link delay linear analysis model 
On the assumption that we have done the measurement experiments m rounds. Each round 
we could get the End-to-End delay vector of receiver i  denoted as { , ,..., },1 ,2 ,y y yYi i i i m=  
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( 1 i n≤ ≤ ), where n is the number of leaf node, and (1 ),y j mi j ≤ ≤  is the sample of stochastic 

variable ( [1, ], [0, ])i nY Yi i∈ ∈ ∞  . After the m times experiments have finished, the delay 
probability distribution of the End-to-End measurement could be obtained as: 

( ) { ( ), ( ),..., ( )}1 2P Y P P PY Y Yn= . If the estimated link delay probability distribution is 
denoted as ( ) { ( ), ( ),..., ( )}1 2P X P P PX X Xv= , then the maximum likelihood function could be 
expressed as formula (42):  

 ( ; ) ( , ,..., ; , ,..., ) ( ; )1 2 1 2
1

n
L Y X P P XY Y Y X X X Yn v i

i
= = ∏

=
  (42)  

When Formula (42) equals to the maximum, we use arg max ( ; )
1

n
X p XYiX

i
= ∏

=
, where 

( , ,..., )1 2X X X Xn= , as the estimated value of link delay X. However, the maximum 
likelihood estimation algorithm is very difficult to obtain the estimated value of link delay 
X for computing complexity. In order to obtain the link delay X, [25] adopts the 
expectation maximum (EM) algorithm including two procedures: E-step and M-step. The 
main problem about EM algorithm is that it could obtain the partially optimized solution, 
not the unitary optimized one. For the sake of computing complexity increasing by the 
scale of network, Pseudo-EM Algorithm[26]decomposes a large scale problem to several 
small scale ones. The maximum likelihood of these small scale problems could be 
expressed as: 

 ( , ,..., ; ) ( ; )1 2
1

n s s sL Y Y Y X P Y Xn i
i s S

= ∏ ∏
= ∈

  (43) 

where S is set of all small scale problems. The method to get the solution for Formula (43) is 
similar to that  for Formula (42). The Bayesian estimation method uses the former 
probability distribution of link delay to infer the posterior one, however, how to get the 
former probability distribution is a difficult work. 
The linear analysis model of delay will be presented next. As we all know, the delay of 

( )path i j→ , denoted as ( , )d i j , is the sum of all link delay along this path, denoted as ( )d k   
( ( ) { }k F j j∈ ∪ ), that is, 

 ( , ) ( )( ( ) { })d i j d k k F j j= ∈ ∪∑  (44) 

In the End-to-End measurement of Ad Hoc networks, the node i belongs to the set of S, and 
node j to the set of R. The task of link delay inference is to infer ( )d k according to the 
measurement samples of ( , )d i j . If we only utilize one formula, it is impossible to infer ( )d k . 
In order to obtain the link delay, we must use multi-formula and constitute simultaneous 
equations to resolve the link delay. The simultaneous equations could be expressed as 
formula (45). 

    Y AX ε= +  (45) 
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Formula (45) is referred to as interior link delay linear analysis model of Ad Hoc network in 
this paper. In Formula (45), Y is the delay of path which could be obtained or observed in 
End-to-End measurement procedure. cis the traffic matrix, and ε is the noisy which is 
ignored in this paper. X is the interior link delay of Ad Hoc network. Our task is that on the 
condition of Y and A known, ε  ignored, how to resolve X . The solution of X is concerned 
with the types of A . In the next section, we will present the algorithm of link delay 
inference on the condition of A  being square traffic matrix and non-square traffic matrix. 

3.3.2 Algorithm of link delay inference 
To compute the formula (45) is equivalent to resolve a non-homogeneous linear equations 
according to linear algebra theory. According to different type of traffic matrix A , we will 
divide two types(i.e., square traffic matrix and non-square traffic matrix) to discuss how to 
resolve the solution space for the formula (45) in this section.  
Square Traffic Matrix When the traffic matrix is a square one, the solution for the non-
homogeneous linear equations as formula (45) is concerned with the rank of the traffic 
matrix A . If the rank of traffic matrix A  is full, there is a unique solution for the non-
homogeneous linear equations, otherwise, the question of solution for the equation in 
section 3.1 is translated to that of a non-square traffic matrix problem. Now we only 
consider the A  as a full rank traffic matrix. At first we could obtain the reverse matrix of A 
denoted as 1A− , the interior link delay can be expressed as formula (46). 

 1X YA−= ×   (46) 

If the sender node sends N probes to every leaf nodes in Fig. 1(a) respectively, then every 
link delay in Ad Hoc networks could be achieved according to Formula (46) at different N 
time. However, we do not care about the link delay at different time, but are concerned 
about the link delay probability distribution during measurement window time, which 
could be obtained through analyzing on the link delay statistically during measurement 
window time based on the discrete link delay time. In practice, it is not possible to construct 
a square traffic matrix A in Ad Hoc networks. There is only one case that if there are N 
mobile nodes in Ad Hoc network, only one node is the sender, the other N-1 nodes are all 
leaf nodes. Under this condition, it is not necessary to use End-to-End measurement 
technology to infer the link delay, since there is only one step between the sender and leaf 
nodes, we could obtain the link delay directly through measurement. 
Non-square Traffic Matrix  When the rank of traffic matrix A is not full, or the traffic matrix 
A is a non-square matrix, the problem in section A is translated to how to resolve a non-
homogenous linear equations. We will discuss this problem from the following two sides. 
(1) When the rank of the traffic matrix A is not equal to that of its augmentation matrix(i.e., 

|A Y ) , there is no solution for the non-homogenous linear equations. (2) When the rank of 
the traffic matrix A  is equal to that of its augmentation matrix, there is a solution space for 
the  non-homogenous linear equations. If the traffic matrix A  is denoted as ( ),aA i j m n= × , 

and rank(A)=rank( |A Y )=r( r n< ), then the solution space is composed of n-r characteristic 
solutions (i.e., { }(1 )i n riη ≤ ≤ − ) for  the homogenous linear equations and one special 
solution(i.e., β ) for the non- homogenous linear equations. Therefore, the solution space of 
the non-homogeneous linear equations could be denoted as the following formula (47). 
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( 1 i n≤ ≤ ), where n is the number of leaf node, and (1 ),y j mi j ≤ ≤  is the sample of stochastic 

variable ( [1, ], [0, ])i nY Yi i∈ ∈ ∞  . After the m times experiments have finished, the delay 
probability distribution of the End-to-End measurement could be obtained as: 
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( , ,..., )1 2X X X Xn= , as the estimated value of link delay X. However, the maximum 
likelihood estimation algorithm is very difficult to obtain the estimated value of link delay 
X for computing complexity. In order to obtain the link delay X, [25] adopts the 
expectation maximum (EM) algorithm including two procedures: E-step and M-step. The 
main problem about EM algorithm is that it could obtain the partially optimized solution, 
not the unitary optimized one. For the sake of computing complexity increasing by the 
scale of network, Pseudo-EM Algorithm[26]decomposes a large scale problem to several 
small scale ones. The maximum likelihood of these small scale problems could be 
expressed as: 
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where S is set of all small scale problems. The method to get the solution for Formula (43) is 
similar to that  for Formula (42). The Bayesian estimation method uses the former 
probability distribution of link delay to infer the posterior one, however, how to get the 
former probability distribution is a difficult work. 
The linear analysis model of delay will be presented next. As we all know, the delay of 

( )path i j→ , denoted as ( , )d i j , is the sum of all link delay along this path, denoted as ( )d k   
( ( ) { }k F j j∈ ∪ ), that is, 

 ( , ) ( )( ( ) { })d i j d k k F j j= ∈ ∪∑  (44) 

In the End-to-End measurement of Ad Hoc networks, the node i belongs to the set of S, and 
node j to the set of R. The task of link delay inference is to infer ( )d k according to the 
measurement samples of ( , )d i j . If we only utilize one formula, it is impossible to infer ( )d k . 
In order to obtain the link delay, we must use multi-formula and constitute simultaneous 
equations to resolve the link delay. The simultaneous equations could be expressed as 
formula (45). 

    Y AX ε= +  (45) 
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Formula (45) is referred to as interior link delay linear analysis model of Ad Hoc network in 
this paper. In Formula (45), Y is the delay of path which could be obtained or observed in 
End-to-End measurement procedure. cis the traffic matrix, and ε is the noisy which is 
ignored in this paper. X is the interior link delay of Ad Hoc network. Our task is that on the 
condition of Y and A known, ε  ignored, how to resolve X . The solution of X is concerned 
with the types of A . In the next section, we will present the algorithm of link delay 
inference on the condition of A  being square traffic matrix and non-square traffic matrix. 

3.3.2 Algorithm of link delay inference 
To compute the formula (45) is equivalent to resolve a non-homogeneous linear equations 
according to linear algebra theory. According to different type of traffic matrix A , we will 
divide two types(i.e., square traffic matrix and non-square traffic matrix) to discuss how to 
resolve the solution space for the formula (45) in this section.  
Square Traffic Matrix When the traffic matrix is a square one, the solution for the non-
homogeneous linear equations as formula (45) is concerned with the rank of the traffic 
matrix A . If the rank of traffic matrix A  is full, there is a unique solution for the non-
homogeneous linear equations, otherwise, the question of solution for the equation in 
section 3.1 is translated to that of a non-square traffic matrix problem. Now we only 
consider the A  as a full rank traffic matrix. At first we could obtain the reverse matrix of A 
denoted as 1A− , the interior link delay can be expressed as formula (46). 

 1X YA−= ×   (46) 

If the sender node sends N probes to every leaf nodes in Fig. 1(a) respectively, then every 
link delay in Ad Hoc networks could be achieved according to Formula (46) at different N 
time. However, we do not care about the link delay at different time, but are concerned 
about the link delay probability distribution during measurement window time, which 
could be obtained through analyzing on the link delay statistically during measurement 
window time based on the discrete link delay time. In practice, it is not possible to construct 
a square traffic matrix A in Ad Hoc networks. There is only one case that if there are N 
mobile nodes in Ad Hoc network, only one node is the sender, the other N-1 nodes are all 
leaf nodes. Under this condition, it is not necessary to use End-to-End measurement 
technology to infer the link delay, since there is only one step between the sender and leaf 
nodes, we could obtain the link delay directly through measurement. 
Non-square Traffic Matrix  When the rank of traffic matrix A is not full, or the traffic matrix 
A is a non-square matrix, the problem in section A is translated to how to resolve a non-
homogenous linear equations. We will discuss this problem from the following two sides. 
(1) When the rank of the traffic matrix A is not equal to that of its augmentation matrix(i.e., 

|A Y ) , there is no solution for the non-homogenous linear equations. (2) When the rank of 
the traffic matrix A  is equal to that of its augmentation matrix, there is a solution space for 
the  non-homogenous linear equations. If the traffic matrix A  is denoted as ( ),aA i j m n= × , 

and rank(A)=rank( |A Y )=r( r n< ), then the solution space is composed of n-r characteristic 
solutions (i.e., { }(1 )i n riη ≤ ≤ − ) for  the homogenous linear equations and one special 
solution(i.e., β ) for the non- homogenous linear equations. Therefore, the solution space of 
the non-homogeneous linear equations could be denoted as the following formula (47). 
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1

n r
S ki i

i
βη

−
= × +∑

=
 (47) 

Since the solution space S comprised of infinite solutions, it is necessary to limit the scale of 
solution space. The link l ( l L∈ ) delay inference result is as formula (47), which is shared by 
χ  paths.  If the End-to-End delay of the χ  paths is denoted as  (1 )jj χ≤ ≤Τ , the minimum 
delay of the χ  paths Γ could be expressed as the following formula (48). 

 min{ (1 )}jj χΓ = ≤ ≤Τ  (48) 

Then the solution space S could be reduced to Ω : ( , )0Sk kj jj jβ βη η∑Ω = × + Ω ⊂ × + ≤ Γ≤ . Next it 

is similar to the section A that we could obtain any link delay probability distribution through 
analyzing  on the N times of solution space based on the discrete delay time. The unique 
difference between the square traffic matrix and non-square traffic matrix is that the lessen 
solution space maybe belongs to many discrete bins, but unique solution only to one bin. The 
algorithm of interior link delay probability distribution is as the following Algorithm  
 
Step 1. To discrete the link delay time. 
Step 2. 0,Count = and to compute the rank of traffic matrix A and augmentation matrix 

|A Y . If  
               ( ) ( | )rank A rank A Y≠  is true, Goto step10. 
Step 3. To compute the characteristic solution for the homogenous linear equations as 

{ }(1 )i n riη ≤ ≤ −  
Step 4. To compute the special solution for the non-homogenous linear equations as β  
Step 5. To construct the solution space for the non- 

Homogenous linear equations as 
1

n r
S ki i

i
βη

−
= × +∑

=
 

Step 6. To reduce the scale of S to Ω . 
Step 7. Count + + . 
Step 8. If Count N< (N is the times of End-to-End measurement),  Go to Step3. 
Step 9. To compute the link delay probability distribution through analyzing on the link 

delay in all N times statistically based on discrete delay time. 
Step 10. Finish. 
 
Delay time discrete method Let Θ  be a set of finite delay, and link delay time (1 15)jjθ ≤ ≤  is 

discretized to Θ , then  jθ  takes a value in Θ . If we suppose that discrete parameter is α , 

then bin size of delay time is 1
α ,  and the set Θ  could be defined as following formula (49) 

based on the fixed bin size delay time discrete model.         

  1 2{0, , ,... ...,1}( [0, ])i i αα α αΘ = ∈    (49) 

Then discrete function of delay time could be defined as the following formula (50) 
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( )Discrete Function jθ− =

0 1[0, ]2jθ α∈
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1 1
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2 2
i i

jθ α α α α
∈ − +

1
2 1

( ,1]
2j
α

θ α
−

∈
( [0, ], [1, ])i jα∈ ∈ ∞

 

(50)

 
The value of α is an important factor to influence the reference accuracy and computing 
complexity. If α  is small, although more discrete delay time zone and reference accuracy 
could be obtained, the computing complexity will increase quickly. Otherwise, in despite of 
computing complexity being reduced, discrete delay time zone and reference accuracy will 
be reduced. Therefore, it is necessary to make a compromise between computing complexity 
and reference accuracy according to difference application requirement. 

3.4 Link performance inference based on multi-sources measurement 
Yao et al.[54] presented a interior link loss rate reference algorithm of Ad Hoc network on 
the basis of End-to-End and multi-sources & multi-destinations measurement method. The 
main content of this algorithm is as followings: First to obtain the measurement time 
window through a link topology snapshot algorithm, Second to build up a measurement 
model and link loss analysis model for Ad Hoc networks, Third to complete End-to-End and 
multi-sources & multi-destinations measurement, Forth to refer interior link loss rate of Ad 
Hoc network according to measurement data sample, correlation among mobile nodes in 
Ad Hoc network topology, link loss analysis model and mathematical statistics theory. 
Results of simulation indicate that the loss rate reference algorithm based on multi-sources 
& multi-destinations measurement is not only better than on one-source & multi-
destinations measurement, but also the former has short computing time, which is very 
adaptable to interior link performance reference for Ad Hoc networks.  

3.4.1 Methodology and measurement framework  
We make the following assumption on routing behavior[55], (1) The routes from the sources 
to the destinations are fixed during the measurement period. (2) There is a unique path from 
each source to each destination. (3) Two paths from the same source to different receivers 
take the same route until they branch. Two paths from different sources to the same receiver 
use exactly the same set of links after they join.  (4) The routers and switches in the topology 
obey a first-in first-out policy for packets of the same class. In order to make the assumption 
A1 more reasonable, we seek to limit probing and keep the measurement period as short as 
possible. The assumptions A1 and A2 are motivated by the shortest-path nature of routing 
in the Internet and the situations of the load balancing and multiple-paths are not 
considered in the paper. The assumption A4 is reasonable as the measurement probes is 
steady flow from one source to one destination. 
Let [ , ]P a b  devotes the path from a to b; ( )H p  devotes the hop count of the path of p; 

[ ; , ]SP s i j  devotes the shared path of paths from the source s to the destinations i and j; 
[ , ; ]SP i j d  devotes the shared path of paths from the sources i and j to the destination d; 

[ , ]hP a b⎡ ⎤⎢ ⎥  devotes the portion path of [ , ]P a b  with hop count is h and the path begins from a; 
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Since the solution space S comprised of infinite solutions, it is necessary to limit the scale of 
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Delay time discrete method Let Θ  be a set of finite delay, and link delay time (1 15)jjθ ≤ ≤  is 

discretized to Θ , then  jθ  takes a value in Θ . If we suppose that discrete parameter is α , 

then bin size of delay time is 1
α ,  and the set Θ  could be defined as following formula (49) 

based on the fixed bin size delay time discrete model.         

  1 2{0, , ,... ...,1}( [0, ])i i αα α αΘ = ∈    (49) 

Then discrete function of delay time could be defined as the following formula (50) 
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destinations measurement, but also the former has short computing time, which is very 
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We make the following assumption on routing behavior[55], (1) The routes from the sources 
to the destinations are fixed during the measurement period. (2) There is a unique path from 
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take the same route until they branch. Two paths from different sources to the same receiver 
use exactly the same set of links after they join.  (4) The routers and switches in the topology 
obey a first-in first-out policy for packets of the same class. In order to make the assumption 
A1 more reasonable, we seek to limit probing and keep the measurement period as short as 
possible. The assumptions A1 and A2 are motivated by the shortest-path nature of routing 
in the Internet and the situations of the load balancing and multiple-paths are not 
considered in the paper. The assumption A4 is reasonable as the measurement probes is 
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[ , ]kP a b⎢ ⎥⎣ ⎦  devotes the portion path of [ , ]P a b  with hop count is h and the path ends with a; 

[ , ]h a b⎡ ⎤⎢ ⎥ devotes the thh link in the path [ , ]P a b . Let ( )pψ ( ( )pϕ ) devotes the minimal delay 
of the large packets (the small packet) which probe the path p. The minimal delay (also 
called stable delay) includes the propagation delay, transmission delay and the stable 
processing delay and does not include the queuing delay. In this paper, the probe with the 
minimal delay is called the valid probe, and the size of the small packet is set 56 bytes (the 
minimum packet size in IP) and the size of the large packet is set 1500 bytes (the maximum 
packet size in IP). Let ( )pλ  devotes the minimal delay difference of the path p measured by 
the large packet and the small packet, so ( ) ( ) ( )p p pλ ψ ϕ= − . Then ( )pλ  is a path metric and 
has monotonicity and separability properties.  
The main process of the new methodology to identify the routing topology includes four 
steps. Firstly, we calculate the hop count of the path from the each source to each 
destination. Secondly, we infer the hop count of the share path for every 1-by-2 component. 
Thirdly, we infer the hop count of the share path for every 2-by-1 component. Fourthly, the 
routing topology is constructed by the topology construction algorithm based on hop count 
information  
Hop count of a path  In this step, we calculate the hop count of the path from the source i to 
the destination j by subtracting the left TTL value of a packet received by destination j 
(devoted by jttl ) from the initial TTL value (devoted by 0ttl ).  

0( [ , ]) jH P i j ttl ttl= −  

 

One source to two destinations  In this step, which contains two sub steps, we consider a 
single source (devoted by 0s , 0s S∈ ) transmitting probes to two destinations (devoted by i 
and j, ,i j R∈ ). In first step, as depicted in Figure 3(a), 0s  sends back-to-back packet pairs 
with the large packet destined for j and the small packet destined for i, in which the large 
packet is followed closely by the small packet. As the large packet and the small packet will 
be separate at the branching node, the share path of the large packet and the small packets is 

0[ ; , ]SP s i j . If the packet pair do not suffer the queuing delay, then  

0 0
0

( [ , ] ( [ ; , ])
; , 0 0( [ ; , ]) ( [ , ]))H P s i H SP s i j

s i jd SP s i j P s iψ ϕ −⎢ ⎥⎣ ⎦= + , 

 

where 
0 ; ,s i jd  devotes end-to-end stable delay of the small packet. 

In second step, we measure the delay difference of very physical link in the path from the 
source to the destination using a serial of the back-to-back packet pair, in which the large 
packet with the initial TTL value 0ttl  from 0 to ( [ , ])H P S i (specially , when the 0ttl  is set 0 
the source does not send the large packet)is followed closely by the small packet with the 
initial TTL value larger than ( [ , ])H P S i . As the large packet will be discarded by the internal 
node when the TTL number is reduced to zero, the share path of the large packet and the 

small packets is 0
0[ , ]ttlP s i⎡ ⎤⎢ ⎥ . If the packet pair do not suffer the queuing delay, we get the 

relationship of hop count and the delay difference, 
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Fig. 17. Packet pair probes for every 1-by-2 component. (a) The meathead of probing the 
delay difference of the share path 0[ ; , ]SP s i j  of each 1-by-2 component in the first sub step. 
(b) The meathead of probing the delay difference of every physical link in the path from 

0s to i in the second sub step.                           
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where 0
0 ,

ttl
s id  devotes end-to-end stable delay of the small packet with the TTL value of the 

large packet is 0ttl . Meanwhile, as depicted in Figure 4, we can get the follow formula: 

0
0 0

( [ ; , ])
; , ,

H SP s i j
s i j s id d= . 

So we can infer the hop count of the share path by  

0
0 0 0 00 [0, ( [ , ])] ; , ,( [ ; , ]) arg min{ } ttl

ttl H P s i s i j s iH SP s i j d d∈= − . 

Let 0( , , )M i ttl K devotes the digging measurements process, in which 0s  sends packet pair 
destined to i and large packets with initial TTL value 0ttl  and K measurements are collected 
in total. For each measurement 1,2,...,k K= , let 0

0 , ( )ttl
s ix k  denotes measured delay time, 

then   
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Fig. 17. Packet pair probes for every 1-by-2 component. (a) The meathead of probing the 
delay difference of the share path 0[ ; , ]SP s i j  of each 1-by-2 component in the first sub step. 
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Fig. 18. The relationship of the ttl0 and the delay difference. As the internal nodes may have 
different bandwidth, the increase values of delay difference produced at internal nodes may 
be not equal. So the points corresponding to delay differences are not placed on a straight 
line. 

0 0 0
0 0 0 0, , , ,( ) ( )ttl ttl ttl

s i s i s i s ix k d q k tσ= + + , 

Where 0
0 , ( )ttl

s iq k devotes the queuing time, 
0 ,s itσ  devotes the clock difference between the 

nodes 0s and i.  Similarly, let 
; ,0

( )
s i j

x k  denotes measured delay time of the share path in the 

first sub step, then  

0 0 0 0; , ; , ; , ,( ) ( )s i j s i j s i j s ix k d q k tσ= + + . 

For each type measurement we assume that these measurement results are independent and 
identically distributed; this assumption is reasonable if the probes are sufficiently separated 
in time. Then the hop count of the share path can be inferred by 0ttl  which makes the 
difference of minimal delay of packets (meathead 1) or the difference of the mean delay 
(meathead 2) reach the minimum value.  
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To simply the inference process and reduce the probing traffic load, we use the binary 

search algorithm to search 0
ˆ ( [ ; , ])H SP s i j  as the 0

01,2,..., ,min { ( )}ttl
k K s ix k= and 0

0 ,
1

1 ( )
K

ttl
s i

k
x k

K =
∑  have 

monotonicity property when K is large enough.  
Two sources to one destination For two sources (devoted by i and j ,i j S∈ ), the main 
process of measurement in our new methodology to infer the hop count of the share path to 
one destination (devoted by 0d , 0d R∈ ) also includes two sub steps and the first sub step is 

the same to the second sub step in second step above to measure 0
0,

ttl
i dd .  

In the second sub step, we measure the stable delay difference of the share path 0[ , ; ]SP i j d . 
As depicted in Figure 5, the sources i and j send small packet and the large packet destined 
for 0d  periodically.  
 

 
Fig. 19. The meathead of probing the delay difference of the share path of  each 2-by-1 
component. The sources i and j send small packet and the large packet destined 0d . If the 
large packet reach the joining node just after the small packet, then the interval equals the 
delay difference when they reach 0d . 

Let ism  and jsm  devotes the sending moment of the packet by the node i and the node j in 
the measurement periods; isrm ( ilrm ) and jsrm ( jlrm )devotes the receiving moment of the 
small packet (the large packet) sent by the node i and the node j; ( )sx k ( ( )lx k ) devotes the 
measured delay time of the small packet (the large packet).  
If the small valid packet and the large valid packet reach the joining node almost 
synchronously (this mean the interval time between and two packet is smaller than the 
minimal link delay difference in the path from the source to destination.), then difference of 
the received moment equals the stable delay difference on the share path.  
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Let ism  and jsm  devotes the sending moment of the packet by the node i and the node j in 
the measurement periods; isrm ( ilrm ) and jsrm ( jlrm )devotes the receiving moment of the 
small packet (the large packet) sent by the node i and the node j; ( )sx k ( ( )lx k ) devotes the 
measured delay time of the small packet (the large packet).  
If the small valid packet and the large valid packet reach the joining node almost 
synchronously (this mean the interval time between and two packet is smaller than the 
minimal link delay difference in the path from the source to destination.), then difference of 
the received moment equals the stable delay difference on the share path.  
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0( [ , ; ]) is jlSP i j d rm rmλ = −  
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Then we can infer the hop count of the share path by  
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To synchronize the valid packets of the same size from the two sources to the destination to 
reach the joining node synchronously, one source only need to adjust the sending time 
forwards (or backwards) by the difference of the received moment of the two packets, 
because if packets reach the destination synchronously, they must have reached the join 
node synchronously.  
To synchronize the valid packet of different size, we use the synchronization measurement 
process to adjust the sending moment. As the order of the valid packets reaching the joining 
node will remain to the destination, the destination can tell which valid packet reached the 
joining node firstly (secondly), and then inform the source to adjust the sending time 
backwards (forwards). In the synchronization measurement process, we keep the same ism  
and change jsm  using binary search algorithm to make the small valid packet and the large 
valid packet reach the joining node closely enough. To accelerate search process and to 
reduce the probing traffic load, we make advance measurements and use the measurement 
result to set the appropriate upper bound and the lower bound of jsm .  
In the advance measurements, as depicted in Figure 20, j sends small packets and large 
packets alternately, and i sends only small packets with the same period.  
If we change the sending moment of j from jsm  to j is jssm rm rm+ − , the small valid packets 
from the two sources will reach the joining node at the same. Meanwhile in another period 
the small packet from i will reach the joining first than the large packet from j. So the upper 
bound of jsm  can be set 'j is jssm rm rm+ − . In the same way, if we the change sending 
moment of node j to 'j is jlsm rm rm+ − , then the small packet from i and the large packet from 
j will reach the destination at the same time, that means the large packet reaches the joining 
packet firstly. So the lower bound of jsm  can be set 'j is jlsm rm rm+ − . After the advance 
measurements , the range of the jsm  is limited to 0( [ , ])P j dλ .   
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Fig. 20. The sending moment at the i and j, reaching moment at the joining node and the 
receiving moment at the 0d of valid probes in the advance measurements. The packets in 
lines a, b and c are the small packet sent by j, the large packet sent by j and the small packet 
sent by i. The packet in line d is the synchronized large packet sent by j.  

Algorithm computer the 0
ˆ( [ , ; ])SP i j dλ  

Input: the sources i, j and the destination 0d . 

Output: 0
ˆ( [ , ; ])SP i j dλ  

Precess: 
1. Set the initial sending moment ism  and jsm , and let j sends small packets and large 

packets alternately, and i sends only small packets with the same period. Make 
measurements for K times. 

2. Set [1, ] [1, ]' min { ( )} min { ( )}j k K is k K jshigh sm rm k rm k∈ ∈= + − , 

[1, ] [1, ]' min { ( )} min { ( )}j k K is k K jllow sm rm k rm k∈ ∈= + − , 'i ism sm= ,. 

While (
0[1, ( [ , ])] 0

ˆmin ( ( , ))h
h H P j dhigh low j dλ ⎡ ⎤⎢ ⎥
∈− < ) Do 

       ( ) / 2mid low high= +⎡ ⎤⎢ ⎥ ; 
       jsm mid= ; 

Let j sends small packets and i sends small packets periodically for K times; 
  If (

[1, ][1, ]min { ( )} min { ( )}
k Kk K is jlrm k rm k
∈∈ < ) 

Then high mid= ; 
Else low mid=  

End If  
End While 

jsm low= ; 

Let j sends small packets and i sends small packets periodically for K times; 
Return [1, ] [1, ]min { ( )} min { ( )}k K jl k K isrm k rm k∈ ∈− ; 
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because if packets reach the destination synchronously, they must have reached the join 
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joining node firstly (secondly), and then inform the source to adjust the sending time 
backwards (forwards). In the synchronization measurement process, we keep the same ism  
and change jsm  using binary search algorithm to make the small valid packet and the large 
valid packet reach the joining node closely enough. To accelerate search process and to 
reduce the probing traffic load, we make advance measurements and use the measurement 
result to set the appropriate upper bound and the lower bound of jsm .  
In the advance measurements, as depicted in Figure 20, j sends small packets and large 
packets alternately, and i sends only small packets with the same period.  
If we change the sending moment of j from jsm  to j is jssm rm rm+ − , the small valid packets 
from the two sources will reach the joining node at the same. Meanwhile in another period 
the small packet from i will reach the joining first than the large packet from j. So the upper 
bound of jsm  can be set 'j is jssm rm rm+ − . In the same way, if we the change sending 
moment of node j to 'j is jlsm rm rm+ − , then the small packet from i and the large packet from 
j will reach the destination at the same time, that means the large packet reaches the joining 
packet firstly. So the lower bound of jsm  can be set 'j is jlsm rm rm+ − . After the advance 
measurements , the range of the jsm  is limited to 0( [ , ])P j dλ .   
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Fig. 20. The sending moment at the i and j, reaching moment at the joining node and the 
receiving moment at the 0d of valid probes in the advance measurements. The packets in 
lines a, b and c are the small packet sent by j, the large packet sent by j and the small packet 
sent by i. The packet in line d is the synchronized large packet sent by j.  

Algorithm computer the 0
ˆ( [ , ; ])SP i j dλ  

Input: the sources i, j and the destination 0d . 

Output: 0
ˆ( [ , ; ])SP i j dλ  

Precess: 
1. Set the initial sending moment ism  and jsm , and let j sends small packets and large 

packets alternately, and i sends only small packets with the same period. Make 
measurements for K times. 
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While (
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h H P j dhigh low j dλ ⎡ ⎤⎢ ⎥
∈− < ) Do 

       ( ) / 2mid low high= +⎡ ⎤⎢ ⎥ ; 
       jsm mid= ; 

Let j sends small packets and i sends small packets periodically for K times; 
  If (

[1, ][1, ]min { ( )} min { ( )}
k Kk K is jlrm k rm k
∈∈ < ) 

Then high mid= ; 
Else low mid=  

End If  
End While 

jsm low= ; 

Let j sends small packets and i sends small packets periodically for K times; 
Return [1, ] [1, ]min { ( )} min { ( )}k K jl k K isrm k rm k∈ ∈− ; 
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Algorithm topology Identification  
Input: the source set S and the destination set D; ˆ ( [ , ])H P i j , i S∈ , j D∈ ; ˆ ( [ , ; ])H SP i j d , 

, ,i j S i j∈ ≠ , d D∈ ; ˆ ( [ ; , ])H SP s i j , s S∈ , , ,i j D i j∈ ≠ ; topology ,G S D=< ∅ >∪ . 
Output: identified topology G  
Precess:  
1.  For (each node i in S)  

For (each node j in D) Do  
   Inset ˆ ( [ , ]) 1H P i j − nodes and ˆ ( [ , ])H P i j links in the path from i to j; 

End For  
End For 

2. For (each node s in S)  
For (each two nodes i and j in D) Do  

    Merge 
ˆ ( [ ; , ])

[ , ]
H SP s i j

P s i
⎡ ⎤
⎢ ⎥  and 

ˆ ( [ ; , ])
[ , ]

H SP s i j
P s j
⎡ ⎤
⎢ ⎥ ; 

End For  
End For 

3. For (each node d in D)  
For (each two nodes i and j in S) Do  

Merge 
ˆ ( [ , ; ]) [ , ]H SP i j dP i d

⎢ ⎥⎣ ⎦  and 
ˆ ( [ , ; ]) [ , ]H SP i j dP j d

⎢ ⎥⎣ ⎦ ; 
End For  
End For 
Return G 

 
Delay Measurement and Clock Synchronization The methodology above need the condition 
that the clock of the measurement node have higher timing precision than the size of table 
delay difference of one-hop in the path from the source to destination. Furthermore, the 
system errors (such as the location errors) will be eliminated we computer the table delay 
difference, so only the random error influence the methodology accuracy. If the maximal 
bandwidth of link in the path is 1Gb/s, the timing precision should be higher than 10us 
which can be realized based on general PC[17]. So our methodology can be applied widely 
and has lower measurement cost than the meathead that need the assumption that the 
source and the destination have the strict clock synchronization, as to satisfy the assumption 
need deploy costly GPS receivers for every measurement node.  
Probing Traffic Load For the M-by-N network, the probe number of the probe packet can be 
computed by the follow formula approximately: 

( )
( )

2

2 2

 2 2 ( )

max ( )                            2 log ( ( ) ( ))
min ( )

N

M

probing number MN KM KMNE h

wdKN E h E
wd

= + +

+
�
�

 

where ( )E h  devotes the average hop count of the paths from the sources to the destinations 

and max ( )( )
min ( )

wdE
wd

�
�

 devotes the average ratio of the maximal bandwidth and minimal 
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bandwidth of the links in the path the sources to the destinations. As usually during several 
seconds measurement time we can get the stable delay with a high probability [18, 19, 20], 
the value of K can be set from 50 to 100. In many case, the value of ( )E h  ranges from 5 to 20 

and the value of 2
max ( )log ( ( ) ( ))
min ( )

wdE h E
wd

 ranges from 5 to 10.  

3.4.2 Simulation study  
Firstly, we make simulations for the 1-by-2 component and 2-by-1 component, using the 
simulation tool ns-2. The hop count of every logical link ranges from 3 to 10. The physical 
link bandwidths range from 100Mb/s to 1000Mb/s. The background traffic added to every 
physical link is poisson traffic or self-similar traffic generated by three pareto traffics with 

1.9α = . Simulations were conducted in a low utilization scenario, a medium utilization 
scenario and a higher utilization scenario (by varying background traffic). In the first 
scenario, the average utilization over every physical link and runs was 10%, with a range of 
5-15%; in the second scenario the average was 30 %, with a range of 10-50%; in the last 
scenario, the average was 50 %, with a range of 30-70%. As there are many physical links 
between the source and the destination, the average utilization of every logical link in three 
scenario are 45%, 90%, 99%.  
The packet size in background ranges from 56byte to 1500byte; the small packet size of 
probe is 56 bytes and the large packet size of probe is 1500bytes. For every scenario, the 
simulation runs 200 times. The correctness of identification is depicted in Figure 8, Figure 9, 
and Figure 10. Generally speaking, the correctness increases quickly with the number of the 
probe packet and tend to 100%. The correctness of 1-by-2 component identification is higher 
than the correctness of 2-by-1 component identification, which can be improved by 
increasing the synchronization measurement process in the binary search algorithm. The 
background traffic become more unstable, the meathead1 adapt it better than meathead2. 
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Fig. 21. The correctness of the identification vs. the number of the probes for 1-by-2 
component with poisson background traffic. 
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need deploy costly GPS receivers for every measurement node.  
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bandwidth of the links in the path the sources to the destinations. As usually during several 
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scenario are 45%, 90%, 99%.  
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probe is 56 bytes and the large packet size of probe is 1500bytes. For every scenario, the 
simulation runs 200 times. The correctness of identification is depicted in Figure 8, Figure 9, 
and Figure 10. Generally speaking, the correctness increases quickly with the number of the 
probe packet and tend to 100%. The correctness of 1-by-2 component identification is higher 
than the correctness of 2-by-1 component identification, which can be improved by 
increasing the synchronization measurement process in the binary search algorithm. The 
background traffic become more unstable, the meathead1 adapt it better than meathead2. 
 

K 

0 20 40 60 80 100

co
rr

ec
tn

es
s 

.4

.5

.6

.7

.8

.9

1.0

meathead 1 in  low  utilization scenario 
meathead 2 in  low  utilization scenario 
meathead 1 in  medium utilization scenario 
meathead 2 in  medium utilization scenario 
meathead 1 in  high utilization scenario 
meathead 2 in  high utilization scenario 

 
Fig. 21. The correctness of the identification vs. the number of the probes for 1-by-2 
component with poisson background traffic. 
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Fig. 22. The correctness of the identification vs. the number of the probes for 2-by-1 
component with poisson background traffic. 
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Fig. 23. The correctness of the identification vs. the number of the probes for 2-by-1 
component with self-similar background traffic. 

Secondly, we make simulations for a 3-by-4 network depicted in the Fig. 1(a) with the 
medium utilization poisson background traffic. We using meathead1 and set K=50. The 
simulation runs 200 times and the correctness of identification is 98%. 

3.5 Ad hoc network delay tomography based on circle mobility model 
The circle mobility model (CMM) is proposed by Wang[56], which is suited to patrolling 
periodically for gathering information in the military area or forest fireproofing. The 
assumptions are as follows. First, the location of SN is known to other nodes. Second, the 
MN knows the direction and how far it will move to next destination. This is true in real 
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situations where nodes know their destinations. The process, representing the movement of 
a node within a circular area A with radius R, can be described as follows. A SN (n0) is 
placed at the point O, the centre of the circle. Initially, MN (ni, nj and nk) are placed at points 
over A, see Fig.1-a. Without losing the generality，ni is in initial position Pi0 with radius ri. 
Then a destination point Pi1 is chosen from the circle with radius ri and the node moves 
along arc Li with constant velocity vi and central angle iθ . Once ni reaches Pi1, ni stays a 
pause time ti and a new destination point Pi2 is drawn, ...Pi(n-1),Pin.... Obviously, the step 
time i i i iST v tθ= + and the step length i i iL rθ= . The nodes (ni and nj) with same radius have 
identical mobile properties, such as i jθ θ= , i jv v= , i jt t= , i jST ST=  and i jL L= , otherwise 

they might have different mobile properties. 

3.5.1 Circle mobility model 
The MANET with CMM could be denoted as a dynamic logical tree ( , ( ))V L TΨ = with the 
node set V and link set ( )L T  at time T [2]. A source node to probe is called the root. A set of 
receivers, which called leaves, is denoted as RCE V⊂ . The nodes between the source and 
receivers represent internal nodes. The tree model is defined by the set of paths. Each path, 
which is from the root to an end receiver denoted by rce RCE∈ , comprises one or more links 
(direct connections with no intermediate nodes). A logical link is referred to as a subpath in 
which every internal node has only one child. In Ψ , the interal links are the logical links that 
link these branch nodes at T. Each node k , apart from the root, has a parent ( )f k  such that 
link ( ( ), ) ( )f k k L T∈ could be denoted as link k . The physical topology and the logical 
topology are depiced in Fig. 24(c) and Fig.24(d) respectively. The Fig.24(d) shows a typical 
binary tree in which the root and the receivers are 1, 3 and 4. 
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Fig. 24. The CMM mobility model and the topology used for the NS2 measurements (a) 
CMM mobility model. (b)Initial topology and nodes coordinates. (c) Physical topology 
within 1IT and 2IT . (d) Logical topology inferred within 1IT and 2IT . 

There are many random components determining link delay, such as propagation delay, 
queuing at the node, node packet servicing delay and dropped event due to the overload of 
finite output buffer of the node or link breakage. The key assumption of our delay model is 
that the individual delays between different links and packets should be considered 
independently within IT. IT means the period of time during which the topology is 
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Fig. 22. The correctness of the identification vs. the number of the probes for 2-by-1 
component with poisson background traffic. 
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Fig. 23. The correctness of the identification vs. the number of the probes for 2-by-1 
component with self-similar background traffic. 

Secondly, we make simulations for a 3-by-4 network depicted in the Fig. 1(a) with the 
medium utilization poisson background traffic. We using meathead1 and set K=50. The 
simulation runs 200 times and the correctness of identification is 98%. 

3.5 Ad hoc network delay tomography based on circle mobility model 
The circle mobility model (CMM) is proposed by Wang[56], which is suited to patrolling 
periodically for gathering information in the military area or forest fireproofing. The 
assumptions are as follows. First, the location of SN is known to other nodes. Second, the 
MN knows the direction and how far it will move to next destination. This is true in real 
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situations where nodes know their destinations. The process, representing the movement of 
a node within a circular area A with radius R, can be described as follows. A SN (n0) is 
placed at the point O, the centre of the circle. Initially, MN (ni, nj and nk) are placed at points 
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receivers represent internal nodes. The tree model is defined by the set of paths. Each path, 
which is from the root to an end receiver denoted by rce RCE∈ , comprises one or more links 
(direct connections with no intermediate nodes). A logical link is referred to as a subpath in 
which every internal node has only one child. In Ψ , the interal links are the logical links that 
link these branch nodes at T. Each node k , apart from the root, has a parent ( )f k  such that 
link ( ( ), ) ( )f k k L T∈ could be denoted as link k . The physical topology and the logical 
topology are depiced in Fig. 24(c) and Fig.24(d) respectively. The Fig.24(d) shows a typical 
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Fig. 24. The CMM mobility model and the topology used for the NS2 measurements (a) 
CMM mobility model. (b)Initial topology and nodes coordinates. (c) Physical topology 
within 1IT and 2IT . (d) Logical topology inferred within 1IT and 2IT . 

There are many random components determining link delay, such as propagation delay, 
queuing at the node, node packet servicing delay and dropped event due to the overload of 
finite output buffer of the node or link breakage. The key assumption of our delay model is 
that the individual delays between different links and packets should be considered 
independently within IT. IT means the period of time during which the topology is 
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relatively stable under CMM, to overcome the stubborn topology changes. A series of ITs 
can be calculated during the simulation period due to the breakage and comebacke along 
the paths. The internal link delay could be inferred which is associated with the 
corresponding IT by probing two closely time-spaced packets (back-to-back packet pair) 
from the source to two different receivers. This is the difference between our delay model 
and previous works [4]. Each members of a packet pair passes through a common set of 
links in their paths, but diverge at some branch node to arrive to the respective destination. 
Apparently, if the gap between the two members is on the order of the machine’s smallest 
unit of time, the difference between the delay experienced by the first and the second 
member of pair crossing same link can be ignored. Approximatively, the two packets 
experience identical network conditions along the shared links and any delay experienced 
will be identical for both probes. 
During the i-th IT denoted by ( ) ( ) 0i i

i startendIT t t= − > ( ( )( ) , ii
start endt t T∈ ), two members of the packet 

pair ( , )i j  are sent to destination rcei and rcej, respectively. Since the round trip paths of the 
probe are unsymmetrical, a measurement represents the E2E one way delay (OWD) of the 
couple of packets, denoted by ( (1), (2))i i iIT IT IT

ij i jX X X= . Where (1)iIT
iX  and (2)iIT

jX  are the 

delays from source to the two end receives, respectively. The sending time is stamped on 
every packet by the sender, and the OWD is calculated at the receiver. An experiment 
consists in sending n  packets pairs ( , )i j  for each pair of rcei and rcej. The set of 
measurements, the cumulated delay along the respective paths are associated 
with ( ) ( )

1, , ;( (1), (2))i ii
i ji j

IT m IT mIT
m n rec rec RCErec recX X X = ≠ ∈= …  for each couple of end receivers. The 

complete set of measurement iITX is obtained by combining all possible pair of distinct rcei 

and rcej in Ψ  winthin ITi. 

3.5.2 Link dealy probability distribution inference method 
Let 1

iIT
kD and 2

iIT
kD represent the estimated value of delay over link k in MANET for the first 

member and for the second one of the packet pair during the ITi. Since the distribution of a 
link delay is unknown, the characterization of the variable delay is obtained by non-
parametric discrete distributions. The delay could be quantified as a finite set of possible 
delay {0, ,2 ,......, , }Q q q Mq= ∞ , where q , M and ∞  denote the width bin, a positive integer 
and the lost, respectively. The bin associated to iq Q∈  is the interval [ 2 , 2]iq q iq q− + , 
where 0,1,2 ,i M= … . Many similar delays are grouped in a unique interval. The estimation 

of iIT
kD is the probability of these intervals, denoted by ( [ ])i iIT IT

d Qk kP D dα ∈= = . Our goal is to 

estimate ( )ii ITIT
k Vkα α ∈= . Let iITD be the set of delays experienced by the packet pairs along 

each link. It is possible to define the log-likelihood function for the pair ( , )i iIT ITX D of the 

measurement iITX , which is the complete data for inference problem: 

 ( , , ) log [ , ] ( )log ( )ii i i i i ITIT IT IT IT IT
k k

k V d Q
L X D P X D n d dαα α

∈ ∈
= = ∑ ∑  (51) 

Where ( )kn d  is the number of packet pairs with delay d over link k. We estimate 

ˆ ( ) ( ) ( ) ( )iIT
k k kk d n d n d n d nα = =∑  could be estimated by formula (51) with Maximum 
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Likelihood Estimate. Although ( )kn d  is an unknown value, the maximum of formula (51) 
could be estimated by using the Expectation Maximum algorithm. 

 Initialization. Calculate the ITi to infer Ψ  according to CMM and select the initial delay 
distribution (0)ˆ iITα . First, the positions of the end nodes (source and receivers) are calculated 
by movement parameters along respective circles at time t T∈ . At the same time t, the 
coordinates of the other MN between source and recivers can be obtained. Second, 
comparing the distance between nodes and the radio link range, the topology whose life 
time is from ( )i

startt to ( )i
endt  could be inferred. The distribution of (0)ˆ [ ]ii ITIT

kP D dα = =  is the 
initial distribution for the iterative EM algorithm. 

 Expectation. Let iITX be discretized to the set Q . The measurement ,
i
i j

IT
rce rcex  depends on 

rcei and rcej, simply iIT
recx . Using theorem of Bayes,  ˆ ( )kn d  could be derived as the following: 
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ˆ ˆ

ˆ ( ) [ | ]
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i i i
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s s

n
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k reck
h
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n d P D d X x

n x P X x D d P X x d

α

α α α
=

= = =

= = = =

∑

∑
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Where ( )iIT
recn x is the number of times of the same discretized measurement in iIT

recx . The count 
ˆ ( )kn iq for each iq Q∈  can be calculated in the formula (2). The iterative algorithm is 

expressed by the distribution iIT
kα computed at step s.  

 Maximization. The conditional expectation calculation of ( 1)ˆ iIT sα +  maximizes the 
function   ( , , )i i iIT IT ITL X D α , given iITX  and ( )ˆ iIT sα . It is possible to obtain the new estimate 
at (s+1)-th step, using the ˆ ( )kn d  in .  

 Iteration. The joint application  and  gives the stationary solution of the 
maximization, and ( 1) ( )ˆ ˆ| |i iIT s IT s thresholdα α+ − < , where threshold allows the algorithm to 
know if the maximum is reached. Although the smaller threshold means the estimations are 
more precise, complicated calculations will be produced. In our simulations (Section 4), 

0.01threshold = . 

3.5.3 Simulation study 
The NS2 simulator could be extended to simulate the traffic through CMM model with 
simulation time of 150s. MANET with two-receiver (3 and 4) is depicted in the Fig. 1-b. We 
simulate 2 scenarios by the CMM in a rectangular field (500m × 500m) with 5 nodes and 
R=250m. We let 3 and 4 be static (v3=v4=0) for simplification, but these nodes is mobile for 
scalability and inferences algorithm. The MN (1 and 2) with 200r = , 10θ °= , 12 /v m s=  
and 1t s= . Radio propagation range for each node is 250 meters and channel capacity is 1.5 
Mb/s. We can easily infer Ψ  throughout 1 8IT s=  ( (1) 32startt s≈ , (1) 40endt s≈ ) and 2 8IT s=  

( (2) 136startt s≈ , (2) 144endt s≈ ), see Fig.1-d. A link between two nodes shows that the two nodes 
can hear each other within IT1 and IT2. The probes comprise packet pairs with a 0.15s inter-
pair time. The packet pairs were CBR with an inter-packet time of 0.1 microseconds by 
periodically sent to 3 and 4.  
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relatively stable under CMM, to overcome the stubborn topology changes. A series of ITs 
can be calculated during the simulation period due to the breakage and comebacke along 
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corresponding IT by probing two closely time-spaced packets (back-to-back packet pair) 
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member and for the second one of the packet pair during the ITi. Since the distribution of a 
link delay is unknown, the characterization of the variable delay is obtained by non-
parametric discrete distributions. The delay could be quantified as a finite set of possible 
delay {0, ,2 ,......, , }Q q q Mq= ∞ , where q , M and ∞  denote the width bin, a positive integer 
and the lost, respectively. The bin associated to iq Q∈  is the interval [ 2 , 2]iq q iq q− + , 
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k Vkα α ∈= . Let iITD be the set of delays experienced by the packet pairs along 
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measurement iITX , which is the complete data for inference problem: 
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Likelihood Estimate. Although ( )kn d  is an unknown value, the maximum of formula (51) 
could be estimated by using the Expectation Maximum algorithm. 

 Initialization. Calculate the ITi to infer Ψ  according to CMM and select the initial delay 
distribution (0)ˆ iITα . First, the positions of the end nodes (source and receivers) are calculated 
by movement parameters along respective circles at time t T∈ . At the same time t, the 
coordinates of the other MN between source and recivers can be obtained. Second, 
comparing the distance between nodes and the radio link range, the topology whose life 
time is from ( )i
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endt  could be inferred. The distribution of (0)ˆ [ ]ii ITIT

kP D dα = =  is the 
initial distribution for the iterative EM algorithm. 
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ˆ ( )kn iq for each iq Q∈  can be calculated in the formula (2). The iterative algorithm is 

expressed by the distribution iIT
kα computed at step s.  

 Maximization. The conditional expectation calculation of ( 1)ˆ iIT sα +  maximizes the 
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know if the maximum is reached. Although the smaller threshold means the estimations are 
more precise, complicated calculations will be produced. In our simulations (Section 4), 
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3.5.3 Simulation study 
The NS2 simulator could be extended to simulate the traffic through CMM model with 
simulation time of 150s. MANET with two-receiver (3 and 4) is depicted in the Fig. 1-b. We 
simulate 2 scenarios by the CMM in a rectangular field (500m × 500m) with 5 nodes and 
R=250m. We let 3 and 4 be static (v3=v4=0) for simplification, but these nodes is mobile for 
scalability and inferences algorithm. The MN (1 and 2) with 200r = , 10θ °= , 12 /v m s=  
and 1t s= . Radio propagation range for each node is 250 meters and channel capacity is 1.5 
Mb/s. We can easily infer Ψ  throughout 1 8IT s=  ( (1) 32startt s≈ , (1) 40endt s≈ ) and 2 8IT s=  

( (2) 136startt s≈ , (2) 144endt s≈ ), see Fig.1-d. A link between two nodes shows that the two nodes 
can hear each other within IT1 and IT2. The probes comprise packet pairs with a 0.15s inter-
pair time. The packet pairs were CBR with an inter-packet time of 0.1 microseconds by 
periodically sent to 3 and 4.  
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In scenario 1, background traffic consists of 2 TCP connections (2 to 1, 4 to 3) and the source 
is 0 and q=0.1s. In scenario 2, the source is 1, q=0.05s, and background traffic consists of 2 
TCP connections (0 to 3, 4 to 1). The typical initial delay probability of every link can be 
chosen by the uniform distribution from 0 to M.  
Fig.25 shows the simulation results plotted by Matlab6.5 along links (2,3 and 4). From left to 
right show results for link 2, link 3 and link 4. The estimated delay and actual delay are 
indicated with white and black, respectively. Obviously, internal links’ actual average 
delays with high probability (>0.1) accord with estimated average delay. Since the 
complexity of the analysis is a function of the numbers of bins, a small q to ensure a desired 
level of accuracy results in excessive computational costs. 
 

    
 

      
 

      
Fig. 25. Estimated vs. actual delay probability distributions from each scenario.  
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1. Introduction

It is very common in engineering society to optimize certain objective functions under the
worst scenario among a set of possible scenarios, i.e.,

minx maxi f (x)

s.t. x ∈ S(pi),

i = 1, 2, . . . , (1)

where pi are the parameters that control the feasible region S of x. For example, in the
contingency analysis of power systems, pi is a vector of 0-1 variables, indicating which of
the branches are open. Each pi corresponds to one contingency situation. Another example
is the decoupling capacitance budgeting for very large scale integrated (VLSI) circuits and
systems, where pi can be different load current profile.
When the number of possible scenarios are small, we can use enumeration to find out the
worst case. But when it is large or even infinite, enumeration becomes computationally
expensive, sometimes even infeasible, and accordingly, we need some elegant algorithms that
can efficiently solve the problem. In this chapter, we will use the decoupling capacitance
budgeting problem in very large scale integrated (VLSI) circuits and systems to illustrate one
recently developed algorithm when the Pi’s are correlated.
The continuous semiconductor technology scaling leads to growing process variations
(Agarwal & Nassif, 2007), and statistical optimization has been actively researched to cope
with process variations. Recent examples include stochastic gate sizing for power reduction
(Bhardwaj & Vrudhula, 2005; Mani et al., 2005) and for yield optimization (Davoodi &
Srivastava, 2006; Sinha et al., 2005), stochastic buffer insertion to minimize clock delay (He
et al., 2007), and adaptive body biasing with post-silicon tuning (Mani et al., 2006). However,
all these papers ignore operation variation such as crosstalk difference over input vectors, power
supply noise fluctuation over time, and processor temperature variation over workload. We
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where pi are the parameters that control the feasible region S of x. For example, in the
contingency analysis of power systems, pi is a vector of 0-1 variables, indicating which of
the branches are open. Each pi corresponds to one contingency situation. Another example
is the decoupling capacitance budgeting for very large scale integrated (VLSI) circuits and
systems, where pi can be different load current profile.
When the number of possible scenarios are small, we can use enumeration to find out the
worst case. But when it is large or even infinite, enumeration becomes computationally
expensive, sometimes even infeasible, and accordingly, we need some elegant algorithms that
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budgeting problem in very large scale integrated (VLSI) circuits and systems to illustrate one
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The continuous semiconductor technology scaling leads to growing process variations
(Agarwal & Nassif, 2007), and statistical optimization has been actively researched to cope
with process variations. Recent examples include stochastic gate sizing for power reduction
(Bhardwaj & Vrudhula, 2005; Mani et al., 2005) and for yield optimization (Davoodi &
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argue that a better design could be achieved by considering both operation and process
variations.
The P/G network has to provide large currents within a short period of time but without
causing considerable IR-drop and Ldi/dt noises. The noises on the P/G network can degrade
signal integrity of the whole design, causing longer path delay, reduced noise margin, and
even logic failures. In the presence of process variation, a fraction of chips after manufacturing
may fail to meet the given power noise constraints, even though they were predicted to do so
by the deterministic techniques, thus causing unnecessary yield loss. This observation has
also been confirmed in recent studies on both statistical timing analysis (Chang & Sapatnekar,
2003; Visweswariah et al., 2004) statistical power network analysis (Ghanta et al., 2005;
Kouroussis et al., 2005; Pant, Blaauw, Zolotov, Sundareswaran & Panda, 2004).
Decap budgeting is one of the most effective techniques to reduce the noise in P/G
network. Assuming the netlist and the initial placement is given, decap budgeting assigns
the right amount of decap to the right location. To solve the decap budgeting problem,
most work employs a sensitivity-based optimization technique, such as those solved by
either linear programming (Zhao et al., 2006), quadratic programming (Su et al., 2003),
or conjugate gradient method (Fu et al., 2004; Li et al., 2005). At each iteration step
during optimization, sensitivities of the objective function with respect to various decaps
are obtained by running circuit simulations on the adjoint network followed by time-domain
convolution (Li et al., 2005; Su et al., 2003). Because both simulation and convolution are
time-consuming operations, the overall runtime is high and suffers from the scalability
problem for large P/G networks. To mitigate this runtime issue, different techniques have
been proposed. For example, (Su et al., 2003) employed piecewise-linear approximation
for the time-domain waveforms so that convolution can be carried out faster with bounded
accuracy loss. (Fu et al., 2004) exploited regular structures of P/G networks, and reduced
circuit sizes by equivalent circuit transformation (such as Y-Δ transformation). Because
of the reliance on special P/G structures, the applicability of this technique to large P/G
networks is limited and the reduction ratio is not high in general. (Li et al., 2005) employed
a divide-and-conquer approach that partitioned a P/G network into a number of sub-circuits
so that decap budgeting can be solved efficiently for each sub-circuit. But to consider the
inter-dependence between different sub-circuits, an artificial boundary condition has to be
imposed, hence the accuracy of the solution cannot be guaranteed. Recently, (Zhao et al., 2006)
used macromodeling and linear programming based approaches to solve the decap problem.
However, same as the previous studies (Fu et al., 2004; Li et al., 2005; Su et al., 2003), it assumed
a maximum current load at every port to guarantee the worst-case design scenario.
The maximum current model is over pessimistic as it ignores operation variation. Specifically,
current loads at different ports are correlated and cannot reach the maximum at the same
time due to the inherent logic dependency for a given design, hence exhibiting logic-induced
correlation; and the current at a port also exhibits temporal correlation, i.e., the current cannot
attain maximum all the time, and depending on the functionality being performed, the current
variations for certain periods of clock cycles are correlated.
Unfortunately, few research has been conducted on how to extract these operation
correlations. The stochastic modeling of IR drop with respect to given correlated current loads
for a P/G network was studied in (Pant, D.Blaauw, Zolotov, S.Sundareswaran & Panda, 2004).
However, the paper did not discuss how to extract the correlation of those current loads.
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Moreover, it is still not clear how to use the correlation to guide the P/G network design and
optimization such as decap budgeting.
In addition, the current loads are affected by process variations. (Ferzli & Najm, 2003)
has considered process variation induced leakage variation for power grid analysis. While
the leakage power is comparable to the dynamic power because not all components are
active simultaneously in a large system-on-chip, we believe that the dynamic peak current
is still dominant compared with the leakage current. However, how to design a reliable
P/G network in the presence of process variation (particularly Le f f variation) has not been
explicitly studied in existing work (Fu et al., 2004; Li et al., 2005; Su et al., 2003).
In this chapter, we develop a novel stochastic model for current loads, taking into account
operation variation such as temporal and logic-induced correlations and process variations
such as systematic and random Le f f variation. We propose a formal method to extract
operation variation and formulate a new decap budgeting problem using the stochastic
current model. We develop an effective yet efficient iterative alternative programming
algorithm and conduct experiments using industrial designs. We show that under the same
decap area and compared with the baseline model assuming maximum current peaks at all
ports, the model considering temporal correlation reduces the noise by up to 5×, and the
model considering both temporal and logic-induced correlations reduces the noise by up
to 17×. Compared with using deterministic process parameters, considering Le f f variation
reduces the mean noise by up to 4× and the 3σ noise by up to 13× when both applying
the current model with temporal and logic-induced correlations. Therefore, we convincingly
demonstrate the significance of considering both operation and process variations and open a
new research direction for optimizing signal, power and thermal integrity with consideration
of operation variation.
The remaining of the chapter is organized as follows. We introduce the decap budgeting
problem in Section 2, and develop the stochastic current model and parameterized MNA
formulation in Section 3. We discuss the algorithms to solve the variation-aware decap
budgeting problem in Section 4, and present experiments in Section 5. We conclude in
Section 6. An extended abstract of this chapter with less details and no sequential quadratic
programming (in Sections 4 and 5.3) was published by the 2007 International Conference on
Computer-Aided Design (Shi et al., 2007).

2. Problem formulation

The P/G network can be modeled as a linear RLC network with each segment and pad
modeled as a lumped RLC element from extraction. The behavior of any linear RLC network
with p ports of interests is fully described by its state representation following the modified
nodal analysis (MNA)

Gx + C
dx
dt

= Bu(t), (2)

y = LT
0 x, (3)

where x is a vector of nodal voltages and inductor currents, u is a vector of current sources
at all ports, G is the conductance matrix, C is a matrix that includes both inductance and
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However, the paper did not discuss how to extract the correlation of those current loads.
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Moreover, it is still not clear how to use the correlation to guide the P/G network design and
optimization such as decap budgeting.
In addition, the current loads are affected by process variations. (Ferzli & Najm, 2003)
has considered process variation induced leakage variation for power grid analysis. While
the leakage power is comparable to the dynamic power because not all components are
active simultaneously in a large system-on-chip, we believe that the dynamic peak current
is still dominant compared with the leakage current. However, how to design a reliable
P/G network in the presence of process variation (particularly Le f f variation) has not been
explicitly studied in existing work (Fu et al., 2004; Li et al., 2005; Su et al., 2003).
In this chapter, we develop a novel stochastic model for current loads, taking into account
operation variation such as temporal and logic-induced correlations and process variations
such as systematic and random Le f f variation. We propose a formal method to extract
operation variation and formulate a new decap budgeting problem using the stochastic
current model. We develop an effective yet efficient iterative alternative programming
algorithm and conduct experiments using industrial designs. We show that under the same
decap area and compared with the baseline model assuming maximum current peaks at all
ports, the model considering temporal correlation reduces the noise by up to 5×, and the
model considering both temporal and logic-induced correlations reduces the noise by up
to 17×. Compared with using deterministic process parameters, considering Le f f variation
reduces the mean noise by up to 4× and the 3σ noise by up to 13× when both applying
the current model with temporal and logic-induced correlations. Therefore, we convincingly
demonstrate the significance of considering both operation and process variations and open a
new research direction for optimizing signal, power and thermal integrity with consideration
of operation variation.
The remaining of the chapter is organized as follows. We introduce the decap budgeting
problem in Section 2, and develop the stochastic current model and parameterized MNA
formulation in Section 3. We discuss the algorithms to solve the variation-aware decap
budgeting problem in Section 4, and present experiments in Section 5. We conclude in
Section 6. An extended abstract of this chapter with less details and no sequential quadratic
programming (in Sections 4 and 5.3) was published by the 2007 International Conference on
Computer-Aided Design (Shi et al., 2007).

2. Problem formulation

The P/G network can be modeled as a linear RLC network with each segment and pad
modeled as a lumped RLC element from extraction. The behavior of any linear RLC network
with p ports of interests is fully described by its state representation following the modified
nodal analysis (MNA)

Gx + C
dx
dt

= Bu(t), (2)

y = LT
0 x, (3)

where x is a vector of nodal voltages and inductor currents, u is a vector of current sources
at all ports, G is the conductance matrix, C is a matrix that includes both inductance and
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capacitance elements, B and L0 are port incident matrices, and y is the output voltages of
interests at the p ports.
We model the P/G network noise based upon the response y(t) from (3). Because of the
duality between power and ground networks, in the following, we will focus our explanation
on the power network design. But it is understood that the same formulation applies to
the ground network design as well. Same as (Fu et al., 2004; Li et al., 2005; Su et al., 2003;
Visweswariah et al., 2000), we model the power network induced noise at a node as the
integral of the voltage drop below a user specified noise ceiling U over a certain period of
time:

zi =
∫

Ωi

(U − yi(t))dt, (4)

where Ωi is the time duration when voltage at port i, yi, drops below the noise ceiling U, i.e.,

Ωi = {t|yi(t) ≤ U}. (5)

The figure of merit that measures the qualify of the whole power network design is defined
as the sum of noise at all ports of interest, i.e.,

f =
p

∑
i=1

∫

Ωi

(U − yi(t))dt. (6)

We will call the noise measurement in (6) simply as noise in the rest of the chapter.
Based upon the noise modeling above, we can formulate the decap budgeting problem as the
following optimization problem:
Formulation: Decap Budgeting: Given a power network modeled as an RLC network with
specified power pads, time-varying current at different ports, and total available white
space W for decoupling capacitance, the DecapOpt problem determines the places to insert
decoupling capacitance and the sizes of each decoupling capacitance, such that the noise
defined in (6) is minimized, considering the time-varying current u(t) in (2) caused by
logic-induced variation, temporal variation and process variation.

3. Stochastic modeling

In this section, we first propose our stochastic current model for the current loads of the P/G
network in Section 3.1, where we extract the correlation from the extensive simulation of the
circuit and then apply ICA to get the parameterized model of the load current. Then in Section
3.2, based on the load current model, we propose the parameterized MNA formulation and
mathematically represent the variation-aware decap budgeting problem.

3.1 Stochastic current modeling
In this section, we propose our stochastic current modeling for current loads of the P/G
network, i.e., u(t) in (2). Similar to the vectorless P/G analysis in (Kouroussis et al., 2005),
we assume that the circuit is partitioned into blocks such that different blocks are relatively
independent. For each block, there are multiple ports connected to the power network,
and each port is modeled as a time-varying current load for the power network. We apply
extensive simulation to each block independently to get the current signatures. Because
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we ignore the interdependence between blocks, the obtained current signatures are still
conservative compared with the real current profiles.
For simplicity of presentation and similar to (Su et al., 2003) 1, we represent the current in
one clock cycle as a triangular waveform with rising time, falling time, and peak value Î. The
peak values vary in different clock cycles and over different ports. The correlation between
currents for different ports is called logic-induced correlation. In addition, the currents of the
same port in different clock cycles are also correlated. We call this type of correlation as
temporal correlation. For example, it might take a block several clock cycles to execute certain
functions and the current profile inside those clock cycles are dependent to each other. We
denote L, the correlation length, as the maximum number of clock cycles in which the peak
currents might be correlated and can be decided from the simulation results.
In the following, we devise a stochastic model which can efficiently capture the correlation
from both the logic-induced variation and temporal variation, as well as from process
variation.

3.1.1 Stochastic model to consider current interdependence
We record the peak currents at port k (1 ≤ k ≤ p with p as the total port number) at different
clock cycles, and put them into vectors, i.e.,

bj
k = [ Î j

k, Î1+j
k , . . .], 1 ≤ k ≤ p, 1 ≤ j ≤ L (7)

where Îi
k is the peak currents at port k in clock cycle i, and bj

k is the set of peak currents sampled

every clock cycles starting from cycle j. Properly truncation from the end of bj
k is necessary

to make them of the same length for further processing. In other words, the corresponding
samples in vectors bj1

k and bj2
k are |j1 − j2| clock cycles apart. If the peak current at port k in

the first clock cycle is selected from the r-th element of b1
k , then the peak current in the second

clock cycle should be the r-th element of b2
k . As an example, if the peak values in each clock

cycle for port 1 are [0.1, 0.2, 0.3, 0.4], and for port 2 are [0.01, 0.02, 0.03, 0.04], and we choose
L = 2, then

b1
1 = [0.1, 0.2, 0.3], b1

2 = [0.01, 0.02, 0.03],

b2
1 = [0.2, 0.3, 0.4], b2

2 = [0.02, 0.03, 0.04]. (8)

We model the peak current at each port as a stochastic process. Then all the elements of bj
k are

the samples for the stochastic variable B j
k with its mean μ(B j

k) and standard deviation σ(B j
k).

We call the correlation between bj1
k and bj2

k as temporal correlation, and the one between bj
k1

and bj
k2

as logic-induced correlation.

With those stochastic variables Bj
k’s and their corresponding samples bj

k’s, we can compute the
logic-induced correlation matrix ρ(j; k1, k2) which describes the correlation between the peak

1 Our noise verification in the experiment part does not depend on this assumption.
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capacitance elements, B and L0 are port incident matrices, and y is the output voltages of
interests at the p ports.
We model the P/G network noise based upon the response y(t) from (3). Because of the
duality between power and ground networks, in the following, we will focus our explanation
on the power network design. But it is understood that the same formulation applies to
the ground network design as well. Same as (Fu et al., 2004; Li et al., 2005; Su et al., 2003;
Visweswariah et al., 2000), we model the power network induced noise at a node as the
integral of the voltage drop below a user specified noise ceiling U over a certain period of
time:

zi =
∫

Ωi

(U − yi(t))dt, (4)

where Ωi is the time duration when voltage at port i, yi, drops below the noise ceiling U, i.e.,

Ωi = {t|yi(t) ≤ U}. (5)

The figure of merit that measures the qualify of the whole power network design is defined
as the sum of noise at all ports of interest, i.e.,

f =
p

∑
i=1

∫

Ωi

(U − yi(t))dt. (6)

We will call the noise measurement in (6) simply as noise in the rest of the chapter.
Based upon the noise modeling above, we can formulate the decap budgeting problem as the
following optimization problem:
Formulation: Decap Budgeting: Given a power network modeled as an RLC network with
specified power pads, time-varying current at different ports, and total available white
space W for decoupling capacitance, the DecapOpt problem determines the places to insert
decoupling capacitance and the sizes of each decoupling capacitance, such that the noise
defined in (6) is minimized, considering the time-varying current u(t) in (2) caused by
logic-induced variation, temporal variation and process variation.

3. Stochastic modeling

In this section, we first propose our stochastic current model for the current loads of the P/G
network in Section 3.1, where we extract the correlation from the extensive simulation of the
circuit and then apply ICA to get the parameterized model of the load current. Then in Section
3.2, based on the load current model, we propose the parameterized MNA formulation and
mathematically represent the variation-aware decap budgeting problem.

3.1 Stochastic current modeling
In this section, we propose our stochastic current modeling for current loads of the P/G
network, i.e., u(t) in (2). Similar to the vectorless P/G analysis in (Kouroussis et al., 2005),
we assume that the circuit is partitioned into blocks such that different blocks are relatively
independent. For each block, there are multiple ports connected to the power network,
and each port is modeled as a time-varying current load for the power network. We apply
extensive simulation to each block independently to get the current signatures. Because
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we ignore the interdependence between blocks, the obtained current signatures are still
conservative compared with the real current profiles.
For simplicity of presentation and similar to (Su et al., 2003) 1, we represent the current in
one clock cycle as a triangular waveform with rising time, falling time, and peak value Î. The
peak values vary in different clock cycles and over different ports. The correlation between
currents for different ports is called logic-induced correlation. In addition, the currents of the
same port in different clock cycles are also correlated. We call this type of correlation as
temporal correlation. For example, it might take a block several clock cycles to execute certain
functions and the current profile inside those clock cycles are dependent to each other. We
denote L, the correlation length, as the maximum number of clock cycles in which the peak
currents might be correlated and can be decided from the simulation results.
In the following, we devise a stochastic model which can efficiently capture the correlation
from both the logic-induced variation and temporal variation, as well as from process
variation.

3.1.1 Stochastic model to consider current interdependence
We record the peak currents at port k (1 ≤ k ≤ p with p as the total port number) at different
clock cycles, and put them into vectors, i.e.,

bj
k = [ Î j

k, Î1+j
k , . . .], 1 ≤ k ≤ p, 1 ≤ j ≤ L (7)

where Îi
k is the peak currents at port k in clock cycle i, and bj

k is the set of peak currents sampled

every clock cycles starting from cycle j. Properly truncation from the end of bj
k is necessary

to make them of the same length for further processing. In other words, the corresponding
samples in vectors bj1

k and bj2
k are |j1 − j2| clock cycles apart. If the peak current at port k in

the first clock cycle is selected from the r-th element of b1
k , then the peak current in the second

clock cycle should be the r-th element of b2
k . As an example, if the peak values in each clock

cycle for port 1 are [0.1, 0.2, 0.3, 0.4], and for port 2 are [0.01, 0.02, 0.03, 0.04], and we choose
L = 2, then

b1
1 = [0.1, 0.2, 0.3], b1

2 = [0.01, 0.02, 0.03],

b2
1 = [0.2, 0.3, 0.4], b2

2 = [0.02, 0.03, 0.04]. (8)

We model the peak current at each port as a stochastic process. Then all the elements of bj
k are

the samples for the stochastic variable B j
k with its mean μ(B j

k) and standard deviation σ(B j
k).

We call the correlation between bj1
k and bj2

k as temporal correlation, and the one between bj
k1

and bj
k2

as logic-induced correlation.

With those stochastic variables Bj
k’s and their corresponding samples bj

k’s, we can compute the
logic-induced correlation matrix ρ(j; k1, k2) which describes the correlation between the peak

1 Our noise verification in the experiment part does not depend on this assumption.
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currents at any two ports k1 and k2 in clock cycle j as

ρ(j; k1, k2) =
cov(B j

ki
,B j

k2
)

σ(B j
k1
)σ(B j

k2
)

, (1 ≤ k1, k2 ≤ p), (9)

where cov(B j
k1

,B j
k2
) are the covariance between B j

k1
and B j

k2
, and σ(B j

k1
) and σ(B j

k2
) are their

standard deviations, respectively. Similarly, the temporal correlation matrix ρ(j1, j2; k) which
describes the correlation between the peak currents between clock cycles j1 and j2 of a same
port k can be computed as

ρ(j1, j2; k) =
cov(B j1

k ,B j2
k )

σ(B j1
k )σ(B

j2
k )

, (1 ≤ j1, j2 ≤ L). (10)

3.1.2 Extension to process variation with spatial correlation
(Orshansky et al., 2002) relates the current to the process parameters Le f f , tox and Vt as

Î i
k ∼ L−0.5

e f f t−0.8
ox (Vdd − Vt). (11)

As pointed out in (Cao & Clark, 2005), in 90nm regime the most significant variation
source is the effective channel length (Le f f ), and Le f f variation can be more than 30%.
Furthermore, Le f f variation is mostly spatially correlated but not random (Orshansky et al.,
2002). Therefore, we will use Le f f variation as an example to show how process variation can
be embedded into our stochastic modeling. It is understood that the process variation of other
parameters can be dealt with in a similar way.
We use the variation model for Le f f based on (Orshansky et al., 2002):

Le f f = L0 + Lprox + Lspat + �, (12)

where L0 is the overall mean, Lprox is a discrete stochastic variable with a distribution
determined by the frequency of each gate, Lspat corresponds to the spatial variation, and �

is the local random variation.
From (11), with Le f f variation, the sample Î j

k becomes a set of samples

⎡
⎣ Î j

k

���� L̄e f f ,k

L1
e f f ,k

, Î j
k

���� L̄e f f ,k

L2
e f f ,k

, . . .

⎤
⎦ , (13)

where Li
e f f ,k with different i are the samples of Le f f ,k for the circuit block corresponding

to port k with the nominal value L̄e f f ,k, and Î j
k are the peak current sample for B j

k in the
deterministic case without Le f f variation in (7). In other words, if we have n samples for

Le f f ,k (L1
e f f ,k, L2

e f f ,k, . . . , Ln
e f f ,k), then every current sample I j

k becomes n samples. Therefore,

the sample vector bj
k becomes n times longer in the presence of Le f f variation, and we denote

this new vector as b̃j
k. In addition, we denote the stochastic variable representing the set of b̃j

k
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as B̃ j
k. In this case, the temporal correlation (9) becomes

ρ̃(j; k1, k2) =
cov(B̃ j

ki
, B̃ j

k2
)

σ(B̃ j
k1
)σ(B̃ j

k2
)

, (1 ≤ k1, k2 ≤ p), (14)

and the logic-induced correlation (10) becomes

ρ̃(j1, j2; k) =
cov(B̃ j1

k , B̃ j2
k )

σ(B̃ j1
k )σ(B̃

j2
k )

, (1 ≤ j1, j2 ≤ L). (15)

3.2 Parameterized problem formulation
3.2.1 Parameterized current via ICA
Directly considering the temporal and logic-induced correlation including process variation
as formulated in (14) and (15) is difficult for optimization. Therefore, we propose to remove
the correlation between B̃j

k’s and build a parameterized current model in the following.

If all those variable B̃j
k’s are Gaussian, we can apply principal component analysis (PCA) to

remove the interdependence between the stochastic variables B̃ j
k’s. However, this is not the

case for our stochastic current model. Therefore, we use independent component analysis
(ICA) that is applicable to non-Gaussian distribution (Hyvarinen et al., 2001). The input to ICA
is the samples b̃j

k as well as their correlation matrices (14) and (15), and the output are a set of
independent stochastic variables ri and their corresponding coefficients ai(j, k) to reconstruct
each B̃ j

k, i.e.

B̃ j
k ≈

q

∑
i=1

ai(j, k)ri. (16)

The order q is determined for each design such that the relative error between the original
currents and model predicted currents is less than 5%. The probability density function (PDF)
for each ri is also given in the output of ICA as a one-dimensional lookup table, based on
which we can bound the range of ri as

ri ≤ ri ≤ ri, (17)

where ri and ri can be related to ri’s mean (μ) and variance (σ2). For example, we can take ri
as μ − 4σ and ri as μ + 4σ.
Therefore, assuming uniform rising and falling times across the chip for the triangular current
waveform within a clock cycle 2, together with ai(j, k) which represents the i-th component of
the peak current at port k in clock cycle j, we have all the necessary information to obtain the
i-th time-varying current waveform component ui(t; j, k). If we denote T as the clock period,

2 This uniform assumption does not affect the results in our experiments.
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currents at any two ports k1 and k2 in clock cycle j as

ρ(j; k1, k2) =
cov(B j

ki
,B j

k2
)

σ(B j
k1
)σ(B j

k2
)
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where cov(B j
k1

,B j
k2
) are the covariance between B j

k1
and B j

k2
, and σ(B j

k1
) and σ(B j

k2
) are their

standard deviations, respectively. Similarly, the temporal correlation matrix ρ(j1, j2; k) which
describes the correlation between the peak currents between clock cycles j1 and j2 of a same
port k can be computed as

ρ(j1, j2; k) =
cov(B j1

k ,B j2
k )

σ(B j1
k )σ(B

j2
k )

, (1 ≤ j1, j2 ≤ L). (10)

3.1.2 Extension to process variation with spatial correlation
(Orshansky et al., 2002) relates the current to the process parameters Le f f , tox and Vt as

Î i
k ∼ L−0.5

e f f t−0.8
ox (Vdd − Vt). (11)

As pointed out in (Cao & Clark, 2005), in 90nm regime the most significant variation
source is the effective channel length (Le f f ), and Le f f variation can be more than 30%.
Furthermore, Le f f variation is mostly spatially correlated but not random (Orshansky et al.,
2002). Therefore, we will use Le f f variation as an example to show how process variation can
be embedded into our stochastic modeling. It is understood that the process variation of other
parameters can be dealt with in a similar way.
We use the variation model for Le f f based on (Orshansky et al., 2002):

Le f f = L0 + Lprox + Lspat + �, (12)

where L0 is the overall mean, Lprox is a discrete stochastic variable with a distribution
determined by the frequency of each gate, Lspat corresponds to the spatial variation, and �

is the local random variation.
From (11), with Le f f variation, the sample Î j

k becomes a set of samples

⎡
⎣ Î j
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, Î j
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���� L̄e f f ,k

L2
e f f ,k

, . . .

⎤
⎦ , (13)

where Li
e f f ,k with different i are the samples of Le f f ,k for the circuit block corresponding

to port k with the nominal value L̄e f f ,k, and Î j
k are the peak current sample for B j

k in the
deterministic case without Le f f variation in (7). In other words, if we have n samples for

Le f f ,k (L1
e f f ,k, L2

e f f ,k, . . . , Ln
e f f ,k), then every current sample I j

k becomes n samples. Therefore,

the sample vector bj
k becomes n times longer in the presence of Le f f variation, and we denote

this new vector as b̃j
k. In addition, we denote the stochastic variable representing the set of b̃j

k
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as B̃ j
k. In this case, the temporal correlation (9) becomes

ρ̃(j; k1, k2) =
cov(B̃ j

ki
, B̃ j

k2
)

σ(B̃ j
k1
)σ(B̃ j

k2
)

, (1 ≤ k1, k2 ≤ p), (14)

and the logic-induced correlation (10) becomes
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σ(B̃ j1
k )σ(B̃
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k )

, (1 ≤ j1, j2 ≤ L). (15)

3.2 Parameterized problem formulation
3.2.1 Parameterized current via ICA
Directly considering the temporal and logic-induced correlation including process variation
as formulated in (14) and (15) is difficult for optimization. Therefore, we propose to remove
the correlation between B̃j

k’s and build a parameterized current model in the following.

If all those variable B̃j
k’s are Gaussian, we can apply principal component analysis (PCA) to

remove the interdependence between the stochastic variables B̃ j
k’s. However, this is not the

case for our stochastic current model. Therefore, we use independent component analysis
(ICA) that is applicable to non-Gaussian distribution (Hyvarinen et al., 2001). The input to ICA
is the samples b̃j

k as well as their correlation matrices (14) and (15), and the output are a set of
independent stochastic variables ri and their corresponding coefficients ai(j, k) to reconstruct
each B̃ j

k, i.e.

B̃ j
k ≈

q

∑
i=1

ai(j, k)ri. (16)

The order q is determined for each design such that the relative error between the original
currents and model predicted currents is less than 5%. The probability density function (PDF)
for each ri is also given in the output of ICA as a one-dimensional lookup table, based on
which we can bound the range of ri as

ri ≤ ri ≤ ri, (17)

where ri and ri can be related to ri’s mean (μ) and variance (σ2). For example, we can take ri
as μ − 4σ and ri as μ + 4σ.
Therefore, assuming uniform rising and falling times across the chip for the triangular current
waveform within a clock cycle 2, together with ai(j, k) which represents the i-th component of
the peak current at port k in clock cycle j, we have all the necessary information to obtain the
i-th time-varying current waveform component ui(t; j, k). If we denote T as the clock period,

2 This uniform assumption does not affect the results in our experiments.
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then jT ≤ t ≤ (j + 1)T. Put those ui(t; j, k) at all ports in clock cycle j together as

ui(t; j) =

⎛
⎜⎜⎜⎝

ui(t; j, 1)
ui(t; j, 2)
...
ui(t; j, p)

⎞
⎟⎟⎟⎠ , jT ≤ t ≤ (j + 1)T, (18)

and then combine all the ui(t; j) in different clock cycles, we can get ui(t) with 0 ≤ t ≤ LT.
Finally, according to superposition theorem, we have

u(t) =
q

∑
i=1

ui(t)ri, 0 ≤ t ≤ LT. (19)

We call (19) as parameterized current load model.

3.2.2 Parameterized MNA for decap budgeting
Considering the inherent parasitics, we model the decap similarly to (Zheng et al., 2003) as
an equivalent series capacitor (ESC), and equivalent series resistor (ESR) and an equivalent
series inductor (ESL). When a decap with size wi is inserted into the power network at a
given location, its impact can be considered by adjusting matrices G and C in (2) based on the
location at the network and the size of the decap. Mathematically, it can be represented as

G = G0 +
M

∑
i=1

wi · Gw,i, (20)

C = C0 +
M

∑
i=1

wi · Cw,i, (21)

where G0 and C0 are the original matrices for the power network without decap, M is the total
number of decaps, and Gw,i and Cw,i provide the stamping of a unit width decap at the i-th
location. Due to the placement constraint, each wi has an upper bound, i.e., we have the local
constraints

0 ≤ wi ≤ wi. (22)

If only noise minimization is considered, then we can simply choose wi = wi (∀i), i.e., use
up all the white space from the physical placement constraints. However, there are two other
important issues we need to take into consideration: the leakage and the area overhead. With
those two constraints, we cannot add too much decap, and therefore we have the global decap
area constraint

M

∑
i=1

wi ≤ W. (23)

In practice we always have the following relationship between the local constraints (22) and
the global constraint (23)

M

∑
i=1

wi ≥ W, (24)
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which implies that (23) is always tight for the optimization problem, and (22) is not tight for
all i. In other words, we are given the total amount of decaps, and we want to allocate those
decaps to the proper locations, so that the noise is minimized while there is no violation to
(22).
The MNA equation of (2) with G given by (20), C given by (21), and u given by (19) can be
written as follows

(G0 +
M

∑
i=1

wi · Gw,i)x + (C0 +
M

∑
i=1

wi · Cw,i)
dx
dt

= B
q

∑
i=1

ui(t)ri, (25)

where 0 ≤ t ≤ LT and ri is a stochastic variable with ri ≤ ri ≤ ri. We call this MNA equation
as parameterized MNA formulation for decap budgeting. One of the major advantages in using
this parameterized MNA formulation is that it enables us to implicitly compute sensitivities
efficiently and accurately, which will become clearer in the later part of this chapter.
With the parameterized MNA, the variation-aware decap budgeting problem can be
mathematically represented as follows:

(P1) min
wi

sup
rk

f =
p

∑
i=1

∫

Ωi

(U − yi(wi, rk; t))dt (26)

s.t. rk ≤ rk ≤ rk 1 ≤ k ≤ q, (27)

0 ≤ wi ≤ wi, 1 ≤ i ≤ M (28)
M

∑
i=1

wi ≤ W, (29)

where voltage yi is a function of wi, rk, and time t and can be solved from (25) and (3).
Problem (P1) is a constrained min-max optimization problem. The sup operation over all
random variables rk is to find the worst-case noise violation measures for a given power
network design. This operation guarantees that all P/G network designs satisfy the given
design constrains while considering the temporal and logic-induced correlations as well as
Le f f variation among ports. This is of particular use for ASIC-style designs, where the
worst-case design performance has to be ensured for sign-off. The min operation over all
decap sizes wi is to find the optimal decap budgeting solution so that the worst-case noise
violation is minimized.

4. Algorithms

In this section ,we present our iterative alternative programming approach to solve the
problem (P1) stated in Section 3. In Section 4.1, we decompose the original min-max problem
into two alternative optimization sub-problems, which are solved in Section 4.2 by an efficient
sequential programming approach based. The detailed algorithm to compute sensitivities
from parameterized MNA for such sequential programming is zoomed into detail in Section
4.3.
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q
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M
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i=1
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M
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i=1
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M

∑
i=1

wi ≤ W. (23)
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M

∑
i=1

wi ≥ W, (24)
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into two alternative optimization sub-problems, which are solved in Section 4.2 by an efficient
sequential programming approach based. The detailed algorithm to compute sensitivities
from parameterized MNA for such sequential programming is zoomed into detail in Section
4.3.

199
Stochastic Optimization Over Correlated Data Set:
A Case Study on VLSI Decoupling Capacitance Budgeting



4.1 Iterative alternative programming with guaranteed convergence
Because there exists no general technique to solve the constrained min-max problem (P1)
optimally, we resort to an effective iterative optimization strategy, which we call iterative
alternative programming (IAP). That is, instead of solving the min-max problem (P1) directly,
we solve it by iteratively solving the following two sub-problems alternatively.
The first sub-problem assumes that all decaps’ sizes wi are known, hence the worst-case noise
can be obtained by solving the following optimization problem

(P2) max
rk

f =
p

∑
i=1

∫

Ωi

(U − yi(wi, rk; t))dt (30)

s.t. rk ≤ rk ≤ rk, 1 ≤ k ≤ q (31)

The second sub-problem assumes that all random variables rk have fixed values, hence
the decap sizes to achieve the minimum noise can be obtained by solving the following
optimization problem

(P3) min
wi

f =
p

∑
i=1

∫

Ωi

(U − yi(wi, rk; t))dt (32)

s.t. 0 ≤ wi ≤ wi, 1 ≤ i ≤ M (33)
M

∑
i=1

wi ≤ W, (34)

where W is the total white space available. Problem (P3) is exactly the deterministic version
of the original problem formulation (P1).
We illustrate our idea in Fig. 1 and the overall algorithm can be described in Algorithm 1,
where iter is the current iteration number and ε determines the stop criteria of the optimization
procedure. For each iteration, we increase the total available white space by ΔW until W̄.
The algorithm terminates when the change of objective function |Δ f | is sufficiently small
indicating the convergence of the solution, or we have reached the global decap constraint
(29). The first case corresponding to the situation where we have reduced noise below the
bound before all the white space are used up, while the second case indicates that we have
reached the global decap area constraint. In either case, the algorithm will terminates and
the convergence of our algorithm is guaranteed as long as the algorithms for solving (P2) and
(P3) converge, which will be discussed shortly. As shown in Fig. 2, the choice of ΔW reflects a
tradeoff between the runtime and the solution quality. Smaller ΔW can result in smaller noise
under the same decap area but the runtime is increased as well. Setting ΔW = 0.004W gives a
good balance in our experiment.

Find the optimal 
decap budgeting for 
the given max 
droop/bounce 

update the max droop/bounce 

update the decap budgeting 

Find the input corresponding 
to the max. droop/bounce for 
the given decap budgeting 

Fig. 1. Solve the min-max problem by iteratively solving two sub-problems.
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Algorithm 1 Iterative alternative programming.

INPUT: initial guess wi , rk , current white space W̄;
OUTPUT: final solution wi to problem (P1);
Initialize: The current white space available W = 0;
for iter = 0; |Δ f | ≤ ε and W ≤ W̄; iter ++ do

W = W + ΔW;
wi = solve-P3(iter, wi , rk , W);
rk = solve-P2(iter, wi , rk , W);
Compute objective function with new rk and wi ;

end for
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Fig. 2. The normalized runtime and noise w.r.t different ΔW
W̄ .

4.2 Efficient sequential programming
Both problems (P2) or (P3) are constrained nonlinear optimization problems, and there exits
no general technique to solve them efficiently. Because the constraints in both problems are
linear, if we can approximate the objective function f by a first-order linear function, the
original problems would become linear programming (LP). Or if we can approximate the
objective function f by a second-order quadratic function, they would become a quadratic
programming (QP) problem. Because efficient solvers exist for both LP and QP problems,
we can solve the approximated problems more efficiently than solving the original problems
directly. Therefore, we propose to solve the original (P2) or (P3) problem via sequential
programming, either through LP or QP in the following.
For now, let us assume that we know how to compute the first- and second-order sensitivities
of the objective function f with respect to changing variables, which will be discussed in
Section 4.3. Therefore, we can easily obtain the linear and quadratic approximations of the
objective function. For example, for the objective function in problem (P3), the changing
variables are all Δwi. Therefore, we have the following linear and quadratic approximations
for the objective function
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4.2 Efficient sequential programming
Both problems (P2) or (P3) are constrained nonlinear optimization problems, and there exits
no general technique to solve them efficiently. Because the constraints in both problems are
linear, if we can approximate the objective function f by a first-order linear function, the
original problems would become linear programming (LP). Or if we can approximate the
objective function f by a second-order quadratic function, they would become a quadratic
programming (QP) problem. Because efficient solvers exist for both LP and QP problems,
we can solve the approximated problems more efficiently than solving the original problems
directly. Therefore, we propose to solve the original (P2) or (P3) problem via sequential
programming, either through LP or QP in the following.
For now, let us assume that we know how to compute the first- and second-order sensitivities
of the objective function f with respect to changing variables, which will be discussed in
Section 4.3. Therefore, we can easily obtain the linear and quadratic approximations of the
objective function. For example, for the objective function in problem (P3), the changing
variables are all Δwi. Therefore, we have the following linear and quadratic approximations
for the objective function
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flp ≈ f0 +
M

∑
i=1

∂ f
∂wi

Δwi , (35)

fqp ≈ f0 +
M

∑
i=1

∂ f
∂wi

Δwi +
M

∑
k=1

M

∑
j=1

∂2 f
∂wi∂wj

ΔwiΔwj, (36)

where f0 is the current value of the objective function, and ∂ f
∂wi

and ∂2 f
∂wi∂wj

are the first- and
second-order sensitivities of f , respectively.
Apparently, (35) is a linear function of Δwi, while (36) is a quadratic function of changing
variables Δwi. By replacing (30) with (35), we obtain an approximated LP formulation for
(P3). Or by replacing (30) with (36), we obtain an approximated QP formulation for (P3). Both
LP and QP can be solved efficiently.
A high-level description of the sequential programming algorithm to solve either problem
(P2) or (P3) is shown in Algorithm 2, where iter2 is the current iteration number, ITER2 is the
maximum iteration bound. The iterations stop when the change of objective function |Δ f |
is smaller than �2, which is dynamically adjusted according to the iteration number iter in
the outer-loop of Algorithm 1. We employ an exponential decreasing function to adjust �2
in this work. The idea is that when the out-loop iteration is small (or we are far from the
optimal solution), we can have an early termination of the inner-loop optimization procedure
as shown in Algorithm 2 early. But when the outer-loop iteration becomes large enough (or we
are close to the optimal solution), we should spend more time in each inner-loop optimization
to find a better global optimal solution. Parameter η is used to control the efforts that we
should spend in the inner-loop’s optimization.
The convergence for Algorithm 2 is guaranteed by noting that though the iterations the
objective function is monotonically decreasing, and thus the loop must exit when a local or
global minimum/maximum is obtained.

Algorithm 2 Sequential programming (sLP or sQP) for solving (P2) and (P3).

INPUT: iter, wi , ri , W;
OUTPUT: updated wi for (P3) or ri for (P2);
�2 = exp(-η·iter);
for iter2=0; |Δ f | ≤ �2 or iter2 ≤ ITER2; iter2++ do

Compute the first- (and second-order) sensitivities of f ;
Formulate (P2) or (P3) as an LP (or QP) problem;
Call LP (or QP) solver to solve the above problem;
Compute objective function with new wi (P2) or ri (P3);

end for

Even though we can solve problem (P2) and (P3) via either sequential LP or QP programming
(sLP or sQP) as shown in Algorithm 2, there are several differences between these two
approaches. If we approximate the problem as an sLP, at each optimization iteration we
can find a guaranteed local optimal solution because of the convexity of LP formulation.
But because of the relatively poor first-order approximation quality, we may not find
a good final solution at the end. In contrast, if we approximate the problem as an
sQP, the approximation quality is improved because of the use of higher-order sensitivity
information. And each optimization iteration works more like a Newton step for solving
convex optimization problems. Thus we may find a better final solution compared to the
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first-order LP approximation. Our experimental results will show that, in practice, sQP
solutions are indeed better than sLP’s for large test cases. Of course we notice that the QP
formulation at each iteration is not necessarily convex, as we cannot prove that the Hessian
of (36) is always positive semidefinite. In practice, however, we find that the solution quality
from sQP is high.
For practical use, the number of variables for the sLP or sQP can be huge. Luckily, promising
research results have been presented which show that by fully utilizing partitioning, parallel
computing and efficient data compression, problems with millions of variables and thousands
of constraints can be solved within several hundred seconds (Andersen & Anderson, 1998;
Karypis et al., 1994).

4.3 Sensitivity computation
To solve (P2) and (P3) via sLP or sQP, we need to compute the sensitivities of the objective
function f with respect to the design variables, i.e., either wi or ri. Because this computation
is similar for both (P2) and (P3), we will focus our discussion on (P3) in the following.
The first- and second-order sensitivities of the objective function f of problem (P3) are defined
as

∂ f
∂wi

= −
p

∑
i=1

∫

Ωi

∂yi

∂wi
dt = −

p

∑
i=1

∫

Ωi

LT
0i

∂x
∂wi

dt, (37)

∂2 f
∂wi∂wj

= −
p

∑
i=1

∫

Ωi

∂2yi

∂wi∂wj
dt = −

p

∑
i=1

∫

Ωi

LT
0i

∂2x
∂wi∂wj

dt. (38)

For simplicity of presentation, we have loosely applied the derivative notation on a vector for
component-wise derivative.
To compute the sensitivity of f w.r.t. wi, all we need to know is the sensitivity of the state
vector x with respect to wi. We use Taylor expansion to express x as follows

x = x0 +
M

∑
i=1

αiΔwi +
M

∑
i=1

M

∑
j=i

βij · ΔwiΔwj + . . . , (39)

where αi is the first-order sensitivity of x w.r.t. random variable wi, and βij is the second-order
sensitivity of x with respect to random variable wi and wj. In other words, we have

∂x
∂wi

= αi,
∂2x

∂wi∂wj
= βij. (40)

To compute these sensitivities, we recognize that x also satisfies the differential equation given
by the parameterized MNA formulation (25). By Laplace transformation, we re-write (2) as
follows

(G +
M

∑
i=1

Δwi · Gw,i)x + s(C +
M

∑
i=1

Δwi · Cw,i)x = Bu. (41)

By plugging (39) into (41), we obtain terms of Δwi with different orders. By equating the
zero-order terms of Δwi from both left and right hand sides in (41), we obtain a set of equations
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zero-order terms of Δwi from both left and right hand sides in (41), we obtain a set of equations

203
Stochastic Optimization Over Correlated Data Set:
A Case Study on VLSI Decoupling Capacitance Budgeting



as follows

(G + sC)x0 = Bu. (42)

By equating the first-order terms of Δwi, we obtain sets of equations as follows for all 1 ≤ i ≤
M

(G + sC)αi = −(Gw,i + sCw,i)x0. (43)

Similarly, by equating the second-order terms of ΔwiΔwj, we obtain another sets of equations
as follows for all 1 ≤ i ≤ M

(G + sC)βij = −(Gw,i + sCw,i)αj − (Gw,j + sCw,j)αi (44)

By applying the Backward Euler integration formula and assuming the time step as h, we can
re-write (42) and (43) as follows

(G +
C
h
)x0(t + h) = Bu(t + h) + x0(t)

C
h

, (45)

(G +
C
h
)αi(t + h) = −(Gw,i +

Cw,i
h

)x0(t + h)

+
x0(t)Cw,i + αi(t)C

h
, (46)

(G +
C
h
)βij(t + h) = −(Gw,i +

Cw,i
h

)αj(t + h)

−(Gw,j +
Cw,j

h
)αi(t + h)

+
αj(t)Cw,i + αi(t)Cw,j + βij(t)C

h
. (47)

Because all equations in (45) and (46) share the same left-hand side matrix, (G + C/h), we
only need to perform LU-factorization once, and then reuse the same factorization to solve
for x0, αi and βij sequentially at each time step. This computation is efficient because it only
involves some matrix-vector multiplications, and backward and forward substitutions.
The integral interval Ωi for port i is decided by x0. Once x0 is solved, we have y = LT

0 x0,
and then the corresponding interval can be decided from (5). By doing so we have assumed
that the incremental δwi is relatively small in each step and will not significantly influence the
integral interval. In summary, we can compute the first and second-order sensitivities of the
objective function f of problem (P3) by following the Algorithm 3.

5. Experimental results

In this section, we present experiments using four industrial P/G network designs. For
each benchmark, we randomly select 20% of total nodes as candidate nodes for decap
insertion, i.e., M = 20%N. For fair comparison, when comparing the runtime and noise,
the same white space is used up for different methods. We run experiments on a LINUX
workstation with Pentium IV 2.66G CPU and 1G RAM. We partition the circuits according
to the method in (Kouroussis et al., 2005). We use the package FASTICA (Hyvarinen & Oja,
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Algorithm 3 Sensitivity computation for (P3).

INPUT: wi , rk , h, T;
OUTPUT: f , αi and βij;
factorization: LU factorize G + C/h;
for t = 0; t + h ≤ T; t = t + h do

Solve (45) for x0(t + h);
end for
for i = 1; i ≤ p; i ++ do

Use (5) to compute Ωi from y(t) = LT
0 x0(t);

end for
for t = 0; t + h ≤ T; t = t + h do

Solve (46) for αi(t + h);
Solve ∂ f

∂wi
from (37);

end for
for t = 0; t + h ≤ T; t = t + h do

for 1 ≤ i ≤ K do
for 1 ≤ j ≤ K do

Solve (47) for βij(t + h);

Solve ∂2 f
∂wi∂wj

from (38);

end for
end for

end for

1997) to perform ICA. Finally, we use MOSEK as the linear/quadratic programming solver
(http://www.mosek.com, n.d.) and random walk based simulator (Qian et al., 2005) with
detailed (not triangular) input current waveform to obtain the noise reported in this section.

5.1 Decap budgeting with operation variation
We compare three current models as shown in Table 1: maximum current peaks at all ports3

(model 1), stochastic model (model 2) with logic-induced correlation only (L = 1), and
stochastic model (model 3) with both logic-induced and temporal correlation. For temporal
correlation, we always use L = 4 since all circuits tested take at most four clock cycles to
complete any one instruction. Table 1 reports the noise and runtime for the four benchmarks
with different number of nodes at the same decap area. Compared with the baseline model
with maximum current peaks at all ports 4, the model considering temporal correlation
reduces noise by up to 5×; and the model considering both temporal and logic-induced
correlations reduces noise by up to 17× (see bold in Table 1). This is because the first two
models cannot model the currents effectively and lead to inserting unnecessarily large decaps
in some regions. As for the runtime, model 2 needs about 1.5× more time than model 1, while
model 3 needs about 2.3× more. The runtime overhead is the price we have to pay in order to
achieve better designs.
In Fig. 3, we plot the time-domain responses at one randomly selected port for two
optimization iterations by alternatively solving the problem (P3) and (P2). The benchmark
has 1284 nodes. The initial waveform is denoted by “A0:initial”. After performing decap
sizing once by solving problem (P3) with a fixed choice of random variables rk, we obtain the

3 We still use the detailed waveforms for the currents, except that the maximum values of those
waveforms are always set to be the worst case values.

4 We solve it by iteratively solving (P3) without altering to (P2).
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only need to perform LU-factorization once, and then reuse the same factorization to solve
for x0, αi and βij sequentially at each time step. This computation is efficient because it only
involves some matrix-vector multiplications, and backward and forward substitutions.
The integral interval Ωi for port i is decided by x0. Once x0 is solved, we have y = LT

0 x0,
and then the corresponding interval can be decided from (5). By doing so we have assumed
that the incremental δwi is relatively small in each step and will not significantly influence the
integral interval. In summary, we can compute the first and second-order sensitivities of the
objective function f of problem (P3) by following the Algorithm 3.

5. Experimental results

In this section, we present experiments using four industrial P/G network designs. For
each benchmark, we randomly select 20% of total nodes as candidate nodes for decap
insertion, i.e., M = 20%N. For fair comparison, when comparing the runtime and noise,
the same white space is used up for different methods. We run experiments on a LINUX
workstation with Pentium IV 2.66G CPU and 1G RAM. We partition the circuits according
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1997) to perform ICA. Finally, we use MOSEK as the linear/quadratic programming solver
(http://www.mosek.com, n.d.) and random walk based simulator (Qian et al., 2005) with
detailed (not triangular) input current waveform to obtain the noise reported in this section.

5.1 Decap budgeting with operation variation
We compare three current models as shown in Table 1: maximum current peaks at all ports3

(model 1), stochastic model (model 2) with logic-induced correlation only (L = 1), and
stochastic model (model 3) with both logic-induced and temporal correlation. For temporal
correlation, we always use L = 4 since all circuits tested take at most four clock cycles to
complete any one instruction. Table 1 reports the noise and runtime for the four benchmarks
with different number of nodes at the same decap area. Compared with the baseline model
with maximum current peaks at all ports 4, the model considering temporal correlation
reduces noise by up to 5×; and the model considering both temporal and logic-induced
correlations reduces noise by up to 17× (see bold in Table 1). This is because the first two
models cannot model the currents effectively and lead to inserting unnecessarily large decaps
in some regions. As for the runtime, model 2 needs about 1.5× more time than model 1, while
model 3 needs about 2.3× more. The runtime overhead is the price we have to pay in order to
achieve better designs.
In Fig. 3, we plot the time-domain responses at one randomly selected port for two
optimization iterations by alternatively solving the problem (P3) and (P2). The benchmark
has 1284 nodes. The initial waveform is denoted by “A0:initial”. After performing decap
sizing once by solving problem (P3) with a fixed choice of random variables rk, we obtain the

3 We still use the detailed waveforms for the currents, except that the maximum values of those
waveforms are always set to be the worst case values.

4 We solve it by iteratively solving (P3) without altering to (P2).
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Model 1 maximum current peaks at all ports
Model 2 stochastic model with logic-induced correlation
Model 3 Model 2 + temporal correlation

Node # Port # noise (V*s) runtime (s)
model model model model model model

1 2 3 1 2 3
1284 426 6.33e-7 1.28e-7 4.10e-8 104.2 161.2 282.3

10490 3398 5.21e-5 1.09e-5 4.80e-6 973.2 1430 2199
42280 13327 7.92e-4 5.38e-4 9.13e-5 2732 3823 5238
166380 42146 1.34e-2 5.37e-3 2.28e-3 3625 5798 7821

avg 1 1/3× 1/9× 1 1.50× 2.26×
Table 1. Noise, runtime and area comparison between the three models.

new waveform as denoted by “A1:(P3)”. We then switch to solve problem (P2) by varying the
values of those random variables rk, but with fixed decap sizes wi. We see that the waveform
of the final worst-case voltage drop becomes worse compared to the deterministic solution;
hence we obtain a new voltage drop waveform as denoted by “A2:(P2)”. We then switch
back to solve the decap sizing problem (P3) with fixed but newly updated choice of random
variables rk. At the end of this optimization, we arrive at a new voltage waveform as denoted
by “A3:(P3)”. Apparently, compared to “A1:(P3)”, the new solution has smaller voltage drop.
If we continue the same procedures by following the IAP algorithm given in Fig. 1, similar
sequences of time domain voltage drop waveforms would repeat as we have shown in Fig. (3)
until we converge to an optimal solution. Also, The voltage drop is reduced mostly in the
first optimization iteration denoted as “A1:(P3)”. Afterward, the voltage drop reduction is
relatively small. This observation is in agreement with the common knowledge about any
sensitivity-based optimization techniques. In this particular example, we find that the first
two iterations reduces the noise by 51.4%.

Fig. 3. Time domain waveforms at one port after sLP for different iterations.

5.2 Le f f variation aware decap budgeting
In the presence of process variation, we want to minimize the worst-case noise for Le f f
variation. We solve this via the proposed IAP technique in Algorithm 1. We denote our Le f f
variation aware approach as sLP + Le f f and the counterpart as sLP. Before we quantitatively
compare the two methods, we first use Fig. 4 to demonstrate the effectiveness of Le f f variation
aware decap budgeting. We use the same circuit with 15% Le f f variation and perform Monte
Carlo simulations with 14000 samples to obtain the noise histogram of the design from the sLP
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Node # Port # sLP sLP + Le f f
μ 3σ RT μ 3σ RT

(V*s) (V*s) (s) (V*s) (V*s) (s)
1284 426 9.28e-7 3.97e-7 184.2 6.14e-7 1.38e-7 332.8 (1.81×)
10490 3398 1.03e-4 4.79e-5 1121 7.22e-5 1.23e-5 3429 (3.06×)
42280 13327 2.29e-3 9.72e-4 2236 8.23e-4 1.01e-4 6924 (3.10×)

166380 42146 2.06e-2 9.91e-3 3824 5.31e-3 8.32e-4 11224 (2.93×)
avg 1 1 1 0.50× 0.20× 2.73×

Table 2. The mean value μ, 3σ variance of the noise and runtime (RT) comparison between
sLP + Le f f and sLP with 10% intra-die Le f f variation.

and sLP + Le f f , respectively. From the figure we can see that the noise from sLP + Le f f (mean
value 8.4× 10−9 V*s, 3σ value 0.4× 10−9 V*s) is much smaller than that from sLP (mean value
9.7 × 10−9 V*s, 3σ value 1.9 × 10−9 V*s), although both have the same decap area constraints.
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Fig. 4. The noise distribution for the an industry power mesh with decap budgeting using
sLP and sLP + Le f f .

Next we compare the mean value μ and 3σ value of the noise distribution with 10% Le f f
variation based on Monte Carlo simulation with 10,000 runs, and the results are reported in
Table 2. Compared with using deterministic Le f f , considering Le f f variation reduces the mean
noise by up to 4× and 3σ noise by up to 13× (see bold in Table 2), when both applying the
current model with temporal and logic-induced correlations. As for the runtime between sLP
and sLP + Le f f , the latter needs about 2.7× more time than the former on average.

5.3 Comparison between sLP and sQP
We study the difference between our sLP and sQP approaches in terms of noise and runtime
for five benchmarks with different number of nodes in Table 3 for deterministic case. The
same white space are used up for both methods. An interesting observation from Table3 is
that sQP almost always obtain smaller noise than sLP, particularly for those large test cases,
with longer runtime. This is expected, as higher-order sensitivities are used in sQP to guide
the optimization. In terms of noise, sQP is much better than sLP for large test cases and
slightly worse for the small test case. In terms of runtime, however, sLP is on average 3.25×
faster than sQP. Similar experimental results are presented in Table 4 in the presence of Leff
variation. We can see that not only the mean noise is reduced by 19%, the 3σ valude is also
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new waveform as denoted by “A1:(P3)”. We then switch to solve problem (P2) by varying the
values of those random variables rk, but with fixed decap sizes wi. We see that the waveform
of the final worst-case voltage drop becomes worse compared to the deterministic solution;
hence we obtain a new voltage drop waveform as denoted by “A2:(P2)”. We then switch
back to solve the decap sizing problem (P3) with fixed but newly updated choice of random
variables rk. At the end of this optimization, we arrive at a new voltage waveform as denoted
by “A3:(P3)”. Apparently, compared to “A1:(P3)”, the new solution has smaller voltage drop.
If we continue the same procedures by following the IAP algorithm given in Fig. 1, similar
sequences of time domain voltage drop waveforms would repeat as we have shown in Fig. (3)
until we converge to an optimal solution. Also, The voltage drop is reduced mostly in the
first optimization iteration denoted as “A1:(P3)”. Afterward, the voltage drop reduction is
relatively small. This observation is in agreement with the common knowledge about any
sensitivity-based optimization techniques. In this particular example, we find that the first
two iterations reduces the noise by 51.4%.
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5.2 Le f f variation aware decap budgeting
In the presence of process variation, we want to minimize the worst-case noise for Le f f
variation. We solve this via the proposed IAP technique in Algorithm 1. We denote our Le f f
variation aware approach as sLP + Le f f and the counterpart as sLP. Before we quantitatively
compare the two methods, we first use Fig. 4 to demonstrate the effectiveness of Le f f variation
aware decap budgeting. We use the same circuit with 15% Le f f variation and perform Monte
Carlo simulations with 14000 samples to obtain the noise histogram of the design from the sLP
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sLP + Le f f and sLP with 10% intra-die Le f f variation.

and sLP + Le f f , respectively. From the figure we can see that the noise from sLP + Le f f (mean
value 8.4× 10−9 V*s, 3σ value 0.4× 10−9 V*s) is much smaller than that from sLP (mean value
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Next we compare the mean value μ and 3σ value of the noise distribution with 10% Le f f
variation based on Monte Carlo simulation with 10,000 runs, and the results are reported in
Table 2. Compared with using deterministic Le f f , considering Le f f variation reduces the mean
noise by up to 4× and 3σ noise by up to 13× (see bold in Table 2), when both applying the
current model with temporal and logic-induced correlations. As for the runtime between sLP
and sLP + Le f f , the latter needs about 2.7× more time than the former on average.

5.3 Comparison between sLP and sQP
We study the difference between our sLP and sQP approaches in terms of noise and runtime
for five benchmarks with different number of nodes in Table 3 for deterministic case. The
same white space are used up for both methods. An interesting observation from Table3 is
that sQP almost always obtain smaller noise than sLP, particularly for those large test cases,
with longer runtime. This is expected, as higher-order sensitivities are used in sQP to guide
the optimization. In terms of noise, sQP is much better than sLP for large test cases and
slightly worse for the small test case. In terms of runtime, however, sLP is on average 3.25×
faster than sQP. Similar experimental results are presented in Table 4 in the presence of Leff
variation. We can see that not only the mean noise is reduced by 19%, the 3σ valude is also

207
Stochastic Optimization Over Correlated Data Set:
A Case Study on VLSI Decoupling Capacitance Budgeting



Node Port sLP sQP
# # noise (V*s) time (s) noise (V*s) time (s)

128 41 1.83e-9 2.4 1.85e-9 (1.01×) 8.3 (3.46×)
512 174 1.83e-9 23.8 1.81e-9 (0.99×) 66.0 (2.77×)
1280 477 1.85e-9 151 1.79e-9 (0.97×) 497 (3.29×)
5120 1731 1.91e-8 982 1.30e-8 (0.68×) 3779 (3.85×)

12800 3324 1.94e-4 1960 0.81e-4 (0.42×) 5658 (2.89×)
Avg 1 1 0.81× 3.25×

Table 3. Noise and runtime comparison between sLP and sQP.

Node # Port # sLP + Le f f sQP + Le f f
μ 3σ RT μ 3σ RT

(V*s) (V*s) (s) (V*s) (V*s) (s)

1284 426 6.14e-7 1.38e-7 332.8) 4.98e-7 7.70e-8 985.0 (2.96×)

10490 3398 7.22e-5 1.23e-5 3429) 5.91e-5 5.28e-5 11932.9 (3.48×)

42280 13327 8.23e-4 1.01e-4 6924) 6.77e-4 5.93e-5 18348.6 (2.65×)

166380 42146 5.31e-3 8.32e-4 11224 4.11e-3 4.71e-4 36365.8 (3.24×)

avg 1 1 1 0.81× 0.54× 3.08×

Table 4. The mean value μ, 3σ variance of the noise and runtime (RT) comparison between
sLP + Le f f and sQP + Le f f with 10% intra-die Le f f variation.

reduced by 46%. We believe both sLP and sQP are of practical value, and they provide good
trade-off between runtime efficiency and design quality. Note that no existing approach in the
literature leverages them for decap budgeting. Our sLP/sQP solution is the first of the kind.

6. Conclusions and discussions

This chapter studied a variation-aware decoupling capacitance (decap) budgeting problem for
reliable power network design. The major contributions of this work are two-fold: (1) a novel
method to solve the the deterministic decap budgeting problem efficiently; and (2) a new
variation-aware decap budgeting problem that takes into account process variation effects.
Experimental results show that compared to existing industrial quality decap budgeting
techniques as proposed in the literature, we achieve 13× speed-up while achieving similar
design quality. It also serves as an example for general stochastic optimization.
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Davoodi, A. & Srivastava, A. (2006). ąśVariability-Driven Gate Sizin for Binning Yield
Optimization, IEEE/ACM DAC.

Ferzli, I. A. & Najm, F. N. (2003). Statistical verification of power grids considering
process-induced leakage current variations, IEEE/ACM ICCAD.

Fu, J., Luo, Z., Hong, X., Cai, Y., Tan, S.-D. & Pan, Z. (2004). A fast decoupling capacitor
budgeting algorithm for robust on-chip power delivery, Proc. Asia South Pacific Design
Automation Conf. (ASPDAC), pp. 505–510.

Ghanta, P., Vrudhula, S., Panda, R. & Wang, J. (2005). Stochastic power grid analysis
considering process variations, Proc. European Design and Test Conf. (DATE), Vol. 2,
pp. 964–969.

He, L., Kahng, A., Tam, K. H. & Xiong, J. (2007). Simultaneous Buffer Insertion and Wire Sizing
Considering Systematic CMP Variation and Random Leff Variation, IEEE Trans. on
CAD .

http://www.mosek.com (n.d.).
Hyvarinen, A., Karhunen, J. & Oja, E. (2001). Independent Component Analysis, John Wiley &

Sons.
Hyvarinen, A. & Oja, E. (1997). A Fast Fixed-Point Algorithm for Independent Component

Analysis, Neural Computation .
Karypis, G., Gupta, A. & Kumar, V. (1994). A Parallel Formulation of Interior Point

Algorithms, ACM/IEEE Conference on High Performance Networking and Computing.
Kouroussis, D., Ferzli, I. A. & Najm, F. N. (2005). Incremental partitioning-based vectorless

power grid verification, IEEE/ACM ICCAD.
Li, H., Qi, Z., Tan, S. X.-D., Wu, L., Cai, Y. & Hong, X. (2005). Partitioning-based approach to

fast on-chip decap budgeting and minimization, IEEE/ACM DAC, pp. 170–175.
Mani, M., Devgan, A. & Orshansky, M. (2005). An Efficient Algorithm for Statistical

Minimization of Total Power under Timing Yield Constraints, IEEE/ACM DAC.
Mani, M., Singh, A. & Orshansky, M. (2006). Joint Design-Time and Post-Silicon Minimization

of Parametric Yield Loss using Adjustable Robust Optimization, IEEE/ACM ICCAD.
Orshansky, M., Milor, L., Chen, P., Keutzer, K. & Hu, C. (2002). Impact of Spatial Intrachip Gate

Length Variability on the Performance of High-speed Digital Circuits, IEEE Trans. on
CAD .

Pant, S., Blaauw, D., Zolotov, V., Sundareswaran, S. & Panda, R. (2004). A stochastic approach
to power grid analysis, IEEE/ACM DAC, pp. 171–176.

Pant, S., D.Blaauw, Zolotov, V., S.Sundareswaran & Panda, R. (2004). A stochastic approach to
power grid analysis, IEEE/ACM DAC.

Qian, H., Nassif, S. R. & Sapatnekar, S. S. (2005). Power Grid Analysis Using Random Walks,
IEEE Trans. on CAD .

Shi, Y., Xiong, J., Liu, C. C. & He, L. (2007). Efficient Decoupling Capacitance Budgeting
Considering Operation and Process Variations, IEEE/ACM ICCAD.

Sinha, D., Shenoy, N. V. & Zhou, H. (2005). Statistical Gate Sizing for Timing Yield
Optimization, IEEE/ACM ICCAD.

Su, H., Sapatnekar, S. S. & Nassif, S. R. (2003). Optimal decoupling capacitor sizing and
placement for standard-cell layout designs, IEEE Trans. on CAD 22: 428–436.

Visweswariah, C., Haring, R. A. & Conn, A. R. (2000). Noise Consierations in Circuit
Optimization, IEEE Trans. on CAD .

209
Stochastic Optimization Over Correlated Data Set:
A Case Study on VLSI Decoupling Capacitance Budgeting



Node Port sLP sQP
# # noise (V*s) time (s) noise (V*s) time (s)

128 41 1.83e-9 2.4 1.85e-9 (1.01×) 8.3 (3.46×)
512 174 1.83e-9 23.8 1.81e-9 (0.99×) 66.0 (2.77×)
1280 477 1.85e-9 151 1.79e-9 (0.97×) 497 (3.29×)
5120 1731 1.91e-8 982 1.30e-8 (0.68×) 3779 (3.85×)

12800 3324 1.94e-4 1960 0.81e-4 (0.42×) 5658 (2.89×)
Avg 1 1 0.81× 3.25×

Table 3. Noise and runtime comparison between sLP and sQP.

Node # Port # sLP + Le f f sQP + Le f f
μ 3σ RT μ 3σ RT

(V*s) (V*s) (s) (V*s) (V*s) (s)

1284 426 6.14e-7 1.38e-7 332.8) 4.98e-7 7.70e-8 985.0 (2.96×)

10490 3398 7.22e-5 1.23e-5 3429) 5.91e-5 5.28e-5 11932.9 (3.48×)

42280 13327 8.23e-4 1.01e-4 6924) 6.77e-4 5.93e-5 18348.6 (2.65×)

166380 42146 5.31e-3 8.32e-4 11224 4.11e-3 4.71e-4 36365.8 (3.24×)

avg 1 1 1 0.81× 0.54× 3.08×

Table 4. The mean value μ, 3σ variance of the noise and runtime (RT) comparison between
sLP + Le f f and sQP + Le f f with 10% intra-die Le f f variation.

reduced by 46%. We believe both sLP and sQP are of practical value, and they provide good
trade-off between runtime efficiency and design quality. Note that no existing approach in the
literature leverages them for decap budgeting. Our sLP/sQP solution is the first of the kind.

6. Conclusions and discussions

This chapter studied a variation-aware decoupling capacitance (decap) budgeting problem for
reliable power network design. The major contributions of this work are two-fold: (1) a novel
method to solve the the deterministic decap budgeting problem efficiently; and (2) a new
variation-aware decap budgeting problem that takes into account process variation effects.
Experimental results show that compared to existing industrial quality decap budgeting
techniques as proposed in the literature, we achieve 13× speed-up while achieving similar
design quality. It also serves as an example for general stochastic optimization.
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1. Introduction 
Dynamic state-space models are useful for describing data in many different areas, such as 
engineering, finance mathematics, environmental data, and physical science. An important 
task when analyzing data by state-space models is estimation of the underlying state 
process based on measurements from the observation process. Bayesian filtering represents 
a solution of considerable importance for this type of problem definition as demonstrated by 
many existing algorithms based on the Kalman filter and particle filtering (PF) 
(Arulampalam 2002, Doucet et al. 2001, Yang et al. 2006). The PF has been extensively 
studied in the situation where the unknown attributes are time-varying dynamic states. 
Although PF have been successful in many applications, a main problem with it is how to 
handle the presence of the unknown static parameters, especially in models with 
realistically large numbers of fixed parameters. 
The estimation of both the dynamic state and static parameters is commonly known in 
literatures as the dual estimation. Numerous papers have been written on the construction 
of estimation algorithms based on Markov chain Monte Carlo (MCMC) (Spall 2003). 
Although such methods may be effective for offline estimation, they are not suitable for 
online estimation because the MCMC algorithm needs to be restart at each time point. In 
engineering, a common trick to problem is to include the parameters as part of the state 
space vector. Berzuini et al. (Berzuini et al. 1997) put this approach into Bayesian estimation. 
However, the non-dynamics in the parameters cause the degeneracy of the algorithm. Jane 
and West (Jane & Mike 2001) introduced diversity in the particles by Kernel method, which 
is similar to replace the original static parameter with an alternative dynamic model. Polson 
et al (Polson & Stroud 2008) proposed a sequential parameter learning and filtering based on 
approximating the target posterior by a mixture of fixed lag smoothing distributions. Lee 
and Chia (Lee & Chia 2002) combined the particle filtering and MCMC to achieve an 
estimation algorithm in which the measurements are processed sequentially by particle 
filtering. When the degeneration occurs, the particles are rejuvenated by MCMC. Storvik 
(Storvic 2002) considered models with sufficient statistics for the parameters and applied 
particle filters to an augmented vector of states and sufficient statistics. Djuric et al (Djuric & 
Miguez 2002) proposed an alternative approach for a certain class of state-space model, 
which suppose that the marginal distribution of parameter can be analytically tractable. 
However, both algorithms suffer from an accumulation of error over times, albeit more 
slowly, leading to instability eventually. On the other hand, Andrieu et al (Andrieu et al. 
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2003, 2004, 2005, Yang et al. 2008) considered maximum likelihood parameter point 
estimation based on gradient. But in reality the graduate computation is intractable for 
complex nonlinear system function. 
In this chapter, we propose a new algorithm that preserves the static nature of the unknown 
parameters. The maximum likelihood parameter estimation is performed based on particle 
filtering and an effective stochastic approximation gradient algorithm is used to optimize 
cost function. The estimation of static parameters and dynamic state variables is performed 
simultaneously. 

2. Problem formulation 
The state-space models have the form 

 1( , )

( , )
t t t

t t t

x p x x

y p y x

θ

θ
−∼

∼
  (1) 

where  tx  is unobserved state vector at time  t , ty  is an observation at time  t , mRθ ∈  is 
m  dimensional unknown static parameters vector, and ( )p ⋅ ⋅  is generic conditional 
distribution. Optimal filtering consists of estimating recursively in time the sequence of 
posterior densities function (PDF)  1:( )t tp x y  which summarizes all the information about 
the system states tx as given by the collection of observations  1: 1( , , )t ty y y= . For non-
linear and non-Gaussian dynamic models, the particle filtering can achieve approximated 
estimation of PDF based on Monte Carlo simulation. Although particle filtering has been 
successful in many simulation experiments and in analysis of real data, a main problem 
with it is how to handle the presence of unknown static parameters. In this paper, we 
present a method referred to as point estimation, i.e. we do not aim to estimating the PDF of  
θ . We focus rather on the estimation of  θ  directly by maximum-likelihood (ML) principle. 
The dynamic state is estimated by particle filtering and static parameter is estimated by 
recursive ML method online.  
Given a set of measurements 0:ty , the estimation of ML requires maximization of likelihood 
with respect to parameter θ . Firstly, the cost function is presented, and the likelihood of 
measurements 0:ty is given by 
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In practice, one uses the log-likelihood which is numerically better behaved and satisfies 
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To simplify the computation, the cost function is chosen as predicted likelihood, i.e. 

 0: 1 0: 1( ) ( , ) ( , ) ( , )t t t t t t tf p y y p y x p x y dxθ θ θ θ− −= = ∫  (4) 

However, except in a few simple cases, it is impossible to compute the optimal filter and the 
likelihood in closed-form, the numerical approximation schemes are required. 
The problem of maximizing the cost function can be translated into finding the zeros of the 
gradient  ( )f θ∇ . A recursion procedure to estimate θ  such that  ( ) 0f θ∇ =  proceeds as 
follows 

 1 1( )t t t tfθ θ γ θ− −= + ∇  (5) 

where 1( )tf θ −∇  is the estimation of gradient estimated at the point 1tθ − and { 0}tγ >  denotes 
a sequence of decreasing step-size. One selects a step-size sequence satisfying 0,tγ →  

1
t

t
γ

∞

=
= ∞∑ . Under appropriate conditions, the iteration in (5) will converge to the true value 

of θ  in some stochastic sense. The essential part of (5) is how to obtain the gradient 
estimate, however, it is impossible to compute the closed-form gradient and we must resort 
to the numerical approximation. 
The particle filtering (Gordon 1993, Doucet et al. 2001, Yang et al. 2006) is based on 
importance sampling where tx is simulated sequentially from some importance distribution 

1:( )t tq x y , and the whole trajectory 1:tx  is given importance weight  

1:

1:

( )
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t t
t

t t

p x y
q x yω =  

N such sequences are simulated parallel, giving a weighted particle set ( ) ( )( , ), 1, ,i i
t tx i Nω =  

at each time point t . The problem with the particle filtering is the degeneracy phenomenon, 
where the variance of the importance weights can only increase over time, making the 
estimate unstable (Kong et al. 1994). A common trick to avoid this is to re-sample from 
particle set with probabilities proportional to the importance weight (Gordon et al. 1993). 
The convergence result is surveyed in (Crisan & Doucet 2002), where the error in the 
approximate distribution is stable with increasing the number of particles to infinity. Given 
a set of weighted particle ( ) ( )

1 1( , )i i
t tx ω− −  which approximate 1 0: 1( , )t tp x y θ− −  and given the 

estimate of parameter 1tθ −  at time 1t − , the cost function can be approximated as follows 
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where the particles ( )( )
11( , )ii

t t ttx p x x θ −−∼   are obtained using a one-step ahead state evolution 
prediction. 
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Stochastic optimization techniques apply in the cases where a closed-form solution to the 
optimization problem of interest is not available and where the input information into 
optimization method may be contaminated with noise. One of the techniques that have 
attracted considerable recent attention for difficult multivariate problems is the 
simultaneous perturbation stochastic approximation (SPSA) method introduced by Spall 
(Spall 1987, 1998). SPSA is based on a highly efficient and easily implemented 
“simultaneous perturbation” approximation to the gradient. The SPSA technique requires 
all elements of θ  to be varied randomly simultaneously to obtain two estimates of the cost 
function. Only two cost function measurements are required regardless of the dimension of 
the parameters be optimized. The SPSA has proven to be an effective and easy implemented 
algorithm and success among other finite difference methods with reduced number of 
estimates required for convergence (Chan et al. 2003, Doucet & Tadic 2002, Andrieu et al. 
2003). 
A step-by-step guide to implementation of SPSA for stochastic optimization is presented in 
(Spall 1998). It is assumed that ( )f θ is a differentiable function of θ and that the minimum 
point of θ corresponding to a zero point of the gradient. In SPSA, the gradient estimate  

1 1 1 1( ) ( ( ), , ( ))t t m tf f fθ θ θ− − −∇ = ∇ ∇  

is given by  

1 1
1

,

( ) ( )( )
2

t t t t t t
j t

t t j

f c f cf
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θ θ
θ − −

−
+ Δ − − Δ

∇ =
Δ

 

where tc  denotes a sequence of positive scalars such that 0tc →  and 

,1 ,2 ,( , , , )t t t t mΔ = Δ Δ Δ  is a m-dimensional random perturbation vector. The choice of gain 
sequences is critical to the performance of SPSA. Careful selection of algorithm parameters 

, , , ,a c A rα and gain sequences is required to ensure convergence. The tγ and tc generally 

take the form of 
( 1)t

a
A t αγ =
+ +

 and 
( 1)t r

cc
t

=
+

. The practically effective values for α  

and r  are 0.602 and 0.101 respectively. As a rule-of-thumb, it is effective to set c  at a level 
approximately equal to the standard deviation of the measurement noise in  ( )f θ . The 
values of  ,a A  can be chosen together to ensure effective practical performance of the 
algorithm. Each components of  tΔ  is usually generated from Bernoulli  1±  distribution 

with probability of  1
2

  for each  1±  independently. 

In cases where the gradient has  more than one zero point, then the algorithm may only 
converge to a local minimum, Spall further gives some modifications to the basic SPSA 
algorithm to allow it to search for the global solution among multiple local solutions[15]. 

3. Sampling algorithms for combined estimation of parameter and state 
We present here how to incorporate maximum-likelihood algorithm within the particle 
filtering framework. To enhance the global convergence and Robust of the parameter 
estimate, for each state particle, i.e. a possible state trajectory, we produce a particle of 
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parameter and resample correspondingly. The ultimate parameter estimate is produced by 
weighted sum of parameter particles. This process can alleviate the divergence of estimate 
of parameter. The algorithm proceeds as follows. 

Step 1. Initialization:  

For 1, ,i N= , sample ( )
0
ix ～ 0( )p x  and initial particles of parameters estimate ( )
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Stochastic optimization techniques apply in the cases where a closed-form solution to the 
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Step 5. Parameter update: 

For each parameter particle ( ) ( )( )
1 1( )i ii

t tt tfθ θ γ θ− −= + ∇  

Step 6. Re-sampling: 

For each particle ( ) ( )( , )i i
t tx θ , compute the normalized importance weights as 

( )( ) ( ) ( )
1 ( , )ii i i

t t t tt p y xω ω θ−∝  at time t . 

Multiply/discard particles ( ) ( )( , )i i
t tx θ  with respect to high/low importance weights ( )i

tω . 

Re-assign even importance weights ( ) 1i
t Nω = .  

Step 7. Output: 
The obtained weighted particles  

( ) ( ) ( )( , , ), 1, ,i i i
t t tx i Nθ ω =  approximate to 0:( , )t tp x y θ .  

The posterior density function of state is approximated as 

( ) ( )
0:

1
( , ) ( )

N
i i

t t t t t
i

p x y x xθ ω δ
=

= −∑  

The estimate of state is  ( ) ( )

1

N
i i

t t t
i

x xω
=

=∑ . 

The estimate of parameter is  ( ) ( )

1

N
i i

t t t
i

θ ω θ
=

= ∑  

1t t= + . Return to step 2. 

4. Simulation results 
Here, we consider the following set of equations as an illustrative example which has been 
analyzed before in many publications (Gordon et al. 1993, Doucet et al. 2001, Chan et al. 
2003).  

1 1 1
22

1
2

cos(0.1 )
2 1

20

t t
t t

t

t
t t

x xx t v
x

xy w

θ
θ− −

−

= + + +
+

= +

 

where 0 (0,5)x N∼ , tv and tw are zero mean Gaussian random variables with variances 

tQ and tR ,respectively. We use 10tQ =  and 1tR = . 1θ is unknown parameter with true 
value 1 25θ = and 2 10θ = . This example is severely nonlinear, both in the system and the 
measurement equation. Note that the form of the likelihood ( )t tp y x adds an interesting 
twist to the problem.  
We present two algorithms to deal with the unknown parameters. The first algorithm, titled 
“Augmented State”, includes the parameters as part of the state vector ( , )t tx θ  which 
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proposed in paper (Jane & Mike 2001). θ is replaced by tθ at time t , then add an 
independent, zero-mean normal increment increment to the parameter at each time. That is,  

1

(0, )
t t t

t tN W
θ θ ζ
ζ

−= +
∼

 

For some specified variance matrix tW . We use 10tW =  in simulations. The second 
algorithm is our algorithm, titled “Adaptive estimate”, which includes an on-line adaptive 
estimation of the parameters as proposed in this paper. 
We perform 50 independent Monte Carlo runs with 1000N = particles in each run. The 
initial values of parameters are selected randomly in interval [0,1] . 
For reference, the true states for the exemplar run are shown in Fig.1 and the measurements 
in Fig.2. The sequences of parameter 1θ and 2θ estimate are illustrated in Fig.3 and Fig.4 
respectively where the solid line with the label “adaptive estimation” indicates the estimate 
by our algorithm, the dashed line with the label “augmented state” indicates the estimate by 
the first algorithm. Fig.5 shows the RMSE of dynamic state tx by particle filtering where 
dashed line represents RMSE with true value of parameters, the solid line represent RMSE 
with augmented state estimates of parameters by the first algorithm. Fig.6 shows the RMSE 
of particle filtering where dashed line represents RMSE with true value of parameters, the 
solid line represent RMSE with adaptive estimates of parameters by our algorithm. From the 
simulation results, it can be seen that the parameters converge to true values quickly by the 
proposed algorithm and RMSE of dynamic state with adaptive estimates of parameters 
diminish with time and approach to RMSE with the true values of parameters.  
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Fig. 1. Figure of the true values of state ( )x t  as ma function of t  for the exemplar run 
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Fig. 1. Figure of the true values of state ( )x t  as ma function of t  for the exemplar run 
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Fig. 2. Figure of the measurements ( )y t of the states ( )x t  shown in Fig.1 for the same 
exemplar run 
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Fig. 3. Sequence of parameter 1θ estimate over time 
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Fig. 4. Sequence of parameter 2θ estimate over time 
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Fig. 5. RMSE of state tx  by particle filtering with true parameter and augmented state 
parameter estimation 
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Fig. 4. Sequence of parameter 2θ estimate over time 
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Fig. 5. RMSE of state tx  by particle filtering with true parameter and augmented state 
parameter estimation 
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Fig. 6. RMSE of state tx  by particle filtering with true parameter and adaptive parameter 
estimation 

We also compare the performance measure of our results with the “augmented state 
estimate” algorithm. The performance measure is root mean square error as follows: 

2

1 1

1 ( ( , ) ( ))
M T

m t
RMS x m t x t

MT = =
= −∑∑  

where ( , )x m t  is the estimate of ( )x t  in the mth Monte Carlo simulation, 50, 5000M T= = . 
The performance of the first algorithm, our algorithm and the particle filtering with true 
parameter for various number of particles are presented in Table 1.  
 

Algorithm / N 800 1000 2000 
Augmented State 0.2017 0.1945 0.1873 
Adaptive estimation 0.1005 0.0996 0.0908 
True parameter 0.0912 0.0852 0.0803 

Table 1. RMS performance measure for the two algorithms 

5. Conclusions 
In this chapter, we proposed an adaptive estimation algorithm for non-linear dynamic 
systems with unknown parameters based on combination of particle filtering and SPSA 
technique. We have demonstrated how to combine the maximum-likelihood parameter 
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estimation with particle filtering. The estimates of parameters are obtained by state samples 
and maximum-likelihood estimation within particle filtering. The SPSA is used to 
approximate the gradient of cost function. The proposed algorithm achieves joint estimation 
of dynamic state and static parameters. 
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1. Introduction 
The rapid globalization of the world economy has led to the development of ample and 
quickly growing (aerial, maritime, terrestrial) networks for merchandise distribution in 
containers [Wang et al., 2008]. The transport costs afforded by the specialized companies 
operating in this sector are directly related to appropriate loading and efficient use of space 
[Xue and Lai, 1997a]. The efficient loading of a set of containers can be done technically by 
solving the Container Loading Problem (CLP). 
CLPs are NP-Hard problems that basically consist in placing a series of rectangular boxes 
inside a rectangular container of known dimensions, seeking to optimize volume utilization 
[Pisinger, 2002], and taking into consideration the basic constraints enounced by Wäscher et 
al. (2007): (i) all the boxes must be totally accommodated inside the container, and (ii) boxes 
should not overlap. Notwithstanding, the solving of actual container loading problems can 
be limited or rendered inappropriate if only these two constraints are considered [Bischoff 
and Ratcliff, 1995; Bortfeldt and Gehring, 2001; Eley 2002].  
In this sense, Bischoff and Ratcliff (1995) enounced a series of practical restrictions that are 
applicable to real situations: orientation and handling constraints, load stability, grouping, 
separation and load bearing strength of items within a container, multi-drop situations, 
complete shipment of certain item groups, shipment priorities, complexity of the loading 
arrangement, container weight limit and weight distribution within the container. 
According to the literature on the topic, these considerations have not been included in 
many of the existing approaches to the CLP problem. Some of these criteria are difficult to 
quantify [ibidem] due to their qualitative nature. The traditional optimization approaches, 
which cardinalize qualitative aspects, tend to cause loss of important criterion information. 
For this reason, more natural treatments such as those resulting from ordinal approaches are 
advisable [García et al., 2009]. 
The CLP has a natural correspondence with the integral optimization concept, which 
includes qualitative and quantitative criteria within an optimization problem [ibidem]. The 
CLP solving approach treated here not only considers the fundamental quantitative criteria 
stated by Wäscher et al. (2007), but two other important ones contributed by Bischoff and 
Ratcliff (1995) as well: i) not exceeding the container's weight transportation limit, and ii) 
once the container has been loaded, its center of gravity (COG) should be close to the 
geometrical center of its base (weight distribution within a container). In turn, the 
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qualitative criterion is the fragility of the elements packed inside the boxes. Finally, the 
stochastic consideration has to do with the load bearing strength of items, which results 
from the fragility or structural features of their contents or other reasons. 
The current chapter uses the Integral Analysis Method (IAM) [García et al., 2009] to 
optimize the CLP. IAM adapts well to stochastic optimization problems, thus allowing the 
development of more complex and natural models, which are therefore closer to actual 
problem contexts. In section 2, the current chapter includes an analysis of the background of 
the problem, including the list of restrictions contributed by Bischoff and Ratcliff (1995). 
Section 3 develops IAM: item 3.1 introduces the quantitative assessment, which includes the 
mathematical model and heuristic solution to the problem, as well as the analysis of the 
computational results; item 3.2 addresses the qualitative analysis, and item 3.3, the 
integrated analysis. Finally, section 4 presents conclusions and recommendations.  

2. Background 
The CLP has been studied since the beginning of the sixties [Pisinger, 2002]. Our literature 
review, which is detailed in table 1, allowed identifying heuristic and metaheuristic 
methodologies as the most common approaches to solving the problem. Albeit less frequent, 
other approaches have made use of Mixed Integer Programming (MIP), Nonlinear 
Programming (NLP) and Approximation Algorithm (AA) models. 
The solving technique and set of constraints considered in each of these studies can be 
found in tables 1 and 2, respectively. The methodologies used to treat the constraints 
identified by Bischoff and Ratcliff (1995) are presented in table 3. Regarding the constraints 
taken into consideration in the referred studies, those defined by Wäscher et al. (2007) are 
the most common ones: not exceeding the volume of the container and not allowing box 
overlapping. Few studies have addressed the constraints contributed by Bischoff and 
Ratcliff (1995). 
The works of Eley (2002), Bortfeldt and Gehring (2001), Davies and Bischoff (1999), Xue and 
Lai (1997b) and Chen et al. (1995) include the most considerations, although none of them 
reaches the complexity treated here. These studies solve the CLP by trying to minimize the 
wasted space in the container. It is worthwhile mentioning that all the criteria modeled in 
the reviewed CLP versions were treated quantitatively, even those that could be more 
naturally treated in a qualitative way. Examples of these criteria are separation of items 
within a container, shipment priorities or loading arrangement. 

3. Integral optimization of the problem 
The quantitative analysis proposes a mathematical programming model and a heuristic 
method to solve the CLP. In the qualitative and integration analysis we applied the 
developments contributed by IAM.  

3.1 Quantitative analysis 
The works of Chen et al. (1995) and of Xue and Lai (1997b) developed MIP models which 
include the set of restrictions contemplated in the current work. The model detailed in 
section 3.1.2 is proposed for homogeneous load (all the boxes have the same dimensions 
when they are not bearing anything on top) and includes the stochastic consideration 
defined in section 3.1.1 
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Author 
Constraints 

1 2 3 4 5 6 7 8 9 
Huang and He (2009b)          
Huang and He (2009a)          
Chien et al. (2009)          
Soak et al. (2008)          
Wang et al. (2008)          
Birgin et al. (2005)          
Chien and Deng (2004)          
Lewis et al. (2004)          
Bortfeldt et al. (2003)          
Lim et al. (2003)          
Miyazawa and Wakabayashi (2003)          
Eley (2002)          
Pisinger (2002)          
Bortfeldt and Gehring (2001)          
Teng et al. (2001)          
Davies and Bischoff (1999)          
Xue and Lai (1997b)          
Xue and Lai (1997a)          
Bischoff and Ratcliff (1995)          
Chen et al. (1995)          

1. Container volume 6. Multi-drop situations 
2. Boxes cannot overlap 7. Shipment frequencies 
3. Weight distribution within a container 8. Container weight limit 
4. Orientation constraints 9. Stacking of boxes 
5. Load stability   

Table 2. Constraints addressed in CLP studies 

3.1.1 Defining the stochastic consideration 
Boxes can be vertically compressed depending on the load they bear on top. Such 
deformation may depend on box content itself and on its structural features. In order to 
include this consideration in our MIP model we have made the following assumptions: 
– Boxes might (or might not) be deformed. 
– Only affecting height, deformation is homogeneous on the upper side, which bears the 

load. 
– Boxes might be made of different materials and have diverse contents. 
– The maximum load a box can support is a known feature. 
– Boxes have a deformation limit 
It is assumed that the deformation experimented by a box is directly proportional to the 
weight it bears on top. That is to say, the higher the weight, the more deformed the box will 
be. In this way the box reaches its maximum deformation when it is bearing the maximum 
permitted load. Additionally, we have included a stochastic factor that models the 
deformation that is not explained by the mentioned relation. The deterministic behavior of 
the deformation process is described in Figure 2. 
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Practical constraint Quantitative 
nature 

Qualitative 
nature 

Authors 
that have 

included it
Applied methodology 

Orientation constraints:  
One simple example of 
this constraint is the 
warning “This way up” 
that appears in certain 
boxes. 

  

Bortfeldt et 
al. (2003) 

A Tabu Search metaheuristic is 
applied as a solution, making use 
of a Block Building approach 
which groups the boxes according 
to their orientation constraints.  

Bortfeldt 
and Gehring 
(2001) 

Possible box rotations are handled 
through modifications of the wall 
filling method of the proposed 
greedy heuristic. 

Chen et al. 
(1995) 

The model is modified according 
to the need for orientation 
constraints. 

Load bearing strength of 
items: 
Depending on its 
structural features and on 
the fragility of its 
contents, a box may or 
may not tolerate the 
placing of weight on top. 

  
Bortfeldt 
and Gehring 
(2001) 

The proposed greedy heuristic’s 
wall filling method is 
quantitatively modified to prevent 
the creation of empty spaces above 
boxes with weight bearing 
restrictions. Excessive waste of 
space resulting from this 
constraint is prevented through 
the incorporation of additional 
rules.  

Handling constraints: 
According to the size and 
weight of the boxes, and 
to the necessary tools to 
store them in the 
container, the bigger 
elements may need to be 
placed on the floor of the 
container, or the heavier 
ones may not be allowed 
above a certain height. 

  NA NA 

Load stability:  
If, for example, the 
merchandise is prone to 
get damaged inside the 
container, it might be 
necessary to restrict its 
movement beyond 
significant limits during 
transportation.   

  

Bortfeldt et 
al. (2003) 

The blocks are built so that their 
base is entirely supported by 
another block or by the base of the 
container.  

Eley (2002) 

Each block is built with identical 
elements in order to prevent the 
formation of empty spaces among 
them. 

Teng et al. 
(2001) 

Mathematical equations are 
applied to minimize the system’s 
inertial momentum.  

Bortfeldt 
and Gehring 
(2001) 

The proposed wall filling method 
of the greedy heuristic is modified 
to avoid placing a box on top of 
another that is not supporting its 
bottom in its entirety. 
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transportation.   

  

Bortfeldt et 
al. (2003) 

The blocks are built so that their 
base is entirely supported by 
another block or by the base of the 
container.  

Eley (2002) 

Each block is built with identical 
elements in order to prevent the 
formation of empty spaces among 
them. 

Teng et al. 
(2001) 

Mathematical equations are 
applied to minimize the system’s 
inertial momentum.  

Bortfeldt 
and Gehring 
(2001) 

The proposed wall filling method 
of the greedy heuristic is modified 
to avoid placing a box on top of 
another that is not supporting its 
bottom in its entirety. 
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Practical constraint Quantitative 
nature 

Qualitative 
nature 

Authors 
that have 

included it
Applied methodology 

Bischoff and 
Ratcliff 
(1995) 

A Column Building based 
heuristic solution is presented. 
Stability is increased through 
columns built with boxes of the 
same type, so that none of them 
lacks base support.  

Grouping of items: 
Load checking and 
operation may be 
rendered easier if similar 
items are placed as close 
to one another as 
possible. 

  NA NA 

Multi-drop situations: 
If the container is 
scheduled to stop several 
times on the way, it might 
result practical to group 
together those items 
having the same destiny.  

  
Bischoff and 
Ratcliff 
(1995) 

A heuristic that checks all available 
spaces in the container before 
placing a box is introduced. 
Additional stability rules make 
sure all the boxes have their bases 
entirely supported by other boxes 
beneath.  

Separation of items 
within a container: 
If, for example, the 
container is carrying both 
chemical and food 
products, the loading 
arrangement must 
prevent them from 
having any contact. 

  NA NA 

Complete shipment of 
certain item groups: 
A particular shipment 
may include several boxes. 
If the decision is made to 
store one of them, the 
others might also need to 
be stored together.   

  NA NA 

Shipment priorities: 
The shipping of certain 
elements might be more 
important than that of 
some other ones. 

  NA NA 

Complexity of the 
loading arrangement: 
Depending on the 
resulting load
arrangement, special 
technology to unload the 
container (clamp or 

  NA NA 

230 Stochastic Optimization - Seeing the Optimal for the Uncertain
Integral Optimization of the Container Loading Problem 231 

Practical constraint Quantitative 
nature 

Qualitative 
nature 

Authors 
that have 

included it
Applied methodology 

forklift trucks) might 
result necessary instead 
of manual labor. 
However, if the task has 
technical limitations, the 
loading arrangement 
must adapt to them. 

Container weight limit: 
The container may have a 
maximum capacity which 
cannot be exceeded.  

  

Bortfeldt 
and Gehring 
(2001) 

While executing the greedy 
heuristic, the accumulated weight 
that has been loaded into the 
container is continuously checked. 
When an additional box leads to 
exceeding the container’s weight 
limit, it is not stored. 

Xue and Lai 
(1997b) 

This constraint is included in the 
mathematical programming section. 

Weight distribution 
within a container: 
From the standpoint of 
the operation of a loaded 
container, its center of 
gravity should not be far 
from the geometrical 
center of its base;
otherwise certain 
maneuvers may be 
impossible. 

  

Eley (2002) 

The length of the container is 
divided in equal sections that are 
filled up according to each of the 
proposed heuristics. The sections 
are then exchanged in order to 
attain an optimum weight 
distribution.  

Teng et al. 
(2001) 

During the second phase of the 
heuristic, the elements are 
tentatively swapped in order to 
drive the center of gravity of the 
system close to that of the container. 

Bortfeldt 
and Gehring 
(2001) 

The load balance is handled 
through the greedy heuristic as 
follows: along the length of the 
container through exchanging the 
walls that have been built; and 
along the width of the container 
through reflecting the load 
arrangement of each wall. 

Davies and 
Bischoff 
(1999) 

A heuristic that combines the 
Column, Wall and Block Building 
approaches is introduced. Load 
balance is sought by exchanging 
and rotating the different blocks 
resulting in the load arrangement.  

Chen et al. 
(1995) 

The model is modified as to 
include two restrictions aimed at 
preventing the load balance along 
the container from exceeding a 
certain limit. 

 
Table 3. Practical constraints defined by Bischoff and Ratcliff (1995) 
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maximum capacity which 
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heuristic, the accumulated weight 
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When an additional box leads to 
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A heuristic that combines the 
Column, Wall and Block Building 
approaches is introduced. Load 
balance is sought by exchanging 
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preventing the load balance along 
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Fig. 1. Box height reduction due to top load. 

 

 
Fig. 2. Supported weight – Deformation 

Deformation is modeled as follows: 
 

otherwise  (1)

Where 
: level where box  is located;   

: deformation undergone by box  at level . 
: weight supported by box , equaling , where  is the weight exerted by box  

at level , with . 
: maximum weight bearable by box , with . 
: minimum deterministic deformation experimented at level . 
: maximum deterministic deformation experimented at level . 
: stochastic parameter explaining the deformation that is not attributable to the functional 

relation of box  at level . This parameter associates a different probability density function 
to each ,  and . 
This way of modeling the deformation facilitates the simulation of instances in which one 
box can be more deformed than another, even when they are bearing the same weight and 
number of boxes. This might be the case of, for example, the different structural features of 
the boxes or of their contents. In sum, as a result of unknown reasons that cannot be 
attributed to the described function. 

3.1.2 MIP model 
Given that the boxes have the same dimensions, the container can be divided in multiple cells 
of box dimensions (Figure 3). As the model does not allow rotating the boxes, all their sides 
remain parallel to their corresponding container homologues. In this context, a hypothetical 
container can be conceived so that the boxes fit its width and length perfectly well because in 
practice the empty space (dotted zone in Figure 3) can be completed with filling material.  
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Fig. 3. Inner division of the container 
The model includes the following parameters: 
– : number of boxes to be stored. 
– : dimensions of the container (length, width, height). 
– : dimensions of the boxes (length, width, height). It is assumed that the 

COG of each box coincides with its geometric center.  
– : number of boxes that can be accommodated in the container along its length, 

width and height, respectively; where , 
and .  

– : weight of box . 
– : maximum weight bearable by box , being . 
– : maximum load capacity of the container as measured in weight.  
– : the distance between the COG of the loaded container and its base is restricted to a 

predetermined value ( ). This distance is only measured along the length of the 
container (Figure 4). 

 

 
Fig. 4. Top view of the container 

– : minimum deterministic deformation experimented at level  of the container. 
– : maximum deterministic deformation experimented at level  of the container. 
– : probability density function that determines the stochastic deformation 

experimented by a box at level  of the container. 
– : minimum possible value of the stochastic deformation parameter for boxes 

located at level  of the container. 
– : maximum possible value of the stochastic deformation parameter for boxes 

located at level  of the container. 
The model uses the following variables: 

– If box is in cell
Otherwise

 
– : total load supported by box  in cell . 
– : stochastic deformation experimented by box  at level . 
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number of boxes. This might be the case of, for example, the different structural features of 
the boxes or of their contents. In sum, as a result of unknown reasons that cannot be 
attributed to the described function. 

3.1.2 MIP model 
Given that the boxes have the same dimensions, the container can be divided in multiple cells 
of box dimensions (Figure 3). As the model does not allow rotating the boxes, all their sides 
remain parallel to their corresponding container homologues. In this context, a hypothetical 
container can be conceived so that the boxes fit its width and length perfectly well because in 
practice the empty space (dotted zone in Figure 3) can be completed with filling material.  
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– : minimum deterministic deformation experimented at level  of the container. 
– : maximum deterministic deformation experimented at level  of the container. 
– : probability density function that determines the stochastic deformation 

experimented by a box at level  of the container. 
– : minimum possible value of the stochastic deformation parameter for boxes 

located at level  of the container. 
– : maximum possible value of the stochastic deformation parameter for boxes 

located at level  of the container. 
The model uses the following variables: 

– If box is in cell
Otherwise

 
– : total load supported by box  in cell . 
– : stochastic deformation experimented by box  at level . 
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– : total deformation experimented by box  in cell . 
The model has the following constraints:  
(R1) Volume capacity: the number of boxes stored in the container must not exceed the 
number of cells available in it: 
 

(2)

(R2) No box shall occupy more than one cell: 
 

(3) 

(R3) Each cell shall only be assigned to one box: 
 

(4) 

 

(R4) All the boxes that are not in contact with the base of the container must be supported 
by other boxes beneath them: 
 

(5) 

 

(R5) The total stored weight of the boxes cannot exceed the load limit of the container: 
 

(6) 

 

(R6) Weight distribution within the container: once the container has been loaded, its COG 
is calculated along its length because its stability is more compromised along its largest 
dimension. The distance between this point and  must not be larger than  (Figure 4). To 
calculate the COG of the container, it is divided in  walls of dimensions 

, each of them with weight  which is assumed to be exerted at the 
middle point of its base; that is, at  (Figure 5). 
 

 
Fig. 5. Side view of the container 
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As a reference, we take the lower left corner as the origin of axis . The force diagram on the 
base of the container is the following: 
 

 
Fig. 6. Force diagram on the base of the container 

Applying the equation to calculate the COG we obtain: 
 

(7)

 

Where  is the distance from the center of the base of wall  to the origin, and is the 
weight of wall . 
The distance between  and  cannot be larger than . This constraint is expressed as: 
 

(8)

 

The weight of wall  is given by the sum of the box weights stored in it: 
 

(9)

 

The distance from the center of wall  to the origin is given by: 
 

(10) 
 

Replacing  and  in the constraint we obtain: 
 

(11) 

 

Which can be redistributed as:  
 

(12) 

 

(R7) The weight supported by box  in cell  is given by the overall sum of the box 
weights it is bearing, that is, in those  cells satisfying the condition . Said 
weight must not exceed the box’s load bearing limit: 
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(13) 

(14) 

(15) 
 

As it can be seen in the constraint above, the weight supported by the boxes at the top level 
is zero.  
(R8) Deformation of box  is calculated from the deterministic deformation range  for 
level , the ratio of the supported weight ( ) and the probability function 
( ) corresponding to level  where the box is located. The deformation of the 
boxes found at the uppermost level of the container is made equal to zero: 
 

(16)

(17)

(18)
 
Finally, the objective function minimizes the empty space inside the container: 
 

(19) 

3.1.3 Heuristic method 
Although the literature review does not report the application of the GRASP (Greedy 
Randomized Adaptive Search Procedure) metaheuristic to solve three dimensional packing 
problems, it has shown very good results in combinatorial problems raised in production 
programming [Vega-Mejía and Caballero-Villalobos, 2010; Binato et al., 2002] and supply 
chain [Carreto and Baker, 2002; Delmaire et al., 1999] studies, among other research areas. In 
sum, the evidence of good performance of this metaheuristic for solving combinatorial 
problems led to its application in the current problem.  
3.1.3.1 GRASP Metaheuristic  
The procedure consists in an iterative process comprising two phases, namely construction 
and local search. In the constructive phase a feasible solution whose neighborhood is 
examined until reaching a local minimum is generated. At the end, the most feasible 
solution found is retained as the final solution of the problem [Glover et al., 2003].  
In conducting the constructive phase it is necessary to define a utility function for the 
specific problem. Said function allows evaluating each of the elements that might be part of 
the initial feasible solution. When all the elements have been evaluated, a Restricted 
Candidate List (RCL) is elaborated with those exhibiting the best utility function. That is to 
say: 
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(20)
Where: 
–  is the utility function of element  
–  is a random number between 0 and 1. 
– In case there is a problem of minimization,  is the lowest value found in the utility 

function, whereas  is the greatest one. 
The pseudo-code proposed by Resende and González (2003) is the following: 
 
1  PROCEDURE Constructive Phase – V  
2  PARAMETERS 
3 : numeric value between 0 and 1 
4 : problem data 
5 : utility function 
6  VARIABLES  
7 : initial solution 
8 : copy of problem data 
9  BEGIN PROCEDURE 
10  
11  
12 Evaluate utility function  
13 WHILE  
14   
15   
16   
17  Choose from the RCL a random element  that maintains solution feasibility 
18   
19  Remove element  from  
20  Evaluate utility function  
21 END WHILE 
22 RETURN  
23 END PROCEDURE 

Fig. 7. GRASP – Constructive phase 

This phase chooses an RCL candidate at random to add it to the initial solution, and then it 
empties the RCL. The process of filling and emptying the RCL is repeated until a feasible 
solution is obtained. Thus, the clearest advantage of the process is that the initial solution is 
attained step by step without affecting the feasibility of the result [Glover and 
Kochenberger, 2003]. 
The second phase of GRASP uses a local search method that improves the value of the 
solution found for the objective function during the constructive phase, through simple 
swapping of the elements of the initial solution. Said procedure is analogue to conducting 
searches in the close vicinity of the initial solution within the problem’s solving space 
[Ibidem]. The local search pseudo-code is the following [Resende and González, 2003]: 
 
1  PROCEDURE Local Search Phase  
2  PARAMETERS 
3 : current solution 
4 : neighborhood of  
5 : objective function 
6  VARIABLES 
7 : improved solution 
8 : solution in the vicinity of  
9  BEGIN PROCEDURE 
10  
11 WHILE  is not a locally optimal in  
12  Find  such that  and  is a feasible solution 
13   
14 END WHILE 
15 RETURN  
16 END PROCEDURE 

Fig. 8. GRASP – Local Search 
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solution found is retained as the final solution of the problem [Glover et al., 2003].  
In conducting the constructive phase it is necessary to define a utility function for the 
specific problem. Said function allows evaluating each of the elements that might be part of 
the initial feasible solution. When all the elements have been evaluated, a Restricted 
Candidate List (RCL) is elaborated with those exhibiting the best utility function. That is to 
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Fig. 7. GRASP – Constructive phase 

This phase chooses an RCL candidate at random to add it to the initial solution, and then it 
empties the RCL. The process of filling and emptying the RCL is repeated until a feasible 
solution is obtained. Thus, the clearest advantage of the process is that the initial solution is 
attained step by step without affecting the feasibility of the result [Glover and 
Kochenberger, 2003]. 
The second phase of GRASP uses a local search method that improves the value of the 
solution found for the objective function during the constructive phase, through simple 
swapping of the elements of the initial solution. Said procedure is analogue to conducting 
searches in the close vicinity of the initial solution within the problem’s solving space 
[Ibidem]. The local search pseudo-code is the following [Resende and González, 2003]: 
 
1  PROCEDURE Local Search Phase  
2  PARAMETERS 
3 : current solution 
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5 : objective function 
6  VARIABLES 
7 : improved solution 
8 : solution in the vicinity of  
9  BEGIN PROCEDURE 
10  
11 WHILE  is not a locally optimal in  
12  Find  such that  and  is a feasible solution 
13   
14 END WHILE 
15 RETURN  
16 END PROCEDURE 

Fig. 8. GRASP – Local Search 
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Finally, the pseudo-code for GRASP is: 
 
1  PROCEDURE GRASP  
2  PARAMETERS 
3 : number of iterations 
4 : numeric value between 0 and 1 
5 : objective function 
6 : utility function 
7  VARIABLES 
8 : problem data 
9 : solution 
10 : best solution 
11 : objective function value 
12 BEGIN PROCEDURE 
13  Read problem data 
14  
15  
16 WHILE  
17   Constructive Phase – V  
18   Local Search Phase  
19  IF  THEN 
20    
21    
22  END IF 
23   
24 END WHILE 
25 RETURN  
26 END PROCEDURE 

Fig. 9. GRASP 
 

3.1.3.2 Implementation of GRASP 
During the constructive phase, our version of GRASP solves a relaxation of the problem at 
the COG constraint (12) by considering the feasibility of the latter in the local search phase, 
guaranteeing in this way the feasibility of the solution. 
In the constructive phase of GRASP the utility function is used to find the best candidates to 
be placed at a given position in the container, which is filled up from bottom to top. For each 
available position, the utility function is defined as:  
 

(21)

Where: 
–  represents the box under evaluation for cell  of the container. 
–  is the maximum possible deterministic deformation experimented by a box at level . 
–  is the stochastic deformation that can be experimented by box  at level . 
–  is the deformation experimented by box  at cell  of the container. 
When , that is, when the positions at the base of the container are under examination, 
the RCL is elaborated with those boxes that would undergo the least deformation under the 
maximum possible weight they can support. Considering equation (1), the utility function 
(21) applies the following evaluation strategy: the heaviest boxes are preferably located at 
the bottom level, so that the weight loaded on top of a box  ( ), located in cell  is 
equal to the maximum weight bearable by ( ). In this way, equation (1) is reduced to 

. For the rest of the levels of the container ( ), the RCL is elaborated with those 
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boxes that, for one thing, may be least deformed when bearing on top the maximum load 
they can be assigned ( ) at level , and for another thing, may induce the least 
deformation on the boxes supporting them ( ). In this way the algorithm 
makes sure that each new assignation is both good and feasible for the relaxation of the 
problem at the load distribution constraint.  
The local search phase of GRASP was conceived to minimize stored box deformation and 
improve weight distribution. The latter is achieved by approximating the COG of the loaded 
container to its geometric center at the base level, as calculated along its length as its largest 
dimension. The local search comprises four stages. In the first one box pairs are swapped as to 
reduce total deformation and therefore minimize unoccupied volume. Said swapping is carried 
out according to a 2-Optimal algorithm [Croes, 1958] whose pseudo-code is the following: 
 
1  PROCEDURE Box Swapping  
2  PARAMETERS 
3 : current solution 
4 : objective function 
5  VARIABLES 
6 : improved solution 
7 : objective function value of the improved solution 
8  BEGIN PROCEDURE 
9  
10  
11  
12 WHILE  is less than the number of elements in  
13   
14  WHILE  is less or equal to the number of elements in  
15    
16   Swap box  with box  in  
17   IF  AND  is a feasible solution THEN 
18     
19     
20   END IF 
21    
22  END WHILE 
23   
24 END WHILE 
25 RETURN  
26 END PROCEDURE 
Fig. 10. 2-Optimal box swapping  

If, at this stage, total deformation can be reduced, we will have reached a better distribution 
of the boxes in the container, which would eventually constitute a better utilization of total 
available space. The second stage is intended to check whether there is room for additional 
boxes. If at least one more box can be added, stage 1 is repeated. Periodically, the procedure 
checks compliance with the problem relaxation constraints. It finishes when all available 
positions in the container have been checked. The pseudo-code of the second stage is: 
 
1  PROCEDURE Add Boxes  
2  PARAMETERS 
3 : problem data 
4 : current solution 
5 : objective function 
6  VARIABLES 
7 result: boolean variable that determines if any boxes were added to the solution 
8 : objective function value of the current solution 
9  BEGIN PROCEDURE 
10 result = false 
11 WHILE there are empty positions inside the container 
12  FOR EACH  IN  AND NOT IN  
13   IF adding  to  does not exceed the container’s weight limit 
14   AND  can be supported by the boxes below THEN 
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Finally, the pseudo-code for GRASP is: 
 
1  PROCEDURE GRASP  
2  PARAMETERS 
3 : number of iterations 
4 : numeric value between 0 and 1 
5 : objective function 
6 : utility function 
7  VARIABLES 
8 : problem data 
9 : solution 
10 : best solution 
11 : objective function value 
12 BEGIN PROCEDURE 
13  Read problem data 
14  
15  
16 WHILE  
17   Constructive Phase – V  
18   Local Search Phase  
19  IF  THEN 
20    
21    
22  END IF 
23   
24 END WHILE 
25 RETURN  
26 END PROCEDURE 

Fig. 9. GRASP 
 

3.1.3.2 Implementation of GRASP 
During the constructive phase, our version of GRASP solves a relaxation of the problem at 
the COG constraint (12) by considering the feasibility of the latter in the local search phase, 
guaranteeing in this way the feasibility of the solution. 
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available position, the utility function is defined as:  
 

(21)

Where: 
–  represents the box under evaluation for cell  of the container. 
–  is the maximum possible deterministic deformation experimented by a box at level . 
–  is the stochastic deformation that can be experimented by box  at level . 
–  is the deformation experimented by box  at cell  of the container. 
When , that is, when the positions at the base of the container are under examination, 
the RCL is elaborated with those boxes that would undergo the least deformation under the 
maximum possible weight they can support. Considering equation (1), the utility function 
(21) applies the following evaluation strategy: the heaviest boxes are preferably located at 
the bottom level, so that the weight loaded on top of a box  ( ), located in cell  is 
equal to the maximum weight bearable by ( ). In this way, equation (1) is reduced to 

. For the rest of the levels of the container ( ), the RCL is elaborated with those 
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boxes that, for one thing, may be least deformed when bearing on top the maximum load 
they can be assigned ( ) at level , and for another thing, may induce the least 
deformation on the boxes supporting them ( ). In this way the algorithm 
makes sure that each new assignation is both good and feasible for the relaxation of the 
problem at the load distribution constraint.  
The local search phase of GRASP was conceived to minimize stored box deformation and 
improve weight distribution. The latter is achieved by approximating the COG of the loaded 
container to its geometric center at the base level, as calculated along its length as its largest 
dimension. The local search comprises four stages. In the first one box pairs are swapped as to 
reduce total deformation and therefore minimize unoccupied volume. Said swapping is carried 
out according to a 2-Optimal algorithm [Croes, 1958] whose pseudo-code is the following: 
 
1  PROCEDURE Box Swapping  
2  PARAMETERS 
3 : current solution 
4 : objective function 
5  VARIABLES 
6 : improved solution 
7 : objective function value of the improved solution 
8  BEGIN PROCEDURE 
9  
10  
11  
12 WHILE  is less than the number of elements in  
13   
14  WHILE  is less or equal to the number of elements in  
15    
16   Swap box  with box  in  
17   IF  AND  is a feasible solution THEN 
18     
19     
20   END IF 
21    
22  END WHILE 
23   
24 END WHILE 
25 RETURN  
26 END PROCEDURE 
Fig. 10. 2-Optimal box swapping  

If, at this stage, total deformation can be reduced, we will have reached a better distribution 
of the boxes in the container, which would eventually constitute a better utilization of total 
available space. The second stage is intended to check whether there is room for additional 
boxes. If at least one more box can be added, stage 1 is repeated. Periodically, the procedure 
checks compliance with the problem relaxation constraints. It finishes when all available 
positions in the container have been checked. The pseudo-code of the second stage is: 
 
1  PROCEDURE Add Boxes  
2  PARAMETERS 
3 : problem data 
4 : current solution 
5 : objective function 
6  VARIABLES 
7 result: boolean variable that determines if any boxes were added to the solution 
8 : objective function value of the current solution 
9  BEGIN PROCEDURE 
10 result = false 
11 WHILE there are empty positions inside the container 
12  FOR EACH  IN  AND NOT IN  
13   IF adding  to  does not exceed the container’s weight limit 
14   AND  can be supported by the boxes below THEN 
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15     
16     
17    Remove  from  
18    result = true 
19   END IF 
20  END FOR EACH 
21 END WHILE 
22 RETURN  result 
23 END PROCEDURE 

Fig. 11. Adding boxes to the solution 

The third and fourth stages of the local search improve weight distribution within the 
container. In this respect, given that the container is divided in equal cells, the latter can be 
grouped in  walls of dimensions , as illustrated in Figure 12. 
 

 
Fig. 12. Inner division of the container at stage 3 of the local search 

In the third stage, these walls are swapped by the 2-Optimal algorithm, selecting for those 
modifications that allow driving the COG of the container to its medium length point. The 
pseudo-code goes as follows: 
 
1  PROCEDURE Wall Swapping  
2  PARAMETERS 
3 : current solution 
4 : container length 
5 : number of possible walls alongside the container length 
6 : function that calculates the COG of the loaded container 
7  VARIABLES 
8 : improved solution 
9 : COG of the improved solution 
10 BEGIN PROCEDURE 
11  
12  
13  
14 WHILE  is less than the number of possible walls ( ) 
15   
16  WHILE  is less or equal to the number of possible walls ( ) 
17    
18   Swap boxes in wall  with those in wall  
19     
20   IF  is closer to  than  THEN  
21     
22     
23   END IF 
24    
25  END WHILE 
26   
27 END WHILE 
28 RETURN  
29 END PROCEDURE 

Fig. 13. Wall swapping 
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The fourth stage initiates once the 2-Optimal wall swapping has been finished. In this stage, 
the container is divided in  walls of dimensions , as illustrated in 
Figure 14. 
 

 
Fig. 14. Inner division of the container at stage four of the local search. 

As the COG of the container is sought only along its length, the swapping of these walls is 
discarded because it would have no effect on the task. The incidence of these walls on the 
COG is analyzed by putting them back to front (reflection) as illustrated in Figure 15. 
 

 
Fig. 15. Wall reflection. 

The pseudo-code that is applied for this task is presented below: 
 
1  PROCEDURE Reflect Wall  
2  PARAMETERS 
3 : current solution 
4 : maximum number of available cells in the container along its length 
5 : wall to reflect 
6  VARIABLES 
7 : set of boxes within wall  
8 : cell  along the container length in which box  has been placed 
9  BEGIN PROCEDURE 
10 Assign to  all boxes that had been placed in wall  of  
11 FOR EACH  IN   
12    
13 END FOR EACH  
14 RETURN  
15 END PROCEDURE 

Fig. 16. Wall reflection 

If at least one of these wall reflection movements drives the COG closer to the midpoint of 
the container’s length, the third stage of the local search must be executed again. Otherwise, 
the local search is finished. 
The pseudo-code for the local search phase is: 
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15     
16     
17    Remove  from  
18    result = true 
19   END IF 
20  END FOR EACH 
21 END WHILE 
22 RETURN  result 
23 END PROCEDURE 

Fig. 11. Adding boxes to the solution 

The third and fourth stages of the local search improve weight distribution within the 
container. In this respect, given that the container is divided in equal cells, the latter can be 
grouped in  walls of dimensions , as illustrated in Figure 12. 
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In the third stage, these walls are swapped by the 2-Optimal algorithm, selecting for those 
modifications that allow driving the COG of the container to its medium length point. The 
pseudo-code goes as follows: 
 
1  PROCEDURE Wall Swapping  
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3 : current solution 
4 : container length 
5 : number of possible walls alongside the container length 
6 : function that calculates the COG of the loaded container 
7  VARIABLES 
8 : improved solution 
9 : COG of the improved solution 
10 BEGIN PROCEDURE 
11  
12  
13  
14 WHILE  is less than the number of possible walls ( ) 
15   
16  WHILE  is less or equal to the number of possible walls ( ) 
17    
18   Swap boxes in wall  with those in wall  
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20   IF  is closer to  than  THEN  
21     
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23   END IF 
24    
25  END WHILE 
26   
27 END WHILE 
28 RETURN  
29 END PROCEDURE 

Fig. 13. Wall swapping 
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the container is divided in  walls of dimensions , as illustrated in 
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discarded because it would have no effect on the task. The incidence of these walls on the 
COG is analyzed by putting them back to front (reflection) as illustrated in Figure 15. 
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The pseudo-code that is applied for this task is presented below: 
 
1  PROCEDURE Reflect Wall  
2  PARAMETERS 
3 : current solution 
4 : maximum number of available cells in the container along its length 
5 : wall to reflect 
6  VARIABLES 
7 : set of boxes within wall  
8 : cell  along the container length in which box  has been placed 
9  BEGIN PROCEDURE 
10 Assign to  all boxes that had been placed in wall  of  
11 FOR EACH  IN   
12    
13 END FOR EACH  
14 RETURN  
15 END PROCEDURE 

Fig. 16. Wall reflection 

If at least one of these wall reflection movements drives the COG closer to the midpoint of 
the container’s length, the third stage of the local search must be executed again. Otherwise, 
the local search is finished. 
The pseudo-code for the local search phase is: 
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1  PROCEDURE Local Search Phase  
2  PARAMETERS 
3 : problem data 
4 : current solution 
5 : objective function 
6 : container length 
7 : number of possible walls alongside the container’s length 
8 : number of possible walls alongside the container’s width 
9 : function that calculates the COG of the loaded container 
10 VARIABLES 
11 : improved solution 
12 : COG of the improved solution 
13 BEGIN PROCEDURE 
14  Box Swapping  
15 WHILE Add Boxes  = true 
16   Box Swapping  
17 END WHILE 
18  Wall Swapping  
19 FOR  TO  
20   
21   Reflect Wall  
22   
23  IF  is closer to  than  THEN 
24     
25    Wall Swapping  
26   Set  to restart fourth stage 
27  END IF 
28 INCREMENT  
29 RETURN   
30 END PROCEDURE 

Fig. 17. Local Search 

 

Finally, the pseudo-code of the proposed GRASP metaheuristic is:  
 
 
1  PROCEDURE GRASP  
2  PARAMETERS 
3 : number of iterations 
4 : numeric value between 0 and 1 
5 : objective function 
6 : utility function 
7 : function that calculates the COG of the loaded container 
8 : number of possible walls alongside the container’s length 
9 : number of possible walls alongside the container’s width 
10 VARIABLES 
11 : problem data 
12 : solution 
13 : best solution 
14 : objective function value of the best solution 
15 BEGIN PROCEDURE 
16  Read problem data 
17  
18  
19 WHILE  
20   Constructive Phase - V  
21   Local Search Phase  
22  IF  THEN 
23    
24    
25  END IF 
26   
27 END WHILE 
28 RETURN  
29 END PROCEDURE 

Fig. 18. CLP solving GRASP  
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3.1.4 Computational results 
The problem instances used to test the proposed heuristic procedure were generated as 
follows:  
– The length, width and height of the container were set at 587cm, 233cm, and 220cm, 

respectively; corresponding to those used in previous works [Eley, 2002; Davies and 
Bischoff, 1999; Bischoff and Ratcliff, 1995]. 

– The dimensions of the boxes (length, width and height, in centimeters) were arbitrarily 
set at (293, 77, 55) and (72, 72, 72). The number of boxes  of each problem is: 

 

(22)
 

– The weights of the  boxes as measured in kg were generated by means of a uniform 
distribution with parameters  and . 

– Each of the  boxes’ bearable weight (in kg) was estimated by multiplying its weight by 
a random number between 1 and 3.  

– The weight limit (in kg) that can be loaded into the container was established arbitrarily 
as 90% of the total weight of the  boxes. 

– One problem instance was generated for each box size configuration in order to 
perform the qualitative and integration analysis only on two problems: a 24 box one 
and a 72 box one.  

–  values of ; ;  and  were used in elaborating the RCL. The realized 
implementation was executed 1,000 times for every instance and value of . Each 
execution comprised 500 GRASP iterations. 

Considering equation (1): 
– For all tested instances, the parameter for maximum deterministic deformation  

(expressed in cm) is calculated arbitrarily as shown below:  
 

(23) 

 

– For all tested instances, the parameter for minimum deterministic deformation  
(expressed in cm) is calculated arbitrarily as shown below:  

 

(24) 
 

–  Stochastic deformation  (expressed in cm) is a random number in the interval 
 

The proposed GRASP was implemented on C# using MS Visual Studio 2005. All tests were 
run on a 2 GHz Dual Core processor with 3.49 GB RAM loaded with Windows XP. 
The tables below summarize the results obtained in testing the instances resulting from the 
different values of . The registered parameters are: percentage of container space utilized; 
total load weight with respect to the weight limit of the container; distance from the COG of 
the cargo to the center of the base of the container alongside its length; and average length of 
time spent in executing the solution.  
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1  PROCEDURE Local Search Phase  
2  PARAMETERS 
3 : problem data 
4 : current solution 
5 : objective function 
6 : container length 
7 : number of possible walls alongside the container’s length 
8 : number of possible walls alongside the container’s width 
9 : function that calculates the COG of the loaded container 
10 VARIABLES 
11 : improved solution 
12 : COG of the improved solution 
13 BEGIN PROCEDURE 
14  Box Swapping  
15 WHILE Add Boxes  = true 
16   Box Swapping  
17 END WHILE 
18  Wall Swapping  
19 FOR  TO  
20   
21   Reflect Wall  
22   
23  IF  is closer to  than  THEN 
24     
25    Wall Swapping  
26   Set  to restart fourth stage 
27  END IF 
28 INCREMENT  
29 RETURN   
30 END PROCEDURE 

Fig. 17. Local Search 
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27 END WHILE 
28 RETURN  
29 END PROCEDURE 

Fig. 18. CLP solving GRASP  
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set at (293, 77, 55) and (72, 72, 72). The number of boxes  of each problem is: 
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distribution with parameters  and . 

– Each of the  boxes’ bearable weight (in kg) was estimated by multiplying its weight by 
a random number between 1 and 3.  

– The weight limit (in kg) that can be loaded into the container was established arbitrarily 
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The proposed GRASP was implemented on C# using MS Visual Studio 2005. All tests were 
run on a 2 GHz Dual Core processor with 3.49 GB RAM loaded with Windows XP. 
The tables below summarize the results obtained in testing the instances resulting from the 
different values of . The registered parameters are: percentage of container space utilized; 
total load weight with respect to the weight limit of the container; distance from the COG of 
the cargo to the center of the base of the container alongside its length; and average length of 
time spent in executing the solution.  
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Number 
of boxes  

Average 
duration of a 
500 iteration 

execution (sec)

Utilization of the 
container’s space (%)

Utilization of the 
weight capacity of the 

container (%)  

Distance from the COG 
of the loaded container to 
the center of the base of 

the container (cm) 
Min Max Avg Min Max Avg Min Max Avg 

24 

0.05 16.53 89.82 90.15 89.96 98.66 99.95 99.57 0.01 16.30 2.85 
0.10 13.48 89.82 90.14 89.98 98.66 99.95 99.50 0.00 18.52 2.89 
0.15 12.12 89.86 90.17 89.98 98.66 99.95 99.56 0.01 12.79 2.92 
0.20 12.33 89.84 90.15 89.98 98.66 99.95 99.51 0.02 16.69 2.41 

72 

0.05 53.18 81.32 81.54 81.44 99.18 100.00 99.83 0.00 1.40 0.13 
0.10 48.51 81.36 81.53 81.43 99.23 100.00 99.87 0.00 1.66 0.15 
0.15 47.72 81.34 81.54 81.43 99.24 100.00 99.86 0.00 4.85 0.13 
0.20 48.45 81.34 81.54 81.43 99.44 100.00 99.89 0.00 1.45 0.18 

Table 4. Summary of results 

The qualitative analysis only made use of those results whose  value allowed an optimal 
utilization of the space inside the container. Such value was determined through a One-Way 
ANOVA applied to the results of every instance.  
The 24 box problem was assessed through Levene’s test conducted in Minitab, which 
showed no statistical evidence of homogeneity between the variances of the different values 
of  at a 95% confidence level. This led to applying Tamhane’s test to analyze differences 
between means. The results, as obtained in SPSS are: 
 

(I) alpha (J) alpha Mean Difference 
(I-J) Std Error Sig 95% Confidence Interval 

Lower Bound Upper Bound 
0.05 0.10 5.1794E+03 719.2948 0.0000 3,285.0517 7,073.8021 

  0.15 5.6447E+03 760.5627 0.0000 3,641.6754 7,647.7988 
  0.20 3.9670E+03 748.0209 0.0000 1,997.0231 5,937.0744 

0.10 0.05 -5.1794E+03 719.2948 0.0000 -7,073.8021 -3,285.0517 
  0.15 4.6531E+02 742.2614 0.9890 -1,489.5696 2,420.1900 
  0.20 -1.2124E+03 729.4050 0.4570 -3,133.3868 708.6305 

0.15 0.05 -5.6447E+03 760.5627 0.0000 -7,647.7988 -3,641.6754 
  0.10 -4.6531E+02 742.2614 0.9890 -2,420.1900 1,489.5696 
  0.20 -1.6777E+03 770.1314 0.1640 -3,705.9459 350.5692 

0.20 0.05 -3.9670E+03 748.0209 0.0000 -5,937.0744 -1,997.0231 
  0.10 1.2124E+03 729.4050 0.4570 -708.6305 3,133.3868 
  0.15 1.6777E+03 770.1314 0.1640 -350.5692 3,705.9459 

Table 5. Objective function mean differences for the 24 box problem 

 
At a 95% confidence interval, it can be concluded that, for the 24 box problem, the best 
objective function value is obtained with . Applying the same procedure to the 72 
box problem, Tamhane’s test gave the following results: 
 

(I) alpha (J) alpha Mean 
Difference (I-J) Std, Error Sig, 95% Confidence Interval 

Lower Bound Upper Bound 
0.05 0.10 -2.8474E+03 439.2716 0.0000 -4,004.2949 -1,690.5171 

  0.15 -3.5134E+03 436.5531 0.0000 -4,663.1334 -2,363.6766 
  0.20 -2.9394E+03 427.8336 0.0000 -4,066.1716 -1,812.6444 

0.10 0.05 2.8474E+03 439.2716 0.0000 1,690.5171 4,004.2949 
  0.15 -6.6600E+02 445.3927 0.5810 -1,839.0072 507.0092 
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(I) alpha (J) alpha Mean 
Difference (I-J) Std, Error Sig, 95% Confidence Interval 

Lower Bound Upper Bound 
  0.20 -9.2002E+01 436.8497 1.0000 -1,242.5138 1,058.5098 

0.15 0.05 3.5134E+03 436.5531 0.0000 2,363.6766 4,663.1334 
  0.10 6.6600E+02 445.3927 0.5810 -507.0092 1,839.0072 
  0.20 5.7400E+02 434.1161 0.7100 -569.3141 1,717.3081 

0.20 0.05 2.9394E+03 427.8336 0.0000 1,812.6444 4,066.1716 
  0.10 9.2002E+01 436.8497 1.0000 -1,058.5098 1,242.5138 
  0.15 -5.7400E+02 434.1161 0.7100 -1,717.3081 569.3141 

Table 6. Objective function mean differences for the 72 box problem 

With a 95% confidence interval, it can be concluded that, for the 72 box problem, the best 
objective function value is obtained with . 
Pareto analysis was applied to the solutions obtained for each of the two problems. Sixty six 
and sixty eight percent of the solutions of the 24 and 72 box problems were respectively 
analyzed, representing 20 alternatives of each problem. Their adjusted probabilities, as well 
as the expected values of the objective function and their standard deviations, all of them 
specified for IAM, are shown in Table 7. The load arrangement of each of the selected 
alternatives is shown in Appendix 1.  
 

i 24 boxes 72 boxes 
Frequency P(i), E(zi) Zi Frequency P(i), E(zi) Zi 

1 50 0.0765 -27,130,328.4503 0 45 0.0667 -24,497,492.7011 0 
2 49 0.0749 -27,069,022.1712 0 39 0.0578 -24,520,440.0663 0 
3 47 0.0719 -27,079,711.8588 0 39 0.0578 -24,512,652.0699 0 
4 37 0.0566 -27,071,467.0888 0 38 0.0563 -24,516,202.0138 0 
5 36 0.0550 -27,066,716.6023 0 38 0.0563 -24,502,754.7084 0 
6 35 0.0535 -27,068,471.0632 0 38 0.0563 -24,496,098.7389 0 
7 35 0.0535 -27,088,277.5107 0 37 0.0548 -24,504,513.1559 0 
8 34 0.0520 -27,072,118.7352 0 36 0.0533 -24,506,201.4630 0 
9 31 0.0474 -27,052,647.8558 0 35 0.0519 -24,515,697.0110 0 
10 30 0.0459 -27,066,675.3657 0 35 0.0519 -24,503,437.4409 0 
11 30 0.0459 -27,093,102.3737 0 33 0.0489 -24,499,385.3670 0 
12 29 0.0443 -27,075,607.8937 0 33 0.0489 -24,493,609.8728 0 
13 29 0.0443 -27,070,443.4751 0 32 0.0474 -24,504,895.3574 0 
14 28 0.0428 -27,075,537.4827 0 31 0.0459 -24,491,334.7171 0 
15 27 0.0413 -27,065,936.3019 0 30 0.0444 -24,496,901.1626 0 
16 27 0.0413 -27,059,497.8935 0 29 0.0430 -24,515,483.4574 0 
17 26 0.0398 -27,070,016.2422 0 29 0.0430 -24,507,811.1248 0 
18 25 0.0382 -27,091,519.0548 0 27 0.0400 -24,526,575.7616 0 
19 25 0.0382 -27,071,515.1479 0 26 0.0385 -24,511,051.1289 0 
20 24 0.0367 -27,052,190.1312 0 25 0.0370 -24,495,802.2597 0 

 and  correspond to the joint integral index values of the alternatives associated to the cardinal result 
variable shown in table 11. 

Table 7. Frequency, probability, expected value and deviation of the selected alternatives 

3.2 Qualitative analysis 
The qualitative stage is based on stochastic multicriteria acceptability analysis with ordinal 
SMAA-O data (Lahdelma et al., 2003). SMAA-O has been developed to support public 
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Number 
of boxes  

Average 
duration of a 
500 iteration 

execution (sec)

Utilization of the 
container’s space (%)

Utilization of the 
weight capacity of the 

container (%)  

Distance from the COG 
of the loaded container to 
the center of the base of 

the container (cm) 
Min Max Avg Min Max Avg Min Max Avg 

24 

0.05 16.53 89.82 90.15 89.96 98.66 99.95 99.57 0.01 16.30 2.85 
0.10 13.48 89.82 90.14 89.98 98.66 99.95 99.50 0.00 18.52 2.89 
0.15 12.12 89.86 90.17 89.98 98.66 99.95 99.56 0.01 12.79 2.92 
0.20 12.33 89.84 90.15 89.98 98.66 99.95 99.51 0.02 16.69 2.41 

72 

0.05 53.18 81.32 81.54 81.44 99.18 100.00 99.83 0.00 1.40 0.13 
0.10 48.51 81.36 81.53 81.43 99.23 100.00 99.87 0.00 1.66 0.15 
0.15 47.72 81.34 81.54 81.43 99.24 100.00 99.86 0.00 4.85 0.13 
0.20 48.45 81.34 81.54 81.43 99.44 100.00 99.89 0.00 1.45 0.18 

Table 4. Summary of results 

The qualitative analysis only made use of those results whose  value allowed an optimal 
utilization of the space inside the container. Such value was determined through a One-Way 
ANOVA applied to the results of every instance.  
The 24 box problem was assessed through Levene’s test conducted in Minitab, which 
showed no statistical evidence of homogeneity between the variances of the different values 
of  at a 95% confidence level. This led to applying Tamhane’s test to analyze differences 
between means. The results, as obtained in SPSS are: 
 

(I) alpha (J) alpha Mean Difference 
(I-J) Std Error Sig 95% Confidence Interval 

Lower Bound Upper Bound 
0.05 0.10 5.1794E+03 719.2948 0.0000 3,285.0517 7,073.8021 

  0.15 5.6447E+03 760.5627 0.0000 3,641.6754 7,647.7988 
  0.20 3.9670E+03 748.0209 0.0000 1,997.0231 5,937.0744 

0.10 0.05 -5.1794E+03 719.2948 0.0000 -7,073.8021 -3,285.0517 
  0.15 4.6531E+02 742.2614 0.9890 -1,489.5696 2,420.1900 
  0.20 -1.2124E+03 729.4050 0.4570 -3,133.3868 708.6305 

0.15 0.05 -5.6447E+03 760.5627 0.0000 -7,647.7988 -3,641.6754 
  0.10 -4.6531E+02 742.2614 0.9890 -2,420.1900 1,489.5696 
  0.20 -1.6777E+03 770.1314 0.1640 -3,705.9459 350.5692 

0.20 0.05 -3.9670E+03 748.0209 0.0000 -5,937.0744 -1,997.0231 
  0.10 1.2124E+03 729.4050 0.4570 -708.6305 3,133.3868 
  0.15 1.6777E+03 770.1314 0.1640 -350.5692 3,705.9459 

Table 5. Objective function mean differences for the 24 box problem 

 
At a 95% confidence interval, it can be concluded that, for the 24 box problem, the best 
objective function value is obtained with . Applying the same procedure to the 72 
box problem, Tamhane’s test gave the following results: 
 

(I) alpha (J) alpha Mean 
Difference (I-J) Std, Error Sig, 95% Confidence Interval 

Lower Bound Upper Bound 
0.05 0.10 -2.8474E+03 439.2716 0.0000 -4,004.2949 -1,690.5171 

  0.15 -3.5134E+03 436.5531 0.0000 -4,663.1334 -2,363.6766 
  0.20 -2.9394E+03 427.8336 0.0000 -4,066.1716 -1,812.6444 

0.10 0.05 2.8474E+03 439.2716 0.0000 1,690.5171 4,004.2949 
  0.15 -6.6600E+02 445.3927 0.5810 -1,839.0072 507.0092 
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(I) alpha (J) alpha Mean 
Difference (I-J) Std, Error Sig, 95% Confidence Interval 

Lower Bound Upper Bound 
  0.20 -9.2002E+01 436.8497 1.0000 -1,242.5138 1,058.5098 

0.15 0.05 3.5134E+03 436.5531 0.0000 2,363.6766 4,663.1334 
  0.10 6.6600E+02 445.3927 0.5810 -507.0092 1,839.0072 
  0.20 5.7400E+02 434.1161 0.7100 -569.3141 1,717.3081 

0.20 0.05 2.9394E+03 427.8336 0.0000 1,812.6444 4,066.1716 
  0.10 9.2002E+01 436.8497 1.0000 -1,058.5098 1,242.5138 
  0.15 -5.7400E+02 434.1161 0.7100 -1,717.3081 569.3141 

Table 6. Objective function mean differences for the 72 box problem 

With a 95% confidence interval, it can be concluded that, for the 72 box problem, the best 
objective function value is obtained with . 
Pareto analysis was applied to the solutions obtained for each of the two problems. Sixty six 
and sixty eight percent of the solutions of the 24 and 72 box problems were respectively 
analyzed, representing 20 alternatives of each problem. Their adjusted probabilities, as well 
as the expected values of the objective function and their standard deviations, all of them 
specified for IAM, are shown in Table 7. The load arrangement of each of the selected 
alternatives is shown in Appendix 1.  
 

i 24 boxes 72 boxes 
Frequency P(i), E(zi) Zi Frequency P(i), E(zi) Zi 

1 50 0.0765 -27,130,328.4503 0 45 0.0667 -24,497,492.7011 0 
2 49 0.0749 -27,069,022.1712 0 39 0.0578 -24,520,440.0663 0 
3 47 0.0719 -27,079,711.8588 0 39 0.0578 -24,512,652.0699 0 
4 37 0.0566 -27,071,467.0888 0 38 0.0563 -24,516,202.0138 0 
5 36 0.0550 -27,066,716.6023 0 38 0.0563 -24,502,754.7084 0 
6 35 0.0535 -27,068,471.0632 0 38 0.0563 -24,496,098.7389 0 
7 35 0.0535 -27,088,277.5107 0 37 0.0548 -24,504,513.1559 0 
8 34 0.0520 -27,072,118.7352 0 36 0.0533 -24,506,201.4630 0 
9 31 0.0474 -27,052,647.8558 0 35 0.0519 -24,515,697.0110 0 
10 30 0.0459 -27,066,675.3657 0 35 0.0519 -24,503,437.4409 0 
11 30 0.0459 -27,093,102.3737 0 33 0.0489 -24,499,385.3670 0 
12 29 0.0443 -27,075,607.8937 0 33 0.0489 -24,493,609.8728 0 
13 29 0.0443 -27,070,443.4751 0 32 0.0474 -24,504,895.3574 0 
14 28 0.0428 -27,075,537.4827 0 31 0.0459 -24,491,334.7171 0 
15 27 0.0413 -27,065,936.3019 0 30 0.0444 -24,496,901.1626 0 
16 27 0.0413 -27,059,497.8935 0 29 0.0430 -24,515,483.4574 0 
17 26 0.0398 -27,070,016.2422 0 29 0.0430 -24,507,811.1248 0 
18 25 0.0382 -27,091,519.0548 0 27 0.0400 -24,526,575.7616 0 
19 25 0.0382 -27,071,515.1479 0 26 0.0385 -24,511,051.1289 0 
20 24 0.0367 -27,052,190.1312 0 25 0.0370 -24,495,802.2597 0 

 and  correspond to the joint integral index values of the alternatives associated to the cardinal result 
variable shown in table 11. 

Table 7. Frequency, probability, expected value and deviation of the selected alternatives 

3.2 Qualitative analysis 
The qualitative stage is based on stochastic multicriteria acceptability analysis with ordinal 
SMAA-O data (Lahdelma et al., 2003). SMAA-O has been developed to support public 
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decision making processes. According to IAM, the use of SMAA-O is restricted to ordinal 
variables and to the alternatives resulting from the cardinal analysis. This phase is 
particularly complex because of the difficulties that usually arise when defining the matrix 
of typical relative values that will be used as input. IAM’s ordinal stage allows identifying 
the set of favorable weights that support each of the alternatives in a particular ranking. The 
most important resulting variable (indicator) featuring this analysis is the ordinal 
acceptability index ( ), which defines its probability of acceptation of each alternative and 
indicates the ordinal ranking ( ). Nevertheless, this indicator might prove insufficient to 
support the decision making process. For this reason, the technique provides two additional 
indicators: range values and central weight vectors, which establish the bounds of each 
alternative’s favorable weight set and its associated centroid, respectively. In using this 
method, for every cardinal variable ( ), it is necessary to qualify each alternative’s set of 
ordinal variables. Likert tables can be used to convert particular qualitative aspects into 
ordinal variables (Albaum, 1997). In this case, each of the original binary variables of an 
optimization problem has several ordinal associated variables, that are defined by the 
decision-makers, and that altogether allow building up the ordinal value associated to each 
alternative. For it to be efficient, the procedure applies the class concept (represented 
through index (a) in Table 10), which refers to a set of alternatives with identical utilities for 
all their associated ordinal variables. In the present work we have only considered one 
qualitative criterion, and consequently, one single analysis ranking ( ). The particular 
features of IAM's ordinal stage, which are explained below, are detailed in García et al. 
(2009). 
The qualitative variable was defined as the fragility of the elements packed inside the boxes, 
which were then classified according to a scale ranging from 1 to 3, in which 3 indicated 
fragile contents, and 1, resistant ones; while 2 was assigned to boxes containing medium 
resistance materials.   
The load arrangement of each of the alternatives corresponding to the 24 and 72 box 
problems was qualified according to table 8, which penalizes the boxes according to the 
fragility of their content and the level of the container at which they have been placed.  
 
Box location penalization for the 24 box problem Box location penalization for the 72 box problem 
Levels of 
the 
container 

Box content resistance Levels of 
the 
container

Box content resistance 
1 2 3 1 2 3 

1 1 3 3 1 1 2 3 
2 2 1 3 2 2 1 2 
3 3 1 2 3 3 3 1 
4 3 2 1     

Table 8. Box location penalization  

For each alternative we summed up all the penalization scores assigned to the stored boxes 
according to their content resistance value and location. The results were classified in four 
categories according to (Likert) table 9, which shows the ordinal values assigned to the 
different alternatives.  
Table 10 shows the input of IAM’s qualitative stage and its associated index of acceptability. 
For the two problems treated in the current work, the results show that all the weights 
support the alternatives corresponding to class 1 ( ) for acceptability ranking 1.   
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Likert table for the 24 box problem Likert table for the 72 box problem 
Criterion Ordinal value Criterion Ordinal value 
If total  1 If total  1 
If  total  2 If  total  2 
If  total  3 If  total  3 
If  total 4 If  total 4 

Table 9. Likert tables for the 24 and 72 box problems 

 
Ordinal parameters and indicators of the 24 box 

problem
Ordinal parameters and indicators of the 72 box 

problem  
a F(a) Fragility, j: 1 a F(a) Fragility, j: 1  
1 t: {4, 5, 9, 10, 11, 12, 13, 14, 

16, 18, 19} 
1 1 1 t:{12, 17} 2 1 

2 t: {1, 2, 3, 6, 7, 8, 9, 15, 17, 20} 2 0 2 t:{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 
13, 14, 15, 16, 18, 19, 20} 

3 0 

Table 10. Ordinal parameters and indicators 

3.3 Integration analysis 

The cardinal and ordinal analyses help determine a set of results that support the decision-
making process significantly. At the same time, these results are the input of the integration 
procedure, which provides the indicators that are going to facilitate the analysis of the 
problem in a broader context. The integration analysis stage analyses what kind of 
valuations would make each alternative the preferred one in a particular ordinal ranking. 
The integration ranking ( ) of each alternative is conditioned by the ordinal analysis ranking 
because each optimal cardinal solution may have a different ordinal ranking status. In the 
present case we have focused on ordinal ranking 1 ( ). The input of the deterministic 
SMAA (Lahdelma and Salminen, 2001) applied to complete the integration analysis stage of 
IAM is a utility matrix composed of  alternatives and two result variables (cardinal and 
ordinal). Thus, the process is simplified, allowing the obtention of a series of 2-dimensional 
central weight vectors with two ranges of mutually complementing favorable convex 
weights each, and of the integral acceptability indexes of each alternative. The particular 
features of IAM's integration analysis stage, which are explained below, are detailed in 
García et al. (2009). 
For the integration analysis, the joint integral index is defined as . This value provides 
a comprehensive assessment of each alternative’s ordinal ranking. Assuming that both 
cardinal and ordinal variables (listed in tables 7 and 10, respectively) are independent, the 
index is calculated as: 
 

(25)
 

Similar to the ordinal phase, the integration phase has a comparable set of indicators 
supporting the decision making process: the integral acceptability index and the weight of 
the result variable (qualitative and quantitative). As in the ordinal phase, in the integration 
phase, we have only used the acceptability index as a support indicator. The results of the 
integration phase are shown below. 
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decision making processes. According to IAM, the use of SMAA-O is restricted to ordinal 
variables and to the alternatives resulting from the cardinal analysis. This phase is 
particularly complex because of the difficulties that usually arise when defining the matrix 
of typical relative values that will be used as input. IAM’s ordinal stage allows identifying 
the set of favorable weights that support each of the alternatives in a particular ranking. The 
most important resulting variable (indicator) featuring this analysis is the ordinal 
acceptability index ( ), which defines its probability of acceptation of each alternative and 
indicates the ordinal ranking ( ). Nevertheless, this indicator might prove insufficient to 
support the decision making process. For this reason, the technique provides two additional 
indicators: range values and central weight vectors, which establish the bounds of each 
alternative’s favorable weight set and its associated centroid, respectively. In using this 
method, for every cardinal variable ( ), it is necessary to qualify each alternative’s set of 
ordinal variables. Likert tables can be used to convert particular qualitative aspects into 
ordinal variables (Albaum, 1997). In this case, each of the original binary variables of an 
optimization problem has several ordinal associated variables, that are defined by the 
decision-makers, and that altogether allow building up the ordinal value associated to each 
alternative. For it to be efficient, the procedure applies the class concept (represented 
through index (a) in Table 10), which refers to a set of alternatives with identical utilities for 
all their associated ordinal variables. In the present work we have only considered one 
qualitative criterion, and consequently, one single analysis ranking ( ). The particular 
features of IAM's ordinal stage, which are explained below, are detailed in García et al. 
(2009). 
The qualitative variable was defined as the fragility of the elements packed inside the boxes, 
which were then classified according to a scale ranging from 1 to 3, in which 3 indicated 
fragile contents, and 1, resistant ones; while 2 was assigned to boxes containing medium 
resistance materials.   
The load arrangement of each of the alternatives corresponding to the 24 and 72 box 
problems was qualified according to table 8, which penalizes the boxes according to the 
fragility of their content and the level of the container at which they have been placed.  
 
Box location penalization for the 24 box problem Box location penalization for the 72 box problem 
Levels of 
the 
container 

Box content resistance Levels of 
the 
container

Box content resistance 
1 2 3 1 2 3 

1 1 3 3 1 1 2 3 
2 2 1 3 2 2 1 2 
3 3 1 2 3 3 3 1 
4 3 2 1     

Table 8. Box location penalization  

For each alternative we summed up all the penalization scores assigned to the stored boxes 
according to their content resistance value and location. The results were classified in four 
categories according to (Likert) table 9, which shows the ordinal values assigned to the 
different alternatives.  
Table 10 shows the input of IAM’s qualitative stage and its associated index of acceptability. 
For the two problems treated in the current work, the results show that all the weights 
support the alternatives corresponding to class 1 ( ) for acceptability ranking 1.   
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Likert table for the 24 box problem Likert table for the 72 box problem 
Criterion Ordinal value Criterion Ordinal value 
If total  1 If total  1 
If  total  2 If  total  2 
If  total  3 If  total  3 
If  total 4 If  total 4 

Table 9. Likert tables for the 24 and 72 box problems 

 
Ordinal parameters and indicators of the 24 box 

problem
Ordinal parameters and indicators of the 72 box 

problem  
a F(a) Fragility, j: 1 a F(a) Fragility, j: 1  
1 t: {4, 5, 9, 10, 11, 12, 13, 14, 

16, 18, 19} 
1 1 1 t:{12, 17} 2 1 

2 t: {1, 2, 3, 6, 7, 8, 9, 15, 17, 20} 2 0 2 t:{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 
13, 14, 15, 16, 18, 19, 20} 

3 0 

Table 10. Ordinal parameters and indicators 

3.3 Integration analysis 

The cardinal and ordinal analyses help determine a set of results that support the decision-
making process significantly. At the same time, these results are the input of the integration 
procedure, which provides the indicators that are going to facilitate the analysis of the 
problem in a broader context. The integration analysis stage analyses what kind of 
valuations would make each alternative the preferred one in a particular ordinal ranking. 
The integration ranking ( ) of each alternative is conditioned by the ordinal analysis ranking 
because each optimal cardinal solution may have a different ordinal ranking status. In the 
present case we have focused on ordinal ranking 1 ( ). The input of the deterministic 
SMAA (Lahdelma and Salminen, 2001) applied to complete the integration analysis stage of 
IAM is a utility matrix composed of  alternatives and two result variables (cardinal and 
ordinal). Thus, the process is simplified, allowing the obtention of a series of 2-dimensional 
central weight vectors with two ranges of mutually complementing favorable convex 
weights each, and of the integral acceptability indexes of each alternative. The particular 
features of IAM's integration analysis stage, which are explained below, are detailed in 
García et al. (2009). 
For the integration analysis, the joint integral index is defined as . This value provides 
a comprehensive assessment of each alternative’s ordinal ranking. Assuming that both 
cardinal and ordinal variables (listed in tables 7 and 10, respectively) are independent, the 
index is calculated as: 
 

(25)
 

Similar to the ordinal phase, the integration phase has a comparable set of indicators 
supporting the decision making process: the integral acceptability index and the weight of 
the result variable (qualitative and quantitative). As in the ordinal phase, in the integration 
phase, we have only used the acceptability index as a support indicator. The results of the 
integration phase are shown below. 

247Integral Optimization of the Container Loading Problem



Stochastic Optimization – Seeing the Optimal for the Uncertain 248 

Integration indicators of the 24 box problem Integration indicators of the 72 box problem 
t t   
1 0.0765 0.0109 1 0.0667 0.0088 
4 0.0566 0.9891 12 0.0489 0.9912 
5, 9, 10, 11, 12, 13, 14, 16, 18, 19.  0 17  0 
2, 3, 6, 7, 8, 9, 15, 17, 20. 0 0 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 

14, 15, 16, 18, 19, 20. 
0 0 

 and  correspond to the joint integral index values of the alternatives associated to the cardinal result 
variable. 

Table 11. Results of the integration phase 

The results indicate that, from the standpoint of the considerations addressed in the present 
analysis, alternatives 4 and 12 constitute the most favorable load arrangements for the 24 
and 72 box problems, respectively.  

4. Conclusions 
The present work addresses CLP optimization in an integrated and actual context, including 
several restrictions which had not been worked out altogether in previous works. In 
addition, it introduces the modeling of SKU deformation and fragility content for the first 
time. New research perspectives have to do with the inclusion of additional considerations 
such as the complexity of the loading arrangement that ultimately facilitates unloading, and 
the management of client priority issues.  
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several restrictions which had not been worked out altogether in previous works. In 
addition, it introduces the modeling of SKU deformation and fragility content for the first 
time. New research perspectives have to do with the inclusion of additional considerations 
such as the complexity of the loading arrangement that ultimately facilitates unloading, and 
the management of client priority issues.  
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weight 

Fragili
ty 

1 6.24 15.77 3 9 6.63 7.84 1 17 5.94 10.57 2 
2 6.18 11.37 2 10 9.98 22.04 2 18 8.14 22.29 3 
3 5.44 8.7 1 11 7.05 15.65 2 19 8.67 24.47 3 
4 6.49 13.73 2 12 5.19 6.05 1 20 5.68 11.83 2 
5 8.98 21.1 3 13 6.05 13.36 2 21 9.69 25.69 3 
6 5.18 14.72 3 14 8.48 10.74 1 22 6.63 16.52 3 
7 9.07 11.9 1 15 6.7 7.4 1 23 9.81 23.04 3 
8 6.04 10.5 2 16 9.48 19.46 2 24 8.89 25.51 3 

Table 12. Twenty four box problem 
 
Bo
x Weight 

Supported 
weight 

Fragilit
y 

Bo
x

Weig
ht 

Supported 
weight 

Fragilit
y 

Bo
x

Weig
ht 

Supported 
weight 

Fragilit
y 

1 9.45 26.35 3 25 6.81 8.74 1 49 6.97 17.12 3 
2 8.77 18.68 2 26 8.32 22.18 3 50 8.33 15.06 2 
3 8.34 9.21 1 27 10 28.72 3 51 5.93 10.85 2 
4 5.15 15 3 28 6.18 8.02 1 52 5.45 13.7 3 
5 7.85 11.42 1 29 8.34 22.98 3 53 7.14 17.8 3 
6 9.1 25.15 3 30 6.63 11.93 2 54 7.74 11.19 1 
7 8.03 20.94 3 31 7.84 23.09 3 55 6.06 7.73 1 
8 5.76 13.36 2 32 8.9 12.9 1 56 6.81 16.73 3 
9 6.09 17.38 3 33 8.11 8.4 1 57 7.12 17.03 3 
10 6.47 10.9 2 34 7.11 19.14 3 58 6.96 12.48 2 
11 6.36 15.77 3 35 6.12 13.51 2 59 6.39 15.9 3 
12 6.13 16.88 3 36 8.57 24.31 3 60 7.72 20.83 3 
13 6.2 9.52 1 37 6.42 16.4 3 61 6.08 17.02 3 
14 7.42 8.26 1 38 8.63 10.3 1 62 6.6 17.06 3 
15 5.89 9.96 2 39 8.94 25.73 3 63 8.62 19.75 2 
16 8.03 20.89 3 40 7.27 16.43 2 64 9.72 10.55 1 
17 7.3 18.41 3 41 5.04 6.77 1 65 9.13 10.62 1 
18 7.9 16.57 2 42 8.48 9.08 1 66 8.51 9.55 1 
19 9.73 15.56 1 43 8.4 21.39 3 67 6.37 7 1 
20 8.21 16.72 2 44 9.01 18.43 2 68 7.22 15.79 2 
21 8.08 10.91 1 45 7.63 14.2 2 69 5.41 15.55 3 
22 9.76 15.37 1 46 9.4 10.67 1 70 8.04 23.06 3 
23 7.11 15.77 2 47 9.87 14.65 1 71 6.12 13.22 2 
24 6.3 10.25 1 48 9.75 22.31 2 72 6.56 11.65 2 

Table 13. Seventy two box problem  
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Position  
representation (X,Y,Z) 

Position  
representation (X,Y,Z) 

Position  
representation (X,Y,Z) 

Position  
representation (X,Y,Z) 

1,1,1 = 1 1,1,2 = 7 1,1,3 = 13 1,1,4 = 19 
1,2,1 = 2 1,2,2 = 8 1,2,3 = 14 1,2,4 = 20 
1,3,1 = 3 1,3,2 = 9 1,3,3 = 15 1,3,4 = 21 
2,1,1 = 4 2,1,2 = 10 2,1,3 = 16 2,1,4 = 22 
2,2,1 = 5 2,2,2 = 11 2,2,3 = 17 2,2,4 = 23 
2,3,1 = 6 2,3,2 = 12 2,3,3 = 18 2,3,4 = 24 

Table 14. List of positions inside the container for 24 boxes 

 
Position  

representation (X,Y,Z) 
Position  

representation (X,Y,Z) 
Position  

representation (X,Y,Z) 
Position  

representation (X,Y,Z) 
1,1,1 = 1 3,3,1 = 19 5,2,2 = 37 7,1,3 = 55 
2,1,1 = 2 4,3,1 = 20 6,2,2 = 38 8,1,3 = 56 
3,1,1 = 3 5,3,1 = 21 7,2,2 = 39 1,2,3 = 57 
4,1,1 = 4 6,3,1 = 22 8,2,2 = 40 2,2,3 = 58 
5,1,1 = 5 7,3,1 = 23 1,3,2 = 41 3,2,3 = 59 
6,1,1 = 6 8,3,1 = 24 2,3,2 = 42 4,2,3 = 60 
7,1,1 = 7 1,1,2 = 25 3,3,2 = 43 5,2,3 = 61 
8,1,1 = 8 2,1,2 = 26 4,3,2 = 44 6,2,3 = 62 
1,2,1 = 9 3,1,2 = 27 5,3,2 = 45 7,2,3 = 63 
2,2,1 = 10 4,1,2 = 28 6,3,2 = 46 8,2,3 = 64 
3,2,1 = 11 5,1,2 = 29 7,3,2 = 47 1,3,3 = 65 
4,2,1 = 12 6,1,2 = 30 8,3,2 = 48 2,3,3 = 66 
5,2,1 = 13 7,1,2 = 31 1,1,3 = 49 3,3,3 = 67 
6,2,1 = 14 8,1,2 = 32 2,1,3 = 50 4,3,3 = 68 
7,2,1 = 15 1,2,2 = 33 3,1,3 = 51 5,3,3 = 69 
8,2,1 = 16 2,2,2 = 34 4,1,3 = 52 6,3,3 = 70 
1,3,1 = 17 3,2,2 = 35 5,1,3 = 53 7,3,3 = 71 
2,3,1 = 18 4,2,2 = 36 6,1,3 = 54 8,3,3 = 72 

Table 15. List of positions inside the container for 72 boxes 

 

i Load arrangement (position - box) 
Ordinal 
criterion 

total 

1 1-24; 2-11; 3-5; 4-18; 5-13; 6-21; 7-10; 8-2; 9-6; 10-19; 11-9; 12-23; 13-17; 14-7; 15-20; 16-1; 
17-12; 18-22; 19-15; 20-0; 21-4; 22-8; 23-0; 24-3 39 

2 1-18; 2-21; 3-24; 4-16; 5-4; 6-23; 7-2; 8-19; 9-14; 10-1; 11-11; 12-13; 13-20; 14-8; 15-15; 16-9; 
17-22; 18-3; 19-6; 20-5; 21-0; 22-12; 23-0; 24-17 40 

3 1-21; 2-23; 3-24; 4-11; 5-19; 6-10; 7-18; 8-2; 9-4; 10-9; 11-5; 12-13; 13-7; 14-15; 15-20; 16-6; 
17-8; 18-17; 19-12; 20-0; 21-1; 22-0; 23-22; 24-3 38 

4 1-10; 2-11; 3-19; 4-24; 5-21; 6-5; 7-22; 8-6; 9-18; 10-16; 11-13; 12-12; 13-17; 14-15; 15-9; 16-2; 
17-8; 18-20; 19-7; 20-0; 21-3; 22-1; 23-4; 24-0 36 

5 1-18; 2-19; 3-10; 4-6; 5-23; 6-21; 7-11; 8-24; 9-20; 10-17; 11-13; 12-16; 13-15; 14-3; 15-22; 16-
14; 17-4; 18-8; 19-1; 20-9; 21-0; 22-0; 23-12; 24-2 33 

6 1-10; 2-23; 3-18; 4-7; 5-24; 6-16; 7-1; 8-20; 9-11; 10-12; 11-13; 12-4; 13-19; 14-5; 15-9; 16-8; 
17-15; 18-22; 19-17; 20-0; 21-2; 22-0; 23-6; 24-3 43 

7 1-19; 2-13; 3-23; 4-5; 5-21; 6-22; 7-24; 8-8; 9-11; 10-7; 11-18; 12-1; 13-14; 14-2; 15-3; 16-17; 37 
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3,1,1 = 3 5,3,1 = 21 7,2,2 = 39 1,2,3 = 57 
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6,1,1 = 6 8,3,1 = 24 2,3,2 = 42 4,2,3 = 60 
7,1,1 = 7 1,1,2 = 25 3,3,2 = 43 5,2,3 = 61 
8,1,1 = 8 2,1,2 = 26 4,3,2 = 44 6,2,3 = 62 
1,2,1 = 9 3,1,2 = 27 5,3,2 = 45 7,2,3 = 63 
2,2,1 = 10 4,1,2 = 28 6,3,2 = 46 8,2,3 = 64 
3,2,1 = 11 5,1,2 = 29 7,3,2 = 47 1,3,3 = 65 
4,2,1 = 12 6,1,2 = 30 8,3,2 = 48 2,3,3 = 66 
5,2,1 = 13 7,1,2 = 31 1,1,3 = 49 3,3,3 = 67 
6,2,1 = 14 8,1,2 = 32 2,1,3 = 50 4,3,3 = 68 
7,2,1 = 15 1,2,2 = 33 3,1,3 = 51 5,3,3 = 69 
8,2,1 = 16 2,2,2 = 34 4,1,3 = 52 6,3,3 = 70 
1,3,1 = 17 3,2,2 = 35 5,1,3 = 53 7,3,3 = 71 
2,3,1 = 18 4,2,2 = 36 6,1,3 = 54 8,3,3 = 72 

Table 15. List of positions inside the container for 72 boxes 

 

i Load arrangement (position - box) 
Ordinal 
criterion 

total 

1 1-24; 2-11; 3-5; 4-18; 5-13; 6-21; 7-10; 8-2; 9-6; 10-19; 11-9; 12-23; 13-17; 14-7; 15-20; 16-1; 
17-12; 18-22; 19-15; 20-0; 21-4; 22-8; 23-0; 24-3 39 

2 1-18; 2-21; 3-24; 4-16; 5-4; 6-23; 7-2; 8-19; 9-14; 10-1; 11-11; 12-13; 13-20; 14-8; 15-15; 16-9; 
17-22; 18-3; 19-6; 20-5; 21-0; 22-12; 23-0; 24-17 40 

3 1-21; 2-23; 3-24; 4-11; 5-19; 6-10; 7-18; 8-2; 9-4; 10-9; 11-5; 12-13; 13-7; 14-15; 15-20; 16-6; 
17-8; 18-17; 19-12; 20-0; 21-1; 22-0; 23-22; 24-3 38 

4 1-10; 2-11; 3-19; 4-24; 5-21; 6-5; 7-22; 8-6; 9-18; 10-16; 11-13; 12-12; 13-17; 14-15; 15-9; 16-2; 
17-8; 18-20; 19-7; 20-0; 21-3; 22-1; 23-4; 24-0 36 

5 1-18; 2-19; 3-10; 4-6; 5-23; 6-21; 7-11; 8-24; 9-20; 10-17; 11-13; 12-16; 13-15; 14-3; 15-22; 16-
14; 17-4; 18-8; 19-1; 20-9; 21-0; 22-0; 23-12; 24-2 33 

6 1-10; 2-23; 3-18; 4-7; 5-24; 6-16; 7-1; 8-20; 9-11; 10-12; 11-13; 12-4; 13-19; 14-5; 15-9; 16-8; 
17-15; 18-22; 19-17; 20-0; 21-2; 22-0; 23-6; 24-3 43 

7 1-19; 2-13; 3-23; 4-5; 5-21; 6-22; 7-24; 8-8; 9-11; 10-7; 11-18; 12-1; 13-14; 14-2; 15-3; 16-17; 37 
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i Load arrangement (position - box) 
Ordinal 
criterion 

total 
17-15; 18-12; 19-20; 20-0; 21-4; 22-6; 23-9; 24-0 

8 1-18; 2-24; 3-21; 4-4; 5-19; 6-23; 7-5; 8-7; 9-15; 10-22; 11-10; 12-1; 13-13; 14-12; 15-3; 16-17; 
17-2; 18-6; 19-20; 20-8; 21-0; 22-0; 23-11; 24-9 38 

9 1-21; 2-19; 3-22; 4-5; 5-11; 6-24; 7-16; 8-4; 9-17; 10-13; 11-6; 12-10; 13-7; 14-20; 15-12; 16-2; 
17-15; 18-8; 19-1; 20-9; 21-0; 22-3; 23-0; 24-14 30 

10 1-19; 2-21; 3-1; 4-24; 5-16; 6-18; 7-5; 8-22; 9-9; 10-7; 11-4; 12-11; 13-2; 14-15; 15-8; 16-12; 17-
17; 18-10; 19-13; 20-3; 21-0; 22-6; 23-20; 24-0 36 

11 1-21; 2-6; 3-19; 4-18; 5-10; 6-24; 7-4; 8-3; 9-23; 10-2; 11-5; 12-22; 13-8; 14-14; 15-17; 16-9; 17-
20; 18-11; 19-13; 20-0; 21-1; 22-0; 23-12; 24-15 34 

12 1-18; 2-24; 3-23; 4-5; 5-19; 6-4; 7-6; 8-8; 9-21; 10-7; 11-11; 12-3; 13-2; 14-16; 15-17; 16-15; 17-
1; 18-20; 19-9; 20-0; 21-13; 22-12; 23-22; 24-0 36 

13 1-21; 2-18; 3-10; 4-5; 5-23; 6-22; 7-11; 8-20; 9-1; 10-4; 11-19; 12-24; 13-6; 14-3; 15-8; 16-13; 
17-15; 18-12; 19-9; 20-0; 21-14; 22-2; 23-17; 24-0 34 

14 1-23; 2-5; 3-10; 4-21; 5-19; 6-18; 7-6; 8-14; 9-24; 10-4; 11-22; 12-1; 13-15; 14-20; 15-3; 16-9; 
17-2; 18-8; 19-13; 20-0; 21-11; 22-12; 23-17; 24-0 36 

15 1-16; 2-11; 3-10; 4-5; 5-23; 6-24; 7-6; 8-13; 9-19; 10-1; 11-22; 12-14; 13-9; 14-3; 15-2; 16-20; 
17-7; 18-12; 19-17; 20-0; 21-15; 22-8; 23-4; 24-0 41 

16 1-18; 2-10; 3-22; 4-24; 5-1; 6-19; 7-11; 8-13; 9-21; 10-23; 11-9; 12-6; 13-14; 14-20; 15-17; 16-8; 
17-4; 18-15; 19-3; 20-12; 21-0; 22-5; 23-0; 24-2 34 

17 1-20; 2-24; 3-21; 4-10; 5-23; 6-19; 7-22; 8-5; 9-13; 10-6; 11-11; 12-14; 13-12; 14-8; 15-2; 16-18; 
17-9; 18-4; 19-0; 20-15; 21-17; 22-3; 23-1; 24-0 38 

18 1-24; 2-21; 3-1; 4-5; 5-22; 6-23; 7-13; 8-10; 9-18; 10-11; 11-16; 12-4; 13-9; 14-14; 15-20; 16-12; 
17-6; 18-17; 19-3; 20-2; 21-0; 22-8; 23-0; 24-15 30 

19 1-23; 2-7; 3-19; 4-18; 5-16; 6-5; 7-24; 8-17; 9-4; 10-8; 11-22; 12-10; 13-20; 14-12; 15-2; 16-11; 
17-15; 18-3; 19-1; 20-0; 21-9; 22-0; 23-13; 24-6 36 

20 1-23; 2-18; 3-16; 4-24; 5-10; 6-21; 7-22; 8-13; 9-14; 10-4; 11-19; 12-1; 13-6; 14-17; 15-11; 16-9; 
17-3; 18-20; 19-8; 20-2; 21-0; 22-12; 23-15; 24-0 37 

Table 16. Twenty four box problem alternatives selected for IAM 

 

i Load arrangement (position - box) 
Ordinal 
criterion 

total 

1 

1-58; 2-35; 3-7; 4-8; 5-1; 6-17; 7-10; 8-53; 9-26; 10-44; 11-38; 12-31; 13-40; 14-11; 15-34; 16-
36; 17-16; 18-61; 19-27; 20-68; 21-29; 22-30; 23-56; 24-12; 25-71; 26-5; 27-24; 28-28; 29-37; 
30-57; 31-20; 32-33; 33-55; 34-51; 35-42; 36-14; 37-72; 38-52; 39-49; 40-45; 41-19; 42-9; 43-
48; 44-66; 45-50; 46-59; 47-62; 48-41; 49-0; 50-4; 51-39; 52-13; 53-22; 54-60; 55-0; 56-18; 57-
0; 58-69; 59-0; 60-21; 61-2; 62-32; 63-67; 64-6; 65-3; 66-63; 67-25; 68-15; 69-23; 70-0; 71-70; 
72-0 

159 

2 

1-10; 2-4; 3-11; 4-57; 5-22; 6-53; 7-69; 8-49; 9-2; 10-39; 11-71; 12-18; 13-27; 14-17; 15-37; 
16-67; 17-72; 18-44; 19-1; 20-29; 21-61; 22-26; 23-60; 24-48; 25-28; 26-30; 27-7; 28-5; 29-25; 
30-16; 31-13; 32-20; 33-52; 34-43; 35-12; 36-51; 37-50; 38-3; 39-59; 40-24; 41-45; 42-9; 43-
58; 44-15; 45-8; 46-47; 47-14; 48-40; 49-0; 50-35; 51-54; 52-66; 53-0; 54-0; 55-32; 56-42; 57-
70; 58-36; 59-55; 60-21; 61-62; 62-23; 63-34; 64-0; 65-0; 66-33; 67-31; 68-41; 69-38; 70-68; 
71-56; 72-0 

147 

3 
1-50; 2-48; 3-68; 4-31; 5-40; 6-2; 7-61; 8-58; 9-52; 10-18; 11-59; 12-43; 13-9; 14-45; 15-1; 16-12; 
17-21; 18-72; 19-7; 20-24; 21-6; 22-66; 23-51; 24-4; 25-49; 26-8; 27-11; 28-63; 29-20; 30-25; 31-
39; 32-34; 33-69; 34-10; 35-26; 36-44; 37-13; 38-37; 39-36; 40-55; 41-30; 42-35; 43-33; 44-42; 

147 

252 Stochastic Optimization - Seeing the Optimal for the Uncertain
Integral Optimization of the Container Loading Problem 253 

i Load arrangement (position - box) 
Ordinal 
criterion 

total 
45-29; 46-70; 47-3; 48-57; 49-15; 50-41; 51-38; 52-16; 53-17; 54-14; 55-28; 56-0; 57-71; 58-32; 
59-53; 60-46; 61-65; 62-67; 63-62; 64-56; 65-0; 66-0; 67-54; 68-0; 69-23; 70-0; 71-0; 72-5 

4 

1-62; 2-26; 3-36; 4-16; 5-11; 6-40; 7-20; 8-17; 9-31; 10-21; 11-4; 12-29; 13-39; 14-37; 15-27; 16-
69; 17-48; 18-59; 19-71; 20-56; 21-6; 22-63; 23-30; 24-9; 25-53; 26-33; 27-15; 28-57; 29-55; 30-
28; 31-8; 32-10; 33-13; 34-12; 35-67; 36-34; 37-47; 38-50; 39-49; 40-51; 41-38; 42-5; 43-52; 44-1; 
45-42; 46-35; 47-60; 48-58; 49-23; 50-70; 51-14; 52-72; 53-45; 54-41; 55-46; 56-43; 57-54; 58-0; 
59-61; 60-24; 61-3; 62-7; 63-25; 64-18; 65-68; 66-0; 67-0; 68-0; 69-2; 70-44; 71-0; 72-0 

157 

5 

1-1; 2-2; 3-60; 4-56; 5-9; 6-50; 7-37; 8-39; 9-4; 10-72; 11-45; 12-28; 13-53; 14-30; 15-43; 16-36; 
17-58; 18-16; 19-48; 20-11; 21-64; 22-17; 23-29; 24-5; 25-52; 26-18; 27-44; 28-12; 29-63; 30-23; 
31-40; 32-70; 33-55; 34-62; 35-69; 36-67; 37-61; 38-42; 39-25; 40-13; 41-35; 42-54; 43-7; 44-47; 
45-32; 46-20; 47-24; 48-3; 49-38; 50-10; 51-51; 52-21; 53-26; 54-49; 55-57; 56-71; 57-34; 58-41; 
59-14; 60-0; 61-68; 62-0; 63-8; 64-6; 65-0; 66-66; 67-59; 68-15; 69-0; 70-33; 71-0; 72-0 

146 

6 

1-31; 2-27; 3-41; 4-57; 5-18; 6-17; 7-66; 8-6; 9-36; 10-16; 11-2; 12-65; 13-12; 14-50; 15-45; 16-
39; 17-4; 18-44; 19-5; 20-30; 21-34; 22-49; 23-26; 24-20; 25-46; 26-37; 27-67; 28-10; 29-68; 30-
48; 31-29; 32-52; 33-21; 34-28; 35-22; 36-61; 37-58; 38-70; 39-15; 40-51; 41-60; 42-55; 43-3; 44-
56; 45-35; 46-53; 47-11; 48-62; 49-13; 50-40; 51-0; 52-54; 53-7; 54-38; 55-0; 56-71; 57-63; 58-25; 
59-8; 60-0; 61-14; 62-0; 63-23; 64-19; 65-72; 66-24; 67-0; 68-0; 69-9; 70-59; 71-43; 72-69 

155 

7 

1-44; 2-4; 3-2; 4-32; 5-20; 6-57; 7-53; 8-29; 9-26; 10-59; 11-48; 12-17; 13-60; 14-37; 15-22; 16-
36; 17-61; 18-72; 19-69; 20-21; 21-68; 22-14; 23-39; 24-6; 25-43; 26-56; 27-38; 28-23; 29-63; 30-
45; 31-58; 32-28; 33-49; 34-71; 35-66; 36-46; 37-7; 38-5; 39-67; 40-33; 41-18; 42-9; 43-47; 44-35; 
45-50; 46-70; 47-30; 48-52; 49-65; 50-51; 51-15; 52-0; 53-13; 54-34; 55-12; 56-55; 57-42; 58-3; 
59-41; 60-40; 61-8; 62-0; 63-24; 64-10; 65-31; 66-0; 67-0; 68-0; 69-25; 70-0; 71-11; 72-62 

147 

8 

1-64; 2-39; 3-35; 4-29; 5-45; 6-48; 7-18; 8-72; 9-70; 10-62; 11-27; 12-43; 13-16; 14-56; 15-58; 16-
6; 17-11; 18-61; 19-53; 20-31; 21-51; 22-34; 23-68; 24-47; 25-42; 26-37; 27-30; 28-36; 29-12; 30-
49; 31-54; 32-55; 33-24; 34-67; 35-52; 36-20; 37-17; 38-9; 39-25; 40-8; 41-50; 42-26; 43-10; 44-
57; 45-44; 46-60; 47-15; 48-59; 49-0; 50-65; 51-13; 52-2; 53-69; 54-3; 55-21; 56-0; 57-7; 58-0; 
59-71; 60-33; 61-66; 62-14; 63-0; 64-4; 65-0; 66-40; 67-63; 68-41; 69-0; 70-46; 71-23; 72-28 

160 

9 

1-60; 2-56; 3-18; 4-25; 5-34; 6-71; 7-57; 8-17; 9-70; 10-20; 11-9; 12-31; 13-65; 14-68; 15-6; 16-1; 
17-40; 18-39; 19-30; 20-36; 21-52; 22-11; 23-2; 24-61; 25-49; 26-15; 27-35; 28-54; 29-32; 30-14; 
31-53; 32-10; 33-45; 34-42; 35-37; 36-47; 37-50; 38-16; 39-26; 40-7; 41-24; 42-69; 43-29; 44-27; 
45-67; 46-41; 47-21; 48-19; 49-33; 50-12; 51-38; 52-0; 53-5; 54-0; 55-72; 56-44; 57-51; 58-13; 
59-66; 60-4; 61-0; 62-23; 63-43; 64-28; 65-59; 66-8; 67-0; 68-58; 69-0; 70-62; 71-55; 72-0 

148 

10 

1-16; 2-59; 3-56; 4-50; 5-39; 6-60; 7-7; 8-21; 9-51; 10-57; 11-17; 12-19; 13-29; 14-48; 15-27; 16-
53; 17-34; 18-35; 19-70; 20-43; 21-71; 22-20; 23-64; 24-26; 25-66; 26-4; 27-11; 28-10; 29-31; 30-
41; 31-28; 32-23; 33-72; 34-62; 35-32; 36-40; 37-36; 38-6; 39-13; 40-38; 41-69; 42-61; 43-33; 44-
5; 45-30; 46-52; 47-42; 48-24; 49-18; 50-22; 51-8; 52-58; 53-9; 54-55; 55-12; 56-0; 57-0; 58-67; 
59-37; 60-15; 61-0; 62-3; 63-0; 64-2; 65-54; 66-49; 67-14; 68-25; 69-0; 70-68; 71-0; 72-63 

153 

11 

1-57; 2-26; 3-29; 4-1; 5-22; 6-71; 7-48; 8-31; 9-56; 10-45; 11-53; 12-14; 13-17; 14-15; 15-27; 16-
36; 17-18; 18-4; 19-20; 20-62; 21-3; 22-16; 23-12; 24-23; 25-50; 26-47; 27-65; 28-33; 29-61; 30-
11; 31-35; 32-21; 33-6; 34-72; 35-7; 36-68; 37-30; 38-19; 39-10; 40-40; 41-55; 42-58; 43-5; 44-70; 
45-52; 46-41; 47-59; 48-24; 49-28; 50-49; 51-39; 52-9; 53-43; 54-69; 55-38; 56-54; 57-13; 58-8; 
59-63; 60-0; 61-34; 62-0; 63-67; 64-51; 65-0; 66-60; 67-0; 68-66; 69-0; 70-0; 71-25; 72-37 

155 

12 

1-59; 2-6; 3-26; 4-56; 5-32; 6-42; 7-57; 8-29; 9-68; 10-17; 11-53; 12-70; 13-67; 14-1; 15-39; 16-
36; 17-8; 18-60; 19-2; 20-11; 21-51; 22-3; 23-34; 24-54; 25-31; 26-18; 27-35; 28-48; 29-52; 30-4; 
31-15; 32-40; 33-61; 34-5; 35-64; 36-7; 37-24; 38-46; 39-38; 40-13; 41-62; 42-71; 43-49; 44-65; 
45-63; 46-33; 47-12; 48-66; 49-37; 50-72; 51-69; 52-41; 53-55; 54-0; 55-23; 56-21; 57-50; 58-58; 
59-10; 60-9; 61-0; 62-45; 63-47; 64-25; 65-0; 66-14; 67-20; 68-28; 69-0; 70-0; 71-30; 72-0 

138 

13 1-50; 2-6; 3-59; 4-44; 5-17; 6-43; 7-45; 8-68; 9-48; 10-57; 11-3; 12-69; 13-1; 14-7; 15-27; 16-8; 
17-31; 18-53; 19-54; 20-11; 21-23; 22-40; 23-2; 24-70; 25-61; 26-46; 27-28; 28-26; 29-58; 30-62; 154 

253Integral Optimization of the Container Loading Problem



Stochastic Optimization – Seeing the Optimal for the Uncertain 252 

i Load arrangement (position - box) 
Ordinal 
criterion 

total 
17-15; 18-12; 19-20; 20-0; 21-4; 22-6; 23-9; 24-0 

8 1-18; 2-24; 3-21; 4-4; 5-19; 6-23; 7-5; 8-7; 9-15; 10-22; 11-10; 12-1; 13-13; 14-12; 15-3; 16-17; 
17-2; 18-6; 19-20; 20-8; 21-0; 22-0; 23-11; 24-9 38 

9 1-21; 2-19; 3-22; 4-5; 5-11; 6-24; 7-16; 8-4; 9-17; 10-13; 11-6; 12-10; 13-7; 14-20; 15-12; 16-2; 
17-15; 18-8; 19-1; 20-9; 21-0; 22-3; 23-0; 24-14 30 

10 1-19; 2-21; 3-1; 4-24; 5-16; 6-18; 7-5; 8-22; 9-9; 10-7; 11-4; 12-11; 13-2; 14-15; 15-8; 16-12; 17-
17; 18-10; 19-13; 20-3; 21-0; 22-6; 23-20; 24-0 36 

11 1-21; 2-6; 3-19; 4-18; 5-10; 6-24; 7-4; 8-3; 9-23; 10-2; 11-5; 12-22; 13-8; 14-14; 15-17; 16-9; 17-
20; 18-11; 19-13; 20-0; 21-1; 22-0; 23-12; 24-15 34 

12 1-18; 2-24; 3-23; 4-5; 5-19; 6-4; 7-6; 8-8; 9-21; 10-7; 11-11; 12-3; 13-2; 14-16; 15-17; 16-15; 17-
1; 18-20; 19-9; 20-0; 21-13; 22-12; 23-22; 24-0 36 

13 1-21; 2-18; 3-10; 4-5; 5-23; 6-22; 7-11; 8-20; 9-1; 10-4; 11-19; 12-24; 13-6; 14-3; 15-8; 16-13; 
17-15; 18-12; 19-9; 20-0; 21-14; 22-2; 23-17; 24-0 34 

14 1-23; 2-5; 3-10; 4-21; 5-19; 6-18; 7-6; 8-14; 9-24; 10-4; 11-22; 12-1; 13-15; 14-20; 15-3; 16-9; 
17-2; 18-8; 19-13; 20-0; 21-11; 22-12; 23-17; 24-0 36 

15 1-16; 2-11; 3-10; 4-5; 5-23; 6-24; 7-6; 8-13; 9-19; 10-1; 11-22; 12-14; 13-9; 14-3; 15-2; 16-20; 
17-7; 18-12; 19-17; 20-0; 21-15; 22-8; 23-4; 24-0 41 

16 1-18; 2-10; 3-22; 4-24; 5-1; 6-19; 7-11; 8-13; 9-21; 10-23; 11-9; 12-6; 13-14; 14-20; 15-17; 16-8; 
17-4; 18-15; 19-3; 20-12; 21-0; 22-5; 23-0; 24-2 34 

17 1-20; 2-24; 3-21; 4-10; 5-23; 6-19; 7-22; 8-5; 9-13; 10-6; 11-11; 12-14; 13-12; 14-8; 15-2; 16-18; 
17-9; 18-4; 19-0; 20-15; 21-17; 22-3; 23-1; 24-0 38 

18 1-24; 2-21; 3-1; 4-5; 5-22; 6-23; 7-13; 8-10; 9-18; 10-11; 11-16; 12-4; 13-9; 14-14; 15-20; 16-12; 
17-6; 18-17; 19-3; 20-2; 21-0; 22-8; 23-0; 24-15 30 

19 1-23; 2-7; 3-19; 4-18; 5-16; 6-5; 7-24; 8-17; 9-4; 10-8; 11-22; 12-10; 13-20; 14-12; 15-2; 16-11; 
17-15; 18-3; 19-1; 20-0; 21-9; 22-0; 23-13; 24-6 36 

20 1-23; 2-18; 3-16; 4-24; 5-10; 6-21; 7-22; 8-13; 9-14; 10-4; 11-19; 12-1; 13-6; 14-17; 15-11; 16-9; 
17-3; 18-20; 19-8; 20-2; 21-0; 22-12; 23-15; 24-0 37 

Table 16. Twenty four box problem alternatives selected for IAM 

 

i Load arrangement (position - box) 
Ordinal 
criterion 

total 

1 

1-58; 2-35; 3-7; 4-8; 5-1; 6-17; 7-10; 8-53; 9-26; 10-44; 11-38; 12-31; 13-40; 14-11; 15-34; 16-
36; 17-16; 18-61; 19-27; 20-68; 21-29; 22-30; 23-56; 24-12; 25-71; 26-5; 27-24; 28-28; 29-37; 
30-57; 31-20; 32-33; 33-55; 34-51; 35-42; 36-14; 37-72; 38-52; 39-49; 40-45; 41-19; 42-9; 43-
48; 44-66; 45-50; 46-59; 47-62; 48-41; 49-0; 50-4; 51-39; 52-13; 53-22; 54-60; 55-0; 56-18; 57-
0; 58-69; 59-0; 60-21; 61-2; 62-32; 63-67; 64-6; 65-3; 66-63; 67-25; 68-15; 69-23; 70-0; 71-70; 
72-0 

159 

2 

1-10; 2-4; 3-11; 4-57; 5-22; 6-53; 7-69; 8-49; 9-2; 10-39; 11-71; 12-18; 13-27; 14-17; 15-37; 
16-67; 17-72; 18-44; 19-1; 20-29; 21-61; 22-26; 23-60; 24-48; 25-28; 26-30; 27-7; 28-5; 29-25; 
30-16; 31-13; 32-20; 33-52; 34-43; 35-12; 36-51; 37-50; 38-3; 39-59; 40-24; 41-45; 42-9; 43-
58; 44-15; 45-8; 46-47; 47-14; 48-40; 49-0; 50-35; 51-54; 52-66; 53-0; 54-0; 55-32; 56-42; 57-
70; 58-36; 59-55; 60-21; 61-62; 62-23; 63-34; 64-0; 65-0; 66-33; 67-31; 68-41; 69-38; 70-68; 
71-56; 72-0 

147 

3 
1-50; 2-48; 3-68; 4-31; 5-40; 6-2; 7-61; 8-58; 9-52; 10-18; 11-59; 12-43; 13-9; 14-45; 15-1; 16-12; 
17-21; 18-72; 19-7; 20-24; 21-6; 22-66; 23-51; 24-4; 25-49; 26-8; 27-11; 28-63; 29-20; 30-25; 31-
39; 32-34; 33-69; 34-10; 35-26; 36-44; 37-13; 38-37; 39-36; 40-55; 41-30; 42-35; 43-33; 44-42; 

147 

252 Stochastic Optimization - Seeing the Optimal for the Uncertain
Integral Optimization of the Container Loading Problem 253 

i Load arrangement (position - box) 
Ordinal 
criterion 

total 
45-29; 46-70; 47-3; 48-57; 49-15; 50-41; 51-38; 52-16; 53-17; 54-14; 55-28; 56-0; 57-71; 58-32; 
59-53; 60-46; 61-65; 62-67; 63-62; 64-56; 65-0; 66-0; 67-54; 68-0; 69-23; 70-0; 71-0; 72-5 

4 

1-62; 2-26; 3-36; 4-16; 5-11; 6-40; 7-20; 8-17; 9-31; 10-21; 11-4; 12-29; 13-39; 14-37; 15-27; 16-
69; 17-48; 18-59; 19-71; 20-56; 21-6; 22-63; 23-30; 24-9; 25-53; 26-33; 27-15; 28-57; 29-55; 30-
28; 31-8; 32-10; 33-13; 34-12; 35-67; 36-34; 37-47; 38-50; 39-49; 40-51; 41-38; 42-5; 43-52; 44-1; 
45-42; 46-35; 47-60; 48-58; 49-23; 50-70; 51-14; 52-72; 53-45; 54-41; 55-46; 56-43; 57-54; 58-0; 
59-61; 60-24; 61-3; 62-7; 63-25; 64-18; 65-68; 66-0; 67-0; 68-0; 69-2; 70-44; 71-0; 72-0 

157 

5 

1-1; 2-2; 3-60; 4-56; 5-9; 6-50; 7-37; 8-39; 9-4; 10-72; 11-45; 12-28; 13-53; 14-30; 15-43; 16-36; 
17-58; 18-16; 19-48; 20-11; 21-64; 22-17; 23-29; 24-5; 25-52; 26-18; 27-44; 28-12; 29-63; 30-23; 
31-40; 32-70; 33-55; 34-62; 35-69; 36-67; 37-61; 38-42; 39-25; 40-13; 41-35; 42-54; 43-7; 44-47; 
45-32; 46-20; 47-24; 48-3; 49-38; 50-10; 51-51; 52-21; 53-26; 54-49; 55-57; 56-71; 57-34; 58-41; 
59-14; 60-0; 61-68; 62-0; 63-8; 64-6; 65-0; 66-66; 67-59; 68-15; 69-0; 70-33; 71-0; 72-0 

146 

6 

1-31; 2-27; 3-41; 4-57; 5-18; 6-17; 7-66; 8-6; 9-36; 10-16; 11-2; 12-65; 13-12; 14-50; 15-45; 16-
39; 17-4; 18-44; 19-5; 20-30; 21-34; 22-49; 23-26; 24-20; 25-46; 26-37; 27-67; 28-10; 29-68; 30-
48; 31-29; 32-52; 33-21; 34-28; 35-22; 36-61; 37-58; 38-70; 39-15; 40-51; 41-60; 42-55; 43-3; 44-
56; 45-35; 46-53; 47-11; 48-62; 49-13; 50-40; 51-0; 52-54; 53-7; 54-38; 55-0; 56-71; 57-63; 58-25; 
59-8; 60-0; 61-14; 62-0; 63-23; 64-19; 65-72; 66-24; 67-0; 68-0; 69-9; 70-59; 71-43; 72-69 

155 

7 

1-44; 2-4; 3-2; 4-32; 5-20; 6-57; 7-53; 8-29; 9-26; 10-59; 11-48; 12-17; 13-60; 14-37; 15-22; 16-
36; 17-61; 18-72; 19-69; 20-21; 21-68; 22-14; 23-39; 24-6; 25-43; 26-56; 27-38; 28-23; 29-63; 30-
45; 31-58; 32-28; 33-49; 34-71; 35-66; 36-46; 37-7; 38-5; 39-67; 40-33; 41-18; 42-9; 43-47; 44-35; 
45-50; 46-70; 47-30; 48-52; 49-65; 50-51; 51-15; 52-0; 53-13; 54-34; 55-12; 56-55; 57-42; 58-3; 
59-41; 60-40; 61-8; 62-0; 63-24; 64-10; 65-31; 66-0; 67-0; 68-0; 69-25; 70-0; 71-11; 72-62 

147 

8 

1-64; 2-39; 3-35; 4-29; 5-45; 6-48; 7-18; 8-72; 9-70; 10-62; 11-27; 12-43; 13-16; 14-56; 15-58; 16-
6; 17-11; 18-61; 19-53; 20-31; 21-51; 22-34; 23-68; 24-47; 25-42; 26-37; 27-30; 28-36; 29-12; 30-
49; 31-54; 32-55; 33-24; 34-67; 35-52; 36-20; 37-17; 38-9; 39-25; 40-8; 41-50; 42-26; 43-10; 44-
57; 45-44; 46-60; 47-15; 48-59; 49-0; 50-65; 51-13; 52-2; 53-69; 54-3; 55-21; 56-0; 57-7; 58-0; 
59-71; 60-33; 61-66; 62-14; 63-0; 64-4; 65-0; 66-40; 67-63; 68-41; 69-0; 70-46; 71-23; 72-28 

160 

9 

1-60; 2-56; 3-18; 4-25; 5-34; 6-71; 7-57; 8-17; 9-70; 10-20; 11-9; 12-31; 13-65; 14-68; 15-6; 16-1; 
17-40; 18-39; 19-30; 20-36; 21-52; 22-11; 23-2; 24-61; 25-49; 26-15; 27-35; 28-54; 29-32; 30-14; 
31-53; 32-10; 33-45; 34-42; 35-37; 36-47; 37-50; 38-16; 39-26; 40-7; 41-24; 42-69; 43-29; 44-27; 
45-67; 46-41; 47-21; 48-19; 49-33; 50-12; 51-38; 52-0; 53-5; 54-0; 55-72; 56-44; 57-51; 58-13; 
59-66; 60-4; 61-0; 62-23; 63-43; 64-28; 65-59; 66-8; 67-0; 68-58; 69-0; 70-62; 71-55; 72-0 

148 

10 

1-16; 2-59; 3-56; 4-50; 5-39; 6-60; 7-7; 8-21; 9-51; 10-57; 11-17; 12-19; 13-29; 14-48; 15-27; 16-
53; 17-34; 18-35; 19-70; 20-43; 21-71; 22-20; 23-64; 24-26; 25-66; 26-4; 27-11; 28-10; 29-31; 30-
41; 31-28; 32-23; 33-72; 34-62; 35-32; 36-40; 37-36; 38-6; 39-13; 40-38; 41-69; 42-61; 43-33; 44-
5; 45-30; 46-52; 47-42; 48-24; 49-18; 50-22; 51-8; 52-58; 53-9; 54-55; 55-12; 56-0; 57-0; 58-67; 
59-37; 60-15; 61-0; 62-3; 63-0; 64-2; 65-54; 66-49; 67-14; 68-25; 69-0; 70-68; 71-0; 72-63 

153 

11 

1-57; 2-26; 3-29; 4-1; 5-22; 6-71; 7-48; 8-31; 9-56; 10-45; 11-53; 12-14; 13-17; 14-15; 15-27; 16-
36; 17-18; 18-4; 19-20; 20-62; 21-3; 22-16; 23-12; 24-23; 25-50; 26-47; 27-65; 28-33; 29-61; 30-
11; 31-35; 32-21; 33-6; 34-72; 35-7; 36-68; 37-30; 38-19; 39-10; 40-40; 41-55; 42-58; 43-5; 44-70; 
45-52; 46-41; 47-59; 48-24; 49-28; 50-49; 51-39; 52-9; 53-43; 54-69; 55-38; 56-54; 57-13; 58-8; 
59-63; 60-0; 61-34; 62-0; 63-67; 64-51; 65-0; 66-60; 67-0; 68-66; 69-0; 70-0; 71-25; 72-37 

155 

12 

1-59; 2-6; 3-26; 4-56; 5-32; 6-42; 7-57; 8-29; 9-68; 10-17; 11-53; 12-70; 13-67; 14-1; 15-39; 16-
36; 17-8; 18-60; 19-2; 20-11; 21-51; 22-3; 23-34; 24-54; 25-31; 26-18; 27-35; 28-48; 29-52; 30-4; 
31-15; 32-40; 33-61; 34-5; 35-64; 36-7; 37-24; 38-46; 39-38; 40-13; 41-62; 42-71; 43-49; 44-65; 
45-63; 46-33; 47-12; 48-66; 49-37; 50-72; 51-69; 52-41; 53-55; 54-0; 55-23; 56-21; 57-50; 58-58; 
59-10; 60-9; 61-0; 62-45; 63-47; 64-25; 65-0; 66-14; 67-20; 68-28; 69-0; 70-0; 71-30; 72-0 

138 

13 1-50; 2-6; 3-59; 4-44; 5-17; 6-43; 7-45; 8-68; 9-48; 10-57; 11-3; 12-69; 13-1; 14-7; 15-27; 16-8; 
17-31; 18-53; 19-54; 20-11; 21-23; 22-40; 23-2; 24-70; 25-61; 26-46; 27-28; 28-26; 29-58; 30-62; 154 

253Integral Optimization of the Container Loading Problem
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i Load arrangement (position - box) 
Ordinal 
criterion 

total 
31-15; 32-56; 33-36; 34-35; 35-72; 36-52; 37-67; 38-32; 39-20; 40-55; 41-66; 42-30; 43-41; 44-34; 
45-13; 46-29; 47-4; 48-37; 49-39; 50-51; 51-0; 52-12; 53-33; 54-9; 55-16; 56-18; 57-25; 58-24; 
59-0; 60-14; 61-49; 62-22; 63-42; 64-0; 65-0; 66-5; 67-71; 68-0; 69-63; 70-10; 71-21; 72-0 

14 

1-2; 2-66; 3-61; 4-5; 5-44; 6-12; 7-69; 8-62; 9-43; 10-63; 11-72; 12-18; 13-37; 14-60; 15-1; 16-49; 
17-53; 18-45; 19-16; 20-19; 21-50; 22-59; 23-20; 24-56; 25-38; 26-15; 27-57; 28-24; 29-22; 30-10; 
31-71; 32-41; 33-58; 34-31; 35-55; 36-54; 37-68; 38-29; 39-34; 40-64; 41-40; 42-51; 43-46; 44-67; 
45-8; 46-28; 47-26; 48-21; 49-3; 50-0; 51-33; 52-0; 53-7; 54-23; 55-35; 56-11; 57-32; 58-42; 59-0; 
60-4; 61-0; 62-14; 63-52; 64-9; 65-30; 66-0; 67-70; 68-13; 69-25; 70-0; 71-17; 72-36 

152 

15 

1-12; 2-6; 3-1; 4-68; 5-32; 6-29; 7-27; 8-31; 9-17; 10-44; 11-70; 12-2; 13-62; 14-18; 15-63; 16-26; 
17-42; 18-51; 19-36; 20-49; 21-57; 22-47; 23-67; 24-54; 25-28; 26-59; 27-71; 28-4; 29-61; 30-43; 
31-52; 32-10; 33-3; 34-14; 35-50; 36-66; 37-25; 38-13; 39-34; 40-30; 41-24; 42-37; 43-56; 44-21; 
45-69; 46-5; 47-15; 48-45; 49-9; 50-55; 51-35; 52-23; 53-8; 54-11; 55-53; 56-38; 57-60; 58-33; 
59-39; 60-20; 61-58; 62-41; 63-40; 64-7; 65-0; 66-0; 67-16; 68-0; 69-65; 70-0; 71-0; 72-0 

157 

16 

1-43; 2-63; 3-47; 4-69; 5-59; 6-23; 7-6; 8-11; 9-71; 10-60; 11-18; 12-48; 13-5; 14-55; 15-56; 16-
33; 17-25; 18-45; 19-16; 20-24; 21-57; 22-1; 23-7; 24-58; 25-21; 26-39; 27-72; 28-37; 29-31; 30-
61; 31-70; 32-36; 33-52; 34-34; 35-49; 36-44; 37-41; 38-28; 39-10; 40-13; 41-35; 42-4; 43-20; 44-
3; 45-68; 46-29; 47-40; 48-32; 49-17; 50-15; 51-8; 52-53; 53-62; 54-51; 55-30; 56-67; 57-0; 58-38; 
59-14; 60-9; 61-12; 62-0; 63-66; 64-0; 65-0; 66-2; 67-65; 68-0; 69-42; 70-54; 71-27; 72-0 

149 

17 

1-50; 2-26; 3-32; 4-51; 5-34; 6-17; 7-58; 8-63; 9-16; 10-43; 11-12; 12-59; 13-1; 14-72; 15-44; 16-
60; 17-68; 18-22; 19-19; 20-52; 21-57; 22-36; 23-70; 24-20; 25-10; 26-5; 27-66; 28-23; 29-62; 30-
42; 31-41; 32-55; 33-18; 34-71; 35-54; 36-21; 37-8; 38-13; 39-47; 40-61; 41-29; 42-37; 43-14; 44-
67; 45-69; 46-27; 47-11; 48-24; 49-9; 50-45; 51-0; 52-0; 53-38; 54-35; 55-4; 56-28; 57-49; 58-0; 
59-30; 60-15; 61-3; 62-0; 63-33; 64-6; 65-40; 66-53; 67-0; 68-56; 69-25; 70-31; 71-7; 72-0 

142 

18 

1-69; 2-70; 3-27; 4-20; 5-19; 6-62; 7-39; 8-40; 9-12; 10-63; 11-53; 12-31; 13-56; 14-16; 15-17; 16-
43; 17-13; 18-44; 19-71; 20-18; 21-58; 22-49; 23-66; 24-29; 25-26; 26-15; 27-38; 28-7; 29-11; 30-
35; 31-72; 32-24; 33-52; 34-42; 35-60; 36-61; 37-36; 38-22; 39-57; 40-1; 41-33; 42-6; 43-54; 44-
14; 45-9; 46-51; 47-8; 48-25; 49-41; 50-46; 51-68; 52-5; 53-59; 54-10; 55-32; 56-30; 57-28; 58-37; 
59-3; 60-55; 61-45; 62-65; 63-34; 64-4; 65-0; 66-23; 67-0; 68-0; 69-0; 70-67; 71-0; 72-0 

154 

19 

1-68; 2-57; 3-38; 4-20; 5-21; 6-34; 7-4; 8-6; 9-59; 10-44; 11-9; 12-47; 13-16; 14-69; 15-48; 16-70; 
17-53; 18-1; 19-39; 20-31; 21-56; 22-35; 23-29; 24-45; 25-8; 26-62; 27-49; 28-43; 29-26; 30-67; 
31-51; 32-30; 33-28; 34-11; 35-54; 36-55; 37-46; 38-33; 39-27; 40-7; 41-60; 42-72; 43-36; 44-10; 
45-3; 46-12; 47-63; 48-17; 49-52; 50-25; 51-0; 52-23; 53-0; 54-41; 55-14; 56-18; 57-71; 58-15; 
59-42; 60-0; 61-61; 62-0; 63-65; 64-37; 65-5; 66-24; 67-40; 68-32; 69-0; 70-13; 71-58; 72-0 

153 

20 

1-44; 2-34; 3-32; 4-6; 5-50; 6-60; 7-24; 8-5; 9-29; 10-17; 11-20; 12-1; 13-16; 14-14; 15-63; 16-37; 
17-52; 18-43; 19-48; 20-7; 21-68; 22-69; 23-2; 24-62; 25-57; 26-61; 27-15; 28-64; 29-56; 30-35; 
31-21; 32-41; 33-4; 34-65; 35-38; 36-11; 37-66; 38-59; 39-30; 40-53; 41-31; 42-36; 43-67; 44-40; 
45-39; 46-54; 47-9; 48-72; 49-55; 50-58; 51-25; 52-8; 53-49; 54-13; 55-0; 56-28; 57-0; 58-33; 59-
12; 60-46; 61-3; 62-0; 63-0; 64-23; 65-0; 66-0; 67-71; 68-70; 69-51; 70-45; 71-10; 72-19 

147 
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1. Introduction 
Structure-based drug design is a rational approach for drug discovery based on understanding 
of the three dimensional structural interactions between a target protein and the drug-like 
ligands. The underlying premise is that good drug-like molecules must possess structural 
and chemical features complementary to that of the target receptor, which is usually a 
protein involved in the disease process. The process first involves identification of the 
protein target that is of interest. The structure of the target protein is then determined using 
experimental procedures like NMR, X-ray crystallography or computational approaches like 
homology modeling. After determining the structure of the target, the structural knowledge 
is used to systematically search the chemical space for compounds (or ligands) that would 
bind to the protein in the desired binding mode using docking techniques. These 
compounds are scored and ranked using scoring functions that take into account factors that 
could influence the nature of the binding such as steric and electrochemical interactions, 
exposed surface area, molecular weight, etc. The challenge in the search for the desired 
ligands is the ability to accurately model and analyze the protein-ligand binding by 
understanding the structural and chemical characteristics of the protein’s binding site from 
theory, computation and experiment.  
The amount of protein-ligand structural data available in public domain and corporate 
databanks increased exponentially during the last two decades due to significant advances 
in high throughput experimental techniques and computation power. In addition, there are 
many more structures that remain undisclosed due to proprietary interests. It is expected to 
have many more X-ray crystal structures to be available in the near future due to advances 
in high-throughput techniques and other experimental sophistications. In addition, there are 
also structures that are computationally generated through docking, or similar techniques. 
A typical virtual chemical library screen could generate a library of structures containing 
thousands to millions of small molecules docked onto a target protein in silico (Lyne, 2002). 
As discussed before the key to success in the rational drug design process is the proper 
understanding of the receptor site and the mode(s) in which ligands bind to the receptor by 
leveraging the available structural data. Traditionally, this is done by making logical 
deductions after visually inspecting the protein ligand complex on a computer or sometimes 
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i Load arrangement (position - box) 
Ordinal 
criterion 

total 
31-15; 32-56; 33-36; 34-35; 35-72; 36-52; 37-67; 38-32; 39-20; 40-55; 41-66; 42-30; 43-41; 44-34; 
45-13; 46-29; 47-4; 48-37; 49-39; 50-51; 51-0; 52-12; 53-33; 54-9; 55-16; 56-18; 57-25; 58-24; 
59-0; 60-14; 61-49; 62-22; 63-42; 64-0; 65-0; 66-5; 67-71; 68-0; 69-63; 70-10; 71-21; 72-0 

14 

1-2; 2-66; 3-61; 4-5; 5-44; 6-12; 7-69; 8-62; 9-43; 10-63; 11-72; 12-18; 13-37; 14-60; 15-1; 16-49; 
17-53; 18-45; 19-16; 20-19; 21-50; 22-59; 23-20; 24-56; 25-38; 26-15; 27-57; 28-24; 29-22; 30-10; 
31-71; 32-41; 33-58; 34-31; 35-55; 36-54; 37-68; 38-29; 39-34; 40-64; 41-40; 42-51; 43-46; 44-67; 
45-8; 46-28; 47-26; 48-21; 49-3; 50-0; 51-33; 52-0; 53-7; 54-23; 55-35; 56-11; 57-32; 58-42; 59-0; 
60-4; 61-0; 62-14; 63-52; 64-9; 65-30; 66-0; 67-70; 68-13; 69-25; 70-0; 71-17; 72-36 

152 

15 

1-12; 2-6; 3-1; 4-68; 5-32; 6-29; 7-27; 8-31; 9-17; 10-44; 11-70; 12-2; 13-62; 14-18; 15-63; 16-26; 
17-42; 18-51; 19-36; 20-49; 21-57; 22-47; 23-67; 24-54; 25-28; 26-59; 27-71; 28-4; 29-61; 30-43; 
31-52; 32-10; 33-3; 34-14; 35-50; 36-66; 37-25; 38-13; 39-34; 40-30; 41-24; 42-37; 43-56; 44-21; 
45-69; 46-5; 47-15; 48-45; 49-9; 50-55; 51-35; 52-23; 53-8; 54-11; 55-53; 56-38; 57-60; 58-33; 
59-39; 60-20; 61-58; 62-41; 63-40; 64-7; 65-0; 66-0; 67-16; 68-0; 69-65; 70-0; 71-0; 72-0 

157 

16 

1-43; 2-63; 3-47; 4-69; 5-59; 6-23; 7-6; 8-11; 9-71; 10-60; 11-18; 12-48; 13-5; 14-55; 15-56; 16-
33; 17-25; 18-45; 19-16; 20-24; 21-57; 22-1; 23-7; 24-58; 25-21; 26-39; 27-72; 28-37; 29-31; 30-
61; 31-70; 32-36; 33-52; 34-34; 35-49; 36-44; 37-41; 38-28; 39-10; 40-13; 41-35; 42-4; 43-20; 44-
3; 45-68; 46-29; 47-40; 48-32; 49-17; 50-15; 51-8; 52-53; 53-62; 54-51; 55-30; 56-67; 57-0; 58-38; 
59-14; 60-9; 61-12; 62-0; 63-66; 64-0; 65-0; 66-2; 67-65; 68-0; 69-42; 70-54; 71-27; 72-0 

149 

17 

1-50; 2-26; 3-32; 4-51; 5-34; 6-17; 7-58; 8-63; 9-16; 10-43; 11-12; 12-59; 13-1; 14-72; 15-44; 16-
60; 17-68; 18-22; 19-19; 20-52; 21-57; 22-36; 23-70; 24-20; 25-10; 26-5; 27-66; 28-23; 29-62; 30-
42; 31-41; 32-55; 33-18; 34-71; 35-54; 36-21; 37-8; 38-13; 39-47; 40-61; 41-29; 42-37; 43-14; 44-
67; 45-69; 46-27; 47-11; 48-24; 49-9; 50-45; 51-0; 52-0; 53-38; 54-35; 55-4; 56-28; 57-49; 58-0; 
59-30; 60-15; 61-3; 62-0; 63-33; 64-6; 65-40; 66-53; 67-0; 68-56; 69-25; 70-31; 71-7; 72-0 

142 

18 

1-69; 2-70; 3-27; 4-20; 5-19; 6-62; 7-39; 8-40; 9-12; 10-63; 11-53; 12-31; 13-56; 14-16; 15-17; 16-
43; 17-13; 18-44; 19-71; 20-18; 21-58; 22-49; 23-66; 24-29; 25-26; 26-15; 27-38; 28-7; 29-11; 30-
35; 31-72; 32-24; 33-52; 34-42; 35-60; 36-61; 37-36; 38-22; 39-57; 40-1; 41-33; 42-6; 43-54; 44-
14; 45-9; 46-51; 47-8; 48-25; 49-41; 50-46; 51-68; 52-5; 53-59; 54-10; 55-32; 56-30; 57-28; 58-37; 
59-3; 60-55; 61-45; 62-65; 63-34; 64-4; 65-0; 66-23; 67-0; 68-0; 69-0; 70-67; 71-0; 72-0 

154 

19 

1-68; 2-57; 3-38; 4-20; 5-21; 6-34; 7-4; 8-6; 9-59; 10-44; 11-9; 12-47; 13-16; 14-69; 15-48; 16-70; 
17-53; 18-1; 19-39; 20-31; 21-56; 22-35; 23-29; 24-45; 25-8; 26-62; 27-49; 28-43; 29-26; 30-67; 
31-51; 32-30; 33-28; 34-11; 35-54; 36-55; 37-46; 38-33; 39-27; 40-7; 41-60; 42-72; 43-36; 44-10; 
45-3; 46-12; 47-63; 48-17; 49-52; 50-25; 51-0; 52-23; 53-0; 54-41; 55-14; 56-18; 57-71; 58-15; 
59-42; 60-0; 61-61; 62-0; 63-65; 64-37; 65-5; 66-24; 67-40; 68-32; 69-0; 70-13; 71-58; 72-0 

153 

20 

1-44; 2-34; 3-32; 4-6; 5-50; 6-60; 7-24; 8-5; 9-29; 10-17; 11-20; 12-1; 13-16; 14-14; 15-63; 16-37; 
17-52; 18-43; 19-48; 20-7; 21-68; 22-69; 23-2; 24-62; 25-57; 26-61; 27-15; 28-64; 29-56; 30-35; 
31-21; 32-41; 33-4; 34-65; 35-38; 36-11; 37-66; 38-59; 39-30; 40-53; 41-31; 42-36; 43-67; 44-40; 
45-39; 46-54; 47-9; 48-72; 49-55; 50-58; 51-25; 52-8; 53-49; 54-13; 55-0; 56-28; 57-0; 58-33; 59-
12; 60-46; 61-3; 62-0; 63-0; 64-23; 65-0; 66-0; 67-71; 68-70; 69-51; 70-45; 71-10; 72-19 
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1. Introduction 
Structure-based drug design is a rational approach for drug discovery based on understanding 
of the three dimensional structural interactions between a target protein and the drug-like 
ligands. The underlying premise is that good drug-like molecules must possess structural 
and chemical features complementary to that of the target receptor, which is usually a 
protein involved in the disease process. The process first involves identification of the 
protein target that is of interest. The structure of the target protein is then determined using 
experimental procedures like NMR, X-ray crystallography or computational approaches like 
homology modeling. After determining the structure of the target, the structural knowledge 
is used to systematically search the chemical space for compounds (or ligands) that would 
bind to the protein in the desired binding mode using docking techniques. These 
compounds are scored and ranked using scoring functions that take into account factors that 
could influence the nature of the binding such as steric and electrochemical interactions, 
exposed surface area, molecular weight, etc. The challenge in the search for the desired 
ligands is the ability to accurately model and analyze the protein-ligand binding by 
understanding the structural and chemical characteristics of the protein’s binding site from 
theory, computation and experiment.  
The amount of protein-ligand structural data available in public domain and corporate 
databanks increased exponentially during the last two decades due to significant advances 
in high throughput experimental techniques and computation power. In addition, there are 
many more structures that remain undisclosed due to proprietary interests. It is expected to 
have many more X-ray crystal structures to be available in the near future due to advances 
in high-throughput techniques and other experimental sophistications. In addition, there are 
also structures that are computationally generated through docking, or similar techniques. 
A typical virtual chemical library screen could generate a library of structures containing 
thousands to millions of small molecules docked onto a target protein in silico (Lyne, 2002). 
As discussed before the key to success in the rational drug design process is the proper 
understanding of the receptor site and the mode(s) in which ligands bind to the receptor by 
leveraging the available structural data. Traditionally, this is done by making logical 
deductions after visually inspecting the protein ligand complex on a computer or sometimes 
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aided by software tools like LIGPLOT (Wallace et al., 1995) that generate two dimensional 
schematic representations of the interactions. However the traditional approach is 
impractical when the number of structures to be analyzed is very large. In such scenarios, 
there is requirement for an automated way of detecting the various interaction patterns 
between the protein and the ligand, representing them in an efficient manner such that 
different protein ligand complexes can be compared and if possible correlated with their 
actual binding constants. The interaction patterns so identified from the structural data can 
eventually help to develop virtual screening and other design tools to aid the search for new 
drugs i.e. ligands with desired characteristics.  

1.1 Structural Interaction Fingerprint (SIFt) 
Fingerprint based approaches have been developed recently in the cheminformatics domain to 
mine, analyze, organize and visualize the vast structural binding data. They involve 
representing the three dimensional protein-ligand structural binding information into a one-
dimensional vector by encoding the nature of interactions between binding site residues and 
the ligand as in Structural Interaction Fingerprint or SIFt (Deng et al., 2004; Chuaqui et al., 
2005; Singh et al., 2006). Since the binding information is encoded in a 1D fingerprint, 
advanced filtering, clustering, and machine learning methods may be applied to identify 
patterns underlying the binding data, thereby enhancing the ability to make useful 
implications that are not apparent by looking at individual structures. There are also other 
fingerprint approaches published in literature such as atom-pairs based interaction fingerprint 
(Pérez-Nueno VI et al., 2009), pharmacophore based fingerprint (Sato et al., 2010), etc. This 
chapter demonstrates the use of advanced mathematical and statistical learning techniques to 
enhance the understanding of binding interactions from fingerprints. Though the methods 
explained here are in the context of SIFt, they can be applied to other fingerprint approaches.  
A SIFt is generated from a protein-ligand complex by first identifying the key residues of the 
receptor protein, which are the residues that could potentially be involved in binding with a 
ligand. The key residues are identifying by performing a rigorous search among all known 
protein-ligand complexes of the target protein for residues that are involved in binding in at 
least one complex. The next step involves representing of each key residue by a bit pattern 
corresponding to the kind of interaction that is being made at that residue by the ligand. The 
first bit is a master bit that checks if an interaction is present at all or not. The second and 
third bits check if the interaction is with the main chain or side chain portions of the residue. 
The next four bits characterize the chemical nature of the interaction. The fourth and fifth 
bits are turned ‘on’ or ‘off’ corresponding to whether the residue is involved in a polar or 
non-polar interaction respectively, while one of the sixth and seventh bits is turned ‘on’ if 
there is a hydrogen bond interaction depending on whether the residue has a functional 
group that is an acceptor or a donor. The bit strings from all the residues are concatenated to 
form a fingerprint (called SIFt) which is a unique representation for that protein-ligand 
complex, as shown in Figure 1. 
The overall pattern of interactions in a set of structures can be represented by an interaction 
profile where each element or entry in the profile speaks about the nature of interactions of 
the entire set. A profile based on the conservation or frequency of a bit over the set of 
fingerprints was used in (Chuaqui et al., 2005). They demonstrated by comparing the 
profiles of protein complexes belonging to different kinase targets viz. p38 and CDK2, one  
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Fig. 1. An illustrative showing the SIFt methodology. (A) identify the key binding residues 
of the receptor protein in the complex. (B) represent each key residue by a bit string 
according to the kind of interaction at that residue. (C) concatenate 7-bit strings of all key 
residues to form a unique fingerprint, called SIFt. (Figure reprinted in part with permission 
from Singh J et al., 2005). 

can identify the characteristic role played by the individual interactions in the overall 
binding. Interaction fingerprints and profile-based methods have been applied to virtual 
screening, library design, and the analysis of large numbers of X-ray structures to identify 
interaction patterns that may influence inhibitor potency and selectivity. The evolution of 
interaction fingerprint and profile approaches and their application to docking, scoring, and 
the analysis of ligand-receptor interactions has been comprehensively reviewed recently by 
Brewerton (Brewerton, 2008). 

1.2 Weighted interactions profile  
The original plain fingerprint is a simplified representation of protein-ligand interactions 
with all interactions being treated identical. But in reality the various possible interactions at 
different residues might have different contributions towards the overall binding. As an 
example, it is well-known that in kinases the interactions at the hinge region are critical for 
binding compared to interactions at other regions. Likewise, a hydrogen bond interaction 
could have a different impact compared to a polar or nonpolar interaction. By not capturing 
the information pertaining to the interactions differently from each other, their relative 
importance information is in effect lost. Hence the fingerprint representation is inefficient 
due to underrepresentation of significant interaction information and overrepresentation of 
insignificant interaction information. A new weighted interactions based approach called 
weighted Structural Interaction Fingerprint (wSIFt) was introduced in (Nandigam et al., 
2009) to address this inefficiency of fingerprint representation. In the wSIFt method a robust 
representation signifying the relative importance of ligand receptor interactions is captured 
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in the form of a weights vector called weighted profile, where each weight corresponds to 
the importance of that interaction in overall binding. The weighted profile incorporates  
empirically determined weights fit from inhibitor potency data. The profile weights are 
determined such that the fingerprint similarity between docked poses and the weighted 
profile is in effect a residue-specific QSAR based on the relative importance of ligand-
receptor interactions for determining potency.  
The chapter describes the wSIFt methodology developed by Nandigam et al. to determine a 
weighted profile capturing the significance of interactions. The weights are determined 
using a statistical learning technique from structural data and experimental potency data 
such that the similarity between the weighted profile and a SIFt (called wSIFt score) is 
positively correlated with its experimentally determined inhibition potency. The 
mathematical formulation to determine the weights is an optimization problem with the 
objective to be maximized being the correlation between the wSIFt score and the inhibitor 
potency. Since the objective function is complex and non-linear, and the number of variables 
(i.e. weights) to determine is very large, a stochastic optimization technique (Simulated 
Annealing) is applied. The dimensionality of SIFt interaction bits is large and the 
representation contains linearly interdependent interaction bits and hence a dimensionality 
reduction technique called Nonnegative Matrix Factorization (NMF) is combined with the 
stochastic optimization stage. The subsequent sections of the chapter describe the methods 
including the strategy of the overall algorithm, dimensionality reduction and Simulated 
Annealing, followed by results and analysis of the weights.  

2. Methods 

2.1 Overall approach 
The weighted profile is assumed to contain non-negative weights with values ranging 
between 0 and 1 at positions that have a 1 in at least one of the SIFts, and a value of 0 at 
positions that do not have a 1 in at least one of the SIFts (as shown in Figure. 2).  
 

SIFt 1 1 0 0 1 1 0 0 1 0 1 

SIFt 2 1 1 0 0 1 0 1 0 0 1 

SIFt 3 1 1 0 0 1 0 1 0 0 1 

SIFt 4 1 1 0 0 1 0 1 1 0 1 

SIFt 5 0 0 0 1 1 0 0 1 0 1 

W-Profile w1 w2 0 w4 w5 0 w7 w8 0 w10 

Fig. 2. Illustration of weighted profile for a set of interaction fingerprints.  

The objective is to determine the weights such that the computed weights will represent the 
significance of each interaction in contributing toward overall protein-ligand binding. This 
can be achieved by statistically learning the weights from a training set such that the 
similarity between the weighted profile and SIFt is positively correlated with the inhibition 
potency. The reasoning behind the proposed approach is that the interactions appearing 
more frequently in high potent compounds are supposedly more important, and so in order 
to boost the w-SIFt score of the high potent compounds the weights for those interactions 
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will be calculated to be higher. Likewise, interactions that appear more frequently in less 
potent compounds are supposedly less important, and so in order to decrease the w-SIFt 
score of the less potent compounds these interactions’ weights will be lower. Thus the 
overall weights in the weighted profile so determined will represent the importance 
associated with each SIFt interaction bit in the protein-ligand binding potency. The 
Tanimoto score is used here as the metric to measure the similarity between the weighted 
profile and SIFt, and for a given SIFt we call this metric the w-SIFt score. Thus a protein-
ligand complex with a higher w-SIFt score implies that it comprises of interactions 
predominantly at higher weight bit positions and so the ligand would be a strong inhibitor 
of the protein, and likewise a complex with lower w-SIFt score implies that it comprises of 
interactions mainly at lower weight bit positions and so the ligand would be a weak 
inhibitor. The proposed strategy to determine the weighted profile can be graphically 
visualized as in Figure 3. Suppose the SIFts can be represented as points in a high 
dimensional hyperspace, the desired weighted profile should be more similar to the high 
potent compounds and less similar to the low potent compounds. In other words the 
weighted profile should be as closer as possible to the high potent compounds and as 
farther as possible to the low potent compounds in the SIFt coordinate space. 
 

 
Fig. 3. Illustration of proposed weighted profile relative to the high potent and low potent 
SIFts in a hypothetical high dimensional hyperspace. 

2.2 Mathematical objective function 
Assume s  represents a SIFt in a vector form and w  represents the weighted profile. The w-
SIFt score, let us call Tw , is defined as the Tanimoto similarity between the SIFt and the 
profile. i.e.  
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will be calculated to be higher. Likewise, interactions that appear more frequently in less 
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The weights of the profile will be determined so as to obtain a w-SIFt score that correlates 
well with the experimentally determined potencies. We constrain the weights to be positive 
since in principle they represent the significance of the corresponding interactions. The 
objective of determining the weights can be mathematically stated as follows. 

To determine w so that ( )50 ,T Log ICw ∝ − with 0.wi ≥  

i.e. find w that corresponds to a straight line fit between Tw  and ( )50Log IC−  with highest 
correlation. The Pearson’s correlation coefficient is chosen here to measure the extent of 
correlation. So, the objective function is formulated as, 
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Since the objective function is complex and non-linear, and the number of variables (i.e. 
weights) to alter is very large, we apply a stochastic optimization technique  viz. Simulated 
Annealing (Kirkpatrick, Gelatt et al. 1983). The energy function for Simulated Annealing is 
defined here as the negative of the objective function defined in Equation 1.  

 ( )( ), 50E CorrCoef Tw Log ICw = − −  (2) 

2.3 Linear dimensionality reduction 
The dimensionality of the SIFt bits is the number of binding region residues times the 
number of interaction bits per residue. Typically this number is high, for e.g. in the case of 
P38α the number of bits in SIFt is 560 as discussed in the Dataset Generation subsection. 
Even after eliminating the zero valued bit positions the number of bit positions whose 
weights need to be determined is large. However not all the interactions at the non-zero bit 
positions are independent of each other, as there could be co-occurrences (i.e. two bits 
simultaneously ‘on’ or ‘off’) and cross-occurrences (i.e. bits that are complementary to each 
other). There could also be additional statistically significant dependencies between bit 
pairs, i.e. two bit positions positively or negatively highly correlated within the data. So a 
dimensionality reduction technique is used here to reduce if not eliminate these 
interdependencies and eventually compress the number of SIFt bits to a considerably 
smaller number without losing significant information. Thus, by doing so the number of 
weight parameters to be determined in the weighted profile is also significantly reduced. As 
the interdependencies in the SIFt are linear, we choose a linear dimensionality reduction 
technique for the data compression. The values of the SIFts in the reduced space need not be 
binary, but have to be positive.  We now only have as many weights to be determined as the 
dimension of the reduced space. After determining the weights in the lower dimensional 
space, the weights in the higher dimensional space (i.e. the original weights of the SIFts) can 
be obtained by an inverse transformation. 
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A linear dimensionality reduction technique involves transformation or rotation of the 
vector coordinate space such that the original data vector of higher dimensionality can be 
represented by another vector of lower dimensionality. Assume the original SIFt vector is 
represented as hs of dimensionality n , let  ls be its representation in a lower vector space of 
dimensionality r , and L be the dimensionality reduction transformation. Then, 

h l≈ ⋅Ls s  

Suppose the full SIFt dataset is represented as an n m×  matrix, hS  where m  is the number 
of SIFts. During linear dimensionality reduction the matrix hS is in effect factorized into two 
sub-matrices L and lS  of size n r×  and r m×  respectively i.e.  

h l

n rn m r m×× ×
≈ ⋅S L S   where ( )n m r nm+ <  

 

The matrix lS  represents the m  SIFts in the lower dimensional space.  
Dimensionality reduction techniques such as Nonnegative Matrix Factorization (NMF), 
Principal Component Analysis (PCA), and Vector Quantization (VQ) differ in the nature of 
the factor matrices. NMF involves a factorization such that the end sub-matrices are 
nonnegative. PCA involves a factorization such that the L matrix corresponds to a 
transformation into the Eigen vector coordinate system, whereas in VQ the factorization is 
such that the vectors of the transformed matrix are all unary. NMF is used here for 
dimensionality reduction of the SIFt space as the nonnegative constraint imposed in this 
method helps to preserve the underlying physical interpretation of the weights.  
Lee and Seung (Lee and Seung 1999) demonstrated that NMF involves parts based learning 
of objects, and is very effective and meaningful for dimensionality reduction in applications 
like image processing and text mining. NMF has been applied in several recent works in the 
context of computational biology and bioinformatics. Gao and Church (Gao and Church 
2005) applied NMF as an unsupervised classification method for cancer identification based 
on gene expression data, and found the method to be effective over other clustering 
techniques. Brunet et al. (Brunet et al., 2004) have also used NMF on cancer related 
microarray data. The basis vectors in their work, called meta genes, represented distinct 
molecular patterns thus enabling them to extract meaningful biological information. In Ref. 
(Kim and Tidor 2003) NMF was used on a large dataset of genome-wide expression 
measurements of yeast and was able to detect local features in the expression space that 
mapped to functional cellular subsystems. Recently, Devarajan (Devarajan 2008) provided a 
review of recent NMF applications in the context of biological informatics 
When NMF is applied to SIFts, the basis vectors represent underlying patterns of 
interactions between protein and the ligands as explained in Results section. The algorithm 
for solving NMF based on the following update rules as described by Lee and Seung (Lee 
and Seung 2001) is used here for the dimensionality reduction.  
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The update in Equation (4) is for ensuring uniqueness of the NMF submatrices. The 
convergence criterion for the algorithm is the Euclidean distance h lS LS− .  

2.4 Determining weights using Simulated Annealing 
After the NMF dimensionality reduction is completed the SIFts training data is initially 
transformed into the reduced space. Initial guess values are assigned to the weights in the 
lower r-dimensional space which are back transformed into the higher n-dimensional space 
using the equation h l= ⋅w L w . The w-SIFt score is then calculated which is used to evaluate 
the objective function in Equation 2. A new weights vector l

+ Δw w is determined and the 
objective function is reevaluated. The new weights vector is accepted if the new objective 
value is better, otherwise it is accepted with a probability exp( ( ) / ),p E E Tw new w= − −  
where T is a global parameter called the temperature which is gradually reduced to a very 
small value ~ 0 during the course of the algorithm.  
Since the weights in the higher dimension are supposed to be nonnegative, the weights in 
the lower dimension are constrained to be nonnegative. The nonnegativity constraint of the 
NMF algorithm helps to retain the nonnegative values of the SIFt data in the lower 
dimension and conversely nonnegative weights in the lower dimensions ensures 
nonnegative weights in the higher dimension. Maintaining the constraint of nonnegative 
weights in the higher dimension would have been a challenge, if other dimensionality 
reduction techniques such as Principal Component Analysis were used because of the 
possible encoding of the data to negative values in the lower dimension. Fig. 4. summarizes 
the overall workflow involving NMF dimensionality reduction stage and the determination 
of weights stage using simulated annealing. 

2.5 Dataset generation 
A dataset of P38α inhibitors whose potency (IC50) values and two-dimensional chemical 
structure have been reported in literature is considered to begin with. However, in order to 
generate SIFts for these inhibitors we should identify the accurate three-dimensional 
structure of the ligands binding into the protein which is a huge challenge. A rigorous 
search to determine the most likely binding pose of the ligand by binding energy 
minimization is not practical because of the combinatorial complexity of the conformational 
and positional search space of the ligand and the protein. The six degrees of translational 
and rotational freedom of the ligand, along with the internal conformational degrees of 
freedom of both the ligand and the protein, makes the search space extremely large. 
Consider as an example a simple system comprising a ligand with four rotatable bonds and 
six rigid body alignment parameters, the search space can be estimated as follows (Taylor et 
al., 2002): The alignment parameters are used to place the ligand relative to the protein in a  
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cubic active site of size 103 Å3. If the angles are considered in 10 degree increments and 
translational parameters on a 0.5 Å grid there are approximately 84 10×  rigid body degrees 
of freedom to sample, corresponding to 146 10× configurations (including the four rotatable 
torsions) to be searched. The search would take approximately 2,000,000 years of 
computational time at a rate of 10 configurations per second. So, the search process of 
docking algorithms implement some way of exploring only a partial region of the search 
domain thereby making the search implementation feasible. Molecular docking programs 
use heuristic search approaches based on molecular dynamics, monte carlo methods, genetic 
algorithms, fragment based methods, point complementarity methods, distance geometry 
methods, etc.  However since these programs are heuristic the docked structure results are 
not reliable and so need to be cross-checked by other means such as comparing with 
experimentally determined binding poses of structurally similar ligands. 
For the inhibitors above, all stable three-dimensional conformations are first generated using 
Omega program (Openeye Scientifc Software, NM) and these conformations are searched 
against known ligands of P38α using ROCS. The known ligands here are the ligands whose 
binding conformation with P38α has been confirmed experimentally and is available in the 
PDB. Only those inhibitors with a conformation closely matching with the known ligands 
are considered further for docking, whereas the remaining inhibitors are discarded because 
the resulting poses from docking cannot be verified for accuracy. Glide docking program 
(Schrodinger, NY) is used here to obtain the likely docking poses for the selected inhibitors. 
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After comparing the docking results with the binding pose of the corresponding known 
ligand using SIFts, only those ligands are finally retained whose binding pose matches 
closely with that of the known ligand and hence can be considered to be accurate. More 
information regarding the generation of the accurate binding poses from the two-
dimensional inhibitor structures can be found in Nandigam  et al. The final SIFt dataset 
considered here consisted of 89 protein-ligand structures of P38α. The active site of P38α 
consists of 56 residues with each residue being represented by 10 bits, making SIFt a 560 bit 
vector.  

2.6 Cross-validating weights 
The methodology described in the previous section involves a dimensionality reduction step 
that requires knowing a priori the dimensionality of the reduced space. Since we do not 
know the exact value of the reduced dimensionality in the case of SIFts, we build weighted 
profile models based on some guess values of the reduced space dimensionality using a 
training set and validate the models on a validation set. The guess value that generates a 
weights vector model that has the least validation error is chosen as the accurate 
dimensionality of the reduced space. This is because a model with the least validation error 
would theoretically also generate the least predictive error (Hastie et al., 2003).  
Since the available SIFt dataset is small to split into separate training and validation sets, a 
five-fold cross validation method is used to generate training and test sets. The dataset of 89 
SIFts is divided into a training set (both for training and cross validation) of 80 SIFts, and a 
test set (for final testing) of 9 SIFts. The 80 SIFts are further divided into 5 training-validation 
set pairs. In the cross validation procedure, a model is built for each of the five training sets 
and is validated against its corresponding validation set. The validation error of an 
individual model is the sum of squared differences between the model prediction values 
and the experimental ( )50Log IC−  values for the validation set. The overall cross-validation 
error for a given dimensionality guess is taken as the average of validation errors of the five 
individual models constructed from the five training-validation set pairs. 
The following steps outline the 5-fold cross-validation procedure.  
1. Divide the overall dataset into five training and validation sets. 
2. Consider a set of r values.  
3. For each r , run the dimensionality reduction algorithm and then calculate five sets of 

weights corresponding to the five training sets. 
4. Validate wSIFt scores of the five validation sets calculated based on the above weights 

by comparing against the experimental potency values. 

3. Results 
The cross validation errors calculated for various guess values of dimensionality for the 
reduced space are shown in Figure 3. The results show that a value of 20 for the reduced 
dimensionality corresponds to the least overall cross validation error, implying that the 
given P38α SIFt data can be efficiently translated as a combination of 20 linearly 
independent vectors. Figure 4 shows a heat map representation of the transformation L  
which is a graphical illustration of the 20 basis vectors in terms of the original 560 bits. Each 
of these basis vectors represents an ‘interaction pattern’ which is a combination of 
individual interactions that were found to co-occur in the original SIFt data. Each entry in 
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Fig. 3. The cross validation error of models built using different values of the lower 
dimensionality in NMF.  

 
Fig. 4. (a) Heatmap of the transformation matrix ( L ) from 560 bit-space to a lower 
dimensional space (of size 20). The panel on the right shows the numerical value range for 
the colors in the heatmap. (b) The average of all the SIFts in the entire dataset. 
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individual models constructed from the five training-validation set pairs. 
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dimensional space (of size 20). The panel on the right shows the numerical value range for 
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the basis vector corresponds to the importance of that particular bit in that pattern of 
interactions. Thus the basis vectors represent a meaningful combination of interactions due 
to the nonnegative restriction on the elements of L  matrix. Also, since the transformation 
matrix, L , is nonnegative we simply need to restrict our weights in the lower dimensional 
space to be positive in order to satisfy the criterion that the weights in the original 560 bit 
space should be nonnegative. 
The weight values of the weighted profile are provided as supplementary information in 
(Nandigam et al, 2009). The weights at the fingerprint positions corresponding to the contact 
bit of all the residues is shown in Figure 5. By looking at the weight values at the residue 
positions and the average SIFt values in Figure 5, it can be deduced that the weights are 
‘learnt’ based on the supposed contribution of the interactions towards potency rather than 
mere frequency of  interaction occurrence. In Figure 6(a), the w-SIFt scores of the training 
compounds, computed using the final weights model, are plotted against ( 50)Log IC−  
values. The SIFt training data is categorized into three classes (colored blue, yellow and red 
in the figure) for better illustration and subsequent box plot analysis. The points in blue, 
yellow and red correspond to highly potent, moderately potent, and least potent 
compounds respectively. Figure 6(b) is the corresponding box plot representation showing 
the mean, quantiles, and outliers of the weighted profile scores (w-SIFt scores) for the three 
classes.  
In Figure 6(c) w-SIFt scores of the 9 SIFts from final test set and the 80 SIFts from the 
training set are compared with the potencies. The w-SIFt scoring metric seems to perform 
well on the final test set too. The analysis done in Figure 6(a-b) is repeated for molecular 
weight and the docking score, in order to compare the performance of w-SIFt against other 
ligand parameters. Figure 7(a) shows the scatter plot of the molecular weight against the 

( 50)Log IC−  values, whereas Figure 7(b) is its corresponding box plot. Figure 7(c) is the 
scatter plot of –docking score against the ( 50)Log IC−  values with its respective box plot 
shown in Figure 7(d). The figures show that the molecular weight ( 0.2929R = ) and docking 
score ( 0.3415R = ) bear some correlation with the potencies though the deviation from the 
straight-line fit seems to be higher as evidenced in the respective box plots. The w-SIFt score 
definitely seems to a better metric for assessing the experimental potency of the ligand from 
the interaction fingerprint. 
 

 
Fig. 5. The weighted profile showing the contact-bit weight at each of the residues as 
determined from the algorithm. 
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Fig. 6.(a) Scatter plot of the weighted SIFt scores against ( 50)Log IC− for training data. The 
points in blue, yellow, and red correspond to the most potent, moderately potent, and least 
potent compounds. The correlation coefficient, 0.6040R = . (b) Box plots of the distribution 
of the Weighted SIFt scores with respect to potency classes. (c) Scatter plot of the weighted 
profile scores against ( 50)Log IC−  for training (in red) and testing (in yellow) compounds. 

4. Discussion 
Typical physics based or empirical scoring functions are difficult to interpret: it is often not 
possible to extract information on what residues are driving potency and which interactions 
are more dispensable. The visual interpretation of the profile weights as illustrated in the 
previous section is perhaps the most powerful feature of the weighted interaction profiles 
described in this chapter.  
The binding pocket of P38α with a ligand bound to it (PDB 1BL7) is shown in Figure 8(a), 
with the key binding residues highlighted with purple, cyan or white.  It is observed that the 
weights illustrated in Figure 5 in fact reflect the relative importance of specific interactions 
in determining the potency of the P38α inhibitors considered in this study. In Figure 8(a),  
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Fig. 6.(a) Scatter plot of the weighted SIFt scores against ( 50)Log IC− for training data. The 
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4. Discussion 
Typical physics based or empirical scoring functions are difficult to interpret: it is often not 
possible to extract information on what residues are driving potency and which interactions 
are more dispensable. The visual interpretation of the profile weights as illustrated in the 
previous section is perhaps the most powerful feature of the weighted interaction profiles 
described in this chapter.  
The binding pocket of P38α with a ligand bound to it (PDB 1BL7) is shown in Figure 8(a), 
with the key binding residues highlighted with purple, cyan or white.  It is observed that the 
weights illustrated in Figure 5 in fact reflect the relative importance of specific interactions 
in determining the potency of the P38α inhibitors considered in this study. In Figure 8(a),  
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Fig. 7.(a) Scatter plot of the molecular weight against ( 50)Log IC− . The points in blue, 
yellow, and red correspond to the most potent, moderately potent, and least potent 
compounds. The correlation coefficient, 0.2929R = . (b) Box plots of the distribution of 
molecular weight with respect to potency classes. (c) Scatter plot of the –docking score 
against ( 50)Log IC− . The points in blue, yellow, and red correspond to the most potent, 
moderately potent, and least potent compounds. The correlation coefficient, 0.3415R = .  
(d) Box plots of the distribution of the -docking scores with respect to potency classes. 
 

the most highly weighted residues are in purple; those with intermediate weight in cyan, 
and those least important for potency are colored white. The majority of ATP competitive 
kinase inhibitors interact with the hinge region of the kinase via at least one hydrogen bond 
(Chuaqui, Deng et al. 2005) mimicking the interactions made by the adenine moiety of ATP. 
In fact, these interactions are often used as constraints for filtering poses from docking 
experiments (Lyne, Kenny et al. 2004; Chuaqui, Deng et al. 2005). Not surprisingly, 
interactions with Met109, the key hydrogen-bonding residue in the hinge for P38α, are 
weighted heavily. In addition, Ala51 that makes hydrophobic contact with the typically 
heteroaromatic hinge binding substituents is identified as important for potency.  Another 
nearly canonical interaction observed in the majority of kinase inhibitor co-crystal structures 
is with the conserved residue Lys53.  
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Fig. 8. (a) P38α with the key residues colored according to their weights. The residues in 
purple are the most highly weighted followed by residues in cyan, and the residues in white 
are the least weighted residues. Also shown in the figure are the labels for the residues 
referred to in the Discussion section. The sugar pocket (b) and hydrophobic pocket (c) are 
identified from the w-SIFt analysis as important regions for potency. 

In addition to these highly conserved interactions, the hydrophobic pocket and sugar pocket 
regions of the ATP binding site received high weights. As is shown for example in Figure 
8(b), inhibitors with substituents interacting with sugar pocket residues demonstrated 
increased potency over unsubstituted examples. Targeting the sugar pocket is a common 
strategy in kinase inhibitor design although it is not necessary to achieve potent activity in 
many kinases. The current analysis, however, indicates that this is an important region for 
p38α inhibition. In contrast, interaction with the P-loop of the kinase is not as important. The 
hydrophobic (or selectivity) pocket shown in Figure 8(c) was the final region that was 
identified in our analysis as being critical for potency. The small Thr106 gatekeeper residue 
in P38α permits access to the hydrophobic pocket unlike in kinases with bulky gatekeeper 
residues, e.g., CDK2 (Phe) or Akt (Met). Many P38α inhibitors exploit this region with 
substituted phenyl groups that contact a cluster of hydrophobic residues lining the pocket. 
The weights determined from our analysis highlight the importance of these interactions for 
achieving potency against P38α. Finally, interactions with the hinge toward the solvent 
channel of P38α were in comparison much less important for potency. As substitution 
toward solvent is typically aimed at improving inhibitor solubility, physical properties, and 
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selectivity (Fitzgerald, Patel et al. 2003), it is not surprising that the weights determined from 
potency alone are not high. However, inhibitors with solvent channel substituents that 
made hydrophobic contacts with Val30 did receive relatively high weights in our analysis. 
In addition to being interpretable, we have demonstrated that with an optimized set of 
target-specific weights, weighted profiles are able to rank order compounds based on 
potency. The weighted SIFt scoring function could be used as a virtual screening tool for 
mining potent compounds from chemical databases. The first step of the virtual screening 
protocol would involve docking the inhibitors against the target protein and determining 
accurate poses based on a SIFt based filter as demonstrated by Deng et al. (Deng, Chuaqui et 
al. 2004). The weighted profile and the SIFts of the docked poses are now used to compute 
the w-SIFt score, which is used as a ranking criterion.  
 

 
Fig. 9. Illustrative figure summarizing the full workflow involving determining SIFts from 
protein-ligand complexes, dimensionality reduction, weights determination, and 
interpretation of weights for better understanding of protein-ligand interactions. 

Figure 9 shows a summary of the overall algorithm starting with the generation of SIFts 
from protein-ligand structures followed by the dimensionality reduction, and calculation of 
weights using simulated annealing, The weights so determined in turn help the 
understanding of the protein-ligand interactions which eventually will be useful for 
designing more efficient virtual screening algorithms to search for better binding ligands. 
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The concept of weighting the bits in SIFt can be extended to determine other criteria such as 
selectivity of a compound towards two targets. Rather than training the weights for learning 
experimental potency values, the weights now have to be trained for learning the relative 
potencies expressed as ( )( 50)Log ICΔ −  for example. The w-SIFt scoring function however 
suffers from the shortcoming that it is entirely based on assigning potency to protein-ligand 
binding interactions and does not include terms to delineate entropic contributions. There is 
however scope to combine the concept of weighting the interactions with other important 
ligand based terms like polar surface area, molecular weight, etc that also play a critical role 
in protein-ligand binding. 
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1. Introduction  
With deregulation in the electricity market industry, competition was introduced among 
Generation Companies (GenCos), which no longer enjoyed guaranteed rates of return, like 
in old regulated environment, since price of electricity was no more fixed but varying 
according to market conditions. The price of electricity GenCos receive in the new 
competitive market depends on many factors of uncertainty: other GenCos bidding 
strategies, congestion in transmission, power demand, volatility of spot price of electricity 
(Liu & Wu, 2006). Scheduling decisions of GenCos are then a determinant factor of their 
own profitability, which nonetheless depends on either how much a GenCo is able to 
evaluate market risks or how it can manage such risks. Risk management is the process of 
achieving a desired return/profit through a particular strategy, which should take into 
account all the aforementioned factors of uncertainty. However, the complexity of the 
problem is so high that only strategies taking into account a subset of the above uncertainty 
factors were proposed in the literature. In order to reduce spot price volatility, 
diversification and portfolio optimization in physical trading markets were proposed (see 
e.g. (Liu & Wu, 2006)). Other GenCos bidding strategies and congestion management were 
conversely embedded in several algorithms based on game theory and evolutionary 
programming (see e.g. (Byde, 2003) through (Jia et al., 2007)). Nonetheless the problem of 
demand forecasting was faced from different points of view (Darbellay, 2001), (Kirschen, 
2003) but only in very few cases it was introduced in a risk management formulation (Zhou 
Ming, 2003) through (Conejo et al., 2008). In particular (Menniti  et al. 2007) formulates a 
stochastic optimization problem with recourse as a tool to decide how much energy to bid in 
a multi-session market, with the aim to maximize the overall profit and minimize the risk of 
achieving revenues lower than a given threshold, with risk measured by the Conditional 
Value at Risk. (Conejo et al., 2008) utilizes a stochastic optimization problem with recourse 
very similar to the one in (Menniti  et al., 2007), which nonetheless addresses the problem of 
a power producer facing the possibility of signing forward contracts as a form of protection 
against pool price volatility but at the cost of lower expected profits and considering only 
one market session over three of the present proposal.  
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This paper proposes a comparison among different sale-bidding strategies embedding risk 
due to daily-price volatility and to uncertainty typical of a process of bids acceptance, as 
well as delivery risk due to transmission congestion, taking into account zonal spot prices. 
The GenCo was modeled as a price taker, its price bids coincide with marginal costs and 
thus only energy bids were represented as decision variables. Each sale-bidding strategy 
then consists of the hourly energy quantities to bid for the 24 hours of the next day in a 
multi-session market, with the aim of maximizing overall profits and minimizing risk 
exposure. The convenience of a strategy was evaluated in terms of efficient frontier (Liu & 
Wu, 2006), that is the set of non-dominated solutions, in terms of maximum expected profit 
and minimum risk of profit variation, for varying values of risk aversion, whereas risk of 
profit variation was modelled using a discrete formulation of the Conditional Value at Risk 
(Rockafellar & Uryasev, 2000). The efficient frontiers relating to different sale-bidding 
strategies were produced by means of an enhanced formulation of the proposal in (Menniti  
et al. 2007) of a mixed-integer multi-stage stochastic programming problem with recourse. 
The problem is stochastic since it takes into account volatility of spot prices, modeled with a 
set of discrete variables, whereas a set of relating outcomes of these discrete variables is 
called scenario (Birge & Louveaux, 1997).  
Besides the stochastic nature of the proposed optimization problem, it is worth to underline 
the need for a multi-stage formulation. Bidding strategies in energy and reserve markets are 
consecutive: the decision on the quantity of energy to bid in reserve market is a consequence 
of the clearing of previous markets, from which different levels (multi-stage) of decisions. 
The possibility to dynamically decide the quantity of energy to bid (multi-stage decision 
strategy), depending on the acceptances in preceding markets, allows to reduce risk in 
comparison to other strategies, such as fixed-mix and greedy (Dempster et al., 2002), (Fleten et 
al. (2002). In fact, according to a fixed-mix strategy, bids are percentages of the available 
capacity and a priori decided. Nonetheless a greedy strategy is a particular fixed-mix chance 
in which the whole production capability is devoted to the forecasted most convenient 
market session. Simulations were carried out in order to set up the efficient frontiers for 
multi-stage, fixed-mix and greedy strategies, applying the enhanced multi-stage stochastic 
programming problem to the Italian Power Exchange (IPEx) framework, and using field 
data of historical trends in the Italian market.  

2. Italian market structure overview 
In this section a description is provided of the basic Italian market structure which, like most 
of electricity markets, presents two alternatives to trade energy: Power Exchange and 
(physical) forward market.  

2.1 Power exchange  
Power Exchange is managed by a market operator, GME (www.mercatoelettrico.org), which 
determines the generation units to be deployed and how much energy each selected unit 
should produce to meet power demand. From a GenCo’s point of view, selling energy in the 
Power Exchange (PEx) means to submit a bid (price and quantity) and get either of the two 
alternative results: (1) PEx accepts the bid and pays the Market Clearing Price (MCP) for the 
actual energy output of the GenCo; (2) PEx rejects the bid, and the GenCo sells nothing in 
the spot market. MCP depends on bids of all market participants, as well as on demand of 
energy, and is therefore uncertain. Unlike other European energy markets, e.g. Powernext in 
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France or EEX in Germany, GME Power Exchange is not a merely financial market with the 
sole purpose of determining prices and quantities, but an actually physical market, where 
physical injection and consumption schedules of energy are defined as a result of a clearing 
process.  
To clear the market, a zonal model is used to manage network congestions, thus zonal prices 
will value producer bids.  
Moreover, the Italian Power Exchange is made up of three sessions the Day-Ahead Market,  
the Intraday Market and the Ancillary Services Market, which are described in detail below for 
completeness sake. 
The Day-Ahead Market (DAM) takes place in the morning of the “day-ahead” of the day of 
delivery. At the end of the offer/bid submission sitting, GME activates the market solution 
process. For each hour of the following day, the market algorithm accepts offers/bids so as 
to maximize the value of transactions, while satisfying transmission limits on capacity 
between zones. DAM clearing energy quantities and prices define the injection and 
consumption schedules for each hour of the following day. 
The Intraday Market (IM) is not configured as a trading market, since participants submit 
demand offers or supply bids only to revise schedules resulting from the Day-Ahead 
Market. This market takes place immediately after the Day-Ahead Market, usually in the 
afternoon. The process of acceptance of offers/bids in the Intraday Market is similar to that 
described for the Day-Ahead Market. However, in the Intraday Market, also accepted 
offers/bids referring to consumption points are remunerated at zonal clearing prices and 
not at unique market clearing prices of the IM, like in the DAM. 
The need for an Intraday Market after the Day-Ahead Market arises because of the use of 
simple offers/bids: since the 24 hourly schedules of injection or consumption are 
determined independently of each other, they are not guaranteed to be jointly consistent 
with constraints of production units. As an example, suppose a unit with a start-up time of 2 
hours submits 24 supply bids for 100 MWh at given prices for the 24 hours of the next day, 
and all bids are accepted but one, at 7 a.m. The daily generation schedule resulting from the 
market would be then unfeasible for such a unit, whereas it cannot be shut-down at 7:00 and 
started-up at 8:00. The availability of an Intraday Market will thus allow that unit to submit 
appropriate demand/supply bids in order to revise previous unfeasible schedules. 
The Ancillary Services Market (ASM) is the session  within which market participants submit 
offers/bids to increase or decrease energy injection or consumption. The Italian TSO, 
TERNA (ex GRTN), uses these offers/bids a) as-planned, to correct any schedule violating 
transmission limits and to create reserve margins for the following day; b) in real-time, to re-
establish an equilibrium between demand and production of energy, in the case of 
deviations from schedules. Unlike what happens in energy markets, offers/bids in the 
Ancillary Services Market are remunerated at the offered price rather than at the 
corresponding hourly zonal price.  
The more the number of units in a GenCo ownership and of instances of market sessions, 
the higher the complexity level of the decision problem to be solved and the more risky the 
bidding operation. A valid means to control and reduce risk is diversification. 
Diversification is to engage in a wide variety of markets so that the exposure to the risk of 
any particular market is limited (Liu & Wu, 2006). Applying this concept to energy trading 
in an electricity market, diversification means to trade energy through different physical 
trading approaches, in which actual physical energy is traded, such as spot and contract 
markets. 
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2.2 Contract market 
In a contract market, GenCos trade energy by way of signing physical forward contracts 
with their counterparties (e.g., energy consumers). Specific details, such as trading quantity 
(MW), trading duration (h), trading price (€/MWh), and delivery point are bilaterally 
negotiated between GenCo and consumer. Bilateral contracts are signed before the actual 
trading period, which means that trading quantity and price are set in advance, however 
they are embedded within the DAM session. In fact, when supply bids and consumption 
offers are checked for compliance with transmission constraints in the DAM, also bilateral 
contracts are embedded, with maximum priority of price, i.e. respectively zero-price supply 
bids and price-independent demand offers. If at least one transmission limit is violated, i.e. 
there is scarcity of transmission capacity, market is split into two or more zones. In this case, 
each zone z has a different clearing price Pz and this implies that: i) there is a value of 
transmission right between zones x and y, equal to Py-Px, i.e. the bilateral contract is required 
to pay/receive such a fee to/from TERNA for flows which contribute to 
congestion/congestion-relief on the grid. Transmission rights are assigned to bilateral 
contracts until exhaustion of transmission capacity and thus to the most competitive 
offers/bids submitted in the market. The bilateral contract will pay a fee for the 
transmission right, Py-Px, for the quantity of electricity quoted in the contract. Congestion 
and the resulting zonal prices are thus uncertain and unpredictable, and this makes risky 
inter-zonal bilateral contracts, whereas only intra-zonal contracts are risk-free in such a 
market. 

3. Decision approach for the formulation of sale-bidding strategies 
The tool used in this paper, already proposed by the authors elsewhere (Menniti  et al. 2007), 
and here enhanced by the introduction of new decision variables and relating constraints, is 
to be used on a daily basis, the day ahead the DAM, IM and ASM sessions take place, by a 
GenCo which decides to recur to bidding diversification in order to maximize overall profits 
and minimize risk exposure. The GenCo is also supposed to honor a physical forward contract, 
in the remainder bilateral contract, according to a daily load profile at a given price. As an 
improvement of the stochastic programming problem presented in (Menniti  et al. 2007), the 
GenCo can decide to which production units refer the bilateral contract, given that a number 
of units in its ownership are located in different zones and that the price cleared in a zone 
may differ from that of another zone because of delivery risk due to transmission 
congestions. As a result of the optimality of the adopted strategy, the bilateral contract will 
be then honored by units placed in the zones where zonal prices result the lowest, 
producing energy where it is more convenient and thus minimizing delivery risk. The 
interested reader is referred to Appendix C for a more detailed treatment of the constraints 
of the problem (equations (16)-(33)), whereas the objective function which drives the optimal 
choice of energy to bid in a multi-session market is formulated in the following section.  

3.1 Objective function of the problem  
As said above, the aim of the paper is proposing a way to define a sale-bidding strategy for 
a GenCo who wants to maximize overall expected profits over the operating day and 
conversely minimize risk exposure. For this reason, the authors considered in (Menniti  et al. 
2007) a risk-reward structure for the objective function, which is a choice of modeling 
widely used in many applicative contexts characterized by a high level of uncertainty, 
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(Conejo et al., 2008), (De Giorgi, 2005). This choice consists in a weighted sum of two terms: 
the expected overall profit and the Conditional Value at Risk on possible losses occurring in 
the entire planning horizon of one day: 

 max E[Profit]- κCVaR (1) 

where κ is a user-defined trade-off value, called in the remainder the risk aversion parameter, 
which models how much the GenCo is averse to risk, whereas high values of κ model a 
conservative approach, i.e. low propensity to risk. For each scenario, i.e. for each likely 
realization of the discrete variables modeled by an intuitive scenario tree, the overall profit 
for the entire planning horizon of one day is defined as the difference between revenues and 
costs. Revenues and costs depend on prices and on the energy actually cleared, thus not 
known in advance and modeled as expected values. Let s

itη , l
itπ , and v

itθ  denote 
probabilities of occurrence of outcomes s, l and ν, respectively related to the DAM, IM and 
ASM sessions, for each period t and for the zone which generation unit i belongs to. The 
expected value of overall profits can then be defined as: 

 E[Profit]=
1 1 1 1

( )
I T V T

Bil
it it it t

i t t
R C Rν ν ν

ν
θ

= = = =
− +∑∑∑ ∑  (2) 

with Bil
tθ being the revenue due to bilateral contract at time t, a constant quantity not 

dependent on the decision variables.   
Moreover, let s

itλ , l
itμ , and v

itζ  denote outcomes of random clearing prices in the DAM, IM 
and ASM at the t-th hour for the zone which generation unit i belongs to. Overall revenues 
for generation unit i at time t according to outcome ν are then: 

 ( ( )) ( )p p v p vv v
it itASMitDAM itAMR R R R= + +    , ,  v i t∀ ∀ ∀  (3) 

Where: 

 s s s
itDAM it it itR xλ γ=    , ,           s i t∀ ∀ ∀  (4) 

 ( )p ll l l
itAM it it itR yμ δ ++=    , ,           l i t∀ ∀ ∀  (5) 

 ( )p vv v v
itASM it it itR zζ ρ=    , ,           v i t∀ ∀ ∀  (6) 

Overall cost related to generator i at time t according to outcome ν is instead: 

 ( )
itProd itSU itSDC C C p v

it itAMC Cν ν= + + +    , ,           v i t∀ ∀ ∀  (7) 

where: 

 itProd ( )v v
i it i itC U Qα β= +    , ,           v i t∀ ∀ ∀  (8) 

is the production cost of unit i at time t, whereas αi and βi are coefficients of the production-
cost function of unit i, constant for each hour t. It should be noted that power output 

itQν becomes zero whereas unit i is not committed, i.e. binary variable Uit is equal to zero, as 



 Stochastic Optimization - Seeing the Optimal for the Uncertain 

 

276 

2.2 Contract market 
In a contract market, GenCos trade energy by way of signing physical forward contracts 
with their counterparties (e.g., energy consumers). Specific details, such as trading quantity 
(MW), trading duration (h), trading price (€/MWh), and delivery point are bilaterally 
negotiated between GenCo and consumer. Bilateral contracts are signed before the actual 
trading period, which means that trading quantity and price are set in advance, however 
they are embedded within the DAM session. In fact, when supply bids and consumption 
offers are checked for compliance with transmission constraints in the DAM, also bilateral 
contracts are embedded, with maximum priority of price, i.e. respectively zero-price supply 
bids and price-independent demand offers. If at least one transmission limit is violated, i.e. 
there is scarcity of transmission capacity, market is split into two or more zones. In this case, 
each zone z has a different clearing price Pz and this implies that: i) there is a value of 
transmission right between zones x and y, equal to Py-Px, i.e. the bilateral contract is required 
to pay/receive such a fee to/from TERNA for flows which contribute to 
congestion/congestion-relief on the grid. Transmission rights are assigned to bilateral 
contracts until exhaustion of transmission capacity and thus to the most competitive 
offers/bids submitted in the market. The bilateral contract will pay a fee for the 
transmission right, Py-Px, for the quantity of electricity quoted in the contract. Congestion 
and the resulting zonal prices are thus uncertain and unpredictable, and this makes risky 
inter-zonal bilateral contracts, whereas only intra-zonal contracts are risk-free in such a 
market. 

3. Decision approach for the formulation of sale-bidding strategies 
The tool used in this paper, already proposed by the authors elsewhere (Menniti  et al. 2007), 
and here enhanced by the introduction of new decision variables and relating constraints, is 
to be used on a daily basis, the day ahead the DAM, IM and ASM sessions take place, by a 
GenCo which decides to recur to bidding diversification in order to maximize overall profits 
and minimize risk exposure. The GenCo is also supposed to honor a physical forward contract, 
in the remainder bilateral contract, according to a daily load profile at a given price. As an 
improvement of the stochastic programming problem presented in (Menniti  et al. 2007), the 
GenCo can decide to which production units refer the bilateral contract, given that a number 
of units in its ownership are located in different zones and that the price cleared in a zone 
may differ from that of another zone because of delivery risk due to transmission 
congestions. As a result of the optimality of the adopted strategy, the bilateral contract will 
be then honored by units placed in the zones where zonal prices result the lowest, 
producing energy where it is more convenient and thus minimizing delivery risk. The 
interested reader is referred to Appendix C for a more detailed treatment of the constraints 
of the problem (equations (16)-(33)), whereas the objective function which drives the optimal 
choice of energy to bid in a multi-session market is formulated in the following section.  

3.1 Objective function of the problem  
As said above, the aim of the paper is proposing a way to define a sale-bidding strategy for 
a GenCo who wants to maximize overall expected profits over the operating day and 
conversely minimize risk exposure. For this reason, the authors considered in (Menniti  et al. 
2007) a risk-reward structure for the objective function, which is a choice of modeling 
widely used in many applicative contexts characterized by a high level of uncertainty, 

Comparison among Different Sale-Bidding Strategies  
to Hedge against Risk in a Multi-Market Environment   

 

277 

(Conejo et al., 2008), (De Giorgi, 2005). This choice consists in a weighted sum of two terms: 
the expected overall profit and the Conditional Value at Risk on possible losses occurring in 
the entire planning horizon of one day: 

 max E[Profit]- κCVaR (1) 

where κ is a user-defined trade-off value, called in the remainder the risk aversion parameter, 
which models how much the GenCo is averse to risk, whereas high values of κ model a 
conservative approach, i.e. low propensity to risk. For each scenario, i.e. for each likely 
realization of the discrete variables modeled by an intuitive scenario tree, the overall profit 
for the entire planning horizon of one day is defined as the difference between revenues and 
costs. Revenues and costs depend on prices and on the energy actually cleared, thus not 
known in advance and modeled as expected values. Let s

itη , l
itπ , and v

itθ  denote 
probabilities of occurrence of outcomes s, l and ν, respectively related to the DAM, IM and 
ASM sessions, for each period t and for the zone which generation unit i belongs to. The 
expected value of overall profits can then be defined as: 

 E[Profit]=
1 1 1 1

( )
I T V T

Bil
it it it t

i t t
R C Rν ν ν

ν
θ

= = = =
− +∑∑∑ ∑  (2) 

with Bil
tθ being the revenue due to bilateral contract at time t, a constant quantity not 

dependent on the decision variables.   
Moreover, let s

itλ , l
itμ , and v

itζ  denote outcomes of random clearing prices in the DAM, IM 
and ASM at the t-th hour for the zone which generation unit i belongs to. Overall revenues 
for generation unit i at time t according to outcome ν are then: 

 ( ( )) ( )p p v p vv v
it itASMitDAM itAMR R R R= + +    , ,  v i t∀ ∀ ∀  (3) 

Where: 

 s s s
itDAM it it itR xλ γ=    , ,           s i t∀ ∀ ∀  (4) 

 ( )p ll l l
itAM it it itR yμ δ ++=    , ,           l i t∀ ∀ ∀  (5) 

 ( )p vv v v
itASM it it itR zζ ρ=    , ,           v i t∀ ∀ ∀  (6) 

Overall cost related to generator i at time t according to outcome ν is instead: 

 ( )
itProd itSU itSDC C C p v

it itAMC Cν ν= + + +    , ,           v i t∀ ∀ ∀  (7) 

where: 

 itProd ( )v v
i it i itC U Qα β= +    , ,           v i t∀ ∀ ∀  (8) 

is the production cost of unit i at time t, whereas αi and βi are coefficients of the production-
cost function of unit i, constant for each hour t. It should be noted that power output 

itQν becomes zero whereas unit i is not committed, i.e. binary variable Uit is equal to zero, as 



 Stochastic Optimization - Seeing the Optimal for the Uncertain 

 

278 

stated by constraints (16) and (25) provided in the Appendix C. Production-cost function 
was approximated with such a linear function since we are dealing with marginal costs. 

 itSU i itC SU Δ+=    ,           i t∀ ∀  (9) 

 itSD i itC SD Δ−=    ,           i t∀ ∀  (10) 

with itSUC and itSDC  the start-up and shut-down costs incurred if unit i is going to be 
started-up/shut-down at the t-th hour, whereas SUi and SDi are linear cost coefficients. 
Finally, it

+Δ  and it
−Δ are binary variables, respectively equal to 1 if unit i is going to be 

started-up/shut-down at the t-th hour, 0 otherwise; 

 ( )p ll l l
itAM it it itC yμ δ −−=  , ,  l i t∀ ∀ ∀  (11) 

When the GenCo buys energy on the IM, the purchase cost (11) has an expression similar to 
IM revenues (5): the bid of energy accepted in the IM, ( )p ll

it ityδ −− , will be remunerated at the 
zonal clearing price, l

itμ  (depending on the zone unit i belongs to). As to the term CVaR in 
(1), a discrete formulation is given in Appendix B. 
The solution of the stochastic optimization programming problem (1), (16)-(33) for different 
values of the risk aversion parameter κ, provides the efficient frontier for any adopted 
bidding strategy, which represents how the expected profit augments as CVaR increases 
(see Fig. 10 of the case study). 

4. Numerical results 

This section presents the results obtained simulating different bid strategies adopted by a 
small GenCo operating in the Italian PEx, which was supposed to own 3 thermo-electrical 
units, with operational features provided in Tab. 1, whose last row indicates where units are 
located. Note that the minimum power output of all units, min

iQ , is 0 MW. The zonal 
clearing prices of the Italian Power Exchange (IPEx) in January 2005 were considered for 
simulation (www.mercatoelettrico.org). Moreover, the GenCo serves a bilateral contract  
 

 Unit 1 Unit 2 Unit 3 
SU [€] 805 805 805 
SD [€] 43 43 43 

iUT [h] 4 4 4 

iDT [h] 4 4 4 
αi [€] 892 892 892 

βi [€/MWh] 14 14 14 
max
iQ [MW] 500 400 280 
min
iQ [MW] 0 0 0 

Location 
Zone North Middle 

North Sardinia 

Table 1. Units data 
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which is supposed to absorb 40% of the daily power production of the GenCo, according to 
the daily consumption profile shown in Fig. 1.  
The remainder of the section is organized as follows: first, field data of historical trends in 
the Italian PEx during January 2005 were reported and analyzed. Using the heuristic 
procedure for scenario generation explained in Appendix A, 300 scenarios for prices and 
percentages of acceptance were generated. A comparison among three different strategies, 
multi-stage, fixed-mix and greedy, was then proposed and commented, in terms of efficient 
frontiers, resulting from the use of the proposed optimization tool. 
 

 
Fig. 1. Reference load profile (Qbil) 

4.1 Italian market data 
Mean hourly prices averaged over all zones in the Day-Ahead Market during January 2005 
were plotted in Fig. 2, which highlights a high inter hour volatility, with values of prices 
ranging from a minimum of €/MWh 31.32 (4 a.m.) to a maximum of €/MWh 114.21 (7 p.m.). 
 

 
Fig. 2. Mean hourly prices [€/MWh] in the Italian Day-Ahead Market over January 2005  

Fig. 3 compares mean monthly prices, always averaged over all zones, in the Day-Ahead 
Market and Intraday Market over 2005, from which it can be noticed how prices were quite 
similar in the DAM and IM, whereas during January DAM mean price resulted 2.27% 
higher than IM mean price, and this feature was taken into account within the scenario tree 
generation, as described in Appendix A. Conversely, Fig. 4 depicts mean hourly prices of 
DAM and ASM over January 2005. Mean hourly prices of ASM were derived as the average 
over zones of “the last” zonal hourly bids accepted in the ASM (that is bids with the highest 
prices).  
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the daily consumption profile shown in Fig. 1.  
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Fig. 3. Mean monthly prices [€/MWh] in the Italian Day-Ahead Market and Intraday 
Market over 2005  

 
Fig. 4. Mean hourly prices [€/MWh] in the Italian Day-Ahead Market and Ancillary Service 
Market over January 2005  

4.2 Comparison among multi-stage, fixed-mix, and greedy strategies 
The enhanced stochastic optimization problem was implemented on a Pentium 4, 1.8 GHz 
with 1056 GB of RAM using AIMMS (www.aimms.com) as modeling environment and 
ILOG CPLEX 10 (www.ilog.com) as optimization solver. The size of the mixed-integer linear 
programming problem (1), (16-33) expressed as the number of continuous variables, binary 
variables and constraints is provided in Tab. 2. More in detail, I, T, S, L and V are 
respectively the number of units, the number of time intervals, and the number of likely 
outcomes of the Day-Ahead Market, of the Intraday Market and of the Ancillary Services 
Market. The CPU time required to solve the stochastic problem was of 1175.38 sec per 
strategy, therefore suitable for practical implementations. 
Starting from all the previous assumptions, the purpose of the following simulation was 
twofold: i) showing effects of risk aversion on a sale-bidding strategy by a GenCo operating 
in different market sessions; ii) comparing the effectiveness of the proposed multi-stage 
decisional approach with other realistic classic strategies, such as fixed-mix and greedy. 
These two classic strategies are similar since both decide a priori the offers of energy in each 
market session as predetermined percentages of the available capacity of production. 
However, according to a greedy strategy, values assumed for these percentages were chosen 
so as to concentrate profits in a “greedy” way in one of the three markets of IPEx, and 
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Continuos 
decision 
variables 

I T(2+2S+L+V)=29 664 

Binary 
variables I T(3+2S)=1656 

Constraints I T(7+5S+L+2V)+I+T=54 531 

Table 2. Problem size 

assumed in the paper equal to 100% for offers in the DAM, and 0% in the IM and ASM. 
Differently, for a fixed-mix strategy, offers were “distributed “in the DAM, IM and ASM 
according to different predetermined percentage, assumed equal to 80%, 5% and 15% 
respectively, these percentage reflecting the real trend of the Italian Market over 2005.  
Moreover, a fixed-mix and a greedy strategy also differ for the way in which offers are 
managed in the IM and ASM. In fact, with a fixed-mix strategy, when an offer is refused by 
a generic market session, the residual capacity of production may be offered in other 
subsequent market sessions, always according to the programmed percentages, which for a 
greedy strategy are instead 0%. 
According to the above assumptions, offers in the DAM, IM, and ASM obviously vary as a 
function of the particular strategy chosen, as Fig. 5 shows for a generic value of the risk 
aversion parameter (κ=0.5). For κ=0.5 most of offers are committed in the DAM if a greedy 
strategy is adopted, whilst correspondingly offers decrease if we move from a greedy 
towards a multi-stage strategy, in favor of offers in the more remunerative Ancillary Service 
Market (Stage 3).  
 
 

 
 

Fig. 5. Energy bids in the DAM in MWh as a function of greedy, fixed-mix, and multi-stage 
strategies, for κ=0.5 
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Moreover, observing the generic strategy, the decision of which units to commit is a 
function of the geographic position of units themselves, whereas unit 2 belongs to Middle-
North and presents offers higher than unit 3, which belongs to Sardinia, where prices were 
higher than in Middle-North.  
Obviously, how offers are distributed over sessions and over 24 hours also depends on the 
aversion to risk modeled by the κ parameter. Simulations for varying values of the risk 
aversion parameter (ranging from 0 (full acceptance of risk) to 1 (maximum aversion to risk) 
with a step of 0.1) were performed. Calling efficient frontier the set of solutions for different 
values of risk aversion (Liu & Wu, 2006), a comparison among the efficient frontiers 
obtained adopting multi-stage, fixed-mix and greedy strategies was reported in Tab. 3, and 
Fig. 6. Each point of Fig. 6 represents the most profitable sale-bidding strategy as a function 
of a given risk level or, equivalently, the less risky sale-bidding strategy as a function of a 
given value of profitability. Moreover, focusing attention on a generic strategy, it is evident 
that a non-conservative approach, which corresponds to low values of κ, allows higher 
potential gains, although a higher risk value as well.  
With the purpose of highlighting the validity of a multi-stage decisional approach versus 
other “non-recursive” approaches, Fig. 6 proves that the efficient frontier of a multi-stage 
strategy dominates the others, in terms of both profitability and risk. With non-recursive 
approach we denote the impossibility to “recur” to successive decisions to “correct” likely 
losses due to undesired realizations of variables of previous stages. This result can be 
attributed to the possibility actually offered by a multi-stage stochastic strategy, i.e. to take 
into account different likely scenarios and to dynamically correct previous decisions 
according to the observed outcomes of the market clearing process. 
 

 Multistage Fixed-Mix Greedy 
κ E[Profit] CVaR E[Profit] CVaR E[Profit] CVaR 
0 621978 51754.8 282471.3 64916.5 208544.6 44870.86 

0.10 621745.1 39608.43 282471.3 39623.87 208420.9 28721.51 
0.20 621332.1 37463.89 282471.3 39623.87 208416.8 28685.03 
0.30 621085.8 36311.77 282471.3 39623.87 208416 28681.49 
0.40 621085.8 36311.77 282471.3 39623.87 208416 28681.49 
0.50 620916 35910.5 282464.9 39608.43 208416 28681.41 
0.60 620916 35910.5 282464.9 39608.43 208416 28681.41 
0.70 620179.7 34835.55 282464.9 39608.43 208416 28681.41 
0.80 617893.5 31747.6 282464.9 39608.43 208407 28668.94 
0.90 613996.5 27249.12 282464.9 39608.43 208372.8 28626.79 

1 613996.5 27249.12 282464.9 39608.43 207258.6 27495.31 

Table 3. Expected profit and CVaR as a function of varying values of the risk aversion 
parameter according to multistage, fixed-mix and greedy strategies 

Simulations for intermediate values of κ, not reported here for brevity sake, obviously 
produced different intermediate schedules, thus a clear conclusion can be drawn: the GenCo 
should make a decision on its desired level of risk before solving its scheduling problem and 
then bidding in the electric energy market.  
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stage strategy is demonstrated through a case study based on field record of the Italian PEx, 
in which it was shown that the efficient frontier of the multi-stage strategy dominates the 
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6. Appendix A: Heuristic procedure for scenario generation 
A GenCo which recurs to bidding diversification in the DAM, IM and ASM must decide 
within different succeeding time horizons “how much energy must be bid” and “at which 
price”. The first decision, “how much energy must be bid” in each market session, was 
modeled by means of continuous decision variables, whereas price bids in the DAM and IM 
were not considered as decision variables, having assumed that the GenCo is a price-taker 
and has no capability of altering the electricity price. In particular, the evolution of the 
random clearing prices of DAM and IM was modeled by an intuitive scenario tree (see Fig. 
7), and a zonal model was adopted thus taking into account also delivery risk due to 
transmission congestion (Liu & Wu, 2006). Differently from DAM and IM, according to the 
“pay as bid” mechanism, bids accepted in the ASM are remunerated at the price bid, which 
clearly represents a decision variable. For the sake of simplicity, as a first step of this 
research activity, ASM price bids were assumed in the paper as input data, within nodes of 
the third stage, but they were not considered stochastic variables such as DAM and IM 
clearing prices, thus they do not vary with the scenario, but only with hours and zones. This 
means that a unit belonging to zone A is supposed to bid at a different price in comparison 
with a unit located in zone B at the same t-th hour.  
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Besides uncertainty of the clearing zonal prices of DAM and IM, the above mentioned 
scenario also captures the uncertainty relating the acceptance of energy bids, respectively, 

s
itγ , ( l

itδ + , l
itδ − ), and v

itρ , over the three different time horizons associated to DAM, IM and 
ASM sessions.  
 

 
Fig. 7. Scenario tree formulation. 

Root-node stands for stage 0, and embeds no uncertainty. Stages 1-3 model the three market 
sessions of Power Exchange and are thus associated with the sequential decision process. 
Each generic node k has a unique immediate predecessor p(k) in the preceding stage and a 
finite number of successors in the next stage, but the root-node. Nodes without any 
successor are called the leaves of the tree. They are in a one-to-one correspondence with each 
scenario, whereas a scenario is a path from root-node to a leaf and represents a joint 
outcome over all market sessions. At each hour t=1..T and for each zone, each node captures 
the evolution of random decision variables by which uncertainty is represented, i.e. 
percentages of bids accepted in the corresponding marker session, clearing prices and 
relating probabilities of occurrence. 
The heuristic procedure given below receives historical time series data as input and 
generates the scenario tree used for simulation as output. 
Step 1  For each t-th hour and zone z. 
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DAM
zP  and max

t

DAM
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1.2 Devide the corresponding range into 10 sub-ranges of equal amplitude, as 
depicted in Fig. 8. 

 1.3 Observe, for each s-th sub-range, min max,
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z zP P , and calculate s mean
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 1.4 Compute the probability of occurrence of s mean
ztP . 

Step 2  Assign s
itγ =0 for s=1-4, s

itγ =0.5 for s=5-6, s
itγ =1 for s=7-10. 

Step 3  For each s-th node of DAM, t-th hour and zone z, 
3.1 scale s mean

ztP  by ten scaling factors opportunely chosen. 
3.2 Compute the occurrence probability of the l-th hourly zonal IM clearing price as 
1/10 of the occurrence probability of the price of the predecessor node p(l), for the 
same hour and the same zone. 
3.3 Assign l

itδ + , l
itδ − =0 for l=the first 4 sons of p(l), l

itδ + , l
itδ − =0.5 for l=sons 5-6 of p(l), 

l
itδ + , l

itδ − =1 for the remaining sons of p(l). 
Step 4  For each t-th hour and zone z  

4.1 Observe the last price bid accepted in the ASM and store it in each ν-th node of 
the scenario tree. 
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4.2 Compute the occurrence probability of the ν-th hourly ASM price as 4/10, 2/10 
and 4/10 of the occurrence probability of the price of the predecessor node p(ν), for 
the same hour and the same zone.  
4.3 Assign to each triplet of nodes in ASM with the same predecessor p(ν) v

itρ =0 for 

ν=the first son of p(ν), v
itρ =0.5 for l=second son of p(ν), v

itρ =1 for p(ν) last son. 
With reference to Stage 1 (DAM session) and focusing attention on each hour t and zone z, 
excluding Sundays and Saturday evening, we observed which minimum and maximum 
zonal prices, minDAM

ztP  and maxDAM
ztP , occurred over the days of January 2005 in the Italian 

DAM (Step 1.1). We divided the corresponding range into 10 sub-ranges of equal amplitude, 
each with a lower and upper bound, respectively min max,

t t

s s
z zP P (Step 1.2). For each s-th sub-

range, the relating mean price, s mean
ztP , was calculated (Step 1.3), having thus generated s=10 

likely hourly zonal clearing prices, as depicted in Fig. 8, each corresponding to a node of 
Stage 1.  
The probability of occurrence of s mean

ztP  was calculated as the number of prices at the t-th 
hour belonged to interval s over all the observed days, divided by the number of observed 
days (Step 1.4). Step 1 was iterated for each hour t, with t=1..24, and for each of the 7 zones 
of the Italian PEx. Step 2 gives value to percentages of bid acceptance for DAM, s

itγ , at each 
t-th hour, and for each zone unit i belongs to. In particular, s

itγ =0 for s=1-4, s
itγ =0.5 for s=5-6, 

s
itγ =1 for s=7-10. 

 

 
Fig. 8. Formulation of scenario tree for prices. 

Generation of 10 outcomes of zonal clearing prices for the DAM. 
Each node belonging to Stage 1 has also 10 sons, belonging to Stage 2, and, for these last, 
prices were derived as follows. From the monthly trading report of January 2005 
(www.mercatoelettrico.org), it was observed that clearing prices of the DAM averaged 
greater than the corresponding IM clearing prices (2.27%). This behavior was replicated in 
the generation of the L=100 IM clearing prices by scaling the s mean

ztP clearing prices of each s-
th father node (DAM) by ten different factors (assumed less than 1 for seven over ten son 
nodes and greater than 1 for the remaining nodes, (Step 3.1)). For each l-th hourly zonal IM 
clearing price the occurrence probability was computed as 1/10 of the occurrence 
probability of the price of the predecessor node p(l), for the same hour and the same zone 
(Step 3.2). Percentage of bid acceptance for IM, l

itδ + and l
itδ − , were assumed equal to 0 for 4 

nodes, 0.5 for 2 nodes, 1 for the rest of the nodes, all sons of the same predecessor, p(l) (Step 
3.3). 
Finally, Stage 3 models the ASM session. Each l-th predecessor node belonging to the IM 
(Stage 2) has 3 sons in the ASM and this because the only differentiation among ASM nodes 
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was simulated by the different percentage of acceptance of a bid, v
itρ . In fact, v

itρ  was 
assumed equal to 0, 0.5 or 1, respectively meaning bid is refused, unit is marginal, or bid 
price is less than the highest forecasted accepted price bid. Hourly prices vary with hours 
and zones, whereas they do not vary with nodes and, for a given hour t, and a given zone z, 
they were assumed equal to the value of the average, over all the days of January 2005, of 
the last (i.e. the highest) accepted price bid in the ASM (Step 4.1). For each triplet of nodes in 
the ASM, probabilities of occurrence were assumed equal to 0.4, 0.2, and 0.4 respectively of 
the probabilities of the price in the predecessor node p(ν) of the IM, for the same hour and 
the same zone (Step 4.2). Moreover, each triplet of nodes in ASM with the same predecessor 
p(ν) will have percentage of bid acceptance v

itρ =0 for ν=the first son of p(ν), v
itρ =0.5 for 

l=second son of p(ν), v
itρ =1 for p(ν) last son. 

The overall scenario tree has then V=300 leaves, each corresponding to a scenario, that is a 
likely evolution of uncertain outcomes of the multi-session market.  

7. Appendix B: CVaR as risk measure in energy trading 
With an evaluation on a 24-hour time-frame, CVaR was here chosen to detect the risk of loss 
or, at least, the risk of achieving revenues lower than a given threshold for a GenCo which 
trades energy in both Power Exchange and Contract market. A discrete version (12) for 
CVaR was formulated elsewhere (Menniti et al., 2007), considering a confidence level ε 
equal to 0.95. As demonstrated elsewhere (Ahmed, 2006), CVaR is a risk measure which 
preserves convexity, and its linear relaxation still maintains this convexity feature. 

 { }1 max ,0
1

vCVaR VaR E Loss VaRε ε εε
⎡ ⎤= + −⎣ ⎦−

 (12) 

where Lossν is a loss function, here assumed as the opposite of the profit function, Profitν. 
Since uncertainty of market prices was represented by means of a finite set V of likely 
scenarios, (12) can be linearized using a set of auxiliary variables and constraints as follows: 

 v

1

1
1

V
v

v
CVaR VaRε ε θ σ

ε =
= +

− ∑  (13) 

with vθ  the probability that scenario ν can occur, and: 

 v           1..v Loss VaR Vεσ ν≥ − ∀ =  (14) 

 0                   1..v Vσ ν≥ ∀ =  (15) 

8. Appendix C: mixed-integer multi-stage stochastic problem for the 
formulation of sale-bidding strategies- constraints of the problem  
Classical multi-period problems with unit commitment include provisions for modeling 
restrictions on the operation of thermal generation units. These restrictions include most 
notably minimum/maximum power output limits, ramping limitations, and minimum up- 
and down-time constraints (Shahidehpour  et al., 2002), (Conejo et al., 2002). Because we do 
not implement the presence of hydro generation units and do note devote our attention at 
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the process of scheduling of tertiary reserves and its later deployment through generation 
re-dispatch, we do not thus model ramping limitations.  
Constraints of the stochastic programming problem modeling the decision problem faced by 
the GenCo are formulated below as.  

 maxbil
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1

I
bil bil
it t

i
x Q

=
=∑   t∀  (17) 

 maxs s bil
it i it it it ity Q U x xγ+ ≤ − −    , ,i t s∀ ∀ ∀  (18) 

 s s
it it ity xγ− ≤    , ,i t s∀ ∀ ∀  (19) 

 s s
it ity Mϕ+ +≤    , ,i t s∀ ∀ ∀  (20) 

 s s
it ity Mϕ− −≤   , ,i t s∀ ∀ ∀  (21) 

 1s s
it itϕ ϕ+ −+ ≤    , ,i t s∀ ∀ ∀  (22) 

 ( ) ( ) ( )max p l p l p ll bil l l
it i it it it it itit it itz Q U x x y yγ δ δ+ −+ −≤ − − − +   , ,i t l∀ ∀ ∀  (23) 

 ( )( ) ( ) ( )( ) ( ) ( )( ) ( )p p v p p v p p vp v p v p vv bil v
it it it itit it it it it itQ x x y y zγ δ δ ρ+ −+ −= + + − +    , ,i t v∀ ∀ ∀  (24) 

 min v
i it itQ U Q≤    , ,i t v∀ ∀ ∀  (25) 

 
iG

t 1
(1- ) 0itU

=
=∑    i∀  (26) 

 
it UT 1

il i it
l t

U UT Δ
+ −

+

=
≥∑    i, 1..T-UT 1ii t G∀ ∀ = + +  (27) 

 
it UT 1

il i it
l t

U UT Δ
+ −

+

=
≥∑    i, 1..T-UT 1ii t G∀ ∀ = + +  (28) 

where 0
i i 0min[T, (UT -R ) ]i iG U= . 

 
iF

t 1
0itU

=
=∑    i∀  (29) 

 
it DT 1

il i it
l t

U DT Δ
+ −

−

=
≥∑   i, 1..T-DT 1ii t F∀ ∀ = + +  (30) 



 Stochastic Optimization - Seeing the Optimal for the Uncertain 

 

286 
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equal to 0.95. As demonstrated elsewhere (Ahmed, 2006), CVaR is a risk measure which 
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where Lossν is a loss function, here assumed as the opposite of the profit function, Profitν. 
Since uncertainty of market prices was represented by means of a finite set V of likely 
scenarios, (12) can be linearized using a set of auxiliary variables and constraints as follows: 
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with vθ  the probability that scenario ν can occur, and: 
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8. Appendix C: mixed-integer multi-stage stochastic problem for the 
formulation of sale-bidding strategies- constraints of the problem  
Classical multi-period problems with unit commitment include provisions for modeling 
restrictions on the operation of thermal generation units. These restrictions include most 
notably minimum/maximum power output limits, ramping limitations, and minimum up- 
and down-time constraints (Shahidehpour  et al., 2002), (Conejo et al., 2002). Because we do 
not implement the presence of hydro generation units and do note devote our attention at 
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the process of scheduling of tertiary reserves and its later deployment through generation 
re-dispatch, we do not thus model ramping limitations.  
Constraints of the stochastic programming problem modeling the decision problem faced by 
the GenCo are formulated below as.  
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7.1 First Stage constraints: bidding in the Day-Ahead Market  
Constraints (16) require that the sum of a bid of unit i in the DAM, itx , and of the 
production to satisfy the bilateral contract, bil

itx , must not be exceeded the unit maximum 
power output, max

iQ  at the t-th hour.  
Constraints (17) guarantee the satisfaction of the bilateral contract by means of zero-price 
bids in the DAM ( bil

itx ).  

7.2 Second Stage constraints: bidding in the Intraday Market 
Constraints (18) say that unit i can sell in the IM at most its maximum capacity, max

iQ , 
decreased of the accepted bid in the previous DAM, s bil

it it itx xγ + . 
Constraints (19) limit the purchase bid of unit i to the only quantity already accepted in the 
DAM, s

it itxγ . Moreover, in order to avoid buying and selling bids in the IM at the same hour 
by the same unit, we introduced additional binary variables, s

itϕ + and s
itϕ − , and sets of 

constraints (20)-(22). 

7.3 Third Stage constraints: bidding in the Ancillary Services Market 
Also in the ASM session, the GenCo may commit still unused units or increase the output of 
one or more units already committed for other sessions, under constraints (23) which 
impose to respect unit maximum output. 

7.4 Other constraints  
Constraints (24) express the energy produced by each unit i, v

itQ , at each period t and for 
each likely outcome ν, as the sum of all the energy effectively sold over the three market 
sessions and by bilateral contract. 
Production v

itQ  is also constrained (25) by the minimum power output of unit i, whereas 
unit i is committed ( 1itU = ) for period t under scenario ν.  
Constraints (26)–(28) represent linear expressions of minimum up-time constraints (Conejo 
et al., 2002). In particular, set of equations (26) is related to the initial status of the units. Set 
of equations (27) ensure the satisfaction of minimum up-time constraints during all likely 
sets of consecutive periods of size UTi. Finally, set of equations (28) is essential for the last 
UTi-1 periods, i.e. if a unit is started-up in one of these periods, it must still remain on-line 
during next periods.  
Similarly to (26)-(28), constraints (29)–(31) formulate the minimum down-time constraints 
(Conejo et al., 2002). Equations (29)–(31) are identical to (26)-(28) just changing itU , itΔ

− , DTi, 
and 0

iS  with (1- itU ), itΔ
+ , UTi, and 0

iR , respectively. 
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Finally, constraints (32) and (33) are necessary to model the start-up and shut-down status of 
units and to avoid the simultaneous commitment and decommitment of a unit (Conejo et al., 
2002). 
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1. Introduction

Chance Constrained Programming belongs to the major approaches for dealing with random
parameters in optimization problems. Typical areas of application are engineering and
finance, where uncertainties like product demand, meteorological or demographic conditions,
currency exchange rates etc. enter the inequalities describing the proper working of a system
under consideration. The main difficulty of such models is due to (optimal) decisions that
have to be taken prior to the observation of random parameters. In this situation, one can
hardly find any decision which would definitely exclude later constraint violation caused by
unexpected random effects. Sometimes, such constraint violation can be balanced afterwards
by some compensating decisions taken in a second stage. For instance, making recourse to
pumped storage plants or buying energy on the liberalized market is an option for power
generating companies that are faced with unforeseen peaks of electrical load. As long as the
costs of compensating decisions are known, these may be considered as a penalization for
constraint violation. This idea leads to the important class of twostage or multistage stochastic
programs Birge & Louveaux (1997); Kall & Wallace (1994); Ruszczyński & Shapiro (2003).
In many applications, however, compensations simply do not exist (e.g., for safety relevant
restrictions like levels of a water reservoir) or cannot be modeled by costs in any reasonable
way. In such circumstances, one would rather insist on decisions guaranteeing feasibility ’as
much as possible’. This loose term refers once more to the fact that constraint violation can
almost never be avoided because of unexpected extreme events. On the other hand, when
knowing or approximating the distribution of the random parameter, it makes sense to call
decisions feasible (in a stochastic meaning) whenever they are feasible with high probability,
i.e., only a low percentage of realizations of the random parameter leads to constraint violation
under this fixed decision. A generic way to express such a probabilistic or chance constraint as
an inequality is

P(h(x, ξ) ≥ 0) ≥ p. (1)

Here, x and ξ are decision and random vectors, respectively, "h(x, ξ) ≥ 0" refers to a
finite system of inequalities and P is a probability measure. The value p ∈ [0, 1] is called
the probability level, and it is chosen by the decision maker in order to model the safety
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currency exchange rates etc. enter the inequalities describing the proper working of a system
under consideration. The main difficulty of such models is due to (optimal) decisions that
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unexpected random effects. Sometimes, such constraint violation can be balanced afterwards
by some compensating decisions taken in a second stage. For instance, making recourse to
pumped storage plants or buying energy on the liberalized market is an option for power
generating companies that are faced with unforeseen peaks of electrical load. As long as the
costs of compensating decisions are known, these may be considered as a penalization for
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restrictions like levels of a water reservoir) or cannot be modeled by costs in any reasonable
way. In such circumstances, one would rather insist on decisions guaranteeing feasibility ’as
much as possible’. This loose term refers once more to the fact that constraint violation can
almost never be avoided because of unexpected extreme events. On the other hand, when
knowing or approximating the distribution of the random parameter, it makes sense to call
decisions feasible (in a stochastic meaning) whenever they are feasible with high probability,
i.e., only a low percentage of realizations of the random parameter leads to constraint violation
under this fixed decision. A generic way to express such a probabilistic or chance constraint as
an inequality is

P(h(x, ξ) ≥ 0) ≥ p. (1)

Here, x and ξ are decision and random vectors, respectively, "h(x, ξ) ≥ 0" refers to a
finite system of inequalities and P is a probability measure. The value p ∈ [0, 1] is called
the probability level, and it is chosen by the decision maker in order to model the safety
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requirements. In the following we tacitly assume that (1) represents a constraint inside an
optimization problem where some objective function f (x) has to be minimized. Since the role
of f is as in conventional optimization problems, we shall focus our attention to the special
type of constraint as given by (1).
Sometimes, the probability level is strictly fixed from the very beginning (e.g., p = 0.95, 0.99
etc.). In other situations, the decision maker may only have a vague idea of a properly chosen
level. Of course, he is aware that higher values of p lead to fewer feasible decisions x in
(1), hence to optimal solutions at higher costs. Fortunately, it turns out that usually p can
be increased over quite a wide range without affecting too much the optimal value of some
problem, until it closely approaches 1 and then a strong increase of costs becomes evident. In
this way, models with chance constraints can also give a hint to a good compromise between
costs and safety.
Formally, the chance constraint (1) may be written as a usual inequality constraint:

α(x) ≥ p, where α(x) := P(h(x, ξ) ≥ 0). (2)

In contrast to conventional optimization problems, however, the challenge posed by chance
constraints consists in the fact that the function α is not given explicitly. Therefore
neither theoretical properties (continuity, differentiability, concavity) nor suitable algorithmic
approaches are evident. Not surprisingly, there does not exist a general solution method for
chance constrained programs. The choice strongly depends on how random and decision
variables interact in the constraint model. Sometimes a linear programming solver will do the
job. In other models, one has to have access to values and gradients of multidimensional
distribution functions (e.g., the reservoir management model of Section 6). Of particular
interest is the application of algorithms from convex optimization. Convexity of chance
constraints, however, does not only depend on convexity properties of the constraint function
h in (1) but also of the distribution of the random parameter ξ. The question of whether
this distribution is continuous or discrete is another crucial aspect for algorithmic treatment.
The biggest challenges from the algorithmic and theoretical points of view arise in chance
constraints where random and decision variables cannot be decoupled.
All issues discussed up to now illustrate the close tie between algorithmic and structural
properties. Some of these shall be briefly presented in the following sections. The chapter is
organized as follows: Section 2 is dedicated to a discussion of structural properties of chance
constraints. Section 3 will illustrate the importance of stochastic programming in general and
chance constrained programming in particular for energy management problems. Moreover,
we will present the generic look and feel of such problems. This will be further developed in
Section 4. In Section 5 recent results on CCP for Energy management structured problems will
be discussed. These results are illustrated on a typical example in Section 6, that also shows
that CCP can be tractable/interesting for some problems in EM and with some research effort
could become a very important tool for EM under uncertainty. Finally Section 7 sketches some
perspectives.
Among the numerous applications of chance constrained programming one may find
areas like water resource management, circuit manufacturing, chemical engineering,
telecommunications, finance and Energy management. For basic monographs on this topic,
we refer to Prékopa (2003) and relevant chapters in Ruszczyński & Shapiro (2003), Shapiro
et al. (2009).
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2. Models and structural properties

The properties of a concrete chance constrained optimization problem mainly hinge on the
following items:

• Distribution of the random vector (e.g., continuous or discrete distribution, independent
or correlated components)

• Type of constraint system (e.g., linear, separated random vector, coupled random and
decision vectors)

• Type of chance constraints (individual or joint)

Different combinations of elements from these basic categories may lead to mathematical
objects with drastically different theoretical properties and algorithmical requirements.

2.1 Models
The most important models in practical applications of chance constraints are linear in the
random vector. This means that the constraint mapping h in (1) takes one of the forms

h(x, ξ) = g(x)− Aξ or h(x, ξ) = A(ξ)g(x)− b, (3)

where A and A(ξ) are determinstic or stochastic matrices, respectively, g is a mapping just
depending on the decision vector x and b is a vector of appropriate size. The basic difference
between both models is that in the first case the random vector appears separated from the
decision vector, whereas both are coupled in the second model. Both models have numerous
applications in engineering and, in particular, in energy management.
The chance constraint (1) can be written more explicitly as

P(hj(x, ξ) ≥ 0 (j = 1, . . . , m)) ≥ p. (4)

Since here, the probability is taken over the whole stochastic inequality system, one also
calls this a joint chance constraint. Alternatively, one could turn each component of the
stochastic inequality system into several chance constraints individually, and thereby allowing
individual probability levels for each chance constraint:

P(hj(x, ξ) ≥ 0) ≥ pj (j = 1, . . . , m) (5)

Such individual chance constraints, though formally yielding a larger system of m inequalities
as compared to just one inequality in the joint case, may lead to much easier mathematical
models in some special cases (see Section 2.2). Care has to be taken, however, with a correct
interpretation of results for these two models. If one is interested in decisions guaranteeing
satisfaction of the whole stochastic inequality system at the given probability level, then a
formal solution via the individual model, though appealing for its simplicity, may result in
completely unreliable optimal decisions (see, e.g., van Ackooij et al. (2010c)). On the other
hand, individual chance constraints may be used to derive upper and lower bounds for the
optimal value in an optimization problem with joint chance constraints. More precisely, if x is
feasible for (4), then x is feasible for (5) too provided that p ≥ pj for all j. Conversely, if x is
feasible for (5), then x is feasible for (4) too provided that ∑m

j=1 pj ≥ p + m − 1.
Finally, it has to be mentioned that the chance constraint (1) is of static type. This means that, if
decision and random vector represent discrete time processes, then the decision policy would
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requirements. In the following we tacitly assume that (1) represents a constraint inside an
optimization problem where some objective function f (x) has to be minimized. Since the role
of f is as in conventional optimization problems, we shall focus our attention to the special
type of constraint as given by (1).
Sometimes, the probability level is strictly fixed from the very beginning (e.g., p = 0.95, 0.99
etc.). In other situations, the decision maker may only have a vague idea of a properly chosen
level. Of course, he is aware that higher values of p lead to fewer feasible decisions x in
(1), hence to optimal solutions at higher costs. Fortunately, it turns out that usually p can
be increased over quite a wide range without affecting too much the optimal value of some
problem, until it closely approaches 1 and then a strong increase of costs becomes evident. In
this way, models with chance constraints can also give a hint to a good compromise between
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α(x) ≥ p, where α(x) := P(h(x, ξ) ≥ 0). (2)
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constraints consists in the fact that the function α is not given explicitly. Therefore
neither theoretical properties (continuity, differentiability, concavity) nor suitable algorithmic
approaches are evident. Not surprisingly, there does not exist a general solution method for
chance constrained programs. The choice strongly depends on how random and decision
variables interact in the constraint model. Sometimes a linear programming solver will do the
job. In other models, one has to have access to values and gradients of multidimensional
distribution functions (e.g., the reservoir management model of Section 6). Of particular
interest is the application of algorithms from convex optimization. Convexity of chance
constraints, however, does not only depend on convexity properties of the constraint function
h in (1) but also of the distribution of the random parameter ξ. The question of whether
this distribution is continuous or discrete is another crucial aspect for algorithmic treatment.
The biggest challenges from the algorithmic and theoretical points of view arise in chance
constraints where random and decision variables cannot be decoupled.
All issues discussed up to now illustrate the close tie between algorithmic and structural
properties. Some of these shall be briefly presented in the following sections. The chapter is
organized as follows: Section 2 is dedicated to a discussion of structural properties of chance
constraints. Section 3 will illustrate the importance of stochastic programming in general and
chance constrained programming in particular for energy management problems. Moreover,
we will present the generic look and feel of such problems. This will be further developed in
Section 4. In Section 5 recent results on CCP for Energy management structured problems will
be discussed. These results are illustrated on a typical example in Section 6, that also shows
that CCP can be tractable/interesting for some problems in EM and with some research effort
could become a very important tool for EM under uncertainty. Finally Section 7 sketches some
perspectives.
Among the numerous applications of chance constrained programming one may find
areas like water resource management, circuit manufacturing, chemical engineering,
telecommunications, finance and Energy management. For basic monographs on this topic,
we refer to Prékopa (2003) and relevant chapters in Ruszczyński & Shapiro (2003), Shapiro
et al. (2009).
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be designed in a way that it does not react on previously observed realizations of the random
vector. Dynamic models for chance constraints lead to new challenges and complications
which are outside the scope of this presentation. For a recently proposed approach in this
direction, we refer to Henrion et al. (2010).

2.2 Random right-hand side
An important special case of the linear separated model (first case of (3)) arises if the linear
transformation A reduces to the identity such that the chance constraint gets the form of
random right-hand side. Then, the probability function of (2) can be written as a composition

α(x) = P(g(x) ≥ ξ) = Fξ(g(x)), (6)

where Fξ is the cumulative multivariate distribution function of the random vector ξ. This
special structure has the advantage that the effort of verifying analytical properties or of
implementing numerical algorithms for the solution of chance constrained problems can
be focussed on distribution functions which are well-studied objects in stochastics. The
composition formula α = Fξ ◦ g allows one to transfer properties like continuity, (local or
global) Lipschitz continuity or differentiability from Fξ and g to α. Since the mapping g
is typically given in analytical form and thus its properties are well understood from the
beginning, it remains to check or to rely on known analogous properties of Fξ . For instance, Fξ

is always continuous if the random vector ξ has a density. Differentiability and convexity are
a more involved issues but can be checked for important classes of distributions (see Sections
2.3 and 2.4).
Under random right-hand side the model of individual chance constraints (5) becomes

αj(x) = P(gj(x) ≥ ξ j) = Fξ j
(gj(x)) ≥ pj (j = 1, . . . , m),

where now Fξ j
refers to the one-dimensional distribution function of the component ξ j.

As one-dimensional distribution functions can be inverted via the concept of quantile, the
individual chance constraints can be rewritten as

αj(x) ≥ pj ⇐⇒ gj(x) ≥ q
(j)
pj

(j = 1, . . . , m),

where q
(j)
pj

:= inf{τ|Fξ j
(τ) ≥ pj} is the pj− quantile of Fξ j

. In other words: individual chance
constraints with random right hand side inherit their structure from the underlying stochastic
constraint. If the latter was linear then the induced individual chance constraints will be linear
too.
Another important special case under random right-hand side arises if the random vector
ξ has independent components, then the calculation of α breaks down to one dimensional
distribution values again:

α(x) = Fξ1
(g1(x)) · · · Fξm

(gm(x)).

Although the constraint α(x) ≥ p cannot be further simplified to an explicit constraint
involving just the gj (as was possible for individual chance constraints), one may still benefit
from the fact that one dimensional distribution functions are usually easy to calculate. On the
other hand, the independence assumption is often not reasonable in practice.

294 Stochastic Optimization - Seeing the Optimal for the Uncertain

2.3 Multivariate normal distribution
Perhaps the most important special case in practical applications arises from joint chance
constraints with random right-hand side having a regular multivariate normal distribution.
We shall use the standard notation ξ ∼ N (μ, Σ) to indicate that ξ has a multivariate normal
distribution with mean vector μ and covariance matrix Σ. Such normal distribution is called
regular if Σ is positive definite. According to (6) the constraint with random right-hand
side takes the form Fξ(g(x)) ≥ p then. As g is explicitly given by a formula, in general,
the evaluation of such constraints by optimization algorithms requires the calculation of
Fξ ,∇Fξ . . . ., i.e., of values and (higher order) derivatives of a nondegenerate multivariate
normal distribution function. Fortunately, gradients of such distribution functions can be
reduced analytically to some lower dimensional multivariate normal distribution functions
(see Prékopa (1995), p. 204). The precise formula can be found in Lemma 0.5 below.
Thus, proceeding by induction for higher order derivatives (see also Section 5.2.4), the
whole optimization issue hinges upon the evaluation of nondegenerate normal distribution
functions in this situation. Much progress has been made in computing such distributions
functions be it by using specially designed techniques of numerical integration (Genz & Bretz
(2009)) or be it by developping efficient lower and upper bounds for their values combined
with adapted simulation techniques (Bukszár & Szántai (2002); Szántai & Habib (1998)). Using
those methods at hand, it is possible to deal with joint chance constraints under normally
distributed random right-hand side with moderate precision in moderate dimension of ξ of
say up to a few hundred.
It is important to observe that, given a tool for calculating multivariate normal distribution
functions, it is not only possible to deal with the special case of random right-hand side
but also with the more general linear models introduced in (3). If, for instance, ξ has
a multivariate normal distribution with mean vector μ and covariance matrix Ξ, then the
linearly transformed random vector η := Aξ will have a multivariate normal distribution too
with mean vector Aμ and covariance matrix AΞAT. Consequently, the first model in (3) can be
written without loss of generality in the special form with random right-hand side η and one
is back to the situation discussed before. A similar argument applies to the second model in
(3). However, one must be aware of the fact that a linear transformation of the random vector
may change the normal distribution from a nondegenerate one (i.e., with positive definite
covariance matrix) to a singular one. This is necessarily the case, for instance, if the number
of rows in A exceeds the dimension of the random vector as is typical for instance in network
problems. Then, algorithms for calculating singular normal distribution functions Genz &
Kwong (2000), for calculating normal probabilities of convex sets (in particular: polyhedra)
Deák (1986) or for reducing singular normal distribution functions to regular ones via an
efficient inclusion-exclusion formula Henrion & Römisch (2010) can be applied. At the same
time, it is also possible to obtain gradients with respect to the decision variable x in the models
(3) via reduction to the calculus of values of multivariate normal distribution functions pretty
much the same way (though possibly more involved) as in the case of random right-hand side.
As an instance of such models which are different from random right-hand side, we discuss
two-sided chance constraints with multivariate normal distribution in Section 5.2. We note
that beyond normal distributions and models of type (3) gradients of probability functions
α in (2) may be very difficult to obtain. For a general, abstract gradient formula, we refer to
Uryasev (1995).
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2.4 Convexity
Convexity is a basic issue for theory (structure, stability) and algorithms (convergence towards
global solutions) in any optimization problem. In chance constrained programming, the first
question one could deal with is convexity of the feasible set defined say by a very simple
probabilistic constraint of the type

{x|P(ξ ≤ x) ≥ p} = {x|Fξ(x) ≥ p}. (7)

It is well known that such a set is convex if Fξ is a quasiconcave function. Although
distribution functions can never be concave or convex (due to being bounded by zero and one)
it turns out that many of them are quasiconcave. The left plot of Figure 1 shows the graph of
the bivariate normal distribution function with independent components. It is neither concave
nor convex, but all of its upper level sets are convex (the boundary of the upper level set
corresponding to the level p = 0.5 is depicted by a curve on the graph). For algorithmic

Fig. 1. Bivariate normal distribution function (left) and standard normal distribution and its
logarithm (right).

purposes it is often desirable to know that the function defining an inequality constraint of
type ’≥’ is not just quasiconcave but actually concave. As mentioned above, this cannot hold
for inequalities of type (7). However, a suitable transformation might do the job. Indeed, it
turns out that most of the prominent multivariate distribution functions (e.g., multivariate
normal, uniform distribution on convex compact sets, Dirichlet, Pareto, etc.) share the
property of being log-concave, i.e., log Fξ is concave (an illustration for the one-dimensional
normal distribution and its log is given in the right plot of Figure 1). The key for verifying
such a nontrivial property for the distribution function is to check the same property of
log-concavity for the density of Fξ , if it exists. The latter task is easy in general. For instance,
a nondegenerate normal density is proportional to the exponential of a concave function,
hence multivariate normal distributions are logarithmically concave. The mentioned result
is a consequence of a celebrated theorem due to Prékopa (1995). Now, when Fξ is log-concave,
(7) may be equivalently rewritten as a concave inequality constraint {x| log Fξ(x) ≥ log p}
or equivalently as a convex inequality constraint {x| − log Fξ(x) ≤ − log p}. The same
conclusions on convexity can be drawn for more general chance constraints of linear separated
type

{x|P(Bx ≥ Aξ) ≥ p},
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i.e., the set of feasible decisions can be described by the convex inequality constraint

{x| − log FAξ(Bx) ≤ − log p}

for the same family of distributions of ξ having log-concave densities.
Things become more involved in the feasible set

{x|P(A(ξ)g(x)− b) ≥ p} (8)

of the coupled model (right case of (3)). A classical result by van de Panne & Popp (1963) and
by Kataoka (1963) states that if the random matrix A(ξ) reduces to just one line A1(ξ), the
mapping g is the identity (i.e., g(x) = x), ξ has a regular multivariate normal distribution and
p ≥ 0.5, then the set (8) is convex. A first difference with the log-concavity properties stated
above is that convexity of the feasible set does no longer hold true for arbitrary probability
levels but only for sufficiently large ones. This, however, is not a severe restriction because
in practice one is interested in large probability levels anyway (e.g., p ≥ 0.95). This classical
result has been generalized later on to other than normal distributions of ξ (e.g., elliptically
symmetric or symmetric log-concave, Lagoa et al. (2005)) and to nonlinear mappings g(x) (see
Henrion (2007)).
Evidently, the previous results can be immediately applied to the feasible set of individual
chance constraints:

{x|P(Aj(ξ)g(x)− bj) ≥ pj (j = 1, . . . , m)}.

Indeed, since the intersection of convex sets is convex again, it follows from the previously
mentioned result for one single row A1(ξ) that this feasible set induced by a whole random
matrix is convex provided that pj ≥ 0.5 for j = 1, . . . , m. Not surprisingly, things are not that
evident for the joint chance constraint (8) if A(ξ) has more than just one line. Convexity results
can then be found under the assumption of ξ having a normal distribution with specially
structured covariance matrix (see Henrion & Strugarek (2008); Prékopa (1995)). Convexity in
the general case is an open question.

2.5 Compactness
Compactness of the feasible domain is a very interesting property to check, since non-empty
and compact feasible sets guarantee the existence of solutions and allow us to derive stability
of results. It is interesting to observe that compactness of the coupled chance constraint (8)
can be derived in case of a normal distribution without enforcing it by additional exterior
deterministic constraints on the decision vector (e.g., box constraints). To be more precise, let
the rows Ai of A in (8) be normally distributed according to Ai ∼ N (μi, Σi) with positive
definite covariance matrices Σi for i = 1, ..., m. Assuming that g is a homeomorphism

(e.g., g(x) = x), then, (8) is compact provided that p > mini Φ1(
√

μT
i Σ−1

i μi). Here, Φ1

refers to the one-dimensional standard normal distribution function and, hence, the critical
probability level beyond which compactness is guaranteed can be calculated explicitly from
the distribution parameters of ξ. As a consequence, the Weierstrass Theorem ensures the
existence of a solution to the optimization problem

min{ f (x) | x satisfies (8)},

whenever the objective function f is continuous.
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Things become more involved in the feasible set
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of the coupled model (right case of (3)). A classical result by van de Panne & Popp (1963) and
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Indeed, since the intersection of convex sets is convex again, it follows from the previously
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of results. It is interesting to observe that compactness of the coupled chance constraint (8)
can be derived in case of a normal distribution without enforcing it by additional exterior
deterministic constraints on the decision vector (e.g., box constraints). To be more precise, let
the rows Ai of A in (8) be normally distributed according to Ai ∼ N (μi, Σi) with positive
definite covariance matrices Σi for i = 1, ..., m. Assuming that g is a homeomorphism

(e.g., g(x) = x), then, (8) is compact provided that p > mini Φ1(
√

μT
i Σ−1

i μi). Here, Φ1

refers to the one-dimensional standard normal distribution function and, hence, the critical
probability level beyond which compactness is guaranteed can be calculated explicitly from
the distribution parameters of ξ. As a consequence, the Weierstrass Theorem ensures the
existence of a solution to the optimization problem

min{ f (x) | x satisfies (8)},

whenever the objective function f is continuous.
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2.6 Discrete distributions
The setting of joint chance constraints with random right-hand side and nondegenerate
multivariate normal distribution enjoys many desirable features such as differentiability or
convexity (via log-concavity). Of course, other settings may have practical importance too.
For instance, the distribution of the random right-hand side could be other than normal.
The cases of multivariate Gamma or Dirichlet distributions are discussed in Prékopa (1995),
Section 6.6. Here, log-concavity remains an important tool.
Things become different, however, when passing to discrete distributions. These are of
interest for at least two reasons: first, the problem to be solved could have been directly
modeled by discrete random variables (see, e.g., Beraldi & Ruszczyński (2002)). Second, there
may be a need to approximate continuous distributions (e.g., multivariate normal) by discrete
ones, for instance when treating probabilistic constraints in two stage models with scenario
formulations Ruszczyński (2002). A key issue in discrete chance constrained programming
is finding the so called p-efficient points (introduced in Prékopa (1990)) of the distribution
function Fξ of ξ. These are points z such that Fξ(z) ≥ p and the relations Fξ(y) ≥ p, y ≤ z
(partial order of vectors) imply that y = z. One easily observes that all the information about
the p-level set of Fξ is contained in these points because

{y|Fξ(y) ≥ p} =
⋃

z∈E

(z + R
s
+),

where E is the set of p-efficient points and R
s
+ is the positive orthant in the space of the

random vector. In the case of ξ having integer-valued components and p ∈ (0, 1), P is a finite
set (see Theorem 1 in Dentcheva et al. (2000)). Algorithms for enumerating or generating
p-efficient points are described, for instance, in Beraldi & Ruszczyński (2002); Dentcheva et al.
(2000); Prékopa (2003); Prékopa et al. (1998). It is interesting to note that the log-concavity
concept, even if not directly applicable, can be adapted with useful consequences to discrete
distributions as well (see Dentcheva et al. (2000)).
Another powerful approach to solve chance constrained programs with discrete distributions
via integer programming methods has been recently reported in Luedtke & Ahmed (2008).

3. Randomness and energy management optimization problems

In the electrical power industry, it is important to guarantee at each time step, the equilibrium
between the offer and demand and hence avoid shortage supply. This is a major concern,
whatever the time horizon. The traditional Unit Commitment Problem (UCP) consists of
defining the minimal-cost power generation schedule for a given set of power plants satisfying
at each time step the equilibrium between the production and the demand while respecting
physical constraints. This problem, in a deterministic setting, is a challenging large-size,
non-convex, non-linear optimization problem, due to many thermal and hydro power-plants
constraints, which introduce discontinuous operation domains and give non-convex dynamic
constraints. It has been solved satisfactory in an industrial way (Batut & Renaud (1992); Cohen
& Zhu (1983); Lemaréchal & Sagastizábal (1994); Merlin & Sandrin (1983)).
Many uncertainties strongly impact the electrical power industry and should be taken
into account in this problem. Uncertainty consists of the load charge curve and the
hydraulic-inflows of each reservoir, both of which are climate sensitive (temperature and
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cloud cover). Moreover, we have to consider the availability of the power plants, which are
subject to random failure, the prices on both electricity and gas markets and wind generation.
Extending, in the context of electricity markets, the traditional UCP leads to a modern
Energy Management Problem (EMP). This modern version consists of optimizing the
production planning, while keeping supply shortage risk under bounds, using both financial
(interruption options, futures and markets) and physical (thermal and hydraulic production
units) assets (Zorgati et al. (2009)). For economical reasons, one key point, which requires
significant effort deals with the definition of an efficient Water Reservoir Management
Problem. Such a problem can be considered as a sub problem of any EMP. Since the original
deterministic UCP is already challenging, needless to say, adding uncertainty has not made
things easier. Hence, in a logic of price decomposition (or optimization assets against market
prices) we will typically consider subproblems of the huge EMP. It is important to note that the
structures that occur in these subproblems are quite general and occur in many other Energy
management problems. We refer to Section 4 for more on these structures.
When generally considering Optimization Problems encountered in Energy management, we
can state that they are characterized by challenging key features such as:

• the stochastic nature of the problem, due to the uncertainty affecting the electrical system

• the stochastic nature of several physical constraints

• the nature of the decision variables of the problem (real, integer, binary/logical)

• the huge number of variables and constraints

• the non-linear (and non-convex) nature of many constraints

• bilateral constraints

• we are looking for closed loop strategies, i.e., decisions that adapt whenever the outcome
of randomness is observed.

Considering the related Energy Management optimization Problems (EMOP) and a large
class of other problems1 such as long run marginal costs of energetic commodities or gas
management, we clearly obtain the following generic structure of many EMOP:

min f [c(x, ξ)]

s.t. bl(ξδ) ≤ A(ξα)x + θ(ξ) ≤ bu(ξδ)

Px ≤ h (9)

x ∈ X,

where

• f is a risk measure on the cost function c,

• x are the controls of the problem,

• A(ξα) the matrix of the problem affected by random processes ξα and describing either
• the offer. In this case α is the type of assets we consider, e.g., thermal, hydro, Futures,

contracts, wind, etc...
• a network. In this case α can be associated to coal mines, roads, gas compression

stations, pipes and reservoirs, etc...

1 with time horizons ranging from long to short term
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2.6 Discrete distributions
The setting of joint chance constraints with random right-hand side and nondegenerate
multivariate normal distribution enjoys many desirable features such as differentiability or
convexity (via log-concavity). Of course, other settings may have practical importance too.
For instance, the distribution of the random right-hand side could be other than normal.
The cases of multivariate Gamma or Dirichlet distributions are discussed in Prékopa (1995),
Section 6.6. Here, log-concavity remains an important tool.
Things become different, however, when passing to discrete distributions. These are of
interest for at least two reasons: first, the problem to be solved could have been directly
modeled by discrete random variables (see, e.g., Beraldi & Ruszczyński (2002)). Second, there
may be a need to approximate continuous distributions (e.g., multivariate normal) by discrete
ones, for instance when treating probabilistic constraints in two stage models with scenario
formulations Ruszczyński (2002). A key issue in discrete chance constrained programming
is finding the so called p-efficient points (introduced in Prékopa (1990)) of the distribution
function Fξ of ξ. These are points z such that Fξ(z) ≥ p and the relations Fξ(y) ≥ p, y ≤ z
(partial order of vectors) imply that y = z. One easily observes that all the information about
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random vector. In the case of ξ having integer-valued components and p ∈ (0, 1), P is a finite
set (see Theorem 1 in Dentcheva et al. (2000)). Algorithms for enumerating or generating
p-efficient points are described, for instance, in Beraldi & Ruszczyński (2002); Dentcheva et al.
(2000); Prékopa (2003); Prékopa et al. (1998). It is interesting to note that the log-concavity
concept, even if not directly applicable, can be adapted with useful consequences to discrete
distributions as well (see Dentcheva et al. (2000)).
Another powerful approach to solve chance constrained programs with discrete distributions
via integer programming methods has been recently reported in Luedtke & Ahmed (2008).

3. Randomness and energy management optimization problems

In the electrical power industry, it is important to guarantee at each time step, the equilibrium
between the offer and demand and hence avoid shortage supply. This is a major concern,
whatever the time horizon. The traditional Unit Commitment Problem (UCP) consists of
defining the minimal-cost power generation schedule for a given set of power plants satisfying
at each time step the equilibrium between the production and the demand while respecting
physical constraints. This problem, in a deterministic setting, is a challenging large-size,
non-convex, non-linear optimization problem, due to many thermal and hydro power-plants
constraints, which introduce discontinuous operation domains and give non-convex dynamic
constraints. It has been solved satisfactory in an industrial way (Batut & Renaud (1992); Cohen
& Zhu (1983); Lemaréchal & Sagastizábal (1994); Merlin & Sandrin (1983)).
Many uncertainties strongly impact the electrical power industry and should be taken
into account in this problem. Uncertainty consists of the load charge curve and the
hydraulic-inflows of each reservoir, both of which are climate sensitive (temperature and
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cloud cover). Moreover, we have to consider the availability of the power plants, which are
subject to random failure, the prices on both electricity and gas markets and wind generation.
Extending, in the context of electricity markets, the traditional UCP leads to a modern
Energy Management Problem (EMP). This modern version consists of optimizing the
production planning, while keeping supply shortage risk under bounds, using both financial
(interruption options, futures and markets) and physical (thermal and hydraulic production
units) assets (Zorgati et al. (2009)). For economical reasons, one key point, which requires
significant effort deals with the definition of an efficient Water Reservoir Management
Problem. Such a problem can be considered as a sub problem of any EMP. Since the original
deterministic UCP is already challenging, needless to say, adding uncertainty has not made
things easier. Hence, in a logic of price decomposition (or optimization assets against market
prices) we will typically consider subproblems of the huge EMP. It is important to note that the
structures that occur in these subproblems are quite general and occur in many other Energy
management problems. We refer to Section 4 for more on these structures.
When generally considering Optimization Problems encountered in Energy management, we
can state that they are characterized by challenging key features such as:

• the stochastic nature of the problem, due to the uncertainty affecting the electrical system

• the stochastic nature of several physical constraints

• the nature of the decision variables of the problem (real, integer, binary/logical)

• the huge number of variables and constraints

• the non-linear (and non-convex) nature of many constraints

• bilateral constraints

• we are looking for closed loop strategies, i.e., decisions that adapt whenever the outcome
of randomness is observed.

Considering the related Energy Management optimization Problems (EMOP) and a large
class of other problems1 such as long run marginal costs of energetic commodities or gas
management, we clearly obtain the following generic structure of many EMOP:

min f [c(x, ξ)]

s.t. bl(ξδ) ≤ A(ξα)x + θ(ξ) ≤ bu(ξδ)

Px ≤ h (9)

x ∈ X,

where

• f is a risk measure on the cost function c,

• x are the controls of the problem,

• A(ξα) the matrix of the problem affected by random processes ξα and describing either
• the offer. In this case α is the type of assets we consider, e.g., thermal, hydro, Futures,

contracts, wind, etc...
• a network. In this case α can be associated to coal mines, roads, gas compression

stations, pipes and reservoirs, etc...

1 with time horizons ranging from long to short term
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• the (bilateral) stochastic inequality bl(ξδ) ≤ A(ξα)x + θ(ξ) ≤ bu(ξδ) has to be given a
meaning. For instance by using a probability constraints, i.e., P[bl(ξδ ≤ A(ξα)x + θ(ξ) ≤
bu(ξδ)] ≥ p or by using Robust Optimization.

• the (possible void) deterministic constraints Px ≤ h models any polyhedral set of
constraints on x

• bl(ξδ) the demand affected by the random process ξδ. In that case bu would be infinity. In
the case of hydro management, bl and bu would be the lower and upper bounds on the
reservoir capacity respectively.

• ξ = [ξα; ξδ] is the concatenation of ξα and ξδ. Alternatively we can write ξ = Ξ(ξα, ξδ) as
some global random process, reflecting complex correlations and dependencies. We have
expressed this feature through the use of the function Ξ.

All other specific constraints such as those appearing in water reservoir management or the
nature of the controls are symbolically described by the set X. Such a set can contain all
dynamic constraints on power plants for example (see Langrene et al. (2010) for the difficulties
induced by such constraints).
We can distinguish three main classes of problems depending on the nature of randomness of
the above stochastic inequalities:

• Only the right member b is random. We can think of coal, gas, hydro production or water
reservoir management problems. In such problems, the matrix describes the topology of
a system or a network and is considered fixed.

• Only the matrix A is random. This case occurs, in gas problems when considering
investments on the network.

• Both A and b are random. This is the case in unit commitment and hedging problems.

4. Structure of energy management optimization problems

The general problem (9) can be declined in various subproblems. Each of these subproblems
contains key features such as bilateral chance-constraints, random matrices with singularities
and binary variables. The point of moving to subproblems is that these do not contain all
problematic features of problem (9) at once. We can hence consider specific and adapted
algorithms and methods. These models of the different subproblems often come with a
robust counterpart or even an approximate chance constrained model. The results of the latter
models can be compared with results obtained, using a chance-constraint formulation.
This section will detail the general structure derived from Energy management optimization
problems. These structures are however far more general and can be found in many other
problems. As such, the derived algorithms can be applied to problems from other contexts as
well. The typical considered problems have the form

minx cTx

s.t. P[bk
l (ξ) ≤ Ak(ξ)x + θ

k(ξ) ≤ bk
u(ξ)] ≥ pk ∀k = 1, ..., K (10)

Qx ≤ q

x ∈ R
nr
× {0, 1}nb ,

where the problem (10) can have unilateral (either bl or bu is ±∞) or bilateral constraints
for any of the K (joint) chance constraints. Moreover, nr + nb = n, where n is the problem
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dimension and either nr or nb can be zero. The matrix can be deterministic, as well as θ, bl or
bu but never all together.
Assuming the law θ centered, and absence of uncertainty, problem (10) is basically an
extension of the linear (mixed-integer) program:

minx cTx

s.t. bl ≤ Ax ≤ bu

Qx ≤ q (11)

x ∈ R
nr
× {0, 1}nb ,

Since model (10) is quite general, we will give some specific versions of this model and point
out the structure of the submodels.

4.1 Shortage supply hedging
In a simplified version of the stochastic unit-commitment problem we can only focus on
shortage supply hedging under randomness on power plant generation and customer load.
In such a setting, prices and randomness on hydro reservoirs would be considered absent (in
order to simplify). This leads to a version of model (10), wherein the random matrix A(ξ) has
the following form :

A(ξ) =
�

Aθ(ξθ) Aη(ξη) Aμ(ξμ) Aσ(ξσ) Aε(ξε),
�

where θ, η, μ, σ, ε stand for type of assets, respectively thermal, hydro, markets, contracts and
renewable. The decisions x in this problem relate to production decisions on various assets.
The lines of the matrix would typically correspond to different time steps in our problem and
the entries of the matrix would correspond to random availability coefficients. The thermal
coefficient matrix would typically have the following sparse random structure:

Aα(ξα) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

aα
11 ... aα

1Nα ... 0 ... 0 ... 0 ... 0
. . .

. . .
0 ... 0 ... aα

i1 ... aα
iNα ... 0 ... 0

. . .
. . .

0 ... 0 ... 0 ... 0 ... aα
m1 ... aα

mNα

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

A natural first idea is to use a unilateral probabilistic constraint for this model, i.e., we will
assume that bl(ξδ) is the random load. This would correspond to the idea that we are looking
to produce a sufficient quantity (and avoid shortage supply) in most cases as randomness will
affect our system after decision making. We can also argue that we would like to produce
not too far from the load in a sufficient amount of cases. In that case θ(ξ) would be the
negative customer load and bl and bu two bandwidth parameters (e.g., ±500MW). One can
also imagine a series of such probabilistic constraints with increasing probability level and
increasing margins. We refer to Zorgati et al. (2009) and Zorgati & van Ackooij (2010) for more
on this model.
Variations of this model would consist of considering individual chance constraints rather
than joint ones. The danger of such a model would be that we might avoid shortage supply
with a sufficient level for each time step, but never on the global time horizon. Another
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• the (bilateral) stochastic inequality bl(ξδ) ≤ A(ξα)x + θ(ξ) ≤ bu(ξδ) has to be given a
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• bl(ξδ) the demand affected by the random process ξδ. In that case bu would be infinity. In
the case of hydro management, bl and bu would be the lower and upper bounds on the
reservoir capacity respectively.

• ξ = [ξα; ξδ] is the concatenation of ξα and ξδ. Alternatively we can write ξ = Ξ(ξα, ξδ) as
some global random process, reflecting complex correlations and dependencies. We have
expressed this feature through the use of the function Ξ.

All other specific constraints such as those appearing in water reservoir management or the
nature of the controls are symbolically described by the set X. Such a set can contain all
dynamic constraints on power plants for example (see Langrene et al. (2010) for the difficulties
induced by such constraints).
We can distinguish three main classes of problems depending on the nature of randomness of
the above stochastic inequalities:

• Only the right member b is random. We can think of coal, gas, hydro production or water
reservoir management problems. In such problems, the matrix describes the topology of
a system or a network and is considered fixed.

• Only the matrix A is random. This case occurs, in gas problems when considering
investments on the network.

• Both A and b are random. This is the case in unit commitment and hedging problems.

4. Structure of energy management optimization problems

The general problem (9) can be declined in various subproblems. Each of these subproblems
contains key features such as bilateral chance-constraints, random matrices with singularities
and binary variables. The point of moving to subproblems is that these do not contain all
problematic features of problem (9) at once. We can hence consider specific and adapted
algorithms and methods. These models of the different subproblems often come with a
robust counterpart or even an approximate chance constrained model. The results of the latter
models can be compared with results obtained, using a chance-constraint formulation.
This section will detail the general structure derived from Energy management optimization
problems. These structures are however far more general and can be found in many other
problems. As such, the derived algorithms can be applied to problems from other contexts as
well. The typical considered problems have the form

minx cTx

s.t. P[bk
l (ξ) ≤ Ak(ξ)x + θ

k(ξ) ≤ bk
u(ξ)] ≥ pk ∀k = 1, ..., K (10)

Qx ≤ q

x ∈ R
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× {0, 1}nb ,

where the problem (10) can have unilateral (either bl or bu is ±∞) or bilateral constraints
for any of the K (joint) chance constraints. Moreover, nr + nb = n, where n is the problem
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dimension and either nr or nb can be zero. The matrix can be deterministic, as well as θ, bl or
bu but never all together.
Assuming the law θ centered, and absence of uncertainty, problem (10) is basically an
extension of the linear (mixed-integer) program:

minx cTx

s.t. bl ≤ Ax ≤ bu

Qx ≤ q (11)

x ∈ R
nr
× {0, 1}nb ,

Since model (10) is quite general, we will give some specific versions of this model and point
out the structure of the submodels.

4.1 Shortage supply hedging
In a simplified version of the stochastic unit-commitment problem we can only focus on
shortage supply hedging under randomness on power plant generation and customer load.
In such a setting, prices and randomness on hydro reservoirs would be considered absent (in
order to simplify). This leads to a version of model (10), wherein the random matrix A(ξ) has
the following form :

A(ξ) =
�

Aθ(ξθ) Aη(ξη) Aμ(ξμ) Aσ(ξσ) Aε(ξε),
�

where θ, η, μ, σ, ε stand for type of assets, respectively thermal, hydro, markets, contracts and
renewable. The decisions x in this problem relate to production decisions on various assets.
The lines of the matrix would typically correspond to different time steps in our problem and
the entries of the matrix would correspond to random availability coefficients. The thermal
coefficient matrix would typically have the following sparse random structure:

Aα(ξα) =

⎛
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⎞
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A natural first idea is to use a unilateral probabilistic constraint for this model, i.e., we will
assume that bl(ξδ) is the random load. This would correspond to the idea that we are looking
to produce a sufficient quantity (and avoid shortage supply) in most cases as randomness will
affect our system after decision making. We can also argue that we would like to produce
not too far from the load in a sufficient amount of cases. In that case θ(ξ) would be the
negative customer load and bl and bu two bandwidth parameters (e.g., ±500MW). One can
also imagine a series of such probabilistic constraints with increasing probability level and
increasing margins. We refer to Zorgati et al. (2009) and Zorgati & van Ackooij (2010) for more
on this model.
Variations of this model would consist of considering individual chance constraints rather
than joint ones. The danger of such a model would be that we might avoid shortage supply
with a sufficient level for each time step, but never on the global time horizon. Another
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variation consists in considering that we decide on what asset to use and assume that it
produces at its random maximal level. This greatly simplifies that problem as it ejects (or
neglects) dynamic constraints on thermal plants. It also simplifies the hydro sub-problem
as now, one only needs to know plausible hydro production trajectories, which can be
pre-computed. This reduces problem (10) to a stochastic knapsack problem. Robust versions
of which can be found in Klopfenstein (2007); Klopfenstein & Nace (2007; 2008).

4.2 Singularities in the random matrix?
In Section 4.1 we have seen that an important problem to consider, due to the random failure
process that affects thermal units, is the following:

minx cTx

s.c. P[A(ξ)x ≥ b] ≥ p (12)

x ≥ 0

This problem generalizes the first one since it suffices to add the random b vector to the
random matrix and introduce a single variable xn+1 = −1. Therefore the global setting
wherein both the right member and the matrix are random can be reduced to problem (12).
However as seen in Section 4.1 the random matrix might have many (non-random) zeros and
hence a priori has a distribution with many singularities. It can however be reformulated as a
random-vector problem and do away with the singularities. This reformulation is very useful
when we want to compute the probabilities for each x. To this end, let us define the following
operator T, T(x) = diag((xT, ..., xT)T). We can remark that T is actually a linear operator. We
also define the following matrix operation A �→ A�, which we shall call the vector transform,
by A� = (A11, ..., A1n, A21, ..., Ann)

T. Then the system in equation (12) can also be rewritten
as follows

P[T(x)A�
≥ b] ≥ p. (13)

What is very interesting about this transform is that if the original A matrix contained some
non-random zero components due to a formulation issue, as is the case for the thermal
production matrix Aθ then applying this transform we can actually place the zero components
in the T(x) decision matrix and obtain a random vector A� that does not contain any
singularities. Moreover if we assume that A� is actually a normally distributed random vector
with covariance matrix Σ, then computing the probability (13) comes down to computing a
multivariate normal cumulative distribution function having covariance matrix T(x)ΣT(x)T .
One can therefore see that the number of columns of matrix A doesn’t really matter here as
the probability that has to be computed is normal of dimension the number of rows of A.

4.3 Hydro reservoir management
The hydro subproblem of problem (10) is of particular interest as it has a structure that is
common to many other network flow problems with randomness. Indeed, in such problems,
we typically have righthand side randomness. In particular matrix A describes the topology
of the systems, i.e., the flow constraints. Randomness occurs as in each node of the network
random quantities are withdrawn (customer load in a coal-mine investment model with
random load) or added (random water inflows in a hydro reservoir model). The cost vector
can describe investment and transportation costs (coal-mine model, Lepaul (2009)) or water
turbining costs (where we assume that volume dependent water values are available). Further

302 Stochastic Optimization - Seeing the Optimal for the Uncertain

deterministic constraints describe non-random parts of the model, such as reservoirs that are
not impacted by random inflows, or nodes in the network not subject to random load (mines,
roads). We refer to van Ackooij et al. (2010b;c) for more information on the hydro reservoir
model. This subproblems also offers an alternative formulation as robust optimization (see
Appariagliato et al. (2006)).

5. Chance constrained programming results for EM

When considering chance constrained optimization problems, such as the EMP (9) two
important paths can be taken. We can either try to solve the problem exactly or we can try
to find a good approximation of the problem. In the first setting it is important to dispose
of a way to evaluate the probability constraint for any x quickly and dispose of a way to
compute gradients (see van Ackooij et al. (2010c)), second derivatives (van Ackooij et al.
(2010b)) and exploit information in the covariance matrices of the uncertainty factors (see van
Ackooij et al. (2010a)) combined with Prékopa’s LP method (Prékopa (1995)). In the second
approach, the difficulty resides in finding a good approximation of the chance-constraint. This
can be typically done by bounding the contraint. The advantage often resides in the fact
that the approximation holds for all laws. Hence, we can obtain convex approximations of
a CCP. In EM, for some problems with random matrices the decision vector contains binary
variables. Such stochastic knapsack problems can be solved approximately by combining
inner and outer bounds on the probability measure (see Zorgati & van Ackooij (2008; 2010)).
Another approach is Robust Knapsack problems, such as those considered in Klopfenstein
(2007); Klopfenstein & Nace (2007; 2008). These approaches can also be handsomely compared
on the same problem. Such approximation schemes can also be used in a continuous setting,
i.e., one wherein the decision vector x is real (see Zorgati et al. (2010)). The advantage of
using such approximation techniques is that they transform the potentially non-convex chance
constraint problem (if we take exotic laws) into a conic quadratic problem. The price of which
is an approximation.
In this section we will discuss both paths.

5.1 Approximate chance constrained programming: Bounds
5.1.1 Minimal information about uncertainties
Two major questions have to be investigated in the aim of taking uncertainties into account in
the optimization process. First, some knowledge about random processes has to be available.
Secondly, provided that such knowledge is available, how can we integrate the associated
information into the optimization process? These questions are key questions in stochastic
optimization and are in practice very difficult.
Since laws are not precisely known or very complex, we aim to approximately solve the
problem. We choose here a very simplistic solution based on minimal available information
about uncertainties. We assume that, for any random parameter r, we know the average
rmean = E(r), the maximal value, rmax and its minimal value rmin, all derived from historically
observed values.
No further hypothesis are made about the underlying random process. We will just suppose
that all uncertain coefficients of the matrix A and vector b are bounded independent random
variables. Boundedness is not a restrictive assumption as all borelian random variables are
tight and can therefore be assumed to be almost bounded.
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variation consists in considering that we decide on what asset to use and assume that it
produces at its random maximal level. This greatly simplifies that problem as it ejects (or
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as now, one only needs to know plausible hydro production trajectories, which can be
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of which can be found in Klopfenstein (2007); Klopfenstein & Nace (2007; 2008).
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x ≥ 0
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deterministic constraints describe non-random parts of the model, such as reservoirs that are
not impacted by random inflows, or nodes in the network not subject to random load (mines,
roads). We refer to van Ackooij et al. (2010b;c) for more information on the hydro reservoir
model. This subproblems also offers an alternative formulation as robust optimization (see
Appariagliato et al. (2006)).

5. Chance constrained programming results for EM

When considering chance constrained optimization problems, such as the EMP (9) two
important paths can be taken. We can either try to solve the problem exactly or we can try
to find a good approximation of the problem. In the first setting it is important to dispose
of a way to evaluate the probability constraint for any x quickly and dispose of a way to
compute gradients (see van Ackooij et al. (2010c)), second derivatives (van Ackooij et al.
(2010b)) and exploit information in the covariance matrices of the uncertainty factors (see van
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optimization and are in practice very difficult.
Since laws are not precisely known or very complex, we aim to approximately solve the
problem. We choose here a very simplistic solution based on minimal available information
about uncertainties. We assume that, for any random parameter r, we know the average
rmean = E(r), the maximal value, rmax and its minimal value rmin, all derived from historically
observed values.
No further hypothesis are made about the underlying random process. We will just suppose
that all uncertain coefficients of the matrix A and vector b are bounded independent random
variables. Boundedness is not a restrictive assumption as all borelian random variables are
tight and can therefore be assumed to be almost bounded.
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5.1.2 Conic approximations of individual chance constraint
Approximate solution of the probabilistic model can be obtained using the following result,
the proof of which follows from an application of Hoeffding’s Theorem (Hoeffding (1963))
and can be found in Zorgati et al. (2010) for each individual chance constraint, i.e., each line
of the individual chance constrained stochastic matrix inequality system:

Lemma 0.1. Let aj, b, j = 1, ..., n be almost surely bounded independent random variables and let A

denote the random vector a. We will note these bounds by amin
j , bmin and amax

j , bmax. Furthermore we

define the (semi positive definite) diagonal matrix Δ as Δ = diag((amax
1 − amin

1 , ..., amax
n − amin

n )T).
Any individual chance constraint

P[�A(ξ), x� ≥ b(ξδ)] ≥ α (14)

can be bounded by the 2 following convex conic quadratic inequalities:

�E[A(ξ)], x)� −
√
(1/2)| ln(1 − α)| �Δx + δb� ≥ E(b)

�E[A(ξ)], x)� ≥ E(b),

where bounded means that the feasible set of equation (14) contains the feasible set of the 2 convex conic
inequalities.

As a consequence, the individualized and unilateralized version of the constraints in the
general problem (10) related to time step i:

P(�Ai, x� ≤ bl + θi(ξ)) ≥ βi

P(�Ai, x� ≥ bu + θi(ξ)) ≥ βi

can be approximated by

�Ai, x� ≤ bl + E(θi) +
√
(1/2) |ln 1 − βi|Ri

�Ai, x� ≤ bl + E(θi)

�Ai, x� ≥ bu + E(θi) +
√
(1/2) |ln 1 − βi |Ri

�Ai, x� ≥ bu + E(θi),

where Ri = [max(θi)− min(θi)]
2

If the initial problem has m constraints and mn variables, the convex approximation using the
result leads to a problem with m(2n + 5) constraints and mn variables.
This result implies that any individual chance-constrained optimization problem of the form
(10) can be approximated by the convex conic quadratic problem :

minx ctx

s.t.
∥∥Ãlx + b̃l

∥∥
2 ≤ f̃ lt x + d̃l , l = 1, ..., L,

since, by Lemma 0.1, any linear constraint corresponds to a particular case of conic quadratic
constraint with null matrix Ai and null vector bi and any positivity constraint can also be
written in a conic quadratic form (with fi = 0 (Alizadeh & Goldfarb (2001); Lobo et al. (1998))).
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Then, by applying Schur’s complement theorem, it is easy to give the Semi-Definite version
of this conic quadratic approximation :

Corollary 0.2. Any individual chance constraint:

P[�Ai(ξ), x� ≥ bi(ξδ)] ≥ αi, ∀i ∈ I

can be bounded by the following semi-definite condition:

[
( f̃ t

l x + d̃l)I Ãlx + b̃l

(Ãlx + b̃l)
t f̃ t

l x + d̃l

]
� 0, l ∈ (1, L),

where notations are as in Lemma 0.1

5.1.3 Approximations in the combinatorial case : Stochastic Knapsack problems
As indicated earlier, when problem (10) only contains binary decisions, we are facing a
stochastic multi-knapsack problem. By considering individual chance constraints, using finite
subadditivity of the probability measure and the inclusion-exclusion principle, we show that
thanks to Hoeffding’s inequality, any chance constraint can be approximated by an "outer"
bound for m odd and by a "inner" bound for m even. This leads to a robust mixed inner-outer
algorithm that allows us to approximately solve our binary chance-constrained program and,
in general, any stochastic Multi-Knapsack Problem, i.e., canonical problems of the form

minx∈{0,1}n cTx

s.t. P[A(ξ)x ≥ b] ≥ 1 − p (15)

We refer to Zorgati & van Ackooij (2010) for the proofs of the theorems in this paragraph.

5.1.3.1 Method 1 : Mixed Inner Outer approximation (AMIO)

The following approximation is based on Hoeffding’s inequality.

Lemma 0.3. Let u be the all-one vector. Assuming �E (Ai), u� ≤ bi and fixing τi ≥ 0 such that
bi = τi + �E (Ai), u�, we obtain

P[�Ai, x� ≥ bi] ≤ exp(−
2τ2

i

∑n
j=1(aij − aij)

2 ).

Whenever �E (Ai), u� > bi, we obtain

P[�Ai, x� ≥ bi] ≥ 1 − exp(−
2τ2

∑n
j=1(aij − aij)

2 ),

where τ = minx �E (Ai), x� − bi.
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thanks to Hoeffding’s inequality, any chance constraint can be approximated by an "outer"
bound for m odd and by a "inner" bound for m even. This leads to a robust mixed inner-outer
algorithm that allows us to approximately solve our binary chance-constrained program and,
in general, any stochastic Multi-Knapsack Problem, i.e., canonical problems of the form
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Lemma 0.3. Let u be the all-one vector. Assuming �E (Ai), u� ≤ bi and fixing τi ≥ 0 such that
bi = τi + �E (Ai), u�, we obtain
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Lemma 0.4. Define τi(x) = bi − �E (Ai), x�. Let x be a feasible solution of the following problem

min(x,z)∈{0,1}n+m cTx

s.t. −Ĉizi + (1 − zi) ln(1 − p) ≤
−2(bi − �E (Ai), x�)2

∑n
j=1(aij − aij)

2

−2(bi − �E (Ai), x�)2

∑n
j=1(aij − aij)

2 ≤ ln(p) + C(1 − zi) (16)

−Mizi ≤ τi(x) ≤ Mi(1 − zi)

where C is such that exp (C) ≥ 1
p , Ĉi = 2 M2

i

∑n
j=1(aij−aij)

2 and Mi some big constant such that τi(x) ∈

[−Mi, Mi] ∀x, then x is feasible for the canonical problem on constraint i if τi(x) ≤ 0. If x is a feasible
solution for constraint i of the canonical problem (15) and τi(x) ≥ 0 then x is feasible for constraint i
for (16).

We will call the problem (16) the mixed-inner-outer approximation (MIO) of the canonical
problem. It is a linear problem if we remark that zi is binary, and the fact that the first
constraint is active whenever zi = 0 and the second when zi = 1. Indeed the following
problem is equivalent to MIO :

min(x,z)∈{0,1}n+m cTx

s.t. −τi(x) ≥

√√√√−
1
2

n

∑
j=1

(aij − aij)
2 ln(p)zi

τi(x) ≥ −Mizi (17)

−τi(x) ≥ −

√√√√1
2

n

∑
j=1

(aij − aij)
2Ĉizi +

√√√√−
1
2

n

∑
j=1

(aij − aij)
2 ln(1 − p)(1 − zi)

−τi(x) ≥ −Mi(1 − zi)

The interpretation is noteworthy since the ratios inside the constraints are the expected
difference between load and the production normalized by the total power available at time
step k. Indeed on some constraints we will have enforced the original constraint, therefore
obtaining a feasible, but potentially costly solution. However on some other constraints
we will have relaxed the original constraint, therefore obtaining a potentially non-feasible
but cheap solution. On some examples, this allows us to approximate rather accurately the
optimal cost.
We will speak of the augmented MIO problem whenever the objective function is replaced
by minx,z cT x − aTz, for some positive vector a. The point in adding the additional a vector
is giving additional value to the event τi(x) ≤ 0, which is the average version of what we
wish to achieve with our chance constraint! The more negative τi(x), the likelier the chance
constraint is satisfied.
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5.1.3.2 Method 2 : Robust Knapsack Formulation (RKP(Γ))

Following Klopfenstein & Nace (2008), we can build a Robust Knapsack version of our
problem (10) RKP(Γ). We thus obtain

min cT x

s.t. ∑
j∈S

aijxj + ∑
j/∈S

aijxj ≥ bi∀i∀S ⊂ {1, ..., n} , |S| = Γ.

Here Γ is a hardness parameter. Taking for instance Γ = n gives the full-robust solution, i.e.,
whatever the realization of uncertainty the chance-constraint is satisfied. If the above problem
is infeasible for Γ = 0 there is no solution to problem (15) either. The problem RKP(Γ) can be
solved using a dynamic programming algorithm as indicated in Klopfenstein & Nace (2008).
The main difficulty in these approximations is that for many Γ the RKP(Γ) problem may be
infeasible.

5.2 Gradients for two-sided chance constraints under multivariate normal distribution
In the hydro sub-problem that we consider (Section 4.3), probabilistic constraints are induced
by two-sided stochastic inequalities. Indeed we have seen that it is of the following form:

min{cTx | P(Ax + a ≤ Lξ ≤ Bx + b) ≥ p}, (18)

where A, B, L and a, b, c are matrices and vectors, respectively, of appropriate orders.
Assuming inflows normally distributed, these inequalities bound a normally distributed
random vector by some decision-dependent functions. More precisely the probabilistic
constraint may take the form

P(α(x) ≤ ξ ≤ β(x)) ≥ p.

We refer to van Ackooij et al. (2010c) for more on these methods.
Here, ξ is a random vector having a regular multivariate normal distribution, P denotes the
probability measure, p ∈ (0, 1) is a probability level and x refers to a decision vector. In
geometric terms, it is required that the probability of some x-dependent rectangle be not
smaller than p. In order to determine an optimal decision x∗ in the context of an optimization
problem, one has to have access to values and derivatives of this probability function. As
far as values are concerned, one may employ numerical algorithms designed for the calculus
of normal distribution functions Szántai (2000), of normal probabilities of general convex sets
Déak (1980) or directly of rectangles Genz (1992). However, none of these algorithms provides
gradients of the probability function with respect to changes of the lower and upper limit of
the rectangle. In case of one-sided constraints (i.e., α = −∞, so that one is dealing with
distribution functions), there is no problem to reduce the computation of the gradient to that of
a value of a distribution function (see Lemma 0.5 below). Formally, one could also do so with
gradients of two-sided constraints by exploiting a representation of rectangle probabilities in
terms of distribution functions (see (19)) and then taking derivatives of the latter ones term
by term. We note that such representation allowing for reduction of derivatives to those of
distribution functions is available even for general polyhedra Henrion & Römisch (2010). This
approach, however, becomes impractical already in small dimension. For example in the case
of an n-dimensional rectangle, the number of terms in the representation equals 2n.
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problem, one has to have access to values and derivatives of this probability function. As
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of normal distribution functions Szántai (2000), of normal probabilities of general convex sets
Déak (1980) or directly of rectangles Genz (1992). However, none of these algorithms provides
gradients of the probability function with respect to changes of the lower and upper limit of
the rectangle. In case of one-sided constraints (i.e., α = −∞, so that one is dealing with
distribution functions), there is no problem to reduce the computation of the gradient to that of
a value of a distribution function (see Lemma 0.5 below). Formally, one could also do so with
gradients of two-sided constraints by exploiting a representation of rectangle probabilities in
terms of distribution functions (see (19)) and then taking derivatives of the latter ones term
by term. We note that such representation allowing for reduction of derivatives to those of
distribution functions is available even for general polyhedra Henrion & Römisch (2010). This
approach, however, becomes impractical already in small dimension. For example in the case
of an n-dimensional rectangle, the number of terms in the representation equals 2n.
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5.2.1 Constraints induced by rectangular sets and multivariate normal distributions
We present a simple formula for the derivative of the normal probability of rectangles
with respect to their lower and upper limits. In particular, this formula allows to reduce
the problem to the same calculus of probabilities of rectangles (in one dimension less).
Consequently, the same algorithm in Genz (1992) can be used for computing values and
derivatives of the probability function introduced above.
Let ξ be some n-dimensional random vector having a nondegenerate multivariate normal
distribution with mean vector μ and covariance matrix Σ. We will write ξ ∼ N (μ, Σ) for
short. Denote by

Φξ(z) := P (ξ ≤ z) ∀z ∈ R
n

its cumulative distribution function (with P referring to the underlying probability measure).
We further introduce the rectangle probability function

Fξ(a, b) := P (a ≤ ξ ≤ b) ∀a, b ∈ R
n : a ≤ b.

The following relation is well known to hold whenever a ≤ b:

Fξ(a, b) = ∑
i1,...,in∈{0,1}

(−1)[n+∑n
j=1 ij] Φξ(yi1

, . . . , yin
), (19)

where

yij
:=

{
aj if ij = 0
bj if ij = 1

.

For instance, if n = 2, the probability of the rectangle [a, b] calculates via the distribution
function as

Fξ(a, b) = Φξ(a1, a2)− Φξ(a1, b2)− Φξ(b1, a2) + Φξ(b1, b2).

The following lemma can be found (in its equivalent form for standard normal distributions)
in Prékopa (1995). It shows how the derivative of a multivariate normal distribution can be
reduced to values of a different multivariate normal distribution (in one dimension less):

Lemma 0.5. Assume that ξ ∼ N (μ, Σ) with some positive definite covariance matrix Σ =
(

σij

)
.

Then, Φξ is contiuously differentiable and

∂Φξ

∂zi
(z) = fξ i

(zi) · Φ
ξ̃(zi)

(z1, . . . , zi−1, zi+1 . . . , zs) (i = 1, . . . , n) .

Here, fξ i
denotes the one-dimensional probability density of the component ξi, ξ̃(zi) is an n −

1-dimensional random vector distributed according to ξ̃(zi) ∼ N (μ̂, Σ̂), μ̂ results from the vector
μ + σ

−1
ii (zi − μi) σi by deleting component i and Σ̂ results from the matrix Σ − σ

−1
ii σiσ

T
i by deleting

row i and column i, where σi refers to column i of Σ.

In the next theorem, we generalize Lemma 0.5 to the case of probability functions Fξ defined
by rectangles. In particular, the presented formula allows to again reduce the derivative of
Fξ to the calculus of values of a similar function induced by a different normally distributed
random vector. The proof of the theorem can be found in van Ackooij et al. (2010c)
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Theorem 0.6. Assume that ξ ∼ N (μ, Σ) with some positive definite covariance matrix Σ. Then, for
i = 1, . . . , n,

∂

∂bi
Fξ(a, b) = fξ i

(bi) F
ξ̃(bi)

(ã, b̃) (20)

∂

∂ai
Fξ(a, b) = − fξ i

(ai) F
ξ̃(ai)

(ã, b̃). (21)

Here, fξ i
is as in Lemma 0.5, ξ̃(bi), ξ̃(ai), are n − 1-dimensional random vectors distributed according

to ξ̃(bi), ξ̃(ai) ∼ N (μ̂, Σ̂) such that μ̂ results from the vector μ + σ
−1
ii (bi − μi) σi (in case of bi) or

from the vector μ + σ
−1
ii (ai − μi) σi (in case of ai) by deleting component i and Σ̂ is defined as in

Lemma 0.5. Moreover ã and b̃ result from a and b by deleting the respective component i.

In order to demonstrate the impact of the derived formula, we consider the optimization
problem (18). Given that ξ (and so Lξ too) has a multivariate normal distribution, we know
from Prékopa (1995) that the function

x �→ log P(Ax ≤ Lξ ≤ Bx) (22)

is concave. This allows to rewrite the optimization problem as a convex one:

min{cT x | − log P(Ax + a ≤ Lξ ≤ Bx + b) ≤ − log p}

Now one can apply, for instance, a supporting hyperplane type method as described in
Prékopa (1995) in order to solve this problem. This requires, apart from functional values,
also to calculate gradients of the function (22) which amounts to determine partial derivatives
of the function Fξ(Ax, Bx) introduced above. The latter task can efficiently be realized with
the aid of the formula given in Corollary 0.8. It resides in the fact that we rely on the same
algorithm as used for determining values of Fξ .

5.2.2 Convexity of rectangular constraint problems?
When looking at the definition of the function h in (4), we can see that we are dealing here
with the special case

h(x, ξ) := Ax + Bξ − c, (23)

of separated linear constraints. In (23), A and B may represent matrices which describe how
releases x and inflows ξ accumulate over time and how reservoirs are interconnected. The
vector c provides certain lower and upper levels in the reservoirs which have to be respected
(possibly time-dependent).
Defining the linearly transformed random variable η := −Bξ, we may rewrite the
probabilistic constraint associated with (23) as

P (Ax + Bξ ≥ c) ≥ p ⇐⇒ P (Ax − c ≥ η) ≥ p ⇐⇒ Fη (Ax − c) ≥ p, (24)

where Fη refers to the (multivariate) distribution function of η. This means, the probabilistic
constraint is equivalent to a single inequality in the decision vector x which can be evaluated
(e.g., in the framework of a nonlinear optimization code) if one is able to cope with
multivariate distribution functions.
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bj if ij = 1
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the aid of the formula given in Corollary 0.8. It resides in the fact that we rely on the same
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When looking at the definition of the function h in (4), we can see that we are dealing here
with the special case
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of separated linear constraints. In (23), A and B may represent matrices which describe how
releases x and inflows ξ accumulate over time and how reservoirs are interconnected. The
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multivariate distribution functions.
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Clearly, problem (18) can be cast into the equivalent problem

min
{
�d, x� |Fη (u) ≥ p, u = Ax − c

}
. (25)

The key observation for a numerical treatment of (25) in the framework of convex optimization
is that many prominent multivariate distribution functions (e.g., regular and singular normal,
Dirichlet, Gamma, Wishart uniform etc.) share the property of log-concavity:

log Fη (λ1u1 + λ2u2) ≥ λ1 log Fη (u1) + λ2 log Fη (u2) ∀u1, u2 ∀λ1, λ2 ≥ 0 : λ1 + λ2 = 1.

The verification of log-concavity for distribution functions is based on the celebrated Theorem
by Prékopa (see Prékopa (1973)) stating that a distribution function is log-concave if and
only if the density function has this property (see Henrion & Strugarek (2008)), for these
distributions one may pass to the equivalent (by monotonicity of log) optimization problem

min
{
�d, x� | log Fη (u) ≥ log p, u = Ax − c

}
. (26)

5.2.3 A cutting planes algorithms for joint chance constrained programming
Being that log Fη is a concave function, (26) becomes a convex optimization problem2. This
can be solved, for instance, by means of the cutting plane method. As it is well-known, the
following ingredients are required for the application of the cutting plane method:

• a Slater point (x̂, û) satisfying Fη (û) > p, û = Ax̂ − c

• a procedure to calculate the distribution function Fη in order to determine in each iteration
k a point ũk on the line segment [uk, û] satisfying Fη (ũk) = p. Here, uk is part of the current
iterate (xk, uk).

• a procedure to calculate the gradient ∇Fη in order to add in each iteration k a cut〈
∇Fη (ũk) , u − ũk

〉
≥ 0.

• a linear programming solver for solving (26) but with the nonlinear constraint log Fη (u)
replaced by the accumulated cuts (linear constraints) from the previous item.

The last requirement being standard, we adress the first three items in the following
subsections. From now on we restrict our considerations to the - most important case
- of normally distributed random vectors. For the calculation of other distributions like
t-distribution, Gamma-distribution, Dirichlet-distribution or Exponential distribution, we
refer to Genz (2002), Szántai (1996), Gouda & Szántai (2004) and Olieman & van Putten (2006).

5.2.3.1 Calculation of multi-variate normal distribution functions

As mentioned before, we assume from now on that η obeys a multi-variate normal
distribution. We write η ∼ N (μ, Σ) to say that the expectation of η equals μ and the
covariance matrix equals Σ. Codes for calculating the associated distribution function Fη

typically assume that η be standardized, such that μ = 0 and Σii = 1 (i.e., Σ is actually a
correlation matrix). This standardization is easily carried out by introducing the transformed
random vector

η̃ := T (η − μ) ,

2 alternatively we may impose (u, x) to be in some general convex set and problem (26) remains a convex
optimization problem
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where T is a diagonal matrix with entries Σ−1/2
ii . Then, η̃ ∼ N (0, R), where R is the correlation

matrix associated with Σ. Then, the relation between the values of the original and the
standardized distribution functions is given by

Fη (u) = P (η ≤ u) = P (η̃ ≤ T (u − μ)) = Fη̃ (T (u − μ)) .

Therefore, it is sufficient to have access to algorithms calculating standardized distribution
functions. For algorithms doing this job we refer as examples to Szántai (2000) or Genz (1992);
Genz & Kwong (2000). The difference between the two approaches is that the first one relies
on a combination of simulation and efficient probability bounds from modern graph theory,
whereas the second one employs a clever scheme of numerical integration. There is one
peculiarity to be respected in our model: the random vector η was already obtained from
the original random vector ξ via a linear transformation: η = −Bξ (see (24)). Of course,
assuming that already ξ had a multi-variate distribution, say ξ ∼ N (μ�, Σ�) we know that so
has η and we even know how the parameters of η’s distribution are related to those of ξ:

μ = −Bμ
� and Σ = BΣ�BT. (27)

Many algorithms for calculating multi-variate normal distributions (such as Szántai (2000))
assume that this distribution is regular, i.e., the covariance matrix is positive definite. There is
not much loss of generality to assume that original random vectors in practical applications,
such as our ξ, follow indeed a regular normal distribution. However, in our optimization
problem (26), we deal with the transformed random vector η rather than with ξ and it is clear
that the transformation of covariance matrices in (27) destroys the regularity of the covariance
matrix whenever B does not have full rank. But such is typically the case in network problems
and it will turn out to be also the case in our application to water reservoirs due to considering
lower and upper reservoir levels simultaneously. Then, one may benefit from the algorithm
presented in Genz (1992) (see also Genz & Kwong (2000)). We mention that algorithms for
calculating regular normal distributions can also be applied to problems with singular normal
distributions (by using some efficient inclusion-exclusion formula presented in Bukszár et al.
(2004)) and then turn out to be very fast but they require the determination of all vertices of a
polyhedron which limits its use to small dimensions.

5.2.3.2 Calculation of gradients to multi-variate normal distribution functions

By combining the results of Theorem 0.6 with those from Corollary 0.8, computing the
gradients of the chance constraint in problem (18) comes down to evaluation normal densities
in dimension one and multi-variate normal density functions. The same remarks as those
made in Section 5.2.3.1 apply however.

5.2.3.3 Determination of a Slater point

Given the probability level p one actually does not know in advance whether or not the
optimization problem (25) has a feasible solution at all. Indeed, choosing a too large safety
level p may lead to an empty feasible set. Much less one has direct access to a Slater point
which strictly satisfies the probabilistic constraint. In order to get more information here, one
may solve the following auxiliary problem which is also called ’max p’-problem:

max
{

p|Fη (u) ≥ p, u = Ax − c
}

. (28)
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This looks pretty much the same as (25) but the difference is that the objective now is to
maximize the safety level (rather than minimize some cost function) and that optimization
takes place with respect to variables (x, u, p) (whereas in (25) p was fixed). Nevertheless,
one may transform (28) again into a convex optimization problem. First, apply the same
logarithmic transformation as above:

max
{

p| log Fη (u) ≥ log p, u = Ax − c
}

. (29)

Here, the mapping log Fη (u)− log p defining the inequality constraint is not concave in both
variables (u, p) simultaneously. However, (29) is easily seen to be equivalent with

max
{

p� | log Fη (u) ≥ p�, u = Ax − c
}

. (30)

Indeed, (x∗, u∗, p∗) is a solution of (29) if and only if
(
x∗, u∗, ep∗)

is a solution of (30). On
the other hand, (30) is a convex problem because the mapping log Fη (u) − p� defining the
inequality constraint now is concave in both variables (u, p�) simultaneously. Of course, now
one is formally faced again with the four items required for a cutting plane method mentioned
above. However, the last three items are covered by the same arguments as before (calculus
of Fη , ∇Fη and linear optimization solver). Concerning the first item, the Slater point, this
problem is solved very easily for (29) or (30), respectively, because the safety level is no longer
fixed but becomes a variable. So it suffices to put in (30)

(
x̂, û, p̂�

)
:=

(
0,−c, log Fη (−c)− ε

)

for some sufficiently small ε > 0 to see that

log Fη (û) > p̂� and û = Ax̂ − c.

Once, (30) (and thus (29)) is solved, the optimal solution (x∗, u∗, p∗) of (29) can be used to
derive a Slater point for the original optimization problem (25). Indeed, if it turns out that
the maximum possible probability level p∗ is smaller than the level p chosen by the decision
maker in (25), then this latter program will not have any feasible solution at all and the
decision maker will have to adjust (reduce) his safety level. Otherwise, if p∗ > p, then
(x∗ , u∗) may obviously be used as a Slater point for the original problem (25). A part from
the meaning of the ’max p’-problem for the determination of a Slater point in the original
problem, its solution provides useful additional insight: indeed, the associated part x∗ of its
solution indicates the most robust decision possible. In the application to water reservoirs
it will represent the most robust release control in order to keep the level constraints of the
reservoir with maximum possible probability. Of course, this robust control will come at a
significantly higher price (in terms of the cost function cTx in (25)).

5.2.4 Second order derivatives
If one is interested in applying second order solution methods to increase the efficiency of
the solution process, one has to work out second derivatives of the probability function ϕ

(where notations are as in corollary 0.8) on the basis of the gradients obtained in theorem 1
of van Ackooij et al. (2010c). The results (van Ackooij et al. (2010b)), which follow from a
straight-forward second application of theorem 1 in van Ackooij et al. (2010c) are collected in
the following lemma.
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Lemma 0.7. Let ξ be a Gaussian random vector with mean μ and variance-covariance matrix Σ. We
define the mapping Fξ(a, b) = P[a ≤ ξ ≤ b] for any rectangle, i.e., a ≤ b. Let Di

n denote the

n dimensional identity matrix from which the ith row has been deleted. Define μc(i,z) = Di
n(μ +

Σ−1
i,i (z − μi)Σi) and Σc(i) = Di

n(Σ − Σ−1
i,i ΣiΣT

i )(D
i
n)

T, where Σi is the ith column of Σ. We define

ξc(i,z) as the Gaussian random variable with mean μc(i,z) and covariance matrix Σc(i). The following
holds:

∂2

∂aj∂ai
Fξ(a, b) = f

μc(i,ai),Σc(i)
j,j
(aj) fμi,Σi,i(ai)F

(ξ c(i,ai))
c(j,aj)

(D
j
n−1Di

na, D
j
n−1Di

nb) ∀j �= i

∂2

∂bj∂ai
Fξ(a, b) = − f

μc(i,ai),Σc(i)
j,j
(bj) fμi,Σi,i (ai)F

(ξ c(i,ai))
c(j,bj)

(D
j
n−1Di

na, D
j
n−1Di

nb) ∀i, j

∂2

∂bj∂bi
Fξ(a, b) = f

μc(i,bi),Σc(i)
j,j
(bj) fμi,Σi,i (bi)F

(ξ c(i,bi))
c(j,bj)

(D
j
n−1Di

na, D
j
n−1Di

nb) ∀j �= i,

where fμ,σ(x) is the standard gaussian density. Moreover, whenever j = i and z is a or b we have:

∂2

∂z2
i

Fξ(a, b) = −
zi − μi

Σ2
i,i

fμi,Σi,i (zi)F
ξ c(i,zi)

(Di
na, Di

nb)

+ fμi,Σi,i (zi)(D
i
nΣ−1

i,i Σi)
T(∇Di

naF
ξ c(i,zi)

(Di
na, Di

nb) +∇Di
nbF

ξ c(i,zi)
(Di

na, Di
nb))

The following corollary follows trivially from lemma 0.7 and theorem 1 of van Ackooij et al.
(2010c).

Corollary 0.8. Let ξ be a Gaussian Random variable of dimension n. Let x, A,B,a,b be vectors and
matrices of appropriate dimension. Define furthermore, α = Ax + a and β = Bx + b. Now consider
the mapping ϕ : x �→ P[a + Ax ≤ ξ ≤ Bx + b]. We have:

∇ϕ = ∇αFξ(α, β)TA +∇βFξ(α, β)TB

�ϕ = AT
�ααFξ(α, β)A + AT

�αβFξ(α, β)B + BT
�βα Fξ(α, β)A + BT

�ββ Fξ(α, β)B.

6. Illustration : Feasibility of CCP for EMOP

In this section we will consider the hydro reservoir management example from van Ackooij
et al. (2010b). We will consider a discretized time horizon. To this end let τ denote the set of
(homogeneous) time steps. Let Δt be this time step size expressed in hours.

6.1 Topology
A hydro valley can be seen as a set of connected reservoirs. We can therefore represent this
with a directed graph. Let N be the set of nodes and let A (of size |N |× |N |) be the connection
matrix, i.e., An,m = 1 whenever water released from reservoir n will flow into reservoir m. We
will assume that D is the flow duration matrix, i.e., Dm is the amount of time (measured in
time steps) it takes for water to flow from reservoir m to its child. Let T :=

{
gi , i = 1, ..., NT

}

denote the set of turbines and P :=
{

pi, i = 1, ..., NP

}
denote the set of pumping stations. We

furthermore introduce the mapping σT : {1, ..., NT } → N (σP : {1, ..., NP} → N ) attributing
to each turbine (pumping station) the reservoir number to which it belongs. We will also

313Chance Constrained Programming and Its Applications to Energy Management



This looks pretty much the same as (25) but the difference is that the objective now is to
maximize the safety level (rather than minimize some cost function) and that optimization
takes place with respect to variables (x, u, p) (whereas in (25) p was fixed). Nevertheless,
one may transform (28) again into a convex optimization problem. First, apply the same
logarithmic transformation as above:

max
{

p| log Fη (u) ≥ log p, u = Ax − c
}

. (29)

Here, the mapping log Fη (u)− log p defining the inequality constraint is not concave in both
variables (u, p) simultaneously. However, (29) is easily seen to be equivalent with

max
{

p� | log Fη (u) ≥ p�, u = Ax − c
}

. (30)

Indeed, (x∗, u∗, p∗) is a solution of (29) if and only if
(
x∗, u∗, ep∗)

is a solution of (30). On
the other hand, (30) is a convex problem because the mapping log Fη (u) − p� defining the
inequality constraint now is concave in both variables (u, p�) simultaneously. Of course, now
one is formally faced again with the four items required for a cutting plane method mentioned
above. However, the last three items are covered by the same arguments as before (calculus
of Fη , ∇Fη and linear optimization solver). Concerning the first item, the Slater point, this
problem is solved very easily for (29) or (30), respectively, because the safety level is no longer
fixed but becomes a variable. So it suffices to put in (30)

(
x̂, û, p̂�

)
:=

(
0,−c, log Fη (−c)− ε

)

for some sufficiently small ε > 0 to see that

log Fη (û) > p̂� and û = Ax̂ − c.

Once, (30) (and thus (29)) is solved, the optimal solution (x∗, u∗, p∗) of (29) can be used to
derive a Slater point for the original optimization problem (25). Indeed, if it turns out that
the maximum possible probability level p∗ is smaller than the level p chosen by the decision
maker in (25), then this latter program will not have any feasible solution at all and the
decision maker will have to adjust (reduce) his safety level. Otherwise, if p∗ > p, then
(x∗ , u∗) may obviously be used as a Slater point for the original problem (25). A part from
the meaning of the ’max p’-problem for the determination of a Slater point in the original
problem, its solution provides useful additional insight: indeed, the associated part x∗ of its
solution indicates the most robust decision possible. In the application to water reservoirs
it will represent the most robust release control in order to keep the level constraints of the
reservoir with maximum possible probability. Of course, this robust control will come at a
significantly higher price (in terms of the cost function cTx in (25)).

5.2.4 Second order derivatives
If one is interested in applying second order solution methods to increase the efficiency of
the solution process, one has to work out second derivatives of the probability function ϕ

(where notations are as in corollary 0.8) on the basis of the gradients obtained in theorem 1
of van Ackooij et al. (2010c). The results (van Ackooij et al. (2010b)), which follow from a
straight-forward second application of theorem 1 in van Ackooij et al. (2010c) are collected in
the following lemma.
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Lemma 0.7. Let ξ be a Gaussian random vector with mean μ and variance-covariance matrix Σ. We
define the mapping Fξ(a, b) = P[a ≤ ξ ≤ b] for any rectangle, i.e., a ≤ b. Let Di

n denote the

n dimensional identity matrix from which the ith row has been deleted. Define μc(i,z) = Di
n(μ +

Σ−1
i,i (z − μi)Σi) and Σc(i) = Di

n(Σ − Σ−1
i,i ΣiΣT

i )(D
i
n)

T, where Σi is the ith column of Σ. We define

ξc(i,z) as the Gaussian random variable with mean μc(i,z) and covariance matrix Σc(i). The following
holds:

∂2

∂aj∂ai
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μc(i,ai),Σc(i)
j,j
(aj) fμi,Σi,i(ai)F

(ξ c(i,ai))
c(j,aj)

(D
j
n−1Di

na, D
j
n−1Di

nb) ∀j �= i
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∂bj∂ai
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j,j
(bj) fμi,Σi,i (ai)F
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(D
j
n−1Di

na, D
j
n−1Di

nb) ∀i, j
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∂bj∂bi
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j,j
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(D
j
n−1Di

na, D
j
n−1Di

nb) ∀j �= i,

where fμ,σ(x) is the standard gaussian density. Moreover, whenever j = i and z is a or b we have:
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∂z2
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(Di
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nb)
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i,i Σi)
T(∇Di

naF
ξ c(i,zi)

(Di
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nb) +∇Di
nbF

ξ c(i,zi)
(Di
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The following corollary follows trivially from lemma 0.7 and theorem 1 of van Ackooij et al.
(2010c).

Corollary 0.8. Let ξ be a Gaussian Random variable of dimension n. Let x, A,B,a,b be vectors and
matrices of appropriate dimension. Define furthermore, α = Ax + a and β = Bx + b. Now consider
the mapping ϕ : x �→ P[a + Ax ≤ ξ ≤ Bx + b]. We have:

∇ϕ = ∇αFξ(α, β)TA +∇βFξ(α, β)TB

�ϕ = AT
�ααFξ(α, β)A + AT

�αβFξ(α, β)B + BT
�βα Fξ(α, β)A + BT

�ββ Fξ(α, β)B.

6. Illustration : Feasibility of CCP for EMOP

In this section we will consider the hydro reservoir management example from van Ackooij
et al. (2010b). We will consider a discretized time horizon. To this end let τ denote the set of
(homogeneous) time steps. Let Δt be this time step size expressed in hours.

6.1 Topology
A hydro valley can be seen as a set of connected reservoirs. We can therefore represent this
with a directed graph. Let N be the set of nodes and let A (of size |N |× |N |) be the connection
matrix, i.e., An,m = 1 whenever water released from reservoir n will flow into reservoir m. We
will assume that D is the flow duration matrix, i.e., Dm is the amount of time (measured in
time steps) it takes for water to flow from reservoir m to its child. Let T :=

{
gi , i = 1, ..., NT

}

denote the set of turbines and P :=
{

pi, i = 1, ..., NP

}
denote the set of pumping stations. We

furthermore introduce the mapping σT : {1, ..., NT } → N (σP : {1, ..., NP} → N ) attributing
to each turbine (pumping station) the reservoir number to which it belongs. We will also
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introduce the sets A(n) = {m ∈ N : Am,n = 1} and F (n) = {m ∈ N : An,m = 1}. The set
A(n) is empty for top reservoirs and the set F (n) for bottom reservoirs.

6.2 Controls
We will assume that each turbine (and pumping station) can be controlled for each time step.
To this end we introduce the variables xi(t) for each t ∈ τ and i = 1, ..., NT . In a similar way
we introduce the variables yi(t) for the pumping stations. The units are in m3/h. Furthermore
we assume that each of these variables are bounded from below by zero and from above by xi

(yi respectively).

6.3Water values
Let πn(V) be a given discretization of the water levels of reservoir n, i.e., πn(V) ={

Vn
0 = Vn

min, ..., Vn
Kn

= Vn
max

}
. We assume that a water value Wn

i (t) (in e/m3) is attributed

to each interval [Vn
i−1, Vn

i ), i = 1, ..., Kn. We introduce two real variables zn
x,i(t) and γn

x,i(t)
for each time step t ∈ τ, each i = 1, ..., Kn and for each reservoir. We similarly introduce
zn

y,i(t) and γn
y,i(t) for turbining. In fact zn

i (t) represents the part of the water turbined (zn
x,i(t))

/ pumped (zn
y,i(t))that falls in the interval [Vn

i−1, Vn
i ). We impose the following constraints for

each n ∈ N and t ∈ τ:

Kn

∑
i=1

zn
x,i(t) = Δt ∑

j∈σ
−1
T

[n]

xj(t) ,
Kn

∑
i=1

zn
y,i(t) = Δt ∑

j∈σ
−1
P

[n]

yj(t)

(zn
x,i(t)− E (Vn(t))−Vn

i−1 + γ
n
x,i(t))z

n
x,i(t) ≤ 0 ∀i = 1, ..., Kn

(zn
y,i(t)− Vn

i + E (Vn(t)) +γ
n
y,i(t))z

n
y,i(t) ≤ 0 ∀i = 1, ..., Kn

0 ≤ zn
u,i(t) ≤ (Vn

i − Vn
i−1) ∀i = 1, ..., Kn u ∈ {x, y} (31)

γ
n
u,i(t) ≥ 0 ∀ ∀i = 1, ..., Kn u ∈ {x, y}

In fact zn
x,i(t) represents the part of the water turbined that falls in the interval [Vn

i−1, Vn
i ).

A natural constraint is zn
x,i(t) ≤ max(Vn(t) − Vn

i−1, 0). However, in our example, Vn(t)
is random. Fortunately, when combining this with an objective function that we wish to
optimize in expectation, the constraint becomes zn

x,i(t) ≤ max(E (Vn(t))−Vn
i−1, 0), hence

erasing randomness from the objective function. The quadratic constraints arise as it is
easily seen that the following problems are equivalent minx

{
f (x) : g(x) ≤ [h(x)]+

}
and

minx,λ≥0 { f (x) : (g(x)− h(x) + λ)g(x) ≤ 0}. In our numerical example (Section 6.7) we use
a constant watervalue, removing the quadratic constraints.

6.4 Random inows
We will assume that inflows (in m3/h) in reservoirs are the result of some stochastic process.
Let An(t) denote this stochastic process for reservoir n. Not all reservoirs will have stochastic
inflows, some of them will have deterministic inflows (typically zero). This can be explained
by the fact that top reservoirs have random inflows due to the melting of snow in the high
mountains, whereas rain can be neglected for lower reservoirs. Let N r

⊆ N denote the set of
reservoirs receiving random inflows. We will assume that the stochastic inflow process is the
sum of a deterministic trend sn

t and a causal process (Shumway & Stoffer (2000)) generated
by Gaussian innovations. To this end let ζn(t) be a gaussian white noise process, where
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(ζk1(t), ..., ζkl ) is a Gaussian random vector of zero average and variance-covariance matrix
Σ(t) ({k1, ..., kl} = N

r). We will assume independence between time steps of the ζ vector.
Since An(t) is a causal process, we can write it as follows

An(t) = sn
t +

∞

∑
j=0

ψ
n
j ζ

n(t − j) = sn
t +

∞

∑
j=t

ψ
n
j ζ

n(t − j) +
t−1

∑
j=0

ψ
n
j ζ

n(t − j),

for some coefficient vector ψn. We will assume that randomness before t = 0 is known and as
such we can assume WLOG that the random inflow process can be written as

An(t) = sn
t +

t−1

∑
j=0

ψ
n
j ζ

n(t − j).

6.5 Flow constraints and volume bounds
Each reservoir is subject to flow constraints induced by pumping and turbining. The following
equilibrium constraint applies

Vn(t) = Vn(t − 1) + ∑
m∈A(n)

∑
i∈σ

−1
T

[m]

xi(t − Dm)Δt − ∑
i∈σ

−1
T

[n]

xi(t)Δt (32)

+ ∑
m∈F (n)

∑
i∈σ

−1
P

[m]

yi(t)Δt − ∑
i∈σ

−1
P

[n]

yi(t)Δt + sn
t Δt +

t−1

∑
j=0

ψ
n
j ζ

n(t − j)Δt.

The above equation is entirely deterministic except for the reservoirs n ∈ N
r. In order to deal

with this randomness and reservoir bounds we will therefore add the following constraints

P[Vn
min(t) ≤ Vn(t) ≤ Vn

max(t) ∀t ∈ τ, n ∈ N
r] ≥ p (33)

Vn
min(t) ≤ Vn(t) ≤ Vn

max(t) ∀t ∈ τ, n ∈ N \N
r, (34)

this is a joint chance constraint.

6.6 Objective function
Often, in reality, each reservoir only has a single turbine. The power output of turbining x
m3/s is given by a function ρ(x). This function is strictly increasing and concave, i.e., ρ�(x) ≥ 0
and ρ��(x) ≤ 0. In our model we have split this range into several subsections (hence several
turbines), each with efficiency ρi = ρ�(s∗i )/3600 (MWh/m3) for some s∗i in each section. We
can thus remark that for any two turbines i1 and i2 belonging to the same reservoir we either
have ρi1

≥ ρi2
or vice versa. This approximation comes down to approximating ρ(x) by a

piece-wise linear function.
We assume given a time dependent price signal λ(t) (in e/MWh). The following objective
function has to be minimized:

∑
t∈τ

∑
n∈N

Kn

∑
i=1

(Wn
i (t)(z

n
x,i(t)− zn

y,i(t))− ∑
t∈τ

λ(t)Δt(
NT

∑
i=1

ρi(t)x
i(t)−

NP

∑
i=1

1
θi(t)

yi(t)),

where the first part corresponds to the cost of using water expressed by the water-values, and
θi(t) is the efficiency of pumping.
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introduce the sets A(n) = {m ∈ N : Am,n = 1} and F (n) = {m ∈ N : An,m = 1}. The set
A(n) is empty for top reservoirs and the set F (n) for bottom reservoirs.

6.2 Controls
We will assume that each turbine (and pumping station) can be controlled for each time step.
To this end we introduce the variables xi(t) for each t ∈ τ and i = 1, ..., NT . In a similar way
we introduce the variables yi(t) for the pumping stations. The units are in m3/h. Furthermore
we assume that each of these variables are bounded from below by zero and from above by xi

(yi respectively).
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Let πn(V) be a given discretization of the water levels of reservoir n, i.e., πn(V) ={
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min, ..., Vn
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. We assume that a water value Wn

i (t) (in e/m3) is attributed

to each interval [Vn
i−1, Vn

i ), i = 1, ..., Kn. We introduce two real variables zn
x,i(t) and γn
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for each time step t ∈ τ, each i = 1, ..., Kn and for each reservoir. We similarly introduce
zn

y,i(t) and γn
y,i(t) for turbining. In fact zn

i (t) represents the part of the water turbined (zn
x,i(t))
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y,i(t))that falls in the interval [Vn
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i ). We impose the following constraints for

each n ∈ N and t ∈ τ:
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x,i(t) represents the part of the water turbined that falls in the interval [Vn
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i ).

A natural constraint is zn
x,i(t) ≤ max(Vn(t) − Vn

i−1, 0). However, in our example, Vn(t)
is random. Fortunately, when combining this with an objective function that we wish to
optimize in expectation, the constraint becomes zn

x,i(t) ≤ max(E (Vn(t))−Vn
i−1, 0), hence

erasing randomness from the objective function. The quadratic constraints arise as it is
easily seen that the following problems are equivalent minx

{
f (x) : g(x) ≤ [h(x)]+

}
and

minx,λ≥0 { f (x) : (g(x)− h(x) + λ)g(x) ≤ 0}. In our numerical example (Section 6.7) we use
a constant watervalue, removing the quadratic constraints.

6.4 Random inows
We will assume that inflows (in m3/h) in reservoirs are the result of some stochastic process.
Let An(t) denote this stochastic process for reservoir n. Not all reservoirs will have stochastic
inflows, some of them will have deterministic inflows (typically zero). This can be explained
by the fact that top reservoirs have random inflows due to the melting of snow in the high
mountains, whereas rain can be neglected for lower reservoirs. Let N r

⊆ N denote the set of
reservoirs receiving random inflows. We will assume that the stochastic inflow process is the
sum of a deterministic trend sn

t and a causal process (Shumway & Stoffer (2000)) generated
by Gaussian innovations. To this end let ζn(t) be a gaussian white noise process, where
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(ζk1(t), ..., ζkl ) is a Gaussian random vector of zero average and variance-covariance matrix
Σ(t) ({k1, ..., kl} = N

r). We will assume independence between time steps of the ζ vector.
Since An(t) is a causal process, we can write it as follows

An(t) = sn
t +
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t +
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for some coefficient vector ψn. We will assume that randomness before t = 0 is known and as
such we can assume WLOG that the random inflow process can be written as

An(t) = sn
t +

t−1

∑
j=0

ψ
n
j ζ

n(t − j).

6.5 Flow constraints and volume bounds
Each reservoir is subject to flow constraints induced by pumping and turbining. The following
equilibrium constraint applies
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n(t − j)Δt.

The above equation is entirely deterministic except for the reservoirs n ∈ N
r. In order to deal

with this randomness and reservoir bounds we will therefore add the following constraints

P[Vn
min(t) ≤ Vn(t) ≤ Vn

max(t) ∀t ∈ τ, n ∈ N
r] ≥ p (33)

Vn
min(t) ≤ Vn(t) ≤ Vn

max(t) ∀t ∈ τ, n ∈ N \N
r, (34)

this is a joint chance constraint.

6.6 Objective function
Often, in reality, each reservoir only has a single turbine. The power output of turbining x
m3/s is given by a function ρ(x). This function is strictly increasing and concave, i.e., ρ�(x) ≥ 0
and ρ��(x) ≤ 0. In our model we have split this range into several subsections (hence several
turbines), each with efficiency ρi = ρ�(s∗i )/3600 (MWh/m3) for some s∗i in each section. We
can thus remark that for any two turbines i1 and i2 belonging to the same reservoir we either
have ρi1

≥ ρi2
or vice versa. This approximation comes down to approximating ρ(x) by a

piece-wise linear function.
We assume given a time dependent price signal λ(t) (in e/MWh). The following objective
function has to be minimized:

∑
t∈τ

∑
n∈N

Kn

∑
i=1

(Wn
i (t)(z

n
x,i(t)− zn

y,i(t))− ∑
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yi(t)),

where the first part corresponds to the cost of using water expressed by the water-values, and
θi(t) is the efficiency of pumping.
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6.7 Numerical example
Plugging some numerical values in the problem defined in this section 6. We can consider
for example 24 time steps of 2 hours each, the valley 2 (Left) and AR(3) uncertainty on
inflows. More importantly that the actual numerical values (which can be found in van
Ackooij et al. (2010b)), is a comparison of the individual chance constrained model (5) and
the joint constrained model (4).
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Fig. 2. (Left) The hydro Valley. (Right) : Water trajectories for reservoir "Saut Mortier". From
top left to bottom right, solutions of problems (11), (4), (5) and (28).

Table 1 shows optimal costs and number of violations. Figure 2 shows simulations of
water trajectories. Clearly we observe the advantage of using joint chance constrained
programming. The additional cost with respect to the deterministic solution is only small,
but robustness can be fine tuned. A full robust solution (max-p problem) turns out quite
costly. Finally individual chance constrained programming can not be used to mimic joint
chance constraints as we have no control over the number of violations over a period of time.

Item / Problem (11) (4) (5) (28)
nbViolation 100 20 35 2

Cost (e) −1.0478e5
−1.0340e5

−1.0422e5
−9.9176e4

Table 1. Comparison of costs and number of violations

One can come up with a robust counterpart of problem (10), by defining an elipsoidal
uncertainty set E for η. It can be easily seen that constraints (18) (derived from (33)) can be
transformed in Ax + a ≤ inf E and Bx + b ≥ sup E , where the latter has to be understood in
the partial order of R

n. Unfortunately, even when the uncertainty set E is very well calibrated,
i.e., P(E) = p, the solution is often over-robust. Even worse, for larger values of p this often
leads to an empty feasible set of the robust problem, even though solutions of (4) exist.
We can observe that the speed of Genz’ code is not independent of the "nature" of a and b (see
Lemma 0.7). The "shape" of the covariance matrix of ξ is pointed downwards. It seems that
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whenever a and b mimic this shape, i.e., a1 ≤ ... ≤ an, that evaluating Fξ(a, b) is about 20 times
faster than having a uniform a and b.
Since this valley is a realistic example from Energy management exact joint-CCP can be
tractable for problems. Moreover clearly the interest has been shown over an individual
chance constraint formulation.

7. Perspectives / transgressing frontiers

Perspectives contain three main axis: The first axis is concerned with improved bounds for
approximate chance constrained programming. Currently we have used Hoeffding’s bound,
but far better bounds exists. One could think of the bounds derived in Ben-Tal et al. (2009).
By combining different bounding techniques and different levels of available information we
can derive a whole class of approximate algorithms, much in the style of the MIO algorithm
exposed here. A second important question to answer is that of classification of the solution.
Is the approximate solution far from the optimal one?
A second axis is concerned with working on exact joint chance constraint programming for
the separated linear setting. In particular efficient derivative formulae have to be derived for
the case of a random matrix. Further clear extensions concern such questions for the case of
other laws. Often laws in a problem are of a different nature and such special cases have to
be considered. From an algorithmic perspective, instead of using a cutting planes idea, one
could use a bundle method to hopefully improve computation times and stability. A second
point that needs investigations is an improved use of Genz’ code by using preconditioning
and exploiting the observed shaping/computation time effect. Finally we could combine the
use of Genz’ code with Prekopa’s LP estimation method for probability measures to increase
the size of the model or improve the speed.
A third axis consists of considering the mixed integer formulation of (10). If the relaxed
problem has good properties (convexity, etc..). We could, in theory apply a branch and bound
technique combined with cuts, lift&projects, etc... But one could equally consider this a special
case of discrete randomness.
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6.7 Numerical example
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Fig. 2. (Left) The hydro Valley. (Right) : Water trajectories for reservoir "Saut Mortier". From
top left to bottom right, solutions of problems (11), (4), (5) and (28).
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−9.9176e4

Table 1. Comparison of costs and number of violations

One can come up with a robust counterpart of problem (10), by defining an elipsoidal
uncertainty set E for η. It can be easily seen that constraints (18) (derived from (33)) can be
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whenever a and b mimic this shape, i.e., a1 ≤ ... ≤ an, that evaluating Fξ(a, b) is about 20 times
faster than having a uniform a and b.
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Ruszczyński, A. & Shapiro, A. (2003). Stochastic Programming, Vol. 10 of Handbooks in
Operations Research and Management Science, Elsevier, Amsterdam.

Shapiro, A., Dentcheva, D. & Ruszczyński, A. (2009). Lectures on Stochastic Programming.
Modeling and Theory, Vol. 9 of MPS-SIAM series on optimization, SIAM and MPS,
Philadelphia.

Shumway, R. & Stoffer, D. (2000). Time Series Analysis and Its Applications, 1st edn, Springer.
Szántai, T. (1996). Evaluation of a special multivariate gamma distribution, Mathematical

Programming Study 27: 1–16.
Szántai, T. (2000). Improved bounds and simulation procedures on the value of the

multivariate normal probability distribution function, Annals of Operations Research
100: 85–101.

Szántai, T. & Habib, A. (1998). On the k-out-of-r-from-n:probabilities., In (F. Giannessi et al.
eds.) New Trends in Mathematical Programming 36: 289–303.

Uryasev, S. (1995). Derivatives of probability functions and some applications, Annals of
Operations Research 56: 287–311.

van Ackooij, W., Henrion, R., Möller, A. & Zorgati, R. (2010a). Early evaluation of
chance-constrained programming for energy management optimization problems,
Technical Report : H-R36-2010-00447-EN p. 103.

van Ackooij, W., Henrion, R., Möller, A. & Zorgati, R. (2010b). Joint chance constrained
programming for hydro reservoir management, Submitted : EngOpt2010, 2nd
International Conference on Engineering optimization .

van Ackooij, W., Henrion, R., Möller, A. & Zorgati, R. (2010c). On probabilistic constraints
induced by rectangular sets and multivariate normal distributions, Mathematical
Methods of Operations Research 71(3): 535–549.

319Chance Constrained Programming and Its Applications to Energy Management



van de Panne, C. & Popp, W. (1963). Minimum-cost cattle feed under probabilistic protein
constraints, Managment Science 9: 405–430.

Zorgati, R. & van Ackooij, W. (2008). Optimizing financial and physical assets with
chance-constrained programming in the electrical industry, EngOpt2008, International
Conference on Engineering optimization .

Zorgati, R. & van Ackooij, W. (2010). Optimizing financial and physical assets with
chance-constrained programming in the electrical industry, to Appear in : Optimization
and Engineering Accepted.

Zorgati, R., van Ackooij, W. & Apparigliato, R. (2009). Supply shortage hedging : estimating
the electrical power margin for optimizing financial and physical assets with
chance-constrained programming, IEEE Transactions on Power Systems 24(2): 533–540.

Zorgati, R., van Ackooij, W. & Gorge, A. (2010). Uncertainties on power systems. probabilistic
approach and conic approximation, PMAPS2010, 11th international Conference on
Probabilistic Methods applied to Power systems (Prize Paper Award) p. 8.

320 Stochastic Optimization - Seeing the Optimal for the Uncertain

14 

Highway Transportation Project Evaluation and 
Selection Incorporating Risk and Uncertainty  

 Zongzhi Li, Sunil Madanu and Sang Hyuk Lee 
Illinois Institute of Technology 

United States  

1. Introduction 
Over the past two decades, transportation agencies worldwide have developed various 
highway asset management systems such as pavement, bridge, maintenance, safety, and 
congestion management systems as analytical tools to help them make cost-effective 
investment decisions. In general, each management system generally performs the following 
tasks: i) establishing highway system goals and performance measures, ii) monitoring the 
performance of physical highway assets and system operations, iii) predicting performance 
trends over time, iv) recommending candidate projects to address system needs, v) carrying 
out project evaluation, vi) conducting project selection, and vii) providing feedback to refine 
the analysis in subsequent decision cycles (FHWA, 1987, 1991).  

1.1 Current approaches for highway project evaluation 
As one of the key tasks involved in the highway investment decision-making process, 
project evaluation is concerned with realistically estimating project-level life-cycle costs and 
benefits of different types of highway projects. Different highway facilities such as 
pavements and bridges have different useful service lives. In order to compare the merit of 
different projects on an equal basis, the life-cycle cost analysis approach needs to be adopted 
to evaluate the total economic worth of the initial construction cost and discounted future 
maintenance and rehabilitation costs in the facility life-cycle. As related to pavement project 
evaluation, the Federal Highway Administration (FHWA) made a concerted effort for the 
use of life-cycle cost analysis in highway pavement design (FHWA, 1998). Hicks and Epps 
(1999) explored alternative pavement life-cycle design strategies with a logical comparison 
between conventional mixtures and the mixture containing asphalt rubber pavement 
materials. Wilde et al. (1999) introduced a life-cycle cost analysis framework for rigid 
pavement design. Abaza (2002) developed an optimal life-cycle cost analysis model for 
flexible pavements. Falls and Tighe (2003) enhanced life-cycle cost analysis through the 
development of cost models using the Alberta roadway maintenance and rehabilitation 
analysis application. Labi and Sinha (2005) and Peshkin et al. (2005) studied systematic 
preventive maintenance and the optimum timing strategies to achieve minimum pavement 
life-cycle costs. Chan et al. (2008) evaluated life-cycle cost analysis practices in Michigan. For 
bridge project evaluation, Purvis et al. (1994) performed life-cycle cost analysis of bridge 
deck protection and rehabilitation. Mohammadi et al. (1995) introduced the concept of 
incorporating life-cycle costs into highway bridge planning and design. Hawk (2003) 
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developed a bridge life-cycle cost analysis software tool for bridge project evaluation. In 
recent years, researchers began to utilize the risk-based life-cycle cost analysis approach to 
establish mathematical expectations of highway project benefits. For instance, Tighe (2001) 
performed a probabilistic life-cycle cost analysis of pavement projects by incorporating 
mean, variance, and probability distribution for typical construction variables, such as 
pavement structural thickness and costs. Reigle et al. (2005) incorporated risk considerations 
into the pavement life-cycle cost analysis model. Setunge et al. (2005) developed a 
methodology for risk-based life-cycle cost analysis of alternative rehabilitation treatments 
for highway bridges using Monte Carlo simulation.  

1.2 Current approaches for highway project selection  
One of the key steps using the asset management systems for highway investment decision-
making is to conduct project selection. Specifically, this process aims at selecting a subset of 
mixed types of highway projects from all candidate projects proposed to address the needs 
of a highway network to achieve maximized total benefits under budget and other 
constraints. Techniques for network-level project selection are classified as ranking, 
prioritization, and optimization. Optimization models are popular because of the inherent 
mathematical rigor. Over the last two decades, various optimization models have been 
developed to support highway project selection. Widely used optimization techniques 
include integer programming (Isa Al-Subhi et al., 1989; Weissmann et al., 1990; Zimmerman, 
1995; Neumann, 1997), mixed integer nonlinear programming (Ouyang and S.M. Madanat, 
2004), goal/compromise programming (Geoffroy and Shufon, 1992; Ravirala and Grivas, 
1995), and multi-objective optimization (Teng and Tzeng, 1996; Li and Sinha, 2004).  

1.3 Limitations of current approaches 
When applying risk-based analysis approaches for project evaluation, in many instances it 
might not be possible to establish a meaningful probability distribution to possible 
outcomes of a specific input factor such as construction, rehabilitation, and maintenance 
costs and traffic growth due to lacking of pertinent information. That is, the input factors are 
under uncertainty with no definable probability distributions. Consequently, the 
mathematical expectation of the input factor cannot be established. Further, risk and 
uncertainty inherited with input factors for project level life-cycle benefit/cost analysis may 
vary from project to project. Some projects may only involve risk cases for some input 
factors, whereas other projects may only experience uncertainty cases for some input factors. 
In more general situations, a project may face mixed cases of certainty, risk, and uncertainty 
concerning all input factors for the computation. This necessitates developing a new 
uncertainty-based methodology for highway project level life-cycle benefit/cost analysis 
that could rigorously handle such general situations.  
Network-level project selection is also affected by several important factors. One of such 
factors is the available budget for the multi-year project selection period. In the current 
practice, state transportation agencies generally maintain a number of management 
programs to handle issues related to pavement preservation, bridge preservation, safety 
improvements, roadside improvements, system expansion/ new construction, Intelligent 
Transportation Systems (ITS), maintenance, etc. A certain level of budget is designated to 
each management program per year and the program-specific budget is not to be 
transferred across different programs for use. For instance, budget for the pavement 
preservation program supposedly is not used for the bridge preservation program, and vice 
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versa. In a multi-year project selection period, the multi-year budgets for each management 
program may be treated in two ways: either being treated as yearly-constrained budgets or 
as a cumulative budget for all years combined. 
In addition to considering alternative budget constraint scenarios for each management 
program, the program-specific budget in each year is inherent with uncertainty. Investment 
decisions are usually made based on an estimated budget years ahead of the project 
selection period. As time passes by updated budget information would be available, project 
selection decisions must be updated accordingly to maintain realistic results. This is because 
if the actually available budgets are higher than the initially estimated budgets, additional 
projects might be selected. Otherwise, some of the projects selected using the initial budgets 
must be removed to avoid any budget violation. In either case, the question becomes what 
rational approach needs to be followed to ensure that the increase in total project benefits 
can be maximized with additional budgets, while the reduction in total project benefits 
could be minimized with budget cuts. Therefore, the issue of budget uncertainty needs to be 
explicitly addressed.      
For mitigating traffic disruption at the construction stage, multiple projects within one 
highway segment or across multiple highway segments might be tied together for actual 
implementation. In some occasions, the project grouping could be extended to a freeway/ 
major urban arterial corridor. In the project selection process, selecting any one of such 
projects necessitates the selection of all constituent projects in the same project group. 
Otherwise, all projects in the same project group would be declined. The projects grouped 
by highway segment or by corridor could be associated with different types of physical 
highway assets or system operations that would request funding from different 
management programs in a single year or across multiple years. In addition, some large-
scale projects might have a chance to be postponed for a few years due to reasons such as 
right-of-way acquisition, design changes, and significant environmental impacts. As such, 
project selection could be carried out using segment-based, corridor-based or deferment-
based project implementation approaches. 
The next section introduces a new method for highway project evaluation that considers 
certainty, risk, and uncertainty associated with input factors for the computation. A 
stochastic optimization model is then introduced to explicitly consider alternative budget 
constraint scenarios, budget uncertainty, and project implementation approaches for 
network-level highway project selection. Further, a computational study is conducted to 
assess impacts of risk and uncertainty considerations in estimating project life-cycle benefits 
and on network-level project selection. Discussions and recommendations of usefulness of 
the proposed method and model are provided in the last section.   

2. Proposed method for project evaluation 
The section starts with the discussion of common agency cost and user cost categories for 
pavement and bridge facilities, respectively. It then introduces a project level life-cycle cost 
analysis approach for computing agency costs and user costs, as well as estimating overall 
project level life-cycle benefits for pavements and bridges. Next, risk and uncertainty issues 
associated with input factors for the computation are addressed. The last part of this section 
provides a generalized framework for uncertainty-based highway project level life-cycle 
benefit/cost analysis where the input factors are under certainty, risk, and uncertainty.  
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2.1 Pavement and bridge life-cycle agency and user costs 
In this study, the pavement or bridge life-cycle is defined as the time interval between two 
consecutive construction events. Maintenance and rehabilitation treatments are performed 
within the pavement or bridge life-cycle. The pavement and bridge life-cycle agency cost 
and user cost components are briefly discussed in the following:   
Pavement life-cycle agency costs 
Cost analysis is a cardinal element of any highway project life-cycle benefit/cost analysis. 
All costs incurred over pavement life-cycle including those of construction, rehabilitation, 
and maintenance treatments need to be included into the analysis.  

Bridge life-cycle agency costs 
Bridge agency costs are primarily involved with costs of bridge design and construction/ 
replacement, deck and superstructure rehabilitation and replacement, and maintenance 
treatments.  

Pavement/bridge life-cycle user costs 
User costs are incurred by highway users in the pavement or bridge life-cycle. User cost 
components mainly include costs of vehicle operation, travel time, vehicle crashes, and 
vehicle air emissions (FHWA, 2000; AASHTO, 2003). Each user cost component consists of 
two cost categories: user cost under normal operation conditions and excessive user cost due 
to work zones (FHWA, 1998). 

2.2 Pavement/bridge life-cycle activity profiles and user cost profiles 
Pavement/Bridge Life-Cycle Activity Profiles 
The pavement or bridge life-cycle activity profile refers to the frequency, timing, and 
magnitude of construction, rehabilitation, and maintenance treatments within its life-cycle. 
A typical life-cycle activity profile represents the most cost-effective way of implementing 
strategically coordinated treatments to achieve the intended service life. In practice, 
pavement life-cycle activity profiles are determined using preset time intervals for 
treatments and condition triggers for treatments, respectively. Many state transportation 
agencies currently use preset time intervals because of lacking consensus in condition 
trigger values and consistency in pavement condition data. With respect to bridge life-cycle 
activity profiles, the preset time interval approach is also commonly used. Table 1 lists the 
typical frequency and timing of major treatments in pavement and bridge service lives used 
by the FHWA, American Association of State Highway and Transportation Officials 
(AASHTO), and state transportation agencies (FHWA, 1987, 1991; Gion et al, 1993; INDOT, 
2002; AASHTO, 2003). 
The life-cycle agency costs for each type of pavements or bridges can be quantified on the 
basis of the proposed life-cycle activity profile as Table 1. For a specific pavement or bridge 
project, the construction, rehabilitation, and maintenance costs in the pavement or bridge 
life-cycle can be estimated using historical data on the unit rates of construction, 
rehabilitation, and maintenance treatments multiplied by the project size. A geometric 
growth rate represented by a constant percent of annual growth can be used to establish 
annual routine maintenance costs for future years based on the first year routine 
maintenance cost within an interval between two major treatments.  
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Facility Material Type Service Life 
(Year) Treatment Frequency Timing 

Flexible 40 Thin overlay +  
Thick HMA overlay 

15th year 
30th or 33rd 
year 

PCC joint sealing + 
PCC joint sealing + 
PCC repair techniques + 
Thick HMA overlay + 
HMA crack sealing  

7th year 
15th year 
23rd year 
30th year 
37th year 

Pave 
ment 

Rigid 40 

PCC overlay + 
PCC joint sealing 

30th year 
35th year 

Channel 
Beam 35 Deck rehabilitation 20th year 

T-Beam/ 
Girder 70 Deck rehabilitation +  

Superstructure replacement
20th, 55th year 
35th year 

Concrete 

Slab 60 Deck rehabilitation 30th, 45th year 

Box-Beam 65 Deck rehabilitation +  
Deck replacement 

20th, 50th year 
35th year Prestressed 

Concrete Box 
Girder 50 Deck rehabilitation 20th, 35th year 

Box-
Beam/ 
Girder 

70 Deck rehabilitation +  
Deck replacement 

20th, 55th year 
35th year 

Bridge 

Steel 

Truss 80 Deck rehabilitation +  
Deck replacement 

25th, 65th year 
40th year 

Table 1. Typical Frequency and Timing of Major Treatments in Pavement and Bridge Life-
Cycles 
Pavement/Bridge Life-Cycle Annual User Cost Profiles  
For each user cost component, the first year user costs under normal operation conditions 
within an interval between two major treatments can be calculated. A geometric growth rate 
can be used for estimating annual user costs in future years within the same interval based 
on the first year user costs. The excessive user costs caused by project work zones such as 
delay costs need to be considered for the year involving major treatments. 

2.3 Estimation of project level life-cycle benefits  
The typical life-cycle activity profile for pavements or bridges represents the most cost-
effective investment strategy to manage pavement or bridge facilities. If any needed 
treatment fails to be timely implemented as per the typical life-cycle activity profile, an early 
termination of the service life is expected. As such, the typical life-cycle activity profile can 
be used as the base case activity profile and the case with early service-life termination can 
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rehabilitation, and maintenance treatments multiplied by the project size. A geometric 
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delay costs need to be considered for the year involving major treatments. 

2.3 Estimation of project level life-cycle benefits  
The typical life-cycle activity profile for pavements or bridges represents the most cost-
effective investment strategy to manage pavement or bridge facilities. If any needed 
treatment fails to be timely implemented as per the typical life-cycle activity profile, an early 
termination of the service life is expected. As such, the typical life-cycle activity profile can 
be used as the base case activity profile and the case with early service-life termination can 
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be considered as an alternative case activity profile. For each type of pavements or bridges, 
the reduction in life-cycle agency costs of the base case activity profile compared with the 
alternative case activity profile can be computed as project level life-cycle agency benefits of 
timing implementing the needed project. Similarly, the decrease in life-cycle user costs 
according to the base case activity profile against the alternative case activity profile can be 
estimated as the project level life-cycle user benefits.  
Figure 1 illustrates an example of base case and alternative case activity profiles for the steel-
box beam bridge and the method for estimating project level life-cycle agency benefits and 
user benefits by keeping the typical life-cycle activity profile for the bridge. For the base case 
life-cycle activity profile, agency costs in the T-year bridge service life consist of initial 
bridge construction cost CCON in year 0, first deck rehabilitation cost CDECK REH1 in year t1, 
deck replacement cost CDECK REP in year t2, second deck rehabilitation cost CDECK REH2 in year 
t3, and annual routine maintenance costs. The annual routine maintenance costs between 
two major treatments in the bridge life-cycle will gradually increase over time due to the 
combined effect of higher traffic demand, aging materials, climate conditions, and other 
non-load related factors. Different geometric gradient growth rates are used for intervals 
between year 0 and t1, t1 and t2, t2 and t3, and t3 and T, respectively.  
 

 
Fig. 1. Illustration of Base Case and Alternative Case Life-Cycles for the Steel- Box Beam 
Bridge 

For the alternative life-cycle activity profile, it is assumed that the deck replacement project 
(with the cost of CPROJECT) is actually implemented y1 years after year t2 as the base case 
profile, namely, CDECK REP in year t2 is replaced by CPROJECT in year t2+y1. This will defer the 
second deck rehabilitation by y1 years. Due to postponing deck replacement and the second 
deck rehabilitation, the bridge service life may experience an early termination of y2 years. 
As for the annual routine maintenance costs, different geometric gradient growth rates are 
used for intervals between year 0 and t1, t1 and t2+y1, t2+y1 and t3+y1, and t3+y1 and T-y2, 
correspondingly. In particular, the annual routine maintenance cost profiles for the base case 
and alternative case profiles are identical from year 0 to year t2. The project level life-cycle 
agency benefits are estimated as the reduction in bridge life-cycle agency costs quantified 
according to the base case activity profile compared with the alternative case activity profile.  
The primary user cost items include vehicle operating costs, travel time, vehicle crashes, and 
vehicle air emissions. For each user cost item, the base case and alternative case annual user 
cost profiles in bridge life-cycle follow a pattern similar to the profile of annual routine 
maintenance costs in bridge life-cycle. In either the base case profile or alternative case 
profile, the “first year” user cost amounts immediately after the major treatments including 
bridge construction, first deck rehabilitation, deck replacement, and second deck 
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rehabilitation are directly computed on the basis of the unit user cost in constant dollars per 
vehicle mile of travel (VMT) and the annual VMT. The unit user cost per VMT is estimated 
according to average travel speed and roadway condition. Geometric growth rate is then 
applied to the “first year” user cost amount for each interval between two major treatments 
to establish the annual user cost amounts for subsequent years within the interval. 
Additional work zone related costs are estimated using the procedures in FHWA (1988, 
2000) and AASHTO (2003), and added to the annual user cost amounts for the years in 
which major treatments are implemented. This ultimately establishes the base case and 
alternative case annual user cost profiles for vehicle operating costs, travel time, vehicle 
crashes, and vehicle air emissions, respectively.   
For each user cost item, the annual user cost profiles for the base case and alternative case 
are identical from year 0 to t2 and are different for the remaining years in the bridge life-
cycle. The travel demand in terms of annual VMT for a specific year after year t2 could be 
different between the base case and alternative case due to the fact that the traffic volume, 
i.e., annual average daily traffic (AADT) and/or travel distance associated with the bridge 
might change for the two cases. The consumer surplus concept is employed to separately 
compute the user benefits by comparing the base case and alternative case annual user cost 
profiles for intervals from year t2 to t2+y1, t2+y1 to t3, t3 to t3+y2, t3+y2, T-y2, and T-y2 to T. The 
total project level life-cycle user benefits are the aggregation of individual user benefit items 
associated with reductions in vehicle operating costs, travel time, vehicle crashes, and 
vehicle air emissions in the bridge life-cycle. With equal weights assigned for agency 
benefits and user benefits, the total project level life-cycle benefits by keeping the typical 
life-cycle activity profile for the bridge are established by combining the two sets of benefits.  

2.4 Estimation of project level life-cycle benefits in perpetuity  
The project level life-cycle benefits in perpetuity can be quantified on the basis of the base 
case and alternative life-cycle activity profiles. As the base case life-cycle activity profile 
represents the most cost-effective investment strategy, investment decisions are always 
made with the intention to keep abreast of the base case life-cycle activity profile. For the 
base case life-cycle activity profile in perpetuity, the base case typical facility life-cycle is 
assumed to be repeated an infinite number of times. For the alternative case life-cycle 
activity profile in perpetuity, early termination of service life may occur in the first life-cycle, 
in the first and second life-cycles or in the first several life cycles. After experiencing early 
service life terminations, the base case typical facility life-cycle is expected to be resumed 
back for the subsequent life cycles in perpetuity horizon. This is because that the base case 
life-cycle profile represents the most cost-effective investment strategy that the decision-
maker always aims to achieve. Without loss of generality, the alternative case life-cycle 
profile in perpetuity in this study adopts early terminations for the first two life-cycles and 
the base case life-cycle profile is used for subsequent life cycles in perpetuity horizon. The 
reduction in project level life-cycle agency costs between the base case and the alternative 
case life-cycle activity profiles in perpetuity is computed to establish project level life-cycle 
agency benefits in perpetuity.  
Similarly, the reduction in project level life-cycle user costs between the base case and the 
alternative case life-cycle annual user cost profiles in perpetuity for vehicle operating costs, 
travel time, vehicle crashes, and vehicle air emissions can be separately computed and 
summed up to establish project level life-cycle user benefits in perpetuity. With equal 
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be considered as an alternative case activity profile. For each type of pavements or bridges, 
the reduction in life-cycle agency costs of the base case activity profile compared with the 
alternative case activity profile can be computed as project level life-cycle agency benefits of 
timing implementing the needed project. Similarly, the decrease in life-cycle user costs 
according to the base case activity profile against the alternative case activity profile can be 
estimated as the project level life-cycle user benefits.  
Figure 1 illustrates an example of base case and alternative case activity profiles for the steel-
box beam bridge and the method for estimating project level life-cycle agency benefits and 
user benefits by keeping the typical life-cycle activity profile for the bridge. For the base case 
life-cycle activity profile, agency costs in the T-year bridge service life consist of initial 
bridge construction cost CCON in year 0, first deck rehabilitation cost CDECK REH1 in year t1, 
deck replacement cost CDECK REP in year t2, second deck rehabilitation cost CDECK REH2 in year 
t3, and annual routine maintenance costs. The annual routine maintenance costs between 
two major treatments in the bridge life-cycle will gradually increase over time due to the 
combined effect of higher traffic demand, aging materials, climate conditions, and other 
non-load related factors. Different geometric gradient growth rates are used for intervals 
between year 0 and t1, t1 and t2, t2 and t3, and t3 and T, respectively.  
 

 
Fig. 1. Illustration of Base Case and Alternative Case Life-Cycles for the Steel- Box Beam 
Bridge 

For the alternative life-cycle activity profile, it is assumed that the deck replacement project 
(with the cost of CPROJECT) is actually implemented y1 years after year t2 as the base case 
profile, namely, CDECK REP in year t2 is replaced by CPROJECT in year t2+y1. This will defer the 
second deck rehabilitation by y1 years. Due to postponing deck replacement and the second 
deck rehabilitation, the bridge service life may experience an early termination of y2 years. 
As for the annual routine maintenance costs, different geometric gradient growth rates are 
used for intervals between year 0 and t1, t1 and t2+y1, t2+y1 and t3+y1, and t3+y1 and T-y2, 
correspondingly. In particular, the annual routine maintenance cost profiles for the base case 
and alternative case profiles are identical from year 0 to year t2. The project level life-cycle 
agency benefits are estimated as the reduction in bridge life-cycle agency costs quantified 
according to the base case activity profile compared with the alternative case activity profile.  
The primary user cost items include vehicle operating costs, travel time, vehicle crashes, and 
vehicle air emissions. For each user cost item, the base case and alternative case annual user 
cost profiles in bridge life-cycle follow a pattern similar to the profile of annual routine 
maintenance costs in bridge life-cycle. In either the base case profile or alternative case 
profile, the “first year” user cost amounts immediately after the major treatments including 
bridge construction, first deck rehabilitation, deck replacement, and second deck 
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rehabilitation are directly computed on the basis of the unit user cost in constant dollars per 
vehicle mile of travel (VMT) and the annual VMT. The unit user cost per VMT is estimated 
according to average travel speed and roadway condition. Geometric growth rate is then 
applied to the “first year” user cost amount for each interval between two major treatments 
to establish the annual user cost amounts for subsequent years within the interval. 
Additional work zone related costs are estimated using the procedures in FHWA (1988, 
2000) and AASHTO (2003), and added to the annual user cost amounts for the years in 
which major treatments are implemented. This ultimately establishes the base case and 
alternative case annual user cost profiles for vehicle operating costs, travel time, vehicle 
crashes, and vehicle air emissions, respectively.   
For each user cost item, the annual user cost profiles for the base case and alternative case 
are identical from year 0 to t2 and are different for the remaining years in the bridge life-
cycle. The travel demand in terms of annual VMT for a specific year after year t2 could be 
different between the base case and alternative case due to the fact that the traffic volume, 
i.e., annual average daily traffic (AADT) and/or travel distance associated with the bridge 
might change for the two cases. The consumer surplus concept is employed to separately 
compute the user benefits by comparing the base case and alternative case annual user cost 
profiles for intervals from year t2 to t2+y1, t2+y1 to t3, t3 to t3+y2, t3+y2, T-y2, and T-y2 to T. The 
total project level life-cycle user benefits are the aggregation of individual user benefit items 
associated with reductions in vehicle operating costs, travel time, vehicle crashes, and 
vehicle air emissions in the bridge life-cycle. With equal weights assigned for agency 
benefits and user benefits, the total project level life-cycle benefits by keeping the typical 
life-cycle activity profile for the bridge are established by combining the two sets of benefits.  

2.4 Estimation of project level life-cycle benefits in perpetuity  
The project level life-cycle benefits in perpetuity can be quantified on the basis of the base 
case and alternative life-cycle activity profiles. As the base case life-cycle activity profile 
represents the most cost-effective investment strategy, investment decisions are always 
made with the intention to keep abreast of the base case life-cycle activity profile. For the 
base case life-cycle activity profile in perpetuity, the base case typical facility life-cycle is 
assumed to be repeated an infinite number of times. For the alternative case life-cycle 
activity profile in perpetuity, early termination of service life may occur in the first life-cycle, 
in the first and second life-cycles or in the first several life cycles. After experiencing early 
service life terminations, the base case typical facility life-cycle is expected to be resumed 
back for the subsequent life cycles in perpetuity horizon. This is because that the base case 
life-cycle profile represents the most cost-effective investment strategy that the decision-
maker always aims to achieve. Without loss of generality, the alternative case life-cycle 
profile in perpetuity in this study adopts early terminations for the first two life-cycles and 
the base case life-cycle profile is used for subsequent life cycles in perpetuity horizon. The 
reduction in project level life-cycle agency costs between the base case and the alternative 
case life-cycle activity profiles in perpetuity is computed to establish project level life-cycle 
agency benefits in perpetuity.  
Similarly, the reduction in project level life-cycle user costs between the base case and the 
alternative case life-cycle annual user cost profiles in perpetuity for vehicle operating costs, 
travel time, vehicle crashes, and vehicle air emissions can be separately computed and 
summed up to establish project level life-cycle user benefits in perpetuity. With equal 
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weights considered for agency benefits and user benefits, they can be directly added to 
establish overall project level life-cycle benefits in perpetuity.  

2.5 Risk considerations in estimating project level life-cycle benefits 
Primary Input Factors under Risk Considerations  
Project construction, rehabilitation, and maintenance costs may not remain as predicted. 
Traffic demand may not follow the projected path. Discount rate may fluctuate over time 
during the pavement or bridge life-cycle. Such variations will in turn result in changes in the 
overall project level life-cycle benefits. In this study, the unit rates of project construction, 
rehabilitation, and maintenance treatments, traffic growth rates, and discount rates are 
primary input factors considered for probabilistic risk assessments.   
Selection of Probability Distributions for the Input Factors under Risk Considerations 
The minimum and maximum values of above input factors under risk considerations are 
bounded by non-negative values. For each of the risk factors, the distribution of its possible 
outcomes could be either symmetric or skewed. Such distribution characteristics can be 
readily modeled by the Beta distribution that is continuous over a finite range and also 
allows for virtually any degree of skewness and kurtosis. The Beta distribution has four 
parameters- lower bound (L), upper bound (H), and two shape parameters α and β, with 
density function given by 
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where the Г-functions serve to normalize the distribution so that the area under the density 
function from L to H is exactly one.  
The mean and variance of the Beta distribution are given as  
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Using Simulation for Probabilistic Risk Assessments 
Simulation is essentially a rigorous extension of sensitivity analysis that uses randomly 
sampled values from the input probability distribution to calculate discrete outputs. Two types 
of sampling techniques are commonly used to perform simulations. The first type is the Monte 
Carlo sampling technique that uses random numbers to select values from the probability 
distribution. The second type is the Latin Hypercube sampling technique where the 
probability scale of the cumulative distribution curve is divided into an equal number of 
probability ranges. The number of ranges used is equal to the number of iterations performed 
in the simulation. The Latin Hypercube sampling technique is likely to achieve convergence in 
fewer iterations as compared to those of the Monte Carlo sampling technique (FHWA, 1998).  

2.6 Uncertainty considerations in estimating project level life-cycle benefits 
As a practical matter, the input factors under risk considerations may not be readily 
characterized using reliable probability distributions. Consequently, a meaningful 
mathematical expectation for each factor cannot be established and this invalidates risk-
based analysis. Shackle’s model introduced herein is well suited to handle each input factor 
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under uncertainty where no probability distribution can be readily established for a number 
of possible outcomes (Shackle, 1949).     
In general, Shackle’s model overcomes the limitation of inability to establish the mathematical 
expectation of possible outcomes of each input factor for project level life-cycle benefit/cost 
analysis according to the following procedure. First, it uses degree of surprise as a measure of 
uncertainty associated with the possible outcomes in place of probability distribution. Then, it 
introduces a priority index by jointly evaluating each known outcome and the associated 
degree of surprise pair. Next, it identifies two outcomes of the input factor maintaining the 
maximum priority indices, one on the gain side and the other on the loss side from the 
expected outcome X(E). The expected outcome could be the average value or the mode of all 
known possible outcomes, but it is not the mathematical expectation as outcome probabilities 
are unknown. The two outcomes need to be standardized to remove the associated degrees of 
surprise. The absolute deviations of two outcomes relative to the expected outcome are terms 
as standardized focus gain xSFG and standardized focus loss xSFL from the expected outcome 
X(E). This model yields a triple < xSFL, X(E), xSFG> for each input factor under uncertainty. More 
details of Shackle’s model are in Ford and Ghose (1998), Young (2001), Li and Sinha (2004, 
2006), and Li and Madanu (2009).  
To simplify the application of Shackle’s model for uncertainty-based analysis, the grand 
average of simulation outputs from multiple iterations of replicated simulation runs can be 
used as the expected outcome X(E) for an input factor under uncertainty: 
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where 
Xi  = A simulation output representing a possible outcome 
N  = Number of iterations in each simulation run, and  
M = Number of replicated simulation runs.  
If higher valued outcomes are preferred for an input factor, the absolute deviation of the 
average value of simulation outputs that are lower than the expected outcome can used as 
standardized focus loss value xSFL and the absolute deviation of the average value of 
simulation outputs that are equal or higher than the expected outcome can used as 
standardized focus gain value xSFG for the input factor under uncertainty.    
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weights considered for agency benefits and user benefits, they can be directly added to 
establish overall project level life-cycle benefits in perpetuity.  

2.5 Risk considerations in estimating project level life-cycle benefits 
Primary Input Factors under Risk Considerations  
Project construction, rehabilitation, and maintenance costs may not remain as predicted. 
Traffic demand may not follow the projected path. Discount rate may fluctuate over time 
during the pavement or bridge life-cycle. Such variations will in turn result in changes in the 
overall project level life-cycle benefits. In this study, the unit rates of project construction, 
rehabilitation, and maintenance treatments, traffic growth rates, and discount rates are 
primary input factors considered for probabilistic risk assessments.   
Selection of Probability Distributions for the Input Factors under Risk Considerations 
The minimum and maximum values of above input factors under risk considerations are 
bounded by non-negative values. For each of the risk factors, the distribution of its possible 
outcomes could be either symmetric or skewed. Such distribution characteristics can be 
readily modeled by the Beta distribution that is continuous over a finite range and also 
allows for virtually any degree of skewness and kurtosis. The Beta distribution has four 
parameters- lower bound (L), upper bound (H), and two shape parameters α and β, with 
density function given by 
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Using Simulation for Probabilistic Risk Assessments 
Simulation is essentially a rigorous extension of sensitivity analysis that uses randomly 
sampled values from the input probability distribution to calculate discrete outputs. Two types 
of sampling techniques are commonly used to perform simulations. The first type is the Monte 
Carlo sampling technique that uses random numbers to select values from the probability 
distribution. The second type is the Latin Hypercube sampling technique where the 
probability scale of the cumulative distribution curve is divided into an equal number of 
probability ranges. The number of ranges used is equal to the number of iterations performed 
in the simulation. The Latin Hypercube sampling technique is likely to achieve convergence in 
fewer iterations as compared to those of the Monte Carlo sampling technique (FHWA, 1998).  

2.6 Uncertainty considerations in estimating project level life-cycle benefits 
As a practical matter, the input factors under risk considerations may not be readily 
characterized using reliable probability distributions. Consequently, a meaningful 
mathematical expectation for each factor cannot be established and this invalidates risk-
based analysis. Shackle’s model introduced herein is well suited to handle each input factor 
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under uncertainty where no probability distribution can be readily established for a number 
of possible outcomes (Shackle, 1949).     
In general, Shackle’s model overcomes the limitation of inability to establish the mathematical 
expectation of possible outcomes of each input factor for project level life-cycle benefit/cost 
analysis according to the following procedure. First, it uses degree of surprise as a measure of 
uncertainty associated with the possible outcomes in place of probability distribution. Then, it 
introduces a priority index by jointly evaluating each known outcome and the associated 
degree of surprise pair. Next, it identifies two outcomes of the input factor maintaining the 
maximum priority indices, one on the gain side and the other on the loss side from the 
expected outcome X(E). The expected outcome could be the average value or the mode of all 
known possible outcomes, but it is not the mathematical expectation as outcome probabilities 
are unknown. The two outcomes need to be standardized to remove the associated degrees of 
surprise. The absolute deviations of two outcomes relative to the expected outcome are terms 
as standardized focus gain xSFG and standardized focus loss xSFL from the expected outcome 
X(E). This model yields a triple < xSFL, X(E), xSFG> for each input factor under uncertainty. More 
details of Shackle’s model are in Ford and Ghose (1998), Young (2001), Li and Sinha (2004, 
2006), and Li and Madanu (2009).  
To simplify the application of Shackle’s model for uncertainty-based analysis, the grand 
average of simulation outputs from multiple iterations of replicated simulation runs can be 
used as the expected outcome X(E) for an input factor under uncertainty: 
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Xi  = A simulation output representing a possible outcome 
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If higher valued outcomes are preferred for an input factor, the absolute deviation of the 
average value of simulation outputs that are lower than the expected outcome can used as 
standardized focus loss value xSFL and the absolute deviation of the average value of 
simulation outputs that are equal or higher than the expected outcome can used as 
standardized focus gain value xSFG for the input factor under uncertainty.    
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Nr  = Number of simulation outputs in the rth simulation run such that Xi < X(E) if a 
higher outcome value is preferred for the input factor. 
In some cases, lower outcome values are preferred for an input factor such as the discount 
rate. The Nr for computing the standardized focus loss value xSFL and the standardized focus 
gain value xSFG thus refers to number of simulation outputs in the rth simulation run such 
that Xi > X(E).  
As an extension of Shackle’s model dealing with the input factor under uncertainty, a 
decision rule is introduced to help compute a single value X for the input factor based on the 
triple < xSFL, X(E), xSFG> that can be used for estimating project benefits. Assuming that the 
decision-maker only tolerates loss from the expected outcome for the input factor under 
uncertainty by ∆X and if higher outcome values are preferred, the decision rule is set as 
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When lower outcome values are preferred for an input factor, the decision rule is revised to  
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If the standardized focus loss xSFL from the expected outcome X(E) does not exceed ∆X, the 
expected outcome value will be utilized for the input factor for the computation. This will 
produce an identical input factor value for both uncertainty-based and risk-based analyses. 
If the standardized focus loss xSFL from the expected outcome X(E) exceeds ∆X, a penalty is 
applied to derive a unique value for the input factor. Different tolerance levels ∆X’s may be 
used for different input factors under uncertainty.  

2.7 A generalized framework for project evaluation under certainty, risk, and 
uncertainty  
Figure 2 shows a generalized framework for project evaluation under certainty (the input 
factor is purely deterministic with single value), risk (the input factor has a number of 
possible outcomes with a known probability distribution), and uncertainty (the input factor 
has a number of possible outcomes with unknown probabilities). If an input factor is under 
certainty, the single value of the factor can be used for the computation. If an input factor is 
under risk, the mathematical expectation of the factor can be utilized for the computation. If 
an input factor is under uncertainty, the single value of the factor determined according to 
the decision rule extended from Shackle’s model can be adopted for the computation.  
By using values of input factors determined under certainty, risk or uncertainty, the 
proposed framework helps establish project level life-cycle agency benefits and user benefits 
concerning decrease in agency costs, reduction in vehicle operating costs, shortening of 
travel time, decrease in vehicle crashes, and cutback of vehicle air emissions in perpetuity 
horizon, respectively. The combination of certainty, risk, and uncertainty cases for input 
factors may vary by project benefit item for the same project and may also vary for different 
types of highway projects.  
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Fig. 2. A Generalized Framework for Project Evaluation under Certainty, Risk, and 
Uncertainty 
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implementation approaches for project selection.  

3.1 A basic optimization model 
In general, optimization models for project selection can be formulated as the 0/1 integer 
multi-choice multidimensional Knapsack problem (MCMDKP). Multi-choice corresponds to 
multiple categories of budgets designated for different management programs to address 
the needs of physical highway assets and system operations. While multi-dimension refers 
to a multi-year analysis period (Martello and Toth, 1990). The objective is to select a subset 
from all economically feasible candidate projects to achieve maximized total benefits under 
various constraints. The 0/1 value of a decision variable implies rejection or selection of a 
proposed project.  
Denote: 
xi  = Decision variable for project i, i = 1, 2,…, N  
ai  = Benefits of project i, i = 1, 2, …, N 
cikt  = Costs of project i using budget from management program k in year t 
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Nr  = Number of simulation outputs in the rth simulation run such that Xi < X(E) if a 
higher outcome value is preferred for the input factor. 
In some cases, lower outcome values are preferred for an input factor such as the discount 
rate. The Nr for computing the standardized focus loss value xSFL and the standardized focus 
gain value xSFG thus refers to number of simulation outputs in the rth simulation run such 
that Xi > X(E).  
As an extension of Shackle’s model dealing with the input factor under uncertainty, a 
decision rule is introduced to help compute a single value X for the input factor based on the 
triple < xSFL, X(E), xSFG> that can be used for estimating project benefits. Assuming that the 
decision-maker only tolerates loss from the expected outcome for the input factor under 
uncertainty by ∆X and if higher outcome values are preferred, the decision rule is set as 
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If the standardized focus loss xSFL from the expected outcome X(E) does not exceed ∆X, the 
expected outcome value will be utilized for the input factor for the computation. This will 
produce an identical input factor value for both uncertainty-based and risk-based analyses. 
If the standardized focus loss xSFL from the expected outcome X(E) exceeds ∆X, a penalty is 
applied to derive a unique value for the input factor. Different tolerance levels ∆X’s may be 
used for different input factors under uncertainty.  

2.7 A generalized framework for project evaluation under certainty, risk, and 
uncertainty  
Figure 2 shows a generalized framework for project evaluation under certainty (the input 
factor is purely deterministic with single value), risk (the input factor has a number of 
possible outcomes with a known probability distribution), and uncertainty (the input factor 
has a number of possible outcomes with unknown probabilities). If an input factor is under 
certainty, the single value of the factor can be used for the computation. If an input factor is 
under risk, the mathematical expectation of the factor can be utilized for the computation. If 
an input factor is under uncertainty, the single value of the factor determined according to 
the decision rule extended from Shackle’s model can be adopted for the computation.  
By using values of input factors determined under certainty, risk or uncertainty, the 
proposed framework helps establish project level life-cycle agency benefits and user benefits 
concerning decrease in agency costs, reduction in vehicle operating costs, shortening of 
travel time, decrease in vehicle crashes, and cutback of vehicle air emissions in perpetuity 
horizon, respectively. The combination of certainty, risk, and uncertainty cases for input 
factors may vary by project benefit item for the same project and may also vary for different 
types of highway projects.  
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k  = 1, 2,…, K 
t  = 1, 2,…, M. 
Note: The superscript “T” of the vector refers to the transpose of the vector.   
A basic deterministic optimization model as a MCMDKP formulation under the yearly-
constrained budget scenario is given below: 

 MaximizeAT.X  (8) 

 Subject toCktT.X≤  Bkt (9) 

X is a decision vector with 0/1 integer decision variables. 
As Equation (8), the objective function of the model essentially helps select a subset from all 
candidate projects to achieve maximized total benefits. Equation (9) lists budget constraints 
by management program and by analysis year. The 0/1 integrality constraints for the 
decision variables in the decision vector are used for rejection or selection of individual 
projects. For the cumulative budget scenario, budget constraints by analysis year are 
reduced to a single period constraint. Only the budget constraints by management program 

are retained. The notations Bkt is replaced by kt
1
B

M

t=
∑ , accordingly. 

3.2 A stochastic model incorporating budget uncertainty 
This section first discusses the proposed method for addressing the budget uncertainty issue 
and then introduces a stochastic model extended from the basic optimization model to 
handle budget uncertainty using recourse functions.  
Treatments of Budget Uncertainty 
As Figure 3, consider a multi-year project selection period of tΩ years. The transportation 
agency makes first round of investment decisions many years ahead of the project 
implementation period using estimated budgets for all years. With time elapsing, updated 
budget information on the first few years of the multi-year project selection period would 
become available that motivates the agency to refine the investment decisions. In each 
refined decision-making process, the annual budget for each management program for the 
first few years that can be accurately determined is treated as a deterministic value, while 
the budgets for the remaining years without accurate information are still processed as 
stochastic budgets.   
Assuming that the multi-year budgets are refined Ω times and each time an increasing 
number of years with accurate budget information from the first analysis year onward is 
obtained. Hence, Ω-decision stages are involved. Without loss of generality, we assume a 
discrete probability distribution of budget possibilities for each year where no accurate 
budget estimates are available. For the first stage decisions, the multi-program, multi-year 
budget matrix is comprised of the expected budgets for all years that can be best estimated 
at the time of decision-making. For the second stage decisions, accurate information on 
budgets for years 0 to t1 is known and the budgets are treated as deterministic, and there are 
(p2=s2.s3.….s(L-1).sL.s(L+1).….sΩ) possible budget combinations for the remaining years from 
t1+1 to tΩ. For the generic stage L decisions, budgets up to year t(L-1) are deterministic and 
there are (pL=sL.sL+1….sΩ) possible combinations for years t(L-1)+1 to tΩ. The final stage has 
deterministic budgets up to year t(Ω-1) and pΩ=sΩ budget possibilities from year t(Ω-1)+1 to tΩ.   
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Fig. 3. Budget Attributes in an Ω-Stage Recourse Project Selection Process 
A Stochastic Optimization Model Using Budget Recourse Functions 
The stochastic model with Ω-stage budget recourses is formulated as a deterministic 
equivalent program that combines first stage decisions using the initially estimated budgets 
with expected values of recourse functions for the remaining (Ω -1) stages (Birge and 
Louveaux, 1997, Li et al., 2010). 
Denote: 
xi  = Decision variable for project i, i = 1, 2,…, N  
ai  = Benefits of project i, i = 1, 2, …, N 
cikt  = Costs of project i using budgets from management program k in year t 
ξL  = Randomness associated with budgets in stage L and decision space 
XL(p)  = Decision vector using budget BktL(p) in stage L, XL(p)= [x1, x2,…, xN]T 

A  = Vector of benefits of N projects, A = [a1, a2,…, aN]T 

Ckt  = Vector of costs of N projects using budget from management program k in year t,  
    Ckt = [c1kt, c2kt,…, cNkt]T 
Q(XL(p), ξL) = Recourse function in stage L 
Eξ2[Q(XL(p), ξL)] = Mathematical expectation of the recourse function in stage L 
BktL(p)  = The pth possibility of budget for management program k in year t in stage L  
p(BktL(p)) = Probability of having budget scenario BktL(p) occur in stage L  
E(BktL)  = Expected budget in stage L, where ( )( ) ( )[ ]∑
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The stochastic model with Ω-stage budget recourses under yearly-constrained budgets is as 
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k  = 1, 2,…, K 
t  = 1, 2,…, M. 
Note: The superscript “T” of the vector refers to the transpose of the vector.   
A basic deterministic optimization model as a MCMDKP formulation under the yearly-
constrained budget scenario is given below: 

 MaximizeAT.X  (8) 
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X is a decision vector with 0/1 integer decision variables. 
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projects. For the cumulative budget scenario, budget constraints by analysis year are 
reduced to a single period constraint. Only the budget constraints by management program 

are retained. The notations Bkt is replaced by kt
1
B

M

t=
∑ , accordingly. 

3.2 A stochastic model incorporating budget uncertainty 
This section first discusses the proposed method for addressing the budget uncertainty issue 
and then introduces a stochastic model extended from the basic optimization model to 
handle budget uncertainty using recourse functions.  
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first few years that can be accurately determined is treated as a deterministic value, while 
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budget estimates are available. For the first stage decisions, the multi-program, multi-year 
budget matrix is comprised of the expected budgets for all years that can be best estimated 
at the time of decision-making. For the second stage decisions, accurate information on 
budgets for years 0 to t1 is known and the budgets are treated as deterministic, and there are 
(p2=s2.s3.….s(L-1).sL.s(L+1).….sΩ) possible budget combinations for the remaining years from 
t1+1 to tΩ. For the generic stage L decisions, budgets up to year t(L-1) are deterministic and 
there are (pL=sL.sL+1….sΩ) possible combinations for years t(L-1)+1 to tΩ. The final stage has 
deterministic budgets up to year t(Ω-1) and pΩ=sΩ budget possibilities from year t(Ω-1)+1 to tΩ.   
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X1 is a decision vector with 0/1 integer elements. 
Stage 2 

 Eξ2[Q2(X2(p), ξ2)]= max { ( ) ( ) ( )2
ktBEp

2
ktB|p2.X

T
A = } (12) 

 Subject to CktT.X2(p) ≤  B2kt(p)  (13) 

 X1 + X2(p)  ≤  1 (14) 

X1 and X2(p) are decision vectors with 0/1 integer elements.  
 ... 
Stage L 

 EξL[QL(XL(p), ξL)]= max { ( ) ( ) ( )L
ktBEp

L
ktB|pL.X

T
A = } (15) 

Subject to  CktT.XL(p) ≤  Bkt L(p) (16) 

 X1 + X2(p) +…+ XL(p) ≤  1 (17) 

     
X1, X2(p),…, XL(p) are decision vectors with 0/1 integer elements. 
 ... 
Stage Ω 

 EξΩ[QΩ(XΩ(p), ξΩ)]= max { ( ) ( ) ( )Ω=
Ω

Ω ktBEpktB|p.X
T

A } (18) 

Subject to CktT.XΩ(p)≤  BktΩ(p) (19) 

 X1 + X2(p)+ …+ XL(p)+…+XΩ(p) ≤  1 (20) 

 
X1, X2(p), …, XL(p),…, XΩ(p) are decision vectors with 0/1 integer elements.  
In the objective function as Equation (10), the first term is for total project benefits in the first 
stage decisions using initially estimated budgets and the second term is for the expected 
value of total project benefits for the remaining (Ω -1)-stage recourse decisions. Equations 
(11), (13), (16), and (19) are employed to hold budget constraints by management program 
and by project implementation year for the investment decisions at each stage. Equations 
(12), (15), and (18) compute the expected values of optimal project benefits that use one 
possible budget closest to the budget updated following the preceding decision stage. 
Equations (14), (17), and (20) ensure that one highway project is selected at most once in the 
multi-stage decision process.     
For the cumulative budget constraint scenario, budget constraints by management  
program are still maintained. The notations BktL(p), p(BktL(p)), and E(BktL) are replaced by 
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The Enhanced Stochastic Model using Alternative Project Implementation Approaches  
This section first discusses alternative project implementation approaches, including jointly 
implementing candidate projects by highway segment, by freeway/ major urban arterial 
corridor or deferring the implementation of some large-scale projects. The basic stochastic 
model presented in the previous section is enhanced to accommodate alternative project 
implementation approaches for project selection.  
Segment-Based Project Implementation Approach. As discussed in the problem statement 
section, multiple projects within one highway segment or across multiple highway segments 
might be tied together for actual implementation to reduce traffic disruption at the 
construction stage. The first step for applying this approach is to identify the list of highway 
segments in the highway network to be considered for segment-based project 
implementation. Next, all projects within one highway segment or across multiple highway 
segments are tied together to form one “project group” and they are either all rejected or 
selected for implementation. For example, if three projects (i+1), (i+2), and (i+3) belong to 
one “project group” Sg, the respective 0/1 decision variables x(i+1), x(i+2), and x(i+3) are 
replaced by one 0/1 decision variable xSg. For those isolated projects that do not belong to 
any of the identified “project groups”, they are still treated as stand-alone projects that are 
designated with unique 0/1 decision variables.  
Suppose that g “project groups” are identified from N candidate projects as  
 1, 2, …, i (i isolated projects),  

 i+1, i+2, …, i+n1 (n1 projects in “project group” S1),  

 i+n1+1, i+n1+2, …, i+n1+n2 (n2 projects in “project group” S2),  

 i+n1+n2+1, i+n1+n2+2, …, i+n1+n2+n3 (n3 projects in “project group” S3), 

 …  

i+n1+n2+…+ng-2+1, i+n1+n2+…+ng-2+2,…, i+n1+n2+…+ng-2+ng-1 (ng-1 projects in “project 
group” Sg-1), i+n1+n2+…+ng-2+ ng-1+1, i+n1+n2+…+ng-2+ ng-1+2, …, N (N-i-ng-1 projects in 
“project group” Sg).  
The decision vector in stage L decisions XL(p)= [x1, x2,…, xi,…, xN]T in the stochastic model is 
thus replaced by XL(p)= [x1, x2,…, xi, xS1, xS2, xS3,…, xSg-1, xSg]T (L = 1, 2,…, Ω). This implies 
that the basic stochastic model could still be used, but size of the decision vector XL(p) is 
reduced from having N decision variables to (i+g) decision variables. Each decision variable 
still takes a 0/1 integer value representing the rejection or selection of an isolated project or 
multiple projects in a segment-based “project group”. The benefits of all constituent projects 
of each segment-based “project group” are directly added together to establish the overall 
benefits of the “project group”.      
Corridor-Based Project Implementation Approach. As an extension of segment-based project 
implementation approach, the tie-ins of multiple projects within one or more highway 
segments could be further expanded to a freeway or an urban arterial corridor. First, the list 
of corridors in the network to be considered for corridor-based project selection is identified. 
Then, all candidate projects in the same corridor that are grouped by segment are further 
grouped into one corridor-based “grand project group”. In the project selection process, all 
constituent projects in the same “grand project group” are either all rejected or selected for 
implementation. For those isolated projects that do not belong to any of the identified 
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X1 is a decision vector with 0/1 integer elements. 
Stage 2 
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X1, X2(p), …, XL(p),…, XΩ(p) are decision vectors with 0/1 integer elements.  
In the objective function as Equation (10), the first term is for total project benefits in the first 
stage decisions using initially estimated budgets and the second term is for the expected 
value of total project benefits for the remaining (Ω -1)-stage recourse decisions. Equations 
(11), (13), (16), and (19) are employed to hold budget constraints by management program 
and by project implementation year for the investment decisions at each stage. Equations 
(12), (15), and (18) compute the expected values of optimal project benefits that use one 
possible budget closest to the budget updated following the preceding decision stage. 
Equations (14), (17), and (20) ensure that one highway project is selected at most once in the 
multi-stage decision process.     
For the cumulative budget constraint scenario, budget constraints by management  
program are still maintained. The notations BktL(p), p(BktL(p)), and E(BktL) are replaced by 
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The Enhanced Stochastic Model using Alternative Project Implementation Approaches  
This section first discusses alternative project implementation approaches, including jointly 
implementing candidate projects by highway segment, by freeway/ major urban arterial 
corridor or deferring the implementation of some large-scale projects. The basic stochastic 
model presented in the previous section is enhanced to accommodate alternative project 
implementation approaches for project selection.  
Segment-Based Project Implementation Approach. As discussed in the problem statement 
section, multiple projects within one highway segment or across multiple highway segments 
might be tied together for actual implementation to reduce traffic disruption at the 
construction stage. The first step for applying this approach is to identify the list of highway 
segments in the highway network to be considered for segment-based project 
implementation. Next, all projects within one highway segment or across multiple highway 
segments are tied together to form one “project group” and they are either all rejected or 
selected for implementation. For example, if three projects (i+1), (i+2), and (i+3) belong to 
one “project group” Sg, the respective 0/1 decision variables x(i+1), x(i+2), and x(i+3) are 
replaced by one 0/1 decision variable xSg. For those isolated projects that do not belong to 
any of the identified “project groups”, they are still treated as stand-alone projects that are 
designated with unique 0/1 decision variables.  
Suppose that g “project groups” are identified from N candidate projects as  
 1, 2, …, i (i isolated projects),  

 i+1, i+2, …, i+n1 (n1 projects in “project group” S1),  
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“project group” Sg).  
The decision vector in stage L decisions XL(p)= [x1, x2,…, xi,…, xN]T in the stochastic model is 
thus replaced by XL(p)= [x1, x2,…, xi, xS1, xS2, xS3,…, xSg-1, xSg]T (L = 1, 2,…, Ω). This implies 
that the basic stochastic model could still be used, but size of the decision vector XL(p) is 
reduced from having N decision variables to (i+g) decision variables. Each decision variable 
still takes a 0/1 integer value representing the rejection or selection of an isolated project or 
multiple projects in a segment-based “project group”. The benefits of all constituent projects 
of each segment-based “project group” are directly added together to establish the overall 
benefits of the “project group”.      
Corridor-Based Project Implementation Approach. As an extension of segment-based project 
implementation approach, the tie-ins of multiple projects within one or more highway 
segments could be further expanded to a freeway or an urban arterial corridor. First, the list 
of corridors in the network to be considered for corridor-based project selection is identified. 
Then, all candidate projects in the same corridor that are grouped by segment are further 
grouped into one corridor-based “grand project group”. In the project selection process, all 
constituent projects in the same “grand project group” are either all rejected or selected for 
implementation. For those isolated projects that do not belong to any of the identified 
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segment-based “project groups” or corridor-based “grand project groups”, they are still 
treated as stand-alone projects with unique decision variables assigned.  
Suppose that N candidate projects are classified as 1, 2, … i isolated projects and S1, S2, S3, 
S4,…, Sg-2, Sg-1, Sg segment-based “project groups”. The corresponding decision vector in 
stage L decisions is XL(p)= [x1, x2,…, xi, xS1, xS2, xS3, xS4,…, xSg-2, xSg-1, xSg]T (L = 1, 2,…, Ω). 
Further assume that all projects in “project groups” S2 and S3 are in one freeway corridor 
and all projects in “project groups” Sg-1 and Sg are in one urban arterial corridor. This creates 
two corridor-based “grand project groups” for possible implementation: “grand project 
group” C1 that combines “project groups” S2 and S3; and “grand project group” C2 that joins 
“project groups” Sg-1 and Sg. Hence, the decision vector in stage L decisions XL(p)= [x1, x2,…, 
xi, xS1, xS2, xS3, xS4,…, xSg-2, xSg-1, xSg]T in the stochastic model that uses segment-based project 
implementation approach for project selection is further reduced to XL(p)= [x1, x2,…, xi, xS1, 
xC1, xS4,…, xSg-2, xC2]T (L = 1, 2,…, Ω).  
This implies that the enhanced stochastic model incorporating segment-based project 
implementation approach can still be used for the stochastic model utilizing corridor-based 
project implementation approach. However, the size of the decision vector XL(p) is reduced 
from having (i+g) decision variables to (i+g-2) decision variables. Each decision variable still 
takes a 0/1 integer value representing the rejection/ selection of an isolated project, multiple 
projects in a segment-based “project group” or multiple projects in a corridor-based “grand 
project group”. The benefits of all constituent projects of each corridor-based “grand project 
group” are directly added together to obtain the overall benefits of the “grand project group”.   
Deferment-Based Project Implementation Approach. As discussed in the problem statement 
section, some large-scale projects may have a high risk of being deferred for a few years due 
to various reasons. In this study, the proposed deferment-based project implementation 
approach considers a fixed number of years of delays in implementing large-scale projects 
with project costs exceeding a threshold value.  
In the application of the deferment-based project implementation approach, the basic 
stochastic model essentially remains unchanged and the decision vector in stage L decisions 
XL(p)= [x1, x2,…, xN]T in the stochastic model is kept the same. For projects involving 
deferred implementation, the project benefits and costs are adjusted according to the 
number of years of deferment. In the project selection process, the deferred projects would 
compete for funding with other unaffected projects in the newly designated implementation 
years using the adjusted project benefits and costs.  

3.3 Model solution algorithm 
This section first presents a theorem of Lagrange multipliers and briefly discusses the 
essential part of the proposed heuristic algorithm extended from the heuristic of Volgenant 
and Zoon (1990), which uses two Lagrange multipliers, on how (suboptimal) values for 
multiple Lagrange multipliers can be determined. It then discusses the improvement of the 
upper bound for the optimum of the proposed model. 

Theorem of the Lagrange multipliers 
The stage L optimization can be reformulated as  

Objective maximize z(XL) =AT.XL (21) 
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Subject to CktT.XL≤BktL (22) 

where XL is stage L decision vector with zero/one integer elements for rejecting or selecting 
individual projects. 
Given non-negative, real Lagrange multipliers λkt, the Lagrange relaxation of (21), zLR(λkt), 
can be written as  

Objective zLR(λkt)  = maximize ( )[ ]X.C-B.λ+X.A ∑∑
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Subject to XL with zero/one integer elements. 
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first term, namely, maximizing 

  ( )( ) LX.∑
K

1=k
∑
M

1=t
T
ktC.ktλ-TA .  (24) 

The solution to (24) is XL*, where  
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Then, XL* maximizes z(YL) =AT.XL, subject to XL with zero/one integer elements. 
In order to obtain optimal solution by maximizing z(XL) =AT.XL, only subject to XL with 
zero/one integer elements, the following condition needs to be satisfied 

  ( )
K M

L T
kt kt kt L

k=1 t=1
λ . B -C .X 0⎡ ⎤ =⎢ ⎥⎣ ⎦∑∑  (26) 

In this regard, stage L optimization operations need to focus on determining Lagrange 
multipliers λkt such that i) XL* obtained in (25) is feasible to the original model, i.e., 
CktT.XL≤BktL is valid, and ii) condition (26) is satisfied to maintain optimality to the original 
model as Equations (21) and (22).   
The Heuristic Algorithm 
At the recourse decision stage L, the heuristic initializes the Lagrange multiplier values to 
zero and all variables to the value one so that Equation (25) is satisfied. In general this 
solution is not feasible, because constraints of the proposed model as Equation (22) are 
violated. In each of the iterations, the constraint that has the largest ratio of the remaining 
total benefits and costs is first determined. Then the corresponding multiplier value is 
increased as much as necessary to violate Equation (25) for just one variable, the variable 
will be reset to zero. This step is repeated until the solution has become feasible. An 
improvement step ‘polishes’ the solution obtained.    
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segment-based “project groups” or corridor-based “grand project groups”, they are still 
treated as stand-alone projects with unique decision variables assigned.  
Suppose that N candidate projects are classified as 1, 2, … i isolated projects and S1, S2, S3, 
S4,…, Sg-2, Sg-1, Sg segment-based “project groups”. The corresponding decision vector in 
stage L decisions is XL(p)= [x1, x2,…, xi, xS1, xS2, xS3, xS4,…, xSg-2, xSg-1, xSg]T (L = 1, 2,…, Ω). 
Further assume that all projects in “project groups” S2 and S3 are in one freeway corridor 
and all projects in “project groups” Sg-1 and Sg are in one urban arterial corridor. This creates 
two corridor-based “grand project groups” for possible implementation: “grand project 
group” C1 that combines “project groups” S2 and S3; and “grand project group” C2 that joins 
“project groups” Sg-1 and Sg. Hence, the decision vector in stage L decisions XL(p)= [x1, x2,…, 
xi, xS1, xS2, xS3, xS4,…, xSg-2, xSg-1, xSg]T in the stochastic model that uses segment-based project 
implementation approach for project selection is further reduced to XL(p)= [x1, x2,…, xi, xS1, 
xC1, xS4,…, xSg-2, xC2]T (L = 1, 2,…, Ω).  
This implies that the enhanced stochastic model incorporating segment-based project 
implementation approach can still be used for the stochastic model utilizing corridor-based 
project implementation approach. However, the size of the decision vector XL(p) is reduced 
from having (i+g) decision variables to (i+g-2) decision variables. Each decision variable still 
takes a 0/1 integer value representing the rejection/ selection of an isolated project, multiple 
projects in a segment-based “project group” or multiple projects in a corridor-based “grand 
project group”. The benefits of all constituent projects of each corridor-based “grand project 
group” are directly added together to obtain the overall benefits of the “grand project group”.   
Deferment-Based Project Implementation Approach. As discussed in the problem statement 
section, some large-scale projects may have a high risk of being deferred for a few years due 
to various reasons. In this study, the proposed deferment-based project implementation 
approach considers a fixed number of years of delays in implementing large-scale projects 
with project costs exceeding a threshold value.  
In the application of the deferment-based project implementation approach, the basic 
stochastic model essentially remains unchanged and the decision vector in stage L decisions 
XL(p)= [x1, x2,…, xN]T in the stochastic model is kept the same. For projects involving 
deferred implementation, the project benefits and costs are adjusted according to the 
number of years of deferment. In the project selection process, the deferred projects would 
compete for funding with other unaffected projects in the newly designated implementation 
years using the adjusted project benefits and costs.  

3.3 Model solution algorithm 
This section first presents a theorem of Lagrange multipliers and briefly discusses the 
essential part of the proposed heuristic algorithm extended from the heuristic of Volgenant 
and Zoon (1990), which uses two Lagrange multipliers, on how (suboptimal) values for 
multiple Lagrange multipliers can be determined. It then discusses the improvement of the 
upper bound for the optimum of the proposed model. 

Theorem of the Lagrange multipliers 
The stage L optimization can be reformulated as  

Objective maximize z(XL) =AT.XL (21) 
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Subject to CktT.XL≤BktL (22) 

where XL is stage L decision vector with zero/one integer elements for rejecting or selecting 
individual projects. 
Given non-negative, real Lagrange multipliers λkt, the Lagrange relaxation of (21), zLR(λkt), 
can be written as  

Objective zLR(λkt)  = maximize ( )[ ]X.C-B.λ+X.A ∑∑
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Subject to XL with zero/one integer elements. 
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ktkt Bλ  in (23) is a constant, optimization can just be concentrated on the 

first term, namely, maximizing 
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The solution to (24) is XL*, where  

   ( )
K M

kt*
L k 1 t 1

1, if A λ 0
X

0, otherwise

T L
ktC

= =

⎧ ⎛ ⎞
− ⋅ >⎪ ⎜ ⎟⎜ ⎟= ⎨ ⎝ ⎠

⎪
⎩

∑∑  (25) 

Then, XL* maximizes z(YL) =AT.XL, subject to XL with zero/one integer elements. 
In order to obtain optimal solution by maximizing z(XL) =AT.XL, only subject to XL with 
zero/one integer elements, the following condition needs to be satisfied 

  ( )
K M

L T
kt kt kt L

k=1 t=1
λ . B -C .X 0⎡ ⎤ =⎢ ⎥⎣ ⎦∑∑  (26) 

In this regard, stage L optimization operations need to focus on determining Lagrange 
multipliers λkt such that i) XL* obtained in (25) is feasible to the original model, i.e., 
CktT.XL≤BktL is valid, and ii) condition (26) is satisfied to maintain optimality to the original 
model as Equations (21) and (22).   
The Heuristic Algorithm 
At the recourse decision stage L, the heuristic initializes the Lagrange multiplier values to 
zero and all variables to the value one so that Equation (25) is satisfied. In general this 
solution is not feasible, because constraints of the proposed model as Equation (22) are 
violated. In each of the iterations, the constraint that has the largest ratio of the remaining 
total benefits and costs is first determined. Then the corresponding multiplier value is 
increased as much as necessary to violate Equation (25) for just one variable, the variable 
will be reset to zero. This step is repeated until the solution has become feasible. An 
improvement step ‘polishes’ the solution obtained.    



 Stochastic Optimization - Seeing the Optimal for the Uncertain 

 

338 

Denote X*L is the optimal decision vector at stage L, s(X’(L-1))is the set of projects selected at 
stage L-1, s(X’L) is the set of projects selected at stage L, S(X’L) is the set of projects selected at 
stage L-1 so that each of these projects has at least uses budegt from year 1 to t(L-1), where 
budget at stage L remains the same as that at stage L-1 for period from year 1 to t(L-1), which 
means that project i Є s(X’(L-1)) and cikt >0 for any k and at least one t (t =1, 2 … t(L-1)) and 
S(X’L)⊆ s(X’(L-1)), and S(X”L) is the set of projects not selected at stage L-1, or selected projects 
that do not use budget between year 1 and year t(L-1) (complement of S(X’L)). In full, the 
heuristic has the following steps: 
Step 0 (initialize and normalize) 

- For stage 1, set X*0 = {0, 0, …, 0} (No project selected at stage 0). Hence, s(X’0) = S(X’1) =φ. 
- For stage L, use budget BktL = BktL(p) for computation such that ΔBL(p)= min 

{ ( ) ( )[ ]∑∑
K

1=k

M

1=t

2L
kt

L
kt BE-pB } and perform the following calculations for project i Є S(X’L): i) sort 

the projects by benefits (Ai) in descending order, set λkt = 0 for all k, t and xi = 1; ii) 

normalize cost and budget matrices by setting 
L
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ikt B

c
=c'  for all k, t and BktL = 1 for all k, 

t; and iii) compare sum of normalized costs with normalized budgets ∑
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'
iktkt cC . If 

1≤ktC  for all k, t, go to Step 4. Otherwise, go to Step 1. 

Step 1 (determine the most violated constraint k, t) 

Set C’kt = maximum {Ckt} for all k, t 
Step 2 (compute the increase of Lagrange multiplier value λkt) 
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 for all project i Є S(X’L) 

Select project i Є S(X’L) that has the minimum θi and let θ’i = min{θ1, θ2,…, θi,…} 

Step 3 (increase λkt by ( )'
ktkt

'
i /CC.θ  and reset xi the value zero) 

Let 
⎟
⎟
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⎞
⎜
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⎝

⎛
+=

'
kt

kt
i
'

ktkt
C
C
.θλλ  and Ckt = Ckt - c’ikt for all k, t;  

Reset xi = 0 for project i Є S(X’L) and shift project i from S(X’L) to S(X”L)   
If 1≤ktC  for all k, t, go to Step 4. Otherwise, go to Step 1. 

Step 4 (improve the solution) 

For the feasible solution obtained in Step 3, check whether the projects with zero-
variable values can have the value one without violating the constraints 1≤ktC . When 
this is the case, choose the project with highest benefits and add it to the selected project 
list. Repeat this step until no project with zero-variable value can be found and stop. 
Update the set of projects selected at stage L, s(X’L)= {i| for all xi = 1}, and this 
establishes an improved solution. 
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Step 5 (further improved solution with budget carryover) 
In each year of the multiyear project implementation period, a small amount of budget 
might be left after project selection. Such amount could be carried over to the 
immediate following year one year at a time to repeat Steps 1 to 4 to further improve 
the solution. Update the set of projects selected at stage L, s(X’L)= {i| for all xi = 1}, and 
this finds an improved solution with budget carryover. 
If L = Ω, stop. X*L is final. Otherwise, repeat Steps 1-5. 

The budget categories K and project implementation years M are much smaller than number 
of projects N. Practically, 3 budget possibilities for each year may be considered to represent 
low, medium, and high budget levels. This gives possible budget combinations for stages 1, 
2, 3,…, and Ω to be p1=1, p2=3M-1, p3=3M-2, …with stage 2 having the highest possible 
combinations. At each stage, the computational complexity for executing Steps 1-4 is 
O(MN2) and the extended Step 5 for budget carryover require M iterations. The Ω-stage 
recourses need at most M iterations. Thus, the computing time of the heuristic is O(M3N2).  

3.4 Improvements of the upper bound  
Let XLs be the solution obtained in Step 3 of the above algorithm, we could substitute this 
solution to Equation (23). Then, an upper bound for the objective function zU is given by 

 ( )[ ]∑∑
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ktktkt
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TU X.C-B.λ+X.A=z  (27) 

The upper bound depends on the non-violated budget constraints with positive Lagrange 
multipliers. At the beginning of each iteration, suppose that more than one non-violated 
constraints have positive Lagrange multipliers. Denote Is be the index of the constraint with 
the largest value of ( )s

L
T
ktktkt X.C-B.λ . The question is then whether the value of Lagrange 

multiplier λkt(Is) can be chosen smaller so that the influence of constraint Is in the 
computation of the upper bound for the objective function is reduced. Obviously, there is no 
influence if the multiplier value is set to zero. However, if a smaller value of λkt(Is) is used, 
some other Lagrange multiplier value must be increased in order to satisfy the condition in 
Equation (18). In the proposed algorithm, we have heuristically chosen the multiplier λkt(i’) 

that is associated with the selected project maintaining the least extent of loss in “benefit-to-
cost” ratio if removed, where the index i' is determined by θ’i = min{θ1, θ2,…, θi,…} in Step 2.   
In the execution of the proposed algorithm, only the decision variable xi with the value one 
is set to zero, i.e., a project selected previously is removed in the current iteration. For the 
two non-violated constraints with positive multipliers λkt(Is) and λkt(i'), the tradeoffs of 
decreasing λkt(Is) and increasing λkt(i') satisfy the following conditions: 
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where α1 and α2 are respective changes in the values of λkt(Is) and λkt(i'). 
For a specific project i with xi= 1, the decision variable xi will be changed from one to zero 
only when Equation (29) holds with equality. For the purpose of determining (α1, α2) pair, 
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Denote X*L is the optimal decision vector at stage L, s(X’(L-1))is the set of projects selected at 
stage L-1, s(X’L) is the set of projects selected at stage L, S(X’L) is the set of projects selected at 
stage L-1 so that each of these projects has at least uses budegt from year 1 to t(L-1), where 
budget at stage L remains the same as that at stage L-1 for period from year 1 to t(L-1), which 
means that project i Є s(X’(L-1)) and cikt >0 for any k and at least one t (t =1, 2 … t(L-1)) and 
S(X’L)⊆ s(X’(L-1)), and S(X”L) is the set of projects not selected at stage L-1, or selected projects 
that do not use budget between year 1 and year t(L-1) (complement of S(X’L)). In full, the 
heuristic has the following steps: 
Step 0 (initialize and normalize) 

- For stage 1, set X*0 = {0, 0, …, 0} (No project selected at stage 0). Hence, s(X’0) = S(X’1) =φ. 
- For stage L, use budget BktL = BktL(p) for computation such that ΔBL(p)= min 
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kt BE-pB } and perform the following calculations for project i Є S(X’L): i) sort 

the projects by benefits (Ai) in descending order, set λkt = 0 for all k, t and xi = 1; ii) 

normalize cost and budget matrices by setting 
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t; and iii) compare sum of normalized costs with normalized budgets ∑
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1≤ktC  for all k, t, go to Step 4. Otherwise, go to Step 1. 

Step 1 (determine the most violated constraint k, t) 

Set C’kt = maximum {Ckt} for all k, t 
Step 2 (compute the increase of Lagrange multiplier value λkt) 
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 for all project i Є S(X’L) 

Select project i Є S(X’L) that has the minimum θi and let θ’i = min{θ1, θ2,…, θi,…} 

Step 3 (increase λkt by ( )'
ktkt
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i /CC.θ  and reset xi the value zero) 

Let 
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Reset xi = 0 for project i Є S(X’L) and shift project i from S(X’L) to S(X”L)   
If 1≤ktC  for all k, t, go to Step 4. Otherwise, go to Step 1. 

Step 4 (improve the solution) 

For the feasible solution obtained in Step 3, check whether the projects with zero-
variable values can have the value one without violating the constraints 1≤ktC . When 
this is the case, choose the project with highest benefits and add it to the selected project 
list. Repeat this step until no project with zero-variable value can be found and stop. 
Update the set of projects selected at stage L, s(X’L)= {i| for all xi = 1}, and this 
establishes an improved solution. 
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Step 5 (further improved solution with budget carryover) 
In each year of the multiyear project implementation period, a small amount of budget 
might be left after project selection. Such amount could be carried over to the 
immediate following year one year at a time to repeat Steps 1 to 4 to further improve 
the solution. Update the set of projects selected at stage L, s(X’L)= {i| for all xi = 1}, and 
this finds an improved solution with budget carryover. 
If L = Ω, stop. X*L is final. Otherwise, repeat Steps 1-5. 

The budget categories K and project implementation years M are much smaller than number 
of projects N. Practically, 3 budget possibilities for each year may be considered to represent 
low, medium, and high budget levels. This gives possible budget combinations for stages 1, 
2, 3,…, and Ω to be p1=1, p2=3M-1, p3=3M-2, …with stage 2 having the highest possible 
combinations. At each stage, the computational complexity for executing Steps 1-4 is 
O(MN2) and the extended Step 5 for budget carryover require M iterations. The Ω-stage 
recourses need at most M iterations. Thus, the computing time of the heuristic is O(M3N2).  

3.4 Improvements of the upper bound  
Let XLs be the solution obtained in Step 3 of the above algorithm, we could substitute this 
solution to Equation (23). Then, an upper bound for the objective function zU is given by 
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The upper bound depends on the non-violated budget constraints with positive Lagrange 
multipliers. At the beginning of each iteration, suppose that more than one non-violated 
constraints have positive Lagrange multipliers. Denote Is be the index of the constraint with 
the largest value of ( )s

L
T
ktktkt X.C-B.λ . The question is then whether the value of Lagrange 

multiplier λkt(Is) can be chosen smaller so that the influence of constraint Is in the 
computation of the upper bound for the objective function is reduced. Obviously, there is no 
influence if the multiplier value is set to zero. However, if a smaller value of λkt(Is) is used, 
some other Lagrange multiplier value must be increased in order to satisfy the condition in 
Equation (18). In the proposed algorithm, we have heuristically chosen the multiplier λkt(i’) 

that is associated with the selected project maintaining the least extent of loss in “benefit-to-
cost” ratio if removed, where the index i' is determined by θ’i = min{θ1, θ2,…, θi,…} in Step 2.   
In the execution of the proposed algorithm, only the decision variable xi with the value one 
is set to zero, i.e., a project selected previously is removed in the current iteration. For the 
two non-violated constraints with positive multipliers λkt(Is) and λkt(i'), the tradeoffs of 
decreasing λkt(Is) and increasing λkt(i') satisfy the following conditions: 
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where α1 and α2 are respective changes in the values of λkt(Is) and λkt(i'). 
For a specific project i with xi= 1, the decision variable xi will be changed from one to zero 
only when Equation (29) holds with equality. For the purpose of determining (α1, α2) pair, 
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two conditions must be satisfied: i) α1 is maximal; and ii) Equation (29) holds with equality. 
Having obtained the values of α1 and α2, a project i with xi= 1 that satisfies the equality 
condition is removed by setting its decision variable xi to zero. The values of α1 and α2 can be 
determined by the following procedure: 
The inequalities in (28) and (29) define the lower and upper boundaries of the feasible 
region for (α1, α2) pair. The lower bound function fL(α1) and upper bound function fU(α1) for 
α1, can be defined as 
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This is identical to determine the α1 value such that the function g(α1)= fU(α1)- fL(α1) reaches 
zero value. The function is continuous and piecewise linear that requires a computational 
complexity of O(N), where N is total number of projects. A numerical method that combines 
the secant and bisection methods for the computation of zero of the function g(α1) can be 
found in Bus and Dekker (1975). 

4. Impacts of the proposed method and model on project evaluation and 
selection 
4.1 Comparison of estimated project benefits for project-level impact assessments  
Project-level impact assessments compare project level life-cycle benefits separately estimated 
using the deterministic, risk-based, and the uncertainty-based project level life-cycle cost 
analysis approaches. For the application of deterministic project level life-cycle benefit/cost 
analysis, project benefits are calculated by assuming that all input factors are under certainty 
and each input factor has a single value. These values are directly used for the computation.  
For the application of risk-based project level life-cycle benefit/cost analysis, project benefits 
are calculated by assuming that input factors regarding unit rates of construction, 
rehabilitation, and maintenance treatments, traffic growth rates, and discount rates are all 
under risk. The remaining input factors such as pavement or bridge service life and timing 
of treatments are still treated as being under certainty with single values. Monte Carlo 
simulations are executed to establish the grand average values of simulation outputs as 
mathematical expectations of input factors under risk. The single values of input factors 
under certainty and the grand average values of input factors under risk are used for the 
computation.  
For the application of the uncertainty-based methodology, project benefits are calculated by 
assuming that the input factors regarding unit rates of construction, rehabilitation, and 
maintenance treatments, traffic growth rates, and discount rates are all under uncertainty or 
under mixed cases of risk and uncertainty. The remaining input factors are still considered 
under certainty with single values. For the input factor under risk, the grand average value 
as the mathematical expectation is established using Monte Carlo simulation outputs. For 
the input factor under uncertainty, the grand average value of simulation outputs is 
adjusted according to the preset decision rule. The single values of input factors under 
certainty, the grand average values of input factors under risk, and the adjusted grand 
average values of input factors under uncertainty are used for the computation.  
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4.2 Comparison of project selection for network-level impact assessments 
In order to assess the network-level impacts of adopting different approaches for project 
benefit estimation, the three sets of project benefits computed using the deterministic, risk-
based, and uncertainty-based approaches are separately applied to a stochastic optimization 
model for network-level project selection. The network-level impacts are assessed by cross 
comparison of the overall benefits of selected projects and consistency matching rates of 
project selection using the three different sets of project benefits with the actual project 
selection and programming practice. This section briefly discusses the stochastic 
optimization formulation for finding the optimal subset of highway projects from all 
candidate projects to achieve maximized total project level life-cycle benefits where there is 
stochasticity in the available budget.  
Consider a state transportation agency that carries out highway network-level project 
selection over a future project implementation period of tΩ years. The agency makes first 
round of investment decisions many years prior to project implementation using an 
estimated budget for all years. With time elapsing, updated budget information on the first 
few years of the multi-year project selection and programming period becomes available 
that motivates the agency to refine the investment decisions. In each refined decision-
making process, the annual budget for the first few years that can be accurately determined 
is treated as a deterministic value, while the budget for the remaining years without 
accurate information is still handled as a stochastic budget.  

5. A computational study 
A computational study is conducted to examine the impacts of using deterministic, risk-
based, and uncertainty-based project level life-cycle cost analysis approaches on computing 
the benefits of individual highway projects. The computed project benefits are used to assess 
the network-level impacts of adopting different project level life-cycle cost analysis 
approaches on project selection results.  

5.1 Data sources 
Data collection and processing for highway project evaluation  
For assessing the project-level impacts of using deterministic, risk-based, and uncertainty 
based project level life-cycle cost analysis approaches for project benefit estimation, 
historical data on the Indiana state highways for period 1990-2006 were collected to establish 
the base case life-cycle activity profiles and annual user cost profiles for different types of 
pavements and bridges. The data items collected mainly included project type and size; unit 
rates of construction, rehabilitation, and maintenance treatments; unite rates of vehicle 
operating costs, travel time, crashes, and air emissions; traffic volume and growth rates; 
discount rates, etc. Table 2 presents Beta distribution parameters established for those 
factors on the basis of historical data.  
Furthermore, eleven-year data on 7,380 candidate projects (grouped into 5,068 contracts) 
proposed for Indiana state highway programming during 1996-2006 were collected for 
applying the deterministic, risk-based, and uncertainty based project level life-cycle cost 
analysis approaches for project benefit estimation. For each pavement or bridge project, base 
case and alternative case life-cycle activity profiles and annual user cost profiles were 
established. As described in the proposed methodology, the agency benefits and user 
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two conditions must be satisfied: i) α1 is maximal; and ii) Equation (29) holds with equality. 
Having obtained the values of α1 and α2, a project i with xi= 1 that satisfies the equality 
condition is removed by setting its decision variable xi to zero. The values of α1 and α2 can be 
determined by the following procedure: 
The inequalities in (28) and (29) define the lower and upper boundaries of the feasible 
region for (α1, α2) pair. The lower bound function fL(α1) and upper bound function fU(α1) for 
α1, can be defined as 
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This is identical to determine the α1 value such that the function g(α1)= fU(α1)- fL(α1) reaches 
zero value. The function is continuous and piecewise linear that requires a computational 
complexity of O(N), where N is total number of projects. A numerical method that combines 
the secant and bisection methods for the computation of zero of the function g(α1) can be 
found in Bus and Dekker (1975). 

4. Impacts of the proposed method and model on project evaluation and 
selection 
4.1 Comparison of estimated project benefits for project-level impact assessments  
Project-level impact assessments compare project level life-cycle benefits separately estimated 
using the deterministic, risk-based, and the uncertainty-based project level life-cycle cost 
analysis approaches. For the application of deterministic project level life-cycle benefit/cost 
analysis, project benefits are calculated by assuming that all input factors are under certainty 
and each input factor has a single value. These values are directly used for the computation.  
For the application of risk-based project level life-cycle benefit/cost analysis, project benefits 
are calculated by assuming that input factors regarding unit rates of construction, 
rehabilitation, and maintenance treatments, traffic growth rates, and discount rates are all 
under risk. The remaining input factors such as pavement or bridge service life and timing 
of treatments are still treated as being under certainty with single values. Monte Carlo 
simulations are executed to establish the grand average values of simulation outputs as 
mathematical expectations of input factors under risk. The single values of input factors 
under certainty and the grand average values of input factors under risk are used for the 
computation.  
For the application of the uncertainty-based methodology, project benefits are calculated by 
assuming that the input factors regarding unit rates of construction, rehabilitation, and 
maintenance treatments, traffic growth rates, and discount rates are all under uncertainty or 
under mixed cases of risk and uncertainty. The remaining input factors are still considered 
under certainty with single values. For the input factor under risk, the grand average value 
as the mathematical expectation is established using Monte Carlo simulation outputs. For 
the input factor under uncertainty, the grand average value of simulation outputs is 
adjusted according to the preset decision rule. The single values of input factors under 
certainty, the grand average values of input factors under risk, and the adjusted grand 
average values of input factors under uncertainty are used for the computation.  
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4.2 Comparison of project selection for network-level impact assessments 
In order to assess the network-level impacts of adopting different approaches for project 
benefit estimation, the three sets of project benefits computed using the deterministic, risk-
based, and uncertainty-based approaches are separately applied to a stochastic optimization 
model for network-level project selection. The network-level impacts are assessed by cross 
comparison of the overall benefits of selected projects and consistency matching rates of 
project selection using the three different sets of project benefits with the actual project 
selection and programming practice. This section briefly discusses the stochastic 
optimization formulation for finding the optimal subset of highway projects from all 
candidate projects to achieve maximized total project level life-cycle benefits where there is 
stochasticity in the available budget.  
Consider a state transportation agency that carries out highway network-level project 
selection over a future project implementation period of tΩ years. The agency makes first 
round of investment decisions many years prior to project implementation using an 
estimated budget for all years. With time elapsing, updated budget information on the first 
few years of the multi-year project selection and programming period becomes available 
that motivates the agency to refine the investment decisions. In each refined decision-
making process, the annual budget for the first few years that can be accurately determined 
is treated as a deterministic value, while the budget for the remaining years without 
accurate information is still handled as a stochastic budget.  

5. A computational study 
A computational study is conducted to examine the impacts of using deterministic, risk-
based, and uncertainty-based project level life-cycle cost analysis approaches on computing 
the benefits of individual highway projects. The computed project benefits are used to assess 
the network-level impacts of adopting different project level life-cycle cost analysis 
approaches on project selection results.  

5.1 Data sources 
Data collection and processing for highway project evaluation  
For assessing the project-level impacts of using deterministic, risk-based, and uncertainty 
based project level life-cycle cost analysis approaches for project benefit estimation, 
historical data on the Indiana state highways for period 1990-2006 were collected to establish 
the base case life-cycle activity profiles and annual user cost profiles for different types of 
pavements and bridges. The data items collected mainly included project type and size; unit 
rates of construction, rehabilitation, and maintenance treatments; unite rates of vehicle 
operating costs, travel time, crashes, and air emissions; traffic volume and growth rates; 
discount rates, etc. Table 2 presents Beta distribution parameters established for those 
factors on the basis of historical data.  
Furthermore, eleven-year data on 7,380 candidate projects (grouped into 5,068 contracts) 
proposed for Indiana state highway programming during 1996-2006 were collected for 
applying the deterministic, risk-based, and uncertainty based project level life-cycle cost 
analysis approaches for project benefit estimation. For each pavement or bridge project, base 
case and alternative case life-cycle activity profiles and annual user cost profiles were 
established. As described in the proposed methodology, the agency benefits and user 
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Beta Distribution Parameters Input Factors Mean Standard 
Deviation L H α β 

Flexible Pavement 
Cost (1990, $/lane-
mile) 

Construction  
Rehabilitation 
Resurfacing 
Routine 
maintenance 

1,353,537
  155,287 

52,938 
138 

694,614 
509,879 
 19,689

 499

 588,385 
   29,147 
    26,364

 4 

3,165,840 
 1,119,863

101,602
2,186 

2.49 
 2.56 
 2.56 
 2.27 

 4.50 
 4.50 
 4.50 
 4.50 

Rigid Pavement Cost 
(1990, $/lane-mile) 

Construction 
Rehabilitation 
Routine 
maintenance 

1,334,841 
383,704

323 

 763,709
 242,260

 204

  674,299
    57,952

4

 2,947,173
 2,052,896

  1,981

 2.25 
 2.41 
 3.10 

 4.50 
 4.50 
 4.50 

All Pavement Cost 
(1990, $/lane-mile) 

Preventive 
maintenance 

  4,120    6,544 186    21,999  2.56  4.50 

Concrete Bridge Cost 
(1990, $/ft2) 

Deck 
Superstructure 
Substructure 

   62 
 110 
 115 

    42
   82
   92

  0.1 
 0.2 
  0.1 

  387
  372
   372

2.39 
 2.39 
 2.39 

4.50 
 4.50 
 4.50 

Steel Bridge Cost 
(1990, $/ft2) 

Deck 
Superstructure 
Substructure 

  86
  171
  206 

  59
   75
  99

 0.4 
0.4 
0.4 

  734
   734
 734

 2.17 
 2.17 
2.17 

 4.50 
 4.50 
4.50 

Annual Routine Maintenance Growth 3% 1% 1% 5% 4.50 4.50 

Annual Traffic Growth 2% 1% 1% 3% 4.50 4.50 

Discount Rate 4% 1% 3% 5% 4.50 4.50 

Table 2. Input Values of Factors for Risk and Uncertainty-Based Project Benefit Analysis 

benefits associated with reduction in vehicle operating costs, shortening of travel time, 
decrease in vehicle crashes, and cutback of vehicle air emissions for each project were 
separately estimated by comparing the respective base case and alternative case life-cycle 
profiles. For the application of the deterministic life-cycle cost analysis approach, the single 
values of all input factors were utilized for estimating the project level life-cycle benefits. 
For the application of the risk-based life-cycle cost analysis approach, Beta distribution 
parameter values for the input factors regarding unit rates of construction, rehabilitation, 
and maintenance treatments; traffic growth rates; and discount rates were applied in 10 
simulation runs, each with 1,000 iterations using the @RISK software, Version 4.5 (Palisade, 
2007). The Latin Hypercube stratified sampling technique was used in the simulations to 
reach faster convergence. The grand average of simulation runs for each risk factor was 
adopted for computing the mathematical expectations of agency benefits and user benefits.   
When conducting risk-based analysis, it was found that project benefits related to decrease 
in agency costs, reduction in vehicle operating costs, and cutback of vehicle air emissions 
were not very sensitive to the variations of simulation outputs of the input factors under 
risk. However, travel time and vehicle crash reductions varied considerably with the 
simulation outputs of the factors. For this reason, the project user benefits concerning travel 
time and vehicle crash reductions were further estimated using the uncertainty-based 
analysis approach. Specifically, the grand average values of simulation runs for unit rates of 
construction, rehabilitation, and maintenance treatments, traffic growth rates, and discount 
rates were adjusted according to the preset decision rules as the proposed methodology for 
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uncertainty-based analysis. The adjusted values were used to compute the benefits of travel 
time and vehicle crash reductions under uncertainty.  
Data Collection and Processing for Network-Level Highway Project Selection    
The three sets of project level life-cycle benefits estimated for the 7,380 candidate projects 
were used to assess the network-level impacts of using deterministic, risk-based, and 
uncertainty-based project level life-cycle cost analysis approaches for estimating project 
benefits on project selection results.  
Additional data on available budgets by highway asset management program and by project 
implementation year for period 1996-2006 were collected. The annual average budget was 
approximately 700 million dollars with 4 percent increment per year. The initially estimated 
budget for the project implementation period was found to have being updated three times by 
the Indiana Department of Transportation (DOT). This provided 4-stage budget recourses in 
the application of the stochastic optimization model for project section. The budget 
adjustments were mainly made on pavement preservation, bridge preservation, system 
expansion, and maintenance programs, with changes varying from -32 percent to +60 percent.  
Optimization Model Solution 
For the purpose of this computational study, the solution algorithm developed based on the 
LaGrangian relaxation technique was implemented using a customized computer code. 

5.2 Summary of estimated project level life-cycle benefits 
Table 3 lists project level life-cycle benefits of some pavement and bridge projects. On 
average, the present worth amounts of project level life-cycle benefits estimated using  
 

Project Benefits Estimated under Contract 
No. 

Let 
Year 

Lane
s 

Length
(Miles)

 
AADT

 
Work Type 

Project 
Cost Certainty Risk Uncertainty 

12021 2000 4 0.11 69,200 Bridge widening 2,291,000 6,959,434 11,703,264 11,703,264 
12040 2000 4 0.50 32,630 Pavement resurfacing 4,620,000 4,776,319 6,927,669 6,365,844 
12077 2000 2 2.06 3,170 Pavement resurfacing 3,000,000 9,436,804 15,545,501 15,545,501 
12158 1999 2 3.70 16,770 Added travel lanes 750,000 3,036,253 5,405,621 4,806,134 
20694 1996 2 1.34 3,420 Flexible pave. replace 51,000 43,704 131,989 131,989 

21743 1996 4 0.40 25,310 Pavement 
rehabilitation 696,000 1,271,574 1,878,375 1,878,375 

21749 1998 2 13.63 4,190 Pavement resurfacing 11,573,000 38,024,319 63,943,225 63,943,225 

21825 1996 4 2.53 11,150 Pavement 
rehabilitation 151,000 504,574 1,033,274 1,505,738 

21931 1996 4 0.78 2,664 Rigid pavement replace 196,000 705,235 736,046 736,046 

21944 1996 2 9.46 1,100 Pavement 
rehabilitation 131,000 239,334 353,545 353,545 

22026 1996 2 0.15 8,291 Bridge widening 108,000 267,380 299,746 254,516 
22032 1996 4 6.30 12,274 Pavement resurfacing 754,000 1,743,188 2,753,259 2,559,337 
22044 1996 2 1.10 13,994 Pavement resurfacing 2,757,000 6,169,067 6,773,242 5,702,627 

22119 1998 4 0.10 27,700 Pavement 
rehabilitation 264,000 445,933 658,734 658,734 

22264 1996 2 1.13 7,843 Pavement resurfacing 1,226,000 3,566,566 7,164,611 6,450,209 
… … … … … … … … … … 

Table 3. Project Level Life-Cycle Benefits of Some Pavement and Bridge Projects Computed 
Using Deterministic, Risk-Based, and Uncertainty-Based Analysis Approaches (1990 
Constant Dollars) 



 Stochastic Optimization - Seeing the Optimal for the Uncertain 

 

342 

Beta Distribution Parameters Input Factors Mean Standard 
Deviation L H α β 

Flexible Pavement 
Cost (1990, $/lane-
mile) 

Construction  
Rehabilitation 
Resurfacing 
Routine 
maintenance 

1,353,537
  155,287 

52,938 
138 

694,614 
509,879 
 19,689

 499

 588,385 
   29,147 
    26,364

 4 

3,165,840 
 1,119,863

101,602
2,186 

2.49 
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 2.56 
 2.27 

 4.50 
 4.50 
 4.50 
 4.50 

Rigid Pavement Cost 
(1990, $/lane-mile) 

Construction 
Rehabilitation 
Routine 
maintenance 

1,334,841 
383,704

323 

 763,709
 242,260

 204

  674,299
    57,952

4

 2,947,173
 2,052,896

  1,981

 2.25 
 2.41 
 3.10 

 4.50 
 4.50 
 4.50 

All Pavement Cost 
(1990, $/lane-mile) 

Preventive 
maintenance 

  4,120    6,544 186    21,999  2.56  4.50 

Concrete Bridge Cost 
(1990, $/ft2) 

Deck 
Superstructure 
Substructure 

   62 
 110 
 115 

    42
   82
   92

  0.1 
 0.2 
  0.1 

  387
  372
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2.39 
 2.39 
 2.39 

4.50 
 4.50 
 4.50 

Steel Bridge Cost 
(1990, $/ft2) 

Deck 
Superstructure 
Substructure 

  86
  171
  206 

  59
   75
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 0.4 
0.4 
0.4 

  734
   734
 734

 2.17 
 2.17 
2.17 

 4.50 
 4.50 
4.50 

Annual Routine Maintenance Growth 3% 1% 1% 5% 4.50 4.50 

Annual Traffic Growth 2% 1% 1% 3% 4.50 4.50 

Discount Rate 4% 1% 3% 5% 4.50 4.50 

Table 2. Input Values of Factors for Risk and Uncertainty-Based Project Benefit Analysis 

benefits associated with reduction in vehicle operating costs, shortening of travel time, 
decrease in vehicle crashes, and cutback of vehicle air emissions for each project were 
separately estimated by comparing the respective base case and alternative case life-cycle 
profiles. For the application of the deterministic life-cycle cost analysis approach, the single 
values of all input factors were utilized for estimating the project level life-cycle benefits. 
For the application of the risk-based life-cycle cost analysis approach, Beta distribution 
parameter values for the input factors regarding unit rates of construction, rehabilitation, 
and maintenance treatments; traffic growth rates; and discount rates were applied in 10 
simulation runs, each with 1,000 iterations using the @RISK software, Version 4.5 (Palisade, 
2007). The Latin Hypercube stratified sampling technique was used in the simulations to 
reach faster convergence. The grand average of simulation runs for each risk factor was 
adopted for computing the mathematical expectations of agency benefits and user benefits.   
When conducting risk-based analysis, it was found that project benefits related to decrease 
in agency costs, reduction in vehicle operating costs, and cutback of vehicle air emissions 
were not very sensitive to the variations of simulation outputs of the input factors under 
risk. However, travel time and vehicle crash reductions varied considerably with the 
simulation outputs of the factors. For this reason, the project user benefits concerning travel 
time and vehicle crash reductions were further estimated using the uncertainty-based 
analysis approach. Specifically, the grand average values of simulation runs for unit rates of 
construction, rehabilitation, and maintenance treatments, traffic growth rates, and discount 
rates were adjusted according to the preset decision rules as the proposed methodology for 
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uncertainty-based analysis. The adjusted values were used to compute the benefits of travel 
time and vehicle crash reductions under uncertainty.  
Data Collection and Processing for Network-Level Highway Project Selection    
The three sets of project level life-cycle benefits estimated for the 7,380 candidate projects 
were used to assess the network-level impacts of using deterministic, risk-based, and 
uncertainty-based project level life-cycle cost analysis approaches for estimating project 
benefits on project selection results.  
Additional data on available budgets by highway asset management program and by project 
implementation year for period 1996-2006 were collected. The annual average budget was 
approximately 700 million dollars with 4 percent increment per year. The initially estimated 
budget for the project implementation period was found to have being updated three times by 
the Indiana Department of Transportation (DOT). This provided 4-stage budget recourses in 
the application of the stochastic optimization model for project section. The budget 
adjustments were mainly made on pavement preservation, bridge preservation, system 
expansion, and maintenance programs, with changes varying from -32 percent to +60 percent.  
Optimization Model Solution 
For the purpose of this computational study, the solution algorithm developed based on the 
LaGrangian relaxation technique was implemented using a customized computer code. 

5.2 Summary of estimated project level life-cycle benefits 
Table 3 lists project level life-cycle benefits of some pavement and bridge projects. On 
average, the present worth amounts of project level life-cycle benefits estimated using  
 

Project Benefits Estimated under Contract 
No. 

Let 
Year 

Lane
s 

Length
(Miles)

 
AADT

 
Work Type 

Project 
Cost Certainty Risk Uncertainty 

12021 2000 4 0.11 69,200 Bridge widening 2,291,000 6,959,434 11,703,264 11,703,264 
12040 2000 4 0.50 32,630 Pavement resurfacing 4,620,000 4,776,319 6,927,669 6,365,844 
12077 2000 2 2.06 3,170 Pavement resurfacing 3,000,000 9,436,804 15,545,501 15,545,501 
12158 1999 2 3.70 16,770 Added travel lanes 750,000 3,036,253 5,405,621 4,806,134 
20694 1996 2 1.34 3,420 Flexible pave. replace 51,000 43,704 131,989 131,989 

21743 1996 4 0.40 25,310 Pavement 
rehabilitation 696,000 1,271,574 1,878,375 1,878,375 

21749 1998 2 13.63 4,190 Pavement resurfacing 11,573,000 38,024,319 63,943,225 63,943,225 

21825 1996 4 2.53 11,150 Pavement 
rehabilitation 151,000 504,574 1,033,274 1,505,738 

21931 1996 4 0.78 2,664 Rigid pavement replace 196,000 705,235 736,046 736,046 

21944 1996 2 9.46 1,100 Pavement 
rehabilitation 131,000 239,334 353,545 353,545 

22026 1996 2 0.15 8,291 Bridge widening 108,000 267,380 299,746 254,516 
22032 1996 4 6.30 12,274 Pavement resurfacing 754,000 1,743,188 2,753,259 2,559,337 
22044 1996 2 1.10 13,994 Pavement resurfacing 2,757,000 6,169,067 6,773,242 5,702,627 

22119 1998 4 0.10 27,700 Pavement 
rehabilitation 264,000 445,933 658,734 658,734 

22264 1996 2 1.13 7,843 Pavement resurfacing 1,226,000 3,566,566 7,164,611 6,450,209 
… … … … … … … … … … 

Table 3. Project Level Life-Cycle Benefits of Some Pavement and Bridge Projects Computed 
Using Deterministic, Risk-Based, and Uncertainty-Based Analysis Approaches (1990 
Constant Dollars) 
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deterministic, risk-based, and uncertainty-based analysis approaches for the 7,380 projects 
are 4.18, 7.14, and 6.64 million dollars per project (in 1990 constant dollars), respectively. The 
average benefit-to-cost ratios are 3.24, 5.54, and 5.16, correspondingly. The significant 
difference between the project benefits estimated using the deterministic analysis approach 
and risk-based analysis approach is mainly attributable to large standard deviations of input 
factors considered for probabilistic risk assessments. The comparable results of project 
benefits computed using the risk-based analysis approach and uncertainty-based analysis 
approach are intuitive. This is because the grand average of simulation outputs for each 
input factor under uncertainty is adjusted only if the deviation between the grand average 
as the expected outcome and standardized focus loss value exceeds the preset threshold 
level. The input factor values for risk-based and uncertainty-based analyses will be identical 
if no adjustment is made. 

5.3 Comparisons of project selection results  
Comparison of Total Benefits of Selected Projects  
Figure 4 illustrates the total benefits of projects selected using the optimization model based 
on three sets of estimated project benefits (deterministic, risk-based, and uncertainty-based),  
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Fig. 4. Comparison of Total Benefits of Selected Projects Using Deterministic and Stochastic 
Budgets under Yearly Constrained and Cumulative Budget Scenarios (1996-2006) 
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two types of budgets (deterministic and stochastic), and two budget constraint scenarios 
(yearly constrained and cumulative). Regardless of budget types and budget constraint 
scenarios, the total benefits of selected projects are the lowest for project benefits estimated 
using the deterministic analysis approach and are the highest for project benefits computed 
using the risk-based analysis approach. 
Despite approaches used for computing project benefits and types of budgets used in the 
optimization model, the project selection using the cumulative budget scenario generally 
yielded higher total benefits. The results are not unexpected. The cumulative budget 
scenario does not have year-by-year budget restrictions as those added to the yearly 
constrained budget scenario. This entails more flexibility to the optimization model in 
conducting project selection, leading to increases in the total project benefits.  
 
Comparison of Number of Selected Contracts 
Table 4 presents the comparison of contracts selected using the three sets of project benefits, 
two types of budgets, and two budget constraint scenarios. The matching rates were 
established in reference to the contracts being authorized by the Indiana DOT. One match is 
counted if a contract is both selected in the optimization model application and also 
authorized by the Indiana DOT. 
 
 

Yearly Constrained Budget Cumulative Budget 

Deterministic Stochastic Deterministic Stochastic 

All Methods 
Matched with 
Indiana DOT Year No. of ContractsIndiana DOT

Authorized

MD MR MU MD MR MU MD MR MU MD MR MU No. % 

1996 464 443 433 390 388 437 390 394 439 411 414 439 412 415 319 72% 
1997 412 358 387 338 344 386 336 343 390 370 372 390 369 374 250 70% 
1998 429 275 408 351 363 409 353 361 413 375 377 414 377 377 187 68% 
1999 411 323 376 322 333 381 322 332 388 352 352 388 351 352 203 63% 
2000 610 578 576 506 516 579 504 514 582 544 544 586 546 546 416 72% 
2001 418 412 395 348 358 396 343 356 393 363 363 393 360 366 289 70% 
2002 422 421 399 343 343 398 339 343 402 373 373 406 373 377 291 69% 
2003 469 461 437 373 381 440 371 375 444 413 414 446 413 418 315 68% 
2004 649 648 608 519 531 615 521 528 612 578 580 613 578 581 463 71% 
2005 408 406 380 337 339 384 337 340 387 355 359 389 357 364 282 69% 
2006 376 375 355 302 307 353 303 303 357 333 336 359 334 338 259 69% 
Total 5,068 4,700 4,754 3,871 4,203 4,778 3,896 4,189 4,8074,6254,4844,8234,6604,508   

Total Match with Indiana DOT 4,400 3,828 3,889 4,421 3,817 3,877 4,451 4,1294,1454,4664,1314,168 3,274  
% Match with Indiana DOT 94% 81% 83% 94% 81% 82% 95% 88% 88% 95% 88% 89%  70% 

Note: MD, MR, and MU - Project benefits estimated using deterministic based, risk-based, and 
uncertainty-based analysis approaches, respectively. 

 

Table 4. Summary of Consistency in Contract Selection Results under Different Extents of 
Risk and Uncertainty Considerations   
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deterministic, risk-based, and uncertainty-based analysis approaches for the 7,380 projects 
are 4.18, 7.14, and 6.64 million dollars per project (in 1990 constant dollars), respectively. The 
average benefit-to-cost ratios are 3.24, 5.54, and 5.16, correspondingly. The significant 
difference between the project benefits estimated using the deterministic analysis approach 
and risk-based analysis approach is mainly attributable to large standard deviations of input 
factors considered for probabilistic risk assessments. The comparable results of project 
benefits computed using the risk-based analysis approach and uncertainty-based analysis 
approach are intuitive. This is because the grand average of simulation outputs for each 
input factor under uncertainty is adjusted only if the deviation between the grand average 
as the expected outcome and standardized focus loss value exceeds the preset threshold 
level. The input factor values for risk-based and uncertainty-based analyses will be identical 
if no adjustment is made. 

5.3 Comparisons of project selection results  
Comparison of Total Benefits of Selected Projects  
Figure 4 illustrates the total benefits of projects selected using the optimization model based 
on three sets of estimated project benefits (deterministic, risk-based, and uncertainty-based),  
 
 

0

10

20

30

40

50

Certainty-Based Risk-Based Uncertainty-Based

Pr
es

en
t W

or
th

 o
f P

er
pe

tu
ity

 B
en

ef
its

 o
f 

Se
le

ct
ed

 C
on

tr
ac

ts
 (1

99
0 

D
ol

la
rs

, i
n 

Bi
lli

on
s)

Project Benefit Estimation Approach
Yearly Constrained, Deterministic Budget
Yearly Constrained, Stochastic Budget
Cumulative, Deterministic Budget
Cumulative, Stochastic Budget

 
 

Fig. 4. Comparison of Total Benefits of Selected Projects Using Deterministic and Stochastic 
Budgets under Yearly Constrained and Cumulative Budget Scenarios (1996-2006) 

Highway Transportation Project Evaluation and Selection Incorporating Risk and Uncertainty   

 

345 

two types of budgets (deterministic and stochastic), and two budget constraint scenarios 
(yearly constrained and cumulative). Regardless of budget types and budget constraint 
scenarios, the total benefits of selected projects are the lowest for project benefits estimated 
using the deterministic analysis approach and are the highest for project benefits computed 
using the risk-based analysis approach. 
Despite approaches used for computing project benefits and types of budgets used in the 
optimization model, the project selection using the cumulative budget scenario generally 
yielded higher total benefits. The results are not unexpected. The cumulative budget 
scenario does not have year-by-year budget restrictions as those added to the yearly 
constrained budget scenario. This entails more flexibility to the optimization model in 
conducting project selection, leading to increases in the total project benefits.  
 
Comparison of Number of Selected Contracts 
Table 4 presents the comparison of contracts selected using the three sets of project benefits, 
two types of budgets, and two budget constraint scenarios. The matching rates were 
established in reference to the contracts being authorized by the Indiana DOT. One match is 
counted if a contract is both selected in the optimization model application and also 
authorized by the Indiana DOT. 
 
 

Yearly Constrained Budget Cumulative Budget 

Deterministic Stochastic Deterministic Stochastic 

All Methods 
Matched with 
Indiana DOT Year No. of ContractsIndiana DOT

Authorized

MD MR MU MD MR MU MD MR MU MD MR MU No. % 

1996 464 443 433 390 388 437 390 394 439 411 414 439 412 415 319 72% 
1997 412 358 387 338 344 386 336 343 390 370 372 390 369 374 250 70% 
1998 429 275 408 351 363 409 353 361 413 375 377 414 377 377 187 68% 
1999 411 323 376 322 333 381 322 332 388 352 352 388 351 352 203 63% 
2000 610 578 576 506 516 579 504 514 582 544 544 586 546 546 416 72% 
2001 418 412 395 348 358 396 343 356 393 363 363 393 360 366 289 70% 
2002 422 421 399 343 343 398 339 343 402 373 373 406 373 377 291 69% 
2003 469 461 437 373 381 440 371 375 444 413 414 446 413 418 315 68% 
2004 649 648 608 519 531 615 521 528 612 578 580 613 578 581 463 71% 
2005 408 406 380 337 339 384 337 340 387 355 359 389 357 364 282 69% 
2006 376 375 355 302 307 353 303 303 357 333 336 359 334 338 259 69% 
Total 5,068 4,700 4,754 3,871 4,203 4,778 3,896 4,189 4,8074,6254,4844,8234,6604,508   

Total Match with Indiana DOT 4,400 3,828 3,889 4,421 3,817 3,877 4,451 4,1294,1454,4664,1314,168 3,274  
% Match with Indiana DOT 94% 81% 83% 94% 81% 82% 95% 88% 88% 95% 88% 89%  70% 

Note: MD, MR, and MU - Project benefits estimated using deterministic based, risk-based, and 
uncertainty-based analysis approaches, respectively. 

 

Table 4. Summary of Consistency in Contract Selection Results under Different Extents of 
Risk and Uncertainty Considerations   
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For the deterministic budget, the average matching rates for the three sets of estimated 
project benefits and two budget constraint scenarios are 81-95 percent. Irrespective of using 
project benefits estimated by the deterministic, risk-based or uncertainty-based life-cycle 
cost analysis approach, the use of cumulative budget constraint scenario in the optimization 
model for project selection resulted in the selection of a higher number of contracts and with 
a higher matching rate. The net increases in the matching rates for the cumulative budget 
scenario as opposed to the yearly constrained budget scenario are 1 percent for deterministic 
project benefits, 7 percent for risk-based project benefits, and 5 percent for uncertainty-based 
project benefits, respectively. The relative increases in the matching rates resulted from the 
use of the cumulative budget scenario versus the yearly constrained budget scenario are 
1%/94% = 1.1 percent for deterministic based project benefits, 7%/81% = 9 percent for risk-
based project benefits, and 5%/83% = 6 percent for uncertainty-based project benefits, 
correspondingly. 
For the stochastic budget, the average matching rates for the three sets of estimated project 
benefits and two budget constraint scenarios also range from 81-95 percent. The use of 
cumulative budget constraint scenario in the optimization model for project selection 
resulted in the selection of a higher number of contracts and with a higher matching rate. 
The increases in the matching rates for the cumulative budget scenario as opposed to the 
yearly constrained budget scenario are 1 percent for deterministic based project benefits, 7 
percent for risk-based project benefits, and 7 percent for uncertainty-based project benefits, 
respectively. The relative increases in the matching rates are 1%/94% = 1.1 percent, 7%/81% 
= 9 percent, and 7%/82% = 8.5 percent, correspondingly. 
Irrespective of budget types and budget constraint scenarios, the use of project benefits 
estimated by the deterministic life-cycle cost analysis approach for project selection 
produced a higher percentage of matching rate as compared to matching rates established 
for project benefits estimated by risk-based and uncertainty-based analysis approaches. The 
matching rates for project benefits estimated using the uncertainty-based analysis approach 
are slightly higher than those of the project benefits computed by the risk-based analysis 
approach. In particular, increases in the matching rates are 2 percent for yearly constrained 
deterministic budget, 2 percent for yearly constrained stochastic budget, 0 percent for 
cumulative deterministic budget, and 1 percent for cumulative stochastic budget, 
respectively. The relative increases in the matching rates are 2%/81% = 2.5 percent, 2%/81% 
= 2.5 percent, 0%/82% = 0 percent, and 1%/88% = 1.1 percent, accordingly. 
Without regard to using different approaches for project benefit estimation and employing 
different types of budgets and budget constraint scenarios in the optimization model for 
project selection, the average matching rate between projects selected using the optimization 
model and actually authorized by the Indiana DOT for the eleven-year analysis period is 70 
percent. After removing this portion of matching rate invariant to approaches used for 
project benefit analysis and types of budgets and budget constraint scenarios used in the 
optimization model for project selection, the relative increases in the matching rates of 
project selection resulted from the use of uncertainty-based analysis approach versus the 
risk-based analysis approach for project benefit estimation are 2%/(81%-70%) = 18 percent 
for yearly constrained deterministic budget, 2%/(81%-70%) = 18 percent for yearly 
constrained stochastic budget, 0%/(82%-70%) = 0 percent for cumulative deterministic 
budget, and 1%/(88%-70%) = 9 percent for cumulative stochastic budget, accordingly.  
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6. Summary, conclusion, and recommendations 
A new method is introduced for highway project evaluation that handles certainty, risk, and 
uncertainty inherited with input factors for the computation. Also, a stochastic model is 
proposed for project selection that rigorously addresses issues of alternative budget 
constraint scenario, budget uncertainty, and project implementation approach 
considerations. A computational study is conducted to assess the impacts of risk and 
uncertainty considerations in estimating project level life-cycle benefits and on the results of 
network-level project selection.  
The computational study results have revealed that using project level life-cycle benefits 
estimated by the proposed uncertainty-base analysis approach yielded a higher percentage 
of matching rate with the actual programming practice as compared to the matching rate of 
using the project benefits computed by the risk-based analysis approach. The relative 
increase in matching rate with uncertainty considerations is up to 2.5 percent. After 
removing the portion of matching rate invariant to approaches used for project benefit 
estimation and types of budgets and budget constraint scenarios considered in the 
optimization model for project selection, the relative increase in the matching rate is as high 
as 18 percent. The difference is quite significant. The proposed methodology offers a means 
for transportation agencies to explicitly address uncertainty issues in project level life-cycle 
benefit/cost analysis that would enhance the existing risk-based life-cycle cost analysis 
approach.  
Application of the proposed method and model requires collecting a large amount of data. 
This may limit the method and model application primarily to large-scale transportation 
agencies that maintain sufficient historical data on highway system preservation, expansion, 
operations, and expenditures. In addition, the customized Beta distribution parameters need 
to be updated over time to reflect changes in the values of input factors for the analysis. 
Moreover, the equally assigned weights for project level life-cycle agency benefits and user 
benefits may be adjusted to assess the impact of such changes on the estimated project 
benefits and on the results of network-level project selection.         
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1. Introduction 
High power fibre lasers (HPFLs) find applications in the material processing, automotive, 
medical, telecoms and defence industries. Over 1kW of output power [1] has been 
demonstrated as the race to scale up the power while maintaining excellent beam quality 
and achieving impressive power conversion efficiency is ongoing. During the mature stages 
of the HPFLs technology, the automated simulation-based optimization of HPFLs is 
expected to contribute significantly to the formulation of optimal designs and to improve 
intuition for the conception of new fibre lasers. This chapter researches the common ground 
between computational photonics and direct search optimization methods with the prospect 
to propose optimized fibre designs for HPFLs. 
Published work on the subject of pump light enhancement in the active core of cladding 
pumped fibres could be categorized as follows: 
a. Pump absorption ion system optimization [2-5] 
b. Pumping techniques focusing on how to couple more power into the inner cladding [6-

10] 
c. Fibre designs that focus on maximizing the overlap between the coupled pump light 

and absorbent core volume [11-15] 
d. Holistic solutions that attempt to address (b) and (c) simultaneously [16-18] 
Schemes in (c) are usually compatible with categories (b) and (d) meaning that the special 
fibres proposed by (c) can be pumped by schemes in (b) or they can be modified for use in 
the schemes of category (d) to further increase the pump absorption. 
In category (b), Koplow et al [9] list a set of pumping schemes evaluation criteria and propose 
an embedded mirror side pumping scheme after discussing the contemporary pumping 
methods. Their technique initially appeared attractive and for that it was tested numerically 
within the computation environment of the simulation method proposed in [19]. It was found, 
however, that it does not benefit from the fibre cross section optimization because it reduces 
the percentage of higher order modes resulting in absorption degradation. Another side 
pumping technique which, in contrast with the previous, did not require machining of the 
pumped fibre was proposed by Polynkin et al [8]. A DCF was pumped via evanescent field 
coupling. This scheme appears to be fully compatible with the incorporation of optimized fibre 
topologies in place of the conventional circular inner cladding with centred core. Lassila [6] 
proposed a scalable side pumping scheme that could benefit from tailored axially symmetrical 
(presumably as far as the inner cladding is concerned) cross sections. 
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between computational photonics and direct search optimization methods with the prospect 
to propose optimized fibre designs for HPFLs. 
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b. Pumping techniques focusing on how to couple more power into the inner cladding [6-

10] 
c. Fibre designs that focus on maximizing the overlap between the coupled pump light 

and absorbent core volume [11-15] 
d. Holistic solutions that attempt to address (b) and (c) simultaneously [16-18] 
Schemes in (c) are usually compatible with categories (b) and (d) meaning that the special 
fibres proposed by (c) can be pumped by schemes in (b) or they can be modified for use in 
the schemes of category (d) to further increase the pump absorption. 
In category (b), Koplow et al [9] list a set of pumping schemes evaluation criteria and propose 
an embedded mirror side pumping scheme after discussing the contemporary pumping 
methods. Their technique initially appeared attractive and for that it was tested numerically 
within the computation environment of the simulation method proposed in [19]. It was found, 
however, that it does not benefit from the fibre cross section optimization because it reduces 
the percentage of higher order modes resulting in absorption degradation. Another side 
pumping technique which, in contrast with the previous, did not require machining of the 
pumped fibre was proposed by Polynkin et al [8]. A DCF was pumped via evanescent field 
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A pump absorption enhancing scheme that could fit in category (c) was proposed by Baek et 
al [14]. The authors incorporated a long period fibre grating (LPFG) in a cladding pumped 
configuration and measured a 35% increase in pump absorption as a direct result of the 
LPFG. A similar approach based on the reflection of the residual pump light was reported 
by Jeong et al [15]. The free end of the single-end pumped DCF was shaped into a right-
angled cone that reflected more than 55% of the unabsorbed pump light that offered an 18% 
increase in absorbed pump power. This is one more scheme which could benefit from 
optimised fibre topologies. Recently, the use of a large area helical core was proposed [11] 
for the enhancement of pump absorption and simultaneous rejection of high order lasing 
modes naturally suggesting that optimized helical solid-state holes (that may be fabricated 
by rotation just like the helical core) could exhibit a similar tapering effect [19] as that 
reported here. This could avoid the need to increase the core area when increasing the inner 
clad area [12] to accept more pump power.  
In the category of holistic solutions, Kouznetsov and Moloney proposed [16] and modelled 
analytically [17] the tapered slab delivery of multimode pump light to a small diameter 
inner cladding. This scheme combines the specially designed pump waveguide and 
corresponding inner cladding that could also fit in the shallow-angle single pumping 
category listed in [9]. It benefits highly from the coupling of multimode light into a narrow 
inner cladding while potential drawbacks are the leakage of high order pump modes and 
the fabrication difficulties. An alternative approach is demonstrated experimentally by 
Peterka et al [18]. The proposed DCF is single-end pumped and has a double-D cross section 
with the core at the centre of its half section. The input side is processed so that signal and 
pump delivery fibres can be spliced on the two specially fabricated facets. Overall, a 
promising way forward appears to be the development of generic and modular solutions 
within categories (a), (b) and (c) and then the synergistic combination of the three. This 
would act as a practical two stage approach that could amplify the pump absorption 
enhancement and consecutively the laser output power. 
The results reported in this chapter fit in the aforementioned second category of pump 
absorption enhancing schemes. The interpretation of the original NM algorithm [20] as well 
as the deterministic cross section shape perturbation technique [21] are presented in this 
chapter in the form of structured pseudocode-functions. The proposed notation serves as the 
background for the development and validation of improved methods. Furthermore, 
additional fibre topology encoding schemes at higher dimensions are introduced and a 
modern interpretation of NM is given prior to the proposal of stochastically enhanced NM 
forms described in pseudocode syntax. The proposed algorithms are compared with 
commercial implementations of the genetic algorithm (GA) [22], generalised pattern search 
(GPS) [23-27] and mesh adaptive direct search (MADS) [28-29] methods that are also tested 
here for their performance and suitability. All the aforementioned algorithms share a set of 
common characteristics: they can operate exclusively on the function values (zeroth-order or 
derivative free or direct search methods) and they were tuned to their most parsimonious 
instances to the extent that their global convergence properties were not compromised. 
Here, the term global convergence is used to mean first order convergence to a point far 
enough from an arbitrary starting point. It does not mean convergence to a point  

*x : ( ) ( )*f x f x≤ , nx∀ ∈ℜ  adhering to the terminology in the extensive review for direct 
search methods by Kolda et al. A third common characteristic is that they all call a 3-
dimentional (3-D) fibre simulation method, described and validated in [19], in order to 
evaluate the objective function. 
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The contributions made in this chapter are summarized below: 
• First reported stochastic simulation-based optimization of DCF topologies (to the best 

of the authors knowledge) 
• Pseudocode descriptions of proposed algorithms for ease of verification and/or use by 

other researchers 
• Benchmarking of several optimization algorithms with an emphasis on their statistical 

nature 
• An optimization problem description scheme that allows the incorporation of 

inhomogeneous independent variables 
• The proposal of perturbed stochastic search patterns as generalizations of the simplex 

formation pattern with possible applicability in pattern search algorithms 
• The concept of implicitly constrained optimization via perturbed pattern search 
• The proposal of the enhanced stochastically perturbed Nelder-Mead (ESPNM) method 

for implicitly constrained global optimization with simple bounds 
• The unified description of NM, NM’s stochastic forms, GPS and MADS methods based 

on the pattern search concept 
• Mostly globally (as opposed to mostly locally in [21]) optimized DCF designs with an 

emphasis on manufacturability and modular design 
The next section describes a set of optimization schemes on relatively low dimensions and 
compares NM, NM’s stochastic variants (simple sampling Monte Carlo techniques), GA, 
GPS and MADS methods. Section 3 focuses on optimization schemes and algorithms in 
higher dimensions, introduces the perturbed patterns for simple and importance sampling 
Monte Carlo optimization and compares the locally introduced algorithms. The simulation 
parameters as well as the settings of each algorithm are given in section 4 where the 
optimization results for DCFs with polymer as well as air outer cladding are also discussed. 
Finally, section 5 concludes this chapter. 

2. Bound-constrained zeroth-order optimization algorithms 
The optimization problem considered in this chapter is  

 ( )minf
∈P Ω

P , { }f : nℜ →ℜ∪ ∞  (1) 

 where, ( ) ( ),f abs totP= −P P , (2) 

P  is a point in nℜ , n  is the number of variables and Ω  is the bounded function domain. 
Equation (2) gives the objective function which maps a DCF topology to the corresponding 
negative total absorbed pump power value [19]. The current notation partly adheres to that 
of [23] by assuming that  

 { }:n l u= ∈ℜ ≤ ≤Ω P P  where { }{ },
n

l u∈ ℜ∪ ±∞ . (3) 

The optimization domain Ω  constitutes a declaration of the computational bounds and 
physically meaningful function domain. It acts as a barrier when applying the optimization 
algorithm not to f  but to fΩ  where 
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 ( )f if
f

otherwise
⎧ ∈⎪= ⎨
∞⎪⎩

Ω

P P Ω
. (4) 

The current work attempts to solve a simulation-based optimization problem where the 
objective function can be evaluated to only a few significant figures. This observation along 
with the noise that may be present in the computed function values or the expense of these 
computations render the calculation of derivatives impossible or impractical. Hence there is 
a need to treat the optimization problem with direct search methods. 
The GA, GPS and MADS methods are implemented here via the commercially available 
‘genetic algorithm and direct search toolbox’ within the MATLAB technical computing 
environment. The amount of subjective evaluation of the aforementioned algorithms was 
kept to a minimum by carefully tuning their parameters so that both global convergence and 
low computational cost are served in a well balanced way. Moreover, directly comparable 
sets of optimizations were performed by each method in order to gain statistical insight into 
the benefits of each algorithm and build intuition into their performance for a more objective 
judgment. 
The NM simplicial search method has been comprehensively studied theoretically [30-32], 
extensively applied mostly in chemistry but also in optics [33-34], criticized for its 
inadequacies [35], remedied [36], enhanced [37,38] and even stochastically incorporated [39]. 
However, all theoretical improvements have led to a reduction in its computational 
efficiency. The main strength of the original algorithm is that when it succeeds it offers the 
best efficiency indicating that the most successful modifications of the simplex descent 
concept, with applications in computationally intensive problems, are expected to be those 
that maintain the number of function evaluations required to a minimum. Due to NM’s 
susceptibility to different interpretations and the need to clearly and concisely describe the 
NM-based methods proposed here, its current interpretation is crystallized in algorithm NM 
and associated subalgorithms NM_SimplexGener, FuncEval, SmxAssessm and NM_Step. 
The later  follows the modern practice examined by Lagarias [30] and is described in section 
3 as a subset of subalgorithm ESPNM_Step introduced there. Algorithm NM shows 
distinctively its two main operations being the generation of the initial simplex ( 0S ) along 
orthogonal directions around the start point (at line 3) and the line search procedure 
recursively executed (at line 10) by calling NM_Step during an iteration (while loop: lines 8-
12). The descent path is governed by the descent coefficient set {reflection, expansion, 
contraction, shrinkage} assigned in line 6. Line 2 of algorithm NM implies that the 
generation of the initial simplex (a polytope in nℜ  with 1n +  vertices - the minimum 
statistical information required to capture first order information) is essentially a pattern 
search operation along all n -directions denoted by the column vectors of the n n×  pattern 
matrix ( NMΞ ) which in this case is practically the identity matrix ( NM n n×≡Ξ I ). The initial 
simplex is generated by the subalgorithm NM_SimplexGener with respect to the start point 
and vector M  where the mesh sizes of the all independent variables are stored. In this way, 
the simultaneous optimization of inhomogeneous variables (of different physical meaning, 
units, mesh size) is practically implemented. An example is the case where the diameter and 
refractive index of an embedded hole are simultaneously optimized. Essentially, this is the 
integration of a parametric optimization procedure into a more robust non-parametric 
optimization scheme.  
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An important implication of subalgorithm NM_SimplexGener is that it should form a 
nondegenerate initial ( 0j = ) simplex. That is, 

 ( ) ( )( ) ( ) ( ) ( ) ( ) ( )
1 1 2 1 1det , , ,

vol 0
!

j j j j j j
n n n n

j n
+ + +− − −

= >
P P P P P P

S
�

 (5) 

The satisfaction of inequality (5) is important in order to conserve the numerical integrity of 
the ‘flexible polytope’ when descending in nℜ  and avoid convergence to a non-minimizer 
after collapsing one or more of its vertices on the hyperplane of others [35]. 
A simple sampling Monte Carlo approach is exercised here by means of the stochastic 
Nelder-Mead method (SNM) with the prospect to increase NM’s efficiency and probability 
to find a global minimizer in low dimensions. The SNM method is partly implemented by 
substituting line 2 in algorithm NM with  
 

 

Algorithm NM. Interpretation of the modern Nelder-Mead (NM) method: 

( )1, f , NM , , ,l l j haltσ σ⎡ ⎤ =⎣ ⎦P P M Ω  

Input: (start point 
T

1 1,1 2 ,1 ,1np p p⎡ ⎤= ⎣ ⎦P �  in nℜ , mesh size vector T
1 2 nm m m= ⎡ ⎤⎣ ⎦M � , 

stopping value for the halting criterion and optimization domain T
1 2 n= ⎡ ⎤⎣ ⎦Ω B B B�  where 

T
,min ,max 1, 2 , ,|i i i i np p =⎡ ⎤= ⎣ ⎦B …  (bounds)). Output: [optimal point, corresponding function value, 

standard deviation of { }1, 2 , , 1;f |i i n i h= + ≠…  after the last iteration]. 

1 : 0j =                                                                                                               // iteration index 

2 NM 1 2: n n n×= ≡⎡ ⎤⎣ ⎦Ξ ξ ξ ξ I�                                                  // initial simplex formation pattern 

3 call ( )0 1 NMNM_SimplexGener , , ,n=⎡ ⎤⎣ ⎦S P Ξ M               // nondegenerate initial simplex 

4 for each { }1,2 , , 1|i i n= +P …  call s ( )FuncEval ,i if =⎡ ⎤⎣ ⎦ P Ω  endfor// objective function evaluations 

5 ( )1 2 1 1 1
:j n n

f f f + × +
= ⎡ ⎤⎣ ⎦F �                                                                     // initial objective matrix 

6 { } { }, , , : 1,2,1 2 ,1 2r e c s =                                            // descent coefficients standard values 

7 call ( )f , f , , , f , SmxAssessm ,h l h l j j
⎡ ⎤ =⎣ ⎦P P P S F                // current simplex ( jS ) assessment 

8 while  ( )j haltσ σ≥     // where, ( )
1 2

2

1, 2 , , 1;f f |j i i n i hσ = + ≠

⎛ ⎞
= −⎜ ⎟
⎝ ⎠

…  (descent halting criterion) 

9 : 1j j= +                                                                                                         // increment 

10 call ( ), , NM_Step , , , , , , , , , , ,j j h l h l j jstep f f r e c s⎡ ⎤ =⎣ ⎦S F P P P Ω S F                   // NM step 

11 call ( )f , f , , , f , SmxAssessm ,h l h l
⎡ ⎤ =⎣ ⎦P P P S F                                // simplex assessment 

12 endwhile                                                                                                  // end of iteration loop 
13 return , ,l l jf σP                                                                                                           // output. 
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otherwise
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Subalgorithm NM_SimplexGener. NM initial simplex 
generation: 

( )0 1 NMNM_SimplexGener , , ,n=⎡ ⎤⎣ ⎦S P Ξ M  
Input: (start point 1P , NM pattern, mesh size vector and length 
of 1P ). Output: [initial simplex matrix]. 

1 for each simplex vertex in the set { }2 ,3, , 1|i i n= +P …  

2 ( )1 1:i i−= +P P M ξ�  

                   //where, : ij ij ij ijm n m n m n
a b a b

× × ×
⎡ ⎤ ⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦ ⎣ ⎦� �  

3 endfor 
4 ( ) ( )00 1 2 1 vol 01

: |n n n+ >× +
= ⎡ ⎤⎣ ⎦ SS P P P�                            

5 return 0S                                                             // output. 

Subalgorithm FuncEval. Objective function evaluation: 
( )FuncEval ,i if =⎡ ⎤⎣ ⎦ P Ω  

Input: (point in nℜ , bounds). Output: [function value]. 

1 if  i ∈P Ω  then 
2 ( ): fi if = P                               // compute (simulate)
3 else 
4 :if = +∞                  // assign a large positive value
5 endif 
6 return if                                                              //output.

Subalgorithm SmxAssessm. Simplex assessment: 

( )f , f , , , f , SmxAssessm ,h l h l
⎡ ⎤ =⎣ ⎦P P P S F  

Input: (simplex, objective matrices). Output: [worse, best 
function values, corresponding points, mean function value and 
centroid  for i h≠ ]. 

1 { }1, 2 , , 1f : max f |h i i n= += … ; assign ( )f f|
h hh ≡ PP  

2 { }1, 2 , , 1f : min f |l i i n= += … ; assign ( )f f|
l ll ≡ PP  

3 1, 2 , , 1;f : f |i i n i h= + ≠= … ; 1, 2 , , 1;: |i i n i h= + ≠=P P …  

4 return f , , f , , f ,h h l lP P P                       // output. 
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where { }1,2 , ,| 1,1i i nm = ∈ −⎡ ⎤⎣ ⎦…  is a set of uniformly distributed pseudorandom numbers. A 
short description of the pseudorandom number generator used is given in section 4. SNM 
can use subalgorithm NM_SimplexGener to generate the initial simplex after substituting 

NMΞ  with SNMΞ  in the set of input arguments. During the generation of 0S  around 1P , on 
the basis of SNMΞ , a set of randomly signed orthogonal directions are searched while the 
initial mesh sizes fluctuate randomly as well (between zero and their nominal values stored 
in M ). The second and last part of the SNM implementation is to discard line 6 of algorithm 
NM and to add the following line 

 assign { } { }, , , 0.5,1 , 2,4 , 0.25,0.5 , 0.3,0.7
j

r e c s ∈ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦  (7) 

just before line 10. The later means that the descent coefficients are recursively set to 
uniformly distributed random values within the designated ranges. With regard to the 
modern understanding of the Nelder-Mead algorithm, the descent coefficients must satisfy 
the conditions ( )0,r∈ +∞ , ( ) ( ){ }1, ,e r∈ +∞ ∩ +∞ , [0,1]c∈  and [0,1]s∈ . According to 
Lagarias [30], the condition ( )0,r∈ +∞  is not stated explicitly in the original paper by 
Nelder and Mead but is implicit in the presentation of the original algorithm [20]. 
A significant role during an optimization is played by the corresponding optimization 
problem encoding key which orderly stores the independent variables of a fibre topology in 
a column vector (point P  in nℜ ) that is read by the fibre simulator. The construction of the 
computation grid and/or the setting of the simulation parameters involved in the 
evaluation of the objective function are then based on the information encoded in the 
coordinates of P . For fixed perimetric lines of laminas participating in a DCF cross section, 
the following encoding keys are used in this chapter: 

 ( )T

,1 ,1 ,2 ,2 , ,, , , , , , ,h h h h h N h Ny z y z y z y z=P �  (8) 

in ( )2 1N +ℜ  for an inner cladding topology embedding N -holes and a single active core. The 
first pair ( ),y z  of elements represents the coordinates of the core centroid on the cross 

section plane while each pair in the set ( ){ }, , 1,2 , ,, |h i h i i Ny z = … , appearing in P , represents the 

centroid coordinates of the i -th hole. Equation (8) encodes a fibre topology according to the 
‘Offset’ optimization scheme under which the centroid coordinates of each involved lamina 
is optimized independently. Following the same notation, the point 

 ( )T

, 1 , 1 , , 1, , , , , , , , ,h h h N h N Ny z y z y z d d=P � �  (9) 

in 3 2N+ℜ  encodes the same topology under the ‘Offset-Diameter’ scheme that, in addition to 
(8), allows the simultaneous optimization of circular hole diameters or square hole side 
lengths. Furthermore, the point  
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where { }1,2 , ,| 1,1i i nm = ∈ −⎡ ⎤⎣ ⎦…  is a set of uniformly distributed pseudorandom numbers. A 
short description of the pseudorandom number generator used is given in section 4. SNM 
can use subalgorithm NM_SimplexGener to generate the initial simplex after substituting 

NMΞ  with SNMΞ  in the set of input arguments. During the generation of 0S  around 1P , on 
the basis of SNMΞ , a set of randomly signed orthogonal directions are searched while the 
initial mesh sizes fluctuate randomly as well (between zero and their nominal values stored 
in M ). The second and last part of the SNM implementation is to discard line 6 of algorithm 
NM and to add the following line 
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just before line 10. The later means that the descent coefficients are recursively set to 
uniformly distributed random values within the designated ranges. With regard to the 
modern understanding of the Nelder-Mead algorithm, the descent coefficients must satisfy 
the conditions ( )0,r∈ +∞ , ( ) ( ){ }1, ,e r∈ +∞ ∩ +∞ , [0,1]c∈  and [0,1]s∈ . According to 
Lagarias [30], the condition ( )0,r∈ +∞  is not stated explicitly in the original paper by 
Nelder and Mead but is implicit in the presentation of the original algorithm [20]. 
A significant role during an optimization is played by the corresponding optimization 
problem encoding key which orderly stores the independent variables of a fibre topology in 
a column vector (point P  in nℜ ) that is read by the fibre simulator. The construction of the 
computation grid and/or the setting of the simulation parameters involved in the 
evaluation of the objective function are then based on the information encoded in the 
coordinates of P . For fixed perimetric lines of laminas participating in a DCF cross section, 
the following encoding keys are used in this chapter: 

 ( )T

,1 ,1 ,2 ,2 , ,, , , , , , ,h h h h h N h Ny z y z y z y z=P �  (8) 

in ( )2 1N +ℜ  for an inner cladding topology embedding N -holes and a single active core. The 
first pair ( ),y z  of elements represents the coordinates of the core centroid on the cross 

section plane while each pair in the set ( ){ }, , 1,2 , ,, |h i h i i Ny z = … , appearing in P , represents the 

centroid coordinates of the i -th hole. Equation (8) encodes a fibre topology according to the 
‘Offset’ optimization scheme under which the centroid coordinates of each involved lamina 
is optimized independently. Following the same notation, the point 

 ( )T
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in 3 2N+ℜ  encodes the same topology under the ‘Offset-Diameter’ scheme that, in addition to 
(8), allows the simultaneous optimization of circular hole diameters or square hole side 
lengths. Furthermore, the point  
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 ( )T

, 1 , 1 , , 1 1, , , , , , , , , , , ,h h h N h N N Ny z y z y z A A B B=P � � �  (10) 

in ( )2 2 1N +ℜ  allows, in addition to (8), the independent optimization of the horizontal and 
vertical characteristic dimension of each hole (major-minor axis of an ellipse for initially 
circular holes and length-height of a parallelepiped for initially square holes). Encoding keys 
(9) and (10) demonstrate the need for individually defined mesh sizes tailored to the 
domains within which the search for optimal values is desired. This view is reinforced by 

 ( )T

1 1 1 1 1, , , , , , , , , , , , , , ,h h h N hN N N Ny z y z y z A A B B R R=P � � � �  (11) 

that includes variables representing refractive index values. The independent variables in 
(11) are inhomogeneous not only in terms of corresponding mesh size and domain but also 
in physical meaning and units. In this case, point P  in 5 2N+ℜ  represents the ‘Offset-Major-
Minor-Index’ optimization scheme that expands (9) by including the refractive indices 
{ }1,2 , ,|i i NR = …  of dielectric holes embedded in the inner cladding. 

Four groups of thirty optimizations are executed next in each of the 10ℜ  and 18ℜ  spaces in 
order to compare the performance of SNM variants with algorithm NM and in relation to 
the dimensionality of the optimization space. To avoid fragmentation, it is thought adequate 
for the current discussion to report that all optimizations were initiated from the same start 
point. The later represents a double-clad design with a polymer outer cladding and four 
rods embedded in the inner cladding (solid-state circular dielectric holes) assumed to be 
made of CBYA alloy glass with a refractive index of 1.430 [40,19]. 
Figure 1 demonstrates the 10ℜ  sets of optimizations executed following different strategies. 
The type of search strategy is denoted by the {Initial simplex, Descent coefficients} pair 
where the letter D denotes deterministic as opposed to S denoting stochastic 
implementation. The initial circular inner cladding topology with centred core included four 
symmetrically embedded circular holes at the corners of a centred square and absorbed 

,abs totP =8.60W. Due to the high number of optimizations required, lower resolution than in 
 

  
Fig. 1. Four groups of 30 optimizations in 10ℜ  from the same starting point and under 
different optimization strategies: (a) SNM{D,D} ≡ NM (here for variable mesh size). (b) 
SNM{S,D}. (c) SNM{D,S}. (d) SNM{S,S}. 

Global Optimization of Conventional and Holey Double-Clad Fibres by Stochastic Search   

 

361 

section 4 was used here after verifying that approximately the same trends were followed. The 
fibre was 1cm long and 126 rays carried the pump energy while the rest of the parameters 
were kept constant. The graphs along the first row of figure 1 plot the values of the total 
absorbed pump power (optimized as a function of the core and hole offsets) while those along 
the second row present the corresponding number of objective function evaluations recorded 
prior to convergence. The mean value ( μ  - dashed line) and standard deviation (σ ) of the 
plotted values is also reported in each graph. Figure 1(a) (1st column) reveals the influence of 
the mesh size random variance on the NM results. The SNM{S, D} strategy results are shown 
in figure 1(b) where the initial simplex vertices are formed stochastically while the simplex 
descent is based on deterministic coefficient values.  Figure 1(c) corresponds to the case of 
constant initial simplex (that of the first optimization in figure 1(a)) but this time the value of 
each optimization coefficient is recursively and randomly determined prior to each iteration 
during the simplex descent (SNM{D, S} strategy). Finally, figure 1(d) presents the results for 
the case where both the initial simplex and descent coefficients are randomly determined 
(SNM{S, S}). All optimizations in figure 1 were initiated from the same start point. The results 
variations observed in figures 1(b)-(d) are attributed solely to the stochastic nature of SNM 
while those in figure 1(a) originate from the mesh size variations. The best performing 
optimization strategy in 10ℜ  can be chosen on different criteria serving different applications. 
The strategy that delivers acceptably optimized objective function values with minimum 
uncertainty is preferred here. It offers the smallest spread of objective function values for the 
second lowest mean number of function evaluations. 
Figure 2 presents the corresponding study in 18ℜ  where the area and the ellipticity of the 
four holes are optimized in addition to the core and hole offsets previously optimized in 

10ℜ . The four examined strategies are presented here in the same order as in figure 1. 
Strategy (b) is preferred in this case because it offered the highest mean absorption at the 
highest certainty. This comes at the cost of the maximum mean number of function 
evaluations exhibiting this time the strongest spread around their mean value. In both 10ℜ  
and 18ℜ  spaces it appears that SNM{D, S} offers the lowest number of function evaluations 
and, more importantly, a slower growth in function evaluations with increasing dimensions 
[29]. This is a highly desired feature for the optimization of expensive objective functions. 
  

  
Fig. 2. Four groups of 30 optimizations in 18ℜ  from the same starting point and under 
different optimization strategies: (a) SNM{D,D} ≡ NM. (b) SNM{S,D}. (c) SNM{D,S}. (d) 
SNM{S,S}. 
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Fig. 3. Four groups of 30 optimizations in 10ℜ  from the same starting point and driven by 
different algorithms: SNM{S,S}, GA{Np1}, GPS{Np1,2N}, MADS{Np1,2N}. 

The fittest SNM strategies are compared next with three global optimization methods 
operating in 10ℜ  and 18ℜ  in figures 3 and 4 correspondingly. Figure 3(a) plots again the 
results for algorithm SNM{S, S} while figures 3(b)-(d) report the corresponding results from 
GA, GPS and MADS methods. The detailed set-up of each method is reported in section 4. 
The expression GA{Np1} denotes that each GA optimization started with (n+1) initial 
population members  generated by random sampling of Ω . By GPS{Np1, 2N} it is meant 
that the search pattern includes 1n +  directions and that the poll pattern matrix stores 2n  
directions. GPS and MADS algorithms implement two distinct steps namely the search and 
poll. The search step can be absent or be a pattern search or any other heuristic or Monte 
Carlo method [41] or preferably a method that uses inexpensive surrogates to approximate 
the objective function [42]. The search step adopted in this work implements a pattern 
search along the directions denoted by the column vectors in the pattern matrix  

 

( )

GPS,Search GPS,Np1

1

1 0 0 1
0 1 0 1

0 0 1 1 n n× +

−⎡ ⎤
⎢ ⎥−⎢ ⎥≡ = ⎢ ⎥
⎢ ⎥

−⎢ ⎥⎣ ⎦

Ξ Ξ . (12) 

The poll step is a compulsory pattern search that is closely linked to the convergence theory 
of pattern search algorithms [29]. The adopted poll patterns are represented by the column 
vectors in 

 GPS,Poll GPS,2N

2

1 0 0 1 0 0
0 1 0 0 1 0

0 0 1 0 0 1
n n×

−⎡ ⎤
⎢ ⎥−⎢ ⎥≡ =
⎢ ⎥
⎢ ⎥

−⎢ ⎥⎣ ⎦

Ξ Ξ . (13) 

The GPS algorithm invokes the poll step only when the search step fails to produce a point 
in nℜ  that improves the optimal function value recorded so far. After a poll step, the mesh 
size is adapted (contracts after an unsuccessful poll and expands after a successful poll) and 
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Fig. 4. Four groups of 30 optimizations in 18ℜ  from the same starting point and driven by 
different algorithms: SNM{S,S}, GA{Np1}, GPS{Np1,2N}, MADS{Np1,2N}. 

a new iteration begins. MADS is a stochastic form of GPS. The MADS,Search MADS,Np1≡Ξ Ξ  
pattern matrix stores 1n +  randomly generated column vectors while MADS,Poll MADS,2N≡Ξ Ξ  
is generated using a random permutation of an ( )n n×  linearly independent lower 
triangular matrix. Both of the above patterns are regenerated prior to each iteration 
according to MALAB’s documentation. 
Before discussing the results in figure 3, it is informative to note that the variations in the 
GPS optimization results are due to the use of a different mesh size for each optimization 
whilst all other results exhibit variations originating from the stochastic nature of the 
corresponding algorithm. SNM, GA, GPS and MADS achieved an average objective 
improvement of 56%, 45%, 84% and 81% correspondingly. In 18ℜ  (figure 4) the 
corresponding percentages are 58%, 46%, 90% and 93%. It is obvious at this stage that GPS 
and MADS managed to find optimizers located in deeper valleys indicating global 
convergence with higher probability than GA and SNM. On the computational expense 
front in 10ℜ  the GA, GPS and MADS were correspondingly 121%, 91% and 111% more 
expensive than SNM while in 18ℜ  they were 118%, 104% and 113% more expensive than 
SNM. The GA is consistently the most expensive method. The reported results agree with 
other benchmark results [43,44] and although GA promises global convergence when 
evolving a large initial population [45], it is not preferred here due to it being unsuitable for 
the optimization of expensive functions. The above analysis indicates that in the examined 
dimensions the most efficient strategy would be to use SNM as a first stage optimization 
tool, a numerical telescope that can relatively inexpensively designate the vicinity that offers 
the highest probability to contain a global optimizer. A second stage search with the 
significantly more expensive GPS of MADS methods is then justified in the SNM designated 
subdomains. Nevertheless, and in agreement with section 4 results, the SNM method offers 
the best case efficiency when it succeeds in finding a global optimizer. 

3. Implicitly constrained zeroth-order optimization algorithms with simple 
bounds 
The stochastic forms of NM proposed in this section solve optimization problems in higher 
dimensions that are difficult to treat or incompatible with GA, GPs and MADS. In addition 
they achieve global convergence at low computational cost. The ‘Offset-Perimeter’ encoding 
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Fig. 3. Four groups of 30 optimizations in 10ℜ  from the same starting point and driven by 
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Fig. 4. Four groups of 30 optimizations in 18ℜ  from the same starting point and driven by 
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the optimization of expensive functions. The above analysis indicates that in the examined 
dimensions the most efficient strategy would be to use SNM as a first stage optimization 
tool, a numerical telescope that can relatively inexpensively designate the vicinity that offers 
the highest probability to contain a global optimizer. A second stage search with the 
significantly more expensive GPS of MADS methods is then justified in the SNM designated 
subdomains. Nevertheless, and in agreement with section 4 results, the SNM method offers 
the best case efficiency when it succeeds in finding a global optimizer. 

3. Implicitly constrained zeroth-order optimization algorithms with simple 
bounds 
The stochastic forms of NM proposed in this section solve optimization problems in higher 
dimensions that are difficult to treat or incompatible with GA, GPs and MADS. In addition 
they achieve global convergence at low computational cost. The ‘Offset-Perimeter’ encoding 
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key ([21] gives a schematic representation) is used to map a variable perimetric line shape 
for each lamina comprising a fibre cross section. Under this scheme, the shape of a given 
cross section can be fully optimized but at a considerably higher computational cost. The 
dimensionality of the objective function domain increases by at least an order of magnitude 
depending on the sampling density of each lamina perimeter included in a cross section. A 
fibre topology that includes N -holes in the inner cladding is represented in 

( )12 1c h hNn n n+ + + +ℜ …  by a single point of the form 

 
(

)
1 1

1

,1 , ,1 , 1,1 1, 1,1 1,

T
,1 , ,1 ,

, , , , , , , , , , , , , , ,

, , , , ,

c c h h

h hN

c c n c c n h h n h h n

hN hN n hN hN n
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y y z z
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� �
 (14) 

where cn  is the number of points that sample the inner cladding perimeter and 1,2, ,|hi i Nn = …  
is the i -th hole perimetric point set population. The aforementioned encoding key includes 
the core centre coordinates but does not optimize the hole offsets. However, this is a feature 
that could be included into the coordinates set of P . 
Even for a low resolution polygonic approximation of a smooth perimeter, all the previously 
compared algorithms generate trial points that abruptly perturb a smooth start point and 
lack physical integrity and/or manufacturability. Examples of such perturbations are given 
in figures 5(a)-(c) showing typical trial points that the corresponding algorithms NM, GPS, 
MADS may generate during an optimization. Most representative trial points are those of 
the GA algorithm shown in figures 5(d), 5(e) for two different bounding configurations. It 
becomes obvious that GA scrambles randomly the start point coordinates failing to produce 
children or members of the initial population with physical integrity. Figure 5(e) suggests 
that a scheme capable of generating smooth perturbations is needed. An effort was 

 

 
Fig. 5. Trial points (or initial population members). (a) NM. (b) GPS. (c) MADS. (d) GA with 
own population, bounded within [-4,4]mm (e) GA with own population, bounded within 
the ±  50μm zone from start point. (f) GA with PNM initial population. 
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made to construct suitable constrains that would force the mapped coordinates to change in 
groups forming smooth, local and able to propagate perturbations along the perimeter of a 
lamina but it appears that this is a non-functioning approach. 
Although algorithm NM is not meant for constrained optimization it was found that it can 
be modified to perform implicitly constrained optimization. The outline of the related 
process is that after generating a suitable pattern, the vertices of the initial simplex could 
obey pattern imprinted constraints which propagate all the way to the convergence point at 
the end of a descent. The simplest implementation of the above concept is implemented via 
the perturbed Nelder-Mead (PNM) algorithm and by virtue of subalgorithms 
PNM_PattGener and PNM_SimplexGener. The former of the subalgorithms generates a 
pattern of the form 
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when the perturbed element group population is 3k = . Equation (15) demonstrates 
essentially the propagation of a constant disturbance involving k -elements along the length 
of the additive identity ( 1n×  zero vector). In line 1 of PNM_PattGener, the set 

{ } ( )N 1,2, ,0,1 2 |q q kν σ π =∈ …  with statistical median ( )1 2kμν ν += , follows the normal 

distribution ( )2
NN ,μ σ  where Nσ  is the predefined standard deviation of the distribution 

with a probability density function shown in the line 1 comment. It is notable that  

PNM NM≡ =Ξ Ξ I  when 1k =  and 1 2Nσ π= , indicating that PNMΞ  is a generalization of  
  

 

Algorithm PNM. The Perturbed Nelder-Mead (PNM) method: 

( )1, f , PNM , , , , ,l l j halt NM kσ σ σ⎡ ⎤ =⎣ ⎦P P Ω  

Input: (as in algorithm NM but with scalar mesh size and in addition, standard deviation of the 
normal distribution and perturbed element set population (odd positive 
integer: 2 1;k τ τ ∗= + ∈Ζ )). Output: [as in algorithm NM]. 

1                                                                                                          // same as in algorithm 
NM 

2 call ( )PNM PNM_PattGener , ,Nn kσ=⎡ ⎤⎣ ⎦Ξ                                          // PNM pattern 
generation 

3 call ( )0 1 PNMPNM_ SmxGener , , ,M n=⎡ ⎤⎣ ⎦S P Ξ                       // initial simplex generation 

1-13                                                                                                       // same as in algorithm 
NM 
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where cn  is the number of points that sample the inner cladding perimeter and 1,2, ,|hi i Nn = …  
is the i -th hole perimetric point set population. The aforementioned encoding key includes 
the core centre coordinates but does not optimize the hole offsets. However, this is a feature 
that could be included into the coordinates set of P . 
Even for a low resolution polygonic approximation of a smooth perimeter, all the previously 
compared algorithms generate trial points that abruptly perturb a smooth start point and 
lack physical integrity and/or manufacturability. Examples of such perturbations are given 
in figures 5(a)-(c) showing typical trial points that the corresponding algorithms NM, GPS, 
MADS may generate during an optimization. Most representative trial points are those of 
the GA algorithm shown in figures 5(d), 5(e) for two different bounding configurations. It 
becomes obvious that GA scrambles randomly the start point coordinates failing to produce 
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made to construct suitable constrains that would force the mapped coordinates to change in 
groups forming smooth, local and able to propagate perturbations along the perimeter of a 
lamina but it appears that this is a non-functioning approach. 
Although algorithm NM is not meant for constrained optimization it was found that it can 
be modified to perform implicitly constrained optimization. The outline of the related 
process is that after generating a suitable pattern, the vertices of the initial simplex could 
obey pattern imprinted constraints which propagate all the way to the convergence point at 
the end of a descent. The simplest implementation of the above concept is implemented via 
the perturbed Nelder-Mead (PNM) algorithm and by virtue of subalgorithms 
PNM_PattGener and PNM_SimplexGener. The former of the subalgorithms generates a 
pattern of the form 
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when the perturbed element group population is 3k = . Equation (15) demonstrates 
essentially the propagation of a constant disturbance involving k -elements along the length 
of the additive identity ( 1n×  zero vector). In line 1 of PNM_PattGener, the set 

{ } ( )N 1,2, ,0,1 2 |q q kν σ π =∈ …  with statistical median ( )1 2kμν ν += , follows the normal 

distribution ( )2
NN ,μ σ  where Nσ  is the predefined standard deviation of the distribution 

with a probability density function shown in the line 1 comment. It is notable that  

PNM NM≡ =Ξ Ξ I  when 1k =  and 1 2Nσ π= , indicating that PNMΞ  is a generalization of  
  

 

Algorithm PNM. The Perturbed Nelder-Mead (PNM) method: 

( )1, f , PNM , , , , ,l l j halt NM kσ σ σ⎡ ⎤ =⎣ ⎦P P Ω  

Input: (as in algorithm NM but with scalar mesh size and in addition, standard deviation of the 
normal distribution and perturbed element set population (odd positive 
integer: 2 1;k τ τ ∗= + ∈Ζ )). Output: [as in algorithm NM]. 

1                                                                                                          // same as in algorithm 
NM 

2 call ( )PNM PNM_PattGener , ,Nn kσ=⎡ ⎤⎣ ⎦Ξ                                          // PNM pattern 
generation 

3 call ( )0 1 PNMPNM_ SmxGener , , ,M n=⎡ ⎤⎣ ⎦S P Ξ                       // initial simplex generation 

1-13                                                                                                       // same as in algorithm 
NM 
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NMΞ . Subalgorithm PNM_SmxGener returns the initial simplex vertices as a result of the 

superposition between the start point ( 1P ) and the search directions stored in PNMΞ . The 
practical outcome is the propagation of a bell-shaped perturbation along the elements in 1P  
and is illustrated in figure 6 which assumes that 3k =  and shows clearly the n -steps of the 
perturbation propagation process which generates the initial simplex vertices 2P  to 1n+P . 
Also clearly demonstrated is that a set of vertices created at the start and the end of the 
process bare a perturbation that is abrupt at one end. This is a drawback of the described 
technique that has a small overall effect though due to the comparatively small number of 
vertices baring such a non-smooth perturbation. Soon after the start of the simplex decent, 

Subalgorithm PNM_PattGener. Perturbed Nelder-Mead (PNM) pattern generation:  
( )PNM PNM_PattGener , ,Nn kσ=⎡ ⎤⎣ ⎦Ξ  

Input: (number of variables, standard deviation of the normal distribution, perturbed element set 
population (odd positive integer: 2 1;k τ τ ∗= + ∈Ζ )). Output: [PNM pattern matrix]. 

1 *
T

1 2 2 1; Z: |k k τ τν ν ν = + ∈= ⎡ ⎤⎣ ⎦N �  //where { } ( ) ( ) ( ) 12 2
1,2, , N N| 1 2 exp 2q q k qν σ π μ σ

−

=
⎡ ⎤= − −⎢ ⎥⎣ ⎦

…  

2 ( ): 1 2kε = −   // number of variables in either bell shape branch excluding the median ( μ ) 

3 for each PNM pattern-matrix column in the set { }1,2,3, ,|i i n=ξ …  

4 ( ) ( )T T
1 2: , , , 0,0, ,0i nξ ξ ξ= ≡ξ … …                     // additive identity ( 1n×  zero vector) 

5 ( ) ( )( )T

1 11 1
1

, , , , , , , , :i i i i ii i
k

ε εε εξ ξ ξ ξ ξ ξ ξ− − + +− − + −
×

⎡ ⎤
=⎢ ⎥

⎣ ⎦
N� �   // bell shaped perturbation 

6 endfor 
7 ( )PNM 1 2: , , , n n n×=Ξ ξ ξ ξ�                                                                   // PNM pattern matrix 

8 return PNMΞ                                                                                                               //output. 

Subalgorithm PNM_SmxGener. PNM initial simplex 
generation: 

( )0 1 PNMPNM_ SmxGener , , ,M n=⎡ ⎤⎣ ⎦S P Ξ  
Input: (start point 1P , PNM pattern, mesh size and length of 

1P ). Output: [initial simplex matrix]. 

1 for each simplex vertex in the set { }2,3, , 1|i i n= +P …  

2 ( )1 max, 1 1: 1i i iM ξ − −= +P P ξ  

                   // where, { }max, 1 , 1 1,2, ,max |i w i w nξ ξ− − == …  

3 endfor 
4 ( ) ( )00 1 2 1 vol 01: |n n n+ >× +

= ⎡ ⎤⎣ ⎦ SS P P P�                            

5 return 0S                                                // output. 
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the abruptly perturbed vertices are naturally substituted by newly discovered and better 
performing smoothly perturbed vertices. The only damage made is the comparatively small 
reduction in the probability to capture optimal vertices right from the start of the process. 
The height of the bell shape is controlled, in subalgorithm PNM_SmxGener, via the mesh 
size M  while its full-width half-maximum is set via Nσ . The factor max1 ξ , used in line 2, 
normalizes the bell-shaped perturbation, stored in the pattern, to the maximum value of 1 in 
order to scale the perturbation height to the predefined mesh size M . A set of decoded 
initial simplex vertices is given in figure 7(a) where the start point was a cross section with 
circular inner cladding embedding an offset circular hole and an offset core. For 
completeness, figure 5(f) shows a child produced by GA after having been initiated with the 
same initial population that comprised the initial simplex vertices in PNM. Here the child’s 
features have been improved compared to figures 5(d), 5(e) but still the GA algorithm 
appears unable to generate a smooth optimizer. 
Following the proposal of SNM method in section 2, algorithm PNM naturally suggests its 
stochastic version SPNM which can be implemented by the simultaneous random 
assignment of ( M , Nσ ) and/or the simplex descent coefficients. The random assignment of 
( Nσ , M ) is implemented just before the generation of SPNMΞ  which now stores, as 
opposed to PNMΞ , a set of directions that still smoothly but this time randomly perturb the 
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Fig. 6. Illustration of the bell shape propagation in the nonrandomized initial simplex 
generation scheme for perturbed vertex elements number 3k = . Under this scheme, the 
shape of the perturbation propagates along the whole vertex in n -steps while preserving its 
shape. 
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the abruptly perturbed vertices are naturally substituted by newly discovered and better 
performing smoothly perturbed vertices. The only damage made is the comparatively small 
reduction in the probability to capture optimal vertices right from the start of the process. 
The height of the bell shape is controlled, in subalgorithm PNM_SmxGener, via the mesh 
size M  while its full-width half-maximum is set via Nσ . The factor max1 ξ , used in line 2, 
normalizes the bell-shaped perturbation, stored in the pattern, to the maximum value of 1 in 
order to scale the perturbation height to the predefined mesh size M . A set of decoded 
initial simplex vertices is given in figure 7(a) where the start point was a cross section with 
circular inner cladding embedding an offset circular hole and an offset core. For 
completeness, figure 5(f) shows a child produced by GA after having been initiated with the 
same initial population that comprised the initial simplex vertices in PNM. Here the child’s 
features have been improved compared to figures 5(d), 5(e) but still the GA algorithm 
appears unable to generate a smooth optimizer. 
Following the proposal of SNM method in section 2, algorithm PNM naturally suggests its 
stochastic version SPNM which can be implemented by the simultaneous random 
assignment of ( M , Nσ ) and/or the simplex descent coefficients. The random assignment of 
( Nσ , M ) is implemented just before the generation of SPNMΞ  which now stores, as 
opposed to PNMΞ , a set of directions that still smoothly but this time randomly perturb the 
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Fig. 6. Illustration of the bell shape propagation in the nonrandomized initial simplex 
generation scheme for perturbed vertex elements number 3k = . Under this scheme, the 
shape of the perturbation propagates along the whole vertex in n -steps while preserving its 
shape. 
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Fig. 7. Propagation instances of a perturbation envelope. (a) PNM method. (b) ESPNM 
method stochastic envelope (1st row) and random core offsets inside a selected vertex 
(importance sampling- 2nd row). 
additive identity. Both PNM and SPNM algorithms still call the same iteration subalgorithm 
(NM_Step) as NM and SNM do. The assignment of the random M , Nσ  parameter values is 
implemented as in algorithm ESPNM (enhanced stochastically permuted NM) proposed next. 
Algorithm ESPNM enhances SPNM method by dynamically and preferentially forming the 
initial and also intermediate (during a descent) simplices as well as conditionally and 
adaptively regenerating the intermediate simplices. The implementation of ESPNM method 
is described in algorithm ESPNM and associated subalgorithms ESPNM_PattGener, 
ESPNM_SmxObjGener and ESPNM_Step. Subalgorithm ESPNM_PattGrner generates a 
simplex formation pattern of the type  
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The concept behind ESPNMΞ  is that it stores a leftmost set of direction vectors that propagate 
the perturbation envelope starting from the first element in 1P  (1st column of ESPNMΞ ) and 
stopping when the opposite end of the envelope reaches the last element ( ( )1n k⎡ ⎤− −⎣ ⎦ -th 
column ). In this way there remain 1k −  unfilled columns in ESPNMΞ  ( ( )2n k⎡ ⎤− −⎣ ⎦ -th to n -
th column) that are assigned as shown. The later, in conjunction with subalgorithm 
ESPNM_SmxObjGener, will allow the selection of the best vertex so far ( optP ) and its 
subsequent perturbation with emphasis to its most influential elements (importance 
sampling). In this case, the aforementioned influential elements are the first two chosen on 
the basis that they control the offset of the active core where the pump photons absorption 
takes place. Subalgorithm ESPNM_SmxObjGener describes the stochastic assignment of 
each perturbation propagation instance along 1P  (line 4). In addition to the simplex matrix 
it also returns the objective matrix since the simplex is generated dynamically based on the 
feedback from the function evaluations. Then it evaluates the objective function at the 
perturbed vertices and selects the fittest ( optP ) amongst them (line 8). Its final operation is to 
randomly scramble the core offset along positive directions within the optimal cross section, 
represented by the decoded optP , in search for objective improving coordinates (lines 9-13). 
The initial polytope generated in this way is again a numerically non-degenerate structure.  

 
Algorithm ESPNM. Enhanced stochastically perturbed Nelder-Mead (ESPNM) method: 

( )1 N,f , ESPNM , , , , , ,l l j halt mM kσ σ σ υ⎡ ⎤ =⎣ ⎦P P Ω  

Input: (as in algorithm PNM, max consecutive shrinkages(>=2)). Output: [as in algorithm NM]. 

1 : 0j =                                                                                                               // iteration index 

2 ( )ESPNM ESPNM_PattGener , ,Nn kσ=⎡ ⎤⎣ ⎦Ξ                // stochastically permuted pattern 

3 call ( )1 ESPNM, ESPNM_SmxObjGener , , , , ,j j M n k⎡ ⎤ =⎣ ⎦S F P Ξ Ω       // stochastic simplex 

4 : 0cυ =                                                             // consecutive shrinkages number initialization 

5 call ( )f , f , , , f , SmxAssessm ,h l h l j j⎡ ⎤ =⎣ ⎦P P P S F               // current simplex ( jS ) assessment 

6 while  ( )j haltσ σ≥ // where, ( )
1 2

2
1,2, , 1;f f |j i i n i hσ = + ≠

⎛ ⎞
= −⎜ ⎟
⎝ ⎠

…  (descent halting criterion) 

7 : 1j j= +                                                                                                        // increment 

8 assign { } { }, , , 0.5,1 , 2,4 , 0.25,0.5 , 0.3,0.7
j

r e c s ∈ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ // random, uniformly distributed 

9 call  

( )1 ESPNM, , , ESPNM_Step , , , , , , , , , , , , , , , , , ,j j c h l h l j j c mstep f f r e c s M n kυ υ υ⎡ ⎤ =⎣ ⎦S F P P P Ω S F P Ξ       

10 call ( )f , f , , , f , SmxAssessm ,h l h l⎡ ⎤ =⎣ ⎦P P P S F                                    // simplex assessment 

11 endwhile                                                                                                  // end of iteration loop 
12 return , ,l l jf σP                                                                                                         // output. 
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additive identity. Both PNM and SPNM algorithms still call the same iteration subalgorithm 
(NM_Step) as NM and SNM do. The assignment of the random M , Nσ  parameter values is 
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represented by the decoded optP , in search for objective improving coordinates (lines 9-13). 
The initial polytope generated in this way is again a numerically non-degenerate structure.  
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4 : 0cυ =                                                             // consecutive shrinkages number initialization 

5 call ( )f , f , , , f , SmxAssessm ,h l h l j j⎡ ⎤ =⎣ ⎦P P P S F               // current simplex ( jS ) assessment 

6 while  ( )j haltσ σ≥ // where, ( )
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1,2, , 1;f f |j i i n i hσ = + ≠
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…  (descent halting criterion) 

7 : 1j j= +                                                                                                        // increment 

8 assign { } { }, , , 0.5,1 , 2,4 , 0.25,0.5 , 0.3,0.7
j
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Using this technique in high dimensions means that the initial simplex is formed by a search 
process with an extra element of intelligence which is the selective collection of information 
within a subset of dimensions offering higher probability to deliver substantially optimized 
objective function values and\or second order information. In other words, a subset of 
simplex vertices record a certain space of higher interest, while keeping the coordinates in 
the rest of the dimensions frozen, adding an element of exploratory search right from the 
start of the process. The aforementioned assignment process of the initial simplex is 
graphically illustrated in figure 8 for a small number of perturbed elements 5k =  selected 
to assist the demonstration of the selective randomization concept. It is also assumed there 
that 3P  performed optimally amongst the vertices from 1P  to ( )1 1n k+ − −P  and as shown it is 
vertex 3P  that is further processed and used as the basis to assign the remaining 1k −  
vertices of the initial simplex ( 0S ).The top two elements of each of the vertices ( )1 2n k+ − −P  to 

1n+P  in figure 8 show the way the represented core centre coordinates are randomly altered 
to capture further and better focused objective function information in the sub-dimensions 
of higher probability to capture optimal objective function values. A schematic visualization 
of the above process is given in figure 7(b) where the cross sections shown  

 
Subalgorithm ESPNM_PattGener. ESPNM pattern generation:  

( )ESPNM ESPNM_PattGener , ,Nn kσ=⎡ ⎤⎣ ⎦Ξ  
Input: (number of variables, maximum standard deviation of the normal distribution and number 
of perturbed variables (odd positive integer)). Output: [EPSNM pattern matrix]. 

1 ( ): 1 2kε = −          // number of variables in either branch of the normal distribution 

2 assign { }N, 1,2, , 2 N N| 2 ,i i n εσ σ σ= − ∈ ⎡ ⎤⎣ ⎦…           // uniformly distributed random values 

3 for each ESPNM pattern matrix column vector in the set { }1, ,|i i nε ε ε− = + −ξ …  

4 ( ) *
T

1 2 2 1; Z: , , , |i k kε τ τν ν ν− = + ∈=N � // { } ( ) ( )2
1,2, , N, N,| N , 0,1 2q q k i iε εν μ σ σ π= − −= ∈…     

5 ( ) ( )T T
1 2: , , , 0,0, ,0i nε ξ ξ ξ− = ≡ξ � …            // additive identity ( 1n×  zero vector) 

6 ( ) ( )( )T1 11 1
1

, , , , , , , , :i i i i i ii i
k

ε ε εε εξ ξ ξ ξ ξ ξ ξ− − + + −− − + −
×

⎡ ⎤
=⎢ ⎥

⎣ ⎦
N� �  // bell shaped perturbation 

7 endfor 

8 for each ESPNM pattern matrix columns in the set ( ) ( ){ }2 , 3 , ,|i i n k n k n= − − − −ξ …   // 1k −  

vectors 

9 ( ) ( )[ ]TT
21 0,,0,0,1,1,,,: …� == ni ξξξξ  // preferential perturbation pattern 

vectors 
10 endfor 
11 ( )ESPNM 1 2: , , , n n n×=Ξ ξ ξ ξ�                                                           // ESPNM pattern matrix 

12 return ESPNMΞ                                                                                                       // output. 
 

Global Optimization of Conventional and Holey Double-Clad Fibres by Stochastic Search   

 

371 

 
 
along the first row are instances of the stochastic bell shape propagation while the second 
row shows the importance sampling process [46] which is practically a uniformly random 
search for improved core offsets in the vicinity of optP . The aforementioned process is 
invoked once by algorithm ESPNM during the initial simplex ( 0S ) generation at line 3 and 
then recursively during the line search process (simplex descent) at line 21 of subalgorithm 
ESPNM_Step. The later is executed conditionally in the vicinity of the currently best vertex 
( lP ) when subsequent shrinkages are recorded indicating descent on a problematic 
landscape (noisy, discontinuous, nonconvex with many narrow and deep basins). It is also 
executed adaptively by halving the mesh size prior each new simplex generation around the 
preserved lP  in order to accelerate convergence (ESPNM_Step line 20). This process 
resembles the mesh size contraction in GPS and MADS and places ESPNM in the class of 
methods that optimize a function by iterative processes executed on a tower of meshes [29]. 
An important aspect of the initial simplex generation at line 3 of algorithm ESPNM is to 
choose appropriate values for M  and Nσ  parameters such that the initial simplex spans an  

 
Subalgorithm ESPNM_SmxObjGener. ESPNM simplex, objective matrices generation: 

( )1 ESPNM, ESPNM_SmxObjGener , , , , ,M n k=⎡ ⎤⎣ ⎦S F P Ξ Ω  
Input: (start point 1P , ESPNM pattern ,optimization domain, mesh size, length of 1P  and 
number of perturbed variables). Output: [simplex and objective matrices]. 

1 assign ( ){ }1,2, , 1| ,i i n ka M M= − − ∈ −⎡ ⎤⎣ ⎦…  // uniformly distributed random bell-amplitude values 

2 assign ( ){ }1,2, ,2 1| ,i i km M M= − ∈ −⎡ ⎤⎣ ⎦…        // uniformly distributed random mesh size values 

3 for each simplex vertex in the set ( ) ( ){ }2,3, , 1 1|i i n k= + − −P … // perturbation propagation loop  

4 ( )1 max, 1 1: 1i i i ia ξ − −= +P P ξ                         //where, { }max, 1 , 1 1,2, ,max |i w i w nξ ξ− − == …  

5 call ( )FuncEval ,i if =⎡ ⎤⎣ ⎦ P Ω                     // function evaluation at the simplex vertices 
6 endfor 
7 call ( )1 1FuncEval ,f =⎡ ⎤⎣ ⎦ P Ω                                    // function evaluation at the start point 

8 ( ) ( ){ }f : min f | 1,2, , 1 1opt i i n k= = + − −… ; assign ( )f f
|

opt opt
opt ≡ P

P // optimal vertex selection 

9 for each simplex vertex in the set ( ) ( ) ( ) ( ){ }1 2 , 1 3 , , 1|i i n k n k n= + − − + − − +P …  

10 ( )1, 1 1, 1 2 2 1:i i i n kmξ ξ− − − + − −= ; ( )2, 1 2, 1 2 2:i i i n kmξ ξ− − − + −=    

11 1:i opt i−= +P P ξ       // stochastic perturbation of core centre coordinates in selected optP  

12 call ( )FuncEval ,i if =⎡ ⎤⎣ ⎦ P Ω                      // function evaluation at the perturbed optP  

13 endfor 
14 ( ) ( )1 2 1 vol 01: |n n n+ >× +

= ⎡ ⎤⎣ ⎦ SS P P P� ; ( )1 2 1 1 1: n nf f f + × +
= ⎡ ⎤⎣ ⎦F �    // simplex; objective matrices  

15 return ,S F                                                                                                                 // output. 
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Fig. 8. Illustration of the selectively randomized initial simplex generation scheme for 
perturbed vertex elements number 5k = . The last four ( 1k − ) simplex vertices are versions 
of the vertex ( 3P ) that was the optimal point found. containing the core centre coordinates 
altered by the set of normally distributed pseudorandom coefficients 1 2 8{ , , , }r r r… .  

area that includes many valleys (nonconvex objective function) as opposed to forming a 
small initial simplex with all its vertices located inside a single valley. The latter will almost 
certainly result in local convergence. 
Subalgorithm ESPNM_Step implements a line search operation that guides the simplex 
when descending in nℜ . The aforementioned subalgorithm NM_Step is a subset of 
ESPNM_Step formed by removing the if-then-else-endif module (lines 19-25) after keeping 
lines 23 and 24. It includes a stronger expansion condition (line 4) and strict inequalities 
(lines 11 and 12). Also, the seven input arguments are removed as well as the last output 
argument. In previous work [21], the weaker expansion condition was used in 
NM_step( e lf f<  as in the original algorithm [20]). 
 

 
Subalgorithm ESPNM_Step. Interpretation of the ESPNM step operation: 

( )1 ESPNM, , , ESPNM_Step , , , , , , , , , , , , , , , , , ,j j c h l h l j j c mstep f f r e c s M n kυ υ υ⎡ ⎤ =⎣ ⎦S F P P P Ω S F P Ξ  

Input: (worse, best points, centre of polytope excluding hP , bounds, highest, lowest function 
values, reflection, expansion, contraction, shrinkage coefficients, current simplex, objective 
matrices, start point 1P , ESPNM pattern, mesh size, length of 1P , number of perturbed variables, 
consecutive and max consecutive shrinkages). Output: [current simplex, objective matrices, 
operation step, consecutive shrinkages]. 
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1 ( ): 1r hr r= + −P P P ; call ( )FuncEval ,r rf =⎡ ⎤⎣ ⎦ P Ω    // calculate; evaluate reflection point 

2 if  ( )r lf f<  then 

3 ( ): 1e re e= + −P P P ; call ( )FuncEval ,e ef =⎡ ⎤⎣ ⎦ P Ω //calculate; evaluate expansion point 

4 if  ( ) ( )ANDe l e rf f f f⎡ ⎤< <⎣ ⎦  then      // stronger expansion condition (modern NM) 

5 :h e=P P  in jS ; :h ef f=  in jF ; : 'expansion'step =        // expansion operation 

6 else 
7 s :h r=P P  in jS ; :h rf f=  in jF ; : 'reflection'step =                         // reflection 

8 endif 
9 else 
10 { }1,2, , 1;: max |m i i n i hf f = + ≠= …  

11 if  ( )r mf f≥  then 

12 if  ( )r hf f<  then 
13 :h r=P P                                             // improved hP  to be used in line 16  
14 :h r=P P  in jS ; :h rf f=  in jF ; : 'reflection'step =                   // reflection 

15 endif 
16 ( ): 1c hc c= + −P P P ; call ( )FuncEval ,c cf =⎡ ⎤⎣ ⎦ P Ω               // contraction point 

17 if  ( )c hf f>  then 

18 ( ){ }1,2, , 1;: |i i l i n i lc = + ≠= +P P P … ; : 'shrinkage'step = ; : 1c cυ υ= +  // shrinkage 

19 if  ( )maxconsυ υ=  then 
20 1 : l=P P ; : 2M M= ; : 0cυ =            // preservation; adaptation; reset 

21 call ( )1 ESPNM, ESPNM_SmxObjGener , , , , ,j j M n k⎡ ⎤ =⎣ ⎦S F P Ξ Ω // 

           new smx 
22 else 
23 for each { }1,2, , 1;|i i n i l= + ≠P …  call ( )FuncEval ,i if =⎡ ⎤⎣ ⎦ P Ω  endfor 

24 ( )1 2 1 1 1:j n nf f f + × +
= ⎡ ⎤⎣ ⎦F �               // evaluation of shrunk simplex 

25 endif 
26 else 
27 :h c=P P  in jS ; :h cf f=  in jF ; : 'contraction'step =      // contraction 

28 endif 
29 else 
30 :h r=P P  in jS ; :h rf f=  in jF ; : 'reflection'step =                    // reflection 

31 endif 
32  endif 
33 return jS , jF , step , cυ                                                                                         // output. 
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Fig. 8. Illustration of the selectively randomized initial simplex generation scheme for 
perturbed vertex elements number 5k = . The last four ( 1k − ) simplex vertices are versions 
of the vertex ( 3P ) that was the optimal point found. containing the core centre coordinates 
altered by the set of normally distributed pseudorandom coefficients 1 2 8{ , , , }r r r… .  

area that includes many valleys (nonconvex objective function) as opposed to forming a 
small initial simplex with all its vertices located inside a single valley. The latter will almost 
certainly result in local convergence. 
Subalgorithm ESPNM_Step implements a line search operation that guides the simplex 
when descending in nℜ . The aforementioned subalgorithm NM_Step is a subset of 
ESPNM_Step formed by removing the if-then-else-endif module (lines 19-25) after keeping 
lines 23 and 24. It includes a stronger expansion condition (line 4) and strict inequalities 
(lines 11 and 12). Also, the seven input arguments are removed as well as the last output 
argument. In previous work [21], the weaker expansion condition was used in 
NM_step( e lf f<  as in the original algorithm [20]). 
 

 
Subalgorithm ESPNM_Step. Interpretation of the ESPNM step operation: 

( )1 ESPNM, , , ESPNM_Step , , , , , , , , , , , , , , , , , ,j j c h l h l j j c mstep f f r e c s M n kυ υ υ⎡ ⎤ =⎣ ⎦S F P P P Ω S F P Ξ  

Input: (worse, best points, centre of polytope excluding hP , bounds, highest, lowest function 
values, reflection, expansion, contraction, shrinkage coefficients, current simplex, objective 
matrices, start point 1P , ESPNM pattern, mesh size, length of 1P , number of perturbed variables, 
consecutive and max consecutive shrinkages). Output: [current simplex, objective matrices, 
operation step, consecutive shrinkages]. 
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1 ( ): 1r hr r= + −P P P ; call ( )FuncEval ,r rf =⎡ ⎤⎣ ⎦ P Ω    // calculate; evaluate reflection point 

2 if  ( )r lf f<  then 

3 ( ): 1e re e= + −P P P ; call ( )FuncEval ,e ef =⎡ ⎤⎣ ⎦ P Ω //calculate; evaluate expansion point 

4 if  ( ) ( )ANDe l e rf f f f⎡ ⎤< <⎣ ⎦  then      // stronger expansion condition (modern NM) 

5 :h e=P P  in jS ; :h ef f=  in jF ; : 'expansion'step =        // expansion operation 

6 else 
7 s :h r=P P  in jS ; :h rf f=  in jF ; : 'reflection'step =                         // reflection 

8 endif 
9 else 
10 { }1,2, , 1;: max |m i i n i hf f = + ≠= …  

11 if  ( )r mf f≥  then 

12 if  ( )r hf f<  then 
13 :h r=P P                                             // improved hP  to be used in line 16  
14 :h r=P P  in jS ; :h rf f=  in jF ; : 'reflection'step =                   // reflection 

15 endif 
16 ( ): 1c hc c= + −P P P ; call ( )FuncEval ,c cf =⎡ ⎤⎣ ⎦ P Ω               // contraction point 

17 if  ( )c hf f>  then 

18 ( ){ }1,2, , 1;: |i i l i n i lc = + ≠= +P P P … ; : 'shrinkage'step = ; : 1c cυ υ= +  // shrinkage 

19 if  ( )maxconsυ υ=  then 
20 1 : l=P P ; : 2M M= ; : 0cυ =            // preservation; adaptation; reset 

21 call ( )1 ESPNM, ESPNM_SmxObjGener , , , , ,j j M n k⎡ ⎤ =⎣ ⎦S F P Ξ Ω // 

           new smx 
22 else 
23 for each { }1,2, , 1;|i i n i l= + ≠P …  call ( )FuncEval ,i if =⎡ ⎤⎣ ⎦ P Ω  endfor 

24 ( )1 2 1 1 1:j n nf f f + × +
= ⎡ ⎤⎣ ⎦F �               // evaluation of shrunk simplex 

25 endif 
26 else 
27 :h c=P P  in jS ; :h cf f=  in jF ; : 'contraction'step =      // contraction 

28 endif 
29 else 
30 :h r=P P  in jS ; :h rf f=  in jF ; : 'reflection'step =                    // reflection 

31 endif 
32  endif 
33 return jS , jF , step , cυ                                                                                         // output. 
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Fig. 9. Four groups of 15 optimizations in 182ℜ  from the same starting point and driven by 
different algorithms: (a) SPNM{D,D} ≡ PNM. (b) ESPNM{S,D}. (c) SPNM{D,S}. (d) 
ESPNM{S,S}. 
Figure 9 presents a comparison of the algorithms proposed in this section. The {*, *} notation 
denotes {simplex generation, descent coefficients} pairs that can be either deterministically 
(D) or stochastically (S) assigned. The corresponding start point was a circular non-holey 
inner cladding with a centred core which absorbed 5.6W of pump power. The reported 
results indicate that the best performing algorithm is ESPNM{S, S} because it delivered, on 
average, the optimal function values exhibiting at the same time the lowest spread around 
their mean value. It demonstrated a 152% improvement of the mean Pabs,tot compared to the 
113% offered by PNM for a 61% increase in computation cost over PNM. 

4. Optimization results 
The inner cladding of a conventional DCF has a numerical aperture (NA) of 0.48 while the core 
NA is 0.175. The core doping density is 20,000ppm-by-volume, the launched pump power is 
100W and the fibre length is 10cm for all the optimization results presented in this section. The 
pump light has a random modal content, its energy is propagated via 288 rays in 10 time steps 
and the absorption computation grid of the active core is comprised of 100 volume elements. 
The pump light wavelength is pλ =975nm at which the Yb+3 (Er+3-Yb+3 ion system) absorption 
cross section is 24 22.1 10 m−× . The simulated fibres are single-end pumped by a 600μm 
diameter pure silica core (standard fibre bundled pump delivery fibre) and NA of 0.48 when 
pumping a fibre with polymer outer clad or it is assumed to be surrounded by an air outer 
cladding when pumping a double-clad fibre which also has an air outer cladding. This work 
focuses on a set of fibre topologies that are thoroughly optimized and computationally 
compared on a common basis that avoids confusion and develops intuition into their 
absorption trends. Although space restrictions did not allow comprehensive parametric 
optimization, a sample of parametric optimization results in 10ℜ  is presented in figure 10 
which shows a set of fairly similar optimizers exhibiting almost identical absorption 
characteristics. Algorithm NM converged to the reported shapes for different pairs of fibre 
length and pump power values correspondingly. The optimization process started from the 
same initial cross section and run under the same settings. Figure 10 demonstrates the 
generality of the optimization results reported in tables 1-4 which are approximately valid 
within the ranges [0.1, 1]W and [0.1, 1]m of pump power and fibre length correspondingly. 
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Fig. 10. Absorption performance of four convergence points resulting from optimization 
runs under different fibre length and pump power values. 
The computing platform used for the optimizations reported in this chapter, is the same as 
the platform described in reference [19]. The CPU time consumed for the objective function 
evaluation at each start point is shown in the tables of this chapter for a more informative 
presentation. The strongest influence on the recorded CPU times originates from the total 
number of scattering operations which fluctuates slightly during an optimization. The 
computational efficiency of the 3-D fibre simulation method used was compared in [19] with 
other methods reported in the literature. 
All Mote Carlo algorithms proposed in this chapter made use of the built-in MATLAB 
random number generator to produce the required sequences of uniformly distributed 
pseudorandom numbers. The built in function is based on the random number generator by 
Marsaglia and Zaman [47] which was specifically designed to produce floating point values 
and uses a lagged Fibonacci generator with a cache of 32 floating point numbers between 0 
and 1 combined with a separate, independent random integer generator based on bitwise 
logical operations. As a result, MATLAB’s built-in generator has a period of 21492 (number of 
values produced before the sequence begins to repeat itself) and can theoretically generate 
all numbers between 2-53 and 1-2-53, all with equal probability to occur. 
Figure 11 demonstrates the effort to optimize the offset of the core inside a circular (1st row 
figures) and a square (2nd row figures) inner cladding. The CPU time required for a single 
function evaluation for the circular fibre was approximately 28s on the MATLAB platform. 
Figures 11(a) and 11(e) show the corresponding pump power absorption surfaces generated 
by sampling the total absorbed pump power (Pabs,tot) calculated at 49 nodes (by moving 
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Fig. 9. Four groups of 15 optimizations in 182ℜ  from the same starting point and driven by 
different algorithms: (a) SPNM{D,D} ≡ PNM. (b) ESPNM{S,D}. (c) SPNM{D,S}. (d) 
ESPNM{S,S}. 
Figure 9 presents a comparison of the algorithms proposed in this section. The {*, *} notation 
denotes {simplex generation, descent coefficients} pairs that can be either deterministically 
(D) or stochastically (S) assigned. The corresponding start point was a circular non-holey 
inner cladding with a centred core which absorbed 5.6W of pump power. The reported 
results indicate that the best performing algorithm is ESPNM{S, S} because it delivered, on 
average, the optimal function values exhibiting at the same time the lowest spread around 
their mean value. It demonstrated a 152% improvement of the mean Pabs,tot compared to the 
113% offered by PNM for a 61% increase in computation cost over PNM. 

4. Optimization results 
The inner cladding of a conventional DCF has a numerical aperture (NA) of 0.48 while the core 
NA is 0.175. The core doping density is 20,000ppm-by-volume, the launched pump power is 
100W and the fibre length is 10cm for all the optimization results presented in this section. The 
pump light has a random modal content, its energy is propagated via 288 rays in 10 time steps 
and the absorption computation grid of the active core is comprised of 100 volume elements. 
The pump light wavelength is pλ =975nm at which the Yb+3 (Er+3-Yb+3 ion system) absorption 
cross section is 24 22.1 10 m−× . The simulated fibres are single-end pumped by a 600μm 
diameter pure silica core (standard fibre bundled pump delivery fibre) and NA of 0.48 when 
pumping a fibre with polymer outer clad or it is assumed to be surrounded by an air outer 
cladding when pumping a double-clad fibre which also has an air outer cladding. This work 
focuses on a set of fibre topologies that are thoroughly optimized and computationally 
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optimization, a sample of parametric optimization results in 10ℜ  is presented in figure 10 
which shows a set of fairly similar optimizers exhibiting almost identical absorption 
characteristics. Algorithm NM converged to the reported shapes for different pairs of fibre 
length and pump power values correspondingly. The optimization process started from the 
same initial cross section and run under the same settings. Figure 10 demonstrates the 
generality of the optimization results reported in tables 1-4 which are approximately valid 
within the ranges [0.1, 1]W and [0.1, 1]m of pump power and fibre length correspondingly. 
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Fig. 10. Absorption performance of four convergence points resulting from optimization 
runs under different fibre length and pump power values. 
The computing platform used for the optimizations reported in this chapter, is the same as 
the platform described in reference [19]. The CPU time consumed for the objective function 
evaluation at each start point is shown in the tables of this chapter for a more informative 
presentation. The strongest influence on the recorded CPU times originates from the total 
number of scattering operations which fluctuates slightly during an optimization. The 
computational efficiency of the 3-D fibre simulation method used was compared in [19] with 
other methods reported in the literature. 
All Mote Carlo algorithms proposed in this chapter made use of the built-in MATLAB 
random number generator to produce the required sequences of uniformly distributed 
pseudorandom numbers. The built in function is based on the random number generator by 
Marsaglia and Zaman [47] which was specifically designed to produce floating point values 
and uses a lagged Fibonacci generator with a cache of 32 floating point numbers between 0 
and 1 combined with a separate, independent random integer generator based on bitwise 
logical operations. As a result, MATLAB’s built-in generator has a period of 21492 (number of 
values produced before the sequence begins to repeat itself) and can theoretically generate 
all numbers between 2-53 and 1-2-53, all with equal probability to occur. 
Figure 11 demonstrates the effort to optimize the offset of the core inside a circular (1st row 
figures) and a square (2nd row figures) inner cladding. The CPU time required for a single 
function evaluation for the circular fibre was approximately 28s on the MATLAB platform. 
Figures 11(a) and 11(e) show the corresponding pump power absorption surfaces generated 
by sampling the total absorbed pump power (Pabs,tot) calculated at 49 nodes (by moving 
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Fig. 11. Core offset optimization (in 2ℜ ) inside a circular (1st row) and a square inner-clad 
(2nd row). (a),(e) Transverse distribution of total absorbed power. (b),(f) Interpolated 
objective function surface and simplex descent path on the actual surface. (c),(g) Beam 
overlap images. (d),(h) Cumulative absorption of the initial guess (circles) and the 
convergence point (triangles). 

the core on each one) of a Cartesian grid covering a square area 4900μm2 and interpolating 
the values on a 784 nodes grid covering the same area. This information is plotted here in 
order to observe the behaviour of the referred to as the modern interpretation of the Nelder-
Mead algorithm adopted in this work. For the circular inner cladding, the ,abs totP  values 
exhibit the well known symmetrical distribution around the centre of the cross section with 
the peak appearing near the inner-to-outer cladding interface. Figure 11(b) shows the 
surface that plots the corresponding values ( ,abs totP− ) of the objective function and the path 
followed by the lowest vertex of the simplex (which is a triangle here in 2ℜ ). The descent 
started from the region of the initial guess which was the centre of the cross section 
( ), ,,c init c inity z =(0, 0)μm and the algorithm converged at the point ( ), ,,c opt c opty z =(-38, -
203)μm denoting that the optimum offset of the core from the centre is approximately at a 
distance of 69% of its radius for the considered operation point.  
The corresponding path for the square DCF is shown in figure 11(f) on a fragment of the 
objective function surface. Here the simplex started again from the cross section centre and 
converged this time to the point ( ), ,,c opt c opty z =(-24, 126)μm where the core is situated at a 
distance from the centre that is approximately 21% of the inner cladding side length. In both 
figures it is apparent that the direct search method achieved better landscape resolutions 
and at lower computation cost than those achieved through the initial evaluation of ,abs totP  
at the grid nodes. Furthermore, figure 11(b) suggests graphically that first-order 
convergence from an arbitrary starting point (global convergence) is achieved at a point 
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2
optim ∈ℜP  very close to an optimizer *x  that is a stationary point of the objective function 

satisfying the second-order sufficiency condition ( ( )2
* *: 0x f x∃ ∇ >  for a differentiable 

function). The spatial distribution of ,abs totP  across the cross section plane of the circular 
DCF is also clearly followed by the lowest order standing wave that developed in the beam 
overlap image in figure 11(c). The corresponding surface for the square DCF shows the 
improved scrambling of the modes achieved by this cross section. The peak standing high 
above the rest on each surface denotes the location of the core within the inner cladding. 
Figure 11(d) shows the dramatic improvement of absorption in the offset core of the circular 
DCF which is the direct result of the simplex descent to a deep valley while figure 11(h) 
demonstrates that there is comparatively little room for improvement when offsetting the 
core within a square DCF. 
Table 1 presents the results from the simultaneous optimization of the cross section and 
refractive index performed mostly by the stochastic variants of NM at relatively low 
dimensions. The listed schemes (column 5) optimized the offset, size, shape and refractive 
index of an encompassed lamina while the shape of the inner cladding remained constant. 
These results represent a telescopic view into the considered optimization domains 
facilitated by the parsimonious nature of NM and SNM methods. All dielectric holes shown 
are assumed to be made of CBYA alloy-glass [40] apart from the row 3 optimizer 
representing an attempt to search for improved refractive index values. The increased CPU 
times recorded for the most complicated and absorbent topologies is due to the 
correspondingly larger number of scatterings occurring inside them. The optimal cross 
section in table 1 is the row 8 optimizer, found by stochastic search in 18ℜ  where the offset 
as well as ellipticity and size of four large area holes were allowed to vary independently. 
The single hole designs demonstrated high potential to achieving optimal absorption while 
when square shapes for the inner cladding or embedded holes were used, the absorption 
dropped considerably. The same was the case when air holes or hexagonal CBYA holes of 
variable offset and size were optimized (not shown). As far as the preliminary results in 
table 1 are considered, the cross sections worth to invest on in terms of computational 
expense for further optimization by the MADS method appear to be the: 
• Four elliptical holes scheme (row 8) 
• Circular hole topologies because they are easier to manufacture and showed improved 

absorption potential (row 6) after initiating a second optimization from a previous 
optimizer (row 5) 

• Single large-hole cross section due to its simplicity and good performance. 
The most promising topologies from table 1 are taken to the next level for optimization by 
MADS which promises to deliver global optimizers with higher probability but a significant 
increase in computational cost is expected. Prior to discussing the results in table 2 it is 
useful to describe the algorithmic settings of GA, MADS and GPS methods because they had 
an impact on all corresponding results. The optimizations executed by GA in section 2 
started with 1n +  members in the initial population (to match the number of vertices 
maintained by a simplex), the elite population size was set to the nearest integer of 
( )1 10n + , the cross over factor was 0.8, the migration factor was 0.2 and the migration 
interval was set to 20. With the need to make the GPS and MADS as computationally 
efficient as possible with a minimum negative impact on their global convergence 
properties, they were set up as follows. Neither complete search nor complete poll  
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Fig. 11. Core offset optimization (in 2ℜ ) inside a circular (1st row) and a square inner-clad 
(2nd row). (a),(e) Transverse distribution of total absorbed power. (b),(f) Interpolated 
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convergence point (triangles). 
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function). The spatial distribution of ,abs totP  across the cross section plane of the circular 
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overlap image in figure 11(c). The corresponding surface for the square DCF shows the 
improved scrambling of the modes achieved by this cross section. The peak standing high 
above the rest on each surface denotes the location of the core within the inner cladding. 
Figure 11(d) shows the dramatic improvement of absorption in the offset core of the circular 
DCF which is the direct result of the simplex descent to a deep valley while figure 11(h) 
demonstrates that there is comparatively little room for improvement when offsetting the 
core within a square DCF. 
Table 1 presents the results from the simultaneous optimization of the cross section and 
refractive index performed mostly by the stochastic variants of NM at relatively low 
dimensions. The listed schemes (column 5) optimized the offset, size, shape and refractive 
index of an encompassed lamina while the shape of the inner cladding remained constant. 
These results represent a telescopic view into the considered optimization domains 
facilitated by the parsimonious nature of NM and SNM methods. All dielectric holes shown 
are assumed to be made of CBYA alloy-glass [40] apart from the row 3 optimizer 
representing an attempt to search for improved refractive index values. The increased CPU 
times recorded for the most complicated and absorbent topologies is due to the 
correspondingly larger number of scatterings occurring inside them. The optimal cross 
section in table 1 is the row 8 optimizer, found by stochastic search in 18ℜ  where the offset 
as well as ellipticity and size of four large area holes were allowed to vary independently. 
The single hole designs demonstrated high potential to achieving optimal absorption while 
when square shapes for the inner cladding or embedded holes were used, the absorption 
dropped considerably. The same was the case when air holes or hexagonal CBYA holes of 
variable offset and size were optimized (not shown). As far as the preliminary results in 
table 1 are considered, the cross sections worth to invest on in terms of computational 
expense for further optimization by the MADS method appear to be the: 
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an impact on all corresponding results. The optimizations executed by GA in section 2 
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Table 1. Optimization results for polymer outer-clad and holey inner-clad with NM variants. 
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Table 2. MADS optimization results for polymer outer-clad and holey inner-clad. 
operations were allowed resulting in an opportunistic style of direct search iteration that stops 
as soon as a better point has been found. Also, the first direction of search after a successful 
poll or search step is set to be the one that was successful in the previous iteration (exploratory 
search tactic). A so called tabu list that records the already visited points was maintained so 
that the expense of unnecessary function re-evaluations would be avoided. This added a tabu 
search metaheuristic element to MADS and GPS that was found to offer up to approximately 
40% reduction in function evaluations. Tabu search is not recommended for stochastic 
functions but in this case the stochastic noise was suppressed. One other setting that can 
reduce the computation expense is to accelerate the rate at which the mesh size is adapted after 
a non-successful iteration. This setting was not enabled in this work because it was found to 
significantly reduce the probability to discover a global optimizer (at a benefit of 20% 
reduction in function evaluations). The last setting, shared by all optimization methods used 
here is the minimization halting criterion. In order to achieve an equally economical 
minimization that avoids unnecessary function evaluations at the vicinity of an already well 
approximated optimizer, all halting criterions were set to stop the minimization when 
saturation in the improvement of the lowest recorded objective function value as a function of 
the number of iterations was observed. Regarding MATLAB’s ‘Genetic Algorithm and Direct 
Search Toolbox’ used to implement the GA, GPS, and MADS optimizations, it was found via 
observation that the above halting condition was satisfied for ‘Function Tolerance’ (a 
parameter compared against the cumulative change in the best function value over a number 
of iterations) values of 10-6, 10-7 and 10-4 correspondingly. In algorithm NM and all its forms 
proposed in sections 2 and 3, the saturation of the fittest function value was observed for  

 ( ) 01 10haltσ σ≅  (17) 
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search metaheuristic element to MADS and GPS that was found to offer up to approximately 
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functions but in this case the stochastic noise was suppressed. One other setting that can 
reduce the computation expense is to accelerate the rate at which the mesh size is adapted after 
a non-successful iteration. This setting was not enabled in this work because it was found to 
significantly reduce the probability to discover a global optimizer (at a benefit of 20% 
reduction in function evaluations). The last setting, shared by all optimization methods used 
here is the minimization halting criterion. In order to achieve an equally economical 
minimization that avoids unnecessary function evaluations at the vicinity of an already well 
approximated optimizer, all halting criterions were set to stop the minimization when 
saturation in the improvement of the lowest recorded objective function value as a function of 
the number of iterations was observed. Regarding MATLAB’s ‘Genetic Algorithm and Direct 
Search Toolbox’ used to implement the GA, GPS, and MADS optimizations, it was found via 
observation that the above halting condition was satisfied for ‘Function Tolerance’ (a 
parameter compared against the cumulative change in the best function value over a number 
of iterations) values of 10-6, 10-7 and 10-4 correspondingly. In algorithm NM and all its forms 
proposed in sections 2 and 3, the saturation of the fittest function value was observed for  
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where 0σ  is the standard deviation of the initial objective matrix elements excluding the 
highest value. The success of (17) depends on the standard deviation of the function values, 
stored in the initial objective matrix ( 0F ), not being too large so that the simplex will reach 
the neighbourhood of an optimizer before the condition j haltσ σ≥  is satisfied at the end of 

the j-th iteration. When the aforementioned criterion fails to halt the simplex after 
acceptably approximating an optimizer, then the descent halts after a relatively small 
number of iterations and a large improvement in the objective (row 1 in table 3, row 5 in 
table 4). Then the process is restarted using the discovered point as a new start point (row 2 
in table 3, row 6 in table 4). In this way, the inherent tendency of NM (and proposed NM-
based methods) to perform unnecessary iterations after having adequately approximated an 
optimizer was avoided. 
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Table 3. Optimization results for polymer outer cladding with algorithm ESPNM. 

After the direct comparison of several algorithms in section 2, the MADS method was 
chosen as the most successful at lower dimensions in terms of probability to find global 
optimizers. The most distinctive topologies listed in table 1 are re-optimized in table 2 under 
MADS. The 1st row of table 2 shows the results from an attempt to optimize the same start 
point as in row 3 of table1 but this time with an added dimension. The discovered optimizer 
outperformed all optimizers from table 1 showing that an offset core topology with a single 
large hole of optimal ellipticity delivers the strongest pump absorption. Although the 
refractive index was independently varied during the optimization, the MADS algorithm 
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converged to an optimizer with the exactly the same hole refractive index, a manifestation of 
the discrete nature of pattern search. One other aspect of the MADS algorithm is that it 
demonstrates an inherent tendency to preferentially search along those directions that 
exhibit the stronger influence on the objective function values.  The results in row 4 
disappointed because although the start point was the same as in row 8 of table 1, the 
MADS algorithm converged to an optimizer in 18ℜ  that was strongly outperformed by the 
SNM found optimizer (for a higher cost though this time). This observation suggests that a 
surprisingly low number of function evaluations is a sign of local convergence. However, 
the discovered optimizer indicates that if a centred core topology is sought after then the 
design parameters of the holes can be optimized for improved absorption strength. Row 2 in 
table 2 shows a successful optimization in 14ℜ  that improved over the later suggesting that 
the optimization of the hole-ellipticity may not be justified if it is significantly more difficult 
to manufacture. An interesting result is reported in row 3 of table 2 where MADS converged 
to the start point after about 1/3 of the expected number of function evaluations. This 
behaviour of MADS was observed several times and showed that its success depends 
strongly on starting the process from a point far away from an optimizer, a property which 
is not shared by SNM as suggested by the results in row 6 of table 1. 
Remaining in the class of topologies with polymer outer cladding, table 3 presents the 
optimization of inner cladding and hole perimeters along with the core offset at high 
dimensions. The two-stage optimization (rows 1,2) of a circular inner cladding with centred 
core resulted in a cross section with a minor spiral deformation to the inner cladding perimeter 
and an offset core. Row 3 adopted a start point resembling the spiral fibre proposed by 
Kouznetsov and Moloney [48] and converged to an inner cladding shape that is a perturbed 
spiral shape with the core located closer to the centre. The optimizer in row 3 suggests that a 
spiral cross section can be further improved. Row 4 demonstrates that a square fibre has 
limited prospects for competitive improvement while row 5 shows a case of local convergence 
in 362ℜ  where a global optimization is potentially very expensive due to the high dimensions. 
Finally, table 4 presents a set of optimization attempts for double-clad topologies with air 
outer cladding. The CPU times recorded here are much higher than in the polymer outer 
cladding case because the air-clad designs support higher order modes (rays of higher 
transmission angles under the absorption model in [19]) resulting in significantly increased 
number of scattering operations on the dielectric interfaces. An interesting finding was that 
an optimized polymer hole (row 2) can be very efficient in decoupling the pump light from 
its volume. In this way the pump modes are forced to propagate inside the significantly 
reduced inner cladding volume with a dramatic effect on the increase of the pump photons 
overlap with the active core volume. This design can be used with moderate pump power 
levels though due to the low damage threshold of a polymer. However, it has been 
demonstrated that high glass-transition temperature thermoplastic polymers can be 
thermally co-drawn into micro-sized structures without cracking or delamination [49]. A 
direct comparison between MADS and ESPNM is provided by the results in rows 3 and 4 
where a dodecagon shaped inner cladding with offset core is optimized. The two algorithms 
converged to optimizers of the same absorption performance but ESPNM did so at a 
significantly lower cost. The dodecagon shape was chosen due to the small number of 
perimetric sampling points involved which did not allow MADS to generate trial points 
without physical meaning (or lacking manufacturability), contrary to the cases in figure 5. 
Furthermore, an air outer cladding may be easier to fabricate around a polygonic inner 
cladding by means of a comb of suitably shaped air holes. 
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Table 3. Optimization results for polymer outer cladding with algorithm ESPNM. 

After the direct comparison of several algorithms in section 2, the MADS method was 
chosen as the most successful at lower dimensions in terms of probability to find global 
optimizers. The most distinctive topologies listed in table 1 are re-optimized in table 2 under 
MADS. The 1st row of table 2 shows the results from an attempt to optimize the same start 
point as in row 3 of table1 but this time with an added dimension. The discovered optimizer 
outperformed all optimizers from table 1 showing that an offset core topology with a single 
large hole of optimal ellipticity delivers the strongest pump absorption. Although the 
refractive index was independently varied during the optimization, the MADS algorithm 
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converged to an optimizer with the exactly the same hole refractive index, a manifestation of 
the discrete nature of pattern search. One other aspect of the MADS algorithm is that it 
demonstrates an inherent tendency to preferentially search along those directions that 
exhibit the stronger influence on the objective function values.  The results in row 4 
disappointed because although the start point was the same as in row 8 of table 1, the 
MADS algorithm converged to an optimizer in 18ℜ  that was strongly outperformed by the 
SNM found optimizer (for a higher cost though this time). This observation suggests that a 
surprisingly low number of function evaluations is a sign of local convergence. However, 
the discovered optimizer indicates that if a centred core topology is sought after then the 
design parameters of the holes can be optimized for improved absorption strength. Row 2 in 
table 2 shows a successful optimization in 14ℜ  that improved over the later suggesting that 
the optimization of the hole-ellipticity may not be justified if it is significantly more difficult 
to manufacture. An interesting result is reported in row 3 of table 2 where MADS converged 
to the start point after about 1/3 of the expected number of function evaluations. This 
behaviour of MADS was observed several times and showed that its success depends 
strongly on starting the process from a point far away from an optimizer, a property which 
is not shared by SNM as suggested by the results in row 6 of table 1. 
Remaining in the class of topologies with polymer outer cladding, table 3 presents the 
optimization of inner cladding and hole perimeters along with the core offset at high 
dimensions. The two-stage optimization (rows 1,2) of a circular inner cladding with centred 
core resulted in a cross section with a minor spiral deformation to the inner cladding perimeter 
and an offset core. Row 3 adopted a start point resembling the spiral fibre proposed by 
Kouznetsov and Moloney [48] and converged to an inner cladding shape that is a perturbed 
spiral shape with the core located closer to the centre. The optimizer in row 3 suggests that a 
spiral cross section can be further improved. Row 4 demonstrates that a square fibre has 
limited prospects for competitive improvement while row 5 shows a case of local convergence 
in 362ℜ  where a global optimization is potentially very expensive due to the high dimensions. 
Finally, table 4 presents a set of optimization attempts for double-clad topologies with air 
outer cladding. The CPU times recorded here are much higher than in the polymer outer 
cladding case because the air-clad designs support higher order modes (rays of higher 
transmission angles under the absorption model in [19]) resulting in significantly increased 
number of scattering operations on the dielectric interfaces. An interesting finding was that 
an optimized polymer hole (row 2) can be very efficient in decoupling the pump light from 
its volume. In this way the pump modes are forced to propagate inside the significantly 
reduced inner cladding volume with a dramatic effect on the increase of the pump photons 
overlap with the active core volume. This design can be used with moderate pump power 
levels though due to the low damage threshold of a polymer. However, it has been 
demonstrated that high glass-transition temperature thermoplastic polymers can be 
thermally co-drawn into micro-sized structures without cracking or delamination [49]. A 
direct comparison between MADS and ESPNM is provided by the results in rows 3 and 4 
where a dodecagon shaped inner cladding with offset core is optimized. The two algorithms 
converged to optimizers of the same absorption performance but ESPNM did so at a 
significantly lower cost. The dodecagon shape was chosen due to the small number of 
perimetric sampling points involved which did not allow MADS to generate trial points 
without physical meaning (or lacking manufacturability), contrary to the cases in figure 5. 
Furthermore, an air outer cladding may be easier to fabricate around a polygonic inner 
cladding by means of a comb of suitably shaped air holes. 
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Table 4. Optimization results for air outer cladding. 
The predictions reported here may be compared to the 35% pump absorption enhancement 
reported by Baek et al [14] and to the 18% improvement measured by Jeong et al [15] for a 
circular fibre with centred core. Based on the current results, in the case of polymer coated 
DCFs, it is predicted that the optimizer in row 1 of table 2 can offer an approximate 
enhancement of 180% compared to a conventional circular DCF with centred core. Against a 
conventional circular DCF with optimally offset core (table 1, row 1 optimizer), an 
enhancement of 11% is predicted. For the air outer cladding case, assuming high power 
operation (no polymer holes), a 160% improvement (table 4, row 6 optimizer) is predicted 
against a centred circular DCF and 10% enhancement compared to the circular optimizer 
with optimally offset core. 

5. Summary 
Several stochastic algorithms based on the deterministic Nelder-Mead method were 
proposed and benchmarked against pattern search methods and a genetic algorithm. In low 
dimensions, the proposed Monte Carlo NM variants offered improved computational 
efficiency via a simple sampling approach. Implicitly constrained search combined with 
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importance sampling offered efficient global convergence in high dimensions. Smoothly 
perturbed patterns were proposed that may find theoretical support for constrained 
optimization. The fittest algorithms were applied to the cross section geometry and 
corresponding refractive index profile optimization. The identified advantages of the 
aforementioned pump absorption enhancement concept were: 
• In the case of the holey DCFs the size of the inner cladding can be scaled to accept more 

pump power without the need to increase the core size. The solid state holes can be 
correspondingly scaled to retain their pump light tapering effect into the core volume. 

• The proposed holey cross sections are compatible with the helical core concept and 
most side pumping schemes. Multi-core ribbon lasers [12] may also benefit from 
optimized solid-state holes 

• No fibre machining is needed while also compatibility with standard fibre 
manufacturing is maintained 

The main limitation may be the low fabrication tolerance implied by the complexity of most 
proposed topologies. On the front of correctly predicting their relative absorption 
performance, limitations are imposed by error levels induced by stochastic and numerical 
noise during optimization as well as simulation inaccuracies induced during function 
evaluations. 
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circular fibre with centred core. Based on the current results, in the case of polymer coated 
DCFs, it is predicted that the optimizer in row 1 of table 2 can offer an approximate 
enhancement of 180% compared to a conventional circular DCF with centred core. Against a 
conventional circular DCF with optimally offset core (table 1, row 1 optimizer), an 
enhancement of 11% is predicted. For the air outer cladding case, assuming high power 
operation (no polymer holes), a 160% improvement (table 4, row 6 optimizer) is predicted 
against a centred circular DCF and 10% enhancement compared to the circular optimizer 
with optimally offset core. 
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importance sampling offered efficient global convergence in high dimensions. Smoothly 
perturbed patterns were proposed that may find theoretical support for constrained 
optimization. The fittest algorithms were applied to the cross section geometry and 
corresponding refractive index profile optimization. The identified advantages of the 
aforementioned pump absorption enhancement concept were: 
• In the case of the holey DCFs the size of the inner cladding can be scaled to accept more 

pump power without the need to increase the core size. The solid state holes can be 
correspondingly scaled to retain their pump light tapering effect into the core volume. 

• The proposed holey cross sections are compatible with the helical core concept and 
most side pumping schemes. Multi-core ribbon lasers [12] may also benefit from 
optimized solid-state holes 

• No fibre machining is needed while also compatibility with standard fibre 
manufacturing is maintained 

The main limitation may be the low fabrication tolerance implied by the complexity of most 
proposed topologies. On the front of correctly predicting their relative absorption 
performance, limitations are imposed by error levels induced by stochastic and numerical 
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1. Introduction 
Global and dynamic optimization of engineering problems usually involves complex 
physico-chemical models as constraints. These models are in general highly non-linear, 
resulting in multimodal optimization problems. The model may have discontinuous 
behavior and/or include a very large set of variables. As the complexity of the systems 
increases, equation-free modeling is becoming more common (Kevrekidis, Gear and 
Hummer, 2004). For example, in particle dynamics, population balance models are 
sometimes more effectively solved by the Monte Carlo method.  
Stochastic global optimization methods are very important algorithms for the solution of 
these types of problems. They have been successfully applied to solve challenging problems 
that cannot be solved using gradient based methods. Stochastic optimization methods have 
also been used in many algorithms, in which solution of optimization problems is part of the 
algorithm. Global stochastic optimization strategies have been utilized in learning phase of 
pattern recognition algorithms using fuzzy logic (Irizarry, 2005b) and neuro-fuzzy systems 
(Lin, 2008). These methods have been used for the optimization of complex engineering 
designs involving computational fluid mechanics such as aerodynamics applications 
(Duvigneau and Visonneau, 2004). Other applications include the determination of 
molecular structures, including protein structure prediction and protein-small molecule 
interactions among others (Sahinis, 2009). Batch scheduling problems are another type of 
problem were stochastic optimization can be very efficient (Liu et al., 2010).  
In particular, the solution of dynamic optimization problems is also of great industrial 
importance for process development and process optimization, since most processes are 
dynamic. In this type of problem an optimal profile function is sought (vs. an optimal value 
for a set of variables). For example, in a fed-batch fermenter, the feed-rate schedule is 
optimized to maximize production of antibiotics, vitamins, enzymes, and other products 
(Banga et al., 2003). Another example is the determination of optimal temperature profiles in 
crystallization processes to control crystal size distribution (Ma, Tafti and Braatz, 2002). 
Dynamic optimization is also of central importance to the application of process control 
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using model predictive control (Banga, Irizarry-Rivera and Seider, 1998; Pistikopoulos, 
2009). Model predictive control provides a sequence of control actions over a future time 
horizon by solving a dynamic optimization problem that covers past and future behavior of 
the system.   
The genetic algorithm (GA) (Holland, 1975; Goldberg, 1989) and simulated annealing (SA) 
(Kirkpatrick, Gelatt and Vecchi, 1983; Ingber, 1993) are classical stochastic optimization 
methods used in many applications and new algorithm developments. GA is based on 
emulating Darwinian evolution in populations. Evolutionary strategies also focus on real 
decision variables problems using Darwinian evolution concepts (Schwefel, 1995). In these 
population-based methods, a large set of configurations forms a population, with new 
generations created by selection, crossover and mutation operators acting on the current 
population. This evolution process will increase the fitness of the population to a near 
optimal value. These algorithms strongly depend on the parameters and types of selection, 
crossover and mutation mechanisms selected. These operators are continuously being 
improved and redefined for specific applications and problems (as one of many examples 
see Tang, Sun and Yang, 2010). Other algorithms like the ant colony (Dorigo and Stutzle, 
2004)) and particle swarm optimization (Kennedy and Eberhart, 2001) are inspired by 
cooperative phenomena of animal behavior or agents.  
Simulated annealing was designed for combinatorial optimization problems using concepts 
from statistical physics. In this case, a very low-energy configuration may be achieved by 
starting at a high temperature and then gradually lowering the temperature using a cooling 
schedule. The performance of these algorithms depends strongly on the selection of the 
cooling schedule, which in general needs to be tuned for specific problems. Furthermore, SA 
does not consider how to select a step change for the next trial solution, which is critical to 
the success of the algorithm. This needs to be defined by the user for the problem at hand. 
This chapter discussed an alternative for global optimization methodology based on a 
different paradigm known as the artificial chemical process (Irizarry, 2004). The paradigm 
has been used to design robust dynamic optimization algorithms (Irizarry, 2005a; Irizarry, 
2006) and fuzzy logic algorithms (Irizarry, 2005b). Fast MC algorithms of population balance 
models are also reviewed (Irizarry, 2007a; Irizarry, 2007b). These coarse graining algorithms 
accelerate simulation speed by an order of magnitude without loss of accuracy, making 
optimization of these systems feasible in real time. Unlike other lumping or coarse graining 
strategies, in this strategy the particle integrity is not lost in the coarsening process. This 
increase in speed allows the efficient solution of parameter identification problems (Irizarry, 
2010) and dynamic optimization problems. The LARES algorithm is described in Section 2. 
A general purpose algorithm to solve dynamic optimization problems is described in 
Section 3. Section 4 considers fast MC simulation algorithms for the simulation of 
population balance models. Fast MC strategies are discussed in Section 5. Section 6 discusses 
how to combines the algorithms into a hybrid strategy to solve problems involving multiple 
time scales and inherently stochastic variables. 

2. Global optimization using the artificial chemical process paradigm 
In this section an optimization algorithm called LARES is reviewed. This algorithm is based 
on an artificial chemical optimization paradigm introduced in 2004 (Irizarry, 2004). To apply 
the algorithm, the first step is to encode all decision variables, θ , into a set of integer 
variables with a very small range of possible values (i.e., 2–10). The integer variables are 

Global and Dynamic Optimization using the Artificial Chemical Process Paradigm and  
Fast Monte Carlo Methods for the Solution of Population Balance Models   

 

389 

called molecules, and their respective values are called states. As a motivating example 
consider a case were θ  is a vector of real variables. The real decision variables can be 
encoded using a binary representation (similar to GA). Unlike GA, in this encoding each bit 
of the string is associated with a molecule variable with two possible values (0 and 1), which 
represents the value of a specific bit in the binary encoding (see Figure 1). In general, any 
type of decision variables (including real, integer, logical, and combinatorial) can be 
encoded into a set of molecules, making the algorithm very flexible. 
 

0 1 0 1 1 0

0

1

0
1

1
0

Binary code

Molecule

 
Fig. 1. The concept of molecules for binary encoding of a real variable 

Given the decision vector represented as a set of molecules, the LARES algorithm operates 
on these molecules to create new trial states. At each iteration of the algorithm, a subset of 
molecules will change state (value) to generate a new trial vector. The artificial chemical 
plant concept is based on the fact that chemical reactors convert a low-quality material into a 
high-value product by a series of reactions, feedback loops, and separation steps. The 
following algorithm is based on an abstraction of those steps. 

2.1 The LARES artificial chemical plant paradigm  
The LARES algorithm is an iterative improvement methodology, which considers one 
solution at a time. Given the decision variables encoded into molecules, the algorithm 
generates a movement of some molecules between four compartments or sets  (called L, AR, 
E, and S). The four compartments are shown in Figure 2 (panel 1). The algorithm starts with 
all molecules assigned to a set L with an initial state. At each iteration, a set of rules 
determines the event to be triggered next. Each event is a stochastic subprocess whereby a 
subset of molecules is moved from one compartment to another. When molecules reach one 
specific compartment (AR), their state is changed (similar to a reactor in a real chemical 
plant). The set of rules for the next event selection are based on the previous values of the 
objective function and the objective function of the best value found so far.   
Before describing the algorithm in detail, the different types of possible triggered events are 
described. Let g

jx  be the state of the molecule j for the best value found so far (or initial 
trial), and 1( ,..., )g gg

Vx x x=  the vector of molecular states for the best value found. Let F be 
the objective function to be minimized. Figure 2 panel 2 shows an example of the state of six 
molecules for the best value found so far. One possible event consists of a set of molecules 
being transferred from the Load tank (L set) to the Activation Reactor (AR set), in which the 
molecules change state to a new random state, ga

j jx x j AR≠ ∀ ∈ .  The state of molecules will 
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not change while they are inside AR. An example of this type of event is shown in Figure 2 
panel 2, where molecules 1 and 4 were moved from L to AR and their states changed from 0 
to 1 and 1 to 0, respectively (compare panel 1 and panel 2). This event generates a new trial 
vector as shown in Figure 2 panel 3, the performance of which is evaluated. In another type 
of event in a different iteration, some reacted molecules can be sent to the Extraction unit (E 
set) where they are deactivated back into their previous state upon entering the reactor 
( gt

j jx x j E= ∀ ∈ ). These extracted molecules could be sent to the Separation unit (S set) or 
recycled back into the Activation Reactor, where the molecules are reactivated to a new state 

ga
j jx x j E≠ ∀ ∈ . At each iteration, a trial vector consists of the activated molecules in AR and 

the deactivated molecules in the other three sets: gt a
j j jx x x j AR= ≠ ∀ ∈ , gt

j jx x j AR= ∀ ∉ . If, 
after any event in the current iteration, a "good batch" is accomplished (i.e., a better objective 
function is found, ( ) ( )t bF Fθ θ≤ , the activation reactor can be emptied into the separator unit, 
S. In this case all molecules conserve the new state ( g a

jjx x j AR= ∀ ∈ ), and a new "batch" is 
then started. The algorithm is described in detail in the next section. 
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Fig. 2. The artificial chemical process in panel 1 changes the state of the molecules in panel 2 
to a new trial state in panel 3 by transferring some molecules from L to AR and changing the 
states of the molecules in AR. 

2.2 LARES algorithm 
Initialization: The algorithm starts by initializing xg randomly and placing all molecule 
variables in L. 
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Outer loop: Perturbation to form AR. 
1. Select the number of molecules, N, to be extracted from L and added to the AR set 

( 1N rF= , where and r is a random number uniformly distributed in (0,1)). 
2. Select N random molecules from L and add them to the AR set.  For each selected 

molecule j, select a new state ga
j jx x≠ randomly. 

3. Form a new trial vector using 

 
g

jjt
j a

j j

x if x AR
x

x if x AR

⎧ ∉⎪= ⎨
∈⎪⎩

 (1) 

4. If performance is improved, accept the trial state as the new best solution (ground 
state). g tx x← . Send all AR molecules to the S set. Go to Step 1.  

5. Set parameters: ( )tRP F x= , 0AR AR= . 

6. Inner loop:  Iterative improvement of AR 
6.1  Select the number of molecules, M, to be extracted from AR to form E ( 2M rF= , 

where 2F  is an algorithm parameter, and r is a random number.) 
6.2  Select M random molecules from AR and transfer them to the E set. Return the 

state of all molecules j in E to the state of the best solution found, gt
j jx x= , and 

build the trial vector as in Step 3 using Eq. (1).  
6.3 If the performance is improved, g tx x← , and go to step 1. 
6.4 Improvement criterion for AR:  

6.4.1 If F(xt) ≤ RP, add all molecules in E to S and update ( )tRP F x= . 
6.4.2 If F(xt) > RP, generate a new activated state for all elements in E 

( ,ga
j j jx x x j E= ≠ ∀ ∈ ) and transfer all molecules in E to AR ( E = ∅ )  

6.5 Exit the inner loop if AR is too small or if the ratio of the number of iterations 
relative to the initial size of AR exceeds a given parameter, RRT. Otherwise go to 
Step 6.1. 

7. If the size of L is less than a parameter LT, transfer all S molecules to L. 
In Step 1, 1 0F V c= × ; in Step 6.1 2 0 iF AR c= × . In both cases, if the number of molecules 

selected is larger than the set, all molecules in the set are selected. The parameters used for 
this algorithm are: RRT = 1.0, co = 0.3, ci = 0.25, LT = V/2.  
The algorithm was shown to be fast and robust when tested with problems of different 
degrees of multi-modality, discontinuity and flatness. The molecular representation allows 
the solution of a large class of problems. This structure is general in purpose but also has the 
flexibility to add problem-specific features. For example, the “locality” of these operators 
allows the inclusion of bias in the sub-set formation (Steps 3 and 11) or the transformation 
rule (Step 5).  

2.3 Algorithm performance 
This algorithm has been tested and extensively utilized to solve many optimization 
problems. Its performance in some of the test problems is reviewed in this section. The 
multi-modal random problem generator of Spears (Spears, 1998) was utilized to test LARES 
over various degrees of modality for binary representation. The problem generator 
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Fig. 2. The artificial chemical process in panel 1 changes the state of the molecules in panel 2 
to a new trial state in panel 3 by transferring some molecules from L to AR and changing the 
states of the molecules in AR. 

2.2 LARES algorithm 
Initialization: The algorithm starts by initializing xg randomly and placing all molecule 
variables in L. 
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allows the inclusion of bias in the sub-set formation (Steps 3 and 11) or the transformation 
rule (Step 5).  

2.3 Algorithm performance 
This algorithm has been tested and extensively utilized to solve many optimization 
problems. Its performance in some of the test problems is reviewed in this section. The 
multi-modal random problem generator of Spears (Spears, 1998) was utilized to test LARES 
over various degrees of modality for binary representation. The problem generator 
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generates a set of P random V-bit strings representing the location of the P peaks in space. 
To evaluate the performance of an arbitrary string, the nearest peak is located (in Hamming 
space).  Then the fitness of the bit string c is calculated as the number of bits the string has in 
common with that nearest peak, divided by V. The optimum fitness for an individual is 1.0. 

 
1

1( ) max{ - min ( , )}
P

ii
f c V Ham g c Peak

V =
=  (2) 

The objective function used in LARES was ( ) 1 - ( )F c f c= , while –F(c) was used for the 
fitness function in GA simulations.  
Table 1 shows the results for four study cases.  For each set of parameters V and P, 20 
random problems were generated in each case. Each algorithm was run on each problem 
generated. LARES found the global maximum in all cases ( ( *) 0f c = ), while GA failed to 
find the global maximum for cases 3 and 4, and μGA failed to find the global maximum in 
three out of four cases.  For the first case, LARES converged to a global optimum in 78 
function evaluations on average, while GA converged in 900 function evaluations and μGA 
converged in less than 350 function evaluations.  For the second case, LARES found the 
global maximum in 647 evaluations on average, while GA converged in approximately 3,700 
evaluations and μGA failed to find the global maximum in 20,000 function evaluations (see 
Figure 3). For the third and fourth study cases, LARES was the only algorithm that 
converged to the global maximum in nearly 30,000 function evaluations. This behavior was 
explored systematically by De Jong et al. (1997). In their analysis, the authors found that for 
V = 20, the simple GA will converge in less than 5,000 function evaluations. For V = 100, 
many trials failed to find the global optimum after 20,000 evaluations.  
The algorithm has also being tested with Boolean satisfiability problems (SAT), which refers 
to the task of finding a truth assignment that makes a Boolean expression true. The Boolean 
satisfiability problem generator of Mitchel et al. (1992) was used to test the performance of 
LARES in solving random problems with different levels of epistasis. The model assumes a 
conjunctive normal form of the Boolean expression with C clauses. All clauses are also 
assumed to consist of the same number of literals, L.  The vector of variables V is 
represented as a binary string.   
A random problem is generated to create C random clauses. Each clause is generated by 
randomly selecting L variables, and then each variable is negated with probability 0.5. Once 
a random L-SAT problem is defined, the fitness function, f, is given by the fraction of clauses 
that are satisfied by the assignment.  Note that the main goal of this section is to study 
LARES with different levels of epistasis. For practical solution of this type of problem, 
methods such as GSAT (Selman and Kautz, 1993) and WSAT (Gottlieb et al., 2002) have been 
specially developed. 
 

V P Number of 
Iterations GA μGA LARES 

20 20 20,000 0 0 0 
100 20 20,000 0 0.03 0 
1000 20 30,000 0.16 0.29 0 
1000 200 30,000 0.16 0.29 0 

Table 1. Comparison of LARES performance with GA for the multi-modal random problem 
generator. 
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Fig. 3. Average best-so-far curves for LARES, GA and μGA using a multi-modal problem 
generator with V = 100 and P = 20. 

Table 2 shows the solution of a series of L-SAT random problems using LARES and GA.  
Each test consists of an average of over 20 randomly generated problems. In all simulations, 
the length of clauses, L, had a fixed value of 3. The number of variables, V, was also fixed at 
a value of 100. The number of clauses was used as a parameter in the simulation, ranging 
from 200 to 2400. LARES was faster than GA in all cases, but in the last two cases GA found 
a slightly better solution while μGA found a slightly worse solution to the L-SAT problem 
(see Figure 9). These results indicate that LARES also behaves very well with problems 
involving different levels of epistasis. 
The LARES algorithm was also applied to a very challenging test bed used by many authors 
to test real function optimization algorithms. Binary encoding was used to represent real 
variables. The algorithm was compared with GA using the same test bed, starting with the 
same initial guesses, and performing the same number of iterations.  Comparisons are also 
made with other methods specifically designed for real-function optimization reported in 
the literature. Although literature in this field is extensive, few studies involve methods that 
are efficient for real function optimization. Reported algorithms include Differential 
Evolution (DE) (Storn and Price, 1997), the Breeder Genetic Algorithm (BGA) (12 
Mühlenbein and Schlierkamp-Voosen, 1993), Evolutionary Algorithm with Soft Genetic 
operators (EASY) (Voigt, 1995), the Line-up Competition Algorithm (LCA) (Yan and Ma, 
2001), Continuous Ant Colony Optimization (CACO) (Mathur et al., 2000), Adaptive 
Simulated Annealing (ASA) (Ingber and Rosen, 1992), Very Fast Simulated Annealing 
(VFSA) (Ingber, 1993), Guided Evolutionary Simulated Annealing (GESA) (Yip and Pao, 
1995) and Covariance Matrix Adaptation Evolution Strategy (CMA-ES) (Hansen, Muller and 
Koumoutsakos, 2003). In summary, LARES had better performance than GA in most 
instances, and in many cases the speed of LARES is comparable to that of methods specially 
designed to operate with real-value optimization problems. 
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Number of 
classes, C 

Number of 
iterations GA μGA LARES 

200 30,000 0 0 0.0003 
1200 30,000 0.0433 0.050 0.0469 
2400 30,000 0.0651 0.071 0.0675 

Table 2. Comparison of LARES and GA performance with the LSAT random problem 
generator 

 
Fig. 4. Average best-so-far curves for LARES, GA, and μGA using a L-SAT problem with C = 
200, L = 3, and V = 100. 

3. Solution of dynamic optimization problems using LARES 
As discussed in the introduction, dynamic optimization is a very important type of 
optimization problem in operation research and engineering, since many systems of interest 
are dynamic. In particular, most processes in the chemical industry are batch processes in 
which optimal reactant addition (and/or temperature) profiles determine product quality. 
Dynamic optimization is also used in model predictive control systems. These types of 
problems are more effectively solved using stochastic optimization methods that can escape 
from local minima and are not affected by singularities. In Banga, Irizarry-Rivera, and 
Seider (1998), an efficient and robust algorithm was developed to solve dynamic 
optimization problems using a flexible parametrization of the control law, consisting of a 
piecewise variable-length linear function. This method resulted in a big improvement over 
the more traditional piecewise constant approximations (Roubos et al., 1999; Luus, 2000). A 
generalized algorithm that uses LARES with a very flexible control law representation has 
also been considered (Irizarry, 2005a). This algorithm is reviewed in this section.  
Unlike standard optimization to determine the optimal value of a set of real variables, in 
dynamic optimization, we seek an optimal function u(t) or a set of functions ui(t), i= 1,M. 
The dynamic optimization problem for a single control law can be formulated as: 
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Find u(t) over [ , ]o ft t t∈ such that 

 
( )

( ( ))f
u t

F x tmin  (3a) 

subject to: 

 ( ( ), ( ), )dx x t u t t
dt

= Ψ  (3b) 

 ( )o ox t x=  (3c) 

 ( ( ), ( )) 0h x t u t =  (3d) 

 ( ( ), ( )) 0c x t u t ≤  (3e) 

 ( )L Uu u t u≤ ≤  (3f) 

where F is the performance index, u is the control law, and x the vector of state variables. 
The set of constraints consists of the dynamic model (Eqn. 3b), the initial conditions of the 
state variables (Eqn. 3c), the equality constraints (Eqn. 3d), the inequality constraints (Eqn. 
3e), and bounds on the control variables (Eqn. 3f). Different methods to solve this type of 
problem have been reviewed recently by Banga et al. (2003). 

3.1 LARES-PR algorithm 
The previously introduced algorithm (Irizarry, 2005; Irizarry, 2006) consists of interfacing 
the LARES algorithm with a generalized representation of the control law. This procedure 
decodes the LARES decision variables (molecules) into a flexible representation of the 
control law based on three key elements: (a) variable-length segments, (b) the use of finite 
element trial functions to represent the control function in each segment (Zienkiewics, 1977), 
and (c) switching between different representations to model each segment with different 
functions. Figure 5 shows an example in which the possible profile is represented by three 
segments of different lengths. In the first segment, the control function is modeled with a 
quadratic finite element. The second segment is modeled with a constant function (step 
function). The third segment is modeled with a linear finite element. In this representation, 
the segment sizes, the type of function representing each segment, and the adjustable 
parameters of the selected function for each segment are all decision variables of the 
optimization problem to be solved. This representation spans a large functional space in 
which smooth regions, drastic changes in functionality, singularities, and discontinuities of 
the control function can be found as part of the solution for the optimization problem with a 
reduced number of decision variables.    
The unknown control profile is encoded according to the following procedure. For the 
segments represented with finite elements, the node values of the finite element are part of 
the decision variables. Molecules are assigned to encode each of these variables using binary 
encoding. The function selection for each segment is then performed as follows. The data 
structure starts with all segments represented by finite-element function using the highest 
order of elements to be considered in the analysis. Then, a logical variable is defined for 
each segment, which is used as a switching mechanism. The logical variable can replace the 
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Fig. 5. Profile representation: generalized structure. 

element with a lower-order element or with user-defined functions over the same segment 
interval. Figure 6 illustrates the hybrid formulation. This example consists of quadratic finite 
elements with three nodes representing each element. The logical variable with state 

(1,1,2,3,0)δ =  replaces the first two elements with lower-order linear elements (eliminating 
the middle node as a variable), the third and fourth elements are replaced with user-specified 
functions, and element 5 is represented with a quadratic element. The combinatorial variables 
for each finite element, iδ , is an integer number whose range equals the number of possible 
functions to be used. One molecule is selected for each combinatorial variable. The number of 
states for the molecule equals the number of possible functions that can represent a segment. 
 

Master finite elements

Linear Linear f g Quadratic

Hybrid formulation

Logical variable, δi

1 1 2 3 0

Master finite elements

Linear Linear f g Quadratic

Hybrid formulation

Logical variable, δi

1 1 2 3 0

 
Fig. 6. Encoding a hybrid formulation. 
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The encoding of the segment size is the most difficult aspect of this formulation. The size of 
each segment is a component of the decision variables of the optimization problem, 
represented by a partition 1.... Nτ τ . For each trial solution, a new partition is generated ( t

iτ , 
where the sequence is in increasing order, 1

t t
i iτ τ +≤ ). These variables cannot be encoded 

directly into LARES, and if standard binary encoding of these parameters in the range 
[0, ]i ftτ ∈  is utilized, this constraint will be violated frequently during LARES iterations. 

This problem is avoided by the following two-step procedure, called Moving Partition (MP) 
transformation (Irizarry, 2005a). First, computational variables are chosen for each partition 
variable ( 0,1is ∈⎡ ⎤⎣ ⎦  to represent each iτ ). Mapping from this computational domain to the 
physical domain is made with the help of the disjoint segments, each one around the 
partition of the best solution found. Let b

iτ  be the sequence for the best solution found. Then 
the following boundaries are calculated: 

 ( ),
1 / 2L b b b b

i i i iτ τ β τ τ −≡ − ⋅ −  (4) 

 ( ),
1 / 2U b b b b

i i i iτ τ β τ τ+≡ + ⋅ −  (5) 

where the parameter β is used to control the gap between the disjoint segments. With this 
boundary for each partition node and the trial vector, t

is , the actual trial partition is 
calculated from the following MP mapping, , ,: [0,1] [ , ]L b U b

i i iT τ τ→ , defined as follows: 

 ( ), , ,t L b t U b L b
i i i i isτ τ τ τ= + ⋅ −  (6) 

The MP is shown schematically in Figure 7. As shown in this figure, the trial variables 
1 ,... Ns s  are not in ascending order ( 2 1s s< ), but the trial partition values, 1 ,... Nτ τ  are in 

ascending order ( 1 2τ τ< ). 
With this description of the control law, the LARES-PR algorithm can be described as follows: 
LARES-PR algorithm. The overall algorithm is discussed in Irizarry (2005). It consists of 
interfacing this profile representation with LARES. After a new trial molecular state from 
LARES, the procedure described in this section consists of (1) decoding, (2) applying MP 
transformation, (3) building the control law determined by element type, size, and 
parameters, (4) integrating the model, and (5) feedback to LARES regarding the 
performance of the control  

3.2 Simulation results 
LARES-PR performance has been studied with a set of benchmark problems with low 
sensitivity of the objective function, bang-bang behaviors, singular arc, and discontinuities in 
the optimal profile. In all cases, the algorithm has proven to be efficient and robust. Figure 8 
shows the solution of four optimization problems used by several authors as benchmark 
problems. The Van der Pol oscillator problem has been studied by Vassiliadis (1993), Tanartkit 
and Biegler (1995), Banga, Irizarry-Rivera and Seider (1998), and Vassiliadis et al. (1999). This 
problem was solved using the generalized control function, where each element can be 
represented by either linear or quadratic Lagrange polynomials. The optimal profile is shown 
in Figure 8a, with an improved performance index over other methods using only four 
elements and a smoother profile compared to previous results reported in the literature. 
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and Biegler (1995), Banga, Irizarry-Rivera and Seider (1998), and Vassiliadis et al. (1999). This 
problem was solved using the generalized control function, where each element can be 
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elements and a smoother profile compared to previous results reported in the literature. 
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Fig. 7. Moving partition transformation. Each variable in a computational domain is 
mapped into a corresponding space/time subdomain. 

The second case shown in Figure 8b is a plug-flow reactor with singular arc. In this problem, 
a plug-flow reactor packed with a mixture of catalysts is used to perform the reaction 
A B C⇔ ⇔ . The fraction of catalyst is adjusted throughout the reactor to maximize the 

product C. This problem was solved using the generalized control law approximation with 
three possible functions for the element Ei: δi = {1, 2, 3} = {u(t) = constant finite element, u(t) 
= umax, u(t) = umin}. The optimal control law is shown in Figure 8b. Figure 8c shows the 
optimal production of secreted protein in a fed-batch reactor. This problem consists of a 
bioreactor operated in fed-batch mode studied by Park and Ramirez (1988), Luus (1992), 
Banga, Irizarry-Rivera and Seider (1988), Vassiliadis et al. (1999), and Sarkar and Modak 
(2003). This problem shows very low performance index sensitivity of the control profile, 
often leading to computational difficulties particularly when gradient-based algorithms are 
used. The fed-batch reactor problem was also solved using the generalized control law 
approximation, with three possible functions for the element Ei: δi = {1, 2, 3} = {u(t) = 
quadratic finite element, u(t) = umax, u(t) = umin}with 10 elements. The control law gives a 
global optimum for this problem. 
Figure 8d shows the optimal profile for the bang-bang control problem (see Irizarry 2005a 
for a detailed description of the problem). To solve this problem, eight elements were used, 
and the function approximation of each element is either a linear interpolation function or 
the bang-bang constant functions δi={1, 2, 3}={u(t)=linear trial function, u(t)= umax, u(t)= 
umin}. LARES-PR found the correct bang-bang feature as part of the solution, that is, δ*= 
{4,3,4,3,4,3,4}. This is an important element of the proposed method, which can be used with 
general-purpose approximation functions or with problem-specific functionalities for which 
the proposed algorithm will identify problem features in addition to the solution.  
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In most cases, the near optimum value (less than 0.5% of global optimum) was found in less 
than 1,000–10,000 function evaluations. The algorithm continues to refine the solution at a 
slower rate, resulting in very accurate solutions. In most cases, a very accurate solution can 
be found in 50,000–100,000 iterations. The results demonstrate that LARES-PR is robust and 
has fast convergence properties when compared with other stochastic optimization 
methods.   
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Fig. 8. Optimal profiles: (a) Van der Pol oscillator problem, (b) plug-flow reactor with 
singular arc, (c) fed-batch bioreactor, (d) bang-bang control problem. 

LARES-PR has also being applied to large-scale optimal control problems with discrete-time 
dynamics and multiple control laws. The dynamic integrated climate-economy (DICE) 
model for global warming (Nordhaus, 1994) is a model of a very important problem, which 
posed several challenges in finding the optimal profile. This model consists of maximizing 
the discounted sum of per capita utilities consumption subject to the dynamics of emissions, 
economic impact, and economic cost of policies to control global warming. Moles, Banga 
and Keller (2004) made an extensive study of optimal policy with a modified version of this 
model using different global optimization algorithms (ICRS, LJ, DE, SRES, GLOBAL, 
GCSOLVE). As discussed in Moles, Banga and Keller (2004), the numerical solution of this 
multimodal NLP is very challenging, due to the non-convexities and discontinuous nature 
of the dynamics.  
As the time horizon is discrete, the dynamic optimization problem can be formulated as a 
standard NLP problem with the value of the control laws at each discrete time as a decision 
variable. Using this approach, the number of decision variables increases as the time 
horizon, Nt, increases (number of decision variables = Nt*Nu), resulting in a large-scale 
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GCSOLVE). As discussed in Moles, Banga and Keller (2004), the numerical solution of this 
multimodal NLP is very challenging, due to the non-convexities and discontinuous nature 
of the dynamics.  
As the time horizon is discrete, the dynamic optimization problem can be formulated as a 
standard NLP problem with the value of the control laws at each discrete time as a decision 
variable. Using this approach, the number of decision variables increases as the time 
horizon, Nt, increases (number of decision variables = Nt*Nu), resulting in a large-scale 
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nonlinear optimization problem. Alternatively, the profile representation of LARES-PR can 
be utilized to represent the control law with a very small set of decision variables. 
Figure 9 shows the performance of LARES, DE, CRS, and LARES-PR in solving the original 
DICE model for a time horizon of 50 decades. As shown in Figure 9, LARES and LARES-PR 
are faster than DE and CRS in converging to a near global optimum. In particular, LARES-
PR was much faster than all methods with a high-quality solution: The best value found for 
each algorithm was: W* = 966.91767 (DE), 966.91632 (LARES-PR), 966.91353 (LARES), and 
966.69733 (ICRS). When the number of finite elements was increased from five to eight, the 
solution was improved to almost identical to the DE results in fewer iterations, with W* = 
966.91711 (LARES-PR).  
LARES-PR effectively solved this problem, which consisted of finding the optimal 
functionality of two simultaneous control laws. To implement multiple control laws, a 
representation is defined for each unknown profile (PR1 and PR2). 
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Fig. 9. Performance for the DICE climate-economy discrete time model: (a) DE, (b) CRS, (c) 
LARES, (d) LARES-PR. 

4. Monte Carlo methods for population balance problems 
A great majority of products are composed of finely divided solids or contain finely divided 
particles as part of their composition. One example is metallic microparticles and 
nanoparticles used in electronic ink compositions. Another example is the dispersion of 
pigments in paints. Most pharmaceutical products include a crystallization of organic 
powders. The particle size distribution, shape, and composition of these finely divided 
particles control the properties of the final product. Therefore, the understanding of these 
particles and how they form is of great importance (Irizarry, 2010a). The macroscopic 
modeling of particle formation consists of formulating population balance equations for the 
problem at hand. When optimization of these systems is pursued, the population balance 
equations appear as part of the constraints (Irizarry, 2005; Irizarry, 2006). 
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Population balance models are continuity equations of a particle population evolving by 
different mechanisms (such as aggregation, breakage, nucleation, and growth). The 
continuous population balance equation, PBE, is a deterministic integro-differential 
equation that describes the dynamics of a particle density function as a function of 
continuous particle properties (i.e. volume, particle radius, surface area, etc.). As the 
dimensionality of the PBE increases, the direct numerical solution of these equations 
becomes more difficult. For a multidimensional population balance equation, the Monte 
Carlo (MC) solution is an attractive alternative (and in many cases the only option). In these 
methods, the system evolution is modeled by a simple stochastic game, which is robust and 
easy to implement (Gillespie, 1975; Garcia et al., 1987). For systems close to the 
thermodynamic limit, both the MC solution and the direct numerical solution of the PBE 
converge to the same results. In many situations of practical interest, the MC solution may 
become very slow. Several optimization approaches have been developed to increase the 
MC simulation speed. The point ensemble Monte Carlo (PEMC) algorithm and the τ−PEMC 
algorithm developed in 2007 (Irizarry, 2007a; Irizarry, 2007b) are approximated MC 
methods that increase simulation speed by orders of magnitude when compared with 
existing MC methods.  
Population balance models can be formulated as discrete events Markov processes (also 
known as a jump Markov process). The standard exact simulation method (exact MC) for 
jump Markov processes consists of selecting the time for the next event and the type of 
event sequentially until a final time is reached (one trajectory). Many trajectories are 
calculated to generate the probability distribution function of the Markov process variables. 
This simulation method uses the propensity functions of each event, sE , defined as follows: 
R(Es) dt ≡  the probability that the event Es occurs in the time interval (t, t + dt). 
The time for the next event, τ, is sampled from an exponential distribution:   

 ( ) exp[ ]P R Rτ τΣ Σ= .  (7) 

where RΣ  is the total propensity of all possible events ( ( )i
i

R R EΣ = ∑ ). The probability of 

the event, iE , occurring next (i.e. that particles will aggregate) is proportional to the event 
propensity, ( )iR E :  

 ( ) ( ) /i iP E R E RΣ= . (8) 
 

In the inverse method, this distribution is sampled using a uniform random variable 
(0,1)r∈  and then solving the following equation:  

 
1

1 1
( ) ( )

f f

i i
i i

R E r R R E
+

Σ
= =

< ≤∑ ∑  (9) 

where , 1,iE i T=  is the indexed list of all possible events, and T  is the total number of 
events. The solution of this equation, fE , is the next event to be executed at time t τ+ . 
Alternatively, the acceptance-rejection method can be used to sample the next event [5]. 
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This simulation procedure has been used to develop the stochastic simulation algorithm, 
SSA, for chemical kinetics (Gillespie, 1976; Gillespie, 1977). In this method the firing of a 
chemical reaction represents a discrete chemical kinetic event of the Markov process. This 
algorithm is also known as kinetic Monte Carlo (KMC). The exact MC has also been used for 
the MC solution of population balance models. In many situations of practical interest, the 
MC solution may become very slow, especially when the number of particles in the 
simulation box is increased and the total number of events becomes very large or when the 
computational cost of calculating all the rates, RΣ  is large. In these cases the calculation of 
Eqs. (1) and (3) becomes very computationally expensive, slowing down the generation of 
trajectories.  
To further accelerate the MC simulation of population balance models, a new approach was 
introduced in 2007 (Irizarry, 2007a; Irizarry, 2007b). These algorithms are based on the 
construction of a jump Markov process called PERP, which approximates the actual jump 
Markov model. These algorithms are shown to reduce CPU time by orders of magnitude 
without sacrificing simulation accuracy, when compared with optimized exact MC methods. 
Unlike other coarse graining (or lumping) strategies in which information and identity is 
lost, in these algorithms, the history of each particle is retained while a coarse view of the 
process is taken. These two algorithms are summarized in the next section.  

5. Fast Monte Carlo algorithms   
The PEMC and τ-PEMC algorithms are based on the simulation of an approximated jump 
Markov process called PERP (Irizarry, 2007a; Irizarry, 2007b). This approximated Markov 
process is based on three ideas. First, the total population is "discretized" into 
subpopulations of particles with sizes of specified intervals. Each subpopulation is viewed 
as a "chemical species" with the number of particles in the subpopulation representing the 
number of molecules of that species in the simulation volume. Second, the inter-particle 
interactions (i.e. aggregation, nucleation, breakage) are viewed as a set of special types of 
reaction, in which the reaction products are allocated stochastically to the existing species 
using probability functions that are mass conserving on average. Third, the original set of 
subpopulations is coupled with the system of "chemical species". The PERP Markov process 
is described next.  

5.1 PERP Markov process and PEMC algorithm 
The first step in this approximated Markov process is the partition of the particles in the 
simulation volume into a set of sub-ensembles, Φi , called point ensembles. This partition is 
made using a set of M grid points of representative sizes v1,…vM. All simulation particles in 
an interval around the grid point vi are allocated in point ensemble Φi. Let Ni be the number 
of particles in point ensemble Φι. The state vector is then defined as ( ),N Φ  were 

1 2( , ,..., )T
MN N N=N  and 1 2( , ,..., )T

MΦ = Φ Φ Φ . Here, each grid point is viewed as a 
chemical pseudo-specie, Si, with Ni molecules in the simulation volume. For example, Figure 
10 shows a size-dependent partition of 17 particles (each with a set of different properties) 
into five point ensembles. The five pseudo-species  ( 1 2 5, ,...,S S S ) defined by this partition 
have (3, 4, 6, 3, 1) molecules in the simulation volume.   

Global and Dynamic Optimization using the Artificial Chemical Process Paradigm and  
Fast Monte Carlo Methods for the Solution of Population Balance Models   

 

403 

 

S4
S4S2 +

S5

S4
S4S2 +

S5

S4S2 +
S5

x
S1 S3S2 S4 S5

N1

N3

N2

N4

N5

Point ensembles

Reacting pseudo-species. RPC example: 

 
 

Fig. 10. Schematic of PERP jump Markov model 

In this approximated process, the discrete events consist of a set of “reaction channels” 
where the reaction part involves the pseudo-species to mimic the actual particle event (i.e. 
aggregation between two particles). Unlike standard reaction channels of chemical kinetics, 
the product component consists of several steps, some of them also stochastic processes.  
In the exact Markov process, an event, E, is defined in terms of the possible interactions 
between the simulation particles. For example, an aggregation between two particles i and j 
is an event that creates a new particle in the simulation volume ( : new i jE x x x= + ) and 
eliminates the mother particles from the simulation volume. The reactant component of the 
RPC mimics the same event, but between the pseudo-species instead of actual particles. For 
example, the events representing the aggregation mechanism in the original Markov process 
are replaced by an “aggregation reaction” of pseudo-species ( :s i jE S S+ ) in the PERP 
Markov process. In the case of aggregation, the propensity function for these “reaction 
channels” is given by: 

 1( ) 1 ( , ) /
2s ij i j i j sR E N N q v v Vδ⎛ ⎞= −⎜ ⎟

⎝ ⎠
 (10) 

The propensity functions for other mechanisms have also been described (Irizarry, 2007a). 
Notice that the propensity of each event in the PERP Markov process is given only in terms 
of N. For the aggregation case discussed here, the PERP event is summarized in the 
following algorithm: 
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of particles in point ensemble Φι. The state vector is then defined as ( ),N Φ  were 

1 2( , ,..., )T
MN N N=N  and 1 2( , ,..., )T

MΦ = Φ Φ Φ . Here, each grid point is viewed as a 
chemical pseudo-specie, Si, with Ni molecules in the simulation volume. For example, Figure 
10 shows a size-dependent partition of 17 particles (each with a set of different properties) 
into five point ensembles. The five pseudo-species  ( 1 2 5, ,...,S S S ) defined by this partition 
have (3, 4, 6, 3, 1) molecules in the simulation volume.   
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Fig. 10. Schematic of PERP jump Markov model 

In this approximated process, the discrete events consist of a set of “reaction channels” 
where the reaction part involves the pseudo-species to mimic the actual particle event (i.e. 
aggregation between two particles). Unlike standard reaction channels of chemical kinetics, 
the product component consists of several steps, some of them also stochastic processes.  
In the exact Markov process, an event, E, is defined in terms of the possible interactions 
between the simulation particles. For example, an aggregation between two particles i and j 
is an event that creates a new particle in the simulation volume ( : new i jE x x x= + ) and 
eliminates the mother particles from the simulation volume. The reactant component of the 
RPC mimics the same event, but between the pseudo-species instead of actual particles. For 
example, the events representing the aggregation mechanism in the original Markov process 
are replaced by an “aggregation reaction” of pseudo-species ( :s i jE S S+ ) in the PERP 
Markov process. In the case of aggregation, the propensity function for these “reaction 
channels” is given by: 

 1( ) 1 ( , ) /
2s ij i j i j sR E N N q v v Vδ⎛ ⎞= −⎜ ⎟

⎝ ⎠
 (10) 

The propensity functions for other mechanisms have also been described (Irizarry, 2007a). 
Notice that the propensity of each event in the PERP Markov process is given only in terms 
of N. For the aggregation case discussed here, the PERP event is summarized in the 
following algorithm: 
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Algorithm M1: Fire an aggregation RPC event: f i jE S S= +  with 1( ) [ , ]i j k kv v v v ++ ∈ . 

1. Reduce iN  and jN  by one. 

2. Select random particles, n and m, from point ensembles i and j ( n ix ∈Φ and m jx ∈Φ ). 

3. Form a new particle from the mother particles, new n mx x x= + . 
4. Eliminate the particles n and m from their ensembles.   
5. Find the product sub-specie pS : p = k with probably fP  or p = k + 1 otherwise. 

6. Allocate the new particle to the product point ensemble new px ∈Φ , increase Np by one. 
 

The product pseudo-specie newS  in the current event is determined by letting the landing 
interval 1,k kv v +⎡ ⎤⎣ ⎦  be defined as the interval such that 1,new i j k kv v v v v += + ∈ ⎡ ⎤⎣ ⎦ . The product 
pseudo-specie is kS ( new kS S= ) with probability sP . In this case, the number of molecules 

kN  is increased by one, and newx  is allocated to kΦ . Otherwise 1new kS S += , 1kN +  is 
increased by one, and newx  is allocated to 1k+Φ . The product probability parameter, sP , is 
calculated using the mass conservation equation for this landing interval: 

1(1 )k s k s newv P v P v++ − = . All these events in the product component of the RPC are simply 
called PERP events. RPCs can be defined for any mechanism (Irizarry, 2007a)  
The PEMC algorithm is the exact MC simulation of the approximated PERP Markov 
process. A detailed description of these steps has been published (Irizarry, 2007b). Let 

, 1,..,iE i T=  be the list of all possible RPCs describing the population balance model at 
hand. The PEMC method is summarized in the following algorithm:  
 

Algorithm M2: PEMC (one iteration).   
1. Find the time to fire the next RPC using Eq. (7). Update the time t t τ= + . 
2. Find the RPC to be fired next solving Eq. (9). 
3. Fire the selected PERP event (Algorithm M1) 

 

These steps are repeated until the final time is reached. This algorithm is very fast because 
the set of RPCs is more compact than the set of all possible events between particles, making 
the calculations of Eq. (7) and (9) very fast. 

5.2 τ-PEMC 
The τ−PEMC algorithm is a τ-leap solution of the approximated PERP Markov process. The 
τ-leap method is an approximated stochastic simulation, were many events are fired at once 
over the time interval. Consider a coarser time interval, τ, such that many events occur in 
this interval, but small enough that the propensity functions will not change appreciably 
during τ. When this condition is satisfied, all reaction channels can be considered as 
independent events (Gillespie, 2001), and the number of firings for each reaction, Ej, is a 
Poisson random variable with distribution ( ); ( ),PD j jP k R E τ , where 

 ( ) ( ); ,
!

a
k

PD
eP k a a
k

τ
τ τ

−

=  (11) 

The accuracy and speed of the method depends on the selection of time τ during the 
simulation (Gillespie and Petzold, 2003). Since the Poisson distribution is not bounded, it 
could generate negative values for the concentration.  
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Another improvement to the method is to replace the Poisson distribution with a binomial 
distribution (Tian and Burrage, 2004; Chatterjee, Vlachos, and Katsoulakis, 2005):   

 ( ) ( ) ( ) maxmax
max

max

; , 1
! !

k kk
BD

kP k p k p p
k k k

−
= −

−
 (12) 

In this case the number of firings for each reaction, kj, is sampled from a binomial random 
variable with distribution ( )max; , j

PD j jP k p k , where max
jk is the maximum number of times 

reaction j can be fired (after consuming the limiting component). The firing probability for Ej 
is max( ) / j

j jp R E kτ= . The binomial distribution eliminates the problem of negative 

concentrations and is more robust with respect to larger τ values.  
The PERP process can be simulated using the τ-leap method, as previously described 
(Irizarry, 2007b).  A pseudo-code for this algorithm is described as follows: 
 

Algorithm M3:  τ-PEMC (one iteration) 
1. Select the time parameter, τ .  
2. For each RPC, sE , take a sample sk from a binomial distribution (Eq. (12)) using 

the parameter max( ) / s
sp R E kτ= . 

3. Fire each PERP event, sE , sk times (execute algorithm M1 sk  consecutive times). 
 

Continue steps 1-3 until the final time is reached. 

5.3 Performance of the PEMC algorithm with complex kernels 
The numerical accuracy of these algorithms has been studied with complex coagulation 
kernels of physical relevance. Numerical results are compared with the generalized 
approximation method (GA) developed by Piskunov and Golubev (2002) and Piskunov et 
al. (2002). The values for the second moment by the GA method are considered the most 
accurate existing numerical results in the literature. They are used here as benchmark 
values. The following kernels are considered: 
i. The Brownian kernel, 

 ( )( )1/3 1/3 1/3 1/3( , )Bq u v u v u v− −= + +  (13) 

ii. The coagulation kernel simulating the process of migration and coalescence of particles 
on a heated substrate, 

 2/3 2/3( , )q u v u v+ = +  (14) 

iii. The gravitational coagulation of particles in the Stokes regime, 

  ( )21/3 1/3 2/3 2/3( , )Cq u v u v u v= + −  (15) 

For the gravitational kernel, some moments diverge after a critical point that depends on 
initial conditions. The critical point for the initial conditions used here is in the range of 0.5–
0.8 (Piskunov et al., 2002). 
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These steps are repeated until the final time is reached. This algorithm is very fast because 
the set of RPCs is more compact than the set of all possible events between particles, making 
the calculations of Eq. (7) and (9) very fast. 

5.2 τ-PEMC 
The τ−PEMC algorithm is a τ-leap solution of the approximated PERP Markov process. The 
τ-leap method is an approximated stochastic simulation, were many events are fired at once 
over the time interval. Consider a coarser time interval, τ, such that many events occur in 
this interval, but small enough that the propensity functions will not change appreciably 
during τ. When this condition is satisfied, all reaction channels can be considered as 
independent events (Gillespie, 2001), and the number of firings for each reaction, Ej, is a 
Poisson random variable with distribution ( ); ( ),PD j jP k R E τ , where 
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The accuracy and speed of the method depends on the selection of time τ during the 
simulation (Gillespie and Petzold, 2003). Since the Poisson distribution is not bounded, it 
could generate negative values for the concentration.  
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Another improvement to the method is to replace the Poisson distribution with a binomial 
distribution (Tian and Burrage, 2004; Chatterjee, Vlachos, and Katsoulakis, 2005):   
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In this case the number of firings for each reaction, kj, is sampled from a binomial random 
variable with distribution ( )max; , j
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jk is the maximum number of times 

reaction j can be fired (after consuming the limiting component). The firing probability for Ej 
is max( ) / j

j jp R E kτ= . The binomial distribution eliminates the problem of negative 

concentrations and is more robust with respect to larger τ values.  
The PERP process can be simulated using the τ-leap method, as previously described 
(Irizarry, 2007b).  A pseudo-code for this algorithm is described as follows: 
 

Algorithm M3:  τ-PEMC (one iteration) 
1. Select the time parameter, τ .  
2. For each RPC, sE , take a sample sk from a binomial distribution (Eq. (12)) using 

the parameter max( ) / s
sp R E kτ= . 

3. Fire each PERP event, sE , sk times (execute algorithm M1 sk  consecutive times). 
 

Continue steps 1-3 until the final time is reached. 

5.3 Performance of the PEMC algorithm with complex kernels 
The numerical accuracy of these algorithms has been studied with complex coagulation 
kernels of physical relevance. Numerical results are compared with the generalized 
approximation method (GA) developed by Piskunov and Golubev (2002) and Piskunov et 
al. (2002). The values for the second moment by the GA method are considered the most 
accurate existing numerical results in the literature. They are used here as benchmark 
values. The following kernels are considered: 
i. The Brownian kernel, 

 ( )( )1/3 1/3 1/3 1/3( , )Bq u v u v u v− −= + +  (13) 

ii. The coagulation kernel simulating the process of migration and coalescence of particles 
on a heated substrate, 

 2/3 2/3( , )q u v u v+ = +  (14) 

iii. The gravitational coagulation of particles in the Stokes regime, 

  ( )21/3 1/3 2/3 2/3( , )Cq u v u v u v= + −  (15) 

For the gravitational kernel, some moments diverge after a critical point that depends on 
initial conditions. The critical point for the initial conditions used here is in the range of 0.5–
0.8 (Piskunov et al., 2002). 
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The initial conditions used in the simulation for qB and q+ kernels are a mono-disperse 
solution with unit particle volume and unit total particle concentration. For the case of qC, 
the following initial conditions are utilized: ( ,0) 0.5 ( 1) 0.25 ( 2)n v v vδ δ= − + − . In Table 3, the 
CPU time and final second moments of the simulations for different methods are compared 
as a function of kernel type and number of particles. For the τ-PEMC, two representative 
coarse-graining factors (f = 100 and f = 1,000) were examined. All calculations were 
performed using Visual Fortran 6.6 on an Intel Pentium M 1.6 GHz machine with 504 MB 
RAM. Table 3 shows that τ-PEMC can be 14–44 times faster than PEMC.   
For kernel qB, the τ-PEMC method gives accurate results in all cases with a coarse-graining 
factor f = 100. For the case f = 1,000, the number of particles had to be increased to 50,000 to 
generate accurate second moments (see Table 3). The q+ kernel is more computationally 
challenging than the Brownian kernel, resulting in a wider distribution. Numerical results 
presented previously (Irizarry, 2007a) show that PEMC also quickly converges to the GA 
values. Table 3 shows the solution convergence to the exact value as a function of increasing 
the number of particles. For the factor f = 1000, large deviations of the second moments were 
observed even when a large number of particles was utilized. Good results were obtained 
for f = 100. 
For the qC kernel, some moments diverge at a critical value (gelling point). For the initial 
conditions used here, this critical value is believed to be between 0.5 and 0.8 (Piskunov et al., 
2002). Unlike most numerical methods, the PEMC gives accurate results for all times, 
especially at time 0.6, where all discretization methods diverge (see Irizarry, 2007a). The τ-
PEMC method can converge to the exact solution for times far from the critical point (time ≤ 
0.4). When the time reaches the critical point, the errors for the second moment were quite 
large in all cases.  
 

  PEMC  τ-
PEMC f=102 τ-

PEMC f=103 AR  GA 

Kernel Np CPU m2(tf) CPU m2(tf) CPU m2(tf) CPU m2(tf) m2(tf) 
qB 10,000 3.68 412 0.22 413 0.06 364 0.18 413 416 
 20,000 7.24 415 0.45 414 0.12 381 0.35 420  
 50,000 18.12 416 1.11 415 0.51 400 0.89 414  
           

q+ 10,000 5.75 2.15E+5 0.52 1.90E+5 0.13 7.45E+4 331.1 2.10E+5 2.29E+5 
 20,000 11.52 2.20E+5 1.01 2.03E+5 0.24 1.14E+5 662.7 2.24E+5  

 50,000 28.74 2.37E+5 2.49 2.29E+5 0.57 1.74E+5 1642.2
 2.39E+5  

           
qC 10,000 0.36 33.00 0.02 9.02 0.006 0.0 70.2 6E+3 23.27 
 20,000 0.73 28.50 0.06 12.2 0.02 4.36 115.6 5E+3  
 50,000 1.76 23.30 0.18 15.7 0.05 7.16 290.0 5E+3  

Table 3. Comparison of second moments at final time tf  and CPU times between τ-PEMC 
and PEMC for kernels qB, q+, and qC. Numerical results are compared with the generalized 
approximation method (GA) and the acceptance-rejection MC method (AR). 

These results show that the τ-PEMC method generates accurate results if τ is selected to be 
small enough and the number of particles large enough. For the cases studied here,  
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Np = 20,000 and f = 100, give very accurate results for all kernels (away from gelling points). 
For simulations near gelling points, the performance of the τ-PEMC deteriorates, and the 
PEMC should be used in this case.  
Table 3 also shows results using the acceptance rejection (AR) method of Garcia et. al. (1987) 
for comparison. For the coagulation case, this method is very attractive because it is simple 
to implement and avoids calculation of all interactions between particles, making the 
method very computationally efficient. As noticed by other authors, the CPU time and 
accuracy of this method depends drastically on the problem (kernel and initial conditions). 
As shown in Table 1, for some cases the AR method can be very efficient (qB) while in other 
cases the CPU time is very high (q+). Additionally, the AR method diverges for the qC kernel, 
also shown in Table 3.  

6. Hybrid Monte Carlo algorithm for population balance models with 
stochastic and deterministic variables 
Most MC implementations of population balance models have focused on the solution of the 
PBE to approximate macroscopic variables. Less attention has been focused on the solution 
of population balance models where some species are far from the thermodynamic limit 
(very dilute or finite) and other species can be considered deterministic (high concentration). 
In this case the MC is more accurate than direct numerical solution, which ignores the 
inherent fluctuations of the system. This type of problem often results in a stochastic system 
that contains both stochastic and deterministic variables with multiple timescales for the 
different mechanisms. In this case, the direct MC simulation will be accurate but very 
ineffective in terms of CPU time. Furthermore, most of the computational time is spent 
sampling the fast events. This type of situation has been considered in the case of chemical 
kinetics and biological systems for which efficient hybrid algorithms have been developed 
to solve multi-scale problems (Salis and Kaznessis, 2005; Kaznessis, 2006; Haseltine and 
Rawlings, 2002; Haseltine and Rawlings, 2005). In these algorithms, the fast processes are 
approximated by continuous models, and the slow processes are solved by the exact MC 
method in a hybrid algorithm.  
Disparate scales in population balance models may arise because some species are 
concentrated while others are very dilute. For accurate simulation of the dilute species, a 
large number of simulation particles are needed. In this case, the exact MC methods become 
very slow. A recently introduced hybrid strategy (Irizarry, 2010b) is reviewed.  In this 
strategy, the τ-PEMC is used for the parts of the system than can be considered large, and 
the PEMC is used for the stochastic events.     

6.1 Hybrid algorithms in chemical kinetics 
The hybrid strategy for chemical kinetic problems (Salis and Kaznessis, 2005; Kaznessis, 
2006; Haseltine and Rawlings, 2002) is based on partitioning between fast and slow 
reactions. To split the system between slow and fast events, the following criteria for fast 
events are utilized: 
1.     The fast events occur many times in a small time interval. 
2.   The effect of these events on the number of particles and the propensity functions is 
        small relative to the total propensity function and the total number of particles. 
The slow processes are simulated using SSA, while the fast processes are integrated using 
the Langevin equations. To make this hybrid simulation self-consistent, the coupling 
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The initial conditions used in the simulation for qB and q+ kernels are a mono-disperse 
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between both processes must be considered. If we look at the interval between the previous 
slow event at time ot  and the time for the next slow event ( ot τ+ ), the following equation is 
satisfied: 

 
0

ln( ) 0
t

slow

t

R dt r
τ+

Σ + =∫  (16) 

where r is a random number from the uniform distribution (0, 1). This equation replaces Eq. 
(7) for the time of the next slow event. In the interval [ , ]o ot t τ+ , the dynamics of the fast 
system can be integrated in a seamless way since by definition no slow events are present in 
this interval. Thus, Eq. (16) becomes a constraint in the hybrid strategy that needs to be 
monitored while integrating the fast process. 
As previously discussed (Salis and Kaznessis, 2005), one way to implement this constraint is 
to notice that the integral term is monotonically increases, and the second term is a negative 
term. Therefore, the time for the next slow event can by found by monitoring the zero 
crossing of the residual equation:    
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6.2 Hybrid algorithm in multi-scale MC simulation of particulate processes 
The hybrid strategy described in Section 6.1 is utilized with the slow mechanisms simulated 
using the PEMC algorithm. Instead of approximating the fast mechanism with a continuous 
model, as in the case of chemical kinetics, the τ-PEMC algorithm is utilized to model the fast 
mechanisms. The τ-PEMC method allows for coarse simulation in time while maintaining 
individual particle properties, in contrast to continuous models such as Langevin equations 
in which particle integrity is lost. The hybrid algorithm consists of the τ-leap integration of 
the PERP Markov process for fast events while monitoring the residual Eq. (17) for the firing 
of the next slow event of the PERP Markov process. This process is shown schematically in 
Figure 11.  The detailed description of the algorithm is given in Irizarry (2010b). 

6.3 Simulation results 
Consider a system with two type of particles, A and B. B particles are much smaller than A 
particles. A particles can grow by an aggregation mechanism. B particles are stable from 
aggregation with other B particles but can condense on the surface of growing A particles. 
Furthermore, it is assumed that B particles are very dilute compared to A particles. These 
conditions make A-B condensation events a stochastic process, while A-A aggregation 
events can be approximated as continuous events.  
Figure 12 shows five instances of the test problem for the case W = 100 (See Irizarry, 2010b 
for details). As shown in Figures 12a and 12b, the condensation of B monomers (measured 
with parameters x1 defined in Irizarry, 2010b) is a stochastic process with considerable 
variability between trajectories, while the aggregation of A particles can be approximated as 
deterministic. In this case all A-particle size distribution trajectories of the second moment 
are almost identical. The PEMC is used as a benchmark for the accurate stochastic 
simulation. As there are disparate rates between condensation and aggregation, the hybrid  
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Fig. 11. Schematic of the hybrid algorithm. Integrate fast processes (panel I) while monitoring 
for the next slow event (panel II). At a zero crossing, a PEMC iteration is executed. 
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Fig. 12. Five PEMC trajectories of the test problem with W = 100. (a) The fraction of B in A-B 
particles is stochastic A-B (parameter x1). (b) Zero moment of the The size distribution of the 
main population (A) is deterministic. 

algorithm can be utilized. As the rate of aggregation is reduced with time, the hybrid 
algorithm correctly switches to a PEMC simulation of the entire system. The hybrid 
algorithm can simulate stochastic variables (A-B) at speeds approaching τ-PEMC. 
The statistics of the condensation of B monomers for the case W = 100 is summarized in 
Table 4 for 1,000 simulations. The histogram of the parameter x1 (which measures the 
concentration of B particles on A particles) for the hybrid-PEMC and PEMC solutions is 
shown in Figure 13. The hybrid and PEMC solutions are in excellent agreement. This result 
is remarkable considering that condensation events are very rare (~30 condensation events 
vs. ~60,000 aggregation events). The box plot for these parameters is shown in Figure 14. An 
analysis of variance was performed to compare the population generated by both methods. 
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algorithm can be utilized. As the rate of aggregation is reduced with time, the hybrid 
algorithm correctly switches to a PEMC simulation of the entire system. The hybrid 
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concentration of B particles on A particles) for the hybrid-PEMC and PEMC solutions is 
shown in Figure 13. The hybrid and PEMC solutions are in excellent agreement. This result 
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vs. ~60,000 aggregation events). The box plot for these parameters is shown in Figure 14. An 
analysis of variance was performed to compare the population generated by both methods. 
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For the case of x1, both simulations are statistically equivalent. The hybrid algorithm is 17 
times faster than the PEMC algorithm per trajectory. This increase in speed is very 
important, since many trajectories (~103) are needed to generate good statistics for the slow 
process. If the model is used for optimization, many design instances are needed (~104), 
each consisting of many trajectories, resulting in a very large number of simulations (~107). 
In this case any increase in the simulation speed of a trajectory will have a tremendous 
impact on the total simulation speed. 
 

 PEMC Hybrid-PEMC 
 Average value of x1 5.20 × 10-4 5.13 × 10-4 
Standard deviation of x1 8.9 × 10-5 9.0 × 10-5 
Average number of slow aggregation events 58,623 58,629 
Average number of condensation events  31.2 30.8 

Table 4. A comparison of hybrid-PEMC and PEMC for the test problem with W = 100 
(Average of 1,000 trajectories). 
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Fig. 13. Histogram of the x1 parameter for the test problem with W=100 (1,000 trajectories). 
(a) Hybrid-PEMC and (b) PEMC.  
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Fig. 14. A box-plot comparison of the hybrid-PEMC and PEMC solutions (W=100). 
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Hybrid and MC simulations produce statistically equivalent results, but the hybrid’s 
increase in computational speed allows optimization problems involving these types of 
models to be solved very efficiently. 

7. Conclusions and discussion 
This chapter reviewed the artificial chemical process paradigm for global optimization. The 
LARES algorithm is very robust and efficient, converging to near-global optimal solutions 
when solving different classes of problems with different degrees of multi-modality, 
epistasis, flatness, and discontinuities. Future research will consider the use of the ACP 
paradigm in the development of new problem-specific algorithms. The algorithm was 
utilized to develop dynamic optimization strategies, LARES-PR and hybrid LARES-PR. The 
power of the algorithm lies in its utilization of a generalized approximation of the control 
function, composed of variable-length segments of finite elements of different orders or 
using specified functions. This generalized representation of the trial control law is possible 
due to the two-step encoding of the decision variables and the capability of LARES for 
multiple encoding. Multiple encoding allows the inclusion of different types of problem-
specific finite elements (constant, linear, quadratic, etc.) and/or specialized functions to 
approximate the control law without any tailoring of the optimization algorithm. This 
approach is particularly effective for the solution of problems in which manipulated 
variables experience transition from smooth variations over time to discrete changes. 
Numerical experiments demonstrate that this algorithm is robust in finding global 
optimums for the different types of problems and definitions of the generalized control law 
introduced in this work.  
To accelerate optimization of systems that use MC simulations as part of their constraints, a 
new general-purpose MC algorithm for the dynamics of the particulate process was 
proposed, PEMC. The method has been shown to reduce CPU time without sacrificing 
simulation accuracy. While a coarse view of the process is taken, particle history is retained. 
The method was extended with the τ-PEMC method, proposed to further improve CPU time 
with negligible simulation errors. As with the original PEMC, internal coordinates can be 
handled effectively. The CPU times reported here show that accurate results can be achieved 
with simulation times less than a second using a low-end PC. These results demonstrate the 
feasibility of stochastic optimization using PEMC and τ-PEMC. A new hybrid strategy was 
developed to solve stochastic population balance models with multiple time scales. This 
self-consistent hybrid method combines the PEMC and τ-PEMC algorithms to accelerate 
simulation time while capturing the stochastic nature of the slow process. The simulation 
speed and accuracy of the hybrid strategy depends on the selection of the τ parameter, the 
criteria for the partition between slow and fast events, and the grid quality of the point 
ensembles. 
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1. Introduction     
Currently, high latitude regions characterized by a long and severe cold season are receiving 
more and more attention from the hydrometeorological modelling community (Bowling et 
al., 2000; Slater et al., 2001; Bowling et al., 2003; Nijssen et al., 2003; Etchevers et al., 2004; Su 
et al., 2005; Tian et al., 2007; etc.) because these regions are among the most sensitive to 
natural and anthropogenic effects and it is necessary to predict the consequences of such 
effects. At the same time, northern regions are poorly covered with measurements, which 
are necessary to provide the atmospheric forcing data and to estimate the land surface 
parameters for model simulations. One of the possible ways to provide a model with input 
data is to apply, along with existing measurements, available global datasets, which contain 
meteorological data, land-use information, and soil and vegetation characteristics.  
Nowadays there are a lot of global data sets, which differ in spatial and temporal resolution, 
as well as in accuracy and reliability (e.g., Meeson et al., 1995; Hall et al., 2003; Zhao & 
Dirmeyer, 2003). Differences in global datasets are connected with uneven coverage of the 
land surface with ground-based observation systems, difficulties in collecting 
measurements, the problems with instruments, differences in procedures of filling in the 
missing data and interpolation of point measurements into grid boxes (Zhao & Dirmeyer, 
2003). Nevertheless, this source of information is quite attractive for modellers (as it saves 
them from a quite difficult time- and labour-consuming procedure of model input data 
preparation) and global datasets are widely used for atmospheric and hydrological 
applications (e.g., Oki et al., 1999; Nijssen et al., 2001; Su et al., 2005). 
However, the accuracy of most streamflow hydrograph simulations in high latitudes is not 
high, in spite of a good model structure and calibration of a number of model parameters 
against measured river runoff from the whole basin under study or from its sub-basins or 
small catchments, located within the basin. This raises a question: where can one find the 
potentialities to improve the agreement between observed and simulated streamflow 
hydrographs? We believe that one of such potentialities is to introduce adjustment factors 
for the most influencing atmospheric forcing data, along with the land surface 
characteristics, into a set of calibrated parameters.  
As a matter of fact, according to the logic of construction and operation of hydrological and 
land surface models, both the land surface parameters and forcing data represent input 
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information, which can suffer from errors and uncertainties. If the forcing data are based on 
reanalysis products, they contain systematic errors (which reflect the biases and errors in the 
underlying general circulation models), resulting in errors in simulated heat and water 
balance components (Zhao & Dirmeyer, 2003; Nasonova et al., 2008). If the forcing data are 
derived from in situ measurements, their accuracy depends on density and representativity 
of meteorological stations, and interpolation techniques used to obtain gridded data. In this 
case, the accuracy of forcing data can be rather low due to low accuracy of precipitation 
(especially snowfall) measurements, insufficient gauge density, and absence of incoming 
radiation observations. This is a typical situation of the northern regions.  
One of the ways to improve measured precipitation is an application of different correction 
factors (the major of which is wind correction) to measured precipitation. However, this is 
not a trivial way. Wind corrections can be estimated by means of different regression 
equations for different types of precipitation (solid, liquid, and mixed) and gauges using 
observed wind speed and air temperature (Goodison et al., 1998; Yang & Ohata, 2001). 
These equations allow one to take into account wind-induced undercatch of precipitation 
and provide estimates of wind correction factor of positive sign. The equations are 
recommended for wind speeds lower than 6.5 m s-1 at the gauge height, and in the absence 
of blizzards (Goodison et al., 1998). At the same time it is known that in Arctic and sub-
Arctic climates, snowfalls typically occur under strong winds and blizzard conditions. A 
number of investigations of measurement techniques for solid and mixed precipitation in 
pan-Arctic regions have shown that in windy conditions with snow on the ground, blowing 
snow from the ground enters the gauges causing “false” precipitation (Bryazgin & 
Dement’ev, 1996; Bogdanova et al., 2002a,b). Annual “false” precipitation in some pan-
Arctic regions can reach 30-40% of the measured annual totals. Evidently, that in this case, 
“overcatch” of snowfall takes place rather than “undercatch”, and the wind correction factor 
should be negative. Bogdanova et al. (2002 a,b) suggests a bias-correction model for the 
Tretyakov gauge allowing an estimation of the amount of false snow, which depends not 
only on air temperature and wind speed, but also on the state of snow cover surface (fresh 
snow, old snow, snow compressed by wind etc.), weather conditions (blizzard, blowing 
snow), duration of blizzard, the degree to which the gauges are sheltered from surroundings 
and so on. The main difficulties associated with application of this model we see in a large 
amount of input data required, some of which may be inaccessible, particularly, 
characteristics of the blizzard condition and the state of the snow cover surface. 
One more source of uncertainties in forcing data is associated with a ‘point’ character of 
measurements of meteorological variables, when their spatial distribution is needed. 
Generally, point measurements are distributed in space over the catchment by interpolation 
techniques. In the case of sparse observational network, inadequate gauge density may 
provide unrepresentative interpolated estimates of meteorological variables (especially 
precipitation). This also contributes to errors in runoff simulations. 
As to incoming fluxes of shortwave and longwave radiation, they are not measured at 
regular networks and their values are estimated using, in particular, standard 
meteorological observations. Such estimates are not free from uncertainties. Uncertainties in 
the estimates of shortwave radiation are mainly caused by the necessity to take into account 
cloudiness. For this purpose empirical formulae are used. These formulae, firstly, are not 
universal and, secondly, need information both on the amount and the type of clouds. The 
data on the clouds’ type are often inaccessible; the information on the amount of clouds is 
not very accurate because of visual character of observations. For calculating incoming 
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longwave radiation, a lot of empirical formulae have been developed. However, as a rule, 
they were derived under milder climate conditions (compared to Arctic and sub-Arctic 
climate) and their application to the regions with a severe climate results in strong biases 
(Gusev et al., 2006a). At the same time the sensitivity of snowmelt-driven streamflow to 
incoming longwave radiation is rather high, because this radiation greatly influences the 
rate of snow processes. 
One of the ways to solve the problem of uncertainties in the major forcing data is calibration 
of these data within the accuracy of their measurement or estimation. It should be noted that 
the idea of calibration of the main forcings is not novel. Calibration of precipitation and 
potential evapotranspiration (representing the forcing data for some hydrological models) 
was performed in Gan et al. (2006) for SAC-SMA model. Xia (2007) has shown that in the 
cold regions in the Northeast United States, where measured precipitation has large 
systematic biases, calibration of a land surface model using observed annual streamflow can 
be successful, if model parameters and precipitation biases are calibrated simultaneously. It 
is reasonable to expect that this statement will be also valid for other cold regions. 
The aim of the present study is to reveal to what extent optimization (within reasonable 
bounds) of the most important land surface parameters and adjustment factors for 
atmospheric forcings can improve simulating river runoff in high latitudes by a physically 
based land surface model (LSM) SWAP (Soil Water – Atmosphere – Plants). 

2. Methodology 
2.1 Model SWAP 
The land surface model SWAP represents a physically based model describing the processes 
of heat and water exchange within a soil–vegetation/snow cover–atmosphere system 
(SVAS). Different versions of SWAP were detailed in a number of publications (e.g. Gusev & 
Nasonova 1998, 2002, 2003, 2004a; Gusev et al. 2006b). The last version of SWAP treats the 
following processes: interception of liquid and solid precipitation by vegetation; 
evaporation, melting and freezing of intercepted precipitation, including refreezing of melt 
water; formation of snow cover at the forest floor and at the open site during the cold 
season; partitioning of non-intercepted precipitation or water yield of snow cover between 
surface runoff and infiltration into a soil; formation of the water balance of aeration zone 
including transpiration, soil evaporation, water exchange with underneath layers and 
dynamics of soil water storage; water table dynamics; formation of the heat balance and 
thermal regime of SVAS; soil freezing and thawing. 
The model can be applied both for point (or grid box) simulations of vertical fluxes and state 
variables of SVAS in atmospheric science applications (Gusev & Nasonova, 1998, 2004; 
Gusev et al., 2004) and for simulating streamflow at different scales — from small 
catchments to continental-scale river basins located in different natural conditions (Gusev & 
Nasonova, 2000, 2002, 2003; Boone et al., 2004; Gusev et al., 2006a). In the case of a small 
river basin (up to the order of 103–104 km2), a kinematic wave equation is used to simulate 
runoff at the basin outlet. In the case of a larger river basin, the basin area is divided into a 
number of computational grid boxes connected by a river network. Runoff is modelled for 
each grid box and then transformed by a river routing model to simulate streamflow at the 
river basin outlet (with accounting for a contributing area of each box). Such a 
transformation may be performed by different ways. Herein, a simple linear transfer model 
in river channels to simulate river discharge is used (Oki et al., 1999).  
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river basin outlet (with accounting for a contributing area of each box). Such a 
transformation may be performed by different ways. Herein, a simple linear transfer model 
in river channels to simulate river discharge is used (Oki et al., 1999).  
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The basic equation for this model is the conservation equation of the water storage in a river 
channel of each computational grid box, which can be written as 

 r
outin

dS Y Y
dt
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where Sr is the water storage in a river channel located within a grid box, Yin is the sum of 
runoff, generated within a grid box, and inflow from neighbouring grid boxes, Yout is the 
streamflow at a grid box outlet. The directions of lateral water flow among grid boxes may 
be determined on the basis of Total Runoff Integrating Pathways (TRIP) (Oki & Sud, 1998). 
The value of Yin is usually assumed to be constant within the computational time step Δt, 
used for description of runoff transformation in the channel network. Parameterization of 
Yout is based on the following equation 
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where ue and dс are the effective velocity and the distance between grid boxes, respectively. 
Mean global value ue is approximately 0.35 - 0.36 m s-1 (Oki et al., 1999). Via substitution of 
(2) into (1) and solving the obtained equation, the following recurrence relation that 
describes water dynamics in the river channel is derived 
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where ( )r iS t  and 1( )r iS t +  are the water storages in the channel at time steps ti and ti+1. On 
the basis of (1-3) and in accordance with the channel network connecting computational 
boxes and schematized in the form of graph, the dynamics of the water storages in the 
channel of each grid box, streamflow at the box outlet and river discharge are calculated. 
During the last 10 years, different versions of SWAP were validated against observations 
including characteristics both related to energy balance or thermal regime of SVAS (sensible 
and latent heat fluxes, ground heat flux, net radiation, upward longwave and shortwave 
radiation, surface temperature, soil freezing and thawing depths) and related to 
hydrological cycle or water regime of SVAS (surface and total runoff from a catchment, river 
discharge, soil water storage in different layers, evapotranspiration, snow evaporation, 
intercepted precipitation, water table depth, snow density, snow depth and snow water 
equivalent, water yield of snow cover). The model validations were performed for “point” 
experimental sites and for catchments and river basins of different areas (from 10-1 to 105 
km2) on a long-term basis and under different natural conditions (e.g., Gusev & Nasonova 
1998, 2000, 2002, 2003, 2004; Gusev et al., 2006a; Boone et al., 2004). The results have 
demonstrated that SWAP is able to reproduce (without calibration) heat and water exchange 
processes occurring in SVAS under different natural conditions adequately, provided that 
input data of high quality are available. In the case of streamflow simulation, the accuracy of 
modelling can be increased due to optimization of model parameters, which influence 
runoff to the greatest extent, using streamflow observations. This approach is very effective 
if measurements required for parameter estimation are absent (Nasonova et al., 2009). This 
situation is typical of most northern river basins of Russia. 
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2.2 Study basins and their schematization 
Three river basins, located in the northeast of the European part of Russia (Figure 1), were 
chosen for investigation: the Mezen River basin (area: 78 000 km2), the Pechora River basin 
(area: 312 000 km2) and the Northern (Severnaya) Dvina River basin (area: 348 000 km2). All 
three basins represent flat forested planes. Forests (with the predominance of coniferous 
species) cover nearly 80% of the area of each basin.  
 

 
Fig. 1. Location of the three river basins  

The climate in the study region is characterized by a short (3-4 months) cool summer and 
long (5–7 months) cold winter with a stable snow cover and soil freezing. There is a 
permafrost in some areas.  Mean air  temperature of  January  ranges across the basins from 
-13 to -17°C, mean air temperature of July is 14-17°C. Mean annual precipitation varies from 
650 to 800 mm over the Mezen and the Northern Dvina basins and from 400 to 600 mm over 
the Pechora basin. Nearly 30-40% of precipitation falls as snow. Mean annual streamflow is 
310, 360 and 400 mm/year, respectively, for the Northern Dvina, Mezen and Pechora Rivers. 
Streamflow of each river can be mainly characterized as snowmelt (up to 50-80%) and rain 
driven. Their annual hydrographs have maximum flood peaks in spring (caused by spring 
snowmelt), low baseflow during winter and summer periods, and relatively small flood 
peaks in autumn (caused by rainfall, along with low evapotranspiration). 
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For modelling purposes, the Mezen River basin (from the head of the river down to the 
Malonisogorskaya gauging station) was represented by ten 1°×1° computational grid boxes 
in accordance with a global river channel network TRIP (Figure 2). The Pechora River basin 
(down to the Oksino gauging station) was schematized by 57 (Figure 3) and the Northern 
Dvina River basin (down to the Ust-Pinega gauging station) by 62 one-degree grid boxes 
(Figure 4). Such a spatial resolution seems to be insufficient for hydrological applications. 
However, it may be acceptable, provided that subgrid effects are taken into account in 
model parameterizations (e.g., in SWAP, spatial heterogeneity of soil hydraulic conductivity 
at saturation is taken into account (Gusev & Nasonova, 1998)). This is confirmed by the 
results of participation of SWAP in the international Rhone-aggregation LSM 
intercomparison project (Rhone-AGG) (Boone et al., 2004). The main goals of the project 
were to investigate how participating LSMs simulate the water balance components of the 
Rhone River basin (covering 86 000 km2 and characterized by a wide variety of natural 
conditions) compared to observations, and to examine the impact of changing the spatial 
resolution of the basin schematization on the simulations. For the SWAP model, it was 
found that differences in the basin-averaged annual runoff and evapotranspiration 
simulated with spatial resolution 8x8 km and 1°×1° were not more than 3.5 and 1.0%, 
respectively. This fact allows us to assume that coarse (1-degree) spatial resolution will not 
lead to significant errors in the simulated runoff from the chosen river basins. 

2.3 Atmospheric forcing data  
Atmospheric forcing data for the SWAP model represent near-surface meteorology 
including air temperature and humidity, precipitation, incoming shortwave and longwave 
radiation, air pressure and wind speed. Here, three versions of atmospheric forcing data 
were used: (1) global reanalysis dataset, (2) global reanalysis product hybridized with 
observations, and (3) measurements from meteorological stations located within the basins. 

2.3.1 Global datasets 
Global atmospheric forcing data were taken from 3-hourly near-surface meteorological 
datasets with 1-degree spatial resolution produced for the Second Global Wetness Project 
(GSWP-2) (Dirmeyer et al., 2002; Zhao & Dirmeyer, 2003) for the period from 1 July 1982 to 
31 December 1995. The first version of global data used here (hereafter, referred to as 
“Version-1”) is based on pure reanalysis product produced by the National Centres for 
Environmental Prediction/Department of Energy (NCEP/DOE) (Kanamitsu et al., 2002). As 
it was above mentioned, any reanalysis product contains systematic errors. One of the 
possible ways to solve this problem is to combine (hybridize) the 3-hourly reanalysis 
estimates with global gridded observations. The latter are usually available at lower spatial 
resolution and cannot be directly used in LSMs. Hybridization of NCEP/DOE reanalysis 
product with global gridded datasets from observations, presented in the International 
Satellite Land-Surface Climatology Project (ISLSCP) Initiative II (Hall et al., 2003), was 
performed for the GSWP-2 project (Zhao & Dirmeyer, 2003). Fully hybridized 
meteorological data, provided within the framework of GSWP-2 and recommended for 
baseline simulations, we used as the second version of atmospheric forcing data (hereafter, 
referred to as “Version-2”) (see Zhao & Dirmeyer (2003) for more details). 
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Fig. 2. The Mezen River basin and its schematization for streamflow modelling. Streamflow 
gauging station location (triangle) and meteorological stations (squares) 
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Fig. 2. The Mezen River basin and its schematization for streamflow modelling. Streamflow 
gauging station location (triangle) and meteorological stations (squares) 
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Fig. 3. The Northern Dvina River basin and its schematization for streamflow modelling (1 is 
streamflow gauging station locations, 2 is meteorological station locations) 
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Fig. 4. The Pechora River basin and its schematization for streamflow modelling. 
Streamflow gauging station locations (triangles) and meteorological stations (squares)  
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2.3.2 Meteorological observations 
Locations of meteorological stations over the basins are shown in Figures 2-4. 
Meteorological observations are far from perfect, especially snowfall measurements, which 
can suffer both from positive and negative biases due to overcatch or undercatch of snow by 
precipitation gauges. At the same time, in high latitudes, where snow is a significant 
contributor to formation of annual streamflow hydrograph, the accuracy of snowfall 
measurements is of great importance. Besides that, distribution and density of 
meteorological stations over the Mezen River and the Pechora River basins cannot be treated 
as satisfactory. Most of the stations are situated along the rivers and may be not 
representative for watershed areas. Insufficient density of meteorological observations, their 
possible non-representativeness, along with the necessity of their spatial interpolation to the 
computational grid boxes, can lead to uncertainties and biases in forcing data for model 
simulations. This mostly concerns precipitation due to its complicated stochastic nature 
resulting in the great problem of estimating area averages from point measurements. 
Incoming fluxes of shortwave and longwave radiation were not measured at meteorological 
stations, they were derived from standard meteorological observations using techniques, 
described in Gusev et al. (2006a). 
Interpolation of meteorological observations to the centers of grid boxes was performed 
using the kriging procedure (Globus, 1987). The classic kriging procedure was slightly 
modified. Its description can be found in Gusev et al. (2008). The obtained forcing data set 
will be referred to as “Version-3”. 

2.4 Land surface parameter datasets 
The soil and vegetation parameters were prepared using global one-degree datasets 
provided within the framework of GSWP-2 (Dirmeyer et al., 2002). Global one-degree 
vegetation datasets contained information on the land surface types in accordance with the 
International Global Biosphere Project (IGBP) classification, which includes 17 types of the 
land surface, and their fractions within each one-degree grid box, as well as time-varying 
monthly values of biophysical parameters (leaf area index, greenness fraction, roughness 
length, zero-plane displacement height, snow-free albedo, root depth) for 1982-1995. Global 
one-degree soil datasets included data on sand, clay, silt and organic matter fractions; 
texture classes (12 soil texture classes according to the classification of US Department of 
Agriculture (USDA)); depth of active soil column and soil hydrophysical parameters 
(porosity, field capacity, wilting point, hydraulic conductivity at saturation, saturated matric 
potential, B-exponent parameter, soil snow-free albedo)  for each grid box. First of all, the 
values of the soil and vegetation parameters were analyzed and checked for consistency 
(they must be reasonable and in a good agreement with each other) as it was described in 
Gusev et al. (2006b). In so doing, some corrections were performed. In addition, several 
SWAP model specific parameters were derived. As a result, a set of a priori parameters was 
obtained. 
The last group of data represents topographic characteristics including mean elevation of 
grid boxes, taken from the EROS (Earth Resources Observation Systems) Data Centre (EDC), 
and the slopes of the surface of each box in the meridianal and latitudinal directions, 
required for the simulation of runoff transformation within a box. The latter were derived 
from mean elevations of neighbouring grid boxes. 
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2.5 Optimization procedure  
The goal of a model parameter optimization procedure is to find the values of parameters 
that minimize an objective function Ext, which is a measure of the discrepancy between the 
model outputs and observations. The objective function is usually expressed as  
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where Calt and Obst are, respectively, the simulated and measured values of output variable 
(here, daily river runoff R), which is used for parameter optimization, at time t; Δt is the 
length of optimization period; l is a parameter, equalled to 1 or 2; wt is the time-varying 
weight. The values of the two last characteristics depend on the goals of the users. In 
particular, if correct runoff reproduction is important for each moment of a year, parameters 
l=2 and wt=1 are used (these values will be used here). When correct simulation of spring 
flood hydrograph is of the most importance, the values of wt must be higher for the spring 
compared to the rest seasons. 
Overview of different methods of finding the minimum of the objective function Ext is given 
in a number of publications (e.g., Törn & Zilinskas, 1989; Pintér, 1996). As it was shown 
there, when the objective function does not have an analytical expression (as in the present 
study), application of minimization techniques like a gradient search (Jacobs, 1977) is 
impossible. In this case, methods of direct search are usually used if Ext is a single-
extremum function; otherwise, methods of global optimization are applied (Rosenbrock, 
1960; Powell, 1964; Nelder & Mead, 1965; Solomatine et al., 1999; Duan, 2003). Many of them 
are based on the statistical methods of finding the extremum of Ext (vector of optimized 
parameters) (Rastrigin, 1968; Gupta et al., 1998; Solomatine et al., 1999). It should be noted, 
that the method of blind random search in the parameter space with the pseudo-uniform 
distribution of points is n-times (where n is the total number of parameters) as effective as 
the method of search on the deterministic grid (Rastrigin, 1968).  
Here, optimization of parameter values was performed using an automatic procedure for 
two different global optimization algorithms. The first one, based on ideas from Bastidas 
et.al. (1999) and Solomatine et.al. (1999) and detailed in Gusev et al. (2008), applies a 
statistical method for direct search of the optimum (or Random Search Technique - RST) of 
an objective function. The second one is the Shuffled Complex Evolution algorithm (SCE-
UA) developed by Duan et al. (1992). The SCE-UA has been found to be robust, effective, 
and an efficient optimization algorithm (Duan et al., 2003) and it is widely used in 
hydrological modelling. Two objective functions were calculated during optimization: 
Ext=1-Eff, where Eff is the Nash–Sutcliffe coefficient of efficiency (Nash & Sutcliffe, 1970), 
and the relative value of systematic error Bias (mean difference between the modelled and 
observed values of the output variable normalized by the mean observed value): 
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two different global optimization algorithms. The first one, based on ideas from Bastidas 
et.al. (1999) and Solomatine et.al. (1999) and detailed in Gusev et al. (2008), applies a 
statistical method for direct search of the optimum (or Random Search Technique - RST) of 
an objective function. The second one is the Shuffled Complex Evolution algorithm (SCE-
UA) developed by Duan et al. (1992). The SCE-UA has been found to be robust, effective, 
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where xsim and xobs are simulated and observed values of a variable x and Ω is a discrete 
sample set of variable x.  
Application of Bias along with Eff was motivated by the fact that maximum values of Eff do 
not guarantee low Bias. This becomes clear if Eff is expressed in the terms of root-mean-
square error RMSE 
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where STD is the observed standard deviation. Since RMSE includes the systematic and 
random errors, the same value of RMSE (and, evidently, Eff) may correspond to different 
values of the systematic error (bias). Consequently, among the sets of “optimal” parameters 
corresponding to the lowest RMSE (or the highest Eff) one should select the parameter set 
that provides the lowest bias. 

2.5.1 RST  
Random search technique (RST) has several stages (Gusev et al. 2008). At the first stage, 
sufficiently wide feasible parameter space is specified by fixing the lower and upper 
parameter bounds defined from the maximum plausible ranges for the parameters based on 
physical reasoning. A prescribed number of model runs (realizations) are performed using 
different values of calibrated parameters, which are determined within their fixed bounds 
using a generator of uniformly distributed random numbers. For each realization, 
streamflow simulation and estimation of Ext and Bias are carried out. Then, the “best” 
realizations, i.e. with the lowest values of Ext and near-zero values of Bias, are selected and 
corresponding values of calibrated parameters are used to reduce (“manually”) the feasible 
parameter space. At the next stage, a new search of the optimum of the objective functions is 
performed for the reduced parameter space that allows one to reduce the number of 
realizations. This is especially important for a large set of optimized parameters, because if 
the feasible parameter space is fixed during optimization, the number of realizations needed 
to find the optimum with the specified accuracy grows exponentially with an increase in the 
number of parameters (Solomatine et al., 1999). If it is necessary, further reduction of 
parameter space may be done and searching the optimum may be continued until there will 
be no progress in minimization of Ext. When the optimization procedure is stopped, N 
points (N=4-5) with the lowest values of Ext and near-zero values of Bias are selected. The 
values of optimized parameters corresponding to these points are averaged (with the 
weights that may differ from 1.0). The obtained mean values of parameters are considered to 
be optimal and their standard deviations, divided by N , allows one to assess the accuracy 
of estimating the optimal values of model parameters. Figure 5 illustrates the described 
optimization algorithm for the case of two parameters X and Y. 
Figure 5b gives an example of relation between Ext and Bias obtained from a large number 
of model runs within the boundaries of Region-1 at the first stage of realization of algorithm.  
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Fig. 5. An example of a direct search of the minimum of the objective function Ext (b) for 2-
dimentional case (а). Here, 1 is the boundary of Region-1 with initial population of quasi-
random points (4) with coordinates (X, Y); 2 is the boundary of Region-2 with the best points 
(5) from the initial population; 6 – points from the repeated optimization within the 
boundaries of Region-2; 3 is the boundary of Region-3 with the best points (close to optimal) 
generated during the repeated optimization. 

Selecting the group with the “best” realizations, i.e. with the lowest values of Ext and near-
zero values of Bias (marked in Figure 5b by the red rectangle), and the corresponding range 
of the parameter values (the red rectangle in Figure 5a), we reduce the feasible parameter 
space (from Region-1 to Region-2) and continue to search optimal values of the parameters 
within the new boundaries. If it is necessary, further reduction of parameter space (from 
Region-2 to Region-3 in Figure 5a) may be done and searching the optimum may be 
continued until there will be no progress in minimization of Ext. 

2.5.2 SCE-UA  
The SCE-UA algorithm has been described in detail in Duan et al. (1992). At the first step, the 
SCE-UA selects an initial population of optimized parameters by random sampling 
throughout the feasible parameter space for n parameters, based on given parameter ranges. 
For each point, the objective function values are calculated. Then, the population is partitioned 
into several communities (complexes), each consisting of 2n+1 points, based on the 
corresponding objective function values. Each community is made to evolve independently for 
a prescribed number of times based on the downhill simplex method (Nelder and Mead, 1965). 
The communities are periodically consolidated into a single group and the population is 
shuffled to share information and partitioned into new communities. As the search progresses, 
the entire population tends to converge toward the neighbourhood of global optimum, 
provided the initial population size is sufficiently large. The evolution and shuffling steps are 
repeated until a prescribed convergence criterion is satisfied.  
SCE-UA is a single-objective optimization algorithm. To apply SCE-UA for our two 
objective functions Ext and Bias, we decided to minimize Ext under condition that the 
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absolute value of Bias did not exceed 5%. If the fulfilment of this condition resulted in 
relatively low Eff (Eff<0.9⋅Eff0, where Eff0 is the efficiency without this condition, i.e. the 
efficiency corresponding to global optimum), we removed this condition and the point with 
Eff=Eff0 was treated as an optimum. Evidently, that in this case absolute value of Bias is 
larger than 5%. 
The distributive diskette for the SCE-UA code was taken from the site 
http://www.sahra.arizona.edu/software/. 

2.5.3 Selection of parameters to be optimized 
Since LSMs usually contain a lot of model parameters, the procedure for selection of 
parameters to be optimized is very important. The total number of optimized parameters 
should not be too small to ensure sufficient degrees of freedom for obtaining a good 
agreement between the simulated and observed daily streamflow. At the same time the 
number should not be too large to obtain the steady values of the calibrated parameters 
under a reasonable number of realizations. Evidently, those parameters, whose changes 
influence daily streamflow to the greatest extent, should be calibrated. 
Our significant experience has shown that in high latitudes the following SWAP model 
parameters can be calibrated: (1) soil hydrophysical parameters: hydraulic conductivity at 
saturation K0, parameters describing the dependence of soil water potential ϕ on soil 
moisture W (В-exponent parameter and saturated matric potential ϕ0 in the 
parameterization of function ϕ(W) by Clapp and Hornberger (1978)), plant wilting point 
Wwp, field capacity Wfc, soil porosity Wsat, soil column thickness h0 (here, the depth from the 
soil surface to the upper impermeable layer); (2) vegetation parameters: the root layer depth 
hr, the leaf area index LAI, the snow-free vegetation albedo αsum, the vegetation albedo in the 
winter period (with snow on tree crowns) αwin; (3) albedo of snow on the ground αsn; (4) 
parameters controlling the transformation of runoff both within a grid box (the Manning 
roughness coefficient n) and in a river channel network (effective velocity of water 
movement in a channel ue). 
Only seven land surface parameters from the above listed were chosen for calibration: K0, h0, 
hr, αsum, αsn, n, and ue (the other parameters were taken from the GSWP-2 global datasets) 
because of the following reasons. The hydraulic conductivity at saturation K0 is one of the most 
important parameters of SWAP because it controls partitioning of water reaching the soil 
surface between infiltration and surface runoff. Besides that, in SWAP, subgrid effects are 
taken into account through K0. Thus, when modelling infiltration and surface runoff, subgrid 
spatial variability of K0 is considered by using not only mean value of K0 for each grid box, but 
also root-mean-square deviation (Gusev and Nasonova, 1998). SWAP is also sensitive to the 
soil column thickness h0, which, affecting the total soil water storage, controls to a great extent 
(along with some other factors) the partitioning of water entering a soil between an increment 
of soil water storage and drainage from the soil column. The root layer thickness hr affects the 
maximum water storage available for transpiration, which occurs from this layer. The 
parameter αsum determines the amount of non-reflected incoming solar radiation, which 
influences heat and water exchange at the land-atmosphere interface. The value of albsn 
influences energy balance at the snow surface and, consequently, the rate of snow formation 
processes, in particular, snow evaporation, snow accumulation and snowmelt; this is 
especially important for formation of flood peaks of streamflow hydrograph in spring. The 
shape of the streamflow hydrograph is also influenced by the parameters n and ue. 
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Since the sensitivity of runoff, simulated by SWAP, to the parameters В and ϕ0 is not 
significant, they were excluded from the list of calibrated parameters. As to Wwp, Wfc, Wsat, 
and LAI, analysis of their values, taken from the global datasets, has shown that they are 
quite reasonable for the three river basins and their calibration within narrow physically 
meaningful bounds will hardly improve the quality of runoff simulation. Besides that, first 
attempts of model calibration have shown correlation between the impact of these 

parameters and the parameters h0 and hr on the value of ( )Ext par
→

 (where par
→

 is the vector 
of calibrated parameters) (in particular, decrease in Wfc together with increase in hr does not 
practically change Ext) that makes the search of the optimum of Ext using the indicated 
parameters extremely complicated. 
The meteorological forcing data, as it was mentioned in Introduction, suffer from 
uncertainties and errors, therefore some authors began to calibrate the most influencing 
meteorological characteristics along with parameters of hydrological and land surface 
models (Gan et al., 2006; Xia, 2007). Since precipitation and incoming radiation influence 
runoff formation to the greatest extent, we decided to use the following adjustment factors 
for these forcings: klp, ksp, ksw and klw for rainfall, snowfall, shortwave and longwave 
radiation, respectively. 
To reduce the list of calibrated parameters the following steps were undertaken. When 
adjustment factors for forcing data are involved in the process of parameter optimization, 
one of the four parameters αsum, αsn, αwin and ksw must be excluded from the list because in 
the model these parameters are presented as a product of the corresponding albedo and the 
intensity of shortwave radiation. The parameter αwin with rather realistic values for the river 
basins was excluded. The parameters αsn, n, ue and the adjustment factors ksw, klw, klp and ksp 
were assumed to be the same for all the basin grid boxes, while the values of K0, h0, hr and 
αsum varied from a box to a box that resulted in a great number of parameters, which require 
calibration. To reduce the number of calibrated parameters and to increase their stability, 
instead of K0, hr and αsum for each grid box, we decided to calibrate their adjustment factors 
kK0, khr and kαsum, which were taken to be constant for the entire basin. In addition, we set 
h0=kh0⋅hr for each box, where kh0 is also an adjustment factor taken to be constant for each 
basin. As a result, the total number of calibrated parameters was reduced to 11: seven for the 
land surface: kK0, khr, kαsum, kh0, αsn, n, ue and four for the forcing data: ksw, klw, klp and ksp. 

2.6 Model calibration and validation  
Daily streamflow hydrographs, measured at the Malonisogorskaya gauging station (Figure 
2b), the Ust-Pinega station (Figure 3b) and the Oksino station (Figure 4b) during the period 
of 1986-1995 and taken from the GRDC (Global Runoff Data Centre) database, were used for 
parameter optimization and validation. The period from 1986 to 1990 was used for 
parameter optimization, which was performed for each river basin and for each version of 
the forcing data. To reveal the impact of optimization of adjustment factors for forcing data 
we performed calibration with and without application of the adjustment factors. In the 
former case, 11 parameters were calibrated, while in the latter case 8 (11 minus 4 adjustment 
factors and plus αwin) parameters.  
Validation of the model with different sets of parameter values was performed for the 
period of 1991-1995. The results of daily streamflow simulations were compared with 
observations and with each other. The agreement between simulated and observed 
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absolute value of Bias did not exceed 5%. If the fulfilment of this condition resulted in 
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period of 1991-1995. The results of daily streamflow simulations were compared with 
observations and with each other. The agreement between simulated and observed 



 Stochastic Optimization - Seeing the Optimal for the Uncertain 

 

430 

streamflow for each river basin was estimated at daily time scale using several goodness-of-
fit statistics: the Nash-Sutcliffe coefficient of efficiency Eff, systematic error Bias and the 
coefficient of correlation r. Hydrographs were also compared visually to reveal how the 
model reproduces the shape of hydrograph, including timing of peaks, recession slopes and 
low flows.  
The agreement between simulations and observations is usually considered to be 
satisfactory if Eff >0.5 (if Eff =1 the simulation is ideal). If Eff<0, temporal variability of 
variable х is reproduced badly (in this case, a simple averaging of observations is better than 
model simulation). Generally speaking, the threshold values of Eff characterizing the quality 
of simulations are subjective and depend on the problem to be solved. The scale of accuracy 
commonly used for evaluation of the quality of streamflow forecasts is as follows (Appolov 
et al., 1974): the accuracy is regarded as “good” when Eff≥0.75, as “satisfactory” when 
0.36≤Eff<0.75, and as “unsatisfactory” when Eff<0.36. As to the Bias, it should be taken into 
account, that a systematic error in daily, monthly, and annual values of the measured river 
runoff is on the average not less than 5% (this value can be much greater for flood periods). 
Therefore, we can assume that when ⏐Bias⏐≤5%, the quality of modelling can be considered 
as “good”. 

3. Results 
3.1 Comparison of RST and SCE-UA optimization algorithms 
Optimization of 11 model parameters using RST and SCE-UA optimization algorithms 
allowed us to compare their effectiveness. Four sets of optimal values of calibrated 
parameters were obtained for each river by application of RST and SCE-UA algorithms for 
Version 1 and Version 2 of forcing data. Then streamflow simulations were performed using 
the optimized parameter values. Table 1 summarizes the results of comparison of simulated 
and measured daily streamflow for the calibration and validation periods and for the entire 
calculational period.  
Analysis of the results shows that application of the two different optimization algorithms 
for the same set of calibrated parameters gives closely consistent values of daily Eff and Bias. 
On average, RST-set of optimal parameters results in daily Eff equalled to 0.82, 0.81 and 0.81 
for the calibration, the validation and the entire 1986-1995 period, respectively, while 
absolute Bias for the same periods is 1.8%, 5.8% and 2.6% respectively. Application of SCE-
UA provides Eff equalled to 0.83, 0.82 and 0.83, while absolute Bias is 3.6%, 2.6% and 1.8%, 
respectively, for the calibration, the validation and the entire periods. Visual comparison of 
hydrographs reveals negligible differences. The differences can be explained by a limited 
number of realizations in both cases. These results mean that RST calibration technique is as 
effective as SCE-UA. The advantage of the former is that a user can interfere in the process 
of calibration and to speed up it by analyzing the preliminary results and reducing the 
feasible parameter space. For example, calibration of parameters for the Northern Dvina 
River by SCE-UA technique took us about two weeks against 2-3 days by RST (increase of 
the number of realizations in the latter case could improve the results, which are somewhat 
worse than in the former case, especially with respect to the validation period). If the time is 
not limited, it is more convenient to use the SCE-UA procedure, which does not need user 
interference and, consequently, depends on a user’s experience to a less extent and is a less 
labour-consuming procedure. 
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Version 1 Version 2 River Optimization 
algorithm Bias,% Eff r Bias, % Eff r 

Calibration period (1986-1990) 
Mezen RST -4 0.72 0.85 -1 0.80 0.89 
 SCE-UA -6 0.75 0.87 2 0.83 0.91 
Pechora RST - - - 0 0.89 0.94 
 SCE- UA 0 0.87 0.94 4 0.85 0.92 
Northern Dvina RST 4 0.84 0.93 0 0.87 0.93 
 SCE-UA 6 0.85 0.93 0 0.89 0.94 

Validation period (1991-1995) 
Mezen RST -7 0.82 0.91 1 0.84 0.91 
 SCE-UA 2 0.73 0.86 6 0.82 0.91 
Pechora RST - - - -6 0.75 0.88 
 SCE- UA -6 0.85 0.92 -1 0.76 0.87 
Northern Dvina RST -11 0.80 0.90 4 0.85 0.92 
 SCE-UA -3 0.90 0.95 1 0.90 0.95 

Entire period (1986-1995) 
Mezen RST -5 0.75 0.87 0 0.82 0.90 
 SCE-UA -1 0.74 0.86 4 0.82 0.91 
Pechora RST - - - -3 0.81 0.91 
 SCE- UA -3 0.86 0.93 2 0.80 0.90 
Northern Dvina RST -3 0.81 0.91 2 0.86 0.93 
 SCE-UA 1 0.88 0.94 1 0.90 0.95 

Table 1. Statistical estimation of two optimization algorithms  

3.2 Streamflow simulations with different sets of forcing data and optimal parameters 
Table 2 summarizes the results of statistical estimation of agreement between measured and 
modelled daily streamflow for three rivers in different model runs with three versions of 
forcing data and with different sets of parameter values: a priori estimated parameters (Run-
1) and optimized parameters without (Run-2) and with (Run-3) involving adjustment factors 
for forcing data. Optimization was performed by SCE-UA procedure. 
Comparison of Run-1 and Run-2 results shows that calibration of eight model parameters 
has resulted in substantial improvement of the quality of streamflow simulations for each 
version of forcing data as compared to a priori estimated parameters. This is clearly seen 
from Figure 6, which shows the results averaged over three rivers. Thus, in Run-1, Eff was 
mainly negative, while in Run-2 mean Eff reached 64%, 72% and 84%, respectively, for 
Version 1, Version 2 and Version 3 of forcing data for the calibration period. The 
corresponding values of r were 0.87, 0.89 and 0.92, while the mean absolute Bias was 28%, 
26% and 5%. Therefore, the best progress was archived for Version 3 of forcing data (when 
real observations form meteorological stations were used). As to the global forcing datasets, 
hybridized product was better than reanalysis one in terms of efficiency, while differences in 
the mean values of r and Bias were rather small. If we consider the validation period, the 
statistics for Version 3 was again the best. At the same time the quality of model 
performance using Version 1 of forcing data was even higher than with Version 2. For the 
entire period, the results for Version 1 and Version 2 were nearly the same. All this mean   
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streamflow for each river basin was estimated at daily time scale using several goodness-of-
fit statistics: the Nash-Sutcliffe coefficient of efficiency Eff, systematic error Bias and the 
coefficient of correlation r. Hydrographs were also compared visually to reveal how the 
model reproduces the shape of hydrograph, including timing of peaks, recession slopes and 
low flows.  
The agreement between simulations and observations is usually considered to be 
satisfactory if Eff >0.5 (if Eff =1 the simulation is ideal). If Eff<0, temporal variability of 
variable х is reproduced badly (in this case, a simple averaging of observations is better than 
model simulation). Generally speaking, the threshold values of Eff characterizing the quality 
of simulations are subjective and depend on the problem to be solved. The scale of accuracy 
commonly used for evaluation of the quality of streamflow forecasts is as follows (Appolov 
et al., 1974): the accuracy is regarded as “good” when Eff≥0.75, as “satisfactory” when 
0.36≤Eff<0.75, and as “unsatisfactory” when Eff<0.36. As to the Bias, it should be taken into 
account, that a systematic error in daily, monthly, and annual values of the measured river 
runoff is on the average not less than 5% (this value can be much greater for flood periods). 
Therefore, we can assume that when ⏐Bias⏐≤5%, the quality of modelling can be considered 
as “good”. 

3. Results 
3.1 Comparison of RST and SCE-UA optimization algorithms 
Optimization of 11 model parameters using RST and SCE-UA optimization algorithms 
allowed us to compare their effectiveness. Four sets of optimal values of calibrated 
parameters were obtained for each river by application of RST and SCE-UA algorithms for 
Version 1 and Version 2 of forcing data. Then streamflow simulations were performed using 
the optimized parameter values. Table 1 summarizes the results of comparison of simulated 
and measured daily streamflow for the calibration and validation periods and for the entire 
calculational period.  
Analysis of the results shows that application of the two different optimization algorithms 
for the same set of calibrated parameters gives closely consistent values of daily Eff and Bias. 
On average, RST-set of optimal parameters results in daily Eff equalled to 0.82, 0.81 and 0.81 
for the calibration, the validation and the entire 1986-1995 period, respectively, while 
absolute Bias for the same periods is 1.8%, 5.8% and 2.6% respectively. Application of SCE-
UA provides Eff equalled to 0.83, 0.82 and 0.83, while absolute Bias is 3.6%, 2.6% and 1.8%, 
respectively, for the calibration, the validation and the entire periods. Visual comparison of 
hydrographs reveals negligible differences. The differences can be explained by a limited 
number of realizations in both cases. These results mean that RST calibration technique is as 
effective as SCE-UA. The advantage of the former is that a user can interfere in the process 
of calibration and to speed up it by analyzing the preliminary results and reducing the 
feasible parameter space. For example, calibration of parameters for the Northern Dvina 
River by SCE-UA technique took us about two weeks against 2-3 days by RST (increase of 
the number of realizations in the latter case could improve the results, which are somewhat 
worse than in the former case, especially with respect to the validation period). If the time is 
not limited, it is more convenient to use the SCE-UA procedure, which does not need user 
interference and, consequently, depends on a user’s experience to a less extent and is a less 
labour-consuming procedure. 
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Version 1 Version 2 River Optimization 
algorithm Bias,% Eff r Bias, % Eff r 

Calibration period (1986-1990) 
Mezen RST -4 0.72 0.85 -1 0.80 0.89 
 SCE-UA -6 0.75 0.87 2 0.83 0.91 
Pechora RST - - - 0 0.89 0.94 
 SCE- UA 0 0.87 0.94 4 0.85 0.92 
Northern Dvina RST 4 0.84 0.93 0 0.87 0.93 
 SCE-UA 6 0.85 0.93 0 0.89 0.94 

Validation period (1991-1995) 
Mezen RST -7 0.82 0.91 1 0.84 0.91 
 SCE-UA 2 0.73 0.86 6 0.82 0.91 
Pechora RST - - - -6 0.75 0.88 
 SCE- UA -6 0.85 0.92 -1 0.76 0.87 
Northern Dvina RST -11 0.80 0.90 4 0.85 0.92 
 SCE-UA -3 0.90 0.95 1 0.90 0.95 

Entire period (1986-1995) 
Mezen RST -5 0.75 0.87 0 0.82 0.90 
 SCE-UA -1 0.74 0.86 4 0.82 0.91 
Pechora RST - - - -3 0.81 0.91 
 SCE- UA -3 0.86 0.93 2 0.80 0.90 
Northern Dvina RST -3 0.81 0.91 2 0.86 0.93 
 SCE-UA 1 0.88 0.94 1 0.90 0.95 

Table 1. Statistical estimation of two optimization algorithms  

3.2 Streamflow simulations with different sets of forcing data and optimal parameters 
Table 2 summarizes the results of statistical estimation of agreement between measured and 
modelled daily streamflow for three rivers in different model runs with three versions of 
forcing data and with different sets of parameter values: a priori estimated parameters (Run-
1) and optimized parameters without (Run-2) and with (Run-3) involving adjustment factors 
for forcing data. Optimization was performed by SCE-UA procedure. 
Comparison of Run-1 and Run-2 results shows that calibration of eight model parameters 
has resulted in substantial improvement of the quality of streamflow simulations for each 
version of forcing data as compared to a priori estimated parameters. This is clearly seen 
from Figure 6, which shows the results averaged over three rivers. Thus, in Run-1, Eff was 
mainly negative, while in Run-2 mean Eff reached 64%, 72% and 84%, respectively, for 
Version 1, Version 2 and Version 3 of forcing data for the calibration period. The 
corresponding values of r were 0.87, 0.89 and 0.92, while the mean absolute Bias was 28%, 
26% and 5%. Therefore, the best progress was archived for Version 3 of forcing data (when 
real observations form meteorological stations were used). As to the global forcing datasets, 
hybridized product was better than reanalysis one in terms of efficiency, while differences in 
the mean values of r and Bias were rather small. If we consider the validation period, the 
statistics for Version 3 was again the best. At the same time the quality of model 
performance using Version 1 of forcing data was even higher than with Version 2. For the 
entire period, the results for Version 1 and Version 2 were nearly the same. All this mean   
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Version 1 Version 2 Version 3 Model 
run River Bias,% Eff r Bias, 

% Eff r Bias, 
% Eff r 

Calibration period (1986-1990) 
Run-1 Mezen 32 0.45 0.84 30 -0.34 0.83 -47 0.00 0.35 
 Pechora -28 -0.26 0.19 3 -0.66 0.45 -60 -0.16 0.25 
 Northern Dvina 68 -0.68 0.76 56 -0.93 0.83 -46 0.29 0.69 
 Mean 43 -0.16 0.60 30 -0.64 0.70 51 0.04 0.43 
Run-2 Mezen 26 0.58 0.78 33 0.70 0.87 -3 0.82 0.91 
 Pechora 0 0.83 0.91 1 0.78 0.89 -11 0.83 0.92 
 Northern Dvina 57 0.52 0.91 45 0.67 0.91 0 0.88 0.94 
 Mean 28 0.64 0.87 26 0.72 0.89 5 0.84 0.92 
Run-3 Mezen -6 0.75 0.87 2 0.83 0.91 0 0.90 0.95 
 Pechora 0 0.87 0.94 4 0.85 0.92 3 0.92 0.96 
 Northern Dvina 6 0.85 0.93 0 0.89 0.94 -4 0.89 0.94 
 Mean 4 0.82 0.91 2 0.86 0.92 2 0.90 0.95 

Validation period (1991-1995) 
Run-1 Mezen 38 0.37 0.79 42 -0.34 0.86 -43 0.14 0.46 
 Pechora -23 -0.03 0.36 2 -0.56 0.51 -57 0.05 0.50 
 Northern Dvina 48 -0.38 0.64 55 -0.62 0.80 -40 0.40 0.75 
 Mean 36 -0.01 0.60 33 -0.51 0.72 47 0.20 0.57 
Run-2 Mezen 31 0.71 0.87 42 0.69 0.87 -7 0.86 0.93 
 Pechora -5 0.79 0.89 2 0.71 0.86 -11 0.69 0.84 
 Northern Dvina 38 0.71 0.90 53 0.68 0.91 0 0.90 0.95 
 Mean 25 0.74 0.89 32 0.69 0.88 6 0.82 0.91 
Run-3 Mezen 2 0.73 0.86 6 0.82 0.91 -4 0.90 0.95 
 Pechora -6 0.85 0.92 -1 0.76 0.87 3 0.76 0.89 
 Northern Dvina -3 0.90 0.95 1 0.90 0.95 -5 0.89 0.95 
 Mean 4 0.83 0.91 3 0.83 0.91 4 0.85 0.93 

Entire period (1986-1995) 
Run-1 Mezen 35 0.41 0.81 36 -0.34 0.85 -45 0.08 0.40 
 Pechora -25 -0.13 0.29 3 -0.60 0.49 -59 -0.04 0.40 
 Northern Dvina 58 -0.50 0.69 56 -0.74 0.81 -45 0.36 0.72 
 Mean 39 -0.07 0.60 32 -0.56 0.72 50 0.13 0.51 
Run-2 Mezen 29 0.66 0.83 38 0.69 0.87 -5 0.84 0.92 
 Pechora -3 0.81 0.90 2 0.75 0.87 -11 0.76 0.87 
 Northern Dvina 47 0.64 0.90 49 0.67 0.91 0 0.89 0.95 
 Mean 26 0.70 0.88 30 0.70 0.88 5 0.83 0.91 
Run-3 Mezen -1 0.74 0.86 4 0.82 0.91 -2 0.90 0.95 
 Pechora -3 0.86 0.93 2 0.80 0.90 3 0.83 0.92 
 Northern Dvina 2 0.88 0.94 1 0.90 0.95 -4 0.89 0.95 
 Mean 2 0.83 0.91 2 0.84 0.92 3 0.87 0.94 

Table 2. Statistical evaluation of different model runs. Mean Bias was obtained for absolute 
values 
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that, first, forcing data based on real meteorology are of better quality than forcing data 
taken from the global datasets; second, high correlation between measured and simulated 
streamflow in all three cases, along with lower values of Eff and Bias in Version 1 and 
Version 2 compared to Version 3, confirms that global forcing data contain systematic errors 
(in spite of hybridization of pure reanalysis product with observations, which was 
undertaken to decrease the errors); third, these errors are not compensated by optimization 
of the land surface parameters, therefore to reduce their impact on streamflow simulations 
the adjustment factors for the key forcing data are required. 
Further improvement of the above results was archived by means of involving adjustment 
factors for forcing data in the process of parameter optimization. This is confirmed by 
comparison of the results from Run-2 and Run-3 (see Figure 6 and Table 2). For Version 1  
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Fig. 6. Averaged over the three considered rivers daily efficiency, coefficient of correlation and 
absolute value of Bias from a priori simulations (model run 1) and calibrated results without 
(model run 2) and with (model run 3) application of adjustment factors for forcing data for the 
calibration period (red), the validation period (green) and the entire period (blue). The results 
are given for three versions of forcing data. All statistics are averaged over the three rivers. 
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Version 1 Version 2 Version 3 Model 
run River Bias,% Eff r Bias, 

% Eff r Bias, 
% Eff r 

Calibration period (1986-1990) 
Run-1 Mezen 32 0.45 0.84 30 -0.34 0.83 -47 0.00 0.35 
 Pechora -28 -0.26 0.19 3 -0.66 0.45 -60 -0.16 0.25 
 Northern Dvina 68 -0.68 0.76 56 -0.93 0.83 -46 0.29 0.69 
 Mean 43 -0.16 0.60 30 -0.64 0.70 51 0.04 0.43 
Run-2 Mezen 26 0.58 0.78 33 0.70 0.87 -3 0.82 0.91 
 Pechora 0 0.83 0.91 1 0.78 0.89 -11 0.83 0.92 
 Northern Dvina 57 0.52 0.91 45 0.67 0.91 0 0.88 0.94 
 Mean 28 0.64 0.87 26 0.72 0.89 5 0.84 0.92 
Run-3 Mezen -6 0.75 0.87 2 0.83 0.91 0 0.90 0.95 
 Pechora 0 0.87 0.94 4 0.85 0.92 3 0.92 0.96 
 Northern Dvina 6 0.85 0.93 0 0.89 0.94 -4 0.89 0.94 
 Mean 4 0.82 0.91 2 0.86 0.92 2 0.90 0.95 

Validation period (1991-1995) 
Run-1 Mezen 38 0.37 0.79 42 -0.34 0.86 -43 0.14 0.46 
 Pechora -23 -0.03 0.36 2 -0.56 0.51 -57 0.05 0.50 
 Northern Dvina 48 -0.38 0.64 55 -0.62 0.80 -40 0.40 0.75 
 Mean 36 -0.01 0.60 33 -0.51 0.72 47 0.20 0.57 
Run-2 Mezen 31 0.71 0.87 42 0.69 0.87 -7 0.86 0.93 
 Pechora -5 0.79 0.89 2 0.71 0.86 -11 0.69 0.84 
 Northern Dvina 38 0.71 0.90 53 0.68 0.91 0 0.90 0.95 
 Mean 25 0.74 0.89 32 0.69 0.88 6 0.82 0.91 
Run-3 Mezen 2 0.73 0.86 6 0.82 0.91 -4 0.90 0.95 
 Pechora -6 0.85 0.92 -1 0.76 0.87 3 0.76 0.89 
 Northern Dvina -3 0.90 0.95 1 0.90 0.95 -5 0.89 0.95 
 Mean 4 0.83 0.91 3 0.83 0.91 4 0.85 0.93 

Entire period (1986-1995) 
Run-1 Mezen 35 0.41 0.81 36 -0.34 0.85 -45 0.08 0.40 
 Pechora -25 -0.13 0.29 3 -0.60 0.49 -59 -0.04 0.40 
 Northern Dvina 58 -0.50 0.69 56 -0.74 0.81 -45 0.36 0.72 
 Mean 39 -0.07 0.60 32 -0.56 0.72 50 0.13 0.51 
Run-2 Mezen 29 0.66 0.83 38 0.69 0.87 -5 0.84 0.92 
 Pechora -3 0.81 0.90 2 0.75 0.87 -11 0.76 0.87 
 Northern Dvina 47 0.64 0.90 49 0.67 0.91 0 0.89 0.95 
 Mean 26 0.70 0.88 30 0.70 0.88 5 0.83 0.91 
Run-3 Mezen -1 0.74 0.86 4 0.82 0.91 -2 0.90 0.95 
 Pechora -3 0.86 0.93 2 0.80 0.90 3 0.83 0.92 
 Northern Dvina 2 0.88 0.94 1 0.90 0.95 -4 0.89 0.95 
 Mean 2 0.83 0.91 2 0.84 0.92 3 0.87 0.94 

Table 2. Statistical evaluation of different model runs. Mean Bias was obtained for absolute 
values 
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that, first, forcing data based on real meteorology are of better quality than forcing data 
taken from the global datasets; second, high correlation between measured and simulated 
streamflow in all three cases, along with lower values of Eff and Bias in Version 1 and 
Version 2 compared to Version 3, confirms that global forcing data contain systematic errors 
(in spite of hybridization of pure reanalysis product with observations, which was 
undertaken to decrease the errors); third, these errors are not compensated by optimization 
of the land surface parameters, therefore to reduce their impact on streamflow simulations 
the adjustment factors for the key forcing data are required. 
Further improvement of the above results was archived by means of involving adjustment 
factors for forcing data in the process of parameter optimization. This is confirmed by 
comparison of the results from Run-2 and Run-3 (see Figure 6 and Table 2). For Version 1  
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Fig. 6. Averaged over the three considered rivers daily efficiency, coefficient of correlation and 
absolute value of Bias from a priori simulations (model run 1) and calibrated results without 
(model run 2) and with (model run 3) application of adjustment factors for forcing data for the 
calibration period (red), the validation period (green) and the entire period (blue). The results 
are given for three versions of forcing data. All statistics are averaged over the three rivers. 
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and Version 2, the progress in model performance was significant, especially with respect to  
Eff and Bias. For the entire calculational period, mean Eff increased by 13-14% and mean 
absolute Bias decreased by 24-28% as a result of calibration of adjustment factors for forcing 
data. For Version 3, the improvement in mean Eff was only 4% and in mean absolute bias 
2%. Therefore the quality of forcing data based on observations from meteorological 
stations, on average, was rather good. At the same time for the Mezen River and Pechora 
River, increase in Eff and decrease in absolute Bias sometimes reached 7-9%, while for the 
Northern Dvina the differences were much smaller, i.e. in the latter case the quality of 
forcing data was higher. 
The obtained results have shown that optimization of model parameters and adjustment 
factors for forcing data makes it possible to use global datasets for streamflow simulations and 
to obtain results of a good quality. The lower the quality of input data the more effectiveness of 
such optimization. This is clearly illustrated by Figure 7 where hydrographs simulated for the 
Northern Dvina River in different model runs are compared with the measured hydrograph 
for the period of 1986-1995. The grey hydrographs were simulated without any optimization. 
Their agreement with measurements is very poor. Differences between grey hydrographs in 
the upper and middle panels are due to differences in the global atmospheric forcing data (the 
values of model parameters are the same here). In these cases both forcing data and model 
parameters (which were also taken from global datasets) contribute to the low accuracy of 
streamflow simulation. In the bottom panel, poor simulation (without calibration) is due to 
inadequate values of a priori estimated model parameters (taken from global datasets), while 
real meteorology, as it was shown above, is rather good. Optimization of parameter values 
allowed us greatly improve the modelled hydrographs (compare grey lines with blue lines in 
all panels). Further improvement was made by means of simultaneous optimization of model 
parameters and adjustment factors for forcing data (compare blue lines with green lines). 
Coincidence of green and blue hydrographs in the bottom panel confirms the above made 
conclusion that there is no necessity to use the adjustment factors for forcing data if the quality 
of forcing data is rather high. 
At last, Figure 8 shows that it is possible to obtain a good accuracy of streamflow 
simulations using any of three versions of forcing data if optimization of model parameters 
and (if it is necessary) adjustment factors has been performed in a proper way. As can be 
seen from Figure 8, three hydrographs modelled by SWAP using different versions of 
forcing data are in a good agreement with each other and with measured hydrograph. 

4. Conclusions 
The main conclusions from this investigation can be summarized as follows.  
• Direct application of the global data on meteorological characteristics and land surface 

parameters, developed within the framework of the ISLSCIP-II and GSWP-2 projects, 
for simulating streamflow for three northern rivers, located in the European part of 
Russia, by the LSM SWAP leads to poor results (low Nash-Sutcliffe efficiencies and 
large biases). Optimization helps to compensate to some extent uncertainties and 
shortcomings in input data and model parameters. Uncertainties and errors in forcing 
data can be partly compensated by application of adjustment factors for those 
meteorological characteristics, which influence runoff generation to a greater extent. 
Calibration of such factors together with model parameters allows one to reduce the 
influence of systematic errors in forcing data on optimization of model parameters and 
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Fig. 7. Measured and simulated streamflow of the Northern Dvina River. Simulations were 
performed for three versions of forcing data using a priori (Run-1) estimated parameters 
and optimized parameters without (Run-2) and with (Run-3) application of adjustment 
factors for forcing data. The days are numbered from the 1 January 1986. 
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and Version 2, the progress in model performance was significant, especially with respect to  
Eff and Bias. For the entire calculational period, mean Eff increased by 13-14% and mean 
absolute Bias decreased by 24-28% as a result of calibration of adjustment factors for forcing 
data. For Version 3, the improvement in mean Eff was only 4% and in mean absolute bias 
2%. Therefore the quality of forcing data based on observations from meteorological 
stations, on average, was rather good. At the same time for the Mezen River and Pechora 
River, increase in Eff and decrease in absolute Bias sometimes reached 7-9%, while for the 
Northern Dvina the differences were much smaller, i.e. in the latter case the quality of 
forcing data was higher. 
The obtained results have shown that optimization of model parameters and adjustment 
factors for forcing data makes it possible to use global datasets for streamflow simulations and 
to obtain results of a good quality. The lower the quality of input data the more effectiveness of 
such optimization. This is clearly illustrated by Figure 7 where hydrographs simulated for the 
Northern Dvina River in different model runs are compared with the measured hydrograph 
for the period of 1986-1995. The grey hydrographs were simulated without any optimization. 
Their agreement with measurements is very poor. Differences between grey hydrographs in 
the upper and middle panels are due to differences in the global atmospheric forcing data (the 
values of model parameters are the same here). In these cases both forcing data and model 
parameters (which were also taken from global datasets) contribute to the low accuracy of 
streamflow simulation. In the bottom panel, poor simulation (without calibration) is due to 
inadequate values of a priori estimated model parameters (taken from global datasets), while 
real meteorology, as it was shown above, is rather good. Optimization of parameter values 
allowed us greatly improve the modelled hydrographs (compare grey lines with blue lines in 
all panels). Further improvement was made by means of simultaneous optimization of model 
parameters and adjustment factors for forcing data (compare blue lines with green lines). 
Coincidence of green and blue hydrographs in the bottom panel confirms the above made 
conclusion that there is no necessity to use the adjustment factors for forcing data if the quality 
of forcing data is rather high. 
At last, Figure 8 shows that it is possible to obtain a good accuracy of streamflow 
simulations using any of three versions of forcing data if optimization of model parameters 
and (if it is necessary) adjustment factors has been performed in a proper way. As can be 
seen from Figure 8, three hydrographs modelled by SWAP using different versions of 
forcing data are in a good agreement with each other and with measured hydrograph. 

4. Conclusions 
The main conclusions from this investigation can be summarized as follows.  
• Direct application of the global data on meteorological characteristics and land surface 

parameters, developed within the framework of the ISLSCIP-II and GSWP-2 projects, 
for simulating streamflow for three northern rivers, located in the European part of 
Russia, by the LSM SWAP leads to poor results (low Nash-Sutcliffe efficiencies and 
large biases). Optimization helps to compensate to some extent uncertainties and 
shortcomings in input data and model parameters. Uncertainties and errors in forcing 
data can be partly compensated by application of adjustment factors for those 
meteorological characteristics, which influence runoff generation to a greater extent. 
Calibration of such factors together with model parameters allows one to reduce the 
influence of systematic errors in forcing data on optimization of model parameters and 
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Fig. 7. Measured and simulated streamflow of the Northern Dvina River. Simulations were 
performed for three versions of forcing data using a priori (Run-1) estimated parameters 
and optimized parameters without (Run-2) and with (Run-3) application of adjustment 
factors for forcing data. The days are numbered from the 1 January 1986. 
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Fig. 8. Measured and simulated (Run-3) streamflow of the Northern Dvina River. The days 
are numbered from the 1 January 1986. 

on model performance. All calibrated parameters should be kept within a reasonable 
range so as not to violate physical constraints while providing a close match between 
simulated and measured daily streamflow. 

• Forcing data based on real meteorology from the meteorological stations located within 
a basin require adjustment factors only in the case of low quality of data (if the density 
of measurements is poor, or location of the stations cannot provide the study basin with 
representative information, or measurements contain errors etc.). 

• Application of two different global optimization algorithms (RST and SCE-UA) has 
shown that both algorithms lead to practically the same results. The advantage of the 
former is that a user can interfere in the process of calibration and to speed up it by 
analyzing the preliminary results and reducing the feasible parameter space. SCE-UA 
does not need user interference and, consequently, depends on a user’s experience to a 
less extent and is a less labour-consuming procedure. At the same time SCE-UA is a 
more time-consuming procedure, but if the time is not limited, it is more convenient to 
use SCE-UA optimization technique. 

• Application of the LSM SWAP with global parameter datasets and with different 
versions of atmospheric forcing data (based on (1) global reanalysis product, (2) global 
reanalysis product hybridized with gridded observations and (3) real meteorology from 
meteorological stations) allows one to reproduce hydrographs of the northern rivers of 
the European part of Russia after optimization of a set of model parameters and 
adjustment factors for forcing data with a good accuracy, which is confirmed by 
statistical estimation of agreement between simulated and measured hydrographs and 
their visual comparison. 

Future research should be concentrated on the solution of the following problems. First, 
development of methodology for predicting changes in river runoff due to climate change 
and anthropogenic effects. Second, development of methods for modelling river runoff in 
ungauged basins, i.e. when streamflow measurements are absent and it is not possible to 
perform optimization of model parameters and to validate the results. These problems are 
difficult; however, the possible ways for their solutions may be as follows. The former 
problem can be solved on the base of application of LSMs, along with climate forecast 
generators and land use scenarios of a high spatial and temporal resolution. The second 
problem can be solved on the base of LSMs and construction of relations between calibrated 
model parameters and natural characteristics of river basins. 
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Fig. 8. Measured and simulated (Run-3) streamflow of the Northern Dvina River. The days 
are numbered from the 1 January 1986. 

on model performance. All calibrated parameters should be kept within a reasonable 
range so as not to violate physical constraints while providing a close match between 
simulated and measured daily streamflow. 

• Forcing data based on real meteorology from the meteorological stations located within 
a basin require adjustment factors only in the case of low quality of data (if the density 
of measurements is poor, or location of the stations cannot provide the study basin with 
representative information, or measurements contain errors etc.). 

• Application of two different global optimization algorithms (RST and SCE-UA) has 
shown that both algorithms lead to practically the same results. The advantage of the 
former is that a user can interfere in the process of calibration and to speed up it by 
analyzing the preliminary results and reducing the feasible parameter space. SCE-UA 
does not need user interference and, consequently, depends on a user’s experience to a 
less extent and is a less labour-consuming procedure. At the same time SCE-UA is a 
more time-consuming procedure, but if the time is not limited, it is more convenient to 
use SCE-UA optimization technique. 

• Application of the LSM SWAP with global parameter datasets and with different 
versions of atmospheric forcing data (based on (1) global reanalysis product, (2) global 
reanalysis product hybridized with gridded observations and (3) real meteorology from 
meteorological stations) allows one to reproduce hydrographs of the northern rivers of 
the European part of Russia after optimization of a set of model parameters and 
adjustment factors for forcing data with a good accuracy, which is confirmed by 
statistical estimation of agreement between simulated and measured hydrographs and 
their visual comparison. 

Future research should be concentrated on the solution of the following problems. First, 
development of methodology for predicting changes in river runoff due to climate change 
and anthropogenic effects. Second, development of methods for modelling river runoff in 
ungauged basins, i.e. when streamflow measurements are absent and it is not possible to 
perform optimization of model parameters and to validate the results. These problems are 
difficult; however, the possible ways for their solutions may be as follows. The former 
problem can be solved on the base of application of LSMs, along with climate forecast 
generators and land use scenarios of a high spatial and temporal resolution. The second 
problem can be solved on the base of LSMs and construction of relations between calibrated 
model parameters and natural characteristics of river basins. 
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1. Introduction     
Distillation is a widely used separation process and is a very large consumer of energy. In 
process design, a significant amount of research work has been done to improve the energy 
efficiency of distillation systems in terms of either the design of optimal distillation schemes 
or for improving internal column efficiency. Still, the optimal design of multicomponent 
distillation systems remains one of the most challenging problems in process engineering 
(Kim & Wankat, 2004). The economic importance of distillation separations has been a 
driving force for the research in synthesis procedures for more than 30 years. For the 
separation of an N-component mixture into N pure products, as the number of components 
increases, the number of possible simple column configurations sharply increases. 
Therefore, the design and optimization of a distillation column involves the selection of the 
configuration and the operating conditions to minimize the total investment and operation 
cost (Yeomans & Grossmann, 2000). The global optimization of a complex distillation 
system is usually characterized as being of large problem size, since the significant number 
of strongly nonlinear equations results in serious difficulty in solving the model. Moreover, 
good initial values are needed for solving the NLP subproblems. Until now, several 
strategies have been proposed to address this optimization problem. For example, 
Andrecovich & Westerberg (1985) proposed a mixed-integer linear programming (MILP) 
model for synthesizing sharp separation sequences. Later, Paules & Floudas (1990) and 
Aggarwal & Floudas (1990) developed mixed-integer nonlinear programming (MINLP) 
models for heat-integrated and nonsharp distillation sequences using linear mass balances. 
In other study, Novak et al. (1996) proposed superstructure MINLP optimization 
approaches using short-cut models for heat-integrated distillation. Smith & Pantelides (1995) 
and Bauer & Stichlmair (1998) developed MINLP models using rigorous tray-by-tray 
models for zeotropic and azeotropic mixtures. Also, Dunnebier & Pantelides (1999) have 
used rigorous tray-by-tray MINLP models to solve complex column configuration 
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distillation sequences. So far, most of the available mathematical programming models are 
based on simplified performance models of the distillation columns, including linear mass 
balance equations, short-cut models, and aggregated models (see for example, Papalexandri 
& Pistikopoulos, 1996; Caballero & Grossmann, 1999). While some of these methods can 
provide useful results in terms of preliminary designs or bounds for process synthesis, it is 
clear that it would be desirable to directly incorporate rigorous models in the design 
procedures in order to increase their industrial relevance and scope of application, 
particularly, for nonideal mixtures. Regarding the rigorous MINLP synthesis models by 
Bauer & Stichlmair (1998), Smith & Pantelides (1995), and Dünnebier & Pantelides (1999), all 
of them use modifications of the single-column MINLP model proposed by Viswanathan & 
Grossmann (1993) for optimizing the feed tray location and number of trays. These rigorous 
MINLP synthesis models exhibit significant computational difficulties such as the 
introduction of equations that can become singular, the solution of many redundant 
equations, and the requirement of a good initialization point. So, the presence of 
nonlinearities and nonconvexities in the MESH equations and thermodynamic equilibrium 
equations, as well as the convergence difficulties when deleting non-existing columns or 
column sections, are common problems to the tray-by-tray models based on the model by 
Viswanathan & Grossmann (1993). In summary, these difficulties translate into high 
computational times and the requirement of good initial guesses and bounds on the design 
variables to achieve model convergence. 
In general, the optimal design of distillation systems is a highly non-linear and multivariable 
problem, with the presence of both continuous and discontinuous design variables. In 
addition, the objective function used as optimization criterion is generally non-convex with 
several local optimums and subject to several constraints. The use of stochastic optimizers, 
which deals with multi-modal and non-convex problems, can be an effective way to face the 
challenging characteristics involved in the design of distillation columns. Stochastic global 
optimization algorithms are capable of solving, robustly and efficiently, the challenging 
multi-modal optimization problem, and they appear to be a suitable alternative for the 
design and optimization of complex separation schemes (Martínez-Iranzo et al., 2009). These 
optimization methods have several features that make them attractive for solving 
optimization problems with modular simulators, where the model of each unit is only 
available in an implicit form (i.e., black-box model). First, due to the fact that they are based 
on direct search strategies, it is not necessary to have explicit information on the 
mathematical model or its derivatives. Secondly, the search for the optimal solution is not 
limited to one point but rather relies on several points simultaneously; therefore, the 
knowledge of initial feasible points is not required. 
In this chapter, we have implemented several stochastic global optimization methods to 
obtain the design and optimization of three distillation sequences: multicomponent 
conventional distillation system (Figure 1), thermally coupled reactive scheme with side 
stripper (Figure 2), and a dividing wall distillation column (Figure 3). Specifically, these 
stochastic optimization methods are: Simulated Annealing (SA), Harmony Search (HS) and 
Genetic Algorithms (GA). In recent years, the range of applicability of optimization has been 
widened and progress has improved in different areas. Effective search methods, such as 
genetic algorithms, simulated annealing and harmony search, for global optimization have 
been developed, and problems with complex analysis model and various types of 
constraints and non-convex objective functions have been investigated (Costa et al., 2000).  
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Fig. 1. Schematic representation of a multicomponent conventional distillation column. 
Nomenclature of this figure is given in section 8 of this chapter.   
 

 
Fig. 2. Schematic representation of a thermally coupled reactive distillation sequence with 
side stripper (TCRDS-SS). Nomenclature of this figure is given in section 8 of this chapter.   
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Fig. 1. Schematic representation of a multicomponent conventional distillation column. 
Nomenclature of this figure is given in section 8 of this chapter.   
 

 
Fig. 2. Schematic representation of a thermally coupled reactive distillation sequence with 
side stripper (TCRDS-SS). Nomenclature of this figure is given in section 8 of this chapter.   
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Fig. 3. Schematic representation of a dividing wall distillation column (DWC). 
Nomenclature of this figure is given in section 8 of this chapter.   

We select SA, HS and GA for this study because they have shown their merits in large-scale 
search, approaching the global optimum quickly and steadily. These optimization methods 
have several features that make them attractive for solving optimization problems with 
modular simulators, where the model of each unit is only available in an implicit form.  
On the other hand, literature indicates that, when operating conditions are properly chosen, 
the thermally coupled reactive scheme with side stripper and dividing wall distillation 
column can produce important energy savings compared with conventional distillation 
sequences (Kiss et al., 2010). Some studies have demonstrated that this kind of sequences 
has energy savings of about 30% over conventional schemes (Triantafyllou & Smith, 1992; 
Hernández & Jiménez, 1996). Therefore, we have studied the design of these distillation 
schemes using stochastic global optimization methods coupled to the Aspen One Aspen 
Plus process simulator for the evaluation of the objective function, ensuring that all results 
obtained are rigorous. To the best of our knowledge, the evaluation and comparison of 
stochastic global optimization methods have not been reported for process design of 
distillation configurations. Therefore, our results permit to identify the capabilities and 
limitations of these optimization strategies in the process design applications. 

2. Description of stochastic global optimization methods used for the design 
of distillation schemes 
Stochastic optimization methods are optimization algorithms which incorporate 
probabilistic (i.e., random) elements to diversify and intensify the search space of decision 
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variables. Further, the injected randomness may provide the necessary impetus to move 
away from a local solution when searching for a global optimum. Stochastic optimization 
methods of this kind include: simulated annealing, harmony search, swarm intelligence 
(e.g., ant colony optimization, particle swarm optimization), evolutionary algorithms (e.g., 
genetic algorithms, differential evolution), among others. In this study, we use three 
optimization methods: Simulated Annealing (SA), Genetic Algorithms (GA) and Harmony 
Search (HS). Note that SA and GA are classical stochastic optimization methods and have 
been used for process design (Vazquez-Castillo et al., 2009), while HS is a novel stochastic 
optimization method with few chemical engineering applications (Geem, 2009). In general, 
all methods have the attributes of a good optimization strategy such as generality, 
efficiency, reliability and ease of use. A brief description of these algorithms is provided in 
the following section. 

2.1 Simulated annealing 
Simulated annealing mimics the thermodynamic process of cooling of molten metals to 
attain the lowest free energy state (Kirkpatrick et al., 1983). Starting with an initial solution, 
the algorithm performs a stochastic partial search of the space defined for decision variables. 
In minimization problems, uphill moves are occasionally accepted with a probability 
controlled by the parameter called annealing temperature: TSA. The probability of 
acceptance of uphill moves decreases as TSA decreases. At high TSA, the search is almost 
random, while at low TSA the search becomes selective where good moves are favored. The 
core of this algorithm is the Metropolis criterion (Metropolis et al., 1983), which is used to 
accept or reject uphill movements with an acceptance probability given by 

 ( ) min 1,expSA
SA

fM T
T

⎧ ⎫⎛ ⎞−Δ⎪ ⎪= ⎜ ⎟⎨ ⎬⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭
 (1) 

where Δf is the change in objective function value from the current point to new point. 
The objective function is evaluated at the trial point, and its value is compared to the 
objective value at the starting/current point. Eq. (1) is used to accept or reject the trial point. 
If this trial point is accepted, the algorithm continues the search using that point; otherwise, 
another trial point is generated within the neighborhood of the starting/current point. A fall 
in TSA is imposed upon the system using a proper cooling schedule. Thus, as TSA declines, 
downhill moves are less likely to be accepted and SA focuses on the most promising area for 
optimization. These iterative steps are performed until the specified stopping criterion is 
satisfied. Figure 4 shows a flowchart of this algorithm. Until now, SA algorithm has been 
successfully used in several chemical engineering application (e.g., Rangaiah, 2001; Bonilla-
Petriciolet et al., 2006; Wei-Zhong & Xi-Gang, 2009). In our work, we have used the SA 
subroutine of MATLAB®.  
The random numbers rand can be uniformly distributed in the interval [0, 1]. If rand < 
M(TSA), the trial point is accepted, otherwise the starting/current point is used to start the 
next step. The temperature TSA can be considered a control parameter. The initial 
temperature Ti is related with the standard deviation of the random perturbation and the 
final temperature Tf, with the order of magnitude of the desired accuracy, will give the 
location of the optimum solution. 
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Fig. 3. Schematic representation of a dividing wall distillation column (DWC). 
Nomenclature of this figure is given in section 8 of this chapter.   
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Evaluation of Stochastic Global Optimization Methods  
in the Design of Complex Distillation Configurations   

 

445 

variables. Further, the injected randomness may provide the necessary impetus to move 
away from a local solution when searching for a global optimum. Stochastic optimization 
methods of this kind include: simulated annealing, harmony search, swarm intelligence 
(e.g., ant colony optimization, particle swarm optimization), evolutionary algorithms (e.g., 
genetic algorithms, differential evolution), among others. In this study, we use three 
optimization methods: Simulated Annealing (SA), Genetic Algorithms (GA) and Harmony 
Search (HS). Note that SA and GA are classical stochastic optimization methods and have 
been used for process design (Vazquez-Castillo et al., 2009), while HS is a novel stochastic 
optimization method with few chemical engineering applications (Geem, 2009). In general, 
all methods have the attributes of a good optimization strategy such as generality, 
efficiency, reliability and ease of use. A brief description of these algorithms is provided in 
the following section. 

2.1 Simulated annealing 
Simulated annealing mimics the thermodynamic process of cooling of molten metals to 
attain the lowest free energy state (Kirkpatrick et al., 1983). Starting with an initial solution, 
the algorithm performs a stochastic partial search of the space defined for decision variables. 
In minimization problems, uphill moves are occasionally accepted with a probability 
controlled by the parameter called annealing temperature: TSA. The probability of 
acceptance of uphill moves decreases as TSA decreases. At high TSA, the search is almost 
random, while at low TSA the search becomes selective where good moves are favored. The 
core of this algorithm is the Metropolis criterion (Metropolis et al., 1983), which is used to 
accept or reject uphill movements with an acceptance probability given by 

 ( ) min 1,expSA
SA

fM T
T

⎧ ⎫⎛ ⎞−Δ⎪ ⎪= ⎜ ⎟⎨ ⎬⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭
 (1) 

where Δf is the change in objective function value from the current point to new point. 
The objective function is evaluated at the trial point, and its value is compared to the 
objective value at the starting/current point. Eq. (1) is used to accept or reject the trial point. 
If this trial point is accepted, the algorithm continues the search using that point; otherwise, 
another trial point is generated within the neighborhood of the starting/current point. A fall 
in TSA is imposed upon the system using a proper cooling schedule. Thus, as TSA declines, 
downhill moves are less likely to be accepted and SA focuses on the most promising area for 
optimization. These iterative steps are performed until the specified stopping criterion is 
satisfied. Figure 4 shows a flowchart of this algorithm. Until now, SA algorithm has been 
successfully used in several chemical engineering application (e.g., Rangaiah, 2001; Bonilla-
Petriciolet et al., 2006; Wei-Zhong & Xi-Gang, 2009). In our work, we have used the SA 
subroutine of MATLAB®.  
The random numbers rand can be uniformly distributed in the interval [0, 1]. If rand < 
M(TSA), the trial point is accepted, otherwise the starting/current point is used to start the 
next step. The temperature TSA can be considered a control parameter. The initial 
temperature Ti is related with the standard deviation of the random perturbation and the 
final temperature Tf, with the order of magnitude of the desired accuracy, will give the 
location of the optimum solution. 
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Fig. 4. Flowchart of Simulated Annealing stochastic optimization method. 

2.2 Genetic Algorithm 
Genetic algorithm (GA) is a stochastic technique that simulates natural evolution on the 
solution space of the optimization problems. It operates on a population of potential 
solutions (i.e., individuals) in each iteration (i.e., generation). By combining some 
individuals of the current population according to predefined operations, a new population 
that contains better individuals is produced as the next generation. The first step of GA is to 
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create randomly an initial population of Npop solutions in the feasible region. GA works on 
this population and combines (crossover) and modifies (mutation) some chromosomes 
according to specified genetic operations, to generate a new population with better 
characteristics. Individuals for reproduction are selected based on their objective function 
values and the Darwinian principle of the survival of the fittest (Holland, 1975). Genetic 
operators are used to create new individuals for the next population from those selected 
individuals of the current population, and they serve as searching mechanisms in GA. In 
particular, crossover forms two new individuals by first choosing two individuals from the 
mating pool (containing the selected individuals) and then swapping different parts of 
genetic information between them. This combining (crossover) operation takes place with a 
user-defined crossover probability (Pcros) so that some parents remain unchanged even if 
they are chosen for reproduction. Mutation is a unary operator that creates a new solution 
by a random change in an individual. It provides a guarantee that the probability of 
searching any given string will never be zero and acting as a safety net to recover good 
genetic material which may be lost through the action of selection and crossover. The 
mutation procedure proceeds with a probability Pmut. Selection, crossover and mutation 
procedures are recursively used to improve the population and to identify promising areas 
for optimization. This algorithm terminates when the user-specified criterion is satisfied. 
Usually, GA stops after evolving for the specified number of generations (Genmax). The GA 
subroutine used in this study is from the OptimToolbox of MATLAB®. Details about the GA 
strategy and applications can be found in Holland (1975) and Figure 5 provides the 
corresponding general flowchart of GA. 

2.3 Harmony Search 
Harmony Search (HS) was first developed by Geem et al. (2001). This relatively new 
heuristic optimization algorithm has been applied to solve many optimization problems, 
e.g.: benchmark optimization problems, water distribution network, groundwater modeling, 
energy-saving dispatch, among others. HS is a music-based metaheuristic optimization 
algorithm and is inspired by the observation that the aim of music is to search for a perfect 
state of harmony (Geem, 2009). This harmony in music is analogous to find the optimal 
solution in an optimization process.  
Like genetic algorithms and particle swarm optimization, harmony search is not a gradient-
based search, so it avoids most of the pitfalls of any gradient-based search algorithms. Thus, 
it has fewer mathematical requirements and, subsequently, can be used to deal with 
complex objective functions with continuous or discontinuous and linear or nonlinear 
constraints. On the other hand, harmony search could be potentially more efficient than 
genetic algorithms because harmony search does not use binary encoding and decoding, but 
it has multiple solution vectors. Therefore, HS can be faster during each iteration and its 
implementation is also easier.  
HS can be explained in more detail with the aid of the discussion of the improvisation 
process by a musician. When a musician is improvising, he or she has three possible choices: 
(1) play any piece of music (a series of pitches in harmony) exactly from his or her memory; 
(2) play something similar to a known piece (thus adjusting the pitch slightly); or (3) 
compose new or random notes. If we formalize these three options for optimization, we 
have three corresponding components: usage of harmony memory, pitch adjusting, and 
randomization. 
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Fig. 5. Flowchart of Genetic Algorithm stochastic optimization method.  

The use of harmony memory is important in HS as it is similar to choose the best fit 
individuals in the genetic algorithms. This will ensure that the best harmonies will be 
carried over to the new harmony memory. In order to use this memory more effectively, we 
can assign a parameter raccept ∈ [0,1], called harmony memory accepting or considering rate. 
If this rate is too low, only few best harmonies are selected and it may converge too slowly. 
If this rate is extremely high (i.e., near to 1), almost all the harmonies are used in the 
harmony memory, then other harmonies are not explored well, leading to potential local 
solutions. Therefore, typically, raccept = 0.7~0.95 is used in the context of global optimization 
(Yang, 2008). 
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Fig. 6. Flowchart of Harmony Search stochastic optimization method. 

Several authors also recommend to adjust the pitch slightly in the second component. In 
theory, the pitch can be adjusted linearly or non-linearly, but in practice, linear adjustment is 
used. So, we have 

 lim *new lower it rangex x x rand= ±  (2) 

where xrange=xupper limit - xlower limit and rand is a random number generator in the range of 0 a 1. 
Pitch adjustment is similar to the mutation operator in genetic algorithms. We can assign a 
pitch-adjusting rate (rpa) to control the degree of the adjustment. For example, if rpa is too 
low, then there is rarely any change. If it is too high, the algorithm may not converge at all. 
Thus, it is usually recommended to use rpa=0.1~0.5. In this work, raccept=0.8 and rpa=0.4 have 
been used. 
The third component is the randomization, which is used to increase the diversity of the 
solutions. Although adjusting pitch has a similar role, but it is limited to certain local pitch 
adjustment and thus corresponds to a local search. The use of randomization can drive the 
system further to explore various diverse solutions so as to find the global optimum. The 
three components in harmony search can be summarized in the flowchart shown in Figure 
6. Note that the probability of randomization is prandom=1-paccept, and the actual probability of 
pitch-adjusting is ppitch=raccept*rpa. We have used a HS subroutine implemented in MATLAB®.  
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3. Optimization strategy 
In order to optimize the complex distillation sequences described in the introduction, we 
used SA, GA and HS coupled to Aspen ONE Aspen Plus. Specifically, for process design of 
complex separation schemes, the optimization of heat duty of the column is the 
optimization target. This design problem is a challenging global optimization problem with 
continuous and discontinuous decision variables. The formulation of optimization problems 
for the design of separation schemes is given below. 
For the multicomponent distillation column used in the hydrodesulfurization (HDS) 
process, the optimization of the heat duty of the column can be stated as 
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where R is the reflux ratio, P0 is the column pressure, TF is the feed temperature, NF is the 
number of the feed stage and NT is the number of stages of column. Note that ym and xm are 
vectors of obtained and required purities for the m components, respectively.  
In the thermally coupled reactive distillation (TCRDS-SS), the global optimization problem 
for the minimization of the heat duty of the sequence is defined as  
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where R is the reflux ratio, P0 is the main column pressure, FD and FS are the distillate and 
side fluxes, FL and NFL are the value and location of the interconnection flow, NF1 and NF2 
are the number of the feed stages, NFV is the stream vapor tray location, N0Re and NfRe are 
the first and last reaction tray location, NT1 and NT2 are the number of stages of the main 
column and stripper, ym and xm are vectors of obtained and required purities for the m 
components, respectively.  
In DWC, the global optimization problem is given by  
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where R is the reflux ratio, P0 is the main column pressure, FD is the distillate flux, FS1 and FS2 
are the side fluxes, FL1 and FV2 are the values of liquid and vapor interconnection flows, NF is 
the feed stage, NP0 and Np are the first and last prefractioner tray location, NS1 and NS2 are the 
side stream tray location, ym and xm are vectors of obtained and required purities for the m 
components, respectively. In summary, these global optimization problems have been used for 
comparing the performance of SA, GA and HS in the design of complex distillation sequences. 

4. Case of study 
To compare the performance of stochastic optimization methods, we have analyzed three 
case studies. First, we analyze the design of the multicomponent distillation column used in 
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the hydrodesulfurization (HDS) process. The feed composition is showed in the Table 1. 
Note that this composition of the diesel is reported by Viveros-García et al. (2005). The 
design objective is to obtain in the top of the column thiophene and benzothiophene with 
2.13% and 1.29% in mole composition, respectively, and in the bottom dibenzothiophene 
and 4,6-dimethyldebenzothiphene with 16.0% and 3.2% mole composition, respectively.  For 
this class of systems, thermodynamic model such as Peng-Robinson EoS can be used to 
calculate the vapor-liquid equilibrium. 
Then, we analyze the design of a TCRDS-SS to obtain biodiesel (i.e., the esterification of 
methanol and lauric acid). The systems include two feed streams; the first is lauric acid with 
a flow of 45.4 kmol/h as saturated liquid at 1.5 bar, and the second is methanol with a flow 
of 54.48 kmol/h as saturated vapor at 1.5 bar.  
 

Component Mole Fraction 
Thiophene 0.008 

Benzothiophene 0.008 
n-Undecane 0.489 
n-Dodecane 0.316 
n-Tridecane 0.008 

n-Tetradecane 0.001 
n-Hexadecane 0.05 

Dibenzothiophene 0.1 
4,6-dimethyldibenzothiophene 0.02 

Table 1. Feed composition in distillation column of the HDS process used as case of study. 

The design objective is a process for high-purity fatty ester, over 99.9% mass fraction, which 
is suitable for biodiesel application. It is important to highlight that this equilibrium reaction 
is usually catalyzed using sulfuric acid or p-toluensulfonic acid. The kinetic model (see 
Table 2) reported in Steinigeweg & Gmehling (2003) was used. For this class of reactive 
systems, thermodynamic model such as UNIFAC can be used to calculate the vapor-liquid 
or vapor-liquid-liquid equilibrium. 
 

 Kinetic parameters 
Reaction Ki (mol/g s) EA,i (kJ/mol) 

Esterification 9.1164 x 105 68.71 
Hydrolysis 1.4998 x 104 64.66 

Table 2. Kinetic parameters for the pseudo-homogeneous kinetic model of the esterification 
reaction. 

Finally, we have studied the design of a DWC for purification of a mixture of alcohols: n-
butanol, 1-pentanol, 1-hexanol, and 1-heptanol. The feed flowrate is 100 kmol/h and the 
feed is introduced in the column as saturated liquid. The composition in the feed flowrate is 
40, 10, 10, 40 in mole percent. The design objective is to obtain each alcohol with high purity 
(98.6, 98, 98, 98.5 in mole composition percent). For this class of systems, thermodynamic 
model such as NRTL can be used to calculate the vapor-liquid equilibrium. 
Both the tuning process parameters for each one and boundary variables searched were 
tuned using several short tests for improve the efficiency in the methods. Table 3 shows the 
limits of the search variables that have been established. The parameter tuning and search  
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Schemes Boundaries 
HDS R=[0.1 10] 

P0=[1 10] atm 
TF=[298 478] K 
NF=[2 99] 
NT=[3 100] 

TCRDS-SS R=[10 20] 
P0=[1 5] atm 
FD=[8.89 9.53] kmol/h 
FS=[44.90 45.81] kmol/h 
FL=[49.89 56.70] kmol/h 
NF1=[2 98] 
NF2=[3 99] 
N0Re=[2 99] 
NfRe=[3 100] 
NFL=[6 98] 
NFV=[7 99] 
NT1=[5 100] 
NT2=[2 50] 

DWC R=[55 75] 
P0=[1 5 ] atm 
FD=[39 41] kmol/h 
FS1=[9 10] kmol/h 
FS2=[9 10] kmol/h 
FL1=[100 300] kmol/h 
FV2=[200 600] kmol/h 
NF= [26 147] 
NP0=[21 144] 
NP=[25 148] 
NS1=[33 146] 
NS2=[34 147] 
NT=[30 150] 

Table 3. Values of boundary limits. 

limits improve the convergence of stochastic methods. Our study established an initial 
temperature of 100 and linear temperature profile during the cooling stage for SA. We use 
default values for the parameters of the genetic algorithm as proposed in the Toolbox of 
MatLab. To improve the solution, we used populations with 100 individual in each iteration. 
We have used a harmony memory of 10 individuals (see Table 4).  

5. Results 
Table 5 shows the results obtained for the design of complex distillation sequences using 
stochastic optimization methods and different values of function evaluations (NFE). 
Specifically, in Table 5 we report the average and standard deviation of the heat duty of 
each sequence. For all stochastic methods, the mean value of objective function (i.e., heat 
duty) decreased as the NFE increased and, as expected, the performance of stochastic  
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Stochastic 
Method GA HS SA 

Parameters 

Population size: 100 
Fitness scaling: Rank 
Selection: Stochastic 
uniform 
Crossover: Scattered 
Crossover fraction= 0.8
Mutation: Uniform 

Harmony memory= 10 
harmony accepting =0.8 
Pitch adjusting =0.4 

Annealing function: 
Boltzman 
Reannealing interval= 
100 
Temperature update: 
linear 
Initial temperature= 100 

Table 4. Values of parameters used in stochastic methods 
    

  Mean heat duty of the sequence ± standard deviation (kW) 
Scheme NFE GA HS SA 

1,000 884.98±118.59 845.69 ± 56.39 793.67±55.13 HDS 
10,000 750.83±14.20 746.43±24.01 739.86 ±13.38 
10,000 1,981.28±128.90 1,916.42±79.39 1,851.71±77.38 TCRDS-SS 
20,000 1,702.37±85.79 1,691.83±37.27 1,641.95±66.32 
10,000 31,311.01±867.72 26,887.38±9,010.13   28,852.35±1,080.74   DWC 
20,000 29,284.32±1,561.35 24,735.58±8,277.29  27,194.80±1,134.84 

Table 5. Mean and standard deviation of heat duty of distillation sequences using stochastic 
optimization methods 

methods increases as NFE increases. Note that SA outperformed the HS and GA in solving 
global optimization for the design of HSD and TCRDS-SS, while HS is better in the design of 
DWC, see results reported in Table 5. Overall, GA showed the worst solutions for the design 
of all distillation sequences. 
On the other hand, Table 6 shows that the design parameters (e.g., pressure, reflux ratio, 
number of stages) are consistent with the design heuristics applied for this type of 
distillation sequence. In other words, the optimum designs obtained by using these 
optimization techniques, for complex distillation columns, are likely to be implemented at 
industrial level. In general, the results show that for the optimization of this type of complex 
distillation columns, SA is the best alternative. The CPU time needed to solve distillation 
systems using Aspen ONE Aspen Plus are 10800 seconds for 1000 NFE in multicomponent 
distillation process, and 345000 seconds for 20000 NFE in thermally coupled reactive 
distillation in a 2.5 GHz Intel (R) Core (TM)2 Quad computer. In particular, significant CPU 
time is expended on finding feasible points from random initial estimates and the 
convergence time of the simulator Aspen ONE Aspen Plus for each calculation in the 
function evaluated. In general, the CPU time of SA is faster than GA and HS in design 
problems of complex distillation sequences. 

6. Conclusion 
In this study, the performance of SA, GA, and HS has been tested and compared in the 
design of complex distillation columns. To our knowledge, reports on a comparative study 
about the use of these methods in complex distillation scheme optimization have not been 
reported. The performance of the stochastic optimization methods tested varies significantly  
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Schemes Boundaries 
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 Design variables 
Schemes GA HS SA 

HDS R=2.29 
P0=2.29atm 
TF=478K 
NF=60 
NT=67 
QT=752.52kW 

R=2.29 
P0=1.00atm 
TF=478K 
NF=87 
NT=93 
QT=725.02kW 

R=2.29 
P0=1.00atm 
TF=477.84K 
NF=88 
NT=94 
QT=727.06kW 

TCRDS-SS R=21.24 
P0=3.78atm 
FD=9.39kmol/h 
FS=45.32kmol/h 
FL=50.05kmol/h 
NF1=5 
NF2=45 
N0Re=48 
NfRe=50 
NFL=20 
NFV=20 
NT1=50 
NT2=22 
QT=1,583.84kW 

R=15.00 
P0=1.31atm 
FD=8.48kmol/h 
FS=45.80kmol/h 
FL=56.42kmol/h 
NF1=31 
NF2=47 
N0Re=34 
NfRe=47 
NFL=30 
NFV=22 
NT1=47 
NT2=19 
QT=1,645.27kW 

R=12.02 
P0=1.08atm 
FD=8.89kmol/h 
FS=45.39kmol/h 
FL=56.31kmol/h 
NF1=34 
NF2=74 
N0Re=4 
NfRe=83 
NFL=10 
NFV=37 
NT1=94 
NT2=20 
QT=1,531.25kW 

DWC R=61.39 
P0=3.77atm 
FD=40.16kmol/h 
FS1=9.89kmol/h 
FS2=10.00kmol/h 
FL1=225.39kmol/h 
FV2=306.02kmol/h 
NF=43 
NP0=24 
NP=135 
NS1=28 
NS2=31 
NT=141 
QT=25,999.58kW 

R=56.88 
P0=3.68atm 
FD=39.93kmol/h 
FS1=9.96kmol/h 
FS2=9.94kmol/h 
FL1=145.73kmol/h 
FV2=246.73kmol/h 
NF=44 
NP0=35 
NP=95 
NS1=59 
NS2=70 
NT=119 
QT=24,658.87kW 

R=56.40 
P0=3.14atm 
FD=39.87kmol/h 
FS1=9.98kmol/h 
FS2=9.95kmol/h 
FL1=240.48kmol/h 
FV2=258.37kmol/h 
NF=62 
NP0=27 
NP=101 
NS1=44 
NS2=63 
NT=105 
QT=24,338.40kW 

Table 6. Best scheme identified in the design of complex distillation sequences using 
stochastic optimization methods.  

between different problems and is dependent on the problem dimensionality and difficulty. 
Our results show that SA is a good alternative and offers comparable or better performance 
than HS and GA methods for this application. In summary, results of this study show the 
potential of stochastic global optimization methods for solving global optimization 
problems involved in the design of distillation processes. 

7. Notation 
This notation corresponds to the optimized parameters for the schemes described in this 
chapter (see Figures 1 to 3). 
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B= bottom stream 
D= distillate stream  
FD, FS1, FS2= distillate and side (1 and 2) fluxes.  
FL=  flux liquid 
FL1, FL2= liquid interconnection stream 
FV=flux vapor 
FV1, FV2= vapor interconnection stream 
N0Re= first reaction tray location 
NF, NF1 , NF2 =feed tray location 
NFL=stream liquid tray location 
NfRe=last reaction tray location 
NFV=stream vapor tray location 
NP=last prefractioner tray location 
NP0=first prefractioner tray location 
NS1,NS2= sidestream tray location 
NT, NT1 , NT2 = total trays 
P0= dome pressure (first stage) 
R= reflux ratio 
S1, S2= sides streams 
TF= feed temperature 
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1. Introduction     
In recent years, a significant work has been performed in the area of software development 
for solving global optimization problems in science and engineering applications (Floudas et 
al., 1999). In particular, global optimization has and continues to play a major role in the 
design, operation, scheduling and managing of chemical industrial processes and, according 
to several authors; it will remain as a major challenge for future research efforts (Floudas et 
al., 1999; Biegler & Grossmann, 2004; Grossmann & Biegler, 2004; Rangaiah, 2010). In the 
context of chemical engineering, several algorithmic and computational contributions of 
global optimization have been used for process optimization. As expected, finding the 
global optimum is more challenging than finding a local optimum and, in some applications 
such as the phase equilibrium modeling, the location of this global optimum is crucial 
because it corresponds to the correct and desirable solution (Floudas et al., 1999; Teh & 
Rangaiah, 2002; Wakeham & Stateva, 2004; Rangaiah, 2010).  
Specifically, the modeling of phase equilibrium in multicomponent systems is essential in 
the design, operation, optimization and control of separation schemes. The phase behavior 
of multicomponent systems has a significant impact in several issues of process design 
including the determination of the equipment and energy costs of separation and 
purification strategies (Wakeham & Stateva, 2004). Note that phase equilibrium calculations 
(PEC) are usually executed thousands of times in process simulators and, as a consequence, 
these calculations must be performed, reliably and efficiently, to avoid design uncertainties 
and erroneous conclusions about process performance. However, literature indicates that 
the development of reliable methods for PEC has long been a challenge and is still a research 
topic of continual interest in the chemical engineering community (Teh & Rangaiah, 2002; 
Wakeham & Stateva, 2004).  
Basically, PEC involve two main problems: a) phase stability analysis is used to determine if 
a tested system under specified operating conditions is stable or not, and b) phase split 
calculations are performed to establish the number and identity (i.e., composition and type) 
of phases existing at the equilibrium (Wakeham & Stateva, 2004). These thermodynamic 
calculations can be formulated as global optimization problems where the tangent plane 
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1. Introduction     
In recent years, a significant work has been performed in the area of software development 
for solving global optimization problems in science and engineering applications (Floudas et 
al., 1999). In particular, global optimization has and continues to play a major role in the 
design, operation, scheduling and managing of chemical industrial processes and, according 
to several authors; it will remain as a major challenge for future research efforts (Floudas et 
al., 1999; Biegler & Grossmann, 2004; Grossmann & Biegler, 2004; Rangaiah, 2010). In the 
context of chemical engineering, several algorithmic and computational contributions of 
global optimization have been used for process optimization. As expected, finding the 
global optimum is more challenging than finding a local optimum and, in some applications 
such as the phase equilibrium modeling, the location of this global optimum is crucial 
because it corresponds to the correct and desirable solution (Floudas et al., 1999; Teh & 
Rangaiah, 2002; Wakeham & Stateva, 2004; Rangaiah, 2010).  
Specifically, the modeling of phase equilibrium in multicomponent systems is essential in 
the design, operation, optimization and control of separation schemes. The phase behavior 
of multicomponent systems has a significant impact in several issues of process design 
including the determination of the equipment and energy costs of separation and 
purification strategies (Wakeham & Stateva, 2004). Note that phase equilibrium calculations 
(PEC) are usually executed thousands of times in process simulators and, as a consequence, 
these calculations must be performed, reliably and efficiently, to avoid design uncertainties 
and erroneous conclusions about process performance. However, literature indicates that 
the development of reliable methods for PEC has long been a challenge and is still a research 
topic of continual interest in the chemical engineering community (Teh & Rangaiah, 2002; 
Wakeham & Stateva, 2004).  
Basically, PEC involve two main problems: a) phase stability analysis is used to determine if 
a tested system under specified operating conditions is stable or not, and b) phase split 
calculations are performed to establish the number and identity (i.e., composition and type) 
of phases existing at the equilibrium (Wakeham & Stateva, 2004). These thermodynamic 
calculations can be formulated as global optimization problems where the tangent plane 
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distance function (TPDF) is used as optimization criterion for stability analysis and the 
Gibbs free energy function (G) is minimized for phase split computations. Formally, both 
optimization problems can be stated as follows: minimize f(u) subject to u∈Ω where u is a 
continuous variable vector with domain Ω∈ℜn, and f(u):Ω ⇒ ℜ is a real-valued function. 
The major challenge of solving global optimization problems for phase equilibrium 
modeling is that both f(u) = TPDF and G are generally non-convex, highly non-linear with 
many decision variables, and often have unfavourable attributes such as discontinuity and 
non-differentiability. In fact, these objective functions may have several local optimums 
including trivial and nonphysical solutions especially for multicomponent and multiphase 
systems. Therefore, traditional optimization methods are not suitable for solving phase 
equilibrium problems under these conditions (Teh & Rangaiah, 2002; Wakeham & Stateva, 
2004).   
In view of the above, there has been a significant and increasing interest in the development 
of deterministic and stochastic global optimization strategies for reliably performing PEC 
(Wakeham & Stateva, 2004). For example, global optimization studies using deterministic 
strategies have been focused on the application of homotopy continuation methods (Sun & 
Seider, 1995; Jalali et al., 2008), branch and bound global optimization (McDonald & 
Floudas, 1996; Harding & Floudas, 2000), and interval mathematics (Hua et al., 1998; Xu et 
al., 2005). Although deterministic methods have proven to be promising, several of them are 
model dependent, may require problem reformulations or significant computational time 
especially for multicomponent systems (Nichita et al., 2002a; 2002b). On the other hand, 
stochastic optimization techniques have often been found to be as reliable and effective as 
deterministic methods but may offer advantages for PEC. These methods are robust 
numerical tools that present a reasonable computational effort in the optimization of 
multivariable functions (generally less time than deterministic approaches); they are 
applicable to ill-structure or unknown structure problems, require only calculations of the 
objective function and can be used with all thermodynamic models (Henderson et al., 2001). 
The study of stochastic optimization methods for PEC has become an active research area in 
the field of chemical engineering because various problems that are very challenging to 
solve by conventional techniques can be solved by meta-heuristics. To date, a number of 
stochastic global optimization methods have been studied and tested for PEC in non-
reactive mixtures. These methods include: the Random Search method (Lee et al., 1999), 
Simulated Annealing (Zhu & Xu, 1999; Zhu et al., 2000; Henderson et al., 2001; Rangaiah, 
2001; Bonilla-Petriciolet et al., 2006), Genetic Algorithms (Rangaiah, 2001; Teh & Rangaiah, 
2003), Tabu Search (Teh & Rangaiah, 2003; Srinivas & Rangaiah, 2007a), Tunnelling method 
(Nichita et al., 2002a; 2002b; Srinivas & Rangaiah, 2006), Clustering method with stochastic 
sampling (Balogh et al., 2003), Differential Evolution (Srinivas & Rangaiah, 2007a; 2007b), 
and Particle Swarm Optimization (Rahman et al., 2009; Bonilla-Petriciolet & Segovia-
Hernández, 2010). These meta-heuristics usually show a robust performance in PEC but, in 
some difficult problems, they may fail to locate the global optimum. Thus, alternative 
optimization strategies should be studied to identify a better approach for solving phase 
equilibrium problems. 
In particular, Harmony Search (HS) is a novel meta-heuristic algorithm, which has been 
conceptualized using the musical process of searching for a perfect state of harmony (Geem 
et al., 2001). This optimization method is based on the analogy with music improvisation 
process where music players improvise the pitches of their instruments to obtain a better 
harmony. In the optimization context, each musician is replaced with a decision variable, 
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and the possible notes in the musical instruments correspond to the possible values for the 
decision variables. So, the harmony in music is analogous to the vector of decision variables, 
and the musician’s improvisations are analogous to local and global search schemes in 
optimization techniques (Lee & Geem, 2005). This novel optimization method is simpler, 
both in formulation and computer implementation, than other stochastic optimization 
methods such as Genetic Algorithms or Particle Swarm Optimization (Lee & Geem, 2005). 
Until now, HS has been successfully applied to solve various engineering and optimization 
problems such as water network design, vehicle routing, soil stability analysis, heat 
exchanger design, and transportation energy modeling (Lee & Geem, 2005; Geem, 2009). In 
the field of chemical engineering, there are few studies concerning the application of this 
stochastic method and, to the best of our knowledge, the performance of HS for PEC in non-
reactive systems has not yet been reported.  
This chapter introduces the application of HS-based algorithms to solve phase stability and 
equilibrium problems in multicomponent non-reactive systems. Particularly, the 
performance and capabilities of HS in the modeling of phase equilibrium is studied and 
discussed. The remainder of this chapter is organized as follows. In Section 2, we briefly 
introduce HS and the common approaches for its modification or adaptation. The 
formulation of global optimization problems for phase equilibrium modeling (i.e., phase 
stability and phase split calculations) is presented in Section 3. Results of PEC using HS-
based algorithms are reported in Section 4. Finally, in Section 5, we provide some remarks 
and conclusions about the application of HS for PEC in non-reactive systems.  

2. Harmony Search optimization method 
Harmony Search is a music-inspired meta-heuristic algorithm, which has been introduced 
by Geem et al. (2001). This stochastic optimization method is based on the underlying 
principles of the musician improvisation of the harmony. Specifically, when musicians 
improvise they may perform the following steps: playing an existing score from memory, 
performing variations on an existing piece, or creating an entirely new composition. In the 
optimization context, HS combines heuristic rules and randomness to imitate this music 
improvisation process. A comprehensive explanation of HS is provided by Geem et al. 
(2001) and a flow chart describing its principal stages is given in Figure 1.  
In summary, HS involves the following parameters: the harmony memory size (HMS), the 
harmony memory considering rate (HMCR), the pitch adjusting rate (PAR), the bandwidth 
or step size for variable perturbation during pitch adjustment (bw), and the number of 
improvisations (NI). The harmony memory is a memory location where a set of solution 
vectors for decision variables is stored. The parameters HMCR and PAR are used to 
improve the solution vector and to increase the diversity of the search process (Geem et al., 
2001; Lee & Geem, 2005). In HS, a new harmony (i.e., a new solution vector) is generated 
using these parameters and the following procedures: a) memory consideration, b) pitch 
adjustment, and c) random selection. To illustrate the concepts of HS, consider the following 
unconstrained global optimization problem: minimize f(u) such that lbi ≤ ui ≤ ubi where u is a 
solution vector of nopt continuous decision variables with lower (lbi) and upper (ubi) bounds 
for each decision variable (i.e., ui). To solve this optimization problem, HS performs the 
following steps (Geem et al., 2001; Omran & Mahdavi, 2008): 
1. Initialize a harmony memory. First, the parameters of HS (e.g., HMS, HMCR, PAR, bw) are 

defined and the harmony memory is initialized. This harmony memory preserves the 
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and the possible notes in the musical instruments correspond to the possible values for the 
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stochastic method and, to the best of our knowledge, the performance of HS for PEC in non-
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discussed. The remainder of this chapter is organized as follows. In Section 2, we briefly 
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history of optimization sequence and is useful to identify promising areas for global 
optimization because good harmonies can be considered as elements of new solution 
vectors. Usually, the initial values of harmony memory are generated from a uniform 
distribution in the bounds of decision variables: ui = lbi + rand (ubi – lbi) where  
rand ∈(0, 1) is a random number.   

2. Improvise a new harmony. As stated, a new harmony vector (vi) is obtained using the 
following stages: memory consideration, pitch adjustment and random selection. These 
stages can be summarized using the following pseudo-code (Omran & Mahdavi, 2008): 

 

     for i = 1 to nopt do 
                  if rand∈(0, 1) ≤ HMCR then perform memory consideration 
                    begin 
                    vi = uij  where  j∈(1,…,HMS) 
                    if rand∈(0, 1) ≤ PAR then perform pitch adjustment 
                       begin 
                       vi = vi + (0.5 – rand)· bwi  where bwi is the bandwidth (i.e., step size) 
                    end if 
                  else perform random selection 
                    vi = lbi + rand (ubi – lbi) 
                  end if 
           end for 

 

These stochastic operators are used to perform both diversification and intensification 
stages in HS. The diversification is controlled by the pitch adjustment and random 
selection operators, while memory consideration is generally associated to the 
intensification. In particular, HMCR is used to determine the degree of contribution of 
harmony memory (i.e., promising solutions) during random search. On the other hand, 
PAR and bw are used to control the additional random perturbation of decision 
variables when memory consideration is applied. In addition, the random selection is 
useful to explore different regions of objective function and also contributes to increase 
the diversity of solution vectors. Note that the proper combination of these operators is 
important to favor the performance of HS in global optimization. The generation of a 
new harmony (i.e., new solution vector) is called improvisation.    

3. Update harmony memory. In this stage, a new harmony (v) replaces the worst harmony in 
harmony memory only if its value of objective function is lower than that of the worst 
harmony. The decision vectors stored in harmony memory are useful to exploit the 
history and experience of the search process, being an intensification mechanism of HS 
method.  

4. Check the stopping condition. This iterative procedure is repeated until satisfying a proper 
convergence criterion. Similar to other stochastic methods, the choice of stopping 
condition can significantly affect the performance of HS. In the literature, the stopping 
criterions commonly used in HS are based on the number of function evaluations (NFE) 
or improvisations (NI). The best solution found by HS, which is stored in harmony 
memory, is expected to be a near global optimum solution.   

It is convenient to remark that a boundary violation check must be implemented, principally 
during pitch adjustment, to verify the feasibility of v; if v is infeasible, a new harmony is 
randomly generated inside lower and upper bounds of decision variables. A local 
optimization technique can be used at the end of global search for efficiently improving the 
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accuracy of the best solution obtained by HS. Note that stochastic optimization methods 
may require a significant computational effort to improve the accuracy of global solution 
because they explore the search space of decision variables by creating random movements 
instead of determining a logical optimization trajectory. Thus, this additional intensification 
step is required for rapid convergence in the final stage of HS.  
 

Define parameters of 
Harmony Search

Initialize harmony memory

Improvise a new harmony

Add new harmony 
to harmony memory? Update harmony memory

Yes

Termination criteria 
satisfied?

No

No

Local optimization

Yes

 
Fig. 1. Flowchart of Harmony Search (HS) stochastic optimization method 

As indicated, the parameters HMS, HMCR, PAR and bw are important to determine the 
performance (i.e., reliability and efficiency) of HS in global optimization. For example, some 
authors have suggested that small values of HMS may lead to the HS to be trapped in local 
solutions (Mahdavi et al., 2007). However, increasing HMS generally provides better solution 
vectors but at the expense of more function evaluations. Therefore, the fine tuning of these 
parameters is very crucial for solving global optimization problems (Mahdavi et al., 2007; 
Omran & Mahdavi, 2008). Traditionally, fixed values for HS parameters, which can not be 
changed during new improvisations, are used in global optimization (Geem et al., 2001; Geem, 
2009). So, this standard version of HS algorithm is referred as HSC in this chapter. 
In the literature, some modifications have been proposed to improve the convergence 
performance of the original HS. According to Geem (2009), the variations proposed for HS 
may involve: a) mechanisms for the proper initialization of HS parameters, b) mechanisms 
for the dynamic adaptation of HS parameters during optimization sequence, and c) the 
application of new or modified HS operators, which includes hybrid methods using other 
meta-heuristics such as Simulated Annealing or Differential Evolution. Below, two typical 
variants of HS are briefly discussed, which has been used in the present study. 
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authors have suggested that small values of HMS may lead to the HS to be trapped in local 
solutions (Mahdavi et al., 2007). However, increasing HMS generally provides better solution 
vectors but at the expense of more function evaluations. Therefore, the fine tuning of these 
parameters is very crucial for solving global optimization problems (Mahdavi et al., 2007; 
Omran & Mahdavi, 2008). Traditionally, fixed values for HS parameters, which can not be 
changed during new improvisations, are used in global optimization (Geem et al., 2001; Geem, 
2009). So, this standard version of HS algorithm is referred as HSC in this chapter. 
In the literature, some modifications have been proposed to improve the convergence 
performance of the original HS. According to Geem (2009), the variations proposed for HS 
may involve: a) mechanisms for the proper initialization of HS parameters, b) mechanisms 
for the dynamic adaptation of HS parameters during optimization sequence, and c) the 
application of new or modified HS operators, which includes hybrid methods using other 
meta-heuristics such as Simulated Annealing or Differential Evolution. Below, two typical 
variants of HS are briefly discussed, which has been used in the present study. 
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Particularly, the dynamic adaptation of HS parameters is the most common approach to 
overcome the drawbacks of original HS. Results reported by Mahdavi et al. (2007) indicated 
that small PAR values with large bw values may affect the performance of HS and increase 
the calculations needed to find the global optimum. Although, small bw values in final 
iterations (i.e., improvisations) increase the fine-tuning of solution vectors but, in early 
iterations, bw should take a bigger value to diversify the solution vectors. Furthermore, large 
PAR values with small bw values may cause the improvement of best solutions in final 
improvisations. Based on this fact, Mahdavi et al. (2007) introduced the Improved Harmony 
Search (IHS), which uses dynamic values of both parameters PAR and bw. Specifically, PAR 
dynamically changes with improvisation number as follow 

 k
NI

PARPARPARPARk *)( minmax
min1

−
+=+  (1) 

where PARmin and PARmax are the minimum and maximum pitch adjusting rates, and k is an 
improvisation counter. On the other hand, the bandwidth for each improvisation is given by 

 ( ))/ln()/(exp maxminmax1 bwbwNIkbwbwk =+  (2) 

being bwmin and bwmax the minimum and maximum values for bandwidth, respectively. Note 
that PARmin, PARmax, bwmin and bwmax are defined by the user and are problem dependent. 
Mahdavi et al. (2007) showed that this variant of HS has proven to be competitive with 
respect to other HS algorithms for solving benchmark and some engineering optimization 
problems. Therefore, we have considered IHS for solving global optimization problems in 
phase equilibrium modeling.  
Recently, Omran & Mahdavi (2008) proposed an alternative version of HS called Global-Best 
Harmony Search (GHS), which is inspired by the concept of swarm intelligence used in 
Particle Swarm Optimization. This method modifies the pitch-adjustment step of HS to 
encourage that a new harmony can mimic the best harmony stored in the harmony memory. 
Results reported for several benchmark optimization problems showed that GHS may offer 
a better performance than those reported for HSC and IHS (Omran & Mahdavi, 2008). In 
general, GHS has the same structure as IHS with the exception of pitch adjustment step used 
in the improvisation of a new harmony. Specifically, the pseudo-code to improvise a new 
harmony in GHS is defined as follows (Omran & Mahdavi, 2008): 
 

           for i = 1 to nopt do 
                  if rand∈(0, 1) ≤ HMCR then perform memory consideration 
                    begin 
                    vi = uij  where  j∈(1,…,HMS) 
                    if rand∈(0, 1) ≤ PAR then perform pitch adjustment 
                       begin 
                       vi = ui,best where best is the index of the best harmony in the harmony memory 
                    end if 
                  else perform random selection 
                    vi = lbi + rand (ubi – lbi) 
                  end if 
           end for 
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With respect to the parameters of GHS, Omran & Mahdavi (2008) have suggested that using 
a constant value of PAR improves its performance and this scheme is even better than GHS 
using a dynamical value of PAR. So, this approach has been adopted in the present study 
for GHS.  
Although these modern optimization methods have been successfully applied in different 
science and engineering fields, their capabilities have not yet been studied in the modeling 
of phase equilibrium. Therefore, these HS-based optimization methods have been used in 
this study for performing PEC in non-reactive systems. All methods have been implemented 
in Fortran subroutines that can be applied for solving global optimization problems with 
continuous variables. These codes are available to interested readers upon request to the 
corresponding author. Finally, with respect to the stopping condition, the following criteria 
can be applied for global optimization using HS: 1) a maximum number of successive 
improvisations (SNImax) without improvement in the best function value, or 2) a maximum 
number of improvisations (NI). Both criteria have been applied in this study and 
implemented for all HS algorithms.  

3. Formulation of global optimization problems for phase stability and 
equilibrium calculations in non-reactive systems 
3.1 Phase stability 
Phase stability analysis is a fundamental stage in PEC and allows identification of the 
thermodynamic state that corresponds to the global minimum of Gibbs free energy 
(Michelsen, 1982; Wakeham & Stateva, 2004). A mixture at a fixed temperature T, pressure P 
and overall composition z is stable if and only if the Gibbs free energy surface is at no point 
below the tangent plane to the surface at the given mixture composition (Michelsen, 1982). 
This statement is a necessary and sufficient condition for global phase stability. As 
mentioned in the introduction, this stability analysis can be performed using the Tangent 
Plane Distance Function (TPDF). This function is geometrically defined as the distance 
between the Gibbs free energy surface at a trial composition y and the tangent plane 
constructed to this surface at composition z. Properly, phase stability of a non-reactive 
systems with c components and a global composition z(z1,…,zc) in mole fraction units, at 
constant P and T, is analyzed by the global minimization of TPDF (Michelsen, 1982) 
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where yiμ  and ziμ  are the chemical potentials of component i calculated at compositions y 
and z, respectively. To perform a stability analysis, TPDF must be globally minimized with 
respect to composition of a trial phase y, which is subject to an equality constraint. This 
constrained global optimization problem can be written as 
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Particularly, the dynamic adaptation of HS parameters is the most common approach to 
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With respect to the parameters of GHS, Omran & Mahdavi (2008) have suggested that using 
a constant value of PAR improves its performance and this scheme is even better than GHS 
using a dynamical value of PAR. So, this approach has been adopted in the present study 
for GHS.  
Although these modern optimization methods have been successfully applied in different 
science and engineering fields, their capabilities have not yet been studied in the modeling 
of phase equilibrium. Therefore, these HS-based optimization methods have been used in 
this study for performing PEC in non-reactive systems. All methods have been implemented 
in Fortran subroutines that can be applied for solving global optimization problems with 
continuous variables. These codes are available to interested readers upon request to the 
corresponding author. Finally, with respect to the stopping condition, the following criteria 
can be applied for global optimization using HS: 1) a maximum number of successive 
improvisations (SNImax) without improvement in the best function value, or 2) a maximum 
number of improvisations (NI). Both criteria have been applied in this study and 
implemented for all HS algorithms.  

3. Formulation of global optimization problems for phase stability and 
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3.1 Phase stability 
Phase stability analysis is a fundamental stage in PEC and allows identification of the 
thermodynamic state that corresponds to the global minimum of Gibbs free energy 
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and overall composition z is stable if and only if the Gibbs free energy surface is at no point 
below the tangent plane to the surface at the given mixture composition (Michelsen, 1982). 
This statement is a necessary and sufficient condition for global phase stability. As 
mentioned in the introduction, this stability analysis can be performed using the Tangent 
Plane Distance Function (TPDF). This function is geometrically defined as the distance 
between the Gibbs free energy surface at a trial composition y and the tangent plane 
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systems with c components and a global composition z(z1,…,zc) in mole fraction units, at 
constant P and T, is analyzed by the global minimization of TPDF (Michelsen, 1982) 
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where the decision variables in phase stability problems are the mole fractions yi. If the 
global minimum of TPDF(y) < 0, the mixture under analysis is considered unstable; 
otherwise it is a globally stable system. The global minimization of TPDF is difficult and 
requires robust numerical methods since this function is multivariable, non-convex and 
highly non-linear. To date, several deterministic and stochastic global optimization methods 
have been reported for performing phase stability calculations (e.g., Sun & Seider, 1995; 
McDonald & Floudas, 1996; Hua et al., 1998; Harding & Floudas, 2000; Henderson et al., 
2001; Rangaiah, 2001; Teh & Rangaiah, 2002; Nichita et al., 2002a; Balogh et al., 2003; Xu et 
al., 2005; Bonilla-Petriciolet et al., 2006; Srinivas & Rangaiah, 2007a; 2007b; Bonilla-Petriciolet 
& Segovia-Hernández, 2010). 
To simplify this global optimization problem, the constrained problem given by Equation 
(4) can be transformed into an unconstrained problem by using new decision variables βi 
instead of yi as decision vector (Rangaiah, 2001; Srinivas & Rangaiah, 2007a; 2007b). These 
new decision variables βi∈(0, 1) are related to composition variables yi as follows 

 Fiiiy nzn β=    ci ,...,1=  (5) 

 ∑
=

=
c

j
jyiyi nny

1
   ci ,...,1=  (6) 

where ∑
=

=
c

i
iFF nn

1
 is the total amount of conventional moles in the feed composition used 

for stability analysis, and niy is the conventional mole number of component i in the trial 
phase y, respectively. Note that the feed mole fractions zi are obtained from FiFi nnz /= . 
Then, we state the unconstrained global optimization problem for phase stability analysis 
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For phase stability calculations, the number of decision variables is c for non-reactive 
systems of c components. In summary, this unconstrained formulation has been used for all 
phase stability calculations performed in this study using HS optimization methods.  

3.2 Phase equilibrium calculations 
After identifying an unstable system in phase stability analysis, the subsequent stage 
corresponds to a phase split calculation. In this thermodynamic problem, the main 
objectives are to correctly establish the number and types of phases existing at equilibrium 
as well as the composition and quantity of each phase such that the Gibbs free energy of the 
system is a minimum (Wakeham & Stateva, 2004). At constant T and P, a c multicomponent 
and π multiphase non-reactive system achieves equilibrium when its molar Gibbs free 
energy of mixing (g) is at the global minimum. Properly, the objective function for Gibbs 
free energy minimization using activity or fugacity coefficients is given by 
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where nij is the mole number of component i in phase j, γij is the activity coefficient of 
component i in phase j, ijϕ̂  is the fugacity coefficient of component i in phase j, and iϕ  is the 
fugacity coefficient of pure component i, respectively. Here, the Gibbs free energy of mixing 
(g) is used to avoid the calculation of pure component free energies, which do not influence 
equilibrium and stability results.  
In a non-reactive system, g must be globally minimized with respect to the set of nij subject 
to the mass balance constraints. Thus, the constrained global optimization problem for 
Gibbs free energy minimization is 
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where zi is the mole fraction of component i in the feed used for phase-split calculations. 
This objective function is generally multivariable and non-convex due to the non-linear 
nature of thermodynamic models. Both stochastic and deterministic methods are available 
for Gibbs free energy minimization (Teh & Rangaiah, 2002; Wakeham & Stateva, 2004). In 
particular, the methods: Simulated Annealing (Rangaiah, 2001; Henderson et al., 2001), 
Genetic Algorithms (Rangaiah, 2001; Teh & Rangaiah, 2003), Tabu Search (Teh & Rangaiah, 
2003), Tunnelling method (Nichita et al., 2002b; Srinivas & Rangaiah, 2006), Differential 
Evolution (Srinivas & Rangaiah, 2007a; 2007b), and Particle Swarm Optimization (Rahman 
et al., 2009; Bonilla-Petriciolet & Segovia-Hernández, 2010) have been applied for Gibbs free 
energy minimization in non-reactive systems.  
To perform an unconstrained minimization of g, we can use again alternative variables 
instead of nij as optimization targets. The use of these variables eliminates the restrictions 
imposed by material balances, reduces problem dimensionality, and the optimization 
problem is transformed to an unconstrained one (Rangaiah, 2001). For multi-phase non-
reactive systems, real variables βij∈(0, 1) are defined and employed as decision vector by 
using the following expressions 
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Using Equations (10)-(12), all trial compositions will satisfy the material balances allowing 
the easy application of optimization strategies. Thus, the unconstrained global minimization 
problem is defined as 
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where the decision variables in phase stability problems are the mole fractions yi. If the 
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where nij is the mole number of component i in phase j, γij is the activity coefficient of 
component i in phase j, ijϕ̂  is the fugacity coefficient of component i in phase j, and iϕ  is the 
fugacity coefficient of pure component i, respectively. Here, the Gibbs free energy of mixing 
(g) is used to avoid the calculation of pure component free energies, which do not influence 
equilibrium and stability results.  
In a non-reactive system, g must be globally minimized with respect to the set of nij subject 
to the mass balance constraints. Thus, the constrained global optimization problem for 
Gibbs free energy minimization is 
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For Gibbs free energy minimization, the number of phases existing at the equilibrium is 
assumed to be known a priori and the number of decision variables is cπ − c for non-reactive 
systems of c components with π phases. So, the problem formulation given by Equation (13) 
has been adopted in the present study for phase-split calculations in non-reactive systems. 

4. Results of phase equilibrium calculations using HS-based optimization 
methods 
4.1 Description of phase equilibrium problems 
In our study, various phase equilibrium problems from the literature have been used to 
assess the performance of HS-based optimization algorithms. These problems include 
multicomponent systems with vapor-liquid and liquid-liquid equilibrium. Feed 
composition, operating conditions, thermodynamic models, and global optimum of these 
problems are reported in Tables 1 and 2. It is convenient to note that these problems have 
  

 No. System Temperature and pressure Model 
1 n-butyl acetate + water 298 K and 101.325 KPa NRTL 
2 toluene + water + aniline 298 K and 101.325 KPa NRTL 
3 N2 + C1 + C2  270 K and 7600 KPa SRK EoS 
4 H2S + C1 190 K and 4053 KPa SRK EoS 
5 H2O + CO2 + 2-propanol + ethanol 350 K and 2250 KPa SRK EoS 
6 C2 + C3 + C4 + C5 + C6 390 K and 5583 KPa SRK EoS 
7 C1 + C2 + C3 + C4 + C5 + C6 + C7-16 + C17+ 353 K and 38500 KPa SRK EoS 
8 C1 + C2 + C3 + iC4 + C4 + iC5 + C5 + C6 + iC15 314 K and 2010.288 KPa SRK EoS 
9 C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + C10 435.35 K and 19150 KPa SRK EoS 

Table 1. Examples selected for phase stability and equilibrium calculations in non-reactive 
systems using Harmony Search-based optimization methods. 
 

  Global optimum 
No. Feed composition, z TPDF g 
1 Z (0.5, 0.5) -0.0324662 -0.0201983 
2 Z (0.29989, 0.20006, 0.50005)  -0.2945401 -0.3529567 
3 Z (0.3, 0.1, 0.6)  -0.0157670 -0.5477911 
4 Z (0.0187, 0.9813)  -0.0039320 -0.0198922 
5 Z (0.99758, 0.00003, 0.00013, 0.00226)  -0.0126500 -0.0048272 
6 Z (0.401, 0.293, 0.199, 0.0707, 0.0363)  -0.0000021 -1.1836525 

7 Z (0.7212, 0.09205, 0.04455, 0.03123, 0.01273, 0.01361, 
0.07215, 0.01248)  -0.0026876 -0.8387826 

8 Z (0.614, 0.10259, 0.04985, 0.008989, 0.02116, 0.00722, 
0.01187, 0.01435, 0.16998)  -1.4862053 -0.7697724 

9 Z (0.6436, 0.0752, 0.0474, 0.0412, 0.0297, 0.0138, 0.0303, 
0.0371, 0.0415, 0.0402)  -0.0000205 -1.1211758 

Table 2. Global minimum of selected phase stability and equilibrium problems. 
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considered for testing the performance of other stochastic optimization methods such as 
Simulated Annealing, Genetic Algorithms, Tabu Search, Differential Evolution and Particle 
Swarm Optimization (e.g., Rangaiah, 2001; Teh & Rangaiah, 2003; Bonilla-Petriciolet et al., 
2006; Srinivas & Rangaiah, 2007a; 2007b; Bonilla-Petriciolet & Segovia-Hernández, 2010). 
The objective functions (i.e., TPDF and g) have at least one local minimum, which 
corresponds to a trivial solution, for all tested conditions. Therefore, these optimization 
problems have different degrees of difficulty and features, so that the performance of HS 
methods can be tested systematically. 

4.2 Parameter tuning of HSC, IHS and GHS 
The key parameters of HSC, IHS and GHS have been tuned by finding the global minimum 
of some phase stability and equilibrium problems. Following previous studies (e.g., Bonilla-
Petriciolet et al., 2006; Bonilla-Petriciolet & Segovia-Hernandez, 2010), the parameters of HS-
based methods were tuned using examples No. 4 and 5, which were found to be challenging 
in preliminary trials. Specifically, parameter tuning was performed by varying one 
parameter at a time while the rest are fixed at nominal values, which were established using 
values reported in the literature and results of preliminary calculations (not reported in this 
chapter). For parameter tuning, all HS methods were run 100 times, with random initial values 
for decision variables (i.e., βi and βij) and random number seed, on each of the selected 
problems using different conditions for HS parameters. The suggested values for parameters 
of HSC, IHS and GHS are reported in Table 3. For all calculations performed in this study, we 
set HMS = 10nopt (i.e., harmony memory) in HSC, GHS and IHS. Overall, our preliminary 
calculations indicate that values given in Table 3 are a reasonable compromise between 
numerical effort and reliability of HS-based optimization methods for performing PEC.  
 

Method Parameter Suggested value 
HSC HMCR 0.5 

 PAR 0.75 
 bw ubi – lbi 

GHS HMCR 0.5 
 PAR 0.75 
 bw ubi – lbi 

IHS HMCR 0.5 
 PARmin 0.5 
 PARmax 0.95 
 bwmin 0.001 

 bwmax ubi – lbi 

Table 3. Suggested values of parameters in HSC, IHS and GHS for solving global 
optimization problems in phase equilibrium modeling.  

4.3 Performance of HSC, IHS and GHS in phase stability and equilibrium calculations  
In this section, we compare the performance of HSC, IHS and GHS for both phase stability 
and equilibrium calculations in non-reactive systems. These methods are evaluated based on 
both reliability and computational efficiency in locating the global minimum of these 
thermodynamic problems. Each test problem is solved 100 times using HS methods, each 
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)(  min β
β

g

10 ≤≤ ijβ    ci ,...,1=    1,...,1 −= πj
(13) 

 

For Gibbs free energy minimization, the number of phases existing at the equilibrium is 
assumed to be known a priori and the number of decision variables is cπ − c for non-reactive 
systems of c components with π phases. So, the problem formulation given by Equation (13) 
has been adopted in the present study for phase-split calculations in non-reactive systems. 

4. Results of phase equilibrium calculations using HS-based optimization 
methods 
4.1 Description of phase equilibrium problems 
In our study, various phase equilibrium problems from the literature have been used to 
assess the performance of HS-based optimization algorithms. These problems include 
multicomponent systems with vapor-liquid and liquid-liquid equilibrium. Feed 
composition, operating conditions, thermodynamic models, and global optimum of these 
problems are reported in Tables 1 and 2. It is convenient to note that these problems have 
  

 No. System Temperature and pressure Model 
1 n-butyl acetate + water 298 K and 101.325 KPa NRTL 
2 toluene + water + aniline 298 K and 101.325 KPa NRTL 
3 N2 + C1 + C2  270 K and 7600 KPa SRK EoS 
4 H2S + C1 190 K and 4053 KPa SRK EoS 
5 H2O + CO2 + 2-propanol + ethanol 350 K and 2250 KPa SRK EoS 
6 C2 + C3 + C4 + C5 + C6 390 K and 5583 KPa SRK EoS 
7 C1 + C2 + C3 + C4 + C5 + C6 + C7-16 + C17+ 353 K and 38500 KPa SRK EoS 
8 C1 + C2 + C3 + iC4 + C4 + iC5 + C5 + C6 + iC15 314 K and 2010.288 KPa SRK EoS 
9 C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + C10 435.35 K and 19150 KPa SRK EoS 

Table 1. Examples selected for phase stability and equilibrium calculations in non-reactive 
systems using Harmony Search-based optimization methods. 
 

  Global optimum 
No. Feed composition, z TPDF g 
1 Z (0.5, 0.5) -0.0324662 -0.0201983 
2 Z (0.29989, 0.20006, 0.50005)  -0.2945401 -0.3529567 
3 Z (0.3, 0.1, 0.6)  -0.0157670 -0.5477911 
4 Z (0.0187, 0.9813)  -0.0039320 -0.0198922 
5 Z (0.99758, 0.00003, 0.00013, 0.00226)  -0.0126500 -0.0048272 
6 Z (0.401, 0.293, 0.199, 0.0707, 0.0363)  -0.0000021 -1.1836525 

7 Z (0.7212, 0.09205, 0.04455, 0.03123, 0.01273, 0.01361, 
0.07215, 0.01248)  -0.0026876 -0.8387826 

8 Z (0.614, 0.10259, 0.04985, 0.008989, 0.02116, 0.00722, 
0.01187, 0.01435, 0.16998)  -1.4862053 -0.7697724 

9 Z (0.6436, 0.0752, 0.0474, 0.0412, 0.0297, 0.0138, 0.0303, 
0.0371, 0.0415, 0.0402)  -0.0000205 -1.1211758 

Table 2. Global minimum of selected phase stability and equilibrium problems. 
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considered for testing the performance of other stochastic optimization methods such as 
Simulated Annealing, Genetic Algorithms, Tabu Search, Differential Evolution and Particle 
Swarm Optimization (e.g., Rangaiah, 2001; Teh & Rangaiah, 2003; Bonilla-Petriciolet et al., 
2006; Srinivas & Rangaiah, 2007a; 2007b; Bonilla-Petriciolet & Segovia-Hernández, 2010). 
The objective functions (i.e., TPDF and g) have at least one local minimum, which 
corresponds to a trivial solution, for all tested conditions. Therefore, these optimization 
problems have different degrees of difficulty and features, so that the performance of HS 
methods can be tested systematically. 

4.2 Parameter tuning of HSC, IHS and GHS 
The key parameters of HSC, IHS and GHS have been tuned by finding the global minimum 
of some phase stability and equilibrium problems. Following previous studies (e.g., Bonilla-
Petriciolet et al., 2006; Bonilla-Petriciolet & Segovia-Hernandez, 2010), the parameters of HS-
based methods were tuned using examples No. 4 and 5, which were found to be challenging 
in preliminary trials. Specifically, parameter tuning was performed by varying one 
parameter at a time while the rest are fixed at nominal values, which were established using 
values reported in the literature and results of preliminary calculations (not reported in this 
chapter). For parameter tuning, all HS methods were run 100 times, with random initial values 
for decision variables (i.e., βi and βij) and random number seed, on each of the selected 
problems using different conditions for HS parameters. The suggested values for parameters 
of HSC, IHS and GHS are reported in Table 3. For all calculations performed in this study, we 
set HMS = 10nopt (i.e., harmony memory) in HSC, GHS and IHS. Overall, our preliminary 
calculations indicate that values given in Table 3 are a reasonable compromise between 
numerical effort and reliability of HS-based optimization methods for performing PEC.  
 

Method Parameter Suggested value 
HSC HMCR 0.5 

 PAR 0.75 
 bw ubi – lbi 

GHS HMCR 0.5 
 PAR 0.75 
 bw ubi – lbi 

IHS HMCR 0.5 
 PARmin 0.5 
 PARmax 0.95 
 bwmin 0.001 

 bwmax ubi – lbi 

Table 3. Suggested values of parameters in HSC, IHS and GHS for solving global 
optimization problems in phase equilibrium modeling.  

4.3 Performance of HSC, IHS and GHS in phase stability and equilibrium calculations  
In this section, we compare the performance of HSC, IHS and GHS for both phase stability 
and equilibrium calculations in non-reactive systems. These methods are evaluated based on 
both reliability and computational efficiency in locating the global minimum of these 
thermodynamic problems. Each test problem is solved 100 times using HS methods, each 
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time with a different random number seed such that the initial values of decision variables 
and random operators are different in each trial.  
With illustrative purposes, Tables 4 and 5 summarize the mean value of the objective 
function (i.e., TPDF and g) calculated by HS methods over 100 runs performed on some 
selected examples at different levels of computational efficiency, which are obtained by 
changing the stopping conditions NI and SNImax. As stated, the stopping conditions NI and  
 

   NI/HMS 
f(u) No. Method 25 50 100 500 1000 1500 

TPDF 1 HSC -0.032121 -0.032450 -0.032466 -0.032466 -0.032466 -0.032466 
  GHS -0.031792 -0.032297 -0.032455 -0.032466 -0.032466 -0.032466 
  IHS -0.032460 -0.032466 -0.032466 -0.032466 -0.032466 -0.032466 
 2 HSC -0.119234 -0.175243 -0.230080 -0.290298 -0.293195 -0.293929 
  GHS -0.235608 -0.271328 -0.286175 -0.293712 -0.294317 -0.294416 
  IHS -0.130544 -0.242552 -0.293399 -0.294533 -0.294537 -0.294538 
 8 HSC -1.393909 -1.419570 -1.435958 -1.459419 -1.465537 -1.468035 
  GHS -1.463179 -1.473019 -1.477031 -1.483464 -1.484407 -1.484719 
  IHS -1.441306 -1.459395 -1.469119 -1.481068 -1.483426 -1.484304 

g 1 HSC -0.019942 -0.020110 -0.020140 -0.020193 -0.020196 -0.020197 
  GHS -0.019815 -0.019975 -0.020081 -0.020191 -0.020196 -0.020197 
  IHS -0.020052 -0.020189 -0.020197 -0.020198 -0.020198 -0.020198 
 2 HSC -0.332641 -0.335935 -0.339952 -0.351137 -0.352288 -0.352559 
  GHS -0.338794 -0.345940 -0.350732 -0.352721 -0.352873 -0.352910 
  IHS -0.332065 -0.336039 -0.349790 -0.352946 -0.352952 -0.352953 
 8 HSC -0.734627 -0.743442 -0.749865 -0.761014 -0.764000 -0.764984 
  GHS -0.762602 -0.765662 -0.767486 -0.768955 -0.769369 -0.769361 
  IHS -0.748691 -0.758576 -0.764873 -0.768615 -0.769123 -0.769332 

Table 4. Mean values of TPDF and g calculated by HS-based methods at different levels of 
computational efficiency, using NI alone as stopping condition, for phase stability and 
equilibrium calculations of non-reactive systems. 
 

  SNImax/(nopt· HMS) 
  TPDF G 

No. Method 5 10 15 5 10 15 
1 HSC - 0.031404 -0.032419 - 0.032463 -0.019697 -0.020010 -0.020128 
 GHS - 0.030894 -0.032082 - 0.032339 -0.019623 -0.019879 -0.019949 
 IHS - 0.031358 -0.032364 - 0.032406 -0.019657 -0.019937 -0.020060 
2 HSC - 0.119623 -0.191368 - 0.224470 -0.332387 -0.335297 -0.339812 
 GHS - 0.266324 -0.279203 - 0.287641 -0.346430 -0.350512 -0.351517 
 IHS - 0.118653 -0.195152 - 0.217033 -0.333279 -0.336683 -0.338551 
8 HSC - 1.435201 -1.447226 - 1.452705 -0.748590 -0.754997 -0.758230 
 GHS - 1.480936 -1.482794 - 1.484031 -0.768323 -0.768881 -0.769098 
 IHS - 1.419238 -1.438575 - 1.453591 -0.745669 -0.749071 -0.754977 

Table 5. Mean values of TPDF and g calculated by HS-based methods at different levels of 
computational efficiency, using SNImax alone as stopping condition, for phase stability and 
equilibrium calculations of non-reactive systems. 
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SNImax also contribute to the trade-off between efficiency and reliability of HS. Therefore, the 
performance of all HS methods is illustrated by changing these stopping conditions. This 
approach is adopted in the present study because generally no correlation can be established 
a priori between an optimization problem and the required numerical effort for finding the 
global optimum. So, the proper stopping condition has to be determined by a sensitivity 
analysis. 
Our results indicate that the performance of HS, GHS and IHS varies with the type of 
stopping condition and, as a consequence, the numerical effort. In general, these results 
show that increasing the value of both stopping conditions (i.e., NI or SNImax) improves the 
performance of all HS methods for PEC. But, results indicate that the reliability of HSC, 
GHS and IHS is generally better using stopping condition NI compared to SNImax. 
Particularly, GHS and IHS can find solution vectors very close to the global minimum 
solution and their performance is usually better than that of HSC using either NI or SNImax 
as convergence criterion. For example, Figures 2 and 3 provide the convergence histories of 
the norm of *ˆ ff cal − for all HS methods in the global minimization of TPDF and g of  
examples No. 2 and 8. This norm is based on the average (over 100 runs) of the best objective 
function calf̂  recorded in the harmony memory at different improvisations (i.e., NFE). Note 
that the mean value of best harmony (i.e., solution vector) obtained by GHS and IHS is 
usually lower than that achieved by HSC in both phase stability and equilibrium 
calculations. Moreover, it appears that the convergence curves of GHS and IHS are faster 
than that of HSC. These results are in agreement with the observations reported by Mahdavi 
et al. (2007) and Omran & Mahdavi (2008). Specifically, these authors have indicated that the 
modifications of traditional HS may allow performing global optimization, efficiently and 
reliably.   
Following our previous study (Bonilla-Petriciolet & Segovia-Hernández, 2010) and, in order 
to facilitate understanding and to make the performance difference between HSC, GHS and 
IHS more explicit, we have employed the performance profile reported by Dolan & More 
(2002). Performance profiles (PP) are an alternative tool for evaluating and comparing the 
performance of several solvers on a set of test problems. The results of PP allow us to 
identify the expected performance differences among several solvers and to compare the 
quality of their solutions by eliminating the bias of failures obtained in a small number or 
problems. A brief overview of PP is provided in this chapter, and a detailed description of 
this mathematical approach is given by Dolan & More (2002).  
Suppose that a set of Nprob problems and a set of S solvers are considered for applying 
performance profiles. In our study, this problem set corresponds to the collection of phase 
stability and equilibrium problems reported in Table 1, while the solver set is given by HSC, 
IHS and GHS. For these conditions, we establish a performance metric tij ≥ 0 for every solver 
i∈S and problem j∈Nprob. For example, this performance metric should give information on 
solver reliability, efficiency or another performance measure useful to characterize the 
capabilities of the solver under evaluation. For each problem j∈Nprob, we calculate 

 { }* minj ijt t solver i S= ∈  (14) 

where *
jt  is the best possible performance for problem j among all the solvers tested. For a 

particular solver i, the set of performance ratios σij is determined by 
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time with a different random number seed such that the initial values of decision variables 
and random operators are different in each trial.  
With illustrative purposes, Tables 4 and 5 summarize the mean value of the objective 
function (i.e., TPDF and g) calculated by HS methods over 100 runs performed on some 
selected examples at different levels of computational efficiency, which are obtained by 
changing the stopping conditions NI and SNImax. As stated, the stopping conditions NI and  
 

   NI/HMS 
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Table 4. Mean values of TPDF and g calculated by HS-based methods at different levels of 
computational efficiency, using NI alone as stopping condition, for phase stability and 
equilibrium calculations of non-reactive systems. 
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SNImax also contribute to the trade-off between efficiency and reliability of HS. Therefore, the 
performance of all HS methods is illustrated by changing these stopping conditions. This 
approach is adopted in the present study because generally no correlation can be established 
a priori between an optimization problem and the required numerical effort for finding the 
global optimum. So, the proper stopping condition has to be determined by a sensitivity 
analysis. 
Our results indicate that the performance of HS, GHS and IHS varies with the type of 
stopping condition and, as a consequence, the numerical effort. In general, these results 
show that increasing the value of both stopping conditions (i.e., NI or SNImax) improves the 
performance of all HS methods for PEC. But, results indicate that the reliability of HSC, 
GHS and IHS is generally better using stopping condition NI compared to SNImax. 
Particularly, GHS and IHS can find solution vectors very close to the global minimum 
solution and their performance is usually better than that of HSC using either NI or SNImax 
as convergence criterion. For example, Figures 2 and 3 provide the convergence histories of 
the norm of *ˆ ff cal − for all HS methods in the global minimization of TPDF and g of  
examples No. 2 and 8. This norm is based on the average (over 100 runs) of the best objective 
function calf̂  recorded in the harmony memory at different improvisations (i.e., NFE). Note 
that the mean value of best harmony (i.e., solution vector) obtained by GHS and IHS is 
usually lower than that achieved by HSC in both phase stability and equilibrium 
calculations. Moreover, it appears that the convergence curves of GHS and IHS are faster 
than that of HSC. These results are in agreement with the observations reported by Mahdavi 
et al. (2007) and Omran & Mahdavi (2008). Specifically, these authors have indicated that the 
modifications of traditional HS may allow performing global optimization, efficiently and 
reliably.   
Following our previous study (Bonilla-Petriciolet & Segovia-Hernández, 2010) and, in order 
to facilitate understanding and to make the performance difference between HSC, GHS and 
IHS more explicit, we have employed the performance profile reported by Dolan & More 
(2002). Performance profiles (PP) are an alternative tool for evaluating and comparing the 
performance of several solvers on a set of test problems. The results of PP allow us to 
identify the expected performance differences among several solvers and to compare the 
quality of their solutions by eliminating the bias of failures obtained in a small number or 
problems. A brief overview of PP is provided in this chapter, and a detailed description of 
this mathematical approach is given by Dolan & More (2002).  
Suppose that a set of Nprob problems and a set of S solvers are considered for applying 
performance profiles. In our study, this problem set corresponds to the collection of phase 
stability and equilibrium problems reported in Table 1, while the solver set is given by HSC, 
IHS and GHS. For these conditions, we establish a performance metric tij ≥ 0 for every solver 
i∈S and problem j∈Nprob. For example, this performance metric should give information on 
solver reliability, efficiency or another performance measure useful to characterize the 
capabilities of the solver under evaluation. For each problem j∈Nprob, we calculate 

 { }* minj ijt t solver i S= ∈  (14) 

where *
jt  is the best possible performance for problem j among all the solvers tested. For a 

particular solver i, the set of performance ratios σij is determined by 
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Fig. 2. Convergence profiles for solving phase equilibrium example No. 2 by HSC, GHS and 
IHS. Objective function: a) TPDF and b) g 
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Fig. 3. Convergence profiles for solving phase equilibrium example No. 8 by HSC, GHS and 
IHS. Objective function: a) TPDF and b) g 
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 probjijij Njtt ∈= *σ   (15) 

where the performance ratio σij of method i for problem j is defined as the ratio of the 
method’s performance to the best performance value over all solvers for the same problem 
(Dolan & More, 2002). The value of this performance ratio is equal to unity for the solver i 
that performs best on a specific problem j. For every solver i∈S, let ρi(ξ) be the fraction of 
problems for which σij ≤ ξ where ξ ≥ 1. Then, we have 

 { }ξσξρ ≤∈= ijprob
prob

i Njsize
N

:1)(  (16) 

where the “size” is the number of problems such that the performance ratio σij is less than or 
equal to ξ for solver i. The parameter ρi(ξ) indicates the fraction of problems for which solver 
i is within a factor of ξ of the best solver (according to the performance metric used for 
solver comparison). In summary, the performance profile of a solver represents the 
cumulative distribution function of its performance ratios and is a plot of ρi(ξ) versus ξ. It is 
convenient to note that ρi(1) is the probability (i.e., fraction of problems tested) for which 
solver i was the best solver overall. Therefore, to identify the best solver using PP, it is only 
necessary to compare the values of ρi(1) for all solvers and to select the highest one. 
Base on the fact that, our study compares how well the HS methods can estimate the global 
optimum relative to another in phase equilibrium problems, we have used the following 
performance metric for a systematic assessment of HSC, GHS and HIS: 

 *ˆ j
cal
ijij fft −=   (17) 

where *
jf is the known global optimum of the objective function for problem j, which are 

reported in Table 2, and cal
ijf̂  is the mean value of the objective function calculated by the 

stochastic method i over 100 runs performed with random initial values for decision 
variables of problem j. This performance metric is useful to identify the algorithm that 
provides the most accurate value of the global minimum in phase stability and equilibrium 
problems. In fact, our group has successfully used this performance metric and performance 
profiles for comparison of several stochastic optimization methods in the context of phase 
equilibrium modeling (e.g., Bonilla-Petriciolet & Segovia-Hernández, 2010). 
Figure 4 shows the results of ρi(1) versus NI for HSC, IHS and GHS in phase stability and 
equilibrium calculations using Equation (17) as performance metric. Our results confirm that 
both GHS and IHS offer the best performance and show the highest probability for finding 
the best solutions in the collection of phase equilibrium problems used in this study. Figure 
4 shows that the probability ρi(1) of GHS is better than that obtained for IHS and HSC 
especially in early NI. However, this probability decreases as NI increased while IHS 
outperformed HSC and GHS in solving phase equilibrium problems if a larger NI is 
permitted. Note that HSC showed the worst performance for solving the global 
optimization problems analyzed in this chapter. Overall, PP indicate that the best solutions 
found by HSC are worse than the best solution found by both GHS and IHS in the global 
optimization of TPDF and g. In summary, GHS and IHS are the best from the standpoint of 
algorithm reliability and appear to be suitable for solving phase stability and equilibrium 
problems in non-reactive systems. 
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Fig. 4. Results of performance profiles for the comparison of HSC, GHS and IHS in phase 
stability and equilibrium calculations of non-reactive systems. Performance metric: 
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cal
ijij fft −= . Stopping condition is the maximum number of improvisations and  

HMS = 10nopt. The missing bars indicate that the probability ρi(1) for solver i is 0.0. 
 

Finally, we have compared the reliability of GHS and IHS in combination of a quasi-Newton 
method for solving these thermodynamic calculations accurately and efficiently. 
Specifically, the best harmony stored in harmony memory of both GHS and IHS is used as 
initial guess for a local optimization technique. This local optimization method corresponds 
to the subroutine DBCONF from IMSL library, where the default values of DBCONF 
parameters in IMSL library have been used in these calculations. Under these conditions, 
GHS and IHS are evaluated based on the reliability in locating the global minimum, which 
is measured in terms global success rate (GSR). This performance metric is defined as the 
number of times the algorithm located the global minimum to the specified accuracy out of 
all trials performed in the collection of phase equilibrium problems. Properly, in these 
calculations a trial is considered successful if the global optimum is obtained with an 

absolute error of 10-5 or lower in the objective function value, i.e. 5* 10−≤− calff  where f * is 

the known global optimum and f cal is the solution provided by GHS or IHS method. In some 
examples, an absolute error of 10-7 in the objective function was used to avoid counting local 
minima as the global optimum.  
In general, the GSR ranged from 70.8 to 73.8 % for GHS and from 70.1 to 70.7 % for IHS 
throughout the tested range of NI. Results of individual problems indicate that both GHS 
and HIS, each followed by the local optimization method, show high reliability for examples 
No. 1 - 4 and 8 in phase stability analysis, and examples No. 1 - 4 and 7 - 9 in Gibbs free 
energy minimization. Both methods failed several times to find the global optimum in phase 
stability examples No. 5-7 and 9, while phase equilibrium examples No. 5 and 6 are difficult 
global optimization problems for both HS-based methods.   
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where the performance ratio σij of method i for problem j is defined as the ratio of the 
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(Dolan & More, 2002). The value of this performance ratio is equal to unity for the solver i 
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 { }ξσξρ ≤∈= ijprob
prob

i Njsize
N

:1)(  (16) 
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 *ˆ j
cal
ijij fft −=   (17) 
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jf is the known global optimum of the objective function for problem j, which are 
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optimization problems analyzed in this chapter. Overall, PP indicate that the best solutions 
found by HSC are worse than the best solution found by both GHS and IHS in the global 
optimization of TPDF and g. In summary, GHS and IHS are the best from the standpoint of 
algorithm reliability and appear to be suitable for solving phase stability and equilibrium 
problems in non-reactive systems. 
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5. Conclusion 
This chapter introduces the application of Harmony Search-based methods for solving 
global optimization in phase equilibrium modeling of non-reactive systems. Specifically, we 
have compared the performance of classical HS and some of its variants for performing 
phase stability and equilibrium calculations. Our results indicate that HS-based 
optimization algorithms are capable of handling the difficult characteristics of global 
optimization problems in PEC. In particular, the Global-Best Harmony Search offers the best 
performance from the standpoint of algorithm reliability, whereas the classical Harmony 
Search method is the worst for performing the global optimization of objective functions 
involved in phase equilibrium modeling. In summary, our results indicate that GHS is a 
suitable and alternative global optimization strategy for phase equilibrium calculations in 
non-reactive systems. Further research will be focused on the application of this stochastic 
method in other thermodynamic calculations. 
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