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Preface

In September 2018, I was approached by IntechOpen to see if I was interested in 
serving as editor for this project, Advances in Neural Signal Processing. Neural signal 
processing is a specialized area of signal processing that is aimed at extracting 
information or decoding intent from neural signals recorded from the central or 
peripheral nervous system. This has significant applications in the areas of neuro-
science and neural engineering. These applications are famously known in the area 
of brain–machine interfaces. This book presents recent advances in this flourishing 
field of neural signal processing with demonstrative applications.

In this book, readers will find chapters on three major applications of neural signal 
processing methodologies in basic science research and neuroprosthetic and clinical 
applications. Basic science research includes modeling zinc dynamics in hippocam-
pal mossy fiber synaptic cleft and information processing and synaptic transmis-
sion. Neuroprosthetic applications consist of decoding upper limb movements and 
gait phase kinematics using electroencephalography. Clinical applications include 
detection, prediction, and classification of seizures.

I would like to thank the authors for their valuable contributions, especially 
my students from the Sensorimotor Control Laboratory at Stevens Institute of 
Technology who contributed to the introductory chapter. I would also like to thank 
IntechOpen staff especially Dajana Pemac, Romina Skomersic, and Andrea Koric 
for their kind assistance throughout the editing process. Without their help, this 
book would not have manifested. I am sure that interested readers will find this 
volume informative and inspiring.

Ramana Vinjamuri
Assistant Professor,

Director of Sensorimotor Control Laboratory,
Department of Biomedical Engineering,

Stevens Institute of Technology,
New Jersey, USA 
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Chapter 1

Introductory Chapter: Methods 
and Applications of Neural Signal 
Processing
Dingyi Pei and Ramana Vinjamuri

1. Introduction

Analytical methods are crucial to advance the field of brain sciences, and 
efficient and effective methods of data analysis are required. Early from the last 
century, the neural signals have been used in the engineering sphere to discover 
mechanisms by which neural activity is generated and corresponding behavior 
is produced. The function of the neural system was detected and studied using 
engineering methodologies, and meanwhile, the engineering methodologies 
helped to understand, repair, replace, enhance, or otherwise use the properties 
and functions of neural systems. The neural signals are recorded by advanced 
neural recording technologies, and the information is extracted to be used for 
the understanding of neural representations of behavior. The external devices 
are designed to assist signal acquisition, signal processing, or provide neural 
feedback to humans.

Since movement is an essential activity of daily life, some of the major 
applications of neural engineering in the field of motor control typically involve 
motor function compensation, movement restoration, rehabilitation, disorder 
detection, etc. A movement process is integrated and translated from the higher 
levels of the control system, and it involves a series of transmissions to multi-
structure musculoskeletal coordination. The central nervous system (CNS) 
works as a computational controller structure in motor behavior characteriza-
tion and reorganization [1]. Multiple structures in the brain contribute to motor 
control by connecting, integrating, and coordinating the motor-related informa-
tion. Each structure is utilized in formulating a motor command when a particu-
lar action is performed, and the CNS switches the command between multiple 
motor-related structures [2]. The mechanism of coordination and cooperation 
of these structures in the brain could be determined as “black box” models, 
providing the neural representations of relationships between motor command 
input and predicted behavior output. These models may represent multiple brain 
structures, especially the regions with synaptic plasticity that can receive and 
send out information.

2. Neural recording and stimulation

Populations of neurons exhibit time-varying fluctuations in their aggregate 
activity. Currently, various invasive or noninvasive recordings exist that can record 
large amounts of spatial and temporal information from the human and nonhuman 
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brain. In order to investigate how the motor-related information is generated, and 
what kind of patterns could be found in certain areas during a specific action, many 
engineering methodologies are applied.

In the human brain, neurons communicate with each other through connections 
known as synapses. Synapses can be electrical or chemical, and the excitatory or 
inhibitory nature of synapses contributes to information transmission—the influx 
and outflux of sodium and potassium causing the membrane potential to rise and 
fall rapidly. The rapid changes of membrane potentials are called spikes, which 
can be recorded by intercellular or extracellular recordings. Valuable information 
can be discovered from the rate of spikes, namely, the firing rate. The deep brain 
implanted electrodes allow the recording from individual neurons and can present 
significant results in awake animals but not in humans. Multielectrode arrays can 
record the voltage oscillations from multiple neurons. Simultaneously recording 
from a large population of local neurons increases spatial resolution benefits to 
the extraction of complex information in contrast with single-unit recordings. 
The aforementioned invasive recording technologies provide considerably less 
vulnerability to artifacts and relevantly higher resolution and larger amplitudes 
(voltages), and thereby the performance relies much more on the technologies 
of electrodes. However, there are several limitations of these invasive recording 
technologies including restricted to clinical environments and the risks of surgery 
and implantations.

As an alternative to the constrained invasive technologies, several noninvasive 
recording technologies such as electroencephalography and magnetoencepha-
lography have been used in human studies. Advanced computational algorithms 
promise to promote signal processing and signal filtering; thus, more and more 
noninvasive recording technologies are being considered in human studies. Some 
techniques record neuronal potentials from the scalp, and such recordings capture 
the population activity of thousands of neurons depending on the level of record-
ing. Multiple layers restrict information transmission from the cerebral cortex to 
the scalp leading to lower amplitudes of the signal and lower spatial resolution. 
Additionally, the electrodes are sensitive to the surrounding interferences like eye 
movements, facial movements, chewing, swallowing, etc. Therefore, it is necessary 
to apply robust and efficient signal processing technologies to amplify the neural 
activity and filter out the ambient and transducer noise, thus improving the signal-
to-noise ratio.

Under noninvasive technologies, there are imaging methods that focus on the 
metabolic activity in the brain rather than the activity of neurons or the population 
of neurons. When performing a specific task, the activation of the brain neurons 
is enhanced and thereby more oxygen is required and absorbed from surrounded 
blood vessels. An increased inflow and higher oxygenated level can be detected. 
This hemodynamic response is comparatively slow that it reaches the peak in a few 
seconds and takes a longer time to fall back to the original level. Therefore, this kind 
of recording technology provides good spatial resolution but very poor temporal 
resolution.

In addition to neural recording technologies, there are also neural stimulation 
technologies that are used in clinical treatments (cochlear implants and deep 
brain stimulators) and emerging neuroprosthetics. This involves giving electrical 
or magnetic stimulation to a particular region of the brain to mimic sensorimo-
tor feedback. Most recording electrodes can also be used for stimulations. Brain 
stimulations have proven effective in clinical treatments. These methodologies 
also involve the use of signal processing methodologies in determining ideal 
stimulation patterns. Table 1 summarizes neural recording and stimulation 
technologies.
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3. Neural signal processing

3.1 Spike sorting

Spikes from closer neurons produce larger amplitude deflections in the recorded 
signal. The goal of signal processing methods for such an input signal is to reliably 
isolate and extract the spikes being emitted by a single neuron per recording electrode. 
This procedure is usually called spike sorting. The simplest spike sorting method is to 
classify spikes according to their peak amplitude. Sometimes, the peak amplitudes may 
be the same for different neurons, making the method not feasible. A better approach 
is the window discriminator method in which the experimenter visually examines the 
data and places windows on aligned recordings of spikes of the same shape. The recent 
trend has been toward clustering spikes automatically into groups based on shape, 
where each group corresponds to spikes from one neuron. The shape of a spike is char-
acterized by features extracted using wavelets or dimensionality reduction techniques.

3.2 Temporal and spatial feature extraction

Key temporal and spatial features can represent and help us understand the 
neural activity from the underlying oscillations. The neural signals recorded from 
the brain are typically mixture potentials resulting from network activity of a large 

Electrical 
recordings

Single-unit recordings (spikes) Microelectrodes insert into neurons or 
placed between adjacent neurons

Local field potential (LFP) recordings Multielectrode arrays placed inside the 
brain

Electrocorticography (ECoG) Implanted electrodes placed on the 
upper layers of cerebral cortex

Electroencephalography (EEG) Electrodes placed on the surface of the 
scalp

Magnetic 
recordings

Magnetoencephalography (MEG) Measures the magnetic field produced 
by electrical activity in the brain

Neuroimaging 
recordings

Functional near-infrared recordings 
(fNIR)

Detects near-infrared light absorbance 
of hemoglobin in the blood with/
without oxygen

Functional magnetic resonance 
imaging (fMRI)

Measures the changes in oxygenated 
and deoxygenated hemoglobin 
concentrations in the blood

Positron emission tomography (PET) Detects the radioactive compound as a 
result of metabolic activity caused by 
brain activity

Brain stimulations Transcranial magnetic stimulation 
(TMS)

Current-passed coil of wire paced next 
to the skull to produce a rapidly change 
magnetic field

Transcranial direct current stimulation 
(tDCS)

Stimulates specific parts of the brain 
using low-intensity direct electrical 
currents

Deep brain stimulation (DBS) Electrodes are implanted in target 
regions of the brain

Table 1. 
Neural recording and stimulation technologies.
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population of neurons around the local neighborhood. Thus, applying appropri-
ate feature extraction methods can isolate and extract significant features in both 
temporal and spatial domains.

3.2.1 Spatial filtering

For some methods that record brain signals using multi-electrodes, the signals are 
recorded from multiple regions of the brain. With the large variance of global noise, 
the local signals appear diminished. Therefore, spatial filtering or re-referencing 
methods are applied to enhance the local activity and filter out the common noise. For 
individual electrodes, the averaged activity from surrounded electrodes (Laplacian 
filtering) or from global electrodes (common averaged referencing) is subtracted. 
Spatial filtering methods can also be used to estimate the variance of the neural data.

3.2.2 Temporal analysis

The quality of the recorded brain signals primarily depends on recording 
techniques. However, the recorded time-series signals contain lots of noise that can 
be filtered using time-domain filtering methods. Numerous filtering techniques like 
moving average smoothing, exponential smoothing, etc. are used to preprocess raw 
signals in the time domain.

In addition to filtering, temporal analysis can also be used to extract significant 
features that represent behavior. These significant features can be extracted out 
from a series of time signals using computational models. Some neural signals tend 
to be correlated over time, and thus, the following time samples are possible to be 
predicted based on the previous samples using autoregressive models (for station-
ary signals) or adaptive autoregressive models (for nonstationary signals). Such 
methods depend on the model built up from the characteristic internal relationships 
between the previous signal samples and the subsequent samples. The coefficients 
of the model can be considered as neural features for the subsequent pattern recog-
nition or classification procedure utilized for real-time decoding or estimation.

3.2.3 Frequency analysis

While temporal analysis methods are useful, there are some signals for which 
these methods may not result in extracting meaningful features. For example, 
noninvasive methods such as EEG are based on signals that reflect the activity of 
several thousands of neurons. Poor spatial and temporal resolution challenges the 
feature extraction in the time domain. The recorded signal thus can capture only 
the correlated activities of large populations of neurons, such as oscillatory activity.

The intrinsic property of the brain signals is neuronal oscillations [3]. Theoretically, 
these oscillations can be decomposed with a set of basis functions, such as sinusoid 
functions using Fourier transform (FT) for periodic signals. For each cycle, the 
amplitude, the period, and the waveform symmetry are measured and oscillatory 
bursts are algorithmically identified, allowing us to investigate the variability of 
oscillatory features within and between bursts. Usually, for neural signals, short-time 
Fourier transform (STFT) provides better results by performing FT with sliding 
short-time windows. For the nonperiodic signals, the wavelet transform is applied for 
signal decomposition. A variety of scaled and finite-length waveforms can be selected 
according to the shape of the raw neural signals. The wavelet coefficients sometimes 
contain unique information which can be considered as neural features. Additionally, 
the power spectrum of neural signals usually reflects lots is important information, 
such as power spectral density (PSD).
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3.2.4 Time-frequency analysis

By combining the advantages of temporal and frequency analyses, the research-
ers realized the power of time-frequency analysis. As an example, using decomposi-
tion techniques, a signal can be decomposed into intrinsic mode functions (IMF) 
and instantaneous frequencies over time can be obtained by applying methods such 
as Hilbert spectral analysis. The most significant advantage of this technique is that 
the nonlinear, nonstationary recorded neural signals can be transformed into linear 
and stationary components. These components are usually physically meaning-
ful since the special features are localized in their instantaneous frequencies and 
represent meaningful behavioral information in the time-frequency domain. Time-
frequency analysis is extensively implemented in neural signal processing since the 
individual analysis in the time or frequency domain comes with respective disad-
vantages, and time-frequency analysis trades off time and frequency resolution to 
get the best representation of the signals. Other techniques such as spectrogram and 
STFT are most performed by segmenting a signal into short periods and estimating 
the spectrum over sliding windows.

3.3 Dimensionality reduction

A critical procedure in neural signal processing is to reduce the high dimension-
ality of the recorded neural data. These data could be brain images, multi-electrode 
signals, network potentials, or high-dimensional neural features. Several algorithms 
can be applied linearly or nonlinearly to preserve the most useful components and 
remove redundancies. Principal component analysis (PCA) is to find the direc-
tion of maximum variance and thereby build the principal components (weighted 
linear combinations) based on the observed variance. Linear discriminant analysis 
(LDA) performs similar to PCA but tends to minimize the variance within a group 
of neural data and maximize the distance between groups of neural data. Thus, 
PCA is described as an unsupervised algorithm implemented for feature extrac-
tion, and LDA is described as a supervised algorithm that uses training based on 
labels for groups of data. Other methods that are used most often are CCA and 
ICA. Canonical correlation analysis (CCA) is yet another method for exploring the 
relationships between two multivariate sets of variables allowing us to summarize 
the relationships into a lesser number of variables while preserving the essential 
features of the relationships. Independent component analysis (ICA) is a blind 
source separation method rather than a dimensionality reduction method. Neural 
signals consist of recordings of potentials that are presumably generated by mixing 
some underlying components of brain activity. ICA can theoretically isolate these 
underlying components of brain activity by computing independent components. 
Additionally, ICA can also be used as a filtering method to remove signal artifacts 
generated by eye blinks or other artifacts in EEG signals.

3.4 Machine learning algorithms

Machine learning or deep learning algorithms have become increasingly popular 
and are being implemented in many fields. They can be broadly divided into unsu-
pervised learning and supervised learning. Unsupervised learning methods aim to 
extract hidden structures within the neural data, commonly used for feature extraction, 
pattern recognition, clustering, and dimensionality reduction. Supervising learning 
methods train the neural data using underlying functions to map to a given output and 
automatically discover the relationships between input data and output labels. The 
most common applications of supervised learning are classification and regression. 
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signal decomposition. A variety of scaled and finite-length waveforms can be selected 
according to the shape of the raw neural signals. The wavelet coefficients sometimes 
contain unique information which can be considered as neural features. Additionally, 
the power spectrum of neural signals usually reflects lots is important information, 
such as power spectral density (PSD).
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Quantitative models of machine learning algorithms provide incredibly powerful 
implementations in neuroscience. Some traditional methods such as LDA, PCA, and 
support vector machine (SVM) are also regarded as machine learning algorithms. Other 
algorithms (neural networks, autoencoders, and logistic regression) train batches of 
input data using basis transformation function to match the output adaptively.

4. Applications of neural signal processing

Neuroprostheses, neurostimulators, or human-machine interfaces are devices 
that record from or stimulate the brain to help individuals with neurological disor-
ders, restore their lost function, and thereby improve their quality of life. Neural 
signal processing methodologies are used extensively in all these applications.

4.1 Neurostimulators

Neurostimulators that have demonstrated decades of success are cochlear 
implants that are designed for those who have dysfunctional conduction of sound 
waves from the eardrum to the cochlea. These implants can also help elderly 
individuals who have age-related hearing loss [4]. There is an external speech 
processor to capture and convert the sound from the surrounded environment to 
digital signals. The internal implants turn the digital signals into electrical signals 
to stimulate the hearing nerve by the electrodes inside the cochlea. Once the brain 
receives the signals, one can hear and interpret the sound.

Another successful neurostimulator is the deep brain stimulator (DBS) sys-
tem used for individuals with Parkinson’s disease. The DBS has been available 
as a reliable treatment for decades for individuals with Parkinson’s disease. The 
implanted impulse generator placed under the collarbone provides continuous 
electrical impulses by giving a certain frequency of stimulation to the subthalamic 
nucleus and makes it possible to minimize the uncontrolled tremors. During the 
DBS surgery, electrodes are inserted into a targeted area of the brain, and the whole 
procedure is monitored and recorded using MRI. After the treatment, symptomatic 
improvement was durable for at least 10 years [5].

4.2 Neuroprostheses or human-machine interfaces (HMIs)

Stroke, spinal cord injury, and traumatic brain injury may lead to long-term 
disability, and an increased number of individuals are suffering from severe motor 
impairments, resulting in loss of independence in their daily life. Recovery of motor 
function is crucial in order to perform activities of daily living. Human-machine 
interfaces (HMIs) can enable dexterous control of exoskeletons that could be 
used as a rehabilitative device or an assistive device to restore lost motor functions 
poststroke or spinal cord lesions [6–8], thus promoting long-lasting improvements 
in motor function of individuals with movement disorders.

Additionally, significant applications in neural engineering are HMI-based 
systems to restore or compensate the lost limb functions for individuals with ampu-
tation or paralysis. Cortical control of prosthetics has been studied both in animals 
[9] and humans [10, 11]. Movement-related cortical potentials used to assess corti-
cal activation patterns provide interesting information, as they are associated with 
the planning and execution of voluntary movements. Recently, HMI-based research 
has stressed on the development of algorithms for movement decoding using non-
invasive neural recordings [12–14]. In order to understand neural intent before or 
during the movement, it is necessary to extract the characteristics accurately using 
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efficient algorithms. The adaptability and reliability over the long-term are current 
challenges that are being addressed using advanced and adaptive signal process-
ing methodologies. Months to years of training are essential to operate prosthetic 
or exoskeleton skillfully. This training time can possibly be reduced by increasing 
the burden on machine learning algorithms that are currently being addressed by 
advanced signal processing methods.

4.3 Neurological disorders

Epilepsy is a common neurological disorder characterized by an endur-
ing predisposition to generate epileptic seizures [15]. These seizures may cause 
disturbances in movement, loss of control of bowel or bladder function, loss of 
consciousness, or other disturbances in cognitive functions. Currently, the signal 
processing algorithms can detect ongoing seizures and provide clinicians with 
detailed information such as localization of seizure foci useful for the treatment 
of epilepsy. The ability to detect seizures rapidly and accurately could promote 
therapies aimed at rapid treatment of seizures.

Skilled neurophysiologists visually examine the neural signals and detect epilepsy. 
Apart from the single-channel signals, other contextual information such as spatial 
and temporal data are vital to neurophysiologists for recognizing spikes [16, 17]. 
Currently, the epileptic seizures can be detected and predicted from EEG or ECoG sig-
nals by extracting the hidden features using machine learning algorithms [15, 18–20].

5. Conclusion

Neural signal processing has become an increasingly important tool in neurosci-
ence and neural engineering. This chapter provides a general overview of the widely 
implemented neural recording and stimulation technologies, neural processing 
methodologies, and how these techniques can be practically executed in some practi-
cal applications. The understanding of the neural representations of human behavior 
in the brain can be significantly enhanced using neural signal processing methodolo-
gies. With the advances in neural recording techniques and parallel advances in neu-
ral signal processing, we believe that several unanswered questions and challenges in 
neuroscience and neural engineering will be solved in the near future.

© 2020 The Author(s). Licensee IntechOpen. Distributed under the terms of the Creative 
Commons Attribution - NonCommercial 4.0 License (https://creativecommons.org/
licenses/by-nc/4.0/), which permits use, distribution and reproduction for  
non-commercial purposes, provided the original is properly cited. 
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Abstract

While it has been suggested that diagonal rhythmical bilateral movements 
promote improvement in motor and cognitive functions, no study that we are aware 
of has actually examined electrophysiological changes during diagonal movements. 
Therefore, we aimed to study cerebral activity during the performance of diagonal 
and vertical movements (DM and VM, respectively), through EEG recording focus-
ing on theta, alpha, and beta frequency bands. Following independent component 
analysis, we computed time-frequency and source localization analysis. We found 
that (1) increased frontal theta during the initiation of DM was possibly related 
to the computational effort; (2) a biphasic pattern of frontoparietal alpha/beta 
modulations was found during VM; and in addition, (3) source localization showed 
increased frontal theta during DM generated in the middle frontal cortex. We 
will discuss the current results and their implications in relation to task difficulty, 
spatial and temporal computation.
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sagittal plane that implies the  vertical body midline in order to reach the opposite 
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body midline, respectively, but not both of these axes at the same time. In fact, 
Adele Diamond [1] has suggested the idea that rhythmical, diagonal, bilateral 
coordinated arm movements and eye-hand coordination could play a role in cogni-
tive rehabilitation as well, providing a framework that could reduce the distance 
between the idea that motor activity cannot influence cognition and that cognitive 
rehabilitation requires only pure cognitive-related protocols.

At the beginning of the twenty-first century, Diamond summarized different 
scientific evidence to highlight the fact that movement and cognition are linked in terms 
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of development timing and that these two domains activate shared brain regions such as 
the prefrontal cortex and cerebellum [2]. Specifically, it was observed that activity in the 
prefrontal cortex increases when a motor task requires the maintenance of movement 
information through execution, selection of relevant task-related motor information, 
and inhibition of automated behavior that could compromise motor performance.

Yet very few studies have examined this issue. A rare exception regards the stud-
ies related to a rehabilitation protocol based on stretching exercise and joint mobility 
called proprioceptive neuromuscular facilitation (PNF) [3]. This rehabilitation proto-
col also includes diagonal arm movements in order to promote strength, coordination, 
functional motoricity, and movement initiation [4]. More recently, Moreira et al. [5] 
studied cerebral electrophysiological activity after the performance of unimanual 
diagonal arm movements as presented in the original PNF protocol. They observed an 
increase of beta and alpha power within a frontoparietal network after performance. 
They showed that this kind of motor activity could improve motoricity through 
modulation of cerebral plasticity over frontoparietal regions, suggesting that improved 
motor execution is directly linked to motor control in the central nervous system.

Over the last few years, we studied another motor task that involves diagonal 
movements, named Quadrato Motor Training (QMT) [6–8]. QMT is a sensorimo-
tor training based on step-by-step, whole-body movement in vertical, horizontal, 
and diagonal directions. From the electrophysiological point of view, pre- and 
post-EEG recording showed acute and chronic increase of theta and alpha power 
and coherence over frontal, parietal, and temporal regions [9–11]. We hypothe-
sized that it is especially the planning of diagonal movement which plays a crucial 
role in the establishment of such a modulation of theta and alpha band activity. 
However, it is difficult to disentangle and isolate the contribution of diagonal from 
vertical and horizontal movement, and further studies in which EEG is recorded 
during the execution of QMT should be performed. Thus, as a first step, in order 
to examine the effects of diagonal movements, in the current study, we measured 
cerebral activity during the performance of diagonal and vertical movements (DM 
and VM, respectively), using EEG recording. Given the aforementioned literature, 
particular focus was addressed to the theta, alpha, and beta frequency bands.

1.2 Brain oscillations, movement, and cognition

Theta (4–7 Hz) activity seems to be involved in different cognitive functions 
such as sustained attention [12], spatial navigation [13], memory [14], medita-
tive states/internalized attention [15], and creativity [16]. Importantly, all these 
cognitive functions require integration from different cerebral regions in order 
to produce effective outcomes. In fact, it was suggested that there is an inverse 
relationship between the extent of a recruited cortical network and the elicited 
oscillatory frequency during task performance [17]. For these reasons, theta is also 
thought to support long-range integration and promotion of mental states related to 
absorption and concentration [18–20].

Alpha activity (8–12 Hz) is considered a fundamental brain rhythm produced 
in the occipital cortex which reflects cortical inactivity during relaxed wakeful-
ness with closed eyes and reduced sensory and motor processing [21, 22]. Alpha 
desynchronization has been observed during a task that requires the deployment of 
attention toward specific targets or locations in space, suggesting that alpha could 
play an important role in the management of attentional resources and sensory 
perception [23–26]. Moreover, similar to theta, increased parietal alpha power has 
been related to internal-directed attention [27].

Beta frequency (13–30 Hz) is classically related to active wakefulness. It was 
observed as an oscillatory activity replacing alpha waves when individuals opened 
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their eyes [28–30]. Beta desynchronization has been typically observed during the 
execution of voluntary movement [31, 32] and during sensorimotor processing 
[33]. After the conclusion of a voluntary movement, beta synchronization called 
 “post-movement beta rebound” has been observed over the sensorimotor cortex 
[34, 35]. Other studies have suggested that beta is also involved in a large range of 
cognitive, emotional, and attentional processing [36–39].

1.3 Aim of this study

Despite the fact that movement along the diagonal axis has been seen as a benefit 
in different motor and cognitive rehabilitation protocols, none of the studies we are 
aware of have investigated the neural correlates of diagonal movement during the 
actual movement performance. Therefore, we aimed to observe the electrophysi-
ological correlates of diagonal movements and compare them to a control condition 
such as vertical movement. We hypothesized that diagonal movements compared 
to vertical movements require more computational effort and motor control to be 
well executed. This should result in increased theta, in decreased alpha due to an 
increase in internalized attention, and finally in a modulation of beta tied to the 
start and the end of each movement.

2. Methods

2.1 Participants and design

Eleven right-handed healthy participants (six males; mean age 40.3 years; SD 
9.22) volunteered to take part in the study. All participants had normal or corrected-
to-normal vision, and they declared to not suffer from any psychiatric or physical 
disease that could interfere with their performance.

The research took place in the Research Institute for Neuroscience, Education, and 
Didactics of the Patrizio Paoletti Foundation. The participants signed an informed 
consent. The study was approved by the ethics committee of Bar-Ilan University.

Before each experimental session, participants performed a training phase in 
which they learned to perform correctly the movements required for the experi-
ment. During the experimental session, EEG recording was conducted during the 
performance of diagonal and vertical movements with both arms at the same time 
in an antiphase movement (i.e., each arm moved jointly with the other arm starting 
from the opposite side of the body and moving toward the opposite direction along 
the same axis; for a clear explanation, see Figure 1).

2.2 Paradigm

Participants performed a total of 320 rhythmical movements with both arms 
while sitting in a chair. Movements were divided into eight blocks. Each block 
consisted in 40 rhythmical continuous movements paced by an external sound. We 
used a 440 Hz tone with a duration of 100 ms, presented with the pace of 1 Hz (i.e., 
one sound each second), in order to guide the movements.

At the beginning of each block, participants had to keep one arm in the upper 
position and the other one in the lower position (see Figure 1). Then, in line with 
the start of the pacing sounds, they had to move their arms along the vertical or 
diagonal axis, according to the condition of the block. A total of 20 consecutive tri-
als were used in each block. Each trial lasted 2 s. Therefore, each trial was composed 
of two sounds (i.e., two movements). The participants were instructed to perform 
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of development timing and that these two domains activate shared brain regions such as 
the prefrontal cortex and cerebellum [2]. Specifically, it was observed that activity in the 
prefrontal cortex increases when a motor task requires the maintenance of movement 
information through execution, selection of relevant task-related motor information, 
and inhibition of automated behavior that could compromise motor performance.
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ies related to a rehabilitation protocol based on stretching exercise and joint mobility 
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functional motoricity, and movement initiation [4]. More recently, Moreira et al. [5] 
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increase of beta and alpha power within a frontoparietal network after performance. 
They showed that this kind of motor activity could improve motoricity through 
modulation of cerebral plasticity over frontoparietal regions, suggesting that improved 
motor execution is directly linked to motor control in the central nervous system.

Over the last few years, we studied another motor task that involves diagonal 
movements, named Quadrato Motor Training (QMT) [6–8]. QMT is a sensorimo-
tor training based on step-by-step, whole-body movement in vertical, horizontal, 
and diagonal directions. From the electrophysiological point of view, pre- and 
post-EEG recording showed acute and chronic increase of theta and alpha power 
and coherence over frontal, parietal, and temporal regions [9–11]. We hypothe-
sized that it is especially the planning of diagonal movement which plays a crucial 
role in the establishment of such a modulation of theta and alpha band activity. 
However, it is difficult to disentangle and isolate the contribution of diagonal from 
vertical and horizontal movement, and further studies in which EEG is recorded 
during the execution of QMT should be performed. Thus, as a first step, in order 
to examine the effects of diagonal movements, in the current study, we measured 
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and VM, respectively), using EEG recording. Given the aforementioned literature, 
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1.2 Brain oscillations, movement, and cognition

Theta (4–7 Hz) activity seems to be involved in different cognitive functions 
such as sustained attention [12], spatial navigation [13], memory [14], medita-
tive states/internalized attention [15], and creativity [16]. Importantly, all these 
cognitive functions require integration from different cerebral regions in order 
to produce effective outcomes. In fact, it was suggested that there is an inverse 
relationship between the extent of a recruited cortical network and the elicited 
oscillatory frequency during task performance [17]. For these reasons, theta is also 
thought to support long-range integration and promotion of mental states related to 
absorption and concentration [18–20].

Alpha activity (8–12 Hz) is considered a fundamental brain rhythm produced 
in the occipital cortex which reflects cortical inactivity during relaxed wakeful-
ness with closed eyes and reduced sensory and motor processing [21, 22]. Alpha 
desynchronization has been observed during a task that requires the deployment of 
attention toward specific targets or locations in space, suggesting that alpha could 
play an important role in the management of attentional resources and sensory 
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been related to internal-directed attention [27].
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their eyes [28–30]. Beta desynchronization has been typically observed during the 
execution of voluntary movement [31, 32] and during sensorimotor processing 
[33]. After the conclusion of a voluntary movement, beta synchronization called 
 “post-movement beta rebound” has been observed over the sensorimotor cortex 
[34, 35]. Other studies have suggested that beta is also involved in a large range of 
cognitive, emotional, and attentional processing [36–39].

1.3 Aim of this study

Despite the fact that movement along the diagonal axis has been seen as a benefit 
in different motor and cognitive rehabilitation protocols, none of the studies we are 
aware of have investigated the neural correlates of diagonal movement during the 
actual movement performance. Therefore, we aimed to observe the electrophysi-
ological correlates of diagonal movements and compare them to a control condition 
such as vertical movement. We hypothesized that diagonal movements compared 
to vertical movements require more computational effort and motor control to be 
well executed. This should result in increased theta, in decreased alpha due to an 
increase in internalized attention, and finally in a modulation of beta tied to the 
start and the end of each movement.

2. Methods

2.1 Participants and design

Eleven right-handed healthy participants (six males; mean age 40.3 years; SD 
9.22) volunteered to take part in the study. All participants had normal or corrected-
to-normal vision, and they declared to not suffer from any psychiatric or physical 
disease that could interfere with their performance.

The research took place in the Research Institute for Neuroscience, Education, and 
Didactics of the Patrizio Paoletti Foundation. The participants signed an informed 
consent. The study was approved by the ethics committee of Bar-Ilan University.

Before each experimental session, participants performed a training phase in 
which they learned to perform correctly the movements required for the experi-
ment. During the experimental session, EEG recording was conducted during the 
performance of diagonal and vertical movements with both arms at the same time 
in an antiphase movement (i.e., each arm moved jointly with the other arm starting 
from the opposite side of the body and moving toward the opposite direction along 
the same axis; for a clear explanation, see Figure 1).

2.2 Paradigm

Participants performed a total of 320 rhythmical movements with both arms 
while sitting in a chair. Movements were divided into eight blocks. Each block 
consisted in 40 rhythmical continuous movements paced by an external sound. We 
used a 440 Hz tone with a duration of 100 ms, presented with the pace of 1 Hz (i.e., 
one sound each second), in order to guide the movements.

At the beginning of each block, participants had to keep one arm in the upper 
position and the other one in the lower position (see Figure 1). Then, in line with 
the start of the pacing sounds, they had to move their arms along the vertical or 
diagonal axis, according to the condition of the block. A total of 20 consecutive tri-
als were used in each block. Each trial lasted 2 s. Therefore, each trial was composed 
of two sounds (i.e., two movements). The participants were instructed to perform 
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the movement between each sound in order to be in the starting position or in the 
ending position whenever a sound occurred.

Four experimental conditions (movement (diagonal, vertical) and hand (right, 
left)) were used: (1) vertical movement starting with the right hand above head, (2) 
diagonal movement starting with the right hand above head, (3) vertical movement 
starting with the left hand above head, (4) and diagonal movement starting with 
the left hand above head. Each condition was repeated twice.

2.3 EEG

2.3.1 EEG recording

EEG was recorded using the eego sports system from ANT Neuro (Enschede, 
Netherlands). We recorded electrophysiological brain activity from 32 scalp sites 
with a 10/10 electrode layout. In addition, we used a three-dimensional accelerom-
eter placed on the right arm in order to record movements along x, y, and z axes. 
Recording was conducted with a sample rate of 1000 Hz, and impedance was kept 
below 10 kohm. Online reference was CPz.

The experiment was conducted in a dimly lighted room and implemented in 
E-Prime 2.0 (Psychology Software Tools, Pittsburgh, PA). We used a standard 
computer monitor for visual output and two speakers placed below the screen for 
sound presentation.

2.3.2 EEG analysis

EEG signals were preprocessed and analyzed using EEGLAB toolbox [40] for 
time-frequency analysis and eLORETA for source localization analysis. First, data 
were preprocessed using a 50 Hz notch filter and filtered between 1 and 40 Hz with 

Figure 1. 
Examples of the structure of a single trial. Each trial lasts 2 s and is composed of two sounds played at 0 and 
1000 ms. Since each block was composed of 20 continuous movements, the sound at 2000 ms of the represented 
trial is indeed the sound at 0 ms of the next trial. Here vertical and diagonal conditions are both depicted with 
the right arm in the upper position.
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a second-order infinite impulse response (IIR) Butterworth filter. The first two 
trials from each block were rejected in order to avoid transient activity related to the 
start of the continuous movement.

We then performed independent component analysis (ICA) using the Infomax 
algorithm implemented in EEGLAB, over the whole set of electrodes along the 
whole recording. Through ICA, we deconstructed the signal into 34 independent 
components, allowing us to identify and reject ocular and major motion artifacts. 
After labeling and rejection of non-brain-derived activity, we projected the compo-
nents back into the channel domain to obtain clear EEG time course and to perform 
further analysis (for ICA methodological information, see [41]). EEG was finally 
offline referenced against the mean of all derivations.

2.3.2.1 Time-frequency analysis

Two-second time windows were extracted, locking t0 with the first sound of 
each trial.

Time-frequency analysis was conducted for both single electrodes and four 
different region of interests (ROIs): frontal (electrodes F3, Fz, F4), fronto-central 
(electrodes FC1, FC2), parietal (electrodes P3, Pz, P4), and POz. These ROIs were 
selected on the base of a previous experiment [5] in which an increase in alpha 
and beta activity was found along the frontoparietal axis after the performance 
of diagonal movements. We extracted time-frequency courses for theta (4–7 Hz), 
alpha (8–12 Hz), and beta (13–30 Hz) frequency bands.

First, we computed event-related spectral perturbation (ESRP) on the whole 
trial period in EEGLAB. In this way, we obtained one matrix for each electrode, 
hence a total of 32 matrices. Each 100 by 200 matrix was composed of 100 fre-
quency values (from 1 to 50 Hz with frequency values distributed logarithmically 
over the total amount of rows) × 200 time points (from 1 to 2000 ms). A similar 
analysis was conducted by Cohen and colleagues [42].

Then, in order to analyze power value change in each frequency band of interest, 
we extracted and averaged data for each desired frequency band, comparing verti-
cal and diagonal arm movement-related spectral perturbation over time.

Figure 2. 
Accelerometer data representing peaks of movement as a function of time (resulting from the movement). We 
averaged data from all trials in vertical and diagonal conditions in order to identify the time points in which 
the arm reached the starting and the ending point of each movement. Bold lines represent presentation of the 
pacing sounds.
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the movement between each sound in order to be in the starting position or in the 
ending position whenever a sound occurred.
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a second-order infinite impulse response (IIR) Butterworth filter. The first two 
trials from each block were rejected in order to avoid transient activity related to the 
start of the continuous movement.

We then performed independent component analysis (ICA) using the Infomax 
algorithm implemented in EEGLAB, over the whole set of electrodes along the 
whole recording. Through ICA, we deconstructed the signal into 34 independent 
components, allowing us to identify and reject ocular and major motion artifacts. 
After labeling and rejection of non-brain-derived activity, we projected the compo-
nents back into the channel domain to obtain clear EEG time course and to perform 
further analysis (for ICA methodological information, see [41]). EEG was finally 
offline referenced against the mean of all derivations.

2.3.2.1 Time-frequency analysis

Two-second time windows were extracted, locking t0 with the first sound of 
each trial.

Time-frequency analysis was conducted for both single electrodes and four 
different region of interests (ROIs): frontal (electrodes F3, Fz, F4), fronto-central 
(electrodes FC1, FC2), parietal (electrodes P3, Pz, P4), and POz. These ROIs were 
selected on the base of a previous experiment [5] in which an increase in alpha 
and beta activity was found along the frontoparietal axis after the performance 
of diagonal movements. We extracted time-frequency courses for theta (4–7 Hz), 
alpha (8–12 Hz), and beta (13–30 Hz) frequency bands.

First, we computed event-related spectral perturbation (ESRP) on the whole 
trial period in EEGLAB. In this way, we obtained one matrix for each electrode, 
hence a total of 32 matrices. Each 100 by 200 matrix was composed of 100 fre-
quency values (from 1 to 50 Hz with frequency values distributed logarithmically 
over the total amount of rows) × 200 time points (from 1 to 2000 ms). A similar 
analysis was conducted by Cohen and colleagues [42].

Then, in order to analyze power value change in each frequency band of interest, 
we extracted and averaged data for each desired frequency band, comparing verti-
cal and diagonal arm movement-related spectral perturbation over time.

Figure 2. 
Accelerometer data representing peaks of movement as a function of time (resulting from the movement). We 
averaged data from all trials in vertical and diagonal conditions in order to identify the time points in which 
the arm reached the starting and the ending point of each movement. Bold lines represent presentation of the 
pacing sounds.
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The trial period was split into two time windows: forward period (1000 ms 
after the first sound (1–1000 ms)) and comeback period (1000 ms after the second 
sound for each trial (1001–2000 ms)). These two time windows represent two 
distinct movements in each trial. Forward period includes the movement from the 
starting position to the ending position, while comeback period includes the move-
ment back from the ending position to the starting position (see Figure 1).

Statistical analysis was performed on specific time windows in both forward 
period and comeback period. Time windows were first defined by the accelerometer 
data. Our accelerometer can detect not only the acceleration but also the position in 
space starting from a baseline reference position. We observed that the participants 
reached the starting point and ending point slightly after the actual sound presenta-
tion. We extracted data from the accelerometer from each trial and observed that 
the delay between sound presentation and actual start of the movement from the 
starting point was 190 ms while between sound presentation and start of actual 
movement from the ending point was 160 ms (see Figure 2).

Finally, statistical analysis was performed using STATISTICA software 
(StatSoft, Inc., Tulsa, OK, USA).

2.3.2.2 Source localization

Using low-resolution brain electromagnetic tomography (LORETA) [43], it is 
possible to solve the inverse problem in EEG and localize generators of electrophysi-
ological components of EEG signal in a specific frequency band.

After time-frequency analysis, we performed source localization analysis using 
LORETA in order to observe differences between vertical and diagonal movements 
for theta (4–7 Hz), alpha (8–12 Hz), and beta (13–30 Hz) activity. Source localiza-
tion analysis was conducted in specific time windows using a data-driven approach, 
according to what we observed in the time-frequency analysis.

More specifically, we focused on the time windows previously observed in time-
frequency analysis for each specific frequency band. Therefore, we compared the 
generator of theta in diagonal and vertical movements during the planning of move-
ment in forward period (between 100 and 300 ms), of alpha during the two peaks 
of activity in comeback period (200–400 ms; 650–850 ms) and of beta in forward 
period (320–520 ms) and comeback period (220–420 ms). Specifically, analyzed fre-
quencies were theta (7 Hz), alpha (11 Hz), and beta (two frequencies, 19 and 23 Hz).

We performed one-tailed t-test comparisons based on the time-frequency 
observed activity pattern (i.e., diagonal-related activity greater than vertical-related 
activity or vice versa). Therefore, for theta, we expected diagonal > vertical; for 
alpha, we expected diagonal > vertical in P1 and vertical > diagonal in P2; and for 
beta, we expected diagonal > vertical in both time windows.

Statistical analysis was conducted using subject-wise normalization, and results 
are expressed as a t-test on the logarithmically transformed data. Nonparametric ran-
domized permutation and probability threshold corrections were performed [44].

3. Results

3.1 Time-frequency results

3.1.1 Theta (4–7 Hz)

We selected a time window ranging from −100 to +100 ms around the peaks 
recorded by accelerometer and then extracted and analyzed the activity. We 
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identified the two peaks in forward period and comeback period as peak forward 
(190 ms) and peak comeback (1160 ms), respectively.

We performed a 2 × 2 ANOVA with condition (vertical, diagonal) and peak 
(peak forward, peak comeback) as factors. ANOVA was performed for specific 
ROIs: frontal ROI (F3, Fz, F4), Fz, and parietal ROI (P3, Pz, P4). We performed 
analysis on Fz separately because we know that this region is particularly relevant 
for the generation of frontal midline theta [12, 15].

For the frontal ROI, none of the main effects was significant (all p > 0.14). The 
condition-peak interaction was significant [F(1, 10) = 5.21; p < 0.05; η2 = 0.34]. 
Fisher LSD post hoc analysis showed that peak forward in the diagonal condition 
was significantly higher than peak forward in the vertical condition (p < 0.03) and 
from peak comeback in the diagonal condition (p < 0.05) (see Figure 3).

For channel Fz, none of the main effects was significant (p > 0.11). The condi-
tion-peak interaction was significant [F(1, 10) = 5.15; p < 0.05; η2 = 0.34]. Fisher 
LSD post hoc analysis showed that peak forward in the diagonal condition was 
significantly different from peak forward in the vertical condition (p < 0.03) and 
from peak comeback in the diagonal condition (p < 0.03) (see Figure 3).

For the parietal ROI, none of the main effects or their interaction was significant 
(all p > 0.14).

3.1.2 Alpha (8–12 Hz)

First, we analyzed the same time window previously analyzed for the theta band 
(Peak1 = 90–290 ms, Peak2 = 1060–1260 ms) in the same clustered ROIs (frontal 
ROI, parietal ROI) and POz (see Figure 4).

For all ROIs, no main effects or their interaction was significant (all p > 0.15).
In order to conduct a more specific analysis, we observed the time course and per-

formed qualitative assessment by visual inspection. In this way, we were able to divide 
each period into time windows to be used for analysis. We used this manual selection 
method to identify specific time windows of interest in a data-driven approach  

Figure 3. 
Theta (4–7 Hz) time-frequency plot (left panels) and analysis (right panels) of the 2 × 2 ANOVA with 
condition and peak as factors in frontal ROI (A, B) and Fz (C, D). In A and C, highlighted rectangles 
represent time windows used for analysis. In B and D, bold lines represent significant differences (p < 0.05).
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The trial period was split into two time windows: forward period (1000 ms 
after the first sound (1–1000 ms)) and comeback period (1000 ms after the second 
sound for each trial (1001–2000 ms)). These two time windows represent two 
distinct movements in each trial. Forward period includes the movement from the 
starting position to the ending position, while comeback period includes the move-
ment back from the ending position to the starting position (see Figure 1).

Statistical analysis was performed on specific time windows in both forward 
period and comeback period. Time windows were first defined by the accelerometer 
data. Our accelerometer can detect not only the acceleration but also the position in 
space starting from a baseline reference position. We observed that the participants 
reached the starting point and ending point slightly after the actual sound presenta-
tion. We extracted data from the accelerometer from each trial and observed that 
the delay between sound presentation and actual start of the movement from the 
starting point was 190 ms while between sound presentation and start of actual 
movement from the ending point was 160 ms (see Figure 2).

Finally, statistical analysis was performed using STATISTICA software 
(StatSoft, Inc., Tulsa, OK, USA).

2.3.2.2 Source localization

Using low-resolution brain electromagnetic tomography (LORETA) [43], it is 
possible to solve the inverse problem in EEG and localize generators of electrophysi-
ological components of EEG signal in a specific frequency band.

After time-frequency analysis, we performed source localization analysis using 
LORETA in order to observe differences between vertical and diagonal movements 
for theta (4–7 Hz), alpha (8–12 Hz), and beta (13–30 Hz) activity. Source localiza-
tion analysis was conducted in specific time windows using a data-driven approach, 
according to what we observed in the time-frequency analysis.

More specifically, we focused on the time windows previously observed in time-
frequency analysis for each specific frequency band. Therefore, we compared the 
generator of theta in diagonal and vertical movements during the planning of move-
ment in forward period (between 100 and 300 ms), of alpha during the two peaks 
of activity in comeback period (200–400 ms; 650–850 ms) and of beta in forward 
period (320–520 ms) and comeback period (220–420 ms). Specifically, analyzed fre-
quencies were theta (7 Hz), alpha (11 Hz), and beta (two frequencies, 19 and 23 Hz).

We performed one-tailed t-test comparisons based on the time-frequency 
observed activity pattern (i.e., diagonal-related activity greater than vertical-related 
activity or vice versa). Therefore, for theta, we expected diagonal > vertical; for 
alpha, we expected diagonal > vertical in P1 and vertical > diagonal in P2; and for 
beta, we expected diagonal > vertical in both time windows.

Statistical analysis was conducted using subject-wise normalization, and results 
are expressed as a t-test on the logarithmically transformed data. Nonparametric ran-
domized permutation and probability threshold corrections were performed [44].

3. Results

3.1 Time-frequency results

3.1.1 Theta (4–7 Hz)

We selected a time window ranging from −100 to +100 ms around the peaks 
recorded by accelerometer and then extracted and analyzed the activity. We 
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identified the two peaks in forward period and comeback period as peak forward 
(190 ms) and peak comeback (1160 ms), respectively.

We performed a 2 × 2 ANOVA with condition (vertical, diagonal) and peak 
(peak forward, peak comeback) as factors. ANOVA was performed for specific 
ROIs: frontal ROI (F3, Fz, F4), Fz, and parietal ROI (P3, Pz, P4). We performed 
analysis on Fz separately because we know that this region is particularly relevant 
for the generation of frontal midline theta [12, 15].

For the frontal ROI, none of the main effects was significant (all p > 0.14). The 
condition-peak interaction was significant [F(1, 10) = 5.21; p < 0.05; η2 = 0.34]. 
Fisher LSD post hoc analysis showed that peak forward in the diagonal condition 
was significantly higher than peak forward in the vertical condition (p < 0.03) and 
from peak comeback in the diagonal condition (p < 0.05) (see Figure 3).

For channel Fz, none of the main effects was significant (p > 0.11). The condi-
tion-peak interaction was significant [F(1, 10) = 5.15; p < 0.05; η2 = 0.34]. Fisher 
LSD post hoc analysis showed that peak forward in the diagonal condition was 
significantly different from peak forward in the vertical condition (p < 0.03) and 
from peak comeback in the diagonal condition (p < 0.03) (see Figure 3).

For the parietal ROI, none of the main effects or their interaction was significant 
(all p > 0.14).

3.1.2 Alpha (8–12 Hz)

First, we analyzed the same time window previously analyzed for the theta band 
(Peak1 = 90–290 ms, Peak2 = 1060–1260 ms) in the same clustered ROIs (frontal 
ROI, parietal ROI) and POz (see Figure 4).

For all ROIs, no main effects or their interaction was significant (all p > 0.15).
In order to conduct a more specific analysis, we observed the time course and per-

formed qualitative assessment by visual inspection. In this way, we were able to divide 
each period into time windows to be used for analysis. We used this manual selection 
method to identify specific time windows of interest in a data-driven approach  

Figure 3. 
Theta (4–7 Hz) time-frequency plot (left panels) and analysis (right panels) of the 2 × 2 ANOVA with 
condition and peak as factors in frontal ROI (A, B) and Fz (C, D). In A and C, highlighted rectangles 
represent time windows used for analysis. In B and D, bold lines represent significant differences (p < 0.05).
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(a similar approach was used by Missonnier et al. see [45]). Maclin et al. [46] used a 
similar approach to manually select specific noncanonical frequency bands of inter-
est. After visual inspection, we decided to adopt different approaches for each period, 
basing our criterion on specific parameters that will be explained later.

3.1.2.1 Alpha: forward period

After visual inspection, since we did not have an a priori hypothesis, we decided 
to analyze forward period adopting an exploratory approach. We divided the 
forward period into four time windows of 250 ms each in order to analyze the com-
putation of the movement (0–250 ms; t1), the start of the movement (250–500 ms; 
t2), the crossing of body midline (500–750 ms; t3), and the final part of the move-
ment execution (750–1000 ms; t4) (see Figure 5A, C and E).

We employed a 2 × 4 ANOVA using condition (vertical, diagonal) and time win-
dow (t1, t2, t3, t4) as factors. We performed analysis on frontal and parietal ROIs.

None of the main effects or their interaction were significant for frontal ROI (all 
p > 0.09), for parietal ROI (all p > 0.18), and for POz (all p > 0.13).

3.1.2.2 Alpha: comeback period

Observing the time course during comeback period in the alpha range, we 
noticed two distinct peaks of activity both in frontal and parietal regions, located at 
1290 and 1790 ms, respectively, after the start of the comeback period.

First, we segmented the comeback period into three main stages in order to analyze 
the two main peaks and the activity between them. The external time windows last 
200 ms and fell around the two main peaks. Between these two time windows, we 
identified a central additional one. Therefore, we identified the three time windows as 
follows: p1 = 200–400 ms, p2 = 400–700 ms, p3 = 700–900 ms (see Figure 5B, D and F).

We performed a 2 × 3 ANOVA using condition (vertical, diagonal) and time 
window (p1, p2, p3) as factors. We performed the analysis on frontal and parietal 
ROIs and POz.

For the frontal ROI, none of the main effects were significant (all p > 0.30). 
The condition-time window interaction was significant [F(2, 20) = 4.37; p < 0.05; 
η2 = 0.30]. Fisher LSD post hoc revealed that p1 in vertical was significantly differ-
ent from p3 in vertical (p < 0.05), while all other comparisons were not significant 
(see Figure 6A).

For the parietal ROI, none of the main effects were significant (all p > 0.59). 
The condition-time window interaction was significant [F(2,20) = 6.13; p < 0.01; 
η2 = 0.38]. Fisher LSD post hoc revealed that p1 in vertical was significantly dif-
ferent from p3 in vertical (p < 0.05), p1 in diagonal (p < 0.05), and p2 in diagonal 
(p < 0.05), while all other comparisons were not significant. Comparison between 
vertical and diagonal condition was significant in p1 (p < 0.05) and p3 (p < 0.05) 
(see Figure 6B).

Figure 4. 
Alpha (8–12 Hz) time-frequency plot with time windows of interest for frontal ROI (A), parietal ROI (B), 
and POz (C).
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For POz, none of the main effects were significant (all p > 0.57). The condition-
time window interaction was significant [F(2, 20) = 8.64; p < 0.01; η2 = 0.46]. 
Fisher LSD post hoc revealed that p1 in vertical was significantly different from 
p3 in vertical (p < 0.01), p1 in diagonal (p < 0.05), and p2 in diagonal (p < 0.05); 
p3 in diagonal was significantly different from p3 in vertical (p < 0.01) and p1 in 
diagonal (p < 0.05) (see Figure 6C).

3.1.2.3 Alpha: single peaks

To refine our analysis, we extracted the activity in the two main peaks using 
a time window of 50 ms around the maximum value (Peak1 = 240–340 ms; 
Peak2 = 740–840 ms) and performed a 2 by 2 ANOVA with condition (vertical, 
diagonal) and peaks (peak forward, peak comeback) as factors (see Figure 7).

Figure 5. 
Alpha (8–12 Hz) time-frequency plot with time window segmentation of forward period (left side) in frontal 
ROI (A), parietal ROI (C), and POz (E) and comeback period (right side) in frontal ROI (B), parietal ROI 
(D), and POz (F).

Figure 6. 
Alpha (8–12 Hz) analysis of time windows p1, p2, and p3 during comeback period in frontal ROI (a), parietal 
ROI (B), and POz (panel C).
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(a similar approach was used by Missonnier et al. see [45]). Maclin et al. [46] used a 
similar approach to manually select specific noncanonical frequency bands of inter-
est. After visual inspection, we decided to adopt different approaches for each period, 
basing our criterion on specific parameters that will be explained later.

3.1.2.1 Alpha: forward period

After visual inspection, since we did not have an a priori hypothesis, we decided 
to analyze forward period adopting an exploratory approach. We divided the 
forward period into four time windows of 250 ms each in order to analyze the com-
putation of the movement (0–250 ms; t1), the start of the movement (250–500 ms; 
t2), the crossing of body midline (500–750 ms; t3), and the final part of the move-
ment execution (750–1000 ms; t4) (see Figure 5A, C and E).

We employed a 2 × 4 ANOVA using condition (vertical, diagonal) and time win-
dow (t1, t2, t3, t4) as factors. We performed analysis on frontal and parietal ROIs.
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3.1.2.2 Alpha: comeback period

Observing the time course during comeback period in the alpha range, we 
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First, we segmented the comeback period into three main stages in order to analyze 
the two main peaks and the activity between them. The external time windows last 
200 ms and fell around the two main peaks. Between these two time windows, we 
identified a central additional one. Therefore, we identified the three time windows as 
follows: p1 = 200–400 ms, p2 = 400–700 ms, p3 = 700–900 ms (see Figure 5B, D and F).

We performed a 2 × 3 ANOVA using condition (vertical, diagonal) and time 
window (p1, p2, p3) as factors. We performed the analysis on frontal and parietal 
ROIs and POz.

For the frontal ROI, none of the main effects were significant (all p > 0.30). 
The condition-time window interaction was significant [F(2, 20) = 4.37; p < 0.05; 
η2 = 0.30]. Fisher LSD post hoc revealed that p1 in vertical was significantly differ-
ent from p3 in vertical (p < 0.05), while all other comparisons were not significant 
(see Figure 6A).

For the parietal ROI, none of the main effects were significant (all p > 0.59). 
The condition-time window interaction was significant [F(2,20) = 6.13; p < 0.01; 
η2 = 0.38]. Fisher LSD post hoc revealed that p1 in vertical was significantly dif-
ferent from p3 in vertical (p < 0.05), p1 in diagonal (p < 0.05), and p2 in diagonal 
(p < 0.05), while all other comparisons were not significant. Comparison between 
vertical and diagonal condition was significant in p1 (p < 0.05) and p3 (p < 0.05) 
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For POz, none of the main effects were significant (all p > 0.57). The condition-
time window interaction was significant [F(2, 20) = 8.64; p < 0.01; η2 = 0.46]. 
Fisher LSD post hoc revealed that p1 in vertical was significantly different from 
p3 in vertical (p < 0.01), p1 in diagonal (p < 0.05), and p2 in diagonal (p < 0.05); 
p3 in diagonal was significantly different from p3 in vertical (p < 0.01) and p1 in 
diagonal (p < 0.05) (see Figure 6C).

3.1.2.3 Alpha: single peaks

To refine our analysis, we extracted the activity in the two main peaks using 
a time window of 50 ms around the maximum value (Peak1 = 240–340 ms; 
Peak2 = 740–840 ms) and performed a 2 by 2 ANOVA with condition (vertical, 
diagonal) and peaks (peak forward, peak comeback) as factors (see Figure 7).

Figure 5. 
Alpha (8–12 Hz) time-frequency plot with time window segmentation of forward period (left side) in frontal 
ROI (A), parietal ROI (C), and POz (E) and comeback period (right side) in frontal ROI (B), parietal ROI 
(D), and POz (F).

Figure 6. 
Alpha (8–12 Hz) analysis of time windows p1, p2, and p3 during comeback period in frontal ROI (a), parietal 
ROI (B), and POz (panel C).
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For the frontal ROI, none of the main effects were significant (all p > 0.32). The 
condition-time window interaction was found [F(2,20) = 7.66; p < 0.05; η2 = 0.43]. 
Fisher LSD post hoc revealed that Peak1 in vertical was significantly different from 
Peak2 in vertical (p < 0.05). No differences between vertical and diagonal were 
found (see Figure 7A).

For the parietal ROI, the condition-time window interaction was significant 
[F(2, 20) = 28.72; p < 0.001; η2 = 0.74]. Fisher LSD post hoc revealed that verti-
cal and diagonal were significantly different in both Peak1 and Peak2 (p < 0.01) 
(see Figure 7B). Peak1 and Peak2 were also significantly different for both vertical 
(p < 0.001) and diagonal (p < 0.05). None of the main effects were significant (all 
p > 0.07).

For POz, the condition-time window interaction was significant [F(2, 
20) = 28.52; p < 0.001; η2 = 0.74]. Fisher LSD post hoc revealed that vertical and 
diagonal were significantly different in both Peak1 and Peak2 (p < 0.01) (see 
Figure 7C). Peak1 and Peak2 were significantly different in both vertical (p < 0.001) 
and diagonal (p < 0.05). None of the main effects were significant (all p > 0.19).

Figure 7. 
Alpha (8–12 Hz) time-frequency plot with peak segmentation during comeback period in frontal ROI (A), 
parietal ROI (C), and POz (E). Analysis of peaks p1 and p2 during comeback period in frontal ROI (B), 
parietal ROI (panel D), and POz (panel F). In A, C, and E, highlighted rectangles represent time windows 
used for analysis. In B, D, and F, only significant or almost significant comparisons between vertical and 
diagonal are displayed. Bold lines represent significant differences (p < 0.05), and the dashed line represents a 
difference that approaches statistical significance.
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3.1.2.4 Alpha1 vs. Alpha2

Since lower and upper alphas have previously been reported to have different 
roles, lower alpha being related to general attentional processes and upper alpha 
being more sensitive to perceptual and semantic processing during task perfor-
mance [51], we further wanted to explore the possibility that lower and upper 
alpha could have different involvement in the modulation of alpha biphasic activity 
during vertical movements. Therefore, we analyzed POz, where we have found the 
maximum alpha modulation.

We divided the alpha band into Alpha1 and Alpha2 (8–10 Hz and 11–12 Hz, 
respectively) and performed a two-way ANOVA with alpha (Alpha1, Alpha2) and 
peak (Peak1, Peak2) as factors.

The main effect of peak was significant [F(1, 10) = 11.42; p < 0.01; η2 = 0.53], 
suggesting that Peak2 (mean, 0.432 dB) was significantly higher than Peak1 (mean. 
−0.689 dB). The alpha-peak interaction was significant [F(1, 10) = 14.5; p < 0.01; 
η2 = 0.59]. Fisher LSD post hoc revealed that comparison between Alpha1 and 
Alpha2 approached significance in Peak1 (p = 0.07) and was significant in Peak2 
(p < 0.05) (see Figure 8).

3.1.3 Beta (13–30 Hz)

For analysis in the beta frequency, we used the same time window already 
used for the alpha band. In forward period (M1), we therefore used four consecu-
tive time windows lasting 250 ms each, while in the comeback period, we used 
three time windows: p1 = 200–400 ms, p2 = 400–700 ms, p3 = 700–900 ms (see 
Figure 9).

3.1.3.1 Beta: forward period

A 2 × 4 ANOVA using condition (vertical, diagonal) and time window (t1, t2, 
t3, t4) as factors was conducted. We performed analysis on the frontal and parietal 
ROIs. For the frontal ROI, none of the main effects or interaction were significant (all 
p > 0.25). For the parietal ROI, none of the main effects were significant (all p > 0.38).

Figure 8. 
Comparisons between Alpha1 and Alpha2 in Peak1 and Peak2. The bold line represents a significant difference 
(p < 0.05), and the dashed line represents a difference that approaches statistical significance.
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For the frontal ROI, none of the main effects were significant (all p > 0.32). The 
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Alpha (8–12 Hz) time-frequency plot with peak segmentation during comeback period in frontal ROI (A), 
parietal ROI (C), and POz (E). Analysis of peaks p1 and p2 during comeback period in frontal ROI (B), 
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difference that approaches statistical significance.
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3.1.2.4 Alpha1 vs. Alpha2

Since lower and upper alphas have previously been reported to have different 
roles, lower alpha being related to general attentional processes and upper alpha 
being more sensitive to perceptual and semantic processing during task perfor-
mance [51], we further wanted to explore the possibility that lower and upper 
alpha could have different involvement in the modulation of alpha biphasic activity 
during vertical movements. Therefore, we analyzed POz, where we have found the 
maximum alpha modulation.

We divided the alpha band into Alpha1 and Alpha2 (8–10 Hz and 11–12 Hz, 
respectively) and performed a two-way ANOVA with alpha (Alpha1, Alpha2) and 
peak (Peak1, Peak2) as factors.

The main effect of peak was significant [F(1, 10) = 11.42; p < 0.01; η2 = 0.53], 
suggesting that Peak2 (mean, 0.432 dB) was significantly higher than Peak1 (mean. 
−0.689 dB). The alpha-peak interaction was significant [F(1, 10) = 14.5; p < 0.01; 
η2 = 0.59]. Fisher LSD post hoc revealed that comparison between Alpha1 and 
Alpha2 approached significance in Peak1 (p = 0.07) and was significant in Peak2 
(p < 0.05) (see Figure 8).

3.1.3 Beta (13–30 Hz)

For analysis in the beta frequency, we used the same time window already 
used for the alpha band. In forward period (M1), we therefore used four consecu-
tive time windows lasting 250 ms each, while in the comeback period, we used 
three time windows: p1 = 200–400 ms, p2 = 400–700 ms, p3 = 700–900 ms (see 
Figure 9).

3.1.3.1 Beta: forward period

A 2 × 4 ANOVA using condition (vertical, diagonal) and time window (t1, t2, 
t3, t4) as factors was conducted. We performed analysis on the frontal and parietal 
ROIs. For the frontal ROI, none of the main effects or interaction were significant (all 
p > 0.25). For the parietal ROI, none of the main effects were significant (all p > 0.38).
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Comparisons between Alpha1 and Alpha2 in Peak1 and Peak2. The bold line represents a significant difference 
(p < 0.05), and the dashed line represents a difference that approaches statistical significance.
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3.1.3.2 Beta: comeback period

We performed a 2 × 3 ANOVA using condition (vertical, diagonal) and time 
window (p1, p2, p3) as factors. We performed the analysis on frontal and parietal 
ROIs.

For the frontal ROI, none of the main effects were significant (all p > 0.12). 
The condition-time window interaction was significant [F(2, 20) = 4.07; p < 0.05; 
η2 = 0.28]. Fisher LSD post hoc revealed that p1 in vertical was significantly differ-
ent from all other factors (p < 0.05) (see Figure 10A).

For the parietal ROI, none of the main effects were significant (all p > 0.55). 
The condition-time window interaction was significant [F(2, 20) = 5.45; p < 0.05; 
η2 = 0.35]. Fisher LSD post hoc revealed that p1 in vertical was significantly dif-
ferent from p2 in vertical (p < 0.01), p3 in vertical (p < 0.01), p1 in diagonal 
(p < 0.05), and p3 in diagonal (p < 0.05), while all other comparisons were not 
significant (see Figure 10B). For the parietal ROI, none of the main effects were 
significant (all p > 0.55).

Figure 10. 
Beta (13–30 Hz) analysis of time windows p1, p2, and p3 during comeback period for frontal ROI (A) and 
parietal ROI (B). Bold lines represent significant differences (p < 0.05).

Figure 9. 
Beta (13–30 Hz) time-frequency plot with peak segmentation during forward period (left panels) and 
comeback period (right panels) for frontal ROI (A, B) and parietal ROI (C, D).
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3.2 Source localization

After observing modulation of theta, alpha, and beta frequency, we observed the 
difference between diagonal and vertical movement in the generation of such fre-
quency band activity in specific time windows (see Methods section for more details).

3.2.1 Theta

We analyzed theta during the peak in the forward period at the start of each 
trial, specifically between 100 and 300 ms. Significantly higher theta was found in 
the left middle frontal gyrus during diagonal movement compared to vertical move-
ment (p < 0.05) (see Figure 11).

3.2.2 Alpha

We analyzed alpha in two time windows corresponding to the positive and nega-
tive activity peaks during the comeback period. These two time windows were P1 at 
1200–1400 ms and P2 at 1650–1850 ms.

For P1, significant higher alpha was found in the posterior cingulate cortex 
during diagonal movement compared to vertical movement (p < 0.05). For P2, sig-
nificantly higher alpha was found in the left inferior parietal lobule during vertical 
movement compared to diagonal movement (p < 0.05) (see Figure 11B).

3.2.3 Beta

We analyzed beta during the second time window in forward period (t2) and in 
the first time window (p1) during comeback period. These two time windows were 
t2 at 320–520 ms and p1 at 1220–1420 ms. None of the comparisons was significant 
(all p > 0.52).

Figure 11. 
Source localization of theta (A) and alpha (B) activity. Theta has been analyzed in the 100–300 ms time 
window. Alpha activity has been analyzed in two time windows: 1200–1400 and 1650–1850 ms (B). Blue blobs 
mean that activity during diagonal movement is higher than during vertical movement and vice versa for 
yellow blobs.
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3.1.3.2 Beta: comeback period

We performed a 2 × 3 ANOVA using condition (vertical, diagonal) and time 
window (p1, p2, p3) as factors. We performed the analysis on frontal and parietal 
ROIs.

For the frontal ROI, none of the main effects were significant (all p > 0.12). 
The condition-time window interaction was significant [F(2, 20) = 4.07; p < 0.05; 
η2 = 0.28]. Fisher LSD post hoc revealed that p1 in vertical was significantly differ-
ent from all other factors (p < 0.05) (see Figure 10A).

For the parietal ROI, none of the main effects were significant (all p > 0.55). 
The condition-time window interaction was significant [F(2, 20) = 5.45; p < 0.05; 
η2 = 0.35]. Fisher LSD post hoc revealed that p1 in vertical was significantly dif-
ferent from p2 in vertical (p < 0.01), p3 in vertical (p < 0.01), p1 in diagonal 
(p < 0.05), and p3 in diagonal (p < 0.05), while all other comparisons were not 
significant (see Figure 10B). For the parietal ROI, none of the main effects were 
significant (all p > 0.55).

Figure 10. 
Beta (13–30 Hz) analysis of time windows p1, p2, and p3 during comeback period for frontal ROI (A) and 
parietal ROI (B). Bold lines represent significant differences (p < 0.05).

Figure 9. 
Beta (13–30 Hz) time-frequency plot with peak segmentation during forward period (left panels) and 
comeback period (right panels) for frontal ROI (A, B) and parietal ROI (C, D).
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3.2 Source localization

After observing modulation of theta, alpha, and beta frequency, we observed the 
difference between diagonal and vertical movement in the generation of such fre-
quency band activity in specific time windows (see Methods section for more details).

3.2.1 Theta

We analyzed theta during the peak in the forward period at the start of each 
trial, specifically between 100 and 300 ms. Significantly higher theta was found in 
the left middle frontal gyrus during diagonal movement compared to vertical move-
ment (p < 0.05) (see Figure 11).

3.2.2 Alpha

We analyzed alpha in two time windows corresponding to the positive and nega-
tive activity peaks during the comeback period. These two time windows were P1 at 
1200–1400 ms and P2 at 1650–1850 ms.

For P1, significant higher alpha was found in the posterior cingulate cortex 
during diagonal movement compared to vertical movement (p < 0.05). For P2, sig-
nificantly higher alpha was found in the left inferior parietal lobule during vertical 
movement compared to diagonal movement (p < 0.05) (see Figure 11B).

3.2.3 Beta

We analyzed beta during the second time window in forward period (t2) and in 
the first time window (p1) during comeback period. These two time windows were 
t2 at 320–520 ms and p1 at 1220–1420 ms. None of the comparisons was significant 
(all p > 0.52).

Figure 11. 
Source localization of theta (A) and alpha (B) activity. Theta has been analyzed in the 100–300 ms time 
window. Alpha activity has been analyzed in two time windows: 1200–1400 and 1650–1850 ms (B). Blue blobs 
mean that activity during diagonal movement is higher than during vertical movement and vice versa for 
yellow blobs.
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4. Discussion

Diagonal rhythmical bilateral movements have previously been suggested to 
promote improvement in motor and cognitive functions [1, 3]. The diagonal axis 
has the role of a metaphorical rule breaker in relation to the way of thinking, as sug-
gested by the definition of “diagonal thinking” as a mixture of logical (i.e., vertical) 
and creative (i.e., lateral) thinking [47]. Diagonal movements are widely used in 
disciplines based on whole-body movements such as Asian martial arts (i.e., aikido, 
Tai Chi, Qigong) or modern and contemporary dance.

Yet, no study that we are aware of has actually examined electrophysiologi-
cal changes during diagonal movements. Consequently, in the present study, we 
wanted to examine cerebral activity during diagonal arm movements in comparison 
to vertical arm movements. Previous literature has suggested that diagonal move-
ments promote neuroplasticity along frontoparietal pathways through an increase 
in alpha and beta power [5]. For this reason, we focused our analysis on spectral 
power changes during the actual execution of movements in the theta, alpha, and 
beta bands.

Time-frequency analysis was conducted in order to observe how power in 
specific frequencies changes over time during movement execution.

4.1 Theta: attention, navigation, and computation

Comparing vertical to diagonal movement, we observed an increase of theta 
power during the first stage of diagonal movement over frontal electrodes, especially 
over Fz. This increment of frontal theta can be explained in three interrelated ways, 
including attentional effort [12, 19], navigational computation [13], and integration 
of information from different brain regions [16, 17]. First, it reflects greater atten-
tional effort required for diagonal movement. In fact, diagonal movements are more 
complex and less automatic than vertical movements, and subjects must be more 
focused and pay more attention in order to perform correctly the movement. Second, 
it could reflect navigational computation. In both diagonal and vertical movements, 
the arms swing in peripersonal space, requiring the computation of the trajectory 
of both arms. However, it is only in diagonal movements that the arms go across the 
sagittal body midline and reach the other peripersonal hemispace. This kind of cross-
ing requires more complex spatial computation than during movements that do not 
involve both hemispaces. Third, theta has previously been related to the integration of 
different information from distant cerebral regions [17]. Other studies have suggested 
that theta increase is related to a general mechanism of recall and integration of infor-
mation from different domains supported by a central executive module [19, 48].

Finally, the state of focused attention on movement execution, together with the 
navigational computation necessary for the performance and the external sound, 
could evoke an absorption state in subjects. In fact, the role of frontal midline theta 
has been previously related to meditation, internalized attention, and integration of 
sensory information into executive control components of complex motor behavior 
[12, 15, 49].

4.2 Alpha: internalized attention and movement

While greater theta activity was related to the diagonal movements, we observed 
a biphasic modulation of alpha activity during the second part of vertical move-
ments. Keeping in mind that each movement was composed of two parts (forward 
period and comeback period), we observed a biphasic response in the comeback 
period during vertical movement.
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In fact, we observed first a decrease of alpha power immediately after the start 
of the comeback period and, consequently, an increase in the same frequency band 
tied to the end of the movement.

The decreased alpha activity observed immediately after the end of the second 
movement could reflect a decrease in internalized attention.

The decrease in alpha is classically related to a decrease of focusing on internal 
states and an amplified processing of information from the environment through 
sensorial inputs, especially from the visual system [17, 50].

Thus, this alpha decrease supports an increased attentional focus on the envi-
ronment and a contextual decrease of internalized attention. Probably, after the 
forward period, subjects consider the movement ended, and this could represent an 
attentional disengagement related to the movement performance.

For those reasons, vertical movements in the comeback period do not require 
particular cognitive effort, but, immediately before the next trial, subjects must 
re-engage cognitive resources and focus on the internal state causing the significant 
increase of alpha observed at the end of the whole trial.

Klimesch [51] suggested that alpha is not a unitary frequency band but it would 
be better described as a union of two sub-bands named lower and upper alpha. 
These two sub-bands seem to support different functions: lower alpha would be 
more modulated by general attentional processes, while upper alpha would be more 
sensitive to perceptual and semantic processing during task performance.

Our result suggests that during vertical movement, Alpha1 and Alpha2 were sig-
nificantly different in Peak2 and approached significance in Peak1. This means that 
during vertical movements, in Peak1, Alpha2 is slightly lower than Alpha1 and vice 
versa and in Peak2 Alpha2 is higher than Alpha1. Since Alpha2 has been associated 
with perceptual processing during task performance [51], we can hypothesize that 
the activity pattern observed over alpha power could reflect not a pure movement-
related attentional engagement/disengagement but rather an inhibition/enhance-
ment of environmental sensory input processing.

4.3 Beta

In the beta band, we observed a desynchronization during comeback period only 
in vertical movements, around 1300 ms after the start of the trial. The timing and 
the shape of the time course follow as observed in Peak1 in the alpha band. Contrary 
to our expectations, we did not find a similar desynchronization during diagonal 
movements. Probably, higher attentional demand during diagonal movement could 
address this issue, but further research will be performed.

Between consecutive trials (from 1900 to 100 ms of the next trial), we can 
observe a small increase in beta activity both in diagonal and vertical movements. 
This enhanced beta activity represents the post-movement beta rebound [35]. The 
presence of this activity suggests that subjects perceive the end of the trial as the 
conclusion of the movement, indexing the new trial as a new movement.

4.4 Source localization

A theta generator during the first stage of diagonal movements has been located in 
the middle frontal gyrus of the left hemisphere. The location of this generator supports 
the aforementioned frontal midline theta hypothesis in which the increase of theta 
during diagonal movement could increase internalized attention and integration of 
information from different regions such as frontal, sensorimotor, and parietal cortices.

Alpha generators during Peak1 and Peak2 in comeback period were found to 
be located in the posterior cingulate cortex and the left inferior parietal lobule, 
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4. Discussion
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to vertical arm movements. Previous literature has suggested that diagonal move-
ments promote neuroplasticity along frontoparietal pathways through an increase 
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beta bands.
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including attentional effort [12, 19], navigational computation [13], and integration 
of information from different brain regions [16, 17]. First, it reflects greater atten-
tional effort required for diagonal movement. In fact, diagonal movements are more 
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focused and pay more attention in order to perform correctly the movement. Second, 
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ing requires more complex spatial computation than during movements that do not 
involve both hemispaces. Third, theta has previously been related to the integration of 
different information from distant cerebral regions [17]. Other studies have suggested 
that theta increase is related to a general mechanism of recall and integration of infor-
mation from different domains supported by a central executive module [19, 48].

Finally, the state of focused attention on movement execution, together with the 
navigational computation necessary for the performance and the external sound, 
could evoke an absorption state in subjects. In fact, the role of frontal midline theta 
has been previously related to meditation, internalized attention, and integration of 
sensory information into executive control components of complex motor behavior 
[12, 15, 49].

4.2 Alpha: internalized attention and movement

While greater theta activity was related to the diagonal movements, we observed 
a biphasic modulation of alpha activity during the second part of vertical move-
ments. Keeping in mind that each movement was composed of two parts (forward 
period and comeback period), we observed a biphasic response in the comeback 
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In fact, we observed first a decrease of alpha power immediately after the start 
of the comeback period and, consequently, an increase in the same frequency band 
tied to the end of the movement.

The decreased alpha activity observed immediately after the end of the second 
movement could reflect a decrease in internalized attention.

The decrease in alpha is classically related to a decrease of focusing on internal 
states and an amplified processing of information from the environment through 
sensorial inputs, especially from the visual system [17, 50].

Thus, this alpha decrease supports an increased attentional focus on the envi-
ronment and a contextual decrease of internalized attention. Probably, after the 
forward period, subjects consider the movement ended, and this could represent an 
attentional disengagement related to the movement performance.

For those reasons, vertical movements in the comeback period do not require 
particular cognitive effort, but, immediately before the next trial, subjects must 
re-engage cognitive resources and focus on the internal state causing the significant 
increase of alpha observed at the end of the whole trial.

Klimesch [51] suggested that alpha is not a unitary frequency band but it would 
be better described as a union of two sub-bands named lower and upper alpha. 
These two sub-bands seem to support different functions: lower alpha would be 
more modulated by general attentional processes, while upper alpha would be more 
sensitive to perceptual and semantic processing during task performance.

Our result suggests that during vertical movement, Alpha1 and Alpha2 were sig-
nificantly different in Peak2 and approached significance in Peak1. This means that 
during vertical movements, in Peak1, Alpha2 is slightly lower than Alpha1 and vice 
versa and in Peak2 Alpha2 is higher than Alpha1. Since Alpha2 has been associated 
with perceptual processing during task performance [51], we can hypothesize that 
the activity pattern observed over alpha power could reflect not a pure movement-
related attentional engagement/disengagement but rather an inhibition/enhance-
ment of environmental sensory input processing.

4.3 Beta

In the beta band, we observed a desynchronization during comeback period only 
in vertical movements, around 1300 ms after the start of the trial. The timing and 
the shape of the time course follow as observed in Peak1 in the alpha band. Contrary 
to our expectations, we did not find a similar desynchronization during diagonal 
movements. Probably, higher attentional demand during diagonal movement could 
address this issue, but further research will be performed.

Between consecutive trials (from 1900 to 100 ms of the next trial), we can 
observe a small increase in beta activity both in diagonal and vertical movements. 
This enhanced beta activity represents the post-movement beta rebound [35]. The 
presence of this activity suggests that subjects perceive the end of the trial as the 
conclusion of the movement, indexing the new trial as a new movement.

4.4 Source localization

A theta generator during the first stage of diagonal movements has been located in 
the middle frontal gyrus of the left hemisphere. The location of this generator supports 
the aforementioned frontal midline theta hypothesis in which the increase of theta 
during diagonal movement could increase internalized attention and integration of 
information from different regions such as frontal, sensorimotor, and parietal cortices.

Alpha generators during Peak1 and Peak2 in comeback period were found to 
be located in the posterior cingulate cortex and the left inferior parietal lobule, 
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respectively. The posterior cingulate cortex is a region involved in directing atten-
tion toward internal or external cognition [52]. In our case, we observed a decrease 
of alpha during vertical movement. This result is in line with our hypothesis about 
the increase of external sensory input during Peak1 in vertical movement and 
the consequent inhibition in order to reallocate attention to the execution of the 
movement. In Peak2 we observed higher alpha activity during vertical compared to 
diagonal movement execution. The inferior parietal cortex is classically involved in 
spatial attention (for a review, see [53]), body perception [54], and motor functions 
[55]. Fu et al. [56] suggested that increase in alpha power over the inferior parietal 
cortex could underlie integration of sensory cues in order to redirect attention. This 
explanation fits well with our hypothesis of attentional fluctuations related to the 
end of vertical movements. In fact as already hypothesized before, the selective 
increase in alpha at the end of the movement could represent a re-engagement  
of attention toward sensorimotor information in order to perform correctly the  
next trial.

5. Conclusions

Results from time-frequency analysis and source localization converge to sup-
port our initial hypothesis. We observed that diagonal movements increase theta 
activity over the middle frontal gyrus during the first stage of movement execu-
tion, suggesting that they are indeed more complex than vertical movements. This 
complexity could be reflected in more computational resources being allocated at 
the start of the movement and to a reduced focus on the external environment dur-
ing the whole performance. Moreover, the higher complexity of diagonal movement 
is addressed also by the biphasic alpha activity that involves the posterior cingulate 
cortex and inferior parietal lobule reflecting attentional fluctuations on internal vs. 
external environment during the execution of vertical movements.

Taken together, these results suggest that diagonal movements have indeed 
an effect on the ability to inhibit external input and to induce a mental mindset 
oriented to an increase in internalized attention.

Since theta has been related to a great variety of cognitive functions, one of 
our future aims is to understand whether motor training, which involves diagonal 
movement, could produce a reliable and prolonged enhancement of theta activity in 
order to enhance cognitive functioning on a long time scale.

We intend to examine whether the integrative role of theta could help healthy 
cognitive and motor development or be helpful in reducing symptoms of psychi-
atric disease based on psychological fragmentation, such as post-traumatic stress 
disorder or schizophrenia.
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Chapter 3

Correlations of Gait Phase 
Kinematics and Cortical EEG: 
Modelling Human Gait with Data 
from Sensors
Chaitanya Nutakki, Sandeep Bodda and Shyam Diwakar

Abstract

Neural coding of gait intent and continuous gait kinematics have advanced brain 
computer interface (BCI) technology for detection and predicting human upright 
walking movement. However, the dynamics of cortical involvement in upright 
walking and upright standing has not been clearly understood especially with the 
focus of off-laboratory assessments. In this study, wearable low-cost mobile phone 
accelerometers were used to extract position and velocity at 12 joints during walk-
ing and the cortical changes involved during gait phases of walking were explored 
using non-invasive electroencephalogram (EEG). Extracted gait data included, 
accelerometer values proximal to brachium of arm, antecubitis, carpus, coxal, 
femur and tarsus by considering physical parameters including height, weight and 
stride length. Including EEG data as features, the spectral and temporal features 
were used to classify and predict the swing and stance instances for healthy sub-
jects. While focusing on stance and swing classification in healthy subjects, this 
chapter relates to gait features that help discriminate walking movement and its 
neurophysiological counterparts. With promising initial results, further exploration 
of gait may help change detection of movement neurological conditions in regions 
where specialists and clinical facilities may not be at par.

Keywords: human gait, cortical activation, electroencephalography, stance, swing, 
accelerometer sensors

1. Introduction

Upright gait has been used as a peculiar biometric characteristic and can offer 
clues to help develop detection mechanisms for walking-related neurological 
disorders, if detected can help reduce cost and help propose diagnostic approaches 
[1]. Gait and locomotion are complex sequential processes involving timed coor-
dination between central nervous system, muscles and bones [2]. The action of 
numerous muscles and the variability in joint kinematics, leads to changes between 
different phases in gait, mainly swing and stance [3]. Human gait analysis involves 
the measurement and assessment of kinematic and inverse dynamic parameters 
that characterize the different phases of gait and quantifies the musculoskeletal 
functions [4, 5]. Within the context of gait measurement, sensors used in assessing 
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GAIT include floor based sensors (FS), wearable sensors (WS) and non-wearable 
sensors (NWS) techniques [6]. In techniques involving NWS, gait has been cap-
tured using cameras with video and image processing allowing features to attribute 
to gait patterns [7]. FS based techniques use force plates located on the ground to 
extract the walking parameters through pressure estimates and ground reaction 
forces [8]. In WS based techniques, sensors like accelerometers [9–11], gyroscopes, 
goniometers, etc. attached to the different biomechanical parts of the human 
body frame measure gait patterns during walking [12]. Peak detection methods in 
algorithms allow gauging gait events like heel strike, swing and stance from acceler-
ometer and gyroscope data [13–16].

Aiming towards potential applications in medicine, it has been noted that 
gait and posture control in patients with neurodegenerative disorders become 
irregular due to weakening of motor neurons that controls the muscles [17]. 
Neurodegenerative diseases including the Parkinson’s and Huntington disease result 
in progressive degeneration of neurons causes changes in neuromuscular control 
[18]. In clinical analysis, in order to understand the patient’s walking capability and 
movement tracking usually require expensive (cost, effort and time) methodologies 
and structured laboratories [19, 20]. A study by Hausdorff et al. [21] had demon-
strated the differences between gait cycles and subphases duration in Parkinson’s 
patients compared to normal subjects. Also, magnitude difference between gait 
stride intervals of human subjects with neurodegenerative conditions have been 
analysed by using (DFAT) detrended fluctuation analysis techniques [22].

Research progress in understanding the brain function during gait intent, but 
the information on movement-related cortical activity, neural circuit mechanisms 
and computations underlying the control of upright walking in humans are yet to 
be understood completely [23, 24]. Studies have shown rhythmic foot and leg move-
ments recruit primary motor cortex [25, 26], while fNIRS has shown involvement of 
frontal, premotor and supplementary motor areas during walking [27, 28]. Recent 
literature have indicated augmented beta oscillations during double support phases 
of the gait cycle (event-related synchronization, ERS) and to be suppressed dur-
ing the swing and single support phases (event-related desynchronization, ERD) 
[29–35]. Other studies have shown enhanced gamma oscillations during early and 
mid-swing phases of gait cycle and suppressed gamma rhythms towards the end of 
the swing phase and during the double support [36–40].

Studies involving other techniques such as single-photon emission computed 
tomography (SPECT) have reported neural characteristics during voluntary 
walking; studies [41, 42] using SPECT evaluated changes in the brain activity as a 
result of walking, and identified the SMA, S1, M1, cerebellum, and basal ganglia 
functioning as the control mechanisms of bipedal gait. Another SPECT study [43], 
investigated cortical activation during treadmill walking and found network activa-
tion in the premotor cortex, somatosensory association cortex, cingulate cortex 
and brain stem apart from the structures reported [41]. In both tomography SPECT 
studies, walking tasks were carried out prior to image acquisition.

Additionally, neurodegenerative diseases that relate to gait effects can be clas-
sified using machine learning tools as a decision support to clinicians for better 
prediction [44] of patient conditions. Gait disorder related to amyotrophic lateral 
sclerosis (ALS) have been classified by using wavelet-based scheme and features 
reflect regularity and gait coherence between both limbs as seen from the approxi-
mation part of the raw gait signal [45].

Identification and classification of human gait using low cost experimental 
techniques are crucial and necessary for the developing countries like India. 
Current diagnosing techniques for gait related disorders are more expensive 
and inaccessible to the common people. The main purpose of this study was to 

35

Correlations of Gait Phase Kinematics and Cortical EEG: Modelling Human Gait with Data…
DOI: http://dx.doi.org/10.5772/intechopen.88465

develop a low-cost model that can be employed in the future as an off-laboratory 
diagnosing tool for identifying gait abnormalities and classify human gait phases 
and pathological disorders. With machine learning jointly with inverse dynamic 
analysis using triaxial accelerometer sensors in today’s mobile phones, it may 
be reliable to analyse the each joint kinematic and behaviour during swing and 
stance phases that can further be used for the development of control strategies 
to set up brain machine interfaces (BMI), human-machine interfaces (HMI) and 
prostheses. Gait kinematic movement in terms of EEG allowed to understand 
the cortical regions that are active during gait phases helps in diagnosing the gait 
neurological disorders.

In this chapter, we address the usage of low-cost mobile phone-based accelerom-
eter sensors in order to extract and analyse human gait patterns. Average torque and 
the gait kinematic parameters of the lower body during stance and swing phases 
were analysed to understand how gait can be attained. In this study, we compared 
neural spectral representations from scalp EEG signals during active walking. 
Simultaneous recording of EEG with gait and their analysis was done to interpret 
cortical activity during the stance and swing phases of a gait cycle.

2. Methods

2.1 Low cost sensor-based gait recording and assessment

Gait data was extracted from 20 healthy volunteers using 12 smartphone-based 
accelerometers and a software application that allowed synchronous collection of 
data from the devices and mapped to additional parameters, including weight and 
age. The data collection and methods were approved by the institutional ethical 
review board and an open consent was collected from the participants prior to gait 
and EEG recordings. A total of 40 trails and 120 gait cycle accelerometer data were 
extracted from brachium of arm (shoulder), antecubitis (elbow), carpus (wrist), 
coxal (hip), femur (knee) and tarsus (ankle) were taken for further analysis. The 
extracted data was then normalized and sixth order Butterworth filter with a cut-
off frequency of 10 Hz was used for noise reduction. Data processing was based on 
the time noted by the observer during each gait phase (Figure 1A).

2.2 Estimating torque amplitude for each joint

This method employed 12 joint related positions to collect data from subjects. 
Joint torques (Eq. (1)) were calculated by providing joint length, force and angle to 
compute muscle force that attributed to joint rotation at different gait phases.

   T  j..n   = Fi ∗ R ∗ sin θ  (1)

   F  i..n   =  m  i..n   ∗  a  i..n    (2)

Here, ‘Fi...n’ was the force (Eq. (2)) of each joint (i) derived from mass and 
acceleration of each joint, where the acceleration and angle were directly retrieved 
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result of walking, and identified the SMA, S1, M1, cerebellum, and basal ganglia 
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2.3 Experimental recording of gait using EEG

EEG was measured from four healthy subjects with four cycles per trial and two 
trials were recorded per subject. All subjects had provided their informed consent 
and were approved by the institutional ethical review board. Subjects were without 
any known medical conditions and had normal or corrected-to-normal vision. All 
subjects were explained the aim of the study before participating in the recordings. 
Contiguous EEG was recorded (Figure 1B) from 14 Ag/AgCl electrodes positioned 
on a commercial scalp cap based on the 10–20 placement system at a sampling rate 
of 128 Hz using electrode (see Figure 1B for protocol).

All trials began with a relaxation phase (blank screen), considered as reference 
or baseline signal for the analysis; 30 seconds of the relaxation phase was followed 
by upright active walking after the audio cue ‘START’. Subject performed four 
cycles with each cycle including a swing and a stance phases starting with right leg 
followed by left leg.

Signal processing and data analysis on raw EEG signal were performed using 
custom scripts MATLAB R2017b (MathWorks, Massachusetts, USA) and EEGLAB 
toolbox [46] The reference channel (mean) was subtracted, detrended and band-
pass filtered using a FIR filter of order 20 within the range, 0.1–60 Hz and notch 
filter applied to remove line noise of 50 Hz. Based on the marker points for various 
tasks (relax, step1, step 2,…, step 8, stop), data was extracted for each task and 
the power spectrum was estimated for the relative bands α/μ, β and γ in the EEG 
signals. Spectral bands were estimated for each stance and swing phases of gait 
cycle and averaged across all the trials of the four healthy subjects. From the pre-
processed epochs, estimated bands were quantified and significant regions were 
identified.

Figure 1. 
(A) Classifying swing stance from gait data. (B) Schematic representation of EEG recording protocol for gait.
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3. Results

3.1 Torque variations across the subjects define swing and stance gait phases

Joint torques during stance and swing phases were measured using inverse 
dynamic analysis to understand how gait can be attained [47] at different phases. 
Subjects were divided into groups with respect to weights. Group I was categorized 
in to subjects with 60–70 kg, Group II was categorized in to subject with 70–80 kg, 
Group III was categorized into subjects with 80–90 kg. Average torque amplitude 
of subjects was analysed and compared during swing (Figure 2A) and stance 
(Figure 2B) phases.

Figure 2. 
Torque variations during gait. (A) Average torque amplitude of joints with different weight groups during 
swing. (B) Average torque amplitude of joints with different weight groups during stance. RH, right hip; RK, 
right knee; RA, right ankle; LS, left shoulder; LE, left elbow; LW, left wrist; LH, left hip; LK, left knee; RS, 
right shoulder; RE, right elbow; RW, right wrist and 1–3 are joint positions.

Figure 3. 
Torque amplitude changes across hip and ankle of male and female subjects. Hip and ankle joints show 
significant changes allowing classification of male and female subjects. RH, right hip; LH, left hip; RA, right 
ankle; LA, left ankle.
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3.2 Variations in torque allow to differentiate male and female gait

Lower body torque amplitude of male and female were analysed and compared 
during swing and stance from frontal plane. Torque amplitude of hip and ankle 
of female joints in the frontal plane showed more activity than the male in frontal 
plane (Figure 3).

3.3 Temporal and spectral EEG features of gait

Gait-related cortical potentials include the positive and negative motor poten-
tials at the onset of movement for swing and stance. Positive amplitude of motor 
potential has observed for swing phase of the gait cycle in the frontal electrodes 
(F3) whereas negative amplitude of motor potential has observed for stance phase 
of the gait cycle in the frontal electrodes (F3). The clear distinction of motor poten-
tial has shown (Figure 4A and B).

From the spectral maps over the comparison of swing (Figure 5C) and stance 
(Figure 5D) and we have observed higher activity in parietal and frontal regions 
over the low frequency band regions delta and theta bands. Also, decreased alpha 
and beta band in frontal and central cortical regions were observed during swing 
than during stance phase. However, only right swing and left stance were explored 
in this study.

3.4 Classifying gait sensorial data using different machine learning algorithms

Since gait cadence has nonlinear and complex behaviours, extracted gait 
data was classified using different machine learning algorithms with validations 
using percentage split (60 and 70%) methods. Training accuracies suggest most 
algorithms had similar Among all the tested algorithms [48], Naïve Bayes and 
SVM with linear kernel showed highest training accuracies as in other studies 
[44, 49, 50] across different splits with gait accelerometer data (see Figure 6). 
We also tried leave-one-out-cross-validation but had similar results (data not 
shown). The data suggests that machine learning methods may help predict 
normal gait phases with torque features. Although recorded simultaneously, 
since EEG classification using machine learning was not done in this study, we 
may need to explore a potential technique for identifying gait phases in terms of 
spectral compositions. Errors were attributed to variability in data from acceler-
ometer time and frequency fluctuations due to different models used (data not 
shown).

Figure 4. 
Gait related cortical potentials: evoked average response for swing and stance phase of gait cycle (A) time course 
of F3 (blue) F4 (red) response of swing phase of gait cycle showing positive amplitude at the movement onset 
(B) time course of F3 (blue), F4 (red) response of stance phase of gait cycle shows negative amplitude at the 
movement onset.
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Support vector machines had 58–59% training accuracies and so did J48 algo-
rithm. Random tree had 67% while Naïve Bayes and linear SVM showed more than 
98% accuracy perhaps attributed to complex decision boundaries.

4. Discussion

Torque-based reconstructions of gait from mobile phone triaxial accelerometer 
data may help identifying swing and stance phases in gait in addition to allowing 

Figure 5. 
Spectral changes for swing and stance phases of a gait cycle. (A) Swing phase of gait cycle showing higher delta 
and theta bands in frontal regions (F8, F3 and F7) electrodes. (B) Stance phase of gait cycle showing higher 
delta band parietal regions (P7 and P8). (C and D) Scalp maps for frequency ranges during swing (C) and 
stance gait phases (D).

Figure 6. 
Classification of gait data using machine learning algorithms. Naïve Bayes (NB), J48 decision tree, random 
tree, support vector machine algorithms with polynomial, linear, radial and sigmoidal and radial basis 
functions allowed classifying gait data.
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specific joint based data for discriminating male and female characteristics in gait. 
Reliably using EEG to predict swing and stance will include comparisons of tem-
poral and spectral components although the resolutions and accuracies are not so 
reliable beyond basic gait changes, we find the positive and negative amplitudes of 
the MRCPs can serve as good discriminators.

Gait data was classified using machine learning algorithms with percentage split 
cross-validations. As with many datasets, with increase in training data samples, a 
consequential increase in the accuracy was observed. Among the algorithms Naïve 
Bayes, SVM and tree-based algorithms showed high accuracy across the data with 
validations based on different percentage splits of training data. The data from 
accelerometers may be used in the BCI-related predictive algorithms for gait phase 
estimates.

The study computed joint torques in order to understand relationship of joint 
rotations during gait phases. As indicated, generated torque amplitude was suffi-
cient to test classification algorithms on accelerometer-based gait data. We analysed 
the data grouped based on the subject weight since average torque amplitude of 
each subject was dependent on the weight of the subject. As the weight of the 
subject increased, increments in the joint torques were observed across the subjects. 
The torques and forces within subjects during different gait cycles showed little 
difference.

In terms of gait data from accelerometers, male subjects showed variations in 
the frontal and sagittal axes and estimates suggested higher joint movement cor-
related to higher torque amplitude changes with respect to motion. Hip and ankle 
joints served as strong discriminators in classification of subject gender based on 
data. Rather than acceleration, torques classified variations of gait across male and 
female subjects.

EEG-gait methodology allowed to map cortical organization relationships and 
between the contralateral and ipsilateral joints during gait. During stance when 
compared to swing, there was higher activity in the delta and theta bands in the 
frontal and parietal regions, whereas decreased activity in beta band in the parietal 
regions. Using delta and beta rhythms in the fronto-parietal cortical microzones, it 
may be possible to classify swing and stance. Additionally, gait-based assessments 
need to rely on motor related cortical potentials and their amplitudes. Temporal 
analysis of gait related potentials has shown positive and negative motor potentials 
for stance and swing and their significant variety could be related as a marker 
discriminating stance and swing.

The significance of such assessments is many; with gait categorization using 
torque, it may now be possible to employ mobile phone accelerometers to estimate 
swing and stance variations as a preclinical step for estimating medical disorders. 
The variations could also allow gait as a biometric information especially in validat-
ing male and female subjects and their upright walking capabilities. Although EEG 
data is far from assessing gait intent, initialization, swing and stance phases may 
be explored for correlations related to neurophysiological changes attributing such 
data for classifying neurological disorders in the future.

5. Conclusions

Spatio-temporal reconstruction of swing and stance from triaxial accelerom-
eters allow an understanding of how multi-position accelerometer data accounts for 
healthy gait before developing optimizations and methods to assess dysfunctional 
gait. The study suggests quantifying specific torque patterns during gait may 
facilitate cheaply and easily detecting gait phase changes. Although a more detailed 
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and multi-configuration data relating gait and EEG may be needed, this step helps 
to propose a pre-clinical assessment tool for rural communities, especially when 
multi-specialty hospitals may consider outreach or where specialists may need 
more time to understand movement related conditions prior to an actual diagnosis. 
With useful preliminary results that supports gait as a BCI technology, it further 
warrants the need to investigate the utility of mobile phone sensors for extracting 
accelerometer-based data and its use in a patient population.
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Chapter 4

Multiscale Segmentation of
Microscopic Images
Dimiter Prodanov

Abstract

The chapter introduces multiscale methods for image analysis and their applica-
tions to segmentation of microscopic images. Specifically, it presents mathematical
morphology and linear scale-space theories as overarching signal processing frame-
works without excessive mathematical formalization. The chapter introduces sev-
eral differential invariants, which are computed from parametrized Gaussian
kernels and their derivatives. The main application of this approach is to build a
multidimensional multiscale feature space, which can be subsequently used to learn
characteristic fingerprints of the objects of interests. More specialized applications,
such as anisotropic diffusion and detection of blob-like and fiber-like structures, are
introduced for two-dimensional images, and extensions to three-dimensional
images are discussed. Presented approaches are generic and thus have broad appli-
cability to time-varying signals and to two- and three-dimensional signals, such as
microscopic images. The chapter is intended for biologists and computer scientists
with a keen interest in the theoretical background of the employed techniques and
is in part conceived as a tutorial.

Keywords: Laplacian of Gaussian, scale spaces, mathematical morphology, Fourier
domain

1. Introduction

Neurophysiological data are very much variable, and while certain patterns are
prominent and reproducible (e.g., action potentials, tissue textures, and cells) they
by no means can be easily defined precisely in a quantitative way. Data are enriched
with unwanted patterns having complicated temporal and spatial structure, which
are misleadingly called “noise.” Unlike the noise, natural objects have features on a
limited number of spatial or temporal scales. This observation is the starting point
of all available multiscale methods of analysis. The main focus of the chapter are
digital images; however the presented approaches can be applied in the more simple
setting of time-varying one-dimensional signals, such as voltage electrophysiologi-
cal recordings. In the subsequent presentation, the images will always be considered
as two-dimensional signals sampled on a rectangular spatial grid. The reason is that
all common microscopic approaches acquire images on a plane of illumination;
thus three-, four-, and five-dimensional images are essentially sets of correlated
planar signals. The third dimension can represent depth, time, or an acquisition
channel. Obviously, in the case of four and five dimensions, the number of combi-
nations increases. Therefore, one cannot assume isotropic resolution of the transfer
function for more than two dimensions. This situation introduces anisotropy in
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of all available multiscale methods of analysis. The main focus of the chapter are
digital images; however the presented approaches can be applied in the more simple
setting of time-varying one-dimensional signals, such as voltage electrophysiologi-
cal recordings. In the subsequent presentation, the images will always be considered
as two-dimensional signals sampled on a rectangular spatial grid. The reason is that
all common microscopic approaches acquire images on a plane of illumination;
thus three-, four-, and five-dimensional images are essentially sets of correlated
planar signals. The third dimension can represent depth, time, or an acquisition
channel. Obviously, in the case of four and five dimensions, the number of combi-
nations increases. Therefore, one cannot assume isotropic resolution of the transfer
function for more than two dimensions. This situation introduces anisotropy in
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microscopic images, compared to other imaging modalities, such as magnetic
resonance imaging or computer tomography. In microscopy, in such way, the
default case is a planar image.

All physical signals are bounded and of finite duration. Such signals are acquired
as discrete samples from an underlying physical process which, as an idealization,
can be considered as continuous. The physical signals are naturally related to the
properties of the measurement apparatus. As another idealization, these properties
are described by a linear transfer function so that the measurement process
becomes a convolution (denoted further by ⋆ ). On the other hand, the measure-
ment is always contaminated by an unwanted signal, which is denoted broadly as
“noise.” The noise process can be identified with the nonlinearities of the measure-
ment process. In many occasions because of its apparent irregularity in time, it can
be treated as a purely random process. Since the physical measurement is a repeated
process, the Gaussian noise comes as a very common and useful model by virtue of
the central limit theorem of probability theory. The theorem roughly states that the
weighted sum of uncorrelated random variables having finite variance approaches a
normally distributed random variable. Hence, if the noise is not spatially and tem-
porally correlated, methods suitable for treating Gaussian or Poisson noise are
applicable. Evidently, very fast sampling or sampling from processes having long
memories, such as viscoelastic interactions, can violate these requirements. In such
settings, other noise models can become more suitable. The readers are directed to
[1] for a useful noise classification.

The chapter is organized as follows. Section 2 discusses the segmentation prob-
lem in general. Section 3 gives an overview of the mathematical morphology theory
and provides examples. Section 4 gives an overview of the geometrical image
features from the perspective of differential geometry. Section 5 introduces several
types of scale spaces and their application in segmentation. Section 6 discussed
implementation details. The chapter is intended for biologists and data scientists
with keen interest in theoretical background of the employed techniques and is in
part conceived as a tutorial. The references cited in the chapter are suitable for
introductions on the mentioned topics.

2. Brief overview of image segmentation approaches

Extraction of an object’s boundaries from a digital image is called segmentation.
Image segmentation is related also to object classification, which does not require
precise delineation of the object boundary. Therefore, segmentation can be also
viewed as classification on a pixel level.

The image segmentation is a nontrivial problem. For a successful image seg-
mentation, it is important to have prior knowledge of the image composition, that
is, the texture properties of the background and the objects of interest. Segmenta-
tion generates a mask consisting of a binary image delimiting the objects of interest
present in the raw image. The challenge is to define an accurate segmentation
methodology or at least an approach that enables segmentation of biologically
relevant features. There are several classes of methods, which can be applied in
different circumstances. These can be classified broadly into two classes: (i) inten-
sity based, where the hypothesis is that only differences in the image intensity
histogram can be sufficient for segmentation and (ii) geometry based, where the
image is transformed so that the geometrical features of interest become enhanced.

Historically, the first and simplest segmentation methods are based on global
thresholding of the histogram. Classical threshold-based methods consist of identi-
fying a given pixel intensity level that allows for separating the object of interest
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from the background. There are about 40 different global thresholding algorithms
[2]. Classically, an algorithm involving thresholding includes the following stages:

• Preprocessing steps, which decrease the spatial variation of the image

• Thresholding, which produces one or more binary masks

• Masking or region of interest (ROI) selection

• Post-processing steps, for example, including second thresholding or
watershed

The watershed is based on a topographical interpretation of the grayscale image
as terrain of mountains and valleys; the algorithm interpolates boundaries between
objects based on the continuity in intensity peaks.

Various image filtering techniques can be introduced as preprocessing steps.
These transformations are representations of mathematical operators. These opera-
tors have formal properties, which make them suitable for certain types of signals.
For example, the convolution-based linear operators assume continuity of the sam-
pled signal, while morphological operations do not. The notion of scale comes as the
support of the sampled kernel, so multiscale analysis provides rules how the sup-
ports of different operators change with scale. It is also important to consider the
sampling of the operators in the digital domain.

There are various geometry-based segmentation approaches, for example, using
edges, distances, or texture statistics. In addition, there is a vast array of pre- and
post-processing techniques, such as smoothing, mathematical morphology opera-
tions (i.e., watershed), partial differential equation methods, and shape methods.
This manuscript will focus on the geometry-based methods with a particular
emphasis on the edge detection techniques. Geometry-based approaches are invari-
ant to changes of illumination, which is an issue in natural images and some micro-
scopic techniques. In contrast, geometry-based approaches are susceptible to
structural or texture “noise” so extra care must be taken to address such issues.

3. Mathematical morphology

The mathematical morphology (MM) theory is a way of analyzing objects’
shapes by way of interaction with shape primitives called structuring elements (SE)
or kernels. A structuring element can be thought of as a small window that scans the
image and alters the central pixel within its frame. The mathematical morphology
theory was developed by Matheron and Serra [3].

MM operators are useful for the analysis of both binary and grayscale images.
Their common usages include edge detection, noise removal, image enhancement,
and image segmentation. MM approaches employ topological transformations and
hence do not depend, on the particular noise model. Therefore, they can be used
also in situations, where the noise is non-Gaussian.

The main building blocks of MM are the erosion ⊖ and dilation ⊕ operators (see
Appendix A.1). Erosion and dilation are best understood by their action on black-
and-white images. If the white pixels represent the objects of interest, then after an
erosion with a SE, the white objects are contracted as the SE is inscribed inside every
white object. After a dilation with a SE, the white pixels are expanded as the SE is
circumscribed outside every white object. The action on grayscale images is similar
but must be understood in terms of ranking operations—that is, taking maxima and
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minima (Figure 1). The operations erosion and dilation can be composed into two
more basic operations—opening and closing. The opening with a SE, denoted by E,
is expressed as

I ◦E ¼ I⊖Eð Þ⊕E (1)

The closing with a SE is expressed as

I •E ¼ I⊕Eð Þ⊖E (2)

The opening operation removes the objects, which are covered by E, while the
closing, by duality, removes object’s complement (i.e., holes in objects), which are
covered by E. The so-developed theory is topological in nature because it does not
depend explicitly on the concept of size but only on covering and inclusion. Classi-
cally, the MM theory was developed for uniform homothetic scaling of the SEs, but
it can be extended to nonhomogeneous groups of scaling transformations. The
scaling can be interpreted as generating a system of neighborhoods of every given
point, thus reinforcing the topological interpretation. This gives rise to partial
differential equation interpretation of the MM theory [4].

The multiscale aspects of the theory are due to the scaling of the structure
elements. For example, the seed SE can be rescaled homothetically and then applied
to the image. Such series of successive openings provides a measure of the preva-
lence of objects of a given size and is called granulometry (Figure 2). Granulometry
can be used also to segment compact bright objects by means of a top-hat trans-
form, where from the primitive image its opened version is subtracted:

TE Ið Þ ¼ I � E ◦ I, GU,L Ið Þ ¼ L ◦ I � U ◦ I (3)

The second equation represents the granulometric filtering operation, which can
extract bright objects of a specific size range from an image [5, 6].

Homogeneous scaling, that is, homothety, can be varied with the metric, which
is induced on the SE. This can be box-like, circular, diamond, etc.

Figure 1.
Fundamental morphological operations. On the first row, an image of cell nuclei stained with DAPI (left)
eroded (center) or dilated (right) with a disk of radius 10. On the second row, the same image is opened (left),
closed (center), or granulometrically filtered. The inscribed numbers denote SE radii.
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Another useful realization is the morphological gradient operation, which is the
difference between an opening and a closure δE Ið Þ ¼ I ◦E� I •E. It can be used to
extract connected shapes by subsequent thresholding.

4. Geometrical image features

Mathematically, images can be represented as surfaces in the three-dimensional
Euclidean space, where the elevation represents the signal intensity. In this sense,
the intensity at a certain point in the direction x + r can be interpolated from its local
neighborhood as

I xþ rð Þ ¼ I xð Þ þ r � ∇I þ 1
2
rT � IHI � rþO rTr

� �
(4)

Components of the gradient are given by ∇u ¼ ux, uy
� �

. The Hessian tensor is
given by the matrix

IHu ¼ uxx uxy
uyx uyy

� �
(5)

where for smooth signals the partial derivatives commute uxy ¼ uyx. This picture
is a part of the so-called jet space—a higher dimensional differential descriptor

Figure 2.
Granulometry of cell nuclei. An image of cell nuclei stained with DAPI is opened with an increasing sequence of
disk-shaped kernels. Note the eventual disappearance of the central bright object. The inscribed numbers denote
SE radii.
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space, as a natural basis for encoding the geometry of an image local neighborhood
[7, 8]. The subscripted notation will be used to identify partial derivatives with
respect to the coordinates.

The fact that digital images are sampled on a discrete grid may represent some
difficulty as differentiation in the literal sense does not work for discrete signals.
Notably, naive computations are numerically unstable and amplify the high-
frequency noise. This difficulty can be overcome by applying the distribution the-
ory, starting from the Leibniz identity for smooth signals [7]:

∇ I⋆Gð Þ ¼ ∇Ið Þ⋆Gþ I⋆∇G (6)

where ∇ represents the gradient given by its principal components
∇ ¼ ∂=∂x, ∂=∂yð Þ. For the whole space if the kernel vanishes fast at infinity, we
have ∇Ið Þ⋆G ¼ �I⋆∇G. Therefore, even for discrete images, by extension, one
can define differentiation in terms of convolution with a differential of a kernel as

∇GI≔� I⋆∇G (7)

From this point on, differentiation of a digital image will be interpreted only in
the generalized sense as a convolution with some smooth kernel. In such way,
various local differential geometric invariants can be also incorporated into the
processing. There are several filter families, which possess desirable properties,
which can be exploited for systematic image noise suppression and computation of
differential invariants. These families are formalized by the framework of the scale-
space theory. Notable examples are the spatial derivatives of the Gaussian, which
are used in the linear scale-space theory 5.1.

4.1 Differential invariants

There are several types of geometric features, which are useful for segmentation
applications. Typical interesting image features are blobs, filaments, and corners.
Notably, object boundaries can be represented in terms of edges, which can be
approximated by steps in image intensity. All these features can be computed from
the local differential structure of the image. The theory will be exemplified with the
Gaussian derivatives, which, in view of the duality property of Eq. (7), can be used
to compute the image derivatives.

The first four differential invariants are given in Table 1. The gradient vector
field of the test image is represented in Figure 3.

The eigenvalues of the Hessian tensor are solutions of the characteristic equation
det IH� λIIð Þ ¼ 0, where II is the identity matrix. This is a square equation with two
real roots λ1,2, such that λ1 þ λ2 ¼ ΔG and λ1λ2 ¼ det IH. If both eigenvalues are

Gradient amplitude A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2

x þ G2
y

q

Gradient orientation sinϕ ¼ Gy=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2

x þG2
y

q

cosϕ ¼ Gx=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2

x þ G2
y

q

Laplacian ΔG ¼ Tr IH ¼ Gxx þ Gyy

Determinant of the Hessian det IH ¼ GxxGyy � G2
xy

Table 1.
Second-order differential invariants.
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negative, this is an indication for a bright blob-like feature around the point of
reference. In a similar way, if both eigenvalues are positive, there is a dark blob-like
feature around the point of reference.

If the eigenvalues have opposite signs, this is an indication for a saddle point at
the point of reference. Therefore, the zero-crossing of the Laplacian operator can be
used to delimit regions, encompassing blobs. The zero-crossings form the so-called
zero space, which can be used to identify objects. The regions where the Laplacian
changes sign can be extracted by connected component analysis, which are defined
as regions of adjacent pixels that have the same input label. In this regard, different
neighborhoods can be considered for the blobs (4-connected, N4) and for the
contours (8-connected, N8). To compute the connected components of an image,
we first (conceptually) split the image into horizontal runs of adjacent pixels and
then color the runs with unique labels, reusing the labels of vertically adjacent runs
whenever possible. In a second phase, adjacent runs of different colors are then
merged [9].

Figure 3.
The gradient image field. The gradient vector filed is overlaid onto a smoothed and downsampled version of the
original image. The gradient amplitude is encoded by the arrow intensity.

Figure 4.
Connected components of the Laplacian operator’s zero space. The boundary (left) is overlaid on the cell nuclei
image (right). The connected components (center) are calculated from Laplacian of Gaussian, s = 12.
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neighborhoods can be considered for the blobs (4-connected, N4) and for the
contours (8-connected, N8). To compute the connected components of an image,
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The zero space is demonstrated in Figure 4, where the connected components
where the Laplacian changes sign are labeled. From the figure, it is apparent that the
cell nuclei can be enclosed well by the blobs.

The number of differential invariants increases with the increase of the image
dimensions. However, the theory can be extended along similar lines. A very useful
development in this direction is geometric algebra and calculus, which provide a
dimension invariant representation of the geometrical structures.

The so-introduced geometric image features can be used as building blocks for
advanced machine learning strategies for interactive segmentation and classifica-
tion. This strategy was implemented in two segmentation platforms based on
ImageJ/Fiji. The Trainable Weka Segmentation (TWS) [10] and the Active Seg-
mentation [11] have recently presented new opportunities for analyzing complex
datasets. Specifically, the active segmentation uses the scale-space-based filters
presented here.

5. Scale-space theory

In the digital domain, smoothing leads to loss of resolution and, therefore, of
some information. However, the information loss can be limited if one uses multiple
smoothing scales (see Figure 5).

Scale-space theory is a framework for multiscale image representation, which
has been developed by the computer vision scientists with intuitive motivations

Figure 5.
Gaussian scale space of cell nuclei. An image of cell nuclei stained with DAPI is convolved with an increasing
sequence of Gaussian kernels. Inscribed labels denote kernel half widths.
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from physics and biological vision, as introduced by [12]. The underlying idea is to
account for the multiscale nature of real-world objects, which implies that objects
may be perceived in different ways depending on the scale of observation. Taken to
the limit, a scale-space representation furthermore considers representations at all
scales simultaneously. Scale spaces have been introduced independently in Japan
and Europe by [12, 13]. The axiomatic linear scale-space theory was formalized in
series of works by Witkin [14] and Koenderink [15].

Scale-space approaches are ubiquitous in feature detection/description, as well
as dense correspondence mapping (e.g., large-offset optical flow is typically done in
coarse-to-fine fashion) [9].

5.1 The Gaussian scale space

The liner scale-space theory provides a systematic way of dealing with spatially
uncorrelated Gaussian noise. A fundamental result of scale-space theory states that
if some general conditions are imposed on the types of computations that are to be
performed in the earliest stages of visual processing, then convolution by the
Gaussian kernel and its derivatives provides a canonical class of image operators
with unique properties. The Gaussian kernel in 1D is given by

G xð Þ ¼ 1ffiffiffiffiffiffiffi
2πs
p e�

x2
2s (8)

and

G x, yð Þ ¼ G xð ÞG yð Þ ¼ 1
2πs
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in two dimensions. A very useful property of the kernel is its separability, which
allows for efficient computation of convolutions for multiple spatial dimensions.
That is, for example, in two dimensions

G x, yð Þ⋆ I ¼ G xð Þ⋆ G yð Þ⋆ Ið Þ ¼ G yð Þ⋆ G xð Þ⋆ Ið Þ (10)

Therefore, the computational cost scales linearly with the support of the kernel
rather than quadratically.

The Gaussian scale space depends on a free scalar parameter s representing the
scale of possible structures in the image [12–15]. In the typical implementation of the
theory, the scale parameter enumerates a space of smooth Gaussian test kernels of
rapid decay, which are convolved with the digital image. In one dimension, Gaussian
smoothing implies that new local extrema or new zero-crossings cannot be created
with increasing scales. Gaussian kernels provide several advantages: (i) they are
rotationally invariant, (ii) they do not produce artificial extrema in the resulting
image, and (iii) successive convolutions with different kernels can be combined.
Mathematically, this imposes a very useful semigroup structure, equivalent to the
heat/diffusion equation. In this sense, the image structures diffuse or “melt down,” so
that the rate of this diffusion indicates the “robustness” of the structure.

In its typical presentation, the scale-space theory applies only smoothing steps.
Later, the theory was extended to include also differentiation and thus account for
the differential structure of the images [16]. In the spatial domain, the Gaussian
derivatives for the one-dimensional case can be computed in closed form as

Gn xð Þ ¼ ∂
n
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G xð Þ ¼ �1ð Þnffiffiffiffiffiffiffiffiffiffiffiffiffi
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The zero space is demonstrated in Figure 4, where the connected components
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Figure 5.
Gaussian scale space of cell nuclei. An image of cell nuclei stained with DAPI is convolved with an increasing
sequence of Gaussian kernels. Inscribed labels denote kernel half widths.
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from physics and biological vision, as introduced by [12]. The underlying idea is to
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whereHen(x) is the statistician’s Hermite polynomial of order n. The sequence of
statistician’s Hermite polynomials satisfies the recursion

Henþ1 xð Þ ¼ xHen xð Þ � nHen�1 xð Þ (12)

starting from He0 xð Þ ¼ 1 and He1 xð Þ ¼ x. This allows for efficient simultaneous
computation of all derivatives up to an order n in order to populate the n-jet space.
The n-jet components can be used to build the differential invariants up to order n.
An example is presented in Figure 6, where the five unique components of the
Gaussian jet-2 space are computed. The original dataset is present in the ImageJ
public image database.

In spite of several properties that make linear diffusion filtering useful, it also
reveals some drawbacks [17]:

1.An obvious disadvantage of Gaussian smoothing is the fact that it does not
only smooth noise but also blurs important features such as edges. Moreover, it
is uncommitted to any prior information about the image structure.

2.Linear diffusion filtering propagates edges when moving from finer to coarser
scales, which can lead to difficulties in edge identification and instabilities.

5.2 α-Scale spaces

The α-scale spaces introduce nonlinearity on the level of differentiation. Nota-
bly, the Gaussian differentiation is replaced by another convolution operation,
involving a power law. Pauwels et al. [18] and later Duits et al. [19] investigated the
use of fractional powers of the Laplacian in connection with scale invariant
smoothing and scale-space theory, respectively. This approach tries to overcome
some of the limitations of the Gaussian scale spaces identified above. The evolution

Figure 6.
Differential Gaussian 2-jet space. A microscopic image of Drosophila brain (first column) is convolved with
Gaussian derivative kernels. Different kernels are shown above the arrows. The second column shows the
components of the gradient. The third column shows the components of the Hessian. The local jet space of order k
has k kþ 1ð Þ=2 different components.
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is governed by two parameters—the scale s and the order of differentiation α. The
approach leads to formulation and solving of a fractional heat problem:

u 0,xð Þ ¼ I xð Þ
us s,xð Þ ¼ � �Δð Þα=2u s,xð Þ, 1≤ α≤ 2

(13)

The Riesz fractional Laplacian operator is defined in the Fourier domain by

�Δð ÞαU kð Þ≔ kj jαU kð Þ (14)

where the ∣k∣ ¼
ffiffiffiffiffiffiffiffiffiffi
k � k
p

is the modulus of the wave vector k. In this way, the
solution can be expressed in terms of a convolution with a very general special
function—the Wright function [20]. Numerical routines for computation of the
Wright function are still not readily available; therefore the computations is easier
achieved using fast Fourier transform (FFT) and its inverse, IFFT.

5.3 Nonlinear scale spaces

Linear diffusion scale spaces are well-posed and have a solid axiomatic founda-
tion. On the other hand, for some applications, they have the undesirable property
that they do not permit contrast enhancement and that they may blur and delocalize
structures. Nonlinear scale spaces try to overcome some of these limitations. Such
scale spaces arise in nonlinear partial differential equation framework, which will be
sketched below. The formal properties of some types of scale spaces have been
established by Alvarez et al. [4]. In particular, they established a strong link with
the related field of mathematical morphology (see Section 3). The following second-
order partial differential equation was demonstrated in particular

ut ¼ F IHu;∇uð Þ, u 0; xð Þ ¼ f xð Þ (15)

where Hu are the components of the Hessian tensor, ∇u represents the compo-
nents of the gradient, and f(x) is the original image. It is interesting that MM
operations can also be represented in this framework as ut ¼ �k∇uk for dilation and
erosion, respectively.

In this line of development, the Laplacian of Gaussian (LoG) operator can be
decomposed into orthogonal and tangential components ([17], Ch. 1). The repre-
sentation is provided below:

ΔG ¼ Gxy þGyy ¼ ΔkG þ Δ⊥G

G2
x þG2

y

� �
Δ⊥G ¼ G2

x

� �
Gxx þ 2GxGy

� �
Gxy þ G2

y

� �
Gyy

G2
x þG2

y

� �
ΔkG ¼ G2

x

� �
Gxx � 2GxGy

� �
Gxy þ G2

y

� �
Gyy

(16)

The parentheses denote scalar multiplication with the component of the gradi-
ent. The orthogonal decomposition is equivalent to an effective vectorization of the
filter. The normal component is antiparallel to the gradient (i.e., in normal direction
to the isophote curve), while the tangential component is parallel to the isophote
curve passing through the point. These components can be used to segment blob-
like or tubular structures. Segmentation based on the orthogonal decomposition is
illustrated in Figure 7.

The orthogonal decomposition leads naturally to anisotropic diffusion
(Figure 8). For example, if the tangential component is selected, this will lead to
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is the modulus of the wave vector k. In this way, the
solution can be expressed in terms of a convolution with a very general special
function—the Wright function [20]. Numerical routines for computation of the
Wright function are still not readily available; therefore the computations is easier
achieved using fast Fourier transform (FFT) and its inverse, IFFT.
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preservation of globular structures, while if the normal component is selected, this
will lead to enhancement of the tubular structures. The equation ut ¼ Δ⊥Gu is called
mean curvature motion equation [17]. An example is presented in Figure 8.

6. Implementation

The filters described in the present manuscript are implemented in ImageJ as a
set of plug-ins (Table 2). Two implementation strategies have been used: the
integer order filters are implemented in the spatial domain, while the fractional
order filters are implemented in the Fourier domain [21].1 The plug-ins are distrib-
uted under the GNU Lesser General Public License v3.0 and are available as code
repository from the GitHub website [22].2 The choice of implementation platform
was due to the widespread use of ImageJ in the biomedical and life science
communities.

ImageJ is a public domain image processing program written in Java. Since its
inception in 1997, ImageJ has evolved to become a standard analytical tool in a

Figure 7.
Blob segmentation. Zero-crossing of the LoG decomposition, s = 6 (A) and s = 12 (B). Two blobs are highlighted
for better appreciation. The normal component is in Lap T, tangential component of the Laplacian; Lap O,
normal component of the Laplacian.

Figure 8.
Anisotropic diffusion along principal flow directions. Astrocytes were stained immunohistochemically for glial
fibrillary acidic protein (GFAP) and imaged on a confocal microscope (left). Anisotropic diffusion evolved
according to the orthogonal decomposition of the Laplacian, s = 3, 3 steps—Tangential direction (center) and
along the gradient direction (right). Note the granularity of the right image and its blurred appearance
compared to the central image.

1 The installation procedure of the spatial-domain filters is straightforward, and this is the reason why

only spatial-domain filters are included in the public repository.
2 https://github.com/dprodanov/scalespace.
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number of scientific communities. In particular, for life science communities, it is
available as the Fiji plug-in platform, which allows for easy plug-in deployment and
dependency management. ImageJ has an open architecture providing extensibility
via third-party Java modules (called plug-ins) and scripting macros. It is developed
by Wayne Rasband since 1997 and expanded via contributed software code by an
international group of contributors. Plug-ins are distributed together with their
source code under various licenses determined by the plug-in authors. The user
guide of the platform [23] is maintained at http://imagej.nih.gov/ij/docs/guide.
Public resources are available on the ImageJ website and the ImageJ Information
and Documentation Portal https://imagejdocu.list.lu/. In addition, textbook
introductions to image processing with ImageJ can be found in [24].

7. Discussion

The morphological complexity of the nervous tissue is a challenge for conven-
tional segmentation techniques developed for computer vision applications or cul-
tured cells. The challenges lie in the morphological complexity of neurons and glial
cells overlaid on the heterogeneity of the extracellular matrix. This complexity
translates into variations of the tracer signal and touching of relevant structures.

Segmentation of fluorescent images poses particular issues due to low signal-to-
noise ratio, unequal staining, as well as the complexity of structures that need to be
identified. This irreducible variation must inform choices about segmentation
methods. In particular, methods employing multiple spatial scales are favorable.
Structure identification is inherently a multiscale problem because object structure
is recursive, that is, objects may contain substructures, which themselves contain
substructures, etc.

A large number of algorithms for image segmentation have been proposed in
literature (overview in [9]). However, many of them completely ignore the issue of
scale. As a result, they are capable of identifying only limited types of structures. In
contrast, multiscale approaches eventually rely on the topological properties of the
segmented objects, either by means of scale spaces or by nonlinear vector field
transforms [25, 26]. As a result, such methods are able to combine detected features
into robust segmentation tools. The present chapter introduced two classes of
multiscale methods for image segmentation: the mathematical morphology opera-
tions and scale spaces. The main applications of the theory are classification and
segmentation of signals. Presented methods are generic and thus have broad appli-
cability to both one-dimensional signals, such as electrophysiological recordings,
and to two and three-dimensional signals, such as microscopic images.

Plug-in Function

LoG filter Laplacian of Gaussian (LoG)

ALoG filter Anisotropic decomposition of LoG

ADiff filter Anisotropic diffusion

LoG2 filter Bi-Laplacian of Gaussian

LoGN2D filter N-order power of the Laplacian of Gaussian

Gaussian jet Gaussian jet of order n

Zero-crosser Connected components

Table 2.
ImageJ plug-ins demonstrated in the chapter.
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source code under various licenses determined by the plug-in authors. The user
guide of the platform [23] is maintained at http://imagej.nih.gov/ij/docs/guide.
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introductions to image processing with ImageJ can be found in [24].
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The morphological complexity of the nervous tissue is a challenge for conven-
tional segmentation techniques developed for computer vision applications or cul-
tured cells. The challenges lie in the morphological complexity of neurons and glial
cells overlaid on the heterogeneity of the extracellular matrix. This complexity
translates into variations of the tracer signal and touching of relevant structures.

Segmentation of fluorescent images poses particular issues due to low signal-to-
noise ratio, unequal staining, as well as the complexity of structures that need to be
identified. This irreducible variation must inform choices about segmentation
methods. In particular, methods employing multiple spatial scales are favorable.
Structure identification is inherently a multiscale problem because object structure
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A large number of algorithms for image segmentation have been proposed in
literature (overview in [9]). However, many of them completely ignore the issue of
scale. As a result, they are capable of identifying only limited types of structures. In
contrast, multiscale approaches eventually rely on the topological properties of the
segmented objects, either by means of scale spaces or by nonlinear vector field
transforms [25, 26]. As a result, such methods are able to combine detected features
into robust segmentation tools. The present chapter introduced two classes of
multiscale methods for image segmentation: the mathematical morphology opera-
tions and scale spaces. The main applications of the theory are classification and
segmentation of signals. Presented methods are generic and thus have broad appli-
cability to both one-dimensional signals, such as electrophysiological recordings,
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8. Conclusions and outlook

The main utility of the presented approaches is to build a multidimensional
multiscale feature space, which is subsequently used to learn characteristic “finger-
prints” of the objects of interests. The large variation of structures present in
microscopic images precludes the design of an “ideal” tool. Instead, multiple
approaches should be combined and features computed that would inform machine
learning approaches, which are able to adapt to the morphology of the cells and
tissues at hand. Development in this direction has been undertaken with the advent
of deep learning techniques. ImageJ-based implementations, such as the Trainable
Weka Segmentation [10] and the Active Segmentation platforms [11], have been
made available to end-users.
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List of acronyms

MM mathematical morphology
SE structuring element
FFT fast Fourier transform
IFFT inverse fast Fourier transform
GFAP glial fibrillary acidic protein
LoG Laplacian of Gaussian
ROI region of interest

A. Appendix

A.1 Ranking operations

This section starts with a brief introduction to the set notation. In many sources
it is called also the “set builder notation.” The empty set is denoted as ∅. A set
containing only one member (singleton, for example the number 7) is denoted as
{7}. A set consisting of members fulfilling certain condition (in the sense of a
predicate function) is denoted as X ¼ x : predicate xð Þf g. For example, all positive
reals smaller than 7 are denoted as X ¼ x : x>0, x< 7f g.

From a formal perspective, the mathematical morphology is the application of
lattice theory to spatial structures [3]. Formally, the erosion is expressed as

I⊖E ¼ x : xþ b∈ I, b∈Ef g (17)

for binary images, while for grayscale discrete images, it is

I⊖E ¼ min
y∈B

I xþ yð Þ � B yð Þð Þ (18)

Formally, the dilation for binary images is

I⊕E ¼ x : x� b∈ I, b∈Ef g (19)
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while for grayscale discrete images

I⊕E ¼ max
y∈B

I xþ yð Þ þ B yð Þð Þ (20)

In the continuous approximation case, the minimum and maximum should be
replaced by infimum and supremum, respectively. Consider the set X. The infimum
inf, or the greatest lower bound, is the greatest number, which is not necessarily in X
but is smaller (or equal) than all members of X. For a finite set, the infimum
coincides with the minimum. The supremum sup, or the least upper bound, is the
smallest number, which is not necessarily in X but is greater (or equal) than all
members of X. For a finite set, the supremum coincides with the maximum.

A.2 Some useful Fourier transforms

The concept of frequency and the decomposition of waveforms into elementary
“harmonic”wave motions first arose in the context of music and sound. The Fourier
transform and its inverse in the continuous domain are defined as

U kð Þ ¼ Fu xð Þ ¼
ðð

�∞
e�2πik�xu xð Þdx2⇔u xð Þ ¼ F�1U kð Þ ¼

ðð

�∞
e2πik�xU kð Þdk2 (21)

The reader is directed to the book of [27] for an introduction on the topic.
The Fourier transform of the Gaussian is given by

~G fð Þ ¼ e�2π
2 s f 2 (22)

and of its derivatives by

~Gn fð Þ ¼ i2πf sð Þne�2π2sf 2 (23)

In the Fourier domain, the fractional heat kernel is expressed as

~G s,ω, ηð Þ ¼ e� 2πð Þα kj j2αs (24)

Integer-order powers. Integer powers of the Laplacian operators are successive
compositions of the Laplacian operator [28]:

2n ~Ln ω, ηð Þ ¼ �1ð Þn 2π sð Þ2ne�2π2sk2k2n (25)

By substitution with the radial wavenumber k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 þ η2

p
, it can be demon-

strated that the kernel is radially symmetric about the vector k and gets sharper
with increasing the order n:

~Ln kð Þ ¼ �1ð Þn 2n π2n k2n e�2π2 k2s (26)

Fractional-order powers. In the fractional domain the operator can be
expressed as a direct generalization:

~Ln, α kð Þ ¼ �1ð Þn 2n π2n k2α e�2π2 kj j2αs (27)

Therefore, the kernel bandwidth can be controlled by the fractional power α.
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8. Conclusions and outlook

The main utility of the presented approaches is to build a multidimensional
multiscale feature space, which is subsequently used to learn characteristic “finger-
prints” of the objects of interests. The large variation of structures present in
microscopic images precludes the design of an “ideal” tool. Instead, multiple
approaches should be combined and features computed that would inform machine
learning approaches, which are able to adapt to the morphology of the cells and
tissues at hand. Development in this direction has been undertaken with the advent
of deep learning techniques. ImageJ-based implementations, such as the Trainable
Weka Segmentation [10] and the Active Segmentation platforms [11], have been
made available to end-users.
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A. Appendix
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I⊖E ¼ x : xþ b∈ I, b∈Ef g (17)

for binary images, while for grayscale discrete images, it is

I⊖E ¼ min
y∈B

I xþ yð Þ � B yð Þð Þ (18)

Formally, the dilation for binary images is

I⊕E ¼ x : x� b∈ I, b∈Ef g (19)
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while for grayscale discrete images
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y∈B

I xþ yð Þ þ B yð Þð Þ (20)
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U kð Þ ¼ Fu xð Þ ¼
ðð

�∞
e�2πik�xu xð Þdx2⇔u xð Þ ¼ F�1U kð Þ ¼

ðð

�∞
e2πik�xU kð Þdk2 (21)
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2 s f 2 (22)
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A.3 Convolutions and Fourier domain processing

So far the described theory can work both in the spatial and the Fourier domain.
A schematic treatment of the Fourier transform is given in Section A.2. Interested
readers are referred to Burgers for a more complete introduction. The Fourier
domain processing implemented via Fast Fourier Transform has a certain advan-
tage. On the first place, for large convolution kernels, it can lead to speedup. This is
so because convolution in spatial (respectively temporal) domain corresponds to
multiplication in the Fourier domain. This incurs fixed computation costs; there-
fore, the convolution operation scales as N log(N), where N is the size of memory
occupied by the digital image. Therefore, the following processing scheme becomes
useful:

FFT : I↦IF ! KF � FI|fflfflffl{zfflfflffl}
JF

IFFT : JF↦J  I ∗K
(28)

In the diagram above, the arrows indicate transformation, while FFT and IFFT
denote forward and Inverse Fast Fourier Transforms, respectively. In the example
of differentiation in the previous section, the kernel is the wave vector
KF ¼ k ¼ kx, ky, kz

� �
.
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Chapter 5

Empirical Mode Decomposition of
EEG Signals for the Effectual
Classification of Seizures
Fasil OK and Reghunadhan Rajesh

Abstract

Empirical mode decomposition (EMD) is a remarkable method for the analysis
of nonlinear and non-stationary data. EMD will breakdown the given signal into
intrinsic mode functions (IMFs), which can represent natural signals effectively. In
this work, the competence of EMD with traditional features to classify the seizure
and non-seizure EEG signals is studied. Due to the complex nature of human brain,
the EEG signals which are recorded from different regions of brain are non-
stationary in nature. Different features such as entropy features (approximate
entropy (ApEn), sample entropy (SmEn), Shannon entropy (ShEn), Rényi entropy
(RnEn)), fractal dimension features (Petrosian fractal dimension, Higuchi fractal
dimension, Katz fractal dimension), statistical features (mean, standard deviation
and energy) and exponential energy features are extracted from IMFs and fed to a
SVM classifier. The performances of extracted features are studied independently.
The result shows that, the EMD method is well suited for complex seizure EEG
signal classification.

Keywords: seizures, EEG, empirical mode decomposition, intrinsic mode functions

1. Introduction

Seizures are characterized as unexpected, unprovoked and uncontrolled explosion
of electrical impulses in brain [1]. During the seizure, the patient may experiences
changes in behavior, loss of consciousness, unusual movements and unusual feelings
[2, 3]. The recurrent and unprovoked seizure leads to epilepsy disorder which is a
prevalent neurological disorder. Epilepsy disorder will tamper the patients way of life
with social stigma, work productivity lose and premature death [4].

Electroencephalogram (EEG) is one of the traditional and easiest tool for the
identification and diagnosis of seizures [5]. The availability of EEG for common
people within their budgetary limits made it a typical method. Due to the sophisti-
cated nature of brain system, the EEG signals acquired from the brain are also
complicated. Automated analysis of EEG signals using modern signal processing
techniques might be effortless and precise for the diagnosis of seizures rather than
manual approach [6].

Out of modern signal processing techniques, empirical mode decomposition
(EMD) is one of the widely used techniques for the efficient interpretation of
signals and images. After the introduction of EMD by Huang [7] in 1998, several
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studies utilized the EMD for various applications. In Nunes et al. [8] used the EMD
for texture analysis and image filtering. They have used bi-dimensional EMD in
their method. In another work Zeng et al. [9] applied EMD for the effective classi-
fication of gait patterns between patients with Parkinson disease and healthy sub-
jects. In another work Hasan et al. [10] combined the deep learning methods with
EMD to classify cardiovascular disease. Xiwei et al. [11] utilized the advantages of
EMD in a wind speed prediction model, in which, authors used EMD for the
extraction of fluctuation features of wind speed data. Another important study by
Thilagaraj et al. [12] also used EMD for the identification of alcoholism.

The usefulness of the empirical mode composition for the effective understand-
ing of the EEG signal is proven in many works in the literature. In [13], authors
classified the level of autism severity from EEG with the help of EMD. They have
used artificial neural network for the classification of extracted feature from intrin-
sic mode functions (IMFs). Two-class motor imagery EEG signals are classified in
another important study based on EMD [14]. Similarly Gaur et al. [15] used multi-
variate empirical mode decomposition for the effective classification of multi-class
BCI by analyzing EEG signals.

In this work, we have studied the effectiveness of empirical mode decomposi-
tion for the classification of seizures by analyzing EEG signals. The filtered EEG
signals are segmented into 10 non-overlapping segments and decomposed into
IMFs using EMD. First four IMFs are used for the feature extraction. Various
features such as approximate entropy, sample entropy, Shannon entropy, Rényi
entropy, exponential energy, fractal dimensional features and statistical features
(mean, standard deviation and energy) are extracted from the IMFs. Support vector
machine (SVM) with RBF kernel is used for classifying the seizure.

The remaining sections of the paper are as follows. A short description of EMD
and algorithm is explained in Section 2. Section 3 explains the details of the dataset
used in this study and in Section 4; various feature extraction methods are men-
tioned. In Section 5 experimental setup and results are explained. A detailed discus-
sion of achieved results is given in Section 6 and Section 7 concludes the paper.

2. Empirical mode decomposition (EMD)

Empirical mode decomposition is a data-driven decomposition method proposed
by Huang et al. for the analysis of nonlinear and non-stationary data [7], which will
decomposes the signal into finite and smaller number of intrinsic mode functions
(IMFs). A non-stationary signal can be represented as sum of IMFs and each IMFs
should follow two conditions: (1) the number of extrema and number of zero
crossing of the IMFs should be equal or differ at most by one and (2) the mean value
of two envelopes defined by local maxima and local minima should be zero [16].

IMFs can be extracted from a signal through a iterative method known as
shifting process as follows:

1.Use cubic spline interpolation method to construct upper (emax) and lower
(emin) envelops by connecting detected maxima and minima individually from
the signal x(t).

2.Calculate the mean m tð Þ ¼ emaxþeminð Þ
2 .

3.Extract the difference d(t) between signal x(t) and calculated m1(t),
d tð Þ ¼ x tð Þ �m tð Þ.
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4.Check whether d(t) is satisfying the IMFs basic conditions. Repeat step 1 to 3
until d(t) satisfying the IMFs conditions.

5. if d(t) satisfies IMFs condition once, define the first IMF as IMF1 = d(t).

6.The next IMFs can be obtained by generating residue r(t) as r tð Þ ¼ x tð Þ � IMF1
and use these residue as the original data for the next iteration.

7.Iteration will stop when final residue is a function which cannot produce any
more IMFs or final residue is constant/monotonic function.

The original signal can be represented as the sum of all IMFs and final residual.

x tð Þ ¼
XK
i¼1

IMFi þ rK tð Þ (1)

where IMFi is the ith IMF, K is the number of IMF and rK(t) is the final residual.

3. Dataset

A benchmark data set named as Bern-Barcelona EEG dataset is used in this
study. The dataset includes two class EEG signals such as focal and non-focal. Each
class contains 3750 pairs of signals. EEG signals in the focal class are collected from
the epileptic area of the brain and non-focal signals are collected from non-epileptic
area of the brain. The signals are 20 s duration with 10,240 samples in each. The
signals are sampled at 512 Hz sampling rate. In our study we have used 50 signals
from each class as did in many other studies [17–19].

4. Feature extraction

Feature extraction is one of the important tasks in any machine learning appli-
cation. An effective and unbiased feature will provide the best results. There are
several features, which are traditionally used for various EEG related studies.

Entropy features are widely used for the analysis of various non-stationary bio-
signals [20–22]. Different verities of entropy are introduced in past years. In this
work we have used four verities of entropy features, namely approximate entropy
(ApEn), sample entropy (SmEn), Shannon entropy (ShEn) and Rényi entropy
(RnEn). Among considered entropy features, approximate entropy introduced by
Pincus [23] is a good measure of complexity for non-stationary signals. One of the
study proposed by Hozinger et al. [24], extracted approximate entropy from ECG
time-series for better understanding of electrocardiogram (ECG) signals. Another
study by Ahmed et al. [25] utilized approximate entropy for surface electromyo-
gram (EMG) signal classification. Similar to [24], they also extracted approximate
entropy from direct signals with no transformation. Also, other entropy measures
such as sample entropy [27–29], Shannon entropy [30, 31] and Rényi entropy
[32, 33] are used in many studies.

Fractal dimension based feature are also got wide attention of researchers in
recent years. The fractal dimensions are better measures of complexity of a non-
linear or non-stationary data [35]. In this work we extracted three different fractal
dimension features such as Petrosian fractal dimension, Higuchi fractal dimension
and Katz fractal dimension. These measures are used in various EEG related studies
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sic mode functions (IMFs). Two-class motor imagery EEG signals are classified in
another important study based on EMD [14]. Similarly Gaur et al. [15] used multi-
variate empirical mode decomposition for the effective classification of multi-class
BCI by analyzing EEG signals.

In this work, we have studied the effectiveness of empirical mode decomposi-
tion for the classification of seizures by analyzing EEG signals. The filtered EEG
signals are segmented into 10 non-overlapping segments and decomposed into
IMFs using EMD. First four IMFs are used for the feature extraction. Various
features such as approximate entropy, sample entropy, Shannon entropy, Rényi
entropy, exponential energy, fractal dimensional features and statistical features
(mean, standard deviation and energy) are extracted from the IMFs. Support vector
machine (SVM) with RBF kernel is used for classifying the seizure.

The remaining sections of the paper are as follows. A short description of EMD
and algorithm is explained in Section 2. Section 3 explains the details of the dataset
used in this study and in Section 4; various feature extraction methods are men-
tioned. In Section 5 experimental setup and results are explained. A detailed discus-
sion of achieved results is given in Section 6 and Section 7 concludes the paper.

2. Empirical mode decomposition (EMD)

Empirical mode decomposition is a data-driven decomposition method proposed
by Huang et al. for the analysis of nonlinear and non-stationary data [7], which will
decomposes the signal into finite and smaller number of intrinsic mode functions
(IMFs). A non-stationary signal can be represented as sum of IMFs and each IMFs
should follow two conditions: (1) the number of extrema and number of zero
crossing of the IMFs should be equal or differ at most by one and (2) the mean value
of two envelopes defined by local maxima and local minima should be zero [16].

IMFs can be extracted from a signal through a iterative method known as
shifting process as follows:

1.Use cubic spline interpolation method to construct upper (emax) and lower
(emin) envelops by connecting detected maxima and minima individually from
the signal x(t).

2.Calculate the mean m tð Þ ¼ emaxþeminð Þ
2 .

3.Extract the difference d(t) between signal x(t) and calculated m1(t),
d tð Þ ¼ x tð Þ �m tð Þ.
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4.Check whether d(t) is satisfying the IMFs basic conditions. Repeat step 1 to 3
until d(t) satisfying the IMFs conditions.

5. if d(t) satisfies IMFs condition once, define the first IMF as IMF1 = d(t).

6.The next IMFs can be obtained by generating residue r(t) as r tð Þ ¼ x tð Þ � IMF1
and use these residue as the original data for the next iteration.

7.Iteration will stop when final residue is a function which cannot produce any
more IMFs or final residue is constant/monotonic function.

The original signal can be represented as the sum of all IMFs and final residual.

x tð Þ ¼
XK
i¼1

IMFi þ rK tð Þ (1)

where IMFi is the ith IMF, K is the number of IMF and rK(t) is the final residual.

3. Dataset

A benchmark data set named as Bern-Barcelona EEG dataset is used in this
study. The dataset includes two class EEG signals such as focal and non-focal. Each
class contains 3750 pairs of signals. EEG signals in the focal class are collected from
the epileptic area of the brain and non-focal signals are collected from non-epileptic
area of the brain. The signals are 20 s duration with 10,240 samples in each. The
signals are sampled at 512 Hz sampling rate. In our study we have used 50 signals
from each class as did in many other studies [17–19].

4. Feature extraction

Feature extraction is one of the important tasks in any machine learning appli-
cation. An effective and unbiased feature will provide the best results. There are
several features, which are traditionally used for various EEG related studies.

Entropy features are widely used for the analysis of various non-stationary bio-
signals [20–22]. Different verities of entropy are introduced in past years. In this
work we have used four verities of entropy features, namely approximate entropy
(ApEn), sample entropy (SmEn), Shannon entropy (ShEn) and Rényi entropy
(RnEn). Among considered entropy features, approximate entropy introduced by
Pincus [23] is a good measure of complexity for non-stationary signals. One of the
study proposed by Hozinger et al. [24], extracted approximate entropy from ECG
time-series for better understanding of electrocardiogram (ECG) signals. Another
study by Ahmed et al. [25] utilized approximate entropy for surface electromyo-
gram (EMG) signal classification. Similar to [24], they also extracted approximate
entropy from direct signals with no transformation. Also, other entropy measures
such as sample entropy [27–29], Shannon entropy [30, 31] and Rényi entropy
[32, 33] are used in many studies.

Fractal dimension based feature are also got wide attention of researchers in
recent years. The fractal dimensions are better measures of complexity of a non-
linear or non-stationary data [35]. In this work we extracted three different fractal
dimension features such as Petrosian fractal dimension, Higuchi fractal dimension
and Katz fractal dimension. These measures are used in various EEG related studies
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in the literature. In a study of drowsiness detection [36], authors extracted
Petrosian and Higuchi fractal dimensions from EEG time domain signals. Similarly
in another work, Acharya et al. [37] extracted Katz fractal dimension with other
features for the classification of various sleep stages. We have also extracted one of
the newly introduced feature, namely exponential energy by Fasil and Rajesh [26].
Some of the statistical features (mean, standard deviation and energy) are also
tested in this work.

5. Experiments and results

In this work, seizure EEG signals and non-seizure EEG signals are classified by
decomposing the EEG signal into IMFs using empirical mode decomposition. The
frequencies beyond 60 Hz are irrelevant in the EEG analysis due to the non-
availability of proper information in higher frequencies [34]. A sixth order butter-
worth filter is used to remove frequencies beyond 60 Hz. The signals are further
segmented into 10 non-overlapping segments. Empirical mode decomposition is
applied on the segmented EEG signals and first four IMFs are obtained. Feature are
extracted from four IMFs and averaged across the segments. Support vector

Figure 1.
Block diagram of the proposed seizure classification method.
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machine with RBF kernel is used for the classification task. An overall diagram of
the work is given in Figure 1.

The empirical mode decomposition produces six IMFs in total, though we have
considered only first four IMFs. The reason behind this selection procedure is the
non-availability of useful information in last IMFs. In this work we have extracted
various features such as approximate entropy (ApEn), sample entropy (SmEn),
Shannon entropy (ShEn), Rényi entropy (RnEn), Petrosian fractal dimension,
Higuchi fractal dimension, Katz fractal dimension, exponential energy from four
IMFs and statistical feature (mean, standard deviation and energy).

Figure 2.
Focal EEG signals and six IMFs obtained from focal EEG signal.

69

Empirical Mode Decomposition of EEG Signals for the Effectual Classification of Seizures
DOI: http://dx.doi.org/10.5772/intechopen.89017



in the literature. In a study of drowsiness detection [36], authors extracted
Petrosian and Higuchi fractal dimensions from EEG time domain signals. Similarly
in another work, Acharya et al. [37] extracted Katz fractal dimension with other
features for the classification of various sleep stages. We have also extracted one of
the newly introduced feature, namely exponential energy by Fasil and Rajesh [26].
Some of the statistical features (mean, standard deviation and energy) are also
tested in this work.

5. Experiments and results

In this work, seizure EEG signals and non-seizure EEG signals are classified by
decomposing the EEG signal into IMFs using empirical mode decomposition. The
frequencies beyond 60 Hz are irrelevant in the EEG analysis due to the non-
availability of proper information in higher frequencies [34]. A sixth order butter-
worth filter is used to remove frequencies beyond 60 Hz. The signals are further
segmented into 10 non-overlapping segments. Empirical mode decomposition is
applied on the segmented EEG signals and first four IMFs are obtained. Feature are
extracted from four IMFs and averaged across the segments. Support vector

Figure 1.
Block diagram of the proposed seizure classification method.

68

Advances in Neural Signal Processing

machine with RBF kernel is used for the classification task. An overall diagram of
the work is given in Figure 1.

The empirical mode decomposition produces six IMFs in total, though we have
considered only first four IMFs. The reason behind this selection procedure is the
non-availability of useful information in last IMFs. In this work we have extracted
various features such as approximate entropy (ApEn), sample entropy (SmEn),
Shannon entropy (ShEn), Rényi entropy (RnEn), Petrosian fractal dimension,
Higuchi fractal dimension, Katz fractal dimension, exponential energy from four
IMFs and statistical feature (mean, standard deviation and energy).

Figure 2.
Focal EEG signals and six IMFs obtained from focal EEG signal.

69

Empirical Mode Decomposition of EEG Signals for the Effectual Classification of Seizures
DOI: http://dx.doi.org/10.5772/intechopen.89017



Sample focal EEG signal and IMFs obtained from focal EEG signals are shown in
Figure 2. Similarly sample non-focal EEG signal and IMFs obtained from non-focal
EEG signals are shown in Figure 3.

Each record in the dataset contains a pair of signals denoted as ‘x’ and ‘y’. EMD
applied on both signal separately and total 8 IMFs are obtained (4 from ‘x’ and 4
from ‘y’). To investigate the ability of each feature to classify seizures, experiments
are conducted on all features individually. In classification task, the capacity of RBF
kernel in support vector machine is already proved in various seizure studies
[26, 34]. In this work we have used RBF kernel in support vector machine for the
classification task.

Figure 3.
Non-focal EEG signals and six IMFs obtained from non-focal EEG signal.
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We have used k-fold cross-validation with k ¼ 5 for testing the ability of
extracted features from IMFs. The results of the experiments are calculated with
three benchmark measures, such as accuracy, sensitivity and specificity. The mea-
sured results are tabulated in Table 1.

The results in Table 1 indicates that the features extracted from the IMFs of
empirical mode decomposition gives promising results. Among the tested features,
exponential energy feature provided better accuracy with 84%. A box-plot of
extracted exponential energy is shown in Figure 4. Katz Fractal Dimension also
provides better accuracy of 80% followed by Rényi entropy with 79%. Statistical
features and Shannon entropy gives less accuracy out of all. It is noted that Shannon
entropy giving very low sensitivity value and very high specificity, which indicates
that more number of seizure signals are miss-classified as non-seizure signals.

Feature Accuracy (%) Sensitivity (%) Specificity (%)

Shannon entropy 58 26 90

Statistical features 68 54 82

Higuchi fractal dimension 71 72 70

Sample entropy 73 83 60

Approximate entropy 75 82 68

Petrosian fractal dimension 75 68 82

Rényi entropy 79 82 76

Katz fractal dimension 80 88 72

Exponential energy 84 84 84

Table 1.
Results of various features extracted from the IMFs.

Figure 4.
Boxplot of the extracted exponential energy feature of four IMFs of focal (green color box, labeled as F_IMF)
and non-focal (blue color box, labeled as NF_IMF) EEG signals.
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6. Discussion

The study of EEG signals using empirical mode decomposition (EMD) gives an
insight into the effectiveness of EMD method to analyze EEG signal for seizure
classification. The features (includes four types of entropy features, three types of
fractal dimensions, statistical features and exponential energy) considered in this
work, produces better classification accuracy when it is extracted from decomposed
IMFs.

Empirical mode decomposition method decomposes the signals into various
intrinsic mode functions (IMFs). Since, IMFs carries more detailed information of a
signal, the features extracted from these IMFs leads to better classification.

Similar to EMD, discrete wavelet transformation (DWT) is a method, which
decomposes the signal into various sub-bands [38–40, 42]. Many EEG related
studies used DWT method for various analysis. Li et al. [41] combined DWT
method with envelope analysis for the effective feature extraction to classify epi-
leptic signal. In another work, Kumar et al. [42] extracted fuzzy entropy from the
sub-bands of DWT for seizure detection. Similarly Liu et al. [43], Mohammadi et al.
[44] and Silveira et al. [45] also used DWT method to analyze EEG signals for
various purposes. Though, EMD is more better than the DWT method.

A comparison of EMD method with DWT is also carried out in this work. The
same features which are extracted from the IMFs are also extracted from the DWT
sub-bands and classified with same classifier. A bar chart of the comparison of
classification accuracy is given in Figure 5. The comparison results show that the
EMD based feature produces better classification results than DWT based features.
EMD based method produced an average accuracy of 73.66%. In case of DWT the
average accuracy is 68%. Although, DWT methods shows a slight improvements in
results for approximate entropy and Shannon entropy features.

Figure 5.
A comparison of classification accuracy between empirical mode decomposition (EMD) and discrete wavelet
transform (DWT). Red dashed vertical line indicates the average accuracy of all DWT features and green
dashed vertical line indicates the average accuracy of all EMD features.
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Among various entropy features, EMD-Rényi combination (79% accuracy) pro-
vides higher classification accuracy. Approximate entropy extracted from IMFs
produced an accuracy of 75%. Shannon entropy with EMD is not a good choice of
feature for epileptic seizure detection. The classification accuracy produced by
Shannon entropy is only 58%. Complexity of EEG data is the reason for less per-
centage of accuracy.

Three fractal dimensions (Petrosian fractal dimension, Higuchi fractal dimen-
sion, Katz fractal dimension) used in this work also produce promising results when
they are extracted from IMFs. In this study, EMD based Katz fractal dimension
produces higher (80%) classification accuracy than Petrosian (75%) fractal dimen-
sion and Higuchi (71%) fractal dimension.

EMD based statistical features did not produce promising results for classifica-
tion of epileptic EEG signals. But the results are comparatively better than the
features from time domain and DWT domain. The highest classification accuracy
(84%) reported in this study is with newly introduced exponential energy feature
by Fasil and Rajesh [26]. Exponential energy feature utilizes the detailed informa-
tion available in IMFs to classify epileptic EEG signals effectively. The achieved
results show the effectiveness of empirical mode decomposition (EMD) as major
step in epilepsy classification.

7. Conclusions

The scope of the empirical mode decomposition of EEG signals in effectual
classification of seizure is studied in this work. Four intrinsic mode functions
(IMFs) are obtained by applying EMD on filtered EEG signals. Widely used features
such as entropy features, fractal dimension features, statistical features and expo-
nential energy features are extracted and its discriminating power is studied. SVM
with RBF kernel is used for the classification task. Exponential energy feature
provided better results for the seizure classification.

Seizure identification is a challenging and risk bearing activity, which require
better accuracy. In future, authors will concentrate on improving the results by
incorporating other signal transformation methods with EMD.
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Chapter 6

Detection of Epileptic Seizure 
Using STFT and Statistical 
Analysis
Furkan Kalin, T. Cetin Akinci, Deniz Türkpence,  
Serhat Seker and Ufuk Korkmaz

Abstract

In this study, EEG data from two volunteer individuals, a healthy individual and 
a patient with epilepsy, were investigated with two different methods in order to 
distinguish healthy and patient individuals from each other. The data were obtained 
from a healthy individual and from a patient with epilepsy at the time of epileptic 
seizure and of seizure-free interval. The data are those of which validity and 
reliability were proven and were supplied from the data bank records of University 
Hospital of Bonn in Germany. In the study, the statistical parameters of the col-
lected data were calculated, then the same data were analysed using short-time 
Fourier transform (STFT) method, and then they were compared. Both statistical 
parameter results and spectrum analysis results are compatible with each other, and 
they can successfully detect healthy individuals and epileptic patients at the time 
of epileptic seizure and seizure-free interval. In this sense, the results were math-
ematically highly compatible, which offers significant information for the diagnosis 
of the disease. In the analysis, the variance values were determined as 253.203 for 
the healthy individual, 806.939 for the patient at seizure-free interval and 6985.755 
for that patient at the time of seizure. Accordingly, standard deviation can be said 
to be quite distinctive in the designation of values. The frequencies of all three cases 
resulted in 0, 0–5 and 0–20 Hz, respectively, as a result of conducted STFT analysis, 
which is quite consistent with the results of the statistical analysis parameters.

Keywords: electroencephalogram, statistical analysis, epilepsy, STFT, seizure

1. Introduction

Temporary clinical conditions, including loss of consciousness, sensory, auto-
nomic and mental disorders, arising from excessive electrical discharges in the nerve 
cells in the brain, with certain intervals are called as seizure. The condition which 
becomes chronic with the repetition of these seizures is called as epilepsy. Epilepsy 
is a chronic disorder that affects the brain and that can be encountered in people of 
all age groups. It is a neurological disease, most commonly seen in childhood and 
adolescence periods, and is the second most common disease in adults, followed by 
brain vessel diseases [1–3]. According to the World Health Organization data, 50 
million people around the world are patients with epilepsy [4, 5]. EEG is also used 
as an auxiliary diagnostic method in the diagnosis of epilepsy, in addition to clinical 
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information, and EEG analysis is performed on patients who are considered to have 
epileptic seizures [6–8]. Mathematical and spectral methods are used very effec-
tively for the diagnosis of the disease during the analysis of EGG data [9–11].

EEG method establishes the basis of epilepsy science, and its history dates back 
to the 1940s and is used since then. In principle, it is based on the recording of fluc-
tuations of electrical activity of neurons in the brain, and the main contributions of 
EEG for epileptic cases can be summarized as follows: supports a clinically identi-
fied diagnosis; is used as a confirmatory test; helps to make diagnosis correctly; 
directly and indirectly identifies seizure type and epilepsy syndrome, together with 
some findings; and informs about the location of focus [12].

Delta (δ) waves are those with frequencies of 1–4 Hz and amplitudes of 
20–400 μV. They are seen in cases when the brain has very low activity, such as deep 
sleep, general anesthesia, immune system, natural recovery.

Theta (θ) waves are those with frequencies of 5–7 Hz and amplitudes of 
5–100 μV. They are seen in cases when the brain has low activity, such as sleep with 
dream, middle anesthesia, stress, emotional commitment.

Alpha (α) waves are those with frequencies of 8–13 Hz and amplitudes of 
2–10 μV. They are seen in cases when awake individuals are physically and mentally 
full resting, there is no any external stimulant, in relaxed positions and when eyes 
are closed. They are most prominently observed in records obtained from the 
occipital region.

Beta (β) waves are those with frequencies of 14–30 Hz and amplitudes of 
1–5 μV. They are seen in cases, including focused attention, mental work, problem 
solving, memory, sensory information processing, rapid eye movements phase of 
sleep [13–16].

The EEG signals used in this study are registered at the University Hospital 
of Bonn in Germany [17]. The dataset consists of five subsets (denominated as 
A, B, C, D and E) that are recorded with the same 128-channel amplifier system 
and 12-bit analog-to-digital converter. Each of the subsets contains 100 segments 
with a sampling frequency of 173.61 Hz and a duration of 23.6 s, i.e. 4096 sample 
points; the corresponding frequency bandwidth is 86.8 Hz. Subsets B, D and E were 
analysed in this study. While EEG samples in set B were obtained from five healthy 
volunteers via external surface electrodes, for closed eye condition, set D consisted 
of EEG segments recorded from patients with epilepsy using intracranial electrodes 
to monitor epileptic activity, obtained at the time without seizure. Set D data were 
obtained from epileptic area, and they were recorded. Set E contains EEG data, 
obtained from patients with epilepsy, recorded at the time of seizure. Strip elec-
trodes were used while recording set E data.

2. Statistical and mathematical background

EEG signals are not deterministic. Since EEG signals do not have a specific shape 
as electrocardiogram (ECG) signals do, statistical and parametric methods are used 
in the analysis of EEG signals [18–20]. Spectral methods are used for the classifica-
tion and characterization of EEG signals [21–35].

2.1 Statistical analysis methods

Statistical parameters are used to obtain necessary properties, in most of the 
analyses performed in time domain. Although the mean and median values of 
signal are expected to result in pretty near zero when the signals have a periodical 
and sinusoidal structure, these values can get away from zero by taking positive 
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or negative values in non-periodical signals. In the analyses, the most basic mean 
value, μ, and the standard deviation, σ, can produce distinctive results on non-
periodic signals [19]. For a given data set {xi}, these are defined as follows:

  μ =   1 _ N    ∑ 
i=1

  
N

     x  i     (1)

  σ =  √ 
____________

    1 _ N    ∑ i=1  
N      ( x  i   − μ)    2 .      (2)

where N is the number of the data points.
Knowing the standard deviation value for a given series of numbers and 

understanding this concept mean knowing to what extent this series is distribut-
ing around an average. The bigger standard deviation indicates that datapoints get 
further away from the average; a small standard deviation indicates that data points 
form more close groups around the average.

In practice, data often correspond to normal probability distribution (Gaussian), 
which is actually due to the central limit theorem. According to the central limit 
theorem, the sum of random variables, which are independent of each other and all 
have the same distribution, tends to follow a normal distribution at the limit. Here, 
skewness (α) and kurtosis (β), two functions obtained from the Gaussian distribu-
tion, are given in the following Equations [20]:

  α =   
 [  1 _ N    ∑ i=1  

N      ( x  i   − μ)    3 ] 
  ____________ 

 σ   3 
    (3)

  β =   
 [  1 _ N    ∑ i=1  

N      ( x  i   − μ)    4 ] 
  ____________ 

 σ   4 
    (4)

Here, when α equals zero, it means a perfect normal distribution, and when α 
takes negative or positive values, it means symmetry is deflected towards the right 
or left side. In statistical calculations, if the skewness is negative, the tail of the 
curve will extend to the left, and the distribution will densify on the right side of 
the graph. If the skewness is positive, the tail of the curve will extend to the right, 
and the distribution will densify on the left side of the graph. The kurtosis (β) is 
very close to 3 for the normal distribution. These statistical parameters can be used 
to quickly check the changes in the statistical behaviour of a signal [18–20].

2.2 Fourier transform and STFT

The Fourier transform (FT) method is one of the most effective methods 
used to process signals, in order to obtain information in the signal. In the Fourier 
transform method, a signal is expressed as the sum of the fundamental cosine and 
sinus components at different amplitudes, frequencies, and phases. The tabulation 
of each component with its frequency and amplitude provides convenience during 
data processing through computers. The equations for Fourier transform are given 
below in Eq. (5) and Eq. (6) [23, 26, 29, 30, 33]:

  f (x)  =   1 _ 
 √ 
_

 2π  
     ∫ 
−∞

  
∞

   F (k)   e   ikx  dk  (5)

  F (k)  =   1 _ 
 √ 
_

 2π  
     ∫ 
−∞

  
∞

   F (x)   e   −ikx  dx  (6)

Similarly, based on the Fourier transform method, short-time Fourier transform 
(STFT) and spectrogram were developed by Gabor in 1946. This method most 
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and the distribution will densify on the left side of the graph. The kurtosis (β) is 
very close to 3 for the normal distribution. These statistical parameters can be used 
to quickly check the changes in the statistical behaviour of a signal [18–20].
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The Fourier transform (FT) method is one of the most effective methods 
used to process signals, in order to obtain information in the signal. In the Fourier 
transform method, a signal is expressed as the sum of the fundamental cosine and 
sinus components at different amplitudes, frequencies, and phases. The tabulation 
of each component with its frequency and amplitude provides convenience during 
data processing through computers. The equations for Fourier transform are given 
below in Eq. (5) and Eq. (6) [23, 26, 29, 30, 33]:
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∞
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Similarly, based on the Fourier transform method, short-time Fourier transform 
(STFT) and spectrogram were developed by Gabor in 1946. This method most 
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Figure 1. 
(a) Healthy (his eyes closed), (b) EEG signal from epileptic area, with seizure-free intervals and (c) EEG 
signal from the epileptic region at the time of seizure.

clearly reveals time and frequency localization [17]. STFT provides very decisive 
results in the analysis of signals. Here, a x(t) signal is used in a fixed window size 
and in frequency resolution. To define the STFT, let us consider a signal x(t) with 
assumption that it is stationary when it is windowed through a fixed dimension 
window g(t), cantered at time location τ. The Fourier transform of the windowed 
signal yields the STFT [23, 25, 26, 33–35].

  STFT {x (t) }  ≡ X (τ, f)  =   ∫ 
−∞

  
∞

   x (t) g (t − τ)   e   −j2𝜋𝜋ft  dt  (7)

Similarly, for two-dimensional, discretely timed signals, this time-frequency 
function (t, f) is given in Eq. (8). Here, window g(t) is chosen; the STFT resolution 
is fixed over the entire time-frequency plane [23–30]:

  STFT {x (n) }  ≡ X (m, f)  =   ∑ 
n=−∞

  
∞

   x (n) g (n − m)   e   −j𝜔𝜔n   (8)

The spectrogram is given in Eq. (9):

                        {x (t) }  ≡   |X (τ, f) |    2                                                                          (9)

3. Analysis and application

In this study, the data from two different volunteers were used in the analysis 
of EGG data. One of these individuals is healthy and the other one is a patient 
with epilepsy. The healthy individual’s eyes are closed (Figure 1a). The data of the 
patient with epilepsy were collected when he did not suffer a seizure, and these data 
were taken from the epileptic area (Figure 1b).

When the data of two individuals, healthy and patient with epilepsy, given in 
Figure 1, are examined, it is seen that while the graphical amplitude of the healthy 
individual changes in the range of 0–40 μV as shown in Figure 1a, the graphical 
amplitude of the patient with epilepsy rises up to 125 μV as shown in Figure 1b. 
As is understood from this graph, the amplitudes of two individuals, healthy and 
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patient with epilepsy, are sufficient to clearly diagnose the disease. The graphi-
cal amplitude gets maximum value despite the absence of seizure as shown in 
Figure 1b. However, the moment when the same individual has a seizure shown in 
Figure 1c), the amplitudes are seen to increase much. These graphs clearly indicate 
whether the individual is a patient with epilepsy and whether those patients with 
epilepsy suffer a seizure (Table 1).

When the statistical parameters of the data from the healthy individual and of 
the epileptic area of the patient with epilepsy are examined, it is seen that there are 
significant differences both in the mean value and in the standard deviation. The 
mean value yields −1.347 in the healthy individual, −5.24 in the patient with epi-
lepsy and − 2.521 when the patient with epilepsy suffers a seizure. As a result of the 
analysis, standard deviation values can be said to be quite decisive in the diagnosis 
of the disease. However, while healthy individual and the patient with epilepsy 
can be distinguished from each other in histograms, the histogram shows a normal 
distribution at the time of seizure.

In this context, histogram graphs can only be used in the diagnosis of epilepsy, but 
not in detecting seizure moments. The histograms of the healthy individual and of the 
patient with epilepsy are given in Figures 2 and 3. Figure 4 shows histograms of the 
data of the patient with epilepsy at the time of seizure.

The spectrum analysis of data received from individuals is given in Figures 5–7.  
The frequency values were limited to 50 Hz, considering general characteristics of 
EEG frequency values. At the spectral analysis of the data of the healthy individ-
ual, the frequency values were seen to be about 10 Hz, and this corresponds to the 
alpha waves. When the spectrogram of the patient with epilepsy was examined at 
the time of free seizure, it was observed that the frequency values corresponded 

Mean (μ) Standard deviation (σ) Variance Skewness(α) Kurtosis(β)

Healthy −1.347 15.912 253.203 −0.027 3.043

Free seizure −5.24 28.406 806.939 1.437 5.738

Seizure −2.521 83.580 6985.755 −0.100 3.268

Table 1. 
Statistical analysis of healthy individual’s and patient with epilepsy’s EEG signal.

Figure 2. 
Set E histogram (healthy volunteer).
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Figure 4. 
Set E histogram (epileptic seizure).

Figure 5. 
Spectrogram of healthy individual with closed eye.

Figure 3. 
Set E histogram (seizure-free intervals).
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to the range of 0.5–4 Hz (delta wave), and when the data of the same patient were 
examined at the time of seizure, the frequency values were seen to distribute in 
the range of 0–20 Hz.

4. Discussion

First of all, it should be noted that the data used in the study provide validity 
and reliability conditions. In this sense, the data used in this study were used in 
many articles and obtained from the records of the database of University Hospital 

Figure 6. 
Spectrogram for seizure-free epileptic patient.

Figure 7. 
Spectrogram of a patient with epilepsy during epileptic seizure.
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Figure 4. 
Set E histogram (epileptic seizure).

Figure 5. 
Spectrogram of healthy individual with closed eye.

Figure 3. 
Set E histogram (seizure-free intervals).
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Figure 8. 
Comparison of the histograms.

of Bonn in Germany [11]. Time-frequency-based techniques have been used in 
many studies using EEG data [36]. In most of these studies, anomalies in the brain 
can be determined from the high-frequency difference [36–42]. In this study, the 
EEG data of individuals with different conditions (non-patient, sick and seizure 
patient) were analysed. The analyses were compared. This comparison makes it easy 
to classify the patients. In this study, EEG analysis was approached from different 
perspectives compared to other studies. Traditionally, basic linear analyses and sta-
tistical approaches have been used in time and frequency fields. In this sense, it can 
be said that the study contains more definite, distinctive results than other analyses. 
In the literature, the amplitude of the signal, the distance between seizure and non-
seizure intervals and the energy ratio of EEG have been investigated. These studies 
have been used as a criterion for the evaluation of epileptic activity [43–47]. Today, 
many mathematical methods are used in the analysis of EEG data [48–50]. Data 
collection systems are constantly changing with the developing technology. In the 
future, it is predictable that the data will be made by remote sensing. Furthermore, 
the analysis of EEG data with artificial intelligence methods can be developed as 
a tool. With this tool, neurofeedback applications can be considered as the most 
important method in the treatment and development.

5. Conclusions

In this study, the data from healthy individual and from the patient with 
epilepsy were examined. The collection and analysis of data of the patient with 
epilepsy at both the time of seizure and of seizure-free interval are important 
for the diagnosis of the disease. In this study, first of all, statistical analyses were 
performed, and as a result of the analysis, the mean and standard deviation values 
of the healthy individual and the patient with epilepsy suggest very decisive results. 
Figure 8 shows the comparison of the histograms of the individuals.

Variance, one of the statistical parameters, also produces meaningful results 
in distinguishing patient and healthy individuals. In this study, variance value 
yields 253.203 for the healthy individual, 806.939 for the patient with epilepsy at 
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seizure-free interval and 6985.755 for that patient at the time of seizure. Other 
statistical parameters also revealed very clear results in distinguishing patient and 
healthy individuals. However, the results of the STFT analyses support the statisti-
cal parameters. In this study, the frequency values of the healthy individual were 
seen to distribute around 10 Hz, in the range of 0–5 Hz for the patient with epilepsy 
at seizure-free interval and in the range of 0–20 Hz for that patient at the time of 
seizure. Accordingly, it can be said that the statistical and spectral analyses made 
are quite decisive for the diagnosis of the disease.
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Chapter 7

Information Processing and
Synaptic Transmission
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Abstract

The brain is probably the most complex machinery for information processing
we can imagine. The amount of data it manages is extremely huge. Any conscious or
unconscious event both internal and coming from the environment needs to be
perceived, elaborated, and responded with an appropriate action. Moreover, the
high-level activities of mind require the connection of logical elaboration, the rela-
tionship with past experience (memory), and the transfer of information among
different areas of the brain participating to the elaboration of the thought. Almost
all brain illnesses or even simple defaults can be related to a corruption of the basic
system which manage information in the brain. The main actors in transferring and
managing information are the synapses, and then the understanding of the brain
information processing cannot disregard the full understanding of the synaptic
functionality. In the present chapter, by using as example the most common type of
the brain synapse (the glutamatergic synapse), we will present the basic mechanism
of synaptic transmission stressing some of the most relevant mechanisms which
regulate the transfer and management of information.

Keywords: information processing, synaptic transmission, synaptic integration,
neuronal spikes, neuronal modeling, synaptic modeling

1. Introduction

The brain is probably the most complex computational machinery performing in
parallel a continuous elaboration of information coming from the environment and
from the internal of the body. Undoubtedly, independently from the level of inves-
tigation (from the molecular to the neurological and psychological level), almost all
the neurosciences deal, directly or indirectly, with the brain information processing
and/or its malfunctioning. In this chapter, we will illustrate some basic aspects of
information transfer and elaboration showing how much complex is the control of
its flow among the neurons.

Neurons share information mainly by the synaptic contacts which they use both
to transmit and to receive. The input and output contact among many neurons are
the system which operate the neural networks and the whole brain. Synapses are,
then, the key points for the information transfer among neurons, but, as we will see
in details later, they are also the primarily system of information coding and elabo-
ration. Their activity, in fact, produces the codification of the information by a
neuron in form of spike sequences into a sequence of postsynaptic potentials (PSP)
which we can define as the first step of the postsynaptic representation of the
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managing information are the synapses, and then the understanding of the brain
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1. Introduction

The brain is probably the most complex computational machinery performing in
parallel a continuous elaboration of information coming from the environment and
from the internal of the body. Undoubtedly, independently from the level of inves-
tigation (from the molecular to the neurological and psychological level), almost all
the neurosciences deal, directly or indirectly, with the brain information processing
and/or its malfunctioning. In this chapter, we will illustrate some basic aspects of
information transfer and elaboration showing how much complex is the control of
its flow among the neurons.

Neurons share information mainly by the synaptic contacts which they use both
to transmit and to receive. The input and output contact among many neurons are
the system which operate the neural networks and the whole brain. Synapses are,
then, the key points for the information transfer among neurons, but, as we will see
in details later, they are also the primarily system of information coding and elabo-
ration. Their activity, in fact, produces the codification of the information by a
neuron in form of spike sequences into a sequence of postsynaptic potentials (PSP)
which we can define as the first step of the postsynaptic representation of the
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presynaptic code. If we consider the spike sequence of a presynaptic neuron as the
representation of a stimulus, the PSPs produced at the synaptic level will be the
synaptic representation of that stimulus. The meaning of stimulus, however, does
not only refer to the codification of an environmental stimulation. The spike
sequences, in several neurons, are not only the codification of stimuli but partici-
pate also to the high-level performances connected to memory recall, thought,
reasoning, and so on. Whatever is the role of the spike sequence, it represents an
information which, transmitted to other neurons, is translated at the synaptic level
in a sequence of PSP. How this will be further recoded into a postsynaptic spike
sequence depends on a complex integration of all the inputs arriving to the neuron
in a compatible time window.

Although a large effort is spent in the last five decades for its understanding, the
way the neurons really code, manipulate, and share information remains a mystery.
What seems to be generally accepted is that the code of a neuron, for a given event,
is formed by a sequence of elementary bits (spikes) in a given time window. The
difficulty in understanding the code for a given stimulus rises because this sequence
often seems to be randomly distributed in time (irregular and non-repetitive
interspike intervals) also when generated for the same stimulus. So far, two main
ideas have been affirmed on the possible nature of the code, and both of them are
supported by many strong experimental evidences. According to one of them, the
codification of the stimulus occurs in terms of frequency of the spikes in a given
time window. Many different time sequences of the spikes can give the same
frequency since it depends on the number of spikes given in the chosen time
window. The alternative one assumes that the coding is embedded in the precise
timing of the spike occurrence.

The difficulty in understanding the relationship between the code generated by
neurons in sequences of spikes (either as frequency or precise timing) rises essen-
tially by the lack of the precise knowledge on how the neuron generates spikes
thanks to the thousands of synaptic inputs it receives. In turn, this lack of knowl-
edge depends on the still low level of knowledge on how the synapses code the
presynaptic information into a sequence of PSP. The understanding of the basic
mechanisms of synaptic transmission is fundamental in all fields of neurosciences
including the genesis of important brain diseases involving memory impairment
and other brain performances as Parkinson [1], Alzheimer [2], and Autism [3]. Not
surprisingly then a big effort is spent nowadays worldwide to study synaptic trans-
mission with the most diverse experimental approaches but also with mathematical
modeling and computer simulations since, for the structural conformation, not all
the properties of the synapses can be unveiled by the experimental approaches.

In the present chapter, we will use the most common type of excitatory synapse
in the brain, the glutamatergic synapse, to outline, after a brief simple explanation
of its functioning, how many and how complex are the mechanisms controlling the
flow of information among the neurons operated by these synapses.

A typical pyramidal neuron of the cortex or of the hippocampus subfields receives
thousands of synaptic inputs (3000–30,000) [4–6]. The larger parts of these inputs
(80%) are excitatory inputs which use glutamate (Glu) as neurotransmitter. It is then
reasonable to assume that these synapses are the most important way of information
transfer and elaboration. Probably, the most important regulatory system of the
activity of the glutamatergic pyramidal neurons is given by the inhibitory neurons
which use the γ-aminobutyric acid (GABA) as neurotransmitter [4–6].

GABAergic synapses represent between 10 and 20% of the synapses inputting on
a pyramidal neuron, and they are located in strategic positions on the shaft of the
dendritic branches among the excitatory glutamatergic synapses [4–6].
Glutamatergic synapses are normally located on spines (a sort of elongation)
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protruding from the shaft of the dendritic branches. When activated they produce
the so-called excitatory postsynaptic current (EPSC) which is a current which
depolarizes the membrane (increases Vm) producing the so-called excitatory post-
synaptic potential (EPSP). The regulatory effect of the GABAergic (mainly GABAA
type) synapses is to repolarize Vm by the so-called inhibitory postsynaptic current
(IPSC) producing the opposite effect on the membrane voltage and generating the
inhibitory postsynaptic potential (IPSP).

The integration of the activity of these large amounts of inputs at the soma of the
neuron determines the spiking behavior of the neuron (coding). Considering that
on the average a neuron makes a single synapse to another neuron, each neuron
receives contacts from thousands of neurons each of which try to send the infor-
mation it carries. However, several neurons of a given area (sending area) can give
each a single contact to the same neuron (receiving neuron). If the many neurons of
the sending areas are excited by a stimulus, the integration of the synaptic responses
on the receiving neuron will produce the postsynaptic representation of the stimu-
lus. For example, several neurons of the dentate gyrus can input on the same neuron
of one of the subfields of hippocampus (CA1 or CA3) [7]. Moreover, such an input
interacts with the inputs coming from other neurons located on different areas
(e.g., from the entorhinal cortex in the example given before [7]).

If we only look to this short and incomplete representation of the problem of the
information management by a single neuron, it becomes clear how and why the
correspondence between the sequence of spikes and the code it generates is very
variable such that the correlation between the inputs and the code generated is
unpredictable and appears random.

In this framework, a great amount of complexity depends on the mechanisms
which regulate the transmission of a single bit (spike) information to each synapse.
The synaptic activity is greatly influenced by many factors [8]. First of all, the way
glutamatergic synapse contributes to the postsynaptic neuronal code depends
strongly on the biophysical properties of the dendrite where the synapse is located
and on the path from its location to the soma. The electrical signal generated at a
synapse attenuates with distance according to the cable properties of the dendritic
path which changes along the arborization depending mainly on the dendritic size
[9, 10]. The attenuation with distance is of exponential type [9, 10]. Usually, the
higher input impedance of the branches more far from the soma seems to help the
diffusion of the far signals producing EPSP with higher amplitude, a phenomenon
which some authors consider as a sort of “synaptic democracy” [11, 12].

To give an idea of some of the basic mechanisms involved in the modulation of
the synaptic information transferred to a neuron, in the following we will briefly
remember, in a simplified way, the basic mechanism of the synaptic transmission
with a particular attention to those processes which participate to the modulation of
the signal. A part of the ability to transmit and modulate the information depends
directly on the synaptic structure. For this reason we will first describe a general
glutamatergic synapses and after the pre- and postsynaptic mechanisms influencing
the modulation of the information carried by a single bit of synaptic information
(the EPSP). The modulatory effect on a sequence of elementary bits (a “word”) will
also be considered, and a final discussion will summarize the effects of the different
modulatory systems.

2. Synaptic structure and mechanisms

A classical glutamatergic synapse is located on the top of a spine of the dendritic
tree. The spine is composed of a neck, protruding from the dendritic shaft, and a
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presynaptic code. If we consider the spike sequence of a presynaptic neuron as the
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in a sequence of PSP. How this will be further recoded into a postsynaptic spike
sequence depends on a complex integration of all the inputs arriving to the neuron
in a compatible time window.

Although a large effort is spent in the last five decades for its understanding, the
way the neurons really code, manipulate, and share information remains a mystery.
What seems to be generally accepted is that the code of a neuron, for a given event,
is formed by a sequence of elementary bits (spikes) in a given time window. The
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synapse attenuates with distance according to the cable properties of the dendritic
path which changes along the arborization depending mainly on the dendritic size
[9, 10]. The attenuation with distance is of exponential type [9, 10]. Usually, the
higher input impedance of the branches more far from the soma seems to help the
diffusion of the far signals producing EPSP with higher amplitude, a phenomenon
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with a particular attention to those processes which participate to the modulation of
the signal. A part of the ability to transmit and modulate the information depends
directly on the synaptic structure. For this reason we will first describe a general
glutamatergic synapses and after the pre- and postsynaptic mechanisms influencing
the modulation of the information carried by a single bit of synaptic information
(the EPSP). The modulatory effect on a sequence of elementary bits (a “word”) will
also be considered, and a final discussion will summarize the effects of the different
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tree. The spine is composed of a neck, protruding from the dendritic shaft, and a
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head where the information is really received. A general description of the
glutamatergic synapse includes a presynaptic button facing through a cleft with
postsynaptic spine. The area of the presynaptic button, opposed to the postsynaptic
spine, contains vesicles filled of glutamate and is called the active zone (AZ). A
number of vesicle ranging 10–20 are anchored to the presynaptic membrane by the
SNARE complex (soluble NSF attachment proteins) which is a protein complex
docking the vesicles ready to be released [13]. The arrival of a presynaptic spike
activates the fusion and the pore formation of a vesicle activated by the SNARE
complex following the Ca2+ influx (see, e.g., [13]). The first step of the transfer of
the single elementary bit of information is then the release of a vesicle of glutamate
regulated by the SNARE complex following the arrival of a presynaptic spike. If
we consider the spike as the elementary bit of the neuronal information carried,
then we can consider the EPSP as the elementary bit of the synaptically coded
information.

The presynaptic surface, containing the docked vesicles, is separated from the
postsynaptic one by a distance (cleft) of �20 nm. The synaptic cleft is a volume
where the molecules of glutamate, released by the presynaptic vesicle, diffuse by
Brownian motion [14]. The arrival of the presynaptic spike, thanks to the Ca2+ and
the SNARE complex, induces the formation of a pore between a vesicle and the
presynaptic membrane. This pore is the path followed by the glutamate molecules
to transit from the vesicle to the synaptic cleft.

If we assume a generic horizontal section, the diameter of a cortical or hippo-
campal glutamatergic synapse ranges 0.2–1 μm [15–18]. Assuming an AZ of circular
space and the cleft of �20 nm, we get a volume of cylindrical space which many
authors use to study the synaptic transmission by a computer modeling approach
[14, 16, 19]. Not all the synaptic “cylinder” is free for the diffusion of glutamate.
The AZ covers only a part of the whole synapse (mean radius 0.11 μm), while the
surrounding part is occupied by fibrils which anchor the pre- and postsynaptic
neuron [20–22].

At the postsynaptic side, two types of glutamate receptors are colocalized in an
area which is almost of the same size of the AZ and is considered as of circular shape
too (lower part of the cylinder) [22, 23]. This area is called postsynaptic density
(PSD) and contains α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid sensi-
tive receptors (AMPA receptors) and N-methyl-d-aspartate sensitive receptors
(NMDA receptors) which contains sites to bind glutamate molecules (but also for
the glycine which is necessary for the synaptic activity). These two types of recep-
tors have different roles in the transfer of synaptic information which we will
discuss later in details. Both types are tetramers composed of a dimer of dimers
[24]. As we will see later, the dimeric composition of the receptor plays an impor-
tant role in shaping the postsynaptic response.

Apparently, the information transfer process is very simple in principle. The
arrival of a presynaptic spike produces the fusion of a vesicle with the release of
glutamate which activate postsynaptic receptors producing a depolarizing current
(EPSC) which causes a variation of the postsynaptic membrane potential called
EPSP which, diffusing through the dendritic branches, contribute at the soma, to
the generation of the postsynaptic spike. However, any of the passage from the
presynaptic to the postsynaptic side undergoes to a series of rearrangement of the
information which makes the whole process extremely complex both to study and
to interpret. In Figure 1 a schematic representation of the information flow by
synaptic transmission is presented.

Essentially, the different modulation systems produce a sort of complex
nonlinear variability of the postsynaptic response. Variability of the EPSP is caused
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both by pre- and postsynaptic mechanisms of control, and a part of this variability
seems to be of stochastic nature (for a review see [8]). In the following we will
examine some (but not all) regulatory mechanisms which imply modulation of
variability of the postsynaptic response and their possible stochastic and/or deter-
ministic nature. Some of the processes which produce synaptic response variability
are external to the synapse and will be considered in an appropriate section.

2.1 Intrasynaptic factors of the EPSP variability

For intrasynaptic factors we mean those mechanisms operating at the level of
the AZ or to the PSD area. For extrasynaptic we mean any influencer located or
operating out of the synaptic “cylinder.” Intrasynaptic factor can be divided into
pre- and postsynaptic factors influencing the EPSP variability.

2.1.1 Presynaptic-dependent EPSP variability

A first point to stress about the presynaptic source of variability is that the
probability of release of a vesicle following a presynaptic spike is not 1 and the range

Figure 1.
Information flow by synaptic transmission.
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can be as wide as 0.2–0.91 [25, 26]. Modification of the releasing probability has
been associated to the so-called presynaptic (non NMDA-dependent) long-term
potentiation (LTP) assuming that the efficacy activity dependent of a synapse
depends on the increase of the releasing probability [17, 27–29]. This point is crucial
for the understanding on how the presynaptic neural code is coded synaptically
because it means that not all the presynaptic spikes are coded by an EPSP. More-
over, if this probability changes as a function of the activity, this means that a
different number of EPSP code for a given number of presynaptic spikes depending
on the preceding activity. In terms of information, not all the presynaptic bits are
transferred but only a fraction of it, and the size of the fraction is activity depen-
dent. Moreover, the sequence of EPSPs does not sum linearly at the postsynaptic
side [30, 31]. This means not only that only a part of bits composing the presynaptic
“word” is transferred but also that their postsynaptic representation is extremely
variable and depending on how many bits are transferred (which change as the
probability of release changes with activity) and on the timing between the trans-
ferred bits.

Although the vesicular release is considered of quantal type, the release of single
vesicle can produce different responses depending on several presynaptic factors
(see, [2]). An important factor is the position of the vesicle (eccentricity) with
respect to the central axis of the cylinder limited by the AZ and PSD. For a given
configuration of the PSD (see next section), the release of glutamate from a more
peripheral vesicle will produce an EPSC with smaller amplitude than one centered to
AZ-PSD central axis [32–34]. Another important factor is the amount of molecules
into the vesicle. Vesicle concentration, in fact, is extremely variable ranging 60–
210 mM [15, 16, 35] with an average of�140 mM. Assuming an internal radius of the
vesicle with an average of 23 nm, it is clear that the number of molecules of glutamate
released for a single bit of information is extremely variable. A variable number of
molecules produce EPSC with different amplitude [32–34, 36–38]. In our early work
on single glutamatergic response, we have considered the combination of the number
of molecules and the position of release as stochastic factors [8, 32–34]. However, by
considering the large variability of the concentration of glutamate in the vesicles, the
thousand possible combinations of “position-number of molecules,” this could be a
powerful system of presynaptic regulation of the information transfer. In this respect,
an interesting question arise: “what is the mechanism which, for a given presynaptic
spike, ‘decide’ the correct combination ‘position-number of Glutamate molecules’?”
The SNARE complex, because of its different configurations depending on the mem-
brane activity, could be a candidate for this decision role [13, 39, 40].

Although in the larger part of the cases a single vesicle opens with probability
less than 1 for the arrival of a single presynaptic spike, in some cases a
multivesicular release has been observed (see, e.g., [41, 42]). The multivesicular
release found in some experiments opens many other interesting questions. The
most relevant is: what is the relationship on the number of vesicle opened for a spike the
of information transferred? Another interesting question is What is the role of
multivesicle release if usually a single release does not achieve postsynaptic saturation of
the response? [35, 43]. To summarize, the most important presynaptic factor of EPSP
variability are:

• Probability of release of a vesicle following a single presynaptic spike and its
dependence on the past activity

• Probability of multivesicular release

• Number of molecules inside the released vesicle
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• Position (eccentricity) of the released vesicle

• Ca2+ different modulations of the SNARE complex

2.1.2 Postsynaptic-dependent EPSP variability

The PSD is the postsynaptic area containing the receptors (AMPA and NMDA)
with different roles [44]. The number of receptors among different synapses is
highly variable but varies also in the same synapse as a function of its maturity and
activity. The number of AMPA receptors in a typical hippocampal synapse can
range between 0 (AMPA-silent synapses [45]) and 80–100 [46, 47]. The number
of AMPA is related to the synaptic maturation and potentiation and is strongly
associated to phenomena like memory formation and learning (among many
others [17, 29, 48–51]). Some of these mechanisms can change the properties of a
synapse in the time-lapse of less than a second if the presynaptic neuron furnishes
an appropriate stimulation. The variability of the number of AMPA not only
produces potentiation of a synapse but also a depotentiation (by removing of
AMPA [52]), and both mechanisms are Ca2+ and NMDA dependent [53]. AMPA
can either be inserted (or removed) because a migration from the extrasynaptic
membrane space to the PSD or just aquired from the cytoplasm [52]. According
to some authors, also the number of NMDA receptors can change as a function of
the activity [54]. This point is not trivial for the understanding of the synaptic
response variability. By changing the number of receptors, it changes the total
conductance and the current that the synapse can produce for a single presynaptic
spike (see Figure 2).

Both AMPA and NMDA are tetramers (composed of four subunits) arranged as
dimer of dimers. The dimeric and tetrameric composition produces a mosaic of
configurations each with electrophysiological properties different from the others
[24, 55–60]. Their conductances mediated over different dimeric compositions (as
computed in Di Maio et al. Table 2 of [61]), in fact, are for AMPA 15� 10 pS and for
NMDA 40� 15 pS. This means that the variability induced by the insertion activity-
dependent of an AMPA, for example, will furnish a variation of the response
depending on the dimeric composition (conductance) of the newly inserted
receptor.

The current produced by the opening of the receptors (EPSC) produces a
variation of the membrane potential (EPSP) at the postsynaptic side which depends
on the biophysical properties of the postsynaptic membrane. The glutamatergic

Figure 2.
Different synaptic responses obtained for the release of a single vesicle. The different amplitudes can be due either
for presynaptic regulation (e.g., different positions of the vesicle or different numbers of molecules) or for
postsynaptic regulation (e.g., different numbers of receptors or different membrane voltage at the moment of the
EPSP start).
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synapse is positioned at the top of a spine which is considered by many authors as a
separate electrical compartment with a high input impedance [61–67]. The general
equation which produces the EPSC is derived by Ohm’s law:

Isyn tð Þ ¼ gsyn tð Þ Vm tð Þ � Esyn
� �

(1)

where Isyn is the current (EPSC) produced by AMPA and NMDA receptors, gsyn is
the synaptic conductance, Vm is the membrane potential, and is the equilibrium
potential computed by the Nernst equation considering all the ions (usually Na+, K+,
and Ca2+) involved in the synaptic current. The values of EPSP expressed as a
variation of Vm depend on the input resistance (Ri) of the system:

Vm ¼ IsynRi (2)

As clear from Ohm’s law, for a given current produced by the receptors, the
variation of the membrane voltage amplitude depends on the value of . The spine in
general is considered as a system with high input impedance (order of GΩs) [9, 10].
However, more recent papers have stressed that the spine circuit is rather complex
and can be sub-compartmentalized [46, 62, 63, 67, 68]. However, two main parts of
the spine compartmentalization play really a relevant role in shaping the postsynaptic
response: the PSD area and the neck resistance [65, 66]. The neck resistance is the
natural pathway for the signal to reach first the dendrite and then the soma and will
be treated in the next section. About the PSD area, it is the area where the receptors
are localized, and its characteristics directly influence the response of each single
receptor. Being crowded of proteins, the resistive component of this is high, while the
capacitive one is negligible [61, 64–66]. According to Eqs. (1) and (2), the current in
this area can produce high variation of potential even for very small currents pro-
duced by the receptors (see the dependence of the EPSC and EPSP in Figure 3 of
[61]). PSD input resistance then is a key player in modulating the receptor current.

This is even more important if we consider the characteristics of the NMDA
receptors and their contribution to the EPSC generation. At the resting level of the
membrane potential (Vr � �65 mV), these receptors are blocked by Mg2+, and,
consequently, even if glutamate is release, they do not furnish a contribution to the
EPSC. Mg2+-block of NMDA is voltage dependent [55, 69]. The probability of
NMDA receptor to give a contribution to the total conductance follows a sigmoid
rule function depending on the membrane voltage. The complete unblocking of the
total NMDA conductance (unblocking probability = 1) is obtained only for a very
depolarized value of Vm (Vm � þ40 mV) which is not a value in the usual range of
action of the dendritic synapses [55, 61, 64–66, 69]. However, as we have shown in
our recent works [61, 64] because of the PSD high input impedance, the current
produced by the fast AMPA receptor activation can increase their probability to
unblock and to contribute to the total synaptic conductance. It follows that different
number and proportion of AMPA and NMDA produces different effects on the
single EPSPs. This is an example of intrasynaptic receptor-dependent modulation of
the EPSP which can be considered as due to the receptors’ cooperativity [61].

The influence of the NMDA component on the total EPSP, being voltage depen-
dent, does not only depends on the fast AMPA activation but also on external
factors (see the following sections). In summary we can say that the postsynaptic
processes involved in the variability of the EPSP are:

• The total number of postsynaptic receptors

• The relative number of postsynaptic receptors (AMPA versus NMDA)
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• The diversity of the receptor conductance depending on the dimeric
composition

• The biophysical properties of the PSD

2.2 Extrasynaptic factors of the EPSP variability

By looking just outside the restricted synaptic space, several other factors can
influence the EPSP formation. In short we can say that, according to Eqs. (1) and
(2), any factor which can influence the membrane potential in the proximity of the
synapse can play a role in shaping the EPSP. The first important structure that we
found outside of the synaptic space is the neck of the spine. It is the communication
way between the synapse and the dendrite, and its electrical resistance determines
the amount of information passed to the cell (dendrite). The value of the neck
resistance is, then, crucial for the flow of information among different areas of the
dendrites and the soma. Spine morphology is variable, and consequently its bio-
electric properties [62, 67, 68, 70] and the presence of voltage-gated channels can
further influence its ability to transfer the synaptic information [70]. According to
some authors, the neck diameter and resistance are modulated also during a single
synaptic event [62, 63, 67]. Modulation of the neck resistance produces, as a conse-
quence, a modulation of the EPSP transmitted to the soma. However, the neck does
not only carry the synaptic information to the dendrite. It acts also in the opposite
direction by carrying the information on the state of dendrite to the PSD. In other
words, the PSD is kept informed of the information arriving from other synapses
located in the proximity. Dendritic activity, in fact, producing a difference of
potential between the dendrite and the head of the spine, produces a net current,
the direction of which depends on the difference of potential between the two
structures. The current arriving from the dendrite is essentially amplified by the
high input impedance of the PSD influencing strongly the total EPSP and the

Figure 3.
Simulation of EPSP during dendritic activity produced by different firing frequencies of excitatory and
inhibitory synapses. Depending on the firing frequencies of the other synapses located in the proximity, the
membrane voltage under the spine has different amplitude and types of oscillation. The phase and the level of
oscillation at the moment of the EPSP start, modulate the amplitude its amplitude and time course. In these
simulations the EPSP occurred always at 600 ms. The black line is the time course of the membrane potential if
no dendritic activity is present, and hence it is constant at the resting level (�65 mV).
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synapse is positioned at the top of a spine which is considered by many authors as a
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(1)

where Isyn is the current (EPSC) produced by AMPA and NMDA receptors, gsyn is
the synaptic conductance, Vm is the membrane potential, and is the equilibrium
potential computed by the Nernst equation considering all the ions (usually Na+, K+,
and Ca2+) involved in the synaptic current. The values of EPSP expressed as a
variation of Vm depend on the input resistance (Ri) of the system:
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As clear from Ohm’s law, for a given current produced by the receptors, the
variation of the membrane voltage amplitude depends on the value of . The spine in
general is considered as a system with high input impedance (order of GΩs) [9, 10].
However, more recent papers have stressed that the spine circuit is rather complex
and can be sub-compartmentalized [46, 62, 63, 67, 68]. However, two main parts of
the spine compartmentalization play really a relevant role in shaping the postsynaptic
response: the PSD area and the neck resistance [65, 66]. The neck resistance is the
natural pathway for the signal to reach first the dendrite and then the soma and will
be treated in the next section. About the PSD area, it is the area where the receptors
are localized, and its characteristics directly influence the response of each single
receptor. Being crowded of proteins, the resistive component of this is high, while the
capacitive one is negligible [61, 64–66]. According to Eqs. (1) and (2), the current in
this area can produce high variation of potential even for very small currents pro-
duced by the receptors (see the dependence of the EPSC and EPSP in Figure 3 of
[61]). PSD input resistance then is a key player in modulating the receptor current.

This is even more important if we consider the characteristics of the NMDA
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• The diversity of the receptor conductance depending on the dimeric
composition

• The biophysical properties of the PSD

2.2 Extrasynaptic factors of the EPSP variability

By looking just outside the restricted synaptic space, several other factors can
influence the EPSP formation. In short we can say that, according to Eqs. (1) and
(2), any factor which can influence the membrane potential in the proximity of the
synapse can play a role in shaping the EPSP. The first important structure that we
found outside of the synaptic space is the neck of the spine. It is the communication
way between the synapse and the dendrite, and its electrical resistance determines
the amount of information passed to the cell (dendrite). The value of the neck
resistance is, then, crucial for the flow of information among different areas of the
dendrites and the soma. Spine morphology is variable, and consequently its bio-
electric properties [62, 67, 68, 70] and the presence of voltage-gated channels can
further influence its ability to transfer the synaptic information [70]. According to
some authors, the neck diameter and resistance are modulated also during a single
synaptic event [62, 63, 67]. Modulation of the neck resistance produces, as a conse-
quence, a modulation of the EPSP transmitted to the soma. However, the neck does
not only carry the synaptic information to the dendrite. It acts also in the opposite
direction by carrying the information on the state of dendrite to the PSD. In other
words, the PSD is kept informed of the information arriving from other synapses
located in the proximity. Dendritic activity, in fact, producing a difference of
potential between the dendrite and the head of the spine, produces a net current,
the direction of which depends on the difference of potential between the two
structures. The current arriving from the dendrite is essentially amplified by the
high input impedance of the PSD influencing strongly the total EPSP and the

Figure 3.
Simulation of EPSP during dendritic activity produced by different firing frequencies of excitatory and
inhibitory synapses. Depending on the firing frequencies of the other synapses located in the proximity, the
membrane voltage under the spine has different amplitude and types of oscillation. The phase and the level of
oscillation at the moment of the EPSP start, modulate the amplitude its amplitude and time course. In these
simulations the EPSP occurred always at 600 ms. The black line is the time course of the membrane potential if
no dendritic activity is present, and hence it is constant at the resting level (�65 mV).
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recruitment of the NMDA receptors [65, 66]. The neck of the spine is, then, a
powerful modulator of the synaptic information transfer depending on the excita-
tion (depolarization) level of the membrane potential in the dendrites [65, 66].

By considering the huge number of inputs (from 3� 103 to 3� 104) received,
the dendritic arborization is not an electrical isopotential compartment. Differences
of potential among the different branches can be due to different input activities
and by spike backpropagation [71] in those areas where it can occur. The spike back
propagation depends on the presence of Na+ and/or Ca2+ voltage-gated channels in
the dendrites [12, 63, 70, 72]. The presence and density of these channels differ both
among neurons and, in the same neuron, among different dendritic regions [12, 63,
70, 72], and consequently differences of potential can produce complex potential
waves transiting the dendrites, and this wave can reach the PSD trough the neck
resistance influencing the single synaptic event. In our recent papers, we have
studied a possible effect of potential waves produced by excitatory synaptic activity
on the single synaptic response independently of the spike backpropagation
[65, 66]. We have found that, depending on the number of active synapses and on
their mean firing frequency, the amplitude, peak level, and time to peak of the
response vary in a complex nonlinear fashion (see Figure 3) [65, 66]. The number
of active synapses in some way simulates the input, for example, received from one
area of the brain where a group of active neurons fire in a more or less synchronous
way (in response to a stimulus) on the same neuron in a restricted dendritic area.
For the case already mentioned, for example, a neuron of a hippocampal subfield
can receive synchronous inputs from a large area (many neurons) of the dentate
gyrus but also from areas of the Entorhinal cortex in separate regions of the den-
dritic branches (see, e.g., [7]). The neurons from one of these two areas fire with a
mean frequency and a standard deviation which depends on the degree of their
synchronization. Such a condition produces waves into the dendritic area interested
to the stimulation which directly influence any single synapse which is active in the
same time window [65, 66]. The membrane potential of the receiving neuron
oscillates between two levels forming a voltage “band.” The amplitude of this
voltage “band” depends on the number of active synapses and on their mean firing
frequency [65, 66]. The EPSP of a given synapse can occur at any level inside the
“band.” According to Eqs. (1) and (2), depending on the level at which the EPSP of
a given synapse starts, its properties (amplitude, peak level, NMDA contribution,
etc.) will change [65, 66]. In this band it is possible to identify a mean value which
can be considered as the maximal likelihood level of Vm at which the EPSP can
occur. This mean level increases (more depolarized) by increasing the number of
active synapses and/or their firing frequency [65, 66]. The existence of this “band”
of voltage furnish a large gamma of possible levels of Vm at which EPSP can occur
and consequently it represents a very powerful regulator of the single EPSP
depending on the time of occurrence (phase of the oscillation inside the band)
[65, 66]. Said in a different way, the coincidence of the EPSP with the particular
level of determines the type and amount of information the synapse transfers.
NMDA receptors, being dependent on the membrane voltage for their activity, are
especially sensitive to this kind of regulation, and in fact, the “coincidence” of the
EPSP with the activity of other synapses is considered crucial for phenomena like
LTP and memory which are NMDA dependent. These are the basic mechanisms
who suggest that neurons, mostly in producing LTP and memory phenomena, act as
coincidence detectors (among many others, see, e.g., [73]). The dendritic activity
modulatory effect on the transfer of a single bit of synaptic information depends
essentially on the variation of potential in the membrane and can be summarized as
due to:
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• Spike backpropagation

• Active synaptic inputs on the dendritic tree

3. Discussion

This short overview was aimed to stress how the information transferred among
synapses and its elaboration undergo to many regulation systems which involve
structural, functional, and cooperative processes. By identifying the EPSP as the
elementary bit of the information transferred by a single synapse, we have outlined
some of the pre- and postsynaptic sources of variability.

In general the word “variability” can be used with two meanings. It can be
attributed either to something which vary in an unpredictable way, or it can mean
the possibility to change following specific actions. This is especially true for the
causes of variability of the EPSP. EPSP variability can be due (a) to stochastic
processes [8, 32–34] or (b) to specific systems of regulation which operate at
different levels of the synaptic transmission (intrasynaptic or extrasynaptic). About
the stochastic variability, we cannot say too much. If a process occurs randomly, we
can only try to understand its effects observing the responses and trying to explain
the phenomena by a plausible model which (statistically) describes the natural
event. The big problem in this respect is to identify if this type of system depends
really on stochastic processes or if stochasticity is apparent because the lack of the
full information needed to characterize the processes. From the most top point of
view, almost all the causes of EPSP variability described herein can appear of
stochastic type [8, 32–34], but we cannot definitively exclude that the apparent
stochasticity is due to our incomplete understanding of all the underlying mecha-
nisms and/or to the lack of knowledge of all the steps underlying the process. Just to
give an example, if we consider the response variability depending on the number
of molecules in the vesicle, its position on the AZ (eccentricity), and its variable
release probability, [8, 17, 27–29, 32–34] we can assume a stochastic origin of the
presynaptic factors of the synaptic response variability. However, the mechanism of
the vesicle opening is under the control of the SNARE complex which is intimately
connected to the vesicle and is the responsible for the Ca2+dependent pore opening.
This complex can have different configurations depending on the state of the
neuron (see, e.g., [13]). We cannot exclude that a more complete understanding of
the SNARE complex functionality could permit the definition of a relationship
between the information passed by the synapse and the characteristics (position
and number of molecules) of the released vesicle. This is only a possibility for one of
the many regulatory factors involved in the synaptic response modulation, and their
discussion is not in the goal of the present chapter. The important point that we
want to stress is to outline the large variability of the EPSP and that this variability is
controlled by many different systems. Variability, then, in the context of this
chapter, has to be intended as the ability to be modulated (“tuning”) of the system.

The tuning of the information to transfer is not only due to the pre- and
postsynaptic neuron. The activity of thousands of synapses inputting on a neuron
produces waves of potential into the dendritic tree which directly influence the
characteristics of the information transferred by each single synapse [65, 66].
Even two single synapses, closely located on a dendritic branch, influence each
other. The synapse which fires first, in fact, by changing the membrane potential
influences the response of the synapse firing later if the time interval between the
two events is compatible with the decay time of the first event [30].
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stochasticity is due to our incomplete understanding of all the underlying mecha-
nisms and/or to the lack of knowledge of all the steps underlying the process. Just to
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release probability, [8, 17, 27–29, 32–34] we can assume a stochastic origin of the
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the vesicle opening is under the control of the SNARE complex which is intimately
connected to the vesicle and is the responsible for the Ca2+dependent pore opening.
This complex can have different configurations depending on the state of the
neuron (see, e.g., [13]). We cannot exclude that a more complete understanding of
the SNARE complex functionality could permit the definition of a relationship
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and number of molecules) of the released vesicle. This is only a possibility for one of
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discussion is not in the goal of the present chapter. The important point that we
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chapter, has to be intended as the ability to be modulated (“tuning”) of the system.

The tuning of the information to transfer is not only due to the pre- and
postsynaptic neuron. The activity of thousands of synapses inputting on a neuron
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Two key questions emerge by the above considerations: (a) what is the charac-
teristic of response (EPSP or EPSC) which better represent the code of the single bit of the
synaptic information? and (b) how does the single bit of synaptic information produces a
synaptic code at the postsynaptic level? The two questions are not independent to each
other. The best candidate to code for the single bit of information seems to be the
EPSP (or EPSC) “amplitude.” The amplitude depends on the characteristic of the
synapse (number of receptors, PSD input impedance, spine neck resistance, etc.)
and on the activity of the dendrite on which the synapse is hosted.

The amplitude of an EPSP occurring when the postsynaptic membrane is close to
the reverse potential 0 mV can approach 0 mV. This means that the postsynaptic
mechanism of tuning can, depending on its state, nullify the information. Alterna-
tively, an EPSP starting when the postsynaptic membrane potential is close to the
resting potential (or even in a hyperpolarized state), the amplitude is maximized
[65, 66].

Interestingly, if the single bit of information is coded by the EPSP (EPSC)
amplitude, while a diffuse excitation depolarizing the membrane reduces the
amount of information passed by the synapse, the inhibition works in the opposite
direction. Driving the membrane potential far from the reverse potential, in fact,
the inhibitory inputs play a favor of increasing the amplitude [30].

Assuming that the single spike represents the single bit of information of a
neuron, a sequence of spikes emitted by a presynaptic neuron represent a “word”
that is the full representation of a stimulus in that neuron. The synaptic codification
of this “word” should be an equivalent sequence of EPSP. This does not always hold.
As we have said, the probability that an EPSP is generated when a spike arrives is
less than 1. Moreover, EPSPs sum non linearly at the postsynaptic side and the
amplitude and shape of the resulting sum depend on the time between the EPSPs. In
addition, the different EPSPs are modulated postsynaptically each differently
depending on the coincidence of their start and the phase of the wave produced by
the dendritic activity. The same presynaptic “word” can then have different post-
synaptic representations since formed by different number of EPSPs coded with
different amplitudes and presenting different shapes and duration because of the
different NMDA contributions. In short, rarely the same repeated stimulus
represented by a sequence of spikes will have a fixed clearly identifiable represen-
tation at the postsynaptic side. This variability of synaptic representation of a
“word” is probably the main cause of the variability of the postsynaptic neuronal
“word” (different sequences of the postsynaptic spikes). This means that the single
presynaptic “word” almost never determines the postsynaptic spike sequence
(postsynaptic “word”) which is always the results of the cooperation of all the
inputs arriving in a given time window. Although in many experimental results it is
possible to identify a sort of relationship between a stimulus and some characteris-
tics of the spikes sequence it induces in a given neuron, probably in the real brain,
the situation is much more complex.

A last comment on how the mechanisms of postsynaptic regulation play a role in
the information processing by considering the different information arriving from
many neurons on a single one. If we consider the inputs on a single neuron coming
from two areas of the brain and located in the close proximity on the dendritic tree,
the area which sends early the information can inhibit the information of the other
area. A massive input arriving from many excited neurons of a firstly activated area
will produce a strong depolarization of the dendritic area which will inhibit (if not
nullify) the information arriving from the other area. This can be probably a mech-
anism which regulates, at the single neuron level, the competition between two
antagonist inputs involving different areas of the brain but also a mechanism of
“decision-making.” The priority for the response, in this case, is time dependent
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since the single neuron will furnish mostly a response to the area activated early.
However, the inhibitory regulation of these mechanisms can produce several
different levels of single-neuron response to the two different stimuli. In other
words, the mechanisms of regulation of the synaptic information transfer based on
the variation of the membrane potential regulate also the competition and/or the
level of integration of the information arriving from different areas of the brain on
close areas of the dendritic tree of the same neuron.

A last comment on the nature of the codification of the synaptic information and
on the computational ability of the dendrites is necessary. While one can discuss on
the digital or analogical nature of the neural code which is based on stereotyped
spike (bit) sequence, the same does not hold for the transformation of the neural
code into the synaptic code at the dendritic level. EPSPs are not stereotyped (all or
none) systems, and, as shown before, their representation of the presynaptic
“words” change the number of bits, shape, and amplitude. By looking this type of
synaptic codification, we would exclude a “dendritic computation” based on
algebraic-like or Boolean-type computation (see, e.g., [31]). Most probably, den-
dritic computation has to be a sort of analog computation which still remains to be
understood.

4. Conclusion

In this chapter we have given a non-exhaustive light overview on how the synap-
tic response is modulated by several intrinsic and extrinsic factors acting at differ-
ent stages of the process of the information processing and transfer among neurons.

A first important point that should emerge from what exposed is that the prob-
lem, also at the level of the single synapse, is extremely complicated by the different
effects produced by the many systems of modulation of the information.

A second, but not less, important point is that our knowledge of the information
transfer by synaptic transmission is still very poor although a great effort is spent in
this direction.

The different levels, at which the regulation of the information processing
mediated by synapse occurs, require the cooperativeness of different scientific
approaches. The experimental methodologies and paradigms of investigations,
although improving day by day, cannot answer alone all the questions still open
because of the experimental technique limitations. A good synergy between
experimental, theoretical, and computational modeling approaches is needed.
The possibility to use big computational facility becomes a limiting factor for the
success.

The unveiling of the synaptic mechanisms of information processing and trans-
fer is of great importance because information processing is the key ability of the
living systems to survive in the environment and, for the humans, is also the key
ability for high-level cognitive performance. As stressed in the introduction, the loss
of cognitive performance, like in the Alzheimer and in the Parkinson diseases, is
strongly associated to the synaptic malfunctioning. Memory and learning are
essentially synaptic functions.

In addition, the investigation on synaptic information processing and in the
synaptic functionality also support the researches in other fields as, for example, in
projecting and realizing artificial computational systems which, by using the pow-
erful mechanism of synaptic information processing, tray to produce high-
performance artificial system (see, e.g., [74]).

Some important challenges for the future studies of the information processing
mediated by synapses can be summarized as follows:

103

Information Processing and Synaptic Transmission
DOI: http://dx.doi.org/10.5772/intechopen.88405



Two key questions emerge by the above considerations: (a) what is the charac-
teristic of response (EPSP or EPSC) which better represent the code of the single bit of the
synaptic information? and (b) how does the single bit of synaptic information produces a
synaptic code at the postsynaptic level? The two questions are not independent to each
other. The best candidate to code for the single bit of information seems to be the
EPSP (or EPSC) “amplitude.” The amplitude depends on the characteristic of the
synapse (number of receptors, PSD input impedance, spine neck resistance, etc.)
and on the activity of the dendrite on which the synapse is hosted.

The amplitude of an EPSP occurring when the postsynaptic membrane is close to
the reverse potential 0 mV can approach 0 mV. This means that the postsynaptic
mechanism of tuning can, depending on its state, nullify the information. Alterna-
tively, an EPSP starting when the postsynaptic membrane potential is close to the
resting potential (or even in a hyperpolarized state), the amplitude is maximized
[65, 66].

Interestingly, if the single bit of information is coded by the EPSP (EPSC)
amplitude, while a diffuse excitation depolarizing the membrane reduces the
amount of information passed by the synapse, the inhibition works in the opposite
direction. Driving the membrane potential far from the reverse potential, in fact,
the inhibitory inputs play a favor of increasing the amplitude [30].

Assuming that the single spike represents the single bit of information of a
neuron, a sequence of spikes emitted by a presynaptic neuron represent a “word”
that is the full representation of a stimulus in that neuron. The synaptic codification
of this “word” should be an equivalent sequence of EPSP. This does not always hold.
As we have said, the probability that an EPSP is generated when a spike arrives is
less than 1. Moreover, EPSPs sum non linearly at the postsynaptic side and the
amplitude and shape of the resulting sum depend on the time between the EPSPs. In
addition, the different EPSPs are modulated postsynaptically each differently
depending on the coincidence of their start and the phase of the wave produced by
the dendritic activity. The same presynaptic “word” can then have different post-
synaptic representations since formed by different number of EPSPs coded with
different amplitudes and presenting different shapes and duration because of the
different NMDA contributions. In short, rarely the same repeated stimulus
represented by a sequence of spikes will have a fixed clearly identifiable represen-
tation at the postsynaptic side. This variability of synaptic representation of a
“word” is probably the main cause of the variability of the postsynaptic neuronal
“word” (different sequences of the postsynaptic spikes). This means that the single
presynaptic “word” almost never determines the postsynaptic spike sequence
(postsynaptic “word”) which is always the results of the cooperation of all the
inputs arriving in a given time window. Although in many experimental results it is
possible to identify a sort of relationship between a stimulus and some characteris-
tics of the spikes sequence it induces in a given neuron, probably in the real brain,
the situation is much more complex.

A last comment on how the mechanisms of postsynaptic regulation play a role in
the information processing by considering the different information arriving from
many neurons on a single one. If we consider the inputs on a single neuron coming
from two areas of the brain and located in the close proximity on the dendritic tree,
the area which sends early the information can inhibit the information of the other
area. A massive input arriving from many excited neurons of a firstly activated area
will produce a strong depolarization of the dendritic area which will inhibit (if not
nullify) the information arriving from the other area. This can be probably a mech-
anism which regulates, at the single neuron level, the competition between two
antagonist inputs involving different areas of the brain but also a mechanism of
“decision-making.” The priority for the response, in this case, is time dependent

102

Advances in Neural Signal Processing
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• Unveiling the presynaptic mechanism involved in vesicle release as function of
the presynaptic spike sequence.

• Decoding of the synaptic EPSP sequence as function of the presynaptic spike
sequence and its relationship with the presynaptic stimuli which determine the
sequence.

• Decoding the real integration systems which relate the information arriving
from different areas and their integration at the dendritic level in order to
produce the postsynaptic spike sequence.

• Establishing the relationship between the dendritic excitation produced by
thousands of synapses and the single synaptic event. This is necessary to
understand the real contribution of a single event and of a single presynaptic
sequence of spikes in building the postsynaptic EPSP sequence and
consequently its participation to the postsynaptic spike sequences
(postsynaptic neural code).

All these challenges are very hard, and each of them will need still years of
investigation in the field of the information processing in the brain.

Author details

Vito Di Maio* and Silvia Santillo
Institute of Applied Science and Intelligent Systems (ISASI) of CNR,
Pozzuoli (NA), Italy

*Address all correspondence to: vito.dimaio@cnr.it

© 2020TheAuthor(s). Licensee IntechOpen.Distributed under the terms of theCreative
CommonsAttribution -NonCommercial 4.0 License (https://creativecommons.org/
licenses/by-nc/4.0/),which permits use, distribution and reproduction for
non-commercial purposes, provided the original is properly cited. –NC

104

Advances in Neural Signal Processing

References

[1] Gardoni F, Di Luca M. Targeting
glutamatergic synapses in Parkinson’s
disease. Current Opinion in
Pharmacology. 2015;20:24-28. DOI:
10.1016/j.coph.2014.10.011

[2] Sheng M, Sabatini BL, Südhof TC.
Synapses and Alzheimer’s disease. Cold
Spring Harbor Perspectives in Biology.
2012;4:1-18. DOI: 10.1101/cshperspect.
a005777

[3] Rojas DC. The role of glutamate and
its receptors in autism and the use of
glutamate receptor antagonists in
treatment. Journal of Neural
Transmission. 2014;121:891-905. DOI:
10.1007/s00702-014-1216-0

[4] Gulyás AI, Megías M, Emri Z,
Freund TF. Total number and ratio of
excitatory and inhibitory synapses
converging onto single interneurons of
different types in the CA1 area of the rat
hippocampus. Journal Neuscience. 1999;
19:10082-10097

[5] Megías M, Emri Z, Freund TF,
Gulyás AI. Total number and
distribution of inhibitory and excitatory
synapses on hippocampal CA1
pyramidal cells. Neuroscience. 2001;
102:527-540

[6] Villa KL, Nedivi E. Excitatory and
inhibitory synaptic placement and
functional implications. In: Emoto K,
Wong R, Huang E, Hoogenraad C,
editors. Dendrites. Japan: Springer;
2016. pp. 467-487. DOI: 10.1007/978-4-
431-56050-0-18

[7] Bartesaghi R, Di Maio V, Gessi T.
Topographic activation of the medial
entorhinal cortex by presubicular
commissural projections. Journal of
Comparative Neurology;487(3):
283-299. DOI: 10.1002/cne.20547.
Available from: https://onlinelibrary.
wiley.com/doi/abs/10.1002/cne.20547

[8] Di Maio V, Ventriglia F, Santillo S.
Stochastic, structural and functional
factors influencing AMPA and NMDA
synaptic response variability: A review.
Neuronal Signaling. 2017;1:1-11. DOI:
10.1042/NS20160051

[9] Rall W. Electrophysiology of a
dendritic neuron model. Biophysical
Journal. 1962;2:145-167

[10] Rall W, Rinzel J. Branch input
resistance and steady attenuation for
input to one branch of a dendritic
neuron model. Biophysical Journal.
1973;13:648-688

[11] Häusser M. Synaptic function:
Dendritic democracy. Current Biology.
2001;11(1):R10-R12. DOI: 10.1016/
S0960-9822(00)00034-8. ISSN 0960–
9822. Available from: http://www.
sciencedirect.com/science/article/pii/
S0960982200000348

[12] Rumsey CC, Abbott LF. Synaptic
democracy in active dendrites. Journal
of Neurophysiology. 2006;96(5):
2307-2318. DOI: 10.1152/jn.00149.2006

[13] Han J, Pluhackova K, Böckmann RA.
The multifaceted role of snare proteins
in membrane fusion. Frontiers in
Physiology. 2017;8:5. DOI: 10.3389/
fphys.2017.00005. Available from:
https://www.frontiersin.org/article/
10.3389/fphys.2017.00005

[14] Ventriglia F, Di Maio V. A Brownian
simulation model of glutamate synaptic
diffusion in the femtosecond time
scale. Biological Cybernetics. 2000;83:
93-109

[15] Clements JD, Lester RA, Tong G,
Jahr CE, Westbrook GL. The time
course of glutamate in the synaptic cleft.
Science. 1992;258(5087):1498-1501.
DOI: 10.1126/science.1359647. ISSN:
0036-8075

105

Information Processing and Synaptic Transmission
DOI: http://dx.doi.org/10.5772/intechopen.88405



• Unveiling the presynaptic mechanism involved in vesicle release as function of
the presynaptic spike sequence.

• Decoding of the synaptic EPSP sequence as function of the presynaptic spike
sequence and its relationship with the presynaptic stimuli which determine the
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Abstract

Zinc ions have key regulatory, structural, and catalytic functions and mediate a
variety of intra- and intercellular processes. The hippocampal mossy fiber boutons
contain large amounts of free or loosely bound vesicular zinc, which can be co-
released with glutamate. Zinc can interact with a variety of ionic channels (N-
VDCCs, L-VDCCs, KATP), glutamate receptors (AMPA, KA, NMDA 2A, 2B), gluta-
mate transporters (GLAST, EAAT4), and molecules (ATP). The dynamic properties
of cleft free, complexed, and total zinc were addressed, considering the known
concentration and affinity of various cleft zinc sensitive sites, mainly in the post-
synaptic area and in glial cells. The computer model included three different zinc
release processes, with short, medium, and long duration, described, like the uptake
ones, by alpha functions. The results suggest that, depending on the amount of
release, zinc clearance is largely due, either, to zinc binding to NMDA 2A receptor
sites or to glial GLAST transporters.

Keywords: synaptic modeling, zinc-binding sites and complexes, glutamate
receptors and transporters, zinc clearance and uptake, CA3 area

1. Introduction

Zinc is one of the most concentrated trace elements in the brain, being essential for
normal cellular function and signaling processes in the central nervous system (CNS)
[1–3]. This system contains very large amounts of chelatable or free zinc [4], mainly
in the synaptic vesicles of excitatory nerve terminals [5], essentially in the hippocam-
pal mossy fibers from CA3 area [1, 2]. After release, zinc affects the behavior of
several voltage-gated and receptor-operated ionic channels [6–12]. The action of zinc
in different types of receptors and channels depends essentially on two factors: their
concentration in the synapses and their affinity for zinc. A clear understanding of the
action of zinc in individual binding sites is restricted by the complexity of the synaptic
transmission process. To further investigate this zinc role, a computational model was
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elaborated to describe zinc changes associated with the most important zinc-binding
sites in the synaptic cleft between a mossy fiber terminal and a pyramidal cell of the
hippocampal CA3 area, as previously reported [12]. Assuming that zinc is co-released
with the neurotransmitter glutamate, this model was constructed taking into account
previous studies that include computer simulations of glutamate dynamics in the
synaptic cleft [13–16]. In the zinc model [12], the variation of total cleft zinc changes
is obtained by subtracting two alpha functions, describing zinc release and zinc
uptake. These functions, characterized by rapid climb phases and slower decays, were
determined based on the assumedmaximum amplitude and rising time values of cleft
free zinc concentration. The corresponding parameters were defined taking into
account experimental results, from optical and electrophysiological zinc experiments,
reporting cleft zinc changes [17–27].

The process of zinc clearance from the synaptic cleft may include various
actions, such as zinc binding, uptake, and entry into postsynaptic cells. Zinc can
bind to a variety of pre- and/or postsynaptic receptors, voltage-dependent ionic
channels, glutamate transporters expressed in glial cells, and also free molecules in
the cleft medium. One of the most important targets for zinc action is the N-
methyl-D-aspartate (NMDA) receptor-binding site with a high affinity for zinc
[28]. However, it is present only at low concentrations in the mossy fiber terminals
(about 80 nM) [29]. The most abundant zinc-binding site is the GLAST glial gluta-
mate transporter, which is responsible for glutamate removal from the synaptic cleft
into the glial cells [30, 31]. Zinc also forms complexes with 2-amino-3-(3-hydroxy-
5-methyl-isoxazol-4-yl), propanoic acid (AMPA) and kainic acid (KA) glutamate
receptors [29, 32–34], and potassium-ATP (KATP) channels [35, 36], with another
type of glutamate transporter, the EAAT4 [37–39], and with the L- and N-types of
voltage-dependent calcium channels (VDCCs) [40–42]. The concentration, affinity,
and kinetics of zinc-binding sites are included in the model and have a very large
impact on the behavior of zinc changes. On the other hand, the zinc uptake process
is largely unknown, being probably mediated by zinc transporters and/or by zinc
movements evoked by the electrochemical gradient [43–46]. In this model it was
assumed that uptake is much slower than release, and a time constant was chosen
for the latter process that is much larger than the time constant for the former (see
Section 2). With respect to zinc entry into postsynaptic neurons, which may include
NMDA receptors, voltage-dependent calcium channels, calcium-permeable AMPA/
kainate channels, and the Na/Ca exchanger [17, 18, 32, 34, 47], it is considered that
even the strongest stimulation protocol considered in this study is not strong enough
to open the postsynaptic zinc permeant routes. In the present model, three different
stimulation protocols were considered, named single (zinc release associated with a
single stimulus), short, and long (multiple release processes that last for more
times). It was considered that those stimulation processes evoked maximum cleft
free zinc concentrations of 10 nM, 100 nM, and 1 μM, respectively. These concen-
trations are close to the values suggested in previous studies performed with similar
types of stimulation [11, 19, 21, 27, 48]. Thus, in the present model, only cleft zinc
concentrations below or equal to 1 μMwere considered; therefore, no zinc enters the
postsynaptic region, which may only occur for higher cleft zinc values [18, 20, 45].

The mossy fiber synapses have a very narrow synaptic cleft, measuring less than
20 nm [49–51]. For that reason, the movement of released glutamate and zinc, with
similar free diffusion coefficients, is very rapid, reaching the opposite side of the
cleft in a few microseconds. In hippocampal neurons, following an instantaneous
release from a vesicle, the decay of glutamate concentration is very fast (tens of
microseconds), being reduced to an almost constant value in about 50 μs [16].
Despite the more complex geometry of the mossy fibers [52], it can be assumed that
the zinc concentration has a similar time course. For this reason, the diffusion was
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not included in the model, and it was considered that the cleft free zinc concentra-
tion is uniform during the binding process.

2. Methods

2.1 Model equations

The total amount of zinc in the synaptic cleft is, at any one time, partly bound to
a number of sites and partly unbound. We shall refer to the concentration of the
total amount of zinc in the cleft as [Zn]T and to the concentration of the unbound or
free zinc as [Zn]2+. These concentrations may increase due to the release of zinc
from the glutamate vesicles when a signal arrives at the presynaptic area and the
vesicles open up and pour their contents into the cleft. They may also decrease due
to the uptake of zinc into the presynaptic region where it will eventually find its
way back into the glutamate vesicles, thus closing the cycle. Therefore, the rate of
change of the total concentration of zinc in the cleft is given by

d Zn½ �T
dt

¼ R tð Þ � U tð Þ (1)

where R tð Þ represents the release, i.e., the rate at which zinc is released from the
presynaptic area and enters the cleft, and U tð Þ represents the uptake, i.e., the rate at
which zinc leaves the cleft and is reabsorbed by the presynaptic region.

As zinc and glutamate are assumed to be released simultaneously, it is reasonable
to expect the rates of change of their concentrations to follow the same pattern.
Therefore, it is assumed that the function R tð Þwill have a fast rising phase, followed
by a slow decay, as is known to happen for glutamate. In this study, R(t) and U(t)
are described by alpha functions:

R tð Þ ¼ A1t e
� t

τ1 (2)

where A1 and τ1 are constant values that define the height and position of the
peak of the release function, and

U tð Þ ¼ A2te
� t

τ2 (3)

where A2 and τ2 are again constant values. We choose τ2 to be much larger than
τ1, as it is well-known that the uptake is usually much slower than the release. These
four constants cannot be all independent from each other, as the total concentration
of zinc must go back to its resting value so that equilibrium is reached again. A1, τ1,
and τ2 are chosen to be the independent parameters and A2 to depend on them.

Eq. (1) is easily integrated, yielding

Zn½ �T ¼ Zn½ �Tr
þ A1τ1

τ1
τ2

tþ τ2ð Þe�t=τ2 � tþ τ1ð Þe�t=τ1
� �

(4)

where Zn½ �Tr
denotes the resting value of the total zinc concentration and

A2 ¼ A1
τ1
τ2

� �2

, (5)

so as to ensure that Zn½ �T will go back to the basal value Zn½ �Tr
, as t! ∞.
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Once zinc is released into the cleft, it will react with several different sites, denoted
here by Xi, i ¼ 1, … ,N, thus forming ZnXi complexes. It is assumed that all com-
plexes have 1:1 stoichiometry so that the reaction that takes place can be written as

Zn2þ þ Xi $ ZnXi, i ¼ 1, … ,N: (6)

Naturally, the total amount of zinc in the cleft must be equal to the sum of the
amount of unbound zinc to the amount of zinc that is bound to all the available sites
in the cleft. The total concentration of zinc in the cleft can then be written as

Zn½ �T ¼ Zn2þ
� �þ

XN
i¼1

ZnXi½ �, (7)

where ZnXi½ � represents the concentration of the complex ZnXi and the sum
extends to all the sites to which zinc can bind.

A similar reasoning can be applied to each binding site Xi. Let Xi½ �T denote the
total concentration of Xi in the cleft and Xi½ � the concentration of the free site Xi,
that is, the concentration of Xi that is not bound to zinc. Then, assuming that there
are no other ions competing with zinc for binding to Xi, one must clearly have

Xi½ �T ¼ Xi½ � þ ZnXi½ �, i ¼ 1, … ,N: (8)

The differential equation that describes the dynamics of ZnXi½ � can be obtained
from the reaction shown in Eq. (6). Defining kon,i and koff ,i as the association and
dissociation rate constants for the reactions involving the site Xi and zinc, this
equation becomes

d
dt

ZnXi½ � ¼ kon,i Zn2þ
� �

Xi½ � � koff ,i ZnXi½ � i ¼ 1, … ,N: (9)

Eq. (8) can be used to remove the variable Xi½ � from Eq. (9) and obtain

d
dt

ZnXi½ � ¼ kon,i Zn2þ
� �

Xi½ �T � ZnXi½ � kon,i Zn2þ
� �þ koff ,i

� �
i ¼ 1, … ,N: (10)

Apparently, this equation represents a system of linear, uncoupled, first-order
differential equations, which could easily be solved numerically. However, the
situation is a little more complicated than that for two reasons.

The first reason is that two parameters required in the differential equation,
namely, kon,i and koff ,i, are not known for the reactions of zinc with some of the sites.
This issue can be circumvented by assuming that, for those cases, the reactions are
so fast, compared to the others, that they quickly adapt to the changes of Zn2þ½ �.
This is done so that the value of ZnXi½ � at any given time is similar to its equilibrium
value ZnXi½ �eq for that particular free zinc concentration Zn2þ½ �, which is given by

d
dt

ZnXi½ �eq ¼ 0 ) ZnXi½ �eq ¼
kon,i Zn2þ

� �
Xi½ �T

kon,i Zn2þ½ � þ koff ,i
, (11)

yielding

ZnXi½ �eq ¼
Zn2þ½ � Xi½ �T
Zn2þ½ � þ kD,i

(12)
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where the dissociation constant, kD,i, is given by

kD,i ¼
koff ,i
kon,i

: (13)

Thus, if there are known values for kD,i (or IC50 or EC50) for all the reactions in
question, the concentrations [ZnXi] can be determined using Eq. (12).

The second issue mentioned above is the presence of Zn2þ½ � in the equations. The
concentration of free zinc is an unknown function of time, which will obviously
depend on the amount of zinc that is bound to all the sites Xi, so it will depend
on the concentrations of all the complexes ZnXi½ � through Eq. (7), which can be
written as

Zn2þ
� � ¼ Zn½ �T �

XN
i¼1

ZnXi½ �: (14)

In the model presented here, the total concentration of zinc is a known function
of time, so Eq. (14) will couple all the differential Eq. (10) that describe the
dynamics of the zinc complexes, as well as the algebraic Eq. (12). This is easy to
understand. If more zinc couples to site Xi, there will be less free zinc left to couple
to the other sites.

It should be noticed that this model imposes a certain amount of total zinc in the
cleft at any specified time. When choosing the parameters of the alpha functions,
care must be taken in order not to allow the total amount of zinc in the cleft to be
less than the amount of zinc that is bound to the sites Xi at any time.

2.2 Numerical calculations

The task is now to solve the differential Eqs. (10) and the algebraic Eqs. (12),
where each one of these equations is coupled to all the others by Eq. (14).

The differential Eqs. (10) can be solved by standard methods, which shall now
be described [53]. Let, for the sake of simplicity, the concentrations of the
complexes be denoted by fi(t) and the right-hand side of Eq. (10) be denoted by
Fi(t,f1,… ,fN). It should be noted that the concentration of free zinc in the right-hand
side of that equation will depend on time and on all the complex concentrations,
which means that Fi will have to depend also on time and on all the complex
concentrations. Eq. (10) will then take the form

df i
dt
¼ Fi t, f 1, … , f N

� �
, i ¼ 1, … ,N: (15)

The goal is to integrate this set of equations from t = 0 until t = T for some final
time T. In order to achieve that goal, the total time interval T is divided into n equal
small time intervals Δt so that

Δt ¼ T
n
: (16)

The initial values fi(0) are assumed to be known. Then, the calculation follows
step by step, starting with the evaluation of the values of fi at time Δt, next the
values at time 2Δt, and so on, until the final time T ¼ nΔt is reached and the final
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where the dissociation constant, kD,i, is given by

kD,i ¼
koff ,i
kon,i

: (13)

Thus, if there are known values for kD,i (or IC50 or EC50) for all the reactions in
question, the concentrations [ZnXi] can be determined using Eq. (12).

The second issue mentioned above is the presence of Zn2þ½ � in the equations. The
concentration of free zinc is an unknown function of time, which will obviously
depend on the amount of zinc that is bound to all the sites Xi, so it will depend
on the concentrations of all the complexes ZnXi½ � through Eq. (7), which can be
written as

Zn2þ
� � ¼ Zn½ �T �

XN
i¼1

ZnXi½ �: (14)

In the model presented here, the total concentration of zinc is a known function
of time, so Eq. (14) will couple all the differential Eq. (10) that describe the
dynamics of the zinc complexes, as well as the algebraic Eq. (12). This is easy to
understand. If more zinc couples to site Xi, there will be less free zinc left to couple
to the other sites.

It should be noticed that this model imposes a certain amount of total zinc in the
cleft at any specified time. When choosing the parameters of the alpha functions,
care must be taken in order not to allow the total amount of zinc in the cleft to be
less than the amount of zinc that is bound to the sites Xi at any time.

2.2 Numerical calculations

The task is now to solve the differential Eqs. (10) and the algebraic Eqs. (12),
where each one of these equations is coupled to all the others by Eq. (14).

The differential Eqs. (10) can be solved by standard methods, which shall now
be described [53]. Let, for the sake of simplicity, the concentrations of the
complexes be denoted by fi(t) and the right-hand side of Eq. (10) be denoted by
Fi(t,f1,… ,fN). It should be noted that the concentration of free zinc in the right-hand
side of that equation will depend on time and on all the complex concentrations,
which means that Fi will have to depend also on time and on all the complex
concentrations. Eq. (10) will then take the form

df i
dt
¼ Fi t, f 1, … , f N

� �
, i ¼ 1, … ,N: (15)

The goal is to integrate this set of equations from t = 0 until t = T for some final
time T. In order to achieve that goal, the total time interval T is divided into n equal
small time intervals Δt so that

Δt ¼ T
n
: (16)

The initial values fi(0) are assumed to be known. Then, the calculation follows
step by step, starting with the evaluation of the values of fi at time Δt, next the
values at time 2Δt, and so on, until the final time T ¼ nΔt is reached and the final
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values are computed. In order to determine the values at time kþ 1ð ÞΔt, where k is
an integer, assuming that the values at time kΔt are known, an expansion of
f i kþ 1ð ÞΔtð Þ in a Taylor series is performed:

fi kþ 1ð ÞΔtð Þ ¼ f i kΔtð Þ þ dfi
dt

� �

t¼kΔt
Δtþ O Δt2

� �
, (17)

where Eq. (15) can be used to yield

f i kþ 1ð ÞΔtð Þ ¼ f i kΔtð Þ þ Fi t, f 1 kΔtð Þ, … , f N kΔtð Þ� �
ΔtþO Δt2

� �
: (18)

In this equation, Fi t, f 1, … , f N
� �

is evaluated at time t ¼ kΔt with the values of
f 1, … , f N also taken at time t ¼ kΔt: f 1 kΔtð Þ, … , f N kΔtð Þ. Neglecting the term of
second order in Δt, Eq. (18) becomes

f i kþ 1ð ÞΔtð Þ ffi f i kΔtð Þ þ Fi t, f 1 kΔtð Þ, … , f N kΔtð Þ� �
Δt: (19)

The error in this result is, of course, of second order in Δt.
In order to reach time t ¼ T ¼ nΔt, it is necessary to take n time steps of length

Δt each. The error in the final result will be the sum of n errors of order Δt2, which
makes it of order O nΔt2

� � ¼ O Δtð Þ, as n is of order 1
Δt, as shown in Eq. (16).

Therefore, the error can be made smaller by decreasing the value of Δt, which is
equivalent to increasing the value of n. This method is called the Euler method,
and the fact that the final error is of first order in Δt makes it a first-order method.
It is possible to improve this method by using a more complex calculation at each
time step.

In these calculations, the very popular fourth-order Runge–Kutta method was
used. In one dimension (only one differential equation), it consists of defining, at
time step k

g1 ¼ F kΔt, f kΔtð Þð ÞΔt (20)

g2 ¼ F kΔtþ Δt
2
, f kΔtð Þ þ g1

2

� �
Δt (21)

g3 ¼ F kΔtþ Δt
2
, f kΔtð Þ þ g2

2

� �
Δt (22)

g4 ¼ F kΔtþ Δt, f kΔtð Þ þ g3
� �

Δt: (23)

Then, the value of f kþ 1ð ÞΔtð Þ at the next time step will be given by

f kþ 1ð ÞΔtð Þ ¼ f kΔtð Þ þ g1
6
þ g2

3
þ g3

3
þ g4

6
þ O Δt5

� �
: (24)

This result can be easily checked by following the lengthy process of expanding
all terms in a Taylor series.

After summing all the n increments, the final result will have an error of order
Δt4, thus converging much faster than the Euler method. It is easy to extend this
result to several dimensions as in the present case.

Usually, the routines that use this method make some sort of quality control of
the intermediate results [53]. This can be achieved in several ways, like by compar-
ing a fourth-order result with a fifth-order result. The difference between the two
should provide a reasonable estimate for the error. If the error is too small, the
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routine increases the value of Δt, in order for the calculation to proceed at a faster
pace. If the error is too large, then the result is rejected, and a new attempt is made
with a smaller step.

This method provides the values of the complex concentrations whose dynamics
is described by Eq. (10) after one time step. However, it is also necessary to
calculate the values of the other complex concentrations and of the free zinc con-
centration. This can be achieved by iterating Eqs. (12) and (14) in the following
way: using the results obtained by the Runge–Kutta method for the reactions for
which the rate constants are known, together with the previous values for the
results obtained for the other complex concentrations in Eq. (14), an approximate
value for the free zinc concentration is obtained. This value can then be used in
Eq. (12), providing new values for the complex concentrations whose rate constants
are not known and which are assumed to be in equilibrium. Then this procedure is
repeated using these new results in Eq. (14) to obtain again a new value for the free
zinc concentration, which is used once more in Eq. (12). The process is repeated
until self-consistency is obtained, i.e., until the change of the concentration values
after one iteration is negligible.

3. Results

The data indicated in Table 1 allowed a variety of estimates of total, free, and
complexed zinc changes at the hippocampal mossy fiber synapses from CA3 area.
The studies considered the release processes in a synaptic cleft, both from a single
and from multiple vesicles, and also the corresponding uptake. Table 2 shows the
data that was used to describe a single vesicle event and two possible multiple
vesicle events which are denoted by short and long, where the latter corresponds to
a longer time before the maximum concentration of free zinc is obtained, as well as
a larger value for that maximum. Table 2 includes also the values of the parameters

Table 1.
Concentrations of the sites and rate and dissociation constants, IC50 and EC50, for the binding reactions
[54, 55]. Source: Reproduced from Quinta-Ferreira et al. [12], with permission from Springer Nature.
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� �
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makes it of order O nΔt2

� � ¼ O Δtð Þ, as n is of order 1
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Therefore, the error can be made smaller by decreasing the value of Δt, which is
equivalent to increasing the value of n. This method is called the Euler method,
and the fact that the final error is of first order in Δt makes it a first-order method.
It is possible to improve this method by using a more complex calculation at each
time step.

In these calculations, the very popular fourth-order Runge–Kutta method was
used. In one dimension (only one differential equation), it consists of defining, at
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Then, the value of f kþ 1ð ÞΔtð Þ at the next time step will be given by
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This result can be easily checked by following the lengthy process of expanding
all terms in a Taylor series.

After summing all the n increments, the final result will have an error of order
Δt4, thus converging much faster than the Euler method. It is easy to extend this
result to several dimensions as in the present case.

Usually, the routines that use this method make some sort of quality control of
the intermediate results [53]. This can be achieved in several ways, like by compar-
ing a fourth-order result with a fifth-order result. The difference between the two
should provide a reasonable estimate for the error. If the error is too small, the
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routine increases the value of Δt, in order for the calculation to proceed at a faster
pace. If the error is too large, then the result is rejected, and a new attempt is made
with a smaller step.

This method provides the values of the complex concentrations whose dynamics
is described by Eq. (10) after one time step. However, it is also necessary to
calculate the values of the other complex concentrations and of the free zinc con-
centration. This can be achieved by iterating Eqs. (12) and (14) in the following
way: using the results obtained by the Runge–Kutta method for the reactions for
which the rate constants are known, together with the previous values for the
results obtained for the other complex concentrations in Eq. (14), an approximate
value for the free zinc concentration is obtained. This value can then be used in
Eq. (12), providing new values for the complex concentrations whose rate constants
are not known and which are assumed to be in equilibrium. Then this procedure is
repeated using these new results in Eq. (14) to obtain again a new value for the free
zinc concentration, which is used once more in Eq. (12). The process is repeated
until self-consistency is obtained, i.e., until the change of the concentration values
after one iteration is negligible.

3. Results

The data indicated in Table 1 allowed a variety of estimates of total, free, and
complexed zinc changes at the hippocampal mossy fiber synapses from CA3 area.
The studies considered the release processes in a synaptic cleft, both from a single
and from multiple vesicles, and also the corresponding uptake. Table 2 shows the
data that was used to describe a single vesicle event and two possible multiple
vesicle events which are denoted by short and long, where the latter corresponds to
a longer time before the maximum concentration of free zinc is obtained, as well as
a larger value for that maximum. Table 2 includes also the values of the parameters

Table 1.
Concentrations of the sites and rate and dissociation constants, IC50 and EC50, for the binding reactions
[54, 55]. Source: Reproduced from Quinta-Ferreira et al. [12], with permission from Springer Nature.

117

Computer Simulations of Hippocampal Mossy Fiber Cleft Zinc Movements
DOI: http://dx.doi.org/10.5772/intechopen.90094



for the release, R(t), and uptake, U(t), alpha functions defined in Eqs. (2) and (3),
for those three cases.

Figure 1 represents the major cellular mechanisms (ionic channels (N-VDCCs,
KATP and L-VDCCs), glutamate receptors (AMPA, NMDA and KA), and glutamate
transporters (GLAST, EAAT4)) forming complexes with cleft free zinc. In this
work the high- (NR1a-NR2A) and low (NR1a-NR2B)-affinity NMDA receptor sites
will simply be mentioned as NMDA 2A and NMDA 2B, respectively.

Since the curves corresponding to the short release process have similar time
courses to those of the long release events, as can be seen in Figure 4, only the
smaller and faster (single process) and the larger and slower (long process) curves
are shown in Figures 2 and 3. Thus, in Figure 2, the upper panels represent
superimposed signals of the time derivative of the total zinc, dZnT/dt; the total zinc,
ZnT; and the free zinc, Zn2+, concentrations. Except for the first panel, all the other
panels are represented on a semilog scale due to the very large range of the signal
amplitudes of the data displayed in Figure 2. This allows for an easier comparison of
the initial and maximum concentrations and also of the time courses of the formed
complexes. The changes in the dZnT/dt curves occur very rapidly and are over

Table 2.
Assumed values of free zinc and model parameters for the release (R(t)) and uptake (U(t)) functions, for the
single, short, and long zinc release processes. Source: Adapted from Quinta-Ferreira et al. [12], with permission
from Springer Nature.

Figure 1.
Mossy fiber synaptic components from hippocampal CA3 area. Diagram of the mossy fiber synapse showing
synaptic vesicles (SV), glutamate transporters (GLAST and EAAT4), glutamate receptors (NMDA, AMPA,
and KA), voltage-dependent calcium channels (N- and L-VDCCs), ATP-sensitive potassium channels (KATP),
and ATP molecules. The different ions (Zn2+, Mg2+, Na+, and K+) are represented by dots and the
neurotransmitter glutamate (Glu) by filled triangles. Reproduced from Quinta-Ferreira et al. [12], with
permission from Springer Nature.
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within 1 and 10 ms, for the single and long processes, respectively. The same curves
have maxima at about 100 μs and 1 ms measuring both approximately 55 μM s�1.
These curves (see Eqs. (1), (2), and (3)), were obtained subtracting the uptake,
U(t), from the release, R(t), alpha functions.

The lower part of Figure 2 shows again superimposed signals associated with the
single and long release processes but for the GLAST, NMDA 2A and NMDA 2B
complexes.

In these findings, the peak amplitude of free zinc is about one-half of the peak
amplitude of total zinc for the single release process and about two thirds for the
long process. Most total and free zinc changes occur within about 5 s, for the single
stimulation, and about 15 s, for the long one (Figure 2). The major zinc-binding
sites considered in the model are listed in Table 1, where the reaction rate constants
and the dissociation constants (or the IC50 or EC50 values), if available from previ-
ous works, are also indicated.

The NMDA 2A and NMDA 2B curves, with peaks in the nM range, were built
using reaction rate constants. In both cases, the time course for the long process is
slower than the time course for the single process (Figure 2).

All the other complexes, with unknown rate constants, are considered to be
always in equilibrium with free zinc (see Section 2) and have, thus, identical
decreasing shapes to that of free zinc. The dynamics of these complexes, namely,
AMPA, N-type VDCCs, KATP, EAAT4, KA, and ATP, listed in decreasing order of
magnitude, happens in less than 5 s (single process) or 10 s (long process),
depending on the intensity of stimulation (Figures 2 and 3). It is interesting to note
the faster recovery of the NMDA 2B complex, with respect to NMDA 2A, which is
characterized by higher-affinity zinc binding and thus slower dissociation rate, for
both the single and long processes.

In the model, based on experimental results, these processes are characterized
by an initial free zinc value, Zn2þ½ �, of 1 nM, and by maximum and time-to-peak

Figure 2.
Modeled zinc changes associated with single and long release processes at hippocampal mossy fiber synapses.
(a) The traces represent dZnT/dt (left), which is given by the difference between the release and the uptake
functions, the total (center), and the free (right) zinc concentrations as a function of time. The inset on the left
panel shows dZnT/dt for the single event, in an expanded time scale. (b) Zinc complexes formed with the
GLAST (left) glutamate transporter sites and the NMDA 2A (center) and NMDA 2B (right) glutamate
receptor sites. In each panel, the smaller and the larger traces are for the single and long release processes,
respectively. Note the different scales.
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for the release, R(t), and uptake, U(t), alpha functions defined in Eqs. (2) and (3),
for those three cases.
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KATP and L-VDCCs), glutamate receptors (AMPA, NMDA and KA), and glutamate
transporters (GLAST, EAAT4)) forming complexes with cleft free zinc. In this
work the high- (NR1a-NR2A) and low (NR1a-NR2B)-affinity NMDA receptor sites
will simply be mentioned as NMDA 2A and NMDA 2B, respectively.

Since the curves corresponding to the short release process have similar time
courses to those of the long release events, as can be seen in Figure 4, only the
smaller and faster (single process) and the larger and slower (long process) curves
are shown in Figures 2 and 3. Thus, in Figure 2, the upper panels represent
superimposed signals of the time derivative of the total zinc, dZnT/dt; the total zinc,
ZnT; and the free zinc, Zn2+, concentrations. Except for the first panel, all the other
panels are represented on a semilog scale due to the very large range of the signal
amplitudes of the data displayed in Figure 2. This allows for an easier comparison of
the initial and maximum concentrations and also of the time courses of the formed
complexes. The changes in the dZnT/dt curves occur very rapidly and are over
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single, short, and long zinc release processes. Source: Adapted from Quinta-Ferreira et al. [12], with permission
from Springer Nature.

Figure 1.
Mossy fiber synaptic components from hippocampal CA3 area. Diagram of the mossy fiber synapse showing
synaptic vesicles (SV), glutamate transporters (GLAST and EAAT4), glutamate receptors (NMDA, AMPA,
and KA), voltage-dependent calcium channels (N- and L-VDCCs), ATP-sensitive potassium channels (KATP),
and ATP molecules. The different ions (Zn2+, Mg2+, Na+, and K+) are represented by dots and the
neurotransmitter glutamate (Glu) by filled triangles. Reproduced from Quinta-Ferreira et al. [12], with
permission from Springer Nature.
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within 1 and 10 ms, for the single and long processes, respectively. The same curves
have maxima at about 100 μs and 1 ms measuring both approximately 55 μM s�1.
These curves (see Eqs. (1), (2), and (3)), were obtained subtracting the uptake,
U(t), from the release, R(t), alpha functions.

The lower part of Figure 2 shows again superimposed signals associated with the
single and long release processes but for the GLAST, NMDA 2A and NMDA 2B
complexes.

In these findings, the peak amplitude of free zinc is about one-half of the peak
amplitude of total zinc for the single release process and about two thirds for the
long process. Most total and free zinc changes occur within about 5 s, for the single
stimulation, and about 15 s, for the long one (Figure 2). The major zinc-binding
sites considered in the model are listed in Table 1, where the reaction rate constants
and the dissociation constants (or the IC50 or EC50 values), if available from previ-
ous works, are also indicated.

The NMDA 2A and NMDA 2B curves, with peaks in the nM range, were built
using reaction rate constants. In both cases, the time course for the long process is
slower than the time course for the single process (Figure 2).

All the other complexes, with unknown rate constants, are considered to be
always in equilibrium with free zinc (see Section 2) and have, thus, identical
decreasing shapes to that of free zinc. The dynamics of these complexes, namely,
AMPA, N-type VDCCs, KATP, EAAT4, KA, and ATP, listed in decreasing order of
magnitude, happens in less than 5 s (single process) or 10 s (long process),
depending on the intensity of stimulation (Figures 2 and 3). It is interesting to note
the faster recovery of the NMDA 2B complex, with respect to NMDA 2A, which is
characterized by higher-affinity zinc binding and thus slower dissociation rate, for
both the single and long processes.

In the model, based on experimental results, these processes are characterized
by an initial free zinc value, Zn2þ½ �, of 1 nM, and by maximum and time-to-peak

Figure 2.
Modeled zinc changes associated with single and long release processes at hippocampal mossy fiber synapses.
(a) The traces represent dZnT/dt (left), which is given by the difference between the release and the uptake
functions, the total (center), and the free (right) zinc concentrations as a function of time. The inset on the left
panel shows dZnT/dt for the single event, in an expanded time scale. (b) Zinc complexes formed with the
GLAST (left) glutamate transporter sites and the NMDA 2A (center) and NMDA 2B (right) glutamate
receptor sites. In each panel, the smaller and the larger traces are for the single and long release processes,
respectively. Note the different scales.

119

Computer Simulations of Hippocampal Mossy Fiber Cleft Zinc Movements
DOI: http://dx.doi.org/10.5772/intechopen.90094



values of 10 nM and 1 ms for the single stimulation and 1 μM and 100 ms for the
long release process. In the single case (and also in the short process), zinc clearance
is mainly due to zinc binding to the NMDA 2A and GLAST sites, while in the long
stimulation, it is essentially mediated by the formation of GLAST complexes. All the
other complexes, characterized by lower affinities, are formed in smaller concen-
trations, as can be seen in Figures 2 and 3.

An overview of the main results of this study can be observed in Figure 4, for
the single, short, and long processes.

4. Discussion

Mathematical models are a highly valuable tool for the study of synaptic zinc
dynamics and in particular of cleft zinc changes. After release, zinc interacts with a
variety of pre- and postsynaptic mechanisms which, together with uptake, mediate
cleft zinc clearance. In the simpler case, which assumes no postsynaptic zinc entry
as considered in this study, all released zinc returns, after some time, to the pre-
synaptic area.

Previous works have suggested that there is no zinc entry in the postsynaptic
region for concentrations below 10 μM [18, 20, 27, 56]. As previously reported [12],
our model assumes different zinc release events that lead to maximum cleft free
zinc concentrations in the range 10 nM to 1 μM, which are below 10 μM.With these
values, there should be no zinc entering to the postsynaptic area.

The released zinc can form complexes with various synaptic zinc-binding sites
existing mainly on pre- and postsynaptic VDCCs (N- and L-types), KATP channels,
ionotropic glutamate receptors (AMPA, KA, and NMDA), and also cleft free mole-
cules (ATP) and glial glutamate transporters (EAAT4). The mathematical model

Figure 3.
Zinc complexes for the single and long release processes with time courses similar to those of free zinc. Complexes
with unknown on and off-rate constants, assumed to be always at equilibrium with free zinc, formed with (a)
AMPA receptors (left), N-VDCCs (center), and KATP channels (right). (b) The same type of complexes formed
with EAAT4 transporters (left), KA receptors (center), and ATP molecules (right). For both the single (smaller
traces) and the long (larger traces) release processes, the signals are displayed by decreasing order of amplitude.
Note the different scales.
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considered in this study was designed to obtain estimates of the dynamic behavior
of the zinc complexes formed with the mentioned mechanisms [12], assuming
previously reported resting and site zinc concentrations and binding constants,
which are summarized in Table 1. The formation of the complexes was triggered by
three assumed types of stimuli, corresponding to single, short, and long release
events, with the maximum and time to peak values, based also on existing experi-
mental findings, indicated in Table 2. In most cases, where the on and off-rate
constants were not known, the dissociation constant KD (or the corresponding IC50

or EC50) values were considered in the equations. In these cases the complexes were
considered to attain very rapidly the equilibrium concentration, following each free

Figure 4.
Comparison of the amplitude and time course of the complexes associated with the single, short, and long
processes. (a) Superimposed traces of the zinc complexes formed with GLAST and EAAT4 transporters (left),
NMDA 2A, NMDA 2B, AMPA, and kainate receptors (center) with KATP and N- and L-type VDCCs (right)
evoked by a single release event. The latter panel includes also zinc binding to ATP molecules (b) and (c).
Similar to (a), but for short (b) and long (c) release processes. Reproduced from Quinta-Ferreira et al. [12],
with permission from Springer Nature.
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considered in this study was designed to obtain estimates of the dynamic behavior
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previously reported resting and site zinc concentrations and binding constants,
which are summarized in Table 1. The formation of the complexes was triggered by
three assumed types of stimuli, corresponding to single, short, and long release
events, with the maximum and time to peak values, based also on existing experi-
mental findings, indicated in Table 2. In most cases, where the on and off-rate
constants were not known, the dissociation constant KD (or the corresponding IC50

or EC50) values were considered in the equations. In these cases the complexes were
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evoked by a single release event. The latter panel includes also zinc binding to ATP molecules (b) and (c).
Similar to (a), but for short (b) and long (c) release processes. Reproduced from Quinta-Ferreira et al. [12],
with permission from Springer Nature.

121

Computer Simulations of Hippocampal Mossy Fiber Cleft Zinc Movements
DOI: http://dx.doi.org/10.5772/intechopen.90094



zinc concentration change. This assumption was made for the following reasons: the
steps involved in the formation of a complex include the movement of a zinc ion
toward the site, the binding, and the dissociation from it, the latter occurring after a
conformational change of the bound target. The value of the on-rate constant is
mainly determined by diffusion and binding. The speed of a reaction is largely
determined by the diffusion value, considered for all ions as 109–1010 s�1 [57] and,
to some extent, by the rate with which water leaves the ionic solvation sphere. For
zinc, this rate and the on-rate constant are considered to be above 107 s�1 and
108 M�1 s�1, respectively [57]. We can now introduce values of on-rate constants
between 107 and 108 M�1 s�1, in agreement with the values for the NMDA sites used
in the model and the dissociation, IC50 and EC50, values in Table 1. In these cases,
the off-rate constants have values in the range 60 s�1 to approximately 7000 s�1,
which exceed, by two to four orders of magnitude, the off-rate constant (0.6 s�1)
for the NMDA 2A reaction. Thus, since for those complexes unbinding occurs
very rapidly, the assumption that they are always in equilibrium with free zinc is
justified.

The computational study led to the representation of a variety of time-varying
curves to illustrate, for different stimuli, the release minus uptake and the concen-
trations of total and free zinc, as well as of the various zinc complexes formed.
Assuming, in a single release process, a low level of stimulation, causing free zinc to
reach 10 nM in the cleft, the predominant complexes are formed with the high-
affinity NMDA 2A glutamate receptor sites and with the lower-affinity and highly
concentrated GLAST glutamate transporters from glial cells [58]. The concentra-
tions of the other complexes are lower by several orders of magnitude. As men-
tioned before, all ligands for which the reaction rate constants are not known are
assumed to be in equilibrium with free zinc. For this reason all these complexes, and
also those associated with the short and long release events, have a similar time
course to that of free zinc.

If a 10 times higher free zinc concentration, 100 nM, is attained in the cleft,
following the more intense short stimulation, the most abundant zinc complex is
now the GLAST one, followed by the NMDA 2A which lasts longer than any of the
other complexes. This is due to the much higher affinity of the NMDA 2A sites for
zinc. Similar properties apply to the third type of estimated curves, associated with
the existence of 1 μM free zinc in the cleft, produced by a longer stimulus. The main
differences, with respect to the short stimulus situation, are that the concentration
of the NMDA 2A complex remains high for a longer period and all formed com-
plexes have larger amplitudes than in the case of the short stimulus. The fact that
externally applied zinc (100 nM) was found to inhibit postsynaptic NMDA cur-
rents, at hippocampal CA3 neurons [27], is in agreement with the idea that zinc
binds to and inhibits the NMDA receptors. The remaining signals, with much
smaller amplitudes, have thus minor or negligible roles in accounting for cleft zinc
removal.

The most intense stimulation considered in this study, which assumed a maxi-
mum zinc cleft concentration of 1 μM, reveals that, as observed in the short case,
GLAST is the complex formed in higher concentration. It is followed by the NMDA
2A complex that saturates when all the corresponding zinc sites (about 40 nM) are
bound to zinc. All the other bindings have again much smaller contributions to zinc
clearance, especially the complex formed with L-type VDCCs, with a concentration
in the fM range.

In conclusion, for a single stimulus, the NMDA 2A high-affinity sites are the
most involved in the initial clearance process, while for the stronger stimulations
considered (short and long), this role is taken by the highly abundant GLAST
complexes. In all cases, uptake has a much slower time course.
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At hippocampal CA1 synapses, a single release event may be associated with the
release of up to 10 vesicles [58]. In particular, an individual mossy fiber axon has
approximately 15 giant boutons (3–5 μm diameter at 150 μm intervals) and 37 release
sites (active zones) each [51, 52, 59]. Single boutons contain about 20 active zones at
0.45 μm intervals and 16,000 vesicles, being 1400 ready for release that may be
multivesicular, thus leading to very intense release processes [51, 60]. It has been
reported that the free or loosely bound zinc and glutamate vesicular concentrations
are 1–5 and 60–210 mM, respectively [16, 27, 47]. Let’s assume that zinc and gluta-
mate, which have similar diffusion coefficients [20, 27], are co-released in the same
proportion and that, as what happens for glutamate, the cleft released zinc concen-
tration becomes uniform in tens of microseconds [16]. It can be estimated that the
volume of a mossy fiber-CA3 cleft (20 nm width, 3 μm radius) is much higher
(approximately 17,000 times) than that of a vesicle (40 nm diameter) [27, 49–51,
61, 62]. The cleft real volume is significantly smaller, by about 25%, if the volume of
densely packed conic (20 nm height) dendritic protrusions is subtracted [63]. In this
case the discharge of an individual vesicle would lead to the following initial concen-
trations: 80–400 nM for zinc and 4–20 μM for glutamate. There is a large difference
between the radii and, thus, the volumes of the mossy fiber-CA3 and the CA3-CA1
clefts since the latter has a 20 nmwidth and only 250 nm radius. As a consequence, in
the CA1 region, the cleft glutamate range of concentrations is estimated to be around
0.4–2 mM and is thus close to the previously reported ranges of values, 1–5 mM [16]
and 0.25–11 mM following an individual vesicle release [64]. Another important issue
is the role of the connection between the cleft and extrasynaptic regions with much
higher volume [65]. This volume has to be added to that of the cleft, since it forms a
large part of the space where the zinc concentration changes occur. A similar fact has
been considered for cleft glutamate clearance in neurons of the central nervous
system, where the glutamate concentration decreased very rapidly (1–5 ms) 100–500
times [65]. Let us assume again that zinc and glutamate diffuse in a similar way
[20, 27]. In this case the concentration range of cleft free zinc changes, evoked by an
individual vesicle discharge and after diffusing away from the cleft, will be 0.8–4 nM.
If multivesicular release occurs [60], the amount of zinc in the cleft will be signifi-
cantly larger.

Another estimate of cleft zinc discharge and uptake can be obtained from fluo-
rescent glutamate signals associated with single or repetitive stimulation applied to
cultured hippocampal neurons [66]. These authors have found that for the single
and short types of stimulation, the maximum concentrations of glutamate were
around 0.3 and 0.8 μM, respectively, occurring clearance in less than 1 s, for the
single, and 2 s, for the short stimuli. If, as previously estimated, there is about 50
times more glutamate in the cleft, the equivalent maximum concentration range for
free zinc will be 6–16 nM.

Previous work has reported that the resting free zinc concentration in the cleft is
below 10 nM, meaning that the NMDA 2A sites, which are highly sensitive for zinc,
will not become saturated by zinc, and also that the amount of zinc discharged by
an individual stimulus does not seem to alter much postsynaptic NMDA currents
[27]. Our estimates, for more intense stimulations such as the short and long pro-
cesses, which are associated with 10 and 100 times more free zinc in the cleft,
respectively, than for the single process, indicate that the NMDA 2A sites
(KD = 6 nM) are nearly or fully occupied as reported earlier [10, 27, 28]. For the
short and long stimulations, the amount of GLAST complexes is approximately 2
and 10 times more than for NMDA 2A complexes, respectively. Also, only for these
stronger stimulation protocols, the much lower-affinity NMDA 2B and AMPA
receptors become significantly occupied. The KATP channels and the EAAT4 trans-
porters form a reasonable amount of zinc complexes in spite of their smaller
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zinc concentration change. This assumption was made for the following reasons: the
steps involved in the formation of a complex include the movement of a zinc ion
toward the site, the binding, and the dissociation from it, the latter occurring after a
conformational change of the bound target. The value of the on-rate constant is
mainly determined by diffusion and binding. The speed of a reaction is largely
determined by the diffusion value, considered for all ions as 109–1010 s�1 [57] and,
to some extent, by the rate with which water leaves the ionic solvation sphere. For
zinc, this rate and the on-rate constant are considered to be above 107 s�1 and
108 M�1 s�1, respectively [57]. We can now introduce values of on-rate constants
between 107 and 108 M�1 s�1, in agreement with the values for the NMDA sites used
in the model and the dissociation, IC50 and EC50, values in Table 1. In these cases,
the off-rate constants have values in the range 60 s�1 to approximately 7000 s�1,
which exceed, by two to four orders of magnitude, the off-rate constant (0.6 s�1)
for the NMDA 2A reaction. Thus, since for those complexes unbinding occurs
very rapidly, the assumption that they are always in equilibrium with free zinc is
justified.

The computational study led to the representation of a variety of time-varying
curves to illustrate, for different stimuli, the release minus uptake and the concen-
trations of total and free zinc, as well as of the various zinc complexes formed.
Assuming, in a single release process, a low level of stimulation, causing free zinc to
reach 10 nM in the cleft, the predominant complexes are formed with the high-
affinity NMDA 2A glutamate receptor sites and with the lower-affinity and highly
concentrated GLAST glutamate transporters from glial cells [58]. The concentra-
tions of the other complexes are lower by several orders of magnitude. As men-
tioned before, all ligands for which the reaction rate constants are not known are
assumed to be in equilibrium with free zinc. For this reason all these complexes, and
also those associated with the short and long release events, have a similar time
course to that of free zinc.

If a 10 times higher free zinc concentration, 100 nM, is attained in the cleft,
following the more intense short stimulation, the most abundant zinc complex is
now the GLAST one, followed by the NMDA 2A which lasts longer than any of the
other complexes. This is due to the much higher affinity of the NMDA 2A sites for
zinc. Similar properties apply to the third type of estimated curves, associated with
the existence of 1 μM free zinc in the cleft, produced by a longer stimulus. The main
differences, with respect to the short stimulus situation, are that the concentration
of the NMDA 2A complex remains high for a longer period and all formed com-
plexes have larger amplitudes than in the case of the short stimulus. The fact that
externally applied zinc (100 nM) was found to inhibit postsynaptic NMDA cur-
rents, at hippocampal CA3 neurons [27], is in agreement with the idea that zinc
binds to and inhibits the NMDA receptors. The remaining signals, with much
smaller amplitudes, have thus minor or negligible roles in accounting for cleft zinc
removal.

The most intense stimulation considered in this study, which assumed a maxi-
mum zinc cleft concentration of 1 μM, reveals that, as observed in the short case,
GLAST is the complex formed in higher concentration. It is followed by the NMDA
2A complex that saturates when all the corresponding zinc sites (about 40 nM) are
bound to zinc. All the other bindings have again much smaller contributions to zinc
clearance, especially the complex formed with L-type VDCCs, with a concentration
in the fM range.

In conclusion, for a single stimulus, the NMDA 2A high-affinity sites are the
most involved in the initial clearance process, while for the stronger stimulations
considered (short and long), this role is taken by the highly abundant GLAST
complexes. In all cases, uptake has a much slower time course.
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At hippocampal CA1 synapses, a single release event may be associated with the
release of up to 10 vesicles [58]. In particular, an individual mossy fiber axon has
approximately 15 giant boutons (3–5 μm diameter at 150 μm intervals) and 37 release
sites (active zones) each [51, 52, 59]. Single boutons contain about 20 active zones at
0.45 μm intervals and 16,000 vesicles, being 1400 ready for release that may be
multivesicular, thus leading to very intense release processes [51, 60]. It has been
reported that the free or loosely bound zinc and glutamate vesicular concentrations
are 1–5 and 60–210 mM, respectively [16, 27, 47]. Let’s assume that zinc and gluta-
mate, which have similar diffusion coefficients [20, 27], are co-released in the same
proportion and that, as what happens for glutamate, the cleft released zinc concen-
tration becomes uniform in tens of microseconds [16]. It can be estimated that the
volume of a mossy fiber-CA3 cleft (20 nm width, 3 μm radius) is much higher
(approximately 17,000 times) than that of a vesicle (40 nm diameter) [27, 49–51,
61, 62]. The cleft real volume is significantly smaller, by about 25%, if the volume of
densely packed conic (20 nm height) dendritic protrusions is subtracted [63]. In this
case the discharge of an individual vesicle would lead to the following initial concen-
trations: 80–400 nM for zinc and 4–20 μM for glutamate. There is a large difference
between the radii and, thus, the volumes of the mossy fiber-CA3 and the CA3-CA1
clefts since the latter has a 20 nmwidth and only 250 nm radius. As a consequence, in
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higher volume [65]. This volume has to be added to that of the cleft, since it forms a
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around 0.3 and 0.8 μM, respectively, occurring clearance in less than 1 s, for the
single, and 2 s, for the short stimuli. If, as previously estimated, there is about 50
times more glutamate in the cleft, the equivalent maximum concentration range for
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below 10 nM, meaning that the NMDA 2A sites, which are highly sensitive for zinc,
will not become saturated by zinc, and also that the amount of zinc discharged by
an individual stimulus does not seem to alter much postsynaptic NMDA currents
[27]. Our estimates, for more intense stimulations such as the short and long pro-
cesses, which are associated with 10 and 100 times more free zinc in the cleft,
respectively, than for the single process, indicate that the NMDA 2A sites
(KD = 6 nM) are nearly or fully occupied as reported earlier [10, 27, 28]. For the
short and long stimulations, the amount of GLAST complexes is approximately 2
and 10 times more than for NMDA 2A complexes, respectively. Also, only for these
stronger stimulation protocols, the much lower-affinity NMDA 2B and AMPA
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porters form a reasonable amount of zinc complexes in spite of their smaller
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affinity, because their concentrations are higher than those of the NMDA sites. As
expected, the zinc complexes with lower concentrations and association rates, such
as those formed with the kainate receptors and ATP molecules, are only significant
following the most intense (long) stimulation. It should also be noticed that the
maximum cleft zinc concentration included in the model, 1 μM, does not lead to the
inhibition of N- or L-type VDCCs by zinc, since the threshold, half, and almost full
blockade concentrations are <5, 69, and 150–200 μM, respectively [40, 42]. For all
protocols considered, very small concentrations (in the order of pM-fM) of the
VDCC complexes are formed.

The evaluation of the dynamics of synaptic zinc complexes considered in this
work contributes to a wider knowledge about synaptic zinc changes. Identifying the
main zinc mechanisms involved in mossy fiber zinc clearance is of major impor-
tance, considering the potential protective or toxic roles of released zinc at these
highly excitable synapses.
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VDCC complexes are formed.

The evaluation of the dynamics of synaptic zinc complexes considered in this
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tance, considering the potential protective or toxic roles of released zinc at these
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