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Preface

Functionally graded materials (FGMs) are inhomogeneous materials, consisting of
two (or more) different materials, engineered to have a continuously varying spatial 
composition profile. This is achieved by gradually varying the volume fraction of
the constituent materials. The concept is to produce a composite material by vary-
ing the microstructure from one material to another material with a specific gradi-
ent. The materials can be designed for specific functions and applications. FGMs
offer great promise in applications where the operating conditions are extreme. For
example, wear-resistant linings for handling large, heavy, abrasive ore particles; 
rocket heat shields; heat exchanger tubes; thermoelectric generators; heat-engine
components; plasma facings for fusion reactors; and electrically insulating metal/
ceramic joints. They are also ideal for minimizing thermomechanical mismatch in
metal-ceramic bonding.

This book is a result of contributions of experts from the international scientific
community working in different aspects of functionally graded materials and 
structures and reports on the latest research and development findings on this topic
through original and innovative research studies. Through its six chapters, the
reader will have access to works related to processing, characteristics, modeling, 
and applications of functionally graded materials and structures.

The book contains up-to-date publications from leading experts and the edition
is intended to provide valuable recent information to the professionals involved in
functionally graded materials and structure analysis and applications. The text is
addressed not only to researchers, but also to professional engineers, students, and 
other experts in a variety of disciplines, both academic and industrial seeking to
gain a better understanding of what has been done in the field recently, and what
open problems are in this area.

I hope that the readers will find this book useful and inspiring by examining the
recent developments in functionally graded materials and structures.

Lastly, I would like to thank all the authors for their excellent contributions in dif-
ferent areas covered by this book, and the IntechOpen team, especially the process
manager Ms. Ivana Barac, for their support and patience throughout the publishing 
process.

Dr. Farzad Ebrahimi
Department of Mechanical Engineering,

Imam Khomeini International University,
Qazvin, Iran
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Chapter 1

Free Vibration of Axially
Functionally Graded Beam
Dongxing Cao, Bin Wang, Wenhua Hu and Yanhui Gao

Abstract

Axially functionally graded (AFG) beam is a special kind of nonhomogeneous
functionally gradient material structure, whose material properties vary continu-
ously along the axial direction of the beam by a given distribution form. There are
several numerical methods that have been used to analyze the vibration character-
istics of AFG beams, but it is difficult to obtain precise solutions for AFG beams
because of the variable coefficients of the governing equation. In this topic, the free
vibration of AFG beam using analytical method based on the perturbation theory
and Meijer G-Function are studied, respectively. First, a detailed review of the
existing literatures is summarized. Then, based on the governing equation of the
AFG Euler-Bernoulli beam, the detailed analytic equations are derived on basis of
the perturbation theory and Meijer G-function, where the nature frequencies are
demonstrated. Subsequently, the numerical results are calculated and compared,
meanwhile, the analytical results are also confirmed by finite element method and
the published references. The results show that the proposed two analytical
methods are simple and efficient and can be used to conveniently analyze free
vibration of AFG beam.

Keywords: axially functionally graded beams, free vibration, natural frequency,
asymptotic perturbation method, Meijer G-function, finite segment model

1. Introduction

Functionally gradient materials (FGMs) make a composite material by varying
the microstructure from one material to another material with a specific gradient. It
can be designed for specific function and applications. If it is for thermal or corro-
sive resistance or malleability and toughness, both strengths of the material may be
used to avoid corrosion, fatigue, fracture, and stress corrosion cracking. FGMs are
usually made into several structures, such as beams [1–4], plates [5–8], and shells
[9–12]. In this area, the variation of material properties in functionally graded
beams may be oriented in transverse (thickness) direction or/and longitudinal/axial
(length) direction.

For functionally graded beams with thickness-wise gradient variation, there
have been many studies devoted to this topic. Lee et al. [13] establish an accurate
transfer matrix method to analyze the free vibration characteristics of FGM beams
whose Young’s modulus and density vary continuously with the height of the beam
section through power law distribution. Su et al. [14] developed the dynamic stiff-
ness method to investigate the free vibration behavior of FGM beams. Jing et al. [15]
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introduced a new approach by combining the cell-centered finite volume method
and Timoshenko beam theory to analyze static and free vibration of FGM beams.
Ait Atmane et al. [16] investigated the free vibration of a nonuniform FGM beams
with exponentially varying width and material properties. Sina et al. [17] studied
the free vibration of FGM beams by analytical method based on the traditional
first-order shear deformation theory. Sharma [18] investigated the computational
characteristics of harmonic differential quadrature method for free vibration of
functionally graded piezoelectric material beam, which the material properties are
assumed to have a power law or sigmoid law variation across the depth. Li et al. [19]
proposed a high-order shear theory for free vibration of FGM beams with continu-
ously varying material properties under different boundary conditions. Celebi et al.
[20] employed the complementary function method to investigate the free vibra-
tion analysis of simply supported FGM beams, which the material properties change
arbitrarily in the thickness direction. Chen et al. [21] studied the nonlinear free
vibration behavior of shear deformable sandwich porous FGM beam based on the
von kármán type geometric nonlinearity and Ritz method. Nazemnezhad and
Hosseini-Hashemi [22] examined the nonlinear free vibration of FGM nanobeams
with immovable ends using the multiple scale method.

As the FGMs are good for severe conditions, thermal-mechanical effect on FGM
structures has attracted broad attention. In this field, Farzad Ebrahimi and Erfan
Salari obtained outstanding achievements. Considering the thermal-mechanical
effect and size-dependent thermo-electric effect, the buckling and vibration
behavior of FGM nanobeams are studied [23–26]. Considering the concept of neu-
tral axis, they [27] studied the free buckling and vibration of FGM nanobeams using
semi-analytical differential transformation method. To discuss the effect of the
shear stress, Reddy’s higher-order shear deformation beam theory is introduced to
study the vibration of the FGM structures [28–30]. Ebrahimi et al. [31–33] also
studied vibration characteristics of FGM beams with porosities. Based on nonlocal
elasticity theory, the nonlocal temperature-dependent vibration of FGM nanobeams
were studied in thermal environment [34–36].

Another significant class of functionally graded beams is those with lengthwise
varying material properties. It is difficult to obtain precise solutions for axially
functionally graded (AFG) beams because of the variable coefficients of the
governing equation. To solve this problem, a great deal of methods has been used to
analyze the vibration characteristics of AFG beams. By assuming that the material
constituents vary throughout the longitudinal directions according to a simple
power law, Alshorbagy et al. [37] developed a two-node, six-degree-of-freedom
finite element method (FEM) in conjunction with Euler-Bernoulli beam theory to
detect the free vibration characteristics of a functionally graded beam. Shahba et al.
[38, 39] used the FEM to study the free vibration of an AFG-tapered beam based on
Euler-Bernoulli and Timoshenko beam theory. Shahba and Rajasekaran [40] stud-
ied the free vibration analysis of AFG-tapered Euler-Bernoulli beams employing the
differential transform element method. Liu et al. [41] applied the spline finite point
method to investigate the same problems. Rajasekaran [42] researched the free
bending vibration of rotating AFG-tapered Euler-Bernoulli beams with different
boundary conditions using the differential transformation method and differential
quadrature element method. Rajasekaran and Tochaei [43] carried out the free
vibration analysis of AFG Timoshenko beams using the same method. Huang and Li
[44] studied the free vibration of variable cross-sectional AFG beams. The differ-
ential equation with variable coefficients is combined with the boundary conditions
and transformed into Fredholm integral equation. By solving Fredholm integral
equation, the natural frequencies of AFG beams can be obtained. Huang et al. [45]
proposed a new approach for investigating the vibration behaviors of AFG
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Timoshenko beams with nonuniform cross section by introducing an auxiliary
function. Huang and Rong [46] introduced a simple approach to deal with the free
vibration of nonuniform AFG Euler-Bernoulli beams based on the polynomial
expansion and integral technique. Hein and Feklistova [47] solved the vibration
problems of AFG beams with various boundary conditions and varying cross sec-
tions via the Haar wavelet series. Xie et al. [48] presented a spectral collocation
approach based on integrated polynomials combined with the domain decomposi-
tion technique for free vibration analyses of beams with axially variable cross
sections, moduli of elasticity, and mass densities. Kukla and Rychlewska [49] pro-
posed a new approach to study the free vibration analysis of an AFG beam; the
approach relies on replacing functions characterizing functionally graded beams
with piecewise exponential functions. Zhao et al. [50] introduced a new approach
based on Chebyshev polynomial theory to investigate the free vibration of AFG
Euler-Bernoulli and Timoshenko beams with nonuniform cross sections. Fang and
Zhou [51, 52] researched the modal analysis of rotating AFG-tapered Euler-
Bernoulli and Timoshenko beams with various boundary conditions employing the
Chebyshev-Ritz method. Li et al. [53, 54] obtained the exact solutions for the free
vibration of FGM beams with material profiles and cross-sectional parameters
varying exponentially in the axial direction, where assumptions of Euler-Bernoulli
and Timoshenko beam theories have been applied, respectively. Sarkar and
Ganguli [55] studied the free vibration of AFG Timoshenko beams with different
boundary conditions and uniform cross sections. Akgöz and Civalek [56]
examined the free vibrations of AFG-tapered Euler-Bernoulli microbeams based on
Bernoulli-Euler beam and modified couple stress theory. Yuan et al. [57] proposed a
novel method to simplify the governing equations for the free vibration of
Timoshenko beams with both geometrical nonuniformity and material
inhomogeneity along the beam axis, and a series of exact analytical solutions are
derived from the reduced equations for the first time. Yilmaz and Evran [58]
investigated the free vibration of axially layered FGM short beams using experi-
mental and FEM simulation, which the beams are manufactured by using the
powder metallurgy technique using different weight fractions of aluminum and
silicon carbide powders.

Till now, there also are plenty of literatures devoted to the free vibration for
nonuniform beams. Boiangiu et al. [59] obtained the exact solutions for free bend-
ing vibrations of straight beams with variable cross section using Bessel’s functions
and proposed a transfer matrix method to determine the natural frequencies of a
complex structure of conical and cylindrical beams. Garijo [60] analyzed the free
vibration of Euler-Bernoulli beams of variable cross section employing a collocation
technique based on Bernstein polynomials. Arndt et al. [61] presented an adaptive
generalized FEM to determine the natural frequencies of nonuniform Euler-
Bernoulli beams. The spline-method of degree 5 defect 1 is proposed by Zhernakov
et al. [62] to determine the natural frequencies of beam with variable cross section.
Wang [63] studied the vibration of a cantilever beam with constant thickness and
linearly tapered sides by means of a novel accurate, efficient initial value numerical
method. Silva and Daqaq [64] solved the linear eigenvalue problem exactly of a
slender cantilever beam of constant thickness and linearly varying width using the
Meijer G-function approach. Rajasekaran and Khaniki [65] applied the FEM to
research the vibration behavior of nonuniform small-scale beams in the framework
of nonlocal strain gradient theory. Çalım [66] investigated the dynamic behavior of
nonuniform composite beams employing an efficient method of analysis in the
Laplace domain. Yang et al. [67] applied the power series method to investigate the
natural frequencies and the corresponding complex mode functions of a rotating
tapered cantilever Timoshenko beam. Clementi [68] analytically determined the
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et al. [62] to determine the natural frequencies of beam with variable cross section.
Wang [63] studied the vibration of a cantilever beam with constant thickness and
linearly tapered sides by means of a novel accurate, efficient initial value numerical
method. Silva and Daqaq [64] solved the linear eigenvalue problem exactly of a
slender cantilever beam of constant thickness and linearly varying width using the
Meijer G-function approach. Rajasekaran and Khaniki [65] applied the FEM to
research the vibration behavior of nonuniform small-scale beams in the framework
of nonlocal strain gradient theory. Çalım [66] investigated the dynamic behavior of
nonuniform composite beams employing an efficient method of analysis in the
Laplace domain. Yang et al. [67] applied the power series method to investigate the
natural frequencies and the corresponding complex mode functions of a rotating
tapered cantilever Timoshenko beam. Clementi [68] analytically determined the
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frequency response curves of a nonuniform beam undergoing nonlinear oscillations
by the multiple time scale method. Wang [69] proposed the differential quadrature
element method for the natural frequencies of multiple-stepped beams with an
aligned neutral axis. Abdelghany [70] utilized the differential transformation
method to examine the free vibration of nonuniform circular beam.

The asymptotic development method, which is a kind of perturbation analysis
method, is always used to solve nonlinear vibration equations. For example, Chen
et al. [71, 72] studied the nonlinear dynamic behavior of axially accelerated visco-
elastic beams and strings based on the asymptotic perturbation method. Ding et al.
[73, 74] studied the influence of natural frequency of transverse vibration of axially
moving viscoelastic beams and the steady-state periodic response of forced vibra-
tion of dynamic viscoelastic beams based on the multi-scale method. Chen [75] used
the asymptotic perturbation method to analyze the finite deformation of
prestressing hyperelastic compression plates. Hao et al. [76] employed the asymp-
totic perturbation method to obtain the nonlinear dynamic responses of a cantilever
FGM rectangular plate subjected to the transversal excitation in thermal environ-
ment. Andrianov and Danishevs’kyy [77] proposed an asymptotic method for solv-
ing periodic solutions of nonlinear vibration problems of continuous structures.
Based on the asymptotic expansion method of Poincaré-Lindstedt version [78], the
longitudinal vibration of a bar and the transverse vibration of a beam under the
action of a nonlinear restoring force are studied. The asymptotic development
method is applied to obtain an approximate analytical expression of the natural
frequencies of nonuniform cables and beams [79, 80]. Cao et al. [81, 82] applied the
asymptotic development method to analyze the free vibration of nonuniform axi-
ally functionally graded (AFG) beams. Tarnopolskaya et al. [83] gave the first
comprehensive study of the mode transition phenomenon in vibration of beams
with arbitrarily varying curvature and cross section on the basis of asymptotic
analysis.

The present topic focus on the free vibration of AFG beams with uniform
or nonuniform cross sections using analytical method: the asymptotic
perturbation method (APM) and Meijer G-function. First, the governing differen-
tial equation for free vibration of nonuniform AFG beam is summarized and
rewritten in a form of a dimensionless equation based on Euler-Bernoulli beam
theory. Second, the analytic equations are then derived in detail in Sections 3 and 4,
respectively, where the nature frequencies are obtained and compared with the
results of the finite element method and the published references. Finally, the
conclusions are presented.

2. Governing equation of the AFG beam

This studied free vibration of the axially functionally graded beam, which is a
nonuniform and nonhomogeneous structure because of the variable width and
height, as shown in Figure 1. Based on Euler-Bernoulli beam theory, the governing
differential equation of the beam can be written as

∂
2

∂x2
E xð ÞI xð Þ ∂

2w x; tð Þ
∂x2

� �
þ ρ xð ÞA xð Þ ∂

2w x; tð Þ
∂t2

¼ 0, 0≤ x≤L (1)

where w x; tð Þ is the transverse deflection at position x and time t; L is the length
of the beams; E xð ÞI xð Þ is the bending stiffness, which is determined by Young’s
modulus E xð Þ and the area moment of inertia I xð Þ; and ρ xð ÞA xð Þ is the unit mass
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length of beam, which is determined by volume mass density ρ xð Þ and variable
cross-sectional area A xð Þ.

Because of the particularity of AFG beam, bending stiffness E xð ÞI xð Þ and
unit mass ρ xð ÞA xð Þ will change with the axis coordinates, which makes the
original constant coefficient differential equation become variable coefficient
differential equation and to some extent increases the difficulty of solving. In
order to facilitate calculation, we simplify the calculation process by
introducing dimensionless parameters. Reference flexural stiffness EI0 and
reference mass ρA0 are introduced, and the above two dimensionless parameters
are invariant. Suppose E xð ÞI xð Þ ¼ EI0 þ E xð ÞI xð Þ and ρ xð ÞA xð Þ ¼ ρA0 þ ρ xð ÞA xð Þ,
where EI0 and ρA0 are the invariant parts and E xð ÞI xð Þ and ρ xð ÞA xð Þ
represent flexural stiffness and mass per unit length, respectively, and vary with
the axial coordinates. Here, we introduce a dimensionless space variable ξ ¼ x=L

and a dimensionless time variable τ ¼ t
L2

ffiffiffiffiffiffi
EI0
ρA0

q
; Eq. (1) can be rewritten in the

dimensionless form:

∂
2

∂ξ2
1þ f 1 ξð Þ� � ∂2w ξ; τð Þ

∂ξ2

� �
þ 1þ f 2 ξð Þ� � ∂2w ξ; τð Þ

∂τ2
¼ 0, 0≤ ξ≤ 1 (2)

where

f 1 ξð Þ ¼ E ξð ÞI ξð Þ
EI0

and f 2 ξð Þ ¼ ρ ξð ÞA ξð Þ
ρA0

(3)

are the nondimensional varying parts of the flexural stiffness and of the mass per
unit length, respectively.

3. Asymptotic perturbation method

3.1 Equation deriving

In this section, the APM is introduced to obtain a simple proximate formula for
the nature frequency of the AFG beam. Firstly, we assume that

w ξ; τð Þ ¼ W ξð Þ sin ωτð Þ (4)

where W ξð Þ is the amplitude of vibration and ω is the circular frequency of
vibration. We obtain the following equation by substituting Eq. (4) with Eq. (2):

Figure 1.
The geometry and coordinate system of an AFG beam.
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frequency response curves of a nonuniform beam undergoing nonlinear oscillations
by the multiple time scale method. Wang [69] proposed the differential quadrature
element method for the natural frequencies of multiple-stepped beams with an
aligned neutral axis. Abdelghany [70] utilized the differential transformation
method to examine the free vibration of nonuniform circular beam.

The asymptotic development method, which is a kind of perturbation analysis
method, is always used to solve nonlinear vibration equations. For example, Chen
et al. [71, 72] studied the nonlinear dynamic behavior of axially accelerated visco-
elastic beams and strings based on the asymptotic perturbation method. Ding et al.
[73, 74] studied the influence of natural frequency of transverse vibration of axially
moving viscoelastic beams and the steady-state periodic response of forced vibra-
tion of dynamic viscoelastic beams based on the multi-scale method. Chen [75] used
the asymptotic perturbation method to analyze the finite deformation of
prestressing hyperelastic compression plates. Hao et al. [76] employed the asymp-
totic perturbation method to obtain the nonlinear dynamic responses of a cantilever
FGM rectangular plate subjected to the transversal excitation in thermal environ-
ment. Andrianov and Danishevs’kyy [77] proposed an asymptotic method for solv-
ing periodic solutions of nonlinear vibration problems of continuous structures.
Based on the asymptotic expansion method of Poincaré-Lindstedt version [78], the
longitudinal vibration of a bar and the transverse vibration of a beam under the
action of a nonlinear restoring force are studied. The asymptotic development
method is applied to obtain an approximate analytical expression of the natural
frequencies of nonuniform cables and beams [79, 80]. Cao et al. [81, 82] applied the
asymptotic development method to analyze the free vibration of nonuniform axi-
ally functionally graded (AFG) beams. Tarnopolskaya et al. [83] gave the first
comprehensive study of the mode transition phenomenon in vibration of beams
with arbitrarily varying curvature and cross section on the basis of asymptotic
analysis.

The present topic focus on the free vibration of AFG beams with uniform
or nonuniform cross sections using analytical method: the asymptotic
perturbation method (APM) and Meijer G-function. First, the governing differen-
tial equation for free vibration of nonuniform AFG beam is summarized and
rewritten in a form of a dimensionless equation based on Euler-Bernoulli beam
theory. Second, the analytic equations are then derived in detail in Sections 3 and 4,
respectively, where the nature frequencies are obtained and compared with the
results of the finite element method and the published references. Finally, the
conclusions are presented.

2. Governing equation of the AFG beam

This studied free vibration of the axially functionally graded beam, which is a
nonuniform and nonhomogeneous structure because of the variable width and
height, as shown in Figure 1. Based on Euler-Bernoulli beam theory, the governing
differential equation of the beam can be written as

∂
2

∂x2
E xð ÞI xð Þ ∂

2w x; tð Þ
∂x2

� �
þ ρ xð ÞA xð Þ ∂

2w x; tð Þ
∂t2

¼ 0, 0≤ x≤L (1)

where w x; tð Þ is the transverse deflection at position x and time t; L is the length
of the beams; E xð ÞI xð Þ is the bending stiffness, which is determined by Young’s
modulus E xð Þ and the area moment of inertia I xð Þ; and ρ xð ÞA xð Þ is the unit mass
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length of beam, which is determined by volume mass density ρ xð Þ and variable
cross-sectional area A xð Þ.

Because of the particularity of AFG beam, bending stiffness E xð ÞI xð Þ and
unit mass ρ xð ÞA xð Þ will change with the axis coordinates, which makes the
original constant coefficient differential equation become variable coefficient
differential equation and to some extent increases the difficulty of solving. In
order to facilitate calculation, we simplify the calculation process by
introducing dimensionless parameters. Reference flexural stiffness EI0 and
reference mass ρA0 are introduced, and the above two dimensionless parameters
are invariant. Suppose E xð ÞI xð Þ ¼ EI0 þ E xð ÞI xð Þ and ρ xð ÞA xð Þ ¼ ρA0 þ ρ xð ÞA xð Þ,
where EI0 and ρA0 are the invariant parts and E xð ÞI xð Þ and ρ xð ÞA xð Þ
represent flexural stiffness and mass per unit length, respectively, and vary with
the axial coordinates. Here, we introduce a dimensionless space variable ξ ¼ x=L

and a dimensionless time variable τ ¼ t
L2

ffiffiffiffiffiffi
EI0
ρA0

q
; Eq. (1) can be rewritten in the

dimensionless form:

∂
2

∂ξ2
1þ f 1 ξð Þ� � ∂2w ξ; τð Þ

∂ξ2

� �
þ 1þ f 2 ξð Þ� � ∂2w ξ; τð Þ

∂τ2
¼ 0, 0≤ ξ≤ 1 (2)

where

f 1 ξð Þ ¼ E ξð ÞI ξð Þ
EI0

and f 2 ξð Þ ¼ ρ ξð ÞA ξð Þ
ρA0

(3)

are the nondimensional varying parts of the flexural stiffness and of the mass per
unit length, respectively.

3. Asymptotic perturbation method

3.1 Equation deriving

In this section, the APM is introduced to obtain a simple proximate formula for
the nature frequency of the AFG beam. Firstly, we assume that

w ξ; τð Þ ¼ W ξð Þ sin ωτð Þ (4)

where W ξð Þ is the amplitude of vibration and ω is the circular frequency of
vibration. We obtain the following equation by substituting Eq. (4) with Eq. (2):

Figure 1.
The geometry and coordinate system of an AFG beam.
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d2

dξ2
1þ f 1 ξð Þ� � d2W

dξ2

( )
� ω2 1þ f 2 ξð Þ� �

W ¼ 0, 0≤ ξ≤ 1 (5)

To use the APM, a small perturbation parameter ε is introduced:

f 1 ξð Þ ! εf 1 ξð Þ, f 2 ξð Þ ! εf 2 ξð Þ (6)

According to the Poincaré-Lindstedt method [78–82], we assume the expansion
for ω and W ξð Þ as

ω ¼ ω0 þ εω1 þ ε2ω2 þ…,
W ξð Þ ¼ W0 ξð Þ þ εW1 ξð Þ þ ε2W2 ξð Þ þ…:

(7)

Substituting these expressions with governing Eq. (5) and then expanding the
expressions into a ε-series, Eqs. (8) and (9) are obtained by equating the coeffi-
cients of ε0 and ε1 to zero, yielding a sequence of problems for the unknowns ωi and
Wi ξð Þ:

d4W0

dξ4
� ω2

0W0 ¼ 0 (8)

d4W1

dξ4
� ω2

0W1 þ h1 ξð Þ � 2ω1ω0W0 ¼ 0 (9)

where

h1 ξð Þ ¼ 2
df 1 ξð Þ
dξ

d3W0

dξ3
þ d2f 1 ξð Þ

dξ2
d2W0

dξ2
þ ω2

0 f 1 ξð Þ � f 2 ξð Þ� �
W0 (10)

For Eq. (8), the following general solution can be obtained:

W0 ¼ A sin kξð Þ þ B cos kξð Þ þ C sinh kξð Þ þD cosh kξð Þ (11)

where

k ¼ ffiffiffiffiffiffi
ω0

p
(12)

For simplicity, we consider clamped-free (C-F) beams, and the corresponding
boundary conditions are

W0 ¼ dW0

dξ
¼ 0, ξ ¼ 0 (13)

d2W0

dξ2
¼ d3W0

dξ3
¼ 0, ξ ¼ 1 (14)

Then, the following equations from equation can be obtained:

Aþ C ¼ 0

BþD ¼ 0
C
D

¼ sin k� sinh k
cos kþ cosh k

(15)
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and the frequency equation is

cos k cosh kþ 1 ¼ 0 (16)

The spatial mode shape can be obtained as

W0 ¼ cosh kξð Þ � cos kξð Þ þ C
D

sinh kξð Þ � sin kξð Þ½ � (17)

Now, the solution of the first-order equation is analyzed. In Eq. (9), both h1 ξð Þ
andW1 are linearly correlated withW0. Based on the theory of ordinary differential
equations [84], the solvability conditions of linear differential equations can be
expressed by the orthogonality of solutions of homogeneous systems of equations. At
the same time, according to the orthogonality of modal vibration theory, the solution
of Eq. (9) exists under the condition of the solvability of differential equation:

ð1
0
h1 ξð Þ � 2ω1ω0W0½ �W0dξ ¼ 0 (18)

is satisfied. As a result,

ω1 ¼
Ð 1
0 h1 ξð ÞW0dξ

2ω0
Ð 1
0 W

2
0dξ

(19)

Because h1 ξð Þ is linearly correlated with W0, the former equations indicate that
the arbitrary amplitude ofW0 does not impact ω1. This finding yields the first-order
correction of the natural frequency ω0 corresponding to a nonuniform and homo-
geneous beam.

Integrating by parts, we obtain

ð1
0
h1 ξð ÞW0dξ ¼ df 1

dξ
d2W0

dξ2
W0 þ f 1

d3W0

dξ3
W0 � f 1

d2W0

dξ2
dW0

dξ

 !�����
1

0

þ
ð1
0

f 1
d2W0

dξ2

 !2

� ω2
0 f 2W

2
0

2
4

3
5dξ

(20)

By definition we have

f 1 ξð Þ ¼ E ξð ÞI ξð Þ
E0I

¼ E ξð ÞI ξð Þ � EI0
EI0

(21)

so that

df 1
dξ

d2W0

dξ2
W0 þ f 1

d3W0

dξ3
W0 � f 1

d2W0

dξ2
dW0

dξ

 !�����
1

0

þ
ð1
0
f 1

d2W0

dξ2

 !2

dξ

¼ d E ξð ÞI ξð Þ½ �
EI0dξ

d2W0

dξ2
W0 þ E ξð ÞI ξð Þ

EI0

d3W0

dξ3
W0 � E ξð ÞI ξð Þ

EI0

d2W0

dξ2
dW0

dξ

(

þ d2W0

dξ2
dW0

dξ
� d3W0

dξ3
W0

)�����
1

0

þ 1
EI0

ð1
0
E ξð ÞI ξð Þ d2W0

dξ2

 !2

dξ�
ð1
0

d2W0

dξ2

 !2

dξ

(22)
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d2

dξ2
1þ f 1 ξð Þ� � d2W

dξ2
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� ω2 1þ f 2 ξð Þ� �

W ¼ 0, 0≤ ξ≤ 1 (5)

To use the APM, a small perturbation parameter ε is introduced:

f 1 ξð Þ ! εf 1 ξð Þ, f 2 ξð Þ ! εf 2 ξð Þ (6)

According to the Poincaré-Lindstedt method [78–82], we assume the expansion
for ω and W ξð Þ as

ω ¼ ω0 þ εω1 þ ε2ω2 þ…,
W ξð Þ ¼ W0 ξð Þ þ εW1 ξð Þ þ ε2W2 ξð Þ þ…:

(7)

Substituting these expressions with governing Eq. (5) and then expanding the
expressions into a ε-series, Eqs. (8) and (9) are obtained by equating the coeffi-
cients of ε0 and ε1 to zero, yielding a sequence of problems for the unknowns ωi and
Wi ξð Þ:
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For Eq. (8), the following general solution can be obtained:

W0 ¼ A sin kξð Þ þ B cos kξð Þ þ C sinh kξð Þ þD cosh kξð Þ (11)

where

k ¼ ffiffiffiffiffiffi
ω0

p
(12)

For simplicity, we consider clamped-free (C-F) beams, and the corresponding
boundary conditions are

W0 ¼ dW0

dξ
¼ 0, ξ ¼ 0 (13)

d2W0

dξ2
¼ d3W0
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¼ 0, ξ ¼ 1 (14)

Then, the following equations from equation can be obtained:

Aþ C ¼ 0

BþD ¼ 0
C
D
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and the frequency equation is

cos k cosh kþ 1 ¼ 0 (16)

The spatial mode shape can be obtained as

W0 ¼ cosh kξð Þ � cos kξð Þ þ C
D

sinh kξð Þ � sin kξð Þ½ � (17)

Now, the solution of the first-order equation is analyzed. In Eq. (9), both h1 ξð Þ
andW1 are linearly correlated withW0. Based on the theory of ordinary differential
equations [84], the solvability conditions of linear differential equations can be
expressed by the orthogonality of solutions of homogeneous systems of equations. At
the same time, according to the orthogonality of modal vibration theory, the solution
of Eq. (9) exists under the condition of the solvability of differential equation:

ð1
0
h1 ξð Þ � 2ω1ω0W0½ �W0dξ ¼ 0 (18)

is satisfied. As a result,

ω1 ¼
Ð 1
0 h1 ξð ÞW0dξ

2ω0
Ð 1
0 W

2
0dξ

(19)

Because h1 ξð Þ is linearly correlated with W0, the former equations indicate that
the arbitrary amplitude ofW0 does not impact ω1. This finding yields the first-order
correction of the natural frequency ω0 corresponding to a nonuniform and homo-
geneous beam.

Integrating by parts, we obtain

ð1
0
h1 ξð ÞW0dξ ¼ df 1

dξ
d2W0

dξ2
W0 þ f 1

d3W0

dξ3
W0 � f 1

d2W0

dξ2
dW0

dξ

 !�����
1

0

þ
ð1
0

f 1
d2W0

dξ2

 !2

� ω2
0 f 2W

2
0

2
4

3
5dξ

(20)

By definition we have

f 1 ξð Þ ¼ E ξð ÞI ξð Þ
E0I

¼ E ξð ÞI ξð Þ � EI0
EI0

(21)

so that

df 1
dξ

d2W0

dξ2
W0 þ f 1

d3W0

dξ3
W0 � f 1

d2W0

dξ2
dW0

dξ

 !�����
1

0

þ
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0
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 !2
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EI0dξ

d2W0

dξ2
W0 þ E ξð ÞI ξð Þ

EI0

d3W0
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dW0
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(

þ d2W0

dξ2
dW0
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� d3W0
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)�����
1

0

þ 1
EI0

ð1
0
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 !2
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 !2
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Choosing the reference bending stiffness

EI0 ¼
d E ξð ÞI ξð Þ½ �

dξ
d2W0
dξ2 W0 þ E ξð ÞI ξð Þ d3W0

dξ3 W0 � E ξð ÞI ξð Þ d2W0
dξ2

dW0
dξ

n o���
1

0
þ Ð 10 E ξð ÞI ξð Þ d2W0

dξ2

� �2
dξ

d3W0
dξ3 W0 � d2W0

dξ2
dW0
dξ

� ����
1

0
þ Ð 10 d2W0

dξ2

� �2
dξ

(23)

we have df 1
dξ

d2W0
dξ2

W0 þ f 1
d3W0
dξ3

W0 � f 1
d2W0
dξ2

dW0
dξ

� ����
1

0
þ
ð1
0
f 1

d2W0

dξ2

 !2

dξ ¼ 0.

Analogously, we choose

ρA0 ¼
Ð 1
0 ρ ξð ÞA ξð ÞW2

0dξÐ 1
0 W

2
0dξ

(24)

giving
Ð 1
0 f 2W

2
0dξ ¼ 0. Then, we obtain ω1 ¼ 0. These values are the properties

of the equivalent homogeneous beam having the same frequency (at least up to the
first order) as the given nonuniform AFG beam.

The nth natural circular frequency of the AFG beam can be derived as

λn ¼ 1
L2

ffiffiffiffiffiffiffiffiffi
EI0
ρA0

s
ω0 (25)

Each order of frequency of ω0 can be determined by Eq. (16) (in turn, positive
numbers from small to large). The required variables have been computed by the
above expression. Eq. (25) is an approximate formula for the natural frequencies of
variable cross-sectional AFG beams.

In order to show the applicability of this method, we study other supporting
conditions, and we can easily get the corresponding boundary conditions of
Eqs. (13) and (14). Due to the limited space, the detailed derivation process is
omitted, and the final results are shown in Table 1.

3.2 Numerical results and discussion

Based on the above analysis, four kinds of AFG beams with various taper ratios
are considered, as shown in Figure 2. The numerical simulations are carried out,
and the results are compared with the published literature results to verify the
validity of the proposed method.

In Figure 2, BL and BR are the width of the left and right ends of the beams,
respectively, and HL and HR are the height of the left and right ends of the beams,
respectively. Here, we assume that the geometric characteristics of AFG beams
vary linearly along the longitudinal direction. Therefore, the variation of

Boundary conditions Frequency
equation

Mode shape

Simply supported (S-S) sin k ¼ 0 W0 ¼ sin kξð Þ
Clamped-pinned (C-P) tan k� tanhk ¼ 0 W0 ¼ cosh kξð Þ � cos kξð Þ � cosh k� cos k

sinh k� sin k sinh kξð Þ � sin kξð Þ½ �

Clamped-clamped (C-C) cos k cosh k� 1 ¼ 0 W0 ¼ cosh kξð Þ � cos kξð Þ þ sin kþ sinh k
cos k� cosh k sinh kξð Þ � sin kξð Þ½ �

Table 1.
Frequency equations and mode shapes for various beams.
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cross-sectional area A xð Þ and moment of inertia I xð Þ along the beam axis can be
clearly expressed as follows:

A xð Þ ¼ AL 1� cb
x
L

� �
1� ch

x
L

� �
, I xð Þ ¼ IL 1� cb

x
L

� �
1� ch

x
L

� �3
(26)

where cb ¼ 1� BR
BL

and ch ¼ 1� HR
HL

are the breadth and height taper ratios,
respectively. AL and IL are cross-sectional area and area moment of inertia of the
beam left sides, respectively. It is instructive to remember that if cb ¼ ch ¼ 0, the
beam would be uniform; if ch ¼ 0, cb 6¼ 0, the beam would be tapered with constant
height; if cb ¼ 0, ch 6¼ 0, the beam would be tapered with constant width; and if
cb 6¼ 0, ch 6¼ 0, the beam would be double tapered. These four cases are
corresponding to Figure 2(a)–(d), respectively. Moreover, the material properties
such as Young’s modulus E xð Þ and mass density ρ xð Þ along the beam axis are
assumed as

E xð Þ ¼ EL 1þ x
L

� �
, ρ xð Þ ¼ ρL 1þ x

L
þ x

L

� �2� �
(27)

where EL and ρL are Young’s modulus and mass density of the beam left sides,
respectively.

Based on the introduced analytical equation, the first third-order
nondimensional natural frequencies (Ωn ¼ λnL2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρLAL=ELIL

p
) of the four cases of

nonuniform AFG beams with different boundary configurations were obtained.
The results were listed in Tables 2–7, respectively, and it also was compared with
those of published work by Shahba et al. [38].

Table 2 shows the first third-order natural frequencies of the AFG beam, case of
Figure 2(a), which is uniform but nonhomogeneous. It can be clearly seen that the
analytical results obtained from the asymptotic development method are in good
agreement with those given by Ref. [38].

Figure 2.
Geometry and coordinate system of an AFG beam for different taper ratios: (a) case 1, cb ¼ ch ¼ 0; (b) case 2,
ch ¼ 0, cb 6¼ 0; (c) case 3, cb ¼ 0, ch 6¼ 0; and (d) case 4, cb 6¼ 0, ch 6¼ 0.
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Choosing the reference bending stiffness

EI0 ¼
d E ξð ÞI ξð Þ½ �

dξ
d2W0
dξ2 W0 þ E ξð ÞI ξð Þ d3W0

dξ3 W0 � E ξð ÞI ξð Þ d2W0
dξ2

dW0
dξ

n o���
1

0
þ Ð 10 E ξð ÞI ξð Þ d2W0

dξ2

� �2
dξ

d3W0
dξ3 W0 � d2W0

dξ2
dW0
dξ

� ����
1

0
þ Ð 10 d2W0

dξ2

� �2
dξ

(23)

we have df 1
dξ

d2W0
dξ2

W0 þ f 1
d3W0
dξ3

W0 � f 1
d2W0
dξ2

dW0
dξ

� ����
1

0
þ
ð1
0
f 1

d2W0

dξ2

 !2

dξ ¼ 0.

Analogously, we choose

ρA0 ¼
Ð 1
0 ρ ξð ÞA ξð ÞW2

0dξÐ 1
0 W

2
0dξ

(24)

giving
Ð 1
0 f 2W

2
0dξ ¼ 0. Then, we obtain ω1 ¼ 0. These values are the properties

of the equivalent homogeneous beam having the same frequency (at least up to the
first order) as the given nonuniform AFG beam.

The nth natural circular frequency of the AFG beam can be derived as

λn ¼ 1
L2

ffiffiffiffiffiffiffiffiffi
EI0
ρA0

s
ω0 (25)

Each order of frequency of ω0 can be determined by Eq. (16) (in turn, positive
numbers from small to large). The required variables have been computed by the
above expression. Eq. (25) is an approximate formula for the natural frequencies of
variable cross-sectional AFG beams.

In order to show the applicability of this method, we study other supporting
conditions, and we can easily get the corresponding boundary conditions of
Eqs. (13) and (14). Due to the limited space, the detailed derivation process is
omitted, and the final results are shown in Table 1.

3.2 Numerical results and discussion

Based on the above analysis, four kinds of AFG beams with various taper ratios
are considered, as shown in Figure 2. The numerical simulations are carried out,
and the results are compared with the published literature results to verify the
validity of the proposed method.

In Figure 2, BL and BR are the width of the left and right ends of the beams,
respectively, and HL and HR are the height of the left and right ends of the beams,
respectively. Here, we assume that the geometric characteristics of AFG beams
vary linearly along the longitudinal direction. Therefore, the variation of

Boundary conditions Frequency
equation

Mode shape

Simply supported (S-S) sin k ¼ 0 W0 ¼ sin kξð Þ
Clamped-pinned (C-P) tan k� tanhk ¼ 0 W0 ¼ cosh kξð Þ � cos kξð Þ � cosh k� cos k

sinh k� sin k sinh kξð Þ � sin kξð Þ½ �

Clamped-clamped (C-C) cos k cosh k� 1 ¼ 0 W0 ¼ cosh kξð Þ � cos kξð Þ þ sin kþ sinh k
cos k� cosh k sinh kξð Þ � sin kξð Þ½ �

Table 1.
Frequency equations and mode shapes for various beams.
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cross-sectional area A xð Þ and moment of inertia I xð Þ along the beam axis can be
clearly expressed as follows:

A xð Þ ¼ AL 1� cb
x
L

� �
1� ch

x
L

� �
, I xð Þ ¼ IL 1� cb

x
L

� �
1� ch

x
L

� �3
(26)

where cb ¼ 1� BR
BL

and ch ¼ 1� HR
HL

are the breadth and height taper ratios,
respectively. AL and IL are cross-sectional area and area moment of inertia of the
beam left sides, respectively. It is instructive to remember that if cb ¼ ch ¼ 0, the
beam would be uniform; if ch ¼ 0, cb 6¼ 0, the beam would be tapered with constant
height; if cb ¼ 0, ch 6¼ 0, the beam would be tapered with constant width; and if
cb 6¼ 0, ch 6¼ 0, the beam would be double tapered. These four cases are
corresponding to Figure 2(a)–(d), respectively. Moreover, the material properties
such as Young’s modulus E xð Þ and mass density ρ xð Þ along the beam axis are
assumed as

E xð Þ ¼ EL 1þ x
L

� �
, ρ xð Þ ¼ ρL 1þ x

L
þ x

L

� �2� �
(27)

where EL and ρL are Young’s modulus and mass density of the beam left sides,
respectively.

Based on the introduced analytical equation, the first third-order
nondimensional natural frequencies (Ωn ¼ λnL2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρLAL=ELIL

p
) of the four cases of

nonuniform AFG beams with different boundary configurations were obtained.
The results were listed in Tables 2–7, respectively, and it also was compared with
those of published work by Shahba et al. [38].

Table 2 shows the first third-order natural frequencies of the AFG beam, case of
Figure 2(a), which is uniform but nonhomogeneous. It can be clearly seen that the
analytical results obtained from the asymptotic development method are in good
agreement with those given by Ref. [38].

Figure 2.
Geometry and coordinate system of an AFG beam for different taper ratios: (a) case 1, cb ¼ ch ¼ 0; (b) case 2,
ch ¼ 0, cb 6¼ 0; (c) case 3, cb ¼ 0, ch 6¼ 0; and (d) case 4, cb 6¼ 0, ch 6¼ 0.
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Boundary condition First mode Second mode Third mode

C-F Present 2.439 18.437 54.339

Ref. [38] 2.426 18.604 55.180

S-S Present 9.053 35.834 80.470

Ref. [38] 9.029 36.372 81.732

C-C Present 20.585 56.251 109.869

Ref. [38] 20.472 56.549 110.947

Table 2.
Nondimensional natural frequencies of the AFG uniform beam (case 1) with different boundary conditions.

cb C-F S-S C-C

First
mode

Second
mode

Third
mode

First
mode

Second
mode

Third
mode

First
mode

Second
mode

Third
mode

0.2 Present 2.613 18.887 54.951 9.068 35.957 80.772 20.457 56.196 110.003

Ref. [38] 2.605 19.004 55.534 9.060 36.342 81.685 20.415 56.472 110.862

0.4 Present 2.854 19.483 55.753 9.088 36.117 81.165 20.294 56.124 110.177

Ref. [38] 2.851 19.530 56.023 9.087 36.315 81.645 20.288 56.298 110.671

0.6 Present 3.214 20.311 56.853 9.113 36.332 81.697 20.079 56.028 110.411

Ref. [38] 3.214 20.296 56.800 9.099 36.297 81.624 20.019 55.921 110.250

0.8 Present 3.832 21.542 58.453 9.147 36.638 82.456 19.783 55.892 110.743

Ref. [38] 3.831 21.676 58.435 9.069 36.277 81.639 19.385 54.971 109.142

Table 3.
Nondimensional natural frequencies of the AFG-tapered beam with constant height (case 2) and different
boundary conditions.

ch C-F S-S C-C

First
mode

Second
mode

Third
mode

First
mode

Second
mode

Third
mode

First
mode

Second
mode

Third
mode

0.2 Present 2.5054 17.2596 49.4982 8.1416 32.1888 72.2680 18.2420 50.1851 98.2992

Ref. [38] 2.5051 17.3802 50.0491 8.1341 32.5236 73.1138 18.2170 50.4801 99.1734

0.4 Present 2.6293 16.2995 45.3519 7.2793 28.9717 65.1203 16.3027 45.0600 88.4345

Ref. [38] 2.6155 16.0705 44.6181 7.1531 28.4747 63.9942 15.8282 44.0246 86.6272

0.6 Present 2.8535 15.6697 42.2358 6.4872 26.3694 59.4850 14.9152 41.2502 80.9747

Ref. [38] 2.7835 14.6508 38.7446 6.0357 24.1101 54.0921 13.2293 36.9653 72.8740

0.8 Present 3.2889 15.5662 40.6554 5.7966 24.6371 55.9734 14.2233 39.1823 76.7690

Ref. [38] 3.0871 13.1142 32.1309 4.6520 19.1314 42.6954 10.2235 28.7492 56.8109

Table 4.
Nondimensional natural frequencies of the AFG-tapered beam with constant width (case 3) and different
boundary conditions.
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As can be seen from Tables 3 and 4, the first third-order dimensionless natural
frequencies of AFG conical beams with only varying width or height are studied,
respectively. It is easy to find the following conclusions. This method has higher
accuracy on the equal height AFG-tapered beam. When the height changes, there is
a certain fractional error in the AFG-tapered beam.

According to Figure 2(d), when the height and width of AFG beams
change simultaneously, we can see that AFG beams are not uniform. The
natural frequencies of three boundary conditions (free clamping, simply supported,
and clamping) are studied in Tables 5–7. From the data in the table, it can be clearly
found that the natural frequencies of AFG beams at low order are in good
agreement with Ref. [38], while at high order, there are some errors in the natural
frequencies.

cb 0.2 0.4 0.6 0.8

ch First mode

0.2 Present 2.6873 2.9380 3.3113 3.9455

Ref. [38] 2.6863 2.9336 3.2993 3.9219

0.4 Present 2.8226 3.0877 3.4796 4.1377

Ref. [38] 2.7987 3.0486 3.4181 4.0471

0.6 Present 3.0640 3.3506 3.7700 4.4625

Ref. [38] 2.9699 3.2237 3.5985 4.2355

0.8 Present 3.5271 3.8475 4.3081 5.0458

Ref. [38] 3.2794 3.5401 3.9232 4.5695

ch Second mode

0.2 Present 17.7225 18.3289 19.1598 20.3725

Ref. [38] 17.7501 18.2379 18.9501 20.2432

0.4 Present 16.7822 17.4061 18.2458 19.4418

Ref. [38] 16.4092 16.8571 17.5139 18.7164

0.6 Present 16.1771 16.8214 17.6687 18.8380

Ref. [38] 14.9567 15.3627 15.9616 17.0694

0.8 Present 16.0947 16.7493 17.5836 18.6877

Ref. [38] 13.3850 13.7466 14.2848 15.2955

ch Third mode

0.2 Present 50.2194 51.1534 52.4114 54.1995

Ref. [38] 50.3934 50.8645 51.6029 53.1332

0.4 Present 46.1970 47.2734 48.6925 50.6520

Ref. [38] 44.9504 45.4003 46.0957 47.5129

0.6 Present 43.2042 44.4117 45.9613 48.0269

Ref. [38] 39.0605 39.4844 40.1304 41.4236

0.8 Present 41.7065 42.9817 44.5636 46.5828

Ref. [38] 32.4229 32.8123 33.3986 34.5521

Table 5.
Nondimensional natural frequencies of the AFG double-tapered beam (case 4); boundary conditions: C-F.
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Boundary condition First mode Second mode Third mode

C-F Present 2.439 18.437 54.339

Ref. [38] 2.426 18.604 55.180

S-S Present 9.053 35.834 80.470

Ref. [38] 9.029 36.372 81.732

C-C Present 20.585 56.251 109.869

Ref. [38] 20.472 56.549 110.947

Table 2.
Nondimensional natural frequencies of the AFG uniform beam (case 1) with different boundary conditions.

cb C-F S-S C-C

First
mode

Second
mode

Third
mode

First
mode

Second
mode

Third
mode

First
mode

Second
mode

Third
mode

0.2 Present 2.613 18.887 54.951 9.068 35.957 80.772 20.457 56.196 110.003

Ref. [38] 2.605 19.004 55.534 9.060 36.342 81.685 20.415 56.472 110.862

0.4 Present 2.854 19.483 55.753 9.088 36.117 81.165 20.294 56.124 110.177

Ref. [38] 2.851 19.530 56.023 9.087 36.315 81.645 20.288 56.298 110.671

0.6 Present 3.214 20.311 56.853 9.113 36.332 81.697 20.079 56.028 110.411

Ref. [38] 3.214 20.296 56.800 9.099 36.297 81.624 20.019 55.921 110.250

0.8 Present 3.832 21.542 58.453 9.147 36.638 82.456 19.783 55.892 110.743

Ref. [38] 3.831 21.676 58.435 9.069 36.277 81.639 19.385 54.971 109.142

Table 3.
Nondimensional natural frequencies of the AFG-tapered beam with constant height (case 2) and different
boundary conditions.

ch C-F S-S C-C

First
mode

Second
mode

Third
mode

First
mode

Second
mode

Third
mode

First
mode

Second
mode

Third
mode

0.2 Present 2.5054 17.2596 49.4982 8.1416 32.1888 72.2680 18.2420 50.1851 98.2992

Ref. [38] 2.5051 17.3802 50.0491 8.1341 32.5236 73.1138 18.2170 50.4801 99.1734

0.4 Present 2.6293 16.2995 45.3519 7.2793 28.9717 65.1203 16.3027 45.0600 88.4345

Ref. [38] 2.6155 16.0705 44.6181 7.1531 28.4747 63.9942 15.8282 44.0246 86.6272

0.6 Present 2.8535 15.6697 42.2358 6.4872 26.3694 59.4850 14.9152 41.2502 80.9747

Ref. [38] 2.7835 14.6508 38.7446 6.0357 24.1101 54.0921 13.2293 36.9653 72.8740

0.8 Present 3.2889 15.5662 40.6554 5.7966 24.6371 55.9734 14.2233 39.1823 76.7690

Ref. [38] 3.0871 13.1142 32.1309 4.6520 19.1314 42.6954 10.2235 28.7492 56.8109

Table 4.
Nondimensional natural frequencies of the AFG-tapered beam with constant width (case 3) and different
boundary conditions.
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As can be seen from Tables 3 and 4, the first third-order dimensionless natural
frequencies of AFG conical beams with only varying width or height are studied,
respectively. It is easy to find the following conclusions. This method has higher
accuracy on the equal height AFG-tapered beam. When the height changes, there is
a certain fractional error in the AFG-tapered beam.

According to Figure 2(d), when the height and width of AFG beams
change simultaneously, we can see that AFG beams are not uniform. The
natural frequencies of three boundary conditions (free clamping, simply supported,
and clamping) are studied in Tables 5–7. From the data in the table, it can be clearly
found that the natural frequencies of AFG beams at low order are in good
agreement with Ref. [38], while at high order, there are some errors in the natural
frequencies.

cb 0.2 0.4 0.6 0.8

ch First mode

0.2 Present 2.6873 2.9380 3.3113 3.9455

Ref. [38] 2.6863 2.9336 3.2993 3.9219

0.4 Present 2.8226 3.0877 3.4796 4.1377

Ref. [38] 2.7987 3.0486 3.4181 4.0471

0.6 Present 3.0640 3.3506 3.7700 4.4625

Ref. [38] 2.9699 3.2237 3.5985 4.2355

0.8 Present 3.5271 3.8475 4.3081 5.0458

Ref. [38] 3.2794 3.5401 3.9232 4.5695

ch Second mode

0.2 Present 17.7225 18.3289 19.1598 20.3725

Ref. [38] 17.7501 18.2379 18.9501 20.2432

0.4 Present 16.7822 17.4061 18.2458 19.4418

Ref. [38] 16.4092 16.8571 17.5139 18.7164

0.6 Present 16.1771 16.8214 17.6687 18.8380

Ref. [38] 14.9567 15.3627 15.9616 17.0694

0.8 Present 16.0947 16.7493 17.5836 18.6877

Ref. [38] 13.3850 13.7466 14.2848 15.2955

ch Third mode

0.2 Present 50.2194 51.1534 52.4114 54.1995

Ref. [38] 50.3934 50.8645 51.6029 53.1332

0.4 Present 46.1970 47.2734 48.6925 50.6520

Ref. [38] 44.9504 45.4003 46.0957 47.5129

0.6 Present 43.2042 44.4117 45.9613 48.0269

Ref. [38] 39.0605 39.4844 40.1304 41.4236

0.8 Present 41.7065 42.9817 44.5636 46.5828

Ref. [38] 32.4229 32.8123 33.3986 34.5521

Table 5.
Nondimensional natural frequencies of the AFG double-tapered beam (case 4); boundary conditions: C-F.
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4. The method of Meijer G-function

4.1 Equation deriving

In this section, the Meijer G-function is introduced to obtain the formula of
the nature frequency of the AFG beam. Here, a special case of AFG beam is
considered, where the cross section is uniform. Thus, in Eq. (1), Young’s modulus
E xð Þ and material mass density ρ xð Þ are variable parameters, and the area moment
of inertia I and the cross-sectional area A are invariant. To solve the governing
equation, two parameters are firstly introduced to depict the functional gradient
parameter equation:

cb 0.2 0.4 0.6 0.8

ch First mode

0.2 Present 8.1682 8.2018 8.2456 8.3051

Ref. [38] 8.1462 8.1498 8.1336 8.0646

0.4 Present 7.3172 7.3647 7.4262 7.5089

Ref. [38] 7.1455 7.1254 7.0794 6.9703

0.6 Present 6.5357 6.5960 6.6732 6.7754

Ref. [38] 6.0082 5.9638 5.8868 5.7351

0.8 Present 5.8537 5.9240 6.0128 6.1283

Ref. [38] 4.6046 4.5355 4.4264 4.2283

ch Second mode

0.2 Present 32.4133 32.7007 33.0819 33.6118

Ref. [38] 32.5123 32.5079 32.5164 32.5326

0.4 Present 29.2971 29.7076 30.2419 30.9665

Ref. [38] 28.4822 28.5003 28.5370 28.5928

0.6 Present 26.7834 27.2965 27.9493 28.8091

Ref. [38] 24.1371 24.1791 24.2469 24.3497

0.8 Present 25.1032 25.6683 26.3683 27.2590

Ref. [38] 19.1803 19.2509 19.3590 19.5300

ch Third mode

0.2 Present 72.8179 73.5237 74.4625 75.7732

Ref. [38] 73.0959 73.0903 73.1116 73.1855

0.4 Present 65.9158 66.9202 68.2291 70.0069

Ref. [38] 64.0054 64.0350 64.1007 64.2374

0.6 Present 60.4922 61.7392 63.3243 65.4089

Ref. [38] 54.1330 54.1992 54.3126 54.5207

0.8 Present 57.0969 58.4547 60.1303 62.2530

Ref. [38] 42.7677 42.8742 43.0436 43.3451

Table 6.
Nondimensional natural frequencies of the AFG double-tapered beam (case 4); boundary conditions: S-S.
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E xð Þ ¼ EL 1� f E
x
L

� �
, ρ xð Þ ¼ ρL 1� f ρ

x
L

� �
(28)

where f E ¼ 1� ER
EL
, ρE ¼ 1� ρR

ρL
. EL and ER are Young’s modulus at the left/right

end of the beam, and ρL and ρR are the mass density at the left/right end of the
beam. Eq. (2) is then rewritten as

1� f Ex
� �

w00� �0 0 þ 1� f ρx
� �

€w ¼ 0 (29)

Based on the vibration theory, we assume w x; tð Þ ¼ ϕ xð Þq tð Þ, where
qn tð Þ ¼ An cos βn

2tþ Bn sin βn
2t and βn

2 is the modal frequency for dimensionless.
The governing equation is then derived as

cb 0.2 0.4 0.6 0.8

ch First mode

0.2 Present 18.2779 18.3231 18.3818 18.4612

Ref. [38] 18.1996 18.1286 17.9437 17.4566

0.4 Present 16.4975 16.7396 17.0484 17.4563

Ref. [38] 15.8498 15.8350 15.7367 15.4025

0.6 Present 15.2512 15.6622 16.1771 16.8423

Ref. [38] 13.2896 13.3319 13.3238 13.1529

0.8 Present 14.6662 15.2004 15.8587 16.6925

Ref. [38] 10.3229 10.4255 10.5168 10.5339

ch Second mode

0.2 Present 50.4430 50.7713 51.2035 51.7981

Ref. [38] 50.4565 50.3599 50.1017 49.3728

0.4 Present 45.6257 46.3346 47.2495 48.4763

Ref. [38] 44.0553 44.0370 43.9027 43.4066

0.6 Present 42.0890 43.1214 44.4245 46.1234

Ref. [38] 37.0509 37.1137 37.1104 36.8678

0.8 Present 40.2151 41.4614 42.9975 44.9420

Ref. [38] 28.8912 29.0409 29.1842 29.2402

ch Third mode

0.2 Present 98.2992 99.7466 100.8219 102.313

Ref. [38] 99.1474 99.0414 98.7543 97.9046

0.4 Present 88.4345 90.9806 92.8200 95.3023

Ref. [38] 86.6608 86.6414 86.4932 85.9176

0.6 Present 80.9747 84.4598 86.8967 90.0855

Ref. [38] 72.9681 73.0382 73.0375 72.7615

0.8 Present 76.7690 80.8426 83.5867 87.0576

Ref. [38] 56.9674 57.1341 57.2991 57.3787

Table 7.
Nondimensional natural frequencies of the AFG double-tapered beam (case 4); boundary conditions: C-C.
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4. The method of Meijer G-function

4.1 Equation deriving

In this section, the Meijer G-function is introduced to obtain the formula of
the nature frequency of the AFG beam. Here, a special case of AFG beam is
considered, where the cross section is uniform. Thus, in Eq. (1), Young’s modulus
E xð Þ and material mass density ρ xð Þ are variable parameters, and the area moment
of inertia I and the cross-sectional area A are invariant. To solve the governing
equation, two parameters are firstly introduced to depict the functional gradient
parameter equation:

cb 0.2 0.4 0.6 0.8

ch First mode

0.2 Present 8.1682 8.2018 8.2456 8.3051

Ref. [38] 8.1462 8.1498 8.1336 8.0646

0.4 Present 7.3172 7.3647 7.4262 7.5089

Ref. [38] 7.1455 7.1254 7.0794 6.9703

0.6 Present 6.5357 6.5960 6.6732 6.7754

Ref. [38] 6.0082 5.9638 5.8868 5.7351

0.8 Present 5.8537 5.9240 6.0128 6.1283

Ref. [38] 4.6046 4.5355 4.4264 4.2283

ch Second mode

0.2 Present 32.4133 32.7007 33.0819 33.6118

Ref. [38] 32.5123 32.5079 32.5164 32.5326

0.4 Present 29.2971 29.7076 30.2419 30.9665

Ref. [38] 28.4822 28.5003 28.5370 28.5928

0.6 Present 26.7834 27.2965 27.9493 28.8091

Ref. [38] 24.1371 24.1791 24.2469 24.3497

0.8 Present 25.1032 25.6683 26.3683 27.2590

Ref. [38] 19.1803 19.2509 19.3590 19.5300

ch Third mode

0.2 Present 72.8179 73.5237 74.4625 75.7732

Ref. [38] 73.0959 73.0903 73.1116 73.1855

0.4 Present 65.9158 66.9202 68.2291 70.0069

Ref. [38] 64.0054 64.0350 64.1007 64.2374

0.6 Present 60.4922 61.7392 63.3243 65.4089

Ref. [38] 54.1330 54.1992 54.3126 54.5207

0.8 Present 57.0969 58.4547 60.1303 62.2530

Ref. [38] 42.7677 42.8742 43.0436 43.3451

Table 6.
Nondimensional natural frequencies of the AFG double-tapered beam (case 4); boundary conditions: S-S.
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E xð Þ ¼ EL 1� f E
x
L

� �
, ρ xð Þ ¼ ρL 1� f ρ

x
L

� �
(28)

where f E ¼ 1� ER
EL
, ρE ¼ 1� ρR

ρL
. EL and ER are Young’s modulus at the left/right

end of the beam, and ρL and ρR are the mass density at the left/right end of the
beam. Eq. (2) is then rewritten as

1� f Ex
� �

w00� �0 0 þ 1� f ρx
� �

€w ¼ 0 (29)

Based on the vibration theory, we assume w x; tð Þ ¼ ϕ xð Þq tð Þ, where
qn tð Þ ¼ An cos βn

2tþ Bn sin βn
2t and βn

2 is the modal frequency for dimensionless.
The governing equation is then derived as

cb 0.2 0.4 0.6 0.8

ch First mode

0.2 Present 18.2779 18.3231 18.3818 18.4612

Ref. [38] 18.1996 18.1286 17.9437 17.4566

0.4 Present 16.4975 16.7396 17.0484 17.4563

Ref. [38] 15.8498 15.8350 15.7367 15.4025

0.6 Present 15.2512 15.6622 16.1771 16.8423

Ref. [38] 13.2896 13.3319 13.3238 13.1529

0.8 Present 14.6662 15.2004 15.8587 16.6925

Ref. [38] 10.3229 10.4255 10.5168 10.5339

ch Second mode

0.2 Present 50.4430 50.7713 51.2035 51.7981

Ref. [38] 50.4565 50.3599 50.1017 49.3728

0.4 Present 45.6257 46.3346 47.2495 48.4763

Ref. [38] 44.0553 44.0370 43.9027 43.4066

0.6 Present 42.0890 43.1214 44.4245 46.1234

Ref. [38] 37.0509 37.1137 37.1104 36.8678

0.8 Present 40.2151 41.4614 42.9975 44.9420

Ref. [38] 28.8912 29.0409 29.1842 29.2402

ch Third mode

0.2 Present 98.2992 99.7466 100.8219 102.313

Ref. [38] 99.1474 99.0414 98.7543 97.9046

0.4 Present 88.4345 90.9806 92.8200 95.3023

Ref. [38] 86.6608 86.6414 86.4932 85.9176

0.6 Present 80.9747 84.4598 86.8967 90.0855

Ref. [38] 72.9681 73.0382 73.0375 72.7615

0.8 Present 76.7690 80.8426 83.5867 87.0576

Ref. [38] 56.9674 57.1341 57.2991 57.3787

Table 7.
Nondimensional natural frequencies of the AFG double-tapered beam (case 4); boundary conditions: C-C.
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1� f Ex
� �

ϕn
0 0

h i0 0
� βn

4 1� f ρx
� �

ϕn ¼ 0 (30)

Next, Meijer G-function will be used to solve the linear partial differential
equation. The general expression of Meijer G-function differential equation is writ-
ten as

�1ð Þ p�m�nð Þz
Yp

l¼1

z
d
dz

þ 1� al

� �
�
Yq

k¼1

η
d
dz

� bk

� �" #
G zð Þ ¼ 0 (31)

where m, n, p and q are integers satisfying 0≤m≤ q,0≤n≤ p, G is the depen-
dent variable also known as the Meijer G-function, z is the independent variable,
and al and bk are real numbers.

A definition of the Meijer G-function is given by the following path integral in
the complex plane, called the Mellin-Barnes type:

Gm,n
p,q

a1…an, anþ1…ap
b1…bm, bmþ1…bq

���z
� �

¼ 1
2πi

ð

τ

Qm
k¼1 Γ ξ� bkð ÞQn

k¼1 Γ 1� ak þ ξð ÞQp
k¼1 Γ ξ� akð ÞQq

k¼mþ1 Γ 1� bk þ ξð Þ z
�ξdξ (32)

where an empty product is interpreted as 1, 0≤m≤ q,0≤n≤ p, and the param-
eters are such that none of the poles of Γ bj � ξ

� �
, j ¼ 1…mð Þ coincides with the

poles of Γ 1� aj þ ξ
� �

, j ¼ 1…nð Þ. Where i is a complex number such that i2 ¼ �1.
A special case of Eq. (31) can be expanded by assuming n ¼ p ¼ 0 and q ¼ 4.We

can get that

z4
d4G
dz4

þ 6� ∑
4

k¼1
bk

� �
z3

d3G
dz4

þ 7 � 3∑
4

n¼1
bk þ ∑

4

k, l¼1
bkbl

 !
z2

d2G
dz2

þ 1� ∑
4

k¼1
bk þ ∑

4

k, l¼1
bkbl � b1b2 þ b1b3 þ b2b3ð Þb4

" #
z
dG
dz

� �1ð Þ�mz�
Y4

k¼1

bk

" #
G ¼ 0

(33)

where k 6¼ l. Although Eq. (30) is not similar to Eq. (33), the two equations can
be similar by introducing some transformations:

ϕn xð Þ ¼ G zn xð Þð Þ, zn xð Þ ¼ βn
4f E

� �4

1� f Ex
� �4 (34)

Eq. (30) is transformed into

ηn
3G

0 0 0 0 þ 5ηn
2G

0 0 0 þ 69
16

ηnG
0 0 þ 9

32
G0 � 1� f ρx

1� f Ex
G ¼ 0 (35)

Because of the difficulty of solving the differential equation with variable coef-
ficients, we can simplify Eq. (35). Let 1� f Ex ¼ 1� f ρx ¼ 1� Fx; it can be rewrit-
ten as

ηn
3G

0 0 0 0 þ 5ηn
2G

0 0 0 þ 69
16

ηnG
0 0 þ 9

32
G0 �G ¼ 0 (36)
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In order to solve the above equation, the coefficients of the ordinary differential
Eqs. (33) and (36) are the same, so we can calculate the corresponding values, as
shown in Table 8.

One set of data can be selected from Table 8 and expressed in the form of closed
solutions of Meijer G-function:

φ1n xð Þ ¼ G2,0
0,4

1
4
;
1
4
;0;

1
2
βn

4 1� Fxð Þ4
256F4

�����

! 
(37)

φ2n xð Þ ¼ G1,0
0,4

1
4
;0;

1
2
;
1
4
j � βn

4 1� Fxð Þ4
256F4

 !
(38)

φ3n xð Þ ¼ G1,0
0,4 0;

1
2
;
1
4
;
1
4
j � βn

4 1� Fxð Þ4
256F4

 !
(39)

φ4n xð Þ ¼ G1,0
0,4

1
2
;
1
4
;
1
4
;0j � βn

4 1� Fxð Þ4
256F4

 !
(40)

Modal modes of beams:

ϕn xð Þ ¼ C1nφ1n xð Þ þ C2nφ2n xð Þ þ C3nφ3n xð Þ þ C4nφ4n xð Þ, n ¼ 1, 2, 3,… (41)

In order to determine the undetermined coefficients Ci and βn, the boundary
conditions of beams need to be considered:

1. C-F:

φ1n 0ð Þ φ2n 0ð Þ φ3n 0ð Þ φ4n 0ð Þ
φ0
1n 0ð Þ φ0

2n 0ð Þ φ0
3n 0ð Þ φ0

4n 0ð Þ
φ00
1n 1ð Þ φ00

2n 1ð Þ φ00
3n 1ð Þ φ00

4n 1ð Þ
φ000
1n 1ð Þ φ000

2n 1ð Þ φ000
3n 1ð Þ φ000

4n 1ð Þ

0
BBB@

1
CCCA

C1n

C2n

C3n

C4n

8>>><
>>>:

9>>>=
>>>;

¼

0

0

0

0

8>>><
>>>:

9>>>=
>>>;

(42)

Case b1 b2 b3 b4

1 1/2 1/4 0 1/4

2 1/4 1/4 0 1/2

3 0 1/4 1/2 1/4

4 1/2 0 1/4 1/4

5 0 1/2 1/4 1/4

6 0 1/4 1/4 1/2

7 1/4 0 1/4 1/2

8 1/4 1/2 0 1/4

9 1/4 0 1/2 1/4

Table 8.
Possible case of unknown constant bk of Meijer G-function equation.
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1� f Ex
� �

ϕn
0 0

h i0 0
� βn

4 1� f ρx
� �

ϕn ¼ 0 (30)

Next, Meijer G-function will be used to solve the linear partial differential
equation. The general expression of Meijer G-function differential equation is writ-
ten as

�1ð Þ p�m�nð Þz
Yp

l¼1

z
d
dz

þ 1� al

� �
�
Yq

k¼1

η
d
dz

� bk

� �" #
G zð Þ ¼ 0 (31)

where m, n, p and q are integers satisfying 0≤m≤ q,0≤n≤ p, G is the depen-
dent variable also known as the Meijer G-function, z is the independent variable,
and al and bk are real numbers.

A definition of the Meijer G-function is given by the following path integral in
the complex plane, called the Mellin-Barnes type:

Gm,n
p,q

a1…an, anþ1…ap
b1…bm, bmþ1…bq

���z
� �

¼ 1
2πi

ð

τ

Qm
k¼1 Γ ξ� bkð ÞQn

k¼1 Γ 1� ak þ ξð ÞQp
k¼1 Γ ξ� akð ÞQq

k¼mþ1 Γ 1� bk þ ξð Þ z
�ξdξ (32)

where an empty product is interpreted as 1, 0≤m≤ q,0≤n≤ p, and the param-
eters are such that none of the poles of Γ bj � ξ

� �
, j ¼ 1…mð Þ coincides with the

poles of Γ 1� aj þ ξ
� �

, j ¼ 1…nð Þ. Where i is a complex number such that i2 ¼ �1.
A special case of Eq. (31) can be expanded by assuming n ¼ p ¼ 0 and q ¼ 4.We

can get that

z4
d4G
dz4

þ 6� ∑
4

k¼1
bk

� �
z3

d3G
dz4

þ 7 � 3∑
4

n¼1
bk þ ∑

4

k, l¼1
bkbl

 !
z2

d2G
dz2

þ 1� ∑
4

k¼1
bk þ ∑

4

k, l¼1
bkbl � b1b2 þ b1b3 þ b2b3ð Þb4

" #
z
dG
dz

� �1ð Þ�mz�
Y4

k¼1

bk

" #
G ¼ 0

(33)

where k 6¼ l. Although Eq. (30) is not similar to Eq. (33), the two equations can
be similar by introducing some transformations:

ϕn xð Þ ¼ G zn xð Þð Þ, zn xð Þ ¼ βn
4f E

� �4

1� f Ex
� �4 (34)

Eq. (30) is transformed into

ηn
3G

0 0 0 0 þ 5ηn
2G

0 0 0 þ 69
16

ηnG
0 0 þ 9

32
G0 � 1� f ρx

1� f Ex
G ¼ 0 (35)

Because of the difficulty of solving the differential equation with variable coef-
ficients, we can simplify Eq. (35). Let 1� f Ex ¼ 1� f ρx ¼ 1� Fx; it can be rewrit-
ten as

ηn
3G

0 0 0 0 þ 5ηn
2G

0 0 0 þ 69
16

ηnG
0 0 þ 9

32
G0 �G ¼ 0 (36)
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In order to solve the above equation, the coefficients of the ordinary differential
Eqs. (33) and (36) are the same, so we can calculate the corresponding values, as
shown in Table 8.

One set of data can be selected from Table 8 and expressed in the form of closed
solutions of Meijer G-function:

φ1n xð Þ ¼ G2,0
0,4

1
4
;
1
4
;0;

1
2
βn

4 1� Fxð Þ4
256F4

�����

! 
(37)

φ2n xð Þ ¼ G1,0
0,4

1
4
;0;

1
2
;
1
4
j � βn

4 1� Fxð Þ4
256F4

 !
(38)

φ3n xð Þ ¼ G1,0
0,4 0;

1
2
;
1
4
;
1
4
j � βn

4 1� Fxð Þ4
256F4

 !
(39)

φ4n xð Þ ¼ G1,0
0,4

1
2
;
1
4
;
1
4
;0j � βn

4 1� Fxð Þ4
256F4

 !
(40)

Modal modes of beams:

ϕn xð Þ ¼ C1nφ1n xð Þ þ C2nφ2n xð Þ þ C3nφ3n xð Þ þ C4nφ4n xð Þ, n ¼ 1, 2, 3,… (41)

In order to determine the undetermined coefficients Ci and βn, the boundary
conditions of beams need to be considered:

1. C-F:

φ1n 0ð Þ φ2n 0ð Þ φ3n 0ð Þ φ4n 0ð Þ
φ0
1n 0ð Þ φ0

2n 0ð Þ φ0
3n 0ð Þ φ0

4n 0ð Þ
φ00
1n 1ð Þ φ00

2n 1ð Þ φ00
3n 1ð Þ φ00

4n 1ð Þ
φ000
1n 1ð Þ φ000

2n 1ð Þ φ000
3n 1ð Þ φ000

4n 1ð Þ

0
BBB@

1
CCCA

C1n

C2n

C3n

C4n

8>>><
>>>:

9>>>=
>>>;

¼

0

0

0

0

8>>><
>>>:

9>>>=
>>>;

(42)

Case b1 b2 b3 b4

1 1/2 1/4 0 1/4

2 1/4 1/4 0 1/2

3 0 1/4 1/2 1/4

4 1/2 0 1/4 1/4

5 0 1/2 1/4 1/4

6 0 1/4 1/4 1/2

7 1/4 0 1/4 1/2

8 1/4 1/2 0 1/4

9 1/4 0 1/2 1/4

Table 8.
Possible case of unknown constant bk of Meijer G-function equation.
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1. C-P:

φ1n 0ð Þ φ2n 0ð Þ φ3n 0ð Þ φ4n 0ð Þ
φ0
1n 0ð Þ φ0

2n 0ð Þ φ0
3n 0ð Þ φ0

4n 0ð Þ
φ1n 1ð Þ φ2n 1ð Þ φ3n 1ð Þ φ4n 1ð Þ
φ00
1n 1ð Þ φ00

2n 1ð Þ φ00
3n 1ð Þ φ00

4n 1ð Þ

0
BBB@

1
CCCA

C1n

C2n

C3n

C4n

8>>><
>>>:

9>>>=
>>>;

¼

0

0

0

0

8>>><
>>>:

9>>>=
>>>;

(43)

1. S-S:

φ1n 0ð Þ φ2n 0ð Þ φ3n 0ð Þ φ4n 0ð Þ
φ00
1n 0ð Þ φ00

2n 0ð Þ φ00
3n 0ð Þ φ00

4n 0ð Þ
φ1n 1ð Þ φ2n 1ð Þ φ3n 1ð Þ φ4n 1ð Þ
φ00
1n 1ð Þ φ00

2n 1ð Þ φ00
3n 1ð Þ φ00

4n 1ð Þ

0
BBB@

1
CCCA

C1n

C2n

C3n

C4n

8>>><
>>>:

9>>>=
>>>;

¼

0

0

0

0

8>>><
>>>:

9>>>=
>>>;

(44)

1. C-C:

φ1n 0ð Þ φ2n 0ð Þ φ3n 0ð Þ φ4n 0ð Þ
φ00
1n 0ð Þ φ00

2n 0ð Þ φ00
3n 0ð Þ φ00

4n 0ð Þ
φ1n 1ð Þ φ2n 1ð Þ φ3n 1ð Þ φ4n 1ð Þ
φ0
1n 1ð Þ φ0

2n 1ð Þ φ0
3n 1ð Þ φ0

4n 1ð Þ

0
BBB@

1
CCCA

C1n

C2n

C3n

C4n

8>>><
>>>:

9>>>=
>>>;

¼

0

0

0

0

8>>><
>>>:

9>>>=
>>>;

(45)

4.2 Numerical results and discussion

Based on the above analysis, the natural frequencies of beams under different
boundary conditions can be solved. Meanwhile, the results of finite element method
are also conducted to verify the accuracy of the analytical results. Here, we use the
power law gradient of the existing AFG beams [44], and the material properties of
AFG beams change continuously along the axial direction. Therefore, the expres-
sions of Young’s modulus E xð Þ and mass density ρ xð Þ are listed in detail:

Y xð Þ ¼
YL 1� eαx=L � 1

eα � 1

� �
þ YR

eαx=L � 1
eα � 1

, α 6¼ 0,

YL 1� x
L

� �
þ YR

x
L
, α ¼ 0:

8>><
>>:

(46)

where YL and YR denote the corresponding material properties of the left and
right sides of the beam, respectively. α is the gradient parameter describing the
volume fraction change of both constituents involved. When gradient parameter α
is equal and less than zero, Young’s modulus and mass density at the left end are less
than those at the right end. When α equals zero, the beam is equivalent to a uniform
Euler-Bernoulli beam, and Young’s modulus and mass density of the beam do not
change with the length direction of the beam.

The variation of Y xð Þ along the axis direction of the beam can be shown in
Figure 3 for YR ¼ 3YL. In order to show the practicability of this method, we choose
the existing materials to study. The materials of AFG beams are composed of
aluminum (Al) and zirconia (ZrO2).The left and right ends of the beam are pure
aluminum and pure zirconia, respectively. The material properties of AFG beams
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are given in detail in Table 9. We choose the sizes of commonly used beams which
are L = 0.2 m, B = 0.02 m, and H = 0.001 m.

In order to verify the correctness of this method, some finite element simulation
software is used to verify its correctness. In this paper, we analyze the natural
frequencies of uniform AFG beams under different boundary conditions. In the
process of finite element analysis, the AFG beam is transformed into a finite length
model by using the delamination method [85]. At the same time, the AFG beam is
delaminated along the axial direction. As shown in Figure 4, the material properties
change along the axial direction, and the material properties of the adjacent layers
are different. In order to analyze the performance of the beam, the uniform element
is used to mesh each layer. In order to make the natural frequencies of AFG beams
more precise, we can increase the number of layers and refine the finite element
meshes.

In the Meijer G-function method, in order to solve the linear natural frequencies
of beams under different boundary conditions, the determinant of the coefficient
matrix of Eqs. (42)–(45) is equal to zero. Finally, linear natural frequencies of
beams with different boundary conditions of the first four orders are listed in
Table 10.

Figure 3.
Variation of the material properties defined by Eq. (46) with YR ¼ 3YL.

Properties Unit Aluminum Zirconia

E GPa 70 200

ρ Kg/m3 2702 5700

Table 9.
Material properties of the AFG beam [44].
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1. C-P:
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4.2 Numerical results and discussion

Based on the above analysis, the natural frequencies of beams under different
boundary conditions can be solved. Meanwhile, the results of finite element method
are also conducted to verify the accuracy of the analytical results. Here, we use the
power law gradient of the existing AFG beams [44], and the material properties of
AFG beams change continuously along the axial direction. Therefore, the expres-
sions of Young’s modulus E xð Þ and mass density ρ xð Þ are listed in detail:

Y xð Þ ¼
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� �
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� �
þ YR
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L
, α ¼ 0:

8>><
>>:

(46)

where YL and YR denote the corresponding material properties of the left and
right sides of the beam, respectively. α is the gradient parameter describing the
volume fraction change of both constituents involved. When gradient parameter α
is equal and less than zero, Young’s modulus and mass density at the left end are less
than those at the right end. When α equals zero, the beam is equivalent to a uniform
Euler-Bernoulli beam, and Young’s modulus and mass density of the beam do not
change with the length direction of the beam.

The variation of Y xð Þ along the axis direction of the beam can be shown in
Figure 3 for YR ¼ 3YL. In order to show the practicability of this method, we choose
the existing materials to study. The materials of AFG beams are composed of
aluminum (Al) and zirconia (ZrO2).The left and right ends of the beam are pure
aluminum and pure zirconia, respectively. The material properties of AFG beams
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are given in detail in Table 9. We choose the sizes of commonly used beams which
are L = 0.2 m, B = 0.02 m, and H = 0.001 m.

In order to verify the correctness of this method, some finite element simulation
software is used to verify its correctness. In this paper, we analyze the natural
frequencies of uniform AFG beams under different boundary conditions. In the
process of finite element analysis, the AFG beam is transformed into a finite length
model by using the delamination method [85]. At the same time, the AFG beam is
delaminated along the axial direction. As shown in Figure 4, the material properties
change along the axial direction, and the material properties of the adjacent layers
are different. In order to analyze the performance of the beam, the uniform element
is used to mesh each layer. In order to make the natural frequencies of AFG beams
more precise, we can increase the number of layers and refine the finite element
meshes.

In the Meijer G-function method, in order to solve the linear natural frequencies
of beams under different boundary conditions, the determinant of the coefficient
matrix of Eqs. (42)–(45) is equal to zero. Finally, linear natural frequencies of
beams with different boundary conditions of the first four orders are listed in
Table 10.

Figure 3.
Variation of the material properties defined by Eq. (46) with YR ¼ 3YL.

Properties Unit Aluminum Zirconia

E GPa 70 200

ρ Kg/m3 2702 5700

Table 9.
Material properties of the AFG beam [44].
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Figure 4.
Finite segment model of the AFG beam.

F Order C-F C-P S-S C-C

Present FEM Present FEM Present FEM Present FEM

α ¼ 0:9 1 2.4641 2.4651 4.0787 4.0789 3.0888 3.0891 4.5585 4.5579

2 5.2251 5.2265 7.1520 7.1516 6.2895 6.2893 7.6920 7.6908

3 8.2540 8.2560 10.2762 10.2778 9.4410 9.4420 10.8549 10.8560

4 11.3209 11.324 13.4075 13.4092 12.5854 12.5869 14.0136 14.0148

α ¼ 0:5 1 2.0774 2.0772 4.0055 4.0056 3.1344 3.1344 4.7098 4.7096

2 4.8497 4.8491 7.1104 7.1100 6.2859 6.2861 7.8364 7.8360

3 7.9496 7.9501 10.2396 10.2409 9.4278 9.4294 10.9827 10.9836

4 11.0455 11.0652 13.3748 13.3760 12.5668 12.5707 14.1256 14.1273

α ¼ 1:7 1 1.6098 1.6104 3.7738 3.7738 3.1279 3.1277 4.6896 4.6897

2 4.4786 4.4792 6.9816 6.9816 6.2887 6.2884 7.8189 7.8187

3 7.7326 7.7332 10.1477 10.1490 9.4315 9.4325 10.9679 10.9696

4 10.9067 10.9079 13.3045 13.3042 12.5726 12.5737 14.1139 14.1158

α ¼ 2:7 1 1.5370 1.5377 3.7214 3.7217 3.1188 3.1212 4.6629 4.6630
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Figure 5.
Dimensionless natural frequencies of C-F beams vary with parameter F: (a) fundamental frequencies,
(b) second-order frequencies, and (c) third-order frequencies.

18

Mechanics of Functionally Graded Materials and Structures

From Table 10, we can see that the results of finite element method are similar
to those of Meijer G-function and the error is small. This can prove the accuracy of
the method in frequency calculation on the one hand. In Figure 5, we can find that
the first third-order dimensionless natural frequencies of C-F beams are in good
agreement with FEM and numerical calculation. With the gradual increase of gra-
dient parameter F, the dimensionless natural frequency of C-F beam increases
gradually, and the change speed is accelerated. At the same time, the FEM and
numerical simulation errors are very small, so the precise linear natural frequencies
can be obtained.

5. Conclusions

FGMs are innovative materials and are very important in engineering and other
applications. Despite the variety of methods and approaches for numerical and
analytical investigation of nonuniform FG beams, no simple and fast analytical
method applicable for such beams with different boundary conditions and varying
cross-sectional area was proposed. In this topic, two analytical approaches, the
asymptotic perturbation and the Meijer G-function method, were described to
analyze the free vibration of the AFG beams.

Based on the Euler-Bernoulli beam theory, the governing differential equations
and related boundary conditions are described, which is more complicated because
of the partial differential equation with variable coefficients. For both the asymp-
totic perturbation and the Meijer G-function method, the variable flexural rigidity
and mass density are divided into invariant parts and variable parts firstly. Differ-
ent analytical processes are then carried out to deal with the variable parts applying
perturbation theory and the Meijer G-function, respectively. Finally, the simple
formulas are derived for solving the nature frequencies of the AFG beams with C-F
boundary conditions followed with C-C, C-S, and C-P conditions, respectively. It is
observed that natural frequency increases gradually with the increase of the gradi-
ent parameter.

Accuracy of the results is also examined using the available data in the published
literature and the finite element method. In fact, it can be clearly found that result
of the APM is more accurate in low-order mode, which is caused by the defect of
the perturbation theory. However, the APM is simple and easily comprehensible,
while the Meijer G-function method is more complex and unintelligible for engi-
neers. In general, the results show that the proposed two analytical methods are
efficient and can be used to analyze the free vibration of AFG beams.
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Chapter 2

Boundary Element Model
for Nonlinear Fractional-Order
Heat Transfer in Magneto-
Thermoelastic FGA Structures
Involving Three Temperatures
Mohamed Abdelsabour Fahmy

Abstract

The principal objective of this chapter is to introduce a new fractional-order
theory for functionally graded anisotropic (FGA) structures. This theory called
nonlinear uncoupled magneto-thermoelasticity theory involving three tempera-
tures. Because of strong nonlinearity, it is very difficult to solve the problems
related to this theory analytically. Therefore, it is necessary to develop new numer-
ical methods for solving such problems. So, we propose a new boundary element
model for the solution of general and complex problems associated with this theory.
The numerical results are presented graphically in order to display the effect of the
graded parameter on the temperatures and displacements. The numerical results
also confirm the validity and accuracy of our proposed model.

Keywords: boundary element method, fractional-order heat transfer, functionally
graded anisotropic structures, nonlinear uncoupled magneto-thermoelasticity,
three temperatures

1. Introduction

Functionally graded material (FGM) is a special type of advanced inhomoge-
neous materials. Functionally graded structure is a mixture of two or more distinct
materials (usually heat-resisting ceramic on the outside surface and fracture-
resisting metal on the inside surface) that have specified properties in specified
direction of the structure to achieve a require function [1, 2]. This feature enables
obtaining structures with the best of both material’s properties, and suitable for
applications requiring high thermal resistance and high mechanical strength [3–12].

Functionally Graded Materials have been wide range of thermoelastic applica-
tions in several fields, for example, the water-cooling model of a fusion reactor
divertor is one of the most widely used models in industrial design, which is
consisting of a tungsten (W) and a copper (Cu), that subjected to a structural
integrity issue due to thermal stresses resulted from thermal expansion mismatch
between the bond materials. Recently, functionally graded tungsten (W)–copper
(Cu) has been developed by using a precipitation-hardened copper alloy as matrix
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instead of pure copper, to overcome the loss of strength due to the softening of the
copper matrix.

The carbon nanotubes (CNT) in FGM have new applications such as reinforced
functionally graded piezoelectric actuators, reinforced functionally graded
polyestercalcium phosphate materials for bone replacement, reinforced function-
ally graded tools and dies for reduce scrap, better wear resistance, better thermal
management, and improved process productivity, reinforced metal matrix func-
tionally graded composites used in mining, geothermal drilling, cutting tools, drills
and machining of wear resistant materials. Also, they used as furnace liners and
thermal shielding elements in microelectronics.

There are many areas of application for elastic and thermoelastic functionally
graded materials, for example, industrial applications such as MRI scanner cryo-
genic tubes, eyeglass frames, musical instruments, pressure vessels, fuel tanks,
cutting tool inserts, laptop cases, wind turbine blades, firefighting air bottles, dril-
ling motor shaft, X-ray tables, helmets and aircraft structures. Automobiles appli-
cations such as combustion chambers, engine cylinder liners, leaf springs, diesel
engine pistons, shock absorbers, flywheels, drive shafts and racing car brakes.
Aerospace applications rocket nozzle, heat exchange panels, spacecraft truss struc-
ture, reflectors, solar panels, camera housing, turbine wheels and Space shuttle.
Submarine applications such as propulsion shaft, cylindrical pressure hull, sonar
domes, diving cylinders and composite piping system. Biotechnology applications
such as functional gradient nanohydroxyapatite reinforced polyvinyl alcohol gel
biocomposites. Defense applications such as armor plates and bullet-proof vests.
High-temperature environment applications such as aerospace and space vehicles.
Biomedical applications such as orthopedic applications for teeth and bone replace-
ment. Energy applications such as energy conversion devices and as thermoelectric
converter for energy conservation. They also provide thermal barrier and are used
as protective coating on turbine blades in gas turbine engine. Marine applications
such as parallelogram slabs in buildings and bridges, swept wings of aircrafts and
ship hulls. Optoelectronic applications such as automobile engine components,
cutting tool insert coating, nuclear reactor components, turbine blade, tribology,
sensors, heat exchanger, fire retardant doors, etc.

According to continuous and smooth variation of FGM properties throughout in
depth, there are many laws to describe the behavior of FGM such as index [13],
sigmoid law [14], exponential law [15] and power law [16–24].

There was widespread interest in functionally graded materials, which has
developed a lot of analytical methods for analysis of elasticity [25–32] and
thermoelasticity [33–53] problems, some of which have become dominant in scien-
tific literature. For the numerical methods, the isogeometric finite element method
(FEM) has been used by Valizadeh et al. [54] for static characteristics of FGM and
by Bhardwaj et al. [55] for solving crack problem of FGM. Nowadays, the boundary
element method is a simple, efficient and powerful numerical tool which provides
an excellent alternative to the finite element method for the solution of FGM
problems, Sladek et al. [56–58] have been developed BEM formulation for transient
thermal problems in FGMs. Gao et al. [59] developed fracture analysis of function-
ally graded materials by a BEM. Fahmy [60–72] developed BEM to solve elastic,
thermoelastic and biomechanic problems in anisotropic functionally graded struc-
tures. Further details on the BEM are given in [73, 74] and the references therein.

In the present paper, we propose new FGA structures theory and new boundary
element technique for modeling problems of nonlinear uncoupled magneto-
thermoelasticity involving three temperatures. The boundary element method
reduces the dimension of the problem, therefore, we obtain a reduction of numer-
ical approximation, linear equations system and input data. Since there is strong
nonlinearity in the proposed theory and its related problems. So, we develop new
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boundary element technique for modeling such problems. The numerical results are
presented graphically through the thickness of the homogeneous and functionally
graded structures to show the effect of graded parameter on the temperatures and
displacements. The numerical results demonstrate the validity and accuracy of our
proposed model.

A brief summary of the chapter is as follows: Section 1 outlines the background
and provides the readers with the necessary information to books and articles for a
better understanding of mechanical behaviour of magneto-thermoelastic FGA
structures and their applications. Section 2 describes the formulation of the new
theory and its related problems. Section 3 discusses the implementation of the new
BEM for solving the nonlinear radiative heat conduction equation, to obtain the
three temperature fields. Section 4 studies the development of new BEM and its
implementation for solving the move equation based on the known three tempera-
ture fields, to obtain the displacement field. Section 5 presents the new numerical
results that describe the through-thickness mechanical behaviour of homogeneous
and functionally graded structures.

2. Formulation of the problem

We consider a Cartesian coordinate system for 2D structure (see Figure 1)
which is functionally graded along the 0x direction, and considering z-axis is the
direction of the effect of the constant magnetic field H0 .

The fractional-order governing equations of three temperatures nonlinear
uncoupled magneto-thermoelasticity in FGA structures can be written as follows [6].

ð1Þ

ð2Þ

ð3Þ

where , , uk, Cpjkl (Cpjkl ¼ Cklpj ¼ Ckljp), ( ), μ and hp are
respectively, mechanic stress tensor, Maxwell stress tensor, displacement, constant
elastic moduli, stress-temperature coefficients, magnetic permeability and
perturbed magnetic field.

The nonlinear time-dependent two dimensions three temperature (2D-3 T)
radiation diffusion equations coupled by electron, ion and phonon temperatures
may be written as follows

Figure 1.
Geometry of the FGA structure.
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ð4Þ

where

ð5Þ

and
, , Kp ¼ ApT3þB

p (6)

The total energy per unit mass can be expressed as follows

ð7Þ

where are conductive coefficients, are temperature functions,
are isochore specific-heat coefficients, ρ is the density, τ is the time.

In which, , , B, Aei, Aep are constant inside each subdomain, Wei

and Wep are electron-ion coefficient and electron–phonon coefficient, respectively.
Initial and boundary conditions can be written as

ð8Þ

ð9Þ

ð10Þ

ð11Þ

ð12Þ

ð13Þ

ð14Þ

ð15Þ

3. BEM numerical implementation for temperature field

This section outlines the solution of 2D nonlinear time-dependent three
temperatures (electron, ion and phonon) radiation diffusion equations using
a boundary element method.
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Now, let us consider and discretize the time interval 0;F½ � into
F þ 1 equal time steps, where , Let be
the solution at time . Assuming that the time derivative of temperature within the
time interval can be approximated by.

ð16Þ

denotes the Caputo fractional time derivative of order a defined by [75].

ð17Þ

By using a finite difference scheme of Caputo fractional time derivative of order
a (17) at times and , we obtain:

ð18Þ

Where

ð19Þ

ð20Þ

According to Eq. (18), the fractional order heat Eq. (4) can be replaced by the
following system

ð21Þ

According to Fahmy [60], and using the fundamental solution which satisfies
the system (21), the boundary integral equations corresponding to nonlinear three
temperature heat conduction-radiation equations can be written as

ð22Þ
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which can be written in the absence of internal heat sources as follows

ð23Þ

Time temperature derivative can be written as

ð24Þ

where f j rð Þ are known functions and are unknown coefficients.
We suppose that is a solution of

ð25Þ

Then, Eq. (23) yields the following boundary integral equation

ð26Þ

where

ð27Þ

and

ð28Þ

In which the entries of f�1
ji are the coefficients of F�1 with matrix F defined as

[76].

ð29Þ

Using the standard boundary element discretization scheme for Eq. (26) and
using Eq. (28), we have

ð30Þ

The diffusion matrix can be defined as

ð31Þ
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with

T̂
� �

ij ¼ T̂
j
xið Þ (32)

Q̂
n o

ij
¼ q̂j xið Þ (33)

In order to solve Eq. (30) numerically the functions and q are interpolated as

ð34Þ

ð35Þ

where determines the practical time τ in the current time

step.
By differentiating Eq. (34) with respect to time we get

ð36Þ

The substitution of Eqs. (34)–(36) into Eq. (30) leads to

ð37Þ

By using initial and boundary conditions, we get

ð38Þ

This system yields the temperature, that can be used to solve (1) for the
displacement.

4. BEM numerical implementation for displacement field

Based on Eqs. (2) and (3), Eq. (1) can be rewritten as

ð39Þ

where

ð40Þ

when the temperatures are known, the displacement can be computed by
solving (39) using BEM. By choosing u ∗

p as the weight function and applying the
weighted residual method, Eq. (39) can be reexpressed as
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ð41Þ

The first term in (41) can be integrated partially using Gau β theory yields

ð

R
Cpjkluk, lju ∗

p dR ¼
ð

C
Cpjkluk, lu ∗

p njdC�
ð

R
Cpjkluk, lu ∗

p, jdR (42)

The last term in (42) can be integrated partially twice using Gau β theory yields

ð

R
Cpjkluk, lu ∗

p, jdR ¼
ð

C
Cpjkluku ∗

p, jnldC�
ð

R
Cpjkluku ∗

p, jldR (43)

Based on Eq. (43), Eq. (42) can be rewritten as

ð

R
Cpjkluk, lju ∗

p dR�
ð

R
Cpjkluku ∗

p, jldR ¼
ð

C
Cpjkluk, lu ∗

p njdC�
ð

C
Cpjkluku ∗

p, jnldC (44)

which can be written as

ð45Þ

The boundary tractions are

tp ¼ Cpjkluk, lnj ¼ Gjluk and t ∗p ¼ Cpjklu ∗
k, jnl ¼ G ∗

jl u
∗
k (46)

By using the symmetry relation of elasticity tensor, we obtain

ð47Þ

ð48Þ

Using Eqs. (46)–(48), the Eq. (45) can be reexpressed as

ð49Þ

We define the fundamental solution u ∗
mk by the relation

ð50Þ

By modifying the weighting functions, Eq. (49) can be written as

ð51Þ
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From (39), (50) and (51), the representation formula may be written as

ð52Þ

Let

ð53Þ

The displacement particular solution may be defined as

ð54Þ

Differentiation of (54) leads to.

ð55Þ

Now, we obtain the traction particular solution tqpn and source function f qpn as

tqpn ¼ Cpjklu
q
kn, lnj,Ljlu

q
kn ¼ fqpn (56)

The domain integral may be approximated as follows

ð57Þ

The use of (57) together with the dual reciprocity

ð

R
Ljlu

q
knu

∗
mp � Ljlu ∗

mku
q
pn

� �
dR ¼

ð

C
u ∗
mpt

q
pn � t ∗mpu

q
pn

� �
dC (58)

Leads to

ð59Þ
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From (50), we can write

ð60Þ

By using (52), (59) and (60), we obtain

ð61Þ

According to Fahmy [9–11], the right-hand side integrals of (61) can be
reexpressed as

ð62Þ

and

ð63Þ

According to Fahmy [12], Guiggiani and Gigante [77] and Mantič [78] Eqs. (62)
and (63) can respectively be expressed as

ð64Þ

ð65Þ
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By using (64) and (65), the dual reciprocity boundary integral equation becomes

ð66Þ

On the basis of isoparametric concept, we can write

ð67Þ

ð68Þ

By implementing the point collocation procedure and using (67) and (68),
Eq. (66) may be reexpressed as

ð69Þ

Let us suppose that

ð70Þ

ð71Þ

ð72Þ

We can write (69) as follows

ð73Þ

By using the point collocation procedure, can be calculated from (53) as

ð74Þ

Now, from (74), we may derive

ð75Þ

From (73) using (75) we have

ð76Þ
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where

ð77Þ

By considering the following known k and unknown u superscripts nodal vectors

ð78Þ

Hence (76) may be written as

ð79Þ

From the first row of (79), we can calculate the unknown fluxes as follows

ð80Þ

From the second row of (79) and using (80) we get

ð81Þ

where

ð82Þ

Eq. (81) can be written at nþ 1ð Þ time step as

ð83Þ

where

ð84Þ

In order to solve (83), The implicit backward finite difference scheme has been
applied based on the Houbolt’s algorithm and the following approximations
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ð85Þ

ð86Þ

By using (85) and (86), we have from (83)

ð87Þ

In which.

ð88Þ

ð89Þ

We implement the successive over-relaxation (SOR) of Golub and Van Loan
[79] for solving (87) to obtain . Then, the unknown and can be
obtained from (76) and (77), respectively. By using the procedure of Bathe [80], we
obtain the traction vector tunþ1 from (73).

5. Numerical results and discussion

The BEM that has been used in the current paper can be applicable to a wide
variety of FGA structures problems associated with the proposed theory of three
temperatures nonlinear uncoupled magneto-thermoelasticity. In order to evaluate
the influence of graded parameter on the three temperatures and displacements, the
numerical results are carried out and depicted graphically for homogeneous
(m ¼ 0) and functionally graded (m ¼ 0:5 and 1:0) structures.

Figure 2.
Variation of the electron temperature Te through the thickness coordinate x.
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Figures 2–4 show the distributions of the three temperatures Te, Ti and Tp

through the thickness coordinate Ox. It was shown from these figures that the three
temperatures increase with increasing value of graded parameter m.

Figures 5 and 6 show the distributions of the displacements u1 and u2 through
the thickness coordinate Ox. It was noticed from these figures that the displacement
components increase with increasing value of graded parameter m.

Figure 3.
Variation of the ion temperature Ti through the thickness coordinate x.

Figure 4.
Variation of the photon temperature Tp through the thickness coordinate x.

Figure 5.
Variation of the displacement u1 through the thickness coordinate x.
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Figures 7 and 8 show the distributions of the displacements u1 and u2 with the
time for boundary element method (BEM), finite difference method (FDM) and
finite element method (FEM) to demonstrate the validity and accuracy of our
proposed technique. It is noted from numerical results that the BEM obtained
results are agree quite well with those obtained using the FDM of Pazera and
Jędrysiak [81] and FEM of Xiong and Tian [82] results based on replacing heat
conduction with three-temperature heat conduction.

Figure 6.
Variation of the displacement u2 through the thickness coordinate x.

Figure 7.
Variation of the displacement u1 with time τ.

Figure 8.
Variation of the displacement u2 with time τ.
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6. Conclusion

The main aim of this article is to introduce a new fractional-order theory called
nonlinear uncoupled magneto-thermoelasticity theory involving three tempera-
tures for FGA structures and new boundary element technique for solving problems
related to the proposed theory. Since the nonlinear three temperatures radiative
heat conduction equation is independent of the displacement field, we first deter-
mine the temperature field using the BEM, then based on the known temperature
field, the displacement field is obtained by solving the move equation using the
BEM. It can be seen from the numerical results that the graded parameter had a
significant effect on the temperatures and displacements through the thickness of
the functionally graded structures. Since there are no available results for the con-
sidered problem. So, some literatures may be considered as special cases from the
considered problem based on replacing the heat conduction by three temperatures
radiative heat conduction. The numerical results demonstrate the validity and
accuracy of our proposed model. From the proposed BEM technique that has been
performed in the present paper, it is possible to conclude that the proposed BEM
should be applicable to any FGM uncoupled magneto-thermoelastic problem with
three-temperature. BEM is more efficient, accurate and easy to use than FDM or
FEM, because it only needs to solve the unknowns on the boundaries and BEM users
need only to deal with real geometry boundaries. Also, BEM is reducing the com-
putational cost of its solver. The present numerical results for our complex problem
may provide interesting information for computer scientists, designers of new FGM
materials and researchers in FGM science as well as for those working on the
development of new functionally graded structures.
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Chapter 3

DC Conductivity of Activated 
Carbon Filled Epoxy Gradient 
Composites
Archana Nigrawal

Abstract

This chapter reports the DC conductivity behavior of activated carbon powder 
filled epoxy gradient composites. Gradient composites are the composite materials 
in which the there is gradually variation in some direction to achieve gradient in 
properties. Graded materials are generally defined as the materials, which exhibit 
variable functional performance with location and show continuous variations in 
morphology and composition. Functionally graded metal matrix composites have 
been of great practical importance. Graded metal matrix composite have gradual 
compositional variations from ceramic at one surface to metal at the other, leading 
to special advantages of smooth transition in thermal stresses across the thickness 
and minimized stress concentration at the interface of two dissimilar materials. 
Therefore graded metal matrix composites are finding applications in aggressive 
environments with steep temperature gradients such as turbine components and 
rocket nozzles. Since the properties of material in FGMs are variable across the entire 
material, and depends on the spatial position of the material. Functionally graded 
materials are designed with varying properties such as changing their chemical 
properties, changing mechanical, magnetic, thermal, and electrical properties. Now 
a days there are FGMs designed as stepwise-graded materials, while others are fabri-
cated to have continuous-graded materials depending on their areas of application.

Keywords: activated carbon powder, epoxy, gradient, DC conductivity, composites

1. Introduction

Activated carbon powder filled epoxy composites having 3 wt.% of activated 
carbon powder and epoxy resin have been developed. DC conductivity measure-
ments are conducted on the graded composites by using an Electro-meter in the 
temperature range from 28 to 150°C. DC conductivity increases with the increase 
of distance in the direction of centrifugal force, which shows the formation of 
graded structure with the composites. DC conductivity increases on increase in 
activated carbon powder content. Activation energy was calculated and showed 
ionic conduction in the composites. Polymers with conductive fillers have many 
applications in solid state devices, mostly in fabrication of polymer light-emitting 
diodes, microelectronic components, optical displays as battery and fuel cell elec-
trodes, antistatic media, corrosion-resistant materials, etc. [1–3]. The advantage of 
using conductive filler is that it is possible to control their electrical conductivity. 
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1. Introduction

Activated carbon powder filled epoxy composites having 3 wt.% of activated 
carbon powder and epoxy resin have been developed. DC conductivity measure-
ments are conducted on the graded composites by using an Electro-meter in the 
temperature range from 28 to 150°C. DC conductivity increases with the increase 
of distance in the direction of centrifugal force, which shows the formation of 
graded structure with the composites. DC conductivity increases on increase in 
activated carbon powder content. Activation energy was calculated and showed 
ionic conduction in the composites. Polymers with conductive fillers have many 
applications in solid state devices, mostly in fabrication of polymer light-emitting 
diodes, microelectronic components, optical displays as battery and fuel cell elec-
trodes, antistatic media, corrosion-resistant materials, etc. [1–3]. The advantage of 
using conductive filler is that it is possible to control their electrical conductivity. 
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Besides good electrical conductivity and optical characteristics, conducting 
polymers have several other advantages as plasticity, low cost, lightweight and ease 
of fabrication [4–6].

Functionally graded composites are a novel class of composites which shows 
unique properties. Their graded property can be used as medical implants, for ther-
mal protection in space vehicles, and they can be used as thermoelectric converter for 
energy conservation. Due to their versatile nature, they are widely used in nano, opto-
electronic and thermoelectric materials also. Future applications of carbon nanotubes 
(CNT) reinforced functionally graded composite materials (FGCM) is expected to 
unique material having a wide range of possibilities in various areas such as aerospace, 
energy, automobile, medicine and structural industry. These materials can be used as 
gas adsorbents, probes, chemical sensors, nanopipes, nano-reactors, etc.

FGM can be used according the desired applications in biomedical application, 
as implants in human body to function properly without destroying the surround-
ing tissues.

Nigrawal and Chand has studied the dielectric properties of activated carbon 
filled epoxy composites and reported that small values of activation energy 
obtained at higher frequencies suggested that the conduction in the composite was 
due to hopping of charge carriers [7].

Epoxy resins are used as a thermosetting polymer matrix for the preparation 
of the conductive polymer composites [7–9]. Most of the electrically conductive 
polymer composites consist of carbon fibres or carbon black. A degree of conduc-
tivity is achieved when the concentration of the fillers is high enough so as to form 
a conductive network within the polymer matrix and such critical concentration, 
is known as percolation threshold. Conductivity of polymers containing conduc-
tive fillers, depends on the size and shape of the filler particles, spatial distribution 
and the contact resistance [10–14] and also determines the conditions of charge 
transport. Polymers have wide applications as electrical and electronic materials 
in the field of electro-photography and opto-electronics [15, 16] and can also be 
used as interfacial barrier layers and protective coatings. However, prior to using 
these materials in these specialized applications it is essential to know fundamental 
properties such as the mechanisms of electrical conduction, charge storage, etc.

It is well known that the addition of nano size additives into polymers has paved 
way for advanced technologies, such as in electrochemical displays, sensors, catalysis 
and redox capacitors, etc. [7]. For instance graphene based polymer composites possess 
potential applications in radiation and electromagnetic shielding, antistatic, shrinkage 
and corrosion-resistant coatings, and other mechanical and functional attributes such 
as stiffness, barrier, conducting capabilities, light emitting devices, batteries and other 
functional applications. Other potential applications could be for high temperature 
conducting adhesive, or for the bipolar plates for polymer electrolyte membrane fuel 
cells. Several carbon additives have also been utilized to enhance the properties of a 
polymer, the most popular being carbon blacks, carbon nanotubes [15–19].

During curing of the thermoset matrix, an internal stress comes and increases 
the pressure between and decreases the contact resistance. Development and 
modification of carbonaceous materials in necessary to increase the specific energy 
and power of supercapacitors, by controlling the pore size distribution, introducing 
electroactive metallic particles or electroconducting polymers [17–19].

It was reported that conductive polymer composite sensor array made from 
carbon black with polymers [20, 21].

An activated carbon has extended surface area, microporous structure, high 
adsorption capacity and high degree of surface reactivity. Activated carbon can be 
used into various structures such as fill-form, felt-form and fabric-form for various 
applications [22].
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Different types of activated carbon powder and as well as activated carbon fibers 
with surface area in the range of 86–3000 m2/g were used for electrical double-layer 
capacitors [23, 24].

The conductivity of conductive filler polymer systems depends on the filler 
type, concentration, structure, surface properties, and conductivity properties of 
the matrix, distribution of particles in the matrix, contacts between particles, and 
particle orientation. It is well known that carbon black (CB) particles with a larger 
structure may render a relative high conductivity [25].

In a recent study effects of carbon nanotube on volume fractions, slender-
ness ratio, and core-to-face sheet thickness ratio on free vibration behavior of 
sandwich beams with functionally graded carbon nanotube-reinforced composite 
was reported. Numerical results were also reported to compare the behavior of 
sandwich beams of carbon nanotube-reinforced composite face sheets to those with 
functionally graded carbon nanotube-reinforced composite face sheets [26].

Flexural properties of epoxy nano composites increased on addition of 1 and 
5% vol nano-activated carbon as compared to neat epoxy. A noticeable increment 
in flexural strength and modulus, was observed on addition of 1 and 5% vol nano-
activated carbon as compared to pure epoxy. The effect of potassium hydroxide and 
phosphoric acid treatment on activated carbon epoxy nano composites were also 
investigated. The flexural toughness of both the composites were in range between 
0.79 and 0.92 J. It was reported that the flexural strength of activated carbon-bam-
boo stem, activated carbon-oil palm, and activated carbon-coconut shell reinforced 
epoxy nanocomposites showed almost same value in case of 5% potassium hydrox-
ide activated carbon [27].

In case of many FGMs components, properties varies in thickness direction [28]. 
However, in many modern applications these material have variable properties in 
both thickness and axial directions [28]. In a paper a gradient material in which 
properties varies in both aspects are developed and studied [28, 29]. Such smart 
materials are known as bidirectional functionally gradient (BDFGMs) materials. In 
which laser metal deposition based AM technique was used [29].

2. Materials and methods

Activated carbon powder used in this study was obtained from Ranbaxy 
Fine Chemicals, New Delhi, India. Epoxy used in this study was obtained from 
Hindustan Advanced Materials (India) Pvt. Ltd., Chakala (east), Mumbai, India. 
Activated carbon powder filled epoxy gradient composites have been developed 
by using centrifugation process. In this process centrifugal force is applied in the 
X direction. Gradient samples are prepared from the activated carbon powder 
filled mix having 3 wt.% of activated carbon powder. Activated carbon powder 
was added to a mix of epoxy resin and hardener (10:8). Total mix was thoroughly 
stirred with the help of a glass rod. Details of set up and process of making gradient 
composites are as reported in earlier patent (Chand and Hashmi) [27]. Total mix 
was thoroughly stirred with the help of a glass rod at 24°C for 2 min. The total mix 
was kept in a cylindrical mould to make graded sample. The sample with mould was 
rotated at 800 ± 50 RPM at a radius of 130 mm. Graded sample pin was removed 
from the mould after post curing at room temperature for 24 h. Composite pin was 
sliced into four pieces starting from centre to periphery and designated as sample 
1, 2, 3 and 4, respectively. Samples were coated on both the sides by air drying type 
silver paint before the electrical measurements.

Density of activated carbon powder filled epoxy gradient samples was measured 
by using a Mettler Toledo precision balance.
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Besides good electrical conductivity and optical characteristics, conducting 
polymers have several other advantages as plasticity, low cost, lightweight and ease 
of fabrication [4–6].

Functionally graded composites are a novel class of composites which shows 
unique properties. Their graded property can be used as medical implants, for ther-
mal protection in space vehicles, and they can be used as thermoelectric converter for 
energy conservation. Due to their versatile nature, they are widely used in nano, opto-
electronic and thermoelectric materials also. Future applications of carbon nanotubes 
(CNT) reinforced functionally graded composite materials (FGCM) is expected to 
unique material having a wide range of possibilities in various areas such as aerospace, 
energy, automobile, medicine and structural industry. These materials can be used as 
gas adsorbents, probes, chemical sensors, nanopipes, nano-reactors, etc.

FGM can be used according the desired applications in biomedical application, 
as implants in human body to function properly without destroying the surround-
ing tissues.

Nigrawal and Chand has studied the dielectric properties of activated carbon 
filled epoxy composites and reported that small values of activation energy 
obtained at higher frequencies suggested that the conduction in the composite was 
due to hopping of charge carriers [7].

Epoxy resins are used as a thermosetting polymer matrix for the preparation 
of the conductive polymer composites [7–9]. Most of the electrically conductive 
polymer composites consist of carbon fibres or carbon black. A degree of conduc-
tivity is achieved when the concentration of the fillers is high enough so as to form 
a conductive network within the polymer matrix and such critical concentration, 
is known as percolation threshold. Conductivity of polymers containing conduc-
tive fillers, depends on the size and shape of the filler particles, spatial distribution 
and the contact resistance [10–14] and also determines the conditions of charge 
transport. Polymers have wide applications as electrical and electronic materials 
in the field of electro-photography and opto-electronics [15, 16] and can also be 
used as interfacial barrier layers and protective coatings. However, prior to using 
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It is well known that the addition of nano size additives into polymers has paved 
way for advanced technologies, such as in electrochemical displays, sensors, catalysis 
and redox capacitors, etc. [7]. For instance graphene based polymer composites possess 
potential applications in radiation and electromagnetic shielding, antistatic, shrinkage 
and corrosion-resistant coatings, and other mechanical and functional attributes such 
as stiffness, barrier, conducting capabilities, light emitting devices, batteries and other 
functional applications. Other potential applications could be for high temperature 
conducting adhesive, or for the bipolar plates for polymer electrolyte membrane fuel 
cells. Several carbon additives have also been utilized to enhance the properties of a 
polymer, the most popular being carbon blacks, carbon nanotubes [15–19].

During curing of the thermoset matrix, an internal stress comes and increases 
the pressure between and decreases the contact resistance. Development and 
modification of carbonaceous materials in necessary to increase the specific energy 
and power of supercapacitors, by controlling the pore size distribution, introducing 
electroactive metallic particles or electroconducting polymers [17–19].

It was reported that conductive polymer composite sensor array made from 
carbon black with polymers [20, 21].

An activated carbon has extended surface area, microporous structure, high 
adsorption capacity and high degree of surface reactivity. Activated carbon can be 
used into various structures such as fill-form, felt-form and fabric-form for various 
applications [22].
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X direction. Gradient samples are prepared from the activated carbon powder 
filled mix having 3 wt.% of activated carbon powder. Activated carbon powder 
was added to a mix of epoxy resin and hardener (10:8). Total mix was thoroughly 
stirred with the help of a glass rod. Details of set up and process of making gradient 
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sliced into four pieces starting from centre to periphery and designated as sample 
1, 2, 3 and 4, respectively. Samples were coated on both the sides by air drying type 
silver paint before the electrical measurements.

Density of activated carbon powder filled epoxy gradient samples was measured 
by using a Mettler Toledo precision balance.
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2.1 Resistivity measurements

Resistance (R) values of activated carbon powder filled epoxy gradient samples 
were measured by using a kiethley electrometer model 610°C in the temperature 
range ranging from 28 to 150°C. Heating rate was kept constant at 1°C/min.

DC conductivity (σDC) values were calculated by using the following relation

  ρ =  R   ∗  A / l  (1)

where R is the resistance value of the sample; A (cm2) is the area of the elec-
trodes; and l (cm) is the thickness of the sample.

Conductivity was calculated by using the following formula.

  σDC = 1 / ρ  (2)

2.2 Density measurements

Densities of activated carbon filled epoxy resin composites were determined by 
using a Mettler Toledo precision balance.

3. Results and discussion

Figure 1 shows the schematic view of the gradient composite sample prepared 
using a mix of activated carbon powder and epoxy. This schematic diagram shows 
the distribution of activated carbon powder in the composite.

Table 1 lists the density of activated carbon powder filled epoxy gradient com-
posites at different distances from periphery. This shows the increase of distance 
from periphery decreases the density of the composite. This is due to the decrease 
in activated carbon content. Figure 2 shows the variation of DC conductivity with 
temperature for activated carbon powder filled epoxy sample 1. In this plot DC 
conductivity increased at 108°C then at 112°C it became constant up to 128°C and 
then there is a sudden increase in DC conductivity after 128°C, and it increases up 
to 150°C.

Figure 3 shows the variation of DC conductivity with temperature for activated 
carbon powder filled epoxy gradient composites sample 2. This plot shows that up to 
98°C there is no increase in DC conductivity. After 106°C there is a sudden increase 
in DC conductivity with increase of temperature and a peak was found at 138°C 
temperature. This plot shows that there is an increase in DC conductivity with the 
increase in activated carbon powder content at all temperatures. Another important 

Figure 1. 
Schematic diagram of activated carbon distribution in four sections.
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observation is that there is a peak shift towards the higher temperature side with 
increase in activated carbon powder content.

Figure 4 shows the variation of DC conductivity with temperature for activated 
carbon powder epoxy gradient sample 3.

It has been observed that DC conductivity suddenly increases after 100°C in all 
the cases. Increase of DC conductivity appeared at 124°C and it goes on increasing 
up to 150°C.

Figure 5 shows the variation of DC conductivity with temperature for acti-
vated carbon powder filled epoxy gradient composites sample 4. DC conductivity 
increases from 110°C then after 132°C there is an increase in DC conductivity.

It was reported that electrical conductivity of reinforced papers with respect 
to the weight fraction of Ag-plated carbon fiber increased with increasing content 
of carbon fiber. Due to the three-dimensional contacts between carbon fibers the 
electrical conductivity of the paper increased irrespective of the increase in thick-
ness. The electrical conductivity of the reinforced paper having the Ag-plated 
carbon fiber was high because of the large number of pores formed on the activated 
carbon fiber [30]. When the volume percent of carbon content is increased or 
decreased, the material exhibits a change in resistivity. Heating can affect the con-
ductivity of the polymer material on increasing the temperature [31]. On increasing 

Sample no. Density (g/cc)

Sample 1 1.000

Sample 2 1.05317

Sample 3 1.06169

Sample 4 1.0999

Table 1. 
Lists the density (ρ) values of gradient composite at different distances.

Figure 2. 
Variation of DC conductivity with temperature for activated carbon filled epoxy sample 1.
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observation is that there is a peak shift towards the higher temperature side with 
increase in activated carbon powder content.

Figure 4 shows the variation of DC conductivity with temperature for activated 
carbon powder epoxy gradient sample 3.

It has been observed that DC conductivity suddenly increases after 100°C in all 
the cases. Increase of DC conductivity appeared at 124°C and it goes on increasing 
up to 150°C.

Figure 5 shows the variation of DC conductivity with temperature for acti-
vated carbon powder filled epoxy gradient composites sample 4. DC conductivity 
increases from 110°C then after 132°C there is an increase in DC conductivity.

It was reported that electrical conductivity of reinforced papers with respect 
to the weight fraction of Ag-plated carbon fiber increased with increasing content 
of carbon fiber. Due to the three-dimensional contacts between carbon fibers the 
electrical conductivity of the paper increased irrespective of the increase in thick-
ness. The electrical conductivity of the reinforced paper having the Ag-plated 
carbon fiber was high because of the large number of pores formed on the activated 
carbon fiber [30]. When the volume percent of carbon content is increased or 
decreased, the material exhibits a change in resistivity. Heating can affect the con-
ductivity of the polymer material on increasing the temperature [31]. On increasing 

Sample no. Density (g/cc)

Sample 1 1.000

Sample 2 1.05317

Sample 3 1.06169

Sample 4 1.0999

Table 1. 
Lists the density (ρ) values of gradient composite at different distances.

Figure 2. 
Variation of DC conductivity with temperature for activated carbon filled epoxy sample 1.
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temperature polymer expands as compared to CB aggregates and the interparticle 
distance between the aggregates increases, which causes destruction of conductive 
networks and as a result there is an increase in the resistivity with temperature.

It was reported that the electrical resistivity (ρ) of composite at low temperature 
is dominated by the electronic properties of the nanotubes, and tunneling nature 
[32–34].

ln σ vs. T−1 plot for activated carbon powder filled epoxy has been analysed by 
using the following Arrhenius equation.

Figure 4. 
Variation of DC conductivity with temperature for activated carbon filled epoxy sample 3.

Figure 3. 
Variation of DC conductivity with temperature for activated carbon filled epoxy sample 2.
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  σ = A  exp   − W  E  /KT   (3)

where WE is the activation energy of conduction; k is Boltzmann’s constant; A is 
a constant; and T is the temperature in (K).

On increasing filler concentration, conductive paths among the filler particles 
increase, and the average distance becomes smaller as a result conductivity of the 
composite increased.

4. Conclusions

a. DC conductivity value increases from sample 1 to sample 4. This shows the 
existence of graded structure (Table 2).

b. Increase of activated carbon content increases the DC conductivity.

c. Different transition points are observed in DC conductivity plots in differ-
ent samples. Transition temperature shifts to lower side with the increase in 
activated carbon content.

d. Activation energy decrease with increase of activated carbon content in the 
samples.

Figure 5. 
Variation of DC conductivity with temperature for activated carbon filled epoxy sample 4.

Sample no. Activation energy (eV)

Sample 1 1.056682

Sample 2 1.224812

Sample 3 1.278476

Sample 4 1.297912

Table 2. 
Lists the activation energy (eV) of sample 1, sample 2, sample 3, and sample 4.
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where WE is the activation energy of conduction; k is Boltzmann’s constant; A is 
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increase, and the average distance becomes smaller as a result conductivity of the 
composite increased.
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a. DC conductivity value increases from sample 1 to sample 4. This shows the 
existence of graded structure (Table 2).

b. Increase of activated carbon content increases the DC conductivity.

c. Different transition points are observed in DC conductivity plots in differ-
ent samples. Transition temperature shifts to lower side with the increase in 
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e. These developed graded polymeric matrix composites having gradual variation 
of composition from carbonaceous filler at one surface to polymer dominated 
other end can be developed for desired electrical applications. Different type of 
sensors such as electrical resistance sensors, current sensors and temperature 
dependent sensors are required for various applications. Graded polymeric 
composites show variable resistivity behaviour, which can have potential 
applications in electromagnetic shielding, antistatic, corrosion-resistant coat-
ings, conducting capabilities, light emitting devices, batteries and sensors. By 
virtue of the improved thermal stress relaxation and adhesive properties etc. 
Graded polymeric composites show variable resistivity behaviour, which can 
have potential applications in electromagnetic shielding, antistatic, corrosion-
resistant coatings, conducting capabilities, light emitting devices, batteries and 
sensors.
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Abstract

In this study, the stochastic finite element solution is given to obtain the vari-
ability in the natural frequency of functionally graded material (FGM) beam. The
elastic modulus is assumed to vary in the thickness direction and the width of the
beam to vary as well in the longitudinal direction following the exponential law. The
random material properties of elastic modulus and mass density of the FGM beam
are assumed to be one-dimensional homogeneous stochastic processes. The sto-
chastic finite element analysis of FGM beam is performed in conjunction with
Monte Carlo simulation (MCS) employing the spectral representation method for
16, the description of random processes of the random material properties under
consideration. The response variability of the natural frequency due to random
elastic modulus is evaluated for various states of randomness. Furthermore, the
investigation on the effect of the correlation between random elastic modulus and
random mass density on the response variability is addressed in detail as well.

Keywords: functionally graded materials, finite element method, FGM beam,
Monte Carlo simulation

1. Introduction

Functionally graded materials (FGM) have received considerable attention in
many engineering applications, since the theory of FGM was firstly introduced in
1984. In general, FGM is made from the volume fractions of two or more material
components that have continuous variation of material properties from one surface
to another [1]. Nowadays, FGM suits the specific demand in different engineering
applications, especially for high temperature environment applications of heat
exchanger tubes, thermal barrier coating for turbine blades, thermoelectric genera-
tors, furnace linings, electrically insulated metal ceramic joints, space/aerospace
industries, automotive applications, biomedical area, etc.

The manufacturing of FGM with fully specified profile of material gradation,
however, is very difficult causing significant variability in their mechanical and
structural properties. Therefore, proper handling of the randomness in the material
properties is required for accurate prediction of structural response for safe and
reliable design. The stochastic analysis is a useful analytical tool to predict the
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structural properties. Therefore, proper handling of the randomness in the material
properties is required for accurate prediction of structural response for safe and
reliable design. The stochastic analysis is a useful analytical tool to predict the
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response of structures with random material properties. In this direction, there is
a reasonable body of recent research on the effect of uncertainties in material
properties on the mechanical behavior of FGM. Investigators used stochastic simu-
lation to study the effect of microstructural randomness on stress in FGM [2].
Ferrante et al. studied the effect of non-Gaussian porosity randomness on the
response of functionally graded plate [3]. Yang et al. dealt with the stochastic
bending response of moderately thick FGM plates [4, 5]. The effect of random
material properties on post buckling response of FGM plate are presented in Lal
et al. [6].

However, the above mentioned literatures are for the static analysis. To the best
of author’s knowledge, few limited works have been done on the eigen analysis of
FGM structures involving randomness in system parameters. Certain efforts have
been made in the past to predict the dynamic behavior of structures with random-
ness. In most of the studies conducted, investigators dealt with the free vibration of
functionally graded laminates with random material properties using first-order
perturbation technique (FOPT) incorporating mixed type and semi-analytical
approach to derive the standard eigenvalue problem [7]. Some of these papers
presented the stochastic finite element method (SFEM) to investigate the natural
frequency of functionally graded plates based on the higher-order shear deforma-
tion theory (HSDT) utilizing first-order reliability method and second-order
reliability method [8]. In most cases, Jagtap et al. [9] examined the stochastic
nonlinear free vibration response of FGM plate using HSDT with von-Karman
kinematic nonlinearity via direct iterative stochastic finite element method.
Shegokar et al. investigated the stochastic finite element nonlinear free vibration
analysis of FGM beam with random material properties due to thermo-piezoelectric
loadings [10]. The above mentioned literatures investigated the free vibration and
nonlinear behavior of FGM beam and plate. The material properties, such as
Young’s modulus, shear modulus, and Poisson’s ratio of FGM, are modeled as
independent random variables.

In this chapter, the stochastic finite element solution is suggested to obtain the
variability in the natural frequency of functionally graded material (FGM) beam.
The elastic modulus and width of the FGM beam are assumed to vary in thickness
and longitudinal directions following the exponential law. The uncertain material
properties, such as modulus of elasticity and mass density of the FGM beam, are
considered to be a one-dimensional homogeneous stochastic process. The stochastic
finite element analysis of FGM beam is performed using the spectral representation
method for the description of randomness in conjunction with Monte Carlo simu-
lation (MCS). The response variability of natural frequency due to random elastic
modulus and mass density in FGM beam is given. Furthermore, the effect of
correlation between the two random parameters is observed as well.

2. Theory formulation of FGM

An FGM is defined to be a material which has a continuous gradation through-
the-thickness (h). One side of the material is typically ceramic and the other side is
typically metal. A mixture of the two materials composes the through-the-thickness
characteristics. Let us consider a functionally graded beam shown in Figure 1. The
parameters of the model FGM beam are as follows: L is the length of the beam, h is
the thickness of the beam, and b is the width of the beam.

The elastic material properties vary through-the-beam thickness according to
the volume fractions of the constituents using power law distribution (as shown in
Figure 2).
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E zð Þ ¼ Ec � Emð Þg zð Þ þ Em

with

g zð Þ ¼ 1
2
þ z
h

� �p

, � 0:5h≤ z≤ 0:5h, 0≤ p≤ ∞

where E denotes the effective Young’s modulus of elasticity, and Em and Ec

represent the Young’s modulus of metal and ceramic, respectively. The parameters
g(z) and p represent the volume fraction of the metal and ceramic exponent,
respectively.

In exponential law, for the material parameter of Young’s modulus E, mass
density ρ of the beam and the width of the beam b, with absolute values for z
coordinate, which endows the symmetric characteristic to the beam with respect to
mid-plane.

E zð Þ ¼ E0eβ zj j; ρ zð Þ ¼ ρ0e
β zj j; b xð Þ ¼ b0eψx

In Eq. (3), E0, ρ0 are the values of the Young’s modulus and mass density at the
mid-plane (z = 0) of the beam. The parameter β in the exponent characterizes the
material property variation along the thickness direction. The width of the beam b
varies according to the non-uniformity parameter ψ along the axis of the beam. In
order to give the insight into the varying characteristics of the FGM beam under

Figure 1.
Model of FGM beams.

Figure 2.
The variation of elasticity modulus along the corresponding directions.
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consideration, change of material constants and width depending on the
corresponding parameters are shown in Figure 3.

3. Finite element formulation for FGM beam and frequency analysis

3.1 Finite elements

In case of four degree of freedom beam element, as shown in Figure 4, the
transverse displacement function may be assumed as a cubic polynomial in x, and
the corresponding shape functions are Hermite interpolation functions.

Figure 3.
The variation of elasticity modulus, mass density, and width along the corresponding directions.
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The width and mass per unit length of the element are

be xð Þ ¼ b1 þ b2 � b1
Le

x,

me xð Þ ¼ mbe xð Þ ¼ m b1 þ b2 � b1
Le

x
� �

,

where m ¼ Ðh=2
�h=2

ρ zð Þdz and ρ zð Þ denote the mass density at z.

The nodal displacement vector of the element is

qf ge ¼ q1 q2 q3 q4
� �T,

then, the displacement field is

we ¼ Nh i qf ge,

where Nh i ¼ N1 N2 N3 N4h i, and Ni is Hermite shape function of i‐th
degree of freedom.

In this case, the stiffness of the beam beD11 is similar to EI of the homogeneous
beam

D11 ¼
ðh=2

�h=2

E zð Þ
1� ν2

z2dz,

where ν is Poisson’s ratio.

3.2 Application of Hamilton’s principle

Hamilton’s principle may be a theoretical base for dynamical systems by its
nature of integral form in time with Lagrangian density to account for continuous
space. In this paper, the analysis of natural frequency of FGM beam is performed

Figure 4.
Beam element.
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using Hamilton’s principle. The strain energy expression Ue for bending is given as
following:

Ue ¼
ðLe

0

beD11

2
∂
2we

∂x2

� �2

dx:

The kinematic energy Te for flexural vibration is

Te ¼
ðLe

0

mbe _w
2
e

2
dx:

where

Ke ¼
ðLe

0

beD11 Nh iT Nh idx:

Me ¼
ðLe

0

mebe Nh iT Nh idx:

Substituting Eq. (7) into Eqs. (9) and (10), the following can be obtained:

Ue ¼ 1
2

qf gTe Ke qf ge,

Te ¼ 1
2

_qf gTe Me _qf ge:

The governing differential equations of motion and the related governing equa-
tion can be derived using Hamilton’s principle

δ

ðt2

t1

∑
N

1
Ue �∑

N

1
Te

� �
dt ¼ 0,

where N denotes the number of finite elements.
Substituting Eqs. (13) and (14) into Eq. (15), the following can be obtained:

M€q þ Kq ¼ 0,

here, q is the nodal displacement of the beam.
For simple harmonic vibration, we assume the displacements to be

q x; tð Þ ¼ w xð Þeiωt. Accordingly with Eq. (16), we can obtain the following:

K � ω2M
� �

w ¼ 0,

where K is the assembled global stiffness matrix of Ke, the element stiffness
matrix, which is given in detail in the Appendix. For Eq. (17) to be valid, i.e., to
have nontrivial solution, the following needs to be satisfied:

det K � ω2M
� � ¼ 0:
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4. Modeling of randomness

4.1 Mathematical expression

In order to model the randomness in the material properties, the modulus of
elasticity and mass density along the mid-plane are assumed to vary along its length
of FGM beam in a random manner. We can model these variations as one-
dimensional univariate (1D-1V) homogeneous stochastic processes. The simple
mathematical expressions for the randomly varying modulus of elasticity and mass
density can be written as

E0 xð Þ ¼ E0 1þ f E xð Þ� �
,

ρ0 xð Þ ¼ ρ0 1þ f ρ xð Þ
h i

,

where x is the coordinate along the axis of the FGM beam, E0, ρ0 are the
expected values of E0 and ρ0, respectively, and f E xð Þ, f ρ xð Þ are one-dimensional
stochastic process which are homogeneous with zero-mean values.

The numerical generation of sample functions of Gaussian zero-mean homoge-
neous stochastic processes, which describe the randomness in parameters of the
structure, is accomplished using the spectral representation method. For a one-
dimensional univariate (1D-1V) stochastic process, we have [11]

f xð Þ ¼
ffiffiffi
2

p
∑
N�1

n¼0
An cos ωntþ ϕnð Þ,

An ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Sff ωnð ÞΔω

q
,

Δω ¼ ωu

N
,

ωn ¼ nΔω, n ¼ 0, 1, 2,…, N � 1:

In Eq. (21), ωu denotes the upper cut-off frequency beyond which the power
spectral density function Sff ωnð Þmay be assumed to be zero for either mathematical
or physical reasons. The following criterion is usually used to estimate the value
of ωu:

ðωu

0

Sff ωnð Þdωn ¼ 1� εð Þ
ð∞

0

Sff ωnð Þdωn,

where ε<< 1:
The uniform random phase angle ϕn in Eq. lies in the range of 0; 2π½ �. The power

spectral density function used in Eq. (20) is given as

Sff ωnð Þ ¼ 1ffiffiffi
π

p σf
2d e �d2ω2

nð Þ, �∞<ωn <∞,

here, σf denotes the standard deviation of the stochastic process f xð Þ and d is the
correlation distance of the stochastic process along the x axis.

In all examples, the coefficient of variation COVð Þ of natural frequency, which is
defined as a ratio of the standard deviation of response to the absolute mean
response, will be used to give the variability of the response.
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In order to model the randomness in the material properties, the modulus of
elasticity and mass density along the mid-plane are assumed to vary along its length
of FGM beam in a random manner. We can model these variations as one-
dimensional univariate (1D-1V) homogeneous stochastic processes. The simple
mathematical expressions for the randomly varying modulus of elasticity and mass
density can be written as

E0 xð Þ ¼ E0 1þ f E xð Þ� �
,

ρ0 xð Þ ¼ ρ0 1þ f ρ xð Þ
h i

,

where x is the coordinate along the axis of the FGM beam, E0, ρ0 are the
expected values of E0 and ρ0, respectively, and f E xð Þ, f ρ xð Þ are one-dimensional
stochastic process which are homogeneous with zero-mean values.

The numerical generation of sample functions of Gaussian zero-mean homoge-
neous stochastic processes, which describe the randomness in parameters of the
structure, is accomplished using the spectral representation method. For a one-
dimensional univariate (1D-1V) stochastic process, we have [11]

f xð Þ ¼
ffiffiffi
2

p
∑
N�1

n¼0
An cos ωntþ ϕnð Þ,

An ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Sff ωnð ÞΔω

q
,

Δω ¼ ωu

N
,

ωn ¼ nΔω, n ¼ 0, 1, 2,…, N � 1:

In Eq. (21), ωu denotes the upper cut-off frequency beyond which the power
spectral density function Sff ωnð Þmay be assumed to be zero for either mathematical
or physical reasons. The following criterion is usually used to estimate the value
of ωu:

ðωu

0

Sff ωnð Þdωn ¼ 1� εð Þ
ð∞

0

Sff ωnð Þdωn,

where ε<< 1:
The uniform random phase angle ϕn in Eq. lies in the range of 0; 2π½ �. The power

spectral density function used in Eq. (20) is given as

Sff ωnð Þ ¼ 1ffiffiffi
π

p σf
2d e �d2ω2

nð Þ, �∞<ωn <∞,

here, σf denotes the standard deviation of the stochastic process f xð Þ and d is the
correlation distance of the stochastic process along the x axis.

In all examples, the coefficient of variation COVð Þ of natural frequency, which is
defined as a ratio of the standard deviation of response to the absolute mean
response, will be used to give the variability of the response.
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COV ¼ Standard deviation
Meanj j ,

here,

Standard deviation ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var ωð Þp

Var ωð Þ ¼ E ω� ωð Þ2
h i

9=
;:

and ω is the natural frequency of the FGM beam, and ω denotes the mean of the
natural frequency.

4.2 Monte Carlo analysis

In order to obtain the response variability in the natural frequency of the FGM
beam, we employed the scheme of Monte Carlo simulation (MCS). As a matter of
fact, the MCS corresponds to the deterministic analyses on a set of heterogeneous
models of the given structure, in which the material properties have different values
depending on the position in the domain of the structure.

The generation of heterogeneous random samples is accomplished by the afore-
mentioned spectral representation scheme, and we use 10,000 samples for respec-
tive analyses. In particular, we adopt the local average scheme other than the mid-
point rule in applying the MCS, with which better results can be obtained especially
for the processes with small correlation distance. Figure 5 shows an example plot of
the processes employed to model the randomness in the system parameters.

5. Numerical example

The geometric dimensions of the example FGM beam are: h = 0.1 m, L = 1 m,
and b0 = 0.1 m. It is assumed that the material properties are E0 = 70 GPa,
ρ0 = 2780 kg/m3, and ν = 0.33. E0 denotes the Young’s modulus at the mid-surface
of the beam and E1 at the top and bottom surfaces following Eq. (3) (Figure 6).

5.1 Deterministic analysis results

The results in Figure 7 correspond to the prismatic homogeneous beam since the
parameters in exponents, β and ψ , are all zero. The natural frequency is obtained in

Figure 5.
Example plot of random process used d ¼ 0:01;0:1; 1:0; σf ¼ 0:1

� �
.
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Figure 6.
FGM beam model.

Figure 7.
The convergence between exact solution and finite element method.
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Figure 6.
FGM beam model.

Figure 7.
The convergence between exact solution and finite element method.
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the present study to compare with the results of analytical solution given by Hassen
et al. [12].

The discrepancies between exact and finite element solutions for the frequencies
for the first three modes are shown in Figure 8. The differences given in percentile
tends to zero as the number of finite elements is increased, meaning the results are
converging to exact solutions.

Figure 9 shows the first three normalized natural frequencies of uniform FGM
beams for three cases of modulus ratio (E1=E0). The natural frequency increases as
the ratio of Young’s modulus increases from E1 ¼ 0:2E0 to E1 ¼ 5E0.

5.2 Variability of natural frequency due to randomness in elastic modulus

Figure 10 shows the COV of response versus the correlation distance (d) when
the elastic modulus E0 is random. The standard deviation of the random elastic
modulus is denoted by σf . In all cases, the COV of natural frequency shows similar
trends, starting from small values for small correlation distance, up to large values

Figure 8.
Error depending on mesh refinement (β ¼ 0,ψ ¼ 0).

Figure 9.
First three normalized natural frequencies of FGM beams for different ratio of Young’s modulus (ψ ¼ 0).
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for large correlation distance. In the FGM beam under consideration, the response
variability, when the correlation distance tends to infinity, is obtained to be about
50% of the input standard deviation of the stochastic process.

The relationship between COV of natural frequency and the COV of stochastic
process is shown in Figure 11. The standard deviation of stochastic process is
changed from 0.0 to 0.25. As seen in Figure 11, the COV of response shows a
slightly nonlinear pattern in all the cases of d = 0.01, 0.1, and 10.

The effect of mesh refinement on the COV of natural frequency is shown in
Figure 12. The correlation distance log (d) is assumed to be from �3 to 1. As seen in
Figure 12, the COV of natural frequency is not affected by the mesh refinement.

Figure 13 shows the variation of the coefficient of variation (COV) depending
on the non-uniformity parameter (ψ) of the FGM beam. As seen in the figure, the
COV of response is not slightly affected by the non-uniformity parameter in par-
ticular for large correlation distances.

The overall features of the effect of Young’s modulus ratio on COV of natural
frequency are shown in Figure 14. The COV of natural frequency is not affected by
the parameter β. These results can easily be understood because the standard devi-
ation and the mean of natural frequency in Eq. (27) increase in the same rate.

Figure 10.
COV of natural frequency as a function of the correlation distance (d) for different standard deviation of
stochastic process.

Figure 11.
COV of natural frequency as a function of the standard deviation of stochastic process f E xð Þ.
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for large correlation distance. In the FGM beam under consideration, the response
variability, when the correlation distance tends to infinity, is obtained to be about
50% of the input standard deviation of the stochastic process.
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frequency are shown in Figure 14. The COV of natural frequency is not affected by
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Figure 12.
Effect of mesh refinement on the COV of natural frequency (σf ¼ 0:1).

Figure 13.
Effect of non-uniformity parameter (ψ) on COV of natural frequency (Ne = 20, σf = 0.15).

Figure 14.
Effect of parameter β on the COV of natural frequency (Ne = 20, σf = 0.2).
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5.3 FGM beam having correlation multiple randomness

It is natural to have preposition that not only the elastic modulus, but also the
mass density of the material can have randomness. Therefore, we need to consider

Figure 15.
Effect of the correlation between two random parameters: (a) negative perfect correlation (CC = �1.0), (b) no
correlation (CC = 0.0), and (c) positive perfect correlation (CC = +1.0).
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the effect of correlation between two random parameters of elastic modulus and
mass density. To this aim, we consider three correlation cases: +1.0, 0.0, and �1.0.
When the random processes for elastic modulus, f E, and mass density, f ρ, are
exactly the same, the correlation coefficient (CC) is +1.0. If the values have negative

Figure 16.
COV of natural frequency as a function of the standard deviation of stochastic process: (a) negative perfect
correlation (CC = �1.0), (b) no correlation (CC = 0.0), and (c) positive perfect correlation (CC = +1.0).
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amounts, then the correlation coefficient is �1.0. The zero-correlation (CC = 0.0)
means that stochastic processes of the two parameters are theoretically
independent [13].

As shown in Figure 15, the maximum COV exceeds the input standard deviation
of the stochastic process in the case of negative perfect correlation, while it is about
75% in the case of no correlation. However, in case of positive perfect correlation
(Figure 15c), the response COV of natural frequency of FGM beam is small enough
to be ignored. These results can easily be understood because the stiffness and mass
matrix of each elements in Eq. (18) increase or decrease with the same rate in the
case of positive perfect correlation. In case of negative perfect correlation, the ratio
of random parts in the stiffness and mass are relatively large since the random parts
have opposite sign, which makes the response variability large.

In the case, when we take the correlated multiple random material properties
into account, we also obtained the slight nonlinear pattern of variation of COV in
terms of COV of stochastic fields, as shown in Figure 16.

6. Conclusions

To evaluate response variability due to a single parameter of the random Young’s
modulus and multiple uncertain material properties, a formulation in the context of
stochastic finite element solution is suggested for the natural frequency of FGM
beam. In deriving the formula for the covariance of the response, modified power
spectral density and correlation function are defined by using the general formula
of random processes. The Monte Carlo simulation is performed employing the
statistical preconditioning scheme as a random process generation technique.
The local average method is employed instead of mid-point rule in Monte Carlo
simulation.

In FGM beam natural frequency, the response COV for correlation between a
random of single parameter and two uncertain parameters is observed. The coeffi-
cient of variation of natural frequency can only reach about 50% of the input
standard deviation of the stochastic process in a single parameter of the random
elastic modulus. However, the number of values is increased over 100% of the input
standard deviation of the stochastic process in multiple uncertain material proper-
ties, when the correlation distance tends to infinity. The results showed that the
COV of natural frequency of FGM beam in a single parameter of the random
Young’s modulus and multiple uncertain material properties achieved maximum
variability for d about 1.0.

There is a very small difference between deterministic natural frequency and
probabilistic natural frequency of FGM beam for the case of positive perfect corre-
lation. Also, the COV of natural frequency does not depend on the number of
elements, Young’s modulus ratio, and the ratio of non-uniformity parameter of
FGM beam. The importance of these parameters needs to be studied as a further
work.

A. Appendix

Hermite shape functions of beam finite element:

N1 ¼ x 1� 2
x
L
þ x2

L2

� �
; N2 ¼ 1� 3

x2

L2 þ 2
x3

L3 ; N3 ¼ x � x
L
þ x2

L2

� �
; N4 ¼ 3

x2

L2 � 2
x3

L3 :
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Stiffness matrix:

Ke ¼ D11

L3

6 b2 þ b1ð Þ 2 b2 þ 2b1ð ÞL �6 b2 þ b1ð Þ 2 2b2 þ b1ð ÞL
b2 þ 3b1ð ÞL2 �2 b2 þ 2b1ð ÞL b2 þ b1ð ÞL2

6 b2 þ b1ð Þ �2 2b2 þ b1ð ÞL
Sym: 3b2 þ b1ð ÞL2

2
6664

3
7775:

Mass matrix:

Me ¼ mL
840

24 3b2 þ 10b1ð Þ 2 b2 þ b1ð ÞL 54 b2 þ b1ð Þ �2 6b2 þ 7b1ð ÞL
3b2 þ 5b1ð ÞL2 2 7b2 þ 6b1ð ÞL �3 b2 þ b1ð ÞL2

24 10b2 þ 3b1ð Þ �2 15b2 þ 7b1ð ÞL
Sym: 5b2 þ 3b1ð ÞL2

2
6664

3
7775:
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Chapter 5

Development of Functionally 
Gradient Cu-Sn-Ni Alloy Using 
GTA Heat Source
Cherian Paul and Ramasamy Sellamuthu

Abstract

The impact of nickel content on surface hardness, microstructure and wear prop-
erties of surface alloyed Cu-10Sn bronze composite was examined in this chapter. 
Gas Tungsten Arc (GTA) was utilized as the heat source for the surface alloying/
modification process. The surface modification process was carried out on bronze 
samples coated with various Nickel coating thicknesses. Vickers hardness tester was 
used to measure the surface hardness as well as the hardness along the depth of the 
modified layer and wear rate was measured using a pin-on-disc tribometer. The Ni 
concentration profiling was carried out using EDAX. Surface modification process 
resulted in the formation of a layered functionally graded bronze alloy. The average 
grain size was found to reduce upon surface modification process. Ni addition was 
observed to increase the hardness and reduce wear rate for the modified samples.

Keywords: nickel profile, heat source, functionally graded material, FGM,  
hardness, wear behavior, surface modification

1. Introduction

Bronze, owing to its superior wear resistance is generally treated as one of 
the most commonly used engineering materials mainly as a bearing material in 
aerospace, automotive as well as industrial applications. Researches are being 
conducted on application of traditional coating methods like PVD, CVD, sputter 
deposition, electroplating, etc., for improving the surface properties of bronze. 
Surface modification process (SMP) has become an emerging technique to replace 
the traditional coating processes to improve the tribological properties of ferrous 
as well as non-ferrous alloys. In SMP, a heat source is used to melt the substrate 
surface and thereby a molten pool is formed. Then, the heat source is progressively 
moved along the length of the substrate so that, upon solidification a modified 
layer will be formed. In the case of fixed heat source, substrate will be moved. The 
major advantage of using SMP is that, the modified layer formed after solidifica-
tion is integral to the substrate Benkisser et al. [1]. The applications of the alloys 
can be extended to ship propellers, sub-sea weapon ejection system, pumps, 
bearings and bushes as well. The drawback of traditional coatings getting delami-
nated on repeated cycles of operation can be omitted by using SMP. The formation 
of a functionally graded material (FGM) can be expected as a result of SMP. Since 
FGM is characterized by the gradual variation in composition and structure over 
volume, SMP with alloying elements results in the formation of an FGM. Wear 
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Process variable Value Unit

Current 200 A

Electrode diameter 2.4 mm

Arc length 1.5 mm

Electrode angle 180 °

Traverse speed 1 mm/s

Argon flow rate 12 l/min

Table 1. 
GTA process variables.

Figure 1. 
Surface modification process.

Figure 2. 
Experimental setup.
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resistance, hardness, corrosion resistance, thermal conductivity, etc., of various 
alloys can be improved by the application of SMP. C Paul [2]. A schematic of SMP 
is shown in Figure 1.

This chapter discusses an investigation on the effect of Ni content on the hard-
ness, the wear rate and the coefficient of friction of the surface alloyed Cu-Sn 
bronze alloy. As no previous works have been reported in the literature on the effect 
of Ni content on the hardness and the wear behavior of the surface alloyed bronze 
alloy, the present research work is undertaken. In the present study, the Sn con-
tent of the alloy was kept constant at 10 wt % and the Ni content was varied. The 
bronze substrates are coated with Ni of varying coating thickness (80, 120, 160 and 
200 μm) using electroplating technique. The surface alloying process was carried 
out on the Cu-Sn bronze alloy coated with Ni. The GTA was used as the heat source. 
The GTA process variables, current (I), electrode diameter (eΦ), arc length (l), 
electrode angle (eθ), traverse speed (u) and argon flow rate are kept constant dur-
ing the surface alloying process. The GTA process variables used in this study are 
reported in Table 1. The Ni concentration profiling was carried out for the surface 
alloyed samples. The Ni concentration was measured on the surface as well as along 
the depth of the modified layer formed in the surface alloying process using EDAX 

Figure 3. 
Cu-Sn alloy with and without Ni coating.

Figure 4. 
Cu-Sn alloy surface modified with Ni.
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analysis. Microstructural examination, hardness measurement and wear measure-
ments were carried out for the substrate and for the specimen surface alloyed with 
Ni. Figure 2 shows the experimental setup.

Figure 3 shows the Cu-Sn alloy substrate with and without Ni coating and 
Figure 4 shows the surface modified Cu-Sn-Ni alloy.

2. Microstructural examination

A typical dendritic structure was observed in the as-cast substrate of Cu-10Sn 
bronze alloy as shown in Figure 5 and the microstructure of the Ni surface alloyed 
Cu-10Sn alloy is shown in Figure 6.

It can be observed from Figure 6 that the structure is very fine as opposed to 
a coarse structure observed in Figure 5 and therefore it can be concluded that 
the grain refinement occurs as a result of the surface alloying process [3]. This 
refinement is due to the fast cooling experienced during solidification in the 
surface alloying process. A similar fine grained microstructure was observed for 
all the other Ni alloyed specimens also. Yilbas et al. [4, 5] studied the effect of 
laser surface modification treatment of aluminum bronze (Cu-9%Al-3%Fe) with 

Figure 5. 
As-cast Cu-Sn.

Figure 6. 
Ni surface alloyed Cu-Sn.
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B4C and reported that fine grains are formed at the laser treated surface in the 
surface modification process because of high cooling rate. Kac et al. [6] studied 
the structure and properties of surface alloyed aluminum bronze (Cu-10%Al-
4%Fe-2%Mn) with Ti as the alloying element using laser heat source. They 
reported that a very fine microstructure was formed in the rapid solidification 
experienced in the laser process. Viswanadham et al. [7] studied the injection of 
TiC particles into aluminum bronze (Cu-7%Al-3%Fe-1.5%Mn) using the laser 
as the heat source. They have reported that the modified layer in the laser treated 
specimen was found to be dense and highly uniform when compared to the 
untreated specimen. Majumdar and Manna [8] carried out the surface alloying 
of pure Cu with Cr using the laser as the heat source and they have evaluated the 
microstructure resulting from the surface alloying process. They reported that 
the microstructure of the alloyed zone changed from coarse dendritic for the 
substrate to a fine dendritic structure in the surface alloying process. It can be 
concluded that the result obtained in the present study is consistent with that of 
the previous studies.

3. Ni concentration profile

The Ni concentration on the surface of the modified layer formed in the surface 
alloying process was measured using the EDAX analysis. The concentration along 
the depth of the modified layer was also measured. Figure 7 shows the points where 
the Ni concentration was measured. The Ni peaks can be observed in the EDS 
spectrum for all the surface alloyed specimen and the spectrum for 200 μm Ni is 
shown in Figure 8.

Further, the results obtained by the EDAX analysis are reported in Table 2.
The Ni concentration values (wt %) reported in Table 2 are plotted against the 

distance along the depth of the modified layer. Figure 9 shows the Ni profiles for 
various coating thickness.

It can be observed from Figure 9 that the Ni concentration is found to be the 
maximum on the surface of the modified layer for all the coating thickness. The Ni 
concentration decreases along the depth of the modified layer for all the coating 
thickness. It can be clearly observed that a gradient exists in the Ni concentration 
profile.

Figure 7. 
Ni concentration measurement points.
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4. Micro-hardness

The surface hardness values of the substrate and the surface alloyed specimens 
with varying Ni concentration were measured. Several readings were taken at 

Depth from the top surface (mm) Ni concentration for various coating thicknesses (wt %)

80 μm 120 μm 160 μm 200 μm

0 5.03 8.53 13.61 17.81

0.3 4.9 8.39 12.92 14.88

0.6 4.48 7.15 10.18 13.65

0.9 3.26 6.46 7.86 10.41

1.2 2.95 5.83 6.85 7.35

1.5 2.15 4.36 5.02 5.89

1.8 0.87 2.48 3.15 4.26

Table 2. 
Ni concentration along the depth of the modified layer for four coating thickness.

Figure 8. 
EDS spectrum for 200 μm Ni coated samples.

Figure 9. 
Ni concentration profile.
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different locations and an average value was calculated. The surface hardness 
increased from 120 HV for the substrate to 485 HV for the specimen surface alloyed 
with a Ni coating thickness of 200 μm. The average surface hardness values of the 
substrate and the Ni surface alloyed specimens are reported in Table 3.

The variation in the surface hardness with the Ni concentration is shown in 
Figure 10. It can be observed that the hardness increases with an increase in the Ni 
concentration. Ni contributes significantly to the hardness of the Cu-10Sn bronze 
alloy. The increase in the hardness is attributed to the presence of Ni in the solid 
solution. Hence, the hardening mechanism is solid solution strengthening.

Hardness values are measured at different points along the depth of the modi-
fied layer and are reported in Table 4 and are represented graphically in Figure 11.

The hardness is found to decrease along the depth direction for all the surface 
alloyed specimen as shown in Figure 11. It can be concluded that a gradient exists in 
the hardness profile along the depth direction. The gradient so observed is attrib-
uted to the variation in the Ni concentration along the depth of the modified layer 
(refer to Table 2). The hardness is found to be the maximum for a concentration 
of 17.8 wt % Ni. It can be inferred that the hardness on the surface of the modified 
layer formed in the surface alloying process can be controlled by controlling the 
Ni concentration. Kac et al. [6] studied the structure and properties of Cu-10%Al-
4%Fe-2%Mn bronze with an addition of Ti on the surface using laser as the heat 
source. They reported that a gradient exists in hardness along the depth direction of 
the modified layer. The observation obtained is consistent with that of Kac et al. [6].

Figure 12 is a bar chart showing the hardness values obtained for the substrate, 
surface refined and the Ni surface alloyed specimens. It can be observed that the 

Alloy Ni coating thickness (μm) wt % Ni Hardness (HV0.1)

Substrate Surface alloyed with Ni

Cu-10Sn 80 5.03 120 326

Cu-10Sn 120 8.53 120 379

Cu-10Sn 160 13.61 120 418

Cu-10Sn 200 17.81 120 485

Table 3. 
Hardness values.

Figure 10. 
Hardness variation with Ni concentration.
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Depth (mm) Hardness for various Ni coating thickness (HV0.1)

80 μm 120 μm 160 μm 200 μm

0 326 379 418 485

0.25 289 361 410 478

0.5 268 347 389 431

0.75 248 311 365 399

1 201 289 321 347

1.25 189 240 266 314

1.5 166 201 227 269

1.6 154 182 213 244

1.8 140 162 197 223

1.85 120 147 184 120

1.9 120 120 120 120

Table 4. 
Hardness along the depth of the modified layer for various Ni coating thickness.

Figure 11. 
Hardness profile.

Figure 12. 
Hardness values—substrate, surface refined and Ni surface alloyed specimen.
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surface refining process and the surface alloying process significantly increases the 
hardness of the alloy. Increase in hardness observed in the surface refining process is 
attributed to the formation of fine grained microstructure due to rapid solidification 
in the surface refining process. However, the grain refinement occurs in the surface 
alloying process as shown in Figure 6. The addition of Ni in the surface alloying 
process also contributes to the improvement in the hardness of the alloyed specimen 
as shown in Figure 11. Hence, the increase in hardness is attributed to the grain 
refinement occurring in the surface alloying process and also to the Ni addition.

5. Wear behavior

A typical height loss vs. time plot for the Cu-10Sn modified alloy is shown in 
Figure 13. It can be observed that the height loss increases linearly with the sliding 
time. This behavior is in agreement with the results reported by Singh et al. [9] in 
the bulk alloys.

The wear results obtained for the substrate and the Ni surface alloyed samples 
are reported in Table 5.

It can be observed that the wear rate reduced significantly after surface alloying 
with Ni. The reduction in the wear rate is attributed to the increase in the hardness 
after Ni addition.

Figure 14 is a bar chart showing the variation in the wear rate with the Ni con-
centration. It can be observed that the wear rate decreases with an increase in the 
Ni concentration. The minimum wear rate was obtained for the 17.8 wt % Ni. It can 
be concluded that the wear rate of the Cu-Sn bronze alloy can be reduced by surface 
alloying with Ni. The increased hardness due to the Ni addition is the reason behind 
the reduction in the wear rate.

Figure 15 is a bar chart showing the wear rate obtained for the substrate, surface 
refined and the Ni surface alloyed specimens.

It can be observed from Figure 15 that the surface refining process decreases 
the wear rate marginally and the surface alloying process remarkably decreases the 
wear rate of the Cu-10Sn bronze alloy. The reduction in the wear rate observed in 
the surface refining process is due to the increase in the hardness as a result of the 
grain refinement due to the faster cooling rate experienced. Further, it is to be noted 
that the refinement in the grain structure also occurs in the surface alloying process 

Figure 13. 
A typical wear plot.
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Figure 13. 
A typical wear plot.
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as discussed earlier. However, the Ni addition significantly contributes to the 
increase in the hardness that reduces the wear rate of the surface alloyed specimen. 
Hence, the reduction in the wear rate is attributed to both the grain refinement 
occurring in the surface alloying process and the Ni addition.

A typical image showing the wear tracks after the dry sliding test on pin-on-disc 
wear tester for the Ni surface alloyed specimen is shown in Figure 16.

It can be observed from Figure 16 that the wear mechanism is of adhesive  
type. Zhang et al. [10] studied the dry sliding wear behavior in the bulk Cu-15Ni-
8Sn alloy. They reported that the adhesive wear took place under the dry sliding test 

Substrate alloy Ni coating thickness (μm) Wear rate (×10−4 mm3/m)

Substrate Surface alloyed

Cu-10Sn 80 18.40 13.70

Cu-10Sn 120 18.40 8.40
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Wear rate—substrate, surface refined and surface alloyed specimens.
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Figure 16. 
Wear tracks.

conditions. It is to be noted that the compositions of the modified layer in this study are 
similar to the Cu-15Ni-8Sn alloy that was used in the study of Zhang et al. Therefore, 
the observation in the present study is consistent with that of Zhang et al. [11].

6. Coefficient of friction

Frictional force vs. time plot of Ni Surface Alloyed Cu-10Sn alloy is shown in 
Figure 17. The same trend was found for all the other Ni Surface alloyed specimens.

It can be noticed that the frictional force becomes constant after a short period 
of time and remains as such. The rapid increase in frictional force found initially 
is due to the uneven contact between the modified specimen and counter face 
material. The frictional force remains constant once perfect contact is achieved. A 
typical plot of coefficient of friction vs. time for the surface alloyed Cu-10Sn alloy 
is shown in Figure 18. The plot shows both transient period and single steady-state 
regime. The reasons for the transient behavior may be the effect of work-hardening 
and/or accumulation of debris as reported by Singh et al. [9].

The coefficient of friction obtained in this study for the substrate and the 
surface alloyed Cu-10Sn alloys are reported in Table 6. An average value of 0.23 was 
obtained as frictional coefficient after surface alloying process.

Figure 17. 
Frictional force vs. time plot.
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Figure 18. 
COF vs. time plot.

Substrate alloy Ni coating thickness (μm) Coefficient of friction

Substrate Surface alloyed

Cu-10Sn 80 0.27 0.24

Cu-10Sn 120 0.27 0.22

Cu-10Sn 160 0.27 0.23

Cu-10Sn 200 0.27 0.22

Table 6. 
Frictional coefficients for substrate and surface alloyed specimens.

Substrate alloy Ni coating thickness (μm) Hardness (HV0.1) Coefficient of friction

Cu-10Sn 80 326 0.24

Cu-10Sn 120 379 0.22

Cu-10Sn 160 418 0.23

Cu-10Sn 200 485 0.22

Table 7. 
Coefficient of friction with hardness of the alloys.

Figure 19. 
COF variation with hardness.
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The hardness values and the coefficient of friction of surface alloyed Cu-10Sn 
bronze alloys are reported in Table 7.

Figure 19 shows the variation in coefficient of friction with hardness for the 
Cu-10Sn bronze alloys surface alloyed with Ni. It can be inferred that the COF 
remains almost a constant value irrespective of the hardness.

7. Conclusions

Cu-10Sn Bronze alloy was Surface Alloyed with Ni and a functionally graded 
Cu-Sn-Ni alloy with superior surface hardness and wear resistance was developed. 
Based on the results of this investigation, the following conclusions are drawn:

• Refinement in grain structure occurs in the surface alloying process.

• A gradient exists in the Ni concentration profile along the depth direction of 
the modified layer formed in the surface alloying process.

• Hardness can be significantly improved by surface alloying with Ni.

• A gradient exists in the hardness profile along the depth direction of the modi-
fied layer formed in the surface alloying process.

• Hardness on the surface can be easily controlled by controlling the Ni concen-
tration on the surface of the modified layer.

• The wear rate was found to decrease with increase in hardness, a finding 
consistent with Archard’s theory and that of the previous studies.

• Addition of Ni is found to be highly effective in increasing the hardness of the 
parent substrate and reducing the wear rate when compared to the addition of 
other alloying elements like Ti, TiC and Cr.

• The wear behavior is found to be adhesive in nature.

• The Coefficient of Friction of the Surface Alloyed specimen is found to remain 
constant irrespective of the hardness.
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Chapter 6

Axisymmetric Indentation
Response of Functionally Graded
Material Coating
Tie-Jun Liu

Abstract

In this chapter, the indentation response of the functionally graded material
(FGM) coating is considered due to the contact between the coating and axisym-
metric indenter. The mechanical properties of FGM coating is assumed to vary
along the thickness direction. Three kinds of models are applied to simulate the
variation of elastic parameter in the FGM coating based on the cylindrical coordi-
nate system. The axisymmetric frictionless and partial slip contact problems are
reduced to a set of Cauchy singular integral equations that can be numerically
calculated by using the Hankel integral transform technique and the transfer matrix
method. The effect of gradient of coating on the distribution of contact stress is
presented. The present investigation will provide the guidance for the indentation
experiment of coating.

Keywords: functionally graded material, coating, indentation, axisymmetric
contact

1. Introduction

Functionally graded material (FGM) [1] which is new kind of nonhomogeneous
composite material has many predominant properties, so it has been widely used in
many fields. In recent years, many researchers have conducted the experiment to
prove that FGM used as coatings can resist the contact deformation and reduce the
interface damage [2], so it is very important to study the indentation response of
FGM coating. Because FGM are composites whose material properties vary gradu-
ally along a coordinate axis, the governing equations which represent the mechan-
ical behaviors of the materials are very difficult to solve. Researchers usually
describe the properties of FGM according to some specific functional forms such as
exponential functions and power law functions of elastic modulus [3, 4]. By
assuming the elastic modulus of FGM varying as exponential function form, Guler
and Erdogan [5, 6] studied the two-dimensional contact problem of functionally
graded coatings. Liu et al. [7, 8] investigated the axisymmetric contact problem of
FGM coating and interfacial layer with exponentially varying modulus by using the
singular integral equation. The axisymmetric problems for a nonhomogeneous
elastic layer in which the shear modulus follows the power law function are taken
into account by Jeon et al. [9]. Because solving the controlling equations of FGM is
difficult, the contact problem of FGM is limited to assume the elastic modulus
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varying as some specific functional forms. To eliminate this disadvantage, Ke and
Wang [10, 11] applied the linear multilayered (LML) model to simulate the FGM
with arbitrarily varying elastic parameter. Based on the model, some two-
dimensional contact problems are studied. The axisymmetric contact problem of
FGM coating with arbitrary spatial variation of material properties is considered by
making use of the extended linear multilayered model [12, 13]. Recently, a piece-
wise exponential multilayered (PWEML) model [14] is presented to solve the
frictionless contact problem of FGM with the shear modulus of the coating varying
in the power law form. Subsequently, Liu and Li [15] applied the model to solve the
two-dimensional adhesive contact problem.

When two bodies are brought together under the applied force, contact occurs at
interface. Hertz [16] first considers the frictionless contact problem between elastic
bodies. Researchers obtained the classical solution to the indentation problem under
the flat, cylindrical, and cone punch based on Hertz’s theory [17]. The contact
tractions and displacement field can be given to characterize the mechanical prop-
erties of various materials. Liu et al. [7, 12, 14] solved the axisymmetric frictionless
contact problem for FGM coating by using the singular integral equation. They
discussed the effect of the gradient of FGM coating on the indentation response.
Because the materials of the two contact solids are dissimilar, the slip will take place
at the contact surface. If slip is opposed by friction, the contact region is divided
into two parts: the stick region and the slip region. Spence [18] gives the contact
stress fields in homogeneous materials by assuming a self-similarity at each stage of
finite friction contact when the normal load monotonically increases. Ke and Wang
[19] solved the two-dimensional contact problem with finite friction for FGM
coating. Liu et al. [13] considered the axisymmetric partial slip contact problem of a
graded coating. When the coefficient of friction is sufficiently large, slip might be
prevented entirely. The self-similar solution to nonslip contact problems with
incremental loading was considered by Spence [20]. Goodman [21] investigated the
axisymmetric contact problem with full stick when elastically dissimilar spheres are
pressed together. Mossakovski [22] studied contact with adhesion for the elastic
bodies under condition of adhesion. Norwell et al. [23] adopt an iteration method to
solve the coupled equations which can describe the partial slip contact problem.

In this chapter, the axisymmetric frictionless and partial slip contact problems for
FGM coating are considered. The basic formulation for nonhomogeneous material
layer with elastic parameter varying along the thickness direction is given in Section
2. Based on the basic formulations for nonhomogeneous layer, three types of compu-
tational model for FGM coating are introduced in Section 3 for axisymmetric contact
problem. The displacement and stress components in the transform domain are
gained by using the Hankel transform technology and transfer matrix method. In
Section 4, we will investigate the solution for the axisymmetric frictionless and partial
slip contact problems. The indentation response of FGM coating under frictionless
and frictional condition will be discussed in Section 5. Finally, we will depict some
conclusions on the axisymmetric indentation response of FGM coating.

2. Basic formulations for nonhomogeneous material layer

For the present axisymmetric problem, the strain components, stress-strain
relations, and the equilibrium equations in the radial and axial directions
disregarding the body forces are given by the following relations [7]:

εrr ¼ ∂u
∂r

, (1a)
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in which r and z are the variables of the cylindrical coordinate system; εrr, εθθ,
εzz, and εrz are the strain components; u and w are the displacement components in
the radial and axial directions; σrr, σθθ, σzz, and σrz are the stress components; λ zð Þ
and μ zð Þ are Lame’s constants which vary along the z-axis direction.

3. Computational models for FGM coating

The properties of nonnonhomogeneous material may vary arbitrarily along a
certain spatial direction, which makes the solution of contact problem very difficult
in mathematics. In the present work, we adopt three methods to model the axisym-
metric FGM layer based on the cylindrical coordinate system. First, exponential
function (EF) model [7] is used to assume the elastic modulus of the FGM layer that
varies as the exponential function. Second, the linear multi-layered (LML) model [12]
is applied to simulate the FGM layer with arbitrarily varying material modulus, and
Poisson’s ratio is chosen as 1/3. The model divided FGM layer into a series of sub-
layers in which the shear modulus varies as linear function form. The shear modulus
is taken to be continuous at the sub-interfaces and equal to their real values. Third,
the piecewise exponential multilayered (PWEML) model [14] is employed in model-
ing the functionally graded material layer with arbitrary spatial variation of material
properties. In this model, the functionally graded layer is cut into several sub-layers
where the elastic parameter varies according to the exponential function form. Three
types of computational model for FGM coating are the following.

3.1 Exponential function model

In Figure 1(a), the shear modulus of the functionally graded coating can be
described by

μ zð Þ ¼ μ0e
αz (4)
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εθθ ¼ u
r
, (1b)

εzz ¼ ∂w
∂z

, (1c)

2εrz ¼ ∂u
∂z

þ ∂w
∂r

: (1d)

σrr ¼ λ zð Þ þ 2μ zð Þð Þ ∂u
∂r

þ λ zð Þ u
r
þ ∂w

∂z

� �
, (2a)

σθθ ¼ λ zð Þ þ 2μ zð Þð Þ u
r
þ λ zð Þ ∂u

∂r
þ ∂w

∂z

� �
, (2b)

σzz ¼ λ zð Þ þ 2μ zð Þð Þ ∂w
∂z

þ λ zð Þ ∂u
∂r

þ u
r

� �
, (2c)

σrz ¼ μ zð Þ ∂u
∂z

þ ∂w
r

� �
: (2d)

∂σrr
∂r

þ ∂σrz
∂z

þ 1
r
σrr � σθθð Þ ¼ 0, (3a)

∂σrz
∂r

þ ∂σzz
∂z

þ 1
r
σrz ¼ 0: (3b)

in which r and z are the variables of the cylindrical coordinate system; εrr, εθθ,
εzz, and εrz are the strain components; u and w are the displacement components in
the radial and axial directions; σrr, σθθ, σzz, and σrz are the stress components; λ zð Þ
and μ zð Þ are Lame’s constants which vary along the z-axis direction.

3. Computational models for FGM coating

The properties of nonnonhomogeneous material may vary arbitrarily along a
certain spatial direction, which makes the solution of contact problem very difficult
in mathematics. In the present work, we adopt three methods to model the axisym-
metric FGM layer based on the cylindrical coordinate system. First, exponential
function (EF) model [7] is used to assume the elastic modulus of the FGM layer that
varies as the exponential function. Second, the linear multi-layered (LML) model [12]
is applied to simulate the FGM layer with arbitrarily varying material modulus, and
Poisson’s ratio is chosen as 1/3. The model divided FGM layer into a series of sub-
layers in which the shear modulus varies as linear function form. The shear modulus
is taken to be continuous at the sub-interfaces and equal to their real values. Third,
the piecewise exponential multilayered (PWEML) model [14] is employed in model-
ing the functionally graded material layer with arbitrary spatial variation of material
properties. In this model, the functionally graded layer is cut into several sub-layers
where the elastic parameter varies according to the exponential function form. Three
types of computational model for FGM coating are the following.

3.1 Exponential function model

In Figure 1(a), the shear modulus of the functionally graded coating can be
described by

μ zð Þ ¼ μ0e
αz (4)
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where α ¼ h�1
0 log μ0=μ ∗ð Þ is a constant characterizing the material inhomoge-

neity with μ0 being the value of μ zð Þ at the surface, i.e., μ0 ¼ μ h0ð Þ. μ0 and μ ∗ are
related by

μ0 ¼ μ ∗ eαh0 (5)

Substituting Eqs. (2) and (5) into Eq. (3), we obtain

kþ 1ð Þ ∂
2u
∂r2

þ 1
r
∂u
∂r

� 1
r2
uþ ∂

2w
∂r∂z

� �
þ k� 1ð Þα ∂u

∂z
þ ∂w

∂r

� �
þ k� 1ð Þ ∂

2u
∂z2

� ∂
2w

∂r∂z

� �

¼ 0,

(6a)

kþ 1ð Þ ∂
2u

∂r∂z
þ 1

r
∂u
∂z

þ ∂
2w
∂z2

� �
� k� 1ð Þ ∂

2u
∂r∂z

� ∂
2w
∂r2

� �
� k� 1ð Þ

r
∂u
∂z

� ∂w
∂r

� �

þ 3� kð Þα ∂u
∂r

þ u
r

� �
þ kþ 1ð Þα ∂w

∂z
¼ 0

(6b)

where k ¼ 3� 4ν and ν is Poisson’s ratio.
In order to solve Eq. (6), we use the technique of Hankel integral transform.

The Hankel transform and its inversion are defined as

〈 ~ω s, zð Þ〉p ¼
ð∞

0

ω s, zð ÞrJp srð Þdr, (7a)

ωp r, zð Þ ¼
ð∞

0

〈 ~ω s, zð Þ〉psJp srð Þds (7b)

where the bar � indicates Hankel transform; 〈〉p is the pth-order Hankel
transform; and Jp is the pth-order Bessel function of the first kind.

By using the Hankel transform and definingD ¼ d=dz, Eq. (6) can be expressed as

k� 1ð ÞD2 þ α k� 1ð ÞD� kþ 1ð Þs2� �
〈~u〉1 � 2sDþ αs k� 1ð Þf g〈 ~w〉0 ¼ 0, (8a)

Figure 1.
The linear mutli-layered model for the functionally graded coating (a) and the cylindrical coordinate
system (b).
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2sDþ α 3� kð Þsf g〈~u〉1 þ kþ 1ð ÞD2 þ α kþ 1ð ÞD� k� 1ð Þs2� �
〈 ~w〉0 ¼ 0, (8b)

The solution of the differential Eqs. (8) is given by [7]

〈~u〉1 ¼ A3 sð Þem1z þ A4 sð Þem2z þ A5 sð Þem3z þ A6 sð Þem4z (9a)

〈 ~w〉0 ¼ A3 sð Þa1em1z þ A4 sð Þa2em2z þ A5 sð Þa3em3z þ A6 sð Þa4em4z (9b)

where

ai ¼ � 2smi þ sα 3� kð Þ
kþ 1ð Þmi

2 þ α kþ 1ð Þmi � k� 1ð Þs2 , i ¼ 1, ::…, 4ð Þ

and

m1 ¼ � α

2
þ 1
2

α2 þ 4s2 þ i4

ffiffiffiffiffiffiffiffiffiffiffi
3� k
kþ 1

r
αs

( )1=2

,

m2 ¼ � α

2
� 1
2

α2 þ 4s2 þ i4

ffiffiffiffiffiffiffiffiffiffiffi
3� k
kþ 1

r
αs

( )1=2

,

m3 ¼ � α

2
þ 1
2

α2 þ 4s2 � i4

ffiffiffiffiffiffiffiffiffiffiffi
3� k
kþ 1

r
αs

( )1=2

,

m4 ¼ � α

2
� 1
2

α2 þ 4s2 � i4

ffiffiffiffiffiffiffiffiffiffiffi
3� k
kþ 1

r
αs

( )1=2

:

According to Hooke’s law and strain-displacement relations, stress components
may be expressed as

κ � 1
μ zð Þ 〈~σzz〉0 ¼

X4
i¼1

κ þ 1ð Þmiai þ 3� kð Þsf gAiþ2emiz (10a)

1
μ zð Þ 〈~σrz〉1 ¼

X4
i¼1

mi � aisf gAiþ2emiz (10b)

For a homogeneous layer without the gradient, the gradient index α in Eqs. (9)
and (10) equals to 0.

3.2 Linear multi-layered model

Consider the linear multi-layered model shown in Figure 1. The shear modulus of
the functionally graded coating can be described by an arbitrary continuous func-
tion of z, μ zð Þ, with boundary values μ h0ð Þ ¼ μ0. Poisson’s ratio v is taken as 1/3. The
linear multilayered model divides functionally graded coating into N sub-layers.
The shear modulus μ zð Þ in each sub-layer is assumed to take the following form:

μ zð Þ≈ μ j zð Þ ¼ c j 1þ z=b j
� � ¼ c j

z ∗
b j

� �
, h j ≤ z≤ h j�1, j ¼ 1, 2…N (11)

where z ∗ ¼ zþ b and μ j is equal to the real value of the shear modulus at the
sub-interfaces, z ¼ h j, i.e., μ j h j

� � ¼ μ h j
� �

, which lead to
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transform; and Jp is the pth-order Bessel function of the first kind.

By using the Hankel transform and definingD ¼ d=dz, Eq. (6) can be expressed as
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Figure 1.
The linear mutli-layered model for the functionally graded coating (a) and the cylindrical coordinate
system (b).
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For a homogeneous layer without the gradient, the gradient index α in Eqs. (9)
and (10) equals to 0.

3.2 Linear multi-layered model

Consider the linear multi-layered model shown in Figure 1. The shear modulus of
the functionally graded coating can be described by an arbitrary continuous func-
tion of z, μ zð Þ, with boundary values μ h0ð Þ ¼ μ0. Poisson’s ratio v is taken as 1/3. The
linear multilayered model divides functionally graded coating into N sub-layers.
The shear modulus μ zð Þ in each sub-layer is assumed to take the following form:

μ zð Þ≈ μ j zð Þ ¼ c j 1þ z=b j
� � ¼ c j

z ∗
b j

� �
, h j ≤ z≤ h j�1, j ¼ 1, 2…N (11)

where z ∗ ¼ zþ b and μ j is equal to the real value of the shear modulus at the
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� � ¼ μ h j
� �

, which lead to

99

Axisymmetric Indentation Response of Functionally Graded Material Coating
DOI: http://dx.doi.org/10.5772/intechopen.89312



b j ¼
μ j�1h j � μ jh j�1

μ j � μ j�1
, (12a)

c j ¼
μ j

1þ h j=b j
: (12b)

As in [12], introduces two potential functions to write the displacement compo-
nents u j and wj in each sub-layer:

u j ¼ zþ b j
� �

∂f j=∂rþ ∂ϕ j=∂r (13a)

wj ¼ zþ b j
� �

∂f j=∂z� f j þ ∂ϕ j=∂z, h j ≤ z≤ h j�1
� �

: (13b)

By making use of Eqs. (1), (2), and (13), the equilibrium equations (3) are
represented as [12].

∇2ϕ j þ
1
z ∗

∂ϕ j=∂z ∗ ¼ 0, (14a)

∇2f j þ
1
z ∗

∂f j=∂z ∗ ¼ 1
2z ∗ 2 ∂ϕ j=∂z: (14b)

where

∇2 ¼ 1
r
∂ r∂=∂rð Þ=∂rþ ∂

2=∂z ∗ 2:

Then the displacement and stress components given by Eqs. (13) and (2) are
given by

u j ¼ z ∗ ∂f j=∂rþ ∂ϕ j=∂r, h j ≤ z≤ h j�1
� �

(15a)

wj ¼ z ∗ ∂f j=∂z ∗ � f j þ ∂ϕ j=∂z ∗ , h j ≤ z≤ h j�1
� �

(15b)

σrrj ¼ 2c j
z ∗
b j

� �
z ∗ ∂2f j=∂r

2 þ ∂
2ϕ j=∂r

2 � ∂f j=∂z ∗ � 1
2z ∗

∂ϕ j=∂z ∗
� �

, (16a)

σθθj ¼ 2c j
z ∗
b j

� �
z ∗

1
r
∂f j=∂rþ

1
r
∂ϕ j=∂r� ∂f j=∂z ∗ � 1

2z ∗
∂ϕ j=∂z ∗

� �
, (16b)

σzzj ¼ 2c j
z ∗
b j

� �
z ∗ ∂2f j=∂r

2 þ ∂
2ϕ j=∂z ∗

2 � ∂f j=∂z ∗ � 1
2z ∗

∂ϕ j=∂z ∗
� �

, (16c)

σrzj ¼ 2c j
z ∗
b j

� �
z ∗ ∂2f j=∂r∂z ∗ þ ∂

2ϕ j=∂r∂z ∗
� �

: (16d)

Applying Hankel transformation Eqs. (7a)–(14), we obtain the solutions for
displacement functions ϕ j and f j in each sub-layer:

〈 ~ϕ j〉0 ¼ Aj1 sð ÞI0 sz ∗ð Þ þ Aj2 sð ÞK0 sz ∗ð Þ, (17a)

〈 ~f j〉0 ¼ Aj3 sð ÞI0 sz ∗ð Þ þ Aj4 sð ÞK0 sz ∗ð Þ þ s
2

Aj1 sð ÞI1 sz ∗ð Þ � Aj2 sð ÞK1 sz ∗ð Þ� �

(17b)

where I0, I1, K0, and K1 are modified Bessel functions of the 0th and 1th order.
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Applying Hankel transform to Eqs. (15) and (16), we get

〈~urj〉1 ¼ �sz ∗ 〈 ~f j〉0 � s〈~ϕ j〉0

¼ � s2

2
z ∗ I1 sz ∗ð Þ � sI0 sz ∗ð Þ

� �
Aj1 sð Þ þ s2

2
z ∗K1 sz ∗ð Þ � sK0 sz ∗ð Þ

� �
Aj2 sð Þ

�sz ∗ I0 sz ∗ð ÞAj3 sð Þ � sz ∗K0 sz ∗ð ÞAj4 sð Þ
(18a)

〈 ~wj〉0 ¼ z ∗ d〈 ~f j〉0=dz ∗ � 〈 ~f j〉0 þ d〈~ϕ j〉0=dz ∗

¼ s2

2
z ∗ I0 sz ∗ð ÞAj1 sð Þ þ s2

2
z ∗K0 sz ∗ð ÞAj2 sð Þ þ z ∗ sI1 sz ∗ð Þ � I0 sz ∗ð Þf gAj3 sð Þ

þ �z ∗ sK1 sz ∗ð Þ � K0 sz ∗ð Þf gAj4 sð Þ
(18b)

〈~σzzj〉0 ¼ 2c j
z ∗
b j

� �
fs

3

2
z ∗ I1 sz ∗ð ÞAj1 sð Þ � s3

2
z ∗K1 sz ∗ð ÞAj2 sð Þ

þ z ∗ s2I0 sz ∗ð Þ � 2sI1 sz ∗ð Þ� �
Aj3 sð Þ þ z ∗ s2K0 sz ∗ð Þ þ 2sK1 sz ∗ð Þ� �

Aj4 sð Þg
(18c)

〈~σrzj〉1 ¼ 2c j
z ∗
b j

� �
f � s3

2
z ∗ I0 sz ∗ð Þ � s2

2
I1 sz ∗ð Þ

� �
Aj1 sð Þ

þ � s3

2
z ∗K0 sz ∗ð Þ þ s2

2
K1 sz ∗ð Þ

� �
Aj2 sð Þ � s2z ∗ I1 sz ∗ð ÞAj3 sð Þ þ s2z ∗K1 sz ∗ð ÞAj4 sð Þg

(18d)

3.3 Piece wise exponential multi-layered model

Piece wise exponential multi-layered model divides functionally graded coatings
into N sub-layers as shown in Figure 2. The shear modulus μ zð Þ in each sub-layer is
assumed to vary as an exponential function form:

μ zð Þ≈ μ j zð Þ ¼ a jeb jz, h j ≤ z≤ h j�1, j ¼ 1, 2,……N (19a)

μ h j
� � ¼ μ j h j

� �
, (19b)

Figure 2.
Piece wise exponential multi-layered model for the graded coating.
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(18d)

3.3 Piece wise exponential multi-layered model

Piece wise exponential multi-layered model divides functionally graded coatings
into N sub-layers as shown in Figure 2. The shear modulus μ zð Þ in each sub-layer is
assumed to vary as an exponential function form:

μ zð Þ≈ μ j zð Þ ¼ a jeb jz, h j ≤ z≤ h j�1, j ¼ 1, 2,……N (19a)

μ h j
� � ¼ μ j h j

� �
, (19b)

Figure 2.
Piece wise exponential multi-layered model for the graded coating.
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in which:

a j ¼ μ h j
� �

e� ln μ h jþ1ð Þ=μ h jð Þ½ �h j= h jþ1�h jð Þ, b j ¼ ln μ h jþ1
� �

=μ h j
� �� �

= h jþ1 � h j
� �

and h j is the z coordinate at the end of layer j. Poisson’s ratio in each sub-layer is
assumed to be a constant v j.

In each sub-layer ( j ¼ 1, 2,……N), the equilibrium equations are represented
as [14]
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(20b)

where u j and wj are the displacement components in the radial and z axial
directions in layer j and k j ¼ 3� 4v j.

The solution of differential equations (20) may be expressed as [7]

〈~u j s, zð Þ〉1 ¼ Aj1 sð Þem j1z þ Aj2 sð Þem j2z þ Aj3 sð Þem j3z þ Aj4 sð Þem j4z (21a)

〈 ~wj s, zð Þ〉0 ¼ Aj1 sð Þc j1em j1z þ Aj2 sð Þc j2em j2z þ Aj3 sð Þc j3em j3z þ Aj4 sð Þc j4em j4z (21b)

where Aj1–Aj4 are unknown constants to be solved in layer j.
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( )1=2
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2
� 1
2
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ffiffiffiffiffiffiffiffiffiffiffiffiffi
3� k j
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s
b js

( )1=2

:

According to Hooke’s law and strain-displacement relations, stress components
may be expressed as

k j � 1
μ j zð Þ 〈~σzzj s, zð Þ〉0 ¼

X4
i¼1

k j þ 1
� �

mjicji þ 3� kð Þs� �
Ajiemjiz (22a)
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1
μ j zð Þ 〈~σrzj s, zð Þ〉1 ¼

X4
i¼1

mji � cjis
� �

Ajiemjiz (22b)

4. Solution for the axisymmetric frictionless and partial slip contact
problem

In this section, we will solve axisymmetric contact and fretting problem for the
functionally graded coating bonded to the homogeneous half-space under the
spherical indenter. A functionally graded coated half-space subjected to normal and
radical distributed external loads is shown in Figure 3. The stresses and displace-
ments are continuous at the interfaces, z ¼ 0, which state.

u2 r, 0ð Þ � u1 r, 0ð Þ ¼ 0, (23a)

w2 r, 0ð Þ �w1 r, 0ð Þ ¼ 0, (23b)

σ2zz r, 0ð Þ � σ1zz r, 0ð Þ ¼ 0, (23c)

σ2rz r, 0ð Þ � σ1rz r, 0ð Þ ¼ 0: (23d)

And along the coating surface, z ¼ h0, we have

σ1zz r, h0ð Þ ¼ p rð Þ 0≤ r≤ að Þ, (24a)

σ1zz r, h0ð Þ ¼ 0 a< r<∞ð Þ, (24b)

σ1rz r, h0ð Þ ¼ q rð Þ 0≤ r≤ að Þ, (24c)

σ1rz r, h0ð Þ ¼ 0 a< r<∞ð Þ (24d)

in which i ¼ 1 refers to the graded coating and i ¼ 2 refers to the homogeneous
half-space. p rð Þ and q rð Þ are normal contact tractions and shear stress, respectively.

By using the Hankel integral transform technique and transfer matrix method,
the surface displacement components can be expressed as

Figure 3.
A functionally graded coated half-space subjected to normal and radical distributed external loads.
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in which:
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and h j is the z coordinate at the end of layer j. Poisson’s ratio in each sub-layer is
assumed to be a constant v j.

In each sub-layer ( j ¼ 1, 2,……N), the equilibrium equations are represented
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where u j and wj are the displacement components in the radial and z axial
directions in layer j and k j ¼ 3� 4v j.

The solution of differential equations (20) may be expressed as [7]

〈~u j s, zð Þ〉1 ¼ Aj1 sð Þem j1z þ Aj2 sð Þem j2z þ Aj3 sð Þem j3z þ Aj4 sð Þem j4z (21a)
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where Aj1–Aj4 are unknown constants to be solved in layer j.
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According to Hooke’s law and strain-displacement relations, stress components
may be expressed as

k j � 1
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4. Solution for the axisymmetric frictionless and partial slip contact
problem

In this section, we will solve axisymmetric contact and fretting problem for the
functionally graded coating bonded to the homogeneous half-space under the
spherical indenter. A functionally graded coated half-space subjected to normal and
radical distributed external loads is shown in Figure 3. The stresses and displace-
ments are continuous at the interfaces, z ¼ 0, which state.

u2 r, 0ð Þ � u1 r, 0ð Þ ¼ 0, (23a)

w2 r, 0ð Þ �w1 r, 0ð Þ ¼ 0, (23b)

σ2zz r, 0ð Þ � σ1zz r, 0ð Þ ¼ 0, (23c)

σ2rz r, 0ð Þ � σ1rz r, 0ð Þ ¼ 0: (23d)

And along the coating surface, z ¼ h0, we have

σ1zz r, h0ð Þ ¼ p rð Þ 0≤ r≤ að Þ, (24a)

σ1zz r, h0ð Þ ¼ 0 a< r<∞ð Þ, (24b)

σ1rz r, h0ð Þ ¼ q rð Þ 0≤ r≤ að Þ, (24c)

σ1rz r, h0ð Þ ¼ 0 a< r<∞ð Þ (24d)

in which i ¼ 1 refers to the graded coating and i ¼ 2 refers to the homogeneous
half-space. p rð Þ and q rð Þ are normal contact tractions and shear stress, respectively.

By using the Hankel integral transform technique and transfer matrix method,
the surface displacement components can be expressed as

Figure 3.
A functionally graded coated half-space subjected to normal and radical distributed external loads.
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w0 rð Þ ¼
ða

0

p tð Þt
ð∞

0

sM11 s, h0ð ÞJ0 stð ÞJ0 srð Þdsdtþ
ða

0

q tð Þt
ð∞

0

sM12 s, h0ð ÞJ1 stð ÞJ0 srð Þdsdt

(25a)

u0 rð Þ ¼
ða

0

p tð Þt
ð∞

0

sM21 s, h0ð ÞJ0 stð ÞJ1 srð Þdsdtþ
ða

0

q tð Þt
ð∞

0

sM22 s, h0ð ÞJ1 stð ÞJ1 srð Þdsdt

(25b)

where J0 :ð Þ and J1 :ð Þ are Bessel functions and

M11 s, h0ð Þ M12 s, h0ð Þ
M21 s, h0ð Þ M22 s, h0ð Þ

" #
¼ 1

2μ0
B3M,

M ¼ T1 h0 þ b1ð Þ½ � V1
� �

B½ � T1 h0 þ b1ð Þ½ � V1
� �� ��1

,

B3 ¼
0 1 0 0

1 0 0 0

� �
,C ¼ 1 0

0 1

� �
:

where Mij s, h0ð Þ is the kernel function (see Ref. [13]).
Considering the asymptotic behavior of Bessel functions for large arguments

[13], one may prove

lim
s!∞

sM11 s, h0ð Þ sM12 s, h0ð Þ
sM21 s, h0ð Þ sM22 s, h0ð Þ

� �
¼ α11 α12

α21 α22

� �
¼

1� v
μ0

1� 2v
2μ0

1� 2v
2μ0

1� v
μ0

2
664

3
775: (26)

Differentiation of Eq. (5) with respect to r and extension of the definition of the
unknown functions, p rð Þ and q rð Þ, into the range �a≤ r≤ 0 yields.

m1 rð Þ ¼ 1
2

ða

�a

p tð Þ tj jI11 r, tð Þ þ q tð Þ tj jI12 r, tð Þf gdtþ α1
π

ða

�a

p tð Þ
t� r

dtþ α1
π

ða

�a

p tð ÞH1 r, tð Þdt

� α2q rð Þ
(27a)

m2 rð Þ ¼ 1
2

ða

�a

q tð Þ tj jI22 r, tð Þ þ p tð Þ tj jI21 r, tð Þf gdtþ α1
π

ða

�a

q tð Þ
t� r

dtþ α1
π

ða

�a

q tð ÞH2 r, tð Þdt

þ α2p rð Þ
(27b)

where

m1 rð Þ ¼ ∂uz0 r, h0ð Þ
∂r

,m2 rð Þ ¼ 1
r
∂rur0 r, h0ð Þ

∂r
,Hi r, tð Þ ¼ hi r, tð Þ � 1ð Þ= t� rð Þ,
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Iij r, tð Þ ¼ �1ð Þi
ð∞

0

sMij s, h0ð Þ � αij
� �

sJ2�i srð ÞJ j�1 stð Þds, i ¼ 1, 2, j ¼ 1, 2ð Þ,

h1 r, tð Þ ¼ t=rj jE t=rð Þ, ð tj j< rj jÞ
t2=r2ð ÞE r=tð Þ � t2 � r2ð Þ=r2� �

K r=tð Þ, tj j> rj jð Þ
�

,

h2 r, tð Þ ¼ t2 � r2ð Þ= trj j� �
K t=rð Þ þ r=tð ÞE t=rð Þ, tj j< rj jð Þ

E r=tð Þ, tj j> rj jð Þ

�
,

with K :ð Þ and E :ð Þ being, respectively, the complete elliptic integrals of the first
and second kinds.

The system of the singular integrals, Eqs. (27a) and (27b), must be solved
subjected to the following condition:

P ¼ π

ða

�a

p tð Þtdt (28)

4.1 Frictionless contact problem of FGM coating

In this section, the axisymmetric frictionless contact problem between FGM
coatings and a rigid spherical punch is studied. As shown in Figure 4, an applied
force P is acted on the rigid spherical punch along the z-direction to form an indent
depth δ0 and a circular contact region with a radius a. The displacement boundary
condition in the contact region is expressed as

w r, h0ð Þ ¼ δ0 � r2=2R 0≤ r≤ að Þ (29)

Because the frictionless contact is considered, the shear traction q rð Þ is zero, and
the controlling equation is

m1 rð Þ ¼ 1
2

ða

�a

p tð Þ tj jI11 r, tð Þdtþ α1
π

ða

�a

p tð Þ
t� r

dtþ α1
π

ða

�a

p tð ÞH1 r, tð Þdt (30)

Figure 4.
FGM coating indented by a spherical indenter.
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with K :ð Þ and E :ð Þ being, respectively, the complete elliptic integrals of the first
and second kinds.

The system of the singular integrals, Eqs. (27a) and (27b), must be solved
subjected to the following condition:

P ¼ π
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p tð Þtdt (28)

4.1 Frictionless contact problem of FGM coating

In this section, the axisymmetric frictionless contact problem between FGM
coatings and a rigid spherical punch is studied. As shown in Figure 4, an applied
force P is acted on the rigid spherical punch along the z-direction to form an indent
depth δ0 and a circular contact region with a radius a. The displacement boundary
condition in the contact region is expressed as

w r, h0ð Þ ¼ δ0 � r2=2R 0≤ r≤ að Þ (29)

Because the frictionless contact is considered, the shear traction q rð Þ is zero, and
the controlling equation is

m1 rð Þ ¼ 1
2

ða
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Figure 4.
FGM coating indented by a spherical indenter.
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The Gauss-Chebyshev integration formula [24] is applied to solve Eqs. (28) and
(30) with the consideration of Eq. (29).

4.2 Partial slip contact problem with finite friction for FGM coating

Consider the axisymmetric partial slip contact problem as shown in Figure 5.
The normal surface displacement, uz0, along the coating interface, z = h0, is given by

uz0 rð Þ ¼ δ0 � r2=2R (31)

The inner stick region, r≤ b, and outer slip annulus, b≤ r≤ a, are shown in
Figure 5. According to Spence’s work [18], the radial displacement along the coating
interface in the stick region may be expressed as

ur0 rð Þ ¼ Cr2, r≤ bð Þ (32)

where C denotes the slop of the relative radial displacement gradient and is an
unknown constant. The Coulomb friction law is applied to describe the slip behav-
ior in the slip region. Then, the radial shear traction in the contact region is
represented as

q rð Þ ¼ q ∗ rð Þ � fp bð Þ r
b
, r≤ bð Þ, (33a)

q rð Þ ¼ �fp rð Þ, b≤ r≤ að Þ: (33b)

where f denotes the friction coefficient.
Finally, the partial slip contact problem with consideration of the boundary condi-

tions (31), (32), and (33) can be expressed according to the singular integral equations:

�α2q rð Þ þ α1
π

ða

�a

p tð Þ
t� r

dtþ α1
π

ða

�a

p tð ÞH1 r, tð Þdtþ 1
2

ða

�a

p tð Þ tj jI11 r, tð Þ þ q tð Þ tj jI12 r, tð Þf gdt

¼ �r=R,

(34a)

Figure 5.
A functionally graded coated half-space indented by a spherical indenter.
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α2p rð Þ þ α1
π

ða

�a

q tð Þ
t� r

dtþ α1
π

ða

�a

q tð ÞH2 r, tð Þdtþ 1
2

ða

�a

q tð Þ tj jI22 r, tð Þ þ p tð Þ tj jI21 r, tð Þf gdt

¼ 3C rj j
(34b)

The Goodman approximate method (uncoupled solution) [21] and the iteration
method (coupled solution) [13] are used to solve coupled singular integral
equation (34).

5. Indentation response of FGM coating under a spherical indenter

The indentation response of FGM coating under frictionless and frictional con-
dition will be presented in this section.

Firstly, the effects of the stiffness ratio μ0=μ ∗ on the distributions of the contact
pressure and the relation between indentation and applied force are investigated for
the frictionless contact problem. The exponential function model is applied to
obtain the results shown in Figures 6 and 7 [7]. The distribution of the dimension-
less contact pressure p rð Þ (a) and radial stress σrr rð Þ (b) on the surface of FGM
coating indented by a rigid spherical indenter for various stiffness ratio μ0=μ ∗
when R=h0 ¼ 10 and a=h0 ¼ 0:2 is shown in Figure 6. With the increase of μ0=μ ∗ ,
the contact pressure p rð Þ decreases. It can be observed that the tensile spike in the
distribution of σrr rð Þ as r ! a has clearly some implications regarding the initiation
and subcritical growth of surface cracks. Figure 7 presented the relation of P vs. a
and P vs. δ0. With the decrease of μ0=μ ∗ , the larger applied normal load is needed
to create the same contact region (a) and the same maximum indentation depth δ0
(b). The results give an indentation testing method to measure the stiffness of the
coating surface and the gradient of the coating.

Secondly, the linear multi-layered model is used to model the shear modulus of
the coating varying in the following power law form:

μ zð Þ ¼ μ ∗ þ μ0 � μ ∗ð Þ z=h0ð Þn, (35)

where n is a gradient index characterizing the gradual variation of the shear
modulus. In the following calculation, the LML model divided the FGM coating into

Figure 6.
Distribution of the dimensionless contact pressure p rð Þ (a) and radial stress σrr rð Þ (b) on the surface of the
graded coating loaded by a rigid spherical indenter for some selected values of the stiffness ratio μ0=μ ∗ with
R=h0 ¼ 10 and a=h0 ¼ 0:2.
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The Gauss-Chebyshev integration formula [24] is applied to solve Eqs. (28) and
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b
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q rð Þ ¼ �fp rð Þ, b≤ r≤ að Þ: (33b)

where f denotes the friction coefficient.
Finally, the partial slip contact problem with consideration of the boundary condi-

tions (31), (32), and (33) can be expressed according to the singular integral equations:
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Figure 5.
A functionally graded coated half-space indented by a spherical indenter.
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the contact pressure p rð Þ decreases. It can be observed that the tensile spike in the
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and P vs. δ0. With the decrease of μ0=μ ∗ , the larger applied normal load is needed
to create the same contact region (a) and the same maximum indentation depth δ0
(b). The results give an indentation testing method to measure the stiffness of the
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Secondly, the linear multi-layered model is used to model the shear modulus of
the coating varying in the following power law form:

μ zð Þ ¼ μ ∗ þ μ0 � μ ∗ð Þ z=h0ð Þn, (35)

where n is a gradient index characterizing the gradual variation of the shear
modulus. In the following calculation, the LML model divided the FGM coating into
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Distribution of the dimensionless contact pressure p rð Þ (a) and radial stress σrr rð Þ (b) on the surface of the
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six sub-layers. The axisymmetric indentation response for the frictionless contact
under the spherical indenter is considered.

Figure 8 shows the distributions of the contact pressure for some selected values
of n with μ0=μ ∗ = 1/8 and a=h0 ¼ 0:1 [12]. With the increase of n, the contact
pressure obviously increases. This behavior shows that the contact traction can be
improved by adjusting the gradient of the coating when the stiffness of the coating
surface keeps unchanged. When the FGM coating is indented by a conical indenter,
the relations of P vs. a (a) and P vs. δ0 (b) for some selected values of n with
μ0=μ ∗ = 1/8 are shown in Figure 9 [12]. To create the same contact region and the

Figure 7.
Relations of P vs. a (a) and P vs. δ0 (b) for some selected values of the stiffness ratio μ0=μ ∗ with R=h0 ¼ 10.

Figure 8.
Distribution of the dimensionless contact pressure σzz rð Þ (a) and radial stress σrr rð Þ (b) for some selected values
n with a=h ¼ 0:1 and R=h0 ¼ 10.

Figure 9.
Relations of P vs. a (a) and P vs. δ0 (b) for selected values of n with R=h ¼ 10.
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same maximum indentation depth δ0 (b), the larger applied normal load is needed
for larger values of n.

Thirdly, the effect of the variation of Poisson’s ratio on the frictionless contact
problem is considered by using piece wise exponential multi-layered model.
The shear modulus of FGM coating varies as power law form according to Eq. (35).
Poisson’s ratio of FGM coating is assumed to vary as the linear function along the
thickness as follows

v j ¼ v1 þ j� 1
N � 1

v ∗ � v1ð Þ, j ¼ 1, 2,……N (36)

where v1 and v ∗ are Poisson’s ratio for the first layer and homogeneous half-
space. v j denotes Poisson’s ratio in layer j. The contact pressure (a) and the relations
of P vs. a (b) for the different variation forms of Poisson’s ratio when v1 = 1/3 and
μ0=μ ∗ = 1/5 are given in Figure 10 [14]. It is assumed that Poisson’s ratio for the
FGM coating-substrate structure varies from 1/3 to 0.1 and varies from 1/3 to 0.5
according to Eq. (36). The results show that the variation of Poisson’s ratio along the
thickness has no significant impact on the contact pressure and the relation of force
contact region in axisymmetric contact problem when the Poisson’s ratio at the
upper surface of coating is fixed. Figure 11 presented the effect of value of Poisson’s
ratio on the contact pressure (a) and the relation of P vs. a (b) when Poisson’s ratio
in the coating-substrate structure is a constant (v j ¼ v) as shown in [14]. We can
observe that the value of Poisson’s ratio has a significant effect on the contact

Figure 10.
The contact pressure (a) and the relations of P vs. a (b) for the different variation form of the Poisson’s ratio
with v1 = 1/3 and μ0=μ ∗ = 1/5.

Figure 11.
The effect of the value of Poisson’s ratio on the contact pressure (a) and on the relation of P vs. a (b) with
μ0=μ ∗ = 1/5 while n = 0.2.
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same maximum indentation depth δ0 (b), the larger applied normal load is needed
for larger values of n.

Thirdly, the effect of the variation of Poisson’s ratio on the frictionless contact
problem is considered by using piece wise exponential multi-layered model.
The shear modulus of FGM coating varies as power law form according to Eq. (35).
Poisson’s ratio of FGM coating is assumed to vary as the linear function along the
thickness as follows

v j ¼ v1 þ j� 1
N � 1

v ∗ � v1ð Þ, j ¼ 1, 2,……N (36)

where v1 and v ∗ are Poisson’s ratio for the first layer and homogeneous half-
space. v j denotes Poisson’s ratio in layer j. The contact pressure (a) and the relations
of P vs. a (b) for the different variation forms of Poisson’s ratio when v1 = 1/3 and
μ0=μ ∗ = 1/5 are given in Figure 10 [14]. It is assumed that Poisson’s ratio for the
FGM coating-substrate structure varies from 1/3 to 0.1 and varies from 1/3 to 0.5
according to Eq. (36). The results show that the variation of Poisson’s ratio along the
thickness has no significant impact on the contact pressure and the relation of force
contact region in axisymmetric contact problem when the Poisson’s ratio at the
upper surface of coating is fixed. Figure 11 presented the effect of value of Poisson’s
ratio on the contact pressure (a) and the relation of P vs. a (b) when Poisson’s ratio
in the coating-substrate structure is a constant (v j ¼ v) as shown in [14]. We can
observe that the value of Poisson’s ratio has a significant effect on the contact

Figure 10.
The contact pressure (a) and the relations of P vs. a (b) for the different variation form of the Poisson’s ratio
with v1 = 1/3 and μ0=μ ∗ = 1/5.

Figure 11.
The effect of the value of Poisson’s ratio on the contact pressure (a) and on the relation of P vs. a (b) with
μ0=μ ∗ = 1/5 while n = 0.2.
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pressure. While the values of v obviously increase, the contact pressure is observed.
The results also show that the larger applied normal load is needed to create the
same contact region and the same maximum indentation depth δ0 for larger values
of v.

Finally, the axisymmetric contact problem of a functionally graded coated half-
space is indented by a rigid spherical punch in the case of the partial slip. The linear
multi-layered model is used to solve the problem.

The normal contact traction and radial tangential traction for some selected
values of the shear modulus ratio μ0=μ ∗ with P=μ ∗ h02 ¼ 4� 10�4 and f ¼ 0:16 are
shown in Figure 12 [14]. The solid lines correspond to the uncoupled solution, and
the scatter symbols correspond to the coupled solution. We can observe that con-
sideration of the coupling between the normal and tangential tractions may result in
the increase of the peak contact tractions but slight decrease of the contact tractions
near the edges of the contact region for a given shear modulus ratio μ0=μ ∗ . With
the increase of μ0=μ ∗ , the peak normal and tangential contact tractions increase.
Figure 12b also shows that the stick region and the contact radius decrease with
the increase of μ0=μ ∗ . This behavior provides a way for us to change the
distribution of the contact pressure by adjusting the stiffness of the coating surface.
Figure 13 presents the effects of n on the contact traction distributions with
P=μ ∗ h02 ¼ 4� 10�4 and f ¼ 0:16 [14]. With the increase of n, the peak normal
traction (Figure 13a) increases, and the peak tangential traction (Figure 13b)
decreases. This behavior provides a way for us to change the distribution of the

Figure 12.
Contact traction distributions for selected values of the shear modulus ratio μ0=μ ∗ with P=μ ∗ h02 ¼ 4� 10�4

and f ¼ 0:16: (a) p rð Þ and (b) q rð Þ.

Figure 13.
Contact traction distributions for selected values of n with P=μ ∗ h02 ¼ 4� 10�4 and f ¼ 0:16: (a) p rð Þ and
(b) q rð Þ.
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contact traction by adjusting the gradient of the coating while remaining the shear
modulus of the coating surface unchanged.

6. Conclusions

In this chapter, we introduced the axisymmetric indentation response for FGM
coating under frictionless and partial slip condition by using the three types of
computational models. The exponential function model can solve the axisymmetric
contact problem for FGM coating whose elastic modulus continuously varies, but it
cannot simulate FGM with arbitrarily varying properties. The linear multi-layered
model allows arbitrarily the variation of the material properties of FGM, but it
requires Poisson’s ratio which is 1/3. The Piece wise exponential multi-layered
model can simulate functionally graded coating with arbitrarily varying material
modulus with no limit to Poisson’s ratio, but numbers of sub-layers are larger. In
practice, the computational model is chosen according to properties of the problem.
Hankel integral transformation technology and transfer matrix method are used to
solve the axisymmetric contact problem of FGM coating based on the cylindrical
coordinate system. The results show that the contact behavior can be improved by
adjusting the gradient of FGM coating. The present investigation will be expected to
provide a guidance for design considerations and applications of FGM coating.
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contact traction by adjusting the gradient of the coating while remaining the shear
modulus of the coating surface unchanged.

6. Conclusions

In this chapter, we introduced the axisymmetric indentation response for FGM
coating under frictionless and partial slip condition by using the three types of
computational models. The exponential function model can solve the axisymmetric
contact problem for FGM coating whose elastic modulus continuously varies, but it
cannot simulate FGM with arbitrarily varying properties. The linear multi-layered
model allows arbitrarily the variation of the material properties of FGM, but it
requires Poisson’s ratio which is 1/3. The Piece wise exponential multi-layered
model can simulate functionally graded coating with arbitrarily varying material
modulus with no limit to Poisson’s ratio, but numbers of sub-layers are larger. In
practice, the computational model is chosen according to properties of the problem.
Hankel integral transformation technology and transfer matrix method are used to
solve the axisymmetric contact problem of FGM coating based on the cylindrical
coordinate system. The results show that the contact behavior can be improved by
adjusting the gradient of FGM coating. The present investigation will be expected to
provide a guidance for design considerations and applications of FGM coating.
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