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Foreword

It was in 2002, the first opportunity I had about being in touch with pressure well
test interpretations. At that time, I could not be more inspired knowing the person
from whose those words were coming from. That was exactly when I took my first
well testing class with Doctor Escobar who just came from finishing his doctoral
studies. Absolutely, he put the first stone of motivation and enthusiasm to end up
working close to him applying Tiab’s direct synthesis (TDS) technique to reservoir
with channels and long structures. My passion for the subject even increased when
publishing my first article from our research work in which we discovered a new
flow regime: parabolic flow, and later, we saw the importance of geometrical skin
factor which, so far, in spite of a long transition time, has not been yet incorporated
into commercial software.

Since that time and for about 15 years, as part of my role as a reservoir engineer,
definitely I could not be luckier, not only for sharing academic and professional
discussion but also having the chance to be influenced by his creativity and deep
thinking in different facets of his life. Dr. Escobar has been impacting the oil
industry along his extensive research work. Without counting the numerous situa-
tions that as a professor who sees students as human beings with feelings that can go
through multiple conditions of difficulties, can attest to the positive impact that as a
person he has had in our lives. It is why to write short words about him is such a
privilege to me.

As a reservoir engineer, I understand our challenge to describe, size, and develop
hydrocarbon deposits in an efficient way, but oil and gas remains trapped in areas
where we are restricted to have a direct recognition by our senses. We cannot see
them. Neither, we cannot touch them nor we cannot design them. It requires the
symbiosis between geologist and engineers to use their technical knowledge mixed
with a great portion of imagination, creativity, and innovation to create models that
help us to decrypt the way it will flow. This is the moment where Dr. Escobar
attributes and his research work in well testing analysis is reflected.

Well testing analysis is an invaluable and low-cost tool in reservoir characterization
that helps us to decode our reservoirs. From where we can obtain relevant infor-
mation to model and understand them. Questions like: how many wells have to be
drilled? How much hydrocarbon will they produce? What is the optimum
strategy to obtain the best recovery factor with the highest interest return rate?
Well, transient rate and pressure test analyses can be a contrivance for solving
these issues. And, much better when there exist techniques such as Tiab’s direct
synthesis (TDS), which allows us to make the interpretations in a direct and simpler
way, by using main features of the different flow regimes responses in combination
with simple equations to determine the parameters of interest. Escobar presents in
this book practical applications of this modern and revolutionary technique, helping
all types of petroleum engineers to understand the concept and its benefits. I wish
there were more examples, but for space-saving reasons, only the most practical
ones are presented.
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From this methodology I highlight the uncomplicated way to establish flow regimes 
types, diverse options to confirm the results, the simplicity and common sense of its 
calculations, and no need to use trial-and-error procedures, aspects that are not 
found in any other present methodology in the literature; however, the author in 
the book presents a comparison with other methodologies in an astonishing way. 

The work of Dr. Escobar represents an important contribution to the hydrocarbon 
industry in the field of reservoir characterization, where his research extending the 
scope of the TDS technique plays an important role. I have also had the opportunity 
to apply his results and interpretation procedures in different types of reservoir, 
attesting to its usefulness and the multiple advances over the last years where this 
technique can be applied to diverse reservoir characteristics and flow regimes. 

Enjoy it!!! 

Yuly Andrea Hernández 
Hocol S.A., Colombia1

Yuly Andrea Hernández is a young Petroleum Engineer currently working for Hocol S.A. since July 

2011. In 2004, she obtained a BSc degree diploma with honors in Petroleum Engineering under the 

author’s supervision and received a MBA degree in 2014. She worked first for Hocol S.A. from August 

2004 to September 2008 and went to Columbus Energy Sucursal Colombia from October 2008 to June 

2011. Then, she moved back to Hocol. Yuly Andrea has been a very active engineer and she has gained 

experience in all the subjects of reservoir engineering. She is very familiar with the current and 

sophisticated software used in the oil industry. She is a devoted user of the application of TDS Technique 

to her engineering work and actually has a couple of publications on this subject. 
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Abstract 

Well test interpretation is an important tool for reservoir characterization. There 
exist four methods to achieve this goal, which are as follows: type‐curve matching, 
conventional straight‐line method, non‐linear regression analysis, and TDS technique. 
The first method is basically a trial‐and‐error procedure; a deviation of a millimeter 
involves differences up to 200 psi and the difficulty of having so many matching charts. 
The second one, although very important, requires a plot for every flow regime, and 
there is no way for verification of the calculated parameters, and the third one has a 
problem of diversity of solutions but is the most used by engineers since it is automat-
ically made by a computer program. This book focuses on the fourth method that uses a 
single plot of the pressure and pressure derivative plot for identifying different lines and 
feature for parameter estimation. It can be used alone and is applied practically to all the 
existing flow regime cases. In several cases, the same parameter can be estimated from 
different sources making a good way for verification. Combination of this method along 
with the second and third is recommended and widely used by the author. 

TDS technique is quite versatile. The user finds the different flow regimes and, 
then, draws a line through it. From an arbitrary point on each flow regime, a given 
parameter can be calculated. Besides, the intersection point between the extrapolated 
flow regimes, although do not have a physical meaning, is excellent to find another 
reservoir parameter or the verification of others. For instance, well‐drainage area can 
be readily estimated from the intersect point formed between the radial flow regime 
and the late pseudosteady state period. Every time someone starts working using TDS 
technique, he or she never stops. The reader is invited to give it a try. 

Keywords: TDS technique, permeability, well‐drainage area, flow regimes, 
intersection points, transient pressure analysis, conventional analysis 
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Introduction 

Well testing is a valuable and economical formation evaluation tool used in the 
hydrocarbon industry. It has been supported by mathematical modeling, comput-
ing, and the precision of measurement devices. The data acquired during a well test 
are used for reservoir characterization and description. However, the biggest draw-
back is that the system dealt with is neither designed nor seen by well test inter-
preters, and the only way to make contact with the reservoir is through the well by 
making indirect measurements. 

Four methods are used for well test interpretation: (1) The oldest one is the 
conventional straight‐line method which consists of plotting pressure or the 
reciprocal rate—if dealing with transient rate analysis—in the y‐axis against a 
function of time in the x‐axis. This time function depends upon the governing 
equation for a given flow. For instance, radial flow uses the logarithm of time and 
linear flow uses the square root of time. The slope and intercept of such plot are 
used to find reservoir parameters. The main disadvantage of this method is the 
lack of confirmation and the difficulty to define a given flow regime. The method 
is widely used nowadays. (2) Type‐curve matching uses predefined dimensionless 
pressure and dimensionless time curves (some also use dimensionless pressure 
derivative), which are used as master guides to be matched with well pressure 
data to obtain a reference point for reservoir parameter determination. This 
method is basically a trial‐and‐error procedure which becomes into its biggest 
disadvantage. The method is practically unused. (3) Simulation of reservoir con-
ditions and automatic adjustment to well test data by non‐linear regression analy-
sis is the method widely used by petroleum engineers. This method is also being 
widely disused since engineers trust the whole task to the computer. They even 
perform inverse modeling trying to fit the data to any reservoir model without 
taking care of the actual conditions. However, the biggest weakness of this 
method lies on the none uniqueness of the solution. Depending on the input 
starting values, the results may be different. (4) The newest method known as 
Tiab’s direct synthesis (TDS) [1, 2] is the most powerful and practical one as will 
be demonstrated throughout the book. It employs characteristic points and fea-
tures found on the pressure and pressure derivative versus time log‐log plot to be 
used into direct analytic equations for reservoir parameters’ calculation. It is even 
used, without using the original name, by all the commercial software. One of 
them calls it “Specialized lines.” Because of its practicality, accuracy and applica-
tion is the main object of this book. Conventional analysis method will be also 
included for comparison purposes. 

The TDS technique can be easily implemented for all kinds of conventional or 
unconventional systems. It can be easily applied on cases for which the other methods 
fail or are difficult to be applied. It is strongly based on the pressure derivative curve. 
The method works by sector or regions found on the test. This means once a given 
flow regime is identified, a straight line is drawn throughout it, and then, any 
arbitrary point on this line and the intersection with other lines as well are used into 
the appropriate equations for the calculation of reservoir parameters. 
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Introduction 

The book contains the application and detailed examples of the TDS technique to 
the most common or fundamental reservoir/fluid scenarios. It is divided into seven 
chapters that are recommended to be read in the other they appear, especially for 
academic purposes in senior undergraduate level or master degree level. Chapter 1 
contains the governing equation and the superposition principle. Chapter 2 is the 
longest one since it includes drawdown for infinite and finite cases, elongated 
system, multi‐rate testing, and spherical/hemispherical flow. All the interpretation 
methods are studied in this chapter which covers about 45% of the book. Chapter 3 
deals with pressure buildup testing and average reservoir pressure determination. 
Distance to barriers and interference testing are, respectively, treated in Chapters 4 
and 5. Since the author is convinced that all reservoirs are naturally fractured, 
Chapter 6 covers this part which is also extended in hydraulically fractured wells in 
Chapter 7. In this last chapter, the most common flow regime shown in fractured 
wells: bilinear, linear, and elliptical are discussed with detailed for parameter char-
acterization. The idea is to present a book on TDS technique as practical and short as 
possible; then, horizontal well testing is excluded here because of its complexity and 
extension, but the most outstanding and practical publications are named here. 

My book entitled “Recent Advances in Practical Applied Well Test Analysis,” 
published in 2015, was written for people having some familiarity with the TDS 
technique, so that, it can be read in any order. This is not the case of the present 
textbook. It is recommended to be read in order from Chapter 1 and take especial 
care in Chapter 2 since many equations and concepts will be applied in the 
remaining chapters. TDS technique applies indifferently to both pressure draw-
down and pressure buildup tests. 

Finally, this book is an upgraded and updated version of a former one published in 
Spanish. Most of the type curves have been removed since they have never been 
used by the author on actual well test interpretations. However, the first motivation 
to publish this book is the author’s belief that TDS technique is the panacea for well 
test interpretation. TDS technique is such an easy and practical methodology that 
his creator, Dr. Djebbar Tiab, when day said to me “I still don’t believe TDS works!” 
But, it really does. Well, once things have been created, they look easy. 
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Chapter 1 

Fundamentals 

1.1. Basic concepts 

Pressure test fundamentals come from the application of Newton’s law, espe-
cially the third one: Principle of action‐reaction, since it comes from a perturbation 
on a well, as illustrated in Figure 1.1. 

A well can be produced under any of two given scenarios: (a) by keeping a 
constant flow rate and recording the well‐flowing pressure or (b) by keeping a 
constant well‐flowing pressure and measuring the flow rate. The first case is known 
as pressure transient analysis, PTA, and the second one is better known as rate 
transient analysis, RTA, which both are commonly run in very low permeable 
formations such as shales. 

Basically, the objectives of the analysis of the pressure tests are: 

• Reservoir evaluation and description: well delivery, properties, reservoir size, 
permeability by thickness (useful for spacing and stimulation), initial pressure 
(energy and forecast), and determination of aquifer existence. 

• Reservoir management. 

There are several types of tests with their particular applications. DST and pres-
sure buildup tests are mainly used in primary production and exploration. Multiple 
tests are most often used during secondary recovery projects, and multilayer and 
vertical permeability tests are used in producing/injectors wells. Drawdown, inter-
ference, and pulse tests are used at all stages of production. Multi‐rate, injection, 
interference, and pulse tests are used in primary and secondary stages [3–7]. 

Pressure test analysis has a variety of applications over the life of a reservoir. 
DST and pressure buildup tests run in single wells are mainly used during primary 
production and exploration, while multiple tests are used more often during sec-
ondary recovery projects. Multilayer and vertical permeability tests are also run in 
producing/injectors wells. Drawdown, buildup, interference, and pulse tests are 
used at all stages of production. Multi‐rate, injection, interference, and pulse testing 
are used in the primary and secondary stages. Petroleum engineers should take into 

Figure 1.1. 
Diagram of the mathematical representation of a pressure test. 
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account the state of the art of interpreting pressure tests, data acquisition tools, 
interpretation methods, and other factors that affect the quality of the results 
obtained from pressure test analysis. 

Once the data have been obtained from the well and reviewed, the pressure test 
analysis comprises two steps: (1) To establish the reservoir model and the identifi-
cation of the different flow regimes encountered during the test and (2) the param-
eter estimation. To achieve this goal, several plots are employed; among them, we 
have log‐log plot of pressure and pressure derivative versus testing time (diagnostic 
tool), semilog graph of pressure versus time, Cartesian graph of the same parame-
ters, etc. Pressure derivative will be dealt later in this chapter. 

The interpretation of pressure tests is the primary method for determining 
average permeability, skin factor, average reservoir pressure, fracture length and 
fracture conductivity, and reservoir heterogeneity. In addition, it is the only fastest 
and cheapest method to estimate time‐dependent variables such as skin factor and 
permeability in stress‐sensitive reservoirs. 

In general, pressure test analysis is an excellent tool to describe and define the 
model of a reservoir. Flow regimes are a direct function of the characteristics of the 
well/reservoir system, that is, a simple fracture that intercepts the well can be 
identified by detection of a linear flow. However, whenever there is linear flow, it 
does not necessarily imply the presence of a fracture. The infinite‐acing behavior 
occurs after the end of wellbore storage and before the influence of the limits of the 
deposit. Since the boundaries do not affect the data during this period, the pressure 
behavior is identical to the behavior of an infinite reservoir. The radial flow can be 
recognized by an apparent stabilization of the value of the derivative. 

1.2. Type of well tests 

Well tests can be classified in several ways depending upon the view point. Some 
classifications consider whether or not the well produces or is shut‐in. Other engi-
neers focus on the number of flow rates. The two main pressure tests are (a) 
pressure drawdown and (b) buildup. While the first one involves only one flow 
rate, the second one involves two flow rates, one of which is zero. Then, a pressure 
buildup test can be considered as a multi‐rate test. 

1.2.1 Pressure tests run in producer wells 

Drawdown pressure test (see Figure 1.2): It is also referred as a flow test. After 
the well has been shut‐in for a long enough time to achieve stabilization, the well is 
placed in production, at a constant rate, while recording the bottom pressure 
against time. Its main disadvantage is that it is difficult to maintain the constant 
flow rate. 

Pressure buildup test (see Figure 1.2): In this test, the well is shut‐in while 
recording the static bottom‐hole pressure as a function of time. This test allows 
obtaining the average pressure of the reservoir. Although since 2010, average res-
ervoir pressures can be determined from drawdown tests. Its main disadvantage is 
economic since the shut‐in entails the loss of production. 

1.2.2 Pressure tests run in injector wells 

Injection test (see Figure 1.3): Since it considers fluid flow, it is a test similar to 
the pressure drawdown test, but instead of producing fluids, fluids, usually water, 
are injected. 
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Figure 1.2. 
Schematic representation of pressure drawdown and pressure buildup tests. 

Figure 1.3. 
Injection pressure test (left) and falloff test (right). 

Falloff test (see Figure 1.3): This test considers a pressure drawdown immedi-
ately after the injection period finishes. Since the well is shut‐in, falloff tests are 
identical to pressure buildup tests. 

1.2.3 Other tests 

Interference and/or multiple tests: They involve more than one well and its 
purpose is to define connectivity and find directional permeabilities. A well pertur-
bation is observed in another well. 
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Figure 1.4. 
Well test classification based on the number of flow rates. 

Drill stem test (DST): This test is used during or immediately after well drilling and 
consists of short and continuous shut‐off or flow tests. Its purpose is to establish the 
potential of the well, although the estimated skin factor is not very representative 
because well cleaning can occur during the first productive stage of the well (Figure 1.4). 

Short tests: There are some very short tests mainly run in offshore wells. They 
are not treated in this book. Some of them are slug tests, general close chamber tests 
(CCTs), surge tests, shoot and pool tests, FasTest, and impulse tests. 

As stated before, in a pressure drawdown test, the well is set to a constant flow 
rate. This condition is, sometimes, difficult to be fulfilled; then, multi‐rate tests 
have to be employed. According to [8], multi‐rate tests fit into four categories: 
(a) uncontrolled variable rate [9, 10], series of constant rates [11, 12], pressure 
buildup testing, and constant bottom‐hole pressure with a continuous changing 
flow rate [13]. This last technique has been recently named as rate transient analysis 
(RTA) which is included in PTA, but its study is not treated in this book. 

1.3 Diffusivity equation 

At the beginning of production, the pressure in the vicinity of the well falls 
abruptly and the fluids near the well expand and move toward the area of lower 
pressure. Such movement is retarded by friction against the walls of the well and 
the inertia and viscosity of the fluid itself. As the fluid moves, an imbalance of 
pressure is created, which induces the surrounding fluids to move toward the well. 
The process continues until the pressure drop created by the production dissipates 
throughout the reservoir. The physical process that takes place in the reservoir can 
be described by the diffusivity equation whose deduction is shown below [5]: 

According to the volume element given in Figure 1.5, 

˜ ° ˜ ° ˜ ° 
Mass entering Mass coming out System� ¼ (1.1)
the element from the element accumulation rate 

The right‐hand side part of Eq. (1.1) corresponds to the mass accumulated in the 
volume element. Darcy’s law for radial flow: 

kA dP 
q ¼ �  (1.2)

μ dr 

The cross‐sectional area available for flow is provided by cylindrical geometry, 
2πrh. Additionally, flow rate must be multiplied by density, ρ, to obtain mass flow. 
With these premises, Eq. (1.2) becomes: 
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Figure 1.5. 
Radial volume element. 

k ∂P 
q ¼ � 2π rh (1.3)

μ ∂ r 

Replacing Eq. (1.3) into (1.1) yields: 

˜̃
˜̃ þ 

˜̃
˜̃
 

∂P ∂P ∂kρ kρ ð2π rhÞ ð2π rhÞ 2πrhdrϕ�ρÞ (1.4)¼ ð½
∂ r ∂ r ∂tμ μ rþdrr 

If the control volume remains constant with time, then, Eq. (1.4) can be 
rearranged as: 

˜̃
˜̃ þ 

˜̃
˜̃ ¼ 

∂P ∂P ∂kρ kρ
2π h 2π h 2πrhdr ϕρ (1.5)ð Þr r

∂ r ∂ r ∂tμ μ rþdrr 

Rearranging further the above expression: 

˜̃
˜̃r 

The left‐hand side of Eq (1.6) corresponds to the definition of the derivative; 
then, it can be rewritten as: 

˜̃
˜̃
 

° ˛
∂P ∂Pkρ kρ1 

dr �r rrþ ∂∂ r ∂ rμ μr 
ϕρ (1.6)ð Þ¼

∂tdr 

˝ ˙
∂ kρ ∂P ∂1 

ϕρ (1.7)ð Þ¼r
∂ r μ ∂ r ∂ tr 

The definition of compressibility has been widely used; 

1 ∂ V 1 ∂ρ 
c ¼ �  ¼ (1.8)

V ∂P ρ ∂P 

By the same token, the pore volume compressibility is given by: 

1 ∂ ϕ 
cf ¼ (1.9)

ϕ ∂P 

The integration of Eq. (1.8) will lead to obtain: 
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cðP�PoÞρ ¼ ρoe (1.10) 

The right‐hand side part of Eq. (1.7) can be expanded as: 

∂ ∂ ∂ ∂ρ ∂ϕ ∂P ∂ρ ðϕρÞ ¼ ϕ ρ þ ρ ϕ ¼ ϕ þ ρ (1.11)
∂ t ∂ t ∂ t ∂t ∂P ∂ρ ∂t 

Using the definitions given by Eqs. (1.9) and (1.10) into Eq. (1.11) leads to: 

h i∂ ∂ρ ρ ϕ cf ∂ρ ∂ρ cf ϕ � � ∂ρ ðϕρÞ ¼ ϕ þ ¼ ϕ 1 þ ¼ cf þ c (1.12)
∂ t ∂t cρ ∂t ∂t c c ∂t 

Considering that the total compressibility, ct, is the result of the fluid compress-
ibility, c, plus the pore volume compressibility, cf, it yields: 

1 ∂ kρ ∂P ϕct ∂ρ 
r ¼ (1.13)

r ∂ r μ ∂ r c ∂t 

The gradient term can be expanded as: 

∂P ∂P ∂ρ 1 ∂ρ ¼ ¼ (1.14)
∂r ∂ρ ∂r cρ ∂r 

Combination of Eqs. (1.14) and (1.13) results in: 

1 ∂ kr ∂ρ ϕ ∂ρ ¼ ct (1.15)
r ∂ r μc ∂ r c ∂t 

Taking derivative to Eq. (1.10) with respect to both time and radial distance and 
replacing these results into Eq. (1.15) yield: 

1 ∂ kr ∂P ϕ ∂PcðP�PoÞ cðP�PoÞρoe c ¼ ctρoe c (1.16)
r ∂ r μc ∂r c ∂t 

After simplification and considering permeability and viscosity to be constant, 
we obtain: 

1 k ∂ ∂P ∂P 
r ¼ ϕ ct (1.17)

r μ ∂r ∂r ∂t 

The hydraulic diffusivity constant is well known as 

1 ϕμct¼ (1.18)
η k 

Then, the final form of the diffusivity equation in oilfield units is obtained by 
combination of Eqs. (1.17) and (1.18): 

1 ∂ ∂P ϕμct ∂P 1 ∂P 
r ¼ ¼ (1.19)

r ∂r ∂r 0:0002637k ∂t η ∂t 

In expanded form: 

∂2P 1 ∂P 1 ∂P þ ¼ (1.20)
∂r2 r ∂r 0:0002637η ∂t 
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The final form of the diffusivity equation strongly depends upon the flow 
geometry. For cylindrical, [11, 14], spherical [14], and elliptical coordinates [15], 
the diffusivity equation is given, respectively, 

∂ 2P 1 ∂P kθ 1 ∂2P kz ∂2P ϕμct ∂P þ þ þ ¼ (1.21)
∂ r2 r ∂r kr r2 ∂ θ2 kr ∂z2 kr ∂t 

˛ ˜ ° ˜ ° ˝ 
1 ∂ 2 ∂P 1 ∂ ∂P 1 ∂2P ϕcμ ∂P 

r þ sin θ þ ¼ (1.22)
r ∂r ∂r sin θ ∂θ ∂θ sin 2θ ∂ϕ2 k ∂t 

∂2P ∂2P 1 2 ϕcμ ∂P þ ¼ a ðcosh 2ξ � cos 2ηÞ (1.23)
∂ξ2 ∂η2 2 k ∂t 

Here, ξ is a space coordinate and represents a family of confocal ellipses. The 
focal length of these ellipses is 2a. The space coordinate, η, represents a family of 
confocal hyperbolas that represent the streamlines for elliptical flow. These two 
coordinates are normal to each other. 

1.4. Limitations of the diffusivity equation 

a. Isotropic, horizontal, homogeneous porous medium, permeability, and 
constant porosity 

b.A single fluid saturates the porous medium 

c. Constant viscosity, incompressible, or slightly compressible fluid 

d.The well completely penetrates the formation. Negligible gravitational forces 

The density of the fluid is governed by an equation of state (EOS). For the case 
of slightly compressible fluid, Eq. (1.8) is used as the EOS. 

1.5. Multiphase flow 

Similar to the analysis of gas well tests as will be seen later, multiphase tests can 
be interpreted using the method of pressure approximation (Perrine method), [6, 7, 
16], which is based on phase mobility: 

ko kg kw kro krg krwλt ¼ þ þ ¼ þ þ (1.24)
μo μg μw μo μg μw 

The total compressibility is defined by [17, 18]: 

SoBg ∂Rs SwBg ∂Rsw ct ¼ coSo þ cgSg þ cwSw þ cf þ þ (1.25)
5:615Bo ∂P 5:615Bw ∂P 

For practical purposes, Eq. (1.25) can be expressed as: 

ct ≈ coSo þ cgSg þ cwSw þ cf (1.26) 

As commented before Eq. (1.19) is limited to a single fluid. However, it can be 
extended to multiphase flow using the concept expressed by Eq. (1.24): 
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˜ ° 
1 ∂ ∂P ϕct 1 ∂P 

r ¼ (1.27)
r ∂r ∂r 0:0002637 λt ∂t 

Perrine method assumes negligible pressure and saturation gradients. Martin 
[19] showed that (a) the method loses accuracy as the gas saturation increases, (b) 
the estimation of the mobility is good, and (c) the mobility calculations are sensitive 
to the saturation gradients. Better estimates are obtained when the saturation dis-
tribution is uniform and (d) underestimates the effective permeability of the phase 
and overestimates the damage factor. 

1.6. Gas flow 

It is well known that gas compressibility, gas viscosity, and gas density are 
highly dependent pressure parameters; then, the liquid diffusivity equation may fail 
to observe pressure gas behavior. Therefore, there exist three forms for a better 
linearization of the diffusivity equation to better represent gas flow: (a) the 
pseudopressure approximation [20], (b) the P2 approximation, and (c) linear 
approximation. The first one is valid for any pressure range; the second one is valid 
for reservoir pressures between 2000 and 4000 psia, and the third one is for 
pressures above 4000 psia [20]. 

Starting from the equation of continuity and the equation of Darcy: 

1 ∂ ∂ ðrρurÞ ¼ �  ϕρ (1.28)ð Þ  
r ∂r ∂t 

k ∂P 
ur ¼ �  (1.29)

μ ∂r 

The state equation for slightly compressible liquids does not model gas flow; 
therefore, the law of real gases is used [21, 22]: 

PM
ρ ¼ �  (1.30)

zRT 

Combining the above three equations: 

˜ ° ˜ ° 
1 ∂ kPM ∂p ∂ PM 

r ¼ ϕ (1.31)
r ∂r μzRT ∂t ∂t zRT 

Since M, R, and T are constants and assuming that the permeability is constant, 
the above equation reduces to: 

˜ ° ˜ ° 
1 ∂ P ∂P 1 ∂ P 

r ¼ ϕ (1.32)
r ∂r μz ∂r k ∂t z 

Applying the differentiation chain rule to the right‐hand side part of Eq. (1.32) 
leads to: 

˜ ° 
1 ∂ P ∂P 

r 
r ∂r μz ∂r 

¼ 

˛ ˜ °˝ 
1 P ∂ϕ ∂ϕ P þ
k z ∂t ∂t z 

(1.33) 

Expanding and rearranging, 
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˜ ° ˛ ˜ °˝ 
1 ∂ P ∂P Pϕ ∂P 1 ∂ϕ z ∂ P 

r ¼ þ (1.34)
r ∂r μz ∂r zk ∂t ϕ ∂P P ∂P z 

Using the definition of compressibility for gas flow: 

˜ ° ˜ °  
1 ∂ρ zRT ∂ PM z ∂ P 

cg ¼ ¼ ¼ (1.35)
ρ ∂P PM ∂P zRT P ∂P z 

Using Eqs. (1.9) and (1.35) into Eq. (1.34), 

˜ ° 
1 ∂ P ∂P Pϕ ∂P ̇ ˆ 

r ¼ cf þ cg (1.36)
r ∂r μz ∂r zk ∂t 

If ct ¼ cg þ cf then, 

˜ ° 
1 ∂ P ∂P Pϕct ∂P 

r ¼ (1.37)
r ∂r μz ∂r zk ∂t 

The above is a nonlinear partial differential equation and cannot be solved 
directly. In general, three limiting assumptions are considered for its solution, 
namely: (a) P/μz is constant; (b) μct is constant; and (c) the pseudopressure trans-
formation, [20], for an actual gas. 

1.6.1 The equation of diffusivity in terms of pressure 

Assuming the term P/μz remains constant with respect to the pressure, 
Eq. (1.17) is obtained. 

1.6.2 The equation of diffusivity in terms of pressure squared 

Eq. (1.37) can be written in terms of squared pressure, P2, starting from the fact 
that, [3–7, 9, 17, 21, 22]: 

∂P 1 ∂P2 

P ¼ (1.38)
∂r 2 ∂r 

∂P 1 ∂P2 

P ¼ (1.39)
∂t 2 ∂t 

1 ∂ 
˜ 

r ∂P2 ° 
ϕct ∂P2 

¼ (1.40)
r ∂r μz ∂r kz ∂t 

Assuming the term μz remains constant with respect to the pressure, and of 
course, the radius, then the above equation can be written as: 

1 ∂ 
˜

∂P2 ° 
ϕμct ∂P2 

r ¼ (1.41)
r ∂r ∂r k ∂t 

This expression is similar to Eq. (1.37), but the dependent variable is P2. 
Therefore, its solution is similar to Eq. (1.17), except that it is given in terms of P2. 
This equation also requires that μct remain constant. 
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1.6.3 Gas diffusivity equation in terms of pseudopressure, m(P) 

The diffusivity equation in terms of P2 can be applied at low pressures, and 
Eq. (1.17) can be applied at high pressures without incurring errors. Therefore, a 
solution is required that applies to all ranges. Ref. [20] introduced a more rigorous 
linearization method called pseudopressure that allows the general diffusivity 
equation to be solved without limiting assumptions that restrict certain properties 
of gases to remain constant with pressure [3–7, 9, 17, 20–22]: 

Pð
P 

mðPÞ ¼ 2 dP (1.42)
μz 

P0 

Taking the derivative with respect to both time and radius and replacing the 
respective results in Eq. (1.37), we obtain: 

� � �� 
1 ∂ P μz ∂mðPÞ 

r 
r ∂r μz 2P ∂r 

¼ 

� � 
Pϕct μz ∂mðPÞ 
zk 2P ∂t 

(1.43) 

After simplification, 

� � 
1 ∂ ∂mðPÞ 

r 
r ∂r ∂r 

¼ 
ϕμct ∂mðPÞ 
k ∂t 

(1.44) 

Expanding the above equation and expressing it in oilfield units: 

∂2mðPÞ 1 ∂mðPÞ þ
∂r2 r ∂r 

¼ 
ϕμgict ∂mðPÞ 

0:0002637kgi ∂t 
(1.45) 

The solution to the above expression is similar to the solution of Eq. (1.17), 
except that it is now given in terms of m(P) which can be determined by numerical 
integration if the PVT properties are known at each pressure level. 

For a more effective linearization of Eq. (1.45), [23] introduced pseudotime, ta, 
since the product μgct in Eq. (1.45) is not constant: 

tð
dς 

ta ¼ 2 (1.46)
μct 

0 

With this criterion, the diffusivity equation for gases is: 

1 ∂ 
� 

∂mðPÞ � 
2ϕðcf þ cgÞ ∂mðPÞ 

r ¼ (1.47)
r ∂r ∂r k cg ∂ta 

The incomplete linearization of the above expression leads to somewhat longer 
semilog slopes compared to those obtained for liquids. Sometimes it is 
recommended to use normalized variables in order to retain the units of time and 
pressure, [6]. The normalized pseudovariables are: 

Pð
μi ρðςÞ 

mðPÞ ¼ Pi þ dς (1.48)n ρi μðςÞ 
P0 
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tð
dς 

tan ¼ μicti þ (1.49)
μðςÞZðςÞ 

0 

1.7. Solution to the diffusivity equation 

The line‐source solution: The line‐source solution assumes that the wellbore radius 
approaches zero. Furthermore, the solution considers a reservoir of infinite extent 
and the well produces as a constant flow rate. Ref. [4] presents the solution of the 
source line using the Boltzmann transform, the Laplace transform, and Bessel func-
tions. The following is the combinations of independent variables method, which is 
based on the dimensional analysis of Buckingham’s theorem [24]. This takes a func-
tion f = f(x, y, z, t), it must be transformed into a group or function containing fewer 
variables, f = f(s1,s2…). A group of variables whose general form is proposed as [24]: 

btcs ¼ ar (1.50) 

The diffusivity equation is: 

1 ∂ ∂ f ∂ f 
r ¼ (1.51)

r ∂ r ∂ r ∂ t 

where f is a dimensionless term given by: 

P � Pwff ¼ (1.52)
Pi � Pwf 

Eq. (1.51) is subjected to the following initial and boundary conditions: 

f ¼ 0, 0 ≤ r ≤ ∞, t ¼ 0 (1.53) 

∂ f 
r ¼ 1, r ¼ 0, t>0 (1.54)
∂ r 
f ¼ 0, r ! ∞, t>0 (1.55) 

Multiplying the Eq. (1.51) by ∂s/∂s: 

1 ∂ s ∂ ∂ s ∂ f ∂ s ∂ f 
r ¼ (1.56)

r ∂ s ∂ r ∂ s ∂ r ∂ s ∂ t 

Exchanging terms: 

1 ∂ s ∂ ∂ s ∂ f ∂ s ∂ f 
r ¼ (1.57)

r ∂ r ∂ s ∂ r ∂ s ∂ t ∂ s 

The new derivatives are obtained from Eq. (1.50): 

∂ s ¼ abrb�1tc (1.58)
∂ r 
∂ s btc�1¼ acr (1.59)
∂ t 
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Replacing the above derivatives into Eq. (1.56) and rearranging: 

˜ ° 
1 2b2 rb 

t2c 
∂ rb ∂ f btc�1 ∂ f 

a r � ¼ acr (1.60)
r r ∂ s r ∂ s ∂ s 

Solving from rb from Eq. (1.50) and replacing this result into Eq. (1.6). After 
rearranging, it yields: 

˜ ° 
∂ ∂f c ˛ ˝ ∂f2t�1s ¼ r s (1.61)
∂s ∂s b2 ∂s 

Comparing the term enclosed in square brackets with Eq. (1.50) shows that 
b = 2, c = �1, then 

2ar 
s ¼ (1.62)

t 

2 ‒1From Eq. (1.61) follows r t = s/a, then 

˜ ° ˙ ˆ
∂ ∂f c ∂f 

s ¼ s (1.63)
∂s ∂s b2a ∂s 

The term enclosed in square brackets is a constant that is assumed equal to 1 for 
convenience. Since c/(b2a) = 1, then a = �1/4. Therefore, the above expression leads 
to: 

˜ ° 
∂ ∂f ∂f 

s ¼ s (1.64)
∂s ∂s ∂s 

Writing as an ordinary differential equation: 

˜ ° 
d df df 

s ¼ s (1.65)
ds ds ds 

The differential equation is now ordinary, and only two conditions are required 
to solve it. Applying a similar mathematical treatment to both the initial and 
boundary conditions to convert them into function of s. Regarding Eq. (1.62) and 
referring to the initial condition, Eq. (1.53), when the time is set to zero; then, then s 
function tends to infinite: 

at t ¼ 0, f ¼ 0 when s ! ∞ (1.66) 

Darcy’s law is used to convert the internal boundary condition. Eq. (1.54) 
multiplied by ∂s/∂s gives: 

∂ f ∂ s 
r ¼ 1 (1.67)
∂ s ∂ r 

Replacing Eqs. (1.57) in the above equation; then, replacing Eq. (1.62) into the 
result, and after simplification, we obtain 

∂ f s
ab tc ¼ 1 (1.68)

∂ s atc 
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Since b = 2, then, 

∂ f 1 
s ¼ (1.69)
∂ s 2 

For the external boundary condition, Eq. (1.55), consider the case of Eq. (1.62) 
when r ! ∞ then: 

ar2 

s ¼ ! ∞; f ¼ 0, s ! ∞ (1.70)
t 

Then, the new differential equation, Eq. (1.65) is subject to new conditions given 
by Eqs. (1.66), (1.69), and (1.70). Define now, 

df 
g ¼ s (1.71)

ds 

Applying this definition into the ordinary differential expression given by 
Eq. (1.65), it results: 

d 
g ¼ g (1.72)

ds 

Integration of the above expression leads to: 

ln g ¼ s þ c1 (1.73) 

Rearranging the result and comparing to Eq. (1.71) and applying the boundary 
condition given by Eq. (1.69): 

df 1 
g ¼ c1es ¼ s ¼ (1.74)

ds 2 

Solving for df and integrating, 
ð ð 

es 
df ¼ c1 ds (1.75)

s 

Eq. (1.75) cannot be analytically integrated (solved by power series). Simplifying 
the solution: 

ð 
es 

f ¼ c1 ds þ c2 (1.76)
s 

When s = 0, es = 0, then c1 = ½ and Eq. (1.76) becomes: 

ðs 
es 

f ¼ ds þ c2 (1.77)
1 
2 s 
0 

Applying the external boundary condition, Eq. (1.69), when s ! ∞, f = 0, 
therefore, Eq. (1.77) leads, 

-∞ð
es 

c2 ¼ - ds (1.78)
1 
2 s 

0 
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Replacing c1 and c2 into Eq. (1.76) yields: 

ðs �∞ð 
es es 

f ¼ ds � ds (1.79)
1 1 
2 s 2 s 
0 0 

This can be further simplified to: 

∞ð
e�s1

f ¼ �  ds (1.80)
2 s 

s 

The integral given in Eq. (1.80) is well known as the exponential integral, 
Ei(�s). If the f variable is changed by pressure terms: 

21 �r
Pðr, tÞ ¼ �  Ei (1.81)

2 4t 

In dimensionless form, 

21 r 1DPDðrD, tDÞ ¼ �  Ei � ¼ �  Eið�xÞ (1.82)
2 4tD 2 

The above equation is a very good approximation of the analytical solution when 
it is satisfied (Mueller and Witherspoon [2, 9, 18, 19, 25, 26]) that rD ≥ 20 or tD/rD 

2 

≥ 0.5, see Figure 1.6. If tD/rD 
2 ≥ 5, an error is less than 2%, and if tD/rD 

2 ≥ 25, the 
error is less than 5%. Figure 1.7 is represented by the following adjustment which 
has a correlation coefficient, R2 of 0.999998. This plot can be easily rebuilt using the 
algorithm provided in Figure 1.8. The fitted equation was achieved with the data 
generated from simulation. 

3�0:2820668952451542þ0:4472760048082251xþ0:2581584173632316x2 þ0:04998332927590892x

PD ¼ 101þ1:047015081287319xþ0:3493329681392351x2þ0:02955955788180784x3�0:000163604729430738x4 (1.83) 

being x = log(tD/rD 
2) >  �1.13. 

Figure 1.6. 
Dimensionless pressure for different values of the dimensionless radius, taken from [9, 25]. 
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Figure 1.7. 
Dimensionless well pressure behavior for a well without skin and storage effects in an infinite reservoir, taken 
from [9, 25]. 

The exponential function can be evaluated by the following formula, [27], for 
x ≤ 25: 

2 3 4x x x
EiðxÞ ¼ 0:57721557 þ ln x � x þ � þ …: (1.84)

2 � 2! 3 � 3! 4 � 4! 
Figure 1.8 shows a listing of a program code in Basic, which can be easily added 

as a function in Microsoft Excel to calculate the exponential function. Figure 1.9 
and Table 1.1, 1.2, 1.3, and 1.4 present solutions of the exponential function. 

Figure 1.8. 
BASIC code function to calculate Ei function, taken from [29]. 
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Figure 1.9. 
Values of the exponential integral for 1 ≤ x ≤ 10 (left) and 0.0001 ≤ x ≤ 1 (right). 

1.8. Dimensionless quantities 

Dimensional parameters do not provide a physical view of the parameter being 
measured but rather a general or universal description of these parameters. For 
example, a real time of 24 hours corresponds to a dimensionless time of approxi-
mately 300 hours in very low permeability formations or more than 107 in very 
permeable formations [3, 9, 21, 25, 28]. 

A set number of Ei values for 0.0001 ≤ x ≤ 25 with the aid of the algorithm given 
in Figure 1.8. Then, a fitting of these data was performed to obtain the polynomials 
given by Eqs. (1.85) and (1.90). The first one has a R2 of 1, and the second one has a 
R2 of 0.999999999 which implies accuracy up to the fifth digit can be obtained. 

Eið�xÞ ¼  a þ bx þ cx2:5 þ d ln x þ e � expð�xÞ; x ≤ 1 (1.85) 

a þ cx þ ex2 

ln Eið�xÞ ¼  ; x > 1 (1.86)
1 þ bx þ dx2 þ f x3 

Adapted from [29] and generated with the Ei function code given in Figure 1.8. 
Define dimensionless radius, dimensionless time, and dimensionless pressure as: 

rD ¼ r=rw (1.87) 

t 
tD ¼ (1.88)

to 

khðPi � PÞ
PD ¼ (1.89)

141:2qμB 

Adapted from [29] and generated with the Ei function code given in Figure 1.8. 
For pressure drawdown tests, ΔP =  Pi � Pwf. For pressure buildup tests, ΔP = Pws 

� Pwf (Δt = 0). 
This means that the steady‐state physical pressure drop for radial flow is equal 

to the dimensionless pressure multiplied by a scalable factor, which in this case 
depends on the flow and the properties of the reservoir, [3–7, 9, 21, 26, 30]. 
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The same concept applies to transient flow and to more complex situations, but in 
this case, the dimensionless pressure is different. For example, for transient flow, 
the dimensionless pressure is always a function of dimensionless time. 

Taking derivative to Eqs. (1.87) and (1.88), 

∂ r ¼ rw∂ rD (1.90) 

∂ t ¼ to∂ tD (1.91) 

Replacing the above derivatives into Eq. (1.20), 
Adapted from [5] and generated with the Ei function code given in Figure 1.8. 

2∂ 2P 1 ∂ P ϕ μ ct r ∂ Pwþ ¼ (1.92)
∂ r2 ∂ kto ∂ tDD rD rD 

wDefinition of to requires assuming ϕμctr
2 

= 1, [24], then; kto 

ϕ μ ct r2 
wto ¼ (1.93)

k 

Replacing this definition into Eq. (1.88) and solving for the dimensionless time 
(oilfield units), 

0:0002637kt 
tD ¼ (1.94)

ϕμctr2 
w 

Replacing Eq. (1.93) in Eq. (1.92) leads, after simplification, to: 

∂ 2P 1 ∂ P ∂ P þ ¼ (1.95)
∂ r2 ∂ ∂ tDD rD rD 

The dimensionless pressure is also affected by the system geometry, other 
well systems, storage coefficient, anisotropic characteristics of the reservoir, 
fractures, radial discontinuities, double porosity, among others. In general, the 
pressure at any point in a single well system that produces the constant rate, q, is 
given by [25]: 

qBμ ½Pi � Pðr, tÞ� ¼ PDðtD, rD, CD, geometry, …:Þ (1.96)
kh 

Taking twice derivative to Eq. (1.87), excluding the conversion factor, will 
provide: 

∂ PD ¼ �  
kh 

∂P
qBμ 

(1.97) 

∂ 2PD ¼ �  
kh 

∂2P
qBμ 

(1.98) 

Replacing Eqs. (1.97) and (1.98) in Eq. (1.95) and simplifying leads to: 

∂2PD 1 ∂PD 1 ∂ 
˜ 

∂PD 
° 

∂PDþ ¼ rD ¼ (1.99)
∂ r2 

D rD ∂ rD rD ∂rD ∂rD ∂tD 
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If the characteristic length is the area, instead of wellbore radius, Eq. (1.92) can 
be expressed as: 

˜ °20:0002637kt rwtDA ¼ ¼ tD (1.100)
ϕ μ ct A A 

Example 1.1 

A square shaped reservoir produces 300 BPD through a well located in the 
center of one of its quadrants. See Figure 1.10. Estimate the pressure in the well 
after 1 month of production. Other relevant data: 

Pi = 3225 psia, h = 42 ft 
ko = 1 darcy, ϕ = 25% 
μo = 25 cp, ct = 6.1 � 10�6/psia 
Bo = 1.32 bbl/BF, rw = 6 in  
A = 150 Acres, q = 300 BPD 

Solution 

Assuming the system behaves infinitely, it means, during 1 month of production 
the transient wave has not yet reached the reservoir boundaries, the problem can be 
solved by estimating the Ei function. Replacing Eqs. (1.82) and (1.92) into the 
argument of Eq. (1.82), it results: 

2rDx ¼ �  
4tD 

2948ϕμctr¼ �  
kt 

(1.101) 

Using Eq. (1.101) with the above given reservoir and well data: 

948ð0:25Þð25Þð6:1 � 10�6Þð0:52Þ 
x ¼ �  ¼ 1:25 � 10�8 

ð1000Þð720Þ 

This x value allows finding Ei(�x) = 17.6163 using the function provided in 
Figure 1.8. From the application of Eq. (82), PD = 8.808. This dimensionless pres-
sure is meaningless for practical purposes. Converting to oilfield units by means of 
Eq. (1.87), the well‐flowing pressure value after 1 month of production is given as: 

ð1000Þð42Þ
8:808 ¼ ð3225 � Pwf Þ ð141:2Þð300Þð1:32Þð25Þ 

Pwf = 2931.84 psia. 

Figure 1.10. 
Geometry of the reservoir for example 1.1. 
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How it can be now if the example was correctly done? A good approximation 
consists of considering a small pressure drop; let us say � 0.002 psia (smallest value 
that can be read from current pressure recorders) at the closest reservoir boundary. 
Use Eq. (1.87) to convert from psia to dimensionless pressure: 

ð1000Þð42Þ
PD ¼ ð0:002Þ ¼  6:0091 � 10�5 

ð141:2Þð300Þð1:32Þð25Þ 

Eq. (1.82) allows finding Ei(�x) = 0.00012. This value can be used to determine 
an x value from Table 1.2. However, a trial‐and‐error procedure with the function 
given in Figure 1.8 was performed to find an x value of 6.97. Then, the time at 
which this value takes place at the nearest reservoir boundary is found from 
Eq. (1.101). The nearest boundary is obtained from one‐fourth of the reservoir size 
area (3.7 Ac or 1663500 ft2). Then, for a square geometry system (the system may 
also be approached to a circle): 

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 
L ¼ 1663500 ¼ 1278:09 ft 

The radial distance from the well to the nearest boundary corresponds to one 
half of the square side, the r = 639.04 ft. Solving for time from Eq. (1.101); 

2948ϕμctr 948ð0:25Þð25Þð6:1 � 10�6Þð639:042Þ 
t ¼ ¼ ¼ 2:118 h

kx ð1000Þð6:97Þ 

This means that after 2 h and 7 min of flow, the wave has reached the nearest 
reservoir boundary; therefore, the infinite‐acting period no longer exists for this 
reservoir, then, a pseudosteady‐state solution ought to be applied (Figures 1.11– 
1.14). To do so, Eq. (1.98) is employed for the whole reservoir area: 

ð0:0002637Þð1000Þð720Þ 
tDA ¼ ¼ 0:76 ð0:25Þð25Þð6:1 � 10�6Þð6534000Þ 

With this tDA value of 0.76, the normal procedure is to estimate the dimension-
less pressure for a given reservoir‐well position configuration, which can be 
found in Figures C.13 through C.16 in [25] for which data were originally presented 
in [31]. These plots provide the pressure behavior for a well inside a 

Figure 1.11. 
Pressure versus distance plot for example 1.2. 
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Figure 1.12. 
Pressure versus time plot for example 1.3. 

Figure 1.13. 
Pressure distribution in the reservoir. 

Figure 1.14. 
Skin factor influence. 
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rectangular/square no-flow system, without storage wellbore and skin factor; 
A0.5/rw = 2000 can also be found in [3, 9, 26]. This procedure is avoided in this 
textbook. Instead new set of data was generated and adjusted to the following 
polynomial fitting in which constants are reported in Table 1.5: 

e
PD ¼ a þ b*tDA þ c*t2 

DA ln tDA þ (1.102)DA þ d*t0:5 

t0:5 
DA 

Using Eq. (1.102) will result: 

pffiffiffiffiffi 0:016098
PD ¼ 4:4765 þ 9:3437ð12Þ �  0:2798ð122Þ �  2:7516 12 ln ð12Þ �  pffiffiffiffiffi 

12 

PD = 12.05597. 
The well‐flowing pressure is estimated with Eq. (1.87); thus, 

ð1000Þð42Þ
12:056 ¼ ðPi � Pwf Þ ð141:2Þð300Þð1:32Þð25Þ 

Pwf = 2823.75 psia. 

1.9. Application of the diffusivity equation solution 

A straight‐line behavior can be observed in mostly the whole range on the right‐
hand plot of Ei versus x plot given in Figure 1.9. Then, it was concluded, [3–7, 9, 
11, 19, 21, 26, 30], when x < 0.0025, the more complex mathematical representation 
of Eq. (1.82) can be replaced by a straight line function, given by: 

Eið�xÞ ¼  ln ð1:781xÞ (1.103) 

this leads to, 

Eið�xÞ ¼  ln x þ 0:5772 (1.104) 

Replacing this new definition into Eq. (1.82) will result in: 

� � � �21 rDPD ¼ �  ln þ 0:5772
2 4tD 

(1.105) 

At the well rD = 1, after rearranging, 

1
PD ¼ ½ ln tD þ 0:80907� (1.106)

2 

The above indicates that the well pressure behavior obeys a semi‐logarithmic 
behavior of pressure versus time. 

Example 1.2 

A well and infinite reservoir has the following characteristics: 

q = 2000 STB/D, μ = 0.72 cp, ct = 1.5 � 10�5 psia�1 

ϕ = 23%, Pi = 3000 psia, h = 150 ft 
B = 1.475 bbl/STB, k = 10 md, rw = 0.5 ft 
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Estimate the well‐flowing pressure at radii of 0.5, 1, 5, 10, 20, 50, 70, 100, 200, 
500, 1000, 2000, 2500, 3000, and 4000 feet after 1 month of production. Plot the 
results. 

Solution 

For the wellbore radius, find x with Eq. (1.101); 

948ð0:23Þð0:72Þð1:5 � 10�5Þð0:52Þ 
x ¼ ¼ 8:177 � 10�8 

ð10Þð720Þ 

Using the function given in Figure 1.9 or Eq. (1.103), a value of Ei(�x) of 
15.7421 is found. Then, Eq. (1.82) indicates that PD = 7.871. Use of Eq. (1.87) allows 
estimating both pressure drop and well‐flowing pressure: 

141:2qμB 141:2ð2000Þð0:72Þð1:475Þ
ΔP ¼ Pi � Pwf ¼ PD ¼ 7:871 ¼ 1573:74 psia 

kh ð10Þð150Þ 

The remaining results are summarized in Table 1.6 and plotted in Figure 1.11. 
From this, it can be inferred that the highest pressure drop takes place in the near‐
wellbore region which mathematically agrees with the continuity equation stating 
that when the area is reduced, the velocity has to be increased so the flow rate can 
be constant. The higher the fluid velocity, the higher the pressure drops. 

Example 1.3 

Re‐work example 1.2 to estimate the sand‐face pressure at time values starting 
from 0.01 to 1000 h. Show the results in both Cartesian and semilog plots. What 
does this suggest? 

Solution 

Find x with Eq. (1.101); 

r, ft x Ei(�x) P, psia Pwf, psia 

0.5 8.18E�08 15.7421 1537.74 1462.26 

1 3.27E�07 14.3558 1435.15 1564.85 

5 8.18E�06 11.137 1113.36 1886.64 

10 3.27E�04 9.75 974.78 2025.22 

20 1.31E�04 8.365 836.2 2163.8 

50 8.18E�04 6.533 653.07 2346.93 

70 1.60E�03 5.86 585.87 2414.13 

100 3.27E�03 5.149 514.72 2485.28 

200 1.31E�02 3.772 377.11 2622.89 

500 8.17E�02 2.007 200.616 2799.384 

1000 3.27E�01 0.8425 84.225 2915.775 

2000 1.31Eþ00 0.1337 13.368 2986.632 

2500 2.04Eþ00 0.046 4.6 2995.4 

3000 2.94Eþ00 0.014 1.401 2998.599 

4000 5.23Eþ00 0.0009 0.087 2999.913 

Table 1.6. 
Summarized results for example 1.2. 
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948ð0:23Þð0:72Þð1:5 � 10�5Þð0:52Þ 
x ¼ ¼ 0:000948 ð10Þð0:01Þ 

A value of Ei(�x) of 6.385 is found with Eq. (1.103). Then, Eq. (1.82) gives a PD 

value of 3.192 and Eq. (1.87) leads to calculate a well‐flowing pressure of; 

141:2qμB 141:2ð2000Þð0:72Þð1:475Þ
Pwf ¼ Pi � PD ¼ 3000 � 3:192 ¼ 2361:71 psia

kh ð10Þð150Þ 

The remaining well‐flowing pressure values against time are given in Table 1.7 
and plotted in Figure 1.12. The semilog behavior goes in the upper part of the plot 
(solid line), and the Cartesian plot corresponds to the lower dashed line. The 
semilog line behaves linearly while the Cartesian curve does not. This situation 
perfectly agrees with Eq. (1.106), which ensures that the behavior of pressure drop 
versus time obeys a semilog trend. In other word, in a transient radial system, 
pressure drops is a linear function of the logarithm of time. 

t, h  x Ei(�x) PD Pwf, Psia t, h  x Ei(�x) PD Pwf, psia 

0.01 9.480E�04 6.385 3.192 2361.71 6 1.580E�06 12.781 6.390 1722.30 

0.02 4.740E�04 7.078 3.539 2292.46 7 1.354E�06 12.935 6.468 1706.89 

0.03 3.160E�04 7.483 3.741 2251.94 8 1.185E�06 13.069 6.534 1693.54 

0.04 2.370E�04 7.770 3.885 2223.19 9 1.053E�06 13.186 6.593 1681.77 

0.05 1.896E�04 7.994 3.997 2200.89 10 9.480E�07 13.292 6.646 1671.23 

0.06 1.580E�04 8.176 4.088 2182.66 20 4.740E�07 13.985 6.992 1601.94 

0.07 1.354E�04 8.330 4.165 2167.25 30 3.160E�07 14.390 7.195 1561.41 

0.08 1.185E�04 8.464 4.232 2153.91 40 2.370E�07 14.678 7.339 1532.65 

0.09 1.053E�04 8.581 4.291 2142.13 50 1.896E�07 14.901 7.451 1510.34 

0.1 9.480E�05 8.687 4.343 2131.60 60 1.580E�07 15.083 7.542 1492.11 

0.2 4.740E�05 9.380 4.690 2062.31 70 1.354E�07 15.238 7.619 1476.70 

0.3 3.160E�05 9.785 4.893 2021.78 80 1.185E�07 15.371 7.686 1463.35 

0.4 2.370E�05 10.073 5.036 1993.02 90 1.053E�07 15.489 7.744 1451.58 

0.5 1.896E�05 10.296 5.148 1970.71 100 9.480E�08 15.594 7.797 1441.05 

0.6 1.580E�05 10.478 5.239 1952.49 200 4.740E�08 16.287 8.144 1371.75 

0.7 1.354E�05 10.632 5.316 1937.08 300 3.160E�08 16.693 8.346 1331.22 

0.8 1.185E�05 10.766 5.383 1923.73 400 2.370E�08 16.981 8.490 1302.46 

0.9 1.053E�05 10.884 5.442 1911.95 500 1.896E�08 17.204 8.602 1280.15 

1 9.480E�06 10.989 5.495 1901.42 600 1.580E�08 17.386 8.693 1261.92 

2 4.740E�06 11.682 5.841 1832.13 700 1.354E�08 17.540 8.770 1246.51 

3 3.160E�06 12.088 6.044 1791.59 800 1.185E�08 17.674 8.837 1233.17 

4 2.370E�06 12.375 6.188 1762.84 900 1.053E�08 17.792 8.896 1221.39 

5 1.896E�06 12.599 6.299 1740.53 1000 9.480E�09 17.897 8.948 1210.86 

Table 1.7. 
Summarized results for example 1.3. 
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1.10. Pressure distribution and skin factor 

Once the dimensionless parameters are plugged in Eq. (1.82), this yields: 

˜ ° 2qBμ 948ϕμctrPðr, tÞ ¼ Pi � 70:6 Ei � (1.107)
kh kt 

At point N, Figure 1.13, the pressure can be calculated by Eq. (1.107). At the 
wellbore rD = r/rw = 1, then, r = rw and P(r,t) =  Pwf. Note that application of the line‐
source solution requires the reservoir to possess an infinite extent, [3, 9, 18, 21, 25, 26]. 

There are several ways to quantify damage or stimulation in an operating 
well (producer or injector). These conditions are schematically represented in 
Figure 1.14. The most popular method is to represent a well condition by a steady‐
state pressure drop occurring at the wellbore, in addition to the transient pressure 
drop normally occurring in the reservoir. This additional pressure drop is called 
“skin pressure drop” and takes place in an infinitesimally thin zone: “damage zone,” 
[4, 5, 9, 11, 19, 30]. It can be caused by several factors: 

1. Invasion of drilling fluids 

2. Partial well penetration 

3. Partial completion 

4. Blocking of perforations 

5. Organic/inorganic precipitation 

6. Inadequate drilling density or limited drilling 

7. Bacterial growth 

8. Dispersion of clays 

9. Presence of cake and cement 

10. Presence of high gas saturation around the well 

Skin factor is a dimensionless parameter; then, it has to be added to the dimen-
sionless pressure in Eq. (1.87), so that: 

qμB
Pi � Pwf ¼ 141:2 

kh 
ðPD þ sÞ (1.108) 

From the above expression can be easily obtained: 

qμB qμB
Pi � Pwf ¼ 141:2 PD þ 141:2 s (1.109)

kh kh 

Therefore, the skin factor pressure drop is given by: 

qμB
ΔPs ¼ 141:2 s (1.110)

kh 
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Assuming steady state near the wellbore and the damage area has a finite 
radius, rs, with an altered permeability, ks, the pressure drop due to the damage is 
expressed as the pressure difference between the virgin zone and the altered zone, 
that is to say: 

qμB rs qμB rsΔPs ¼ 141:2 ln � 141:2 ln (1.111)
ksh rw kh rw 

Rearranging; 

˜ ° 
qμB k rsΔPs ¼ 141:2 � 1 ln (1.112)
kh ks rw 

Comparing Eqs (1.112) and (1.107), the following can be concluded: 

˜ ° 
k rs s ¼ � 1 ln (1.113)
ks rw 

rs and ks are not easy to be obtained. 
Equation (1.82) and (1.106) can be respectively written as: 

1
PD þ s ¼ �  Eið�xÞ (1.114)

2 
1

PD þ s ¼ ½ ln tD þ 0:80907� (1.115)
2 

Replacing the dimensionless quantities given by Eqs. (1.87) and (1.95) in 
Eq. (1.115) will result: 

˛ ˜ ° ˝ 
70:6qμB 0:0002637kt

Pi ¼ Pwf þ ln þ 0:80908 þ 2s (1.116)
kh ϕμctr2 

w 

Taking natural logarithm to 0.0002637 and adding its result to 0.80908 
results in: 

˛ ˜ ° ˝ 
70:6qμB kt

Pi ¼ Pwf þ �7:4316 þ ln þ 2s (1.117)
kh ϕμctr2 

w 

Multiplying and dividing by the natural logarithm of 10 and solving for the well‐
flowing pressure: 

˛ ˜ ° ˝ 
162:6qμB kt

Pwf ¼ Pi � log � 3:2275 þ 0:8686s (1.118)
kh ϕμctr2 

w 

Thus, a straight line is expected to develop from a semilog plot of pressure 
against the time, as seen on the upper curve of Figure 1.12. 

1.11. Finite reservoirs 

In closed systems, the radial flow is followed by a transition period. This in turn 
is followed by the pseudosteady, semi‐stable, or quasi‐stable state, which is a 
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transient flow regime where the pressures change over time, dP/dt, is constant at all 
points of the reservoir: 

dP �q¼ (1.119)
dt cVp 

Eq. (1.99) is now subjected to the following initial and boundary conditions: 

PDðrD, tD ¼ 0Þ ¼ 0 (1.120) 

∂PD ¼ 0 (1.121)
∂rD reD 

∂PD ¼ �1 (1.122)
∂rD rD¼1 

Which solution is [9, 30]: 

4 4 22 
� 
r2 � 

reD 
2 ln rD ð3r eD ln reD � 2rD eD � 4r eD � 1Þ

PDðrD, tDÞ ¼  þ tD � �2 2 2ðr 4 ðr 2 
eD � 1Þ eD � 1Þ 4ðreD � 1Þ ( )

2 tD∞ e�a J2 
1ðanreDÞ½J1ðanÞY0ðanrDÞ � Y1ðanÞðJ0ÞðanrDÞ� þπ ∑ 

n 

n¼1 an½J21 ðanreDÞ � J21ðanÞ� 
(1.123) 

The pseudosteady‐state period takes place at late times (t > 948ϕμctre 
2/k), so that 

as time tends to infinity, summation tends to zero, then: 

2 2 4 4 22 r reD ln rD 3r eD ln reD � 2rD eD � 4r eD � 1 
PDðrD, tDÞ ¼ � � þ tD � � � � � �2r2 4 r2 2 

eD � 1 eD � 1 4 reD � 1 

(1.124) 

At the well, rD = 1 and as reD >>>> 1, the above expression is reduced to: 

2 2tD 3 1 1
PDðtDÞ ¼ þ � þ ln reD þ � (1.125)

r2 r2 4 2r2 4r4 
eD eD eD eD 

This can be approximated to: 

2tD 3
PDðtDÞ ffi  þ ln reD � (1.126)

r2 4eD 

Invoking Eq. (1.98) for a circular reservoir area, 

2r tDwtDA ¼ tD ¼ (1.127)
πr2 πr2 

e eD 

It follows that; 

tD
πtDA ¼ (1.128)

r2 
eD 

The final solution to the pseudosteady‐state diffusivity equation is obtained 
from using the definition given by Eq. (1.128) in Eq. (1.129): 
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3
PDðtDÞ ¼ 2πtDA þ ln reD � (1.129)

4 

The derivative with respect to time of the above equation in dimensional form 
allows obtaining the pore volume: 

dPðr, tÞ 1:79qB¼ �  (1.130)
dt hϕctr2 

e 

An important feature of this period is that the rate of change of pressure with 
respect to time is a constant, that is, dPD/dtDA = 2π. 

When the reservoir pressure does not change over time at any point, the flow is 
said to be stable. In other words, the right side of Eq. (1.99) is zero, [3]: 

1 ∂ ∂PD rD ¼ 0 (1.131)
rD ∂rD ∂rD 

Similar to the pseudosteady‐state case, steady state takes place at late times. 
Now, its initial, external, and internal boundary conditions are given by: 

PDðrD, tD ¼ 0Þ ¼ 0 (1.132) 

PDðrDe, 0Þ ¼ 0 (1.133) 

∂PD ¼ �1 (1.134)
∂rD rD¼1 

The solution to the steady‐state diffusivity equation is [3]: 

( )
∞ e�β2 tDn J0

2 ðβnreDÞ 
PDðrD, tDÞ ¼  ln reD � 2 ∑ � � �  

n � �� (1.135)
β2 J2 β � J2 βn¼1 n 1 n 0 nreD 

As time tends to infinity, the summation tends to infinity, then: 

ðPDÞssr ¼ ln reD ¼ ln 
r
r

w

e (1.136) 

In dimensional terms, the above expression is reduced to Darcy’s equation. The 
dimensionless pressure function for linear flow is given by: 

Lh ðPDÞ (1.137)ssL ¼ 2π 
A 

Steady state can occur in reservoirs only when the reservoir is fully recharged by 
an aquifer or when injection and production are balanced. However, a reservoir 
with a very active aquifer will not always act under steady‐state conditions. First, 
there has to be a period of unsteady state, which will be followed by the steady state 
once the pressure drop has reached the reservoir boundaries. Extraction of fluids 
from a pressurized reservoir with compressible fluids causes a pressure disturbance 
which travels throughout the reservoir. Although such disturbance is expected to 
travel at the speed of sound, it is rapidly attenuated so that for a given duration of 
production time, there is a distance, the drainage radius, beyond which no substan-
tial changes in pressure will be observed. As more fluid is withdrawn (or injected), 
the disturbance moves further into the reservoir with continuous pressure decline 
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at all points that have experienced pressure decline. Once a reservoir boundary is 
found, the pressure on the boundary continues to decline but at a faster rate than 
when the boundary was not detected. On the other hand, if the pressure transient 
reaches an open boundary (water influx), the pressure remains constant at some 
point; the pressure closest to the well will decline more slowly than if a closed 
boundary were found. Flow changes or the addition of new wells cause additional 
pressure drops that affect both the pressure decline and the pressure distribution. 
Each well will establish its own drainage area that supplies fluid. When a flow 
boundary is found, the pressure gradient—not the pressure level—tends to stabilize 
after sufficiently long production time. For the closed boundary case, the pressure 
reaches the pseudosteady state with a constant pressure gradient and general pres-
sure drop everywhere, which is linear over time. For constant‐pressure boundaries, 
steady state is obtained; both the pressure and its gradient remain constant 
over time. 

1.12. The pressure derivative function 

Pressure derivative has been one of the most valuable tools ever introduced to the 
pressure transient analysis field. In fact, [32] affirms that pressure derivative and 
deconvolution have been the best elements added for well test interpretation. How-
ever, here it is affirmed that besides these two “blessings,” TDS technique, [1, 2], is 
the best and practical well test interpretation method in which application will be 
very devoted along this textbook. Actually, in the following chapters,TDS is extended 
for long, homogeneous reservoirs, [33], interference testing [34], drainage area 
determination in constant‐pressure reservoirs, [35], and recent applications on frac-
tured vertical wells, [36], among others. More complex scenarios, for instance finite‐
conductivity faults, [37], are treated extensively in [38]. 

Attempts to introduce the pressure derivative are not really new. Some of them 
try to even apply the derivative concept to material balance. Just to name a few of 
them, [39] in 1961, tried to approach the rate of pressure change with time for 
detection of reservoir boundaries. Later, in 1965, [40] presented drawdown curves 
of well pressure change with time for wells near intersecting faults (36 and 90°). 
These applications, however, use numerical estimations of the pressure rate change 
on the field data regardless of two aspects: (1) an understanding of the theoretical 
situation behind a given system and (2) noise in the pressure data. 

Between 1975 and 1976, Tiab’s contributions on the pressure derivative were 
remarkable. Actually, he is the father of the pressure derivative concept as used 
nowadays. Refs. [41, 42] include detailed derivation and application of the pressure 
derivative function. These results are further summarized on [41–45]. Ref. [46] 
applied Tiab’s finding to provide a type‐curve matching technique using the natural 
logarithm pressure derivative. 

It was required to obtain the pressure derivative from a continuous function, 
instead of attempting to work on discrete data in order to understand the pressure 
derivative behavior in an infinite system. Then, Tiab decided to apply the Leibnitz’s 
rule of derivation of an integral to the Ei function. 

ðhðxÞ∂ ∂½hðxÞ� ∂ ½ f ðxÞ� 
gðuÞdu g h½ ðxÞ� � g f½ ðxÞ� (1.138)

∂x ∂x ∂xf ðxÞ 

Applying Leibnitz’s rule to the Ei function in Eq. (1.81) to differentiate with 
respect to tD (see Appendix B in [42]), 
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     ∞ 

Δ -r2 ð∞ e-u e-u Δu   DEi ¼ -
r 

Δu ¼ -  (1.139) 
D2 2ΔtD 4tD 4tD

u u ΔtD  rD 
4tD 

Taking the derivative Δu/ΔtD and replacing u by rD 
2/4tD,

      - r2   
Δ r2 e D =4tD r2 

D DEi - ¼ - (1.140)
ΔtD 4tD rD 

2 =4tD 4t2 
D 

After simplification,

      2Δ r 1 2
D - rD =4tDEi - ¼ - e (1.141)

ΔtD 4tD tD 

From inspection of Eq. (1.81) results: 

r
D ¼ - e 4tD (1.142)

∂PD 1 1 -
2 

∂tD 2 tD 

In oilfield units,

  
948ϕμct-ΔPwf 70:6qμB kt¼ e (1.143)

Δt kht 

At the well, rD = 1, then, Eq. (1.142) becomes: 

1 - 1 

PD 
0 ¼ e 4tD (1.144)

2tD 

-1/4tDFor tD > 250, e = 1; then, Eq. (1.144) reduces to 

1
PD 

0 ¼ (1.145)
2tD 

The derivative of equation (1.145) is better known as the Cartesian derivative. 
The natural logarithmic derivative is obtained from: 

∂PD ∂PD ∂PDtD*PD 
0 ¼ tD ¼ tD ¼ (1.146)

∂tD ð∂ ln tDÞ=tD ∂ ln tD 

Later on, [46] use the natural logarithmic derivative to develop a type‐curve 
matching technique. 

Appendix C in [42] also provides the derivation of the second pressure derivative:

  2 

∂PD″ ¼ PD 
1 r0 D - 1 (1.147)
tD 4tD 

Conversion of Eq. (1.145) to natural logarithmic derivative requires multiplying 
both sides of it by tD; then, it results: 

tD*PD 
0 ¼ 

1 
(1.148)

2 
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Eq. (1.148) suggests that a log‐log plot of dimensionless pressure derivative 
against dimensionless time provides a straight line with zero slope and intercept 
of ½. Taking logarithm to both sides of Eq. (1.145) leads to: 

log PD 
0 ¼ �log tD � 0:301 (1.149) 

˜ ° 
∂Pwf 1 70:6qμB

Pwf 
0 ¼ ¼ (1.150)

∂t t kh 

The above expression corresponds of a straight line with negative unit slope. In 
dimensional form: 

Taking logarithm to both sides of the above expression: 

˜ ° 
70:6qμB

log Pwf 
0 ¼ �log t þ log (1.151)

kh 

As shown in Figure 1.15, Eq. (1.151) corresponds to a straight line with negative 
unit slope and intercept of: 

70:6qμB
P0 

1hr ¼ (1.152)
kh 

Eq. (1.152) is applied to find permeability from the intersect plot of the Cartesian 
pressure derivative versus time plot. This type of plot is also useful to detect the 
presence of a linear boundary (fault) since the negative unit slope line displaces 
when the fault is felt as depicted in Figure 1.16. 

The noise that occurs in a pressure test is due to such factors as (1) turbulence, 
(2) tool movements, (3) temperature variations, (4) opening and closing wells in 
the field, and (5) gravitational effects of the sun and moon on the tides (near the 
great lakes the noise is about 0.15 psia and offshore up to 1 psia). 

The estimation of the pressure derivative with respect to time to actual data, of 
course, must be performed numerically since data recorded from wells are always 
discrete. During the derivative calculation, the noise is increased by the rate of 
change that the derivative imposes, so it is necessary to soften the derivative or to 
use smoothing techniques. The low resolution of the tool and the log‐log paper also 
increase or exaggerate the noise. Therefore, calculating the derivative of pressure 

Figure 1.15. 
Log‐log plot of Pwf 

0 against t. 
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Figure 1.16. 
0Fault identification by means of a log‐log plot of PD vs. tD. 

requires some care because the process of data differentiation can amplify any noise 
that may be present. Numerical differentiation using adjacent points will produce a 
very noisy derivative, [8, 47, 48]. 

Ref. [8] conducted a comparative study of several algorithms for estimation of 
the pressure derivative. They obtained synthetic pressure derivatives for seven 
different reservoir and well configuration scenarios and, then, estimated the pres-
sure derivative using several comparative methods. They found that the Spline 
algorithm (not presented here) is the best procedure to derive pressure versus time 
data since it produces minimal average errors. It is the only algorithm of polynomial 
character that to be continuous can be smoothed during any derivation process and 
the form of the curve obtained is in agreement with the worked model. The Horne 
and Bourdet algorithms when the smoothing window is of either 0.2 or 0.4 are good 
options for derivation processes. Ref. [8] also found the best procedure for data 
analysis of pressure against time is to differentiate and then smooth the data. 

By itself, the central finite difference formula fails to provide good 
derivative computation. Instead, some modifications are introduced by [18, 20, 
46], respectively: 

Horne equation [32]: 
8 9 
> >> ln ðti=ti�kÞΔPiþj ln ðtiþjti�k=ti 

2ÞΔPi >>> þ � >> < ln ðtiþj=tiÞ ln ðtiþj=ti�kÞ ln ðtiþ1=tiÞ ln ðti=ti�1Þ =∂P ∂P 
t ¼ t ¼

∂t ∂ ln t > >i i > >> ln ðtiþj=tiÞΔPi�1 >> >> >: ;ln ðti=ti�kÞ ln ðtiþj=ti�kÞ 
(1.153) 

ln tiþj � ln ti≥0:2 and ln ti � ln ti�k≥0:2 
When the data are distributed in a geometrical progression (with the time 

difference from one point to the next much larger as the test passes), then the 
noise in the derivative can be reduced using a numerical differentiation with 
respect to the logarithm of time. The best method to reduce noise is to use data 
that is separated by at least 0.2 logarithmic cycles, rather than points that are 
immediately adjacent. This procedure is recognized as smoothing and is best 
explained in Figure 1.17. 
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Figure 1.17. 
Smoothing diagram. 

Equation of Bourdet et al. [46]: 

˜ °  Pi�Pi�1dP ðXiþ1 � XiÞ þ Piþ1�Pi ðXi � X�1iÞXi�Xi�1 Xiþ1�Xi¼ (1.154)
dx Xiþ1 � Xi�1i 

Let X is the natural logarithm of the time function. 
This differentiation algorithm reproduces the test type curve over the entire 

time interval. It uses a point before and a point after the point of interest, i, to 
calculate the corresponding derivative and places its weighted mean for the objec-
tive point. Smoothing can also be applied. 

1.13. The principle of superposition 

This principle is not new. It was first introduced to the petroleum literature by 
van Everdingen and Hurst in 1949, [49]. However, its application is too important 
and many field engineers fail or neglect to use it. Superposition is too useful for 
systems having one well producing at variable rate or the case when more than one 
well produces at different flow rates. 

As quoted from [25], the superposition principle is defined by: 
“Adding solutions to the linear differential equation will result in a new solution of 

that differential equation but for different boundary conditions,” which mathematically 
translates to: 

ψ ¼ ψ1 f 1 þ ψ2 f 2 þ ψ3 f 3… (1.155) 

where ψ is the general solution and ψ1 f1, ψ2 f2 and ψ3 f3… are the particular 
solutions. 

1.13.1 Space superposition 

If the wells produce at a constant flow rate, the pressure drop at point N, 
Figure 1.18, will be [3, 9, 19, 21, 25]: 

ΔPN ¼ ΔPN,1 þ ΔPN, 2 þ ΔPN,3 (1.156) 
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Figure 1.18. 
Pressure at the point N. 

If reservoir and fluid properties are considered constant, then, Eq. (1.87) can be 
applied to the above expression, so that: 

141:2μ ˜ ° 
ΔPN ¼ ðqBoÞ1PDðrD1, tDÞ þ ðqBoÞ2PDðrD2, tDÞ þ ðqBoÞ3PDðrD3, tDÞkh 

(1.157) 

The dimensionless radii are defined by: 

rDn ¼ 
rn ; n ¼ 1, 2, 3 (1.158)
rw 

Extended to n number of wells: 

n 141:2qμB
ΔPN ¼ ∑ ½PDðrDi, tDÞ� (1.159) 

i¼1 kh 

If point N is an active well, its contribution to the total pressure drop plus the 
skin factor pressure drop, Eq. (1.108), must be included in Eq. (1.159), then, 

n 141:2qμB 141:2qμB
ΔPN ¼ ∑ ½PDðrDNi, tDÞ� þ  sjN (1.160) 

i¼1 kh kh 

Notice that in Eqs. (1.159) and (1.160), changes of pressures or dimensionless 
pressures are added. If the point of interest is a well in operation, the damage factor 
should be added to the dimensionless pressure of that well only. 

1.13.2 Time superposition 

Sometimes there are changes in flow rate when a well produces as referred in 
Figures 1.19 and 1.22. Then, the superposition concept must be applied. To do this, 
[25], a single well is visualized as if there were two wells at the same point, one with 
a production rate of q1 during a time period from t = 0 to  t and another imaginary 
well with a production rate of q2 � q1 for a time frame between t1 and t � t1. The 
total rate after time t1 is q1 þ (q2 � q1) =  q2. The change in well pressure due to the 
rate change [19, 25] is, 
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Figure 1.19. 
Time superposition. 

141:2μB ̃ ° 
ΔP ¼ q1PDðrD, tD1Þ þ ðq2 � q1ÞPDðrD, tD2 þ sÞ (1.161)

kh 

where tD2 = (t�t1)D. If there are more variations in flow rate, 

141:2μ n ˜ °˛ ˝ 
ΔP ¼ ∑ ðqBÞi � ðqBÞi�1 PDðrD, ðt � tiÞD þ s (1.162)

kh i¼1 

Example 1.4 

This example is taken [25]. The below data and the schematic given in 
Figure 1.20 correspond to two wells in production: 

k = 76 md, ϕ = 20 %, B = 1.08 bbl/STB 
Pi = 2200 psia, μ = 1 cp, ct = 10 � 10�6/psia 
h = 20 ft 

Calculate the pressure in (a) well 1 after 7 h of production and (b) in well 2 after 
11 h of production. Assume infinite behavior. 

Solution 

Part (a): 
ΔP(7 hr) = ΔP caused by production from well 1 to well 1 þ ΔP caused by 

production from well 2 to well 1. Mathematically, 

Figure 1.20. 
Flow rate changes for example 1.4. 

45 

http://dx.doi.org/10.5772/intechopen.81078


    

                           
                           

        

Novel, Integrated and Revolutionary Well Test Interpretation and Analysis 

141:2μq1B 141:2μq2BΔP7hr @ well1 ¼ ½PDðrD1, tDÞ þ  s� þ  ðPDðrD2, tDÞÞkh kh 

Using Eq. (1.101) for the well, 

2948ϕμctr 948ð0:2Þð1Þð1 � 10�5Þ12 

x ¼ � ¼ ¼ 3:56 � 10�6 

kt ð76Þð7Þ 

Since x < < < < 0.0025, it implies the use of Eq. (1.82) with Eq. (1.103); then, 

1
PDðrD, tDÞ ¼ �  ln ð1:781xÞ (1.163)

2 ˜̃
˜̃
 

°˝ 
ln 1:781*3:56 � 10�6 ˙˛ 

˜̃
˜̃ ¼ 5:98

1
PD ¼ 

2 

In well 2, x = 0.03564 from Eq. (1.101). Interpolating this value in Table 1.2, 
Ei(�x) = 2.7924; then, PD ffi 1.4. Estimating ΔP in well 1 will result: 

141:2ð100Þð1:08Þð1Þ 141:2ð100Þð1:08Þð1Þ
ΔP7hr, rD ¼1 ¼ ð5:98 þ 5Þ þ  ð1:4Þ ¼  113:7 ð76Þð20Þ ð76Þð20Þ 

Pwf @ well1 = 2200�113.7 = 2086.4 psia (notice that skin factor was only applied to 
well 1) 

Part (b); 
At 11 h, it is desired to estimate the pressure in well 2. Two flow rates should be 

considered for in each well. Then, the use of Eq. (1.162) will provide: 

ΔPð11 hr;well 2Þ ¼ ΔPwell 1!Well 2;t=11 hr;q=100 BPD; rD=100 þ ΔPwell 1!Well 2;t=ð11 �10Þ hr;q=ð50‐100Þ BPD; rD=100 

ΔPwell 1!Well 1;t=11 hr;q=25 BPD; rD=1;s2 þ ΔPwell 1!Well 1;t=ð11 �8Þ hr;q=ð100‐25Þ BPD; rD=1;s2 

Using Eq. (1.101), the four respective values of x are: x =0.02268, 0.2494, 
2.268 � 10�6, and 8.316 � 10�6. Estimation of Ei requires the use of Table 1.2 for 
the first two values and use of Eq. (1.103) for the last two values. The four values of 
Ei(�x) are: 0.0227, 0.811, 12.42, and 11.12. Therefore, the respective values of PD 

are 1.605, 0.405, 6.209, and 5.56. The total pressure drop is found with Eq. (1.161) 
as follows: 

ˆ ˇ 
141:2ð1Þð1:08Þ

ΔPwell 2; 11 hrÞ ¼ 
ð100Þð1:605Þ þ ð50 � 100Þð0:405Þþ ¼ 87:75 psiað76Þð20Þ ð25Þð6:209 þ 1:7Þ þ ð100 � 25Þð5:56 þ 1:7Þ 

Pwf @ well2 = 2200 � 87.75 = 2112.25 psia 

1.13.3 Space superposition—method of images 

The method of images applies to deal with either no‐flow or constant‐pressure 
boundaries. If a well operates at a constant flow rate at a distance, d, from an 
impermeable barrier (fault), the systems acts as if there were two wells separated 2d 
from each other [3, 25]. For no‐flow boundaries, the image well corresponds to the 
same operating well. For constant‐pressure boundary, the resulting image corre-
sponds to an opposite operating well. In other words, if the well is a producer near a 
fault, the image well corresponds to an injector well. These two situations are 
sketched in Figure 1.21. For the no‐flow boundary, upper system in Figure 1.21, the 
dimensionless pressure can be expressed as: 
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Figure 1.21. 
Well near a linear barrier. 

PD at real well ¼ PD at real well; rD=1;s þ PD at image well ! real well; rD = 2d=rw 
(1.164) 

For the constant‐pressure boundary, lower part in Figure 1.21, the dimension-
less pressure can be expressed as: 

PD at real well ¼ PD at real well; rD=1;s � PD at image well ! real well; rD = 2d=rw 
(1.165) 

The negative sign in Eq. (1.165) is because of dealing with an imaginary injector 
well. 

For the case of two intersecting faults, the total number of wells depends on the 
value of the angle formed by the two faults, thus: 

360 
nwells ¼ (1.166)

θ 

The image method is limited to one well per quadrant. If this situation fails 
to be fulfilled, then, the method cannot be applied. In the system of Figure 1.22, an 
angle of 90° is formed from the intersecting faults. According to Eq. (1.166), 
nwells = 360/90 = 4 wells, as shown there. The ratio of the distances from the well 
to each fault is given by: 

yD ¼ by =bx (1.167) 

Figure 1.22. 
Well between two intersecting faults. 
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The practical way to apply space superposition for generating the well system 
resulting from two intersecting faults consist of extending the length of the faults 
and setting as many divisions as suggested by Equation (1.166); that is, for example, 
1.5, Figure 1.23 left, six well spaces are obtained. Then, draw a circle with center at 
the fault intersection and radius at well position. This guarantees that the total 
length corresponds to the double length value from the well to the fault. Draw from 
the well a line to be perpendicular to the nearest fault and keep drawing the line 
until the circle line has been reached. See Figure 1.24 left. Set the well. A sealing 
fault provides the same type of well as the source well, that is, a producing well 
generates another producing well to the other side of the fault. A constant‐pressure 
boundary provides the opposite well type of the source well, that is, a producing 
well generates an injector well on the other side of the line. Draw a new line from 
the just drawn imaginary well normal to the fault and keep drawing the line until 
the line circle is reached. See Figure 1.24 right. Repeat the procedure until the 
complete well set system has been drawn. 

For more than six well spaces generated, that is angles greater than 60°, as the 
case of example 1.5, when a fault intersects a constant‐pressure boundary injector 
and producer imaginary wells ought to be generated. What type of line should be 
drawn? A solid line representing a sealing fault, or a dash line, representing a 
constant‐pressure boundary? The answer is any of both. The lines should be 

Figure 1.23. 
Location of well A and resulting well number system for example 1.5. 

Figure 1.24. 
Generating the well system for two intersecting faults. 
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drawn alternatively and as long as the system closes correctly, superposition 
works well. 

Example 1.5 

Well A in Figure 1.23 has produced a constant rate of 380 BPD. It is desired 
(a) to estimate the well‐flowing pressure after one week of production. The prop-
erties of the reservoir, well and fluid are given as follows: 

Pi = 2500 psia, B = 1.3 bbl/STB, μ = 0.87 cp 
h = 40 ft, ct = 15�10�6/psia, ϕ = 18 %  
rw = 6 in, k = 220 md, s = �5 

(b) What would be the well‐flowing pressure after a week of production if the 
well were in an infinite reservoir? 

Solution 

Part (a) 
The pressure drop in well A is affected by its own pressure drop and pres-

sure drop caused by its well images. The distance from well A to its imaginary 
wells is shown in Figure 1.23 (right‐hand side). The total pressure drop for well 
A is: 

ΔPA ¼ ΔPA,r¼rw þ ΔPimage 1!well A,r¼500 f t  þ ΔPimage 2!well A,r¼866 f t  

þΔPimage 3!well A,r¼1000 f t  þ ΔPimage 4!well A, r¼866 f t  þ ΔPimage 5!well A,r¼500 f t  

By symmetry, the above expression becomes: 

ΔPA ¼ ΔPA,r¼rw þ 2ΔPimage 1!well A, r¼500 f t  þ 2ΔPimage 2!well A,r¼866 f t  

þ ΔPimage 3!well A,r¼1000 f t  

Using Eq. (1.101) for the well: 

948ð0:18Þð0:87Þð1:5 � 10�5Þð0:5Þ2 

¼ 1:5 � 10�8 

ð220Þð168Þ 

Since x < < < < 0.0025, Eq. (1.163) applies: 

PDðrD, tDÞ ¼ �  
1 

˜̃
˜̃
 
˛° ˜̃

˜̃ ln 1:781ð1:5 � 10�8Þ ¼ 8:72 
2 

Estimation for the image wells are given below. In all cases, x > 0.0025, then, 
Table 1.2 is used to find Ei and the resulting below divided by 2 for the estimation 
of PD, 

948ð0:18Þð0:87Þð1:5 � 10�5Þð500Þ2 

ximage well 1 or 5 ¼ ¼ 0:015, PD ¼ 1:816 ð220Þð168Þ 
948ð0:18Þð0:87Þð1:5 � 10�5Þð8662Þ 

ximage well 2 or 4 ¼ ¼ 0:0452, PD ¼ 1:282 ð220Þð168Þ 
948ð0:18Þð0:87Þð1:5 � 10�5Þð10002Þ 

ximage well 3 ¼ ¼ 0:06, PD ¼ 1:145 ð220Þð168Þ 

Then, the pressure drop in A will be: 
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qμ B ̃ ° 
ΔPA ¼ 141:2 

kh 
ðPDA, r¼rw þ sÞ þ  2PD image 1, r¼500 f t  þ 2PD image 2, r¼866 f t  þ PD image 3, r¼1000 f t  

141:2ð380Þð0:87Þð1:3Þ
ΔPA ¼ ½ð8:72 � 5Þ þ  2ð1:816Þ þ  2ð1:282Þ þ  1:145� ¼ 76:3 psia ð220Þð40Þ 

Pwf @ well A = 2500 � 76.3 = 2423.7 psia 
Part (b) 
If the well were located inside an infinite reservoir, the pressure drop would not 

include imaginary wells, then: 

qμ B
ΔPA ¼ 141:2 ½PD, r¼rw þ s�

kh 

141:2ð380Þð0:87Þð1:3Þ
ΔPA ¼ ½8:72 � 5� ¼  25:63 psia ð220Þð40Þ 

The well‐flowing pressure would be (2500 � 25.3) = 2474.4 psia. It was observed 
that the no‐flow boundaries contribute with 66.4% of total pressure drop in well A. 

Nomenclature 

A area, ft2 or Ac 
Bg gas volume factor, ft3/STB 
Bo oil volume factor, bbl/STB 
Bw oil volume factor, bbl/STB 
bx distance from closer lateral boundary to well along the x‐direction, ft 
by distance from closer lateral boundary to well along the y‐direction, ft 
c compressibility, 1/psia 
cf pore volume compressibility, 1/psia 
ct total or system compressibility, 1/psia 
d distance from a well to a fault, ft 
f a given function 
h formation thickness, ft 
k permeability, md 
ks permeability in the damage zone, md 
krf phase relative permeability, f = oil, water or gas 
L reservoir length, ft 
m slope 
m(P) pseudopressure function, psia2/cp 
M gas molecular weight, lb/lbmol 
P pressure 
dP/dr pressure gradient, psia/ft 

0PD dimensionless pressure derivative 
PD″ dimensionless second pressure derivative 
PD dimensionless pressure 
Pi initial reservoir pressure, psia 
Pwf well flowing pressure, psia 
q flow rate, bbl/D. For gas reservoirs the units are Mscf/D 
Rs gas dissolved in crude oil, SCF/STB 
Rsw gas dissolved in crude water, SCF/STB 
rD dimensionless radius 
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rDe dimensionless drainage radius = re/rw 

r radial distance, radius, ft 
re drainage radius, ft 
rs radius of the damage zone, ft 
rw well radius, ft 
Sf fluid saturation, f = oil, gas or water 
s skin factor 
T reservoir temperature, ºR 
t time, h 
ta pseudotime, psia h/cp 
to dummy time variable 
ur radial flow velocity, ft/h 
tD dimensionless time based on well radius 
tDA dimensionless time based on reservoir area 

0tD*PD logarithmic pressure derivative 
V volume, ft3 

z vertical direction of the cylindrical coordinate, real gas constant 

Greek 

Δ change, drop 
Δt shut‐in time, h 
ϕ porosity, fraction. Spherical coordinate 
λ phase mobility, md/cp 
η hydraulic diffusivity constant, md‐cp/psia 
ρ density, lbm/ft3 

θ cylindrical coordinate 
μ viscosity, cp 
ζ time function 

Suffices 

1 hr reading at time of 1 h 
D dimensionless 
DA dimensionless with respect to area 
f formation 
g gas 
i initial conditions 
o oil, based condition 
w well, water 
p pore 
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Chapter 2 

Pressure Drawdown Testing 

As can be seen in Figure 1.4, well pressure test analysis (PTA) considers this as 
the most basic and simple test, which does not mean that it is not important. 
In these tests, bottom-hole well-flowing pressure, Pwf, is continuously recorded 
keeping the flow constant. These tests are also referred as flow tests. Similar to an 
injection test, these tests require either production/injection from/into the well. 

These tests are performed with the objective of (a) obtaining pore volume of the 
reservoir and (b) determining heterogeneities (in the drainage area). In fact, what is 
obtained is (a) transmissibility and (b) porous volume by total compressibility. 
In fact, a recent study by Agarwal [1] allows using drawdown tests to estimate the 
average permeability in the well drainage area. To run a pressure decline test, the 
following steps are generally followed: 

• The well is shut-in for a long enough time to achieve stabilization throughout 
the reservoir, if this is not achieved, multirate testing is probably required; 

• The recording pressure tool is lowered to a level immediately above the 
perforations. This is to reduce Joule-Thompson effects. It is important to have 
at least two pressure sensors for data quality control purposes; 

• The well opens in production at constant flow and in the meantime the well-
flowing pressure is continuously recorded. 

Ideally, the well is closed until the static reservoir pressure. The duration of a 
drawdown test may last for a few hours or several days, depending upon the test 
objectives and reservoir characteristics. There are extensive pressure drawdown 
tests or reservoir limit tests (RLT) that run to delimit the reservoir or estimate the 
well drainage volume. Other objectives are the determination of: well-drainage area 
permeability, skin factor, wellbore storage coefficient (WBS), porosity, reservoir 
geometry, and size of an adjacent aquifer. 

2.1. Wellbore storage coefficient 

It is the continuous flow of the formation to the well after the well has been 
shut-in for stabilization. It is also called after-flow, postproduction, postinjection, 
loading, or unloading (for flow tests). The flow occurs by the expansion of fluids in 
the wellbore. In pressure buildup tests, after-flow occurs. Figure 2.1 illustrates the 
above [2]. 

Traditional pressure tests had to be long enough to cope with both wellbore 
storage and skin effects so that a straight line could be obtained indicating the radial 
flow behavior. Even this approach has disadvantages since more than one 
apparent line can appear and analysts have problems deciding which line to use. In 
addition, the scale of the graph may show certain pressure responses as straight 
lines when in fact they are curves. To overcome these issues, analysts developed the 
method the type-curve matching method. 

There is flow in the wellbore face after shutting-in the well in surface. Wellbore 
storage affects the behavior of the pressure transient at early times. Mathematically, 
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Figure 2.1. 
Effects of wellbore storage on buildup and drawdown tests, taken from [2]. 

the storage coefficient is defined as the total volume of well fluids per unit change in 
bottom-hole pressure, or as the capacity of the well to discharge or load fluids per 
unit change in background pressure: 

ΔV
C ¼ (2.1)

ΔP 

As commented by Earlougher [2], wellbore storage causes the flow rate at the 
face of the well to change more slowly than the surface flow rate. Figure 2.2 
schematizes the relation qsf/q when the surface rate is changed from 0 to q, when 
C = 0, qsf/q = 1, while for C > 0, the relation qsf/q gradually changes from 0 to 1. The 
greater the value of C, the greater the transition is. As the storage effects become 
less severe, the formation begins to influence more and more the bottom-hole 
pressure until the infinite behavior is fully developed. Pressure data that are 
influenced by wellbore storage can be used for interpretation purposes since fluids 
unload or load has certain dependence on reservoir transmissibility; however, this 
analysis is risky and tedious. TDS technique, presented later in this chapter, can 
provide a better solution to this problem. 

Typically, the flow rate is surface-controlled (unless there is a bottom shut-in 
tool), the fluids in the well do not allow an immediate transmission of the 
disturbance from the subsurface to the surface, resulting in uneven surface and 
wellbore face flow [2–7]. Wellbore storage can change during a pressure test in both 
injector and producer wells. Various circumstances cause changes in storage, such 
as phase redistribution and increase or decrease in storage associated with pressure 

Figure 2.2. 
Effect of storage on the flow rate at the face of the well, C3>C2>C1, taken from [2]. 
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tests in injector wells. In injector wells, once the well is closed, the surface pressure 
is high but could decrease to atmospheric pressure and go to vacuum if the static 
pressure is lower than the hydrostatic pressure. This causes an increase in storage 
(up to 100 times) of an incompressible system to one in a system where the liquid 
level drops [2]. The inverse situation occurs in injector wells with a high level of 
increase of liquid storage level and in producing wells with a high gas-oil ratio or by 
redissolution of the free gas. Both for increase or decrease of storage, the second 
storage coefficient determines the beginning of the semilogarithmic straight line. 

When the relationship between ΔV and ΔP does not change during the test, 
the wellbore storage coefficient is constant and can be estimated from completion 
data [2–4]. 

˜ ° 
144

C ¼ Vu (2.2)
ρ 

where Vu is the wellbore volume/unit length, bbl/ft, r is the density of the fluid 
in the wellbore, lbm/ft3, and C is the wellbore storage coefficient, bbl/psia. 

For injector wells or wells completely filled with fluids: 

C ¼ cwbVwb (2.3) 

where Cwb is the wellbore fluid compressibility = 1/Pwb, Vwb is the total wellbore 
volume, and Vu can be estimated with internal casing, IDcsg, and external tubing, 
ODtbg, diameters. 

Vu ¼ 0:0009714ðID2 � OD2 (2.4)csg tbgÞ 

When opening a well, see Figure 2.3, the oil production will be given by the 
fluid that is stored in the well, qsf = 0. As time goes by, qsf tends to q and storage is 
neglected and the amount of liquid in the wellbore will be constant. The net accu-
mulation volume will be (assuming constant B) [3, 5]: 

Figure 2.3. 
Schematic representation of wellbore storage, taken from [3]. 
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Vwb ¼ AwbðZÞ (2.5) 

The flow rate is given by: 

dVwb dZ ¼ Awb (2.6)
dt dt 

The rate of volume change depends upon the difference between the subsurface 
and surface rates: 

dVwb 24 dZ ¼ ðqsf � qÞB ¼ Awb (2.7)
dt 5:615 dt 

Since (assuming g/gc = 1): 

ρZ
Pw � Pt ¼ (2.8)

144 

Taking the derivative to Eq. (2.8), 

d ρ dZ ðPw � PtÞ ¼  (2.9)
dt 144 dt 

Combining Eqs. (2.7) and (2.9) will result: 

24ð144ÞAwb dðPw � PtÞ ðqsf � qÞB ¼ 
5:615 ρ dt 

(2.10) 

Define 

C ¼ 
144 Awb 

5:615 ρ 
(2.11) 

Assuming constant, Pt, replacing the definition given by Eq. (2.11) and solving 
for the wellbore face flow rate, qsf, leads to: 

24C dPw (2.12)qsf ¼ q þ 
B dt 

Taking derivative to Eqs. (1.89) and (1.94) with respect to time and taking the 
ratio of these will yield: 

˜ ° 
dPw 0:0373qB dPD¼ �  (2.13)
dt ϕ h ct r2 dtDw 

Combining Eqs. (2.12) and (2.13); 

0:894qC dPwD (2.14)qsf ¼ q � 
ϕ cthr2 dtDw 

Defining the dimensionless wellbore storage coefficient; 

0:894C
CD ¼ (2.15)

ϕcthr2 
w 

58 



Pressure Drawdown Testing 
DOI: http://dx.doi.org/10.5772/intechopen.81078 

Rewriting Eq. (2.14); 

qsf dPwD¼ 1 � CD (2.16)
q dtD 

The main advantage of using downhole shut-in devices is the minimization of 
wellbore storage effects and after-flow duration. 

Rhagavan [5] presents the solution for the radial flow diffusivity equation consid-
ering wellbore storage and skin effects in both Laplace and real domains, respectively: 

�pffiffiffi� pffiffiffi �pffiffiffi� 
K0 u þ s uK1 u 

PD ¼ �pffiffiffi �pffiffiffi� � �pffiffiffi� pffiffiffi �pffiffiffi��� (2.17)
u uK1 u þ CDu K0 u þ s uK1 u 

∞ð �x2 tD4 1 � e
PD ¼ n odv (2.18)

π2 2 2x3 vCDJ0 x x J1ð Þ� þ ½xCDY0 x ð Þ  x½ ð Þ � f ð Þ  x ð Þ � f x Y1ð Þ�
0 

where f(x) = 1�CD(s) x
2, and K0, K1, J0, J1,Y0, and Y1 are Bessel functions. 

2.2. Well test interpretation methods 

There exist four methods for well test interpretation as follows: (a) conventional 
straight-line, (b) type-curve matching, (c) regression analysis, and (d) modern 
method: TDS technique. Although they were named chronologically, from oldest to 
most recent, they will be presented in another way: 

2.2.1 Regression analysis 

This is the most widely used method. It consists of automatically matching the 
pressure versus time data to a given analytical solution (normally) of a specific 
reservoir model. The automatic procedure uses nonlinear regression analysis by 
taking the difference between a given matching point and the objective point from 
the analytical solution. 

This method has been also widely misused. Engineers try to match the data with 
any reservoir model without considering the reservoir physics. The natural problem 
arid=sing with this method is the none-uniqueness of the solution. This means that 
for a given problem, the results are different if the starting simulation values 
change. This can be avoided if the starting values for the simulation values are 
obtained from other techniques, such as TDS technique or conventional analysis, 
and then, the range of variation for a given variable is reduced. This technique will 
not be longer discussed here since this book focused on analytical and handy 
interpretation techniques. 

2.2.2 Type-curve matching 

As seen before, this technique was the second one to appear. Actually, it came as 
a solution to the difficulty of identity flow regimes in conventional straight-line 
plots. However, as observed later, the technique is basically a trial-and-error proce-
dure. This makes the technique tedious and risky to properly obtain reservoir 
parameters. 

The oldest type-curve method was introduced by Ramey [2, 8, 9]. If CD = 0 in  
Eq. (2.16), then, qsf = q. Therefore; 
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dPD1 � CD ¼ 0 (2.19)
dtD 

By integration between 0 and a given PwD and from dimensionless time zero to 
tD, and taking logarithm to both terms, it yields: 

log PD ¼ log tD � log CD (2.20) 

Suffix w is used to emphasize that the pressure drop takes place at the wellbore 
bottom-hole. This will be dropped for practical purposes. It is clearly observed in 
Eq. (2.19) that the slope is one. Then in any opportunity that is plotted PD vs. tD and 
a straight line with a unitary slope is observed at early times, is a good indication 
that storage exists. Substituting the dimensionless quantities given by Eqs. (1.89), 
(1.94) and (2.15) in Eq. (2.20), we have: 

C ¼ 
qB t 
24 ΔP 

¼ 
qB tN 

24 ðPi � Pwf ÞN 
(2.21) 

Eq. (2.21) serves to determine the storage coefficient from data from a pressure 
decline test using a log-log plot of ΔP versus time. Any point N is taken from the 
unit-slope straight line portion. The value of C obtained using Eq. (2.21) must 
match the value obtained from Eq. (2.5). Otherwise, there may be an indication that 
the liquid level is going down or rising inside the well. The reasons most commonly 
attributed to this phenomenon are high gas-oil ratios, highly stimulated wells, 
exhaust gaskets or spaces in the well connections caused by formation collapse or 
poor cementation and wells used for viscous fluid injection. In conclusion, the 
properties of Ramey's type curves allow (a) a unitary slope to be identified which 
indicates wellbore storage and (b) the fading of wellbore storage effects. 

It can also be seen that each curve deviates from the unitary slope and forms a 
transition period lasting approximately 1.5 logarithmic cycles. This applies only to 
constant wellbore storage, otherwise, refer to [10]. If every ½ cycle is equal to 
(100.5 = 3.1622), it means that three half cycles (3.16223 = 31.62) represent approx-
imately a value of 30. That is to say that a line that deviates at 2 min requires 1 h 
forming the transient state or radial flow regime. In other words, the test is masked 
for 1 h by wellbore storage effects [2, 5, 11]. It is also observed that a group of curves 
that present damage are mixed at approximately a dimensionless time, 

tD ffi ð60 þ 3:5sÞCD (2.22) 

After which time, the test is free of wellbore storage effects [2, 5, 6]. Along with 
TDS technique [10, 12–73] which will be discussed later in this chapter, type-curve 
matching is the only manual procedure that can be applied in short tests where 
radial flow has not been developed (semilog line). However, type-curve matching is 
risky because it is a trial-and-error technique, but can provide approximate results 
even when conventional methods fail. One millimeter shifting can cause pressure 
differences of up to 200 psia. The procedure is as follows [2, 9]: 

1. Prepare a plot of DP vs. t on logarithmic paper using the same scale as the 
master curve given in Figure 2.4. This is recognized as the field data plot, fdp. 

2. Place the fdp on the master curve so that the axes are parallel. 

3. Find the best match with one of the curves in Figure 2.4. 
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Figure 2.4. 
Type curve of dimensionless pressure against dimensionless time for a well in an infinite reservoir (wellbore 
storage and skin), taken from [2, 9]. 

4.Choose a suitable match point and read the corresponding coordinates DPM, 
tM, PDM, tDM, and CDM. The two first parameters are read from the fdp. The 
remaining from the type-curve (Figure 2.4). 

5. Estimate permeability, porosity, and wellbore storage coefficient, respectively: 

˜ ° 
qμB PDMk ¼ 141:2 (2.23)
h ΔPM ˜ ° 

0:0002637k tM
ϕ ¼ (2.24)

μ ct r2 tDMw 

ϕcth r2 
wC ¼ CDM (2.25)

0:8936 

The results from the Ramey’s type curve must be verified with some other type 
curve. For instance, Earlougher and Kersch [8], formulated another type curve, 
Figure 2.5, which result should agree with those using Ramey method. The proce-
dure for this method [8] is outlined as follows: 

1. Plot ΔP/t vs. t (fdp) on logarithmic paper using the same scale as the 
master curve given in Figure 2.5. Match the plotted curve, fdp, with the 
appropriate curve of Figure 2.5. Choose any convenient point and read from 
the master graph (CDe2s)M, (ΔP/t 24C/qB)M and (kh/µ t/C)M. Read from the 
fdp: (ΔP/t)M and tM. 

Find wellbore storage coefficient, formation permeability, and skin factor using, 
respectively, the below expressions: 

˜ ° ˛˜ ° 
qB

C ¼ 
24 

ΔP 24C 
t qB M 

ΔP 
t M 

(2.26) 

˜ ° ˛ 
μC kh t

k ¼ tMh μ c M 
(2.27) 
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Figure 2.5. 
Earlougher and Kersch type-curve for a well in infinite reservoir with wellbore storage and skin, taken from 
[2, 8]. 

1 
˜ 
ϕ μ ct h r2 ° 

ws ¼ ln ðCDe2sÞM (2.28)
2 0:89359C 

Another important type curve that is supposed to provide a better match was 
presented by Bourdet et al. [73], Figure 2.6. This includes both pressure and pres-
sure derivative curves. The variables to be matched are ΔPM, (t*ΔP 0)M, (PD)M, 
[(tD/CD)PD 

0]M, tM, (tD/CD)M, and (CDe
2s)M. The equations use after the matching 

are [73]: 

141:2qμ B PDMk ¼ (2.29)
h ΔPM ˛ ˝ 
kh tMC ¼ 0:000295 (2.30)
μ ðtD=CDÞM 

1412qμB ½ðtD=CDÞPD 
0�Mhk ¼ (2.31)ðt � ΔP 0ÞM 

1 ðCDe2sÞMs ¼ ln (2.32)
2 C 

2.2.3 Straight-line conventional analysis 

The conventional method implies plotting either pressure or pressure drop 
against a given time function. The intercept and slope of such plot is used for 
reservoir and well parameters estimation. When the fluid initiates its path from the 
farthest reservoir point until the well head, several states and flow regimes are 
observed depending on the system geometry. For instance, if the reservoir has an 
elongated shape, probably linear flow will be observed. Linear flow obeys a pressure 
dependency on the square-root of time, or, if the fluid experiences radial flow 
regime, the relation between pressure and time observes a semilog behavior, or, 
either inside the well or the limitation of the reservoir boundaries imply a 
pseudosteady-state condition, then, pressure is a linear function of time. 
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Figure 2.6. 
Bourdet et al. [73] pressure and pressure-derivative versus time-type curve. 

P α f ðtÞ (2.33) 

The time function depends on the system geometry and could be any of the 
kinds described by Eq. (2.34). 

Normally, the pressure or pressure drop are plotted in Cartesian coordinates, 
except certain few cases as for the Muskat method, see Chapter 3, which requires 
a potential plot, meaning, logarithm scale of pressure drop in the y-axis and 
Cartesian scale for time in the x-direction. 

2.2.3.1 Semilog analysis 

It is commonly referred as the “semilog method” since the radial flow is the 
most important regime found on a pressure test. Then, a semilogarithm plot is 
customary used in well test analysis. 

8 >>>>>>>>>>>>>>>>>>>>>>>>< 

>>>>>>>>>>>>>>>>>>>>>>>>: 

log t � Radial flow 
tp þ Δt 

log � Radial flow ðHorner plotÞ
Δt 

t � Pseudosteady state 

t0:135 � Ellipsoidal flow 

t0:25 � Bilinear flow 
f ðtÞ ¼  t0:36 � Birradial flow (2.34) 

t0:5 � Linear flow 

1=t0:5 � Spherical=Hemispherical flow 

ðtp þ ΔtÞξ � Δtξ; ξ ¼ 0:135 � Ellipsoidal, 0:25, 0:36, 0:5 
pffiffiffiffi pffiffiffiffiffi 
tp þ 1= Δt 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi p
1= � 1= tp þ Δt � Spherical=Hemispherical flow 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi pffiffiffiffiffi 
Δt � 1= 

p
1= tp þ Δt � Spherical=Hemispherical flow 

Starting by including the skin factor in Eq. (1.106); 

1
PD ¼ ½ ln tD þ 0:80907� þ 2s (2.35)

2 
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Replacing the dimensionless terms given by Eqs. (1.89) and (1.94) into 
Eq. (2.35) and dividing both terms by ln 10 will lead to: 

˝°˜˛
khðPi � Pwf Þ 
162:6qμB 

0:0002637kt ¼ log þ 0:3514 þ 0:8686s (2.36)
ϕμctr2 

w 

Solving for the well-flowing pressure; 

˝°˜˛ 
162:6 qμB kt

Pwf ¼ Pi � log � 3:2275 þ 0:8686s (2.37)
kh ϕμctr2 

w 

Eq. (2.37) suggests a straight-line behavior which is represented in the 
central region of Figure 2.7. The other two regions are affected by wellbore storage 
and skin effects, at early times and boundary effects at late times. Reservoir 
transmissivity, mobility, or permeability can be determined from the slope; 

˙̇
qB162 6:˙̇

m 

˙̇
˙̇
 

kh 
m ¼ T ¼ ¼ (2.38)

μ 

The intercept of Eq. (2.34) is used for the determination of the mechanical skin 
factor. For practical purposes, the well-flowing pressure at time of 1 h, P1hr, is read 
from the straight-line portion of the semilog behavior, normally extrapolated as 
sketched in Figure 2.7, so solving for skin factor, s, from Eq. (2.34) results: 

˝°˜˛ 
P1hr � Pi k 

s ¼ 1:1513 � log þ 3:23 (2.39)
m ϕμctr2 

w 

Since the slope possesses a negative signed, so does the P1hr� Pi term. Therefore, 
the first fractional in the above equation is always positive unless the well is highly 
stimulated. 

According to Eq. (2.39), the contribution to the pressure drop caused by the 
mechanical skin factor is included to the last term: 0.8686s multiplied by the slope. Then: 

ˆ
if s>0 ! ΔPs>0 

if s <0  ! ΔPs <0  
ΔPs ¼ j0:87ðmÞjs, (2.40) 

Figure 2.7. 
Behavior of the well-flowing pressure observed in a semilog graph, taken from [68]. 
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Eq. (2.40) is similar to Eq. (1.110) and works for either pressure drawdown or 
pressure buildup tests. 

˜ ° 
k rsΔPs ¼ �0:87ðmÞ � 1 ln (2.41)
ks rw 

Eq. (1.110) is useful to find either skin factor, s, formation damaged permeability, 
ks, or the damaged or affected skin zone radius, rs. However, since the skin zone 
covers an infinitely thin area and the pressure wave travels at high speed, it is difficult 
to detect transmissivity changes, then, rs and ks are difficult to be measured. 

Eqs. (1.110) and (2.37) imply the skin factor along flow rate just increases or 
decreases the well pressure drop. However, this occurs because the well radius 
behaves as if its radius was modified by the value of the skin factor. Brons and 
Miller [74] defined the apparent or effective wellbore radius, rwa, to be used in 
Eqs. (1.89), (1.94), and (1.100) 

�srwa ¼ rwe (2.42) 

Example 2.1 

A well with a radius of 0.25 ft was detected to have a skin factor of 2. A skin 
factor of �2 was obtained after a stimulation procedure. Find the apparent radii and 
the percentage of change in the radius due to the stimulation. What conclusion can 
be drawn? 

Solution 

Application of Eq. (2.42) for the damaged-well case gives: 

rwa ¼ rwe�s ¼ 0:25e�2 ¼ 0:034 ft ¼ 0:406 in 

Application of Eq. (2.42) for the damaged-well case gives: 

rwa ¼ rwe�s ¼ 0:25e�ð�2Þ ¼ 1:848 ft ¼ 22:17 in 

It can be observed that 1.847�100/0.034 ffi 5460%, meaning that the stimula-
tion helps the well to increase its radius 55 times. It can be concluded from the 
example that for positive skin factor values, the effective wellbore radius decreases 
(rwa<rw) and for negative skin factor values, the effective wellbore radius increases 
(rwa>rw). 

The starting time of the semilog straight line defined by Ramey [9] in Eq. (2.22) 
allows determining mathematically where the radial flow starts, i.e., the moment 
wellbore storage effects no longer affect the test. Replacing into Eq. (2.22) the 
dimensionless parameters given by Eqs. (1.94) and (2.15) results [2]: 

ð200000 þ 12000sÞμC 
tSSL ¼ (2.43)

kh 

The application of Eq. (2.40) is twofolded. (1) It can be used for test design 
purposes. The duration of a pressure drawdown test should be last 10 times the 
value of tSSL, so a significant portion of the radial flow regime can be observed and 
analyzed and (2) finding the semilog slope can be somehow confusing. Once the 
semilog line is drawn and permeability, skin factor, and wellbore storage are calcu-
lated, then, Eq. (2.40) can be used to find the starting point of the radial flow 
regime. Radial flow is correctly found if the tSSL value agrees with the one chosen in 
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the plot. This last situation is avoid if the pressure and pressure derivative plot is 
available since radial flow is observed once the pressure derivative curve gets flat as 
seen in Figure 2.6. 

The declination stabilization time (time required to reach the boundaries and 
develop the pseudosteady-state period) during the test can be from the maximum 
time at which the maximum pressure drops (not shown here) take place. This is: 

948ϕμctr2 

tmax ¼ (2.44)
k 

From which; 

948ϕμctr2 
etpss ¼ (2.45)

k 

For square or circular geometries, tDA = 0.1 from Table 2.1. Replacing this value 
in Eq. (1.100) and solving for time leads to: 

1190ϕμctr2 
etpss ¼ (2.46)

k 

from 

sffiffiffiffiffiffiffiffiffiffi 
ktprinv ¼ 0:0325 (2.47)
μϕct 

For any producing time, tp, the radius of investigation—not bigger than re —can 
be found. 

The point reached by the disturbance does not imply fluid movement occurs 
there. The drainage radius is about 90% that value, then 

sffiffiffiffiffiffiffiffiffiffi 
ktprd ¼ 0:029 (2.48)
μϕct 

Skin factor is a dimensionless quantity. This does not necessarily reflect the 
degree of either damage or stimulation of a well. Then, more practical measurement 
parameters ought to be used. One of this is the flow efficiency, FE, which implies 
what percentage of the total pressure drawdown is due to skin factor. The flow 
efficiency is defined as the ratio between the actual productivity index, J, and the 
ideal productivity index. The productivity index involves money since it is defined 
as the amount of pressure drop needed to produce a barrel of fluid per day. In other 
words, it is the energy required to produce one BPD. Mathematically; 

q
J ¼ (2.49)

P � Pwf 

q
Jideal ¼ (2.50)

P � Pwf � ΔPs 

J ΔPsFE ¼ ¼ 1 � (2.51)
Jideal P � Pwf 

FE < 1 is an indication that well damage exists, otherwise there is stimulation. 
The productivity index can be increased by: 
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Table 2.1. 
Shape factors for different drainage areas, taken from [8, 75]. 

• Increasing the permeability in the zone near the well—hydraulic fracturing; 

• Reduce viscosity—steam injection, dissolvent, or in situ combustion; 

• Damage removing—acidification; 

• Increase well penetration; 

• Reduce volumetric factor—choosing correct surface separators. 

Other parameters to quantify well damage are [68]: 
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Damage ratio, DR 

DR ¼ 1=FE (2.52) 

Damage ratios less than the unity indicate stimulation. 

Damage factor, DF 

DR ¼ 1 � FE (2.53) 

Negative values of damage factors indicate stimulation. The damage factor can 
also be estimated from [68]: 

s qðactualÞ
DF ¼ ¼ 1 � (2.54)

s þ ln ðre =rwÞ qðidealÞ 

Eq. (2.54) applies to circular-shaped reservoir. 

Productivity ratio, PR 

q qðidealÞ ln ðre =rwÞPR ¼ ¼ ¼ (2.55)
q qðactualÞ ln ðre =rwÞ þ sa 

Annual loss income, FD$L (USD$) 

FD$L ¼ 365qðOPÞDF (2.56) 

where OP is oil price. 

Example 2.2 

What will be the annual loss of a well that produces 500 BFD, which has a 
damage factor of 8, drains an area of 120 acres and has a radius of 6 inches? Assume 
circular reservoir area and a price of oil crude of USD $ 55/barrel. 

Solution 

120 acres = 5,227,200 ft2. If the area is circular, then: r = 1290 ft. Find the damage 
factor from Eq. (2.54); 

s 8
DF ¼ ¼ ¼ 0:5046 

s þ ln ðre =rwÞ 8 þ ln ð1290=0:5Þ 

Find the yearly loss income using Eq. (2.56) 

FD$L ¼ 365qðOPÞDF ¼ ð365Þð500Þ 55 Þ ¼ USD$ 5064922ð Þð0:5046 

This indicates that the well requires immediate stimulation. 

2.2.3.2 Reservoir limit test, RLT 

It is a drawdown test run long enough to reach the reservoir boundaries. 
Normal pressure drawdown tests, during either radial flow or transient period test, 
are used to estimate formation permeability and artificial well conditions (C and s), 
while an RLT test—introduced by [76]—deals with boundaries and is employed to 
determine well drainage area or well drainage pore volume. In a Cartesian graph for 
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a closed boundary system, Figure 2.8, three zones are distinguished [8, 68]: (i) skin 
and wellbore storage dominated zone, (ii) transient zone (radial flow), and (iii) 
pseudosteady-state zone. As indicated by Eq. (1.129), the pressure drop is a linear 
function of time. Eq. (1.129) is given for circular reservoir geometry. For any 
geometry, the late time pseudosteady-state solution involves the Dietz shape factor, 
[75], to extent the use of Eq. (1.129) for other reservoir geometries, as described in 
Table 2.1. Under this condition, Eq. (1.129) becomes [77]: 

˜ ° ˜ ° 
1 A 2:2458

PD ¼ 2πtDA þ ln þ ln (2.57)
2 r2 CAw 

Replacing in the above expression the dimensionless quantities given by 
Eqs. (1.89) and (1.94), it results: 

˛ ˝ ˛ ˜ ° ˝ 
0:23395qB 70:6qμB A 2:2458

Pwf ¼ �  t þ Pi � ln þ ln þ 2s (2.58)
ϕctAh kh r2 CAw 

From the slope, m*, and intercept, PINT, of Eq. (2.58), the reservoir pore volume 
and Dietz shape factor [74] can be obtained from either: 

0:23395qB
Vp ¼ �  (2.59)

ctm� 

m P1hr�PINT 2:303 mCA ¼ 5:456 e (2.60)
m� 

Once the value of CA is obtained from Eq. (2.60), the reservoir geometry can be 
obtained from Table 2.1 by using the closest tabulated value (“exact for tDA ”) and 
confront with the time to develop pseudosteady-state regime, (tDA)pss which is 
found from: 

m� 

ðtDAÞpss ¼ 0:1833 tpss (2.61)
m 

tpss can be read from the Cartesian plot. However, this reading is inexact; there-
fore, it is recommended to plot the Cartesian pressure derivative and to find the 
exact point at which this becomes flat. 

2.2.4 Tiab’s direct synthesis (TDS) technique 

TDS technique is the latest methodology for well test interpretation. Its basis 
started in 1989 [70]. TDS’ creator was Tiab [71], who provided analytical and 
practical solutions for reservoir characterization using characteristic points or 
features—called by him “fingerprints”—read from a log-log plot of pressure and 
pressure derivative [15], versus time. Since the introduction of TDS in 1995, several 
scenarios, reservoir geometries, fluid types, well configurations, and operation 
conditions. For instance, extension of TDS technique to elongated systems can be 
found in [13, 14, 16–19, 23, 24, 28, 30, 31]. Some applications of conventional 
analysis in long reservoirs are given in [20, 29, 38, 54]. For vertical and horizontal 
gas wells with and without use of pseudotime, refer to [22, 36, 39]. Special cases 
of horizontal wells are found in [12, 47]. For transient rate analysis, refer to 
[27, 35, 49]. Applications on heavy oil (non-Newtonian fluids) can be found in 
[32, 34, 41, 42, 45, 52, 56, 62, 64]. For cases on shales reservoirs, refer to 
[49, 51, 56, 78]. Well test analysis by the TDS technique on secondary and tertiary 
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oil recovery is presented by [25, 33, 60, 79]. For multirate testing in horizontal and 
vertical wells, refer, respectively, to [65, 67]. References [43, 46] are given for 
conductive faults. For deviated and partially penetrated wells, refer to [37, 64], 
respectively. TDS technique extended to multiphase flow was presented by [26]. 
Wedged and T-shaped reservoirs can be found in [48] and coalbed-methane reser-
voirs with bottom water drive are given in [53]. TDS technique is excellent for 
interpreting pressure test in hydraulically fractured vertical wells since unseen flow 
regimes can be generated [50, 69, 80]. The first publications on horizontal wells in 
naturally fractured and anisotropic media are given in [81, 82]. The threshold 
pressure gradient is dealt by [57, 72]. For vertical wells in double porosity and 
double permeability formations, refer, respectively, to [41, 83]. A book published 
by Escobar [56] presents the most recent topics covered by the TDS technique, and 
a more comprehensive state-of-the-art on TDS technique is given by [58]. This 
book revolves around this methodology; therefore, practically, the whole content of 
[71]—pioneer paper of TDS technique—will be brought here: 

The starting point is the definition of the dimensionless pressure derivative from 
Eq. (1.89); 

khðt � ΔP 0Þ 
tD � PD 

0 ¼ (2.62)
141:2qμB 

By looking at Eqs. (2.17) and (2.18), we can conclude the difficulty of using hand 
mathematical operations with them. Instead of using these general solutions, Tiab 
[71] obtained partial solutions to the differential equation for each flow regime or 
time period. For instance, during early pseudosteady-state, the governing equation 
reduces to: 

tDPD ¼ (2.63)
CD 

Combination of Eqs. (1.94) and (2.15) results in: 

˜ ° 
tD t ¼ 2:95 � 10�4 h 

(2.64)
CD μ C 

Replacing Eq. (1.89) in the above expression yields; 

˜ ° ˜ ° 
kh 

141:2qμB 
ΔP ¼ 2:95 � 10�4 kh 

μ 
t 
C 

(2.65) 

Solving for C; 

C ¼ 

˜ °  
qB t 
24 ΔP 

(2.66) 

The pressure derivative curve also has a straight line of unitary slope at 
early times. The equation of this line is obtained by taking the derivative 
of Eq. (2.63) with respect to the natural logarithm of tD/CD. So: 

˜ ° 
tD tDPD 

0 ¼ (2.67)
CD CD 

Where the derivative of the dimensionless pressure is: 
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˜ ° ˛˜ ° 
kh 0:0002637k

PD 
0 ¼ dPD=dtD ¼ dP dt (2.68)

141:2qμB ϕμctr2 
w 

Rearranging; 

˜ 
26:856r2 ϕcth 

° 
wPD 

0 ¼ ΔP 0 (2.69)
qB 

Converting to dimensional form, the left-hand side of Eq. (2.67) by using the 
definitions given by Eqs. (2.64) and (2.68): 

˜ ° ˜ °˜ ° 
tD kh ϕcthr2 

wPD 
0 ¼ 0:00792252 ðt � ΔP 0Þ (2.70)

CD qμB C 

Multiplying and dividing by 0.8935; 

˜ ° ˜ °˜ ° 
tD kh ϕcthr2 

wPD 
0 ¼ 0:007087 ðt � ΔP 0Þ (2.71)

CD qμB 0:8935C 

Recalling Eq. (2.15), the above becomes: 

˜ ° ˜ °˜ ° 
tD kh 1

PD 
0 ¼ 0:007087 ðt � ΔP 0Þ (2.72)

CD qμB CD 

Since the unit slope is one, then CD = 1, thus; 

˜ ° 
tD khðt � ΔP'Þ

PD 
0 ¼ (2.73)

CD 141:2qμB 

From looking at Figure 2.6, both pressure and pressure derivative curves 
display a unitary slope at early times. Replacing Eqs. (2.64), (2.73) in (2.67) and 
solving for C will result: 

˜ °  
qB t

C ¼ (2.74)
24 t � ΔP0 

As seen in Figure 2.6, the infinitely acting radial flow portion of the pressure 
derivative is a horizontal straight line with intercept of 1/2. The governing 
equation is: 

˝˜ ° ˙ 
tD 10PD ¼ (2.75)
CD 2r 

Combining the above equation with Eq. (2.73) results the best expression to 
estimate reservoir permeability: 

70:6qμB
k ¼ (2.76)

hðt � ΔP 0Þr 
Subscript r stands for radial flow line. A customary use of TDS, as established 

by Tiab [71], is to provide suffices to identify the different flow regimes. For 
instance, pss stands for pseudosteady state, i stands for either initial or intercept, 
etc. In terms of pressure, the equation of this line is: 
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˙ ˜ ° ˆ˛ ˝tD 2sPDr ¼ 0:5 ln þ 0:80907 þ ln CDe (2.77)
CD r 

It is recommended to draw a horizontal line throughout the radial flow regime 
and choose one convenient value of (t*ΔP')r falling on such line. 

Tiab [71] also obtained the start time of the infinite line of action of the pressure 
derivative is: 

˜ ° 
tD 2sÞ10¼ 10 log ðCDe (2.78)
CD sr 

Replacing Eqs. (1.92) and (2.15) in the above equation will yield: 
ˇ ˜ ° ˘ 

μ C 0:8935C 
tsr ¼ ln þ 2s (2.79)

6:9 � 10�5kh ϕcthr2 
w 

A better form of Eq. (2.78) was given by [84]; 
˜ ° ˇ ˜ ° ˘ 
tD 1 tD¼ ln ðCDe2sÞ þ  ln (2.80)
CD α CDsr SR 

Setting a = 0.05 in the above equation and solving for C: 
˜ ° 

C ¼ 0:056ϕcthr2 tDsr (2.81)w 2s þ ln tDsr 

tDsr is calculated with Eq. (1.94) letting t = tsr. 
The point of intersection, i, between the early time unit-slope line defined by 

Eqs. (2.63) and (2.67) and the late-time infinite-acting line of the pressure deriva-
tive, defined by Eq. (2.75), is given by: 

˜ ° 
tD 0PD ¼ 0:5 (2.82)
CD i ˜ ° 

tD ¼ 0:5 (2.83)
CD i 

where i stands for intersection. After replacing the definitions given by 
Eqs. (1.94), (2.15), and (2.72) will, respectively, provide: 

70:6qμB ðt � ΔP 0Þi ¼ (2.84)
kh 

1695μC
k ¼ (2.85)

hti 

For the unit-slope line, the pressure curve is the same as for the pressure 
derivative curve. Then, at the intersection point: 

ðΔPÞi ¼ ðt � ΔPÞi ¼ ðt � ΔP 0Þ (2.86)r 

Tiab [71] correlated for CDe
2s > 100 permeability, wellbore storage coefficient, 

and skin factor with the coordinates of the maximum point—suffix x—displayed 
once the “hump” observed once wellbore storage effects start diminishing. These 
correlations are given as follows: 
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Figure 2.8. 
Characteristics found in the Cartesian graph, taken from [68]. 

˜ ° ˜ ° 
tD 0 tDPD ¼ 0:35717 � 0:50
CD x CD x 

˜ ° 1:24tDlog ðCDe2sÞ ¼ 0:35 
cD 

˜ ° 1:24tD 0log ðCDe2sÞ ¼ 1:71 PDCD 

(2.87) 

(2.88) 

(2.89) 

Replacing Eqs. (2.64) and (2.73) into Eq. (2.87) leads to: 

˜ ° ˜ ° 
qB 141:2qμB ðt � ΔP 0Þ ¼ 0:015 tx � 0:42 (2.90)x C kh 

Either formation permeability or wellbore storage coefficient can be determined 
using the coordinates of the peak, tx and (t*ΔP 0)x. Solving for both of these 
parameters from Eq. (2.90) results: 

˜ ° 
70:6qμB 1

k ¼ (2.91)
h ð0:014879qB=CÞ tx � ðt � ΔP 0Þx 

0:014879qBtxC ¼ (2.92)ðt � ΔP 0Þ þ ðt � ΔP 0Þx r 

The constants in Eqs. (2.91) and (2.92) are slightly different as those in [58]. 
These new unpublished versions were performed by TDS’ creator. 

Eq. (2.91) is so helpful to find reservoir permeability in short test when radial 
flow is absent which is very common in fall-off tests. Once permeability is found 
from Eq. (2.91), solved for (t*ΔP 0)r from Eq. (2.76) and plot on a horizontal line 
throughout this value. Then, compare with the actual derivative plot and use engi-
neering criterion to determine if the permeability value is acceptable. This means, if 
the straight line is either lower or higher than expected. Otherwise, new coordinates 
of the peak ought to be read for repeating the calculations since the hump should 
look some flat. 
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Substitution of Eqs. (2.64) and (2.73) in Eqs. (2.88) and (2.89) allows 
obtaining two new respective correlations for the determination of the mechanical 
skin factor: 

˜ ° 1:24tx s ¼ 0:171 � 0:5 
ti 

˜ ° 
0:8935C

ln 
ϕ hctr2 

w 
(2.93) 

˜ ° 1:1ðt � ΔP 0Þxs ¼ 0:921 � 0:5 ðt � ΔP 0Þi 

˜ ° 
0:8935C

ln 
ϕhctr2 

w 
(2.94) 

Sometimes, the reading of the peak coordinates may be wrong due to the flat 
appearance of it. Then, it should be a good practice to estimate the skin factor using 
both Eqs. (2.93) and (2.94). These values should match each other. 

Divide Eq. (2.87) by Eq. (2.75); then, in the result replace Eqs. (2.64) and (2.73) 
and solve for both permeability and wellbore storage: 

˛ ˝ 
μC ðt � ΔP 0Þxk ¼ 4745:36 þ 1 (2.95)
htx ðt � ΔP 0Þr 
0:014879qBtxC ¼ (2.96)ðt � ΔP'Þ þ ðt � ΔP 0Þx r 

This last expression is useful to find wellbore storage coefficient when the early 
unitary slope line is absent. 

TDS technique has a great particularity: for a given flow regime, the skin factor 
equation can be easily derived from dividing the dimensionless pressure equation 
by the dimensionless derivative equation of such flow regime. Then, the division of 
Eq. (2.77) by Eq. (2.75) leads to the below expression once the dimensionless 
parameters given by Eqs. (1.89), (1.94), and (2.73) are replaced in the resulting 
quotient. Solving for s from the final replacement leads to: 

˜ ˙ ˆ ° 
ΔPr k tr s ¼ 0:5 � ln þ 7:43 (2.97)ðt � ΔP 0Þ ϕμctr2 

r w 

being tr any convenient time during the infinite-acting radial flow regime 
throughout which a horizontal straight line should have been drawn. Read the ΔPr 
corresponding to tr. Comparison between Eqs. (2.38) and (2.76) allows concluding: 

m ¼ 2:303ðt � ΔP 0Þ ¼ ln ð10Þðt � ΔP 0Þ (2.98)r r 

which avoids the need of using the semilog plot if the skin pressure drop is 
needed to be estimated by Eq. (2.40), otherwise, Eq. (2.40) becomes: 

˛ 
if s>0 ! ΔPs>0 

ΔPs ¼ j2ðt � ΔP 0Þ js, (2.99)r if s <0  ! ΔPs <0  

For the determination of well-drainage area, Tiab [69] expressed Eq. (2.75) as: 

ðtD � PD 
0Þ ¼ 

1 
(2.100)r 2 

Also, Tiab [69] differentiated the dimensionless pressure with respect to dimen-
sionless time in Eq. (2.57), so: 

tD � PD 
0 ¼ 2πtDA (2.101) 
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Then, Tiab [69] based on the fact that two given flow regime governing equa-
tions can be intersected each other, regardless the physical meaning of such inter-
section, and solving for any given parameter, intercepted Eqs. (2.100) with (2.101), 
then, replaced in the resulting expression the dimensionless quantities given by 
Eqs. (2.92), (2.97), and (2.62) and solved for the area given in ft2: 

ktrpssiA ¼ (2.102)
301:77ϕμct 

Furthermore, Chacon et al. [85] replaced the dimensionless time given by 
Eq. (1.100) and the dimensionless pressure derivative of Eq. (2.62) into Eq. (2.102) 
and also solved for the area in ft2: 

0:234qBtpssA ¼ (2.103)
ϕcth ðt � ΔP 0Þpss 

The above expression uses any convenient point, tpss and (t*ΔP’)pss, during the late 
time pseudosteady-state period. Because of noisy pressure derivative data, the read-
ings of several arbitrary points may provide, even close, different area values. There-
fore, it is convenient to use an average value. To do so, it is recommended to draw the 
best late-time unit-slope line passing through the higher number of pressure deriva-
tive points and extrapolate the line at the time of 1 h and read the pressure derivative 
value, (t*ΔP')pss1. Under these circumstances, Eq. (2.103) becomes: 

0:234qB
A ¼ (2.104)

ϕcth ðt � ΔP 0Þpss1 

Eqs. (2.102) through (2.104) apply only to closed-boundary reservoirs of any 
geometrical shape. For constant-pressure reservoirs, the works by Escobar et al. 
[28, 54] for TDS technique (summary given in Table 2.2) and for conventional 
analysis are used for well-drainage area determination in circular, square, and 
elongated systems. 

TDS technique has certain step-by-step procedures which not necessarily are to 
be followed since the interpreter is welcome to explore and use TDS as desired. 
Then, they are not provided here but can be checked in [69, 71]. 

Example 2.3 

Taken from [68]. The pressure and pressure derivative data given in Table 2.3 
corresponds to a drawdown test of a well. Well, fluid, and reservoir data are 
given below: 

Find permeability, skin factor, drainage area, and flow efficiency by conven-
tional analysis. Find permeability, skin factor, and three values of drainage area 
using TDS technique: 

rw = 0.267 ft q = 250 BPD μ = 1.2 cp 

ct = 26.4 � 10�5psi�1 h = 16 pies ϕ = 18% B = 1.229 bbl/BF 

Solution 

Conventional analysis. Figure 2.9 and 2.10 present the semilog and Cartesian 
plots, respectively, to be used in conventional analysis. From Figure 2.9, the semi-
log slope, m, is of 18 psia/cycle and P1hr = 2308 psia. Permeability and skin factor are 
calculated using Eqs. 2.38 and 2.39, respectively, thus: 
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Constant, Ξ Equation Reservoir geometries Equation number 

301.77 ktrpssi (2.100)A ¼ Ξϕμct 

283.66 (2.101) 

qffiffiffiffiffiffiffiffiffiffiffi 
4066 ktssriY4 (2.102)A ¼ 3 E 

Ξϕμct 

482.84 

7584.2 

32173.52 �2= 
Y5=3 (2.103)ktss1ri, ss2riA ¼ E 

xΞϕμct b

6828.34 

41.82 
¼ 1 

� 
ktx 
�0:5 (2.104)

XE Ξ ϕμct 

20.91 

Table 2.2. 
Summary of equations, taken from [28]. 

� 162:6 ð250Þð1:2Þð1:229Þ � 
k ¼ � �� ¼ 208 md ð�18Þð16Þ 

"  ! # 
2308 � 2733 208 

s ¼ 1:1513 � log þ 3:23 ¼ 22:15 �18 0:18ð1:2Þð26:4 � 10�5Þð0:267Þ2 

Find the pressure loss due to skin factor with Eq. (2.40); 
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t, h  Pwf, psia DP, psia t*DP 0, psia/h t, h  Pwf, psia DP, psia t*DP 0 , psia/h 

0.00 2733 0 5 2312 421 65.42 

0.10 2703 30 31.05 7 2293 440 35.32 

0.20 2672 61 58.95 9.6 2291 442 5.86 

0.30 2644 89 84.14 12 2290 443 5.85 

0.40 2616 117 106.30 16.8 2287 446 7.63 

0.65 2553 180 129.70 33.6 2282 451 7.99 

1.00 2500 233 135.15 50 2279 454 7.94 

1.50 2440 293 151.90 72 2276 457 10.50 

2.00 2398 335 127.26 85 2274 459 12.18 

3.00 2353 380 102.10 100 2272 461 13.36 

4.00 2329 404 81.44 

Table 2.3. 
Pressure and pressure derivative versus time data for example 2.3. 

Figure 2.9. 
Semilog plot for example 2.3. 

Figure 2.10. 
Cartesian plot for example 2.3. 
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ΔPs ¼ j0:87ð�18Þj22:15 ¼ 346:7 psia 

Since the average reservoir pressure is not reported, then, the initial pressure 
value is taken instead. Eq. (2.51) allows estimating the flow efficiency. 

346:9
FE ¼ 1 � ¼ 24:75 %

2733 � 2272 

From the Cartesian plot, Figure 2.10, is read the following data: 

m* = �0.13 psia/h PINT = 2285 psia tpss ≈ 50 h 

Use Eq. (2.59) to find well drainage area: 

0:234qB 0:234ð250Þð1:229Þ
A ¼ � ¼ �  ¼ 727391:1 ft2 ¼ 16:7 Ac 

ϕhctm� ð0:18Þð16Þð26:4 � 10�5Þð�0:13Þ 

Find the Dietz shape factor with Eq. (2.60); 

˜ ° 
2:303ð2308 � 2285Þ 

�18 �18CA ¼ 5:456 e ¼ 39:82 �0:13 

As observed in Table 2.1, there exist three possible well drainage area geometry 
values (hexagon, circle, and square) close to the above value. To discriminate which 
one should be the appropriate system geometry find the dimensionless time in 
which pseudosteady-state period starts by using Eq. (2.61): 

�0:13 Þ ¼ 0:1833 50 ¼ 0:066 ≈ 0:1ðtDA pss �18 

TDS technique. The following are the characteristic points read from 
Figure 2.11: 

(t*ΔP')r = 7.7 psia tr = 33.6 h ΔPr = 451 psia 

tpss = 85 h  (t*ΔP')pss = 12.18 psia trpi = 58 h  

(t*ΔP')pss1 = 0.14 psia 

Find permeability and skin factor with Eqs. (2.76) and (2.97), respectively: 

70:6qμB 70:6ð250Þð1:2Þð1:229Þ
k ¼ ¼ ¼ 211:3 md 

hðt � ΔP'Þ ð16Þð7:7Þr ˜ ˛ ˝ ° 
451 211:3ð33:6Þ 

s ¼ 0:5 � ln þ 7:43 ¼ 22:4 
7:7 0:18ð1:2Þð26:4 � 10�5Þð0:2672Þ 

Determine the well drainage area with Eqs. (2.102) and (2.103), thus; 

211:3ð58Þ
A ¼ ¼ 16:35 Ac 

301:77ð0:18Þð1:2Þð26:4 � 10�5Þð43560Þ 
0:234ð250Þð1:229Þð85Þ

A ¼ ¼ 15:15 Ac ð0:18Þð26:4 � 10�5Þð16Þð12:18Þð43560Þ 
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Figure 2.11. 
Pressure and pressure derivative plot for example 2.3. 

0:234ð250Þð1:229Þ
A ¼ ¼ 15:5 Ac ð0:18Þð26:4 � 10�5Þð16Þð0:14Þð43560Þ 

Even, more parameters can be reestimated with TDS technique for verification 
purposes but it will not be performed for saving-space reasons. However, the reader 
is invited to read the coordinates of the peak and the intersection point of the 
wellbore storage and radial flow lines. Then, estimate formation permeability with 
Eqs. (2.84), (2.85), and (2.91). Also, find the wellbore storage coefficient using 
Eqs. (2.74), (2.81), (2.92), and (2.96) and skin factor with Eqs. (2.93) and (2.94). 

Example 2.4 

Taken from [68] with the data from the previous example, Example 2.3, deter-
mine tSSL and find if the well fluid level is increasing or decreasing in the annulus if 
the well has a drill pipe with 2 in external diameter inside a liner with 5 in of inner 
diameter including joint gaskets. The density of the wellbore fluid is 42.5 lbm/ft3. 

Solution 

From Figure 2.11, a point is chosen on the early unit-slope line. This point has 
coordinates: DP = 59 psia and t = 0.2 h. Wellbore storage coefficient is found with 
Eq. (2.21): 

ð250Þð1:229Þ 0:2
C ¼ ¼ 0:0434 bbl=psia

24 59 

Solving for annulus capacity from Eq. (2.5); 

˛ ˝˜ ° ρ 42:5
Vu ¼ C ¼ 0:0434 ¼ 0:0128 bbl=ft

144 144 

The theoretical capacity is found with Eq. (2.45), so: 

Vu ¼ 0:0009714ð52 � 22Þ ¼  0:0204 bbl=ft 

This leads to the conclusion that the annular liquid is falling. 
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2.3. Multiphase flow 

According to Perrine [86], the single fluid flow may be applied to the multiple 
fluid flow systems when the gas does not dominate the pressure tests, it means 
liquid production is much more relevant than gas flow. Under this condition, the 
diffusivity equation, Eq. (1.27), will result and the total fluid mobility is determined 
by Eq. (1.24). We also mentioned in Chapter 1 that Martin [63] provided some tips 
for a better use of Perrine method. Actually, Perrine method works very well in 
liquid systems. 

The semilog equations for drawdown and build tests are, respectively, given below: 

162:6q λtttPwf ¼ Pi � log þ 0:869s (2.105)
λth 1688ϕctr2 

w 

162:6qt tp þ Δt 
Pws ¼ Pi � log (2.106)

λth Δt 

The flow rate is estimated by: 

¼ q Bo þ ðq � q Rs =1000ÞBg þ q Bw =Bo (2.107)qt o g o w 

Eq. (2.107) is recommended when oil flow dominates the test. It is removed 
from the denominator, otherwise. It advised to use consistent units in Eq. (2.107) 
meaning that the gas flow rate must be in Mscf/D and the gas volume factor 
bbl/SCF. 

Once the semilog slope has been estimated, the total mobility, the phase effec-
tive permeabilities, and the mechanical skin factor are found from: 

162:6qtλt ¼ �  (2.108)
mh 

162:6qLBLμLkL ¼ �  ; L ¼ water or oil (2.109)
mh 

162:6 q � q Rs =1000 Bgμgg o 
kg ¼ �  (2.110)

mh 

Pwf � P1hr λt s ¼ 1:1513 � log þ 3:23 (2.111)
m ϕctr2 

w 

The best way of interpreting multiphasic flow tests in by using biphasic and/or 
triphasic pseudofunctions. Normally, well test software uses empirical relationships 
to estimate relative permeability data. The accuracy of the following expression is 
sensitive to the relative permeability data: 

P 
kro 

ð
mðPÞ ¼  dP (2.112)

μoBo 
P0 

The expressions used along this textbook for reservoir characterization may 
apply for both single fluid and multiple fluid production tests. Single mobility has to 
be changed by total fluid mobility and individual flow rate ought to be replaced by 
the total fluid rate. Just to cite a few of them, Eqs. (2.66), (2.76), (2.85), (2.91), 
(2.92), and (2.97) become: 
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˜ °  tqtC ¼ (2.113)
24 ΔP 

˛ 
k ̨  70:6qtλt ¼ ˛̨t ¼ (2.114)
μ hðt � ΔP'Þr 
˝ ˙  
k 1695C ¼ (2.115)
μ htit 

˝ ˙ 
70:6qt 1 

λt ¼ (2.116)
h ð0:014879qt =CÞtx � ðt � ΔP 0Þx 

0:014879q txtC ¼ (2.117)ðt � ΔP'Þ þ ðt � ΔP 0Þx r 

ˆ ˝ ˙ ˇ 
ΔPr λttr s ¼ 0:5 � ln þ 7:43 (2.118)ðt � ΔPÞ ϕctr2 

r w 

Also, the effective liquid permeabilities are found using the individual viscosity, 
rate, and volume factor. Then, Eq. (2.76) applied to oil and water will yield: 

70:6q μoBooko ¼ (2.119)
hðt � ΔP 0Þr 
70:6q μwBwwkw ¼ (2.120)
hðt � ΔP'Þr 

However, from a multiple fluid test, it is a challenge to find the reservoir 
absolute permeability. Several methods have been presented. For instance, 
Al-Khalifah et al. [87] presented a sophisticated method applied to either drawdown 
or multiple rate tests. Their method even includes the estimating of the saturation 
change respect to pressure. However, we presented the method by Kamal and Pan 
[88] which applies well for liquid fluid. Relative permeabilities must be known for 
its application. Once effective permeabilities are found, let us say from Eqs. (2.119) 
and (2.120), estimate the permeability ratio ko/kw and find the water saturation 
from the relative permeability curves as schematically depicted in Figure 2.12 
(left). Then, using the estimated water saturation value, enter Figure 2.12 (right) 
and read a value from a relative permeability curve. Use the most dominant flow 
curve. The dominant phase is assumed to be oil for the example in Figure 2.12. 
Since both phase effective permeability and phase relative permeability are known, 
the absolute permeability is found from the definition of relative permeability: 

kok ¼ (2.121)
kro 

Further recommendations for handling multiphase flow tests are presented by 
Al-Khalifah et al. [89] and are also reported by Stanislav and Kabir [7]. 

2.4. Partial penetration and partial completion 

When a well penetrates a small part of the formation thickness, hemispherical 
flow takes place. See Figure 2.13 top. When the well is cased above the producer 
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Figure 2.12. 
Determination of absolute permeability as outlined by Kamal and Pan [88]. 

range and only a small part of the casing is perforated, spherical flow occurs in the 
region near the face of the well. See Figure 2.13 bottom. As the transient moves 
further into depth of the formation, the flow becomes radial, but if the test is short, 
the flow will be spherical. Both types of flow are characterized by a slope of ˜1/2 in 
the log-log plot of pressure derivative versus time [90, 91]. Theoretically, before 
either hemispherical or spherical flow takes place, there exists a radial flow regime 
occurring by fluids withdrawn from the formation thickness that is close in height 
to the completion interval. This represents the transmissibility of the perforated 
interval. Actually, this flow regime is unpractical to be seen mainly because of 
wellbore storage effects. We will see further in this chapter that there are especial 

Figure 2.13. 
Ideal flow regimes in partial penetration (top) and partial completion (bottom) systems, after [66]. 
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conditions for hemispherical/spherical flow to be observed which occur later that 
the completion-interval-limited radial flow regime. Both hemispherical and spheri-
cal flow vanished when the top and bottom boundaries have been fully reached by 
the transient wave; the true radial flow is developed throughout the full reservoir 
thickness. 

The apparent skin factor, sa, obtained from pressure transient analysis is a 
combination of several “pseudoskin” factors such as [91]: 

sa ¼ s þ sp þ sθ þ scp þ…… (2.122) 

where s is the true damage factor caused by damage to the well portion, sp is the 
pseudoskin factor due to the restricted flow entry, sq is the pseudoskin factor 
resulting from a well deviation angle, and scp is the pseudoskin due to a change in 
permeability near the face of the well. sp can be estimated from [92]: 

h 
sp ¼ � 1 ln hD (2.123)

hp 

hp = length of perforated or open interval. The equations of dimensionless 
thickness, hD, for hemispherical and spherical flow, respectively: 

sffiffiffiffiffi 
h khhD ¼ (2.124)
rw kz 

sffiffiffiffiffi 
h khhD ¼ (2.125)
2rw kz 

where kh is the horizontal permeability, kz = kv is the vertical permeability. The 
contribution of the pseudoskin of an inclined well is given by Cinco et al. [92]: 

sffiffiffiffiffi  ! 
kzψ 0 ¼ tan �1 tan ψ (2.126)
kh 

� �2:06 � � ��1:865ψ 0 ψ 0 h 
sθ ¼ � � � log (2.127)

41 56 100rw 

According to Cinco et al. [92], the above equation is valid for 0° ≤ q ≤ 75°, 
h/rw > 40, and tD > 100. Note that Eq. (2.127) could provide a negative value. This is 
because the deviation at the face of the well increases the flow area or presents 
reservoir pseudothickness. The pseudoskin responding for permeability changes 
near wellbore is given by [93]: 

� � ��� � 
h rs � rw k � ks rs scp ¼ 1 � 0:2 ln (2.128)
hp hp ks rw 

Example 2.4 

Taken from [91]. A directional well which has an angle to the vertical of 24.1° 
has a skin factor s = �0.8. The thickness of the formation is 100 ft, the radius of the 
wellbore is 0.3 ft, and the horizontal to vertical permeability ratio is 5. Which 
portion of the damaged corresponds to the deviation of the well? 
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Solution 

The deviation angle affected by the anisotropy is estimated with Eq. (2.126); 

�pffiffiffi � 
ψ 0 ¼ tan �1 5 tan ð24:1Þ ¼ 45° 

The pseudoskin factor caused by well deviation is found from Eq. (2.127): 

� �2:06 � �1:865 � 
45 45 100 

sθ ¼ �  � log ¼ �1:56
41 56 100ð0:3Þ 

From Eq. (2.122); 

sa ¼ s þ sθ ¼ �0:8 � 1:56 ¼ �2:36 

Therefore, 66.1 % of the skin factor is due to the well deviation. 

2.4.1 Conventional analysis for spherical flow 

The diffusivity equation for spherical flow assuming constant porosity, 
compressibility, and mobility is given by Abbott et al. [90]: 

1 ∂ 2 ∂P ϕμct ∂P 
r ¼ (2.129)

r2 ∂r ∂r ksp ∂t 

where ksp is the spherical permeability which is defined as the geometrical mean 
of the vertical and horizontal permeabilities: 

qffiffiffiffiffiffiffiffiffi 
ksp ¼ 

3 kvkh 
2 ¼ khs (2.130) 

The physical system is illustrated in Figure 2.14, right. This region is called a 
“spherical sink.” rsw is given by: 

Figure 2.14. 
Cylindrical, hemispherical, and spherical sinks, after [66]. 
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hprsw ¼ � �  (2.131)
hp2 ln 
rw 

The spherical flow equations for pressure drawdown and pressure buildup when 
the flow time is much longer than the shut-in time were presented by [94]: 

70:6qμB 2453qμB pffiffiffiffiffiffiffiffiffi 1
Pwf ¼ Pi � ð1 þ sspÞ þ  ϕμct pffiffi (2.132)

k3=2ksprsw t sp 
" # 

70:6qμB 2453qμB pffiffiffiffiffiffiffiffiffi 1 1 1
Pws ¼ Pwf þ ð1 þ sspÞ �  ϕμct pffiffiffiffi þpffiffiffiffiffi �pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 

k3=2ksprsw tp Δt tp þ Δt sp 

(2.133) 

The spherical pressure buildup equation when the flow time is shorter than the 
shut-in time: 

" # 
2453qμB pffiffiffiffiffiffiffiffiffi 1 1 70:6qμB

Pws ¼ Pi � ϕμct pffiffiffiffiffi �pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi þ ssp (2.134)
k3=2 tp þ ΔtΔt ksprswsp 

Then, from a Cartesian plot of Pwf as a function of t �1/2, for drawdown, or Pws as 
�1/2 þ Δt�1/2a function of either [tp �(tp þ Δt)�1/2] or [Δt�1/2�(tp þ Δt)�1/2] for 

buildup, we obtain a line which slope, m, and intercept, I, can be used to estimate 
tridimensional permeability and geometrical (spherical) skin factor. 

� �2=32453qμB pffiffiffiffiffiffiffiffiffi 
ksp ¼ �  ϕμct (2.135)

m 

ðI � Pwf Þksprsw ssp ¼ � 1 (2.136)
70:6qμB 

Once the spherical permeability is known, we solve for the vertical permeability 
from Eq. (2.130), and then, estimate the value of skin effects due to partial pene-
tration [94]: 

1 
sc ¼ � 1 ½ ln hD �G� (2.137)

b 

where b = hp/h. hD can be estimated from Eq. (2.125), and G is found from [94]: 

G ¼ 2:948 � 7:363b þ 11:45b2 � 4:576b3 (2.138) 

2.4.2 Conventional analysis for hemispherical flow 

The model for hemispheric flow is very similar to that of spherical flow [94]. 
The difference is that a boundary condition considers half sphere. Figure 2.14 (left) 
outlines the geometry of such system. The drawdown and pressure equations are 
given below [94]: 

141:2qμB 4906qμB pffiffiffiffiffiffiffiffiffi 1
Pwf ¼ Pi � ð1 þ sspÞ þ  ϕμct pffiffi (2.139)

ksprsw k3=2 t sp 
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" # 
141:2qμB 4906qμB pffiffiffiffiffiffiffiffiffi 1 1 1

Pws ¼ Pwf þ ð1 þ sspÞ �  ϕμct pffiffiffiffi þpffiffiffiffiffi �pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 
ksprsw k3=2 

sp 
tp Δt tp þ Δt 

" # (2.140) 

4906qμB ffiffiffiffiffiffiffiffiffi p
Pws ¼ Pi � ϕμct 

k3=2 
sp 

1 1 ffiffiffiffiffi p �pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 
Δt tp þ Δt 

þ 
141:2qμB 

sspksprsw 
(2.141) 

As for the spherical case, from a Cartesian plot of Pwf as a function of t�1/2, 
�1/2 þ Δt�1/2�(tp þ Δt)�1/2] orfor drawdown, or Pws as a function of either [tp 

[Δt�1/2� (tp þ Δt)�1/2] for buildup, we obtain a line which slope, m, and intercept, 
I, can be used to estimate spherical permeability and geometrical (spherical) skin 
factor. 

� �2=34906qμB pffiffiffiffiffiffiffiffiffi 
ksp ¼ �  ϕμct (2.142)

m 

ðI � Pwf Þksprsw ssp ¼ � 1 (2.143)
141:2qμB 

2.4.3 TDS for spherical flow 

Moncada et al. [66] presented the expressions for interpreting both pressure 
drawdown or buildup tests in either gas or oil reservoirs using the TDS methodol-
ogy. Spherical permeability is estimated by reading the pressure derivative at any 
arbitrary time during which spherical flow can calculate spherical permeability and 
the spherical skin factor also uses the pressure reading at the same chosen time: 

sffiffiffiffiffiffiffiffiffi! 2=3 
1227qBμ ϕμctksp ¼ (2.144)ðt � ΔP'Þsp tsp 

sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi" # Þϕμctr2 ðΔP spswssp ¼ 34:74 þ 1 � 1 (2.145)
ksptsp 2ðt � ΔP 0Þsp 

The total skin, st, is defined as the sum of all skin effects at the well surroundings: 

s 
st ¼ þ sc þ ssp (2.146)

b 

If the radial flow were seen, the horizontal permeability can be estimated from: 

70:6qBμ
kH ¼ k ¼ (2.147)

hpðt � ΔP 0Þr1 

The suffix r1 implies the first radial flow. 
Moncada et al. [66] observed that the value of the derivative for the late radial 

flow in spherical geometry is equivalent to 0.0066 instead of 0.5 as of the radial 
system. In addition, the slope line �½ corresponding to the spherical flow and the 
late radial flow line of the curve of the dimensionless pressure derivative in spher-
ical symmetry intersect in: 

0 1 �1=2ðtD � PD Þi ¼ pffiffiffi t ¼ 0:0066 (2.148)Dsp2 π 
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Replacing the dimensionless time results: 

φμctr2 
swti ¼ 6927748:85 (2.149)

ksp 

In the above equation, suffix i denotes the intersection between the spherical 
flow and the late radial flow. If the radial flow is not observed, this time can give an 
initial point to draw the horizontal line corresponding to the radial flow regime, 
from which horizontal permeability is determined. This point can also be used to 
verify spherical permeability, ksp. Another equation defining the mentioned dimen-
sionless time can be found from the intersection of the slope line �½ (spherical 
flow) with the radial line of late radial flow but in radial symmetry, knowing that: 

k3=2h 1 ðtD � PD 'Þi ¼ pffiffiffiffiffiffiffiffiffi pffiffiffiffiffi ¼ 0:5 (2.150)
4k3=2 πr2 tDsp sw 

Replacing the dimensionless time will give: 

k2h2ϕμctti ¼ 301:77 (2.151)
k3 
sp 

Combining Eqs. (2.149) and (2.151), an expression to find the spherical wellbore 
radius, rsw: 

kh 
rsw ¼ 0:0066 (2.152)

ksp 

2.4.4 TDS for hemispherical flow 

Here the same considerations are presented in Section 2.4.3. Using a pressure 
and a pressure derivative value reading at any time during hemispherical flow 
allows finding hemispherical permeability and partial penetration skin [66], 

sffiffiffiffiffiffiffiffiffi! 2=3 
2453qBμ ϕμctkhs ¼ (2.153)ðt � ΔP'Þhs ths 

sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕμctr2 ðΔPsw Þhsshs ¼ 34:74 þ 1 � 1 (2.154)
khsths 2ðt � ΔP'Þhs 

Moncada et al. [66] also found that the derivative in spherical geometry of the 
late radial flow corresponds to 0.0033 instead of 0.5 as of the radial system. This 
time the line of radial flow and hemispheric flow, in hemispherical symmetry, 
intersect in: 

1 ðtD � PD 'Þi ¼ pffiffiffiffiffiffiffiffiffiffi ¼ 0:0033 (2.155)
2 πtDsh 

From where, 

ϕμctr2 
swti ¼ 27710995:41 (2.156)

khs 
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As for the spherical case, there exists an expression to define the intersection 
time of the �½ slope line of the hemispherical flow regime pressure derivative and 
the late radial flow line pressure derivative but, now, in radial symmetry: 

k3=2h 1 ðtD � PD 'Þi ¼ pffiffiffiffiffiffiffiffiffi pffiffiffiffiffi ¼ 0:5 (2.157)
2k3=2 πr2 tDhs sw 

k2h2ϕμctti ¼ 1207:09 (2.158)
k3 
hs 

This point of intersection in radial symmetry gives the following equation: 

kh 
rsw ¼ 0:0033 (2.159)

khs 

Skin factors are estimated in a manner similar to Section 2.4.3. 

2.4.5 Wellbore storage and perforation length effects on 
hemispherical/spherical flow 

It is important to identify the range of WBS values, which can influence the 
interpretation of the spherical and hemispheric flow regime. Figure 2.15 is a plot of 
PD vs. tD providing an idea of the storage effect. As can be seen, the pressure 
response for several CD values can be distinguished when storage is low (<10), 
whereas for larger CD values, the response is almost identical. For CD < 10, the slope 
of �½ that characterizes both spherical and hemispherical flow is well distin-
guished. For values of 10 < CD < 100, the slope of �½ is more difficult to identify. 
For values of CD > 100, the spherical flow regime has been practically masked by 
storage, which makes it impossible to apply the technique presented above to 
estimate the vertical permeability. Then, to ensure there is no CD masking, it should 
be less than 10 [66]. 

The length of the completed interval or the length of the partial penetration, hp, 
plays an important role in defining the spherical/hemispherical flow. The presence 
of spherical or hemispheric flow is characterized by a slope of �½. This character-
istic slope of �½ is absent when the penetration ratio, b = hp/h, is greater than 20% 
[66], as shown in Figure 2.16. 

Figure 2.15. 
Pressure derivative spherical source solution for a single well in an infinite system including WBS and no skin, 
after [66]. 
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Figure 2.16. 
Pressure derivative behavior for a single well in an infinite reservoir with different partial penetration lengths 
(CD = 0, s = 0), after [66]. 

Example 2.5 

Abbott et al. [90] presented pressure-time data for a pressure drawdown test. 
Well no. 20 is partially completed in a massive carbonate reservoir. The well was 
shut-in for stabilization and then flowed to 5200 BOPD for 8.5 h. The pressure data 
are given in Table 2.4 and reservoir and fluid properties are given below: 

h = 302 ft rw = 0.246 f Pi = 2298 psia 

hp = 20 ft q = 5200 BPD B = 1.7 bbl/STB 

φ = 0.2 μ = 0.21 cp ct = 34.2 � 10�6 psia�1 

Solution by conventional analysis 

Using the slope value of �122 psia/cycle read from the semilog plot of 
Figure 2.17, the reservoir permeability is calculated with Eq. (2.38); 

162:6qBμ �� 162:6ð5200Þð1:7Þð0:21Þ �� k ¼ ¼ � ¼ 8:19 md 
mh ð�122Þð302Þ 

The mechanical skin factor is determined with Eq. (2.39) once the intercept of 
2252 psia is read from Figure 2.17. 

2 32252 � 2298 
6 7�1226 7 s ¼ 1:15136 7 ¼ �5:03 4 8:19 5log þ 3:2275 ð0:2Þð0:21Þð34:2 � 10�6Þð0:246Þ2 

Figure 2.18 contains a Cartesian graph of Pwf as a function of t�1/2. From 
there, the observed slope is m = 250 psia (h�1/2) and intercept, I = 2060 psia, 
spherical permeability, and spherical skin factors are calculated using Eqs. (2.239) 
and (2.240), respectively: 

0 12=32453ð5200Þð0:21Þð1:7Þ� �2=32453qμB pffiffiffiffiffiffiffiffiffi B C250ksp ¼ ϕμct ¼ @ qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi A ¼ 7:81 md 
m �6ð0:2Þð0:21Þð34:2 � 10 
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t, h  t�0.5, h�0.5 Pwf, psia ΔP, psia t*ΔP 0, psia 

0.0 2266 0 

0.5 1.414 2255 11 11.5 

1.0 1.000 2243 23 24.5 

1.6 0.791 2228 38 40.0 

2.0 0.707 2218 48 45.0 

2.5 0.632 2208 58 52.5 

3.0 0.577 2197 69 69.0 

3.5 0.535 2185 81 66.5 

4.0 0.500 2178 88 60.0 

4.5 0.471 2170 96 56.3 

5.5 0.426 2161 105 46.8 

6.0 0.408 2157 109 48.0 

6.5 0.392 2153 113 52.0 

7.0 0.378 2149 117 49.0 

7.5 0.365 2146 120 52.5 

8.0 0.354 2142 124 48.0 

8.5 0.343 2140 126 

Table 2.4. 
Pressure and pressure derivative versus time data for example 2.5. 

Figure 2.17. 
Semilog plot for well no. 20. 

ðPi � IÞksprsw ð2298 � 2060Þð7:81Þð9:69Þ 
ssp ¼ � 1 ¼ � 1 ¼ �0:86

70:6qμB 70:6ð5200Þð0:21Þð1:7Þ 

Vertical permeability and spherical wellbore radius are found with Eq. (2.130) 
and (2.131), respectively, 

k3 
sp 7:813 

kv ¼ ¼ ¼ 7:1 md 
k2 
h 8:192 

b 120 
rsw ¼ ˜ ° ¼ ˜ ° ¼ 9:69 ft 

b 120
2 ln 2 ln 

rw 0:246 
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Figure 2.18. 
Cartesian spherical plot for well no. 20. 

With the value of the vertical permeability, it is possible to estimate the 
skin factor caused by partial penetration with Eqs. (2.125), (2.138), and (2.137), 
thus: 

sffiffiffiffiffi rffiffiffiffiffiffiffiffiffi 
kh h 8:26 302

hD ¼ ¼ ¼ 1324:1
kv rw 7:1 0:246 

G ¼ 2:948 � 7:363b þ 11:45b2 � 4:675b3 

� � � �2 � �3120 120 120 ¼ 2:948 � 7:363 þ 11:45 � 4:675 ¼ 1:57
302 302 302 

1 1 
sc ¼ � 1 ½ ln hD �G� ¼  � 1 ½ ln 1318:5 � 1:57� ¼ 8:51

hp =h 120=302 

Solution by TDS technique 

The following data points were read from Figure 2.19. 

tN = 1 h  ΔP = 23 psia 

(t*ΔP 0)sp = 56.25 psia ΔPs = 96 psia tsp = 4.5 h 

(t*ΔP 0)r2 = 52.5 psia ΔPr2 = 96 psia tr2 = 7.5 h 

Wellbore storage coefficient is found from Eq. (2.66) 

Figure 2.19. 
Pressure and pressure derivative versus time log-log plot for well no. 20. 
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Parameter Conventional TDS 

ksp, md 7.01 8.05 

ssp -0.86 -0.93 

k, md 8.19 8.26 

sr -5.03 -5.53 

kv, md 7.10 7.65 

Table 2.5. 
Comparison of results.

    
qB tN ð5200Þð1:7Þ 1

C ¼ ¼ ¼ 16:01 bbl=psi
24 ðΔPÞN 24 23 

From the spherical flow pressure derivative line, m = -1/2, the spherical perme-
ability and mechanical spherical skin factor are, respectively, estimated by 
Eqs. (2.144) and (2.145); 

0 1sffiffiffiffiffiffiffiffiffi! 2=3 2=3 
1227 ð5200Þð1:7Þð0:21Þ 1227qBμ ϕμct 56:25 

ksp ¼ ¼ @ qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi A ¼ 8:05 md ðt * ΔP'Þ ð0:2Þð0:21Þð34:2X10 sp tsp 
-6Þ 

4:5 
sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi" # 

2ϕμctr ðΔPwÞspswssp ¼ 34:74 - 1
ksptsp 2ðt * ΔP'Þsp sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi" # 
ð0:2Þð0:21Þð34:2  x  10  -6Þð9:692Þ ð96Þ 

ssp ¼ 34:74 - 1 ¼ -0:93 ð8:05Þð4:5Þ 2ð56:25Þ 

The horizontal permeability and mechanical skin are found during the late radial 
flow using Eqs. (2.76) and (2.97), respectively; 

70:6qBμ 70:6ð5200Þð1:7Þð0:21Þ
kr ¼ ¼ ¼ 8:26 md 

hðt * ΔP'Þ ð302Þð52:5Þr 
2 32 3 120ΔPr 

6 ðt * ΔP'Þ 7 6 52:5 7 
r 6 ! 7 s ¼ 0:56   75 ¼ 0:56 7 ¼ -5:334 krtr 4 ð8:26Þð7:5Þ 5

ln þ 7:43 ln þ 7:43 
ϕμctr2 ð0:2Þð0:21Þð34:2 X 10 -6Þð0:2462Þw 

Vertical permeability is determined from Eq. (2.130); 

k3 
sp 8:053 

kv ¼ ¼ ¼ 7:65 md 
k2 
h 8:262 

Table 2.5 presents the comparison of the results obtained by the conventional 
method and TDS technique. 

2.5. Multirate testing 

So far, the considerations revolve around a single flow test, meaning the 
production rate is kept constant for the application of the solution of the diffusivity 
equation. However, there are cases in which the flow rate changes; in such cases, 
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the use of the solution to the diffusivity equation requires the application of the 
time superposition principle already studied in Section 1.14.2. Some reasons for the 
use of multirate testing are outlined as follows: 

• It is often impractical to keep a constant rate for a long time to perform a 
complete pressure drawdown test. 

• When the well was not shut-in long enough to reach the static pressure before 
the pressure drawdown test started. It implies superposition effects. 

• When, it is not economically feasible shutting-in a well to run a pressure 
buildup test. 

Whether the production rates are constant or not during the flow periods, there 
are mainly four types of multirate tests: 

1. Uncontrolled variable flow rate; 

2. Series of constant flow rates; 

3. Variable flow rate while keeping constant bottom-hole pressure, Pwf. This test 
is common in gas wells producing very tight formations and more recently 
applied on testing of shale formations; 

4.Pressure buildup (fall-off) tests. 

Actually, a holistic classification of transient well testing is given in Figure 1.4. It 
starts with PTA which is known in the oil argot as pressure transient analysis. As 
seen in the figure, it is divided in single well tests, normally known as drawdown 
(flow) tests for production cases or injection tests for injection fluid projects. Our 
field of interest focuses on more than one rate operation (multirate testing) which 
includes all the four types just above described. It is worth to mention types 3 and 4. 
Type three is also known as rate transient analysis (RTA) which has been dealt with 
in a full chapter by this book's author in reference [56]. As far as case 4 is 
concerned, pressure buildup testing is the most basic multirate test ever existed 
since it comprises two flow rates: (1) one time period at a given q value different 
than zero and (2) another time period with a zero flow rate. This is because when a 
well is shut-in, the flow stops at surface by the formation keeps still providing fluid 
to the well due to inertia. 

2.5.1 Conventional analysis 

Considering the sketch of Figure 2.20, application of the superposition principle 
[2–4, 6, 7, 11, 27, 44, 56, 60, 65, 67, 95, 96, 97] leads to: 

8 >>< 
q1½PDðtDÞ þ s� þ ðq2 � q1Þ½PDð½t � t1�DÞ þ s�þ 9 >>= 141:2μB

Pwf ðtÞ ¼ Pi � ðq3 � q2Þ½PDð½t � t2�DÞ þ s� þ ðq4 � q3Þ½PDð½t � t3�DÞ þ s� 
kh >>: 

>>;þ…: þ ðqN � qN�1Þ½PDð½t � tN �DÞ þ s� 
(2.160) 

Rearranging; 
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Figure 2.20. 
Schematic representation of a multirate test (typ. 1). 

8 >< 
9 >=q1{PDðtDÞ �  PDð½t � t1�D} þ q2{PDð½t � t1�ÞD� 

141:2μB
Pwf ðtÞ ¼  Pi � PDð½t � t2�ÞD} þ … þ qN�1{PDð½t � tN�2�ÞD� 

PDð½t � tN�1�ÞD} þþqN{PDð½t � tN�1�ÞD} þ s 
(2.161)

kh >: >; 

Next step is to replace PD by an appropriate diffusivity equation solution which 
depends upon the flow regime dealt with. Figure 2.21 presents the most typical 
superposition functions applied to individual flow regimes. The normal case is to 
use radial flow, top function in Figure 2.21. However, Escobar et al. [44] presented 
the inconvenience of not applying the appropriate superposition function for a 
given flow regime. They found, for instance, that if the radial superposition is used, 
instead of the linear, for characterization of an infinite-conductivity hydraulic frac-
ture, the estimated half-fracture length would be almost three times longer than the 
actual one. 

Coming back to Eq. (2.161), the assumed superposition function to be used is the 
radial one; then, this equation becomes: 

Figure 2.21. 
Flow regime superposition functions. 
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t t � t1 t � t2 q1 ln þ q2 ln þ q3 ln þ
t � t1 t � t2 t � t3 

8 >>>>>>>>>< 

9 >>>>>>>>>= 70:6μB t � tN�2Pwf ðtÞ ¼ Pi � qN�1 ln þ qN { ln ðt � tN�1Þ}þkh >>>>>>>>>: 

t � tN�1 

k
ln � 7:4316 þ 2s 

ϕμctr2 
w 

>>>>>>>>>; 

(2.162) 

Since it is uneasy to find natural log paper in the stationary shops, then, dividing 
for the natural log of 10 is recommended to express Eq. (2.162) in decadic log; then, 

8 >>>>< 

9 >>>>= 

N�1 
∑ 
j¼1 

t � tj�1 qj log þ qN { log ðt � tN�1Þ}þt � tj162:6μB
Pwf ðtÞ ¼ Pi � (2.163)

kh >>>>: 
>>>>; 

k
log � 3:2275 þ 0:8686s 

ϕμctr2 
w 

Simplifying; 

qj � qj�1 
8 >< 

N 
∑ 

9 >= k
log ðt � tj�1Þ þ  logPi � Pwf ðtÞ 162:6μB ϕμctr2 

wqN (2.164)¼ j¼1 
kh >: >;qN �3:2275 þ 0:8686s 

Let; 

k 
s' ¼ log � 3:23 þ 0:87 � s (2.165)

ϕμctr2 
w 

162:6μB 
m' ¼ (2.166)

kh 

Solving for skin factor from Eq. (2.165); 

b' k 
s ¼ 1:1513 � log þ 3:23 (2.167)

m' ϕμctr2 
w 

n qi � qi�1Xn ¼ ∑ log ðt � ti�1Þ (2.168)
qi¼1 n

Plugging Eqs. (2.165), (2.166), and (2.168) into Eq. (2.164) will lead to: 

Pi � Pwf ð Þt ¼ m'Xn þm's' (2.169)
qn 

which indicates that a Cartesian plot of ΔP/qn against the superposition time, Xn, 
provides a straight line which slope, m', and intercept, m'b’ allows finding reservoir 
permeability and skin factor using Eqs. (2.166) and (2.167), respectively. However, 
it is customary for radial flow well interpretation to employ a semilog plot instead 
of a Cartesian plot. This issue is easily solved by taking the antilogarithm to the 
superposition function resulting into the equivalent time, teq. Under this situation, 
Eq. (2.169) becomes: 
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ð ÞPi � Pwf tn ¼ mn log teq þ bn (2.170)
qn 

And the equivalent time is then defined by, 

ð ÞPi � Pwf tn ¼ mn log teq þ bn (2.171)
qn 

n 
ðqi�qi�1Þ=q

Y
nteq ¼ ðtn � ti�1Þ ¼ 10Xn (2.172) 

i¼1 

For a two-rate case, Russell [96] developed the governing well-flowing pressure 
equation, as follows: 

t1 þ Δt q2Pwf ¼ m'1 log log Δt þ PINT (2.173)þ ð Þ
Δt q1 

Therefore, the slope, m'1, and intercept, PINT, of a Cartesian plot of Pwf versus 
log[(t1þΔt)/Δt] þ (q2/q1)log(Δt) allows finding permeability and skin factor from 
the following relationships: 

162:6q1μBk ¼ �  (2.174)
m1'h 

q1 Pwf ðΔt ¼ 0Þ � P1hr k 
s ¼ 1:1513 � log þ 3:23 (2.175)

q1 � q2 m'1 ϕμctr2 
w 

In general, the lag time, tlag, transition occurred during the rate change, is 
shorter when there is a rate reduction than a rate increment, i.e., if q2 < q1, then the 
tlag will be short and if q2 > q1, then the tlag will be longer due to wellbore storage 
effects. 

The pressure drop across the damage zone is: 

ΔPsðq1Þ ¼ �0:87ðm'1Þs (2.176) 
q2ΔPsðq2Þ ¼ �0:87 ðm'1Þs (2.177)
q1 

And; 

q1P∗ ¼ Pint � � � � Pwf ðΔt ¼ 0Þ � P1hr 
� 

(2.178)
q2 � q1 

P* is known as “false pressure” and is often used to estimate the average reser-
voir pressure which is treated in Chapter 3. 

2.5.2 TDS technique 

The mathematical details of the derivation of the equations are presented in 
detail by Perrine [86]. Application of TDS technique requires estimating the fol-
lowing parameters: 

Pi � PðtnÞΔPq ¼ (2.179)
qn 
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tn ¼ tn�1 þ Δt (2.180) 

And equivalent time, teq, estimation is achieved using Eq. (2.172). Mongi and 
Tiab [67] suggested for moderate flow rate variation, to use real time rather than 
equivalent time with excellent results. In contrast, sudden changes in the flow rate 
provide unacceptable results. However, it is recommended here to always use 
equivalent time as will be demonstrated in the following exercise where using 
equivalent time the pressure derivative provides a better description. Mongi and 
Tiab [67] also recommended that test data be recorded at equal intervals of time to 
obtain smoother derivatives. However, it is not a practical suggestion since deriva-
tive plot is given in log coordinates. TDS is also applicable to two-rate tests and 
there is also a TDS technique where there is a constant flow rate proceeded by a 
variable flow rate. For variable injection tests, refer to [60]. 

With the equivalent time, Eq. (2.172) determines the pressure derivative, teq * 
(DP/q)', and plot the derivative in a similar fashion as in Section 2.2.4; wellbore 
storage coefficient can be obtained by taking any point on the early-time unit-slope 
line by: 

˜ °˜ ° 
B t

C ¼ (2.181)
24 ΔPq 

Permeability and mechanical skin factor are estimated from: 

70:6μB
k ¼ (2.182)

hðteq � ΔP0 
qÞr ˛ ˜ ° ˝ ðΔPqÞr kðteqÞrs ¼ 0:5 � ln þ 7:43 (2.183)ðteq � ΔPq 'Þ ϕμctr2 

r w 

Once again, rigorous time instead of equivalent time can be used in Eqs. (2.182) 
and (2.183); however, a glance to Figure 2.23 and 2.24 tells us not to do so. 

Example 2.6 

Earlougher and Kersch [8] presented an example to estimate permeability using 
a Cartesian plot of flowing pressure, Pwf, versus superposition time, Xn, and dem-
onstrated the tedious application of Eq. (2.168). A slope of 0.227 psia/(BPD/cycle) 
was estimated which was used in Eq. (2.166) to allow finding a permeability value 
of 13.6. We determined an intercept of 0.5532 psia/(BPD/cycle) which led us to find 
a skin factor of �3.87 with Eq. (2.167). 

Use semilog conventional analysis and TDS technique to find reservoir perme-
ability and skin factor, as well. Pressure and rate data are given in Table 2.6 along 
another parameters estimated here. Reservoir, fluid, and well parameters are given 
below: 

Pi = 2906 psia B = 1.27 bbl/STB µ = 0.6 cp 

h = 40 ft rw = 0.29 ft φ = 11.2% ct = 2.4 � 10�61/psia 

Solution by semilog conventional analysis 

Figure 2.22 is a semilog graph of [Pi�Pwf(t)]/qn versus t and teq. The purpose of 
this graph is to compare between the rigorous analysis using equivalent time, teq, and 
analysis using the real time of flow, t. Note that during the first cycle, the graphs of t 

97 

http://dx.doi.org/10.5772/intechopen.81078


Novel, Integrated and Revolutionary Well Test Interpretation and Analysis 

n t, h  q, BPD Pwf, psia ΔP, psia ΔP /q, Xn teq, h  t*(ΔP/q)', teq*(ΔP/q)', 
psia/BPD psia/BPD psia/BPD 

0 2906 

1 1 1580 2023 883 0.559 0.000 1.000 0.559 0.261 

1 1.5 1580 1968 938 0.594 0.176 1.500 0.594 0.131 

1 1.89 1580 1941 965 0.611 0.276 1.890 0.611 0.102 

1 2.4 1580 

2 3 1490 1892 1014 0.681 0.519 3.306 0.681 0.099 

2 3.45 1490 1882 1024 0.687 0.569 3.707 0.687 0.103 

2 3.98 1490 1873 1033 0.693 0.624 4.208 0.693 0.099 

2 4.5 1490 1867 1039 0.697 0.673 4.712 0.697 0.095 

2 4.8 1490 

3 5.5 1440 1853 1053 0.731 0.787 6.124 0.731 0.104 

3 6.05 1440 1843 1063 0.738 0.819 6.596 0.738 0.111 

3 6.55 1440 1834 1072 0.744 0.849 7.056 0.744 0.120 

3 7 1440 1830 1076 0.747 0.874 7.481 0.747 0.128 

3 7.2 1440 

4 7.5 1370 1827 1079 0.788 0.974 9.412 0.788 0.148 

4 8.95 1370 1821 1085 0.792 1.009 10.212 0.792 0.154 

4 9.6 1370 

5 10 1300 1815 1091 0.839 1.124 13.311 0.839 0.192 

5 12 1300 1797 1109 0.853 1.153 14.239 0.853 0.188 

6 14.4 1260 

7 15 1190 1775 1131 0.950 1.337 21.746 0.950 0.205 

7 18 1190 1771 1135 0.954 1.355 22.662 0.954 0.206 

7 19.2 1190 

8 20 1160 1772 1134 0.978 1.423 26.457 0.978 0.208 

8 21.6 1160 

9 24 1137 1756 1150 1.011 1.485 30.553 1.011 0.208 

10 28.8 1106 

11 30 1080 1751 1155 1.069 1.607 40.426 1.069 0.248 

11 33.6 1080 

12 36 1000 

13 36.2 983 1756 1150 1.170 1.788 61.414 1.170 0.447 

13 48 983 1743 1163 1.183 1.799 63.020 1.183 0.463 

*The three last columns are not given in [8]. 

Table 2.6. 
Pressure and rate data for example 2.6, after [8].* 

and teq are practically the same. By regression for the real-time case gave a slope 
m' = 0.2411 psia/BPD/cycle and intercept ΔP/q(1hr) = 0.553 psia/BPD/cycle. Perme-
ability and skin factors are calculated with the Eqs. (2.166) and (2.167), respectively: 
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Figure 2.22. 
Semilog of normalized pressure versus actual and equivalent time for example 2.6. 

162:6μB 162:6ð1:27Þð0:6Þ
k ¼ ¼ ¼ 12:84 md 

m'h 0:2411ð40Þ 
˛ ˜ ° ˝ 
0:553 12:84 

s ¼ 1:1513 � log þ 3:23 ¼ �3:98
0:2411 ð0:112Þð0:6Þð2:4 � 10�6Þð0:292Þ 

The straight line with teq has a slope m’ = 0.2296 psia/BPD/cycle, and intercept 
ΔP/q(1hr) = 0.5532 psia/BPD/cycle. Then, permeability and skin factor estimated by 
Eqs. (2.166) and (2.167) are 13.49 md and �3.87, respectively. 

Solution by TDS technique 

The derivative of normalized pressure is also reported in Table 2.6. Figure 2.23 
illustrates a log-log plot of ΔPq versus teq and (t*ΔP'q) and (teq*ΔP'q) versus t and teq. 
Both derivatives were estimated with a smooth value of 0.5. During the first cycle, 
the two sets of data have roughly the same trend; also the flow regimes are quite 
different. Also, the equivalent normalized pressure derivative suggests a faulted 
system and possibly the pseudosteady-state period has been reached. This last 
situation is unseen in the normalized pressure derivative. From this graph, the 
following values are read: 

(t*ΔP'q)r = 0.097 psia/BPD/cycle (ΔPq)r = 0.693 psia/BPD/cycle (teq)r = 4.208 h 

Permeability and skin factor are estimated, respectively, using Eqs. (2.182) and 
(2.183): 

70:6μB ð70:6Þð1:27Þð0:6Þ
k ¼ ¼ ¼ 13:86 md 

hðt � ΔP0 
qÞ 0:097ð40Þr ˛ ˜ ° ˝ 

0:693 ð13:86Þð4:208Þ 
s ¼ 0:5 � ln þ 7:43 ¼ �3:804

0:097 ð0:112Þð0:6Þð2:4 � 10�6Þð0:292Þ 

The comparison of the results obtained by the different methods is summarized 
in Table 2.7. The permeability absolute deviation with respect to arithmetic mean is 
less than 5% using actual time. Note that all results agree well. Even though, when 
Earlougher and Kersch [8] written, pressure derivative function was still in diapers; 
then, it was not possible to differentiate the second straight-line which for 
Earlougher and Kersch [8] corresponded to pseudosteady-state period instead of a 
fault as clearly seen in Figure 2.23. Also, the absolute deviation of the flow rate 
(referred to the first value) is less than 10% during radial flow regime. However, 
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Methodology k, md s 

Superposition time, Cartesian plot 13.6 ˜3.87 

Equivalent time, semilog plot 13.49 ˜3.87 

Actual time, semilog plot 12.84 ˜3.98 

TDS 13.86 ˜3.794 

Average 13.45 ˜3.88 

Table 2.7. 
Comparison of estimated results of example 2.6. 

Figure 2.23. 
Normalized pressure and pressure derivative versus time and equivalent time log-log plot for example 2.6. 

when using real time, the radial flow regime is different; then, the recommendation 
is to always use equivalent time. 

2.6. Pressure drawdown tests in developed reservoirs 

Slider [11, 98, 99] suggested a methodology to analyze pressure tests when there are 
no constant conditions prior to the test. Figure 2.24 schematizes a well with the shut-
ting-in pressure declining (solid line) before the flow test started at a time t1. The dotted 

Figure 2.24. 
Behavior of a declination test in a depleted well, after [11, 21]. 
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line represents future extrapolation without the effect of other wells in the reservoir. 
The production starts at t1 and the pressure behaves as shown by the solid line [11]. 

2.6.1 Conventional analysis 

The procedure suggested by Slider [11, 99] to correctly analyze such tests is 
presented below: 

a. Extrapolate the shutting-in pressure correctly (dotted line in Figure 2.24). 

b.Estimate the difference between the observed well-flowing pressure and the 
extrapolated pressure, ΔPΔt. 

c. Graph ΔPΔt vs. Log Δt. This should give a straight line which slope and 
intercept can be used for estimation of permeability and skin factor using 
Eqs. (2.38) and (2.39), respectively. For this particular case, Eq. (2.39) is 
rewritten as: 

˛ 
ΔPΔtð Þ1hrs ¼ 1:1513 

m 

˜ ° ˝ 
k � log þ 3:23 

ϕμctr2 
w 

(2.184) 

However, this analysis could be modified as follows [8, 11, 21, 98, 99]. Consider 
a shut-in developed with other wells in operation. There is a pressure decline in 
the shut-in well resulting from the production of the other wells (superposition). 
After the test, well has been put into production at time t1, its pressure will be: 

141:2qμB
Pwf ¼ Pi � ½PDðΔtD, rD ¼ 1, …Þ þ s� � ΔPowðtÞ (2.185)

kh 

According to Figure 2.24, ΔPwo(t) is the pressure drop referred to Pi caused by 
other wells in the reservoir and measured at a time t = t1 þ Δt. ΔPwo(t) can be 
estimated by superposing by: 

n141:2μ
ΔPowðtÞ ¼ Pi � PwðtÞ ¼  ∑ qjBjPDðtD, rDj…Þ (2.186)

kh j¼2 

Eq. (2.186) assumes that all wells start to produce at t = 0. This is not always true. 
Including wells that start at different times require a more complex superposition. If 
the other wells in the reservoir operate under pseudosteady-state conditions, as is 
usually the case, Eq. (2.152) becomes: 

ΔPowðtÞ ¼ b �m�t (2.187) 

The slope, m*, is negative when ΔPwo(t) vs. t is plotted. Instead, it is positive, if 
Pw vs. t is plotted. m* is estimated before the test well is opened in production at the 
pressure decline rate: 

dPws ðPwsÞ2 � ðPwsÞ1m� ¼ ¼ (2.188)
dt t2 � t1 

If pressure data is available before the test, m* can be easily estimated. Also, it 
can be estimated by an equation resulting from replacing Eq. (2.57) in (2.186): 
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n�0:23395 
m� ¼ ∑ qjBj (2.189)

ϕcthA j¼2 

The reservoir volume is given in ft3. Combining Eq. (1.106) with rD = 1, (1.94), 
(2.185), and (2.187), results: 

Pwf � m�Δt ¼ m log Δt þ ΔP1hr (2.190) 

Eq. (2.190) indicates that a graph of Pwf�m*Δt vs. log Δt gives a straight line of 
slope m and intercept ΔP1hr at Δt = 1 h. The permeability can be found from 
Eq. (2.38). The skin is estimated from an arrangement of Eq. (2.39): 

˛ ˜ ° ˝ 
ΔP1hr � PwsðΔt ¼ 0Þ k 

s ¼ 1:1513 � log þ 3:23 (2.191)
m ϕμctr2 

w 

2.6.2 TDS technique 

TDS technique for developed reservoirs was extended by Escobar and 
Montealegre [21]. Escobar and Montealegre [21] showed that the technique could 
be applied taking the derivative to the pressure in a rigorous way, that is to say, 
without considering the effect of the production of other wells. As it will be seen in 
the example 2.7, this is not recommended since the derivative is not correctly 
defined and, therefore, the results could include deviations above 10%. In this case, 
it is advisable to correct or extrapolate the pressure by means of Eq. (2.192) and, 
then, take the extrapolated pressure derivative and apply the normal equations of 
the TDS technique given in Section 2.2.4. Needless to say that any TDS technique 
equation can also be used once the pressure derivative has been properly estimated 
with the extrapolated pressure: 

Pext ¼ Pwf � m�Δt (2.192) 

Example 2.7 

Escobar and Montealegre [21] presented a simulated pressure test of a square-
shaped reservoir with an area of 2295.7 acres having a testing well 1 in the center 
and another well 2 at 1956 ft north of well 1. Well 2 produced at a rate of 500 BPD 
during 14000 h. After 4000 h of flow, well 1 was opened at a flow rate of 320 BPD 
to run a pressure drawdown test which data are reported in Table 2.8 and 
Figure 2.26. The data used for the simulation were: 

rw = 0.3 pie μ = 3 cp  ct = 3  � 10�6 psia�1 h = 30 pies 

ϕ = 10% B = 1.2 bbl/BF k = 33.33 md s = 0  

Interpret this test using conventional and TDS techniques considering and 
without considering the presence of well 2. 

Solution by conventional analysis 

A pressure change is observed in well 1 up to a time of 4000 h, after which it is 
put into production for the declination test, as shown in Figure 2.25. Figure 2.26 
presents a plot of Pwf vs. log Δt obtained with the information in Table 2.9. Hence, 
the slope and intercept are, respectively, �230 psia/cycle and 3330.9 psia. Perme-
ability and skin factor are, respectively, estimated from Eqs. (2.38) and (2.191): 
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t, h  Pwf, psia t, h  Pwf, psia t, h  Pwf, psia 

0 5000 4000.00 4278.93 7091.28 2007.41 

4.51 5000.0001 4000.10 4134.44 7511.28 1899.99 

10.10 4999.98 4000.20 4015.56 7931.28 1792.61 

56.79 4991.08 4000.40 3830.82 8351.28 1685.19 

100.98 4970.97 4000.64 3676.32 8771.28 1577.72 

201.48 4926.98 4001.13 3478.40 9191.28 1470.25 

319.33 4887.16 4001.80 3345.40 9611.28 1362.85 

402.02 4864.59 4005.06 3166.11 10031.28 1255.45 

506.11 4840.13 4017.96 3039.90 10451.28 1148.04 

637.15 4813.27 4090.00 2891.65 10871.28 1040.57 

802.13 4782.99 4201.48 2807.85 11291.28 933.06 

1009.82 4747.74 4402.02 2720.00 11711.28 825.63 

1271.28 4705.41 4637.15 2644.70 12131.28 718.26 

1551.28 4661.10 5009.82 2542.16 12551.28 610.85 

2111.28 4573.46 5411.28 2437.61 12971.28 503.40 

2671.28 4486.12 5831.28 2329.70 13391.28 395.95 

3091.28 4420.63 6251.28 2222.26 13811.28 288.51 

3511.28 4355.13 6671.28 2114.85 14000.00 240.23 

Table 2.8. 
Pressure data of a developed reservoir in example 2.7, after [21]. 

Figure 2.25. 
Cartesian plot of pressure versus time data simulated for well 1, after [21]. 

162:2qμB 162:6ð320Þð3Þð1:2Þ
k ¼ ¼ ¼ 27:15 md

hm 30ð230Þ 
"  ! # 
3330:9 � 4278:93 27:15 

s ¼ 1:1513 � log þ 3:23 ¼ �1:35 �230 ð0:1Þð3Þð3 � 10�6Þð0:32Þ 

Table 2.9 also reports the data of Pwf�m*Δt. Figure 2.26 presents, in addition, 
the plot of Pwf�m*Δt vs. log Δt. Now, the slope and intercept are, respectively, 
193.9 psia/cycle and 3285.9 psia. A permeability of 32.2 md is found from Eq. (2.38) 
and a skin factor of �0.28 is estimated from Eq. (2.191). 
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Figure 2.26. 
Semilog plot for example 2.7, after [21]. 

From the derivative plot, Figure 2.27, we can observe that the pseudosteady-
state period has been perfectly developed; as a consequence, we can obtain the 
Cartesian slopes performing a linear regression with the last 10 pressure points, 
namely: m* (Pwf vs. Δt) =  �0.256 psia/h and m* (Pext vs. Δt) =  �0.0992 psia/h. 
Eq. (2.59) allows obtaining the well drainage area of well 2: 

0:23395qB 0:23395ð320Þð1:2Þ
AðPwf Þ ¼ � ¼ ¼ 895:2 Ac 

ϕcthm� ð0:1Þð3 � 10�6Þð30Þð0:256Þð43560Þ 
0:23395qB 0:23395ð320Þð1:2Þ ¼ ¼ 2310 Ac AðPext Þ ¼ �  
ϕcthm� ð0:1Þð3 � 10�6Þð30Þð0:0992Þð43560Þ 

Solution by TDS technique 

Application of TDS, the pressure derivative is initially taken to the well-flowing 
pressure data, see Table 2.9. Then, the derivative is taken to the corrected pressure, 
Pwf�m*Δt. Both pressure derivatives are reported in Figure 2.27. For the 
uncorrected pressure, the following information was read from Figure 2.27: 

tr = 35.826 h (t*ΔP 0)r = 90.4 psia ΔPr = 1301.7 psia 

Permeability and skin factor are calculated with Eqs. (2.76) and (2.97); 

70:6qμB 70:6ð320Þð3Þð1:2Þ
k ¼ ¼ ffi 30 md 

hðt � ΔP'Þ 30ð90:4Þr ˛ ˜ ° ˝ 
1301:7 ð30Þð35:826Þ 

s ¼ 0:5 � ln þ 7:43 ¼ �0:74
90:4 ð0:1Þð3Þð3 � 106Þð0:32Þ 

Then, for the corrected pressure case, the following data were read from 
Figure 2.27; 

tr = 319.3321 h (t*ΔP 0)r = 82.1177 psia ΔPr = 1477.3508 psia 

With these data, Eq. (2.76) provided a permeability value of 33.07 md and 
Eq. (2.97) allows estimating a skin factor of �0.087. Eq. (2.102) is used to find the 
well drainage area using trpi = 376.6049 h (uncorrected pressure) and trpi = 800.5503 h 
(corrected pressure) read from Figure 2.28, then, 
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Δt, h  Pwf, psia ΔPwf, psia 0t*ΔPwf , psia Pext, psia ΔPext, psia 0t*ΔPext , psia 

0.00 4278.93 0.00 0.00 4278.93 0.00 0.00 

0.01 4263.17 15.76 16.17 4263.17 15.76 16.17 

0.02 4247.80 31.13 31.50 4247.80 31.13 31.50 

0.03 4232.77 46.16 46.15 4232.77 46.16 46.14 

0.05 4203.65 75.28 73.43 4203.66 75.27 73.42 

0.06 4189.53 89.40 86.24 4189.54 89.39 86.23 

0.08 4162.11 116.83 110.14 4162.12 116.81 110.13 

0.113 4118.69 160.24 145.70 4118.71 160.22 145.69 

0.160 4062.04 216.89 187.89 4062.06 216.87 187.86 

0.226 3989.51 289.42 234.79 3989.55 289.38 234.75 

0.319 3899.81 379.12 281.46 3899.86 379.07 281.41 

0.451 3793.92 485.01 319.72 3793.99 484.94 319.65 

0.637 3676.32 602.61 339.60 3676.42 602.51 339.50 

0.900 3555.47 723.47 333.33 3555.61 723.33 333.19 

1.271 3442.11 836.82 300.48 3442.31 836.63 300.27 

1.796 3345.40 933.53 250.08 3345.68 933.25 249.79 

2.537 3269.25 1009.68 196.69 3269.65 1009.28 196.28 

3.583 3211.35 1067.58 152.72 3211.91 1067.02 152.14 

5.061 3166.11 1112.82 123.22 3166.90 1112.03 122.39 

7.149 3128.10 1150.84 106.39 3129.21 1149.72 105.23 

10.098 3093.70 1185.23 97.75 3095.28 1183.65 96.11 

16.005 3050.46 1228.47 92.62 3052.96 1225.97 90.01 

22.61 3018.94 1259.99 91.11 3022.47 1256.46 87.43 

31.93 2987.69 1291.25 90.86 2992.67 1286.26 85.67 

45.11 2956.32 1322.61 91.76 2963.37 1315.57 84.42 

63.72 2924.46 1354.47 93.89 2934.41 1344.52 83.53 

90.00 2891.65 1387.28 97.54 2905.70 1373.23 82.89 

127.13 2857.33 1421.60 103.15 2877.17 1401.76 82.47 

179.57 2820.74 1458.19 111.39 2848.77 1430.16 82.17 

253.65 2780.81 1498.12 123.24 2820.41 1458.52 81.97 

358.30 2736.24 1542.70 140.71 2792.17 1486.76 82.41 

506.11 2684.75 1594.18 167.76 2763.76 1515.17 85.41 

714.90 2622.34 1656.59 211.07 2733.94 1544.99 94.76 

1009.82 2542.16 1736.77 279.69 2699.80 1579.13 115.40 

1411.28 2437.61 1841.32 380.45 2657.93 1621.01 150.84 

1831.28 2329.70 1949.23 489.81 2615.59 1663.35 191.86 

2251.28 2222.26 2056.67 600.72 2573.71 1705.22 234.44 

2811.28 2079.04 2199.90 749.48 2517.91 1761.03 292.10 

3371.28 1935.78 2343.15 898.68 2462.07 1816.86 350.18 

4071.28 1756.82 2522.11 1085.26 2392.38 1886.55 422.88 
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Δt, h  Pwf, psia ΔPwf, psia 0t*ΔPwf , psia Pext, psia ΔPext, psia 0t*ΔPext , psia 

4771.28 1577.72 2701.21 1271.94 2322.57 1956.36 495.67 

5611.28 1362.85 2916.08 1495.85 2238.83 2040.10 582.91 

6451.28 1148.04 3130.89 1719.92 2155.15 2123.78 670.32 

6591.28 1112.23 3166.71 1757.27 2141.19 2137.74 684.89 

7711.28 825.63 3453.31 2055.97 2029.43 2249.50 801.38 

8831.28 539.22 3739.71 2354.68 1917.88 2361.06 917.87 

9951.28 252.69 4026.24 2653.47 1806.19 2472.74 1034.44 

10000.00 240.23 4038.70 2666.47 1801.33 2477.60 1039.51 

Table 2.9. 
0Data of Pwf, Pext = Pwf�m*Δt, t*ΔPwf , t*ΔPext 0 for example 2.7, after [21]. 

Figure 2.27. 
Log-log plot of pressures and pressure derivatives versus time for example 2.7, after [21]. 

Figure 2.28. 
Reservoir geometry and description of flow regimes. (a) Reservoir approximated geometry, (b) Dual linear 
flow, (c) Single linear or hemilinear flow. 
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Method k, md Abs. error, % s Abs. error, % 

Simulation 33.33 0 

Semilog with Pwf 27.15 18.54 �1.35 135 

Semilog with Pext 32.2 3.39 �0.29 29 

TDS with Pwf 30 9.99 �0.74 74 

TDS with Pext 33.07 0.78 �0.087 8.7 

Table 2.10. 
Permeability and skin factor results for example 2.7, after [21]. 

ktrpssi ð30Þð376:604Þ 1 ¼ ¼ ¼ 955 Ac APwf 301:77ϕμct 301:77ð0:1Þð3Þð3 � 10�6Þ 43560 

ktrpssi ð33:07Þð800:5503Þ 1 ¼ ¼ ¼ 2237:8 Ac APext 301:77ϕμct 301:77ð0:1Þð3Þð3 � 10�6Þ 43560 

Figure 2.28 provides a comparison of the derivative of the flowing bottom 
pressure ignoring the effect of well 2 and the pressure derivative including the 
effect of well 2. It is noted there that the radial flow zone is shorter and less defined. 
On the other hand, the pseudosteady-state zone appears first when the effect of the 
adjacent well is not included, indicating that the well drainage area, and therefore, 
the reserves present therein will be substantially underestimated. Table 2.10 shows 
all the permeability and skin factor values obtained for this example with their 
respective absolute errors with reference to the input simulation value. TDS when 
corrected pressure is taken gives the best results. 

2.7. Elongated systems 

These deposits can be approximated to the geometry described by Figure 2.28. 
They mainly result from fluvial depositions (deltaic), commonly called channels, 
terrace faulting, and carbonate reefs. The possible flow regimes when the well is 
completely off-center are presented in Figure 2.28b when the parallel reservoir 
boundaries are no-flow type (closed). Once radial flow vanishes, two linear flows 
take place at both sides of the reservoir. This flow regime is normally known as 
linear flow regime, see Figure 2.27b; actually, it consists of two linear flow regimes 
forming a 180° angle between each other. Therefore, Escobar et al. [19] named it 
dual-linear flow. Once the shorter reservoir boundary has been reached by the 
transient wave, only a unique linear flow is kept and lasts until the other boundary 
is reached. This unique flow is referred as single-linear flow by Escobar et al. [19]. 
However, since linear flow is taken on one side of the reservoir, it is also known as 
hemilinear flow regime. This is the only linear flow taken place in the system 
depicted in Figure 2.28c. 

Both linear flows are characterized by a slope of 0.5 in the pressure derivative 
curve. Figure 2.29 sketches the pressure derivative behavior of the mentioned 
systems. 

2.7.1 TDS technique 

The governing pressure and pressure derivative equations for the 
single-linear and dual-linear flow regimes are, respectively, given below 
[13, 16–20, 23, 24, 28, 29, 31, 35, 38, 55, 56]: 
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Figure 2.29. 
Dimensionless well pressure derivative versus time behavior for a rectangular reservoir with the well located 
off-center, after [19]. 

ffiffiffiffiffiffi pðPDÞL ¼ 2π tDL þ sL ¼ 
ffiffiffiffiffi p

2π tD 

WD 
þ sL (2.193) 

ðtD � PD 'ÞL ¼ 
pffiffiffiffiffi 

π tD 

WD 
(2.194) 

ðPDÞDL ¼ 
ffiffiffiffiffiffiffi p

2 πtD þ sDLWD 
(2.195) 

ðtD � PD 'ÞDL ¼ 
ffiffiffiffiffiffiffi p
πtD 

WD 
(2.196) 

Being sL is the geometrical skin factor caused by converging from either radial to 
linear flow regime (well located at one end of reservoir sides, Figure 2.28c or from 
dual-linear to linear flow (well off-center well). sDL is the geometrical skin factor 
caused by converging from either radial to linear flow regime. The dimensionless 
parameters are defined by Escobar et al. [19] as: 

YEWD ¼ (2.197)
rw 

tDtDL ¼ (2.198)
W2 

D 

The dimensionless distances are given by: 

2bxXD ¼ (2.199)
XE 

2byYD ¼ (2.200)
YE 

Variables bx and by correspond to the nearest distances from the well to the 
reservoir boundaries in the directions x and y, respectively. See Figure 2.28a. 
Replacing Eqs. (1.94), (2.62) and (2.197) in Eq. (2.194) and solving for the root 
product of permeability by the reservoir width, YE, will yield: 
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rffiffiffiffiffiffiffi pffiffiffi 7:2034qB tLμkYE ¼ (2.201)
hðt � ΔP'ÞL ϕct 

Since,TDS equations apply to either drawdown or buildup tests; then, when 
either t or Δt = 1 h, Eq. (2.200) becomes: 

rffiffiffiffiffiffiffi pffiffiffi 7:2034qB μ
kYE ¼ (2.202)

hðt � ΔP'ÞL1 ϕct 

The root product of permeability by the reservoir width can be also calculated 
from the dual-linear flow, DL. This can be performed by replacing also Eqs. (1.94), 
(2.62), and (2.197) into the dimensionless pressure derivative equation into 
Eq. (2.196) leading to: 

rffiffiffiffiffiffiffiffiffi pffiffiffi 4:064qB tDLμkYE ¼ (2.203)
hðt � ΔP'ÞDL ϕct 

Again at either t or Δt = 1 h, the above equation becomes: 

rffiffiffiffiffiffiffi pffiffiffi 4:064qB μ
kYE ¼ (2.204)

hðt � ΔP'ÞDL1 ϕct 

2.7.1.1 Intersection points 

For long production times, the pseudosteady-state period is reached. Both pres-
sure and pressure derivative are joined into a unit-slope line, we obtain a straight line. 
The governing pressure derivative equation at this time is given by Eq. (2.101). For 
the systems dealt with in this section, Eq. (2.102) which uses the point of intersection 
radial-pseudosteady state, Eq. (2.103) and (2.104) also apply. The straight line given 
by Eq. (2.101) also intersects the lines given by Eqs. (2.96) and (2.98); then, reservoir 
area can be found from such intersection times, thus, [13, 19]: 

sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 
ktDLpssiY2 

EA ¼ (2.205)
301:77ϕμct 

sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 
ktLpssiY2 

EA ¼ (2.206)
948:047ϕμct 

Likewise, the intersection times of the line of infinite radial behavior of the 
pressure derivative (horizontal straight line) with the hemilinear and dual-linear 
flow regimes lead to obtain reservoir width from: 

sffiffiffiffiffiffiffiffiffiffiffiffi 
ktrDLiYE ¼ 0:05756 (2.207)
ϕμct 

sffiffiffiffiffiffiffiffiffi 
ktrLiYE ¼ 0:102 (2.208)
ϕμct 

As indicated by Tiab [71], the geometrical skin factors, or any skin factor, can be 
obtained by dividing the pressure equation by its derivative equation and solving 
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for the skin factor. Following this, Escobar et al. [19] divided Eqs. (2.195) and 
(2.193) by Eqs. (2.196) and (2.194), respectively, after replacing the dimensionless 
quantities given by Eqs. (1.94), (1.89), (2.62), and (2.197) and solving for the 
geometrical skin factor will provide: 

sffiffiffiffiffiffiffiffiffi 
ΔPDL 1 ktDL sDL ¼ � 2 � s (2.209)

19:601YE ϕμctðt � ΔP'ÞDL 
sffiffiffiffiffiffiffiffiffi 

ΔPL 1 ktL sL ¼ � 2 � sDL (2.210)ðt � ΔP'ÞL 34:743YE ϕμct 

where both tDL and tL are read at any convenient point during each respective 
0linear flow regime. The pressure and pressure derivative values, ΔPDL, t*ΔPDL , 

0ΔPL, and t*ΔPL , used in either Eqs. Eqs. (2.209) or (2.210) are read at these 
arbitrary times. The characteristic points used so far in this section are better 
explained in Figure 2.29. 

In linear deposits, when the well is off-centered and there is a simultaneous 
action of the linear flow on one reservoir side and the steady state on the other side, 
a slope flow of �1/2 develops, which does not correspond to either spherical or 
hemispherical flows, see Figure 2.30. Given the isobaric geometry, this flow regime 
is called parabolic flow [19]. Although Sui et al. [100] called it dipolar flow, Escobar 
et al. [16, 17] performed numerical simulation and plotted the isobaric lines and 
found that the closest geometry shape corresponds to a parabola. The governing 
equations of this flow regime are: 

� �2 
2 XE t�0:5PD ¼ �ðWDÞðXDÞ þ sPB (2.211)

YE 
D 

� �2WD 2 XE t�0:5tD � PD ' ¼ ðXDÞ (2.212)
2 YE 

D 

Once the division of the pressure equation by the pressure derivative equation 
is attained and the appropriate dimensionless expressions are replaced in the 
resulting division, the parabolic skin factor equation is obtained: 

Figure 2.30. 
Dimensionless pressure derivative versus time behavior for a well displaying parabolic flow regime, after [19]. 
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� � rffiffiffiffiffiffiffiffiffi 
ΔPPB 123:16 bx ϕμct sPB ¼ þ 2 � sDL (2.213)ðt � ΔP' YE ktPBÞPB 

Also, by substituting the dimensionless quantities into Eq. (2.212), the following 
equation is derived: 

� �� �0:5k1:5YE qμB ϕμct¼ 17390 (2.214)
b2 h tð � ΔP' x 

ÞPB tPB 

In the above two equations, the pressure and pressure derivative values are read 
to a convenient or arbitrary point, tPB. 

The total skin factor for this type of reservoir is evaluated according to the flow 
regimes that are presented: 

• Well near a closed boundary. In this case, radial, dual-linear, and hemilinear 
flows are presented. 

s ¼ sr þ sDL þ sL (2.215) 

• Well near an open boundary. In this case, radial, dual-linear, and parabolic flows 
are presented. 

st ¼ s þ sDL þ sPB (2.216) 

If dual-linear is unseen, as presented in Figure 2.28c, Eq. (2.215) reduces to; 

st ¼ s þ sL (2.217) 

Escobar and Montealegre [18] performed a detailed analysis of the geometrical 
skin factor causes. 

The points of intersection, see Figures 2.30 and 2.31, found between the differ-
ent lines of the pressure derivative curve allows developing the following equations: 

sffiffiffiffiffiffiffiffiffiffiffiffiffiffi 
1 ktDLPBibx ¼ (2.218)

65:41 ϕμct 

Figure 2.31. 
Dimensionless pressure derivative versus time behavior for an off-centered well near a no-flow boundary and 
the far boundary is either at constant pressure or no flow, after [19]. 
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sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� � � �0:5YE ktrPBibx ¼ � (2.219)
246:32 ϕμct 

For steady-state cases, a negative unit-slope line, SS1, tangent to the pressure 
derivative curve during late time is drawn. This occurs when the far boundary is at 
constant pressure. Its intercept with the parabolic flow straight line makes it possi-
ble to estimate the length of the reservoir, see Figure 2.30. 

ktPBSS1iX3 ¼ 
1 

b (2.220)xE 77:9 ϕμct 

Several scenarios arise for cases of lateral constant-pressure boundaries: 

• Intersection of the �1-slope line with the dual-linear flow regime line:

 !� �� �31 ktDLSS1i 1
X3 ¼ (2.221)

E 1:426 � 109 ϕμct b3 
x 

• Intersection of the �1-slope line with the radial flow regime line:

 !� �� �2 Y21 ktrSS1i EX3 ¼ (2.222)
E 4:72 � 106 ϕμct b3 

x 

• Intersection of the �1-slope line with the parabolic flow regime line: 

ktPBSS1iX3 ¼ 
1 

b (2.223)xE 77:9 ϕμct 

Again, a negative unit-slope line, SS2, tangent to the pressure derivative curve 
during late time is drawn. This takes place when a no-flow far boundary exists. Its 
intercept with the dual-linear, radial, and parabolic flow straight lines can provide 
equations to estimate the length of the reservoir, see Figure 2.30. 

• Intersection of the �1-slope line with the dual-linear flow regime line:

 !� �� �31 ktDLSS2i 1
X3 ¼ (2.224)

E 1:42 � 1010 ϕμct b3 
x 

• Intersection of the �1-slope line with the radial flow regime line:

 !� �� �21 ktrSS2i Y2 
EX3 ¼ (2.225)

E 4:66 � 107 ϕμct b3 
x 

• Intersection of the �1-slope line with the parabolic flow regime line: 

1 ktPBSS2iX3 ¼ b (2.226)xE 768:4 ϕμct 
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From the inflection point between linear and dual-linear flow, the position of the 
well can be obtained by any of the following relationships: 

sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 
ktFb ¼ (2.227)x 5448:2ϕμct 

khYEðt � ΔP'ÞFbx ¼ (2.228)
415:84qμB 

2.7.1.2 Maximum points 

As seen in Figure 2.30, when the well is located near a constant-boundary 
pressure but the far boundary has no-flow, both parabolic flow regime and a 
maximum point, X1 (between dual linear and parabolic) are observed. If the far 
boundary is at constant pressure, another maximum, X2, can be developed. The 
first maximum is governed by: 

pffiffiffi 
2 π 

t0:5ðtD � PD 'ÞX1 ¼ (2.229)DX13 WD � pffiffiffi � 
XE 2 π 

t0:5¼ (2.230)DX1YE 3 WDXD � pffiffiffi � 
XE 2 π 

t0:5¼ (2.231)DX1YE 3 WDXD 

From which it is obtained: 

sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 
1 ktX1bx ¼ (2.232)

58:8 ϕμct 

khYEðt � ΔP'ÞX1bx ¼ (2.233)
159:327qμB 

The second maximum has a governing equation given by: 
pffiffiffi 
π � � ðtD � PD 'ÞX2 ¼ X2 t0:5 (2.234)

WD 
D DX2 

XE π 
t0:5¼ (2.235)DX2YE 2WD � pffiffiffi � 

XE π ¼ ðtD � PD 'ÞX2 (2.236)
YE 2X2 

D 

From which is obtained:
 ! 
b2 qμB 1xXE ¼ 637:3 (2.237)
YE kh ðt � ΔP'ÞX2 

� �0:51 ktX2XE ¼ (2.238)
39:2 ϕμct 

When a rectangular reservoir has mixed boundaries and the well is near the no-
flow boundary, see Figure 2.31, another maximum point, X3, can be displayed on 
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the pressure derivative once the constant-pressure boundary is felt. The governing 
equation for this maximum point is: 

π1:5XE 1 
t0:5¼ (2.239)DX3YE 4 WD 

After replacing the dimensionless parameters and solving for the reservoir 
length, it will result: 

sffiffiffiffiffiffiffiffiffi 
1 ktX3XE ¼ (2.240)

44:24 ϕμct 

Another steady-state period is depicted in Figure 2.31 when the well is near a 
no-flow boundary and the farther one is at constant pressure. Again, one negative-
unit-slope line is drawn tangent to the pressure derivative curve. In this case, both 
dual-linear flow and single linear flow regimes are developed. This is followed by a 
maximum. The governing equation of the mentioned negative slope line is: 

� �3 W2XE DtD � PD ' ¼ (2.241)
YE tD 

Equating Eq. (2.75) with Eq. (2.241), an equation will be obtained that uses the 
radial and steady-state intercept to find reservoir length: 

sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 
3 ktrSSiYEXE ¼ (2.242)
7584:2ϕμct 

If it is assumed that the area is obtained from the product of the width by the 
length of the reservoir, A = XEYE, then, 

sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 
ktrSSiY4 

EA ¼ 
3 

(2.243)
7584:2ϕμct 

When the well is centered along the rectangular reservoir, different behavior 
occurs if one or both boundaries are at constant pressure as seen in Figure 2.32. The 

Figure 2.32. 
Dimensionless pressure derivative versus time behavior for a centered well when one or both boundaries are at 
constant pressure, after [28]. 
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equations of the straight line with unit slope passing tangentially to the pressure 
derivative curve are, respectively, given by the following expressions: 

� �332W2 
D XE t�1tD � PD ' ¼ (2.244)

19π YE 
D 

� �3W2 
D XE t�1 (2.245)tD � PD ' ¼ D5π YE 

The equations to estimate the drainage area is obtained from the intercept of 
Eqs. (2.140) and (2.141) with Eq. (2.75). After replacing the dimensionless param-
eters and assuming perfect rectangular geometry, we, respectively, have: 

sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 
ktrSSiY4 

EA ¼ 
3 

(2.246)
4066ϕμct 

sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 
ktrSSiY4 

EA ¼ 
3 

(2.247)
482:84ϕμct 

The maximum point when one of the two boundaries is at constant pressure is 
given by: 

XE 15 1 
t0:5¼ π (2.248)

YE 32 WD 
Dxc 

And, for the other case, when both extreme boundaries are subjected to a 
constant pressure: 

XE 15 1 
t0:5¼ π (2.249)

YE 16 WD 
Dxc 

After replacing the dimensionless quantities in Eqs. (2.248) and (2.249), it 
is possible to find expressions to determine reservoir length and area, respectively: 

� �0:51 ktxcXE ¼ (2.250)
41:82 ϕμct 

� �0:5YE ktxcA ¼ (2.251)
41:82 ϕμct 

� �0:5YE ktxcA ¼ (2.252)
41:82 ϕμct 

� �0:51 ktxcXE ¼ (2.253)
20:91 ϕμct 

� �0:5YE ktxcA ¼ (2.254)
20:91 ϕμct 

Escobar et al. [28] determined the pressure derivative governing equation for 
constant pressure both circular or square systems; 

π 
tD � PD ' ≈ (2.255)

84tDA 
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which intercept with the radial flow pressure derivative equation, Eq. (2.75), 
allows finding the well-drainage area: 

ktrSSiA ¼ (2.256)
283:66ϕμct 

Table 2.11 presents a summary of the different equations to determine the 
drainage area in constant-pressure systems, since Escobar et al. [28] showed that 
Eq. (2.102) hugely fails in constant-pressure systems. 

Escobar et al. [23] presented TDS technique for long reservoirs when the width 
is known from another source, like seismic. Under this condition, the reservoir areal 
anisotropy and even the anisotropy angle can be determined. Later, Escobar et al. 

Constant, Ξ Equation Reservoir geometries 

301.77 ktrpssi A ¼ Ξϕμct 

283.66 

qffiffiffiffiffiffiffiffiffiffiffiffi 
4066 ktrSSiY4 

EA ¼ 3 

Ξϕμct 

482.84 

7584.2 

� �2= 32173.52 
Y5=3ktrSS1i, rSS2iA ¼ E 

xΞϕμct b

6828.34 

41.82 
¼ 1 

� 
ktx 
�0:5 

XE Ξ ϕμct 

20.91 

Table 2.11. 
Equations for area determination in constant-pressure systems, after [28]. 
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[29, 30] presented conventional analysis and TDS technique, respectively, when 
changes in either reservoir width or facies are seen in elongated systems. 

2.7.2 Conventional method 

The dimensional pressure governing equation for dual-linear flow regime is 
[20, 24]: 

� �0:58:1282 qB μ pffiffi 141:2qμB
ΔP ¼ t þ ðsDL � sÞ (2.257)

YE kh ϕctk kh 

For pressure buildup tests, the superposition principle leads to find: 

� �0:5� �8:1282 qB μ pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi pffiffiffiffiffi 
ΔP ¼ tp þ Δt � Δt (2.258)

YE kh ϕctk 

Eqs. (2.257) and (2.258) indicate that a linear plot of pressure drop or pressure 
versus either t0.5 (for drawdown tests) or (tpþ Δt)0.5 � Δt0.5 (for buildup tests), 
tandem square root, will yield a straight line which slope, mDLF, and intercept, bDLF, 
are used to, respectively, find reservoir width, YE, and dual-linear (geometrical) 
skin factor, sDL; 

� �0:5qB μ
YE ¼ 8:1282 (2.259)

mDLFh kϕct 

khbDLF sDL ¼ � s (2.260)
141:2qμB 

Wong et al. [101] presented another version of the skin equation: 

1 khbDLF rw sDL ¼ þ ln (2.261)
2 141:2qμB YE 

Escobar and Montealegre [20] found that Eq. (2.260) compared quite well with 
the results of [59, 102]. The governing equations for drawdown and buildup, 
respectively, for hemilinear flow regime are [20, 24, 28]: 

sffiffiffiffiffiffiffiffiffi 
14:407 qμB kt 141:2qμB

ΔPwf ¼ þ sL (2.262)
YE kh ϕμct kh 

sffiffiffiffiffiffiffiffiffi 
14:407 qμB k �pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi pffiffiffiffiffi� 

ΔPws ¼ tp þ Δt � Δt (2.263)
YE kh ϕμct 

Similar to the dual-linear case, when plotting in Cartesian coordinates either P or 
ΔP versus either t0.5 (for drawdown tests) or (tpþ Δt)0.5�Δt0.5 (for buildup tests), a 
straight line influenced by the linear flow will be obtained. Its slope, mLF, and 
intercept, bLF, are used, respectively, to estimate reservoir width, YE, and skin 
factor, sL. 

� �0:514:407 qB μ
YE ¼ (2.264)

mLF h ϕctk 
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khbLF sL ¼ � sDL (2.265)
141:2qμB 

The governing equations for parabolic flow regime under drawdown and 
buildup conditions are given by [13, 19, 20, 24]: 

pffiffiffiffiffiffiffi � �1:534780:8qBb2 ϕct μ 1 141:2qμB
ΔPwf ¼ �  x pffiffi þ sPB (2.266)

hYE k t kh 
pffiffiffiffiffiffiffi  ! � �1:534780:8qBb2 ϕct μ 1 1xΔPws ¼ �  pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi �pffiffiffiffiffi (2.267)

hYE k tp þ Δt Δt 

A straight line will be observed on a Cartesian plot of either P or ΔP versus either 
1/t0.5 (for drawdown tests) or 1/(tpþΔt)0.5�1/Δt0.5 (for buildup tests). Its mPB and 
intercept, bPB, lead to obtain well position along the x-direction, bx, and parabolic 
skin factor, sPB, respectively, from: 

sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� �1:5 mPBhYE k
bx ¼ � pffiffiffiffiffiffiffi (2.268)

34780:8qB ϕct μ 

khbPB sPB ¼ � sDL (2.269)
141:2qμB 

Area, A = XEYE, can be found from the Cartesian plot of pressure versus time 
using Eq. (2.59). 

Example 2.8 

Escobar et al. [19] presented a pressure test run in a reservoir in South America. 
Test data are given in Table 2.12 and other relevant information is given below: 

q = 1400 BPD h = 14 ft ct = 9  � 10�6 psia�1 Pi = 1326.28 psia 

rw = 0.51 pies ϕ = 24% B = 1.07 bbl/STB μ = 3.5 cp 

It is required to conduct the interpretation of the test by TDS and conventional 
analysis. 

Solution by TDS technique 

The following information was read from Figure 2.33; 

(t*ΔP 0)r = 60 psia ΔPr = 122.424 psia tDL = 2 h  

(t*ΔP 0)DL = 105.81 psia ΔPDL = 265.942 psia tRDLi = 0.7 h 

tPB = 10.157 h (t*ΔP 0)PB = 132.873 psia ΔPPB = 458.466 psia 

tPBDLi = 6 h  tPBRi = 50 h  tDLSS1i = 7.5 h 

tRSS1i = 24 h  tPBSS1i = 12 h  

Permeability is obtained from Eq. (2.76) and reservoir width with Eq. (2.203), 
respectively: 

k ¼ 
70:6qμB 
h t � ΔP'ð Þr 

¼ 
70:6ð1400Þð3:5Þð1:07Þ 

ð14Þð60Þ ¼ 440:7 md 
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t, h  ΔP, psia t*ΔP 0, psia t, h  ΔP, psia t*ΔP 0 , psia t, h  ΔP, psia t*ΔP 0 , psia 

0.165 49.00 51.00 4.331 331.24 147.65 9.824 458.47 136.70 

0.332 99.00 67.00 4.498 336.89 149.17 10.157 463.23 132.87 

0.498 122.42 60.38 4.665 342.30 151.39 10.490 467.44 134.03 

0.665 140.49 66.57 4.831 347.70 152.79 10.824 471.48 132.58 

0.831 156.07 73.69 4.998 352.84 154.09 11.157 475.61 130.61 

0.998 170.14 80.12 5.165 358.01 155.83 11.490 479.47 127.78 

1.165 182.92 84.74 5.331 362.96 156.87 11.824 483.19 126.71 

1.331 194.48 88.67 5.498 367.77 157.85 12.157 486.70 125.21 

1.498 205.17 92.44 5.665 372.54 159.51 12.490 489.94 122.97 

1.665 215.09 96.63 5.831 377.15 159.55 12.824 493.12 119.84 

1.831 224.53 101.16 5.998 381.67 159.94 13.157 496.26 117.32 

1.998 233.54 105.28 6.165 386.10 161.25 13.490 499.19 115.01 

2.165 242.11 109.19 6.331 390.50 161.31 13.824 502.05 113.78 

2.331 250.33 113.12 6.498 394.60 161.74 14.157 504.71 111.16 

2.498 258.24 116.37 6.665 398.63 161.58 14.490 507.15 109.55 

2.665 265.94 120.68 6.831 402.76 161.88 14.990 510.78 106.05 

2.831 273.23 124.15 6.998 406.64 161.66 15.490 514.29 102.52 

2.998 280.57 126.97 7.165 410.42 161.90 15.990 517.45 99.40 

3.165 287.49 130.91 7.331 414.19 161.66 16.490 520.59 97.21 

3.331 294.22 133.24 7.657 421.18 161.21 16.990 523.48 93.62 

3.498 300.85 136.37 7.990 428.16 160.73 17.490 526.10 90.44 

3.665 307.28 138.93 8.324 434.62 153.77 17.990 528.57 86.87 

3.831 313.54 141.42 8.657 440.94 149.99 20.474 470.79 50.29 

3.998 319.60 143.73 8.990 446.87 146.59 22.640 538.42 10.60 

4.165 325.50 145.48 9.490 453.81 140.47 

Table 2.12. 
Pressure and pressure derivative data versus time for example 2.8. 

ffiffiffiffiffiffiffiffiffiffiffiffiffi s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi s 
4:064qB

YE ¼ ffiffiffi p
khðt � ΔP'ÞDL 

ΔtDLμ 4:064ð1400Þð1:07Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi p
ϕct 440:7ð14Þð105:81Þ 

ð2Þð3:5Þ ¼ 352:4 ft ð0:24Þð9 � 10�6Þ 

Verify YE with Eq. (2.207): 
sffiffiffiffiffiffiffiffiffiffiffiffi sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 

ktRDLi ð440:7Þð0:7Þ
YE ¼ 0:05756 ¼ 0:05756 ¼ 367:7 ft 

ϕμct ð0:24Þð3:5Þð9 � 10�6Þ 

The well position along the reservoir is found with Eq. (2.214): 

vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi u u 440:71:5ð367:8Þ
b ¼ u " ¼ 283:7 ft x u � � � �#0:5 u 1400ð3:5Þð1:07Þ 0:24ð3:5Þ 9 � 10�6 t17390 

14ð132:873Þ 10:157 
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Figure 2.33. 
Log-log plot of pressure and pressure derivative versus time for example 2.8, after [19]. 

Verify bx of Eqs. (2.218) and (2.219): 

sffiffiffiffiffiffiffiffiffiffiffiffiffiffi sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 
1 ktDLPBi 1 440:7 � 6

bx ¼ ¼ ¼ 285:9 ft 
65:41 ϕμct 65:41 0:24ð3:5Þð9 � 10�6Þ 

sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi � � � �0:5 � �� �0:5YE ktrPBi 367:7 440:7ð50Þ
bx ¼ � ¼ ¼ 283:9 ft 

246:32 ϕμct 246:32 0:24ð3:5Þð9 � 10�6Þ 

Observe on the pressure derivative curve that once the parabolic flow is fin-
ished, before falling, it rises a little, from which it is inferred that the far boundary 
is of no flow, this maximum point is not observed with much clarity; then, 
Eqs. (2.224), (2.226), and (2.225), using the intersection of the �1-slope line with 
the dual linear, parabolic, and radial flow lines are used: 

� �� �3� � 
1 440:7 � 7:5 1

X3 ¼ ¼ 637:2 ft 
E 1:41 � 1010 0:24 � 3:5 � ð9 � 10�6Þ 2843 

� �� �2� � 
1 440:7 � 24 367:72 

X3 ¼ ¼ 628:2 ft 
E 4:66 � 107 0:24 � 3:5 � ð9 � 10�6Þ 2843 

� � � �1=31 440:7 � 12
X ¼ � 284 ¼ 637:1 ft 

E 768:4 0:24 � 3:5 � ð9 � 10�6Þ 

Skin factor are found with Eqs. (2.97), (2.209), (2.210), and (2.213): 

122:424 440:7 � 0:5 
s ¼ 0:5 � ln þ 7:43 ¼ �4:9

60 0:24 � 3:5 � 9 � 10�6 � 0:332 

� � rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 
265:942 1 440:7 � 2 

sDL ¼ � 2 ¼ 0:4 þ 4:9 ¼ 5:3 
105:81 34:743 � 367:7 0:24 � 3:5 � 9 � 10�6 

sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 
458:466 123:16 ð283:72Þ ð0:24Þð3:5Þð9 � 10�6Þ 

sPB ¼ þ 2 ¼ 6:3-5:3 ¼ 1
132:873 352:4 ð440:7Þð10:157Þ 
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The total skin factor is calculated from the sum of the partial skin factors, Eq. (2.216): 

s = sr þ sDL þ sPB = �4.9 þ 5.3 þ 1 = 1.4 

Solution by conventional analysis 

The following information was read from Figure 2.34, 2.35, and 2.36; 

m = 140 psia/cycle mDLF = �150.8 bDLF = 19.4 

mPB = �851.6 bPB = 730.64 P1hr = 1158 psia 

Permeability is determined using the slope of the semilog plot, m, by means of 
Eq. (2.38) and mechanical skin factor with Eq. (2.39); 

k ¼ 

˜̃
˜̃
˜ 
162:6qμB 

hm 

˜̃
˜̃
˜ ¼ 

˜̃
˜̃
˜ 
162:6ð1400Þð3:5Þð1:07Þ 

ð14Þð140Þ 

˜̃
˜̃
˜ ¼ 434:96 md 

Figure 2.34. 
Semilog plot for example 2.8, after [20]. 

Figure 2.35. 
Cartesian plot of ΔP vs. t0.5 for example 2.8, after [20]. 
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Figure 2.36. 
Cartesian plot of ΔP vs. 1/t�0.5 for example 2.8, after [20]. 

"  ! # 
1158 434:96 

s ¼ 1:1513 � log þ 3:2275 ¼ �4:6 �140 ð0:24Þð3:5Þð9 � 10�6Þð0:51Þ2 

Using mDLF the reservoir width value is calculated Eq. (2.259); 

� �0:5ð1400Þð1:07Þ ð3:5Þ
YE ¼ 8:1282 ¼ 350 ft ð150:8Þð14Þ ð434:96Þð0:24Þð9 � 10�6Þ 

bx is found from Eq. (2.268): 

vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi u � �1:5 u �851:6ð14Þð350Þ 434:96
bx ¼ t� qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ¼ 277:4 ft 

3:534780:8ð1400Þð1:07Þ ð0:24Þð9 � 10�6Þ 

Geometrical skin factor is found from Eqs. (2.260) and (2.269), thus: 

khbDLF ð434:96Þð14Þð19:4Þ 
sDL ¼ þ 4:6 ¼ ¼ 4:8 

141:2qμB 141:2ð1400Þð3:5Þð1:07Þ 
khbPB ð434:96Þð14Þð730:64Þ 

sPB ¼ � sDL ¼ � 4:8 ¼ 1:3
141:2qμB 141:2ð1400Þð3:5Þð1:07Þ 

When comparing with the results of the simulation with those obtained by the 
TDS technique and those of the conventional method no greater difference is found. 

2.8. Determination of average reservoir pressure from flow tests 

Until 2010, pressure buildup tests, chapter 3, were the only means to determine 
the average pressure of a reservoir. However, in 2010, Agarwal [1] presented a 
methodology to obtain the average pressure from drawdown tests, using the fol-
lowing expression: 

887:18q B  μ
P ¼ Pwf þ (2.270)

kh 

This does not consider the Dietz shape factor, but conditions that the well-
flowing pressure is determined at the point where the late pseudosteady-state 
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period develops. According to Agarwal [1], this point is determined using the 
arithmetic derivative (not multiplied by time). In the arithmetic derivative, the 
radial flow is presented with a slope of �1. The pseudosteady-state period 
(postradial) takes place when the slope of the arithmetic derivative becomes 
zero (flat). That is the right moment where the well-flowing pressure, Pwf, is 
read. 

Nomenclature 

A area, ft2 

Bg gas volume factor, ft3/STB 
Bo oil volume factor, bbl/STB 
Bw oil volume factor, bbl/STB 
b fraction of penetration/completion 
bDLF intercept of P vs t0.25 plot during dual-linear flow, psia0.5 

bLF intercept of P vs t0.5 plot during hemilinear flow, psia0.5 

bPB intercept of P vs 1/t0.5 plot during hemilinear flow, h�1 

bx distance from closer lateral boundary to well along the x-direction, ft 
by distance from closer lateral boundary to well along the y-direction, ft 
c compressibility, 1/psia 
C wellbore storage coefficient, bbl/psia 
CA reservoir shape factor 
ct total or system compressibility, 1/psia 
DF damage factor 
DR damage ratio 
FE flow index 
f(t) time function 
h formation thickness, ft 
hp length of perforations, ft 
I intercept 
J productivity index, bbl/psia 
k permeability, md 
kg gas effective permeability, md 
ko oil effective permeability, md 
kw water effective permeability, md 
IDcsg internal casing diameter, in 
m slope of P vs log t plot, psia/h/cycle 
m* slope of P vs t plot, psia/h 
mDLF slope of P vs t0.25 plot during dual-linear flow, psia0.5/h 
mLF slope of P vs t0.5 plot during hemilinear flow, psia0.5/h 
mPB slope of P vs 1/t0.5 plot during hemilinear flow, (psia0.5/h)�1 

m 0 slope of superposition or equivalent time plot, psia/BPD/cycle 
m 0b 0 intercept of superposition or equivalent time plot, psia/BPD/cycle 
m(P) pseudopressure, psia/cp 
ODcsg external casing diameter, in 
P pressure, psia 
P average reservoir pressure, psia 

0PD dimensionless pressure derivative 
PD dimensionless pressure 
Pi initial reservoir pressure, psia 
PR productivity ratio 
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Pt shut-in casing pressure, psia 
Pwf well flowing pressure, psia 
Pws well shut-in or static pressure, psia 
P1hr intercept of the semilog plot, psia 
P* false pressure, psia 
ΔPs pressure drop due to skin conditions, psia 
q liquid flow rate, bbl/D 
qsc gas flow rate, Mscf/D 
rD dimensionless radius 
r radius, ft 
re drainage radius, ft 
Rs gas dissolved in oil, scf/STB 
rw well radius, ft 
s skin factor 
sc skin due to partial penetration 
scp skin due to a change in permeability 
sDL geometrical skin factor converging from radial to dual-linear flow 
sL geometrical skin factor converging from dual-linear to linear flow 
sp skin factor due to the restricted flow entry 
sPB geometrical skin factor converging from dual-linear to parabolic flow 
st total skin factor 
sθ skin factor resulting from a well deviation angle 
T reservoir temperature, ºR, Transmissivity, md-ft/cp 
t time, h 
tp production (horner) time before shutting-in a well, h 
tD dimensionless time based on well radius 
tDA dimensionless time based on reservoir area 
t*DP 0 pressure derivative, psia 
V volume, ft3 

Vu wellbore volume/unit length, bbl/ft 
X distance in the x-direction 
XE reservoir length, ft 
XN superposition time, h 
Y distance in the y-direction 
YE reservoir width, ft 
WD dimensionless reservoir width 
Z height, ft 

Greek 

Δ change, drop 
Δt shut-in time, h 
φ porosity, fraction 
λ mobility, md/cp 
ρ fluid density, lbm/ft3 

θ deviation angle, ° 
ψ measured deviation angle, ° 
ψ' corrected deviation angle, ° 
μ viscosity, cp 

124 



Pressure Drawdown Testing 
DOI: http://dx.doi.org/10.5772/intechopen.81078 

Suffices 

0 base conditions 
1hr time of 1 h 
a actual 
d drainage 
D dimensionless 
DA dimensionless with respect to area 
DL dual linear flow 
DL1 dual linear flow at 1 h 
DLpssi intersection of pseudosteady-state line with dual-linear line 
DLSS1 intercept between dual-linear line and the ˜1-slope line (SS1) 
DLSS2 intercept between dual-linear line and the ˜1-slope line (SS2) 
eq equivalent 
F inflection 
g gas 
h horizontal 
hs hemispherical 
i intersection or initial conditions 
ideal ideal 
INT intercept 
inv investigation 
L linear or hemilinear flow 
L1 linear flow at 1 h 
lag lag 
Lpssi intercept of linear and pseudosteady state lines 
N an arbitrary point during early pseudosteady-state period 
max maximum 
o oil 
OP oil price, US$/STB 
p production, porous 
PB parabolic flow 
PBSS1 intercept between parabolic line and the ˜1-slope line (SS1) 
PBSS2 intercept between parabolic line and the ˜1-slope line (SS2) 
pss pseudosteady state 
pss1 pseudosteady state at 1 h 
r radial flow 
rDLi intercept of radial and dual linear lines 
r1 radial flow before spherical/hemispherical flow 
rg relative to gas 
rLi intercept of radial and linear lines 
ro relative to oil 
rpssi intersection of pseudosteady-state line with radial line 
rSSi intersection between the radial line and the ˜1-slope line 
rSS1i intersection between the radial line and the ˜1-slope line (SS1) 
rSS2i intersection between the radial line and the ˜1-slope line (SS2) 
rw relative to water 
s skin 
sf sandface 
sp spherical 

125 

http://dx.doi.org/10.5772/intechopen.81078


Novel, Integrated and Revolutionary Well Test Interpretation and Analysis 

SS steady 
SSL start of semilog line (radial flow) 
SS1 ˜1-slope line formed when the parabolic flow ends and steady-state 

flow regime starts. Well is near the open boundary and the far boundary 
is opened 

SS2 ˜1-slope line formed when the parabolic flow ends and steady-state 
flow regime starts. Well is near the open boundary and the far boundary 
is closed 

sw spherical/hemispherical wellbore 
w well, water 
wa apparent wellbore 
wb wellbore 
wD dimensionless emphasizing at wellbore 
wf well flowing 
ws well shut-in 
x maximum point (peak) during wellbore storage 
xc maximum point for centered wells 
X1 maximum point between dual linear and parabolic lines 
X2 maximum point between parabolic and negative unit slope lines 
X3 maximum point between hemilinear and negative unit slope lines 
z vertical direction 
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Chapter 3 

Pressure Buildup Testing 

A pressure buildup test has been a very popular technique used in the hydrocar-
bon industry. Several reasons have become a very popular test, some of these are: 
(a) it does not require very detailed supervision and (b) permeability and skin 
factor can be determined from both pressure buildup and drawdown tests. 
However, as studied in Section 2.8, until 2010, a flow test did not allow estimating 
the average reservoir pressure, while a pressure test does [7–10, 25, 26, 28, 30]. 

Figure 3.1 shows a plot of an ideal pressure buildup test. In general terms, it 
requires shutting‐in a producer well after it has produced for some time, tp, with a 
stable flow rate. A pressure buildup test is run as follows: 

1. Place the pressure sensors in the selected site. It is recommended as close as 
possible to the perforations. 

2. Stabilize the well to a constant production rate, q. 

3. Close the well and record the Pwf value (just before closing). 

4.Read the well bottom-hole pressure, Pws, at short time intervals of 15 s for the 
first few minutes (10–15 min), then I could be every 10 min for the first hour. 
During the next 10 h, hourly pressure readings should be taken. When the test 
progresses, the time intervals can be expanded to 5 h. With recently introduced 
pressure recorders, the readings can be taken at shorter intervals. It can start 
reading every second or less. 

To run a pressure buildup test, the well produces a constant rate for a period of 
time, tp. A pressure recorder is lowered to the well immediately before closing. tp 

should not be too small to avoid problems associated with superposition and inves-
tigation radius [12]. 

3.1. Superposition principle 

Suppose that after the well has produced a constant rate for a time period, tp, it is 
decided to shut‐in the well to obtain a pressure buildup test. Intuitively, fluid 
movement is expected at the reservoir after the well is shut‐in, but at surface q = 0. 
A similar situation arises in fall‐off testing, but injections takes place instead of 
production. An analogy is made to the fluid movement at the reservoir [10–12, 28, 
37, 40] as follows: the well is allowed to produce indefinitely at a flow rate, q, and at 
the instant of shutting‐in the well, the same flow rate, q, is injected into the same 
well, and then the pressure drop is added due to the production of q and same 
pressure data multiplied by �1 and displaced at the time the well is shut‐in. This, 
however, is not easy to understand. The better way is to understand, refer to 
Figure 3.1, is to estimate the well pressure drop at a time, tp þ Δt, and then subtract 
the pressure drop during a time, Δt. Mathematically; 

PDws ¼ PDðtp þ ΔtÞD � PDðΔtÞD (3.1) 
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Figure 3.1. 
Schematic representation of pressure restoration. 

If tp is not given, it can be estimated if cumulative production, Np, is known, 

24Np
tp ¼ (3.2)

q 

Assuming wellbore storage is neglected and the reservoir is of infinite size; then, 
Eq. (1.115) applies: 

PDðtp þ ΔtÞD ¼ 
1 ̃  ° 

ln ðtp þ ΔtÞD þ 0:80907 � s
2 

(3.3) 

PDðΔtÞD ¼ 
1 ̃  ° 

ln ðΔtÞD þ 0:80907 � s 
2 

(3.4) 

Combining Eqs. (3.3) and (3.4) in Eq. (3.1), then replacing in the resulting 
combination the dimensionless parameter given by Eqs. (1.89) and (1.94) yields: 

˛ ˝ 
162:6qμ B tp þ Δt 

Pws ¼ Pi � log (3.5)
kh Δt 

This is known as Horner equation. As a result of the application of the superpo-
sition principle is that the skin factor, s, disappears in the Horner’s simplified 
equation. That means the slope of the Horner plot is not affected by the skin factor. 
However, the skin factor alters, even greater than in flow tests, the shape of the 
pressure buildup curve. The skin factor affects the buildup test more than the 
drawdown test because wellbore storage persists. 

3.2. Buildup test methods 

3.2.1 Horner method 

Eq. (3.5) suggests that a semi‐log plot of well‐shut‐in pressure versus (tpþΔt)/Δt 
will yield a straight line which slope allows finding the permeability from 
Eq. (2.34). Estimating the Horner time, (tpþΔt)/Δt was tedious before 1970 when 
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computer power was limited which is not today’s case. When superposition is 
overcome, the semi‐log plot of Pws versus Δt can be applied. In pressure buildup 
testing, this semi‐log plot is rather known as MDH plot, as shown later. 

Horner plot is generally not preferred, since it requires more work than MDH. It 
is strongly recommended to be used when tp < tpss [12, 26]. This is because super-
position effects make the semi‐log straight line difficult to identify. Actually, 
Horner plot virtually increases about four times the length of the semi‐log slope. If 
tp is at least twice the size of tpss, it is then justified to plot using tpss instead of tpss in 
finite systems [12, 26], since the Horner plot tends to prolong the semi‐log line. 
Preparing a Horner plot with tpss instead of tp has meaning to minimize errors in the 
estimation of the average pressure. However, with the advent of the pressure 
derivative function, the identification of radial flow became easier [6, 13, 25]. 

Just to look alike a MDH plot, Horner plot uses inverted abscissa scale as shown 
in Figure 3.2. For long producing times, a slight variation of Eq. (2.34) is used to 
find skin factor when tp> 1; 

˛ ˜ ° ˝
P1hr � Pwf k 

s ¼ 1:1513 � log þ 3:23 (3.6)
m ϕμctr2 

w 

Here Pwf is used instead of Pi. Pwf is the registered pressure just before shutting‐
in the well. Finding P1hr requires using tp and adding one to that value. Use that 
estimated (tpþΔt)/Δt value and enter the Horner plot and read on the semi‐log line 
the value of P1hr. It is meaningless to estimate (tpþΔt)/Δt=1. However, such read-
ing will be used later to estimate the average reservoir pressure. When tp < 1, the 
following expression ought to be used to find skin factor: 

˛ ˜ ° ˜ ° ˝
P1hr � Pwf 1 k 

s ¼ 1:1513 þ log 1 þ � log þ 3:2275 (3.7)
m tp ϕμctr2 

w 

Once the skin factor is estimated, the skin pressure drop and flow efficient can 
be found using Eqs. (2.35) and (2.46). 

When the well is shut‐in for a buildup test, the formation fluid keeps flowing, 
even though using downhole devise shutting. Again, this after‐flow duration can be 
determined easily from the pressure derivative plot once radial flow starts. This was 
not the case before 1980s. This after‐flow rate, qaf, due to the wellbore storage, has a 
significant influence on the pressure data. This occurs because the head pressure is 
not equal to the bottom shut‐in pressure, and therefore the fluid continues to flow 

Figure 3.2. 
Typical Horner plot, tp = 83 hr. 
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from the formation to the well. Then the pressure does not recover as fast as 
expected. As the flow rate tends to zero, the pressure increases rapidly. The semi‐
log graph is pronounced and linear in this period and can be confused with the 
semi‐log slope [10, 12, 26, 28, 37, 40]. 

24CVw dPws¼ (3.8)qaf B d Δtð Þ  

C is found from transient pressure analysis using Eq. (2.18). For producer and 
injector wells, respectively, the after‐flow duration can be estimated from [40]; 

˜ ° 
C

Δtaf ¼ 204 (3.9)
B J 

˜ ° 
CVuΔtaf ffi 204 (3.10)
B J 

where J is the productivity index, Eq. (2.44), B is the volume factor and, Vu, the 
wellbore capacity, Eq. (2.4), and C is the wellbore storage coefficient found from 
Eq. (2.18). When qaf/q < 0.01, it is concluded that wellbore storage does not affect 
the semi‐log slope. In other words, after this time, WBS effects are negligible. 

Because of superposition, skin and wellbore storage effects, the start time of the 
semi‐log slope, ΔtSSL, is given by [12], 

0:14s (3.11)ðΔtDÞSSL ¼ 50CDe 

By taking a glance to Eq. (2.19), it is appreciated a higher effect of skin factor 
and wellbore storage in the above expression. After replacing the dimensionless 
parameters, Eqs. (2.14) and (1.94), in Eq. (3.11), it results: 

170000μCe0:14s 
ΔtSSL ¼ (3.12)

kh 

Eq. (3.5) applies to infinite‐size reservoir. For finite reservoirs, Eq. (3.59), 
becomes [12, 40], 

˜ ° ˜ ° 
162:6qμ B tp þ Δt tp þ Δt 

Pws ¼ P � �  log ¼ P � �m log (3.13)
kh Δt Δt 

However, this equation applies similar to Eq. (2.5). The false pressure, P*, is read 
at a Horner time, (tpþΔt)/Δt=1, and does not have physical meaning, but is useful 
to determine the average reservoir pressure [28]. 

3.2.2 Miller‐Dyes‐Hutchinson (MDH) method 

This is based on the assumption that the production time, tp, is long enough to 
reach the pseudo‐steady‐state period; then, it is more representative to use average 
pressure than initial pressure. The MDH method is preferred in old wells or 
depleted formations, which would make it difficult to obtain stabilization before 
shutting‐in [40]. The Horner plot can be simplified [12, 28, 40], if Δt ⋘ tp, then: 

tp þ Δt ffi tp (3.14) 

Then, 
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˜ ° 
tp þ Δt 

log ≈ log tp � log Δt (3.15)
Δt 

Combining Horner equation, Eq. (3.13) with Eq. (3.15), it yields [12, 41]: 

Pws ¼ P � �m log tp þm log Δt (3.16) 

If P* � m log tp = constant = intercept; then, 

162:6qμ B
Pws ¼ P1hr þ log Δt (3.17)

kh 

This suggests that a semi‐log plot of Pws versus Δt will yield a straight line which 
slope, m, and intercept, P1hr, are used to find reservoir permeability with Eq. (2.33) 
and skin factor with Eq. (3.6). 

Some expressions and plots [12] can be used to estimate the end of the semi‐log 
straight line. However, the use of the pressure derivative [6, 13, 25] avoids using 
them. Therefore, they are omitted in this chapter. 

3.2.3 Extended Muskat method 

It is a trial‐and‐error method that is more attractive in cases of constant pressure 
or water injection systems (filling) because in these cases, the straight line would be 
longer and, therefore, easier to identify [12, 32]. Muskat [32] proposed to build a 
potential plot (log(ΔP) versus Δt), see Figure 3.3. Cobb and Smith [8] and Ramey 
and Cobb [39] recommended using it only as a method of late‐time analysis. For the 
application of the method, the average reservoir pressure is assumed as many times 
as a straight line results in the plot. This author found that changing the average 
reservoir pressure in a range of 30 psia above or below the target average pressure 
always provides a straight line. Permeability and skin factor are found from the 
intercept of such plot, ΔPMint, read at Δt = 0: 

Figure 3.3. 
Schematic representation of the Muskat plot for the analysis of pressure buildup tests, after [12]. 
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141:2qμ B PDðtDAÞintk ¼ (3.17.1)
h ΔPMint 

˜ ° 
PDðtDAÞint ˛ ˝ re s ¼ P � Pwf ðΔt ¼ 0Þ � ln þ 0:75 (3.18)

ΔPint rw 

PD(tpDA) is normally found from plots [12]. However, this author fitted the 
curves of such plots to polynomials. For a well within a square shaped reservoir— 
constant pressure case: 

˙ ˆ 
PDM int ¼ �0:0118157 þ 1:3509395 1 � exp ð�21:692995 tpDA (3.18.1) 

For a well within a square geometry reservoir—no‐flow boundary case. 

˙ ˆ 
PDM int ¼ �0:02056 þ 0:682297 1 � exp ð�50:7038508 tpDA (3.19) 

where 

˜ ° 
0:0002637ktptpDA ¼ (3.20)

ϕμctA 

The slope of the Muskat, mM, plot can be used to find the drain area: 

˜ ° 
k

A ¼ MSF (3.21)
ϕμctmM 

For the values of tpDA >1, the Musk shape factor, MSF, is 0.67, 1.34, and 0.84 for 
no‐flow boundary square reservoirs, constant‐pressure boundary square reservoirs 
and no‐flow boundary circular reservoirs, respectively, with a unique well in the 
center of such systems [12]. 

If A is known, then, 

kh MSF MSFϕ ct h ¼ St ¼ ¼ T (3.22)
43560μ mMA 43560mMA 

It can be concluded that MDH is generally preferred because it is easy to use. For 
short production times, it is recommended to use the Horner method since the 
semi‐log line is longer than that provided by MDH. Earlougher [12] and Tiab [40] 
recommend the following aspects: 

a. The Horner method could be used to analyze pressure buildup data, assuming 
tp is known. However, MDH, and then Horner, are usually used as the first 
choice. If tp is unknown, then use MDH. 

b.Use MDH as the first test unless tp < tpss (reservoir acting as infinity, then 
Horner is applied) or unless the well is in the center of a square shaped 
reservoir with open boundaries, such as an injection pattern of five points. 

c. The Muskat method is used as a last option. It also provides the determination 
of the drainage area. 

As for the MDH case, the starting and the end of the Muskat straight line can be 
estimated only for square shape reservoirs with the well at the center within it. For 
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this reason and the help of the pressure derivative, it is not presented here. How-
ever, these procedures can be found in [12, 39]. 

3.2.4 Type‐curve matching 

Such type curves as the given in Figure 2.4 and 2.6 and their accompanying 
equations also apply for buildup tests. However, superposition may cause trouble as 
can be seen in Figure 3.4. This was reported by Gringarten [23] when demonstrat-
ing the importance of deconvolution. Then, both pressure and pressure derivative 
must be corrected [3], before applying type‐curve matching. To overcome this 
issue, Agarwal [1] introduced the equivalent time, given by: 

tpΔt Δte ¼ (3.23)
Δt þ tp 

Eq. (3.23) is the most common equivalent‐time equation. However, it was 
developed only for radial flow regime; therefore, it may fail providing good results 
if applied to other flow regimes. Then, the equivalent‐time equations for bilinear 
[38], linear, [38], birradial (elliptical), and spherical/hemispherical/parabolic flow 
regimes are, respectively, given as follows: 

hpffiffiffiffi pffiffiffiffiffi pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 4
ΔteBL ¼ 4 tpþ 4 Δt� 4 tp þ Δt� (3.24) 

hpffiffiffiffi pffiffiffiffiffi pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffii2 
ΔteL ¼ tp þ Δt � tp þ Δt (3.25) 

� qffiffiffiffi qffiffiffiffiffiffiffi qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�25=9 
25 25 25 9ΔteBR ¼ tp 

9 þ Δt9 � ðtp þ ΔtÞ (3.26) 

1
ΔteSP ¼ " #2 (3.27) 

1 1 1 pffiffiffiffi þpffiffiffiffiffi � pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 
tp Δt tp þ Δt 

Figure 3.4. 
Drawdown versus buildup log‐log derivative shapes, after [23]. 
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Once, the equivalent time is determined, then, the equivalent pressure deriva-
tive is estimated by: 

˜ ° 
dðΔPÞ

Δte � ΔP 0 ¼ Δte (3.28)
dðΔteÞ 

Since Eq. (3.23) is normally used for time corrections, possibly, some recom-
mendations given by [38] regarding the use of equivalent time were provided: 

• teq is primarily useful for homogeneous infinite‐acting radial flow systems 
when tp>>Δt. 

• teq is not recommended for fractured wells where linear flow dominates early 
time. 

• teq should not be used if multiphase flow is dominant. 

• Pressure data affected by boundaries are usually better plotted with Δt. 

3.2.5 TDS technique 

Good news! TDS technique applies to drawdown, buildup and, of course, drill 
stem tests. The equations already seen in Chapter 2 also apply here. Care must be 
taken while taking the pressure derivative. If superposition effects are observed; 
then, it is recommended to use equivalent time, Section 3.2.4, for the pressure 
derivative estimation. Drawdown pressure derivative may be taken, otherwise. 

Once the derivative is estimated and the log‐log of pressure and pressure deriv-
ative versus time is built, Equations provided in Chapter 2 also apply for pressure 
buildup test analysis. Just to name a few references [15–22, 31, 41, 42] also apply 
here. 

3.3. Pressure buildup tests in developed reservoirs 

The methods presented above may yield erroneous results when the test well 
produces under pseudo‐steady‐state conditions before shutting‐in for a pressure 
buildup test or undergoes a pressure drawdown due to the production of adjacent 
wells in the reservoir. In such cases, it is better to use Eq. (3.1) in a more general 
way. Slider [34–37] has suggested a technique to treat the case of pressure tests in 
wells where the pressure drop contains the contribution of nearby wells. A proce-
dure similar to that presented for the case of pressure drawdown, Section 2.6, is 
presented. 

3.3.3 Conventional buildup analysis for developed reservoirs 

It is required to extrapolate the well‐flowing pressure over the pressure buildup 
period to estimate, Pw ext, see Figure 3.5. Then, find the difference between the 
observed shut‐in pressure and the extrapolated well‐flowing pressure, ΔPΔt, and 
plot this as a function of Δt. The data should be adjusted to the following equation 
[34–37]: 

ΔPΔt ¼ Pws � Pwext ¼ ΔP1hr þ m log Δt (3.29) 
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Figure 3.5. 
Schematization of pressure buildup in a developed reservoir, after [34–37]. 

A straight line on this plot gives a slope m given by Eq. (2.33) and intercept: 

˛ ˜ ° ˝ 
162:6 qμB k

ΔP1hr ¼ log � 3:2275 þ 0:86859s (3.30)
kh ϕμ ctr2 

w 

The permeability is found with Eq. (2.33) and skin factor with a modified 
version of Eq. (3.6) resulting from changing P1hr by ΔP1hr*. 

˛ ˜ ° ˝ 
ΔP� 

1hr k 
s ¼ 1:1513 � log þ 3:2275 (3.31)

m ϕμ ctr2 
w 

If the pressure drop is linear before shutting‐in the well, which normally occurs 
because of the existence of the pseudo‐steady state, Eq. (3.29) becomes: 

Pws �m � Δt ¼ ΔP� 
1hr þm log Δt (3.32) 

where m*, usually has a negative value, is the linear change of pressure drop 
before shutting‐in the well: 

dPwf m� ¼  when t < tp (3.33)
dt 

Normally, m* is negative. The value of ΔP* 1hr in Eq. (3.32) is derived from 
Eq. (3.30) for the extrapolated linear behavior [37], which is: 

˛ ˜ ° ˝ 
k

ΔP1hr� ¼ Pwf ðΔt¼0Þ þm � log þ 3:2275 � 0:86859s (3.34)
ϕμ ctr2 

w 

So, when the pressure declines linearly before the test, a plot of (Pws � m*Δt) vs. 
log Δt should give a straight line. The permeability is calculated with Eq. (2.33) and 
the skin factor with Eq. (3.31) by changing P1hr instead of ΔP1hr*. Usually, produc-
tion occurs under pseudo‐steady‐state conditions; therefore, the pressure that the 
well would have if production were to continue would be given by: 
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Pext ¼ Pwf ðΔt ¼ 0Þ �  m � Δt (3.35) 

And, ΔP* is calculated as the difference between the observed pressure and the 
extrapolated pressure: 

ΔP� ¼ Pws � Pext (3.36) 

3.3.4 TDS buildup analysis for developed reservoirs 

As demonstrated by Escobar and Montealegre [14],TDS technique is also appli-
cable to developed reservoirs deriving DP* and using the traditional equations of the 
technique. 

Example 3.1 

Slider [36, 37] first presented this example and then Escobar and Montealegre 
[14] reworked by TDS technique. A well drilled in a field with a uniform spacing of 
40 acres has produced an average flow rate of 280 STB/D for 10 days. The well is 
shut‐in for a pressure buildup study. In the five days prior to shutting‐in, the flow 
pressure at the wellhead drops to around 24 psia/day (1 psia/hr). The oil‐gas ratio 
remained constant during production. The test data are reported in Table 3.1. The 
following information is also available: 

B= 1.31 rb/STB, μ = 2 cp, h = 40 ft, rw = 0.33 ft 

Solution by conventional analysis 

Estimate Pext by means of Eq. (3.35), 

Pext ¼ Pwf ðΔt ¼ 0Þ �  m � Δt ¼ 1123 � ð1Þð0Þ ¼  1123 psia 

Estimate ΔP* using the observed pressure minus the extrapolated pressure, 
Eq. (3.36); 

ΔP� ¼ Pws � Pext ¼ 1123 � 1123 ¼ 0 psia 

The remaining estimated values are given in Table 3.1. 
Figure 3.6 shows a graph of ΔP* against the log Δt, from which a slope of 192.92 

psia/cycle is obtained, which allows estimating the permeability value with 
Eq. (2.33): 

162:2qμB 162:6ð280Þð2Þð1:31Þ
k ¼ ¼ ¼ 15:42 md

hm 40ð192:92Þ 

As dP/dt is known, assuming that the drainage area approaches a circle, (re = 745 
ft) product ϕct is solved from Eq. (1.130): 

1:79qB 1:79ð280Þð1:31Þ 
ϕct ¼ ¼ ¼ 1:24 � 10�6 =psia

hr2ðdP=dtÞ ð40Þð7452Þð24Þe 

It is seen from Figure 3.6 that the intercept, ΔP*1hr = 1287.6 psia. The skin factor 
is calculated from Eq. (3.31): 

˛ ˜ ° ˝ 
1287:6 15:42 

s ¼ 1:1513 � log þ 3:2275 ¼ 2:47
192:92 ð2Þð1:24 � 10�6Þð0:332Þ 
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Figure 3.6. 
Semi‐log plot of DP* against Dt. 

Solution by TDS technique 

To apply TDS technique to this example, derivative of ΔP*, see the last column 
in Table 3.1. The pressure and pressure derivative plot is built and given in 
Figure 3.8. Read from this plot the characteristic points, namely, tr = 24 hr, [t* 
(ΔP*) 0]r = 70.998 psia, and (ΔP*)r = 1551 psia. The permeability and the skin factor 
are found with Eqs. (2.71) and (2.92), respectively: 

70:6qμB 70:6ð280Þð2Þð1:31Þ
k ¼ ¼ ¼ 15:4 md 

hðt � ½ΔP�� 0Þ 40ð84Þr ˛ ˜ ° ˝ 
1551 ð24Þð15:4Þ 

s ¼ 0:5 � ln þ 7:43 ¼ 1:81
70:998 ð2Þð1:24 � 10�8Þð0:332Þ 

A good approximation to the data estimated by the two methods is observed in 
Example 3.1. 

t, hr Pws, psia Pext, psia ΔP*, psia [t*(ΔP*)’], psia 

0 1123 1123 0 

2 2290 1121 1169 606.577 

4 2514 1119 1395 225.854 

8 2584 1115 1469 97.372 

12 2612 1111 1501 83.543 

16 2632 1107 1525 73.916 

20 2643 1103 1540 70.157 

24 2650 1099 1551 70.988 

30 2658 1093 1565 77.176 

Table 3.1. 
Pressure data for Example 3.1 of developed reservoir, after [14] and [35]. 
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3.4. Average reservoir pressure 

The average pressure for a reservoir without water intrusion is the pressure that 
the reservoir would reach if all the wells shut‐in for infinite time. The average 
pressure is useful for [10, 12, 22, 28, 37, 40] (Figure 3.7): 

1. For reservoir characterization: 

a. ΔP = P ˜ Pwf is small per unit of production, what is known as 
productivity index, J, indicates that there is an active water influx or a 
very large reservoir. 

b.If P is large per unit of production, it involves drainage from a small 
reservoir, sand lens, or faulted reservoir. 

2. To calculate in‐site oil. 

3. For ultimate reservoir recovery. 

4.The average pressure is a fundamental parameter that must be understood in 
processes of primary, secondary, and pressure maintenance projects. 

The average reservoir pressure in the drainage region can be obtained by using 
well pressure test analysis. Most of the methods to estimate this parameter will be 
presented now. 

3.4.3 Matthew‐Bronz & Hazebrock (MBH) method 

This method is considered the most accurate [12, 28] and was corrected by Odeh 
[37]. Use a Horner plot. It is applied in most situations where it is desired to find the 
average pressure in a closed reservoir for any well location within a variety of drain 
forms. The method assumes that there are no variations in fluid mobilities or fluid 
compressibilities within the drain region. This limitation can be overcome by using 
a production time tp equal tpss. The procedure is outline below: 

Figure 3.7. 
Pressure and pressure derivative of ΔP* versus Δt. 
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1. If not given, calculate the Horner time, tp, with Eq. (3.2). 

2. The tp value must be compared with the time required to reach the pseudo‐
steady‐state conditions. Therefore obtain (tDA)pss from Table 2.1, from the 
column “Exact for tDA >”. For this, the reservoir geometrical shape must be 
previously known. 

3. Calculate the time to reach the pseudo‐steady state, tpss: 

ϕμctAðtDAÞpsstpss ¼ (3.37)
0:0002637k 

4.Estimate the ratio α, α = tp /tpss. If α > 2.5, then, set t = tpss. If α < 2.5 (for very 
high flow rates, the improvement in the average pressure calculation is 
significant when α lies between 2.5 and 5), then, set t = tp. Build a plot of Pws 
versus (t þ Δt)/Δt. As seen earlier, the use of tpss in the Horner method can 
increase the length of the semi‐log line, contrary to the MDH plot. 

5. With time, t, defined in the previous step, determine tpDA. 

0:0002637k ¼ t (3.38)tpDA ϕ μ ct A 

6.Extrapolate the semi‐log line of the Horner graph and find P*. See Figure 3.2. 

7. Using the tpDA calculated in step 5, determine PDMBH from the following 
equations and tables. Notice that normally, PDMBH is found from charts 
[12, 28]. However, the appropriate charts provided by [10, 28] were adjusted 
to polynomials with correlation coefficients greater than 0.999 (Table 3.2). 

P2 
DMBH ¼ a þ b log ðtpDAÞ þ  c½ log ðtpDAÞ�2 þ d½ log ðtpDAÞ�3 þ e½ log ðtpDAÞ�4 (3.39) 

P2 
DMBH ¼ a þ b log ðtpDAÞ þ  c½ log ðtpDAÞ�2 

þ e½ log ðtpDAÞ�4 þ f ½ log ðtpDAÞ�5 

þ d½ log ðtpDAÞ�3 

(3.40) 

3P2 
DMBH ¼ a þ b log ðtpDAÞ þ  c½ log ðtpDAÞ� log ðtpDAÞ þ ee� log ðtpDAÞþ de (3.41) 

PDMBH ¼ 
2 3 a þ c log ðtpDAÞ þ  e½ log ðtpDAÞ� þ g½ log ðtpDAÞ�
2 31 þ b log ðtpDAÞ þ  d½ log ðtpDAÞ� þ f ½ log ðtpDAÞ�

(3.42) 

Reservoir geometry a b c d e 

Hexagon and circle 12.0719262 16.9998709 6.07856232 �0.7618991 �0.5297593 

Square 2.06652421 6.99163568 0.08203088 0.75401737 0.52737147 

Equilateral triangle 10.1620678 14.9552862 6.63090011 0.42119362 �0.2122641 

Rhombus 9.89526391 14.5756539 6.49269093 0.434827 �0.2016777 

Right triangle 8.68121352 13.2526116 6.60147238 0.93940158 �0.0660697 

Table 3.2. 
Parameters for Eqs. (3.39). 
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a þ c log ðtpDAÞ þ  e½ log ðtpDAÞ�2 

(3.43)PDMBH ¼ 2 31 þ b log ðtpDAÞ þ  d½ log ðtpDAÞ� þ f ½ log ðtpDAÞ� 
2 3 4PDMBH ¼ a þ b log ðtpDAÞ þ  c½ log ðtpDAÞ� þ d½ log ðtpDAÞ� þ e½ log ðtpDAÞ� 

5 6 7 8þ f ½ log ðtpDAÞ� þ g½ log ðtpDAÞ� þ h½ log ðtpDAÞ� þ i½ log ðtpDAÞ� (3.44) 

9 10� 0:082557382½ log ðtpDAÞ� � 0:012745849½ log ðtpDAÞ� 

8.Calculate the average reservoir pressure from: 

˜ ° 

P ¼ P� � 
m 

PDMDH (3.45)
2:3025 

Due to the compensation factors (low values of P* with corresponding small 
corrections), any value of tp used with the MBH method will theoretically give 
identical results for average reservoir pressure. Practically, a relatively short tp can 
eliminate serious numerical problems in the calculation of average pressure. This 
includes errors caused by long extrapolations and deviations from theoretical 
assumptions: (1) lack of stabilization of the flow rate prior to closure, (2) migration 
and change of drainage areas in reservoirs with multiple wells and (3) variations in 
the compressibility of the system and mobility [12, 28]. 

3.4.4 Dietz method 

This method [12, 28]‐assumes that the well flowed sufficiently until it reached 
the pseudo‐steady‐state period before shutting‐in and that the semi‐log straight 
developed properly. This method is simple and is usually preferred in wells without 

0significant skin factor, s > �3 or rw = 0.05 re. The procedure for this method is: 

1. Knowing the reservoir shape and the well location, read CA from Table 2.1. 

2. Calculate the Dietz shutting‐in time, ðΔtÞP. 

ϕμctAΔtP ¼ (3.46)
0:0002637CAk 

3. Prepare a MDH plot (optionally find k and s). 

4.Enter the MDH plot with the Dietz shutting‐in time calculated in step 2 and 
read the corresponding average reservoir pressure value on the semi‐log 
straight line. 

3.4.5 Miller‐Dietz‐Hutchinson (MDH) method 

This was elaborated to estimate the average pressure in circular or square reser-
voirs. It is applied only in wells that operate under pseudo‐steady‐state conditions 
[8, 28]. The procedure is presented as follows: 

1. On an MDH graph, choose any point on the semi‐log trend and read its 
coordinates, (Pws)N and ΔtN. 
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0:0002637k
ΔtDAjN ¼ ΔtN (3.47)

ϕμctA 

2. Calculate ΔtDA. 

3. Determine PDMDH corresponding to (ΔtDA)N. This was traditionally done on 
charts. Again, fitted polynomials are presented here. 

2 
DA ln ðΔtDAÞ þ  d½ ln ðΔtDAÞ� þ e ln ðΔtDAÞ (3.48)PDMDH ¼ a þ bΔtDA þ cΔt2 

4.Calculate the average reservoir pressure from Table 3.3: 

˜ ° 
m

P ¼ PwsjN þ PD MDH (3.49)
1:1513 

3.4.6 Ramey‐Cobb method 

They presented a method to extrapolate the average pressure of a Horner plot 
when t ≥ tpss|. This method [12, 28, 40] requires information on the shape of the 
drainage area, the location of the well, and the confirmation that the boundaries are 
closed. The Ramey‐Cobb procedure is (Table 3.4): 

1. Knowing the reservoir shape and the well location, obtain (tDA)pss, and 
calculate tp and tpss. 

ϕ μ ctAðtDAÞpsstpss ¼ (3.50)
0:0002637k 

2. If tp < tpss, then, the method is not reliable. Calculate the Horner time 
corresponding to the average reservoir pressure. 

˜ ° 
tp þ Δt 0:0002637kCA¼ tP ¼ CAtpDA (3.51)
Δt P ϕμctA 

When (tp þ Δt) =  tp, Eq. (3.51) reduces to Eq. (3.46). 

3. Prepare a Horner plot (optionally find k and s) (Tables 3.5 and 3.6). 

4.Enter the Horner plot with the result from Eq. (3.51) and read the average 
reservoir pressure on the straight line trend. 

Reservoir a b c d e f Equation 
geometry number 

11.3521634 16.1909297 6.18077696 �0.4318785 �0.4463139 0 (3.39) 

6.51259739 11.7744452 6.73932956 0.04016071 �1.1494588 ‐0.2753853 (3.40) 

1.94527256 5.8770907 5.91449487 1.72037863 �0.3879657 ‐0.1920816 

0.03487786 ‐5.9476006 �1.7074107 4.59461702 �3.5455711 0 (3.41) 

Table 3.3. 
Parameters for Eqs. (3.39)–(3.41). 
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Geometry a b c d e 

�1.8936132 11.06446069 20.39748447 �0.003556014 0.5555625414 

�1.106364859 1.291801492 �0.814213632 �0.002247086 �0.536018398 

�1.05158653 �0.382513988 �5.024281518 �0.001277198 �0.514385212 

Table 3.6. 
Parameters for Eq. (3.48). 

3.4.7 Arari or direct method 

Arari [4] presented in 1987 a simple method to calculate the average reservoir 
pressure during production or buildup without the help of any graph. This method 
requires knowing the distance from the well to which the reservoir pressure is the 
same average pressure. For no‐flow boundary reservoirs: 

162:6qμB reP ¼ Pwf þ 2 log � 0:5203 þ 0:87s (3.52)
kh rw 

162:6qμB A
P ¼ Pwf þ log � 1:1224 þ 0:87s (3.53)

kh r2 
w 

For constant‐pressure boundary reservoirs: 

162:6qμB
P ¼ Pwf þ 2 log 

re � 0:4342 þ 0:87s (3.54)
kh rw 

162:6qμB A
P ¼ Pwf þ log � 1:036 þ 0:87s (3.55)

kh r2 
w 

In order to consider different well positions and different reservoir geometries, 
the flow equations were developed by introducing the Dietz shape geometrical 
factors in Eqs. (3.539) and (3.55) which are, respectively, transformed into: 

162:6qμB A
P ¼ Pwf þ log þ 0:368 þ 0:87s (3.56)

kh CAr2 
w 

162:6qμB A
P ¼ Pwf þ log þ 0:454 þ 0:87s (3.57)

kh CAr2 
w 

3.4.8 TDS technique 

3.4.8.1 Circular reservoirs 

For a well in the center of a circular reservoir, the average reservoir pressure is 
obtained from a log‐log plot of pressure and pressure derivative versus time 
according to the following expression [7, 29]: 

"  ! # 
141:2qμB ðt � ΔP 0Þpss r 3eP ¼ Pi � ln � (3.58)

kh ðΔPÞ � ðt � ΔP 0Þ r 4pss pss w 
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where Piis the initial pressure (in some cases, it can approximate P*), (ΔP)pss and 
(t*ΔP')pss are the values of (ΔP) and (t*ΔP') in the late straight line of pseudo‐
steady‐state period. 

3.4.8.2 Naturally fractured reservoirs 

For naturally fractured reservoirs with the dimensionless average pressure and 
the average reservoir pressure are defined as [29]: 

kh
PD ¼ ðP � PwsÞ (3.59)

141:2qμB
 ! 

23792:2ϕμctr ð1 � ωÞ2 
wP ¼ Pwf þ ΔPpss þ ðt � ΔP 0Þ 1 þ (3.60)pss λktpss 

Being ω and λ the naturally fractured reservoir parameters which will be 
discussed about in Chapter 6. 

3!2 

141:2qμB 
kh 

666664

ðt � ΔP 0Þpss 
ΔPpss � ðt � ΔP 0Þpss 

2 2 re 3 2πr ð1 � ωÞwln � þ
rw 4 λA 

777775 
!P ¼ Pwf þ ΔPpss þ (3.61) 

3!2 
ðt � ΔP 0Þpss666664 

777775 
! 

ΔPpss � ðt � ΔP 0Þ141:2qμB 
kh 

pss
P ¼ Pwf þ ΔPpss þ (3.62)

2 2 re 3 0:1987CAr ð1 � ωÞwln � þ
rw 4 λA 

If the dimensionless average pressure is defined as [29]: 

khðPi � PÞ
PD ¼ (3.63)

141:2qμB 

The average reservoir pressure is given by [29]:

 ! 
23792:2ϕμctr2 ð1 � ωÞwP ¼ Pi � ðt � ΔP 0Þ 1 þ (3.64)pss λktpss 
3!2 

ðt � ΔP 0Þpss 
141:2qμB 

kh 

666664 

777775 
! 

ΔPpss � ðt � ΔP 0Þpss
P ¼ Pi � (3.65)

2re 3 2πr ð1 � ωÞ2 
wln � þ

rw 4 λA 
3!2 

ðt � ΔP 0Þpss 

P ¼ Pi � 
141:2qμB 

kh 

666664 

ΔPpss � ðt � ΔP 0Þpss 
2 2 re 3 0:1987CAr ð1 � ωÞwln � þ

rw 4 λA 

777775 
! (3.66) 
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The Dietz shape factor can be estimated by [7]: 

!8 >>>< 
9 >>>= 

�1 ðΔPÞkt psspss � 1301:77ϕμctA ðt � ΔP 0Þ2:2458A psseCA¼ (3.67)
r2 
w >>>; >>>: 

For a circular geometry with the well at the center, [26�] arrived to the follow-

# 
ing expression:

 !" 
P ¼ Pi � 1:26ðt � ΔP 0Þr � 2ðt � ΔP 0Þr 

2 22πr ð1 � ωÞw

λA
(3.68) 

They also assumed that: 

PD ¼ 2πtDA (3.69) 

and, 

2 22πr ð1 � ωÞw2πtDA>> (3.70)
λA 

After some manipulations, Igbokoyi and Tiab [27] also obtained an expression 
free of the naturally fractured reservoir parameters: 

" ! ðt � ΔP 0Þ # 
pss 2:2458A

P ¼ Pi � ðt � ΔP 0Þ ln þ 2s (3.71)
CAr2 

w 
r ðΔP Þ � ðt � ΔP 0Þw pss pss 

3.4.8.3 Bounded elongated systems 

The shape factor is given by Eq. (3.67), and the average reservoir pressure 
equation for these systems is given below [7]: 

" ! ðt � ΔP 0Þ # 
qμB pss 2:2458A

P ¼ Pi � 70:6 ln (3.72)
CAr2 

wkh ðΔP Þ � ðt � ΔP 0Þw pss pss 

3.4.8.4 Hydraulically fractured vertical well in no‐flow boundary reservoirs 

The shape factor is estimated with Eq. (3.67), and the average reservoir pressure 
with Eq. (3.69) [7]: 

8< 9 = 2 ! 2 
3! 

0:23373kt ðΔPÞpssqμB x 2:2458epss 4 5P ¼ Pi � � 70:6 ln (3.73)
kh A ðt � ΔP 0Þ CAϕμct: ;pss xf 

When birradial flow occurs, the area and the average reservoir pressure can be 
determined from the following equations [7]: 

kBRpssiA ¼ (3.74)1:123142:43ϕμctðxe =xf Þ 

153 

http://dx.doi.org/10.5772/intechopen.81078


� � 

Novel, Integrated and Revolutionary Well Test Interpretation and Analysis 

2  !0:72� 3�0:36 qμB xe k 5t0:36P ¼ Pi � 5:644 BRpssi (3.75)
kh xf ϕμctA 

For uniform flow fractures and when xe/xf < 8, birradial flow is difficult to 
be observed, then the intersection between the linear flow and the pseudo‐
steady state line, tLpssi, is used. Then, the area and the average pressure are 
obtained from: 

" #� �� �2k xfA ¼ 0:0033144 (3.76)tLpssiϕμct xe 
"  !#pffiffiffi qffiffiffiffiffiffiffiffiffi qB μ xeP ¼ Pi � 4:06 pffiffiffiffiffiffiffiffiffi (3.77)tLpssih ϕctk xf 

3.4.8.5 Hydraulically fractured vertical wells in elongated systems 

For these systems, the transition between the line of infinite behavior and that of 
the pseudo‐steady‐state period is longer compared to the case of square systems in 
both cases of fracture: infinite conductivity and uniform flux. When the birradial 
flow line is difficult to be observed, such is the case of xe/xf < 8, the following 
equation is used to determine permeability [7]: 

� �� �2μ 8:128qB
k ¼ (3.78)

ϕctA hðt � ΔP0ÞDL1 

Since there may be two linear flow regimes, once before radial flow 
corresponding to flow from the formation to the fracture and the other once radial 
vanishes, then, (t*ΔP')DL1 is the value of (t*ΔP') at t = 1 hr on the dual‐linear flow 
regime—solving for area it yields [7]: 

� �� �2μ 8:128qB
A ¼ (3.79)

ϕctk hðt � ΔP0ÞDL1 

The point of intersection between the closest parallel‐linear line flow: the 
second linear flow regime, for example, dual‐linear and the pseudo‐steady‐state 
line, tDLpssi, is unique. With this point, determine the area of the following 
equation [7]: 

ktDLpssiA ¼ (3.80)
1207:09ϕμct 

This equation should be used for verification purposes of the permeability and 
area values obtained by Eqs. (3.78) and (3.79). The average reservoir pressure is 
obtained from [7]: 

sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qB μ

P¼ Pi � tDLpssi (3.81)
h 11913:6ϕctkA 

This equation should be used if k and A can be determined from the nearest 
parallel boundary; in other words, from the dual‐linear flow regime. 
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3.4.9 Total average reservoir pressure 

Golan and Whitson [24] presented a method to estimate the drainage area of 
wells that produce from a common reservoir. They assumed that the volume 
drained by a well is proportional to its flow rate. If the properties of the reservoirs 
are constant and uniform: 

qwAw ¼ AT (3.82)
qT 

All of the above studied methodologies give the value of the average reservoir 
pressure in the well drainage area. If a number of wells produce from the same 
reservoir, each well is analyzed separately to give the average reservoir pressure for 
its own drainage area. The average reservoir pressure can be estimated from the 
individual average pressures by (possibly from [38] less probably from [9, 24], the 
author does not remember the exact reference): 

∑i½PiΔðFÞ=ΔP�iP ¼ (3.83)
∑i½ΔðFÞ=ΔP�i 

ΔðFÞ ¼ FtþΔt þ Ft (3.84) 
ðtþΔt h i 

FtþΔt ¼ q Bo þ q Bw þ ðq � q Rs � q RswÞBg dt (3.85)o w g o w 
0 

ðt h i 
Ft ¼ q Bo þ q Bw þ ðq � q Rs � q RswÞBg dt (3.86)o w g o w 

0 

Bossie‐Codreanu [5] suggest that the drainage area can be determined from a 
Horner or MDH plot by selecting the 3‐point coordinates in the straight section of 
the semi‐log graph to determine the slope of the pseudo‐steady‐state period line, m*: 

• Shutting‐in time Δt1 with corresponding shutting‐in pressure Pws1 

• Shutting‐in time Δt2 with corresponding shutting‐in pressure Pws2 

• Shutting‐in time Δt3 with corresponding shutting‐in pressure Pws3 

The selected shutting‐in times satisfy t1 <t2 < t3. Then, m* is approximated by: 

ðPws2 � Pws1Þ log ðΔt3=Δt1Þ � ðPws3 � Pws1Þ log ðΔt2=Δt1Þ m� ¼  (3.87)ðΔt3 � Δt1Þ log ðΔt2Δt1Þ � ðΔt2 � Δt1Þ log ðΔt3Δt1Þ 

Example 3.2 

The data of a pressure buildup test, taken from [40], are reported in Table 3.7, 
along the Horner time and the pressure derivative estimated (using equivalent time, 
Eq. (3.23)) with a smooth value of 0.1 cycles. The reservoir properties were 
obtained from a well located in the center of a square shaped reservoir. Given the 
following data: 

rw =4 in, h = 44 ft, ϕ = 12% 
μ = 0.76 cp, B = 1.24 rb/STB, Np = 4550 STB 
A = 40 acres, q = 340 BPD, ct = 36�10�6 psia�1 

Pwf = 2980 psia 
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Δt, hr Pws, psia (tp þ Δt)/Δt (tpss þ Δt)/Δt ΔP, psia t*ΔP', psia 

0 2980 0 0 

0.1 3100 3213.00 807.450 120 83.41 

0.2 3150 1607.00 404.225 170 100.23 

0.3 3200 1071.67 269.817 220 110.92 

0.5 3250 643.40 162.290 270 85.89 

0.75 3275 429.27 108.527 295 59.48 

1 3290 322.20 81.645 310 41.84 

2 3315 161.60 41.323 335 34.48 

3 3325 108.07 27.882 345 22.35 

4 3330 81.30 21.161 350 20.29 

5 3335 65.24 17.129 355 21.45 

7 3342 46.89 12.521 362 21.96 

10 3350 33.12 9.065 370 23.97 

15 3360 22.41 6.376 380 21.42 

20 3364 17.06 5.032 384 14.87 

30 3370 11.71 3.688 390 12.65 

40 3372 9.03 3.016 392 9.02 

50 3374 7.42 2.613 394 8.47 

60 3375 6.35 2.344 395 7.14 

70 3376 5.59 2.152 396 8.55 

80 3377 5.02 2.008 397 9.76 

Table 3.7. 
Pressure buildup test data. 

It is required to estimate reservoir permeability and skin factor. Then, find the 
average reservoir pressure using all the studied methods. 

Solution 

Find tp with Eq. (3.2); 

24Np ð24Þð4550Þ 
tp ¼ ¼ ¼ 321:176 hr 

q 340 

Estimate the Horner time, (tpþΔt)/Δt, for each pressure value. This is reported 
in the third column of Table 3.7 and builds the Horner plot given in Figure 3.8. 
From the Horner plot given in Figure 3.8, the slope and intercept are read to be 44 
psia/cycle and 3306 psia. They are, respectively, used to find permeability, 
Eq. (2.33), and skin factor, Eq. (3.6), thus: 

k ¼ 
162:6qμB 

mh 
¼ 

ð162:6Þð340Þð0:76Þð1:24Þ 
ð44Þð44Þ ¼ 26:91 md 

" ! # 
3306 � 2980 26:91 

s ¼ 1:1513 � log þ 3:2275 ¼ 3:18 ð44Þ ð0:12Þð0:76Þð36 � 10�6Þð0:333Þ2 
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Figure 3.8. 
Horner plot for Example 3.2. 

Average reservoir pressure by MBH method 

Determine (tDA)pss from Table 2.1 for square shaped reservoirs. It is read 
(tDA)pss = 0.1. Calculate tpss with Eq. (3.37): 

ϕμctAðtDAÞpss ð0:12Þð0:76Þð36 � 10�6Þð40Þð43560Þ 
tpss ¼ ¼ ð0:1Þ ¼  80:645 hr

0:0002637k ð0:0002637Þð26:91Þ 

Estimate the ratio a = tp /tpss = 312.176/80.645 = 3.982. Since α > 2, then t = tpss. 
Rebuild the Horner plot as Pws vs. log(tpss þ Δt)/Δt, (see Table 3.7). In Figure 3.9, 
draw a straight line along the infinite‐acting period (radial flow) and extrapolate to 
a Horner time of 1. Read the false pressure value, P*=3398 psia. 

Find the dimensionless production time using Eq. (3.38): 

0:0002637kt ð0:0002637Þð26:91Þð80:645Þ 
tpDA ¼ ¼ ¼ 0:0999≈0:1 

ϕμctA ð0:12Þð0:76Þð36 � 10�6Þð40 � 43560Þ 

Figure 3.9. 
Horner plot with tpss for Example 3.2. 

157 

http://dx.doi.org/10.5772/intechopen.81078


    

  

Novel, Integrated and Revolutionary Well Test Interpretation and Analysis 

Using Eq. (3.39) with data from Table 3.3 (first row), the MBH dimensionless 
pressure is PDMBH=1.152. Then, estimate the average reservoir pressure with 
Eq. (3.45). 

m PDMBH ð44Þð1:152Þ
P ¼ P� � ¼ 3398 � ¼ 3376 psia

2:303 2:303 

Average reservoir pressure by Dietz method 

Prepare a MDH, Pws vs. log(Δt). See Figure 3.10. Determine the shape factor CA 

from Table 2.1 for a well at the center of a square reservoirs. CA = 30.8828. Find 
Dietz shutting‐in time with Eq. (3.46), 

ϕμctA ð0:12Þð0:76Þð36 � 10�6Þð40Þð43560Þ
ΔtP� ¼ ¼ ¼ 26:1136 hr

0:0002637kCA ð0:0002637Þð26:91Þð30:8828Þ 

Enter with this value in Figure 3.10 and read an average reservoir pressure of 
3368 psia. 

Average reservoir pressure by Ramey‐Cobb method 

Having tp, tpss, and CA from previous methods and since tp >> tpss, then estimate 
Ramey‐Cobb shutting‐in time from Eq. (3.51); 

˜ ° 
t þ Δt ð0:0002637Þð26:91Þð30:8828Þð312:176Þ ¼ ¼ 12:299
Δt P ð0:12Þð0:76Þð36 � 10�6Þð40Þð43560Þ 

Enter with this value in the Horner plot, Figure 3.8, and read an average pres-
sure value of 3368 psia. 

Average reservoir pressure by MDH method 

Prepare a MDH plot, Figure 3.10 and choose any convenient point on the semi‐
log straight line. For this case, ΔtN = 10 hr and (Pws)N = 3350 psia were chosen. 
Calculate the dimensionless shutting‐in time using the chosen time in Eq. (3.47): 

˜ ° 
0:0002637k ð0:0002637Þð26:91Þ

ΔtDA ¼ ΔtN ¼ ð10Þ ¼  0:0124 
φμctA ð0:12Þð0:76Þð36 � 10�6Þð40Þð43560Þ 

Figure 3.10. 
MDH plot for Example 3.2. 
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Use this value of ΔtDA and estimate PDMDH from Eq. (3.48) and Table 3.6 for a 
no‐flow boundary square reservoir (first row), this gives PDMDH = 0.6. Estimate the 
average reservoir pressure with Eq. (3.49); 

mðPDMDHÞ 44ð0:6Þ
P ¼ PwsN þ ¼ 3350 þ ¼ 3372:9 psia

1:1513 1:1513 

Average reservoir pressure by direct (Arari) method 

Using Eq. (3.53), for no‐flow boundaries; 

32 
162:6ð340Þð0:76Þð1:24Þ 

P ¼ 2980 þ 
6664 

ð23:52Þð44Þ 
40ð43560Þ ð log � 1:1224 þ 0:87ð1:93ÞÞ 
0:3332 

7775 
¼ 3365:2 psia 

Average reservoir pressure by TDS technique 

The pressure and pressure derivative versus time log‐log plot for Example 3.2 is 
given in Figure 3.11. Notice that after radial flow, the pressure derivative takes a 
slope of negative one. This may be due to the changes in transmissibility. Anyhow, 
the pseudo‐steady‐state period starts at 60 hr. On that line, a point will be chosen 
for the estimation of the average reservoir pressure. From this plot, the following 
data are read: 

tr = 7 hr, ΔPr = 396 psia, (t*ΔP 0)pss = 8.55 psia 
ΔPpss = 384 psia, tpss = 70 h, (t*ΔP 0)r = 21.86 psia 

Estimate permeability and skin factor with Eqs. (2.71) and (2.92), 

70:6qμB ð70:6Þð340Þð0:76Þð1:24Þ
k ¼ ¼ ¼ 23:52 md 

hðt � ΔP 0Þ 44ð21:86Þr 

362 23:52ð7Þ 
s ¼ 0:5 � ln þ 7:43 ¼ 1:93 

21:86 ð0:12Þð0:76Þð36 � 10�6Þð0:32Þ 

Figure 3.11. 
Log‐log plot of pressure and pressure derivative against time for Example 3.2. 
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Taking the case of no‐flow boundary rectangular system, Eqs. (3.67) and (3.72), 
find the shape factor and the average reservoir pressure. Here, the last pressure 
value, that is, 3377 psia, is taken as Pi. 

�18 >< 
9 >= 0:003314ð23:52Þð20Þ 396 � 12:2458ð40Þð43560Þ 0:12ð0:76Þð30 � 10�6Þð40Þð43560Þ 8:55CA ¼ ¼ 12:943exp

0:3332 >: >; 
3!2 

8:55 666664 

396 � 8:55 

2:2458ð40Þð43560Þ
ln 

12:943ð0:3332Þ 

777775 
! ð340Þð0:76Þð1:24Þ

P ¼ 3377 � 70:6 ð23:52Þð44Þ ¼ 3369:9 psia 

The results of the estimation of the average reservoir pressure are reported in 
Table 3.8. 

3.4.10 Average reservoir pressure in naturally fractured reservoirs from 
transient‐rate analysis 

Amin et al. [2] follow the philosophy of the TDS technique to determine the 
average reservoir pressure from TRA (even though, this book does not include such 
analysis) by means of the following expression (slight simplification is shown here): 

" !  ! 
kf tpss r2 ð1 � ωÞ2 

w 

# 
887:186qμB

P ¼ Pi � (3.88)þ
kh 3792:19ðϕctÞmþf μ λA 

Amin et al. [2] pointed out that from a curve of production rate versus time, a 
point qpss and tpss that satisfy tD > ω(1�ω)/λ (pseudo‐steady‐state period). In addi-
tion, qpss and tpss selected should be those when the flow rate becomes almost 
constant. 

3.4.11 Average reservoir pressure from two‐rate tests 

Sabet [33] and Dake [10] presented the mathematical development to find the 
average reservoir pressure from two‐rate tests. The final equation uses the value of 
the first semi‐log straight line and the well‐flowing pressure after the flow rate has 
been changed. It is given by: 

( )�22:241A
P ¼ 2m1 log þ 0:435s þ Pwf @Δt0¼0 (3.89)

CAr2 
w 

Example 3.3 

Sabet [34] presented a two‐rate test which pressure versus time values are 
shown in Table 3.9. To interpret the test, the following reservoir information, PVT, 
and flow parameters are given: 

re = 745 ft rw = 0.25 ft f = 15% h = 20 ft 

m = 1.2 cp ct = 20�10�6psia�1 B = 1.25 bbl/STB tp = 300 hr 

q1 = 100 STB/D q2 = 50STB/D Pwf@Dt'=0 = 1603.2 psia 
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Method Average reservoir pressure, psia 

Ramey & Cobb 3368 

MBH 3376 

MDH 3372.9 

Dietz 3368 

TDS 3371.4 

Arari 3365.2 

Average 3370.25 

Table 3.8. 
Summary of average reservoir pressure results. 

Before flow rate change After flow rate change 

t, hr Pwf, psia t, hr Pwf, psia Dt’ 

288 1607.5 0.33 2475 2.72 

289 1607.2 0.42 2482 2.67 

290 1606.8 0.5 2487 2.63 

291 1606.4 0.58 2492 2.6 

292 1606.1 0.67 2497 2.56 

293 1605.7 0.75 2500 2.54 

294 1605.4 0.83 2502 2.52 

295 1605 0.92 2505 2.5 

296 1604.6 1 2508 2.48 

297 1604.3 1.25 2514 2.43 

298 1603.9 1.5 2520 2.39 

299 1603.6 1.75 2525 2.36 

300 1603.2 2 2531 2.33 

2.5 2542 2.28 

3 2552 2.24 

4 2568 2.18 

5 2582 2.13 

6 2590 2.1 

7 2600 2.06 

7.5 2604 2.05 

Table 3.9. 
Two‐rate test data for Example 3.3, after [34]. 

Determine average reservoir pressure, skin factor, and demonstrate that the test 
has not reached the transient period when the flow rate was changed. 

Solution 

A value of m1 = 274 psia/cycle and P1hr = 2485 psia were read from the Cartesian 
graph presented in Figure 3.12. Permeability and skin factors are calculated with 
Eqs. (2.271) and (2.272), respectively, and were found to be 4.5 md and 
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Figure 3.12. 
Cartesian plot for two‐rate test of Example 3.3. 

approximately 3.0. The time to reach the pseudo‐steady‐state period in the test is 
estimated with Eq. (2.40) with r = re, as follows: 

2948 ϕμ ctr 948ð0:15Þð1:2Þð20 � 10�6Þð7452Þ 
tpss ¼ ¼ ¼ 420 hr 

k 4:5 

Assuming the well is in the center of a rectangular or circular reservoir, it is 
possible to appreciate the change (t = 300 hr) occurred before reaching the pseudo‐
steady‐state conditions. Eq. (3.89) is used to calculate the average reservoir pres-
sure, thus: 

325:2ð100Þð1:2Þð1:25Þ 0:472ð745Þ
P ¼ log þ 0:87ð274Þð3Þ þ  1603:2 ¼ 2405:8 psi ð84:5Þð20Þ 0:33 

Note that the average pressure value is not correct (it was obtained for explan-
atory effects) because the well was not producing under pseudo‐steady‐state period 
before changing to the second rate. 

3.4.12 Average reservoir pressure from multi‐rate tests 

For this type of tests, it is necessary to construct a Cartesian graph of pressure 
against the superposition time, Xn, Eq. (2.267), to obtain permeability and damage. 
Then, an MDH graph is made, and the Dietz method is applied. For this, it is 
necessary to determine the Dietz shutting‐in time by Eq. (3.46). With this value, the 
average reservoir pressure is read from the MDH plot. Actually, it is possible, then, 
to apply any of the average pressure methods seen in this chapter. However, for 
some of the methods, that is, MBH and Ramey‐Cobb, the production time, tp, is 
required. By definition, it refers to a constant flow rate before shutting‐in the well. 
It does not exist in this case. So, as a recommendation, the equivalent time should be 
estimated with Eq. (2.269) and this can be used as tp, and the flow rate is weighted 
with each period of duration. 

However,TDS technique plays an important role. Escobar [15] obtained the 
average pressure equation for circular systems as given below. 
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" ! # 0Þ141:2q μB ðt � ΔPqn pss reP ¼ Pi � ln � 0:75 (3.90)
kh ðΔPqÞ � ðt � ΔPq 

0Þpss pss rw 

where Piis the initial pressure. (ΔPq)pss and (t*ΔPq')pss are the corresponding 
normalized pressure values and their derivative given at an arbitrary time, tpss. For 
any geometry, the resulting equation is [15]: 

" ! # 0Þ70:6q μB ðt � ΔPqn pss 2:2458A
P ¼ Pi � ln (3.91)

CAr2 
wkh ðΔPqÞ � ðt � ΔPq 

0Þpss pss 

where CA is found from a slight modification of Eq. (3.67): 

! 9 >>>= 
8 >>>< 

�1 ðΔP Þkt q psspss � 1301:77ϕμctA 0Þ2:2458A ðt � ΔPqCA¼ pss (3.92)e 
r2 
w >>>; >>>: 

# 

For multi‐rate tests in naturally fractured reservoirs, the respective equations 
[15] are:

 !" ðt � ΔPq 
0Þ 2 2141:2q μB pss re 2r ð1 � ωÞn wP ¼ Pi � 0Þ ln � 0:75 þ

kh ðΔPqÞ � ðt � ΔPq rw λr2 
pss pss e 

(3.93) 
" ! # 0Þ 2 2141:2q μB ðt � ΔPq pss re 0:198CAr ð1 � ωÞn wP ¼ Pi � ln � 0:75 þ

kh ðΔPqÞ � ðt � ΔPq 
0Þ rw λApss pss 

(3.94) 

Example 3.4 

This actual field example presented by Escobar [15] comprises two pressure tests 
performed on an exploratory well in a reservoir which is believed to possess an 
approximated circular shape. A pressure buildup test, Table 3.10, was run so that 
the average reservoir pressure can be determined by conventional methods. Pro-
duction was inactive during the following eight months; then, a multi‐rate test was 
performed. Its data are given in Table 3.11. The well had produced 190000 STB at a 
flow rate of 305 BPD before shut‐in it for the pressure buildup test. The well data 
and properties of rock and fluid are as follows: 

rw = 0.33 ft, ϕ = 13%, h = 80 ft 
μ = 0.9 cp, ct = 1.9 � 10�5 psia�1 B = 1.3 bbl/STB 
A = 62 Ac, Pwf (t = 0) = 2143.4 psia, for the pressure buildup test 
Pi = 2554 psia, for the multi‐rate test. 

It is required to estimate the average pressure test from the buildup test using 
the MBH method and from the multi‐rate test using the TDS technique. 

Solution by MBH method 

The production time, tp, resulted to be 14950.8 hr with Eq. (3.2). From the 
Horner plot given in Figure 3.13, the slope and intercept are read to be 57 psia/cycle 
and 2427 psia. Permeability is found with Eq. (2.33) and skin factor with Eq. (3.6), 
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Δt, hr Pws, psia ΔPws, psia (Δt þ tp)/Δt (tpss þ Δt)/Δt 

0 2143.4 0 

0.013 2167.8 24.4 1150062.54 13793.31 

0.019 2195.5 52.1 786885.21 9437.84 

0.028 2229.8 86.4 533958.14 6404.57 

0.037 2265.6 122.2 404076.68 4846.95 

0.056 2302.3 158.9 266979.57 3202.79 

0.067 2323.5 180.1 223147.27 2677.12 

0.079 2341.4 198.0 189251.63 2270.62 

0.112 2361.0 217.6 133490.29 1601.89 

0.153 2375.6 232.3 97718.65 1172.90 

0.214 2389.5 246.1 69864.55 838.85 

0.329 2401.7 258.3 45444.16 545.98 

0.479 2411.5 268.1 31213.53 375.32 

0.608 2416.8 273.4 24591.13 295.90 

0.840 2425.4 282.0 17799.57 214.45 

1.099 2432.7 289.3 13605.00 164.15 

1.486 2437.6 294.2 10062.10 121.66 

1.988 2444.9 301.5 7521.52 91.19 

2.660 2448.2 304.8 5621.60 68.41 

3.482 2455.0 311.6 4294.74 52.49 

4.510 2465.3 321.9 3316.03 40.76 

5.535 2472.6 329.2 2702.14 33.39 

6.506 2479.8 336.4 2299.00 28.56 

7.648 2487.3 343.9 1955.86 24.44 

Table 3.10. 
Pressure buildup test data for Example 3.4. 

162:6qμB ð162:6Þð305Þð0:9Þð1:3Þ
k ¼ ¼ ¼ 26:72 md

mh ð57Þð80Þ 
"  ! # 
2427 � 2143:4 12:7 

s ¼ 1:1513 � log þ 3:2275 ¼ 0:56
57 ð0:13Þð0:9Þð1:9 � 10�5Þð0:33Þ2 

For the given reservoir, (tDA)pss from Table 2.1 is 0.1. Next, tpss = 179.3 hr from 
Eq. (3.37) and α ratio is, α = tp/tpss = 14950.8/179.3= 80.3; then, set t = tpss = 179.3. 
With this value, a new Horner plot is built and provided in Figure 3.14, from which 
P* = 3580 psia. Now, determine the dimensionless production time using Eq. (3.38): 

0:0002637kt ð0:0002637Þð12:7Þð179:3Þ 
tpDA ¼ ¼ ¼ 0:1 

ϕμctA ð0:13Þð0:9Þð1:9 � 10�5Þð62Þð43560Þ 

Using Eq. (3.39) with data from Table 3.3 (first row), the MBH dimensionless 
pressure is PDMBH =1.175. The average reservoir pressure is found with Eq. (3.45). 
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t, hr teq, hr ΔPq, psia/(STB/D) t*ΔP’ q, psia/(STB/D) teq *ΔP’ q, psia/(STB/D) qn,STB/D 

0.203 0.214 1.7907 1.2485 1.2969 296 

0.253 0.262 2.2985 1.6026 1.6819 295 

0.328 0.314 2.9504 2.0571 2.0251 293 

0.436 0.456 4.3507 2.2356 2.1813 291 

0.602 0.621 5.7416 2.2356 2.0251 292 

0.875 0.902 7.1684 1.5587 1.5046 290 

1.289 1.327 8.2350 1.1174 1.0771 286 

1.924 1.903 9.2014 0.8010 0.7159 285 

2.622 2.693 10.0000 0.5742 0.4938 281 

3.621 3.762 10.2813 0.4473 0.3808 279 

5.335 5.534 10.2813 0.3119 0.2936 278 

8.064 8.245 10.2813 0.2001 0.1951 274 

13.691 14.336 10.5705 0.1149 0.1000 270 

19.910 19.774 10.5705 0.0779 0.0716 266 

29.710 30.231 10.5705 0.0920 0.0895 265 

44.909 44.468 10.5705 0.0758 0.0743 263 

61.223 62.129 10.5705 0.0870 0.0743 258 

89.029 89.068 10.8679 0.0823 0.0831 256 

124.545 123.500 10.5705 0.1117 0.1136 255 

161.241 161.230 10.8679 0.1357 0.1296 253 

211.463 211.963 10.8679 0.1648 0.1548 251 

Table 3.11. 
Multi‐rate test data for Example 3.4. 

Figure 3.13. 
Horner plot for Example 3.4. 
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Figure 3.14. 
Horner plot with tpss for Example 3.4. 

Figure 3.15. 
Normalized pressure and pressure derivative versus equivalent time log‐log plot for Example 3.4. 

m PDMBH ð57Þð1:175Þ
P ¼ P� � ¼ 2580 ¼ 2550:9 psia 

2:303 2:303 

Solution by the TDS technique 

The following information is read from the pressure derivative plot, Figure 3.15, 

(t*ΔP'q)r = 0.087 psia/BPD, (ΔPq)r = 10.86 psia/BPD, (teq)pss = 211.963 hr 
(t*ΔP'q)pss = 0.1548 psia/BPD, (ΔPq)pss = 10.86 psia/BPD 

Permeability is found from Eq. (2.279), and the average reservoir pressure with 
Eq. (3.90); 

70:6μB 70:6ð0:9Þð1:3Þ
k ¼ ¼ ¼ 11:8 md 

hðt � ΔP 0 
qÞ ð80Þð0:087Þr 
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Type of test Method Average reservoir pressure, psia 

Buildup MBH 
(Matthews‐Brons‐Hazebroek) 

2550.9 

Buildup Dietz 2542.6* 

Buildup Ramey‐Cobb 2538.2* 

Buildup MDH 
(Miller‐Dyes‐Hutchinson) 

2537.3* 

Buildup Azari 2535.4* 

Multi‐rate TDS 2549.1 

*Reported in [15]. 

Table 3.12. 
Comparison of results for Example 3.4, after [15]. 

3!2 
0:1648 

141:2ð251Þð0:9Þð1:3Þ
P ¼ 2554 � ð11:8Þð80Þ 

666664 

10:86 � 0:1648 
!! 

927:18 3
ln �

0:33 4 

777775 
¼ 2549:1 psia 

Escobar [15] reports the results of this example, Table 3.12, along with those 
from other methods already seen in this chapter. It is observed a very close agree-
ment among the results. 

3.4.13. Other methods for estimating the average reservoir pressure 

The average pressure can also be estimated using material balance [37], 

5:615q � t
P ¼ Pi � ; Vp in ft3 (3.95)

ctVp 

Another formulation to calculate the average reservoir pressure [37] is based 
upon integrating the reservoir pressure and the volume, thus: 

∑PrΔVP ¼ (3.96)
V 

If ΔV is replaced as 2πrΔrhϕ and the pseudo‐steady‐state solution of the radial 
flow equation and after several manipulations will give: 

P ¼ Pw þ 0:8687m ln 
re � 0:75 þ ΔPs (3.97)
rw 

For wells that are in steady state at the time of shutting‐in, constant 0.75 is 
changed by 0.5. 

Slider [37] proposed an equation for the case where there is interference with 
other wells which includes obtaining the static pressure by extrapolating or 
correcting the pressure at a time equal to the stabilization time or time to reach the 
pseudo‐steady state, so that: 

ΔPq ¼ pw � Pwf þ m � Δt (3.98) 
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According to Eqs. (1.130) and (2.40) (with the permeability in Darcies), the 
above equation becomes: 

20:04ϕμctr 1:79q ˜ ° eP ¼ Pwf � þ ΔPq (3.99)
k ϕhctr2 tpss 

e 

Rearranging: 

P ¼ Pwf � 0:439m þ ðΔPqÞtpss (3.100) 

In summary, Slider [37] recommends the following methods for the determina-
tion of the average reservoir pressure at the shut‐in time: 

1. If the well is not acting under either steady or pseudo‐steady state, use material 
balance, Eq. (3.95). This includes wells under infinite behavior or in transition 
between infinite behavior and steady or pseudo‐steady state. 

2. If the well is in the center of its drainage area and is in either a steady or 
pseudo‐steady state, use Eq. (3.97), which does not require knowing either the 
porosity or the compressibility. 

3. If the well is located near the center of its drain area and is operating under 
pseudo‐steady state and the change in pressure with respect to time, m*, is 
known, Eq. (3.100) can be used. 

4.If the well is off‐center within the drain area and operates under pseudo‐stable 
state but m* is unknown, the MBH method is recommended by Slider [37]. 

5. None of the methods are recommended for a well that is off‐center and 
operates in steady‐state conditions at shut‐in time. 

6.The above recommendations were produced when the pressure derivative did 
not exist. As could be seen,TDS technique is much more practical, and it is not 
limited to a few shape factors since this parameter is easily found with the 
technique. Also,TDS applies involve equations for fractured wells, horizontal 
wells (although not given here), and naturally fractured reservoirs. Since drill 
steam testing, DST consists of some small periods of buildup and drawdown, 
Chapters 2 and 3 apply to DST. 

Nomenclature 

A area, ft2 

AT total field drainage area, Acres 
Aw 

Bg 

well drainage area, Acres 
gas volume factor, ft3/STB 

Bo oil volume factor, bbl/STB 
Bw oil volume factor, bbl/STB 
b 
bDLF 

bLF 

bPB 

bx 

fraction of penetration/completion 
intercept of P‐vs.‐t0.25 plot during dual‐linear flow, psia0.5 

intercept of P‐vs.‐t0.5 plot during hemilinear flow, psia0.5 

intercept of P‐vs‐1/t0.5 plot during hemilinear flow, hr�1 

distance from closer lateral boundary to well along the x‐direction, ft 
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by distance from closer lateral boundary to well along the y‐direction, ft 
c compressibility, 1/psia 
C wellbore storage coefficient, bbl/psia 
CA reservoir shape factor 
ct total or system compressibility, 1/psia 
DF damage factor 
DR damage ratio 
FE flow index 
f(t) time function 
h formation thickness, ft 
hp length of perforations, ft 
I intercept 
J productivity index, bbl/psia 
k permeability, md 
kg gas effective permeability, md 
ko oil effective permeability, md 
kw water effective permeability, md 
IDcsg internal casing diameter, in 
Np oil produced since last stabilization, bbl 
m slope of P‐vs.‐log t plot, psia/hr/cycle 
m* slope of P‐vs.‐t plot, psia/hr 
mDLF slope of P‐vs.‐t0.25 plot during dual‐linear flow, psia0.5/hr 
mLF slope of P‐vs.‐t0.5 plot during hemilinear flow, psia0.5/hr 
mPB slope of P‐vs.‐1/t0.5 plot during hemilinear flow, (psia0.5/hr)�1 

m' slope of superposition or equivalent time plot, psia/BPD/cycle 
m‘b’ intercept of superposition or equivalent time plot, psia/BPD/cycle 
m(P) pseudopressure, psia/cp 
ODcsg external casing diameter, in 
P pressure, psia 
P average reservoir pressure, psia 

0PD dimensionless pressure derivative 
PD dimensionless pressure 
Pi initial reservoir pressure, psia 
PR productivity ratio 
Pr reservoir pressure, psia 
Pt shut‐in casing pressure, psia 
Pwf well flowing pressure, psia 
Pws well shut‐in or static pressure, psia 
P1hr intercept of the semi‐log plot, psia 
P* false pressure, psia 
ΔPs pressure drop due to skin conditions, psia 
q liquid flow rate, BPD 
qT total field flow rate, BPD 
qw well flow rate, BPD 
qsc gas flow rate, Mscf/D 
rD dimensionless radius 
r radius, ft 
re drainage or external radius, ft 
Rs gas dissolved in oil, scf/STB 
rw well radius, ft 
s skin factor 
sc skin due to partial penetration 
scp skin due to a change in permeability 
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sDL geometrical skin factor converging from radial to dual‐linear flow 
sL geometrical skin factor converging from dual‐linear to linear flow 
sp skin factor due to the restricted flow entry 
sPB geometrical skin factor converging from dual‐linear to parabolic flow 
st total skin factor 
sθ skin factor resulting from a well deviation angle 
T reservoir temperature, ºR, transmissivity, md‐ft/cp 
t time, hr 
tp production (Horner) time before shutting‐in a well, hr 
tD dimensionless time based on well radius 
tDA dimensionless time based on reservoir area 
t*ΔP 0 pressure derivative, psia 
V volume, ft3 

Vu wellbore volume/unit length, bbl/ft 
X distance in the x‐direction 
XE reservoir length, ft 
XN superposition time, hr 
Y distance in the y‐direction 
YE reservoir width, ft 
WD dimensionless reservoir width 
Z height, ft 

Greek 

Δt change, drop, hut‐in time, hr 
Δt 0 flow time after rate change in two‐rate tests 
ϕ porosity, fraction 
λ mobility, md/cp. Also, interporosity flow coefficient 
ρ fluid density, lbm/ft3 
θ deviation angle, o 

ψ measured deviation angle, o 

ψ 0 corrected deviation angle, o 

μ viscosity, cp 
ω dimensionless storativity ratio 

Suffices 

0 base conditions 
1hr time of 1 h 
a actual 
af after flow 
BRpssi birradial and pseudo‐steady‐state lines intersection 
d drainage 
D dimensionless 
DA dimensionless with respect to area 
DL dual linear flow 
DL1 dual linear flow at 1 hr 
DLpssi intersection of pseudo‐steady‐state line with dual‐linear line 
DLSS1 intercept between dual‐linear line and the �1‐slope line (SS1) 
DLSS2 intercept between dual‐linear line and the �1‐slope line (SS2) 
eq equivalent 
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eBL equivalent bilinear 
eBR equivalent birradial 
eL equivalent linear 
eSP equivalent spherical 
F inflection 
g gas 
h horizontal 
hs hemispherical 
i intersection or initial conditions 
ideal ideal 
INT intercept 
inv investigation 
L linear or hemilinear flow 
L1 linear flow at 1 hr 
lag lag 
Lpssi intercept of linear and pseudo‐steady state lines 
N an arbitrary point during early pseudo‐steady‐state period 
M muskat 
Mint intercept of Muskat 
max maximum 
o oil 
p production, porous 
pDA dimensionless based on area and production time 
PB parabolic flow 
PBSS1 intercept between parabolic line and the ˜1‐slope line (SS1) 
PBSS2 intercept between parabolic line and the ˜1‐slope line (SS2) 
pss pseudo‐steady state 
pss1 pseudo‐steady state at 1 hr 
r radial flow 
rDLi intercept of radial and dual linear lines 
r1 radial flow before spherical/hemispherical flow 
rg relative to gas 
rLi intercept of radial and linear lines 
ro relative to oil 
rpssi intersection of pseudo‐steady‐state line with radial line 
rSSi intersection between the radial line and the ˜1˜slope line 
rSS1i intersection between the radial line and the ˜1‐slope line (SS1) 
rSS2i intersection between the radial line and the ˜1‐slope line (SS2) 
rw relative to water 
s skin 
sf sandface 
sp spherical 
SS steady 
SSL start of semi‐log line (radial flow) 
SS1 ˜1‐slope line formed when the parabolic flow ends and steady‐state 

flow regime starts. Well is near the open boundary, and the far 
boundary is opened 

SS2 ˜1‐slope line formed when the parabolic flow ends and steady‐state 
flow regime starts. Well is near the open boundary, and the far 
boundary is closed 

sw spherical/hemispherical wellbore 
w well, water 
wa apparent wellbore 
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wb wellbore 
wD dimensionless emphasizing at wellbore 
wf well flowing 
wf@Δt 0=0 well flowing at flow rate change 
ws well shut‐in 
x maximum point (peak) during wellbore storage 
xc maximum point for centered wells 
X1 maximum point between Dual linear and parabolic lines 
X2 maximum point between parabolic and negative unit slope lines 
X3 maximum point between hemilinear and negative unit slope lines 
z vertical direction 
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Chapter 4 

Distance to Linear Discontinuities 

The available pressure analysis methods are based on assumptions of Darcy’s 
law, for example, a homogeneous and horizontal formation of uniform thickness, 
with isotropic and constant porosity and permeability distributions. The issue of 
pressure behavior in heterogeneous reservoirs has received considerable attention 
in recent years. The main reason for this is the need for greater accuracy in reservoir 
description, which has a significant effect on the design, operation, and therefore, 
the economic success of the projects involved. Since these methods can be applied 
only once to the reservoir, the need for a reliable description of the reservoir is 
obvious [5, 6, 13, 22]. 

Two techniques can be used in the fields to describe reservoirs: radioactive 
tracers and pressure transient tests. Pressure transient tests have been used 
more (and with better results) than tracers. The determination of the volumetric 
swept efficiency is a problem that has a better potential to be solved by the 
tracers. Currently, the description of the heterogeneity of the reservoir by 
adjusting the tracer behavior is affected by the lack of adequate numerical 
models, the long time spent to obtain the results, and the dependence of the 
adjustment to the additional parameters that are introduced by tracers themselves 
(e.g., dispersion coefficients, tracer retention, etc.). It is quite possible that tracers 
and future pressure transient tests will be used at the same time for the description 
of the reservoir [6]. 

Normally, any type of flow barrier cannot be seen in a DST since the time is too 
short to affect deep the reservoir. However, in cases where flow periods are so long 
to observe deviations from the semilog slope or deviation from the flat trend of the 
pressure derivative, which reflects changes in reservoir transmissibility, faults, 
discontinuities, boundary conditions, or reservoir geometry as illustrated in 
Figure 4.1. Some of the methods for estimating distance to linear boundaries will be 
shown later [4, 6, 14, 15]. 

4.1. Types of reservoir discontinuities 

The heterogeneities of the reservoir (see Figure 4.1) are variations in rock and 
fluid properties resulting from deposition, folding, faulting, postdepositional 
changes in reservoir lithology, and changes in properties or types of fluids. The 
reservoir heterogeneities of the deposit may be small scale, as in carbonate reser-
voirs where the rock has two constituents, matrix and fractures, and cavities and 
caves. These can also be larger scale, such as physical barriers, faults, fluid‐fluid 
contacts, thickness changes, lithology changes, several layers with different prop-
erties in each layer, etc. In addition to these natural heterogeneities, man can induce 
artificial heterogeneities around wellbore during drilling (mud invasion), hydraulic 
fracturing, or fluid injection [6]. 

Another related feature is the anisotropy in the permeability, when this property 
varies with flow direction. Anisotropy can also be caused by sedimentary processes 
(filled cannel deposits) or by tectonism (fractures orientated parallel). Anisotropy 
takes place in both homogeneous and heterogeneous reservoirs. Therefore, 
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Figure 4.1 
Types of discontinuities: (a) no‐flow boundary (fault), (b) change of fluid type, (c) change of formation 
thickness, and (d) permeability change (facies), after [6]. 

anisotropy does not imply heterogeneity. Most reservoirs have vertical permeability 
less than horizontal, so there is anisotropy in that sense [5, 6]. 

4.2. Single‐boundary systems 

Large‐scale heterogeneities can be detected by seismic. However, this technique 
can be up to one mile or more in error when estimating the well‐fault distance. 
Transient pressure analysis is the cheapest and most accurate form to obtain the 
distance from a well to a given barrier. In general, to locate faults [23, 24], a test 
long enough to explore the reservoir in depth is required, at least four times the 
distance to the fault. 

4.2.1 Well‐fault distance from pressure buildup tests 

Applying the superposition principle, the dimensionless shut‐in pressure for a 
well near a p boundary is given, respectively, by [4–25]: 

PDS = ½PDð1, ðtp þ ΔtÞDÞ þ s� � ½PDð1, ΔtDÞ þ s� ˜ ° ˜ ° 
2d 2d (4.1)þ PD , ðtp þ ΔtÞD � PD , ΔtD rw rw 

The Ei(�s) easily applies to find wellbore pressure, practically, at any time. 
Then, it can be applied to the two first terms of Eq. (4.1). For a production time, tp, 
long enough and for testing times very close to the shut‐in time, the Ei(�) solution 
can be fully applied to find the dimensionless pressure drops of Eq. (4.1), so that: 
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" ! ! ! # 
Pi � Pws = 

70:6qμB 
kh 

�Ei 
�3792ϕμctd

2 

kΔt
þ Ei 

�3792ϕμctd
2 

kðtp þ ΔtÞ � Ei 
�3792ϕμctd

2 

ktp

(4.2) 

d can be calculated by a trial‐and‐error procedure using the above equation. This 
is exact but tedious. However, whenever tp >> Δt, the logarithmic approach for 
Ei(�x) function applies; therefore, Eq. (4.2) becomes: 

325:2qμB tp þ Δt 
Pws = Pi � log (4.3)

kh Δt 

Comparison between Eqs. (3.6) and (5.3) shows a doubled slope in the last one. 
It means that the detection of a fault leads to observe a doubled slope in the Horner 
plot since Eq. (4.3) can be expressed as: 

tp þ Δt 
Pws = Pi � 2m log (4.4)

Δt 

Once the slope is folded, d can be easily calculated by reading the intercept 
time of the straight line of slope m with the slope straight line 2m, as illustrated in 
Figure 4.2(b) and (c). This behavior is also presented in a graph of drawdown 

Figure 4.2 
Identification of linear boundaries from conventional (semilog) plots: (a) drawdown test—semilog plot, 
(b) buildup test—Horner plot, (c) buildup test—MDH plot, after [13]. 
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pressure test indicated in Figure 4.2(a). However, the slope of a normal pressure 
buildup plot will not change at early times. Thus, this early straight line portion 
with slope m can be used to calculate k, s, and C as discussed in Chapter 3 sec-
tion 3.2. Extrapolation of the double slope straight line is used for the estimation of 
the average reservoir pressure as studied in Chapter 3. Care must be taken since a 
similar behavior, double slope, is presented in multirate tests, injection tests, draw-
down tests, etc. Different characteristics of the pressure transient may occur when a 
well is near multiple barriers. For example, when there are two faults intersecting at 
right angles to one well (one closer to the other), the slope will double and then 
doubled again. In general terms, the slopes that are obtained are function of the 
angles of intersection given by the following equation [20]: 

360
New slope = m (4.5)

θ 

Similarly, the flat lines of radial flow regime will provide another flat pressure 
derivative line given by: 

360 ðt*ΔP 0Þ (4.6)ðt*ΔP 0ÞNew = 
2θ r 

4.2.2 Methods for estimating the distance from a well to a discontinuity 

Table 4.1 summarizes the available methods and provides some comments. 
Notice that developing the double slope takes a long time, actually, more than two 
log cycles. 

Example 4.1 

Taken from [25]. The following pressure data were obtained from the Bravo‐1 
well in West‐Texas. This is a limestone reservoir with water influence only in the 
southern portion. Geological data indicate the presence of a fault (Raven) to the east 
of the well. See the pressure buildup along with pressure derivative and Horner time 
data in Table 4.2. The properties of rock and fluid are as follows: 

rw = 5 in, h = 18 ft, ϕ = 14%, 
ct = 22 � 10�5/psia, μ = 1.8 cp, B = 1.31 bbl/STB 
Pi = 3750 psia, r = 56.8 lbm/ft3, q = 180 BPD, 
Np = 9000 STB 

Find permeability of the reservoir, flow efficiency, and distance to the Raven 
fault, using the methods of Horner, Earlougher and Kazemi, Kucuk and Kabir, 
Earlougher, Gray‐Martinez and Cinco‐Ley, and TDS technique [25]. 

Solution 

Reservoir permeability. A Horner plot is given in Figure 4.2(a) Horner graph is 
given (semilog of Pws vs. (tpþΔt)/Δt), where tp = 24Np/q = (24)(9000)/80 = 1200 hr, 
Eq. (3.2). Take the straight‐line portion with slope m = 66 psia/cycle (infinite behav-
ior line). The permeability of the straight line is estimated with Eq. (2.33): 

162:6qμB 162:6ð180Þð1:8Þð1:31Þ
k = = = 58:1 md 

mh 66ð18Þ 
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Method Equation Equation number 
and comment 

sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi Horner It applies for ΔtDktp 1:48109 � 10�4 
[5, 6] > 25. Less accurate d = (4.7)

ϕμct ½ðtp þ Δt�=ΔtÞ� for small tp values. x 

0:0002637kΔt 
ΔtD = (4.8)

ϕμctd
2 

sffiffiffiffiffiffiffiffiffiffi 
Earlougher 
and kΔtxd =0:01217 (4.9)
Kazemi, ϕμ ct 
[7, 20, 25] 

It uses either 
MDH or Horner 
plot. Strictly valid 
for [(tpþΔt)/Δt]x 

≥ 30. It requires 
long times for the 
slope to be 
double. Use 
Eq. (4.10) to find 
such time. 

380000ϕμctd
2 

Δt = (4.10)
k 

sffiffiffiffiffiffiffiffiffi 
Kucuk and 

kts2rKabir [16] d =0:00431 (4.11)
ϕμct 

sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 
Earlougher 

ktp[5, 6, 18] d =0:008119 (4.12)
ϕμ ctðtD=r2 

DÞ 

1 tp þ Δt 
PD = ln (4.13)

2 Δt x 

They modified 
Equation (4.9). 
ts2r is the 
beginning of the 
second semilog 
line. It is better 
found on the 
graph of the 
derivative. 

It is accurate for 
any time. PD is 
found with 
Eq. (4.13). It fails 
for tp >> Dt. 

Find (tD/rD 
2) 

from Figure 1.7 or 
from Eq. (4.14) 
with x=log(PD). 

tD 0:53666069þ1:843195406x 

= 101�0:8502854913xþ0:1199676223x2 

r2 
D 

(4.14) 

MDH 
[20, 21] 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi s 
ktpd =0:01217 

ϕμctΔts 
(4.15) 

Dts is the time 
found by 
extrapolating the 
first slope to the 

Sabet [20] 
8 9 < P2m�Pwf =� log t2m�|2m|� : k ;log þ 3:23 � 0:435sϕμctr2d =0:5 � 10 w (4.16) 

value of Pi. 

Gray [12], 
Martinez 
and Cinco‐
Ley [17] 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi s 
tdv ln ð0:86859m1Þd = 

3792:19ϕμct 
(4.17) 
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Method 

TDS [14], 
and [15] 

Equation 

d = 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi s 
0:000422ktre 

ϕμct 
(4.18) 

Equation number 
and comment 

Corrected in this 
book 

ffiffiffiffiffiffiffiffiffi s 
ktFd =0:01217 
ϕμct 

(4.19) 

Table 4.1. 
Methods to determine distance well‐discontinuity. 

Δt, hr Pws, psia (tpþΔt)/Δt ΔP, psia t*ΔP 0 , psia 

0 2900 0 

0.5 3090 2401 190 119.12 

0.7 3118 1715.29 218 111.80 

1.1 3170 1091.91 270 95.56 

1.6 3199 751 299 91.80 

2.5 3240 481 340 89.52 

3.5 3278 343.86 378 72.10 

5 3290 241 390 46.45 

7 3302 172.43 402 32.60 

9 3310 134.33 410 30.91 

13 3320 93.31 420 29.23 

20 3333 61 433 27.72 

30 3343 41 443 33.68 

40 3350 31 450 42.54 

50 3363 25 463 48.26 

70 3382 18.14 482 57.39 

100 3400 13 500 58.58 

150 3423 9 550 62.50 

250 3450 5.8 550 80.31 

Table 4.2. 
Pressure buildup test data. 

From Figure 4.2, P1hr = 3245 psia. Therefore, the mechanical skin factor is 
obtained from Eq. (3.6), thus: 

3245 � 2900 58:1 
s = 1:1513 � log þ 3:23 = 1:7

66 0:14ð1:8Þð22 � 10�5Þð0:4172Þ 
The skin pressure drop is found with Eq. (2.35): 

ΔPs =0:87ð66Þð1:7Þ psia 
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Figure 4.2 
Horner plot for Example 4.1. 

P* = 3435 psia from the Horner plot, then flow efficiency is estimated with 
Eq. (2.46): 

97:6
FE = 1  � = 81:8 %

3435 � 2900 

This means that stimulation is necessary. The distance to the linear boundary is 
found from the following methods: 

Horner method 
From the Horner plot, a value of (tpþΔt)/Δt)x was found to be 27. Then, using it 

into Eq. (4.6) will provide: 

sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 
kΔtp 1 58:1ð1200Þ

d =0:01217 � � =0:01217 = 83ft 
ϕμct tp þ Δt=Δt ð0:14Þð1:8Þð22 � 10�5Þð27Þ x 

Earlougher and Kazemi method 
From the MDH plot, a value of Δtx of 45 hr is read (Figure 4.3). Using it in 

Eq. (4.9), 

sffiffiffiffiffiffiffiffiffiffi sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 
kΔtx 0:0001481ð58:1Þð45Þ

d =0:01217 = = 83:6 ft 
ϕμ ct ð0:14Þð1:8Þð22 � 10�5Þ 

This method is supposed to work for [(tpþΔt)/Δt]x ≥ 30 and [(tpþΔt)/Δt]x = 27. 
Use Eq. (4.10) to find the time for the slope to be double: 

380000ϕμctd
2 380000ð0:14Þð1:8Þð22 � 10�5Þð83:6Þ2 

Δt = = = 253:4 hr 
k 58:1 

From the pressure derivative plot (Figure 4.4), it is possible to see the second 
plateau at about 70 hr. 

Kucuk and Kabir method 
The pressure derivatives indicate that ts2r is about 70 hr. Using Eq. (4.11) gives: 
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Figure 4.3 
MDH plot for Example 4.1. 

Figure 4.4 
Pressure and pressure derivative versus time log‐log plot for Example 4.1. 

sffiffiffiffiffiffiffiffiffi sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 
kts2r ð58:1Þð70Þ

d =0:00431 = = 116:73 ft 
ϕμct ð0:14Þð1:8Þð22 � 10�5Þ 

Earlougher method 
It is obtained from Eq. (4.13): 

1 tp þ Δt 1
PD = ln = ln ð27Þ = 1:648

2 Δt 2x 

Then, x=log(PD)=0.217. Use this value in Eq. (4.14), 

0:53666069þ1:843195406ð0:217ÞtD 1�0:8502854913ð0:217Þþ0:1199676223ð0:217Þ2= 10 = 13:82 
r2 
D 
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This can be verified in Figure 1.7. Use the tD/rD 
2 value in Eq. (4.12): 

sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 
ktp ð58:1Þð1200Þ

d =0:008119 =0:008119 = 77:5 ft 
ϕμ ctðtD=r2 

DÞ ð0:14Þð1:8Þð22 � 10�5Þ ð13:82Þ 

Gray, Martinez, and Cinco‐Ley method 
tdv = tre = 20 hr from the derivative plot (Figure 4.4). Use of Eq. (4.17) leads to: 

sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 
tdv ln ð0:86859m1Þ 20 ln ð0:86859½66�Þ

d = = = 19:62
3792:19ϕμct 3792:19ð0:14Þð1:8Þð22 � 10�5Þ 

TDS technique 
The buildup pressure derivative with a production time, tp, of 1200 hr was 

estimated and reported in Table 4.2. The second pressure derivative (not shown in 
here) was used to better define the inflection point. The pressure derivative was 
obtained and given in Figure 4.4 from which the following information was read: 

tr = 9 hr, (t*ΔP 0)r = 29.3 psia, ΔPr = 420 psia, 
tre = 20 hr, tre = 45.39 hr 
Find permeability and skin factor with Eqs. (2.71) and (2.92), respectively: 

70:6qμB 70:6ð180Þð1:8Þð1:31Þ
k = = = 56:82 md 

hðt*ΔP 0Þ 18ð29:3Þr 

420 ð56:82Þð9Þ 
s =0:5 � ln þ 7:43 = 1:98

29:3 ð0:14Þð1:8Þð22 � 10�5Þð0:4172Þ 
Use Eqs. (4.18) and (4.19) to find the distance from Bravo‐1 well to the Raven fault: 

sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 
0:000422ktre 0:000422ð56:82Þð20Þ

d = = = 92:95 ft 
ϕμct ð0:14Þð1:8Þð22 � 10�5Þ 
sffiffiffiffiffiffiffiffiffi sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 

ktF ð56:82Þð45:39Þ
d =0:01217 =0:01217 = 83 ft 

ϕμct ð0:14Þð1:8Þð22 � 10�5Þ 

4.2.3 Methods for estimating the distance well‐discontinuity from DST 

Table 4.3 presents some of the available methods to find linear discontinuity‐to‐
well distance from drill stem tests. 

Example 4.2 

Earlougher [6] presented DST data from the Red Formation of Major County, 
Oklahoma. The well was treated for completion work with approximately 480 bbl. 
The Horner chart is provided below. 

q = 118 BPD, ct = 8.2 � 10�6 1/psia, μ = 1.3 cp, 
ϕ = 12%, B = 1.1 bbl/STB, m = 1321 psia/cycle, 
tp = 4 hr  
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Method Equation Equation number and comment 

Horner [4] � 948ϕμctd
2 tp þΔt (4.20)�Ei = lnktp Δt x For buildup 
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 

Dolan, Einarsen, and Hill [13] ktp (4.21)d =0:024337 ϕμct ½ðtp þΔt�=ΔtÞ�x For buildup 
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 

Ishteiwy and Van Poollen [13] ktp (4.22)d =0:015276 ϕμct ½ðtp þΔt�=ΔtÞ�x For buildup 

tp þΔt tpD (4.23)= Δt 1:13 x 

0:0002637 (4.24)tpD = 
ϕμctd

2 

qffiffiffiffiffiffiffi 
Bixel, Larkin, and Van Poolen [2] ktx (4.25)d =0:0307 
and Bixel and Van Poolen [3] ϕμct For drawdown 

Table 4.3. 
Methods to determine distance well‐discontinuity from DST. 

Determine the permeability. 

Determine the distance to the discontinuity using the methods mentioned. 

Since there is no fault near the well, which suggests that it may be discontinuity? 

Solution 

(a) Permeability. Since the slope is given, permeability is found from Eq. (2.33): 

162:6qμB 162:6ð118Þð1:1Þð1:3Þ
k = = = 1:38 md 

mh ð15Þð1321Þ 
(b) Distance to the discontinuity 
Horner method 
From Figure 4.5, [(tpþΔt)/Δt]x = 1.55. Using Eq. (4.20),

 ! 
948ð0:12Þð1:3Þð8:2 � 10�6Þd2 

�Ei � = ln 1:55
1:38ð4Þ 

Figure 4.5 
Horner plot for Example 4.2, after [13]. 
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  -Ei ð-2:1969 x 10-4Þd2 =0:4383 

Interpolating from Table 1.4, 

2:1969 x 10-4d2 = 0:618 

Then, d = 53 ft 
Dolan, Einarsen, and Hill method 
Using Eq. (4.21), 

sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 
0:00059229 ktp 0:00059229ð1:38Þð4Þ

d = = =40:7 ft 
ϕμct½ðtp þ Δt]=ΔtÞ] ð0:12Þð1:3Þð8:2 x 10-6Þð1:55Þx 

Ishteiwy and van Poollen method 
Using Eq. (4.22), 

sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 
0:0002484 ktp 0:0002484ð1:38Þð4Þ

d = = = 25:5 ft 
ϕμct½ðtp þ Δt]=ΔtÞ] ð0:12Þð1:3Þð8:2 x 10-6Þð1:55Þx 

(c) Since there is no fault near the well, which suggests that it may be discontinuity? 
The slope decreases; however, there is evidence of a “constant pressure bound-

ary.” The improvement in the transmissibility could be due to the treatment that 
well received before the test. 

4.3. Leaky faults 

There are cases in which the fault does not fully seal. A nonsealing fault allows 
the transient wave to cross over the fault and keep traveling. There probably exists a 
contrast in mobility. Meaning the formation on the other side of the fault may have 
or not the same properties. There are some other cases where the reservoir has a 
linear constant‐pressure boundary. The aquifer may act either fully or partially. 

4.3.1 Nonsealing fault 

Escobar et al. [8] used the dimensionless conductivity of the fault/boundary as: 

kf wfFCD = (4.25)
k L 

The FCD value typically ranges from 0 to 1.0 or more. A value of zero indicates a 
sealed boundary or absence of the boundary, and an infinite value indicates a 
constant pressure or a completely sealed fault. 

4.3.1.1 Partially active aquifer 

The expected behavior is given in Figure 4.6. At late time, the pressure deriva-
tive will display a negative slope of 1 (radial stabilization), which reduces its value 
as τ decreases. A second derivative in this zone will provide a maximum value. 

A scalable dimensionless conductivity of the boundary, τ, is defined as [9]: 

-FCDτ = e - 1; - 1 <  τ < 0 (4.26) 
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Figure 4.6 
Pressure and pressure derivative behavior for a partially active aquifer, after [9]. 

Negative values of τ indicate the presence of an act aquifer. Note that when τ = 0, 
FCD = 0 indicating that L = 0, and when t = �1, FCD = ∞, indicating that the 
boundary conductivity is infinite. Escobar et al. [8] presented the following corre-
lation to find the acting degree of the aquifer. 

ðt*ΔP 0Þ 0 2xτ =0:00375902 � 3:1638126 (4.27)ðt*ΔP 0Þr 
If exists a second‐flat line below the radial flow pressure derivative line, the 

following expression applies: 

ðt*ΔP 0Þ 0 2xτ =0:983396 � 0:98603107 (4.28)ðt*ΔP 0Þr 

4.3.1.2 Partially sealing (leaky) fault 

This case is given in Figure 4.7 assuming there is no permeability contrast. This 
may be an explanation of why sometimes the second slope on the semilog plot is not 
doubled. A scalable dimensionless conductivity of the boundary (fault transpar-
ency), τ, is defined as [9]: 

τ = 1  � FCD; 0<  τ < 1 (4.29) 

Positive values of τ indicate the presence of no‐flow boundaries. A value of zero 
indicates that there is no fault/boundary, so the permeability on both sides of the 
border is the same. Note that when τ = 0, FCD = 1, and when τ = 1, FCD = 0, which 
indicate that the barrier has a permeability of zero. Escobar et al. [9] presented the 
following expressions to determine the fault transparency: 

ðt*ΔP 0Þ 0 2xτ = 3:173803 � 0:0015121 (4.30)ðt*ΔP 0Þr 
ðt*ΔP 0Þr2τ = 1:01338389 � 1:0146535 (4.31)ðt*ΔP 0Þr 
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Figure 4.7 
Pressure and pressure derivative behavior for a leaky fault, after [9]. 

Figure 4.8 
Pressure, pressure derivative, and second pressure derivative against time log‐log plot for Example 4.3, after [9]. 

Example 4.3. 

Escobar et al. [9] presented an example of a well near a leaky fault and it is 
required to confirm the transparency fault value. Pressure, pressure derivative, and 
second‐pressure derivative versus time data are given in Figure 4.8. Other relevant 
information is found below: 

k = 10 md, h = 50 ft, d = 730 ft, τ = 0.22, ϕ = 23%, ct = 1.38 � 10�5 1/psia, 
μ = 0.3 cp, q = 200 BPD, B = 1.48 rb/STB, rw = 0.4 ft, CD = 70, s = 2, Pi = 5200 psia 

Solution 

The following information was read from Figure 4.8. 
(t*ΔP 0)r = 12.6 psia, (t*ΔP 0)2r = 15 psia, (t*ΔP 0) 0 2x = 0.865 psia 
Use of Eqs. (4.30) and (4.31) allows finding the fault transparency: 

0:865 
τ = 3:173803 � 0:0015121 = 0:217

12:6 
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15 
τ = 1:01338389 ˜ 1:0146535 = 0:192

12:6 

Notice that both values closely match the original transparency fault value 
of 0.22. 

4.3.2 Finite‐conductivity faults 

Escobar et al. [10, 11] presented TDS technique extension for finite‐conductivity 
faults with mobility contrast and without it, respectively. The nonmobility contrast 
will be shortly discussed here. In these systems in which model was presented by 
Rahman et al. [19], the reservoir permeability has a lower permeability than that of 
the fault. Fluid flow takes place both across and along the fault plane (see 
Figure 4.9). The fault enhances the drainage reservoir capacity. It is observed in 
Figure 4.9, a normal flow radial regime is developed at early time around the well. 
When the transient reaches the fault (the fault may have some damage, sf), the 
pressure derivative declines along a negative‐unit slope. At this moment, the fault 
acts as constant pressure linear boundary. Then, as the pressure drops in the fault, a 
bilinear flow regime results when the flow is established in the fault plane thickness 
as shown in Figure 4.10. Finally, the pressure derivative response comes back to a 
plateau when radial is restored. This part is not shown in Figure 4.10. 

New dimensionless quantities are presented here [10]: 

0:0002637kt 
tDf = 

ϕμctd
2 (4.32) 

hD = 
h 
d 

(4.33) 

FCD = 
kf wf 

k ° d 
(4.34) 

Figure 4.9 
Schematic of a typical fault system and flow lines, after [1]. 
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Figure 4.10 
Dimensionless pressure derivative for a well near finite‐conductivity fault. sf = 0 and 20, after [10]. 

4.3.2.1 TDS technique 

For the bilinear flow case, Escobar et al. [10] presented the following expres-
sions for finding the fault conductivity, fault skin factor, and distance from well to 
fault. Escobar et al. [10] also presented equations for gas flow. Not all the expres-
sions developed by Escobar et al. [10] are reported here. 

sffiffiffiffiffiffiffiffiffi 
ktred =0:0325 (4.35)
ϕμct 

sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 
0:0002637ktrssid = � sf h (4.36)

ϕμct 
2vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 3!u

d u 3:7351 � 10�6k2htssðt*ΔP 0Þt sssf = 4 � 15 (4.37)
h qμ2Bϕctd

2 

� �2� �0:5 qμB tBLkf wf = 121:461 (4.38)
kϕμcthðt*ΔP 0ÞBL 

� �2:5 � �4ktBLssi h
kf wf = 1:694 � 10�9kd 1= 1 þ sf (4.39)

ϕμctL2 LFF 

If the dimensionless fault conductivity is larger than 2.5 � 108, linear flow will be 
developed instead of bilinear and the fault has infinite conductivity and the distance 
from the well to it is found from: 

rffiffiffiffiffiffiffiffiffi 
6:42 � 10�6qB μtLd = (4.40)

h tð *ΔP 0ÞL kϕct 

4.3.2.2 Conventional analysis 

The bilinear flow model is given by: 

44:1qμBt1=4 141:2qμB
ΔP = pffiffiffiffiffiffiffiffiffiffipffiffiffiffiffiffiffiffiffiffiffiffi þ sBL (4.41)

4h kf wf ϕμctk kh 
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The above equation suggests that a Cartesian plot of ΔPwf versus t0.25 gives a 
linear trend in which slope allows for the estimation of the fault conductivity: 

" #2 
44:1qμB

kf wf = pffiffiffiffiffiffiffiffiffiffiffiffi (4.42) 
mBLh 4 ϕμctk 

The above equation was also found by Trocchio [28]. 
The pressure equation for the linear flow is: 

1:33 � 10�5qμBt1=2 141:2qμB
ΔP = þ sL (4.43)

h � dðϕμctkÞ1=2 kh 

As indicated before, Eq. (4.32) suggests that a Cartesian plot of ΔPwf versus t0.5 

gives a linear trend in which slope allows the estimation for the distance from the 
well to the fault: 

1:33 � 10�5qμB
d = pffiffiffiffiffiffiffiffiffiffiffiffi (4.44) 

mLh ϕμctk 

The governing pressure equation for the steady state caused by the fault is:

 !�2 1 
�2 qμ2Bϕctd

2 h 70:6qμB 4d2 h
ΔP = � 1 þ sf þ ln þ 8 � 105 ss

3:7351 � 10�6k2h d t kh rw 
2 d 

(4.45) 

Also a Cartesian plot of ΔPwf versus 1/t gives a linear trend in which slope allows 
the estimation of fault skin factor: 

2vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 3!uud 3:7351 � 10�6k2hmsstsf = 4 � 15 (4.46)
h qμ2Bϕctd

2 

Trocchio [28] presented minimum fault length, xfmin, the following expression 
to find the dimensionless end time of the bilinear flow regime and the minimum 
fracture length: 

0 12 

B 2:5 C = @ qffiffiffiffiffiffiffi qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiA (4.47)xf min k 4 ϕμct4:55 �kf wf 0:0002637ktebf 

Example 4.4 

Escobar et al. [10] presented a pressure test of a well inside finite‐conductivity 
faulted reservoir. Pressure and pressure derivative data are reported in Figure 4.11. 
It is required to estimate distance to fault and fault conductivity using both TDS and 
conventional methodologies. 

k = 100 md, h = 100 ft, d = 730 ft, ϕ = 25%, ct = 1.3792 � 10�5 1/psia, 
μ = 0.7747 cp, q = 100 BPD, B = 1.553 rb/STB, rw = 0.3 ft, d = 250 ft 
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Figure 4.11 
Pressure and pressure derivative plot for Example 4.4, after [10]. 

Parameter Equation used Result 

d, ft (4.35) 247.85 

d, ft (4.36) 243.43 

sf (4.37) 0.00225 

kfwf, md‐ft (4.38) 1.14 ˜ 109 

kfwf, md‐ft (4.3) 1.227 ˜ 109 

kfwf, md‐ft (4.42)* 1.128 ˜ 109 

FCD (4.34) 458900.15 

*Conventional analysis. 

Table 4.4. 
Summary of results for Example 4.4, after [10]. 

Figure 4.12 
Cartesian plot of pressure drop versus the fourth root of time for Example 4.4, after [10]. 
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Solution 

The log‐log plot of pressure and pressure derivative against production time is 
given in Figure 4.11 from which the following information was read: 

(t*ΔP 0)r = 8.474 psia, ter = 15.5 hr, tss = 551.93 hr, (t*ΔP 0)ss = 0.955 psia, 
tBL = 983010 hr, (t*ΔP 0)BL = 0.172 psia, trssi = 60 hr, tssBLi = 10000 hr, 
(t*ΔP 0)min = 0.0912 psia 

With the read parameters from Figure 4.11, the parameters were estimated and 
reported in Table 4.4. For straight‐line conventional analysis, only the bilinear flow 
regime part is plotted in Figure 4.12 from which a slope value of 0.0719 psia/hr0.25 

was estimated. Then, Eq. (4.42) to find a finite conductivity of 1.128 � 109 md‐ft, 
which is also reported in Table 4.4. 

Nomenclature 

B oil volume factor, bbl/STB 
c compressibility, 1/psia 
d distance from well to linear boundary, ft 
ct total or system compressibility, 1/psia 
FCD fault dimensionless conductivity 
FE flow index 
h formation thickness, ft 
k permeability, md 
kf wf fault conductivity, md‐ft 
Np oil produced since last stabilization, bbl 
m slope of P‐vs‐log t plot, psia/hr/cycle 
m1 slope of first semilog straight line, psia/hr/cycle 
P pressure, psia 

0PD dimensionless pressure derivative 
PD dimensionless pressure 
Pi initial reservoir pressure, psia 
Pwf well flowing pressure, psia 
Pws well shut‐in or static pressure, psia 
P1hr intercept of the semilog plot, psia 
P* false pressure, psia 
ΔPs pressure drop due to skin conditions, psia 
q liquid flow rate, BPD 
r radius, ft 
rw well radius, ft 
s skin factor 
t time, hr 
t*ΔP 0 pressure derivative, psia 
t2*ΔP″ second pressure derivative, psia 
tp production (Horner) time before shutting‐in a well, hr 
tD dimensionless time based on well radius 
tdv time at which either pressure or derivative deviate from first 

radial line, hr 

Greek 

Δ change, drop 
Δt shut‐in time, hr 
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ϕ porosity, fraction 
ρ fluid density, lbm/ft3 

τ scalable dimensionless conductivity 
μ viscosity, cp 

Suffices 

1hr time of 1 hr 
2m second semilog straight line 
2x maximum in the second pressure derivative 
BL bilinear flow regime 
BLssi intercept of bilinear and steady‐state lines 
d distance 
D dimensionless 
DA dimensionless with respect to area 
Df dimensionless with respect to fault length 
f fault 
ebf end of bilinear flow 
F inflection, better found from second derivative 
i intersection or initial conditions 
L linear flow regime 
p production, porous 
r radial flow 
re end of radial flow regime 
r2 second plateau, hemiradial flow 
rssi intercept of radial and steady‐state lines 
s skin 
ss a point on the steady‐state period 
s2r start of second semilog straight line 
w well 
wf well flowing 
ws well shut‐in 

194 



Distance to Linear Discontinuities 
DOI: http://dx.doi.org/10.5772/intechopen.81078 

References 

[1] Abbaszadeh MD, Cinco‐Ley H. 
Pressure‐transient behavior in a 
reservoir with a finite‐conductivity 
fault. SPE Formation Evaluation. 1995; 
10(3):26-32 

[2] Bixel HC, Larkin BK, Van Poollen 
HK. Effect of linear discontinuities on 
pressure build‐up and drawdown 
behavior. Richardson, TX: Journal of 
Petroleum Technology. 1963;(Aug):85. 
DOI: 10.2118/611‐PA 

[3] Bixel HC, Van Poollen HK. Pressure 
drawdown and build‐up in the presence 
of radial discontinuities. Journal of 
Petroleum Engineering. 1967;(Sept):301 

[4] Boussalem R, Tiab D, Escobar FH. 
Effect of mobility ratio on the pressure 
and pressure derivative of wells in 
closed composite reservoirs. Society of 
Petroleum Engineers. 2002. DOI: 
10.2118/76781‐MS 

[5] Dake LP. The Practice of Reservoir 
Engineering. Revised edition. 
Amsterdam, Holland: Elsevier 
Developments in Petroleum Science; 
2004. 2nd printing 

[6] Earlougher RC Jr. Advances in Well 
Test Analysis, Monograph Series Vol. 5, 
SPE, Dallas, TX;1977 

[7] Earlougher RC, Kazemi H. 
Practicalities of detecting faults from 
buildup testing. Society of Petroleum 
Engineers. 1980. DOI: 10.2118/8781‐PA 

[8] Escobar FH, Tiab D, Berumen‐
Campos S. Well pressure behavior of a 
finite‐conductivity fracture intersecting 
a finite sealing‐fault. Society of 
Petroleum Engineers. 2003. DOI: 
10.2118/80547‐MS 

[9] Escobar FH, Tiab T, Jokhio SA. 
Characterization of leaky boundaries 
using transient pressure analysis. 

Society of Petroleum Engineers. 2003. 
DOI: 10.2118/80908‐MS 

[10] Escobar FH, Martinez JA, 
Montealegre‐Madero M. Pressure 
transient analysis for a reservoir with a 
finite‐conductivity fault. CT&F. 2013; 
5(2):5-18 

[11] Escobar FH, Martinez JA, 
Montealegre‐Madero M. Pressure and 
pressure derivative analysis in a 
reservoir with a finite‐conductivity fault 
and contrast of mobilities. “Fuentes” 
Journal. 2013;11(2):17-25. ISSN: 
1657‐6527 

[12] Gray KE. Approximating well‐to‐
fault distance from pressure build‐up 
tests. Journal of Petroleum Technology. 
Society of Petroleum Engineers. 1965: 
761‐767. DOI: 10.2118/968‐PA 

[13] Gibson JA, Campbell AT. 
Calculating the distance to a 
discontinuity from D.S.T. Data. Society 
of Petroleum Engineers. 1970. DOI: 
10.2118/3016‐MS 

[14] Guira B, Tiab D, Escobar FH. 
Pressure behavior of a well in an 
anisotropic reservoir. Society of 
Petroleum Engineers. 2002. DOI: 
10.2118/76772‐MS 

[15] Ispas V, Tiab D. New method of 
analyzing the pressure behavior of a 
well near multiple boundary systems. 
Society of Petroleum Engineers. 1999. 
DOI: 10.2118/53933‐MS 

[16] Kucuk FJ, Kabir S. Well test 
interpretation for reservoirs with a 
single linear no‐flow barrier. Journal of 
Petroleum Science and Engineering. 
1988 August;1(3):195-221 

[17] Martinez‐Romero N, Cinco‐Ley H. 
Detection of linear impermeable 
barriers by transient pressure analysis. 

195 

http://dx.doi.org/10.5772/intechopen.81078


Novel, Integrated and Revolutionary Well Test Interpretation and Analysis 

Society of Petroleum Engineers. 1983. 
DOI: 10.2118/11833‐MS 

[18] Odeh AS. Flow test analysis for a 
well with radial discontinuity. Society of 
Petroleum Engineers. 1969:328-334. 
DOI: 10.2118/2157‐PA 

[19] Rahman NMA, Miller MD, Mattar L. 
Analytical solution to the transient‐flow 
problems for a well located near a finite‐
conductivity fault in composite 
reservoirs. Society of Petroleum 
Engineers. 2003. DOI: 10.2118/ 
84295‐MS 

[20] Sabet M. Well Testing. Houston, TX, 
USA: Gulf Publishing Co.; 1991.460 p 

[21] Stanislav JF, Kabir CS. Pressure 
Transient Analysis. New Jersey: Prentice 
Hall; 1990. 320 p 

[22] Strelsova TD. Well Testing in 
Heterogeneous Formations. New York: 
John Wiley and Sons; 1988. 377 p 

[23] Tiab D, Crichlow HB. Pressure 
analysis of multiple‐sealing‐fault 
systems and bounded reservoirs by 
type‐curve matching. Society of 
Petroleum Engineers. 1979:378-392. 
DOI: 10.2118/6755‐PA 

[24] Tiab D, Kumar A. Detection and 
location of two parallel sealing faults 
around a well. Society of Petroleum 
Engineers. 1980:1701-1708. DOI: 
10.2118/6056‐PA 

[25] Tiab D. PE‐5553: Well Test Analysis. 
Lecture Notes. The University of 
Oklahoma, Norman, OK; 1993 

[26] Tiab D. Analysis of pressure and 
pressure derivative without type‐curve 
matching: 1‐skin and wellbore storage. 
Journal of Petroleum Science and 
Engineering. 1995;12:171-181 

[27] Tiab D. Analysis of pressure and 
pressure derivatives without type‐curve 

matching: I‐skin and wellbore storage. 
Society of Petroleum Engineers. 1993. 
DOI: 10.2118/25426‐MS 

[28] Trocchio JT. Investigation of fateh 
Mishrif fluid‐conductive faults. Society 
of Petroleum Engineers. 1990: 
1038-1045. DOI: 10.2118/17992‐PA 

196 



Chapter 5 

Multiple Well Testing 

The simplest form of interference testing involves two wells: a producer 
(or injector) and an observation well. The general idea is to produce in one 
well and observe the pressure drop in another. Multi‐interference testing 
usually involves a producer (or injector) and several observation wells. This is 
helpful to find horizontal anisotropy as explained by Earlougher and Kazemi 
[1] by type‐curve matching and [2] using TDS technique. To perform an inter-
ference test, all wells involved shut‐in to stabilize their bottom pressures. Then, 
the pressure recording tools are lowered into the observation well, and the 
producer (or injector) is opened to production (injection). If there is interfer-
ence, a pressure drop is recorded in the observation well(s) within a reasonable 
length of time. Most of the multiple tests are performed in closed reservoirs 
[1, 3]. Multiple tests are performed for a number of reasons: 

• Search for reservoir connectivity and/or continuity of the reservoir [1, 4]. 

• Detecting directional permeability and other heterogeneities [1]. 

• Estimate reservoir volume [1]. 

• Orientation (azimuth) of hydraulic fractures [5, 6]. 

For a two‐well system, the radius of investigation is given by [1]: 

sffiffiffiffiffiffiffiffiffi 
kt 

rinv =0:029 (5.1)
ϕμct 

The skin in the active well does not affect the pressure in the observation well. 
There are two types of tests: interference and pulse. 

5.1. Interference testing 

These are used to determine [1, 7]: 

• Connectivity of the reservoir and transmissibility. 

• Direction of flow patterns. This is done by selective opening of wells around 
the observation well. 

• Storage capacity (storage factor)=St =ϕ ct h. 

• Determination of the nature and magnitude of the anisotropy. The 
permeability of the reservoir is found in all directions and the direction, θ, of 
the anisotropy angle [1, 2]. 
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5.1.1 Conventional analysis 

5.1.1.1 Earlougher method 

Two wells: One active (injector or producer) and the other one of observation 
preferably shut‐in. The pressure in the observation well is [1]: 

Pws = P1hr þ m log t (5.2) 

When t=1h,  Pws≈P1hr≈Pi for new reservoirs. Eq. (5.2) is valid if tD/rD 
2>100 (x < 

0.0025), being r the distance between wells. The restriction of tD/rD 
2>100 is applied 

with a 1% error [1]. 
When a plot of Pws versus log t is built, one should obtain a straight line which 

slope and intercept gives the transmissibility, Eq. (2.33) and porosity, respectively, 
˜ ° 

Pi � P1hr2:302 � 7:41316T mSt = ϕctμ = e (5.3)
r2 

Note that the skin factor does not appear in this equation since there is only fluid 
flow in the active well and not in the observation well. However, there are excep-
tions when the well is highly stimulated. Wellbore storage is also minimized in 
multiple tests but not entirely [1]. 

Two shut‐in wells 
The buildup equation is given by [1]: 

t þ Δt
Pws = Pi þ m log (5.4)

Δt 

t is the total production time (same as tp in normal buildup) in the active well. 
Prepare a Horner graph and using the slope value find the transmissibility with 
Eq. (5.3). Find porosity from: 

˜ ˛ ˝ ° 
Pi � Pwf ðΔt =0Þ 1

2:302 � ln 1 þ � 7:41316T
St = e m t (5.5)

r2 

5.1.1.2 Ramey method 

It includes one active well (producer or injector) and the one of observation 
preferably shut‐in. This method requires type‐curve matching with Figure 1.7. Once 
ΔPws =Pi�Pws versus at the observation well has been plotted and the best match is 
obtained: 

(PD)M, (tD/rD 
2)M, ΔPM, tM 

Use the following equations: 

PDMT = 162:6qB 
ΔPM 

(5.6) 

St = 
0:0002637T tM 

r2 ðtD=r2 
DÞM 

(5.7) 

Limitations: 
rD>20 (see Figure 1.6) 
tD/rD 

2>50 or 100 
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5.1.1.3 Tiab and Kumar method 

As sketched in Figure 5.1, it uses some specific points: 
P 0 

m=the maximum value of the pressure derivative in the observation well 
which is placed at a distance r from the active well [8]. The units are psia/h. 

tm = The time at which P 0 
m occurs, h 

Procedure: 

a. Obtain ΔP versus time in the observation well which is preferably shut‐in. 

b.Calculate P 0 = Δ(ΔP)/Δt = change of ΔP/change in test time (later, it was 
known as the arithmetic derivative). 

c. Graph P 0 versus t in log‐log paper, see Figure 5.2. 

d.Calculate St and transmissibility: 

Figure 5.1. 
Log‐log plot of the arithmetic derivative, after [7, 8]. 

Figure 5.2. 
Cartesian plot to find the inflection point, after [7, 8]. 
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˜ ° 
qB 1

St =0:0274 (5.8)
r2 P 0 

m 

12T = 948Str (5.9)
tm 

From the Cartesian plot (verification purposes): 

2 1T = 382:2Str (5.10)
to 

It is very difficult to obtain the P’ due to noisy pressure values. Then, it is 
recommended to use the Cartesian plot. Select the inflection point there. Extrapo-
late the line and read the value of t0 as sketched in Figure 5.2. 

5.1.2 TDS technique 

When plotting dimensionless pressure and pressure derivative versus dimen-
sionless time divided by the dimensionless radius squared, a single profile will 
always be obtained as shown in Figure 5.3. This gives two characteristic features: 
(1) the radial flow regime is similar to that of a wellbore test with a flat derivative 
with a value of 0.5, Eq. (2.70), which allows finding the permeability from 
Eq. (2.71) and (2) a unique intersection point between the pressure and the pressure 
derivative that takes place before the actual flow regime is seen. These features 
allow obtaining the following observations [9]: 

2ðtD=rDÞint =0:574952929 (5.11) 

where suffix int denotes intersection. The corresponding values of dimensionless 
pressure and the dimensionless derivative at this point of intersection are: 

ðPDÞtD =r2 
D =0:57495 =0:32369 (5.12) 

ðtD*PD 
0ÞtD=r2 =0:57495 =0:32369 (5.13)

D 

Figure 5.3. 
0 2Log‐log plot of PD and tD *PD versus tD/rD for an infinitive reservoir (line source) [2, 9]. 
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Replacing Eqs. (1.89), (1.94), and (2.57) into the above expressions leads to 
obtain the following expressions: 

T = 
kh 
μ 

qB
= 45:705 ðΔPÞint 

(5.14) 

T = 
kh 
μ 

qB
= 45:705 ðt*ΔP 0Þint 

(5.15) 

T
St = ϕcth =0:000458646 tint r2 

(5.16) 

And, 

T = 
kh 
μ 

= 
70:6qB 
ðt*ΔP 0Þr 

(2.76) 

Ref. [2] extended the application of the TDS technique in interference testing to 
determine areal anisotropy. 

Example 5.1 

Taken from [7], during an interference test, 3125 STB (stock-tank barrel) of oil 
was produced by well A. The pressure response was observed at well B, 138 ft away 
from well A for 300 hr. Test data are reported in Tables 5.1 and 5.2. Then, well A 
was shut‐in too, and the pressure response was observed at well B for 100 hr. 
Additionally, the following data are given: 

μ = 1.3 cp, B=1.14 bbl/STB, h=31 ft 
Pi =2600 psia, ρ=55.4 lbm/ft3, s=�2.2 (well A) 
ct=16�10�6/psia, Vu =0.00697 bbl/ft 

1. Calculate permeability and porosity using: (A) Earlougher's method when well 
A is active and shut‐in, (B) the method of Tiab and Kumar, and (C) TDS 
technique 

2. Show that the wellbore storage effects are not important at well A. 

Solution 

1. Calculate permeability and porosity using A) The Earlougher Method: Well A 
is active. 

t, h  P, psia ΔP, psia t*ΔP, psia t, h  P, psia ΔP, psia t*ΔP, psia 

1.1 2595.6 4.4 5.15 10 2575.5 24.5 11.19 

1.5 2593.5 6.5 6.29 15 2571 29 11.60 

2 2591.4 8.6 8.25 25 2565 35 11.39 

2.5 2590 10 8.68 35 2561 39 11.71 

3 2587.5 12.5 9.05 60 2555 45 11.50 

4 2585 15 9.76 100 2549 51 12.74 

5 2583 17 9.46 150 2543.5 56.5 15.61 

7.5 2579 21 10.53 300 2530 70 28.14 

Table 5.1. 
Pressure and pressure derivative data for well B (active). 
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t, h  Pws, psia (t1 þΔt)/Δt t, h  Pws, psia (t1þΔt)/Δt 

1.0 2541.0 301.00 10.0 2559.0 31.00 

2.0 2544.0 151.00 15.0 2563.5 21.00 

3.5 2547.0 85.71 25.0 2569.0 13.00 

5.0 2551.0 61.00 40.0 2574.0 7.50 

7.0 2555.0 43.86 60.0 2577.0 5.00 

100.0 2580.0 4.00 

Table 5.2. 
Pressure response at well B (shut‐in). 

It is necessary to construct a graph in semilog of shut‐in pressure against time 
(see Figure 5.8). In this graph, a straight line is drawn whose slope, m = �25.517 
psia/cycle. Since 3125 STB of oil were recovered during 300 hours of production, 
then flow rate, q, is 250 BPD. The permeability was then calculated using Eq. (2.33): 

162:6qμB 162:6ð250Þð1:3Þð1:14Þ
k = � = = 76:15 md 

mh ð25:518Þð31Þ 

By linear regression analysis, we find that P1hr = 2600.53 psia. Use Eq (5.2) to 
find porosity (Figure 5.4): 

˜ ° 
2:302ð2600 � 2600:53Þ � 7:431676:15 �25:518ϕ = e = 11:94% ð1:3Þð1382Þð16 � 10�6Þ 

Earlougher method: well A is shut‐in 
Figure 5.5 presents a semilog graph of Pws versus (t1þΔt)/Δt. From the straight 

line, we have: m = �25.749 psia/cycle and P1hr = 2532.55 psia. Again, permeability is 
estimated with Eq. (2.33): 

162:6ð250Þð1:3Þð1:14Þ
k = = 72:65 md ð26:749Þð31Þ 

Find porosity with Eq. (5.5), thus: 

Figure 5.4. 
Semilog plot of Pwf versus Δt, after [7]. 
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˜ ˜ ° ° 
2:303ð2532:55 � 2530Þ 1 � ln 1 þ � 7:43172:65 �26:749 300ϕ = e = 8:7% ð1:3Þð1382Þð16 � 10�6Þ 

Tiab‐Kumar method 
The derivative has a smooth of 0.5 cycles; then, it is smoothed possible deriva-

tive value. Figure 5.6 shows P'm =4.19psia and tm=1.5h. Eqs. (5.8) and Eqs. (5.9) are 
used to find porosity and permeability, respectively: 

˜ ° ˜ ° 
0:0274qB 1 0:0274ð250Þð1:14Þ 1 

ϕ = = = 19:7%
hr2ct P 0 

m ð31Þð1382Þð16 � 10�6Þ 4:19 
˜ °  ˜ °  

2k = 948ϕctμr 
1 

= 948ð0:1574Þð16 � 10�6Þð1:3Þð1382Þ 1 
= 39:4 md 

tm 1:5 

TDS technique 
The pressure derivative plot gives a better understanding of the reservoir model. 

A very clear radial flow regime is seen, and actually, it is possible to observe late 
pseudosteady‐state period meaning that the reservoir boundaries have been felt. 

Figure 5.5. 
Horner plot of Pws versus (t1þΔt)/Δt, after [7]. 

Figure 5.6. 
Arithmetic pressure derivative versus time log‐log plot for Example 5.1, after [7]. 
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Since actual radial flow regime is observed, the permeability value found from there 
should be the most accurate one. The following information was read from 
Figure 5.7: 

tint =1.7h, (t*ΔP')r =11.5psia, ΔPint=(t*ΔP')int =7.5psia 
Find permeability from Eqs. (2.76) and (5.14/5.15) and porosity from Eq. (5.16): 

70:6qμB 70:6ð250Þð1:2Þð1:14Þ
k = = = 73:37 md 

hðt*ΔP 0Þ 31ð11:6Þr 

45:705qμB 45:705ð250Þð1:2Þð1:14Þ
k = = = 72:83 md ð31Þð7:5Þhðt*ΔP 0Þint 
0:000458646ktint 0:000458646ð72:83Þð1:7Þ 

ϕ = = = 19:1% 
μctr2 ð1:3Þð12 � 10�6Þð1382Þ 

2. Show that the wellbore storage effects are not important at well A 
As seen in Section 3.2.1, if qaf/q < 0.01, it can be concluded that the afterflow or 

wellbore storage is not affecting the pressure data. To calculate qaf, find wellbore 
storage coefficient with Eq. (2.5) and then qaf with Eq. (3.8): 

Vu 0:00697
C = 144 = 144 =0:0178 bbl=psi

ρ 56:4 

24C dPws 24ð0:0178Þ q = = 4:682 = 1:755 BPD af B dΔt 1:14 

The remaining calculations are shown in Table 5.3. In this table, it can be seen 
that the condition qaf/q < 0.01 is always fulfilled, so the effects of wellbore storage 
are not important. 

A summary of the results of porosity and permeability is given in Table 5.4 for 
comparison purposes. Definitely the radial flow is observed and provided a perme-
ability of 73.37 md from Eq. (2.71). This value closely matches with those from 
conventional analysis, Eq. (2.33). The intersection point, Eq. (5.14), provided an 
excellent permeability value which means that that point was properly selected; 
therefore, the porosity should be about 19% which is well‐reported by TDS tech-
nique and Tiab‐Kumar method, but far from conventional analysis. Actually, from 
the derivative plot, Figure 5.7, the intersection point does not coincide with any 

Figure 5.7. 
Pressure and pressure versus time log‐log plot for Example 5.1, after [7]. 
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t, h  P 0 , psia/h qaf, BPD qaf/q t, h  P 0 , psia/h qaf, BPD qaf/q 

1.1 4.680 1.754 0.00702 10 1.119 0.419 0.00168 

1.5 4.190 1.570 0.00628 15 0.773 0.290 0.00116 

2 4.125 1.546 0.00618 25 0.456 0.171 0.00068 

2.5 3.470 1.300 0.00520 35 0.335 0.125 0.00050 

3 3.017 1.130 0.00452 60 0.192 0.072 0.00029 

4 2.440 0.914 0.00366 100 0.127 0.048 0.00019 

5 1.892 0.709 0.00284 150 0.104 0.039 0.00016 

7.5 1.404 0.526 0.00210 300 0.094 0.035 0.00014 

Table 5.3. 
Arithmetic pressure derivative and afterflow data. 

Method Permeability, md Porosity, % Equation number 

Earlougher—Active 76.15 11.94 (2.33) and (5.2) 

Earlougher—shut‐in 72.65 8.7 (2.33) and (5.5) 

Tiab‐Kumar 39.4 19.7 (5.9) and (5.8) 

TDS 73.37 (2.71) 

TDS 72.83 19.1 (5.14/5.15) and (5.16) 

Table 5.4. 
Comparison of results of Example 5.1. 

datum in the test, but it was easily eyed interpolated which is not the case for the 
Tiab‐Kumar method which cannot be either interpolated or extrapolated. This old 
test does not have enough points but recently pressure well tests data have thou-
sands of data points which enabled the use of Tiab‐Kumar method. 

5.2. Pulse testing 

This technique uses a series of short pulses of the flow rate. The pulses are 
alternating periods of production (or injection) and shut‐in with the same flow rate 
in each production. The pressure response to the pulses is measured in the observa-
tion well. The main advantage of pulse testing is the short duration of the pulse. A 
pulse can last for a few hours or a few days, which disrupts normal operation 
slightly compared to interference tests [1]. Besides determining conductivity (then, 
transmissibility and porosity), pulse testing has several applications, that is [6] use 
them to find the azimuth of a hydraulic fracture ([5] does the same with interfer-
ence testing) and [10] for estimating permeability distributions. 

The nomenclature of a pulse test is given in Figure 5.8. The following variables 
are defined as [1]: 

tL (time lag), is the time between the end of the pulse and the pressure peak 
caused by the pulse. 

ΔP/q (amplitude). The vertical distance between the tangent to two consecutive 
peaks and the line parallel to that tangent at the peak of the pulse to be 
measured, psia 

Δtc, pulse cycle. Time from start to end of a flow period, h. 
Δtp, pulse shut‐in period, h. 
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Figure 5.8. 
Sketch of a pulse test, after [1]. 

The sign convention for ΔP is [1, 7]: 
ΔP>0 if q>0 (active producer well), ΔP/q>0  
ΔP <0 if q < 0 (active injector well), ΔP/q>0  
ΔP < 0 for odd peaks 
ΔP>0 for even peaks 

5.2.1 Interpretation methods 

5.2.1.1 Kamal‐Birgham method 

Although the methodology was presented by [11], the charts and some equations 
were corrected later by [12]. The procedure is outline below: 

1. Plot ΔP/q versus t on Cartesian paper 

2. From this plot obtain the values of tL, Δtc and Δtp. 

3. Calculate the relation tL/Δtc and F’=Δtp/Δtc. 

4.Find [ΔPD(tL/Δtc)2] from Figures 5.9–5.12, depending on the pulse, 
corresponding to F’ and tL/Δtc from step 3 and calculate transmissibility, T, 
from: 
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Figure 5.9. 
Relationship between transition time and amplitude response for the first odd pulse, after [12]. 

h i141:2B 2T = ΔPD ðtL=ΔtcÞ (5.17)2ðΔP=qÞðtL=ΔtcÞ 
Analyze all pulses since the first one may be affected by wellbore storage. 

1. Determine tLD/rD 
2, dimensionless time lag, from Figures 5.13–5.16 

corresponding to F’ y tL/Δtc obtained in step 3. 

2. Calculate St: 

T tLSt =0:000263 (5.18)
r2 ðtLD=r2 

DÞ 

Wellbore storage effects in the observation well increase with lag time and tend 
to reduce the amplitude of the first pulses. However, if r >32(C/St)

0.54 in the 
response well, storage effects are less than 5% of increase in the transition time and 
will not affect the amplitude. This is valid if [13]: 

Figure 5.10. 
Relationship between transition time and amplitude response for the first even pulse, after [12]. 
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Figure 5.11. 
Relationship between transition time and amplitude response for the all even pulses but first, after [12]. 

Figure 5.12. 
Relationship between transition time and amplitude response for the all odd pulses but first, after [12]. 

Figure 5.13. 
Relationship between transition time and cycle length for the first even pulse, after [12]. 
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Figure 5.14. 
Relationship between transition time and cycle length for the first odd pulse, after [12]. 

Figure 5.15. 
Relationship between transition time and cycle length for all even pulses but first, after [12]. 

Figure 5.16. 
Relationship between transition time and cycle length for all odd pulses but first, after [12]. 
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�0:86tD CD>ð230 þ 15sÞ (5.19)2 2rD rD 

Example 5.2 

Taken from [7]. The pressure response data given in Table 5.4 were obtained 
from a producer well during a multiple test. Additional data concerning this test are 
shown below (Table 5.5): 

μ=2.8cp, B=1.20 bbl/STB, h=30ft 
ct=12�10�6/psia, C=0.002bbl/psia at observation well 
Shut‐in period=0.7h, flow period=1.63h 
Well distance=140 ft, q=350STB/D 

1. Calculate the formation permeability and porosity from the third pulse 

2. Recalculate k and φ with the other two pulses and compare. Explain the 
difference. 

Solution 

The following information was read from Figure 5.17: 
ΔP1/q = 0.007041 psia/BPD, tL1 = 0.55 h 
ΔtC1 = ΔtC2 = ΔtC3 = 2.33 h, Δtp1 = Δtp2 = Δtp3 = 0.7 h 
ΔP2/q = 0.0066992 psia/BPD, tL2 = �0.0799 h 
ΔP3/q = 0.007455 psia/BPD, tL3 = 0.47 h 

1. Calculate the formation permeability and porosity from the third pulse 

First the ratios tL/ΔtC and F’ = Δtp/ΔtC are estimated to be tL3/ΔtC = 0.47/2.33 = 
0.2017 and F’ = 0.7/2.33 = 0.3004. With these values, enter Figure 5.11 and read 
[ΔPD (tL/ΔtC)2] = 0.0033. Calculate permeability with Eq. (5.17), 

h i 
141:2μB ΔPDðtL=ΔtcÞ2 

141:2ð2:8Þð1:2Þð0:0033Þ
k = = = 172:07 md ðΔP=qÞðtL=ΔtcÞ2h ð0:007455Þð0:20172Þð30Þ 

The dimensionless time lag divided by the dimensionless squared radius is found 
from Figure 5.15 to be tLD/r2 = 0.52. Estimate porosity with Eq. (5.18): D 

t, h  ΔP, psia ΔP/q, psia/BPD t, h  ΔP, psia ΔP/q, psia/BPD 

0.25 0.175 0.0005 2.75 1.925 0.0055 

0.50 0.560 0.0016 3.00 2.975 0.0085 

0.75 1.400 0.0040 3.25 3.850 0.0110 

1.00 2.625 0.0075 3.50 4.270 0.0122 

1.25 3.150 0.0090 3.75 4.060 0.0116 

1.50 2.940 0.0084 4.00 3.360 0.0096 

1.75 1.890 0.0054 4.25 2.590 0.0074 

2.00 1.400 0.0040 4.50 2.100 0.0060 

2.25 1.260 0.0036 4.75 2.100 0.0060 

2.50 1.505 0.0043 5.00 2.555 0.0073 

Table 5.5. 
Pulse test data. 
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Figure 5.17. 
Cartesian plot for Example 5.2. 

0:0002637k tL 0:0002637ð172:07Þ ð0:47Þ 
ϕ = = = 6:22 % 

μr2ct ðtLD=r2 
DÞ ð2:8Þð1402Þð12 � 10�6Þ ð0:52Þ 

2. Recalculate k and φ with the other two pulses and compare. Explain the 
difference. 

For pulse 1, tL/ΔtC = 0.55/2.33 = 0.236 and F’ = 0.7/2.33 = 0.3004. From 
Figure 5.10, [ΔPD (tL/ΔtC)2] = 0.0037. Calculate permeability with Eq. (5.17), 

h i 
141:2μB ΔPDðtL=ΔtcÞ2 

141:2ð2:8Þð1:2Þð0:0037Þ
k = = = 149:21 md ðΔP=qÞðtL=ΔtcÞ2h ð0:007041Þð0:2362Þð30Þ 

2From Figure 5.14, tLD/r = 0.25. Porosity is then estimated with Eq. (5.18), D 

0:0002637ð55:98Þ ð0:55Þ 
ϕ = = 12:64% ð2:8Þð1402Þð12 � 10�6Þ ð0:26Þ 

For Pulse 2: Since the transition time, tlag, is negative (see Figure 5.17), which 
implies that the pressure is beginning to increase after the well is shut‐in, as shown 
in the graph. This behavior is not physically logical and may be caused by some 
error that occurred during the test. 

At the first pulse, the permeability was reduced by 87%, and the porosity was 
increased by 203%. This was due to an increase in tL and reduction in the value of 
pulse amplitude. This can be caused by wellbore storage. 

5.2.1.2 TDS technique 

Figure 5.18 was built for different distance between wells and different ratios 
of production‐shut‐in periods. Comparing to Figure 5.3, the same intersection point 
is given. Also, the radial flow displays the same behavior plus some times this 
behavior is repeated among the pulses. Based on the above, it is concluded that 
Eqs. (5.14)—(5.16) and (2.71) also work for pulse testing. 
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Figure 5.18. 
Dimensionless pressure and pressure derivative against dimensionless both time and radius squared, 
finite‐source solution. 

Example 5.3 

A synthetic pulse test is presented in Table 5.6 and Figure 5.19. The below data 
were used to generate the test. 

μ = 2 cp, B = 1.2 bbl/STB, h = 100 ft 
Pi = 3200 psia, r = 100 lbm/ft3, q = 350 BPD 
ct = 1.2 ˜ 10 °5/psia, rw = 0.3 ft, φ = 10% 
k = 400 md 
Find permeability and porosity for this example using TDS technique. 

t, h  ΔP, psia t*ΔP, psia t, h  ΔP, psia t*ΔP, psia t, h  ΔP, psia t*ΔP, psia 

0.001 0.011 6.000 6.065 1.468 10.685 1.315 1.095 

0.014 0.004 0.024 6.015 6.062 0.030 10.720 1.509 1.149 

0.016 0.009 0.046 6.017 6.056 0.055 10.762 1.713 1.197 

0.019 0.020 0.079 6.021 6.044 0.091 10.812 1.924 1.238 

0.023 0.038 0.125 6.024 6.024 0.139 10.871 2.142 1.274 

0.027 0.065 0.183 6.029 5.995 0.199 10.941 2.366 1.304 

0.032 0.103 0.254 6.034 5.955 0.270 11.025 2.596 1.330 

0.039 0.156 0.336 6.040 5.902 0.350 11.125 2.829 1.353 

0.046 0.223 0.426 6.048 5.835 0.436 11.244 3.066 1.372 

0.055 0.305 0.520 6.057 5.754 0.526 11.385 3.307 1.388 

0.065 0.405 0.616 6.067 5.657 0.616 11.553 3.550 1.402 

0.077 0.520 0.710 6.079 5.546 0.704 11.753 3.796 1.414 

0.092 0.651 0.801 6.094 5.421 0.788 11.992 4.043 1.425 

0.110 0.798 0.885 6.111 5.283 0.865 12.275 4.292 1.434 

0.131 0.958 0.963 6.131 5.132 0.934 12.612 4.543 1.441 

0.155 1.131 1.033 6.156 4.970 0.996 13.014 4.794 1.448 

0.185 1.315 1.095 6.184 4.799 1.050 13.492 5.047 1.453 

0.220 1.509 1.149 6.218 4.619 1.095 14.060 5.300 1.458 
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t, h  ΔP, psia t*ΔP, psia t, h  ΔP, psia t*ΔP, psia t, h  ΔP, psia t*ΔP, psia 

0.262 1.713 1.197 6.258 4.433 1.133 14.737 5.555 1.462 

0.312 1.924 1.238 6.305 4.240 1.162 15.542 5.809 1.465 

0.371 2.142 1.274 6.361 4.043 1.185 16.500 6.065 1.468 

0.441 2.366 1.304 6.427 3.842 1.201 16.758 5.885 1.170 

0.525 2.596 1.330 6.505 3.640 1.211 16.805 5.685 1.207 

0.625 2.829 1.353 6.598 3.435 1.214 16.861 5.480 1.237 

0.744 3.066 1.372 6.707 3.231 1.212 16.927 5.270 1.261 

0.885 3.307 1.388 6.837 3.028 1.203 17.005 5.056 1.281 

1.053 3.550 1.402 6.990 2.826 1.189 17.098 4.839 1.296 

1.253 3.796 1.414 7.171 2.627 1.170 17.207 4.620 1.306 

1.492 4.043 1.425 7.386 2.432 1.145 17.337 4.400 1.312 

1.775 4.292 1.434 7.640 2.241 1.114 17.490 4.178 1.314 

2.112 4.543 1.441 7.940 2.057 1.078 17.671 3.957 1.312 

2.514 4.794 1.448 8.296 1.878 1.037 17.886 3.736 1.306 

2.992 5.047 1.453 8.717 1.707 0.991 18.140 3.517 1.296 

3.560 5.300 1.458 9.214 1.544 0.941 18.796 3.085 1.264 

4.237 5.555 1.462 9.803 1.390 0.888 19.714 2.667 1.214 

5.042 5.809 1.465 10.500 1.246 0.831 21.000 2.269 1.146 

Table 5.6. 
Pressure and pressure derivative versus time data for Example 5.3. 

Solution 

The following characteristic features were read from Figure 5.19: 
tint = 0.131 h, (t*ΔP 0)r = 1.5 psia, ΔPint = (t*ΔP 0)int = 0.97 psia 
Find permeability from Eq. (2.71) and (5.14/5.15) and porosity from Eq. (5.16): 

70:6qμB 70:6ð350Þð2Þð1:2Þ
k = = = 395:4 md 

hðt*ΔP 0Þ 100ð1:5Þr 

Figure 5.19. 
Pressure and pressure derivative versus time for simulated pulse test of Example 5.3. 
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45:705qμB 45:705ð350Þð2Þð1:2Þ
k = = = 395:8 md 

100ð0:97Þhðt*ΔP 0Þint 
0:000458646ktint 0:000458646ð395:4Þð0:131Þ 

ϕ = = = 9:9% 
μctr2 ð2Þð1:2 � 10�5Þð1002Þ 

The results match quite well with the given porosity and permeability values. 

Nomenclature 

B oil volume factor, bbl/STB 
c compressibility, 1/psia 
C wellbore storage coefficient, bbl/psia 
d distance from well to linear boundary, ft 
ct total or system compressibility, 1/psia 
FCD fault dimensionless conductivity 
FE flow index 
h formation thickness, ft 
k permeability, md 
kfwf fault conductivity, md‐ft 
Np oil produced since last stabilization, bbl 
m slope of P‐vs‐log t plot, psia/h/cycle 
m1 slope of first semilog straight line, psia/h/cycle 
P pressure, psia 

0PD dimensionless pressure derivative 
PD dimensionless pressure 
Pi initial reservoir pressure, psia 
P'm maximum arithmetic pressure derivative, psia/h 
P' arithmetic pressure derivative, psia/h 
Pwf well flowing pressure, psia 
Pws well shut‐in or static pressure, psia 
P1hr intercept of the semilog plot, psia 
P* false pressure, psia 
ΔPs pressure drop due to skin conditions, psia 
q liquid flow rate, BPD 
r radius, ft 
rw well radius, ft 
s skin factor 
St reservoir storativity, ft/psia 
t time, h 
tL lag time, h 
tm time at which P'm occurs 
t0 extrapolated time for the inflection point, h 
t*ΔP 0 pressure derivative, psia 
t2*ΔP″ second pressure derivative, psia 
tp production (Horner) time before shutting‐in a well, h 
tD dimensionless time based on well radius 
tdv time at which either pressure or derivative deviate from first radial 

line, hr 
T reservoir transmissibility, md‐ft/cp 

214 



Multiple Well Testing 
DOI: http://dx.doi.org/10.5772/intechopen.81078 

Greek 

ΔP/q pulse amplitude 
Δt shut‐in time, h 
Δtc pulse cycle, h 
Δtp pulse shut‐in period 
Δ drop, change 
φ porosity, fraction 
ρ fluid density, lbm/ft3 

τ scalable dimensionless conductivity 
μ viscosity, cp 

Suffices 

1hr time of 1 h 
2m second semilog straight line 
2x maximum in the second pressure derivative 
BL bilinear flow regime 
BLssi intercept of bilinear and steady‐state lines 
d distance 
D dimensionless 
DA dimensionless with respect to area 
Df dimensionless with respect to fault length 
f fault 
ebf end of bilinear flow 
F Inflection. Better found from second derivative 
i intersection or initial conditions 
int intersection between pressure and pressure derivative before radial flow 
L linear flow regime 
M matching point 
p production, porous 
r radial flow 
re end of radial flow regime 
r2 second plateau, hemi radial flow 
rssi intercept of radial and steady‐state lines 
s skin 
ss a point on the steady‐state period 
s2r start of second semilog straight line 
w well 
wf well flowing 
ws well shut‐in 
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Chapter 6 

Naturally Fractured Reservoirs 

In these reservoirs, two different types of porosity are observed. The matrix has 
less permeability, and its porosity is small compared to that of the fractures, which 
also has high permeability. However, there are cases where the matrix has zero 
porosity and permeability, so the flow only occurs from the fractures. This type of 
behavior occurs in reservoirs with igneous or metamorphic rocks [4]. 

Naturally, fractured deposits have fractures with permeability, kf, and porosity, 
ϕf, and a matrix with permeability, km, and porosity, ϕm. Some reservoirs act as if 
they were naturally fractured, but they are not. This is the case of dissolved chan-
nels, interlayered systems with different permeability (interlayer dolomitic with 
limestones which have less density or interstratified sandstones with other limolites 
and fine‐grained sandstones). However, naturally fractured models can be applied 
to these types of reservoirs [29]. 

In this class of naturally fractured deposits, the two different types of porosity 
are found as shown on the left side of Figure 6.1. A very low porosity is presented in 
the fine pores, and another high porosity is represented by fissures, cavities, and 
fractures [46]. 

When the classification of the naturally fractured reservoirs from the point of 
view of the flow (engineering) is carried out, the permeability and the porosity of 
the fracture must be taken into account and a comparison with the permeability and 
porosity of the matrix must be made. According to the above, Nelson [33] talks 
about the four types of fracture systems. Type I consists of those fractures that 
provide the storage capacity and permeability of the reservoir. Type II is that group 
of fractures that has a better permeability than that of the matrix. Type III is 
composed of those fractures in which the permeability is negligible, but the storage 
capacity of hydrocarbons is high. Finally,Type IV corresponds to those in which the 
fractures are filled with minerals, and it is generally not very feasible for the flow to 
develop [33]. 

Because of the above, this type of reservoirs is normally known as double 
porosity reservoirs. Their matrix permeability is negligible compared to that of the 
bulk fractured systems. Then, it is expected that the well to be fed only by the 
fractures as sketched in Figure 6.2.a. This chapter will devote on this type of 
systems. There is another kind in which the matrix porosity is not negligible and 
once depletion caused by fluid withdrawal takes place inside the fracture system, 
some fluid to the well once comes from the matrix as schematically shown in 
Figure 6.2.b. They are called double‐porosity double‐permeability reservoirs and 
TDS technique for this type of deposits is provided in [19]. 

As this point, the reader ought to be aware of one important issue. Most reser-
voirs, not all of them, are heterogeneous since porous media have chaotic and 
random distribution. However, as seen in Figure 6.2, the fluid comes from one or 
two media: either matrix or fractures. From the well testing point of view, when a 
unique system acts, then, the reservoir is recognized as a homogeneous, even 
though it is really heterogeneous. When two, as depicted in Figure 6.2, or more 
systems act, then the reservoir is meant to be heterogeneous. 

Based upon the above, naturally fractured reservoirs are heterogeneous. The 
idea of a homogeneous channel occurs outside of reality. However, the rock is 
fractured homogeneously, the percolation of the water causes mineral deposition, 
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Figure 6.1. 
Illustration of a naturally fractured deposit and its ideal representation [46]. 

Figure 6.2. 
Schematic representation of (a) double‐porosity and (b) double‐permeability systems, after [27]. 

which reduces the permeability or completely blocks the channels of the fluid. 
Therefore, the fractures of homogeneous character change over time, and a hetero-
geneous rock is obtained. The porosity of the fracture is rarely greater than 1.5 or 
2%. Usually, this is less than 1%. The storage capacity of the fracture, Sf=ϕfcfhf, is 
very small, because ϕf is small and hf is extremely low. In contrast, kf is very high. 
The storage capacity of the matrix, Sm = ϕmcmhm, is greater than the storage capacity 
of the fractures. Normally, the permeability of the matrix is less than the perme-
ability of the fractures. If these have the same value, the system behaves as homo-
geneous and without fractures. If the permeability of the matrix is zero and the 
fractures are randomly distributed, the system has a homogeneous behavior. How-
ever, if the permeability of the matrix is zero, but the fractures have a preferential 
direction, then there is a linear flow. In addition, if the permeability of the matrix is 
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small (usually less than 0.01 md) and the reservoir is widely fractured, the system 
behaves as homogeneous and without fractures. From the well testing point of 
view, three conditions must be met to determine if it is actually a naturally frac-
tured deposit [34]: 

a. the porosity of the matrix is greater than the porosity of the fractures; 

b.the permeability of the matrix is not zero, but its permeability is much smaller 
than the permeability of the fractures; and 

c. the well intercepts the fractures. 

6.1. Conventional analysis for characterization of naturally fractured 
reservoirs 

Mavor and Cinco‐Ley [31] defined two parameters to characterize naturally 
fractured formations: the dimensionless storativity ratio, ω, and the interporosity 
flow parameter or flow capacity ratio, λ. As defined by Eq. (2.1), ω gives what 
fraction of the total porosity is provided by the fractures, and λ, Eq. (2.2), describes 
the matrix flow capacity available to the fractures. 

ðϕctÞf
ω = (6.1)ðϕctÞf þ ðϕctÞm 

24nðn þ 2Þkmrwλ = (6.2)
kf h

2 
m 

n in Eq. (6.2) depends on the model, n = 1 for strata mode, n = 2 for matchsticks 
model, and n= 3 for cubic model. 

Odeh [34] examined several theoretical models and concluded that fractured 
deposits (especially with secondary porosity) generally behave as homogenous 
reservoirs. According to Warren and Root [46], a closure versus log pressure graph 
(tpþΔt)/Δt will yield two portions of parallel straight lines as shown in Figure 6.3. 
The first straight line portion, if seen, can be used to calculate the total product kh 
by the conventional Horner method. Note that P1hr is taken from the second straight 
line. The average reservoir pressure is estimated by extrapolating, also, the second 
line to (tpþΔt)/Δt = 1 to obtain P* and, then, using conventional techniques. Also, 
TDS technique is recommended [28, 32], as studied in Chapter 3. The vertical 
distance between the two semilog straight lines, see Figure 6.3, identified as ∂P can 
be used to estimate dimensionless storativity ratio [46]: 

�2:303∂ P 
mω = e = 10�∂ 

m
P 

(6.3) 

From the above equation, if ∂P < 100, the storage capacity parameter, ω, may be 
in error. The Warren‐and‐Root parameter can also be estimated by reading the 
intersection points among the lines: 

ω = t1=t2 (6.4) 

2 2ðϕctÞf μr ðϕctÞf þmμrw w
λ = = (6.5)

1:781kt1 1:781kt2 
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when ω approaches zero and λ ≤ 1˜10 °9, all permeability comes from the 
fractures. Figure 6.3 can be used to further understand the flow mechanics in 
naturally fractures formations. At the beginning of the flow, neglecting wellbore 
storage effects, all the flow comes from the fracture to the well in a radial flow 
manner; therefore, a flat line will be displayed in the pressure derivative curve. This 
is labeled as number 1 in Figure 6.3. Since the fracture porosity and height are 
small, it is expected that the fluid depletes inside the fracture system and pressure 
decline inside the fracture forces the fluid to come from the matrix to the fracture. 
That transition period is labeled as number 2 and is reflected as a “v” shape in the 
pressure derivative curve. At this point, it is good to know that flow from matrix to 
fractures can flow under pseudosteady‐state (mentioned “v”) of transient condi-
tions. Once the fractures are filled with fluid, the radial flow regime (horizontal line 
on the pressure derivative curve) develops and the system behaves as homoge-
neous. 

It is customary to assume that (ct)m = (ct)f and that is what is going to be treated 
in this book, just for academic purposes. However, Tiab et al. [43] demonstrated 
that the fracture compressibility is at least one order of magnitude higher than the 
matrix compressibility. Neglecting this reality can lead to a huge overestimation of 
fracture porosity. Actually, the determination of fracture compressibility is a labo-
ratory challenge. The recommended way is using transient pressure analysis as 
demonstrated by Tiab et al. [43]. 

The interporosity flow parameter, λ, is a function of the ratio between the matrix 
permeability and the permeability of the fractures, the shape factor and wellbore 
radius [38, 46].

 ! 
km 2λ = α r (6.6)wkf 

The α factor is the block shape parameter that depends on the geometry and the 
shape characteristics of the matrix‐fissures system, and is defined by: 

Figure 6.3. 
Horner plot for a naturally fractured reservoir [31]. 
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A 
α = (6.7)

Vx 

where A = surface area of matrix block, ft2; V = matrix block volume, ft3; and 
x = characteristic length of the matrix block. 

For the case of cubic block matrix separated by fractures, λ is given by: 

! 
λ = 

60 

l2 
m 

km 

kf
2rw (6.8) 

Being lm the length of the side of the block. For the case of spherical block matrix 
separated by fractures, λ is given by: 

! 
λ = 

15 
r2 
m 

km 

kf
2rw (6.9) 

where rm = radius of the sphere and finally, when the matrix is of blocks of 
horizontal strata (rectangular slab) separated by fractures, λ is given by 
(Figure 6.4): 

! 
λ = 

12 

h2 
f 

km 

kf
2rw (6.10) 

hf = thickness of a particular fracture or a high permeability layer. 
Another method for estimating the interporosity parameter, λ, was proposed by 

Uldrich and Ershaghi [45]. This method used the inflection point time described in 
Figure 6.3. However, it is considered here not of practical use since it requires 
estimation of the Ei(‐x) function and chart‐information reading. 

Eqs. (6.3)–(6.5) has a strong drawback. Since the fractures promote increasing 
wellbore storage than the expected for a homogeneous system; then, the first or 
early semilog line is usually masked by wellbore storage. Therefore, conventional 
analysis cannot be used. To overcome this issue, Tiab and Bettam [42] provided an 
equation, Eq. (6.11), to find the interporosity flow parameter form the inflection 
point as Uldrich and Ershaghi [45] did. This equation is applicable to both 

Figure 6.4. 
Definition of the intersection point. 
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drawdown and buildup tests. Once λ is known, t1 of Eqs. (6.4) and (6.5) can be 
known. Actually, Tiab et al. [43] demonstrated that wellbore storage affects more 
the estimation of ω than λ. In other words, the though occurred during the transi-
tion is more affected in the pressure scale than in the time scale; therefore, the 
estimation of the interporosity flow parameter may be acceptable. 

23792ðϕ ctÞf þmμ r 1w
λ = ωln (6.11)

kfbΔtF ω 

Another good approximation for finding the interporosity flow parameter is 
presented by Stewart [38] with the aid of a MDH plot (although a Horner plot can 
also be taken) as the one given in Figure 6.5. A horizontal line passing throughout 
the transition period is drawn. The intersection of this line with the second semilog 
line provides tI which is used in the following expression: 

21:732ðϕ ctÞmþf μ rw
λ = (6.12)

ktI 

The beginning of the second semilog straight line, tb2, actual total system behav-
ior response, can also be used. Under this condition, Eq. (6.11) becomes: 

24ðϕ ctÞmþf μ rw
λ = (6.13)

ktb2 

Bulk‐fracture permeability is found from an expression similar to Eq. (2.33); 

162:6qμB
kfb  = (6.14)

mh 

The skin factor can be determined from the first and second semilog line 
(recommended), respectively: 

" ! # 
s = 1:1513 

P1hr � Pi 

m 
� logt 

k 1 
ϕf cf μr2 ωw 

� 3:23 (6.15) 

Figure 6.5. 
MDH plot well R‐6, Example 6.1, after [36]. 
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"  ! # 
kP1hr � Pis = 1:1513 � logt � 3:23 (6.16)

m ðϕctÞf þmμr2 
w 

For pressure buildup analysis, change Pi by Pwf in Eqs. (6.15) and (6.16). 

Example 6.1 

Determine the bulk fracture permeability and ω and λ from a pressure test run in 
well R‐6 [36], according to the information given below and Table 6.1. 

h = 1150 ft, rw = 0.292 ft, q = 17000 STB/D 
Pwf = 5223 psia, tp = 408000 h, B = 1.74 rb/STB 
μ = 0.47 cp, (ϕ ct)mþf = 1.4 � 10�06 psia�1, km = 0.148 md 

Solution 

The MDH graph given in Figure 6.6 confirms the existence of a system with double 
porosity (also, it can be verified in Figure 6.7). The following is read from there: 

m = 25.35 psia/cycle, ΔtF = 0.23 h, ∂P = 17.55 psia 
The storativity capacity, ω, is estimated from the separation of the parallel lines 

using Eq. (6.3): 

∂ P 17:55 
ω = exp �2:303 = exp �2:303 =0:2031 

m 25:35 

Use Eq. (6.14) to find permeability, 

141:2qμB 162:6ð17000Þð0:47Þð1:74Þ
kfb  = = = 89:4 md 

mh ð22Þð1150Þ 

Find the interporosity flow parameter from Eq. (6.11): 

23792ðϕ cÞf þmμ r 1w
λ = ωln

kfbΔtF ω 

3792ð1:4 � 10�6Þð0:47Þð0:2922Þ 1 
λ = 0:2031ln = 3:86 � 10�6 

ð77:54Þð0:23Þ 0:2031 

Stewart and Asharsobbi [36] found a value of λ = 3.1�10�6. 

Δt, hr Pws, psia t*ΔP0 , psia Δt, hr Pws, psia t*ΔP0 , psia 

0.000 5223 1.4 5269 9.87 

0.010 5232 5.61 2.0 5272 9.40 

0.023 5239 9.56 2.4 5274 11.72 

0.058 5250 8.48 2.7 5275 10.81 

0.230 5256 5.06 3.45 5277 8.54 

0.780 5263 8.80 3.7 5281 7.78 

1.400 5269 9.87 4.0 5281 6.91 

Table 6.1. 
Pressure and pressure derivative data for well R‐6, after [36]. 
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Figure 6.6. 
Pressure and pressure derivative plot for well R‐6, Example 6.1, after [36]. 

Figure 6.7. 
Points and characteristic lines of a naturally fractured reservoir with pseudosteady‐state interporosity flow, 
ω = 0.01, λ = 1 ˜ 10 °6, after [6]. 

6.2. Type‐curve matching for heterogeneous formations 

There are several kinds of type curves available for naturally fractured 
reservoirs. 

Some of the pressure type curves are free of wellbore storage effects along with 
their equation can be found in [29, 34, 39]. Some of them including the pressure 
derivative function can be found in [31, 35]. However, neither the equations nor 
the type curves are presented here since TDS technique precisely avoids them. 
Actually, the purpose of this book is to compile TDS technique application to 
several scenarios. 
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6.3. TDS technique for naturally fractured formations 

Warren and Root [46] used this approach to develop an integrated and applica-
ble solution for drawdown and buildup pressure tests in naturally fractured reser-
voirs with double porosity. From his work can be identified several flow regimes 
of the semilog analysis. In chronological order, there is a straight line in near time 
representing only fracture depletion and a straight line in final times, which corre-
sponds to the time when the whole deposit produces as an equivalent homogeneous 
deposit. At these final times, the semilog straight line is parallel to the first straight 
line. 

New developments by Mavor and Cinco‐Ley [31] included wellbore storage and 
skin effects for the interporosity flow parameter under pseudosteady‐state condi-
tions in a naturally fractured reservoir. The solution was given in Laplace space and 
then was carried out in Laplacian space and inverted numerically using the Stehfest 
algorithm [37]. As a direct consequence, type curves were developed by Bourdet 
et al. [3], which included wellbore storage and skin in naturally fractured deposits. 
Subsequently, reservoir parameters could be estimated when storage would domi-
nate pressure data at early times. An advance in the curves type of naturally 
fractured deposits occurred with the addition of the derivative curve [3]. Increasing 
the sensitivity of the derivative curve [9] for naturally fractured deposits results in a 
better accuracy when applying type‐curve matching. 

Unfortunately, type‐curve matching is a trial‐and‐error method, which often 
provides nonunique responses. Besides, it could be really difficult to have all the 
type curves for all the emerged cases. Therefore, the Tiab’s direct synthesis tech-
nique [40, 41] extended for naturally fractured formations by Engler and Tiab [6] is 
presented in this chapter. Actually, a more extensive great work on the subject was 
performed by Engler [5] who also developed TDS technique for horizontal wells in 
anisotropic formations [7] and naturally fractured deposits [8]. As originally 
exposed by Tiab [40], this method combines the characteristic points and slopes of 
a log‐log plot of pressure and pressure‐derived versus time data with the exact 
analytical solutions to obtain expressions for reservoir characterization considering 
that flow from matrix to fractures take place under pseudosteady‐state situation. 

6.3.1 Mathematical model 

An actual naturally fractured formation consists of a heterogeneous system of 
vugs, fractures, and matrix, which are random in nature. To model this system, it is 
assumed that the reservoir consists of discrete matrix block elements separated by 
an orthogonal system of uniform and continuous fractures [46]. These fractures are 
oriented parallel to the main axes of permeability. Two geometries are commonly 
assumed, for example, layers and cubes of sugar. The flow between the matrix and 
the fractures is governed by a pseudosteady‐state condition, but only the fluid 
entering the well comes from the fracture network reach at a constant rate. It is 
assumed that the fluid is a single phase and slightly compressible. The dimensionless 
well pressure solution in a reservoir of infinite action along with its dimensionless 
pressure derivative, with the previous assumptions is given by [46], and also 
presented by Engler [5] and Engler and Tiab [6]: 

˛ ˜ ° ˜ °˝ 
1 λtD λtDPD = ln tD þ 0:80908 þ Ei � � Ei � þ s (6.17)
2 ωð1 � ωÞ 1 � ω 

˛ ˜ ° ˜ °˝ 
1 λtD λtD0tD*PD = 1 � exp � þ exp � (6.18)
2 1 � ω ωð1 � ωÞ 
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The dimensionless quantities given by Eqs. (1.94), (1.89), and (2.57) are now 
rewritten as: 

0:0002637kfbt tD = (6.19)
μðϕctÞmþf r2 

w 

kfbhðPi � PÞ 
PD = (6.20)

141:2qμB 

0 kfbhðt*ΔP0Þ 
tD*PD = (6.21)

141:2qμB 

6.3.2 Characteristic points and lines 

Refer to Figure 6.7 and notice that the radial flow has been interrupted by the 
transition period during which fractured are fed from the matrix. Each radial flow is 
labeled r1 and r2 for distinguishing purposes. As for the case of a homogeneous 
system, Eq. (2.70) applies (do not consider the dimensionless wellbore storage 
coefficient), so that Eq. (2.71) applies, now rewritten as: 

70:6qμB 70:6qμB
kfb  = = (6.22)

hðt*ΔP0Þ hðt*ΔP0Þr1 r2 

Needless to say that in case that both radial flow regimes are seen, bulk fracture 
permeability can be obtained from any of them using the above expression. 

The transition period is affected by the dimensionless storativity coefficient, 
but independent of the interporosity flow parameter. Engler [5] and Engler and 
Tiab [6] found an analytical expression for the minimum coordinates by taking the 
derivative of Eq. (6.18) and equating the result to zero. Subsequently, the dimen-
sionless minimum coordinates are given by: 

ω 1 
= ln (6.23)ðtDÞmin λ ω 

and, 

ðtD*PD 
0Þmin =0:5 ð1 þ ω1=ð1�ωÞ � ωω=ð1�ωÞÞ (6.24) 

Eq. (6.23) was based for [42] to derive Eq. (6.11) which is now rewritten as: 

˛ ˜ °˝23792ðϕ ctÞf þmμrw 1 
λ = ωln (6.25)

kfbΔtmin ω 

To set Eq. (6.24) in oil‐field unit, Engler [5] and Engler and Tiab [6] developed a 
form to normalize it by division with the radial flow derivative, Eq. (2.70), to yield: 

ð1 þ ω1=ð1�ωÞ � ωω=ð1�ωÞÞ (6.26)ðt*ΔP 0Þmin =ðt*ΔP 0Þmin = 

Engler [5] and Engler and Tiab [6] developed the following empirical 
correlation: 

˙ ˆ ˙ ˆ2ðt*ΔP 0Þmin ðt*ΔP 0Þminω = 0:15866 þ 0:54653 (6.27)ðt*ΔP 0Þ ðt*ΔP 0Þr r 
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which is valid from 0 ≤ ω ≤ 0.10 with an error less than 1.5%. An alternative 
method for determining ω arises from the defined characteristic times of pressure 
derivative curve shown in Figure 6.7. These include the end of the first horizontal 
straight line, tDe1, the start of the second horizontal straight line, tDb2, and the time 
corresponding to the minimum derivative, tDmin. Engler and Tiab [6] developed 
several empirical correlations by relating such times: 

ωð1 � ωÞ ωlnð1=ωÞ 1 5ð1 � ωÞ 
λ = = = = (6.28)

50βte1 βtmin β tusi βtb2 

where 

0:0002637kfb
β = (6.29)ðϕctÞf þmμr2 

w 

1 tminω = exp � � 0:4386 (6.30)
0:9232 50te1 

The correlation for the ratio of the minimum time to the time for the end of the 
first straight line has an error less than 5% [6]. 

� � � �25tmin 5tminω =0:19211 þ 0:80678 (6.31)
tb2 tb2 

The correlation using the ratio of the minimum time to the start time of the 
second straight line, valid for ω ≤ 0.1, has with an error less than 2%. 

For a given dimensionless storativity coefficient, the minimum dimensionless 
pressure coordinate is independent of the interporosity flow parameter, while the 
minimum dimensionless time coordinate is a function of λ. Subsequently, Engler 
and Tiab [6] found that a log plot (tD*P'D)min versus log (λtD)min results in a straight 
line with unit slope. The corresponding empirical equation is: 

lnðtD*PD = lnðλ � tDminÞ þ lnð0:63Þ (6.32)0Þmin 

From which was obtained: 

" #
242:5hðϕctÞf þmrw ðt*ΔP 0Þminλ = (6.33)

qB tmin 

An alternative method for determining λ can be carried out by observing a 
straight line with unit slope characteristic during the last transition period. The 
smaller dimensionless storativity coefficient (lowest point of the curve) adjusts the 
data more exactly to the unit slope line. A ω < 0.05 results in a more accurate 
estimate of λ. For ω > 0.05, λ will be overestimated. The analytical equation for this 
behavior of the last transition time is [6]: 

ln ðtD*PD 
0Þ = ln ðλ � tDus=2Þ (6.34)us 

The intersection of the unit slope line of the transition period with the line of the 
radial flow regime pressure derivative, Eq. (2.70), shown in Figure 6.7, allowed 
finding a simple expression to determine λ [6]: 

λ = 1=tDusi (6.35) 
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Replacing Eq. (1.94) in the above expression leads to: 

!
2ðϕctÞf þmμrw 1 

λ = (6.36)
0:0002637kfb  tusi 

As for the case of Eq. (2.92), the mechanical skin factor, expected always to be 
negative for naturally fractured formations, is, found for each one of the radial flow 
regimes, r1 and r2, thus, [6]: 

" ! # 
1 ΔP kfb  tr1 

s = � ln þ 7:43 (6.37)
2 t*ΔP 0 ðϕctÞf μr2 ωr1 w 

"  ! # 
1 ΔP kfb  tr2 

s = � ln þ 7:43 (6.38)
2 t*ΔP 0 r2 ðϕctÞf þmμr2 

w 

Eq. (6.37) may be of not practical use since as commented before on the diffi-
culty to obtain a representative value of the fracture compressibility. 

6.3.3 Wellbore storage effects 

As discussed earlier in this chapter, a direct consequence of wellbore storage is 
the tendency to mask the early time radial flow period. Therefore, the late or second 
radial flow line of infinite action is essential for estimating the skin factor and the 
permeability of the net of fractures. If wellbore storage is presented, it can be 
obtained, from the early unit slope, by using Eqs. (2.61), (2.69), and (2.80). We 
must be aware that Eqs. (2.81) and (2.87) were developed for higher skin factors, 
then, they are not recommended to apply in naturally fractured reservoirs. 

The influence of wellbore storage on minimum coordinates is of great impor-
tance in the analysis. As Figure 6.8 shows, the dilemma is whether the minimum 
observed point is the actual minimum or a “pseudo‐minimum” as a direct result of 
wellbore storage. Engler [5] and Engler and Tiab [6] have shown that the minimum 
point is not affected by storage for all ω and λ, provided that, 

Figure 6.8. 
Wellbore storage effect on the minimum value of the pressure derivative, ω = 0.05 and s = 0, after [6]. 
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ðtDÞmin, o ≥ 10 (6.39)ðtDÞx 

Accordingly, the procedures described above are valid. When the ratio of the 
minimum time to the time at the peak is less than the limit defined by Eq. (6.39), a 
“pseudo‐minimum” occurs in the curve of the pressure derivative. An empirical 
correlation generated during this region provides a method to calculate the 
interporosity flow parameter [6], 

�101 tx½λlogð1=λÞ�min = 5:565 (6.40)
CD tmin,o 

where, 
�1:0845½λlogð1=λÞ�minλ = (6.41)

1:924 

The corrected ω is found from Figure 6.9. 
An alternative method for determining λ is based on the ratio of the coordinate 

of the minimum pressure derivative to the coordinate of the pressure derivative 
at the peak. This correlation is valid only for CDλ > 0.001 [6], and CD is found 
from Eq. (2.14); 

1 ðt*ΔP 0Þminλ = (6.42)
10CD ðt*ΔP 0Þx 

Tiab et al. [43] determined that the minimum is not affected by wellbore 
storage for any value w, provided the conditions given in Table 6.2 are fulfilled. 
Then, they proposed a better expression for correcting the minimum: 

½1 þ 2D1D2�ðt*ΔP 0ÞminO � ðt*ΔP 0Þrðt*ΔP 0Þmin = ðt*ΔP 0Þr þ "  ! # (6.43)
C

1 þ D2 ln þ 2s � 0:8801 ðϕctÞf þmhr2 
w 

Figure 6.9. 
Determination of the dimensionless storativity coefficient using the ratio of the radial with the minimum 
pressure derivatives, after [6]. 
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λ CD 

10�4 CD > 10 

10�5 CD > 100 

10�6 CD > 103 

10�7 CD > 104 

10�8 CD > 105 

Table 6.2. 
Conditions for the minimum pressure derivative being affected by wellbore storage, after [43]. 

where; 

"  ! # 
qBtminOD1 = ln þ 2s � 4:17 (6.44)ðt*ΔP 0Þ ðϕctÞf þmhr2 
r w 

and; 

48:02C ðt*ΔP 0ÞrD2 = (6.45)
qB tminO 

Being tminO and (t*ΔP')minO, the value of the coordinates of the minimum 
point in the derivative without making any correction (observed) when there is 
wellbore storage effect. Once corrected, the following expression can be applied: 

� ��1ðt*ΔP0 Þrðt*ΔP0Þ 0:7912rω = 2:9114 þ 4:5104 � 6:5452e ðt*ΔP0Þmin (6.46)ðt*ΔP0Þmin 

Tiab et al. [43] also provided another expression for ω; 

�λtDminωω = e (6.47) 

where tDmin is found using Eq. (1.94) rewritten as; 

0:0002637ktmintDmin = (6.48)ðϕctÞf þmμr2 
w 

For values of ω less than 0.5 the solution of Eq. (4.47) is: 

� ��13:5688 6:5452 
ω = 2:9114 þ þ (6.49)

λtDmin λtDmin 

Although Engler [5] and Engler and Tiab [6] provided step‐by‐step procedures 
for the application of TDS technique, they are omitted here since it is not manda-
tory to follow such procedures. 

Example 6.2 

Tiab e al. [43] presented the derivative plot, Figure 6.10, for a pressure test run 
in a heterogeneous formation. Other relevant information is given below: 

q = 960 BPD, B = 1.28 rb/stb, μ =1.01 cp 
h = 36 ft, rw = 0.29 ft, (ϕct)mþf = 0.7 � 10�61/psia 
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Figure 6.10. 
Pressure and pressure derivative against time log‐log plot for Example 6.2, after [43]. 

It is required the interpretation of this test to provide permeability, skin factor, 
and the Warren‐and‐Root parameters. 

Solution 

As observed in the pressure derivative plot, Figure 6.10, this pressure test may 
not be interpretable using conventional analysis since the first radial flow regime is 
absolutely masked by wellbore storage. The following information is read from 
such plot: 

tN = 0.00348 h, ΔPN = 11.095 psia, tr2 = 1.8335 h 
ΔPr2 = 61.5 psia, (t*ΔP0)r2 = 10.13 psia, tmin,o = 0.07 h, (t*ΔP')minO = 5.32 psia 
Permeability is found from Eq. (6.22); 

70:6qμB 70:6 � 960 � 1:01 � 1:28
kfb  = = = 238 md 

hðt*ΔP 0Þ 10:13 � 36r2 

The wellbore storage coefficient and the dimensionless wellbore storage coeffi-
cient are determined with Eqs. (2.61) and (2.14) to be: 

˛ ˝˜ °qB t 960ð1:28Þ 0:00348
C = = =0:0161 bbl=psia

24 ΔP N 24 11:095 

0:894C 0:894ð0:0161Þ
CD = = = 6792 ðϕctÞf þmhr2 0:7 � 10�6ð36Þð0:292Þw 

Estimate skin factor from Eq. (6.38): 

˙ ˛ ˝ ˆ 
1 61:5 ð238Þð1:8335Þ 

s = � ln þ 7:43 = � 4:6
2 10:13 0:7 � 10�6ð1:01Þð0:292Þ 

The interporosity flow parameter is found with Eq. (6.33) 
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" #
242:5hðϕctÞf þmrw ðt*ΔP 0Þmin 42:5ð37Þ0:7 � 10�6ð0:292Þ 5:32 

λ = = = 5:57 � 10�6 

qB tmin 960ð1:28Þ 0:07 

Since λ = 5.57 � 10�6 and CD = 6792, by looking at the third row in Table 6.2, the 
coordinates of the minimum point must be corrected before finding ω. Therefore, 
use Eqs. (6.44), (6.45), and (6.43), so that: 

960ð1:28Þð0:07Þ
D1 = ln þ 2ð�4:6Þ �  4:17 = 1:8334 ð10:13Þ 

48:02ð0:0161Þ 10:13
D2 = =0:09105 

960ð1:28Þ 0:07 

ðt*ΔP 0Þmin = 10:13þ 

5:32 � ð10:13Þ½1 þ 2ð1:8334Þð0:09105Þ� ! =0:9849 
0:0161

1 þ 0:09105½ln þ 2ð�4:6Þ �  0:8801� 
0:7 � 10�6ð36Þð0:292Þ 

Then, ω is found from Eq. (6.46), and the correlation is given by Eq. (6.27): 
� ��110:13 0:7912 10:13 

0:9849ω = 2:9114 þ 4:5104 � 6:5452e =0:024
0:9849 

� � � �20:9849 0:9849 
ω = 0:15866 þ 0:54653 =0:0206

10:13 10:13 

Without correction, Eq. (6.27) would have given a value of ω = 0.234. 

Example 6.3 

This was also worked by Tiab et al. [43]. Pressure and pressure derivative 
against time data are given in Table 6.3 and plotted in Figure 6.11 for its interpre-
tation. Other important data are given below: 

q = 3000 BPD, ϕ = 0.10, μ = 1.0 cp 
ct = 3.0 � 10�5 psia�1, B = 1.25 bbl/stb, h = 100 ft 
rw = 0.40 ft, Pi(t=0) = 4473 psia 

Calculate the permeability of the fractured system, skin factor, wellbore storage 
coefficient, interporosity flow parameter, and dimensionless storativity coefficient. 

Solution 

The following information was read from Figure 6.11: 

ΔPN = 99.6 psia, (t*ΔP0)N = 116.4 psia, tN = 0.093 h 
tb2 = 14.4 h, tr2 = 20.43 h, ΔPr2 = 714.3 psia 
(t*ΔP0)r2= 138.5 psia, tx = 0.43, tmin,o = 2.427 h 
tmin,o/tx = 5 < 10, ti = 0.14 h, (t*ΔP0)min = 72.087 psia 

Solution 

Use Eq. (6.22) to estimate permeability 

70:6qμB 70:6ð3000Þð1:0Þð1:25Þ
kfb  = = = 19:1 md 

hðt*ΔP 0Þ 100ð138:5Þr2 

232 



       

       

       

Naturally Fractured Reservoirs 
DOI: http://dx.doi.org/10.5772/intechopen.81078 

t, h  Pwf, psia t*ΔP', psia t, h  Pwf, psia t*ΔP', psia t, h  Pwf, psia t*ΔP', psia 

0.0933 4373.4 84.473 1.0930 4060.3 87.234 12.43 3824.2 137.651 

0.1766 4299.1 133.483 1.26 4043.1 84.384 14.43 3804.1 136.857 

0.2600 4246.1 146.776 1.427 4032.2 76.719 20.43 3758.7 138.810 

0.3433 4203.6 151.595 2.427 4002.8 75.401 26.43 3720.3 135.210 

0.4266 4173.8 157.618 3.427 3971.3 90.502 32.43 3695.1 134.790 

0.5100 4139.7 150.295 4.427 3948.3 87.168 38.43 3674.6 134.116 

0.5933 4118.5 141.355 5.427 3931.6 95.595 44.43 3652.4 156.278 

0.6766 4103.5 111.676 6.427 3917.1 108.303 50.43 3636.9 183.611 

0.7600 4086.4 99.694 7.427 3898.4 122.336 53.43 3625.2 196.734 

0.9266 4075.4 95.720 9.427 3865.3 142.426 

Table 6.3. 
Pressure and pressure derivative data against time for Example 6.3, after [43]. 

Figure 6.11. 
Pressure and pressure derivative against time log‐log plot for Example 6.3, after [43]. 

Find the wellbore storage coefficient using Eqs. (2.61), (2.69), and (2.80). 

˜ ° ˜ ° 
qB tN 3000ð1:25Þ 0:093

C = = =0:146 bbl=psia
24 ΔPN 24 99:6 

˜ °  ˜ ° 
qB tN 3000ð1:25Þ 0:093

C = = =0:129 bbl=psia
24 ðt*ΔP 0ÞN 24 116:4 

kfbhti 19:1ð100Þð0:14Þ
C = = =0:158 bbl=psia

1695μ 1695μ 

Estimate skin factor from Eq. (6.38): 
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1 714:3 19:1ð20:43Þ 
s = � ln þ 7:43 = � 5:13

2 138:5 3 � 10�6ð0:1Þð1Þð0:42Þ 

The ratio between the minimum time and the time in the peak suggests that the 
minimum coordinates are influenced by wellbore storage. Then, find the dimen-
sionless wellbore storage using Eq. (2.14) with an average C of 0.143 bbl/psia: 

0:8935C 0:8935ð0:143Þ
CD = = = 26618 

ϕhctr2 0:1ð100Þð3 � 10�6Þð0:42Þw 

Eq. (6.40) leads to find: 

10 101 tx 1 0:43 ½λ log ð1=λÞ�min = 5:565 = 5:565 =0:000032
CD tmin, o 26618 2:427 

Then, λ = 5.2 � 10�7. Find again λ with Eq. (6.42): 

1 ðt*ΔP 0Þmin 1 72:087 
λ = = = 1:78 � 10�6 

10CD ðt*ΔP 0Þ 10ð26618Þ 151:94x 

For the determination of ω, estimate the ratio between the pressure derivatives 
of minimum point and radial flow regime, (t*ΔP0)min/(t*ΔP0)r = 72.078/138.5 = 0.52. 
Then, find the parameter needed to enter in Figure 6.9, thus: 

2 ! 3 � � �  � 1
1 6 log þ 7CDλ log þ 0:8686s = 26618ð1:78 � 10�6Þ4 1:78 � 10�6 5 =0:061 
λ 

0:8686ð�5:13Þ 

From Figure 6.9, it is found that ω = 0.07. 
The reader may think that the subject covered by the TDS technique in this 

chapter is the only one as far as naturally fractured reservoirs are concerned. The 
material exposed in this chapter was the first one ever introduced. TDS technique is 
certainly rich in applications. Regarding naturally fractured systems can be named: 
double porosity and double permeability for vertical wells [19], already mentioned 
at the beginning of this chapter, and for horizontal wells [30]. For triple porosity, 
reservoirs referred to [10]. For horizontal wells in both homogeneous and hetero-
geneous deposits including the effect of the threshold pressure gradient, the reader 
is invited to read [21]. The work originally presented for long homogeneous reser-
voirs [11] was extended to naturally fractured deposits by Escobar et al. [13, 14]. For 
hydraulically fractured wells, draining heterogeneous formations refer to [13, 20, 
26, 44]. Escobar et al. [15] presented TDS technique for gas wells in naturally 
fractured systems. The effect of pseudotime on the Warren‐and‐Root parameters 
was observed by [18] for vertical wells and [17] for horizontal wells. TS technique 
for rate transient analysis of homogeneous and heterogeneous formations was 
presented by [1] and extended to long reservoirs by [16] and gas bearing long 
fractured formations by [12]. However, there are publications written by some 
other researchers and are not reported here. 
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Lately, shale reservoirs have been the target of many oil and gas companies. Gas 
reservoirs must be hydraulically fractured for production to occur. Their behavior 
normally follows those of naturally fractured formations. Some publications 
regarding shales tested either at constant bottom‐hole pressure or constant rate 
using TDS technique are [2, 22–25]. 

Nomenclature 

B oil volume factor, bbl/STB 
b fraction of penetration/completion 
c compressibility, 1/psia 
C wellbore storage coefficient, bbl/psia 
D1 minimum point correction parameter 
D2 minimum point correction parameter 
ct total or system compressibility, 1/psia 
h formation thickness, ft 
kef bulk fractured network permeability, md 
m slope of P‐vs‐log t plot, psia/h/cycle 
P pressure, psia 

0PD dimensionless pressure derivative 
PD dimensionless pressure 
Pi initial reservoir pressure, psia 
Pwf well flowing pressure, psia 
Pws well shut‐in or static pressure, psia 
P1hr intercept of the semilog plot, psia 
P* false pressure, psia 
q liquid flow rate, BPD 
rD dimensionless radius 
r radius, ft 
rw well radius, ft 
s skin factor 
t time, h 
tp production (Horner) time before shutting‐in a well, h 
tD dimensionless time based on well radius 
t*DP0 pressure derivative, psia 
V volume, ft3 

Greek 

α shape factor 
Δ change, drop 
Δt shut‐in time, h 
∂ P parallel difference between the two radial flow regime slopes, psia 
ϕ porosity, fraction 
λ interporosity flow coefficient 
μ viscosity, cp 
ρ fluid density, lbm/ft3 

ω dimensionless storativity coefficient 
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Suffices 

1 intercept between first semilog radial flow and the transition line 
1hr time of 1 h 
2, I intercept between second semilog radial flow and the transition line 
b2 start of second radial flow regime 
D dimensionless 
e1 end of first radial flow regime 
F inflection 
f fracture network 
i intersection or initial conditions 
N an arbitrary point during early pseudosteady‐state period 
m matrix 
max maximum point 
min minimum point 
minO observed minimum point 
r radial flow 
r1 radial flow before transition period 
r2 radial flow after transition period 
s skin 
usi intersect of the pressure derivative lines of the unit‐slope line during the 

transition and second radial flow regime 
w well 
wf well flowing 
ws well shut‐in 
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Chapter 7 

Hydraulically Fractured 

Hydraulic fracturing is a technique consisting of cracking the rock with a liquid 
fluid, normally of non‐Newtonian nature, which carries some solid particles (sand 
or synthetic material) so that reservoir fluids can move easier toward the well. The 
fluid has three main uses: (1) as pressuring fracturing tool by overpassing the 
formation fracture gradient, (2) as carrying agent to transport the solid material, 
called proppant, to the fracture face so, when reducing the pressure, avoids the 
fracture to close completely and provides flow capability to the fracture, called 
conductivity, and (3) as lubrication agent. In unconventional fracturing, the frac-
turing fluid is water and about 4% of the injected mass corresponds to sand. 

The orientation of the hydraulic fractures is a function of the distribution of 
stress in the formation [3, 14]. If the least stress in the formation is horizontal, then 
a vertical fracture will be obtained. On the other hand, if the least important stress is 
vertical, then a horizontal fracture will occur [4, 8, 30]. However, there is a general 
belief that vertical fractures are obtained at depths greater than 3000 ft. 

Figure 7.1 is a plane of a bounded circular system, which is a well with a vertical 
fracture. The fracture length has been exaggerated for explanatory purposes. Gen-
erally, the fluid enters the fracture at a uniform flow rate per unit area of the face of 
the fracture so that there is a pressure drop in the fracture. In this case, the fracture 
refers to a “uniform flow fracture.” However, for some fractures that have infinite 
permeability (conductivity), the pressures are uniform throughout. Except for 
fractures with a high content of support material and conductive fractures, it is 
thought that the uniform flow fracture represents much better reality than the 
fracture of infinite conductivity [7, 12, 39]. 

7.1. Well drawdown pressure behavior 

The dimensionless pressure in the well for the case of a uniform flow fracture is 
[4, 5, 7, 8]: 

pffiffiffiffiffiffiffiffiffiffiffi pffiffiffiffiffiffiffiffi 
PD = πtDxf erf ð1=2 tDxf Þ �  0:5Eið�1=4tDxf Þ (7.1) 

And for the case of an infinite conductivity, fracture is: 

" pffiffiffiffiffiffiffiffi # " # 
pffiffiffiffiffiffiffiffiffiffiffi erf ð0:134= tDxf þ 0:067Eið�0:018=tDxf Þ� 

PD =0:5 πtDxf pffiffiffiffiffiffiffiffi � (7.2)
erf ð0:866= tDxf Þ 0:433Eið�0:75=tDxf Þ 

where 

2tDxf = tDðrw =xf Þ (7.3) 

If tDxf < 0.1 in Eq. (7.1) and tDxf < 0.1 in Eq. (7.2), these two equations become: 

rffiffiffiffiffiffiffiffiffiffiffi 
πtDxfPD = (7.4)
ξ 
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Figure 7.1 
Schematic representation of a vertical fracture, after [6]. 

It is important to note that Eq. (7.4) is a new version proposed by Bettam et al. 
[2], which considers both homogeneous deposits, ξ=1, and heterogeneous (natu-
rally fractured double porosity) deposits, ξ=ω (dimensionless storage coefficient). 
Eq. (7.4) also indicates that at early times the flow within the fracture is linear. In 
real units, Eq. (7.4) can be written as [8]: 

pffiffi 
Pwf = Pi �mlf t (7.5) 

where 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi s 
mlf = 

�4:064qB 
h 

μ 
kξϕctx2 

f 
(7.6) 

mvf is the slope of the Cartesian plot of Pwf against t
1/2, which can be used to 

calculate:

 !2 �4:064qB μ
kx2 = (7.7)f hmlf ξϕct 

If certainty exists in the determination of the linear flow regime, let us say the 
pressure derivative is available and reservoir permeability is accurate (it does not 
need correction), then use Eq. (7.7) directly and find the half‐fracture length. The 
following procedure should be flowed, otherwise. In which the conventional semi-
log analysis applies to tDxf > 10. Eqs. (7.1) and (7.2) are, respectively, converted to 
[5, 6, 26, 33]: 

1 � � 
PD = ln ðtDxf Þ þ 2:80907 (7.8)

2 
1 � � 

PD = 2 
ln ðtDxf Þ þ 2:2 (7.9) 
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These two equations give the dimensionless pressure for pseudoradial flow, as 
long as the boundary effects are not found. In a bounded reservoir, the period of 
infinite action pseudoradial flow only develops completely if xe/xf > 5. 

There is an approximate relationship between the pressure change at the end of 
the linear flow period, ΔPel, and at the beginning of the semilog straight line, Pbsl, 
[26, 33]: 

ΔPsbl≥2ΔPel (7.10) 

If this relationship is not met, it is because the linear flow period or the radial 
flow period was incorrectly selected. A couple of pertinent observations: 

• A graph of ΔP versus time on a log‐log paper will produce a straight line of 
mean slope during the linear period. 

• The above analysis is valid for pressure decline and injection tests. 

7.2. Conventional analysis 

In vertically fractured wells, pressure buildup and falloff tests are similar to 
nonfractured wells. As shown in Figure 7.2, the semilog slope, m, obtained from 
traditional analysis of a fractured well is erroneously very small and the value of m 
decreases progressively as xf increases [32]. In other words, the fracture presence 
partially masks the radial flow regime. The pressure derivative certainly allows 
finding the true start of the semilog line. Because of that fracture effect, permeabil-
ity, estimated from the Horner or MDH graph, should be corrected as follows: 

k = kcFcor (7.11) 

where 

Fcor = ðkhÞtrue =ðkhÞapparent (7.12) 

And the uncorrected permeability is found from Eq. (2.33), 

qμ B
kc = 162:6 

mh 
(7.13) 

Figure 7.2 
Effect of fracture length on the semilog slope [32]. 
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The correction factor, Fcor, is read from Figure 7.3. The Horner plot is strongly 
recommended for data analysis of vertically fractured wells. xe/xf must be known 
(normally assumed by a trial‐and‐error procedure) to use Figure 7.3. xf is simply the 
half‐fracture length, which can be estimated from the slope of the Cartesian plot of 
pressure versus square root of time, using Eq. (7.7). 

Fcor can be estimated iteratively as follows: 

1. Estimate kxf 
2 from Eq. (7.7). 

2. Estimate kc using Eq. (7.13). 

3. Calculate k from Eq. (7.11) using a reasonable assumed value of xe/xf (As a first 
try, assume xf=0.5xe) in Figure 7.3. 

4.Use the value of k from step 3 to estimate xf with Eq. (7.7). 

5. Find xe with Eq. (7.14). 
sffiffiffiffiffiffiffiffiffi 

ktpxe =0:029 (7.14)
ϕμct 

6.This new value of xf is used to compute a new value of xe/xf to be used in 
Figure 7.3. This would improve the estimation of k. 

7. This process continues until two successive xe/xf values are equal. 

Figure 7.3 
Correction factor for kh estimated from pressure buildup tests in vertically fractured wells, after [31]. 
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Example 

The pressure buildup data obtained after a hydraulic fracturing treatment are 
shown in Table 7.1. The characteristics of the reservoir and well for this test are as 
follows: 

q=101 BPD, rw =0.198 ft, h= 42 ft, φ=8%, μ=0.45 cp, B=1.507 bbl/STB, ct =17.7� 
10�6/psia, tp=364 hr 

Find permeability, skin factor, and half‐fracture length using conventional 
analysis. 

Solution 

Taken from [34]. In this example, ξ=1 because it is a homogenous deposit. A 
Horner graph for the data given in Table 7.1 is presented in Figure 7.4. The 
pressure and pressure derivative plot was just built for verification purposes 
(Figure 7.5). In fact, an early slope of ½ is shown in such plot. An infinite‐
conductivity or uniform‐flux fracture is dealt with since during that period the 
pressure doubles the pressure derivative. The slope is –510 psia/cycle. The perme-
ability can be estimated from the slope of the semilog straight line, using Eq. (7.13): 

162:6qμB ð162:6Þð101Þð0:45Þð1:507Þ
kc = = =0:52 md 

mh ð510Þð42Þ 
Figure 7.6 contains a Cartesian plot of pressure versus the square root of time 

(actually, a tandem time function is recommended to be used instead of a normal 
square root of time function). To estimate permeability, the trial‐and‐error process 
is evoked, so that: 

Δt, hr Pws, psia Δt0.5 , hr0.5 ΔP, psia (tpþΔt)/Δt t*ΔP’, psia 

0.0 1170 0.000 

0.5 1329 0.707 159 729.00 101.02 

1.0 1388 1.000 218 365.00 134.47 

1.5 1464 1.225 294 243.67 157.31 

2 1501 1.414 331 183.00 170.63 

3 1570 1.732 400 122.33 204.95 

4 1639 2.000 469 92.00 243.36 

6 1748 2.449 578 61.67 285.81 

10 1899 3.162 729 37.40 300.65 

18 2075 4.243 905 21.22 333.95 

27 2209 5.196 1039 14.48 357.02 

36 2304 6.000 1134 11.11 362.66 

45 2375 6.708 1205 9.09 360.86 

54 2434 7.348 1264 7.74 375.13 

63 2481 7.937 1311 6.78 391.74 

71 2516 8.426 1346 6.13 415.29 

*Pressure derivative was not given in [34]. 

Table 7.1. 
Pressure, pressure drop, and pressure derivative versus time data for Example 7.1, after [34]* . 
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Figure 7.4 
Horner plot for Example 7.1, after [34]. 

Figure 7.5 
Log‐log plot of pressure and pressure derivative against time. 

Figure 7.6 
Cartesian plot of Pws against t

0.5, after [34]. 
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1. Assume xf/xe =0.5. 

2. With the value of step 1, a correction factor, Fcor=0.46, was read from 
Figure 7.3 (Horner curve). 

3. From Figure 7.6, Cartesian plot of Pws versus t
0.5, the slope mlf is 141.3 psia/h0.5 . 

4.Estimate the kxf 
2 from Eq. (7.7): 

� �2ð4:064Þð101Þð1:507Þ ð0:45Þ
kx2 

f = = 3452:6 md � ft2 

ð42Þð141:3Þ ð0:08Þð17:7 � 10�6Þ 

5. Apply the correction factor on Eq. (7.11) to find: 

k = kcFcor = ð0:52Þð0:46Þ =0:2392 md 

6.Estimate the half‐fracture length: 

sffiffiffiffiffiffiffi rffiffiffiffiffiffiffiffiffiffiffiffiffiffi 
kx2 3452:6 

xf = 
f = = 120:14 ft 

k 0:2392 

7. Find xe from Eq. (7.14): 

sffiffiffiffiffiffiffiffiffi sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 
ktp ð0:2392Þð364Þ 

xe =0:029 =0:029 = 339 ft 
ϕμct ð0:08Þð0:45Þð17:7 � 10�6Þ 

8.Calculate the ratio xf/xe: 

xf 120:14 
= =0:356 

xe 339 

Repeat step. 2 through 7 for n iterations until xf(i) ≈ xf(i‐1). After 12 steps, the 
permeability is k=0.475493 md. A computer program was written for this purpose. 
The remaining results are reported in Table 7.2. Once the final iteration is achieved, 
the half‐fracture length is found from: 

sffiffiffiffiffiffiffi rffiffiffiffiffiffiffiffiffiffiffiffiffiffi 
kx2 

f 3452:6 
xf = = = 85:2 ft 

k 0:4754 

Assumed xf/xe xe, ft Fcor k, md xf, ft New xf/xe 

0.5 337.9897 0.45728 0.237785 120.4982 0.356514 

0.356514 385.9966 0.596406 0.310131 105.5117 0.273349 

0.273349 449.9846 0.810533 0.421477 90.50785 0.201135 

0.201135 471.3004 0.889141 0.462354 86.41439 0.183353 

0.183353 476.4818 0.908799 0.472575 85.47472 0.179387 

0.179387 477.6316 0.913190 0.474859 85.26894 0.178525 
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Assumed xf/xe xe, ft Fcor k, md xf, ft New xf/xe 

0.178525 477.8814 0.914146 0.475356 85.22437 0.178338 

0.178338 477.9355 0.914352 0.475463 85.21473 0.178298 

0.178298 477.9471 0.914397 0.475487 85.21265 0.178289 

0.178289 477.9497 0.914407 0.475492 85.2122 0.178287 

0.178287 477.9502 0.914409 0.475493 85.2121 0.178287 

0.178287 477.9503 0.914409 0.475493 85.21208 0.178287 

Table 7.2. 
Summary of iterations for Example 7.1. 

Since P1h=1138 psia and using Pwf =1170 psia known from Table 7.1, the skin 
factor is estimated with Eq. (3.6): 

˛ ˜ ° ˝ 
1170 � 1138 0:671 

s = 1:1513 � log þ 3:23 = � 4:37 
320 ð0:08Þð0:45Þð17:7 � 10�6Þð0:282Þ 

As expected, the well is stimulated. 

7.3. Type‐curve matching 

As mentioned before, type‐curve matching is attempted to be avoided with TDS 
technique. However, for the interest of the reader, several type‐curves have been 
presented. For this goal, the reader may refer to [5, 7, 29, 31, 32, 39]. The last one 
included pressure derivative and wellbore storage. 

7.4. Fracture conductivity 

The product of fracture permeability, kf, and fracture width, wf, is known as 
fracture conductivity, kf wf,. The conductivity of the dimensionless fracture is 
expressed mathematically as [6]: 

kf wfCfD  = (7.15)
k � xf 

The above expression can also be found multiplied by π. However, it is custom-
ary, in well test analysis, to be used as given in Eq. (7.15). The uniform flow fracture 
[25, 26, 35] is one of the concepts introduced in the literature for the interpretation 
of well test data in fractured wells. This type of conductivity assumes that the flow 
from the reservoir to the fracture is uniform and a small pressure drop occurs along 
the fracture [25]. This type of conductivity can be observed in fractures with high 
damage caused by a zone of low permeability around the fracture. An infinite‐
conductivity fracture has a conductivity such that the pressure drop along the 
fracture is considered to be zero. In a log‐log plot, this type of fracture is identified 
by a half slope on the pressure and pressure‐derived early data. A fracture is 
considered to have infinite conductivity and the separation between these two 
curves should be two times. When its dimensionless fracture conductivity is greater 
than 300, the fracture has finite conductivity, otherwise [6], which is identified in a 
log‐log plot by a slope of ¼ of the early data on both pressure and pressure deriva-
tive. The separation between these two curves should be four times. If this number 
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Figure 7.7 
Flow distribution along the fracture, after [6]. 

is higher than four, possible, pseudoskin due to high gas flow rate is presented. A 
slope ½ may or may not be displayed later. A finite‐conductivity fracture involves a 
pressure drop along the fracture. This pressure drop contributes to the formation of 
a simultaneous linear flow in the fracture and a linear flow from the formation to 
the fracture, called bilinear. The long duration of the bilinear flow is a consequence 
of low fracture conductivity. Figure 7.7 clearly explains how the flux from forma-
tion to the fracture is. There exists a linear flow inside the fracture for finite‐
conductivity fracture cases. 

In infinite‐conductivity fractures, Tiab [35] showed that the ratio of the length, 
xe, with the fracture length, xf, has some influence on the flow pattern (see 
Figure 7.10). Theoretically, if xe =xf, only a slope of ½ will be observed indicating 
the presence of pure linear flow in the formation. However, as the increase of xe/xf 
≥ 16 in the straight line of unit slope is short, then only a slop. 0.36 is formed. This is 
due to the biradial flow, Tiab [35] calls it. Other authors have called it elliptical flow. 
When the relation xe/xf ≥ 16, only the slop. 0.36 is developed and observed. 

7.5. Cartesian plot of pressure against one‐fourth root of time 

The modified bilinear flow equation [2] (originally presented by Cinco et al. 
[6]), to respond for homogeneous and heterogeneous reservoirs, is presented 
below: 

rffiffiffiffiffiffiffiffi 
2:45 tDxfPD = 4 (7.16)
C1=2 ξ 
fD  

After replacing the dimensionless variables (Eqs. 1.89, 7.15, and 7.45), the fol-
lowing expression is obtained: 
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44:1qμB 
t0:25ΔP = pffiffiffiffiffiffiffiffiffiffi (7.17)

hf kfwf ðξϕμctkÞ0:25 

The fracture conductivity can be found from the slope, mbf, so that: 

qffiffiffiffiffiffiffiffiffiffi 44:1qμB 
t0:25kf wf = (7.18)0:25hfmbf ðξϕμctkÞ 

For this case, xf can also be expressed using the abovementioned test and error 
procedure. When the bilinear flow ends, the graph exhibits curvature either con-
cave up or down depending on CfD. If CfD < 1.6, there will be concavity downward. 
If CfD > 1.6, the concavity up toward that indicates that the tip of the fracture begins 
to affect the pressure well behavior. 

If the test is not run long enough to terminate the bilinear flow when CfD > 1.6, it 
is not possible to determine the half‐fracture length. When CfD < 1.6, the flow of 
fluid in the reservoir has changed from a predominant one‐dimensional linear flow 
and a two‐dimensional flow regime. In this case, it is not possible to properly 
determine xf even if the bilinear flow ends during the test. These rules can be 
avoided with TDS technique and the pressure derivative curve. 

Cinco et al. [6] indicated that CfD can be estimated from a Cartesian graph of P 
versus t1/4 reading the value of ΔP when bilinear flow ends, ΔPebf by: 

194:9qμB
CfD≈ (7.19)

khΔPebf 

Cinco et al. [6] also showed that the end of the bilinear flow line “ebf ” depends 
on CfD and can be estimated from: 

0:1 
tDebf ≈ ; CfD>3 (7.20)

C2 
fD  

��1:53tDebf ≈0:0205 CfD  � 1:5 ; 1:6≤CfD≤3 (7.21) 
" #�4 
4:55 

tDebf ≈ pffiffiffiffiffiffiffiffi � 2:5 ; CfD≤1:6 (7.22)
CfD  

Since CfD and kf wf are known, then xf can be estimated from the definition of 
CfD. 

7.6. Cartesian plot of pressure against the square root of time 

Cinco et al. [6] and Cinco‐Ley and Samaniego [7] presented the following 
expressions: 

rffiffiffiffiffiffiffiffiffiffiffi 
4:064qB μt

ΔP = (7.23)
hf xf ξϕctk 

Eq. (7.23) has the modification given by Bettam et al. [2]. The slope mlf is 
obtained from the Cartesian plot and is useful to find the half‐fracture length: 

rffiffiffiffiffiffiffiffiffiffiffi 
4:064qB μ 

xf = (7.24)
mlf hf ξϕctk 
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The outer boundary can distort the semilog line if xf > xe/3. The pressure behav-
ior during the infinite‐acting period is very dependent on xf. For relatively short 
fractures, the flow is radial but becomes linear as xf grows and reaches xe. The m 
(semilog) obtained from conventional analysis of a fractured well is erroneously 
very small and the value of m decreases progressively as xf increases [6, 7, 26, 33], 
and hence the calculation of the half‐fracture length requires trial and error. 

The smaller the flow capacity, the longer the curved portion. The beginning of 
the linear flow in the formation “blf” depends on CfD and can be approximated by 
[6, 7, 26, 33]: 

100 
tDblf = (7.25)ðCfDÞ2 

And at the end of the linear flow period, “elf” occurs approximately at: 

tDblf =0:016 (7.26) 

telf and tblf are the times for the end and beginning of the linear flow regime and 
serve to determine the dimensionless conductivity of fracture. 

sffiffiffiffiffiffi 
telfCfD  =0:0125 (7.27)
tblf 

The linear flow in the fracture ends as a function of the value of the dimension-
less hydraulic diffusivity of the fracture [7] ηfD: 

0:01ðCfDÞ2 

tDxf = (7.28)ðηfDÞ2 

kf ϕcf t
ηfD  = (7.29)

kf ϕct 

The pressure data during the transition period show a curved portion before the 
line representing the linear flow is obtained. The duration of the curved part repre-
sents the transition and depends on the flow capacity of the fracture. For CfD > 0.5, 
the start time of the linear flow regime is governed by: 

2227:8μctxf ðC�1:39tblf = fD  Þ (7.30)
k 

The linear flow ends at a dimensionless time of approximately 0.016 and the 
pseudoradial flow starts at a tD of about 3 and continues until the boundaries have 
been felt. The pseudoradial flow does not appear if the distance to the border is 10 
times smaller than xf. The equation that approximates this flow regime is [26, 33]: 

PDf =0:5 ln tDlf þ 1:1 (7.31) 

The uniform flux has less duration than the linear. In the linear, the pseudoradial 
period is achieved earlier at a tD ≈ 1. For uniform flow, the fracture length is: 

�sþ1xf = rwe (7.32) 

s = � ln 
xf � 1 (7.33)
rw 
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In fractured wells, the pseudoradial flow is governed by: 

PDf =0:5 ln tDf þ f ðCfDÞ (7.34) 

The pseudoradial flow period is identical to the radial flow of an unfractured 
well but with a negative damage factor caused by the influence of the fracture. 
During this period, the behavior of the pressure is described by:

 !
2xf tDxf 

PDf =0:5 ln þ 0:404 þ s (7.35)
r2 
w 

The start of the semilog line is given by [6]: 

tDssl = 5 exp ½�0:5ðC�0:6Þ� (7.36)fD  

There is an approximate relationship [6, 26, 33] between ΔPelf and ΔPbrf: 

ΔPbrf = 2ΔPelf (7.37) 

This rule is known as the “double P rule.” For fractured wells, twice the Pelf 
marks the beginning of the pseudoradial flow. Equivalently, a time rule referred to 
as “rule 10t” can be applied at the beginning of the pseudoradial flow, tbrf, by: 

tbrf = 10telf (7.38) 

Another approach that can be used to mark the beginning of the radial flow for 
finite‐conductivity fractures is: 

tDbrf ≈5 exp ðC�0:6Þ; CfD>0:1 (7.39)fD  

The fracture length can be determined with the following expressions and the 
aid of Figure 7.8 for the determination of n [6, 7, 26]. 

�sxf = nrwe (7.40) 

s = � ln 
xf (7.41)
nrw 

Figure 7.8 
Determination of n, after [6, 7, 26]. 
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Alternatively, instead of using Figure 7.8, the below polynomial fit can be used: 

y =0:958169221 � 0:414066786x þ 0:308171775x2þ 
(7.42)

0:05438571x3 � 0:197400959ex 

x = logðCfDÞ (7.43) 

n = 10y (7.44) 

Theoretically, bilinear flow regime takes place at a dimensionless time given by: 

0:1 
tDxf = ; CfD>16 (7.45)

C2 
fD  

0 1 
tDxf = @4:55 � 2:5A � 4; CfD  < 16 (7.46)

C1=2 
fD  

On the other hand, the occurrence of linear flow formation is characterized by a 
slope of 1/2 in the graph log‐log of pressure and pressure derivative. This flow 
regime will normally be evident and analyzable for fractures with high conductivity 
(CfD > 100). The beginning of the linear flow regime occurs in: 

tDf C2 100 (7.47)fD  = 

To verify that the data used for the analysis actually represent linear flow, 
Eq. (7.7) was properly applied; the valid range of data occurs during: 

100 
< tDxf <0:016 (7.48)

C2 
fD  

Based on the time at which the linear flow ends, tDxf =0.016, it is possible to 
estimate the permeability of the formation. At the end of the linear flow, the data of 
P versus Dt1/2 deviate from the straight line. Using the time of this deviation with 
Eqs. (7.15) and (7.50) will yield: 

101:1qμB
k = pffiffiffiffiffiffi (7.49)

h � mvf telf 

In Eq. (7.49), telf represents the end of the linear flow regime. 
Further in this chapter, the biradial flow will be characterized (Figure 7.11). The 

pressure equation for such flow was presented by [16]: 

PD = 2:14 

! 0:72� �0:36 xe tDA 

xf ξ 
(7.50) 

After replacing the dimensionless quantities in the above expression: 

ΔP = mellt0:36 (7.51) 

where 

� �  !0:72� �0:36qBμ xe k 
mell = 15:53 (7.52)

kh xf ξμϕctA 
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which indicates that a straight line will be obtained from a Cartesian plot of ΔP 
versus t0.36 (for drawdown) or ΔP versus [(tpþΔt)0.36 � Δt0.36] (for buildup). The 
slope, mell, of such line will be useful to find the half‐fracture length: 

sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi �25=18qBμ k 
xf = 45:124xe (7.53)

khmell ξμϕctA 

7.7. TDS technique for hydraulically fractured vertical wells 

This section deals with the analysis of test data from wells that have been 
fractured hydraulically. Initially, hydraulic fracturing became a good way to 
increase the productivity of completed wells in low permeability reservoirs. How-
ever, lately, it has become a common practice thanks to its impact to increase well 
productivity and remove damage. The purpose of fracture well tests is to determine 
fracture and reservoir properties to provide an effective assessment of fracture 
treatment and to predict long‐term productivity for the reservoir. The fracture does 
not alter the permeability of the reservoir but it alters the average permeability of 
the system. Basically, fracturing increases the effective radius of the face of the well: 

�srwa = xf =2 =  rwe (7.54) 

After a well has been fractured, a new group of flow regimes is formed. The 
main flow regimes are presented in Figure 7.9 and are as follows [6, 26, 33]. 

• Linear flow in the fracture 

• Bilinear flow (fracture and formation) 

• Linear flow in the formation (or elliptical) 

• Pseudoradial flow 

Figure 7.9 
Flow regimes governing pressure behavior in a with a finite‐conductivity fracture [6, 36]. 
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For infinite conductivity and uniform flow fracture systems, only the third and 
fourth flow regimes can be seen in the pressure data. Linear flow usually occurs at a 
very early time, since it is normally masked by wellbore storage effects. The onset of 
pseudoradial flow can occur at a time that is economically unachievable and there-
fore cannot occur at any time during a well test. To determine kh of the reservoir, it 
is necessary that the reservoir is in radial flow, unless the interpretation is 
conducted by TDS technique that, in most cases, may be successfully interpreted 
with having the radial flow regime. A typical case of this is when the fracture is of 
finite conductivity and the slopes of a half and a quarter are observed; it is possible 
to obtain the permeability of the point of intersection between these lines. So 
whenever an analysis of a fractured well test is required, it is important that a 
prefracture test is involved to determine the kh of the reservoir, if conventional 
methods or type curves are used. If this does not occur, a unique analysis of the data 
may not be possible, since there are two unknowns: reservoir permeability and 
fracture length [35, 36]. 

Wellbore storage may mask the first of the three flow regimes. If this occurs, 
analysis to determine fracture length is not possible. In this case, the success of the 
fracture treatment will have to be determined using the calculated skin factor. As a 
general rule, a fracture is successful if the skin factor is reduced to less than ˜3. If 
the effects of storage are short‐lived, then bilinear flow or linear flow can be 
analyzed to determine fracture length and conductivity. For analysis of fractured 
wells, a new set of dimensionless parameters is used. These are the dimensionless 
time for a fractured well, tDxf, (Eq. 7.45) and the dimensionless fracture conductiv-
ity, CfD (Eq. 7.15). 

0:0002637kt 
tDxf = (7.55)

ϕμ ctx2 
f 

7.7.1 Hydraulic fractured wells in bounded systems 

For the case of a uniform‐flux fracture, the pressure derivative plots for various 
xe/xf ratios reveal three dominant flow periods. During early times, the flow of 
fluids is linear and can be identified by a straight line of a slope of 0.5. The linear 
flow line is used to calculate the average half‐fracture length. The infinite‐action 
radial flow regime, which can be identified by a horizontal straight line, is domi-
nated by xe/xf > 8. This flow regime is used to calculate permeability and skin factor. 
The third straight line, which corresponds to the pseudosteady‐state period, has a 
unit slope. This line is used to calculate the drainage area and the shape factor. For 
the case of infinite‐conductivity fracture, pressure derivative plots show a fourth 
dominant flow regime, referred to here as biradial flow. This flow regime, which 
can be identified by a straight line of slop. 0.36, can also be used to calculate the 
half‐fracture length and permeability [35]. 

7.7.2 Characteristics of uniform‐flux fracture 

Figure 7.10 shows a log‐log plot of pressure and the pressure derivative group 
versus dimensionless time for three values of xe /xf. These curves have several 
unique characteristics, which can be used to interpret pressure transient tests in 
fractured wells without using type‐curve matching [35]. 

(1) For short production times, the flow in the fracture is linear. The duration of 
this flow regime is a function of the penetration ratio xe /xf. The equation 
corresponding to this straight line at early times is: 
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Figure 7.10 
Pressure derivative behavior for a uniform‐flux fracture inside a square reservoir, after [35]. 

rffiffiffiffiffiffiffi 
xe tDAtDA*PD 

0 = 1:772 (7.56)
xf ξ 

Taking logarithm at both sides, it yields: 

� � pffiffiffiffiffiffiffi! 
tDA πxelogðtDA*PD 

0Þ =0:5log þ log (7.57)
ξ xf 

The slope of this straight line is 0.5, which in itself is a unique feature of the 
linear flow regime. Substituting the dimensionless quantities in Eq. (7.4) and solv-
ing for the well pressure derivative, the following is obtained: 

pffiffi 
t*ΔP 0 =0:5mL t (7.58) 

where 

sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 
mL = 

4:064qB 
h 

μ 
ξϕctkx2 

f 
(7.59) 

Taking logarithm at both sides of the above expression: 

logðt*ΔP 0Þ =0:5logðtÞ þ logð0:5mLÞ (7.60) 

This expression shows that a graph of t*ΔP 0 versus time in a log‐log graph will 
produce a straight line of slop. 0.5 if the linear flow regime is dominant. Let 
(t*ΔP 0)L1 be the value of (t*ΔP 0)L1 at a time t=1 hr in the straight line of the linear 
flow regime (extrapolated, if necessary). Then, combining Eqs. (7.59) and (7.60) 
and solving for the half‐fracture length, xf, gives [23] and [35]: 

rffiffiffiffiffiffiffiffiffiffiffi 
2:032qB μ 

xf = (7.61)
hðt*ΔP 0ÞL1 ξϕctk 
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The equation of the linear flow line portion of the pressure curve is: 

pffiffi 
ΔP = mL t (7.62) 

Let (ΔP)L1 be the value of ΔP in the straight line (extrapolated if necessary) at 
time t=1 hr. Thus, after substituting for mL of Eq. (7.62), it results: 

rffiffiffiffiffiffiffiffiffiffiffi 
4:064qB μ 

xf = (7.63)
hðΔP 0ÞL1 ξϕctk 

(2) After the linear flow regime, radial flow is developed. It is used as seen in 
Chapter 2. Then, Eqs. (2.71) and (2.92) apply for the estimation of permeability and 
skin factor. 

(3) For long production times, the pressure derivative function will produce a 
unit‐slope straight line. This line corresponds to the pseudosteady‐state period, 
starting at a tDA value of approximately 0.2. The equation of this straight line is 
given by Eq. (2.96) and it is useful to estimate the drainage area. If the dimension-
less quantities are substituted in Eq. (2.96), and solving for ΔP will yield, 

qB
t*ΔP 0 = t (7.64)

4:27ϕct 

This expression leads to find Eqs. (2.98) and (2.99). 
(4) The dimensionless pressure during pseudosteady‐state period is a linear 

function of the dimensionless time. The equation corresponding to this period 
is [35]: 

rffiffiffiffiffiffiffiffiffiffiffiffiffiffi 
2:2458

PD = 2πtDA þ lnðxe =xf Þln (7.65)
CA 

Dividing Eq. (7.65) by Eq. (7.56), 

! rffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PD 1 xe 2:2458

= 1  þ ln (7.66)0tDA*PD 2π tD xf CA 

From which is obtained after replacing the dimensionless variables:

 !2 " !# 
xe 0:000527ktps ðΔPÞpsCA = 2:2458 exp 1 � (7.67)
xf ϕμ ctA ðt*ΔP 0Þps 

or 

2CA = 2:2458ðxe =xf Þ (7.68) 

If (ΔP)ps=(t*ΔP 0)pss 
(5) The point of intersection of the linear flow line and the infinite‐action radial 

flow line is unique. The coordinates of this point can be obtained by setting 
Eq. (7.56) to 0.5 and solving for the dimensionless intersection time: 

� �21 xftDALri = (7.69)
4π xe 

Substituting Eq. (1.100), setting A=4xe 
2, and solving for xf 

2/k, it yields: 
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xf 
2 tLri = (7.70)
k 1207ξϕμct 

(6) The linear flow line and the pseudosteady‐state line intercept at: 

rffiffiffiffiffi 
1 xetDALpssi = (7.71)
4π xf 

Substituting Eq. (1.100), 

kx2 = f 
7544ξϕμctA2 

tLpssi 
(7.72) 

This equation can be used for verification purpose or to calculate k given that xf 
is known. 

(7) Combining Eqs. (7.69), (7.71), and the time of intercept of the pseudosteady‐
state with the radial lines provides: 

sffiffiffiffiffiffiffiffiffi 
tLri trppsi tLri 2 = = = ðxe =xf Þ (7.73)
trppsi tLpssi tLpssi 

This expression can be used for verification purposes. It is also used when 
designing a pressure test in a well intercepted by a vertical fracture. 

7.7.3 Characteristics of infinite‐conductivity fractures 

Figure 7.11 is a graph of pressure dimensionless and pressure derivative versus 
dimensionless time based on area for a vertical fracture of infinite conductivity 
within a square system. This figure shows the existence of four straight lines: (a) 
half‐slope linear flow line, (b) 0.36‐slope biradial flow line, (c) infinity‐acting radial 

Figure 7.11 
Pressure derivative behavior for an infinite‐conductivity fracture inside a square reservoir, after [35]. 
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flow line (horizontal line), and (d) unit‐slope pseudosteady‐state flow line. For xe/xf 
> 8, the linear flow regime is almost nonexistent, and the biradial flow line is 
observed first. For xe/xf < 8, the biradial flow line disappears [34]. Only the char-
acteristics of the biradial flow regime will be discussed here. The characteristics and 
interpretation of the other three flow regimes (linear, radial, and pseudosteady 
state) are the same as discussed above for uniform‐flow fracture. 

(1) The equation of the biradial flow regime line introduced by [35] and modi-
fied by Bettam et al. [2] is:

 !0:72� �0:36 xe tDAtDA*PD 
0 =0:769 (7.74)

xf ξ 

Taking logarithm to both members of the above equation leads to: 

2 3!� � 0:72 
tDA xe4 5logðtDA*PD 

0Þ =0:36log þ log 0:769 (7.75)
ξ xf 

In dimensional form, Eq. (7.74) becomes: 

2t0:36t*ΔP 0 =0:769CBRðxe =xf Þ (7.76) 

where 

9=25 qμB k
CBR = 7:268 (7.77)

kh ξϕμctA 

Taking logarithm to both sides of Eq. (7.76) yields: 

0 1! 0:72 

logðt*ΔP 0Þ =0:36 log t þ log@0:7699CBR 
xe A (7.78)
xf 

Thus, the biradial flow line can be identified by its slope of 0.36. Let (t*ΔP 0)BR1 

be the value of pressure derivative at a time t=1hr in the straight line (extrapolated 
if necessary). An expression to find the half‐fracture length is found from Eq. (7.76) 
when linear flow regime is absent: 

1:388CBR xf =0:694xe (7.79)ðt*ΔP 0ÞBR1 

CBR is found from Eq. (7.77). 
(2) The time of intersection between the linear flow and biradial flow regimes is 

given by Eqs. (7.56) and (7.74): 

2 

tDALBRi =0:00257 
xf (7.80)
xe 

Substituting the dimensionless time and solving for xf 
2/k yields: 

xf 
2 tLBRi = (7.81)
k 39ξϕμct 
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If the radial flow is too short, permeability can be found from an expression 
obtained by combining the above expression and Eq. (7.61): 

12:67qμB 1
k = pffiffiffiffiffiffiffiffiffi (7.82)

hðt*ΔP 0ÞL1 tLBRi 

(3) The time of intersection between the biradial and radial flow regime lines 
can be used to verify k and xf: 

� �2xf tDArBRi =0:3023 (7.83)
xe 

Substituting the dimensionless time in the above expression and solve for xf 
2/k: 

xf 
2 tBRri = (7.84)
k 4587ξϕμct 

(4) The time of intersection between the biradial flow regime line and the 
pseudosteady‐state line (Eqs. 2.96 and 7.74) provides:

 !1:125 

tDABRpssi =0:03755 
xe (7.85)
xf 

After substituting the dimensionless time based on area, Eq. (1.100) in Eq. (7.85) 
leads to:

 !1:125 
142:3ξϕμctA xek = (7.86)

tBRpssi xf 

(5) Combination of Eqs. (7.81) with (7.84) and (7.83) with (7.85) will, respec-
tively, yield: 

tBRri = 117:6tLBRi (7.87) 
�2:125 

tBRri = 8  
xf tBRpssi (7.88)
xe 

which can be used for either verification or test design purposes. 

7.7.4 Rectangular systems 

For both types of fractures in rectangular systems, the transition between the 
infinite‐action radial flow and the pseudosteady‐state period is much longer than for 
a square system since, in the first one, formation linear flow exists as described in 
Section 2.7. The equation of this straight line proposed by Tiab [35] and modified by 
Escobar et al. [16] to include naturally fractured formations is: 

rffiffiffiffiffiffiffi 
tDAtDA*PD 

0 = 3:545 (7.89)
ξ 

Substituting the dimensionless terms: 

pffiffi 
t*ΔP0 = mCB t (7.90) 
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where 

˜ ° 0:5qB μ 
mCB = 8:128 (7.91)

h ξϕctA 

where (t*ΔP 0)CB1 is the value of (t*ΔP 0) at a time t=1hr on the formation linear 
flow straight line (extrapolated if necessary). Permeability can be solved from the 
above equation, so that: 

˜ ° 2qB μ
k = 66:0712 (7.92)

hðt*ΔP 0 ξϕctAÞCB1 

Tiab [35] presents step‐by‐step procedures for the interpretation of pressure 
tests in fractured wells. These procedures are not included here. 

Example 7.2 

Tiab [35] presented an example of a pressure test in a highly productive frac-
tured well. Pressure and pressure derivative [13] data versus time are reported in 
Figure 7.12 and Table 7.2. Other relevant data are given below: 

q=2000 STB/D, ϕ =0.24, m=0.3 cp, ct=14.8�10�6 psia�1, B=1.5 bbl/STB, h=50 
ft, rw =0.4 ft, Pi =5200 psia 

Find permeability, skin factor, and half‐fracture length. Verify the value of the 
half‐fracture length. 

Solution 

Since it is a homogenous reservoir, then ξ=1. The following characteristic points 
were read from Figure 7.12 and Table 7.3: 

tr=48 hr, ΔPr =507 psia, (t*ΔP 0)r =105.5 psia, tLRi =1.2 hr, tLBRi =0.047 hr, trBRi = 
4.5 hr 

Estimate permeability using Eq. (2.71) and skin factor with Eq. (2.92): 

70:6qμB 70:6ð2000Þð0:3Þð1:5Þ
k = = = 12 md 

hðt*ΔP 0Þ 50ð105:5Þr 

Figure 7.12 
Pressure and pressure derivative against time log‐log plot of Example 7.3. 
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t, hr P, psia t*DP’, psia t, hr P, psia t*DP’, psia 

0.017378 5174.322 12.605 1.44544 5019.68 68.901 

0.025119 5169.16 15.287 2.089296 4992.606 76.039 

0.036308 5163.033 18.027 3.019952 4962.879 83.251 

0.052481 5155.836 21.039 4.365158 4930.874 88.885 

0.075858 5147.48 24.541 6.309573 4897.025 93.405 

0.109648 5137.868 28.044 9.120109 4861.749 98.014 

0.131826 5132.556 29.705 13.18257 4825.404 100.147 

0.190546 5120.828 33.792 15.84893 4806.922 99.820 

0.275423 5107.467 38.787 22.90868 4769.489 100.962 

0.398107 5092.232 44.292 33.11311 4731.58 103.280 

0.57544 5074.815 50.627 47.86301 4693.335 109.456 

0.831764 5054.879 58.306 69.1831 4654.853 109.456 

1.202264 5032.142 65.746 100 4616.205 109.456 

Table 7.3. 
Pressure and pressure derivative against time data of Example 7.3. 

" ! # 
s =0:5 

507 � ln 
12 � 48 þ 7:432 = � 4:85

105:5 ð0:24Þð0:3Þð14:8 � 10�6Þð0:4Þ 

Find half‐fracture length with Eq. (7.63): 

sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi rffiffiffiffiffiffiffiffiffiffi 
2:032qB μ 2:032ð2000Þð1:5Þ 0:3 

xf = = = 105:4 ft 
h tð *ΔP 0ÞL1 ϕ ctk 50ð97Þ 0:24ð14:8 � 10�6Þð12Þ 

Recalculate the half‐fracture length with Eqs. (7.70), (7.81), and (7.84), respec-
tively. 

sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 
tLrik ð1:2Þð12Þ 

xf = = = 105:81 ft 
1207ξϕμct 1207ð0:24Þð0:3Þð14:8 � 10�6Þ 
sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 

tBRLik ð0:047Þð12Þ 
xf = = = 116:5 ft 

39ξϕμct 39ð0:24Þð0:3Þð14:8 � 10�6Þ 
sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 

tBRrik ð5:5Þð12Þ 
xf = = = 116:2 ft 

4587ξϕμct 4587ð0:24Þð0:3Þð14:8 � 10�6Þ 

7.7.5 Finite‐conductivity fractured vertical wells 

A log‐log plot of pressure and pressure derivative versus test time for a fractured 
well in a closed system may reveal the presence of several straight lines 
corresponding to different flow regimes, excluding wellbore storage, such as (a) 
bilinear flow characterized by a slope of ¼ in the pressure and pressure derivative 
curve, (b) linear flow, (c) infinite‐action radial flow, and (d) pseudosteady‐state 
period. The slopes and points of intersection of these straight lines are unique and 
were used by Tiab et al. [36, 38] to find expressions for well test interpretation. 
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The characteristics of bilinear flow were first discussed by Cinco et al. [6]. It is 
called bilinear flow because it is the result of two linear flow regimes. A flow regime 
is the incompressible linear flow of the fracture and the other flow regime is the 
compressible linear flow in the formation, as shown in Figure 7.9. They showed 
mathematically that bilinear flow exists whenever (a) most of the fluid entering the 
well face comes from the formation and (b) the effects of the fracture do not affect 
well behavior. 

During the bilinear flow regime, the behavior of the dimensionless pressure of 
the well given by Tiab et al. [36] and modified by Bettam et al. [2] is: 

rffiffiffiffiffiffiffiffi 
2:45 4 tDxfPD = (7.192)
C1=2 ξ 
fD  

Replacing the dimensionless parameters given by Eqs. (1.89), (7.3), and (7.15), 
Eq. (7.92) becomes: 

pffiffi 
ΔP = mBL 

4 t (7.93) 

44:13 qμB 
mBL = pffiffiffiffiffiffiffiffiffiffi (7.94)ðξϕμctkÞ0:25 hf kfwf 

The fracture conductivity is solved from Eq. (7.93): 

� �21 qμB
kf wf = 1947:46 pffiffiffiffiffiffiffiffiffiffiffiffiffiffi (7.95)

ξϕμctk hðΔPÞBL1 

The derivative of Eq. (7.92) is: 

rffiffiffiffiffiffiffiffi 
0 0:6125 4 tDxf tD*PD = (7.96)

C1=2 ξ 
fD  

Replacing the dimensionless quantities, given by Eqs. (2.57), (7.3), and (7.15), in 
Eq. (7.96) and solving for the fracture conductivity: 

� �2121:74 qμB
kf wf = pffiffiffiffiffiffiffiffiffiffiffiffiffiffi (7.97)

ξϕμctk hðt*ΔP 0ÞBL1 

Since this is linear flow, Eqs. (7.61) and (7.63) also apply for finite‐conductivity 
fractures. 

The intercept between linear flow and bilinear flow lines given by the governing 
pressure derivative solutions (Eqs. 7.4 and 7.92) leads to: 

pffiffiffi!
2x kftBLLi = 13910ξϕμct (7.98)
kf wf 

Solving for k,

 !2 
kf wf tBLLik = (7.99)
x2 13910ξϕμctf 

The pressure derivative of Eq. (7.4) is: 
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rffiffiffiffiffiffiffiffiffiffiffi 
1 πtDxftD*PD = (7.100)
2 ξ 

The intercept between linear flow and bilinear flow lines given by the governing 
pressure derivative solutions (Eqs. 7.100 and 7.96) leads to:

 !2 
kf wf 16t 0 BLLik = (7.101)
x2 
f 13910ξϕμct 

Eqs. (7.99) and (7.101) can be used for verification purposes, if all three flow 
regimes are observed. If the test is too short to observe the radial flow line, or a 
prefracture test is not possible as in the low permeability formation, then 
Eqs. (7.99) and (7.101) can be used to calculate the permeability of the formation. 
Also, needless to say that Eqs. (2.71) and (2.93), along with many other relation-
ships in Chapters 2 and 3, will apply to fractured wells. 

The intersection of Eq. (2.70), neglect CD, and Eq. (7.96) leads after rearranging: 

70:6qμB
0:25mBLt0:25 (7.102)BLri = 

kh 

Solving for the intersection time, 

ξϕμct 2tBLri = 1677 ðkf wf Þ (7.103)
k3 

which Tiab et al. [36] recommend to be used for verification purpose. 
The intersection of the biradial flow regime pressure derivative (Eq. 7.74) with 

the bilinear flow regime pressure derivative (Eq. 7.96), lines will result in: 

0:721:197k0:39ðξϕμctkÞ0:11x 
t0:11 0:25mBL f = (7.104)BLBRi =  !0:72  !0:72 

xe pffiffiffiffiffiffiffiffiffiffi xe0:7699CBR kf wf xf xf 

being mBL and CBR defined by Eqs. (7.94) and (7.77), respectively. Either half‐
fracture length or conductivity can be solved from Eq. (7.104). 

The intersect of the pressure derivative bilinear governing expression (Eq. 7.96) 
with the pressure derivative pseudosteady‐state period Eq. (2.96) will lead to: 

� �3=2ξϕμctkf wf = 2220:603A2k (7.105)
ktBLpssi 

7.7.6 Special Cases 

As also mentioned by Tiab et al. [36, 38], the above assumption assumes that all 
three flow regimes (bilinear, linear formation, and radial) are observed during the 
pressure test and that these are well defined in the pressure derivative curve. In 
many instances, at least one of the flow regimes is not observed or defined. For 
example, when the fracture has low conductivity, let us say, CfD < 5, probably linear 
flow regime is not seen. In the contrary case, when CfD > 50, probably bilinear flow 
is absent or maybe masked by wellbore storage effects. In such cases, the below 
correlations [37], which are excellent, can be used to find one parameter (Eq. 7.107) 
as a function of the other one or vice versa (Eq. (7.108)). 
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1:92173 
xf = (7.106)

1=rwa � 3:31739k=kf wf 

where rwa is the effective wellbore radius given by Eq. (7.54), so Eq. (7.106) can 
be rewritten as: 

1:92173 
xf = (7.107)

es=rw � 3:31739k=kf wf 

3:31739k
kf wf = (7.108)

es=rw � 1:92173=xf 

When radial flow is absent, this can be artificially from Eq. (2.71) by solving for 
the pressure derivative during the radial flow regime. Once estimated, a horizontal 
line can be drawn through this value, which corresponds to the place where radial 
flow really exists. Intersection of this line with others can be used without any 
problem. However, to find skin factor, the below correlation developed by 
Economides et al. [9] is recommended to be used: 

"  ! # 
1:92173 3:31739 

s = ln rw � (7.109)
xf kfwf 

The internal result between parentheses may be considered in absolute value. 
Skin factor can also be estimated by a graphical procedure formulated by Cinco‐Ley 
and Samaniego [7], type‐curve matching, or the following correlation [9]: 

2rw 1:65 � 0:32u þ 0:11u 
s = ln þ (7.110)

xf 1 þ 0:18u þ 0:064u2 þ 0:005u3 

where

 ! 
kf wf u = ln = ln CfD  (7.111)
k � xf 

Finally, Tiab et al. [36, 38] also provided more relationships, which are not 
reported because of their relevance. Neither the step‐by‐step procedures are 
reported. 

Alternatively, Eqs. (7.40), (7.41), and Figure 7.8 can be used. 
Fracture conductivity can be found by a graphical correlation (Figure 7.13), 

given by Economides et al. [9], which polynomial fitting is given here: 

x = s þ ln 
xf ; 0:67≤x≤2:8 (7.112)
rw 

20:59222806 � 1:77955x þ 0:86571983x 
1 � 1:5944514x þ 0:010112x2CfD  = 10 (7.113) 

Example 7.4 

Tiab et al. [36, 38] presented pressure data for a buildup test run in a fractured 
well. Pressure and pressure derivative data are reported in Table 7.4 and 
Figure 7.14. Other important information concerning this test is given below. Find 
the fracture and reservoir parameters for this well. 
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Figure 7.13 
Effect of skin factor on fracture conductivity, after [9]. 

t, hr DP, psia t*DP', psia t, hr DP, psia t*DP', psia 

0.23 102 26.3 15 390 117 

0.39 115 30 20 423 112 

0.6 130 35.8 25 446 120 

1 145 40.8 30 471 141 

1.8 183 57.2 35 493 136.5 

2.4 195 67 40 510 132 

3.8 260 83.3 45 526 135 

4.1 265 69.2 50 540 150 

4.96 280 96.9 55 556 137.5 

6.2 308 102.3 60 565 144 

8.5 320 103.3 65 580 121.1 

10 345 149 71 583 

Table 7.4. 
Pressure data for Example 7.4. Derivative digitized from [38]. 

q=101 STB/D, ϕ=0.08, μ=0.45 cp, ct =17.7�10�6 psia�1, B=1.507 bbl/STB, 
h = 42 ft, rw=0.28 ft, tp =2000 hr, Pi =2200 psia, ξ=1  

Solution 

The following characteristic features were read from Figure 7.14: 
tr=30 hr, ΔPr=471 psia, (t*ΔP’)r =150 psia, (t*ΔP’)BL1=160 psia, ΔPBL1=40 psia, 

ΔPL1=120 psia, tLri =8.2 hr, tBLri =195 hr 
Estimate permeability and skin factor from Eqs. (2.71) and (2.92): 

70:6qμB ð70:6Þð101Þð0:45Þð1:507Þ
k = = =0:76 md

hðt*ΔP 0Þ ð42Þð150Þr 
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Figure 7.14 
Pressure and pressure derivative against time log‐log plot for Example 7.4. 

1 471 ð0:76Þð30Þ 
s = � ln þ 7:43 = � 4:68

2 150 ð0:08Þð0:45Þð17:7 � 10�6Þð0:282Þ 

Estimate fracture conductivity using Eqs. (7.95) and (7.97): 

� �21947:46 ð101Þð0:45Þð1:507Þ
kf wf = qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi = 290:7 md‐ft ð42Þð160Þð0:08Þð0:45Þð17:7 � 10�6Þð0:76Þ 

� �2121:74 ð101Þð0:45Þð1:507Þ
kf wf = qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi = 290:77 md‐ft ð42Þð40Þð0:08Þð0:45Þð17:7 � 10�6Þð0:76Þ 

Find the intercept between bilinear and biradial flow regimes with Eq. (7.103): 

ð0:08Þð0:45Þð17:7 � 10�6Þ 2tBLri = 1677 ð310:8Þ = 235 hr ð0:76Þ3 

This is in the range of 195 hr read from Figure 7.13. Use Eqs. (7.63) and (7.70) to 
find half‐fracture length: 

sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 
ð101Þð1:507Þ 0:45 

xf = 4:064 = 79 ft ð42Þð120Þ ð0:08Þð17:7 � 10�6Þð0:76Þ 
sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 

ktLri ð0:76Þð10Þ 
xf = = = 76:5 ft 

1207ξϕμct 1207ð0:08Þð0:76Þð17:7 � 10�6Þ 

From Eq. (7.98), the time intercept of bilinear and linear flow regimes is found 
to be: 

� pffiffiffiffiffiffiffiffiffi�2
792 0:76 

tBLLi = 13910ð0:08Þð0:45Þð17:7 � 10�6Þ = 1:48 hr
290:7 

This is very close to the value of 1.4 hr found from the derivative plot. Use 
Eq. (7.107) to estimate the half‐fracture length: 
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t, hr DP, psia t*DP 0, psia t, hr DP, psia t*DP 0 , psia 

0.017 27.45 26.62 3.78 93.59 24.85 

0.019 42.39 24.98 4.78 99.56 26.61 

0.082 48.5 5.19 5.78 104.26 28.49 

0.28 56.18 10.50 7.78 113.36 30.37 

0.33 61.87 9.67 9.78 121.04 33.32 

0.78 63.72 10.91 11.78 126.87 35.17 

1.08 72.11 13.18 13.78 131.85 35.67 

1.78 76.38 15.36 17.78 142.66 38.51 

2.78 86.34 22.58 19.78 146.07 40.70 

Table 7.5. 
Pressure data for Example 7.5. Derivative digitized from [38]. 

Figure 7.15 
Pressure and pressure derivative against time log‐log plot for Example 7.5. 

1:92173 1:92173 
xf = = = 79 ft es � 3:31739k e�4:6844 3:31739ð0:76Þ 

rw wf kf 0:28 290:7 

And the dimensionless fracture conductivity is found from Eq. (7.15), so that: 

wfkf 290:7
CfD  = = = 4:8 

xf k 79ð0:76Þ 

Example 7.5 

Tiab et al. [36, 38] presented a short buildup test run in a fractured well. Radial 
flow was not developed, but the reservoir permeability was measured from another 
to be 12.4 md. The pressure and pressure derivative [13] data are reported in 
Table 7.5 and Figure 7.15. Additional data: 

q=411.98 STB/D, f=0.2, m=0.53 cp, ct=101�10�6 psia�1, B=1.258 bbl/STB, 
h =21 ft, rw =0.689 ft, tp =3000 hr, Pi =479.61 psia, ξ=1  

Solution 

Since permeability is known, the pressure derivative during infinite‐acting radial 
flow is found from Eq. (2.71): 
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Figure 7.16 
Pressure and pressure derivative behavior against dimensionless time for a vertical well with infinite‐
conductivity fracture in a heterogeneous reservoir with λ=1 � 10�8 and ω=0.1, after [23]. 

70:6qμB ð70:6Þð411:98Þð0:53Þð1:258Þ ðt*ΔP 0Þ = = = 74:5 psiar hk ð21Þð12:4Þ 
A horizontal line is drawn throughout (t*ΔP')r of 74.5 psia. This corresponds to 

an arterially created radial flow regime line. The following data were then read from 
Figure 7.15: 

tLri =75 hr, tBLLi =14 hr, (t*ΔP 0)BL1=18 psia, ΔPBL1=72 psia, ΔPL1=10 psia, 
Use Eqs. (7.95) and (7.97) to determine fracture conductivity: 

� �21947:46 ð411:98Þð0:53Þð1:258Þ
kf wf = qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi = 5578:35 md‐ft ð21Þð72Þð0:2Þð0:53Þð101 � 10�6Þð12:4Þ 

� �2121:74 ð411:98Þð0:53Þð1:258Þ
kf wf = qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi = 5579:44 md‐ft ð21Þð18Þð0:2Þð0:53Þð101 � 10�6Þð12:4Þ 

Find the half‐fracture length with Eqs. (7.61) and (7.71): 

sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 
411:98ð1:258Þ 0:53 

xf = 4:064 = 260:5 ft ð21Þð10Þ ð0:2Þð101 � 10�6Þð12:4Þ 
sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 

ktLri ð12:4Þð75Þ 
xf = = = 268:3 ft 

1207ξϕμct 1207ð0:2Þð0:53Þð101 � 10�6Þ 

Use Eq. (7.109) to find skin factor: 

�� � ��� 
1:92173 3:31739ð12:4Þ 

s = ln �0:689 � � = � 9:6
264 5578:9 

Estimate the dimensionless fracture conductivity by means of Eq. (7.15): 

kf wf 5578:9
CfD  = = = 1:7

kxf 12:4ð264Þ 
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7.8. New elliptical or biradial flow model 

It was not possible to use Eq. (7.79) to find half‐fracture length in Example 7.2. 
This is because Eq. (7.74) depends on area, which should not be the case since this 
causes the test to be very long and therefore costly, which is not well accepted by 
most operators who in many circumstances do not allow fractured wells to develop 
radial flow during a well test. This implies the impossibility of determining the 
mean fracture length by means of Eq. (7.79) when at early times only biradial or 
elliptical flow is observed. In cases where the radial flow is observed or the perme-
ability is known, it is possible to determine the mean fracture length using 
Eq. (7.84). 

To overcome the above issue, Escobar et al. [23] presented a new model (see 
Figure 7.17) for biradial/elliptical flow, which excludes the drainage area and is 
presented below for homogeneous reservoirs (ξ=1) or heterogeneous reservoirs 
(ξ=ω): 

�0:3625 πtDxfPD = (7.114)
9 26ξ 

which pressure derivative is given by: 

�0:36πtDxf0tD*PD = (7.115)
26ξ 

7.8.1 TDS technique for the new biradial flow model 

Once the dimensionless parameters given by Eqs. (1.89), (7.55) and (2.57) in the 
above expressions solve for the half‐fracture length, it yields: 

sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi �1:3889 � �1:778qB tBR μ
xf = 22:5632 (7.116)

ξϕct khðΔPÞBR 

sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi �1:3889 � �1:778qB tBR μ
xf = 5:4595 (7.117)

ξϕct khðt*ΔP 0ÞBR 

Figure 7.17 
Pressure and pressure derivative against time log‐log plot for Example 7.6, after [18]. 
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Normally, the well test data are affected by noise, so it is recommended to draw 
the best line on the dealt flow (in this case, biradial) and read the value on that 
straight line at a time t=1 hr (extrapolated if required), which leads to Eqs. (7.116) 
and (7.117) being rewritten as: 

sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi �1:3889 � �1:778qB 1 μ
xf = 22:5632 (7.118)

ξϕct khðΔPÞBR1 

sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi �1:3889 � �1:778qB 1 μ
xf = 5:4595 (7.119)

ξϕct khðt*ΔP 0ÞBR1 

The intercept between the straight lines of the derivatives of bilinear and bira-
dial flows tBLBRi (Eqs. 7.96 and 7.115) allows obtaining an expression to determine 
the half‐fracture length, xf, 

ξϕμctk
3:5454 6:5454

! 0:22 
xfkf wf = 10:5422 (7.120)

tBLBRi 

The intercept between the straight lines of the derivatives of linear and biradial 
flows tLBRi (Eqs. 7.89 and 7.115) also allows obtaining an expression to determine the 
half‐fracture length, xf, 

sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 
ktBRLi xf = (7.121)

39:044ξϕμct 

Another way to obtain the half‐fracture length is the intercept of the straight 
lines of the radial flow derivatives (Eq. 2.70) and biradial flow regime (Eq. 7.115) 
tBRri, 

sffiffiffiffiffiffiffiffiffiffiffi 
1 ktBRri xf = (7.122)

4584:16 ξϕμct 

The intersection formed by the line of the derivative of the biradial flow with the 
line of the derivative of pseudosteady state (Eq. 2.96), called tBRpssi, leads to: 

�0:8889ξϕμct xf = 41:0554A1:3889 (7.123)
ktBRpssi 

For circular/square constant pressure systems which pressure derivative 
is governed by Eq. (2.349), when intercepts with Eq. (7.115), called tBRSSi, also 
leads to: 

� �17 
91 ktBRSSixf = pffiffiffiffi (7.124)

4247:92A25=18 ω ϕμct 

Other recent publications dealing with elliptical/biradial flow regime in hori-
zontal and vertical wells can be found in Refs. [15–18, 28]. 

7.8.2 Conventional analysis for the new biradial flow model 

After replacing Eqs. (1.89) and (7.55), kin Eq. (7.114) leads to: 
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! 0:36 
qμB k 

t0:36ΔP = 9:4286 (7.125)
kh ξϕμctx2 

f 

or 

ΔP = mbirt0:36 (7.126) 

Eq. (7.126) implies that a Cartesian graph of ΔP versus t0.36 (for drawdown 
tests) or ΔP versus ΔP versus [(tpþΔt)0.36 � Δt0.36] (for buildup tests) provides a 
line which slope, mell, allows obtaining the half‐fracture length, 

sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�0:36 qμB k 
xf = 9:4286 (7.127)

khmbir ξϕμct 

Example 7.6 

Determine the half‐fracture length for a pressure test which data are reported in 
Table 7.6 and plotted in Figure 7.17 for a hydraulically fractured well in a hetero-
geneous reservoir. Other relevant information for this test is given below: 

B=1.25 bbl/STB, q=350 STB/D, h=100 ft, μ=3 cp, rw =0.4 ft, ct=1�10�5 psia�1, 
Pi=5000 psia, φ=20%, k=300 md, ω=0.1, λ=1�10�7, xf =100 ft 

t, hr ΔP, psia t*ΔP, psia t, hr ΔP, psia t*ΔP, psia t, hr ΔP, psia t*ΔP, psia 

0.001 1.246 0.608 0.101 8.159 2.624 8.021 19.566 1.680 

0.002 1.722 0.797 0.127 8.775 2.696 10.098 19.932 1.484 

0.003 2.063 0.920 0.160 9.405 2.753 14.264 20.397 1.234 

0.004 2.336 1.015 0.201 10.048 2.798 20.148 20.777 1.074 

0.005 2.569 1.088 0.254 10.697 2.832 28.460 21.108 1.012 

0.006 2.773 1.166 0.319 11.354 2.852 40.202 21.442 1.093 

0.007 2.956 1.224 0.402 12.015 2.863 55.107 21.797 1.283 

0.008 3.122 1.286 0.506 12.677 2.863 70.107 22.121 1.474 

0.009 3.277 1.341 0.637 13.336 2.849 85.107 22.423 1.678 

0.010 3.433 1.398 0.802 13.992 2.825 100.107 22.707 1.838 

0.013 3.768 1.521 1.010 14.641 2.788 140.107 23.390 2.200 

0.016 4.132 1.650 1.271 15.280 2.737 185.107 24.051 2.472 

0.020 4.528 1.790 1.600 15.906 2.671 240.107 24.734 2.691 

0.025 4.956 1.928 2.015 16.514 2.590 330.107 25.637 2.903 

0.032 5.418 2.066 2.537 17.102 2.488 420.107 26.355 2.999 

0.040 5.911 2.200 3.193 17.667 2.367 545.107 27.147 3.009 

0.051 6.434 2.324 4.020 18.198 2.226 685.107 27.852 3.194 

0.064 6.985 2.437 5.061 18.695 2.063 985.107 28.973 3.194 

0.080 7.562 2.538 6.372 19.153 1.879 

Table 7.6. 
Pressure and pressure derivative versus time data for Example 7.6, after [16]. 
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Solution 

The pressure derivative value during biradial flow regime at a time of 1 hr, 
(t*ΔP 0)BR1=7 psia. Use Eq. (7.119) to find the half‐fracture length: 

sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi �1:3889 �1:778350ð1:25Þ 1 3 
xf = 5:4595 = 105:96 ft 

100ð7Þ ð0:1Þð0:2Þð1 � 10�5Þ 300 

The estimation of the naturally fractured parameters can be found in [18]. 

7.9. Horizontal wells 

This last topic was left last since horizontal wells and fractured wells behave 
similarly. Actually, Escobar et al. [19] presented an approach for estimating the 
average reservoir pressure for horizontal wells under multirate testing using the 
mathematical solution of a vertical fractured well. The use of the TDS technique for 
horizontal wells is so extensive and deserves more than a chapter, for that reason it 
is only mentioned here. The pioneer papers on TDS technique for horizontal wells 
where presented by Engler and Tiab for naturally fractured deposit [10] and for 
anisotropic homogeneous formations [11]. The reader may not understand later 
publications without going them first. TDS technique for horizontal wells is so rich. 
Just to name so few cases, let us refer to treatment of zonal isolations by Al Rbeawi 
and Tiab [1] that even has conventional analysis by Escobar et al. [21]. Lu et al. [27] 
dealt with double permeability systems, and Escobar et al. [22] presented TDS 
technique for heterogeneous and homogeneous formations when the threshold 
gradient plays an important role for the flow to start flowing. Some applications on 
shale formations are summarized by Escobar [24]. 

Nomenclature 

A area, ft2 

B oil volume factor, bbl/STB 
b fraction of penetration/completion 
c compressibility, 1/psia 
C wellbore storage coefficient, bbl/psia 
CA reservoir shape factor 
CfD dimensionless fracture conductivity 
ct total or system compressibility, 1/psia 
Fcor correction factor 
h formation thickness, ft 
k permeability, md 
kh reservoir flow capacity, md‐ft 
hf fracture height, ft 
kc uncorrected reservoir permeability, md 
kf fracture permeability, md 
kfwf fracture conductivity, md‐ft 
m slope of P versus log t plot, psia/hr/cycle 
mbir slope of P versus t0.36 plot during elliptical/biradial flow, psia0.36/hr 
mlf slope of P versus t0.5 plot during linear flow, psia0.5/hr 
mvf slope of P versus t0.5 plot during linear flow, psia0.5/hr 
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mbf slope of P versus t0.25 plot during bilinear flow, psia0.25/hr 
P pressure, psia 

0PD dimensionless pressure derivative 
PD dimensionless pressure 
Pi initial reservoir pressure, psia 
Pwf well flowing pressure, psia 
Pws well shut‐in or static pressure, psia 
P* false pressure, psia 
ΔPs pressure drop due to skin conditions, psia 
q liquid flow rate, bbl/D 
qfD dimensionless flow rate 
rD dimensionless radius 
r radius, ft 
re drainage radius, ft 
rw well radius, ft 
rwa apparent wellbore radius, ft 
s skin factor 
t time, hr 
tp production (Horner) time before shutting‐in a well, hr 
tD dimensionless time based on well radius 
tDA dimensionless time based on reservoir area 
tDxf dimensionless time based on half‐fracture length 
tpDA dimensionless Horner time based on area 
X distance along the x direction 
xe half‐reservoir side, ft (square system) 
xf half‐fracture length, ft 
t*ΔP 0 pressure derivative, psia 
wf fracture width, ft 

Greek 

Δ change, drop 
Δt shut‐in time, hr 
η diffusivity constant, φµct/k 
ξ indicator of either heterogeneous, ξ=ω, or homogeneous, ξ=1, reservoir 
φ porosity, fraction 
ρ fluid density, lbm/ft3 

μ viscosity, cp 
ω dimensionless storativity coefficient 

Suffices 

1h read at a time of 1 hr 
D dimensionless 
DA dimensionless with respect to area 
Dxf dimensionless with respect to area 
BL bilinear flow 
BL1 bilinear flow at 1 hr 
BLLi intercept of bilinear and linear lines in pressure curve 
BLLi intercept of bilinear and linear lines in pressure derivative curve 
BLBRi intercept of bilinear and biradial lines in pressure curve 
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BLri intercept of bilinear and radial lines in pressure curve 
blf beginning of linear flow 
brf beginning of radial flow 
bsl beginning of semilog line 
BRLi intercept of biradial and linear lines 
BRri intercept of biradial and radial lines 
BRSSi intercept of biradial and steady‐state lines 
BRpssi intercept of biradial and pseudosteady‐state lines 
CB formation linear flow regime 
ebf end of bilinear flow 
el end of linear flow 
f fracture 
i intersection or initial conditions 
L linear flow 
L1 linear flow at 1 hr 
Lpssi intercept of linear and pseudosteady state lines 
Lri intercept of linear and radial lines 
p production 
pss pseudosteady state 
pss1 pseudosteady state at 1 hr 
r radial flow 
Lri intercept of linear and radial lines 
rSSi intersection between the radial line and the ˜1‐slope line 
s skin 
SS steady 
vf vertical fracture 
w well, water 
wa apparent wellbore 
wf well flowing 
ws well shut‐in 
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Te TDS technique is a practical, easy, and powerful tool for well test interpretation. 
It uses characteristic features and points found on the pressure derivative versus time 

plot, so that reservoir parameters can be easily calculated by using several analytic 
expressions. Most calculations can be verifed more than once and applied to systems 
where the conventional straight-line method has no applications. Tis book deals with 

well tests run in elongated systems, partially completed/penetrated wells, multirate 
tests, hydraulically fractured wells, interference tests, and naturally fractured 

reservoirs. Tis technique is used in all commercial well-testing sofware. Its use is the 
panacea for well test interpretation and can also be extended to rate-transient analysis, 

although not shown here. 

Published in London, UK 
©  2019 IntechOpen 
©  pichitstocker / iStock 

ISBN 978-1-78984-850-2ISBN 978-1-83881-842-5 


	Novel, Integrated and Revolutionary Well Test Interpretation and Analysis
	Contents 
	Foreword 
	Novel, Integrated and Revolutionary Well Test Interpretation and Analysis 
	Introduction 
	Chapter 1 - Fundamentals 
	Chapter 2 - Pressure Drawdown Testing
	Chapter 3 - Pressure Buildup Testing
	Chapter 4 - Distance to Linear Discontinuities
	Chapter 5 - Multiple Well Testing
	Chapter 6 - Naturally Fractured Reservoirs
	Chapter 7 - Hydraulically Fractured




