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Preface

Researchers have, for a long time, tried to, and are today highly successful at, 
demystifying the human brain through brain signals. In the field of computer 
 science, early attempts were more algorithmic, focused on artificial neural net-
works in order to solve complex software engineering problems. The advent of 
possibilities offered by Brain Computer Interface (BCI) has opened up avenues for 
a plethora of research and development projects. The latest published advancement 
in the field is the famous “thought-to-text” application, whereby an individual 
thought could be transformed into textual information. One may guess the poten-
tials for such an advancement in the medicine field.

The mathematical armada to allow digital processing of brain signals, coupled 
with progression in sensors and electrodes has prompted innovative products on 
the market. Capturing raw data from one’s brain with in-built software for analy-
sis could be produced as a bundle on the market at affordable prices. With more 
computational power and visualisation techniques, future generations of neurosci-
entists will undoubtedly be in a more knowledgeable situation, probably the notion 
of computer interface with the brain might look more natural that it is now.

Nonetheless, BCI remains an ocean to be explored and this book aims at capturing 
the ongoing activities globally. The chapters comprise deep research with solid 
mathematical foundations supplemented with experimental results. Moreover 
readers will find extensive lists of references pertaining to BCI and original con-
tributions of the chapters from the authors. The manuscript is therefore a trusted 
primary source of information on BCI.

New Frontiers in Brain Computer Interfaces is a compilation of recent achievements 
ranging from optical technologies, mental task-based BCI, speech enhancement, 
brain dynamics, and brain-computer modelling. Authors across the globe have 
formulated the chapters to be accessible to students, lecturers, and researchers, as 
well as readers passionate about the topic. This book aims to disseminate the latest 
findings and research work in BCI. There is potential for future research for PhD 
students as well as food for thought about the next generation of BCI technologies.

We wish to thank all the authors for their efforts and good will to make this book 
project possible. Without their contributions, recent knowledge about BCI would 
remain hidden. A vote of thanks to the IntechOpen Author Service Manager 
Ms Dolores Kuzelj, the technical board, and the commissioning editor. Providing 
open access to knowledge is undoubtedly a noble cause.

Dr. Nawaz Mohamudally
Associate Professor,

University of Technology,
Port Louis, Mauritius
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Chapter 1

Introductory Chapter: The “DNA 
Model” of Neurosciences and 
Computer Systems
Manish Putteeraj and Shah Nawaz Ali Mohamudally

1. Introduction

The technological advances made in the recent years have moved beyond the
conventional research and design framework that used to singularly focus on the
problem at hand and resolve it using the best approaches within the same field. 
Current systems cater for crossbridges across disciplines for problem solving, a
process that creates multiple opportunities toward sustainable and cutting-edge
innovations. This design of inter-relationality across dimensions has served well 
in developing modern techniques such as the use of brain waves to understand 
human behavior and similar methods toward the introduction of machine learn-
ing (ML) stemming from artificial intelligence (AI). This has also led to popular
and insightful methods such as brain-computer interfaces (BCI) that are gaining 
much momentum especially in modern medicine. However, much needs to be done
in the field of neurosciences and computer systems to exploit the resources for
their respective progression and nurture the existing ecosystem. This chapter will 
provide an overview of a “DNA model” concept that shows the relative interdepen-
dence of brain sciences and computer systems in research and unravel unexplored 
areas for probing scientists.

1.1 Demystifying the brain

The mammalian brain is arguably the most complex organ of the body with over
100 billion neurons and glial cells which are scattered across the lobes for specific
functionality. The neurodevelopmental process consists of multiple stages inclusive
of migration, differentiation, maturation, synaptogenesis, pruning, and myelina-
tion, among others, which provides the basis for brain development [1]. ML and
AI are overlap constructs of neurocomputing, which can be said to be founded on
principles of synaptogenesis, a biological process forming the basis of signal integra-
tion at the brain level. In a simplistic overview, the mammalian body responds to
the environment based on a sensory input integrated at the neuronal level to trigger
relevant output. This is also reflected in the decision-making process, whereby
the brain computes multiple scenarios for comparison based on the information
crunched in different brain regions before initiating the action for the desired value
[2]. Applicability of this type of brain process has been made possible using modern
noninvasive neuroimaging techniques such as electroencephalograms (EEGs),
enabling the visualization and patterning of brain activity for informed decisions.
Research by Poli et al. (2013) [3] has effectively demonstrated such applicability
of BCI using a neuroscience platform to enhance noncommunicative group-based
decision-making process solely relying on a supervised machine learning platform
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with an eightfold cross-validation approach. Although at its embryonic stage, this 
type of research can be further exploited in real-life settings to exclude the argumen-
tative part and enhance the time taken for group-based decision-making process.

1.2 Brain circuitry and artificial neural networks

Brain circuitry, i.e., the synaptic connectivity of individual neurons in one 
or more brain regions, is vital for a potent signal integration and transmission. 
Similarly, neuronal interaction via synapses has been shown to be critical for 
memory recall and learning, via recurrent signal generation at those areas of con-
nectivity [4, 5]. This is comparable to the application of artificial neural networks 
(ANN) using soft fuzzy logic to compute multiple variables to autonomously gener-
ate tailored solutions based on adaptability as well as the governance of signal trans-
mission via weights, a feature that to a certain extent mimics synaptic plasticity of 
the brain in memory formation and recall [6, 7]. The crossbridge between neuro-
sciences and computer systems is not only reflected in the setup/programming of 
the system but also in terms of information being fed in real time for fine-tuning 
of outputs. Using supervised learning algorithms such as the back-propagation 
algorithms is necessary to assist in marginalizing the gap between expected and 
actual outputs and render information parsing and predictability meaningful [8]. 
This physiologic term is termed as the feedback loop system enabling the correction 
of any deviations at the systemic level or normalization of neuromodulatory signals 
via neurofeedback systems. Interestingly, ANN also recreates a biological neuronal 
system via its “artificial firing at the nodal region” akin to action potentials, mediat-
ing passage of signals downstream for a source to its effector region [9]. This feed-
forwarding process in artificial setups also termed as axonal saltatory conduction in 
the brain has been found to be efficient for the speed of signal transmission.

1.3 Analysis of brain signals

Innovations have demonstrated the use of brain waves and software recre-
ated from a biological system, to enhance modern medicine for better diagnostic 
and treatment possibilities. As reviewed by Guggisberg, Koch’s [10] probabilistic 
tractography algorithms can be used to determine the extent of damage to neuronal 
connectivity following a stroke episode among other rehabilitative techniques 
such as repetitive transcranial electric stimulation. Of interest, EEG-based BCI 
architecture has been a tremendous asset in patients suffering from neuromuscular 
disorders, hence facilitation of simple movement/locomotor remission aided by 
neuro-prosthetics. Such feats have been developed using noninvasive methods for 
signal acquisition, bio-signal amplifier and filter to increase the signal-to-noise 
ratio, exclusion of physiological artifacts, EEG feature extraction and classification 
as the cue for output using linear or nonlinear classifiers in the form of support 
vector machines (SVMs), or ANNs, among others [11, 12]. While research is at full 
steam with respect to BCI-controlled prosthetics, much has been done in terms of 
platforms used to increase accuracy of the artificial limbs as demonstrated by the 
application of analyzing the EEG signals using a quadratic time-frequency distri-
bution (QTFD) coupled with a two-layer classification framework to distinguish 
between individual finger movement within the same hand, hence increasing the 
resolution and specificity of finger control [13]. Within those lines, Lange et al. [14] 
processed EEG data using spectrally weighted common spatial patterns (spec-CSP) 
for feature extraction to correlate it with electromyogram (EMG) recordings for 
more potent data classification and refined movements. The application of such 
technology with a neuroscience platform in modern age medicine is inexhaustive.
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2. Conclusion

Much progress has been made in the cardiovascular area for coronary abnormal-
ity detection inclusive of arrhythmias and infarctions [15, 16], splicing circadian 
patterns with respect to sleep [17] and fatigue detection [18], prosthetic vision [19], 
and deep brain stimulators [20], among others. The human-robotic collaboration 
also forms an intricate and well-established research area for such application, 
given that commercialization of such products assisting production plants and 
surgeries are well documented. However, as with all technological innovations, 
there are certain limitations which are yet to be addressed. Using ML in the field 
of diagnostic and treatment is always accompanied by the dataset limitation such 
that the decreased availability of features to be fed into the system can impact on 
ML performance, especially in disease diagnostics [21]. This is further reinforced 
by the vulnerability of the system given its dependence on the data used for train-
ing; hence, erroneous or biased data will result in flawed outputs. In the case of 
using machine learning for psychological profiling, the fact that shared symptoms 
are common across certain mental illnesses, accuracy of predictability would be 
affected given the nuanced symptomatic classifications [22]. Aside from common 
methodological factors such as confounding variables and transboundary access 
to datasets for training algorithms, the major limitation still remains that machine 
learning cannot as yet include sentient features and thus in the context of robotics-
human collaboration or even medical-related decision-making process, implemen-
tation of such technology requires further research.
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Chapter 2

Near-Infrared Optical
Technologies in Brain-Computer
Interface Systems
Korshakov Alexei Vyacheslavovich

Abstract

This chapter presents a comprehensive review of near-infrared spectrometry
(NIRS) and related methods, implemented in brain-computer interfaces (BCI).
Basic physical principles of such devices are described. Reviews supply readers
with summary of recent development in dynamics and perspectives of the field in
question. Examples of NIRS usage in BCI systems are provided and different
experimental paradigms are described. Review not only deals mainly with nonin-
vasive NIRS-BCIs but also covers some instances of usage of neighboring fields
methods (such as EEG, for instance) for the sake of their importance in so-called
hybrid BCI systems and/or in fundamental research, which may be less relevant in
case of separate application of different encephalographic methods. As potentially
beneficial for NIRS-BCIs, the phenomena of fast optical signals (FOS) are
described, and some research on connectivity, including those based on NIRS, is
covered. Some attention is paid to the perspective for future BCI’s construction
using optogenetics.

Keywords: brain computer interfaces (BCI), near-infrared spectrometry (NIRS),
electroencephalography (EEG), magnetoencephalography (MEG), fMRI,
optogenetics, human brain connectivity

1. Introduction

Most of us routinely manipulates of objects in the real world on an everyday
basis. But, some people, for example, subjected to severe nervous system damage,
may lack this necessary and basic ability. On the other hand, we may not limit our
objects manipulations only with hands, but imagine some external actuator, not
a part of a human body, but still controlled by one’s will and suitable for the
specific target manipulation. Such a substitution or addition of a human’s abilities
is certainly welcomed in the modern world. And although mentioned, the idea
seems to be tempting, and its development was suspended for a long time because
of difficulty in solving key component of the problem. Key component here is as
precise as possible interpretation and transmitting commands born in human
mind to external device of any sort. This task can be accomplished at some level by
brain-computer interface technology (or BCIs for short). BCI problem was stated
several decades ago. Since then, a lot of ground has been covered, yet a lot of
discoveries are still ahead.
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In present time, there are many “types” of BCIs build on different principles.
Among many varieties of BCI, we are willing to emphasize on one, based on
registration, interpretation, or classification of activity patterns of human cerebral
cortex, registered by the means of one of the existing encephalographic methods, as
the most popular. There are other paradigms, but only one is mentioned that allows
to build BCI realization based on most encephalographic methods, such as electro-
encephalogram (EEG), magnetoencephalogram (MEG), fMRI, and so on (for
example, see [1] of MEG realization). Not all of such realizations are of practical
value due to usually bulky design. Additionally, we need to consider a family of new
encephalographic methods, “fully” developed relatively recently, based on light
propagation and interaction with living tissues. Light here must be considered in a
wide sense—as radiation of different wavelengths (i.e., visible, infrared and—
something in the middle—near infrared). As such, the near-infrared spectrometry
method can be introduced, providing yet another way to achieve scientific and
practical goals and get additional fundamental results on nervous system.

2. Theoretical bases of near-infrared spectroscopy in biological
measurements

Measurements of a substance’s characteristics and its complex properties by the
means of observing radiation passed through mentioned substance are not a new
concept—X-ray imaging is common in medical practice nowadays. Similarly to
imaging in visible and plain infrared range of electromagnetic (EM) spectrum,
NIRS imaging method utilizes light of near-infrared range to obtain information on
tissue properties. In present, there are widely used “optical” (mostly near-
infrared—2100–2400 nm wave length range) pulsometer for measurements of
heart rate and measurements of glucose level [2–5]. Probing to obtain more “deep”
biological parameters is beginning to be routinely implemented, e.g., measuring
cerebral oxygenation during cardiac surgeries and in BCIs as a next step.

In general, all infrared range of EM spectrum can be conditionally divided in
three subranges: near (λ = 740–2500 nm), middle (λ = 2500 nm–50 μm), and far
(λ = 50–2000 μm). Relatively, low radiation absorption by tissues of human body is
a distinctive feature of near-infrared range. As a result, for NIR light, one may
observe bigger penetration depths—up to several centimeters (maximum 3–5 cm)
[6–10]. Thus, some types of biological tissue, to a certain extent, are virtually
transparent for named spectrum range. Nevertheless, during light propagation in
tissues, elastic scattering processes are very strong and that sets limits to penetra-
tion depths on the other hand. In these conditions, beam weakening can be
explained predominantly with isotropization and measurements on adult humans,
for example, possible only in “reflected light.” “Permeate light” measurements are
still possible in some cases. For instance, in infants, NIRS method can be applied to
diagnose birth brain damage and detectors of NIRS equipment can be located on the
opposite (in relation to light sources) side of infant head [11]. This is possible
because of the higher optical transparency of infants’ bones, skin, and skull covers.
One must admit, however, that case mentioned above is certainly not a “BCI
application” for several reasons.

All those factors and frequently relatively large value of optical density of bio-
logical matter limits our ability to obtain sharp, contrast, and precise images of
small (such as mm-size voxels in fMRI) probing volumes. We must, however, stress
the fact that this is true only for today’s technique and technology.

Nevertheless, one can obtain the estimation of chromophore concentration dis-
tribution in a little bit large volumes (usually several cubic centimeters) and thus
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obtain image of chemicals distribution in targeted tissue [10, 12]. That is sufficient
for many applications, including various types of BCIs.

Selection of chromophores (i.e., physiologically relevant substances) depends on
light sources’ wavelength built in specific piece of equipment. Certain wavelength
guarantees preferred interaction of light with chromatophore, structurally impor-
tant for specific biological tissue. From the physiological point of view, among most
important chromophores, one can name hemoglobin, glucose, myoglobin, and
cytochrome-c-oxidase [13].

Overwhelming majority of NIRS medical devices, also applicable for BCIs, are
designed for cerebral hemodynamics measurement purposes. These devices use
735–760 and 810–860 nm wavelength light sources for target deoxygenated hemo-
globin and oxy-hemoglobin correspondingly and utilizes so-called continuous wave
experimental paradigm, meaning measuring only power reduction of light beam at
detectors, passing through highly scattering mediums, in comparison with initial
power, generated by sources [14]. Time delays, phase, and frequency parameter
changes are neglected, although there are exceptions [9, 15]. “Continuous wave”
device allows building “images” or distribution maps of oxy- and deoxyhemoglobin
concentration changes, and measures tissue oxygenation index (TOI) and normal-
ized total hemoglobin index (nTHI) [16].

One must notice, how close such a hemodynamics activity observations make
NIRS related to fMRI BOLD. Both methods measure blood oxygenation levels in
their own way [6, 9].

NIRS devices itself, usually, consists of one and up to several tens of light sources
and detectors. Each possible pair “source-detector” forms a “channel” informative
or not; i.e., whether it passes through zone where intensive neural activity is occur-
ring or not and whether emitted by the source-optode light fades away passing
through tissues or not. Analog-digital converter (ADC) read detectors’ output and
after filtering and preprocessing, usually conducted in the form of moving average
filter to filter out heart beating, respiratory slow waves, and other nonphysiological
artifacts and information about hemodynamics of volume, located “in between and
a little bit in depth” in relation to selected source-detector optode position, ready for
analysis. Inevitably on the path from source to detector, a portion of radiation will
be lost in tissues and will never get in the detector. The other portion diffusely
reflected from target volume will be weakened and get in to detector, where it can
be quantitatively estimated [17, 18].

Layout of sources and detectors in a manner, when the distance between them is
approximately 3 cm on the scalp surface, allows ensuring probing depth of 3–5 cm,
sufficient for detecting an activation of human brain cortical areas, although this
occurs indirectly, through metabolic effects. Intensive neural activity (usually well
differs from background activity) is a process accompanied by oxygen delivery, its
absorption by neurons, and evacuation of metabolic products [18–20]. Interpreta-
tion of such activity is practically basic of any BCI.

On the other hand, such a set up allows conducting EEG measurements in
parallel with NIRS and in the direct proximity of NIRS channels. This is a key for
building so-called hybrid BCIs. In principle, in hybrid BCIs, not only and not
exclusively EEG can be applied, but EEG is most popular, simple, accessible, and
technically usually does not disturb functioning of NIRS devices in any way and
vice versa.

Among all methods to describe light propagation in matter, one must notice at
least two. First, radiative transfer equation (RTE) (and its various approaches, like
diffusion approach) is precise, but difficult to handle and almost impossible to solve
for relatively complex problem types [21]. Second, on the other hand, is the phe-
nomenological “modified Beer-Lambert law,” specifically “designed” for simplified
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description of light and radiation, in general propagation in turbid media [22, 23].
Brain and its covers from the NIR-light viewpoint can be considered as possessors of
strong turbid properties. As such, the law states that weakening on initial beam
depends on value of extinction coefficients, treated as constants, specific for every
chemical or chromophore, like both oxy- and deoxyhemoglobin and other [24]. Due
to individual scattering acts of spreading photons, their path from entry point to
leaving point from turbid media is curvilinear. The so-called differential pathway
factor (DPF) serve the purpose of description of this phenomenon in modified Beer-
Lambert law. The law in question must be used with caution, and some attention
must be paid to borders in which mentioned coefficients variate [25]. Neural tissue
has extremely rich blood microcirculation [19], which makes modified Beer-Lambert
law at the scale of those blood flows, desired for observation, look like rather a gross
approach. In reality, NIR-light interaction process with hemoglobin molecules is
much more complicated. For instance, hemoglobin itself has a complex molecular
structure and thus influences light scattering and absorption (scattering particles
form factor). In addition, hemoglobin molecules are not free blood elements, but are
included in dynamically changing structured particles—erythrocytes, which chaoti-
cally move in blood stream and in turn have their own form features [20, 22, 26]. All
these factors on the microlevel play important role in scattering and absorption
processes, but on today’s observable scales allowed by modern equipment (1–5 cm in
linear dimensions), they hardly can be called significant. This makes modified Beer-
Lambert law applicable to described class of problems.

Tomography of cranium in NIR spectrum at present virtually is not widely
implemented, especially in context of application of BCIs considered here. Among the
reasons of such state of affairs are poor quality, images resolution, with demanding of
opposite, and some other general restrictions. Although technology is itself promising
and some pieces of optical tomography equipment exist, it can be explained by
significant complexity and yet not sufficiently developed by mathematical methods
of tomographic image processing, acquired in NIR wave length and as well by some
technical difficulties. Nevertheless, some approaches to the problem’s solution exist
(for example, see diffuse optical tomography or DOT [27–30]).

Ongoing perfection process of scientific equipment, mathematical, and technical
measurement methods allows now to detect some signal features, which were
impossible to observe before. In particular, there is some research conducting on so
to speak “portability” on NIRS, methods earlier developed for detecting evoked
potentials essentially by the means of EEG. Among such researches, one may notice
[31–35] reports on recording of so-called fast optical signals (FOS), which in terms
of authors exactly are optical analogue of low latency EEG that evoked potentials.
Reliable registration technique of such phenomenon will allow creating NIRS BCI
based on evoked potential paradigm.

It is also necessary to mark fundamental research in the field. A good example of
such makes research on connectivity, conducted with NIRS [36, 37]. It may give an
additional data always needed during constructing applied equipment for specific
tasks, for instance in clinics for poststroke or neurotrauma patients, where brain
activity patterns suffer serious changes, and in healthy BCI’s users. Generally,
research on connectivity of different cortex regions allows to detect not only groups
of NIRS channels registering activity specific to the BCI task, but also allows to
assume channels, say, with relatively high noise levels as informative, and thus
produces more information to identify activity pattern and hence increases BCI
system performance. This is also true regardless to modality of registration: NIRS,
EEG, etc. Information on connectivity at the stage of development (testing and
adaptation to some group of individuals or to a single user) of particular BCI
system, can, for example, ease such calculatively difficult process as channels
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selection. This means inclusion in and/or exclusion from consideration, channels
with informative or less informative data output. Otherwise, channels selection
procedure require of execution of some usually complex searching algorithm, often
time-consuming. Such process of relevant channel selection leads to increase BCI
target state classifiability for it is sampling most informative channels, related to
task at hand [38].

Resting-state connectivity research is also beneficial as it allows developing
approaches and methods, needed for understanding of cortex regions’ interrelations
[37]. Similarly, functional connectivity research allows understanding interrelations
during some task performance. Registered activity patterns are not stable in their
nature. They undergo a fluent and perpetual change. Thus, understanding of their
spatial and temporal interrelations; i.e., connectivity, probably will allow predicting
or at very least mark their changing borders during mental task execution. As a
result, such consideration may allow increasing BCI functionality and stability in
general. As a good firm method for connectivity research, one must name indepen-
dent component analysis (ICA) [39, 40]. ICA capable to separate whole data to a set
of spatially and temporarily independent components, thus, allow separating use-
ful, informative data from noise and artifacts (such as oculographic artifacts pro-
duced by eyes movements) and increase BCI performance. It can be used for better
or more precise relating electrical or metabolic, i.e., NIRS-registered activity to a
specific cerebral cortex region and hence to a mental state. For example, ICA
component with localization mainly focused in motor regions, by association can be
viewed as a reflection of some motor act or motor act imagination [41]. Alterna-
tively, localized in Broca area, ICA components signalize of acoustic perception
[42]. Among others, processing methods may be useful methods for signal separa-
tion in spatially and temporal localized components or for specific process-driven
components, one should mention empirical mode decomposition method and its
modifications [43, 44].

In relation to connectivity problem in research, one must also notice usage of
repetitive transcranial magnetic stimulation as a more invasive measure [45].

Speaking of fundamental research and role of optics in brain research, one must
mention optogenetics—quickly developing field utilizing light (of NIR range in
some cases) to activate and/or observe genetically modified neural tissues [46, 47].

It will not be far from reality to say that besides those interesting and rapidly
developing fields, there are plenty of room for evolution in conventional NIRS-based
and hybrid BCI. NIRS-based BCI and imaging technology have many advantages.
Among them, one may name noninvasiveness, safety for users, portability and not in
the last turn—fairly low price in comparison, for example, with fMRI setups.

3. Material’s analysis basics

In order to evaluate present day level of research in the field in question, one
must in some way characterize ongoing work, information on which conveys for
scientific community through existed papers. To accomplish such a task, one must
bring in some form of classification for those objects. Thus, carried out by the
general analysis of texts and analysis of keywords, we come up with publications’
hierarchical classification system. This classification system forms framework in
which the further information is organized (see Table 1). This classification system
was constructed by the analysis of available papers and their keywords, most often
used in them. This system is “emergent, “i.e., was formed on precedents. In event of
occurrence of publication, which is not related to one of already existing categories
in hierarchy, the new category was reserved. Roots of a tree of hierarchy are the
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basic types of the publications, for example, whether article is the review, whether
it represents the description of real experiments in ERS/ERD- or EP paradigms
(event-related synchronization/desynchronization or evoked potentials), or it rep-
resents the description of a new unique method of research.

General type
(subtype #1)

Experiment
type
(subtype #2)

Hybrid type
(subtype #3)

Observation
area
(subtype #4)

Result type
(subtype #5)

Additional type
(subtype #6)

Reviews Real BCI
experiments
description

NIRS only Motor area Review’s
statements

Nothing special
(reviews or
methodical works)

Real
functioning
prototype of
BCI over
ERD
paradigm

Classical
experiments
(finger
tapping,
memory
tasks)

EEG only Frontal &
prefrontal area

Success! Only one type of
experiment described

Real
functioning
prototype of
BCI over EP
paradigm

No
experiments
described in
detail

EEG + NIRS
hybrid

Temporal area Failed to
achieve
success

Several types of
experiments
considered (motor
area, Broca area, etc.)

Unique
method
description

Nonclassical
experiments

Other
hybrids (not
an
EEG + NIRS)

Occipital area Failed to
achieve
success, but
there is a
hope for the
future

One type of
experiment described
only, and indirect
fundamental
conclusions were
drawn by results

FOS EEG only,
but some
hybrid
declared
(+NIRS)

Something else
(For instance,
EEG over motor
area, NIRS—
over frontal
area)

Robot control

Just about
everything in
existence

Article about a choice
of classifiers, usage of
exotic classifiers,
research directed on
improvement of work
of classifiers or
algorithms of a choice
of features

Paper about technical
aspects of NIRS of
equipment designing

Paper about
experiment with a big
deviation toward
technical details of
instrument and
equipment

Modeling of neural
activity/
hemodynamics

Table 1.
Hierarchical emergent classification system.
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The second subtype was formed by types of described experiments, such as: real
experiments on functioning model of BCI, the description of “classical” for NIRS
experiments (for instance, various memory tasks, finger or a palm tapping, mental
arithmetic), etc. The last category was related to “not classical” experiment, i.e.,
mental tasks or problems solving and were rarely or not published at all earlier. A
separate category of the given subtype has been allocated as fast optical signals
(FOS) or “optical evoke potentials” registration with or without signal averaging
and so on. Researches on connectivity and optogenetics were not included in clas-
sification system and were treated separately, for they constitute merely a support
value in the BCI context.

The third subtype was whether the considered one in article BCI was a “hybrid.”
Along with separate EEG and NIRS measurements, there are papers on hybrids of
EEG + NIRS and hybrids of other nature, for example NIRS + fMRI out there.

The fourth criterion of classification was the brain area over which measure-
ments were conducted (for example, motor areas, frontal and prefrontal areas of
human cerebral cortex, temporal area, an occipital cortex or something else, for
instance EEG-measurements were conducted over motor areas, and NIRS measure-
ments—over frontal and prefrontal areas).

The fifth criterion was whether there is an achievement of the goal or objective
declared in the paper, i.e., whether work can be treated or treated by authors as
success.

At last, the sixth subtype of hierarchical emergent classification was devoted to
papers in which some special characteristics or unique feature were presented.
Among such features were “how many types of experiments were described and
conducted in work, reported by the paper” or whether BCI was used in work for
management of the robot or external assistive actuator, etc.

Certainly, the given classification is not complete and a closed system. Also, it is
not unique. However, its application is quite justified, since, at least, it is “to some
extent” stable, i.e., robust and stable to the new information addition. It is possible
to come to such a conclusion, having taken into consideration fact, that actually the
classification structure has ceased to change after processing only of about 25
publications from the considered pool, chosen in a random manner. Also, it is
necessary to notice that there were some categories which by their nature have not
been presented in a considered pool of publications during analysis, but were
included in (or better to say drawn into) classification system. For example, a class
of articles telling about distribution of light propagated through a biological tissue
and physic properties of this process, FOS, which only indirectly connected to BCI,
and so on. Focus of such articles is displaced aside from practical applications of BCI
to general physical laws on the basis of which any of NIRS devices are constructed
and to fundamental research of nervous system. Nevertheless, some processed
papers can be additionally classified with the last category, yet bearing in mind the
fact of their distant relations to the main subject (i.e., distant from the roots
branches) of classification system described.

4. Latest achievements in constructing BCI over NIRS and “hybrid” BCI

Research presented here provides with a detailed analysis of over 100 articles
with various time of publishing. Total number of papers under consideration, pos-
sibly only indirectly connected with BCI subject, but connected to the related fields,
was 178. Some of these papers used NIRS equipment in BCI applications, or for the
comparative analysis and test for reliability of NIRS data versus fMRI-BOLD, or for
other fundamental or technical purposes. The earliest publication that has come into
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the view was dated by 1993, the latest by 2017. Thus, this affirms that research of a
human brain and nervous system utilizing NIRS is a new and fast developing field
of science. Data confirm this statement as shown in Figure 1, where it is well visible,
that the dynamics of number of publications on past years shows general growth.
The year 2017 and beyond, of course, at the moment is not indicative and can be
analyzed only in future in retrospective. Despite this, due to the increasing interest
to NIRS, to BCI technology, and to related fields, the tendency will most certainly
remain.

Among types of experiments, leading position (by number) is occupied by
papers in which experiments in both ERS/ERD—and EP paradigms were described.
Among them, there was some number of papers about classical type experiments
(i.e., accepted and well known in cognitive research, for instance mental arith-
metic). Smaller, but nevertheless the noticeable share constitutes publications in
which there were no detailed descriptions of experiments, or they were not
conducted at all. Still smaller portion describes “nonclassical” experiments. See [48]
for experiments, where motor cortex activity was recorded, in which movements
done by the person peeling apples were described. Paper [49] describes BCI, one of
which states the intention of the user to carry out “speech activity, “i.e., intention to
say something. Such state was utilized as a sign of examinee’s wish to use the BCI
system. Recognition accuracy of such mental state reaches 73%. Segments of NIRS
records, in which the examinee pronounced words, can be distinguished from “rest
state.”

Smallest party was formed by works published on an FOS, connectivity, and
optogenetics, but last two were viewed more like as an addition here.

Despite the obvious advantages widely described in the scientific periodic liter-
ature, hybrid BCIs are just not exclusively popular. BCIs over NIRS-only are leading
by quantity of publications (at least in considered pool till 2017 year). EEG + NIRS
hybrids actually take only the second place. The third occupies BCI over EEG only,
still containing a considerable quantity of references to work with NIRS. The
remaining numbers are made by articles with description of BCI over EEG in which
the future research in BCIs over NIRS was declared or with the comparison works of
two technologies. Papers in which hybrid BCI over NIRS and some another
“modality” (other than EEG) was described constitutes the smallest pool. Distribu-
tion of publications by quantity according to these properties is resulted in Figure 2.

Areas over which usually NIRS optodes and/or EEG electrodes were situated
correspond to type of a mental task, which is planned to work with in particular
experiment.

Figure 1.
Number of publications on “NIRS” by years.
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So for, imagination of movements and tapping the motor areas corresponds,
for cognitive tasks—frontal and prefrontal cortex areas, to visual recognition,
naturally—an occipital cortex. Experiments with auditory system, for example,
definition of the fact of audibility of a sound, pronouncing of internal speech,
demand registration in temporal area and prefrontal cortex. All these ways of
registration are traced in articles of a considered pool. In all those experiments,
hybrid registration also took place. Usually, EEG recording was conducted over
motor cortex, and NIRS recording was conducted over frontal and prefrontal areas.
Most papers fell into this category—almost 44% from the general number of publi-
cations. Proceeding from experience of NIRS registration, it is supreme strategy of
BCI construction since it gives possibility of simultaneous EEG registration of
event-related desynchronization of brain rhythms, providing advantages in time
resolution, and, reliability of NIRS cognitive answers. Preferences of registration
areas, and, hence, to experiment types are illustrated in Figure 3.

Figure 2.
BCI hybrid type (papers types & count).

Figure 3.
Registration areas (observation area type & paper count).
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By this analysis, one can say that the most number of papers represents publica-
tions of work results upon only one—“pilot” experiment with NIRS or with hybrid
modality. Equivalently, a big share constitutes the works, which do not have any
outstanding properties (mainly its reviews, and also the works, results of which
have descriptive or methodical properties). Third place by frequency of occurrence
is divided by works in which different types of experiments were conducted and by
works in which some fundamental conclusions were drawn from those results.
Articles about mathematical features of BCI application or about classifiers of NIRS
signals form another category. Here, papers on choice of signals’ features selection
algorithms are also included (including automatic feature selection).

The remaining small part is made by articles devoted to technical aspects of BCI
over NIRS devices and systems construction, control of assistive robots and external
actuators, and artificial limbs. Hereby, NIRS begins to connect with innovation
process in area of anthropomorphic mechanisms designing in addition to medicine.
One also must note articles on hemodynamics studying. Such situation can be
generalized by phrase: “NIRS only starts to extend to those directions.” Mentioned
features of a considered pool of articles are illustrated in Figure 4 (for explanations
of section names, see Table 1).

5. Particular examples of BCI on NIRS and hybrid BCI

Let us now introduce description of some interesting specific examples on con-
sidered device type. One should see [50–52] to know about technical features and
designs of NIRS devices and applications. It is possible to read about potential of
commercial application of considered technologies in [53]. Paper [54] represents
the review of the most recent achievements in the field of BCI uses in rehabilitation
of poststroke patients with a stress on methodology, which pointed out that results
of such rehabilitation led to improvement of the patients’ motor act. Some chal-
lenges and unresolved problems are also discussed. Efficiency of NIRS-BCI was

Figure 4.
Special features of considered papers.
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compared in relation to implementation of visual feedback and placebo as a feed-
back. The first case has shown motility substantial improvement. In [55], NIRS
research of Broca area for purpose of Chinese language vowels internal pronouncing
recognition was conducted. Paper represents an attempt to introduce a measure of
consciousnesses presence for the paralyzed patients and patients with a locked in
syndrome (LIS). The study was constructed around concept of “consciousness
index” and attempted to introduce objective numerical criterion of consciousness
presence in the patient.

Work [56] was devoted to various types of mental task usage efficiency estima-
tion in NIRS-BCI. Till now, studies in the field of NIRS-BCI have been focused on
increase in accuracy of various mental tasks’ classification. In the given paper,
search of mental states pairs which would be the best from the point of view of BCI
customization, i.e., best classifiable in given conditions. In event-related hemody-
namic response on eight channels, NIRS system had been recorded for various
mental tasks in seven subjects. The beginning of a condition simulation for the
examinee was designated by sounds followed by a 15-s pause for elimination
“aftershock” in hemodynamics caused by sound. The pause between trails varied
from 10 to 15 s for elimination of accustoming effect. Mental conditions or states
under investigation were the following: LMI—left motor imagining (i.e., imagining
of motor activity by the left arm), RMI—right motor imagining, FMI—foot motor
imagining, SING—mental singing, SUB—sequential subtraction of small numbers,
MUL—mental multiplication, ROT—mental rotation of a given three-dimensional
(3-D) geometric figure, and WRT—mental character writing. Based on this
approach, a set of “recommended” mental tasks with rather big classifications
accuracy represents the following list: “mental multiplication,“ “mental rotation,“
and “motor imagination of the right hand.“ Pairs, formed of any two mental states
from three listed above, show the highest mean accuracy of classification by utiliz-
ing method of linear discriminant analysis (LDA), most used in BCI applications, as
authors stated. Authors of article expect that their results will be useful to reduction
of time spent in research, technical, and methodical works, on definition of the best
individually specific mental conditions, and their combinations. LDA, as classifica-
tion algorithm, utilized three features: oxy-, deoxy-, and full hemoglobin. Naturally,
choice of the best mental state was made upon the best distinguish ability of LDA
algorithms. Also, it was stated that selection was influenced by searching on channel
position dependencies, i.e., searching the most informative channel.

Often, the most natural to the examinee was the imagination of movement of
their own hands and that is applied in many BCI systems based on an ERD/ERS
paradigm. Work [57] represents research and the proof of fact that imagination of
right and left hand movements produces distinguishable patterns of hemodynamic
activity, which can be classified with the linear classifier and, thus, applicable in BCI
systems. Conditions of experiments are rather a standard scheme nowadays: 10
healthy examinees, kinesthetic imagination, inflections of the left and right hands,
and command indications were presented on the computer screen. Signals from
right- and left-lateral motor cortex have been registered simultaneously with the use
of multichannel NIRS system of a continuous wave type. Linear discriminant analysis
was used as the classifier, which has allowed achieving an average on examinees
classification accuracy of 73.35 and 83.0% for the right and left hands, accordingly.

In works [58, 59], classification of multichannel “NIRS patterns” is considered
for states of motor imagination in order to construct BCI for people with the limited
abilities. In work [59], the previous studies of other authors were mentioned in
which other paradigms were also considered, for example, imagination of move-
ments and recall of specific emotions, concentrations, and electric stimulation
(reaction to it). The general scheme of classical experiments, information gathering,
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signal reception, choice and extraction of features, and a command/classification
estimation is described. The detailed description of NIRS signals processing is
resulted; trends, typical for NIRS signal, and ways to obviate them by means of
averaging were also mentioned, and two types of averaging were applied. Some
theoretical aspects based on NIRS were given, such as explanation of nature of
changes in hemodynamics, accompanied by neurons activity. Problems of influence
of respiratory cycles, Mayer’s waves, and heart responses described were also con-
sidered. As reliable methods of a noise reduction in NIRS, general linear model
(GLM) and ICA were offered and used. Main objective of this paper was to find a
difference between an “active” (i.e., “key-”) and “passive” mental states using
NIRS.

It would be desirable to note also the work [60] in which working out hand-
movement-direction-detection methods were described, proceeding from the NIRS
hemodynamic response of the motor acts induced by the examinee and registered
from motor area. The paper pursues the aim of perfection applications of assistive
technologies. In total, 64 specially distributed optodes were used in experimental
setup. Examinees had to produce “free” (i.e. with no constraints) hands’ move-
ments’ in orthogonal directions (x- and y-directions in a horizontal plane). As
features, changes in concentrations of oxy-, deoxyhemoglobin, their sum, and their
difference were considered. Full delivery of oxygen and its evacuation have been
calculated for local neural populations in the motor cortex, which underlaid the
optode positions. The analysis of these signals has shown that such movements can
be distinguished in space and time depending on a directions of movements. Thus,
by analyzing of existed profiles of brain activation, it is possible to identify unique
directions of movement of a hand in real time. This work can be considered as a
precursor of BCI in which states can be changed slowly or “gradually”; thus, such a
device can be termed gradual BCI.

The idea of rehabilitation with the use of the robotized artificial limb has been
presented more than 10 years ago. Since then, their clinical reliability and efficiency
have been reported in a considerable quantity of works (see [61–63]).

As one can note, branch of research connected with a robotics is a rapidly
developing direction inside the basic stream of research in the field related to BCI.
In [64], the idea of NIRS usage in robot management and possibility of its technical
realization is considered. Actually, it is the review of the hardware and software
complexes realizing the considered function.

Probably, the principal cause of frequent use of the evoked potentials is the
simplicity of their registration and the simplicity of mathematical methods of their
processing. But, this is not the case with other paradigms. On the other hand, as an
example of elaborate methods for signal processing, one may consider the paper
[65], where methods of chaotic dynamics were used in order to analyze fNIRS
signal in BCI application. The aim was to recognize left and right hands’ motor
imagery. Authors also used principal components analysis for the exclusion of high-
frequency noise signals and mutual information criterion for some windows of
signal. The aim of this paper is to investigate the chaotic property of hemoglobin
changes of the blood within motor cortex by Lyapunov analysis. Such a result was
achieved—the paper stated that NIRS signals have chaotic properties.

In [66], the noninvasive BCIs for use in neuroprosthesis are described. Works in
the field of EEG indicate that the big accuracy and stability for such BCI are
essential. The question of whether NIRS method is capable to improve BCI based on
EEG was discussed in the paper. Both the methods have been applied simulta-
neously to record sensomotor rhythm. Research includes work with real and imag-
ined movements. Results of work say that simultaneous EEG and NIRS records can
essentially improve classification of motor imagination accuracy up to about 90%,
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on the average, having an improved accuracy indicator on 5% (p < 0.01) in com-
parison with the use of EEG only. Thus, the concept of hybrid BCI had been
introduced. Nevertheless, the long delay of the hemodynamic answer can interfere
with the improvement of the general accuracy of classification. Moreover, authors
have found out that NIRS and EEG complement each other in sense of the infor-
mation capacity. Therefore, those methods are applied together and are reliable
multimodal imaging techniques. The 24-channel NIRS was used in which readings
were averaged in time. As features, classifier LDA was used. It appeared to be that
results of classification for EEG and NIRS correlate, but with some time lag that is
connected with the NIRS nature.

The low time resolution is an essential lack of NIRS, and it is underlined in
number of works, including with orientation to practical application of BCI. In [67],
it is noticed that work of any BCI over NIRS is accompanied by a delay in several
seconds that limits practical application of this system in a real world. Here, support
vector machine (SVM) classification method for definition of a true mental state
(finger tapping and rest) was used. Estimations of various spatial features’ effi-
ciency, such as signal history, history of a gradient of a signal, and spatial distribu-
tion of oxy- and deoxyhemoglobin, are resulted. It is revealed that the delay for
decoding of changes in a behavioral condition can be reduced to 50% (from 4.8
down to 2.4 s) that essentially improves indicators of BCI over NIRS. Results of
classification in terms of accuracy that reached depending on a set of features
applied were considered. Maximum achieved accuracy was 87%.

It is necessary to note the work [68] in which NIRS was used with fundamental
purposes. The quality of the evoked potentials in the visual cortex was studied in
dependence of age of the examinee. Two groups of examinees were considered by
age about 21 and about 71 years. Both groups have shown increase in change of
concentration of oxygenated hemoglobin and in reduction of deoxygenated hemo-
globin during stimulation by a visual chess pattern. However, people in their 70s, on
the average, gave more variable hemodynamic answer and often had comparable
level of hemoglobin concentrations during time of stimulation versus rest condition
—a base line. More young people had essentially high concentration of oxygenated
and deoxygenated hemoglobin in each test without dependence from type of stim-
ulation (p < 0.05). Average variability associated with effect of age has made 88%
on oxygenated and 91% on deoxygenated hemoglobin. Experiments with visual
stimuli has shown rapid falling of cortical hemodynamic answer with age, indepen-
dently from stimulus’ parameters. Thus, authors do the conclusion that hemody-
namic answer can be treated as age characteristic. Area V1 was studied. Results
were analyzed with ANOVA.

Works [69–73] were devoted to cognitive research, namely “memory” group;
besides in [74], methods of psychology for improvement of BCI performance were
used. In [70], patterns of hemodynamic activity build-up estimation during per-
ception of numbers by examinees (“mental arithmetic “task) were investigated.
Researches used NIRS with high optode density in scalp positioning (348 channels),
and standard mathematical methods of preliminary signals processing were applied.
For features’ selection, applied algorithms were used, which governs the choice of
the best channels or a best feature set. Thus structure of classification features in
array of channels were reduced and varied for better BCI performance. One can
name this as “greedy” algorithm; also, the combined algorithm with cutting out
superfluous features is considered. The effective number of channels for classifica-
tion, therefore, was reduced. Classification was made by SVM; and accuracy of
distinction of “difficult mental arithmetic tasks” from a rest condition reached
about 100%, “easy mental arithmetic tasks”—also about 100%. Check of reliability
concluded the result.
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Ref. [75] is a typical example of papers concerning methodical maintenance of
NIRS experiments. Research focuses on developing a method for choosing effective
training data sets for BCI training. In particular, BCI was considered for definition
of concentration of examinees during experiment. This research also was devoted to
integration of EEG and NIRS for their joint usage in “cognitive level” BCI applica-
tions. This term designates level of the interest of the examinee in experiment
process. For construction of such interface, the paradigm based on P300 evoked
potential was used. In this work, two experiments are presented: first—the mathe-
matical task with NIRS-only measurements took place. Hybrid EEG + NIRS was
used under EP paradigm (P300), and BCI system of type “ON-OFF machine” was
constructed on its basis. Experiments had shown that with the use of NIRS, it is
possible to differentiate concentration conditions (mental activity) and to
distinguish them from level of mental rest. The second experiment, however, has
revealed essential and statistically significant result only in EEG.

As for the struggle against artifacts, Ref. [76] brings it on a new level. The
work sets as its purpose working out methods of artifacts cutout and implementa-
tion of those methods. Not only artifacts of true or “internal” physiological nature
were considered (such as relatively stable heart beating waves, appearing on HbR
and HbO concentrations’ changes curves), but also artifacts of physiological nature,
caused by external factors. For example, there were considered changes in signal,
conditioned by sudden attraction of attention to external objects or conditions. A
number of external distracting factors, in particular, sharp sounds, distracting
noise, are considered. The whole purpose of this work was to develop compensation
for distracting factors, for NIRS-BCI to satisfy practical conditions. In the article,
the system of filtration of the mentioned types of the artifacts based on hidden
Markov chains (HMM) is considered. In [72], struggle against artifacts was carried
out by medicamentous methods—by the local application of vasodilator drug.

One of the techniques directed to improvement of classifiers functioning within
BCI is the utilization of so-called hybrid BCI in which signals about a condition of
the examinee were received by means of at least two devices of various modalities
[51, 66, 76–81]. In [81], the concept of hybrid BCI in general—not only in sense of
various modalities, but also in sense of various paradigms of record (ERD/EP), was
introduced. The basic criteria of such device with reference to practice were given.
The necessary quality standards were discussed. Various types of BCI, for example
“the brain switch,“ were considered, basically focusing on an artificial hand limb,
which operates by means of EP.

One can consider [82] as a good “head first” text about nervous processes
studying techniques. Here, it is noticed that NIRS possesses the low time resolution
and can even interfere with transitions between conditions. To cut out this lack, it
was recommended to use it together with EEG. In general, the article affirms that
the BCI based on NIRS are inexpensive, but does not show high-quality results.
Various methods of preprocessing (CAR, SL, ICA, CSP, PCA, SVD, CSSP, Freq-
Norm, LAT, LKF, and CSSD) are considered and estimated. Most often used are
ICA, CAR, LS, PCA, CSP, and adaptive filtering. In this paper, the hybrid BCI on
the basis of NIRS and MEG were also mentioned and also stated that they are
disproportionately expensive, considering achievable results.

FOS responses [31–34] do not directly relate to BCI, but nevertheless were
considered for a possibility to build optical EP BCI based on such phenomena. FOS
usage can increase “reaction time” of hemodynamic responses and hence can
improve NIRS-FOS BCI performance. FOS registration demands extreme temporal
resolution on NIRS equipment. Analogically, research of correlation with fMRI also
difficult in that sense that fMRI-BOLD signal with “reception” time about 2.5 s has
no sufficient time resolution to obtain information on “fast” reactions.
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Nevertheless, it is a very interesting problem, which can be solved only with the use
of a multichannel and high-frequency NIRS with superb parameters.

In [33], authors demonstrate that optical methods can be used to detect rapid
changes in functional connectivity during cognitive processes.

In experiments, described in [31], animal photos were presented to examinee,
who needs to press button, when a picture was “well known.” That is so-called
Go/no-Go paradigm. After the experiment was carried out, the map of correlations
between EEG and FOS was built. In this paper, averaging of a signal was applied to
allocate FOS responses. Thus, Ref. [31] stated that NIRS method is sensitive to
hemodynamics of a brain (in the article, the term “slow signals” was used), and as
well to fast responses of neural activity, or so-called fast optical signals or FOS for
short. Registration of the FOS is difficult due to their nature and assumes low level
of signal/noise ratio of experimental setup. Authors managed to register authenti-
cally FOS for 11 examinees, simultaneously with EEG registration.

At present, the necessity for more “fine” research on hemodynamic response’s
features registered in the NIR modality in order to obtain more detailed description
of its features from the point of view of physiology is obvious. In [83], experimental
confirmation presented that there is a time difference between hemodynamic
answers in oxy- and deoxyhemoglobin. Authors revealed that a time profile of
hemoglobin-concentration-change curve is desynchronized; i.e., their levels do not
fall, and their sum and the difference do not rise simultaneously. Such measure-
ments can reveal a difference in brain activity patterns, while hand movements in
directions left-right and forward-back considered in experiments were described in
mentioned paper.

“Connectivity” research can be treated as another example of theoretical
research, beneficial to BCI system improvement. NIRS data acquisition systems
were introduced here just recently. For basic information about connectivity, see
[84, 85].

For information about connectivity modeling and NIRS/EEG phantom con-
struction for testing connectivity models, see [86]. Authors offer “testbed,” i.e.,
phantom for simultaneous NIRS/EEG recordings for rapid model testing for plausi-
bility, although biological interpretation of connectivity is simplified. NIRS
processing software “NAVI” as a part of testbed design was used [87, 88].

For comprehensive evaluation of utilizing NIRS in connectivity research, resting
state, and functional as well and especially their dynamic characteristics, one should
see [89]. Authors also point to disadvantage of NIRS usage in this type of studies
—“low” penetration depth limits research only to cerebral cortex. On the other
hand, this may allow excluding off the most low-level nervous functions from the
consideration.

Ref. [90] is devoted to the research of functional connectivity of neuronal
mechanisms underlying the reactions occurring during experiments in Go/No-Go
paradigm, in relation to human development problem. The paper compares such
reactions of children and adults examinees, and in particular, comes to the conclu-
sion that motor-related activation did not differ between age groups. This means
that at least within the limits of mentioned paradigm, there is virtually no
difference in movement realizations and in their control patterns of cortical
activity. This statement brings such patterns in position of more universal
detectable target, independent from age of examinee.

This can be summarized as ongoing process of initial accumulation of facts and
potentially useful information. Their implementation in BCI technology may lead to
productive results.

Finally, let us point the reader to optogenetics research [46]. Papers on the
subject do not directly relate to BCI technology directly, but more like to
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tions. This term designates level of the interest of the examinee in experiment
process. For construction of such interface, the paradigm based on P300 evoked
potential was used. In this work, two experiments are presented: first—the mathe-
matical task with NIRS-only measurements took place. Hybrid EEG + NIRS was
used under EP paradigm (P300), and BCI system of type “ON-OFF machine” was
constructed on its basis. Experiments had shown that with the use of NIRS, it is
possible to differentiate concentration conditions (mental activity) and to
distinguish them from level of mental rest. The second experiment, however, has
revealed essential and statistically significant result only in EEG.
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were considered (such as relatively stable heart beating waves, appearing on HbR
and HbO concentrations’ changes curves), but also artifacts of physiological nature,
caused by external factors. For example, there were considered changes in signal,
conditioned by sudden attraction of attention to external objects or conditions. A
number of external distracting factors, in particular, sharp sounds, distracting
noise, are considered. The whole purpose of this work was to develop compensation
for distracting factors, for NIRS-BCI to satisfy practical conditions. In the article,
the system of filtration of the mentioned types of the artifacts based on hidden
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BCI is the utilization of so-called hybrid BCI in which signals about a condition of
the examinee were received by means of at least two devices of various modalities
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“the brain switch,“ were considered, basically focusing on an artificial hand limb,
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was recommended to use it together with EEG. In general, the article affirms that
the BCI based on NIRS are inexpensive, but does not show high-quality results.
Various methods of preprocessing (CAR, SL, ICA, CSP, PCA, SVD, CSSP, Freq-
Norm, LAT, LKF, and CSSD) are considered and estimated. Most often used are
ICA, CAR, LS, PCA, CSP, and adaptive filtering. In this paper, the hybrid BCI on
the basis of NIRS and MEG were also mentioned and also stated that they are
disproportionately expensive, considering achievable results.

FOS responses [31–34] do not directly relate to BCI, but nevertheless were
considered for a possibility to build optical EP BCI based on such phenomena. FOS
usage can increase “reaction time” of hemodynamic responses and hence can
improve NIRS-FOS BCI performance. FOS registration demands extreme temporal
resolution on NIRS equipment. Analogically, research of correlation with fMRI also
difficult in that sense that fMRI-BOLD signal with “reception” time about 2.5 s has
no sufficient time resolution to obtain information on “fast” reactions.
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Nevertheless, it is a very interesting problem, which can be solved only with the use
of a multichannel and high-frequency NIRS with superb parameters.

In [33], authors demonstrate that optical methods can be used to detect rapid
changes in functional connectivity during cognitive processes.

In experiments, described in [31], animal photos were presented to examinee,
who needs to press button, when a picture was “well known.” That is so-called
Go/no-Go paradigm. After the experiment was carried out, the map of correlations
between EEG and FOS was built. In this paper, averaging of a signal was applied to
allocate FOS responses. Thus, Ref. [31] stated that NIRS method is sensitive to
hemodynamics of a brain (in the article, the term “slow signals” was used), and as
well to fast responses of neural activity, or so-called fast optical signals or FOS for
short. Registration of the FOS is difficult due to their nature and assumes low level
of signal/noise ratio of experimental setup. Authors managed to register authenti-
cally FOS for 11 examinees, simultaneously with EEG registration.

At present, the necessity for more “fine” research on hemodynamic response’s
features registered in the NIR modality in order to obtain more detailed description
of its features from the point of view of physiology is obvious. In [83], experimental
confirmation presented that there is a time difference between hemodynamic
answers in oxy- and deoxyhemoglobin. Authors revealed that a time profile of
hemoglobin-concentration-change curve is desynchronized; i.e., their levels do not
fall, and their sum and the difference do not rise simultaneously. Such measure-
ments can reveal a difference in brain activity patterns, while hand movements in
directions left-right and forward-back considered in experiments were described in
mentioned paper.

“Connectivity” research can be treated as another example of theoretical
research, beneficial to BCI system improvement. NIRS data acquisition systems
were introduced here just recently. For basic information about connectivity, see
[84, 85].

For information about connectivity modeling and NIRS/EEG phantom con-
struction for testing connectivity models, see [86]. Authors offer “testbed,” i.e.,
phantom for simultaneous NIRS/EEG recordings for rapid model testing for plausi-
bility, although biological interpretation of connectivity is simplified. NIRS
processing software “NAVI” as a part of testbed design was used [87, 88].

For comprehensive evaluation of utilizing NIRS in connectivity research, resting
state, and functional as well and especially their dynamic characteristics, one should
see [89]. Authors also point to disadvantage of NIRS usage in this type of studies
—“low” penetration depth limits research only to cerebral cortex. On the other
hand, this may allow excluding off the most low-level nervous functions from the
consideration.

Ref. [90] is devoted to the research of functional connectivity of neuronal
mechanisms underlying the reactions occurring during experiments in Go/No-Go
paradigm, in relation to human development problem. The paper compares such
reactions of children and adults examinees, and in particular, comes to the conclu-
sion that motor-related activation did not differ between age groups. This means
that at least within the limits of mentioned paradigm, there is virtually no
difference in movement realizations and in their control patterns of cortical
activity. This statement brings such patterns in position of more universal
detectable target, independent from age of examinee.

This can be summarized as ongoing process of initial accumulation of facts and
potentially useful information. Their implementation in BCI technology may lead to
productive results.

Finally, let us point the reader to optogenetics research [46]. Papers on the
subject do not directly relate to BCI technology directly, but more like to
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neurobiology as a whole. In the context of problem at hand, it makes sense to
concentrate on papers, which aims to use some kind of NIRS or optical equipment.

In this way, Refs. [91, 92] describe methods, which utilize NIR radiation in
confocal microscope in order of correction and control of neural cell growth. Fur-
ther developments of this direction can be found in [93], where laser microsurgery
of cellular membrane was described.

Ref. [47] was devoted to optogenetics methods of neural cells activation with
high spatial precision by making those cells produce reaction when irradiated with
light. This is achievable by the means of transfection of cell genome with gene
constructs, which corresponds to channelrhodopsin 2 protein. Activation of
transfected cells develops upon exposure to light of NIR range (860–1028 nm).
Such manipulations may provide a researcher with method of external activation of
nerve cells’, deeply situated in experimental animals’ brain and with high spatial
resolution. Experiments in the field also features ability to “read” neurons’ activity
patterns, induced on purpose. This can be achieved by variation of wavelength and
intensity of excitatory radiation. This direction of thought is interesting because it
represents fully optical method for monitoring, excitation, and detection of neural
activity on the cellular level. One may hypothesize that in distant enough perspec-
tive, such a research may lead to obtaining new and more precise data on brain
structure, functioning, and connections. Also, new generation of genetically coded
voltage sensitive dyes can yield state-of-the-art methods and techniques of acquir-
ing new data on functioning of neuron cells’ population level [94]. Alas, in their
present state, optogenetics methods are very suitable and useful for fundamental
research (usually not even in vivo), but they have not yet leveled up with practical
demands of problem discussed here.

At last, it is necessary to notice that despite essential successes in the field of
construction of BCI and machine interfaces (these are researches that generate
about thousands of publications every year), progress in the field of creation of
devices would allow patients with a full paralysis and “locked-in” syndrome to
interact with an external world, which is, for now, possible to characterize only as
moderate [95].

6. Conclusion

Objectively, the quantity of works in dynamics for more than 10 years grows,
and the considered area of researches extends. Also, the subjects of papers in the
field extend in more details, growing with new data.

The fact that the considerable part of papers in the field is reviews attracts
attention. It can testify to the big number of scientific personnel, which began or
begin at the moment the work on a considered problem. Also from this number, it is
possible to draw indirect conclusions about quantity of scientific personnel.

The offered system of classification of publications was given here in hope that it
will be useful for researchers’ choice of a direction in considered area and in order to
aid more effective development of this direction as a whole.

There are a big number of articles in which only the near-infrared range spec-
trometry is used (without EEG and other means of neuroimaging) and also the
ERD/ERS experimental paradigm most frequent and limited enough circle of cog-
nitive effects was measured.

Researches, in which hybrid interfaces were used in comparison with afore-
mentioned, are scarce. Even less papers concerning fast optical signals, fundamental
physiological questions with the use of NIRS or connection of nervous activity, and
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optical properties of a living tissue and physical features of distribution of near-
infrared range radiation in biological substances possess complex structure. Hybrid
interfaces are focused mainly on conducting NIRS cognitive experiments (in which
some cognitive effects or conditions exploited and responses were acquired with
NIRS) in synchrony or in parallel with registration of motor activity with the EEG
usage only. There are exceptionally few publications, concerning the technical
details and improvement of characteristics of the spectrometer equipment. Techni-
cal features are not addressed in detail even in papers that were using devices of
“own manufacture.” The field of NIRS devices with technical features, obviously, is
assigned exclusively to manufacturers of the equipment. The insignificant part of
papers, reviewed here, was devoted to the usage of NIRS/EEG BCI in one setup with
assistive robotic devices, artificial limbs, and exoskeletons. Due to pressing nature
of this matter and under a condition of extraordinary results, occurrences in the
near future in this field, obviously the share of such publications, will only grow,
probably, involving in the pool of papers on the technical details of such installa-
tions as a whole, including NIRS and robotics.
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Chapter 3

Speech Enhancement Using
an Iterative Posterior NMF
Sunnydayal Vanambathina

Abstract

Over the years, miscellaneous methods for speech enhancement have been pro-
posed, such as spectral subtraction (SS) and minimum mean square error (MMSE)
estimators. These methods do not require any prior knowledge about the speech
and noise signals nor any training stage beforehand, so they are highly flexible and
allow implementation in various situations. However, these algorithms usually
assume that the noise is stationary and are thus not good at dealing with
nonstationary noise types, especially under low signal-to-noise (SNR) conditions.
To overcome the drawbacks of the above methods, nonnegative matrix factoriza-
tion (NMF) is introduced. NMF approach is more robust to nonstationary noise. In
this chapter, we are actually interested in the application of speech enhancement
using NMF approach. A speech enhancement method based on regularized non-
negative matrix factorization (NMF) for nonstationary Gaussian noise is proposed.
The spectral components of speech and noise are modeled as Gamma and Rayleigh,
respectively. We propose to adaptively estimate the sufficient statistics of these
distributions to obtain a natural regularization of the NMF criterion.

Keywords: nonnegative matrix factorization (NMF), speech enhancement,
signal-to-noise ratio (SNR), expectation maximization (EM) algorithms,
posterior regularization (PR)

1. Introduction

Over the past several decades, there has been a large research interest in the
problem of single-channel sound source separation. Such work focuses on the task
of separating a single mixture recording into its respective sources and is motivated
by the fact that real-world sounds are inherently constructed by many individual
sounds (e.g., human speakers, musical instruments, background noise, etc.). While
source separation is difficult, the topic is highly motivated by many outstanding
problems in audio signal processing and machine learning, including the following:

1. Speech denoising and enhancement—the task of removing background noise
(e.g., wind, babble, etc.) from recorded speech and improving speech
intelligibility for human listeners and/or automatic speech recognizers

2. Content-based analysis and processing—the task of extracting and/or
processing audio based on semantic properties of the recording such as tempo,
rhythm, and/or pitch
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3.Music transcription—the task of notating an audio recording into a musical
representation such as a musical score, guitar tablature, or other symbolic
notations

4.Audio-based forensics—the task of examining, comparing, and evaluating
audio recordings for scientific and/or legal matters

5. Audio restoration—the task of removing imperfections such as noise, hiss,
pops, and crackles from (typically old) audio recordings

6.Music remixing and content creation—the task of creating a new musical work
by manipulating the content of one or more previously existing recordings

2. Nonnegative matrix factorization

2.1 NMF model

Nonnegative matrix factorization is a process that approximates a single non-
negative matrix as the product of two nonnegative matrices. It is defined by

V ≈WH (1)

V ∈ R
Nf�Nt
þ is a nonnegative input matrix. W ∈ R

Nf�Nz
þ is a matrix of basis

vectors, basis functions, or dictionary elements; H∈ RNz�Ntþ is a matrix of
corresponding activations, weights, or gains; and Nf is the number of rows of the
input matrix. Nt is the number of columns of the input matrix; Nz is the number of
basis vectors [1].

V ∈ R
Nf�Nt
þ —original nonnegative input data matrix

• Each column is an Nf -dimensional data sample.

• Each row represents a data feature.

W ∈ R
Nf�Nz
þ —matrix of basis vectors, basis functions, or dictionary elements.

• A column represents a basis vector, basis function, or dictionary element.

• Each column is not orthonormal, but commonly normalized to one.

H∈ RNz�Ntþ —matrix of activations, weights, encodings, or gains.

• A row represents the gain of a corresponding basis vector.

• Each row is not orthonormal, but sometimes normalized to one.

When used for audio applications, NMF is typically used to model spectrogram
data or the magnitude of STFT data [2]. That is, we take a single-channel recording,
transform it into the time-frequency domain using the STFT, take the magnitude or
power V, and then approximate the result as V ≈WH. In doing so, NMF approxi-
mates spectrogram data as a linear combination of prototypical frequencies or
spectra (i.e., basis vectors) over time.
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This process can be seen in Figure 1 [3], where a two-measure piano passage of
“Mary Had a Little Lamb” is shown alongside a spectrogram and an NMF factori-
zation. Notice how W captures the harmonic content of the three pitches of the
passage and H captures the time onsets and gains of the individual notes. Also note
that Nz is typically chosen manually or using a model selection procedure such as
cross-validation and Nf and Nt are a function of the overall recording length and
STFT parameters (transform length, zero-padding size, and hop size).

This leads to two related interpretations of how NMF models spectrogram data.
The first interpretation is that the columns of V (i.e., short-time segments of the
mixture signal) are approximated as a weighted sum of basis vectors as shown in
Figure 2 and Eq. (2):

V ≈
j j j j
V1 V2 V3……VNt

j j j j

2
64

3
75≈ ∑Nz

j¼1Hj1Wj ∑K
j¼1Hj2Wj ∑K

j¼1HjNtWj

h i
(2)

The second interpretation is that the entire matrix V is approximated as a sum of
matrix “layers,” as shown in Figure 3 and Eq. (3).

Figure 1.
NMF of a piano performing “Mary had a little lamb” for two measures with Nz = 3. Notice how matrix W
captures the harmonic content of the three pitches of the passage and matrixH captures the time onsets and gains
of the individual notes [3].

Figure 2.
NMF interpretation I. the columns of V (i.e., short-time segments of the mixture signal) are approximated as a
weighted sum or mixture of basis vectors W [3].
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V ≈
j j j j
V1 V2 V3……VNt

j j j j

2
64

3
75≈

j j j j
W1 W2 W3……WNz

j j j j

2
64

3
75

hT1
hT2
hT3
:

hTNz

2
66666664

3
77777775

V ≈W1h
T
1 þW2h

T
2 þW3h

T
3 þ ::…þWNzh

T
Nz

(3)

The application of NMF on noisy speech can be seen in Figure 4.

2.2 Optimization formulation

To estimate the basis matrix W and the activation matrix H for a given input
data matrix V, NMF algorithm is formulated as an optimization problem. This is
written as:

argmin
W,H

D V WHjð Þ
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where D V WHjð Þ is an appropriately defined cost function between V and W H
and the inequalities ≥ are element-wise. It is also common to add additional
equality constraints to require the columns of W to sum to one, which we enforce.
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where ½�ft indicates its argument at row f and column t and D V WHjð Þ is a scalar
cost function measured between V and WH.

Popular cost functions include the Euclidean distance metric, Kullback-Liebler
(KL) divergence, and Itakura-Saito (IS) divergence. Both the KL and IS divergences
have been found to be well suited for audio purposes. In this work, we focus on the
case where d q pjð Þ is generalized (non-normalized) KL divergence:

dKL q pjð Þ ¼ q ln
q
p
� qþ p (6)

where ½�ft indicates its argument at row f and column t and d q pjð Þ is a scalar cost
function measured between q and p.

This results in the following optimization formulation:

argmin
W,H

∑
Nf

f¼1
∑
Nt

t¼1
�Vft ln WH½ �ft

��� þ WH½ �ft
��� þ const

Subject to

W ≥0, H≥0 (7)

Given this formulation, we notice that the problem is not convex in W and H,
limiting our ability to find a globally optimal solution to Eq. (7). It is, however,
biconvex or independently convex inW for a fixed value ofH and convex inH for a
fixed value of W, motivating the use of iterative numerical methods to estimate
locally optimal values of W and H.

2.3 Parameter estimation

To solve Eq. (7), we must use an iterative numerical optimization technique and
hope to find a locally optimal solution. Gradient descent methods are the most
common and straightforward for this purpose but typically are slow to converge.
Other methods such as Newton’s method, interior-point methods, conjugate gradi-
ent methods, and similar [4] can converge faster but are typically much more
complicated to implement, motivating alternative approaches.

The most popular alternative that has been proposed is by Lee and Seung [1, 5]
and consists of a fast, simple, and efficient multiplicative gradient descent-based
optimization procedure. The method works by breaking down the larger optimiza-
tion problem into two subproblems and iteratively optimizes over W and then H,
back and forth, given an initial feasible solution. The approach monotonically
decreases the optimization objective for both the KL divergence and Euclidean cost
functions and converges to a local stationary point.

The approach is justified using the machinery of majorization-minimization
(MM) algorithms [6]. MM algorithms are closely related to expectation maximiza-
tion (EM) algorithms. In general, MM algorithms operate by approximating an
optimization objective with a lower bound auxiliary function. The lower bound is
then maximized instead of the original function, which is usually more difficult to
optimize.

Algorithm 1 shows the complete iterative numerical optimization procedure
applied to Eq. (7) with the KL divergence, where the division is element-wise,⊗ is
an element-wise multiplication, and 1 is a vector or matrix of ones with appropri-
ately defined dimensions [5].
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Algorithm 1 KL-NMF parameter estimation

Procedure KL-NMF (V ∈ R
Nf�Nt
þ //input data matrix.

Nz//number of basic vectors.
)

Initialize: W ∈ R
Nf�Nz
þ , H∈ RNz�Nt:þ

repeat
Optimize over W

W  W⊗
V

WH

� �
HT

1HT (8)

Optimize over H

H H⊗
WT V

WH

� �

WT1
(9)

until convergence
return:W and H

NMF is an optimization technique using EM algorithm in terms of matrix,
whereas probabilistic latent component analysis (PLCA) is also an optimization
technique using EM algorithm in terms of probability. In PLCA, we are going to
incorporate probabilities of time and frequency. In the next section, the develop-
ment of PLCA-based algorithm to incorporate time-frequency constraints is
discussed.

3. A probabilistic latent variable model with time-frequency constraints

Considering this approach, we now develop a new PLCA-based algorithm to
incorporate the time-frequency user-annotations. For clarity, we restate the form of
the symmetric two-dimensional PLCA model we use:

p f ; tð Þ ¼ ∑zp zð Þp f zjð Þp t zjð Þ (10)

Compared to a modified NMF formulation, incorporating optimization con-
straints as a function of time, frequency, and sound source into the factorized PLCA
model is particularly interesting and motivating to our focus.

Incorporating prior information into this model, and PLCA in general, can be
done in several ways. The most commonly used methods are by direct observations
(i.e., setting probabilities to zero, one, etc.) or by incorporating Bayesian prior
probabilities on model parameters. Direct observations do not give us enough con-
trol, so we consider incorporating Bayesian prior probabilities. For the case of
Eq. (10), this would result in independently modifying the factor terms p f zjð Þ,
p t zjð Þ, or p zð Þ. Common prior probability distributions used for this purpose include
Dirichlet priors [7], gamma priors [8], and others.

Given that we would like to incorporate the user-annotations as a function of
time, frequency, and sound source, however, we notice that this is not easily
accomplished using standard priors. This is because the model is factorized, and
each factor is only a function of one variable and (possibly) conditioned by another,
making it difficult to construct a set of prior probabilities that, when jointly applied
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to p f zjð Þ, p t zjð Þ, and/or p zð Þ, would encourage or discourage one source or another
to explain a given time-frequency point. We can see this more clearly when we
consider PLCA to be the following simplified estimation problem:

X f ; tð Þ≈φ zð Þφ f ; zð Þφ t; zð Þ (11)

where X f ; tð Þ is the observed data that we model as the product of three distinct
functions or factors φ zð Þ, φ f ; zð Þ, and φ t; zð Þ. Note, each factor has different input
arguments and each factor has different parameters that we wish to estimate via
EM. Also, forget for the moment that the factors must be normalized probabilities.

Given this model, if we wish to incorporate additional information, we could
independently modify:

• φ zð Þ to incorporate past knowledge of the variable z

• φ f ; zð Þ to incorporate past knowledge of the variable f and z

• φ t; zð Þ to incorporate past knowledge of the variable t and z

This way of manipulation allows us to maintain our factorized form and can be
thought of as prior-based regularization. If we would like to incorporate additional
information/regularization that is a function of all three variables z, f, and t, then we
must do something else. The first option would be to try to simultaneously modify
all factors together to impose regularization that is a function of all three variables.
This is unfortunately very difficult—both conceptually difficult to construct and
practically difficult to algorithmically solve.

This motivates the use of posterior regularization (PR). PR provides us with an
algorithmic mechanism via EM to incorporate constraints that are complementary
to prior-based regularization. Instead of modifying the individual factors of our
model as we saw before, we directly modify the posterior distribution of our model.
The posterior distribution of our model, very loosely speaking, is a function of all
random variables of our model. It is natively computed within each E step of EM
and is required to iteratively improve the estimates of our model parameters. In
this example, the posterior distribution would be akin to φ z; f ; tð Þ, which is a
function of t, f, and z, as required. We now formally discuss PR below, beginning
with a general discussion and concluding with the specific form of PR we
employ within our approach.

3.1 Posterior regularization

The framework of posterior regularization, first introduced by Graca, Ganchev,
and Taskar [9, 10], is a relatively new mechanism for injecting rich, typically
data-dependent constraints into latent variable models using the EM algorithm. In
contrast to standard Bayesian prior-based regularization, which applies constraints
to the model parameters of a latent variable model in the maximization step of EM,
posterior regularization applies constraints to the posterior distribution (distribu-
tion over the latent variables, conditioned on everything else) computation in the
expectation step of EM. The method has found success in many natural language
processing tasks, such as statistical word alignment, part-of-speech tagging, and
similar tasks that involve latent variable models.

In this case, what we do is constrain the distribution q in some way when we
maximize the auxiliary bound F q;Θð Þ with respect to q in the expectation step of an
EM algorithm, resulting in
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qnþ1 ¼ argmin
q

KL q pkð Þ þΩ qð Þ (12)

where Ω qð Þ constrains the possible space of q.
Note, the only difference between Eq. (12) and our past discussion on EM is the

added term Ω qð Þ. If Ω qð Þ is set to zero, we get back the original formulation and
easily solve the optimization by setting q = p without any computation (except
computing the posterior p). Also note to denote the use of constraints in this
context, the term “weakly supervised” was introduced by Graca [11] and is simi-
larly adopted here.

This method of regularization is in contrast to prior-based regularization, where
the modified maximization step would be

Θnþ1 ¼ argmax
Θ

F qnþ1;Θ
� �þΩ Θð Þ (13)

where Ω Θð Þ constrains the model parameter Θ.

3.2 Linear grouping expectation constraints

Given the general framework of posterior regularization, we need to define a
meaningful penalty Ω qð Þ for which we map our annotations. We do this by map-
ping the annotation matrices to linear grouping constraints on the latent variable z.
To do so, we first notice that Eq. (12) decouples for each time-frequency point for
our specific model. Because of this, we can independently solve Eq. (12) for each
time-frequency point, making the optimization much simpler. When we rewrite
our E step optimization using vector notation, we get

argmin
q
�qTft lnpft þ qTft lnqft

subject to
qTft1 ¼ 1, qft ≥0 (14)

where q and p z f ; tjð Þ for a given value of f and t is written as qft and pft without
any modification; we note q is optimal when equal to p z f ; tjð Þ as before.

We then apply our linear grouping constraints independently for each time-
frequency point:

argmin
q
�qTft lnpft þ qTft lnqft þ qTftλft

Subject to
qTft1 ¼ 1, qft ≥0, (15)

where we define λft ¼ Λft1::……Λft1Λft2………Λft2
� �T ∈ RNz as the vector of user-

defined penalty weights, T is a matrix transpose, ≥ is element-wise greater than or
equal to, and 1 is a column vector of ones. In this case, positive-valued penalties are
used to decrease the probability of a given source, while negative-valued coeffi-
cients are used to increase the probability of a given source. Note the penalty
weights imposed on the group of values of z that correspond to a given source s are
identical, linear with respect to the z variables, and applied in the E step of EM,
hence the name “linear grouping expectation constraints.”
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To solve the above optimization problem for a given time-frequency point, we
form the Lagrangian

L qft; γ
� �

¼ �qTft ln pft þ qTft ln qft þ qTftλft þ γ 1� qTft1
� �

(16)

With γ being a Lagrange multiplier, take the gradient with respect to q and γ:

∇qftL qft; γ
� �

¼ �ln pft þ 1þ ln qft þ λft � γ1 ¼ 0 (17)

∇aL qft; γ
� �

¼ 1� qTft1
� �

¼ 0 (18)

set Eqs. (17) and (18) equal to zero, and solve for qft, resulting in

qft ¼
Pft ⊗ exp �λft

� �

PT
ft exp �λft

� � (19)

where exp{} is an element-wise exponential function.
Notice the result is computed in closed form and does not require any iterative

optimization scheme as may be required in the general posterior regularization
framework [9], minimizing the computational cost when incorporating the con-
straints. Also note, however, that this optimization must be solved for each time-
frequency point of our spectrogram data for each E step iteration of our final EM
parameter estimation algorithm.

3.3 Parameter estimation

Now knowing the posterior-regularized expectation step optimization, we can
derive a complete EM algorithm for a posterior-regularized two-dimensional PLCA
model (PR-PLCA):

p z f ; tjð Þ  p zð Þp f zjð Þp t zjð ÞΛftz

∑z0p z0ð Þp f zj 0ð Þp t zj 0ð ÞΛftz0
(20)

where Λ ¼ exp �Λf g. The entire algorithm is outlined in Algorithm 2. Notice we
continue to maintain closed-form E andM steps, allowing us to optimize further and
draw connections to multiplicative nonnegative matrix factorization algorithms.

Algorithm 2 PR-PLCA with linear grouping expectation constraints

Procedure PLCA (

V ∈ R
Nf�Nt
þ //observed normalized data

Nz//number of basis vectors
Ns//number of sources
Λ∈ RNf�Nt�Nz//penalties
)
Initialize: feasible p zð Þ,p f zjð Þ and p t zjð Þ

Precompute: Λ exp �Λð Þ (21)
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repeat
Expectation step
for all z, f, t do

p z f ; tjð Þ  p zð Þp f zjð Þp t zjð ÞΛftz

∑z0p z0ð Þp f zj 0ð Þp t zj 0ð ÞΛftz0
(22)

end for
Maximization step
for all z, f, t do

p f zjð Þ ¼ ∑tVftp z f ; tjð Þ
∑f 0∑t0Vf 0t0p z f 0; t0jð Þ (23)

p t zjð Þ ¼
∑f Vftp z f ; tjð Þ

∑f 0∑t0Vf 0t0p z f 0; t0jð Þ (24)

p zð Þ ¼ ∑f∑tVftp z f ; tjð Þ
∑z0∑f 0∑t0Vf 0t0p z f 0; t0jð Þ (25)

end for
until convergence
return:p f zjð Þ, p t zjð Þ,p zð Þ and p z f ; tjð Þ

• Multiplicative Update Equations

We can rearrange the expressions in Algorithm 2 and convert to a multiplicative
form following similar methodology to Smaragdis and Raj [12].

Rearranging the expectation and maximization steps, in conjunction with Bayes’
rule, and

Z f ; tð Þ ¼ ∑zp zð Þp f zjð Þp t zjð ÞΛftz,

we get

p z f ; tjð Þ ¼ p f zjð Þp t; zð ÞΛftz

Z f ; tð Þ (26)

p t; zð Þ ¼ ∑f Vftq z f ; tjð Þ (27)

p f zjð Þ ¼ ∑tVftq z f ; tjð Þ
∑tp t; zð Þ (28)

p zð Þ ¼ ∑tp t; zð Þ (29)

Rearranging further, we get

p f zjð Þ ¼
p f zjð Þ∑t

VftΛftz

Z f ;tð Þ p t; zð Þ
∑tp t; zð Þ (30)

p t; zð Þ ¼ p t; zð Þ∑f p f zjð Þ VftΛftz

Z f ; tð Þ (31)

42

New Frontiers in Brain-Computer Interfaces

which fully specifies the iterative updates. By putting Eqs. (30) and (31) in
matrix notation, we specify the multiplicative form of the proposed method in
Algorithm 3.

Algorithm 3. PR-PLCA with linear grouping expectation constraints in matrix
notation

Procedure PLCA (

V ∈ RNf�Nt
þ //observed normalized data

Nz//number of basis vectors
Ns//number of sources
Λs ∈ RNf�Nt , ∀∈ 1; :…Nsf g//penalties
)

Initialize: W ∈ R
Nf�Nz
þ , H∈ RNz�Ntþ

Precompute:
For all s do

Λs  exp �Λsf g (32)

Xs  V⊗Λs (33)

End for
Repeat

Γ  ∑s WsHsð Þ⊗Λs (34)

For all s do

Zs  Xs

Γ
(35)

W sð Þ  Ws ⊗
ZsHT

s

1HT
s

(36)

H sð Þ  Hs ⊗ WT
s Zs

� �
(37)

End for
until convergence
return:W and H

4. An iterative posterior NMF method for speech enhancement in the
presence of additive Gaussian noise (proposed algorithm)

Over the past several years, research has been carried out in single-channel
sound source separation methods. This problem is motivated by speech denoising,
speech enhancement [13], music transcription [14], audio-based forensic, and
music remixing. One of the most effective approach is nonnegative matrix factori-
zation (NMF) [5]. The user-annotations can be used to obtain the PR terms [15]. If
the number of sources is more, then it is difficult to identify sources in the spectro-
gram. In such cases, the user interaction-based constraint approaches are inefficient.

In order to avoid the previous problem, in the proposed method, an automatic
iterative procedure is introduced. The spectral components of speech and noise are
modeled as Gamma and Rayleigh, respectively [16].
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Algorithm 3. PR-PLCA with linear grouping expectation constraints in matrix
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4. An iterative posterior NMF method for speech enhancement in the
presence of additive Gaussian noise (proposed algorithm)

Over the past several years, research has been carried out in single-channel
sound source separation methods. This problem is motivated by speech denoising,
speech enhancement [13], music transcription [14], audio-based forensic, and
music remixing. One of the most effective approach is nonnegative matrix factori-
zation (NMF) [5]. The user-annotations can be used to obtain the PR terms [15]. If
the number of sources is more, then it is difficult to identify sources in the spectro-
gram. In such cases, the user interaction-based constraint approaches are inefficient.

In order to avoid the previous problem, in the proposed method, an automatic
iterative procedure is introduced. The spectral components of speech and noise are
modeled as Gamma and Rayleigh, respectively [16].
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4.1 Notation and basic concepts

Let noisy speech signal x[n] be the sum of clean speech s[n] and noise d[n] and
their corresponding magnitude spectrogram be represented as

X f ; tð Þj j ¼ S f ; tð Þj j þ D f ; tð Þj j (38)

where f represents the frequency bin and t the frame number. The observed

magnitudes in time-frequency are arranged in a matrix X∈ R f�t
þ of nonnegative

elements. The source separation algorithms based on NMF pursue the factorization

of X as a product of two nonnegative matrices, W ¼ w1;w2;…;wR½ �∈ R f�R
þ in

which the columns collect the basis vectors and H ¼ hT1 ; h
T
2 ; :…; hTR

� �T
∈ RR�t

þ that
collects their respective weights, i.e.,

X ¼WH ¼ ∑
R

z¼1
WzHz (39)

where R denotes the number of latent components.

4.2 Proposed regularization

There are several ways to incorporate the user-annotations into latent variable
models, for instance, by using the suitable regularization functions. For expectation
maximization (EM) algorithms, posterior regularization was introduced by [9, 11].
This method is data dependent. This method gives richness and also gives the
constraints on the posterior distributions of latent variable models. The applications
of this method is used in many natural language processing tasks like statistical
word alignment, part-of-speech tagging. The main idea is to constrain on the dis-
tribution of posterior, when computing expectation step in EM algorithm.

The prior distributions for the magnitude of the noise spectral components are
modeled as Rayleigh probability density function (PDF) with scale parameter σ,
which is fitted to the observations by a maximum likelihood procedure [16, 17], i.e.,

f x; σð Þ ¼ x
σ2

e�x
2=2σ2 for x≥0 with σ2 ¼ 1

2N
∑
N

i¼1
x2i (40)

The above equation can be written as

f x; σð Þ ¼ e log
x
σ2

� �
e�x

2=2σ2 ¼ e log
x
σ2

� �
� x2

2σ2 (41)

By applying negative logarithm on both sides of (41), we will get

� log f x; σð Þð Þ ¼ � log e log
x
σ2

� �
� x2

2σ2

� �
¼ x2

2σ2
� log

x
σ2

� �
(42)

Then, the regularization term for the noise is defined as

ΛN � ΛS1 ¼ � log f x; σð Þ ¼ x2

2σ2
� log

x
σ2

: (43)

The spectral components of speech modeled as Gamma probability density
function [16, 18]
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f x; k; θð Þ ¼ xk�1e
�x
θ

θkΓ kð Þ (44)

with shape parameter k>0 and scale parameter θ>0:

θ ¼ 1
kN

∑
N

i¼1
xi and k≈

3� sþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s� 3ð Þ2 þ 24s

q

12s
(45)

where the auxiliary variable s is defined as s ¼ ln 1
N∑N

i¼1xi
� �

� 1
N∑N

i¼1ln xið Þ.
The regularization term for the speech samples is defined as (by applying nega-

tive logarithm in both sides of (44))

ΛSP � ΛS2 ¼ � log f x; k; θð Þ ¼ x
θ
� log

xk�1

θkΓ kð Þ

 !
, x≥0 (46)

Special case:When we fix k = 1, the Gamma density simplifies to the exponential
density and

f x; 1; θð Þ ¼ 1
θ
e
�x
θ ,ΛSP � ΛS2 ¼

x
θ
, x≥0 (47)

The proposed multiplicative nonnegative matrix factorization method is
summarized in Algorithm 4 [16]. In general, like in the specific case of Algorithm 4,
one can only guarantee the monotonous descent of the iteration through a
majorization-minimization approach [19] or the convergence to a stationary
point [20].

The subscript(s) with parenthesis represents corresponding columns or rows of
the matrix assigned to a given source. 1 is an approximately sized matrices of ones,
and ⊗ represents element-wise multiplication.

Algorithm 4: Gamma-Rayleigh regularized PLCA method (GR-NMF)

Procedure
X ∈ Rf�t

þ % Observed normalized data

ΛS ∈ Rf�t
þ , s∈ 1; ::…;NSf g % ΛS-Penalties, NS-Number of sources

Λs NEWð Þ ¼ 0

ΛS1 ¼ ΛN OLDð Þ ¼ X2

2σ2
� log

X
σ2

and ΛS2 ¼ ΛSP OLDð Þ ¼ X
θ
� log

Xk�1

θkΓ kð Þ

 !
(48)

eΛs OLDð Þ  exp �Λsf g (49)

Repeat
For all s do

eΛs ¼ 1� μð ÞΛs OLDð Þ þ μΛs NEWð Þ %Update penalties using LMS (50)

Λs OLDð Þ ¼ Λs NEWð Þ (51)
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f x; k; θð Þ ¼ xk�1e
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θ
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f x; 1; θð Þ ¼ 1
θ
e
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x
θ
, x≥0 (47)

The proposed multiplicative nonnegative matrix factorization method is
summarized in Algorithm 4 [16]. In general, like in the specific case of Algorithm 4,
one can only guarantee the monotonous descent of the iteration through a
majorization-minimization approach [19] or the convergence to a stationary
point [20].
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and ⊗ represents element-wise multiplication.
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 !
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Xs  X⊗ eΛS (52)

End for

Γ  ∑s W sð ÞH sð Þ
� �

⊗ eΛS (53)

Zs  Xs

Γ
(54)

For all s do

W sð Þ  W sð Þ⊗
ZsHT

sð Þ
1HT

sð Þ
(55)

H sð Þ  H sð Þ⊗ WT
sð ÞZs

� �
(56)

End for
Reconstruction

For all s do

Ms  
W sð ÞH sð Þ
WH

% Compute Filter (57)

X̂ s  Ms ⊗X % Filter Mixture (58)

xs  ISTFT X̂s;∠X;P
� �

% P� STFT parameters (59)

if update k % Gamma model

s ¼ ln
1
N
∑X̂ s

� �
� 1
N
∑ln X̂ s

� �
, k≈

3� sþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s� 3ð Þ2 þ 24s

q

12s
(60)

else % Exponential model
k = 1,

end

θ ¼ 1
kN

∑X̂ s (61)

ΛS1 ¼ ΛN OLDð Þ ¼
X̂2

s1

2σ2
� log

X̂ s1

σ2

ΛS2 ¼ ΛSP OLDð Þ ¼ X̂ s2

θ
� log

X̂
k�1
s2

θkΓ kð Þ

0
@

1
A (62)

Λs NEWð Þ ¼ exp �Λs OLDð Þ
� �

% Λs OLDð Þ represents both ΛSP and ΛN (63)

End for
Until Convergence
Return: Time domain signals xs
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5. Experimental results

The speech and noise audio samples were taken from NOIZEUS [21]. Sampling
frequency is 8 KHz. The algorithm is iterated until convergence [16]. The proposed
method was compared with Euclidean NMF (EUC-NMF) [5], Itakura-Saito NMF
(IS-NMF) [22], posterior regularization NMF (PR-NMF) [15], Wiener filtering
[23], and constrained version of NMF (CNMF)[24]. These methods are
implemented by considering nonstationary noise, babble noise and street noise. The
performance of proposed method was evaluated by using perceptual evaluation of
speech quality (PESQ) [25] and source-to-distortion ratio (SDR) [26]. SDR gives
the average quality of separation on dB scale and considers signal distortion as well
as noise distortion. For PESQ and SDR, the higher value indicates the better perfor-
mance. Tables 1 and 2 show the PESQ and SDR values of different NMF algorithms
evaluated. The experimental results show that proposed method performs better
than other existing methods in terms of the PESQ and SDR indices.

6. Conclusion

A novel speech enhancement method based on an iterative and regularized NMF
algorithm for single-channel source separation is proposed. The clean speech and
noise magnitude spectra are modeled as Gamma and Rayleigh distributions,
respectively. The corresponding log-likelihood functions are used as penalties to

Table 1.
PESQ and SDR for babble noise.

Table 2.
PESQ and SDR for street noise.
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5. Experimental results

The speech and noise audio samples were taken from NOIZEUS [21]. Sampling
frequency is 8 KHz. The algorithm is iterated until convergence [16]. The proposed
method was compared with Euclidean NMF (EUC-NMF) [5], Itakura-Saito NMF
(IS-NMF) [22], posterior regularization NMF (PR-NMF) [15], Wiener filtering
[23], and constrained version of NMF (CNMF)[24]. These methods are
implemented by considering nonstationary noise, babble noise and street noise. The
performance of proposed method was evaluated by using perceptual evaluation of
speech quality (PESQ) [25] and source-to-distortion ratio (SDR) [26]. SDR gives
the average quality of separation on dB scale and considers signal distortion as well
as noise distortion. For PESQ and SDR, the higher value indicates the better perfor-
mance. Tables 1 and 2 show the PESQ and SDR values of different NMF algorithms
evaluated. The experimental results show that proposed method performs better
than other existing methods in terms of the PESQ and SDR indices.

6. Conclusion

A novel speech enhancement method based on an iterative and regularized NMF
algorithm for single-channel source separation is proposed. The clean speech and
noise magnitude spectra are modeled as Gamma and Rayleigh distributions,
respectively. The corresponding log-likelihood functions are used as penalties to

Table 1.
PESQ and SDR for babble noise.

Table 2.
PESQ and SDR for street noise.
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regularize the cost function of the NMF. The estimation of basis matrices and
excitation matrices are calculated by using proposed regularization of multiplicative
update rules. The experiments reveal that the proposed speech enhancement
method outperforms other existing benchmark methods in terms of SDR and PESQ
values.
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A Self-Paced Two-State Mental
Task-Based Brain-Computer
Interface with Few EEG Channels
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Abstract

A self-paced brain-computer interface (BCI) system that is activated by mental
tasks is introduced. The BCI’s output has two operational states, the active state and
the inactive state, and is activated by designated mental tasks performed by the
user. The BCI could be operated using several EEG brain electrodes (channels) or
only few (i.e., five or seven channels) at a small loss in performance. The perfor-
mance is evaluated on a dataset we have collected from four subjects while
performing one of the four different mental tasks. The dataset contains the signals
of 29 EEG electrodes distributed over the scalp. The five and seven highly discrim-
inatory channels are selected using two different methods proposed in the paper.
The signal processing structure of the interface is computationally simple. The
features used are the scalar autoregressive coefficients. Classification is based on the
quadratic discriminant analysis. Model selection and testing procedures are accom-
plished via cross-validation. The results are highly promising in terms of the rates of
false and true positives. The false-positive rates reach zero, while the true-positive
rates are sufficiently high, i.e., 54.60 and 59.98% for the 5-channel and 7-channel
systems, respectively.

Keywords: brain-computer interface, mental task, self-paced, autoregressive
modeling, quadratic discriminant analysis

1. Introduction

Brain-computer interfaces (BCIs) aim at providing an alternative means of
communication for motor-disabled people suffering from diseases such as brain
injury, brainstem stroke, high-level spinal cord injury (SCI), amyotrophic lateral
sclerosis (ALS, also known as Maladie de Charcot or Lou Gehrig’s disease), muscular
dystrophies, multiple sclerosis (MS), cerebral palsy (CP), or locked-in syndrome
(sometimes called ventral pontine syndrome, cerebromedullospinal disconnection,
pseudocoma, and de-efferented state). Well-developed BCI systems are used by
motor-disabled people to control their environment. They can also be used by
healthy individuals for entertainment purposes such as playing computer games.

Existing BCI systems are categorized in two major classes: system-paced (or
synchronous) and self-paced (or asynchronous). In system-paced BCIs, the user can
only control the BCI during specific time intervals that are predefined by the system
and not by the user. A self-paced BCI, on the other hand, can be available for
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only control the BCI during specific time intervals that are predefined by the system
and not by the user. A self-paced BCI, on the other hand, can be available for
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control by the user at all times. It is clear that the second class is better and more
efficient in terms of practicality and applicability to real-life applications.

Two types of states (or modes) are usually assumed for the output of a self-
paced BCI: the no-control (NC) state and the intentional control (IC) state. This
type of BCIs is in the NC mode most of the time. However, when the user issues a
mental command that would lead, for example, to switching the light on, moving
the computer cursor to the right, etc., the system changes its state from the NC
mode to the IC mode. After that, the BCI returns to the NC state.

Two measures that can properly evaluate the performance of a self-paced BCI
are the true-positive rate (TPR) and the false-positive rate (FPR). A true-positive
outcome results from correctly classifying a command as an IC state, and a false-
positive outcome results from the BCI misclassifying a no control as an IC state. The
ratios of true positives and false positives to the total number of classifications yield
the TPR and FPR, respectively. Further details on BCIs can be found in [1–5].

Due to the high false activation rates, BCI systems are deemed unsuccessful for
use in real-life applications. This is because false activations are a major cause of
user frustration. To further illustrate this point, suppose that the output rate of a
self-paced BCI is 5 Hz (i.e., five outputs/s, as in the BCI designed in this paper) and
the FPR value is 1%. This FPR of 1% means one false positive in every 100 outputs
of the BCI. As the BCI generates 100 outputs in 20 s, there would be three false
activations in every minute, which is too high for practical purposes. Considering
the fact that a self-paced BCI is in the no-control mode for most of the time, even a
low FPR would greatly annoy and frustrate any user. This is why for BCI systems,
lowering the FPR is of extreme importance.

Mental tasks are a class of neurological phenomena that can be exploited in BCI
systems. They generally refer to intentional cognitive tasks that are done by the
brain. Mental tasks can be mental mathematical calculations (such as multiplication
and counting), mental rotation of a two- or three-dimensional object, motor imag-
ery, visualization, etc.

Motor imagery is a task that has been investigated by a large majority of BCI
studies [6–64]. The use of other types of mental tasks in BCI studies has received
little attention in the literature. The papers that have studied non-motor imagery
mental tasks along with the motor imagery tasks include [65–84]. Studies [85–96]
have only considered non-motor imagery mental tasks.

The mental tasks investigated in [65] are motor imagery of opening and closing
of the users’ hand(s) and serially subtracting seven from a large number. In [66],
four motor imagery tasks of (the users) left hand movement, right hand movement,
foot movement, and tongue movement along with a simple calculation task (i.e.,
repeated subtraction of a constant number from a randomly chosen number) are
considered as the mental tasks. The mental tasks used in [67] are the imagination of
left and right hand movements, cube rotation, and subtraction. Four imagery tasks,
i.e., spatial navigation around a familiar environment, auditory imagery of a famil-
iar tune, and right and left motor imageries of opening and closing the hand, are
investigated in [68]. In [69, 70], the imagination of left and right hand (or arm)
movements, cube rotation, subtraction, and word association are studied. In
[71, 72, 75–77, 79, 81], the imagination of repetitive self-paced left or right hand
movement and the generation of words beginning with the same random letter are
investigated. The EEG data used in these studies are those provided by the IDIAP
Research Institute in Switzerland [70]. The studies in [77, 81] consider the imagi-
nation of the left or right hand movement as well using the data collected by the BCI
laboratory at Graz University of Technology in Austria [16]. In [73], the mental
tasks are auditory recall, mental navigation, sensorimotor attention of the left hand,
sensorimotor attention of the right hand, mental calculation, imaginary movement
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of the left hand, and imaginary movement of the right hand. The mental tasks used
in [74] are the exact calculation of repetitive additions, imagination of left finger
movement, mental rotation of a cube, and evocation of a nonverbal audio signal. In
[78], the right and left hand extension motor imageries, subtraction, navigation
imagery, auditory imagery, phone imagery, and idle task are investigated. The
mental tasks considered in [80] include the right and left hand flexion motor
imageries, subtraction, navigation imagery, auditory imagery, phone imagery, and
idle task. The mental tasks considered in [82] are subtraction, navigation imagery,
auditory recall, phone imagery, and motor imageries of the left and right hands.
Hand movements and word imagination are the mental tasks used in [83]. Imagi-
nation of left and right hand movements, mental rotation of a 3D geometric figure,
and mental subtraction of a two-digit number from a three-digit number are con-
sidered in [84].

The old and small datasets of Keirn and Aunon [85] that contain non-motor
imagery mental tasks are employed in [86–90, 92, 94–96]. Vowel speech imagery
(i.e., imaginary speech of the two English vowels /a/ and /u/) is proposed as a
control scheme for the BCI system in [91]. In [93], the mental arithmetic and spatial
imageries are investigated. Real fist rotation and imagined reverse counting are
investigated in [97].

From all BCI systems designed in these studies, only the systems in
[19, 24, 32, 39, 42, 46, 57, 61, 67, 69, 70] and [76, 78, 80, 82] are self-paced. The FPR
values are not reported in [57, 69, 70, 76, 78, 80, 82]. Even though the number of
FPs and TPs is mentioned in [32, 46], the rates of FPs and TPs are not given.

The FPRs are given in [19, 24, 42, 61]. In [19], the given FPR values are in the
10–77% range. In [24], the BCI system was evaluated in terms of FPs during only
one 3-minute interval. No FPs were generated during this interval; however, since
the designed BCI is too slow, it is deemed impractical for the real-life applications.
The minimum time period between two subsequent active states of the system is
4 s. In [42], the FPRs of the BCI systems are between 3.8% and 32.5%. In [61], the
reported false activation rate is in the range of 0–3.25 activations/minute.

In [39], the specificity rates (i.e., 100–FPR%) are given. Based on the specificity
rates, the FPR values are between 0.38 and 14.38%. Based on the confusion matrices
given in [67], the FPRs are in the range of 0–9%.

The ultimate and first goal of conducting this study is to develop a self-paced
two-state mental task-based BCI with a zero or near-zero false activation rate using
EEG signals. The mental tasks investigated are the visualization of some words as
they are written, multiplication, mentally rotating a 3D object, and motor imagery.
We collected the EEG signals of these four tasks as they were being performed
mentally and also during the baseline state, i.e., when the subjects were not
performing any of the four mental tasks as will be explained in Section 2. The
number of EEG channels used was 29. The details on each mental task and the
dataset are provided in the next section where the experimental protocol is
described.

The second goal is to design a BCI with few channels. Such a BCI has few
electrodes to collect the EEG signals and would be significantly more efficient com-
putationally, leading to BCIs that operate in real time. Thus, for practical applications,
the number of EEG channels should be small. In Section 3.1, we discuss how we
choose five or seven channels that would yield acceptable performance.

For each subject, four different BCIs are developed. Each BCI is based on one of
the four mental tasks mentioned above, i.e., in each BCI, one mental task is consid-
ered as the IC task (i.e., the user is indeed issuing a command). The other three
mental tasks are considered as NC tasks. The BCI system should remain in the NC
mode during the NC tasks and the baseline.
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Even though the system performance is evaluated off-line, the EEG signals are
analyzed in a self-paced manner. A signal trial is divided into overlapping segments.
Each segment is labeled as either IC or NC, depending on whether or not it belongs
to the IC task. The performance of the system is then evaluated in terms of TPR and
FPR.

Classification is based on the quadratic discriminant analysis due to its simplicity
and accuracy. The features to be classified are the scalar autoregressive (AR) coef-
ficients of the EEG signals. The feature extraction and the classification methods
employed are efficient in terms of computational complexity. The cross-validation
process is performed so as to obtain the optimal order of AR coefficients as well as
the best EEG channels for every mental task of every subject.

2. Dataset

The EEG signals of four subjects were collected while they were seated in a chair
approximately 75 cm in front of an LCD monitor in a 4 � 4 m2 room. The subjects
were asked to keep their eyes open during the recordings. Using an electrode cap,
the signals were captured from 29 channels located at Fpz, AF3, AF4, F7, F3, Fz, F4,
F8, FC5, FC1, FC2, FC6, T7, C3, Cz, C4, T8, CP5, CP1, CP2, CP6, P7, P3, Pz, P4, P8,
PO3, PO4, and Oz, according to the 10–10 system [98, 99]. Electrodes were prop-
erly distributed over the scalp to study the signals of the different brain regions.
Refer to Figure 1 to see the electrode positions. The earlobes were electrically linked
together and used as the reference. The EEG signals were amplified and digitized
using a 12-bit analog-to-digital converter. The sampling rate was 500 Hz.

Every subject attended three recording sessions on 3 different days. They were
asked to perform four mental tasks. Each session started with the preparation and
setup and consisted of six recording runs. Twelve minutes of EEG signals were
approximately recorded in a run. The subjects were instructed to complete the six
runs one after the other at their own pace. Each run consisted of signals of 20

Figure 1.
EEG signals were recorded from 29 electrodes distributed over the scalp according to the 10–10 system.
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epochs (i.e., five epochs for each of the four mental tasks). An epoch was 32.5 �
2.5 s long. To avoid possible adaptation, the order of epochs belonging to different
mental tasks was changed randomly from one run to the other.

The timing of the epochs was as follows. At the beginning of each epoch, there
was a break with a length of 15 � 2.5 s. The break had a variable length in different
epochs so as to avoid possible adaptation. A “Start” cue was displayed after the
break on the screen to prompt the subject to perform a specific mental task. The
task to be performed was shown on the screen. The length of the Start cue was 4 s.
The subjects had been instructed to start to perform the mental task approximately
1 s after the disappearance of the Start cue and to keep performing the task until a
“Stop” cue appeared on the screen. The 1-s delay was used to avoid any possible
effects of visual evoked potentials. The time interval between the Start cue and the
Stop cue was 10 s. The Stop cue lasted for 2.5 s. After the Stop cue, the break of the
next epoch started. Figure 2 illustrates the timing of each epoch.

The background of the screen was always black. During the break interval of
each epoch, “Break” was written on the screen in white and in a size which could be
easily read from a distance of 75 cm. The name of a specific mental task written in
white was the Start cue. The size of the Start cue was the same as Break. The word
“STOP” written in a green circle was the Stop cue.

The mental tasks were:

1. Visualizing some words being written on a board: subjects were told to imagine
a board on which they were writing their full names.

2.Non-trivial multiplication: the subjects performed multiplication of two two-
digit numbers. The numbers to be multiplied were given to them as the Start
cue.

3.Mentally rotating a 3D object: the subjects imagined that they were rotating a
laptop mentally.

4.Motor imagery: the subjects imagined extending his/her right hand.

The subjects were asked to be in the baseline state during the break interval of
each epoch, i.e., they should not be performing any of the four mental tasks of the
experiment and were supposed to remain looking at the screen and not move. They
should attain the same physical condition as that assumed when they performed the
mental tasks.

Figure 2.
Epoch timing. A “Start” cue was displayed on the screen for 4 s after a break of length of 15 � 2.5 s. The subject
was told to wait about 1 s after the cue disappeared before performing a mental task for about 10 s. The “Stop”
cue was displayed on the screen for 2.5 s, informing the subject of the end of the 10-s interval. The next epoch
then started.
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Figure 1.
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epochs (i.e., five epochs for each of the four mental tasks). An epoch was 32.5 �
2.5 s long. To avoid possible adaptation, the order of epochs belonging to different
mental tasks was changed randomly from one run to the other.

The timing of the epochs was as follows. At the beginning of each epoch, there
was a break with a length of 15 � 2.5 s. The break had a variable length in different
epochs so as to avoid possible adaptation. A “Start” cue was displayed after the
break on the screen to prompt the subject to perform a specific mental task. The
task to be performed was shown on the screen. The length of the Start cue was 4 s.
The subjects had been instructed to start to perform the mental task approximately
1 s after the disappearance of the Start cue and to keep performing the task until a
“Stop” cue appeared on the screen. The 1-s delay was used to avoid any possible
effects of visual evoked potentials. The time interval between the Start cue and the
Stop cue was 10 s. The Stop cue lasted for 2.5 s. After the Stop cue, the break of the
next epoch started. Figure 2 illustrates the timing of each epoch.

The background of the screen was always black. During the break interval of
each epoch, “Break” was written on the screen in white and in a size which could be
easily read from a distance of 75 cm. The name of a specific mental task written in
white was the Start cue. The size of the Start cue was the same as Break. The word
“STOP” written in a green circle was the Stop cue.

The mental tasks were:

1. Visualizing some words being written on a board: subjects were told to imagine
a board on which they were writing their full names.

2.Non-trivial multiplication: the subjects performed multiplication of two two-
digit numbers. The numbers to be multiplied were given to them as the Start
cue.

3.Mentally rotating a 3D object: the subjects imagined that they were rotating a
laptop mentally.

4.Motor imagery: the subjects imagined extending his/her right hand.

The subjects were asked to be in the baseline state during the break interval of
each epoch, i.e., they should not be performing any of the four mental tasks of the
experiment and were supposed to remain looking at the screen and not move. They
should attain the same physical condition as that assumed when they performed the
mental tasks.

Figure 2.
Epoch timing. A “Start” cue was displayed on the screen for 4 s after a break of length of 15 � 2.5 s. The subject
was told to wait about 1 s after the cue disappeared before performing a mental task for about 10 s. The “Stop”
cue was displayed on the screen for 2.5 s, informing the subject of the end of the 10-s interval. The next epoch
then started.
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For each of the four mental tasks, 300 s (30 10-s epochs) of EEG signals and for
the baseline, about 1800 s (120 epochs) of EEG signals were recorded in each
session. Therefore, at the end of the last session, we had 90 epochs of each mental
task and 360 epochs of the baseline for each subject.

The experimental protocol had been approved by the Behavioral Research Ethics
Board of the University of British Columbia, and all subjects signed the required
consent form.

3. Methodology

3.1 EEG channel selection

The dataset is formed by the signals from 29 electrodes. However, a BCI system
with 29 channels is impractical for use in real-life applications. For practical appli-
cations, the number of channels should be as small as possible. We thus select a
smaller set of the channels that together yield the best performance for the final
design of our system.

Suppose that we have a BCI system with n channels and we need to select the
BCI that has m channels (m < n) and yields the best performance. The ideal but not
always computationally practical way is to consider all the possible m-channel
combinations of the n channels and select the combination that yields the best
system performance. For instance, if we want to decrease the number of channels
from 29 to 7, the system performance needs to be evaluated for all 1,560,780
different 7-channel combinations and then compared. Moreover, in order to make
the results more robust, the performance evaluation of the system is usually carried
out for different training and testing sets via a cross-validation process. If we
assume that the number of evaluation which runs in cross-validation is 5, the
number above (1,560,780) should be multiplied by 5. This forms a prohibitively
large amount of computations as the processing time will take several days. It is thus
impractical for implementation.

In this study, two approaches are performed for selecting the best system that
has m channels. The first approach deletes the channels (from among the 29-chan-
nel system) that results in the least reduction in the performance of the remaining
system. The channels are deleted one by one. The second approach builds a new
system by adding channels one by one to the newly built system. A channel added
to the new system is selected from the 29-channel system so that the performance of
the new system is maximal. These two approaches result in two methods that we
denote as MDelete and MForm. Even though these methods are not optimal as the
method mentioned above (i.e., considering all possible combinations), they still
reach the goal to a certain extent.

Channel selection method one: in channel selection method one (MDelete), all 29
channels are first considered. The resultant FPR and TPR values after deleting each
channel are obtained. The BCI system with 28 channels that yields the best perfor-
mance is selected. That is, the channel whose removal results in the best 28-channel
system is detected and deleted from the list. This task is repeated on the remaining
list (i.e., on 28 channels), and the best 27-channel system is found. This is repeated
again until all but m channels are omitted.

Channel selection method two: channel selection method two (MForm) is similar
to the first one except that it is carried in the reverse direction and the selection of
the channels differs as explained below. In the first iteration, the BCI system is
assumed to have one channel only. The channel with the best performance among
the 29 existing channels is thus detected. This will form the best BCI that has one
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channel only. In the second iteration, the BCI system is assumed to have two
channels only. One of these two channels is the one already selected in iteration 1.
Thus the performance of each channel in the remaining 28 channels, together with
the channel selected in the first iteration, is obtained. Among these 28 possibilities,
the channel (together with the already selected one) that yields the best perfor-
mance is selected and added to the list of the best channels. In the third iteration,
three channels are considered. These are formed by each channel from the
remaining list (i.e., 27 channels) and the two channels already selected in the
previous iterations. The channel that together with the two already selected chan-
nels yields the 3-channel BCI system with the best performance is added to the list.
This procedure is repeated until m channels are added to the list of the best chan-
nels.

3.2 Procedure

The length of each mental task epoch is 10 s. The baseline epochs have a variable
length in the range of 15 � 2.5 s. Since the sampling frequency is 500 samples/s,
each mental task epoch consists of 5000 samples, and the number of samples in a
baseline epoch varies between 6250 and 8750.

To process the data, every epoch is divided into overlapping segments. Each
segment is of length 1 s (i.e., 500 samples) and overlaps with the previous segment
by 400 samples. In other words, the BCI system generates an output every 100
samples using the last 500 samples of the signals. Since 100 samples are equivalent
to 0.2 s, the output rate of the BCI is 5 Hz.

Feature selection and classification: autoregressive (AR) modeling is used to obtain
the features from the segments. Based on the results in [100, 101], 1 s of the EEG
signal is sufficiently long for the AR model estimation. The feature vector is formed
by concatenating the AR coefficients (estimated from the segments of the selected
channels) into a single vector. This vector is then fed to the classifier for classifica-
tion purposes. Classification is performed using quadratic discriminant analysis.
The AR modeling and quadratic discriminant analysis are briefly explained in
Appendices A and B of this paper.

Custom designing: custom designing the system for every subject yields improve-
ments in the overall BCI performance [102, 103]. In this study, the BCI system is
customized for each subject and for each mental task by selecting the channels and
AR orders during cross-validation.

Cross-validation: to perform the cross-validation, we randomly divide the whole
set of segments into five equal-sized sections. Four of the data sections are used to
train and validate the system. Testing is carried on the remaining section. The four
data sections assigned to training and validation are further divided randomly into
five data partitions of equal size. Four partitions are used for training and one is
used for validation.

Selecting the best five and seven channels: we select the top five and also the top
seven best performing channels for future processing using MDelete and MForm
with the AR model order of 40. We then compare the results of the 5-channel cases
with those of the 7-channel cases to figure out the final design for the BCI system.
Channel selection is accomplished separately for different subjects and different
mental tasks. Tables 1 and 2 list the best channels selected using MDelete and
MForm, respectively. For each subject and each mental task, each channel selected
by both MDelete and MForm is shown in bold in the tables.

MDelete and MForm give BCI systems with different channel combinations.
This is because each of these methods obtains a channel set which is locally opti-
mum. The globally optimum set can be obtained by the exhaustive method
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3.1 EEG channel selection

The dataset is formed by the signals from 29 electrodes. However, a BCI system
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BCI that has m channels (m < n) and yields the best performance. The ideal but not
always computationally practical way is to consider all the possible m-channel
combinations of the n channels and select the combination that yields the best
system performance. For instance, if we want to decrease the number of channels
from 29 to 7, the system performance needs to be evaluated for all 1,560,780
different 7-channel combinations and then compared. Moreover, in order to make
the results more robust, the performance evaluation of the system is usually carried
out for different training and testing sets via a cross-validation process. If we
assume that the number of evaluation which runs in cross-validation is 5, the
number above (1,560,780) should be multiplied by 5. This forms a prohibitively
large amount of computations as the processing time will take several days. It is thus
impractical for implementation.

In this study, two approaches are performed for selecting the best system that
has m channels. The first approach deletes the channels (from among the 29-chan-
nel system) that results in the least reduction in the performance of the remaining
system. The channels are deleted one by one. The second approach builds a new
system by adding channels one by one to the newly built system. A channel added
to the new system is selected from the 29-channel system so that the performance of
the new system is maximal. These two approaches result in two methods that we
denote as MDelete and MForm. Even though these methods are not optimal as the
method mentioned above (i.e., considering all possible combinations), they still
reach the goal to a certain extent.

Channel selection method one: in channel selection method one (MDelete), all 29
channels are first considered. The resultant FPR and TPR values after deleting each
channel are obtained. The BCI system with 28 channels that yields the best perfor-
mance is selected. That is, the channel whose removal results in the best 28-channel
system is detected and deleted from the list. This task is repeated on the remaining
list (i.e., on 28 channels), and the best 27-channel system is found. This is repeated
again until all but m channels are omitted.

Channel selection method two: channel selection method two (MForm) is similar
to the first one except that it is carried in the reverse direction and the selection of
the channels differs as explained below. In the first iteration, the BCI system is
assumed to have one channel only. The channel with the best performance among
the 29 existing channels is thus detected. This will form the best BCI that has one
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channel only. In the second iteration, the BCI system is assumed to have two
channels only. One of these two channels is the one already selected in iteration 1.
Thus the performance of each channel in the remaining 28 channels, together with
the channel selected in the first iteration, is obtained. Among these 28 possibilities,
the channel (together with the already selected one) that yields the best perfor-
mance is selected and added to the list of the best channels. In the third iteration,
three channels are considered. These are formed by each channel from the
remaining list (i.e., 27 channels) and the two channels already selected in the
previous iterations. The channel that together with the two already selected chan-
nels yields the 3-channel BCI system with the best performance is added to the list.
This procedure is repeated until m channels are added to the list of the best chan-
nels.

3.2 Procedure

The length of each mental task epoch is 10 s. The baseline epochs have a variable
length in the range of 15 � 2.5 s. Since the sampling frequency is 500 samples/s,
each mental task epoch consists of 5000 samples, and the number of samples in a
baseline epoch varies between 6250 and 8750.

To process the data, every epoch is divided into overlapping segments. Each
segment is of length 1 s (i.e., 500 samples) and overlaps with the previous segment
by 400 samples. In other words, the BCI system generates an output every 100
samples using the last 500 samples of the signals. Since 100 samples are equivalent
to 0.2 s, the output rate of the BCI is 5 Hz.

Feature selection and classification: autoregressive (AR) modeling is used to obtain
the features from the segments. Based on the results in [100, 101], 1 s of the EEG
signal is sufficiently long for the AR model estimation. The feature vector is formed
by concatenating the AR coefficients (estimated from the segments of the selected
channels) into a single vector. This vector is then fed to the classifier for classifica-
tion purposes. Classification is performed using quadratic discriminant analysis.
The AR modeling and quadratic discriminant analysis are briefly explained in
Appendices A and B of this paper.

Custom designing: custom designing the system for every subject yields improve-
ments in the overall BCI performance [102, 103]. In this study, the BCI system is
customized for each subject and for each mental task by selecting the channels and
AR orders during cross-validation.

Cross-validation: to perform the cross-validation, we randomly divide the whole
set of segments into five equal-sized sections. Four of the data sections are used to
train and validate the system. Testing is carried on the remaining section. The four
data sections assigned to training and validation are further divided randomly into
five data partitions of equal size. Four partitions are used for training and one is
used for validation.

Selecting the best five and seven channels: we select the top five and also the top
seven best performing channels for future processing using MDelete and MForm
with the AR model order of 40. We then compare the results of the 5-channel cases
with those of the 7-channel cases to figure out the final design for the BCI system.
Channel selection is accomplished separately for different subjects and different
mental tasks. Tables 1 and 2 list the best channels selected using MDelete and
MForm, respectively. For each subject and each mental task, each channel selected
by both MDelete and MForm is shown in bold in the tables.

MDelete and MForm give BCI systems with different channel combinations.
This is because each of these methods obtains a channel set which is locally opti-
mum. The globally optimum set can be obtained by the exhaustive method
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Selected channels (from best to worst)

1 2 3 4 5 6 7

Subject 1

Sentence visualization T8 F8 F3 AF3 Oz CP6 P7

Non-trivial multiplication FC5 FC6 PO3 T7 C4 CP6 C3

3D object rotation FC6 T8 F3 AF3 CP6 AF4 F8

Motor imagery CP6 T8 P8 AF3 F7 FC2 T7

Subject 2

Sentence visualization P8 FC6 T7 F3 PO4 P7 P3

Non-trivial multiplication Oz Fpz Fz T7 FC6 P3 C3

3D object rotation Oz T7 P3 FC5 Fz C4 Cz

Motor imagery CP2 Oz F7 Fpz P7 CP6 F4

Subject 3

Sentence visualization PO3 P8 P4 AF4 T7 P7 C4

Non-trivial multiplication Oz Fpz Pz T7 CP1 PO4 CP5

3D object rotation FC2 CP1 PO4 P8 Cz F4 FC6

Motor imagery T7 P7 CP2 Fpz CP6 F7 FC6

Subject 4

Sentence visualization P8 Cz PO3 CP5 T7 PO4 AF3

Non-trivial multiplication F4 CP5 T8 P7 P8 Oz F3

3D object rotation AF3 FC5 AF4 P7 C3 T8 PO4

Motor imagery Cz P8 P7 FC6 T7 F3 CP5

Table 1.
Channels selected for different subjects and mental tasks using channel selection method one (MDelete).

Selected channels (from best to worst)

1 2 3 4 5 6 7

Subject 1

Sentence visualization T8 FC5 F8 P4 T7 P7 Oz

Non-trivial multiplication F7 Oz FC6 T8 F8 P7 CP1

3D object rotation T7 FC6 P8 CP2 P7 Oz F4

Motor imagery Oz P7 C3 CP6 T8 P8 FC6

Subject 2

Sentence visualization P8 F7 FC6 T7 FC5 AF3 T8

Non-trivial multiplication CP6 P4 T8 Fpz C4 F7 FC6

3D object rotation P7 P4 C4 Oz FC6 AF4 F7

Motor imagery CP5 Fz FC6 T7 FC1 Oz C4

Subject 3

Sentence visualization PO3 Oz Fpz P8 P7 Pz CP1

Non-trivial multiplication Oz P8 Fpz P7 Cz T8 AF3

3D object rotation CP5 FC2 P7 P4 T7 Oz Fz

Motor imagery T8 Oz P3 PO3 P7 AF4 AF3
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mentioned earlier in which the best combination is selected by considering all
possible combinations of channels. Finding the global optimum is computationally
impossible for our application. We hence have to be satisfied with the local optima.

Finding the optimum AR model order: after selecting the best five and the best
seven channels for each subject and each mental task, we find the optimum AR
model order for each of these two cases in the cross-validation process. The initial
AR model order is equal to 41. If the FPR for an order reaches zero, that order is
selected as the optimum order; if not, the order is increased by one, and the FPR of
the new order is then calculated. Increasing the AR order is terminated once the
FPR is zero or a maximum order of 136 is reached. The order corresponding to the
minimum FPR is chosen as the optimum AR order for the latter case.

4. Experimental results

For each subject and each mental task, there are two sets of five best channels
(one is obtained using MDelete and the other is obtained using MForm). The
performance of the 5-channel set that yielded the better performance is summa-
rized in Table 3. For each subject and each mental task, the table shows whether the
channels obtained using MDelete (1) or MForm (2) are selected. This is indicated
under the channel selection method (CSM) column. It also shows the mean values
of the TPR and FPR obtained from the cross-validation and testing processes in two
separate rows. The optimum AR model order is also included in the table. In
Table 4, the difference in the performance between the 5-channel BCIs using
MDelete and MForm is given. Table 5 shows the results of the t-test between any 2
of the four mental tasks for each subject in the 5-channel BCIs.

The performance of the 7-channel BCIs using the two channel selection methods
are compared with each other, and the performance of the better method is given in
Table 6 for each subject and each mental task. The performance difference between
the two channel selection methods is shown in Table 7.

In Tables 3 and 6, the values related to the highest performance are shown in
bold, while those related to the lowest performance are underlined.

TheWelch’s t-test [104], as a statistical significance test, is performed on the TPR
values for measuring the performance difference between MDelete and MForm (for
each subject and each mental task) and between every pair of the four mental tasks
(for each subject). The null hypothesis is that there is no difference between the
TPR values of the two groups (these two groups can be the two channel selection
methods or any two mental tasks). We assume a 5% significance level. The null
hypothesis is rejected if the resultant p-value is less than 0:05. This means that the

Selected channels (from best to worst)

1 2 3 4 5 6 7

Subject 4

Sentence visualization CP6 P8 FC5 AF4 T7 CP5 Oz

Non-trivial multiplication AF4 F7 T8 P8 P7 T7 Oz

3D object rotation F3 F7 AF4 PO3 FC5 Oz C3

Motor imagery CP2 P3 AF4 F8 P8 F3 F7

Table 2.
Channels selected for different subjects and mental tasks using channel selection method two (MForm).
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Selected channels (from best to worst)

1 2 3 4 5 6 7

Subject 1

Sentence visualization T8 F8 F3 AF3 Oz CP6 P7

Non-trivial multiplication FC5 FC6 PO3 T7 C4 CP6 C3

3D object rotation FC6 T8 F3 AF3 CP6 AF4 F8

Motor imagery CP6 T8 P8 AF3 F7 FC2 T7

Subject 2

Sentence visualization P8 FC6 T7 F3 PO4 P7 P3

Non-trivial multiplication Oz Fpz Fz T7 FC6 P3 C3

3D object rotation Oz T7 P3 FC5 Fz C4 Cz

Motor imagery CP2 Oz F7 Fpz P7 CP6 F4

Subject 3

Sentence visualization PO3 P8 P4 AF4 T7 P7 C4

Non-trivial multiplication Oz Fpz Pz T7 CP1 PO4 CP5

3D object rotation FC2 CP1 PO4 P8 Cz F4 FC6

Motor imagery T7 P7 CP2 Fpz CP6 F7 FC6

Subject 4

Sentence visualization P8 Cz PO3 CP5 T7 PO4 AF3

Non-trivial multiplication F4 CP5 T8 P7 P8 Oz F3

3D object rotation AF3 FC5 AF4 P7 C3 T8 PO4

Motor imagery Cz P8 P7 FC6 T7 F3 CP5

Table 1.
Channels selected for different subjects and mental tasks using channel selection method one (MDelete).

Selected channels (from best to worst)

1 2 3 4 5 6 7

Subject 1

Sentence visualization T8 FC5 F8 P4 T7 P7 Oz

Non-trivial multiplication F7 Oz FC6 T8 F8 P7 CP1

3D object rotation T7 FC6 P8 CP2 P7 Oz F4

Motor imagery Oz P7 C3 CP6 T8 P8 FC6

Subject 2

Sentence visualization P8 F7 FC6 T7 FC5 AF3 T8

Non-trivial multiplication CP6 P4 T8 Fpz C4 F7 FC6

3D object rotation P7 P4 C4 Oz FC6 AF4 F7

Motor imagery CP5 Fz FC6 T7 FC1 Oz C4

Subject 3

Sentence visualization PO3 Oz Fpz P8 P7 Pz CP1

Non-trivial multiplication Oz P8 Fpz P7 Cz T8 AF3

3D object rotation CP5 FC2 P7 P4 T7 Oz Fz

Motor imagery T8 Oz P3 PO3 P7 AF4 AF3
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mentioned earlier in which the best combination is selected by considering all
possible combinations of channels. Finding the global optimum is computationally
impossible for our application. We hence have to be satisfied with the local optima.

Finding the optimum AR model order: after selecting the best five and the best
seven channels for each subject and each mental task, we find the optimum AR
model order for each of these two cases in the cross-validation process. The initial
AR model order is equal to 41. If the FPR for an order reaches zero, that order is
selected as the optimum order; if not, the order is increased by one, and the FPR of
the new order is then calculated. Increasing the AR order is terminated once the
FPR is zero or a maximum order of 136 is reached. The order corresponding to the
minimum FPR is chosen as the optimum AR order for the latter case.

4. Experimental results

For each subject and each mental task, there are two sets of five best channels
(one is obtained using MDelete and the other is obtained using MForm). The
performance of the 5-channel set that yielded the better performance is summa-
rized in Table 3. For each subject and each mental task, the table shows whether the
channels obtained using MDelete (1) or MForm (2) are selected. This is indicated
under the channel selection method (CSM) column. It also shows the mean values
of the TPR and FPR obtained from the cross-validation and testing processes in two
separate rows. The optimum AR model order is also included in the table. In
Table 4, the difference in the performance between the 5-channel BCIs using
MDelete and MForm is given. Table 5 shows the results of the t-test between any 2
of the four mental tasks for each subject in the 5-channel BCIs.

The performance of the 7-channel BCIs using the two channel selection methods
are compared with each other, and the performance of the better method is given in
Table 6 for each subject and each mental task. The performance difference between
the two channel selection methods is shown in Table 7.

In Tables 3 and 6, the values related to the highest performance are shown in
bold, while those related to the lowest performance are underlined.

TheWelch’s t-test [104], as a statistical significance test, is performed on the TPR
values for measuring the performance difference between MDelete and MForm (for
each subject and each mental task) and between every pair of the four mental tasks
(for each subject). The null hypothesis is that there is no difference between the
TPR values of the two groups (these two groups can be the two channel selection
methods or any two mental tasks). We assume a 5% significance level. The null
hypothesis is rejected if the resultant p-value is less than 0:05. This means that the

Selected channels (from best to worst)

1 2 3 4 5 6 7

Subject 4

Sentence visualization CP6 P8 FC5 AF4 T7 CP5 Oz

Non-trivial multiplication AF4 F7 T8 P8 P7 T7 Oz

3D object rotation F3 F7 AF4 PO3 FC5 Oz C3

Motor imagery CP2 P3 AF4 F8 P8 F3 F7

Table 2.
Channels selected for different subjects and mental tasks using channel selection method two (MForm).
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TPR values of the two test groups are significantly different. If p ≥ 0:05, the null
hypothesis cannot be rejected at the 5% significance level. This implies that there is
no significant difference between the TPR values of the test groups.

The p-value between MDelete and MForm for each mental task of each subject
is given in Tables 4 and 7 under the p-value column. Table 8 shows the results
of the t-test between any 2 of the four mental tasks for each subject in the
7-channel BCIs.

5. Summary and discussion of results

Table 4 shows that the performance of the 5-channel BCI systems obtained
using MDelete is close to those obtained using MForm for the majority of the cases.
The same is true for the 7-channel systems (Table 7). From Tables 3 and 6, it is
shown that MDelete yields better results in nine out of the 16 cases of the 5-channel
BCIs and in seven out of the 16 cases of the 7-channel BCIs.

5.1 System performance of 5-channel BCIs

From Tables 3 and 5, we find the following:

1. The FPR values are zero for all 5-channel BCIs of Subjects 1, 2, and 3 during the
cross-validation and testing processes, irrespective of the task type. For Subject
4, this is also true for the sentence visualization task-based BCI: the BCI based
on the multiplication task has 0.01% FPR for the testing process, the BCI based
on the motor imagery task has an FPR of 0.01% for the cross-validation
process, and the BCI based on the object rotation task has FPR values of 0.20
and 0.18% for cross-validation and testing, respectively.

Subject Mental task Mental task

Multiplication Object rotation Motor imagery

1 Visualization 0.0146 0.1759 0.1427

Multiplication 0.2472 0.0053

Object rotation 0.0251

2 Visualization 0.7203 0.1695 0.0330

Multiplication 0.2499 0.0408

Object rotation 0.2949

3 Visualization 0.3236 0.0049 0.0040

Multiplication 0.0034 0.0001

Object rotation 0.1062

4 Visualization 0.0000 0.0000 0.0000

Multiplication 0.0000 0.8060

Object rotation 0.0000

p,0:05 means “there is a significant difference.” These cases are shown in bold.

Table 5.
p-values calculated using Welch’s t-test between the four mental tasks for each subject (5-channel systems).
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TPR values of the two test groups are significantly different. If p ≥ 0:05, the null
hypothesis cannot be rejected at the 5% significance level. This implies that there is
no significant difference between the TPR values of the test groups.

The p-value between MDelete and MForm for each mental task of each subject
is given in Tables 4 and 7 under the p-value column. Table 8 shows the results
of the t-test between any 2 of the four mental tasks for each subject in the
7-channel BCIs.

5. Summary and discussion of results

Table 4 shows that the performance of the 5-channel BCI systems obtained
using MDelete is close to those obtained using MForm for the majority of the cases.
The same is true for the 7-channel systems (Table 7). From Tables 3 and 6, it is
shown that MDelete yields better results in nine out of the 16 cases of the 5-channel
BCIs and in seven out of the 16 cases of the 7-channel BCIs.

5.1 System performance of 5-channel BCIs

From Tables 3 and 5, we find the following:

1. The FPR values are zero for all 5-channel BCIs of Subjects 1, 2, and 3 during the
cross-validation and testing processes, irrespective of the task type. For Subject
4, this is also true for the sentence visualization task-based BCI: the BCI based
on the multiplication task has 0.01% FPR for the testing process, the BCI based
on the motor imagery task has an FPR of 0.01% for the cross-validation
process, and the BCI based on the object rotation task has FPR values of 0.20
and 0.18% for cross-validation and testing, respectively.

Subject Mental task Mental task

Multiplication Object rotation Motor imagery

1 Visualization 0.0146 0.1759 0.1427

Multiplication 0.2472 0.0053

Object rotation 0.0251

2 Visualization 0.7203 0.1695 0.0330

Multiplication 0.2499 0.0408

Object rotation 0.2949

3 Visualization 0.3236 0.0049 0.0040

Multiplication 0.0034 0.0001

Object rotation 0.1062

4 Visualization 0.0000 0.0000 0.0000

Multiplication 0.0000 0.8060

Object rotation 0.0000

p,0:05 means “there is a significant difference.” These cases are shown in bold.

Table 5.
p-values calculated using Welch’s t-test between the four mental tasks for each subject (5-channel systems).
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2.Among all 5-channel BCIs, the highest performance (TPR = 63.72%) is reached
by the multiplication task of Subject 3. The object rotation task-based BCI of
Subject 4 has the lowest performance with TPR and FPR values of 33.50 and
0.18%, respectively.

3. For Subject 1: multiplication is the best in performance (TPR = 61.24%)
although it is not significantly different from object rotation. Motor imagery is
the poorest in performance (TPR = 55.30%) although it is not significantly
different from sentence visualization.

4.For Subject 2: sentence visualization, multiplication, and object rotation have
statistically similar performance with TPRs in the range of 56.00–58.56%.
Motor imagery has the poorest performance (TPR = 54.38%) although it is not
significantly different from object rotation.

5. For Subject 3: multiplication and sentence visualization have similar and the
highest performance (TPRs = 63.72 and 62.68%). Object rotation and motor
imagery have similar and the lowest performance (TPRs = 55.37 and 58.51%).

6.For Subject 4: sentence visualization has the best performance (TPR = 53.89%),
and object rotation has the poorest performance (TPR = 33.50% and
FPR = 0.18%).

5.2 System performance of 7-channel BCIs

From Tables 6 and 8, the following are found:

1. The FPR values reach zero for 15 out of the 16 cases. That is for all cases except
for the object rotation task of Subject 4, which has 0.01% FPR for each of the
cross-validation and testing processes.

Subject Mental task Mental task

Multiplication Object rotation Motor imagery

1 Visualization 0.4889 0.0519 0.3890

Multiplication 0.2553 0.2243

Object rotation 0.0405

2 Visualization 0.0809 0.1582 0.0035

Multiplication 0.6683 0.0328

Object rotation 0.4601

3 Visualization 0.0007 0.9199 0.6681

Multiplication 0.0135 0.0013

Object rotation 0.7321

4 Visualization 0.0001 0.0000 0.0002

Multiplication 0.0000 0.8619

Object rotation 0.0000

p,0:05 means “there is a significant difference.” These cases are shown in bold.

Table 8.
p-values calculated using Welch’s t-test between the four mental tasks for each subject (7-channel systems).
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2.Among all 5-channel BCIs, the highest performance (TPR = 63.72%) is reached
by the multiplication task of Subject 3. The object rotation task-based BCI of
Subject 4 has the lowest performance with TPR and FPR values of 33.50 and
0.18%, respectively.

3. For Subject 1: multiplication is the best in performance (TPR = 61.24%)
although it is not significantly different from object rotation. Motor imagery is
the poorest in performance (TPR = 55.30%) although it is not significantly
different from sentence visualization.

4.For Subject 2: sentence visualization, multiplication, and object rotation have
statistically similar performance with TPRs in the range of 56.00–58.56%.
Motor imagery has the poorest performance (TPR = 54.38%) although it is not
significantly different from object rotation.

5. For Subject 3: multiplication and sentence visualization have similar and the
highest performance (TPRs = 63.72 and 62.68%). Object rotation and motor
imagery have similar and the lowest performance (TPRs = 55.37 and 58.51%).

6.For Subject 4: sentence visualization has the best performance (TPR = 53.89%),
and object rotation has the poorest performance (TPR = 33.50% and
FPR = 0.18%).

5.2 System performance of 7-channel BCIs

From Tables 6 and 8, the following are found:

1. The FPR values reach zero for 15 out of the 16 cases. That is for all cases except
for the object rotation task of Subject 4, which has 0.01% FPR for each of the
cross-validation and testing processes.

Subject Mental task Mental task

Multiplication Object rotation Motor imagery

1 Visualization 0.4889 0.0519 0.3890

Multiplication 0.2553 0.2243

Object rotation 0.0405

2 Visualization 0.0809 0.1582 0.0035

Multiplication 0.6683 0.0328

Object rotation 0.4601

3 Visualization 0.0007 0.9199 0.6681

Multiplication 0.0135 0.0013

Object rotation 0.7321

4 Visualization 0.0001 0.0000 0.0002

Multiplication 0.0000 0.8619

Object rotation 0.0000

p,0:05 means “there is a significant difference.” These cases are shown in bold.

Table 8.
p-values calculated using Welch’s t-test between the four mental tasks for each subject (7-channel systems).
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2. The results as to which BCIs yield the best and worst performance are exactly
as those in the 5-channel systems. Among all the 7-channel BCIs, the best
performance with a TPR of 70.51% is reached by the BCI based on the
multiplication task of Subject 3 (which is better than the TPR = 63.72% of the
corresponding 5-channel BCI). The object rotation task-based BCI of Subject 4
has the worst performance with TPR and FPR values of 27.36% and 0.01%,
respectively (which is also better than the FPR = 0.18% of the corresponding
5-channel BCI).

3. For Subject 1: motor imagery is significantly different from object rotation. All
other cases are statistically similar to each other. The TPR varies in the range
62.51–66.11% for different mental tasks.

4.For Subject 2: sentence visualization, multiplication, and object rotation have
statistically similar performance with TPRs in the range of 61.97–64.77%.
Motor imagery has the least performance (TPR = 60.68%) although it is not
significantly different from that of object rotation.

5. For Subject 3: multiplication has the highest performance (TPR = 70.51%).
Sentence visualization, object rotation, and motor imagery have similar
performance with TPRs in the range of 64.73–65.32%.

6.For Subject 4: sentence visualization has the best performance (TPR = 59.71%),
and object rotation has the poorest performance (TPR = 27.36% and
FPR = 0.01%).

5.3 Discussion of results

Comparing Tables 3 and 6, it can be noticed that increasing the number of
channels from five to seven enhances the performance of every BCI by an increase
of 5.38% in TPR on average (see Table 9). Therefore, there is a trade-off between
using fewer channels and having better system performance. The choice should be
made depending on the applications, the situations in which the BCI system is used,
and the computational power available.

In terms of the AR model orders, the 5-channel BCIs need higher orders than the
7-channel BCIs. According to Table 9, the overall mean of the AR model order is 98
and 73 for the 5-channel and 7-channel BCI systems, respectively.

Studies [105–109] have also used high AR model orders in their analyses.
The AR model order depends on the sampling frequency [106]. Since our
sampling frequency is 500 Hz (which is high), then the AR order can also be
high. In other words, if the AR order belonging to the sampling frequency 100 Hz
is 25, then the AR order belonging to sampling frequency 500 Hz is 125. This is
because:

1. The AR order is the number of previous samples of the signal that represents
the current sample of the signal. Please refer to Eq. (1) in Appendix A.

2. An AR order = 25 at freq = 100 Hz means that we need the last 0.25 s of the
signal to represent the current sample. For freq = 500 Hz, we will need the last
0.25 s of the signal, and thus the AR order would be 0.25 � 500 = 125.
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From Table 9, it can be easily recognized that the system performance depends
on the subject and the mental task. Among all subjects, Subject 3 has the BCIs with
the highest average performance with average TPRs of 60.07 and 66.37% for the
5-channel and 7-channel systems, respectively. Subject 4 has the least average
performance with an average TPR of 43.09% for the 5-channel systems and 46.82%
for the 7-channel systems.

Among the mental tasks, sentence visualization and multiplication are the best
tasks overall. Object rotation and motor imagery yield the least performance on
average.

Table 9 also shows the average performance of the 29-channel systems over the
subjects and mental tasks for comparison purposes [110]. It can be seen that by
decreasing the number of EEG channels from 29 to 7 and 5, the system performance
degrades by a decrease of 7.28 and 12.66%, respectively, in TPR on average. This
degradation in the system performance is the trade-off one has to make to have a
simpler system that can be easily set up and requires less computational power.

6. Conclusion

This study shows that it is feasible to design self-paced mental task-based BCIs
with a zero false activation rate using very few (i.e., five or seven) EEG channels.
The system performance was evaluated on a dataset we collected from four sub-
jects. Although the evaluation was carried off-line, the methodology can be used in
real-time self-paced systems after slight modifications. This is because the feature
extraction and the classification processes are not computationally demanding, and
there is no need for the timing information of the EEG signals after training the
classifier with the training data.

5-channel design 7-channel design 29-channel design†

AR TPR FPR AR TPR FPR AR TPR FPR

Average over tasks

Subject 1 92* 58.51 0.00 67* 64.21 0.00 24 68.54 0.00

Subject 2 89* 56.72 0.00 62* 62.54 0.00 19* 70.38 0.00

Subject 3 87 60.07 0.00 63* 66.37 0.00 20* 70.80 0.00

Subject 4 125 43.09 0.05 100 46.82 0.00 29 59.31 0.00

Average over subjects

Visualization 90 58.23 0.00 67 63.27 0.00 21* 68.95 0.00

Multiplication 100* 56.38 0.00 71* 61.99 0.00 24 67.38 0.00

Object rotation 101 51.15 0.05 80* 55.04 0.00 24* 65.71 0.00

Motor imagery 102* 52.64 0.00 74* 59.63 0.00 23* 67.00 0.00

Total average 98* 54.60 0.01 73* 59.98 0.00 23 67.26 0.00
†Results of study [110].
*The value is rounded to the nearest integer.

Table 9.
Average performance of the BCI systems.
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2. The results as to which BCIs yield the best and worst performance are exactly
as those in the 5-channel systems. Among all the 7-channel BCIs, the best
performance with a TPR of 70.51% is reached by the BCI based on the
multiplication task of Subject 3 (which is better than the TPR = 63.72% of the
corresponding 5-channel BCI). The object rotation task-based BCI of Subject 4
has the worst performance with TPR and FPR values of 27.36% and 0.01%,
respectively (which is also better than the FPR = 0.18% of the corresponding
5-channel BCI).

3. For Subject 1: motor imagery is significantly different from object rotation. All
other cases are statistically similar to each other. The TPR varies in the range
62.51–66.11% for different mental tasks.

4.For Subject 2: sentence visualization, multiplication, and object rotation have
statistically similar performance with TPRs in the range of 61.97–64.77%.
Motor imagery has the least performance (TPR = 60.68%) although it is not
significantly different from that of object rotation.

5. For Subject 3: multiplication has the highest performance (TPR = 70.51%).
Sentence visualization, object rotation, and motor imagery have similar
performance with TPRs in the range of 64.73–65.32%.

6.For Subject 4: sentence visualization has the best performance (TPR = 59.71%),
and object rotation has the poorest performance (TPR = 27.36% and
FPR = 0.01%).

5.3 Discussion of results

Comparing Tables 3 and 6, it can be noticed that increasing the number of
channels from five to seven enhances the performance of every BCI by an increase
of 5.38% in TPR on average (see Table 9). Therefore, there is a trade-off between
using fewer channels and having better system performance. The choice should be
made depending on the applications, the situations in which the BCI system is used,
and the computational power available.

In terms of the AR model orders, the 5-channel BCIs need higher orders than the
7-channel BCIs. According to Table 9, the overall mean of the AR model order is 98
and 73 for the 5-channel and 7-channel BCI systems, respectively.

Studies [105–109] have also used high AR model orders in their analyses.
The AR model order depends on the sampling frequency [106]. Since our
sampling frequency is 500 Hz (which is high), then the AR order can also be
high. In other words, if the AR order belonging to the sampling frequency 100 Hz
is 25, then the AR order belonging to sampling frequency 500 Hz is 125. This is
because:

1. The AR order is the number of previous samples of the signal that represents
the current sample of the signal. Please refer to Eq. (1) in Appendix A.

2. An AR order = 25 at freq = 100 Hz means that we need the last 0.25 s of the
signal to represent the current sample. For freq = 500 Hz, we will need the last
0.25 s of the signal, and thus the AR order would be 0.25 � 500 = 125.
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From Table 9, it can be easily recognized that the system performance depends
on the subject and the mental task. Among all subjects, Subject 3 has the BCIs with
the highest average performance with average TPRs of 60.07 and 66.37% for the
5-channel and 7-channel systems, respectively. Subject 4 has the least average
performance with an average TPR of 43.09% for the 5-channel systems and 46.82%
for the 7-channel systems.

Among the mental tasks, sentence visualization and multiplication are the best
tasks overall. Object rotation and motor imagery yield the least performance on
average.

Table 9 also shows the average performance of the 29-channel systems over the
subjects and mental tasks for comparison purposes [110]. It can be seen that by
decreasing the number of EEG channels from 29 to 7 and 5, the system performance
degrades by a decrease of 7.28 and 12.66%, respectively, in TPR on average. This
degradation in the system performance is the trade-off one has to make to have a
simpler system that can be easily set up and requires less computational power.

6. Conclusion

This study shows that it is feasible to design self-paced mental task-based BCIs
with a zero false activation rate using very few (i.e., five or seven) EEG channels.
The system performance was evaluated on a dataset we collected from four sub-
jects. Although the evaluation was carried off-line, the methodology can be used in
real-time self-paced systems after slight modifications. This is because the feature
extraction and the classification processes are not computationally demanding, and
there is no need for the timing information of the EEG signals after training the
classifier with the training data.

5-channel design 7-channel design 29-channel design†

AR TPR FPR AR TPR FPR AR TPR FPR

Average over tasks

Subject 1 92* 58.51 0.00 67* 64.21 0.00 24 68.54 0.00

Subject 2 89* 56.72 0.00 62* 62.54 0.00 19* 70.38 0.00

Subject 3 87 60.07 0.00 63* 66.37 0.00 20* 70.80 0.00

Subject 4 125 43.09 0.05 100 46.82 0.00 29 59.31 0.00

Average over subjects

Visualization 90 58.23 0.00 67 63.27 0.00 21* 68.95 0.00

Multiplication 100* 56.38 0.00 71* 61.99 0.00 24 67.38 0.00

Object rotation 101 51.15 0.05 80* 55.04 0.00 24* 65.71 0.00

Motor imagery 102* 52.64 0.00 74* 59.63 0.00 23* 67.00 0.00

Total average 98* 54.60 0.01 73* 59.98 0.00 23 67.26 0.00
†Results of study [110].
*The value is rounded to the nearest integer.

Table 9.
Average performance of the BCI systems.
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The best performance of the BCI systems described above has zero FPRs and
sufficiently high TPRs (i.e., 53.89–63.72% for the 5-channel systems and 59.71–
70.51% for the 7-channel systems). Hence, in terms of the system performance,
they are acceptable for use in real-life applications. As reported in the study [110],
the best performance of the BCI systems with 29 channels has zero FPRs and
65.06–72.65% TPRs.

The frequency domain analysis of the recorded EEG signals is left for future
work. By finding the frequency bands with the high amounts of information, we
may be able to decrease the sampling frequency from its current value of 500 Hz.

In this study, the EEG trials are divided into 1-s segments for classification, and
the BCI system gives an output every 0.2 s. Finding the optimum values for the
segment length and the system output rate is the other directions for future work.
The use of these values might result in a more accurate system.

Running online experiments is the most important step that needs to be taken in
the future in order to evaluate the performance of our BCI system in real time.

A. Autoregressive modeling

The autoregressive (AR) model of the signal s[t] is defined as

s t½ � ¼ ∑
F

j¼1
bjs t� j½ � þ n t½ � (1)

where F is the order of the model, bj is the jth coefficient, and n[t] is the noise
(or error) signal. The noise signal is assumed to be a random process with a zero
mean and a finite variance.

In this study, the AR model is estimated using the Burg algorithm [111] which is
a popular and widely used algorithm in the field.

There are some methods based on the reflection coefficient [112], the final
prediction error criterion [113], the autoregressive transfer function criterion [113],
and the Akaike information criterion [113] to find the order of the AR model;
however, none of them are efficient in BCI applications [100]. In our previous
study [100], it is suggested that instead of using the existing methods, it is better to
select the model order by cross-validation based on the system performance. The
same approach is taken in this study.

B. Quadratic discriminant analysis

Quadratic discriminant analysis (QDA) [114] is the quadratic version of linear
discriminant analysis (LDA). Like LDA, normal distributions are assumed for the
classes. The only difference between QDA and LDA relates to the covariance
matrices of the classes. In QDA, unlike LDA, the covariance matrices of the classes
are not assumed to be the same. Therefore, QDA is more general than LDA.

Suppose we have k-dimensional vectors of x to be classified into one of the M
classes with the normal distributions

Ωm � Nk μm;Σmð Þ (2)

where m∈ 1; 2;…;Mf g, μm is the k-dimensional mean vector and Σm is the k� k
covariance matrix of Class Ωm.

The probability density function of Class Ωm can be expressed as
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f m,X xð Þ ¼ 1

2πð Þk=2 Σmj j1=2

exp � 1
2

x� μmð ÞTΣ�1m x� μmð Þ
� � (3)

Based on the Bayes discriminant rule, the input vector x is classified into
Class Ωi if

Ciπif i,X xð Þ ¼ max
j

Cjπj f j,X xð Þ
� �

, j∈ 1; 2;…;Mf g (4)

where πi is the a priori probability of Class Ωi and Ci is the total cost of
misclassifying a member of Class Ωi to the other classes. Note that

∑
M

j¼1
πj ¼ 1: (5)

The decision rule can be simplified as follows if only two classes exist:

x∈
Ω1 : C1π1 f 1,X xð Þ ≥ C2π2 f 2,X xð Þ
Ω2 : C1π1 f 1,X xð Þ,C2π2 f 2,X xð Þ

(
(6)

This is equivalent to

x∈
Ω1 : ln f 1,X xð Þ � ln f 2,X xð Þ ≥ ln

π2
π1

:
C2

C1

� �

Ω2 : ln f 1,X xð Þ � ln f 2,X xð Þ, ln
π2
π1

:
C2

C1

� �

8>>><
>>>:

(7)

Using (3) in (7), the discriminant rule becomes

x∈
Ω1 : Fqd xð Þ ≥ 0

Ω2 : Fqd xð Þ,0

(
(8)

where the discriminant function, Fqd xð Þ, is defined as

Fqd xð Þ ¼ � 1
2
xT Σ�11 � Σ�12

� �
xþ μT1 Σ

�1
1 � μT2 Σ

�1
2

� �
x

� 1
2
ln

∣Σ1∣
∣Σ2∣

� �
� 1
2

μT1 Σ
�1
1 μ1 � μT2 Σ

�1
2 μ2

� �

� ln
π2
π1

:
C2

C1

� �
(9)

The mean vectors (i.e., μ1 and μ2) and the covariance matrices (i.e., Σ1 and Σ2)
are estimated from the data samples. In this study, the same value for the a priori
probabilities π1 and π2 and the same value for the cost parameters C1 and C2 are
assumed.
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they are acceptable for use in real-life applications. As reported in the study [110],
the best performance of the BCI systems with 29 channels has zero FPRs and
65.06–72.65% TPRs.

The frequency domain analysis of the recorded EEG signals is left for future
work. By finding the frequency bands with the high amounts of information, we
may be able to decrease the sampling frequency from its current value of 500 Hz.

In this study, the EEG trials are divided into 1-s segments for classification, and
the BCI system gives an output every 0.2 s. Finding the optimum values for the
segment length and the system output rate is the other directions for future work.
The use of these values might result in a more accurate system.

Running online experiments is the most important step that needs to be taken in
the future in order to evaluate the performance of our BCI system in real time.
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The autoregressive (AR) model of the signal s[t] is defined as

s t½ � ¼ ∑
F
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prediction error criterion [113], the autoregressive transfer function criterion [113],
and the Akaike information criterion [113] to find the order of the AR model;
however, none of them are efficient in BCI applications [100]. In our previous
study [100], it is suggested that instead of using the existing methods, it is better to
select the model order by cross-validation based on the system performance. The
same approach is taken in this study.

B. Quadratic discriminant analysis

Quadratic discriminant analysis (QDA) [114] is the quadratic version of linear
discriminant analysis (LDA). Like LDA, normal distributions are assumed for the
classes. The only difference between QDA and LDA relates to the covariance
matrices of the classes. In QDA, unlike LDA, the covariance matrices of the classes
are not assumed to be the same. Therefore, QDA is more general than LDA.

Suppose we have k-dimensional vectors of x to be classified into one of the M
classes with the normal distributions
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f m,X xð Þ ¼ 1
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The mean vectors (i.e., μ1 and μ2) and the covariance matrices (i.e., Σ1 and Σ2)
are estimated from the data samples. In this study, the same value for the a priori
probabilities π1 and π2 and the same value for the cost parameters C1 and C2 are
assumed.
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Abstract

To understand the complex nature of the human brain, network science 
approaches have played an important role. Neural signaling and communication 
form the basis for studying the dynamics of brain activity and functions. The 
neuroscientific community is interested in the network architecture of the human 
brain its simulation and for prediction of emergent network states. In this chapter 
we focus on how neurosignaling and communication is playing its part in medical 
psychology, furthermore, we have also reviewed how the interaction of network 
topology and dynamic models of a brain network.

Keywords: cognitive science, brain imaging, neural networks, network topology

1. Introduction

Network science makes advances for modeling and analyzing the variations 
in communications. Network science has proved useful for functional brain con-
nectivity assumptions and predicting incipient network states. Research in neural 
network science or neural information processing has been proven fruitful in the 
past, providing useful methods both for practical problems in computer science and 
computational models in neuroscience [1, 2].

The human brain shows a discrete spatiotemporal organization that aids brain 
function and can be imitated via local brain simulation [3]. Such disturbances to 
local cortical dynamics are globally merged by discrete neural systems [4, 5]. Brain 
function depends upon complicated active interactions between distinct brain 
regions that define neural systems. This system-level architecture and dynamics can 
be discovered across different scales, from microscopic groups of cells to macro-
scopically defined brain areas [6–9]. Late neuroimaging works have been subservi-
ent in mapping the structural and functional architectures of the human brain at 
the macro scale [10, 11].

Recent developments in the field of cognitive neuroscience require computa-
tional and theoretical apprehension of neural information processing models which 
accomplish standards and constraints from cognitive psychology, neuroscience, and 
computational efficiency [12, 13]. Nowadays, mapping structural connections and 
recording temporal dependencies among local time series have become feasible, 
yet signal transferring across the network in flexible and adaptive computational 
manner remains unidentifiable.
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1.1 Psychiatric disorders and network science

Psychiatric disorders have conflicts related to progression arbitrated by the 
brain. Developing sign recommends that precise biomarkers might use from 
integrating information about several brain realms and their connections with 
one another for psychiatric disorders, instead of seeing local disturbances in brain 
structure and function [14]. Current progress in the discipline of applied math-
ematics mostly and network science explicitly offer a language to captivate the 
complication of cooperating brain sections, and the use of this language for essen-
tial inquiries in neuroscience forms an incipient field of network neuroscience. This 
chapter provides an outline for the application and usefulness of network neurosci-
ence in psychiatry and how network science may cooperate with it.

Most approaches are generally used for animal or human models reckoning how-
ever the approach is invasive. The term invasive is specified in this framework as a 
process that needs a carving in the skin or insert of an apparatus in the body [15].

2. Use of scientific and clinical tools to reconcile unhinge brain activity

Non-invasive brain stimulation such as transcranial magnetic stimulation and 
invasive brain stimulation such as profound brain stimulation is employed for 
scientific and clinical tools to unhinge brain activity. Incomparable conditions 
in which procedures classically kept for experiments on animals, for instance, 
invasive electrophysiology, can be morally employed in humans. For instance, 
throughout convinced sorts, I human brain surgery, clinical decisions are con-
trolled by invasive electrophysiological measurements (e.g., ECoG). Along with 
their medical employment, these recordings also provide expressive information 
for scientific studies.

Equally, human neuroscience application tools and modeling in animal neu-
rology has aided to expose a fundamental mechanism of these systematic ways. 
A major illustration is the research separating, cause of practical MRI (fMRI) 
signal by joining invasive electrophysiological measurement with fMRI in animal 
experiments.

3. Psychiatry experiments on living being

Naturally, experimenting on animal use invasive electrophysiology, in which 
electrodes are entrenched straight in the brain for recording action potency and 
local field potential (LFP and EEG). Furthermore, recording neuronal action by 
ocular means, calcium and voltage imaging mostly, have become a coercive obser-
vational strategy that embellishes electrophysiology in animals although it is well 
invasive [15]. Optogenetic manipulations (optical measurements and perturba-
tions) can use light to unhinge neuronal activity.

In humans, MRI (magnetic resonance imaging) empowers detailed, non-inva-
sive visualization of brain anatomy. Measurement in blood oxygenation variation 
as a substitution for neuronal activity can also employ corresponding expertise. On 
the other hand, electroencephalograph can noninvasively measure electric fields 
generated by the neuronal activity. Magnetoencephalography and electrocorticog-
raphy (ECoG) are two less commonly used but significant methods that measure 
brain signaling. Electric and magnetic fields stimulations record from the brain 
along with modulating neuronal activity.
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Moreover, classifying deliberated systematic ways as whichever noninvasive or 
invasive will concentrate on the spatial or temporal resolution these systematic ways 
provide.

3.1 Temporal resolution

Temporal resolution discusses how much time does a measurement requires to be 
completed, and hence states the quickest fluctuations in the signal of attention that 
can be seized exactly [16]. The sampling rate defines the temporal resolution. The 
frequency of measurement is referred to by the sampling rate. For example, only a 
second is required to obtain a single image of human fMRI activity scan (sample rate 
is 1 Hz i.e., 1/s). Thus, signals that expressively fluctuate in a given sub-second time 
scale (i.e., any given 1 s interval) are not captured properly. This contrasts noticeably 
to the typical sampling rate of an EEG device (1000 Hz and greater). A millisecond 
timescale of action potential fire is the fastest temporal scale [17].

3.2 Spatial resolution

Spatial resolution refers to the specified measuring strategy that can be taken for 
least events in space. As an illustration, the brain activity of a cubic millimeter reso-
lution is commonly measured using an fMRI. Indifference, the EEG tested natural 
signals show deprived spatial resolution as they initiate from indefinite square 
centimeters of brain tissue [18, 19]. Now centering our attention to the spatial scales 
reaching out of the full brain to distinct neurons [18]. Since there are in cursive 
methods present for spatial and temporal resolution improvement. For instance, 
the spatial resolution for electrophysiological brain activities can be as slight as a 
100 mm for transcription; electrodes are surgically implanted into the brain. The 
invasive transcriptions cater to perfect temporal and spatial resolution along with 
high temporal resolution of electrophysiological measurements. It is prominent that 
along with some omissions noninvasive approaches accompanying high temporal 
resolution (e.g., EEG) are subjected to poor spatial resolution and contrariwise 
(e.g., fMRI). Consequently, merging appropriate approaches has persisted as one of 
the utmost prevailing and electrifying procedural approaches in network neurosci-
ence [19].

4. Network neuroscience framework

Network neuroscience conceives brain functions as egress from the collective 
action of various system elements and their common interconnections as shown in 
Figure 1.

Figure 1. 
Basic steps of neuroscience framework.
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Currently, large-scale efforts to record neuronal connectivity in various species, 
including the nematode worm, fruit fly, mouse, macaque, and human, have led to a 
burst of data developed using a diverse array of measurement methods, and at scales 
fluctuating from a level of single cells to large brain areas. In similar, quick developments 
in physics of multifaceted network have directed to a new thoughtful of the association 
and dynamics of systems of interacting elements, with nervous systems being but one 
example. The confluence of these approaches lies at the core of network neuroscience, 
which is linked with understanding how nervous systems function as combined systems 
[20]. Network neuroscience offers one of the rarely incorporated frameworks for reveal-
ing different kinds of brain imaging data, needed in different specifies at various scales 
and have various measurements methods, by demonstrating all nervous systems in their 
most intellectual form: as assemblies of nodes connected by edges.

Network neuroscience technique has before now produced many novel visions 
into brain organization, for example, that nervous systems across scales and species 
illustrate a hierarchical, segmental and minor-world organization, that they contain 
decidedly connected hubs, they are economically reinforced. As the field develops, 
tools and methods settled in other areas of network science are being progressively 
polished and modified to the neuroscience context [9, 20].

The interpretation of how brain egress from a large number of communicated 
patterns of neuronal elements stands as one of the most abiding challenges of mod-
ern neuroscience. The complex systems draw close to understanding the brain is 
similar to other disciplines that intermix concepts from network science, the study 
of social networks through statistical physics and dynamical systems, the propaga-
tion of epidemics, rumors or computer viruses, the effects of disturbances or assault 
on electrical grids or the World Wide Web, or the performance of gene regulatory or 
metabolic networks [21].

5. Brain network topology and communication

Brain network has a topology with prominent attributes that describe the system 
as a whole: heterogeneous level and strength dispersions, high clumping and short 
path lengths, a multi-scale modular organization and an obtusely connected core of 
high-degree nodes are some of the network characteristics which are shared across 
species and scales.

Similar to any new field, the best ways for manufacturing and analyzing brain 
networks are still undergoing development. Amid late evolutions is the understand-
ing that brain networks are essentially multi-scale entities.

The term “scale” can have varying meanings depending upon the context; at 
present we concentrate on three possible definitions related to the study of brain 
networks. Foremost, a network’s spatial scale refers to the coarseness at which the 
nodes and edges are defined and can vary from that individual cell and synapses 
[18]. Secondly, networks can be qualified over temporal scales with accuracy 
varying from sub-millisecond to that of the entire lifespan, to developing changes 
across various species. Lastly, networks can be examined on divergent topological 
scales varying from individual nodes to the network as a whole [17, 21]. Conjointly, 
these scales specify the axes of a 3D space in which any synthesis of brain network 
data lives. Major brain network analysis subsists as points in the space—i.e., they 
concentrate on networks specified singularly at one temporal, spatial, and topo-
logical scale. We contend that, when studies have proven enlightening, in order 
to better understanding the brain’s actual multi-modal, multi-scale nature, it is 
important for our network analysis that we begin analysis to form bridges which 
join different scale to each other [1, 21].
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5.1 Routing communication

Routing communication covers the control of paths that data can take over a 
network. Specified that physical networks have predetermined limits on links, and 
memory, the main work of routing is to assign paths so that one or extra communica-
tion goals are retrieved (e.g., cost, fidelity, fault-tolerance, speed, etc.). Routing is of 
strongly important for brain’s communication via network: inferring sensory data, 
access of memory, decision making, and several further essential brain functions 
require that communications can be flexibly directed and acknowledged by several 
nodes at broadly parted positions on the network, in reply to fluctuating demands [19].

Though, for the reason that of new scientific growths, nowadays the brain 
is more dynamic than we supposed. The human brain continuously creates new 
neurons and makes neural pathways during our whole life cycle. Therefore, neurons 
are dynamic cells that are regularly familiarized to fluctuating situations. If some 
activity damages an individual’s brain (such as an injury or stroke), the neurons 
have the potential to create a new communication route/path around the injured 
area. This capability is known as neuronal plasticity.

In communication networks, the abbreviated path between two nodes has a 
special role: the extent of the abbreviated path is taken to the topological distance 
amid nodes. Hence, the abbreviated path extent is referred to as the indicator of 
comfort with which signals can be transmitted amid nodes [19, 20].

5.2 Information routing and functional integration

Any solo cognitive function may contain numerous dedicated areas whose 
association is facilitated by the functional integration between them. Such integra-
tion is facilitated by information exchange between brain areas by the means routes 
that can change with highest timescales at which the structure is fixed, by providing 
changeable actual connectivity in spite of the inflexibility of the infrastructure on 
high timescales [9, 11]. The dynamic nature of the information routing and flexible 
effective connectivity is worth of the multistability of the cooperative dynamics of 
the brain networks. In addition, single structural connectivity can support numer-
ous degenerate dynamical states, each of which information transfer by use of 
special pattern can be seen in Figure 2.

The modeling of spatiotemporal dynamics underlying integration and segrega-
tion can reveal casual mechanics insights into neuropsychiatric disorders. For being 
influenced by the full potential of whole-brain computational modeling, it is a 
requirement to capture temporal evolution of brain’s functional network organiza-
tion along with time-averaged representations of FC (which are strongly inhibited 
by the SC) in silico neural dynamics (a neuromorphic analog chip is presented that 
is capable of implementing massively parallel neural computations while retaining 
the programmability of digital systems).

Neuronal collective oscillations are assumed to offer such a basis for the dynam-
ic’s communication among brain regions. Numerous lines of experimental evidence 
and theoretical influences specify that the stage relations amongst the oscillations 
of various brain regions can modify effective connectivity by modulating the result 
of mutual influence between them.

A more existent account of the consolidative capacity of neuronal systems needs 
a significant differentiation between the concepts of “communication efficiency” 
and the usually employed graph theoretic measure called “global efficiency.” The 
mean of the reversed abbreviated length between all pairs of nodes is referred to 
as the global efficiency, hence captivating the global capacity of the network to 
transfer information in a collateral fashion [1, 9, 11, 19, 20].
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Currently, large-scale efforts to record neuronal connectivity in various species, 
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patterns of neuronal elements stands as one of the most abiding challenges of mod-
ern neuroscience. The complex systems draw close to understanding the brain is 
similar to other disciplines that intermix concepts from network science, the study 
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tion of epidemics, rumors or computer viruses, the effects of disturbances or assault 
on electrical grids or the World Wide Web, or the performance of gene regulatory or 
metabolic networks [21].

5. Brain network topology and communication

Brain network has a topology with prominent attributes that describe the system 
as a whole: heterogeneous level and strength dispersions, high clumping and short 
path lengths, a multi-scale modular organization and an obtusely connected core of 
high-degree nodes are some of the network characteristics which are shared across 
species and scales.

Similar to any new field, the best ways for manufacturing and analyzing brain 
networks are still undergoing development. Amid late evolutions is the understand-
ing that brain networks are essentially multi-scale entities.

The term “scale” can have varying meanings depending upon the context; at 
present we concentrate on three possible definitions related to the study of brain 
networks. Foremost, a network’s spatial scale refers to the coarseness at which the 
nodes and edges are defined and can vary from that individual cell and synapses 
[18]. Secondly, networks can be qualified over temporal scales with accuracy 
varying from sub-millisecond to that of the entire lifespan, to developing changes 
across various species. Lastly, networks can be examined on divergent topological 
scales varying from individual nodes to the network as a whole [17, 21]. Conjointly, 
these scales specify the axes of a 3D space in which any synthesis of brain network 
data lives. Major brain network analysis subsists as points in the space—i.e., they 
concentrate on networks specified singularly at one temporal, spatial, and topo-
logical scale. We contend that, when studies have proven enlightening, in order 
to better understanding the brain’s actual multi-modal, multi-scale nature, it is 
important for our network analysis that we begin analysis to form bridges which 
join different scale to each other [1, 21].
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5.3 Network dynamics and communication

Synchronized complete brain neural dynamics are important for appropri-
ate control of functionality in different brain systems, effectual integration of 
composite and multimodal information, and even adaption to transient regular 
circumstances. Specified such roles of macroscopic, brain dynamics in our mental 
and neural information processing, it is sensible to assume that the irrationality of 
large-scale neural dynamics is a main biological mechanism fundamental autism 
spectrum disorder (ASD), which is described as the weakening of global informa-
tion processing.

Structural topology is constricting signal extension is a very important dynami-
cal point of view the communication process. One of the eminent differentiations 
between dynamical and topological analyses of brain communication is the quan-
tity of information (in the statistical sense) which is required for the extension of 
the communication process.

5.4 Network computation and communication

The crucial role of communication dynamics in neural computation attracts a 
great amount of curiosity. Some important and distinct features of brain network 
communication that enlightens mechanisms by which the brain network carries out 
computation are as follows:

1. Communication dynamics are effective connectivity.

2. Computation by networks.

6. Multi-scale community structure

The attributes of local and global networks are unambiguous to calculate as the 
unit analysis of individual nodes and the entire network are closely manifest and 
no extra search is required. Multi-scale structure, though are not always apparent. 
The occurrence or nonappearance of multi-scale structures is contingent upon the 
formation of edges between the nodes of a network known as network topology. 
Real-life networks consist of numerous nodes and edges organized in complicated 

Figure 2. 
Information routing and functional integration.

85

Neural Signaling and Communication
DOI: http://dx.doi.org/10.5772/intechopen.86318

outlines which can be ambiguous structural symmetries. Because of such complica-
tion, if anyone wants to see a mesoscale structured network, he will have a necessity 
to algorithmically quest for it. In community structure circumstances, there is no 
lack of algorithms to do so. They depend on how they describe communities along 
with computational complexity. The range of the method is observed as a deficiency 
or a benefit, the originality in community detection and repeatedly increasing sub-
fields of network analysis are desirably settled. Although respectively community 
detection methods suggest its own possessive exceptional perception on how we 
can classify communities in networks, the technique that is furthermost extensively 
employed and debatably the often useful is modularity expansion. Modularity 
expansion divides a network’s nodes into communities so as to make the most of a 
verifiable function acknowledged as modularity (or just “Q”). The comparison of the 
practical pattern of connections in a network contrary to the perceptual structure 
that would be likely below a stated null model of network connectivity is performed 
by the modularity function. The weight of a respective existent edge is compared 
directly to the weight of the similar edge if, connections were to be shaped under the 
null model. Nearly, the ascertained connections will be improbable to subsist under 
the null model or might it be worthier in comparison to the null model expectations.

The efforts to locate several conceivable robust than predictable connections 
inside communities is done in the maximization of modularity. Much clearly, if the 
weight of the ascertained and anticipated connections between the nodes i and j are 
specified as Aij and Pij, separately, and σi ϵ [1, …, K] shows the communities of K in 
which i can be allotted, then modularity can be calculated as:

  (1)

Where Kronecker delta function is denoted by  δ  and is equal to 1 only if argu-
ments are not 0 and are the same. Various methods used in fact to maximize Q , 
however in conclusion the entire outcome in the estimation of community network 
structure, a separation into communities. Unfortunately, in the partition, the num-
ber and size with the biggest Q represent communities not always demonstrated in 
the network. Other alike quality functions and modularity show a “resolution limit” 
which bounds detectable communities’ size. Smaller size communities are rather 
undetectable. In one way to determine all size communities, modularity prolonged in 
current years to comprise ɣ, a resolution parameter, which can be used for exposing 
different sized communities. Augmented modularity equation then shows like this:

  (2)

Primarily familiarized method for avoiding resolution limit is known as the 
resolution parameter. Accidentally, it has imparted the flexibility of modularity 
measure. The resolution parameter acts as a turning protuberance, making attain-
ing of estimated small communities probable when it is at one situation and bigger 
communities while it is an alternative situation: while ɣ is big or small maximizing 
modularity will give parallel minor or major communities. With a smooth tune, 
from one extreme, the resolution parameter can efficiently find evaluations to 
the other extreme of a network’s community structure, from the finest scale from 
where network nodes form singleton communities to the unrefined scale where 
all nodes fall in the same communities. Multi-scale community detection can be 
recognized as the changing resolution parameter for notifying the communities 
about various sizes. It must be renowned that there subsist possible descriptions of 
modularity functions which do not endure from resolution limits in the initial place.
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7. Conclusion

In the recent past, the network cognitive science has revealed that how the net-
work topology and dynamics outline the flow of neural signal under the brain func-
tion to great extent but still there are many gaps remain in our understanding due 
to data limits and of recording tools. For example, the limited availability of obser-
vational tools limits empirical access to communication dynamics. Now a day, it has 
become possible to map structural connection and recording temporal dependen-
cies among local time series, but the possible mechanism involved in signal transfer 
across the network in a various manner that allows flexible and adaptive computa-
tion remain elusive. In spite of limitations, there is a wide range of opportunities to 
learn how the brain network functions. The nature of communication may vary, for 
example, dynamic network model is kind of theoretical framework that is helpful 
in an understanding of our knowledge of behavior and cognitive science, it also 
includes the pattern of change with aging and development. Furthermore, it can 
become an important tool for predicting the effects and outcomes of perturbations, 
including lesions and focal stimulation. Building on topology and dynamics, the 
confluence of empirical and theoretical studies are poised to add significant new 
insights into the network basis of brain function.
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Chapter 6

Integration of Spiking Neural 
Networks for Understanding 
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Abstract

The ability to perceive the passage of time in the seconds-to-minutes range is 
a vital and ubiquitous characteristic of life. This ability allows organisms to make 
behavioral changes based on the temporal contingencies between stimuli and the 
potential rewards they predict. While the psychophysical manifestations of time 
perception have been well-characterized, many aspects of its underlying biology are 
still poorly understood. A major contributor to this is limitations of current in vivo 
techniques that do not allow for proper assessment of the di signaling over micro-, 
meso- and macroscopic spatial scales. Alternatively, the integration of biologically 
inspired artificial neural networks (ANNs) based on the dynamics and cyto-archi-
tecture of brain regions associated with time perception can help mitigate these 
limitations and, in conjunction, provide a powerful tool for progressing research 
in the field. To this end, this chapter aims to: (1) provide insight into the biological 
complexity of interval timing, (2) outline limitations in our ability to accurately 
assess these neural mechanisms in vivo, and (3) demonstrate potential applica-
tion of ANNs for better understanding the biological underpinnings of temporal 
processing.

Keywords: interval timing, time perception, neural oscillators, dopamine,  
basal ganglia, artificial neural networks, spiking neural networks

1. Introduction

When it comes to understanding the neural underpinnings of time perception, 
the devil is in the details. As all events inevitably unfold in time, there is no short-
age of potential “timing” signals. However, behavioral tasks often possess inherent 
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Figure 1. 
Proposed cycle for integration of SNNs. Schematic visualization of integrating SNNs into empirical process.

relationship between time, spatial location, and external signals making it difficult 
to isolate activity dedicated to timing per se. As a result, timing correlates have 
been observed across nearly all regions of the cortex [1–4] as well as sub-cortical 
areas and the cerebellum [5, 6]. Reflecting this anatomical diversity, the number of 
theoretical models dedicated to timing is also vast, and utilize a diverse range of fir-
ing dynamics such as oscillatory [7] ramping [8] or synfire chains [9]. Yet, which of 
these various timing motifs and to what degree they contribute to a unified percep-
tion of time remains unclear [10].

A contributing factor to the multitude of timing theories are the limitations of 
current in vivo techniques, which can be spatially restrictive, produce ambiguous 
information, and contain representation biases. Though remarkable strides have 
been made in expanding the scope of techniques used to record, image and modu-
late neural activity, the capacity to selectively manipulate and/or effectively observe 
the propagation of activity from a large population of neurons within a particular 
brain region or across multiple regions, is limited. With theories of temporal 
processing spanning the microscopic level of intrinsic cellular [11, 12] and network 
dynamics [13–15] to the macroscopic interplay between multiple brain regions [16], 
understanding how animals track the passage of time has been an arduous task 
through reliance on in vivo techniques alone.

A promising avenue to help circumvent the aforementioned limitations is the 
integration of biologically inspired ANNs. While neural networks have been around 
for over half a century [17], recent years have seen a resurgent interest in their 
development and application within neuroscience. Spurred by substantial advance-
ments in computational power, the ability for labs to integrate complex, biologically 
constrained neural networks is more viable than ever before. As the integration 
and development of biologically inspired ANNs into neuroscience has been steadily 
growing for many decades, adoption into the field of time and time perception has 
been comparatively slow.

Though examples do exist, current efforts have remained limited [18–20]. 
Moreover, these networks often lack characteristics considered vital for biologically 
realism such as bidirectional activation propagation or Hebbian-based learning [21] 
- characteristics that see widespread use in other fields. Many of these models uti-
lize rate-based units, applying ‘activation functions’ and highly simplified network 
motifs, limiting the temporal dynamics of the network. While these simplified 
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networks provide valuable theoretical insight, the incorporation of spiking neural 
networks (SNNs) with biologically inspired ‘spiking’ units and network architec-
tures, allows SNNs to capture neural dynamics more analogous to the biological 
systems which they are based and a more critical assessment of timing theories. The 
integration of SNNs can allow researchers to visualize the propagation of temporal 
information as well as finer control over neuromodulatory systems not possible in 
other models.

The aim of this chapter is to demonstrate how the field of timing and time 
perception can benefit from the implementation of biologically constrained SNNs. 
In so doing, limitations of current in vivo recording and imaging techniques will 
be addressed along with examples of how SNNs can be used to circumvent such 
constraints and facilitate hypothesis driven research (Figure 1). Lastly, specific 
outstanding questions in the field of interval timing that could most benefit from 
integration of SNN models will be identified.

2. Interval timing networks and dynamics

Neural correlates of time perception have been observed across nearly the entire 
cortical mantel. In theory, any pattern that remains consistent for a given dura-
tion yet varies across durations is capable of acting as a biological timer. As these 
requirements are not particularly stringent, electrophysiological recordings have 
uncovered many candidate patterns. The prefrontal cortex (PFC) alone contains 
ramping, peaking, and oscillatory activity meeting such criterion [22–26]. In addi-
tion to spiking activity, EEG and MEG recordings in humans [27–29] demonstrate a 
robust relationship between mesoscopic oscillations and timing behavior.

2.1 Cortical spiking and mesoscopic oscillations

Electrophysiological studies in rodent and non-human primates have shown 
robust correlations between cortical activity and timing behavior across multiple 
brain regions. Yet, how dynamics within and across cortical regions contribute to 
these behaviors are still unclear. Though ever expanding, limitations in our current 
knowledge on how information propagates across interconnected brain regions has 
made drawing causative relationships between timing behavior and specific neural 
signals difficult.

One of the most studied neural correlates of timing is ‘ramping activity’ 
(Figure 2A). These monotonic increases or decreases in firing rate have been 
observed within the prefrontal [25, 26] primary motor [30] and posterior parietal 
cortex [31, 32] during various timing tasks. Along with its seemingly ubiquitous 
presence within the cortex, key observations further indicate ramping as a viable 
timing mechanism: (i) ramping activity has been demonstrated to occur across 
multiple timescales from hundreds of milliseconds to multiple seconds (ii) the 
rate of change can be adjusted through learning different durations (iii) the rate 
of change during a reproduction task is dependent on the presented duration. 
Specifically, neuronal activity in the lateral inferior parietal cortex (LIP), recorded 
in macaques trained on a temporal reproduction task, found changes in firing rate 
were inversely proportional to the duration being produced. That is, shorter dura-
tions had steeper ramping activity therefore reaching threshold sooner [31].

However, pharmacological inactivation of ramping activity within these same 
regions of the cortex, namely the posterior parietal cortex (PPC), during evi-
dence accumulation tasks has negligible effects on stimulus categorization [33]. 
Conversely, decreasing prefrontal cholinergic concentrations reduced temporal 
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robust relationship between mesoscopic oscillations and timing behavior.
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these behaviors are still unclear. Though ever expanding, limitations in our current 
knowledge on how information propagates across interconnected brain regions has 
made drawing causative relationships between timing behavior and specific neural 
signals difficult.

One of the most studied neural correlates of timing is ‘ramping activity’ 
(Figure 2A). These monotonic increases or decreases in firing rate have been 
observed within the prefrontal [25, 26] primary motor [30] and posterior parietal 
cortex [31, 32] during various timing tasks. Along with its seemingly ubiquitous 
presence within the cortex, key observations further indicate ramping as a viable 
timing mechanism: (i) ramping activity has been demonstrated to occur across 
multiple timescales from hundreds of milliseconds to multiple seconds (ii) the 
rate of change can be adjusted through learning different durations (iii) the rate 
of change during a reproduction task is dependent on the presented duration. 
Specifically, neuronal activity in the lateral inferior parietal cortex (LIP), recorded 
in macaques trained on a temporal reproduction task, found changes in firing rate 
were inversely proportional to the duration being produced. That is, shorter dura-
tions had steeper ramping activity therefore reaching threshold sooner [31].

However, pharmacological inactivation of ramping activity within these same 
regions of the cortex, namely the posterior parietal cortex (PPC), during evi-
dence accumulation tasks has negligible effects on stimulus categorization [33]. 
Conversely, decreasing prefrontal cholinergic concentrations reduced temporal 
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precision without disrupting ramping activity demonstrating a potential dissocia-
tion between ramping and timing behavior [34]. Other regions have demonstrated a 
more causal relationship, namely, ramping in the frontal orienting field (FOF) was 
found to be necessary for proper performance possibly implicate ramping activity 
as a general computational motif within cortical circuits of which timing is local-
ized to a particular cortical region.

Recent evidence suggests that neuronal ramping may not, in fact, be ramping 
at all, but an artifact of bi-stable neuron activity averaged over multiple trials. 
Analysis of spiking activity within the LIP during individual trials of a motion 
discrimination task showed 31 of 40 neurons exhibited ‘stepping’ behavior [35] as 
opposed to the deterministic gradual increase expected of a truly ramping dynamic 
(c.f. [36, 37]). These findings parallel human studies which have cast doubt on the 
role of the contingent negative variance (CNV) – an EEG correlate of ramping 
activity – in temporal processing due to the poor predictive ability of the CNV and 
the high temporal accuracy demonstrated even after the resolution of the signal 
[38]. How ramping activity develops also remains unclear [39, 40].

Larger scale recordings, containing 55–120 simultaneously recorded neurons, 
have painted a relatively different picture of spiking activity within the cortex during 
timing. Bakhurin and colleagues [22] found putative projection neurons contained 
activity patterns in which individual neurons in the orbital frontal cortex (OFC) 
displayed sequential activity that tiled a 1.5 s delay period following an olfactory 
cue. This type of firing is reminiscent of “time cell” activity recorded in other brain 
regions such as the striatum [6, 41] and hippocampus [42, 43] providing a parsimo-
nious representation of timing signals across distinct brain regions (Figure 2B).

At the mesoscopic level, oscillatory activity within cortical regions has also 
been theorized as an underlying mechanism for time perception. As with spiking 
correlates of timing, neural oscillations are pervasive throughout the brain and 
implicated in a multitude of cognitive processes such as attention, memory, move-
ment preparation and even consciousness [44]. Yet, their computational role in 
these processes is generally unresolved [45]. Nevertheless, researchers have long 

Figure 2. 
Distribution of timing correlates and associated activity patterns. (A) Simulation of ramping activity as 
observed in cortical networks during timing tasks. Parameterized using values from model of neural integration 
(Simon et al. 2011). Theoretical accumulation of activity (bottom) and distribution of time to threshold (top) 
(B) Heatmap of simulated activity normalized by max firing rate depicting trajectory dynamics found in the 
cortex, hippocampus, and striatum. (C) Depiction of pauses in Purkinje cell activity within the cerebellum 
during 300 millisecond delay (ISI) Pavlovian eye-lid conditioning.
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recognized the potential of rhythmically repeating oscillators to track the passage of 
time from hundreds of milliseconds to tens of minutes [46, 47].

Increases of delta range (~4 Hz) oscillations in the medial prefrontal cortex 
(mPFC) were shown to negatively impact the temporal precision of rats perform-
ing a 12 s fixed-interval task. Pharmacological attenuation of these increases in 
delta through blockage of D1 dopamine receptor (D1DR) signaling mitigated the 
associated deficits in timing [2]. Interestingly, D1DR+ neurons in the prefrontal 
cortex have strong delta frequency coherence with a subset of neurons exhibit-
ing ramping activity implicating a direct link between microscopic spiking and 
mesoscopic oscillations during timing [48]. Additional evidence supports the 
existence of spike phase relationships with the mPFC particularly within the theta 
frequency (5–10 Hz) [23, 49, 50]. However, Benchenane et al. [23] demonstrated 
that spike-phase entrainment to theta in the mPFC only occurs during times of high 
coherence between mPFC and hippocampal (HIPP) theta and is most prominent at 
times requiring encoding or retrieval of spatial memory. This property likely makes 
it too transient to track time over multiple seconds. Increases in cortical theta have 
also been associated with interval timing tasks where sustained increases in cortical 
theta power occur during the encoding of the standard duration in a temporal com-
parison task [51, 52], though whether coherence between HIPP and mPFC remains 
high across this entire duration has not been tested.

As with ramping activates relation to timing behavior, the coupling of spikes 
to oscillations appears to be region specific. Though oscillatory activity has been 
observed within the cortex across multiple frequency bands, there is limited sup-
port for individual neurons firing-rates to entrain to these rhythms. For example, 
though timing behavior correlates with cortical beta (~15–30 Hz) activity within 
the dorso- and ventro-lateral prefrontal cortex, premotor cortex, and posterior 
parietal cortex [28], recent work suggests that spiking activity demonstrates mini-
mal coupling to beta rhythms [53].

2.2 Neuromodulators and time perception

Timing behavior has been shown to be highly susceptible to manipulations of 
neuromodulators such as dopamine (DA: [54–58]) serotonin (5-HT: [59–61]) and 
acetylcholine (Ach: [34, 62, 63]). Additionally, patients suffering from disorders 
involving these pathways [64–66] demonstrate systematic changes in their timing 
ability.

Dopamine has been the most widely studied neuromodulator in the field of 
interval timing. Despite this depth of research, many questions still remain as 
research has produced seemingly paradoxical effects. Early psychopharmacologi-
cal studies demonstrated bidirectional shifts in timing accuracy (i.e. over- or 
underestimations of a target duration) after administration of DA agonists and 
antagonists, respectively [55–57, 67]. This work suggested that DA changes the 
speed of a subjects internal timing mechanism (i.e. “clock speed” effect). This could 
manifest itself as changes in the slope of ramping neurons or oscillator frequency. 
However, other research suggested that administration of dopaminergic drugs 
such as the selective D2 and D3 agonist Quinpirole disrupts timing precision rather 
than accuracy through modifying attentional processes [58, 68]. While later work 
using a variation of the peak interval procedure supported the changes in accuracy, 
the directionality of the peak shifts did not align with the original “clock speed” 
hypothesis [69]. Subsequent experiments further demonstrated these effects to be 
sensitive to non-temporal aspects of the task similar to the “attentional modulation” 
hypothesis.
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The wide repertoire of timing behaviors related to DA modulation may be a 
product of its diffuse circuitry [70, 71]. Alternatively, the complexity may result 
from interactions with other neuromodulatory pathways. Electrophysiological 
evidence suggests DA neurons elicit tonic excitatory control over 5-HT neurons 
within the raphe nucleus [72]. In fact, a mouse model of Parkinson’s disease using 
6-OHDA lesions lead to increases in spontaneous firing as well as maximum firing 
rate of 5-HT neurons in the dorsal raphe nucleus [73].

Administration of 5-HT1A receptor agonist 8-OH-DPAT modulated timing preci-
sion on retrospective timing tasks, while immediate timing tasks saw changes in 
accuracy [74]. However, the contribution of 5-HTergic pathways to timing behavior 
remains precarious as many of these studies were unable to dissociate changes in 
interval timing from intertemporal choice [60]. In fact, more recent work indicates 
5-HT to be more strongly associated with intertemporal choice [75] along with 
additional factors such as reward rate and temporal uncertainty [76]. This relation-
ship appears to be bidirectional as 5-HT projections from the dorsal raphe nucleus 
can modulate DA release directly through excitatory synapses onto VTA dopamine 
neurons [77]. A selective 5-HT2c ligand shown to increase vigor and persistence in 
goal-directed behavior also leads to increased tonic DA levels in the dorsal medial 
striatum [78]. The aforementioned interaction within the DMS is likely driven by 
excitation of striatal cholinergic interneurons which can drive action potentials 
independent of DA release [79, 80]; thus, linking cholinergic pathways to an already 
complex system.

Despite considerable work on the role of neuromodulators in timing behavior, 
dissociating the mechanisms responsible for these effects is yet to be fully under-
stood. These systems contain multiple origins with diffuse and overlapping targets. 
Moreover, direct as well as indirect connections between these pathways makes it 
difficult to confidently assign credit to a single pathway and behavioral changes are 
often dependent on the parameterization of the particular study. As a result, it is 
likely that non-traditional methods allowing for more systematic modulation of the 
respective pathways is necessary to fully disentangle their individual roles in timing 
behavior.

3. Limitations of current in vivo techniques

Substantial advancements of in vivo techniques are now allowing for exceptional 
insight into neuronal dynamics. The number of simultaneously recorded single 
neurons has seen a near doubling every 7 years [81]. Coupled with growth of open-
source hardware systems, access to these powerful technologies is becoming more 
feasible and cost effective [82]. However, these techniques are still limited in the 
amount of information they are able to reliably produce in relation to the dynamic 
properties of the brain. This has led to debate into the sufficiency of correlations 
between firing activity and behavioral output. Additionally, many of the current 
methods used for manipulating endogenous activity suffer from a lack of specific-
ity. The aforementioned diffuseness of the interval timing network coupled with 
sensitivity to neuromodulation limit the insight from in vivo techniques alone.

3.1 Recording and imaging

Extracellular in vivo recordings have long been the technique of choice for link-
ing neural activity to ongoing behavior through monitoring action potentials (APs) 
along with more mesoscopic neural activity in the form of local field potentials 
(LFP). Though Advancements in recording techniques has been able to mitigate 
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some of the uncertainty in isolating an individual cell’s activity, a sizeable degree of 
error still exists. Though quantification of this error, referred to as the ‘spike sorting 
problem’, is difficult due to the lack of ‘ground truth’ data, estimates suggest semi-
automatic clustering error with tetrodes to be on the order of 5–10%, and substan-
tially higher (upwards of 30%) for manual cluster cutting, a process still popular in 
many labs [83]. Furthermore, the uncertain origin of signals such as gamma range 
oscillations makes interpretations speculative [84].

A second class of errors that can lead produce specious conclusions is ‘selection 
bias’. Combined intra- and extracellular recordings within CA1 of the hippocam-
pus demonstrated that despite an estimated 140 neurons within the recording 
distance of a single tetrode, rarely are more than a dozen signals ever detected [85]. 
While innocuous contributions such as acute edema and glial encapsulation can 
lead to significant decreases in signal strength and subsequent cell counts [86], 
other causes such as under classification of cells with low firing rates can skew 
researcher’s interpretation of genuine network dynamics. Furthermore, differential 
firing rates between regions, such as higher firing rates in deep-layers of the cortex 
in comparison to pyramidal cells of the superficial-layer [87, 88], may bias research-
ers toward studying areas with high spiking and subsequently overestimating a 
regions role in the overarching circuit. Recent attempts at addressing and quantify-
ing the quality of in vivo recordings is a step toward lessening the effect of electrical 
artifacts [89, 90], though further work in this direction is still needed.

In addition to classic recording techniques, calcium imaging has become a popu-
lar tool for visualizing activity. Imaging permits precise spatial mapping of activity 
[91, 92] and mitigates many of the limitations in recording such as the “spike sort-
ing problem” and “cell selection bias’” [93]. Further improvements in fluorescent 
indicators [94, 95] and scanning techniques [96] have been able to overcome past 
limitations in sampling rate allowing for detection of somatic calcium transients 
evoked during action potentials.

However, in non-laminar low cell density brain regions the number of cells that 
can be simultaneously observed is highly restricted. Sub-cortical areas such as the 
striatum can be limited to less than 40 cells [97] and require significant damage 
to regions dorsal to those being imaged. Paired with the inability to sufficiently 
account for dynamic interactions within a single brain region imaging technique are 
even more limited when attempting to study interactions across multiple regions. 
In all, while in vivo techniques are one of the most valuable tools for understand-
ing the relationship between neural signals and behavior, alternative methods in 
conjunction can provide richer insight into not only regional dynamics, but also 
interregional interactions.

3.2 Pharmacological, chemogenetic, and optical manipulations

While electrophysiological recording and imaging provide insight into endog-
enous activity, much of our knowledge into how the brain senses the passage of time 
has arisen from the manipulation of timing networks. Yet, there are often deviations 
between a researcher’s intent and the actual alterations within the brain. The main 
contributors are lack of specificity or incomplete knowledge of the technique being 
used.

While the foundation of many theories in time perception, pharmacological 
manipulations are the most susceptible to confounding interactions. Even drugs 
touted as selective can display affinity for non-target receptors. Concretely, the 
commonly used D1-antagonist SCH-23390 also demonstrates high affinity for 
serotonin receptor subtypes 5-HT2 and 5-HT1C [98]. While its affinity for D1 
receptors is much higher than that of 5-HT, the expression of both receptor types 
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The wide repertoire of timing behaviors related to DA modulation may be a 
product of its diffuse circuitry [70, 71]. Alternatively, the complexity may result 
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along with more mesoscopic neural activity in the form of local field potentials 
(LFP). Though Advancements in recording techniques has been able to mitigate 
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within this region could explain why timing behavior following local infusions of 
SCH-23390 into the DMS has been difficult to interpret [99]. As 5-HT2 activation 
within the striatum has been shown to indirectly reduce striatal MSN activity [100]. 
Conversely, timing effects attributed to serotonin could be mediated through or in 
conjunction with indirect increases in DA, which has been demonstrated in 5-HT2 
agonists such as Psilocybin [101].

In an effort to minimize off-target effects there has been a renaissance in the 
development of chemogenetic and optogenetic techniques. Vaunted for their ability 
to mitigate the confounds of pharmacological methods, a growing literature is 
revealing these approaches come with their own set of drawbacks. While chemoge-
netic approaches such as DREADDs (Designer Receptors Exclusively Activated by 
Designer Drugs) has helped alleviate some of the uncertainty from pharmacological 
manipulations, recent work shows that CNO (clozapine N-oxide), the most com-
monly used agonist in DREADDs, can back metabolize into clozapine and has the 
potential to accumulate in amounts capable of activating endogenous receptors 
[102]. Importantly, clozapine has been demonstrated to affect temporal accuracy as 
well as the flexible use of timing mechanisms [103, 104]. While this limitation can 
be addressed through the use of proper CNO controls in addition to transitioning to 
low-dose clozapine, these steps constrain DREADDs extended duration of action, 
likely its greatest advantages over optical techniques.

As with chemogenetic approaches, optogenetic methods have not been immune 
from technical setbacks, even after widespread implementation. Despite over a 
decade of use in neuroscience, new caveats in the effectiveness of microbial opsins 
are still being discovered. pH-dependent calcium influxes from sustained activa-
tion of inhibitory proton pump opsins such as eArch3.0 can increase spontaneous 
neurotransmitter release during terminal stimulation [105]. Inhibitory Cl- channels 
(i.e. eNpHR3.0 & GtACR1), on the other hand, can drive axonal spiking through 
positively shifted chloride reversal potentials leading to unintended spiking at the 
onset as well as offset of stimulation [105, 106].

4. Artificial neural network in timing (ANNs)

Despite being inspired largely by neuroscience, ANNs were initially touted for 
their powerful computational versatility rather than reliable models of neural or 
cognitive phenomena. Since their conception, the emergence of conductance-based 
units, biologically inspired architectures and learning rules has made them an 
invaluable tool for elucidating how the brain works.

4.1 Importance of spiking neural networks (SNNs)

The ‘neuronal’ unit embodies the fundamental computational element of an 
ANN and plays a vital role in the overall capacity of the network. As such, com-
putational neuroscientists have dedicated substantial work transforming early 
‘neuronal’ units, based on the binary threshold unit (i.e. McCulloch-Pitts neurons) 
into conductance-based ‘spiking’ models [107–111] that include both detailed 
biophysical models and simple phenomenological models. Implementation of SNNs 
allows for rate and temporal dynamics nearly equivalent to those found in biological 
systems [112].

However, with the increased biological complexity comes an increase in compu-
tational cost (i.e. number of floating-point operations per 1-ms of simulation). This 
has led many to opt for computationally simpler units with continuous ‘activation-
functions’ rather than spiking dynamics. While these ‘rate-based’ networks have 
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proven successful in revealing network architectures conducive to timing [113] as 
well as how shifts in excitability drive timing activity [114], they remove temporal 
components of neural signaling related to that limit their explanatory power. 
Electrophysiological evidence from neural recordings within the superior temporal 
sulcus (STS: [115]) and motor cortex (M1: [116]) indicates the brain relies heavily 
on temporal coding (i.e. coherent inputs). Importantly, increases in coincident 
spiking correspond with temporally relevant timepoints independent of changes in 
firing rate [117].

SNNs thalamocortical [118] and corticostriatal [119] networks, both implicated 
in proper timing behavior, found sharp transitions in spiking activity are important 
for normal functioning within the network. This speaks to the diversity of spiking 
patterns present in the brain that can be captured by spiking units [120], yet absent 
in rate-based networks. The strongest advocates for SNNs question whether any 
evidence exists for rate-coding with in the brain [121]. Thus, placing the onus on 
those who utilize rate-based networks for not choosing SNNs.

Additionally, SNNs allow for implementation of both Hebbian and error-based 
learning rules. This is of note as the network learning rule can have dramatic effects 
on the connectivity and dictate whether it develops a feedforward topology scarce 
in both closed and unique loops or strong reciprocal connectivity motifs like those 
found in the neocortex [122, 123]. Implementation of these spiking neuron models 
can lead to dramatic improvements in network performance [124]. The effects 
of neuromodulators on plasticity also contain tight temporal windows (0.3–2 s) 
between glutamate release and the presence of DA [125, 126], which is difficult to 
properly model in rate-based models.

4.2 Current use of SNNs in timing research

Generally absent from earlier ANNs, implicit and/or explicit representations 
of time within neural network models have been relativity recent [127]. Despite 
this late adoption, there has been a recent surge in research devoted to elucidating 
the neural substrates of temporal processing, with a myriad of distinct network 
motifs being proposed [128]. These models vary in biological realism as it per-
tains to unit dynamics, network structure, and learning capabilities (Table 1), 
influencing not only the dynamical repertoire of the network, but also the ability 
to extrapolate findings into the biological systems they are looking to study. That 
being said, even in their most simplistic form, with little adherence to known 
biology, network models can provide theoretical insight [132], but these models 
are highly limited.

Adherence to the underlying neurobiology, allows network models to provide 
deeper understanding into neural substrates of temporal processing. As inter-
preting in vivo pharmacological manipulations must be done with caution, with 
many drugs acting on multiple neuromodulatory systems, the ability to isolate 
these neuromodulatory systems in SNNs allows for uniquely systematic approach. 
Specifically, a cortico-striatal network model allowed researchers to isolate the 
effects of changing DA concentrations, free of potential 5-HT confounds, and 
replicating DA’s effect on ‘clock speed’ [130]. In this same model, modulation 
of Ach produced the accuracy changes found from systemic injections of drugs 
acting on the cholinergic pathway [67]. Interestingly, Ach modulation in a hippo-
campal network produced variations in task precision [134] rather than accuracy. 
Taken together, these networks may provide evidence indicating dissociated 
networks for these effects. More recent work has also helped elucidate the poten-
tial topographical mapping of duration length across the dorsal-ventral axis of the 
hippocampus [129, 135].
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At the synaptic level, computational work using leaky-integrate and fire neurons 
demonstrated hallmarks of temporal processing such as the ‘bias property’ and 
‘scalar property’ are strongly influenced by GABAb receptor dynamics [133]. While 
outside the field of interval timing, work looking at the relationship of pre-post 
spike pairings to spike-time dependent plasticity (STDP) has shown LTP/LTD 
dynamics are better explained by ‘nearest-neighbor’ inputs rather than an ‘all-to-
all’ motif [136]. Together, these finding place limits on theories utilizing temporal 
integration as a potential mechanism for tracking the passage of time, such as those 
relying on ramping dynamics. Additional theories relating synaptic plasticity to 
motor-timing, a sub-field of interval timing, are grounded heavily in computational 
work due to the difficulty of assessing these ideas in vivo [137].

These results align with animal work demonstrating how important biophysical 
features of neuron signaling such as receptor kinetics directly influence the tim-
ing of durations up to 100 s of milliseconds [12]. Therefore, researchers must be 

Study unit Unit type Network properties Learning rule Findings

Lateral 
inhibition

Recursive Modulators Hebbian Error 
driven

Oprisan 
et al. [129]

Spiking* 
(ML)

No No N/A No No Hipp. 
Topology; K*

Oprisan 
and Buhusi 
[130]

Spiking* 
(ML)

No No Ach, DA No No Modulator 
in SBF 
framework

Reutimann 
et al. [131]

Spiking 
(LIF)

No No N/A Yes 
(rate)

No FR 
adaptation 
accounts for 
‘ramping’ 
activity

Hilton and 
Parter [132]

Spiking 
(prob. 
threshold)

No No N/A No No Connectivity 
motifs for 
efficient 
timing;

Mikael and 
Gershman 
[113]

Gaussian 
‘state’ 
activity

No No DA No Yes Bidirectional 
DA 
modulation 
through RPE 
framework

Laje and 
Buonomano 
[19]

Rate units Yes Yes N/A No Yes Intrinsic 
timing 
framework; 
neural 
trajectories

Simen et al. 
(2011)

Rate units Yes No N/A No Yes Temporal 
integration 
framework; 
skewness

Perez and 
Merchant 
[133]

Spiking 
(LIF)

Yes Yes N/A Yes No Bias 
property; 
scalar 
property

*While a spiking model, membrane potential not spikes where used as unit output.

Table 1. 
Recent publications of ANN models in the study of interval-timing.
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vigilant in selecting the appropriate level of biological complexity for the question 
they are looking to address. In this way that time perception may be more sensitive 
than other senses such as vision, where retention of the biological computations 
can often be sufficient for producing similarities between representations in higher 
order processing regions [138].

While the above examples have focused on the ability of SSNs to provide support 
for particular theories, these models have proven to be equally useful in excluding 
alternative theories as well. For example, ramping activity in the cortex, a potential 
neural manifestation of timing, can arise from various network architectures. Two 
such networks employ either recurrent synaptic facilitation or firing-rate adapta-
tion. Yet, additional firing properties seen during delay response tasks, namely 
equivalent responding to matching and non-matching stimuli is only evident in 
networks based on firing-rate adaptation [131]. Additionally, it had been postulated 
that time perception could evolve from sequentially firing populations of neurons 
[139] and may underlie temporal pattern formation in song birds - a subset of motor 
timing [140]. However, recent work demonstrated this architecture is incapable of 
producing fundamental properties of interval timing such as scale invariance [141]. 
The ability to cast doubt on proposed timing mechanisms is an important quality of 
computational models. If the technique was flexible enough to validate all theories, 
it would be of little value.

4.3 Future directions for SNNs in timing research

Integration of SNN models has proven to be an exciting and fruitful avenue 
for better understanding neural dynamics related to interval-timing. However, 
there is still ample room for growth. With the implementation of SNNs still in its 
early stages, the vast majority of these models lack the biological realism necessary 
to address open questions in the field. Three areas that have either received little 
attention or would benefit from greater focus are (1) recurrent interactions between 
timing circuits (2) Neuromodulator effects on timing signals and (3) biologically 
based model of temporal learning.

As previously mentioned, time perception is supported by an expansive 
network of brain regions. However, the vast majority of network models aimed 
at understanding interval timing are at odds with the multi-regional, recurrent 
nature of the brain. Models of visual processing have shown recursive networks 
capture multi-regional cortical dynamics absent in strictly feed-forward models 
[142] as well as behavioral interactions between reaction time and uncertainty 
[143]. Recurrent connections may also aid in spontaneously developing high 
degrees of sparseness within a network like that seen in neocortical circuits [144], 
which allows for larger networks without compromising effectiveness [145]. In 
addition to being recursive, connection probabilities vary within and between 
brain regions. Specifically, cortical areas tend to form ‘small world’ motifs, con-
necting more often with nearby cells [146, 147].

In other branches of neuroscience, SNNs have shown promise is their ability 
to selectively manipulate interactions between as well as distinct activity within 
neuromodulatory pathways. One of particular interest to understanding time 
perception is phasic and tonic DA signaling. These methods of DA release are 
believed to be differentially regulated [148] as well as serve different behavioral 
purposes [149], though our knowledge is still limited. A SNN of the basal ganglia 
aimed at understanding PD pathology demonstrates, through methodical control 
of either phasic or tonic activity, that each system differentially contributed 
to Parkinsonian akinesia and tremors [150]. As tonic-phasic interactions have 
been shown to have paradoxical effects in drug-seeking behavior [151], SNNs 



New Frontiers in Brain-Computer Interfaces

98

At the synaptic level, computational work using leaky-integrate and fire neurons 
demonstrated hallmarks of temporal processing such as the ‘bias property’ and 
‘scalar property’ are strongly influenced by GABAb receptor dynamics [133]. While 
outside the field of interval timing, work looking at the relationship of pre-post 
spike pairings to spike-time dependent plasticity (STDP) has shown LTP/LTD 
dynamics are better explained by ‘nearest-neighbor’ inputs rather than an ‘all-to-
all’ motif [136]. Together, these finding place limits on theories utilizing temporal 
integration as a potential mechanism for tracking the passage of time, such as those 
relying on ramping dynamics. Additional theories relating synaptic plasticity to 
motor-timing, a sub-field of interval timing, are grounded heavily in computational 
work due to the difficulty of assessing these ideas in vivo [137].

These results align with animal work demonstrating how important biophysical 
features of neuron signaling such as receptor kinetics directly influence the tim-
ing of durations up to 100 s of milliseconds [12]. Therefore, researchers must be 

Study unit Unit type Network properties Learning rule Findings

Lateral 
inhibition

Recursive Modulators Hebbian Error 
driven

Oprisan 
et al. [129]

Spiking* 
(ML)

No No N/A No No Hipp. 
Topology; K*

Oprisan 
and Buhusi 
[130]

Spiking* 
(ML)

No No Ach, DA No No Modulator 
in SBF 
framework

Reutimann 
et al. [131]

Spiking 
(LIF)

No No N/A Yes 
(rate)

No FR 
adaptation 
accounts for 
‘ramping’ 
activity

Hilton and 
Parter [132]

Spiking 
(prob. 
threshold)

No No N/A No No Connectivity 
motifs for 
efficient 
timing;

Mikael and 
Gershman 
[113]

Gaussian 
‘state’ 
activity

No No DA No Yes Bidirectional 
DA 
modulation 
through RPE 
framework

Laje and 
Buonomano 
[19]

Rate units Yes Yes N/A No Yes Intrinsic 
timing 
framework; 
neural 
trajectories

Simen et al. 
(2011)

Rate units Yes No N/A No Yes Temporal 
integration 
framework; 
skewness

Perez and 
Merchant 
[133]

Spiking 
(LIF)

Yes Yes N/A Yes No Bias 
property; 
scalar 
property

*While a spiking model, membrane potential not spikes where used as unit output.

Table 1. 
Recent publications of ANN models in the study of interval-timing.
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vigilant in selecting the appropriate level of biological complexity for the question 
they are looking to address. In this way that time perception may be more sensitive 
than other senses such as vision, where retention of the biological computations 
can often be sufficient for producing similarities between representations in higher 
order processing regions [138].
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timing [140]. However, recent work demonstrated this architecture is incapable of 
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The ability to cast doubt on proposed timing mechanisms is an important quality of 
computational models. If the technique was flexible enough to validate all theories, 
it would be of little value.
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Integration of SNN models has proven to be an exciting and fruitful avenue 
for better understanding neural dynamics related to interval-timing. However, 
there is still ample room for growth. With the implementation of SNNs still in its 
early stages, the vast majority of these models lack the biological realism necessary 
to address open questions in the field. Three areas that have either received little 
attention or would benefit from greater focus are (1) recurrent interactions between 
timing circuits (2) Neuromodulator effects on timing signals and (3) biologically 
based model of temporal learning.

As previously mentioned, time perception is supported by an expansive 
network of brain regions. However, the vast majority of network models aimed 
at understanding interval timing are at odds with the multi-regional, recurrent 
nature of the brain. Models of visual processing have shown recursive networks 
capture multi-regional cortical dynamics absent in strictly feed-forward models 
[142] as well as behavioral interactions between reaction time and uncertainty 
[143]. Recurrent connections may also aid in spontaneously developing high 
degrees of sparseness within a network like that seen in neocortical circuits [144], 
which allows for larger networks without compromising effectiveness [145]. In 
addition to being recursive, connection probabilities vary within and between 
brain regions. Specifically, cortical areas tend to form ‘small world’ motifs, con-
necting more often with nearby cells [146, 147].

In other branches of neuroscience, SNNs have shown promise is their ability 
to selectively manipulate interactions between as well as distinct activity within 
neuromodulatory pathways. One of particular interest to understanding time 
perception is phasic and tonic DA signaling. These methods of DA release are 
believed to be differentially regulated [148] as well as serve different behavioral 
purposes [149], though our knowledge is still limited. A SNN of the basal ganglia 
aimed at understanding PD pathology demonstrates, through methodical control 
of either phasic or tonic activity, that each system differentially contributed 
to Parkinsonian akinesia and tremors [150]. As tonic-phasic interactions have 
been shown to have paradoxical effects in drug-seeking behavior [151], SNNs 
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may provide invaluable for understanding how individual modulation of these 
two DA dynamics may contribute the paradoxical effects seen in interval timing 
studies of DA.

SNNs also offer deeper insight into how different neuromodulatory pathways 
interact in order to produce learned behaviors. Investigating the computational 
roles of neuromodulated STDP in the hippocampus, researches demonstrated 
the importance of DA and Ach interactions on learning during a navigation task 
[134]. Of particular interest was the ability of Ach to enhance precision in naviga-
tion, while DA dominated learning overall. This provides insight into a potential 
mechanism for increases in temporal precision seen from perinatal choline supple-
mentation [152] and dissociates these from changes in accuracy that can accompany 
increases in precision when Ach is pharmacologically increased [153]. This result 
expands upon a growing literature dedicated to better understanding synaptic plas-
ticity through spiking neural models [154–156]. Unfortunately, up until this point 
SNNs dedicated to time perception that have addressed the role of neuromodulators 
have done so through implementation of their proposed effects, rather than plastic-
ity directly. Additionally, very few models have used a Hebbian learning rule of any 
type.

5. Limitations of SNNs

The innate connectivity pattern between neurons plays an important role in 
shaping the trajectory of neural activity within the brain. To this end, biological 
models can only be as good as our knowledge of the underlying biology. Within 
the striatum, slight deviations from the biologically relevant range for recurrent 
connectivity between MSNs is sufficient to suppress the regular sequential firing 
patterns of coherent cell assemblies found from in vivo recordings [157, 158]. While 
previous neural network models investigating temporal processing within the 
cerebellum have benefited from its well-characterized, highly conserved cyto-
architecture [159–161], this is not a luxury afforded to those attempting to construct 
models of other brain regions such as the striatum. Constituting 1.3% of total brain 
volume in humans [162] and 4% in rodents [163], the dorsal striatum lacks clear 
internal divisions making it difficult to model accurately. In response, the past 
decade has witnessed a prodigious effort in mapping the brain’s connectivity.

Benefited by advancements in microscopy and neuroanatomical tracing 
techniques, recent endeavors have uncovered functional domains within regions 
of the dorsal striatum based on innervation from cortical afferents [164], which 
can be a valuable tool for modeling timing networks [165]. Further work at the 
synaptic level will allow for connectivity parameters within neural network models 
to be tuned more closely tuned to that seen in the brain. However, as this chapter 
has demonstrated, it is not only through in vivo work that our knowledge of the 
underlying biology can be expanded. Though confirmation inevitably relies on such 
techniques, theoretical in addition to computational breakthroughs can be done 
elsewhere.

Along with biological limitations, implementation of many large-scale models –  
whether in neuron count or complexity – rely on high-speed supercomputers or 
computing clusters. In labs where computational modeling is not their primary 
focus, it is impractical to invest the time or money into such resources and there-
fore places a ceiling on the size and complexity of their simulations. While cost 
reductions in hardware dedicated to simulating the highly parallel nature of the 
brain will inevitably address the largest barrier to widespread use of SNNs, provid-
ing intuitive software is vital. Along with closed-source options such as MATLAB’s, 
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a fervent movement is currently underway in provide highly versatile packages in 
Python - an open-source, high-level, dynamic programming language. Simulators 
such as Nengo [166], NEST [167], and Brian [168] provide varying degrees of 
control over network properties allowing users to model neurons and circuits 
at various levels and permitting detailed models on general purpose computing 
hardware [169].

6. Conclusion

The ubiquity of temporal structure within the brain has made identifying the 
exact neural processes an arduous task. Single- and multi-unit recordings, along 
with more recent imaging techniques, have revealed a myriad of neural activity 
profiles which may underlie temporal processing. Despite technical advancements, 
the complex interactions between neuromodulators, neuronal activity, and tim-
ing behavior has left our current understanding of how the brain tracks durations 
across multiple seconds decidedly unclear. A promising avenue for overcoming the 
limitation of current in vivo methods is the incorporation of practices form outside 
the field, such as integration of SNNs. Specifically, through observing how temporal 
information flows in biologically constrained networks as well as how systematic 
manipulation of individual neuromodulatory systems changes timing behavior.

Though ANNs are already a staple in other domains of neuroscience, their inte-
gration into the field of time and time perception has remained relatively rudimen-
tary with limited attention being paid to biological constraints. It is important to 
note that the use of these models is not for deciding the exact neural mechanism as 
that is not possible, but only for providing insight into potentially fruitful options. 
While ANNs relying heavily on algorithmic abstractions can proliferate theoretical 
models of timing, a prefect digital recreation of the brain exchanges one black-box 
for another. In this way the use of SNN for understanding time perception is neither 
truly top-down not bottom up, but best approximated as ‘middle-out’.

We are now at a time where widely available computational resources possess 
the power necessary for construction of SNNs that retain much of the complexity in 
biological neural networks. The ability to visualize activity profiles and connectiv-
ity patterns across thousands of modeled neurons within and across brain regions 
provides a level of analysis unavailable through current in vivo recording and imag-
ing techniques. Furthermore, simulations of potential avenues for future studies 
can assess the robustness of competing models in their ability to predict behavioral 
changes from in vivo modulation. Deeper integration of SNNs within the field of 
timing will provide a powerful resource in both understanding the plausibly neural 
underpinnings of timing within the brain.
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Chapter 7

Introducing a Novel Approach to
Study the Construction and
Function of Memory in Human
Beings: The Meshk Theory
Mohammad Seyedielmabad

Abstract

This study reviews the crucial role of memory in the human brain. For this
purpose, previous investigations and researches about the construction and func-
tion of memory were studied. The mechanism of the memory function was
reviewed, and crucial drivers for the working of the memory were indicated. Then
an applied memory model that could serve as a framework to study the memory
function was also introduced. Therefore, the memory unit was introduced as a basic
information structure. Also, a structured platform for the memory unit was deter-
mined for encoding the information and data in the brain. Then a pattern of
information coding was detected. Thus, a basic framework to study the memory
function was conceived. The results of this thesis pave the way for the discovery of a
basic algorithm to understand the memory function in the human. Also, this study
introduces a simple way to overcome Alzheimer disease (AD). This way can be
applied to research on the prevention and treatment of this disease.

Keywords: Meshk theory, triple drivers, memory model, memory unit,
memory coding strand, music therapy, Alzheimer disease

1. Introduction

Memory is one of the greatest unsolved secrets encountered by human genera-
tion. There are a lot of questions about memory. The memory remains a mystery
until now. A lot of scientists have studied memory, but there have been no certain
results until now. Only recently has it been determined that memory is a faculty of
the mind. They have discovered that information is encoded, stored, and retrieved
in a region which is called “hippocampus” [8]. Also, they have found that memory
is vital to experiences and related to the limbic system of the brain [8]. Models of
memory provide abstract representations of how memory is believed to work [3].
There are several models that have been proposed over the years by various psy-
chologists [3]. Controversy is involved as to whether several memory structures
exist [3]. For decades, neuroscientists have attempted to unravel how the
brain makes memories [22]. Atkinson-Shiffrin and working memory are the
different kinds of memory models that have been available in the last decades.
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The human brain is estimated to have approximately 86 billion neurons [12], and
each neuron has tens of thousands of synapses, leading to over 100 trillion synaptic
connections [2]. Concurrence monitoring of 100 trillion synaptic connections is an
impossible work. On top of this astronomical complexity, one needs to map each
connection or neuron to a given stimulus, yet possible numbers of stimuli that can
be used are infinite given the complex, ever-changing nature of the world we live in
[27]. This is one of the most difficult issues faced by neuroscientists. As such, the
unifying mathematical principle upon which evolution constructs the brain’s basic
wiring and computational logic represents one of the topmost difficult and unsolved
meta-problems in neuroscience [1, 9]. Because of that, it is required to introduce an
innovative approach to solve this problem. Recently, Dr. Tsien and his colleagues
introduced an approach about memory that is known to “thought experiment.”
They have done a lot of studies in the last decades about memory. It seems that this
approach has an important contribution in the area of neuroscience. One useful
concept in pursuing this line of reasoning is cell assembly, a term coined by Hebb
[11] to describe the supposed computational building block or computational prim-
itive in the brain. This notion has attracted keen interest, especially with emerging
large-scale recording techniques [6, 13, 15, 16, 18, 19, 25]. Hebbian cell assembly
was postulated to be comprised of a group of neurons with strong excitatory con-
nections that are formed after learning [13, 26]. Dr. Tsien and his colleagues focus
their research on the hippocampus, particularly a region called CA1, which is
important to forming memories of events and places in both people and rodents
[19, 24]. The hippocampus has four parts including CA1, CA2, CA3, and CA4, and
each section can be divided into nine sections. The study results of scientists add to
a growing body of work indicating that a linear flow of signals from one neuron to
another is not enough to explain how the brain represents perceptions and memo-
ries [17]. Rather the coordinated activity of large populations of neurons is needed
[19]. Human memory is a great performance organ. Also, the memory function is
due to its structure. While the architecture of memory detects, it is possible to
distinguish the memory function. This approach can be used to overcome neural
diseases especially Alzheimer disease (AD) according to music. Alzheimer disease is
a neurodegenerative disorder featuring gradually progressive cognitive and func-
tional deficits as well as behavioral changes [4]. More than 30 million people in the
world are suffering of Alzheimer disease (AD(. It is a deadly disease that resulted in
about 1.9 million deaths in 2015 and therefore is one of the most costly diseases. The
previous investigation showed that music has an effect on treatment of AD. It is
necessary to carry out a comprehensive study about music therapy of Alzheimer
disease. It is a simple and low-cost way that takes less time for prevention and
treatment of AD. Music is known as part of mathematics, and music composers
work in the field of mathematic rules. In mathematics, a circle has 360°. So, all
mathematical rules are in this field of degrees. Therefore, human memory works at
360° and connects to a complete loop. Barbad is one of the first ancient musicians in
Kurdistan. He compiled 360 types of music that were made in 200 AC. Kurdistan is
a strategic region that was separated to four parts between Iran, Iraq, Turkey, and
Syria after World War 1. Kurd is a term that concerns people in Kurdistan that are
related to the ancient Sumerians (10). Kurdistan is a historical place that had
governments in the ancient periods. One of them is known as Sassanian. In this
period, music was prevalent, and many people worked on mathematics, and so,
music was built on the structure and function of the human brain. According to this
approach, music shows the inherence of human memory. Hence, music can relieve
and improve the nerves and memory. The last studies that have been done by a lot
of scientist prove this claim. Some of these investigations led to the wonderful
discovery. It is required to carry out a comprehensive study about human memory
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for introducing a simple and applied way to overcome Alzheimer disease. The
objectives of this study respond to the following questions:

What is human memory?
What is the simple structure of memory in the human brain like?
How does human memory work?
More importantly, what is a simple way to overcome Alzheimer disease?

2. Methods

2.1 Triple drivers

In Einstein’s special theory of relativity, E = mc2, energy and mass are equivalent
and transmutable. It is possible to explain the relativity theory of Einstein for the
brain. According to Meshk theory, the memory structure and function of the
human brain depend on three main factors (Figure 1). The word Meshk is known in
the Sumerian and Kurdish languages to the human brain. These drivers provide the
inherence of human memory as shown below:

Water equivalence conducted by the water driver C2

Nunch resonance (NR) provided by the energy driver E
Substance (mass) proportion provided by the mass driver M

The human memory in the function circle is based on three basic drivers includ-
ing water, energy, and substances. Water is a driver for creation and operation of
memory. The quantum brain dynamic (QBD) theory claims that water comprises
70% of the brain and proposes that the electric dipoles of the water molecules
constitute a quantum field [34, 35]. Therefore, human memory works in a general
circle provided by water called “water equivalence (WE).” While memory neurons
are working, WE is an important factor for coding and encoding memory informa-
tion. The last studies have shown that conscious experience correlates not with the
number of neurons firing but with the synchrony of that firing [38]. Ears are likely
to be related to this process because the ear is connected to the brain’s equilibrium
process. For a long time, the oldest part of the brain was thought of as a “control

Figure 1.
The triple drivers that provide the inherence of human brain, the gray circles, blue circle, and green triangular
indicate the NR, SP, and WE, respectively.
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room” for human motions [42]. Now there is evidence that the cerebellum also
stores the temporal information about the music we are listening to, and then it
recalls this information while reproducing the music [42]. Moreover, an amazing
fact is that the cerebellum was discovered to be a center for emotions [42]. Also, the
water equivalence of the brain can lead to a powerful electromagnetic (EM) field in
the brain. The electromagnetic theories of consciousness propose that consciousness
can be understood as an electromagnetic phenomenon [36]. Electromagnetic field
theories of consciousness propose that consciousness results when a brain produces
an electromagnetic field with specific characteristics [36, 37].

In the conscious electromagnetic information (CEMI) theory, McFadden proposes
that the digital information from neurons is integrated to form a conscious electro-
magnetic information field in the brain [39]. Since the brain is a 300° Kelvin tissue
strongly associated with its environment [44], it is possible that the noise and warm
environment of the brain cause to transform the water crystals. This transformation,
resulting in internal equivalence of the brain, leads to the operation of intrinsic
memory. This process can form the basis of memory structure. Dr. Masaru Emoto
and colleagues (1996) studied water crystals [31, 32]. They proposed that human
consciousness has an effect on the molecular structure of water and therefore emo-
tional energies and vibrations could change the physical structure of water [33]. Brain
activities in human infants have shown evidence of existence of the intrinsic memory.
The high ability to learn a language in infants is an important evidence that proves
this claim. There is a fundamental potential in infants that enables them to advance
learning and behaviors. This is a fundamental difference between human beings and
others. There is a mechanism in the human brain in which “Nunch resonance (NR)”
enables the brain to accelerate and increase reactions to stimuli from the environ-
ment. According to Figure 2, each nunchaku includes two parts that are linked
together by a connection. A part of the nunchaku inputs the force and energy and
then transmits it to the other part by a connection. Owing to the resonance in this
process, the output force is muchmore than the input. It is what McFadden termed as
“amplifying the microscopic quantum effects.” In the CEMI theory, the synchronous
firing of neurons is argued to amplify the influence of the brain's electromagnetic
field fluctuations to a much greater extent than would be possible with the
unsynchronized firing of neurons [39]. Exciting recent research shows that nontrivial
quantum effects are present in biological systems and not just in spite of, but some-
times because of, the interaction with the noisy and warm environment [51]. Fur-
thermore, because the brain is a complex nonlinear system with high sensitivity to
small fluctuations, it is likely that it can amplify microscopic quantum effects [51]. It
is also possible that light photons derived from the eye are related to this process. In
general relativity (GR) and the equivalence principle developed by Einstein, it is
argued that black holes are regions of space where gravitational attraction is very
strong, because even light cannot escape. It is possible that there are spots with a
black energy attribute on the front lobe of the human brain. The mineral substances
in the function circle of the human brain are provided by a process called “substance
or mass proportion (SP).” It is likely that the heart and sense organs are important
parts for this process. The concurrence of the triple drivers is required for encoding
information in the memory. Triple driver compatibility is required to encoding

Figure 2.
A schematic of the nunchaku function.
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information in memory. According to Einstein’s special relativity theory, E = mc2,
energy and mass are equivalent and transmutable. In this equation, c2 is the determi-
native factor, and so it can be concluded that WE is the main driver for recalling
information in the brain.

2.2 Memory model

Most of the memory models presented in the past decades have been based on
time. The terms of memory, including short-term, long-term, and working mem-
ory, are defined by time. In Einstein’s special theory of relativity, E = mc2, time and
space are not invariable. According to the Meshk theory, space and time are variable
and parts of the inherent memory. Therefore, memory in the human brain is
indicated in a new model called “Manna model.” In this new model, memory is
divided into three parts fundamental, central, and peripheral. The base structure of
memory in this model is shown in Figure 3. Fundamental memory is inherent
intelligence. This can be called intrinsic memory and has existed since the advent of
mankind. This memory is very cryptic and so unknown so far. The spatial and
temporal information are parts of the memory nature. The ability of infants to swim
and learn a language is clearly an example that confirms the nature of fundamental
memory in human beings. All learning processes in the central memory of human
are connected to fundamental memory that is called “recalling of the internal
information.” The environmental information includes visual, auditory, and sen-
sory data. The eye, ear, and heart are the centers of receiving the visual, auditory,
and sensory information from the environment and transmitting them to the brain
(Figure 2). It is possible that sensitive organs send their signals to the heart and,
after coordination, the information is sent from the heart to the brain. The periph-
eral memory is specialized to receive environmental information from the eye, ear,
and heart and transmit them to the central memory. At the start, external informa-
tion is transferred from the peripheral to the central memory. In the process of
being transferred, some of the data is removed, and some remains. By coupling of
blocks in the fundamental to the central memory, internal information is retrieved.
The “coupling process” is a turning point in reminding of internal information from
the fundamental memory. The water equivalence (WE) is an important factor for
operating the coupling process. The coupling process can be the starting point for
neural momentum in the brain neural circuit. Therefore, in human memory, it is
necessary to receive information from the auditory, visual, and sensory systems for
making memory coding unit. At the same time, the information in the fundamental
and central memory is also binded as binary codes. The coupling process leads to the

Figure 3.
The Manna model, the gray circles, blue circle, and green triangular indicate the peripheral, central, and the
fundamental memories, respectively.
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Figure 2.
A schematic of the nunchaku function.
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information in memory. According to Einstein’s special relativity theory, E = mc2,
energy and mass are equivalent and transmutable. In this equation, c2 is the determi-
native factor, and so it can be concluded that WE is the main driver for recalling
information in the brain.
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time. The terms of memory, including short-term, long-term, and working mem-
ory, are defined by time. In Einstein’s special theory of relativity, E = mc2, time and
space are not invariable. According to the Meshk theory, space and time are variable
and parts of the inherent memory. Therefore, memory in the human brain is
indicated in a new model called “Manna model.” In this new model, memory is
divided into three parts fundamental, central, and peripheral. The base structure of
memory in this model is shown in Figure 3. Fundamental memory is inherent
intelligence. This can be called intrinsic memory and has existed since the advent of
mankind. This memory is very cryptic and so unknown so far. The spatial and
temporal information are parts of the memory nature. The ability of infants to swim
and learn a language is clearly an example that confirms the nature of fundamental
memory in human beings. All learning processes in the central memory of human
are connected to fundamental memory that is called “recalling of the internal
information.” The environmental information includes visual, auditory, and sen-
sory data. The eye, ear, and heart are the centers of receiving the visual, auditory,
and sensory information from the environment and transmitting them to the brain
(Figure 2). It is possible that sensitive organs send their signals to the heart and,
after coordination, the information is sent from the heart to the brain. The periph-
eral memory is specialized to receive environmental information from the eye, ear,
and heart and transmit them to the central memory. At the start, external informa-
tion is transferred from the peripheral to the central memory. In the process of
being transferred, some of the data is removed, and some remains. By coupling of
blocks in the fundamental to the central memory, internal information is retrieved.
The “coupling process” is a turning point in reminding of internal information from
the fundamental memory. The water equivalence (WE) is an important factor for
operating the coupling process. The coupling process can be the starting point for
neural momentum in the brain neural circuit. Therefore, in human memory, it is
necessary to receive information from the auditory, visual, and sensory systems for
making memory coding unit. At the same time, the information in the fundamental
and central memory is also binded as binary codes. The coupling process leads to the

Figure 3.
The Manna model, the gray circles, blue circle, and green triangular indicate the peripheral, central, and the
fundamental memories, respectively.
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creation of this important structure. This is what Dr. Tsien and colleagues termed as
“neural cliques.” They discovered that these overall network-level patterns are
generated by distinct subsets of neural populations or neural cliques [19].

According to the theory of connectivity by Dr. Tsien, a clique is a group of
neurons that respond similarly to a select event and thus operate collectively as a
robust coding unit [14, 19–21, 23]. Table 1 indicates each event as three blocks are
active and the others are inactive. The investigators represented clique activity as a
string of binary codes that revealed details of the event an animal experienced [19].
In the string fragments shown here, 1 means a particular clique is active, and 0
signifies inactivity [19]. The idea of quantum coherent waves in the neuronal
network is derived from Frohlich [35]. He viewed these waves as a means by which
order could be maintained in living systems and argued that the neuronal network
could support the long-range correlation of dipoles [35]. Repeated stimulation in a
continuous and rhythmic way is a critical factor in operating the coupling process.
As more and more memory blocks are turned on and active, more processes of
recalling the internal information are performed. Therefore, more information and
data are extracted from the fundamental memory. In the human brain, there are
millions of memory blocks that are not used during the lifetime. Thus, people have
entire blocks in fundamental memory but only turn on some of the blocks in their
lifetime (Table 2). The active blocks make up the central memory in the human
brain. The recalling of internal information and data from the fundamental memory
is different about people. This process is different from elementary to advanced
levels. It is dependent on the quality and the quantity function of coupling process
in the memory. In mathematics, the entire angle of a circle is 360 grades (360°).
The human brain works in a 360° field and therefore in two mutual directions
(Figure 4). The Manna alphabet framework is interestingly conformed to the
algorithm of the human brain structure (Table 3). This alphabet could be the best
basic format to receive and transmit data and information by the human. Manna is
a term that concerns people to the south of Urmia Lake in Kurdistan [7, 29]. There
are a lot of mysteries about the Manna that has not been discovered until now. The

A 1 1 0 0 1

B 1 1 0 1 0

Table 1.
The binary codes, (A) earthquake and (B) elevator drop.

Table 2.
The building blocks of fundamental memory in the human brain. Black blocks are the memory in use, and
white blocks are inactive memory.
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only thing that has been distinguished is that the people of that age were blessed
with great intelligence. They developed music, agriculture, animal husbandry,
industry, medicine, and astronomy. According to ancient literature, Sumerians and
Mannea had an advanced alphabet with 37 and 36 letters, respectively [10, 30]. The
Mannea were an ancient ethnic group, and a rich trove of literature written by them
exists [28, 5]. This literature and books covered various topics including music,
agriculture, astronomy, medicine, industry, and more importantly water engineer-
ing. The Manna alphabet included four partitions with a specific algorithm, and
each part had nine letters. This algorithm made a basic structure for humans to
communicate and understand the relation between the people from the ancient
period until now. This alphabet can be a suitable pattern for decoding memory
architecture in humans.

Figure 4.
The circles that indicate the memory coding directions, (A) base direction of the memory coding,
(B) complementary direction of the memory coding, and (C) entire directions of the memory coding.

1 2 3 4 5 6 7 8 9

A i U ka ku xa ga gu ca A (a1, a2, a3)

ja ji da di du ta tu Ɵa ca B (b1, b2, b3)

na nu pa fa ba ma mi mu ya C (c1, c2, c3)

ra ri ia va vi sa _�S
a za ha D (d1, d2, d3)

Table 3.
The structure of Manna alphabet between 600 and 800 BC.
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3. Results

3.1 Memory unit

There is a need for a paradigm shift from behaviorist stimulus-response concepts
toward notions of predictive coding in self-organizing recurrent networks with
high-dimensional dynamics [45, 47]. Neuronal networks with nonlinear neurons
and densely connected feedback loops can generate dynamics that is more complex,
variable, and rich than expected [48–50]. Therefore, the two structures of the
hippocampus located in the limbic system can operate in reciprocal connection to
the coding of the information in the brain. According to the Meshk theory, the
information and data received from the environment encode in a structure is called
“memory unit.” Each memory unit is actually a perception unit in the human brain.
It is necessary to operate one or a few perception units to figure out the problems
and issues. According to the Manna model features described in the previous sec-
tions, each memory unit includes three parts: visual, auditory, and sensory. There-
fore, each perception unit makes three functional codes (Figure 5). At the same
time, the central and fundamental codes are binded together by coupling process to
create the binary codes described in the previous section. For an individual event,
three sections in the memory unit have to work, and each section has a functional
code. It is likely to operate numbers of the memory units for an individual event.
This is dependent on the quality and quantity of internal information that might be
extracted from the fundamental memory. Locating consciousness in the brain’s
electromagnetic (EM) field, rather than the neurons, has the advantage of neatly
accounting for how information located in millions of neurons scattered through
the brain can be unified into a single consciousness. In this way, EM field

Figure 5.
The coupling of memory blocks in the human brain. Plates F, C, and P show the fundamental, central, and
peripheral memories, respectively.
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consciousness can be considered to be “joined-up information” [41]. This is an
important part of the issue that could help scientist to solve the brain puzzle. When
neurons fire together, their EM fields generate stronger EM field disturbances [40].
Therefore, synchronous neuron firing will tend to have a larger impact on the
brain’s EM field (and thereby consciousness) than the firing of individual neurons
[41]. The synchronous neuron firing is like a symphony orchestra or philharmonic
orchestra with a lot of musical instruments. The harmony of playing music causes to
create of a strong and impressive conclusion. Without each part of the symphony
orchestra, the music is imperfect. The generation by synchronous firing is not the
only important characteristic of conscious electromagnetic fields as in Pockett’s
original theory; spatial pattern is the defining feature of a conscious field [36]. In a
philharmonic orchestra, there is an accurate spatial and temporal pattern that is well
organized. It can lead to creating of a memorable artistic masterpiece. In Meshk’s
theory, spatial and temporal patterns are part of the intrinsic memory features. The
CA1 region of the hippocampus receives inputs from many brain regions and
sensory systems, and this feature most likely influences what type of information a
given clique encodes [22].

3.2 Memory coding strand

The nervous system can be seen as a nested hierarchy of nonlinear complex
networks of molecules, cells, microcircuits, and brain regions [46, 51]. The Manna
alphabet has a simple structure for understanding the brain. It is an appropriate
programming system for the human brain and could be the first one designed by
humans. In this way, the alphabet conforms to the structure of information coding
in human memory. Therefore, in the coding process, signals received by the brain
from the environment translate into special characters. These characters are
arranged based on the external information received from the environment. A
recorder strand of information is divided into four parts, and each part includes a
memory unit (three memory codes) (Figure 6). The two strands of memory, akin
to strands of deoxyribonucleic acid (DNA), run in reciprocal connection and are
thus parallel. The two strands of memory are coupled together for making a crucial
structure. The base strand is made in the fundamental memory, and the couple one
is in the central memory. These two strands make memory coding strand that
enables the brain to advance learning and behaviors in humans. In this structure,
information processing is done in a simple way by the human brain. Therefore, it
could possibly be a fast way to distinguish problems and issues. Figure 7 shows the
overall architecture and human memory function in the Manna model. According
to this approach, the reminder of the internal information process is carried out in
five general stages; A and B have potential levels, and D and E are active levels of

Figure 6.
The pattern of human memory coding. A, B, C, and D are the memory units.
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the memory. In general, in detail of this model, eight levels of human memory
function have been deciphered. Also, the basic algorithm for the memory of the
human is an exponential function. This function is transcendental and indicates the
features of human memory coding. The function is as follows:

N ¼ ei�1 (1)

where N is the number of memory units connected in different possible ways; e
is the Napier’s constant; i is the information they are receiving; and 1 is just part of
the math that enables you to account for all possibilities.

Figure 7.
The functional levels of Manna model.
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4. Conclusion

The fundamental memory in animals is alternatively an ability that is known to
instinct. In comparison to the fundamental memory in human, the animal instinct is
primitive. It means that animal species have inherent intelligence, but the quality
and quantity function of coding the information is different from the human. While
the fundamental memory function is known, most problems and ambiguities about
memory including short-term, long-term, working memory, and learning process
are being answered. For instance, in the Manna model, learning is an activity that is
described as a reminder of the internal information from intrinsic memory to
central memory. It is said that all of the information and data are in the atmosphere
and we have to discover them, but it is likely that internal information is in the
fundamental memory. While the learning process is a reminder of information from
the fundamental memory, it is required to make a connection between the funda-
mental and central memory. This connection is made by the coupling process. This
process creates memory units and, therefore, leads to the formation of a memory
coding strand. Indeed, in the Manna model, the memory unit is a unit of reminder
information. In this model, the coupling process is a turning point in the neural
circuit and can be the basis of the memory function. Also, like to the structure of
Deoxyribonucleic acid (DNA), memory is formed to a spiral train structure.
According to general relativity of Einstein, the observed gravitational attraction
between masse results from the warping of space and time by those masses. Human
memory is made of U shape components that convoluted together. The curvature in
the U shape components intensively increases efficiency in the structure and func-
tion of memory. The two strands of memory are coupled together for making an
applied and unique architecture. In human beings, this architecture is working for
advance learning and behaviors. The Manna model is a simple and applied memory
model that clearly explains the construction and function of memory. This model
provides a functional framework to distinguish the memory function and therefore
discover a basic algorithm for memory in the human brain. Consequently, using an
applied and simple model, scientists can find a simple solution to overcome the
brain and mind disorders, especially for Alzheimer disease (AD).

One of the important solutions to Alzheimer disease is the music therapy that
scientists are investigating about. The music utilizes a large variety of basic brain
functions; it is closely tied to emotion and seems to be advantageous to survival in
line with Darwinian natural selection [43]. It is sometimes claimed that swimming
is the best exercise one can do since it requires one to work nearly every group of
muscles [43]. The music can be thought of as the brain’s analog to swimming [43].
It’s a most basic and passive form; it exercises timing functions, matches patterns,
and makes predictions [43]. Like swimming as the best exercise to recover and
retrieve body muscles, music has the ability to retrieve and remind the brain’s
internal information. It is necessary to design a technique for music programming
in specific time periods. This technique enforces the brain to manage the funda-
mental memory for the recall of information without using drugs and surgeries.
According to the Meshk’s theory, a simple technique dubbed as “special music
programming” is organized to retrieve memory and mind. This technique is made
up of two sections, including harmonic music composes and repetitive courses.
Synchronicity of body muscle movement is a basic principle in swimming. Similarly
for a particular person, the music harmony and scheduling of repetition time in this
technique are key factors that have been ignored in previous research on music
therapy of the mind. It is possible to dub these important principles as spatial and
temporal equivalence (for a particular person). The repetition of harmonic music in
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It’s a most basic and passive form; it exercises timing functions, matches patterns,
and makes predictions [43]. Like swimming as the best exercise to recover and
retrieve body muscles, music has the ability to retrieve and remind the brain’s
internal information. It is necessary to design a technique for music programming
in specific time periods. This technique enforces the brain to manage the funda-
mental memory for the recall of information without using drugs and surgeries.
According to the Meshk’s theory, a simple technique dubbed as “special music
programming” is organized to retrieve memory and mind. This technique is made
up of two sections, including harmonic music composes and repetitive courses.
Synchronicity of body muscle movement is a basic principle in swimming. Similarly
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the certain time periods is a turning point in stimulating the mind for recalling
information in the Alzheimer disease. This simple technique is divided into 72
sections (36 pairs) each section having special composes and time. Each pair can be
performed in a day (morning and one in the evening). Each period is 40 days,
because the day after 9 days of the program, there is 1 day to rest the mind.
Therefore, there are nine repetition periods in the year. In general, the program
includes 324 working days and 36 resting days in the year. This simple technique
depends on the architecture and functions of human memory and thus is remark-
able to retrieve memory in Alzheimer patients. Also, it is applied to prevent the
disease for people in different ages. The Mozart and Beethoven symphonies can be
applied in this way, because these symphonies are compatible with the structure
and function of human memory. The Kurdish and Iranian traditional music
that was named Dastgah, including Mahur, Homayun, Nava, Segah, Cahargah,
Rast-Panjgah, and Sur, can be very appealing. According to the Meshk theory, this
adaptation is logical and it is not casual. The influence of music and symphonies on
the mind has been investigated in the past decades, but is not organized in repeating
certain courses (for a special person). That is why previous investigations on the
music therapy of the mind have not succeeded and have remained as a cryptic
problem up to now. Crucial points of this study can be applied in research about the
music therapy of the mind and other investigations.
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that was named Dastgah, including Mahur, Homayun, Nava, Segah, Cahargah,
Rast-Panjgah, and Sur, can be very appealing. According to the Meshk theory, this
adaptation is logical and it is not casual. The influence of music and symphonies on
the mind has been investigated in the past decades, but is not organized in repeating
certain courses (for a special person). That is why previous investigations on the
music therapy of the mind have not succeeded and have remained as a cryptic
problem up to now. Crucial points of this study can be applied in research about the
music therapy of the mind and other investigations.
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