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Preface 

Polycrystalline structures are conglomerates of a large number of crystals irregularly 
situated, yet bound to each other strongly enough to behave as a whole. As the size and
the shape of these crystals are irregular too, the latter are called grains or crystallites. The
boundary surfaces connecting the grains have crystal structures that are not identical to
those of the adjacent crystallites. They are distortions, which allow a smooth transition
between the structures within the grains in contact. The mosaic of these  borderline
regions represents an extended block of two dimensional imperfections. 

A mechanical loading of these materials leads to deformations. With small loadings, 
the deformation is elastic, slip and elastic (Young’s) modulus being its characteristics.
The Young’s modulus is an important parameter of the polycrystal materials 
determining its resistance to deformation. 

For higher loadings, the deformation becomes plastic. Theoretical studies,
experimental data, as well as practical observations  show that this type of
deformation involves slippage in the material and active participation of its two-
dimensional imperfections. With lower temperatures (less than 0.4 Tm for metals and 
0.6  Tm  for alloys, Tm  denoting the melting point) slippage does not occur uniformly,
but remains confined to smaller regions, which appear successively. At higher 
temperatures, the critical break tension drops down. Thus, smaller loadings prove
sufficient to bring about deformation effects, such as dislocations slip, twinning,
sliding of grain boundaries, etc.

Stress level, stress rate, and temperature are the parameters characterizing the plastic 
deformation  of polycrystalline materials.

In these materials, the macroscopic value of their parameters is a mean value, resulting 
from taking the average over domains comprising a considerable number of grains
with usually different orientations. In this way,  they turn out isotropic as compared to 
the monocrystals, in which sharp anisotropy is observed. In special cases, the 
orientations of the grains show more or less preferred directions, leading to
anisotropy. To the best of my knowledge, one of them – polycrystalline tungsten, is
dealt with for the first time in specialized literature by Dr. P. V. Galptshyan in the
chapter: ”Strength of Polycrystalline Materials”.
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VIII Preface 
 

The book “Polycrystalline Materials” presents theoretical and practical investigations 
of some polycrystals materials. 

Section I “Plastic Deformation, Strength and Grain-Scale Approaches to Polycrystals” 
comprises the following three chapters: 

“Scale-Bridging Modelling of Plastic Deformation and Damage Initiation in Polycrystals” by 
Dr. Anxin Ma and Prof. Alexander Hartmaier. 

This chapter reviews the current state of modelling the phenomenon of plastic 
deformation in its various aspects. The authors’ analysis involves the macro-, meso-, 
micro-, and atomic scales using the finite element method, representative volume 
element approaches, the dislocation dynamics method, and molecular dynamics 
simulation. Steels have been used to generate realistic microstructures for all 
multiphase polycrystalline materials studied. Possible approaches in order to bridge 
the different length scales have been discussed and successful multiscale modelling 
applications reported. On the basis of recent constitutive models provided by 
continuum mechanics, the authors have elaborated a number of numerical procedures 
aiming at the integration of results obtained for several length scales. In this way, they 
were able to build representative volume element (RVE) models for the mechanical 
behavior of materials, which are heterogeneous, with respect to the nature of grains 
and phases they are made of. Once a RVE for a given microstructure is constructed 
and the critical deformation and damage mechanisms are included into the 
constitutive relations, this RVE can be applied to calculate stress-strain curves and 
other mechanical data. The advantage of this approach is that the effects of grain size 
and strength of the grain boundaries on the macroscopic mechanical response of a 
material can be predicted. 

“Strength of a Polycrystalline Material” by Prof. P. A.Galptshyan 

It is shown that due to the greater concentration of stresses in it, the polycrystalline 
material has a strength less than that of a monocrystal made of the same substance. 
Hence, in order to enhance its strength, one has to reduce the stresses in the material. 
A remarkable case is polycrystalline tungsten, whose elastic anisotropy factor proves 
zero. This kind of tungsten is known to be a most durable substance, more so than the 
tungsten monocrystals and even the diamond. For example, the ultimate strength 
under tension of unanealed wires of polycrystalline tungsten  is in the range of 1800 
MPa to 4150 Mpa, depending on the diameter of the wire. For diamond monocrystals, 
it equals 1800 MPa at 200 C. It is worth noting that a correspondence has been found 
for polycrystalline metals between their ultimate strength and their modulus of 
elasticity: the two parameters are changing in the same direction. 

“Grain-Scale Modelling Approaches for Polycrystalline Aggregates” by Dr. I. Simonovski 
and Dr. I. Cizelj   

It has been shown that polycrystalline aggregates their microstructure, which plays an 
important role in the evolution of stresses and strains, and in the development of 
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damage processes, such as small cracks in the microstructure and fatigue. Damage 
initialization and evolution are directly influenced by the locally anisotropic behavior 
of the microstructure, as determined by the combination of random grain shapes and 
sizes, different crystallographic orientations, inclusions, voids, and other 
microstructural features. For the bulk of a grain, constitutive models assuming pure 
anisotropic elasticity, as well as anisotropic elasticity in combination with crystal 
plasticity have been used. Analytical models for grain geometry, in view of calculating 
the properties of crystalline aggregates, involve 2D and 3D Voronoi tesselations, 
whereas the method of X-ray diffraction contrast tomography was utilized to measure 
these properties and make a 3D characterization of the grains. 

Several cases of  3D Voronoi  tesselations, and two cases  of stainless steel wire have 
been treated. Grain boundaries were explicitly modeled, using the cohesive zone 
approach, with finite elements of zero physical thickness. Initialization and early 
development of grain boundary damage, with respect to stainless steel, were traced 
numerically for several constitutive laws. Differences obtained in the results are small 
when the approach of anisotropic elasticity is compared to combining the latter with 
crystal plasticity, except for the computation time required-  more than two times 
longer for the second approach. 

Section II  “Methods of Synthesis, Structural Properties Characterization, and 
Applications of Some Polycrystalline Materials” includes the following four 
chapters: 

“Nanocrystalline NASICON Materials - Structure and Electrical Properties” by Dr. 
Lakshmi Vijayan and Prof. G. Govindaraj. 

The chapter deals with  an important class of solid electrolytes – sodium (NA) super 
(S)-ionic (I) conductors (CON):  Ax By (PO4 )3 , where A denotes an alkali metal ion and 
B denotes a multivalent metal ion. They are widely tested in energy applications, e.g. 
electric vehicles,  and having the advantage of high ionic conductivity together with 
the stability of the phosphate units. The authors have investigated  the correlation 
between ionic conduction and phase symmetry for a family of NASICONs, comprising 
LiTi2(PO4)3  and  A3M2(PO4)3 where  A = Li, Na  and M = Cr, Fe) . Structural 
characterization was obtained by spectroscopic and diffraction techniques, while 
mobile ions characterization proceeded through impedance spectra. Application of the 
materials studied  has been discussed as well.  

“Structural Characterization of New Perovskites” by Dr. A. D. Lozano – Gorrin.  

The author discusses some general features of the perovskite-type materials, including 
relatively new methods of their preparation (solution combustion, sonochemical 
procedures, microwave assisted synthesis) as well as characterization of their structure 
and physical properties by a variety of diffraction techniques (X-rays-, electron- and 
neutron diffraction). 
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“Controlled Crystallization of Isotactic Polypropylene Based on  Alpha/Beta Compounded 
Nucleating agents - From Theory to Practice”  by Prof. Zhong Xin and Dr.Yaoqi Shi. 

Isotactic polypropylene (iPP), one of the most important thermoplastic polymers, 
exhibits very interesting polymorphic behavior. Its different crystalline forms have 
different optical and mechanical properties. In this respect, alpha/beta compounded 
nucleating agents for polypropylene attract more and more attention. 

Three kinds of well studied alpha/beta compounded NAs (phosphate/amide, 
sorbitol/amide, and phosphate/carboxylate) have been reviewed by discussing their 
influence on the crystallization kinetics, crystallization morphologies, and mechanical 
properties of iPP. The results show that these three NAs are able to not only increase 
the crystallization temperature of iPP, but also to shorten its crystallization half-time. 
Consequently, they are able to considerably reduce the molding cycle time. It has also 
been found that the type of nucleation of the polymer could be changed, while the 
geometry of its crystal growth remains the same. 

“Influence of Irradiation on Mechanical Properties of Materials” by Prof. V. I. Krasilnikov. 

This chapter discusses substantial changes in the mechanical properties of materials, 
radiation embrittlement, and hardening being two of its most common and important 
effects. Both of them depend on the temperature of the irradiated material. 

The author has proposed a model, based on the interaction of vacancies with 
interstitial barriers in order, to explain and investigate the saturation of the 
dependence of yield strength on radiation dosage.  In the framework of this model, 
equations describing the evolution of barrier densities, as well as yield strength have 
been obtained in analytical form. It has been shown that with increasing the intensity 
of the barrier recombination processes, the yield strength of the irradiated material 
decreases, the dependence being nonlinear. In the case of radiation hardening, the 
model proves valid for both low and large doses. 

Another model quantitively describing the dependence of the yield strength of 
irradiated materials on their temperature has also been introduced and applied. The 
results show its usefulness in dealing with the processes of plastic deformation under 
irradiation. Some implications about materials used in the construction of nuclear 
reactors have been discussed. 

The research has been carried out to increase the lifetime of III and IV generation 
reactors and practical ITER-materials. 

 
Prof. D.Sc.Eng. Zachari Zachariev  

Institute of Polymers  
Bulgarian Academy of Sciences, Sofia 

Bulgaria 
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Scale Bridging Modeling of Plastic Deformation
and Damage Initiation in Polycrystals

Anxin Ma and Alexander Hartmaier
Interdisciplinary Centre for Advanced Materials Simulation, Ruhr-University Bochum

Germany

1. Introduction

Plastic deformation of polycrystalline materials includes dislocation slip, twinning, grain
boundary sliding and eigenstrain produced by phase transformations and diffusion. These
mechanisms are often alternative and competing in different loading conditions described by
stress level, strain rate and temperature. Modelling of plasticity in polycrystalline materials
has a clear multiscale character, such that plastic deformation has been widely studied on
the macro-scale by the finite element methods, on the meso-scale by representative volume
element approaches, on the micro-scale by dislocation dynamics methods and on the atomic
scale by molecular dynamics simulations. Advancement and further improvement of the
reliability of macro-scale constitutive models is expected to originate from developments at
microstructural or even smaller length scales by transfering the observed mechanisms to the
macro-scale in a suited manner. Currently efficient modelling tools have been developed
for different length scales and there still exists a challenge in passing relevant information
between models on different scales. This chapter aims at overviewing the current stage
of modelling tools at different length scales, discussing the possible approaches to bridge
different length scales, and reporting successful multiscale modelling applications.

Fig. 1. Multiphase polycrystalline RVE (right) with 90% matrix and 10% precipitate. The
grain size has a normal distribution (middle) and the [111] polfigure (left) shows a random
texture.
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2. Generating realistic material microstructures

The current advanced high strength steels (AHSS) such as dual phase steels, transformation
induced plasticity (TRIP) steels, twin induced plasticity (TWIP) steels and martensitic
steels are all multiphase polycrystalline materials. In order to model the the macroscopic
mechanical properties such as yield stress, work hardening rate and elongation to fracture,
one has to build a representative volume element (RVE) for each macroscale material point
and investigate the local deformation of each material point within the RVE, and then
make a volume average. In this micro-macro-transition procedure, in order to reduce the
computational costs the statistically similar representative volume elements (SSRVEs) have
been developed to replace real microstructures from metallurgical images by Schröder et al.
(2010).

Considering the real microstructure of multiphase materials, during the representative
volume element generation one should consider grain shape distribution, crystalline
orientation distribution, grain boundary misorientation angle distribution and volume
fraction of different phases. Figure 1 is an example of the RVE we have generated for TRIP
steels where the Voronoi tessellation algorithm has been used.

Recent studies (Lu et al., 2009; 2004) show bulk specimens comprising nanometer sized
grains with embedded lamella with coherent, thermal and mechanical stable twin boundaries
exhibiting high strength and considerable ductility at the same time. These materials
have higher loading rate sensitivity, better tolerance to fatigue crack initiation, and greater
resistance to deformation. Under this condition, the RVE with nanometer sized twin lamella
inside nanometer sized twin lamella inside nanometer sized grains will help us to understand
existing material behavior and design new materials.

Assume two orientations QI and QII have the twin relationship in (1, 1, 1) habit plane along
[1, 1,−2] twinning direction. For any vector V, these two tensors will map as vI = QIV
and vII = QIIV. The twin relationship between vI and vII is easier to see in the local twin
coordinate system with x�//[1, 1,−2] and z�//[1, 1, 1] rather than in the global coordinate
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Because v� is a arbitrary vector in the [x�, y�, z�] coordinate system equation 3 will reduce to

RLQIRT
L = RM

(
RLQIIRT

L

)
(4)

and we find the relationship between QI and QII as

QII = RT
LR-1

MRLQI. (5)

The crystal orientation QI has been assigned to the material point at the centre of the
individual grain with coordinate

[
x�0, y�

0, z�0
]
. The orientation QII will be assigned to the

twinned material point with coordinate
[
x�1, y�

1, z�1
]

when the distance between this point and
the grain center along the habit plane normal direction and the lamella thickness d satisfy

[
(2k − 1)− 1

2

]
· d <

∣∣z�1 − z�0
∣∣ ≤

[
2k − 1
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· d with k = 1, 2, 3, ... (6)

Otherwise orientation QI will be assigned to this material point.

Fig. 2. The multiplicative decomposition of the deformation gradient where the plastic
deformation is accommodated by dislocation slip.

3. Constitutive models based on continuum mechanics

3.1 Kinematics

For large strains the elastic and plastic deformation can be separated consistently. We follow
the well-known multiplicative decomposition proposed by Lee (1969) (see Figure 2) of the
deformation gradient tensor F

F =
∂x
∂X

=
∂x
∂x̃

∂x̃
∂X

= FeFp (7)

where Fe is the elastic part comprising the stretch and rotation of the lattice, and Fp
corresponds to the plastic deformation. The lattice rotation Re and stretch Ue are included
in the mapping Fe. They can be calculated by the polar decomposition Fe = ReUe, i.e., the
texture evolution is included in this part of the deformation. Furthermore, two rate equations
can be derived for the elastic and the plastic deformation gradients as

Ḟe = LFe − FeLp (8)

Ḟp = LpFp (9)
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where L = ḞF−1 and Lp = ḞpF−1
p are the total and the plastic velocity gradients defined in

the current and the unloaded configuration respectively. Because the stress produced by the
elastic deformation can supply driving forces for dislocation slip, twinning formation and
phase transformation which can accommodate the plastic deformation, Fe and Fp are not
independent. If the total deformation process is known, the elastic and plastic deformation
evolutions can be determined through solving equations 7,8 and 9.

When the eigen-deformation Ft of phase transformation and the plastic deformation Fp of
dislocation slip coexist, the multiply decomposition (see Figure 3) should be reformulated as
the following

F =
∂x
∂x̃�

∂x̃�
∂x̃

∂x̃
∂X

= FeFtFp. (10)

The evolution of Ft is controlled by the transformed volume fraction fα because the
eigen-deformation H̃α

t of each transformation system with unit volume fraction is a constant
tensor

Ft = I +
NT

∑
α=1

f αH̃α
t (11)

Ḟt =
NT

∑
α=1

ḟ αH̃α
t . (12)

where NT is the total number of transformation system.

Fig. 3. The multiplicative decomposition of the deformation gradient when dislocation slip
and phase transformation coexist.

3.2 The elastic deformation

For the dislocation slip case, the plastic deformation Fp will not change the lattice orientation,
i.e., we can use a constant stiffness tensor K̃0 for the stress calculations and define the elastic
law in the unloaded configuration. By defining the second Piola-Kirchhoff stress tensor S̃ in
the unloaded configuration and its work conjugated elastic Green strain tensor Ẽ, the elastic
law is derived as

S̃ = K̃0Ẽ (13)

with
Ẽ =

1
2

(
FT

e Fe − I
)

(14)

where I is the second order unity tensor. When the variational principle of the FEM is
formulated in the reference or current configuration, the second Piola-Kirchhoff stress S or
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the Cauchy stress σ amount to
S = F−1

p
�S F−T

p (15)

σ =
1
J

Fe �S FT
e (16)

where J = det(F) = det(Fe), which means the isochoric plastic deformation is assumed, i.e.,
the volume change is always purely elastic.

In a polycrystal the different grains have different initial orientations. Therefore, in the global
coordinate system, different stiffness tensors, slip plane normals and slip directions should be
specified for every crystal. In order to use only one set of data, a virtual deformation step is
introduced before the calculation in the following form: Fp0 is set as the initial value for Fp.
By choosing Fe0 to satisfy

Fe0 Fp0 = I, Fe0, Fp0 ∈ Orth. (17)

the starting value for F amounts to I as desired. If one adopts the Bunge Euler angle (ϕ1, Φ, ϕ2)
to define the crystal orientation, the matrix of the elastic deformation gradient amounts to

Fe0 =

⎡
⎣

cos(ϕ2) − sin(ϕ2) 0
sin(ϕ2) cos(ϕ2) 0

0 0 1

⎤
⎦
⎡
⎣

1 0 0
0 cos(Φ) − sin(Φ)
0 sin(Φ) cos(Φ)

⎤
⎦
⎡
⎣

cos(ϕ1) − sin(ϕ1) 0
sin(ϕ1) cos(ϕ1) 0

0 0 1

⎤
⎦ .

3.3 The dislocation slip based plastic deformation

The plastic deformation mechanism discussed here is the slip mechanism where
dislocations slip in certain crystallographic planes along certain crystallographic directions
to accommodate shape changes of the crystal. This is the most common mechanism in
conventional metal forming processes.

The concept for describing displacement fields around dislocations in crystals was developed
mathematically by Volterra and used for calculating elastic deformation fields by Orowan
and Taylor in 1934 (Hirth & Lothe, 1992). Dislocations are one dimensional lattice defects
which can not begin or end inside a crystal, but must intersect a free surface, form a closed
loop or make junctions with other dislocations. Due to energetic reasons there is a strong
tendency for dislocations to assume a minimum Burgers vector, and to slide in the planes
with maximum interplanar separation and along the most densely packed directions. Under
the applied stress, the lattice deforms elastically, until stretched bonds near the dislocation
core break and new bonds form. The dislocation moves step by step by one Burgers vector. It
is the dislocation slip mechanism that can explain why the actually observed strength of most
crystalline materials is between one to four orders of magnitude smaller than the intrinsic or
theoretical strength required for breaking the atom bonds without the presence of dislocations.

In order to set the connection between the continuum variables and the process of dislocation
slip, we have to determine the shear amount of individual slip systems. The slip systems are
mathematically described by the Schmid tensor �Mα = �dα ⊗ �nα where �dα = b/b expresses the
slip direction, which is parallel to the Burgers vector b, but normalised, and �nα, the slip plane
normal with respect to the undistorted configuration. Through calculating the line vector
�lα = �dα × �nα we can define one local coordinate system for slip system α as [�lα, �dα, �nα], which
is useful in the later GND calculations.

7Scale Bridging Modeling of Plastic Deformation and Damage Initiation in Polycrystals



4 Will-be-set-by-IN-TECH

where L = ḞF−1 and Lp = ḞpF−1
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is useful in the later GND calculations.
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For the FCC crystal structure, the close-packed planes {111} and close-packed directions
�110� form 12 slip systems. For the BCC crystal structure, the pencil glide phenomenon is
observed, which resembles slip in a fixed direction on apparently random planes. In literature,
experimental studies have shown that for BCC crystals the slip direction is along �111�, and
three groups of slip planes exist, including {110},{112} and the less common {123} planes.
Totally there are 48 slip systems for BCC crystals. Therefore, for FCC and BCC crystals it
is possible to supply five independent slip systems to accommodate any arbitrary external
plastic deformation, and in the middle temperature range the slip is the main mechanism for
plastic deformations. For the HCP crystal, the slip system number is dependent on the axis
ratio of the HCP unit cell. When this ratio assumes values in a certain range as discussed by
Gottstein (2004), only two independent slip systems exist, and it is impossible to accommodate
a arbitrary deformation by slip steps. As a result, mechanical twins appear during plastic
deformation.

Among all of the dislocations in one slip system, only the mobile dislocations can produce
plastic deformation, and their speed can be determined by the forces acting on them. In
general, the driving force is related to external loads, short range isotropic resistance of
dislocation interactions and long range back stress of dislocation pile-ups and lattice frictions.
The widely-adopted constitutive assumption for crystal plasticity reads

Lp =
NS

∑
α=1

γ̇αM̃α , Ḟp =
NS

∑
α=1

γ̇αM̃αFp (18)

where γ̇α is the slip rate on slip system α within the intermediate configuration x̃, and NS, the
total number of slip systems.

When a part of material is transferred into another lattice with volume fraction f = ∑NT
α=1 f α

which can only deform elastically, equation 18 has been modified as

Lp = (1 − f )
NS

∑
α=1

γ̇αM̃α , Ḟp = (1 − f )
NS

∑
α=1

γ̇αM̃αFp. (19)

3.3.1 The Orowan equation

Commonly used expressions for the relation of the shear rate, γ̇, and the resolved shear stress,
τ, include a phenomenological viscoplastic law in the form of a power law by Peirce et al.
(1982), and more physically-based ones such as those of Kocks et al. (1975) and Nemat-Nasser
et al. (1998), which can take account of rate and temperature dependencies. In this paper we
use the Orowan equation to calculate the plastic shear rate γ̇ of each slip system as a function
of the mobile dislocation density, ρm, on that slip system

γ̇ = ρm b v (20)

where the average velocity of the mobile dislocations, v, is a function of the resolved shear
stress, τ, of the dislocation densities, ρM, ρSSD and ρGND and its gradient, the average GND
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pile-up size, L, and of the temperature, θ; i.e.,

v = v
(

τ, ρSSD, ρGND,
∂ρGND

∂X
, L, θ

)
(21)

The resolved shear stress, τ, is the projection of the stress measure onto the slip system. In the

case of infinitesimally small elastic stretches
∥∥∥C̃

∥∥∥ =
∥∥∥F̃T

e F̃e

∥∥∥ << 1, the resolved shear stress,
τ, within the intermediate configuration x̃ can be approximated by following Kalidindi et al.
(1992)

τα = S̃ C̃ · M̃α ∼= S̃ · M̃α (22)

In order to accommodate a part of the external plastic deformation, the mobile dislocations,
ρM, must overcome the stress field of the parallel dislocations, ρP, which cause the passing
stress. They must also cut the forest dislocations, ρF, with the aid of thermal activation.
We define the parallel dislocation density and the forest dislocation density as: ρP for all
dislocations parallel to the slip plane, and ρF for the dislocations perpendicular to the slip
plane. Both ρSSD and ρGND are contributing to ρF and ρP

ρα
F =

NS

∑
β=1

χαβ
(

ρ
β
SSD + ρ

β
GND

) ∣∣∣cos(ñα, t̃β)
∣∣∣ (23)

and

ρα
P =

NS

∑
β=1

χαβ
(

ρ
β
SSD + ρ

β
GND

) ∣∣∣sin(ñα, t̃β)
∣∣∣ (24)

where we introduce the interaction strength, χαβ, between different slip systems, which
includes the self interaction strength, coplanar interaction strength, cross slip strength, glissile
junction strength, Hirth lock strength, and Lomer-Cottrell lock strength. One can go further to
see the definition of these interactions in literature (Devincre et al., 2008; Madec et al., 2008).
In this formulation we only consider edge dislocations owing to their limited mobility for the
FCC crystal, and use a single set of interaction strengths for both SSDs and GNDs.

With the help of the forest dislocation density ρF, we can determine the average jump distance
of the mobile dislocation and the activation volume for the thermal activated forest dislocation
cutting event

λ =
c1√
ρF

(25)

and
V = c2b2λ (26)

where c1 and c2 are constants to reflect the real dislocation line configuration which is more
complicated than the schematic pictures we use here.

With the help of the parallel dislocation density ρP and the gradient of GND density ∂ρGND
∂X ,

we can determine the average athermal passing stress τp and back stress τb as following

τp = c3Gb
√

ρP (27)
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dislocations parallel to the slip plane, and ρF for the dislocations perpendicular to the slip
plane. Both ρSSD and ρGND are contributing to ρF and ρP
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β
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β
GND
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and
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where we introduce the interaction strength, χαβ, between different slip systems, which
includes the self interaction strength, coplanar interaction strength, cross slip strength, glissile
junction strength, Hirth lock strength, and Lomer-Cottrell lock strength. One can go further to
see the definition of these interactions in literature (Devincre et al., 2008; Madec et al., 2008).
In this formulation we only consider edge dislocations owing to their limited mobility for the
FCC crystal, and use a single set of interaction strengths for both SSDs and GNDs.

With the help of the forest dislocation density ρF, we can determine the average jump distance
of the mobile dislocation and the activation volume for the thermal activated forest dislocation
cutting event

λ =
c1√
ρF

(25)

and
V = c2b2λ (26)

where c1 and c2 are constants to reflect the real dislocation line configuration which is more
complicated than the schematic pictures we use here.

With the help of the parallel dislocation density ρP and the gradient of GND density ∂ρGND
∂X ,

we can determine the average athermal passing stress τp and back stress τb as following

τp = c3Gb
√

ρP (27)
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and
τb = GbL2 ∂ρGND

∂X
(28)

where c3 is the constant for the Taylor hardening mechanism. For reasons of simplicity, in
equation 28 the back stress of one slip system only comes from the GND pile-up of this slip
system. This equation can be easily extended to consider the back stress from all of the slip
system at the same time.

Compared with flow rules in the literature which contain a constant reference shear rate and
a constant rate sensitivity exponent, here a flow rule is derived based on the dislocation slip
mechanism

γ̇ =

⎧
⎪⎪⎨
⎪⎪⎩

ρmbλν0 exp
�
−Qslip

kBθ

�
exp

� |τ+τb|−τp
kBθ V

�
sign (τ + τb) |τ + τb| > τp

0 |τ + τb| ≤ τp

(29)

where kB is the Boltzmann constant, ν0 the attempt frequency and Qslip the effective activation
energy.

Inside the flow rule given by equation 29 determination of the mobile dislocation density is
a hard task. In some research work, the mobile dislocation density was found to be a small
fraction of total dislocation density and is even treated as a constant. The more sophisticated
model to deal with this dislocation density based on energy minimization can be found in Ma
& Roters (2004). For reasons of simplicity here the mobile dislocation density is treated as a
constant number.

3.3.2 Evolution of the dislocation densities

There are four processes contributing to the evolution of the SSD density as discussed by Ma
(2006). The lock forming mechanism between mobile dislocations and forest dislocations,
the dipole forming mechanism between mobile dislocations with parallel line vectors,
and anti-parallel Burgers vector determine the multiplication terms, while the annihilation
term includes annihilation between one mobile dislocation with another immobile one and
annihilation between two immobile dislocations. The often used Kocks-Mecking model, as
discussed in Roters (1999), only adopts the locks formation and mobile-immobile annihilation
mechanisms for the SSD evolution

ρ̇SSD = (c4
√

ρF − c5 ρSSD) γ̇ (30)

Where c4 and c5 are constants used to adjust the locks and annihilation radius.

When plastic deformation gradients are present in a volume portion, GNDs must be
introduced to preserve the continuity of the crystal lattice. A relation between a possible
GND measure and the plastic deformation gradient has been proposed by Nye (1953). This
approach has been later extended to a more physically motivated continuum approach to
generally account for strain gradient effects by Dai & Parks (1997). Following these pioneering
approaches, we use as a dislocation density tensor, Λ, for a selected volume portion to
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calculate the net Burgers vector for an area

Λ = b̄ ⊗ l̄ = − (∇X × Fp
)T (31)

where ∇X = ∂/∂X, is defined as the derivative with respect to the reference coordinates and
b̄ and l̄ are, respectively, the net Burgers vector and net line vector after an volume average
operation. Using equation (31) the resulting Burgers vector for a circuit with an arbitrary
orientation can be calculated. In general this tensor is non-symmetric and it can be mapped
to nine independent slip systems in a unique fashion. For the FCC crystal structure with its
12 slip systems, only 5 systems are independent according to the von Mises-Taylor constraint.
This implies that it is impossible to calculate the exact amount of GNDs for every slip system
in a unique way. Nevertheless, we can project Λ to each of the slip systems to determine
the Burgers vector of the edge and screw type GNDs for the pass stress and backing stress
calculation

bα
GNDe =

(
d̃α · Λ · l̃α

)
d̃α (32)

and
bα

GNDs =
(

d̃α · Λ · d̃α
)

d̃α. (33)

Furthermore we also can calculate the GND density as the following

ρα
GND = (�bα

GNDe�+ |bα
GNDs|) /b. (34)

Fig. 4. A transformation system of the austenite-martensite phase transformation.

3.4 Eigenstrain of phase transformations

The transformation-induced plasticity (TRIP) assisted steels are mixtures of allotriomorphic
ferrite, bainite and retained austenite. Experimental and modelling publications have
highlighted that the transformation of retained austenite to martensite under the influence
of a applied stress or strain can improve material ductility and strength efficiently, as shown
by Bhadeshia (2002).

According to the geometrically nonlinear theory of martensitic transformations (Bhattacharya,
1993; Hane & Shield, 1998; 1999) there are 24 transformation systems and they are constructed
by two body-centered tetragonal (BCT) variants with relative rotations and volume fractions,
in order to produce habit planes between austenite and martensite arrays and pairwise
arranging twin related variant lamellas. Each transformation system corresponds to one
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constant shape strain vector, �vα
s , and one constant habit plane normal vector, �vα

n, see Figure 4.
Following the classical Kurdjumov-Kaminsky relations, these two vectors are influenced by
the carbon concentration through the lattice parameter magnitude variation (Hane & Shield,
1998; Wechsler et al., 1953). The eigenstrain of the transformation system α amounts to

�Hα
t = �vα

s ⊗ �vα
n (35)

As an example in the literature (Kouznetsova & Geers, 2008; Tjahjanto, 2008), the shape strain
vector and the habit plane normal vector with respect to specific carbon concentrations have
been determined and listed. Because the shape strain vector and the habit plane normal vector
are explicit functions of austensite and martensite lattice parameters, the components of the
two vectors are irrational. �Hα

t is similar to the Schmid tensor �Mα of dislocation slip except that
there is volume change det(�Hα

t ) > 1.

In literature, the austenite-martensite phase transformation has been formulated as stress
and strain driving mechanisms among different temperature regions. The stress controlled
transformation often occurs at lower temperatures where the chemical driving force is so high
that a external load below austenite yield stress can help the already existing martensite nuclei
to grow. At strain controlled transformation regions at higher temperatures, the chemical
driving force is so low that additional loads which are higher than the yield stress are
needed in order for existing nuclei to continue grow. Due to the fact that plastic deformation
in austenite is easier than spontaneous martensite formation, the transformation has to be
continued by new nuclei formation at the shear band intersection region according to Olson
& Cohen (1972).

Following the Olson-Cohen model, the transformation kinetics are formulated in meso-scale
on the micro-band level. At first the shear band density is estimated, then the intersection
frequency of shear bands is calculated and lastly the nucleation producing probability is
evaluated. This governing equation for martensite volume fraction reads

ḟ α =

⎧⎪⎪⎨
⎪⎪⎩

c6(1 − ∑NT
β=1 fβ) |τα|c7 ∑NS

i,j=1

�
1 −

����li ·�lj

���
� �

1 −
����ni · �nj

���
�����γ̇iγ̇j

��� τα > 0

0 τα ≤ 0

(36)

where NT and NS are the total number of transformation systems and slip systems with,
respectively, c6 and c7 as two fitting parameters to control the transformation kinetics; and

τα ∼= S̃ · �Hα
t (37)

the resolved stress in the transformation system α with includes the shear part and the tensile
or compression part at the same time. Indeed, in equation 36 the phase transformation is
controlled by the external load potential minimisation.

Because the transformed martensitic phase includes twinned wedge microstructures, the
Frank-Read dislocation source may suffer higher resistance compared with the original
austenitic phase. The dislocation slip based plasticity of martensite has been neglected here.
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Fig. 5. Schematic drawings of cohesive behaviour of grain boundaries along normal (left)
and tangential (right) directions.

3.5 Cohesive zone model for grain and phase boundaries

In experimental works and atomistic simulations with respect to deformation of
nanocrystalline materials, dislocation glide inside the grains and grain boundary sliding have
both been reported. It is obvious that grain-boundary sliding and separation mechanisms
begin to play important roles in the overall inelastic response of a polycrystalline material
when the grain-size decreases and dislocation activity within the grain interior becomes more
difficult. In recent work, the atomic bonds across grain boundaries have been characterized
with ab initio calculations within the framework of the density functional theory (Janisch et al.,
2010). In this work not only the energetics of grain boundaries have been characterized,
but also the mechanical response of a grain boundary to applied loads is studied. Such
information can be used to parameterize cohesive zone models based on ab initio calculations.

The cohesive zone model is useful for RVE models of polycrystals, in situations when grain
boundary deformation needs to be taken into account explicitely, e.g. when grain boundary
sliding or damage initiation at grain boundaries or phase bounaries has to be considered.
By adjusting the cohesive zone parameters for grain boundary sliding and opening the
competing mechanisms of bulk material deformation and grain boundary accommodated
deformation can be studied. Furthermore, it is also possible to investigate damage nucleation
at GB triple junctions.

We follow Wei & Anand (2004) to generate a rate independent cohesive zone (CZ) modelling
approach for the reasons of simplicity. The velocity jump across a cohesive surface has been
additively decomposed into a elastic and a plastic part as follow

u̇ = u̇e + u̇p. (38)

The elastic relative velocities are connected with its power-conjugate traction rate by the
interface elastic stiffness tensor

ṫ = Ku̇e = K
(
u̇ − u̇p

)
(39)

For some special grain boundaries there may exist glide anisotropy inside the grain boundary
plane, although our knowledge about this topic is far away from formulating this anisotropy
for general grain boundaries. So, we have to assume isotropic plastic deformation property
inside the grain boundary, and the trace vector, displacement vector and resistance vector are
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defined in the local coordinate [tI , tI I , n], where n is aligned with the normal to the interface,
tI and tI I in the tangent plane at the point of the interface under consideration.

According to the rate independent assumption for the loading condition, the hardening rate ṡ
has to be fast enough to balance the load ṫ

ṫ = ṡ (40)

or
K
(
u̇ − u̇p

)
= Hu̇p (41)

where H is the hardening matrix and its components are state variables of the cohesive zone
model. The evolution law of the hardening matrix

Ḣ = Ḣ
(
H, u̇p

)
(42)

can be obtained by experimental date fitting or can directly come from the molecular dynamic
and ab-initial calculations. Here we adopted the phenomenological hardening rule proposed
by Wei & Anand (2004) for the cohesive zone model along the normal direction. For the
cohesive zone model along the tangential direction, the failure displacement has been set to
infinite to consider the grain boundary glide phenomenon, see Figure 5.

4. Numerical approaches

Starting from the stress equilibrium state, for a given time step and velocity gradient one has
to calculate the new stress state, while at the same time considering the evolution of state
variables including plastic shear amount γ determined by equation 29, statistically stored
dislocation density ρSSD determined by equation 30 and geometrically necessary dislocation
density ρGND determined by equation 34 for each slip system, the transformed volume
fraction f determined by equation 36 for each transformation system and the hardening
matrix H determined by equation 42 for the cohesive zone model of grain boundaries.

4.1 Finite element method

Based on the Abaqus platform (ABAQUS, 2009), we have developed the user material
subroutines UMAT for the bulk material and UINTER for the grain boundary to solve the
stress equilibrium and state variable evolution problems. In this approach, except for the
plastic strain gradient used for the geometrically necessary dislocation density calculation,
which is adopted from last converged time point, all of state variables are calculated by an
implicit method.

4.2 Discrete fast Fourier transformation method

If the representative volume element has a very complicated microstructure and obeys a
periodic boundary condition, the stress equilibrium and state variable evolution problems can
be solved by the discrete fast Fourier transformation (FFT) method proposed in the literature
(Lebensohn, 2001; Michel et al., 2000; 2001).
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According to this approach the material points of the real RVE are approximated to inclusions
inside one homogeneous matrix, the property of which can be determined as volume average
of these inclusions. After the regular discretisation of the RVE, in the current configuration
the inclusion at location x� has stress increment Δσ I , strain increment Δ�I and stiffness CI =
∂Δσ I/∂Δ�I , and the matrix material point at the same location has stress increment ΔσM,
strain increment Δ�M and stiffness C̄.

Assuming we deal with a deformation control process, at the beginning of the iteration loop

Δ�I = Δ�M = Δ� (43)

where Δ� is the given fixed strain increment. Because each material point has the same volume
and shape, the matrix stiffness can be determined simply as

C̄ = ∑
x�∈RVE

1
N

CI . (44)

where N is the total number of inclusions. At this stage, for the inclusions the strain field
satisfies deformation compatibility while the stress field does’t satisfy the stress equilibrium.

4.2.1 Stress and strain increment of matrix material points

The polarized stress increment field Δσ I − ΔσM can cause a strain increment field in the
matrix. Because the matrix material is homogeneous and suffering a periodic boundary
condition, this strain increment can be calculated efficiently with help of Green’s function
and discrete Fourier transformation. With the help of the delta function

δ(x − x�) =

⎧⎪⎨
⎪⎩

1 x = x�

0 x �= x�
(45)

a unit force δmi(x − x�) in m plane along i direction applying at x� will cause a displacement
field Gkm(x − x�) at x satisfying the stress equilibrium

C̄ijklGkm,l j + δmi = 0. (46)

In order to solve equation 46 we have to transfer it into the frequency space

− C̄ijkl Ĝkmξlξ j + δmi = 0 (47)

where ξ represents the frequency. Through defining a second order tensor Aik = C̄ijklξlξ j we
find the displacement Ĝkm in the frequency space

AikĜkm = δim or Ĝ = A−1. (48)

When one transfers back Ĝ from the frequency space to the real physical space one can get
the solution G of equation 46. However, this is not necessary because we will solve the
displacement field caused by the polarised stress in the frequency space.
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condition, this strain increment can be calculated efficiently with help of Green’s function
and discrete Fourier transformation. With the help of the delta function

δ(x − x�) =

⎧⎪⎨
⎪⎩

1 x = x�

0 x �= x�
(45)

a unit force δmi(x − x�) in m plane along i direction applying at x� will cause a displacement
field Gkm(x − x�) at x satisfying the stress equilibrium

C̄ijklGkm,l j + δmi = 0. (46)

In order to solve equation 46 we have to transfer it into the frequency space

− C̄ijkl Ĝkmξlξ j + δmi = 0 (47)

where ξ represents the frequency. Through defining a second order tensor Aik = C̄ijklξlξ j we
find the displacement Ĝkm in the frequency space

AikĜkm = δim or Ĝ = A−1. (48)

When one transfers back Ĝ from the frequency space to the real physical space one can get
the solution G of equation 46. However, this is not necessary because we will solve the
displacement field caused by the polarised stress in the frequency space.
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Based on the solution of equation 46, the displacement ΔuM with respect to the polarised
stress field Δσ I − ΔσM can be calculated with the help of Gauss’s Theorem and the periodic
arrangement of the RVE

ΔuM
k = ∑

x�∈RVE
Gkm,n

(
ΔσI

mn − ΔσM
mn

)
Ω (49)

where Ω is the volume of the regular element inside the RVE. Furthermore we can calculate
the gradient of the displacement

ΔuM
k,o = ∑

x�∈RVE
Gkm,no

(
ΔσI

mn − ΔσM
mn

)
Ω (50)

and transfer equation 50 into the frequency space, with the help of the convolution theorem:

ΔûM
k,o = − ∑

x�∈RVE
Ĝkmξnξo

(
Δσ̂I

mn − Δσ̂M
mn

)
Ω. (51)

Through taking equation 48 into equation 51 we can calculate the displacement gradient in
the frequency space

ΔûM
k,o = − ∑

x�∈RVE
A−1

km ξnξo

(
Δσ̂I

mn − Δσ̂M
mn

)
Ω

= − ∑
x�∈RVE

Ŝkomn

(
Δσ̂I

mn − Δσ̂M
mn

)
Ω. (52)

where Ŝkomn is the compliance tensor in the frequency space for the material point at the real
space x�. Finally, after one transfers equation 52 from frequency space back to the real physical
space one gets the stress and strain increments for the matrix material points

Δ�M
ij =

1
2
(ΔuM

i,j + ΔuM
j,i ) (53)

ΔσM
ij = C̄−1

ijklΔ�M
kl . (54)

4.2.2 Stress and strain increment of inclusions

For each material point at x when there is a strain misfit between matrix and inclusion Δ�I �=
Δ�M there will be a internal misfit stress C̄

(
Δ�I − Δ�M)

. The total strain energy increment
amounts to

ΔE = ∑
x�∈RVE

[(
σ I + Δσ I

)
· Δ�I + C̄

(
Δ�I − Δ�M

)
·
(

Δ�I − Δ�M
)

Ω
]

. (55)

Now the procedure of finding stress equilibrium can be replaced with the procedure of
achieving the total strain energy increment minimisation

∇ ·σ I = 0 ⇐⇒ ∂ΔE
∂Δ�I = 0. (56)
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Because each inclusion only has interaction with the matrix, for a fixed matrix property,
material points at x and at x� are independent if x �= x�. Under this condition, for each
material point we can calculate the local strain increment which can keep the total strain
energy increment minimisation

Δ�I =
(

CI + C̄
)−1 (

C̄Δ�M −σ I − Δσ I
)

(57)

and with help of equation 57, the stress increment Δσ of inclusion at x� can be easily
recalculated by the constitutive law.

4.2.3 Deformation compatibility

In Lebensohn (2001) the deformation compatibility problem and the energy minimisation
problems are joined together through adopting the Lagrange multiplier method. In this work,
after the stress and strain calculation for inclusions we simply set the matrix material point
deformation increment as

Δ�M = Δ�I . (58)

The final stress and strain solution for inclusions satisfying stress equilibrium and strain
compatibility will not be achieved until

∑
x�∈RVE

1
N

∥∥∥Δ�I
k − Δ�I

k+1

∥∥∥ ≤ Crsd (59)

where k and k + 1 are iteration numbers and Crsd the critical residual.

5. Instructive examples

Fig. 6. Local stress and strain patterns of RVEs having grain boundaries with with different
properties.
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ΔûM
k,o = − ∑

x�∈RVE
A−1

km ξnξo

(
Δσ̂I

mn − Δσ̂M
mn

)
Ω

= − ∑
x�∈RVE
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Fig. 7. Global stress-strain curves of RVEs having grain boundaries with with different
properties.

Fig. 8. Global stress-strain curve and local stress and strain distribution.

5.1 Polycrystal deformation modelling with bulk material slip and grain boundary material
glide with the crystal plasticity method

A qusi-2D RVE with 17 hexagonal shape grains with 80nm × 60nm × 2nm volume has been
generated. Keeping φ = 0 and ϕ2 = 0 we have assigned initial crystal orientations with an
5◦ increment for Euler angle ϕ1 from grain 0◦ to 80◦ randomly. For the studied aluminum
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polycrystal slip systems with a/2[1, 1, 0] and a/2[−1, 1, 0] Burgers vectors will be activated
under tensile loads along the horizontal direction (Shaban et al., 2010).

Figure 6 shows the stress and strain distributions at about 2% tensile strain with a loading
speed of 10 nm/s. These results are calculated with combinations of a normal interface
strength of 1500 MPa and two tangential interface strengths; an strong one of 1500 MPa
and an weak one of 300 MPa. One can easily see that the stronger grain boundary causes
higher stress concentrations and strain heterogeneities inside the aggregate compared with
the weaker grain boundary. For the weaker grain boundary, the strain localisation instead
starts from the triple junction and tends to expand into the bulk material roughly along the
maximum shear stress direction. Although this phenomenon is also observed for the stronger
grain boundaries, the most obvious strain localisation is in some grains with a larger Schmid
factor along the grain boundary direction and even extending to the grain center in some
extreme cases. In both cases, cracks have initiated in the upper and lower boundaries and
attempted to propagate along the vertical grain boundaries under tensile loading along the
horizontal direction.

Figure 7 shows the global stress-strain curves with respect to 5 different grain boundary
strength conditions. From this plot, one can see that the combination of grain boundary
opening and sliding can relax almost one third of the average stress level. Because
the weak-normal-strong-tangential cohesive zone model and strong-normal-weak-tangential
cohesive zone model produce almost the same global stress strain curve, it seems that the
normal and tangential cohesive strengths have similar influences on the material load carrying
capacity.

With respect to an small qusi-2D RVE with 5 grains in a 1μm × 1μm domain, the details
of the global stress strain curve have been studied as shown in Figure 8. The RVE shows
some unstable mechanical behaviors especially at about 0.5% tensile strain. Generally the
material load carrying capacity loss infers the damage initialisation. From our calculations,
one can see clearly that the kinks of the stress strain curve are mainly stemming from grain
boundary opening and sliding near grain boundary triple junctions which can relax the locally
accumulated stress efficiently.

The current study with respective to nano-metere grain size polycrystals implies that grain
boundary mediated deformation processes decisively change the global stress-strain response
of the studied material. Since the grain boundary cohesive behavior is independent of the
grain size, whereas the resistance for dislocation slip inside the bulk material points becomes
smaller as grain size increase, we expect that the influence of grain boundary processes will
gradually vanish for coarse-grained material.

5.2 TRIP steel deformation modelling with the crystal plasticity method

An RVE including 12 ferritic grains and one austenitic grain as shown in Figure 9 has been
generated to investigate the TRIP behavior under different loading conditions. As shown
in Figure 10, tensile and compression loadings induce different total martensitic volume
fractions. This numerical result is consistent with experimental observations. During the
martensite phase transformation, about 22% shear strain inside the habit plane and about
2% dilatation strain along the normal of the habit plane are needed to transfer from the FCC
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Fig. 7. Global stress-strain curves of RVEs having grain boundaries with with different
properties.

Fig. 8. Global stress-strain curve and local stress and strain distribution.

5.1 Polycrystal deformation modelling with bulk material slip and grain boundary material
glide with the crystal plasticity method

A qusi-2D RVE with 17 hexagonal shape grains with 80nm × 60nm × 2nm volume has been
generated. Keeping φ = 0 and ϕ2 = 0 we have assigned initial crystal orientations with an
5◦ increment for Euler angle ϕ1 from grain 0◦ to 80◦ randomly. For the studied aluminum

18 Polycrystalline Materials – Theoretical and Practical Aspects Scale Bridging Modeling of Plastic Deformation and Damage Initiation in Polycrystals 17

polycrystal slip systems with a/2[1, 1, 0] and a/2[−1, 1, 0] Burgers vectors will be activated
under tensile loads along the horizontal direction (Shaban et al., 2010).

Figure 6 shows the stress and strain distributions at about 2% tensile strain with a loading
speed of 10 nm/s. These results are calculated with combinations of a normal interface
strength of 1500 MPa and two tangential interface strengths; an strong one of 1500 MPa
and an weak one of 300 MPa. One can easily see that the stronger grain boundary causes
higher stress concentrations and strain heterogeneities inside the aggregate compared with
the weaker grain boundary. For the weaker grain boundary, the strain localisation instead
starts from the triple junction and tends to expand into the bulk material roughly along the
maximum shear stress direction. Although this phenomenon is also observed for the stronger
grain boundaries, the most obvious strain localisation is in some grains with a larger Schmid
factor along the grain boundary direction and even extending to the grain center in some
extreme cases. In both cases, cracks have initiated in the upper and lower boundaries and
attempted to propagate along the vertical grain boundaries under tensile loading along the
horizontal direction.

Figure 7 shows the global stress-strain curves with respect to 5 different grain boundary
strength conditions. From this plot, one can see that the combination of grain boundary
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the weak-normal-strong-tangential cohesive zone model and strong-normal-weak-tangential
cohesive zone model produce almost the same global stress strain curve, it seems that the
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capacity.

With respect to an small qusi-2D RVE with 5 grains in a 1μm × 1μm domain, the details
of the global stress strain curve have been studied as shown in Figure 8. The RVE shows
some unstable mechanical behaviors especially at about 0.5% tensile strain. Generally the
material load carrying capacity loss infers the damage initialisation. From our calculations,
one can see clearly that the kinks of the stress strain curve are mainly stemming from grain
boundary opening and sliding near grain boundary triple junctions which can relax the locally
accumulated stress efficiently.

The current study with respective to nano-metere grain size polycrystals implies that grain
boundary mediated deformation processes decisively change the global stress-strain response
of the studied material. Since the grain boundary cohesive behavior is independent of the
grain size, whereas the resistance for dislocation slip inside the bulk material points becomes
smaller as grain size increase, we expect that the influence of grain boundary processes will
gradually vanish for coarse-grained material.

5.2 TRIP steel deformation modelling with the crystal plasticity method

An RVE including 12 ferritic grains and one austenitic grain as shown in Figure 9 has been
generated to investigate the TRIP behavior under different loading conditions. As shown
in Figure 10, tensile and compression loadings induce different total martensitic volume
fractions. This numerical result is consistent with experimental observations. During the
martensite phase transformation, about 22% shear strain inside the habit plane and about
2% dilatation strain along the normal of the habit plane are needed to transfer from the FCC
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Fig. 9. Initial orientations of ferritic and austenitic grains. The only austenitic grain has been
highlighted and has a volume fraction of about 10%. For the compression calculation, the
loading direction has been inversed.

Fig. 10. Total martensitic volume fractions under tensile and compression loading cases.

lattice to the BCT lattice. Modelling results support that the normal part of the resolved stress
calculated by equation 37 strongly influences the transformation volume fraction evolution.
As stated in literature (Kouznetsova & Geers, 2008; Stringfellow et al., 1992), this is the well
known hydrostatic stress dependence of the martensite transformation. The current study
shows that there are four dominating transformation systems under tensile and compression
loading conditions as shown in Figure 11. Careful analysis of the magnitude of dilatation
and shear resolved stresses under tensile and compression loads shows that the shear part is
important to determine the activated transformation systems.
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Fig. 11. Martensitic volume fractions of specific transformation systems under tensile and
compression loads.

Fig. 12. Stress-strain curve comparison between deformations with and without martensite
transformation.

With the help of the 13 grain RVE we have investigated into why martensite phase
transformation can provide high ductility and high strength at the same time. As shown
in Figure 12, the global stress-strain curves of the simulation with and without martensite
transformation have a intersection point at about 14% tensile strain. Before the intersection
point, the eigen strain of the phase transformation serves as a competing partner of dislocation
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Fig. 13. Local stress distribution comparison between deformations with (right) and without
(left) martensite transformation. The austenitic grain has been highlighted.

slip to reduce the external load potential, and as a direct result TRIP can increase the material
ductility as shown in Figure 12. Because the phase transformation will exhaust the dislocation
slip volume fraction and the martensite can only deform elastically, after the intersection point
the hardening side of the TRIP mechanism will overcome the softening side and one can
observe there is a enhanced tensile strength.

Figure 13 shows the local stress distribution comparison between simulations with and
without phase transformation. As expected there are higher internal stresses inside the
austenite grain when phase transformation exists. Through modelling the internal stress
accumulation the current model system can be used to investigate the material damage and
failure phenomena.

Fig. 14. Local strain distributions of an 189 grain RVE.

5.3 Polycrystal with twin lamella deformation modelling with the crystal plasticity method

As a mesh free method, the fast Fourier transformation approach can be used to model
deformation of RVEs with very complicated microstructures. Several RVEs occupying a
1μm×1μm×1μm space with nano-metere sized twin lamellas inside nano-metere sized grains
have been generated and discretised to 64 × 64 × 64 regular grids. The initial crystal
orientations have been assigned randomly. Based on equations 5 and 6, twin lamellas with
different thickness have been generated. Figure 14 shows an RVE with 189 grains containing
a 31 nm thickness lamella and the von-Mises equivlent strain distribution under tensile load
and periodic boundary conditions. Here, the material parameters of pure aluminum have
been used during the simulation.
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Fig. 15. Stress-strain curve comparison among RVEs with different grain size and lamella
thickness.

Fig. 16. Yield stress comparison among RVEs with different grain size and lamella thickness.

With respect to four grain numbers (189, 91, 35, 9) and three lamella thicknesses (16 nm, 31
nm, 47 nm), a total of 12 global stress-strain curves have been simulated to investigate the
size effect on material mechanical behaviors. Figure 15 shows several stress-strain curves
along the loading direction. From these results one can see easily the smaller the stronger rule
often observed in experiments. Through determining the yield stress for different RVEs, the
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parameters σ0 and ky of the Hall-Petch relation

σ = σ0 +
ky√

D
(60)

for pure aluminum have been investigated carefully. From the numerical results shown in
Figure 16 we found that equation 60 with parameters σ0=6MPa and ky=300MPa

√
nm fits the

simulation data very well. Indeed, these two values almost fall nicely in the experimental
measurement ranges σ0=6 ± 2 MPa and ky=400 ± 80MPa

√
nm in Bonetti et al. (1992).

6. Summary

In this work it has been demonstrated how information from several length scales can be
integrated into representative volume element (RVE) models for the mechanical behaviour of
heterogeneous materials, consisting of several grains and different phases. In particular, the
relevance of phenomena on different scales, like atomic bonds that determine the mechanical
properties of grain boundaries, or the interaction of dislocations with grain boundaries should
be investigated carefully in future studies. The mechanisms occurring at such atomistic and
microstructural scales need to be modelled in a suited way such that they can be taken
into account in continuum simulations of RVE’s. Once an RVE for a given microstructure
is constructed and the critical deformation and damage mechanisms are included into the
constitutive relations, this RVE can be applied to calculate stress-strain curves and other
mechanical data. The advantage of this approach is that by conducting parametric studies
the influence of several microstructural features, like for example grain size or strength of
grain boundaries, on the macroscopic mechanical response of a material can be predicted.
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parameters σ0 and ky of the Hall-Petch relation

σ = σ0 +
ky√

D
(60)

for pure aluminum have been investigated carefully. From the numerical results shown in
Figure 16 we found that equation 60 with parameters σ0=6MPa and ky=300MPa

√
nm fits the

simulation data very well. Indeed, these two values almost fall nicely in the experimental
measurement ranges σ0=6 ± 2 MPa and ky=400 ± 80MPa

√
nm in Bonetti et al. (1992).

6. Summary

In this work it has been demonstrated how information from several length scales can be
integrated into representative volume element (RVE) models for the mechanical behaviour of
heterogeneous materials, consisting of several grains and different phases. In particular, the
relevance of phenomena on different scales, like atomic bonds that determine the mechanical
properties of grain boundaries, or the interaction of dislocations with grain boundaries should
be investigated carefully in future studies. The mechanisms occurring at such atomistic and
microstructural scales need to be modelled in a suited way such that they can be taken
into account in continuum simulations of RVE’s. Once an RVE for a given microstructure
is constructed and the critical deformation and damage mechanisms are included into the
constitutive relations, this RVE can be applied to calculate stress-strain curves and other
mechanical data. The advantage of this approach is that by conducting parametric studies
the influence of several microstructural features, like for example grain size or strength of
grain boundaries, on the macroscopic mechanical response of a material can be predicted.
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1. Introduction 
There are numerous polycrystalline materials, including polycrystals whose crystals have a 
cubic symmetry. Polycrystals with cubic symmetry comprise minerals and metals such as 
cubic pyrites (FeS2), fluorite (CaF2), rock salt (NaCl), sylvite (KCl), iron (Fe), aluminum (Al), 
copper (Cu), and tungsten (W) (Love, 1927; Vainstein et al., 1981). 

It is assumed that many materials can be treated as a homogeneous and isotropic medium 
independently of the specific characteristics of their microstructure. It is clear that, in fact, this 
is impossible already because of the molecular structure of materials. For example, materials 
with polycrystalline structure, which consist of numerous chaotically located small crystals of 
different size and different orientation, cannot actually be homogeneous and isotropic. Each 
separate crystal of the metal is anisotropic. But if the volume contains very many chaotically 
located crystals, then the material as a whole can be treated as an isotropic material. Just in a 
similar way, if the geometric dimensions of a body are large compared with the dimensions of 
a single crystal, then, with a high degree of accuracy, one can assume that the material is 
homogeneous (Feodos’ev, 1979; Timoshenko & Goodyear, 1951). 

On the other hand, if the problem is considered in more detail, then the anisotropy both of 
the material and of separate crystals must be taken into account. For a body under the action 
of external forces, it is impossible to determine the stress-strain state theoretically with its 
polycrystalline structure taken into account. 

Assume that a body consists of crystals of the same material. Moreover, in general, the 
principal directions of elasticity of neighboring crystals do not coincide and are oriented 
arbitrarily. The following question arises: Can stress concentration exist near a corner point 
of the interface between neighboring crystals and near and edge of the interface?  

To answer this question, it is convenient to replace the problem under study by several 
simplified problems each of which can reflect separate situations in which several 
neighboring crystals may occur. 

A similar problem for two orthotropic crystals having the shape of wedges rigidly 
connected along their jointing plane was considered in (Belubekyan, 2000). They have a 
common vertex, and their external faces are free. Both of the wedges consist of the same 
material. The wedges have common principal direction of elasticity of the same name, and 
the other elastic-equivalent principal directions form a nonzero angle. We consider 
longitudinal shear (out-of-plane strain) along the common principal direction. 
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In (Belubekyan, 2000), it is shown that if the joined wedges consist of the same orthotropic 
material but have different orientations of the principal directions of elasticity with respect 
to their interface, then the compound wedge behaves as a homogeneous wedge. 

The behavior of the stress field near the corner point of the contour of the transverse cross-
section of the compound body formed by two prismatic bodies with different characteristics 
which are welded along their lateral surfaces was studied in the case of plane strain in 
(Chobanyan, 1987). It was assumed there that the compound parts of the body are 
homogeneous and isotropic and the corner point of the contour of the prism transverse 
cross-section lies at the edge of the contact surface of the two bodies. 

In (Chobanyan, 1987; Chobanyan & Gevorkyan 1971), the character of the stress distribution 
near the corner point of the contact surface is also studied for two prismatic bodies welded 
along part of their lateral surfaces. The plane strain of the compound prism is considered. 

There are numerous papers dealing with the mechanics of contact interaction between 
strained rigid bodies. The contact problems of elasticity are considered in the monographs 
(Alexandrov & Romalis, 1986; Alexandrov & Pozharskii 1998). In (Alexandrov & Romalis, 
1986), exact or approximate analytic solutions are obtained in the form convenient to be 
used directly to verify the contact strength and rigidity of machinery elements. The 
monograph (Alexandrov & Pozharskii 1998) presents numericalanalytical methods and the 
results of solving many nonclassical spatial problems of mechanics of contact interaction 
between elastic bodies. Isotropic bodies of semibounded dimensions (including the wedge 
and the cone) and the bodies of bounded dimensions were considered. The monograph 
presents a vast material developed in numerous publications. There are also many studies in 
this field, which were published in recent years (Ulitko & Kochalovskaya, 1995; Pozharskii 
& Chebakov, 1998; Alexandrov & Pozharskii, 1998, 2004; Alexandrov et al., 2000; Osrtrik & 
Ulitko, 2000; Alexandrov & Klindukhov, 2000, 2005; Pozharskii, 2000, 2004; Aleksandrov, 
2002, 2006; Alexandrov & Kalyakin, 2005). 

In the present paper, we study the problem of existence of stress concentrations near the 
corner point of the interface between two joined crystals with cubic symmetry made of the 
same material. 

2. Statement of the problem 

We assume that there are two crystals with rectilinear anisotropy and cubic symmetry, 
which are rigidly connected along their contact surface (Fig. 1). The crystal contact surface 
forms a dihedral angle with linear angle    whose trace is shown in the plane of the 
drawing. The contact surface edge passes through point O. The z -axis of the cylindrical 
coordinate system   , ,r z  coincides with the edge of the dihedral angle. The coordinate 
surfaces and 0  and  2        coincide with the faces of the dihedral angle. 
Thus, the first crystal (1) occupies the domain  0;   and the second crystal (2) occupies 
the domain  2 ; 0    . In this case 0 2    and  0 r  . 

For simplicity, we assume that the crystals have a single common principal direction of 
elasticity coinciding with the z - axis . The other two principal directions 1x  and 1y  of the 
first crystal make some nonzero angles with the principal directions 2x and 2y  of the 
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second crystal. By 1  we denote the angle between 1x and the polar axis 0  , and by 2 , 
the angle between 2x  and the axis 0  . In this case,  1 2, 2 ,      . If 1 2 0   , 
then we have a homogeneous medium, i.e., a monocrystal with cubic symmetry, one of 
whose principal directions 1 2x x x   coincides with the polar axis 0  . In this case, the 
equations of generalized Hooke’s law written in the principal axes of elasticity , ,x y z  have 
the form 
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where , , ... ,x y xy    are the strain components, , , ... ,x y xy    are the stress components, 
and 11 12 44, ,a a a  are the strain coefficients. 

Equations (1) can be obtained from the equations of generalized Hooke’s law for an 
orthotropic body written in the principal axes of elasticity , , ,x y z  using the method 
described in (Lekhnitskii, 1981). 

Rotating the coordinate system ( , , )x y z  about the common axis /z z  by the angle 
90   , we obtain a symmetric coordinate system  , ,x y z   . Since the directions of the 

axes , ,x y z  and / / /, ,x y z  of the same name are equivalent with respect to their elastic 
properties, the equations of generalized 
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Hooke’s law for these coordinate systems have the same form. In this case, the values of the 
strain coefficients are the same in both systems: / / / /

11 12 13 6611 12 13 66, , , ... ,a a a a a a a a    . 

Using the formulas of transformation of strain coefficients under the rotation of the 
coordinate system about the axis /z z  (Lekhnitskii, 1981), we obtain their new values 
expressed in terms of the old values (before the rotation of the coordinate system ( , , )x y z ). 

Comparing the strain coefficients in the same coordinate system / / /( , , )x y z , we obtain, 

11 12 44 55, ,a a a a  13 23 16 45 26 36, 0a a a a a a     . 

Successively rotating the coordinate system ( , , )x y z  about the axes x  and y  by the angle 

90 and repeating the same procedure, we finally obtain (1). 

The transformation formulas for the strain coefficients under the rotation of the coordinate 
system about the x -and y -axes can also be obtained from the transformation formulas for 
the strain coefficients under the rotation of the coordinate system about the z -axis in the 
case of anisotropy of general form. 

For example, to obtain the transformation formulas under the rotation of the coordinate 
system about the x -axis, it is necessary to rename the principal directions of elasticity as 
follows: the x -axis becomes the z -axis, the y -axis becomes the x -axis, and the z -axis 
becomes the y -axis. In this case, in the equations of generalized Hooke’s law referred to the 
coordinate system ( , , )x y z , 22a  plays the role of 11a , 23a  plays the role of 12a , and 24a  
plays the role of 16a . In a similar way, in the equations of generalized Hooke’s law referred 

to the coordinate system / / /( , , )x y z , /
22a  plays the role of /

11 ,a /
23a  plays the role of /

12a , 

and /
24a  plays the role of /

16a . This implies that, in the case of an orthotropic body, 24 0a   
under rotation of  the coordinate system about the x -axis, but, in contrast to the case of 

rotation of the coordinate system about the z -axis, /
24a  is generally nonzero. 

In the case 1 2  , the equations of generalized Hooke’s law in the cylindrical coordinate 
system ( , , )r z  have the form 
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where the above form of anisotropy is used. From now on, the first crystal is denoted by the 
index 1i , and the second, by 2i . 

In the case of cubic symmetry of the material, we have the following dependencies between 
the moduli of elasticity 11 12 44, ,    and the strain coefficients 11 12 44, , :a a a  
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11 12 44

11 12 11 12 11 12 11 12 44
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In the isotropic medium, we have  44 11 122a a a  and 44 11 122A    . For cubic 

crystals, the ratio  44 11 122     is called a parameter of elastic anisotropy in 

(Vainstein et al., 1981). In contrast to  , we call a  the coefficient of elastic anisotropy. 
For 0a  , we have an anisotropic medium in Eqs. (2). 

 We also note that for 0i   , Eqs. (2) correspond to generalized Hooke’s law written for 
monocrystals and referred to the principal axes of elasticity. 

3. Out-of-plane strain 
In the case of longitudinal shear along the direction of the axis z , we have the following 

components of the displacement vector:          0, 0, ,i i i i
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Substituting (3) into the differential equations of equilibrium, we obtain   0i
zu  , where 

 is the Laplace operator. 

Since the crystals are rigidly joined, on the interface between the two crystals the 
displacements are continuous, 
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and the contact stresses are continuous, 
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Hooke’s law for these coordinate systems have the same form. In this case, the values of the 
strain coefficients are the same in both systems: / / / /

11 12 13 6611 12 13 66, , , ... ,a a a a a a a a    . 

Using the formulas of transformation of strain coefficients under the rotation of the 
coordinate system about the axis /z z  (Lekhnitskii, 1981), we obtain their new values 
expressed in terms of the old values (before the rotation of the coordinate system ( , , )x y z ). 

Comparing the strain coefficients in the same coordinate system / / /( , , )x y z , we obtain, 

11 12 44 55, ,a a a a  13 23 16 45 26 36, 0a a a a a a     . 

Successively rotating the coordinate system ( , , )x y z  about the axes x  and y  by the angle 

90 and repeating the same procedure, we finally obtain (1). 

The transformation formulas for the strain coefficients under the rotation of the coordinate 
system about the x -and y -axes can also be obtained from the transformation formulas for 
the strain coefficients under the rotation of the coordinate system about the z -axis in the 
case of anisotropy of general form. 

For example, to obtain the transformation formulas under the rotation of the coordinate 
system about the x -axis, it is necessary to rename the principal directions of elasticity as 
follows: the x -axis becomes the z -axis, the y -axis becomes the x -axis, and the z -axis 
becomes the y -axis. In this case, in the equations of generalized Hooke’s law referred to the 
coordinate system ( , , )x y z , 22a  plays the role of 11a , 23a  plays the role of 12a , and 24a  
plays the role of 16a . In a similar way, in the equations of generalized Hooke’s law referred 

to the coordinate system / / /( , , )x y z , /
22a  plays the role of /

11 ,a /
23a  plays the role of /

12a , 

and /
24a  plays the role of /

16a . This implies that, in the case of an orthotropic body, 24 0a   
under rotation of  the coordinate system about the x -axis, but, in contrast to the case of 

rotation of the coordinate system about the z -axis, /
24a  is generally nonzero. 

In the case 1 2  , the equations of generalized Hooke’s law in the cylindrical coordinate 
system ( , , )r z  have the form 
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where the above form of anisotropy is used. From now on, the first crystal is denoted by the 
index 1i , and the second, by 2i . 

In the case of cubic symmetry of the material, we have the following dependencies between 
the moduli of elasticity 11 12 44, ,    and the strain coefficients 11 12 44, , :a a a  

 
       

11 12 12
11 12 44

11 12 11 12 11 12 11 12 44

1, ,
2 2

a a a
a a a a a a a a a


      

   
  

In the isotropic medium, we have  44 11 122a a a  and 44 11 122A    . For cubic 

crystals, the ratio  44 11 122     is called a parameter of elastic anisotropy in 

(Vainstein et al., 1981). In contrast to  , we call a  the coefficient of elastic anisotropy. 
For 0a  , we have an anisotropic medium in Eqs. (2). 

 We also note that for 0i   , Eqs. (2) correspond to generalized Hooke’s law written for 
monocrystals and referred to the principal axes of elasticity. 

3. Out-of-plane strain 
In the case of longitudinal shear along the direction of the axis z , we have the following 

components of the displacement vector:          0, 0, ,i i i i
r z zu u u u r    . 

For small strains, the strain components  i
z and  i

zr , not identically zero, are related to 

 i
zu  by the Cauchy equations:        , .i i i i

z z r z zu r u r         According to Hooke’s law 

(2), this implies that 
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Substituting (3) into the differential equations of equilibrium, we obtain   0i
zu  , where 

 is the Laplace operator. 

Since the crystals are rigidly joined, on the interface between the two crystals the 
displacements are continuous, 

                1 2 1 2, 0 , 0 , , , 2 ,z z z zu r u r u r u r       

and the contact stresses are continuous, 
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Since    1 2
4444 44a a a   , this implies that, in the case of out-of-plane strain, the two-crystal 

composed of monocrystals of the same material behaves as a monocrystal corresponding to 
the case 1 2  . 

Thus, in the case of longitudinal shear in the direction of the z -axis , there is no stress 
concentration at the corner point of the interface between the two joined crystals regardless 
of the orientation of the principal directions 1x and 2x . 

4. Plane strain 
In this case, we have 

              , , , , 0.i i i i i
r r zu u r u u r u       

Hence the following strain components are nonzero: 
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Hooke’s law (2) has the form 
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 (5) 

In the absence of mass forces, we satisfy the differential equations of equilibrium by 

expressing    ,i i
r    and  i

r  via the Airy stress function i : 

  
2 2

( ) ( )
2 2 2
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 (6) 

By substituting (5) into the strain consistency condition 
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after several simplifying transformations, according to (6), we obtain the basic equation of 
the problem: 
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 (7) 

The rigid connection of the crystals along their contact surface implies the continuity 
conditions for the displacements on this surface. 
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and the continuity conditions for the contact stresses, 
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If we set 0a  in problem (7)–(9), then we obtain a plane problem for the homogeneous 
isotropic body. 

According to (4), (5), and (6), we have 
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Since    1 2
4444 44a a a   , this implies that, in the case of out-of-plane strain, the two-crystal 

composed of monocrystals of the same material behaves as a monocrystal corresponding to 
the case 1 2  . 

Thus, in the case of longitudinal shear in the direction of the z -axis , there is no stress 
concentration at the corner point of the interface between the two joined crystals regardless 
of the orientation of the principal directions 1x and 2x . 

4. Plane strain 
In this case, we have 

              , , , , 0.i i i i i
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Hence the following strain components are nonzero: 
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In the absence of mass forces, we satisfy the differential equations of equilibrium by 

expressing    ,i i
r    and  i

r  via the Airy stress function i : 
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By substituting (5) into the strain consistency condition 
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after several simplifying transformations, according to (6), we obtain the basic equation of 
the problem: 
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The rigid connection of the crystals along their contact surface implies the continuity 
conditions for the displacements on this surface. 
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and the continuity conditions for the contact stresses, 
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If we set 0a  in problem (7)–(9), then we obtain a plane problem for the homogeneous 
isotropic body. 

According to (4), (5), and (6), we have 
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Differentiating (10) with respect to   and (11) with respect to r  and eliminating the 

derivative  2 i
ru r    , we obtain 

 

 
 

 

 

2 3 3 3
2 2

2 3 3 3 2

3 2

2 2 2

2 2
2

i3 2 2

2
2 3

3 3

1 3 3

1 1sin 4 sin 2 4 5sin 2

2 2sin 4 sin 4

4 1sin 4 13sin 2 8

2 1sin 4 8 12sin 2

1 1

i
i i i

i i i

i i
i i

i i
i

i i
i i

i i

u
a

rr r r r

rr r r

rr r

rr r

b
rr

   
 

 


 


 




      
   

    

   
 

  

   
  

 

 
     

   
 


 

   

11 12 12

2

11 12 2 12 112 3
1 2 .i i

a a b
r

a a b a a
rr r



 

 
 

  
    

  

 (12) 

We use the expressions (10) and (12) to represent the continuity conditions (8) via the stress 
function . 

5. Solution method 
For 0a  , from (7) we derive the biharmonic equation and, solving it by separation of 
variables, obtain the following solution (Chobanyan, 1987; Chobanyan & Gevorkyan, 
1971): 

    1, ; ,i ir r F     (13) 
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F
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 (14) 

where λ is a parameter and , ,i i iB C and iD  –are integration constants. 

For a sufficiently small in absolute value, we replace the solution of Eq. (7) by the solution of 
the biharmonic equation (13). By substituting (13) into (7), we obtain a fourth-order ordinary 
differential equation for  ;iF   : 
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whose general integral has the form (14) for 0a  . 

After the substitution of (13) into (10) and (12), we can write 
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According to (13), (16), and (17), the continuity conditions (8) and (9) acquire the form 
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Differentiating (10) with respect to   and (11) with respect to r  and eliminating the 
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We use the expressions (10) and (12) to represent the continuity conditions (8) via the stress 
function . 

5. Solution method 
For 0a  , from (7) we derive the biharmonic equation and, solving it by separation of 
variables, obtain the following solution (Chobanyan, 1987; Chobanyan & Gevorkyan, 
1971): 
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where λ is a parameter and , ,i i iB C and iD  –are integration constants. 

For a sufficiently small in absolute value, we replace the solution of Eq. (7) by the solution of 
the biharmonic equation (13). By substituting (13) into (7), we obtain a fourth-order ordinary 
differential equation for  ;iF   : 
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According to (13), (16), and (17), the continuity conditions (8) and (9) acquire the form 
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By substituting (14) into (18), we obtain a homogeneous system of linear algebraic equations 
for the constants , ,i i iB C  and iD . 

After some cumbersome calculations, from the existence condition for the nonzero solution 
of this system, we obtain the following characteristic equation for  , which determines the 
stress concentration degree (6) see in (Galptshyan, 2008): 

 11 12 1 2( ; , , , , , ) 0f a a a      (19) 

Equation (19) contains six independent parameters 11 12 1 2, , , ,a a a   and  . 
 

 1a b   1a b  

Nb − 0. 6423463 MgO 0. 2276457 
CaF2 − 0.4838456 Si 0. 2498694 
FeS2 − 0. 4066341 Ge 0. 275492 
KCl − 0. 2682469 Ta 0. 2874998 

NaCl − 0. 2154233 LiF 0. 3094264 
V − 0. 2139906 Fe 0. 4637442 

Mo − 0. 1877868 Ni 0. 4804368 
TiC − 0. 0664576 Ag 0. 5856406 
W 0 Cu 0. 593247 
Au 0. 0556095 Pb 0. 7026827 
C 0. 0965294 Na 0. 8089901 
Al 0. 1403437   

Table 1. 

For certain specific values of these parameters, it follows from (6) and (13) that the stress 
components at the pole 0r   have an integrable singularity if 0 Re 1  . In this case, the 
order of the singularity is equal to Re 1  . 

Thus, studying the singularity of the stress state near the corner point of the interface 
between two crystals in the case of plane strain is reduced to finding the root of the 
transcendental equation (19) with the least positive real part. 

A structural analysis of Eq. (19) shows that its left-hand side is a polynomial of degree 18 in 
1a b . The absolute value of 1a b is sufficiently small. Therefore, preserving only terms up to 

the first or the second degree in (19), instead of a polynomial of degree 18, we obtain a 
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polynomial of the first or the second degree, i.e., various approximations to Eq. (19). We also 
note that for 0a  , from the above system of algebraic equations, just as from Eq. (19), we 
obtain the equation  sin 1 0    determining the eigenvalues k k     kN  which 
correspond to the plane strain of a homogeneous isotropic body. 

Preserving only terms up to the first or second degree in 1a b  in Eq. (19), we finally obtain 

 

            

           
          

            

8 2

2

2 4 4

1
2

22

2 1 cos cos 1 cos cos sin 1

sin sin sin 2sin cos 1 cos

cos 1 sin 2 1 cos cos 1 cos

cos sin 1 sin cos 1 si

a
b

            

              

          

           

         

             

           

            

             
           

                 
              

4

21 23

3 1 9 2 22 1 11
3 4

3 2 3 9

n

sin 1 sin sin 1 sin 8 1

cos cos 1 cos cos sin 1 sin

5 3 1 4 1 1 cos4

cos 1 sin 2 1 3 5

4 1 cos4



             

            

              

            



             
         

        
          

                 
              

3 5
1 31 11

4
1 11 3

1 sin cos 1 1 2 1

sin cos 1 cos 1 8 sin

          

             

         

           

(20) 

          
              

             
              

 

18
4

17 3

1 9 1 3 2 4
3 5

44 1 11 1
4

4 1 cos cos 1 cos cos

sin 1 sin cos 1 sin 2 1

2 2 cos 4 1 8 sin 4 3 5 2

4 1 cos 4 sin cos 1 2 1

sin cos 1

           

            

            

           

  

      

            
               

       

             
      

11 18

11

cos 1 8 1 sin

cos 1 sin 0,

         

     

              

     

 

   1 2 1sin 4 sin 4        , 

   2 2 1cos 4 cos 4        ,  3 2 1sin 4 sin 4 ,      4 2 1cos 4 cos 4 ,     

   1 2 cos sin sin cos        ,   2 2 cos cos ,     

   3 2 sin cos sin cos        ,       11 2sin cos 1          , 

         1 1 sin 1 1 sin 1 ,               2 2sin sin    , 

     22 2sin sin ,               3 2 sin cos sin cos        , 



 
Polycrystalline Materials – Theoretical and Practical Aspects 

 

36

         

     

         

     
     

/// //
8

/ 2 2

2 ///
1

/
11 12 1

11 12 2 12 11

1 cos 4 4 1 sin 4

[3 1 5 8 1 cos 4

2 1 2 sin 4 2

2 1

1 2 .

i i i i ii i

i ii

i i i ii

ii

X a F F

F

F b F

F a a b

a a b a a

      

     

     

  



       

      

    

   

      

 

By substituting (14) into (18), we obtain a homogeneous system of linear algebraic equations 
for the constants , ,i i iB C  and iD . 

After some cumbersome calculations, from the existence condition for the nonzero solution 
of this system, we obtain the following characteristic equation for  , which determines the 
stress concentration degree (6) see in (Galptshyan, 2008): 

 11 12 1 2( ; , , , , , ) 0f a a a      (19) 

Equation (19) contains six independent parameters 11 12 1 2, , , ,a a a   and  . 
 

 1a b   1a b  

Nb − 0. 6423463 MgO 0. 2276457 
CaF2 − 0.4838456 Si 0. 2498694 
FeS2 − 0. 4066341 Ge 0. 275492 
KCl − 0. 2682469 Ta 0. 2874998 

NaCl − 0. 2154233 LiF 0. 3094264 
V − 0. 2139906 Fe 0. 4637442 

Mo − 0. 1877868 Ni 0. 4804368 
TiC − 0. 0664576 Ag 0. 5856406 
W 0 Cu 0. 593247 
Au 0. 0556095 Pb 0. 7026827 
C 0. 0965294 Na 0. 8089901 
Al 0. 1403437   

Table 1. 

For certain specific values of these parameters, it follows from (6) and (13) that the stress 
components at the pole 0r   have an integrable singularity if 0 Re 1  . In this case, the 
order of the singularity is equal to Re 1  . 

Thus, studying the singularity of the stress state near the corner point of the interface 
between two crystals in the case of plane strain is reduced to finding the root of the 
transcendental equation (19) with the least positive real part. 

A structural analysis of Eq. (19) shows that its left-hand side is a polynomial of degree 18 in 
1a b . The absolute value of 1a b is sufficiently small. Therefore, preserving only terms up to 

the first or the second degree in (19), instead of a polynomial of degree 18, we obtain a 
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polynomial of the first or the second degree, i.e., various approximations to Eq. (19). We also 
note that for 0a  , from the above system of algebraic equations, just as from Eq. (19), we 
obtain the equation  sin 1 0    determining the eigenvalues k k     kN  which 
correspond to the plane strain of a homogeneous isotropic body. 

Preserving only terms up to the first or second degree in 1a b  in Eq. (19), we finally obtain 
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6. Study of the roots of the characteristic equation 

Table 1 shows the values of the dimensionless ratio 1a b for some cubic crystals at room 
temperature. Moreover for all the cosidered materials 1 0b  and with the exception of cubic 
pyrits  2FeS , for which 11 1

2 20,00365798 10 Pa , 0b b    . 

The least value of the ratio is attained for the niobium crystal (Nb) and the largest, for the 
sodium crystal (Na). In absolute value, 1/ 1.a b   

To study the roots of Eq. (19) in the interval l 0 Re 1,   in Table 1 we choose six real 

materials and two imaginary materials for which 5
1/ 10a b  . To investigate whether 
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there is a singularity in the stress concentration at the corner point of the interface between 
the two joined crystals, for each of the materials, we choose seven versions of variations in 
the parameters 1,  and 2 , which are given in Tables 2 and 3. For example, the first 

 

 
1

a
b

 , МПа  
  2  
 1 4  
 2 0  

  4  
 1 4  
 2 0  

Mo 0.1877868  800 1200  0.647029  0.0174393  
     0.058343i  
    0.688156  
     

TiC  0.0664576  560  0.0153193  0.01012946  
   0.6899690   0.047990i  
    0.72254  
     
  510    67. 3815 10  0.996981  

   0. 987524   
     

W 0  1100  - - 
  1800 4150    
     
  510   0.994154  0.000786231  
    0.0107712i 0.9276061  
     0.1747073i  
     

Au 0.0556095  140 0.0497266  0.0809312  
   0.422350  0.2043483  
    0.4714287  
    0.9546085  
     0.216914i  
     

C 0.0965294   0.032592  0.5889015  
   0.5279915   
     

Al 0.1403437  50 0.0284796  0.0522492  
  115 0.560425   0.073474i  
    0.617351  

 

Table 2. 
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there is a singularity in the stress concentration at the corner point of the interface between 
the two joined crystals, for each of the materials, we choose seven versions of variations in 
the parameters 1,  and 2 , which are given in Tables 2 and 3. For example, the first 
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version, where 1 2/ 2, / 4, 0,        concerns the case in which the interface between 
two crystals is formed by the plane of elastic symmetry of the second crystal but not of the 
first crystal. In the fourth version  1 24 , 0, 4       , the part 1 1 0    of the 
interface is the plane of elastic symmetry of the first crystal, and the other part  2 4     
is the plane of elastic symmetry of the second crystal. 

For all materials given in Tables 2 and 3 and for all versions, we found, in general, all 
realand complex roots of Eq. (20) with 0 Re 1  , including all (without any exception) 
rootswith minimum positive real part. 

It follows from Tables 2 and 3 that, for all two-crystals except tungsten and for all the versions, 
there are stress concentrations near the corner point of the interface between the crystals. If we 
compare the two crystals of molybdenum  Mo and titanium carbide  TiC for which 1 0a b  , 
then it follows from the results obtained for seven versions that, in general, the stress 
concentration degree (the order of singularity) of molybdenum is less than that of titanium 
carbide. It is of interest to note that the ultimate strength of polycrystalline molybdenum   is 
larger than the ultimate strength of polycrystalline titanium carbide, which is an integral 
characteristic of strength. In Table 2, we present the ultimate strengths under tension at 
temperature 200C  for molybdenum and titanium carbide. 

For the two-crystal of tungsten  W , we have 1 0a b  and hence, according to (20), there is 

no singularity of stress concentration near the corner point of the interface between two 
crystals. This may be one of the causes of the fact that the polycrystalline tungsten materials 
have very high ultimate strength. 

In Table 2, we present the ultimate strengths under tension of the polycrystalline tungsten 
annealed wire (1100 МPа) and unannealed wire (from 1800 МPа to 4150 МPа, depending on 
the diameter). We draw the reader’s attention to the fact that the ultimate strength of the 
diamond monocrystal at temperature 20 C  is equal to 1800 МPа. 

Note that for the polycrystalline metals listed in Table 2 there is a correspondence between 
the ultimate strength   and the modulus of elasticity E  (here the quantity E is treated as 
an integral characteristic of elasticity of a metal). The moduli of elasticity of the 
polycrystalline metals , ,Mo W Au and Al  listed in Table 2 are, respectively, equal to (285-
300) GPа, (350-380) GPа, 79 GPa, and 70 GPa. The ultimate strength is larger for a metal with 
larger modulus of elasticity. 

All numerical values of strength limit brought in the table (2) as well as elastic modulus for 
the discussed materials considered to be a published data taken from various sources. For 
example, these data for tungsten (W) are taken from the book (Knuniants and etc. 1961). 

Strength limit of unannealed tungsten wire is depended from the diameter and could be 
explained by the existence defects of crystal lattice.  

Here we also note that there is no such correspondence if molybdenum and titanium 
carbide are compared. Although the ultimate strength of molybdenum is larger than the 
ultimate strength of titanium carbide, the modulus of elasticity of molybdenum is less than 
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the modulus of elasticity of titanium carbide, which is equal to 460 GPa. We note that the 
titanium carbide is a compound matter. 
 

   2         
 1 0
 2 4  

  4           
 1 0  
 2 4  

 3 4
 1 4
 2 0  

 3 4
 1 6   
 2 3  

  2
 1 6
 2 3  

Mo 0.710072  0.0775947  0.0411225  0.957018  0.0094110
 0.0739984i    

0.656204  
      
TiC 0.774834  0.0542824  0.0365724  0.95741  0.0071750

 0.064893i
0.702898  

      
 0.993177   47.87311 10

0.927667  
 0.1746807i

0.999978  
 0.0029137i

 

 48.82199 10
  0.9905998  

 0.1403189i
0.995236  

0.9906207
 0.1403553i

 0.995563  

0.9960624
 0.0057440i

 

W - - - - - 
      
  51.0567 10  0.9276334  0.9912171   0.0011696  0.0013220  
  0.9970875  

 0.00590i  
 0.174718i

0.997109  
 0.140329i     

0.99971  
  0.005039i  

  0.991197  
 0.1402922i

  0.999734  
 0.004690i

 

    0.993404  

Au  0.0644867    0.8730987  0.0779069    0.1780295    0.4007251  
 0.8890054  

 0.4002118i  
 0.236169i

 
   0.2491514  
    0.7677329  

  0.7444930   

      
C   0.1243433    0.8400085     0.0557915    0.332059  0.5246499  
   0.272280i

 
   0.4864447  
   0.7224011  

  0.6977614   

Al   0.215732    0.0206982  
 . 0.113575i

 

0.0512975  
   0.612502  
   0.65982  

  0.451447  
   0.655004  

0.0154580
 0.094053i     

0.56112  

Table 3. 
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the modulus of elasticity of titanium carbide, which is equal to 460 GPa. We note that the 
titanium carbide is a compound matter. 
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0.999978  
 0.0029137i

 

 48.82199 10
  0.9905998  

 0.1403189i
0.995236  

0.9906207
 0.1403553i

 0.995563  

0.9960624
 0.0057440i

 

W - - - - - 
      
  51.0567 10  0.9276334  0.9912171   0.0011696  0.0013220  
  0.9970875  

 0.00590i  
 0.174718i

0.997109  
 0.140329i     

0.99971  
  0.005039i  

  0.991197  
 0.1402922i

  0.999734  
 0.004690i

 

    0.993404  

Au  0.0644867    0.8730987  0.0779069    0.1780295    0.4007251  
 0.8890054  

 0.4002118i  
 0.236169i

 
   0.2491514  
    0.7677329  

  0.7444930   

      
C   0.1243433    0.8400085     0.0557915    0.332059  0.5246499  
   0.272280i

 
   0.4864447  
   0.7224011  

  0.6977614   

Al   0.215732    0.0206982  
 . 0.113575i

 

0.0512975  
   0.612502  
   0.65982  

  0.451447  
   0.655004  

0.0154580
 0.094053i     

0.56112  

Table 3. 
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Discussing the results obtained for two-crystals of gold  Au and aluminum  Al (Tables 2 
and 3), for which 1 0a b  , we conclude that, according to the root of Eq. (20) obtained for 
seven versions, the stress concentration degree (the order of singularity) near the corner 
point of the interface between two crystals is larger for the two-crystal of aluminum. Here 
we also note that the ultimate strength and the modulus of elasticity of polycrystalline gold 
are larger than those of polycrystalline aluminum. In Table 2, we present the ultimate 
strengths under tension for polycrystalline aluminum annealed wire (50 МPа) and cold-
rolled wire (115 МPа). 

For a two-crystal of diamond  C , the stress concentrations near the corner point of the 

interface between two crystals are rather large (see Tables 2 and 3). 

Depending on the choice of the coordinate axes, the modulus of elasticity of the diamond 
monocrystal varies from 1049.67 GPа to 1206.63 GPа, and, as was already noted, the 
ultimate strength is approximately equal to 1800 MPa. But for diamond polycrystalline 
formations (edge, aggregate), we did not found the corresponding integral characteristics of 
elasticity and strength in the literature. We assume that these characteristics, numerically, 
must be less than the modulus of elasticity and the ultimate strength of the diamond 
monocrystal, because there is no stress concentration in the interior of a polycrystalline 
body. 

As follows from Tables 2 and 3, for the imaginary materials with the ratios 5
1 10a b  , 

there are very strong stress concentrations for some of the versions. 

In Figs. 2–5, we present graphs of variation of the function Re 1
*r

  as *r  approaches the pole 
0r    

 
Fig. 2. 
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( *r  is the ratio of the coordinate r  to the characteristic dimension of the two-crystal). 
Curves 3 and 4 correspond to the two-crystal of gold  Au and the two-crystal of aluminum 
 Al , respectively. Curves 1 and 2 correspond to a two-component piecewise homogeneous 
isotropic body with shear moduli ratio    2 1

1 2 44 44/ / 20G G a a     and Poisson ratios 
1 20.2, 0.4   and to the two-component piecewise homogeneous isotropic body with 

shear moduli ratio    2 1
1 2 44 44/ / 0.05G G a a     and the Poisson ratios 1 20.2, 0.3   , 

respectively. Moreover,    1 2
1 1 2 212 12, ,E a E a      
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Fig. 5. 

where    1 2
12 12anda a are the strain coefficients of homogeneous isotropic parts and 1E and 

2E are the Young moduli of the same homogeneous isotropic parts. Figures 2-5 correspond 
to the first, second, fifth, and seventh versions given in Tables 2 and 3, respectively; curves 1 
and 2 in the same figures correspond to the four values of the linear angle   formed by the 
contact surfaces of homogeneous isotropic parts of the compound body. The values of the 
angle   in Figs. 2–5 are respectively equal to: / 2, / 4, 3 / 4     and / 2 . The values 
of the ratio   and the Poisson ratios 1 and 2 , and the corresponding values of the orders 
of singularities, are taken from Table 1 presented in (Chobanyan, 1987; Chobanyan & 
Gevorkyan, 1971). 

The graphs show that the order of singularity of the stresses at the corner point of the 
contact surface of aluminum crystals is larger than the order of singularity of stresses at the 
corner point of the contact surface of gold crystals. The graphs also show that, for the 
piecewise homogeneous isotropic bodies under study, the order of singularity of the stresses 
is much lower than that for two-crystals of aluminum and gold. 

7. Conclusion 
From the analysis performed in Section 6, we draw the following conclusions. 

Although we considered specific cases of stress state, namely, the out-of-plane strain and the 
plane strain of two-crystals whose separate crystals consist of one and the same material 
with cubic symmetry and with different orientations of the principal directions of elasticity, 
we can state that, in the general case of loading of a polycrystalline body, there are stress 
concentrations at the corner points of the interface between the joined crystals. 

It is well known that the structure of the crystal lattice of a given matter plays a definite role 
in the process of formation of its mechanical properties and characteristics, in particular, the 
strength of monocrystals. But in polycrystalline materials, along with this factor, the 
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strength of the joint of crystals and the fact that there are stress singularities at the corner 
points of the interface between the crystals totally play the decisive role in the process of 
formation of these characteristics. This can be observed in the process of mechanical 
fragmentation of polycrystalline materials. They split and form small crystals of certain 
shape. Of course, the separate crystals are also deformed in this process. The modulus of 
elasticity and the ultimate strength of a monocrystal with cubic symmetry for simple matters 
is larger than the corresponding characteristics of the polycrystalline material of the same 
matter. 

In the problem of plane strain, the existence of stress concentration (singularity) at the 
corner point of the interface between the two joined crystals with cubic symmetry made of 
the same material, just as the degree of stress concentration (the order of singularity), 
depends on the parameters 1 1, ,a b   , and 2 , which are determined in Sections 1–4. 

In the case of out-of-plane strain of the two-crystal under study, there is no stress 
concentration at the corner point of the interface between the two joined crystals. 
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1. Introduction

In polycrystalline aggregates microstructure plays an important role in the evolution of
stresses and strains and consequently development of damage processes such as for
example evolution of microstructurally small cracks and fatigue. Random grain shapes
and sizes, combined with different crystallographic orientations, inclusions, voids and other
microstructural features result in locally anisotropic behavior of the microstructure with direct
influence on the damage initialization and evolution (Hussain, 1997; Hussain et al., 1993; King
et al., 2008a; Miller, 1987). To account for these effects grain-scale or meso-scale models of
polycrystalline aggregates are being developed and are increasingly being used.

In this chapter we present some of the most often used approaches to modeling polycrystalline
aggregates, starting from more simplistic approaches and up to the most state-of-the art
approaches that draw on the as-measured properties of the microstructure. The models
are usually based on the finite element approach and differ by a) the level to which they
account for the complex geometry of polycrystalline aggregates and b) the sophistication of
the used constitutive model. In some approaches two dimensional models are used with
grains approximated using simple geometrical shapes like rectangles (Bennett & McDowell,
2003; Potirniche & Daniewicz, 2003) and hexagons (Sauzay, 2007; Shabir et al., 2011). More
advanced approaches employ analytical geometrical models like Voronoi tessellation in 2D
(Simonovski & Cizelj, 2007; Watanabe et al., 1998) and 3D (Cailletaud et al., 2003; Diard et al.,
2005; Kamaya & Itakura, 2009; Simonovski & Cizelj, 2011a). In the most advanced approaches,
however, grain geometry is based on experimentally obtained geometry (Lewis & Geltmacher,
2006; Qidwai et al., 2009; Simonovski & Cizelj, 2011b) using methods such as serial sectioning
or X-ray diffraction contrast tomography (DCT) (Johnson et al., 2008; Ludwig et al., 2008).
These approaches are often referred to as "image-based computational modeling" and can
also embed in the model measured properties such as crystallographic orientations. The
acquired information is of immense value for advancing our understanding of materials and
for developing advanced multiscale computational models. The rather high level of available
details may render extremely complex geometries, resulting in highly challenging preparation
of finite element (FE) models (Simonovski & Cizelj, 2011a) and computationally extremely
demanding simulations. These two constraints have so far limited the development and use

3



 
Polycrystalline Materials – Theoretical and Practical Aspects 

 

48

Alexandrov V. M., “Longitudinal Crack in an Orthotropic Elastic Strip with Free Faces,” Izv. 
Akad.   Nauk. Mekh. Tverd. Tela,No. 1, 115–124 (2006) [Mech. Solids (Engl. Transl.) 
41 (1), 88–94 (2006)]. 

Aleksandrov V.M., “Two Problems with Mixed Boundary Conditions for an Elastic 
Orthotropic Strip,” Prikl. Mat. Mekh. 70 (1), 139–149 (2006) [J. Appl.Math. Mech. 
(Engl. Transl.) 70 (1), 128–138 (2006)]. 

Belubekyan V. M., “Is there a Singularity at a Corner Point of Crystal Junction?” in 
Investigations of Contemporary Scientific Problems in Higher Educational Institutions 
(Aiastan, Erevan, 2000), pp. 139– 143. 

Chobanyan K. S. and Gevorkyan S. Kh., “Stress Field Behavior near a Corner Point of the 
Interface in the Problem of Plane Strain of a Compound Elastic Body,” Izv. Akad. 
Nauk Armyan. SSR. Ser. Mekh. 24 (5), 16–24 (1971). 

Chobanyan K. S., Stresses in Compound Elastic Bodies (Izd-vo Akad. Nauk Armyan. SSR, 
Erevan, 1987). 

Feodos’ev V. I., Strength of Materials (Nauka, Moscow, 1979) [in Russian]. 
Galptshyan P.V., “On the Existence of Stress Concentrations in Loaded Bodies Made of 

Polycrystalline Materials,” Izv. Akad. Nauk. Mekh. Tverd. Tela, No 6, 149-166 
(2008) [Mech. Solids (Engl. Transl.) 43(6), 967-981 (2008)]. 

Knuniants I. L. et al. (Editors), Short chemical encyclopedia, Vol. 1 (Sovietskaya 
encyclopedia, Moscow, 1961) [ in Russian]. 

Lekhnitskii S. G., Theory of Elasticity of an Anisotropic Body (Nauka, Moscow, 1977; Mir 
Publishers, Moscow, 1981). 

Love A. E. H., A Treatise on the Mathematical Theory of Elasticity, 4th ed. (Cambridge Univ. 
Press, Cambridge, 1927; ONTI,Moscow, 1935). 

Osrtrik V. I. and Ulitko A. F., “Contact between Two ElasticWedges with Friction,” Izv. 
Akad.   Nauk.Mekh.Tverd.Tela, No. 3, 93–100 (2000) [Mech. Solids (Engl. Transl.) 
35 (3), 79–85 (2000)]. 

Pozharskii D. A. and Chebakov M. I., “On Singularities of Contact Stresses in the Problem of 
a Wedge-Shaped Punch on an ElasticCone,” Izv. Akad. Nauk.Mekh. Tverd. Tela, 
No. 5, 72–77 (1998) [Mech.  Solids (Engl. Transl.) 33 (5), 57–61 (1998)]. 

Pozharskii D. A., “The Three-Dimensional Contact Problem for an Elastic Wedge Taking 
Friction Forces into Account,” Prikl. Mat. Mekh. 64 (1), 151–159 (2000) [J. Appl. 
Math. Mech. (Engl. Transl.) 64 (1), 147–154 (2000)]. 

Pozharskii D. A., “Contact with Adhesion between Flexible Plates and an ElasticWedge,” 
Izv. Akad. Nauk. Mekh. Tverd. Tela,No. 4, 58–68 (2004) [Mech. Solids (Engl. 
Transl.) 39 (4), 46–54 (2004)]. 

Timoshenko S. P. and Goodyear J. N., Theory of Elasticity (McGraw-Hill, New York, 1951; 
Nauka, Moscow, 1975). 

Ulitko A. F. and Kochalovskaya N. E., “Contact Interaction between a Rigid and Elastic 
Wedges at Initial Point Contact at Their Common Vertex,” Dokl. Nats. Akad. Nauk 
Ukrainy. Ser. Mat. Estestvozn., Tekhn.N., No. 1, 51–54 (1995). 

Vainstein B. K. et al. (Editors), Modern Crystallography, Vol. 4 (Nauka, Moscow, 1981) [in 
Russian]. 

0

Grain-Scale Modeling Approaches for
Polycrystalline Aggregates

Igor Simonovski1 and Leon Cizelj2
1European Commission, DG-JRC, Institute for Energy and Transport,

P.O. Box 2, NL-1755 ZG Petten
2Jožef Stefan Institute, Reactor Engineering Division, Jamova cesta 39, SI-1000 Ljubljana

1The Netherlands
2Slovenia

1. Introduction

In polycrystalline aggregates microstructure plays an important role in the evolution of
stresses and strains and consequently development of damage processes such as for
example evolution of microstructurally small cracks and fatigue. Random grain shapes
and sizes, combined with different crystallographic orientations, inclusions, voids and other
microstructural features result in locally anisotropic behavior of the microstructure with direct
influence on the damage initialization and evolution (Hussain, 1997; Hussain et al., 1993; King
et al., 2008a; Miller, 1987). To account for these effects grain-scale or meso-scale models of
polycrystalline aggregates are being developed and are increasingly being used.

In this chapter we present some of the most often used approaches to modeling polycrystalline
aggregates, starting from more simplistic approaches and up to the most state-of-the art
approaches that draw on the as-measured properties of the microstructure. The models
are usually based on the finite element approach and differ by a) the level to which they
account for the complex geometry of polycrystalline aggregates and b) the sophistication of
the used constitutive model. In some approaches two dimensional models are used with
grains approximated using simple geometrical shapes like rectangles (Bennett & McDowell,
2003; Potirniche & Daniewicz, 2003) and hexagons (Sauzay, 2007; Shabir et al., 2011). More
advanced approaches employ analytical geometrical models like Voronoi tessellation in 2D
(Simonovski & Cizelj, 2007; Watanabe et al., 1998) and 3D (Cailletaud et al., 2003; Diard et al.,
2005; Kamaya & Itakura, 2009; Simonovski & Cizelj, 2011a). In the most advanced approaches,
however, grain geometry is based on experimentally obtained geometry (Lewis & Geltmacher,
2006; Qidwai et al., 2009; Simonovski & Cizelj, 2011b) using methods such as serial sectioning
or X-ray diffraction contrast tomography (DCT) (Johnson et al., 2008; Ludwig et al., 2008).
These approaches are often referred to as "image-based computational modeling" and can
also embed in the model measured properties such as crystallographic orientations. The
acquired information is of immense value for advancing our understanding of materials and
for developing advanced multiscale computational models. The rather high level of available
details may render extremely complex geometries, resulting in highly challenging preparation
of finite element (FE) models (Simonovski & Cizelj, 2011a) and computationally extremely
demanding simulations. These two constraints have so far limited the development and use
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of the image-based models. Steps aimed at obtaining a ’reasonable’ size model in the terms of
computational times are presented. The term ’reasonable’ should be taken in relative terms as
these models may still run for several days on today’s high performance clusters.

Specifically, two analytical approaches (two and three dimensional Voronoi tessellations) for
modeling grain geometries as well as an approach based on the X-ray diffraction contrast
tomography (DCT) (Johnson et al., 2008; Ludwig et al., 2008) are presented. The DCT enables
spatial non-destructive characterization of polycrystalline microstructures (King et al., 2010).
The process of building a finite element model from either analytical spatial structures or
as-measured spatial structures is explained. The meshing procedure, including ensuring
conformal mesh between the grains as well as grain boundary modeling are discussed and
explained. The most used constitutive models and the issues related to the modeling of
the grain boundaries using the cohesive zone approaches are discussed. In the last section
the effects of grain structure to inhomogeneous stress/strain distribution is demonstrated.
Initiation and development of intergranular stress corrosion cracks is outlined and discussed
for different constitutive models. Also, the stability of the simulations and measures aimed at
improving it are considered.

2. Analytical models of structures

In material science Voronoi tessellations are extensively used to model grain geometry with
the purpose of calculating the properties of polycrystalline aggregates (Cailletaud et al.,
2003; Kovač & Cizelj, 2005), modeling short crack initiation and propagation or modeling
intergranular stress corrosion cracks (Kamaya & Itakura, 2009; Musienko & Cailletaud, 2009;
Simonovski & Cizelj, 2011b). A Voronoi tessellation is a cell structure constructed from
randomly positioned points, also referred to as Poisson points. For polycrystalline aggregates
we can think of these points as points where the solidification starts and then uniformly
extends in all directions. A solidification front then expands until it collides with another
one, thus creating a grain boundary. In geometrical terms the grain boundary is obtained by
introducing lines perpendicular to lines connecting neighboring Poisson points. The result is
a set of convex polygons/polyhedra, see Fig. 1. Examples of 2D Voronoi tessellations can be
seen in Fig. 2. Additional details on mathematical background and applications are available
in (Aurenhammer, 1991; Okabe et al., 2000).

Three dimensional Voronoi tessellations can be created using the same approach. A number
of mathematical and programming packages like Matlab have the option of constructing
such tessellations. Fig. 3 shows examples of 3D Voronoi tessellations generated using Qhull
algorithm (Qhull code for Convex Hull, Delaunay Triangulation, Voronoi Diagram, and Halfspace
Intersection about a Point, n.d.) and implemented in (Petrič, 2010).

3. As-measured spatial structures

Models of polycrystalline aggregates can also be created from the experimental data, where
the grain shapes and orientations are measured, i.e. the microstructure is being characterized.
A widely used method for characterizing the microstructure in order to get the data for
creating a finite element model is serial sectioning (Lewis & Geltmacher, 2006; Qidwai et al.,
2009; Spowart et al., 2003). With this approach a surface of the specimen is characterized
and then a thin layer of material is removed to be able to characterize the next layer. The
procedure is consecutively repeated, thus obtaining the data at different depths. The 3D
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Fig. 1. Construction of a Voronoi tessellation in 2D: a) Poisson points, b) perpendicular lines
are introduced to lines connecting neighboring Poisson points and c) final Voronoi
tessellation.

a) 212 grains b) 525 grains

Fig. 2. Examples of 2D Voronoi tessellations.

shapes of the grains are then reconstructed from the data from the 2D layers. However,
the problem with this approach is that the specimen is destroyed during the measurement
procedure. In last years new experimental techniques have enabled non-destructive spatial
characterization of polycrystalline aggregates. Differential aperture X-ray microscopy (Larson
et al., 2002), 3D X-ray diffraction microscopy (3DXRD) (Poulsen, 2004) and X-ray diffraction
contrast tomography (DCT) (Johnson et al., 2008; Ludwig et al., 2008) are examples of these
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of the image-based models. Steps aimed at obtaining a ’reasonable’ size model in the terms of
computational times are presented. The term ’reasonable’ should be taken in relative terms as
these models may still run for several days on today’s high performance clusters.

Specifically, two analytical approaches (two and three dimensional Voronoi tessellations) for
modeling grain geometries as well as an approach based on the X-ray diffraction contrast
tomography (DCT) (Johnson et al., 2008; Ludwig et al., 2008) are presented. The DCT enables
spatial non-destructive characterization of polycrystalline microstructures (King et al., 2010).
The process of building a finite element model from either analytical spatial structures or
as-measured spatial structures is explained. The meshing procedure, including ensuring
conformal mesh between the grains as well as grain boundary modeling are discussed and
explained. The most used constitutive models and the issues related to the modeling of
the grain boundaries using the cohesive zone approaches are discussed. In the last section
the effects of grain structure to inhomogeneous stress/strain distribution is demonstrated.
Initiation and development of intergranular stress corrosion cracks is outlined and discussed
for different constitutive models. Also, the stability of the simulations and measures aimed at
improving it are considered.

2. Analytical models of structures

In material science Voronoi tessellations are extensively used to model grain geometry with
the purpose of calculating the properties of polycrystalline aggregates (Cailletaud et al.,
2003; Kovač & Cizelj, 2005), modeling short crack initiation and propagation or modeling
intergranular stress corrosion cracks (Kamaya & Itakura, 2009; Musienko & Cailletaud, 2009;
Simonovski & Cizelj, 2011b). A Voronoi tessellation is a cell structure constructed from
randomly positioned points, also referred to as Poisson points. For polycrystalline aggregates
we can think of these points as points where the solidification starts and then uniformly
extends in all directions. A solidification front then expands until it collides with another
one, thus creating a grain boundary. In geometrical terms the grain boundary is obtained by
introducing lines perpendicular to lines connecting neighboring Poisson points. The result is
a set of convex polygons/polyhedra, see Fig. 1. Examples of 2D Voronoi tessellations can be
seen in Fig. 2. Additional details on mathematical background and applications are available
in (Aurenhammer, 1991; Okabe et al., 2000).

Three dimensional Voronoi tessellations can be created using the same approach. A number
of mathematical and programming packages like Matlab have the option of constructing
such tessellations. Fig. 3 shows examples of 3D Voronoi tessellations generated using Qhull
algorithm (Qhull code for Convex Hull, Delaunay Triangulation, Voronoi Diagram, and Halfspace
Intersection about a Point, n.d.) and implemented in (Petrič, 2010).

3. As-measured spatial structures

Models of polycrystalline aggregates can also be created from the experimental data, where
the grain shapes and orientations are measured, i.e. the microstructure is being characterized.
A widely used method for characterizing the microstructure in order to get the data for
creating a finite element model is serial sectioning (Lewis & Geltmacher, 2006; Qidwai et al.,
2009; Spowart et al., 2003). With this approach a surface of the specimen is characterized
and then a thin layer of material is removed to be able to characterize the next layer. The
procedure is consecutively repeated, thus obtaining the data at different depths. The 3D
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Fig. 1. Construction of a Voronoi tessellation in 2D: a) Poisson points, b) perpendicular lines
are introduced to lines connecting neighboring Poisson points and c) final Voronoi
tessellation.

a) 212 grains b) 525 grains

Fig. 2. Examples of 2D Voronoi tessellations.

shapes of the grains are then reconstructed from the data from the 2D layers. However,
the problem with this approach is that the specimen is destroyed during the measurement
procedure. In last years new experimental techniques have enabled non-destructive spatial
characterization of polycrystalline aggregates. Differential aperture X-ray microscopy (Larson
et al., 2002), 3D X-ray diffraction microscopy (3DXRD) (Poulsen, 2004) and X-ray diffraction
contrast tomography (DCT) (Johnson et al., 2008; Ludwig et al., 2008) are examples of these
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100 grains 500 grains

1000 grains 5000 grains

Fig. 3. Examples of 3D Voronoi tessellations.

procedures. Through DCT for example, grain shapes and orientations can be measured and
even crack initiation and growth can be monitored (Herbig et al., 2011). Since for some of the
presented cases the data has been acquired using DCT, the next section gives an overview of
this technique.

3.1 X-ray diffraction contrast tomography (DCT)

DCT (King et al., 2008a; Ludwig et al., 2008) is a measurement procedure jointly developed by
the European Synchrotron Radiation Facility (ESRF) and University of Manchester, Materials
Performance Centre, School of Materials. It combines the X-ray diffraction imaging and image
reconstruction from projections to obtain the data on the grain shapes and crystallographic
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Fig. 4. A scheme of X-ray diffraction contrast tomography (DCT), after (Johnson et al., 2008).

orientations. A rotating polycrystalline sample is exposed to a monochromatic X-ray wave
while the projection images are recorded, Fig. 4. Since the sample is rotating, each grain
will pass through Bragg diffraction alignments several times. A detector system, significantly
bigger than the sample, captures low index reflections. In absence of orientation and strain
gradients within the grains, the diffracted beams form 2D spots that can be treated as parallel
projections of the grains’ volume (King et al., 2010). The shape of each grain can then be
reconstructed in 3D using algebraic reconstruction techniques (Gordon et al., 1970). The
resolution of the technique is in the order of 1 μm. An example of a measured grain shape
of a 400 μm diameter stainless steel wire is given in Fig. 5. The complete wire is depicted in
Fig. 6.

Fig. 5. An example of a measured grain shape. Full resolution is used.

One can see that the available level of detail is very high and that the obtained geometry
is extremely complex. This results in highly challenging preparation of finite element (FE)
models and computationally extremely demanding simulations. These two constraints have
so far limited the development and use of the image-based models. However, with suitable
simplifications and parallel pre-processing (Simonovski & Cizelj, 2011a), appropriate FE
models can be built in a reasonable time.
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procedures. Through DCT for example, grain shapes and orientations can be measured and
even crack initiation and growth can be monitored (Herbig et al., 2011). Since for some of the
presented cases the data has been acquired using DCT, the next section gives an overview of
this technique.

3.1 X-ray diffraction contrast tomography (DCT)

DCT (King et al., 2008a; Ludwig et al., 2008) is a measurement procedure jointly developed by
the European Synchrotron Radiation Facility (ESRF) and University of Manchester, Materials
Performance Centre, School of Materials. It combines the X-ray diffraction imaging and image
reconstruction from projections to obtain the data on the grain shapes and crystallographic
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orientations. A rotating polycrystalline sample is exposed to a monochromatic X-ray wave
while the projection images are recorded, Fig. 4. Since the sample is rotating, each grain
will pass through Bragg diffraction alignments several times. A detector system, significantly
bigger than the sample, captures low index reflections. In absence of orientation and strain
gradients within the grains, the diffracted beams form 2D spots that can be treated as parallel
projections of the grains’ volume (King et al., 2010). The shape of each grain can then be
reconstructed in 3D using algebraic reconstruction techniques (Gordon et al., 1970). The
resolution of the technique is in the order of 1 μm. An example of a measured grain shape
of a 400 μm diameter stainless steel wire is given in Fig. 5. The complete wire is depicted in
Fig. 6.

Fig. 5. An example of a measured grain shape. Full resolution is used.

One can see that the available level of detail is very high and that the obtained geometry
is extremely complex. This results in highly challenging preparation of finite element (FE)
models and computationally extremely demanding simulations. These two constraints have
so far limited the development and use of the image-based models. However, with suitable
simplifications and parallel pre-processing (Simonovski & Cizelj, 2011a), appropriate FE
models can be built in a reasonable time.
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Fig. 6. Reconstructed geometry of a 400 μm diameter stainless steel wire. Left: holes in the
original experimental data. Right: wire after the hole treatment, surface grooves present.

3.2 Experimental data

The experimental data used in this work is of a 400 μm diameter stainless steel wire
characterized in 3D by DCT (King et al., 2008a). The data has been kindly provided by the
University of Manchester, Materials Performance Centre, School of Materials and comprises
of 362 grains and some 1600 grain boundaries. The data provides information on the
crystallographic orientation in points of a 346 by 346 by 282 grid. The experimental data can
be represented as an array of 282 slices, separated in the depth (Z) direction by 1.4 μm. For
each slice, crystallographic orientation has been measured on a 346 by 346 grid with 1.4 μm
distance between the points on a grid (in the X and Y direction). Voxels having the same
crystallographic orientation constitute a grain.

3.3 From the measured data to the surfaces

DCT characterization of a polycrystalline aggregate results in voxel-based data. Voxel-based
data is also obtained in other experimental techniques like computed tomography (CT) or
magnetic resonance imaging (MRI). To obtain the shapes of individual grains their surfaces
need to be reconstructed from the voxel-based data.

3.3.1 Treatment of holes

The original DCT data contains ’holes’ in the reconstructed grains, see the left-hand-side of
Fig. 6. These are typical artifacts due to the limited number of projections available for each
grain and the presence of erroneous contrast (Johnson et al., 2008; Ludwig et al., 2008). Since
the holes are not expected in the experimental data, a simple and efficient treatment algorithm
can be used to fill the holes by grain growth:

• The layers with depth of one voxel are successively added to the grains in the holes vicinity.
Each layer is defined along the border between grains and holes by inspecting the one
voxel deep neighborhood of the voxels within holes. Only the hole voxels with exactly one
neighboring grain are added to this grain within each layer.

• Only the hole voxels with multiple neighbors remain after the first step. These are assigned
to the grains dominating their immediate (one voxel deep) neighborhood.
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The right-hand-side of Fig. 6 displays wire data-set after the treatment above.

3.3.2 Surface reconstruction

Geometries of individual grains need to be reconstructed from the voxel-based data. This
is usually achieved through reconstructing the surfaces of individual grains. Surface
reconstruction from voxels is available in a number of commercial visualization tools. The
origins of these tools can mainly be traced to the field of medical visualization. The tools
were later further developed for the application to material science. In this work surfaces
are reconstructed as sets of triangles with Amira package (Visage Imaging GmbH, 2010). A
label is assigned to each measured point, defining to which grain this point belongs. The
labels are equal to the index of the crystallographic orientation. Label 1 refers to grain 1 with
crystallographic orientation index 1 and so forth.

Amira’s built-in SurfaceGen tool with unconstrained smoothing option is used. This tool
partitions the bounding volume into 362 grains depending on the number of different labels
in the 8 vertices of a given voxel. Near the triple points between the grains and near
the grain boundaries vortices of a given voxel will be distributed among several grains.
In these cases the voxel is subdivided into up to 63 sub-vortexes to give a topologically
correct representation of the implicitly defined separating surfaces (Westerhoff, 2003). If
two adjacent sub-vortexes are of different grains, their common face is added to the list of
boundaries between the two grains. A comprehensive explanation of the procedure is given
in (Stalling et al., 1998; Westerhoff, 2003) and was later implemented in Amira. Described
approach automatically increases the resolution near the triple points between the grains and
near the grain boundaries where vortices of a given voxel are distributed among several
labels/grains. This is especially important since stress increases at these points can be
expected due to different crystallographic orientations of the adjacent grains. Further details
on the implemented approach can be found in (Simonovski & Cizelj, 2011a).

The density of the triangles forming the reconstructed surfaces is limited by the resolution
of the experimental data. At full resolution the number of triangles is 4 758 871, resulting
in FE model with 51 211 552 finite elements. The number of triangles therefore needs to be
decreased. This is done using Amira’s built-in surface simplification tool (Zachow et al., 2007).
The simplification decreases the details as well as resolution at the triple lines between the
grains, see Fig. 7 where the number of triangles has been decreased to 30 000 (case 30K),
150 000 (case 150K) and 300 000 (case 300K).

4. From surfaces to FE models

The complexity of the reconstructed surfaces, together with a rather large number of grains,
essentially prevents the direct use of the finite element meshing capabilities of either Amira
or even professional mesh generators such as for example ABAQUS/CAE (Simulia, 2010). A
framework for the automatic meshing has been therefore developed (Simonovski & Cizelj,
2011a) using the Python scripting language and ABAQUS/CAE meshing tools, which are
fully accessible through Python.

The framework can be applied to both analytical models of structures (e.g. 3D Voronoi
tessellations) and to data obtained from experimental techniques. In both cases the surface
structures are defined by the triangle-based surfaces, bounding the volume of individual
grains. In the case of voxel-based data these surfaces are reconstructed with Amira. For
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Fig. 6. Reconstructed geometry of a 400 μm diameter stainless steel wire. Left: holes in the
original experimental data. Right: wire after the hole treatment, surface grooves present.
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The right-hand-side of Fig. 6 displays wire data-set after the treatment above.
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or even professional mesh generators such as for example ABAQUS/CAE (Simulia, 2010). A
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Grain 1: 802 triangles
Wire: 29 866 triangles
Case: 30K

Grain 1: 4 210 triangles
Wire: 149 417 triangles
Case: 150K

Grain 1: 8 198 triangles
Wire: 299 102 triangles
Case: 300K

Fig. 7. Geometry reconstructed from experimental data: grain 1 from the wire data set.

analytical models such as 3D Voronoi tessellations, the spatial structure is generated by the
underlying analytical model (e.g. Qhull algorithm (Qhull code for Convex Hull, Delaunay
Triangulation, Voronoi Diagram, and Halfspace Intersection about a Point, n.d.) implemented in
(Petrič, 2010)) and surface reconstruction is not needed.

Before starting the FE meshing procedure the surface triangles aspect ratios are checked.
Surface triangle aspect ratio is defined in this work as the ratio of the circumscribed circle and
the inscribed circle of a triangle. Triangles with aspect ratio of more than 1000 are removed
by collapsing triangle’s shortest edge, removing the triangle from the structure and updating
the vertices and triangles. The procedure is performed iteratively until the worst aspect ratio
is above 1000. This approach improves the FE mesh quality. The triangle-based surfaces
are also checked for possible errors like intersections and corrected, if necessary, by slight
displacement of appropriate triangle’s corner points.

The ability of exporting the reconstructed surfaces into a standard CAD format that can
be read by FE pre-processors is lacking in many visualization tools. Instead, the user is
encouraged to use the tool’s built in meshers, which often do not match the capabilities of
dedicated FE mesh engines. Furthermore, FE pre-processors do not support export formats of
the visualization tools. So there is a basic difficulty of importing the reconstructed geometry
into FE pre-processors. This issue is circumvented here by developing a function for exporting
the reconstructed surfaces into ACIS SAT file that can be imported into practically any FE
pre-processor. The surfaces of each grain are therefore saved into ACIS SAT file with all
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the surface triangles that they contain. Next, individual ACIS SAT file is imported into
ABAQUS/CAE pre-processor, assigned seeds and its surfaces are meshed using triangular
FE elements of a selected size. Mesh density is user controlled. The coarsest possible mesh
is defined by the triangles of the reconstructed surface. Finer meshes can be obtained by
using several FE elements per each triangle of the reconstructed surface. Meshing individual
surfaces is independent upon each other which provides for an efficient parallelization of the
process. A surface between the adjoining grains needs to be meshed only once since the shared
surface is identical for both grains.

Fig. 8. Creating a conformal volume mesh between grains by meshing the grain boundary
surfaces and imprinting the obtained surface meshes on the corresponding grain boundaries.

Grain 6 mesh

Cohesive elements between
grains 1 and 6

Grain 1 mesh

Grain 9 mesh

Cohesive elements between
grains 1 and 9

Grain 8 mesh

Cohesive elements between
grains 1 and 8

Fig. 9. Detail of the FE mesh showing cohesive elements between the grains.

To obtain a conformal mesh between adjoining grains the meshed surfaces are imprinted onto
the corresponding grains, see Fig. 8. This is done by replacing the reconstructed surface of a
given grain with an appropriate FE meshed surface and saving the grains’ new geometry
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the surface triangles that they contain. Next, individual ACIS SAT file is imported into
ABAQUS/CAE pre-processor, assigned seeds and its surfaces are meshed using triangular
FE elements of a selected size. Mesh density is user controlled. The coarsest possible mesh
is defined by the triangles of the reconstructed surface. Finer meshes can be obtained by
using several FE elements per each triangle of the reconstructed surface. Meshing individual
surfaces is independent upon each other which provides for an efficient parallelization of the
process. A surface between the adjoining grains needs to be meshed only once since the shared
surface is identical for both grains.

Fig. 8. Creating a conformal volume mesh between grains by meshing the grain boundary
surfaces and imprinting the obtained surface meshes on the corresponding grain boundaries.
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To obtain a conformal mesh between adjoining grains the meshed surfaces are imprinted onto
the corresponding grains, see Fig. 8. This is done by replacing the reconstructed surface of a
given grain with an appropriate FE meshed surface and saving the grains’ new geometry

57Grain-Scale Modeling Approaches for Polycrystalline Aggregates



10 Polycrystalline Materials

with all the imprinted meshes into new ACIS SAT files. The process is repeated for all
the grains. Updated ACIS SAT geometry files of individual grains with imprinted surface
meshes are imported into a ABAQUS/CAE, assigned appropriate surface definitions, material
properties, loads and boundary conditions. Exactly one FE seed per each edge is assigned to
preserve the FE meshed surfaces, obtained in the previous step. The number of FE per edge
is not allowed to increase/decrease thus automatically creating conformal meshes between
adjoining constituents. FE volume-meshing is performed next using ABAQUS/CAE built-in
mesher. All the information that has been generated in the previous steps (topology, common
surfaces between the constituents, material properties,...) has been saved using the Python
pickle module and is now used to hierarchically define all the properties, including node,
element and surface sets. Generating FE models of individual grains is independent upon
each other which again provides for an efficient parallelization.

In the last step, zero thickness layers of cohesive elements are inserted between the adjacent
grains. Layers of zero thickness triangular cohesive elements are inserted between the nodes
occupying the same position on the adjacent surfaces. The triangular cohesive elements are
oriented to conform with the tetrahedral elements on both surfaces. The nodes, elements, set,
surfaces,... and all other definitions are also updated to reflect the new configuration. Fig. 9
illustrates mesh of adjacent grains with inserted zero thickness cohesive layers. Further details
on the procedures employed in automatic and parallel generation of the finite element meshes
are available in (Simonovski & Cizelj, 2011a).

Fig. 10 shows the obtained FE models for the 3D Voronoi tessellations given in Fig. 3. The
mesh quality factors are given in Table 1.

Fig. 11 illustrates the constructed FE model of the 400 μm diameter stainless steel wire. The
top figure corresponds to the first experimental series, containing 362 grains. The model
contains 903 199 finite elements: 796 105 linear solid tetrahedra elements and 107 094 cohesive
elements. The bottom figure corresponds to the second experimental series, containing 1334
grains. The model contains 3 395 769 finite elements: 2 976 828 linear solid tetrahedra elements
and 418 941 cohesive elements. The mesh quality factors are given in Table 2.

100 grains 500 grains 1000 grains 5000 grains
Number of elements
Solid elements 91 140 143 588 528 860 4 517 884
Cohesive elements 13 363 34 136 105 468 787 976
All elements 104 503 177 724 634 328 5 305 860
Number of elements with
Min angle < 5 [◦] 38 (0.0417 %) 1021 (0.7111 %) 1571 (0.2970 %) 7847 (0.1737 %)
Max angle > 170 [◦] 0 (0 %) 11 (0.0077 %) 4 (0.0007 %) 27 (0.0006 %)
Aspect ratio > 10 43 (0.0472 %) 1103 (0.7682 %) 1742 (0.3294 %) 8651 (0.1915 %)
Values of
Worst min angle [◦] 2.52 0.02 0.1 0.05
Worst max angle [◦] 162.09 179.9 172.5 174.27
Worst aspect ratio 27.48 1156 512.4 1028

Table 1. 3D Voronoi FE models: mesh quality factors comparison.
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100 grains 500 grains

1000 grains 5000 grains

Fig. 10. FE mesh examples of 3D Voronoi tessellations.

5. Constitutive models

5.1 Bulk grains

Isotropic elasticity, anisotropic elasticity and anisotropic elasticity with crystal plasticity
constitutive laws are commonly used for bulk grains. Since isotropic elasticity can not account
for the effects due to different crystallographic orientations of the grains this is not covered
here. Overview of the other two constitutive laws is given below.
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Fig. 10. FE mesh examples of 3D Voronoi tessellations.

5. Constitutive models

5.1 Bulk grains

Isotropic elasticity, anisotropic elasticity and anisotropic elasticity with crystal plasticity
constitutive laws are commonly used for bulk grains. Since isotropic elasticity can not account
for the effects due to different crystallographic orientations of the grains this is not covered
here. Overview of the other two constitutive laws is given below.
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Fig. 11. A FE model of the 400 μm diameter stainless steel wire. Top: wire from the first
experimental series, 362 grains. Bottom: wire from the second experimental series, 1334
grains.
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362 grain wire 1334 grain wire
Number of elements
Solid elements 796 105 2 976 828
Cohesive elements 107 094 418 941
All elements 903 199 3 395 769
Number of elements with
Min angle < 5 [◦] 32298 (0.2886 %) 174 (0.0058 %)
Max angle > 170 [◦] 45 (0.0056 %) 12 (0.0004 %)
Aspect ratio > 10 2449 (0.3076 %) 152 (0.0051 %)
Values of
Worst min angle [◦] 0.09 0.47
Worst max angle [◦] 178.77 178.64
Worst aspect ratio 647.1 23.42

Table 2. Wire FE models: mesh quality factors comparison.

5.1.1 Anisotropic elasticity

In general, the relation between the elastic stress tensor, σEl.
ij , and the elastic strain tensor, �El.

kl
for anisotropic elasticity is given by Eq. (1).

σEl.
ij = Cijkl · �El.

kl (1)

Here, the Cijkl stands for the stiffness tensor. For materials with a cubic lattice there are only
three independent values in the stiffness tensor: Ciiii = C11, Ciijj = C12 and Cijij = C44. The
relation between the strains and stresses is then given by Eq. (2).
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5.1.2 Crystal plasticity

Crystal plasticity theory (Hill & Rice, 1972; Rice, 1970) assumes that the plastic deformation
in monocrystals takes place via a simple shear on a specific set of slip planes. Deformation
by other mechanisms such as for example diffusion, twinning and grain boundary sliding
is here not taken into account. The combination of a slip plane, denoted by its normal mα

i ,
and a slip direction, sα

i , is called a slip system, (α). The plastic velocity gradient, u̇p
i,j, due

to a crystallographic slip can be written using Eq. (3) (Needleman, 2000). The summation is
performed over all active slip systems,(α), with γ̇(α) representing the shear rate.

u̇p
i,j = ∑

α
γ̇(α)s(α)i m(α)

j (3)
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Fig. 11. A FE model of the 400 μm diameter stainless steel wire. Top: wire from the first
experimental series, 362 grains. Bottom: wire from the second experimental series, 1334
grains.
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The cumulative slip is defined as γ = ∑α

∫ t
0

∣∣∣γ̇(α)
∣∣∣ dt. From the well-known relation for small

strain �ij = 1
2

(
ui,j + uj,i

)
one can obtain the plastic strain rate, Eq. (4). The constitutive

relation of the elastic-plastic monocrystal is now given in terms of stress and strain rates as

σ̇ij = Cijkl

(
�̇kl − �̇

p
kl

)
(Needleman, 2000).

�̇
p
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2
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s(α)i m(α)
j + s(α)j m(α)

i

)
(4)

It is assumed that the shear rate γ̇(α) depends on the stress only via the Schmid resolved shear
stress, τ(α), Eq. (5) and Eq. (6). This is a reasonable approximation at room temperature and
for ordinary strain rates and pressures (Needleman, 2000). Yielding is then assumed to take
place when the Schmid resolved shear stress exceeds the critical shear stress τ0.

γ̇(α) = ȧ(α)
(

τ(α)

g(α)

) ∣∣∣∣∣
τ(α)

g(α)

∣∣∣∣∣
n−1

(5)

τ(α) = s(α)i σijm
(α)
j (6)

ȧ(α) represents the reference strain rate, n the strain-rate-sensitivity parameter and g(α) the
current strain-hardened state of the crystal. In the limit, as n approaches infinity, this power
law approaches that of a rate-independent material. The current strain-hardened state g(α)

can be derived from Eq. (7), where hαβ are the slip-hardening moduli defined by the adopted
hardening law.

ġ(α) = ∑
β

hαβ γ̇(β) (7)

hαα =

{
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[
(h0 − hs) γ(α)
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]
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}
G
(

γ(β); β �= α
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(8)

hαβ = qhαα, (α �= β), (9)

G
(

γ(β); β �= α
)
= 1 + ∑

β �=α

fαβ tanh

(
γ(β)

γ0

)
(10)

In this work the Bassani (Bassani & Wu, 1991) hardening law is used with the hardening
moduli defined with Eqs. (8, 9, 10). Here h0 stands for the initial hardening modulus, τ0 the
yield stress (equal to the initial value of the current strength g(α)(0)) and τs a reference stress
where large plastic flow initiates (Huang, 1991). hs is hardening modulus during easy glide
within stage I hardening and q is a hardening factor. The function G is associated with cross
hardening where γ0 is the amount of slip after which the interaction between slip systems
reaches the peak strength, and each component fαβ represents the magnitude of the strength
of a particular slip interaction. This model was implemented as a user-subroutine into the
finite element code ABAQUS. Further details on the applicable theory and implementation
can be found in (Huang, 1991).
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5.2 Grain boundaries with cohesive zone approach

Based on the experimental observations, e.g. (Coffman & Sethna, 2008), grain boundaries are
modeled with a cohesive-zone approach using cohesive elements. The traction-separation
constitutive behaviour with the damage initiation and evolution as implemented in ABAQUS
are used in this work. The cohesive elements are inter-surface elements of often negligible
thickness, which essentially measure the relative displacements of the surfaces of adjoining
continuum elements. The strains � in the cohesive elements are defined using the constitutive
thickness of the element T0 (mostly different from the geometric thickness which is typically
close or equal to zero) and the separations of the element nodes δ as compared to their initial
unloaded positions, Eq. (11). ⎧
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The indices n, s and t denote the normal and two orthogonal shear directions of the cohesive
element. The normal direction always points out of the plane of the cohesive element. The
tractions on the cohesive elements are then given by Eq. (12).
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Fig. 12. Example of traction-separation response (not to scale).

Typical traction-separation response is given by Fig. 12. Damage evolution D(δ) is defined by
Eq. (13) for the normal direction (and both shear directions).
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The actual load-carrying capability of the cohesive element in the normal direction would
then be [1 − D(δ)] Knn and correspondingly for the two shear directions.
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The cumulative slip is defined as γ = ∑α

∫ t
0

∣∣∣γ̇(α)
∣∣∣ dt. From the well-known relation for small

strain �ij = 1
2

(
ui,j + uj,i

)
one can obtain the plastic strain rate, Eq. (4). The constitutive

relation of the elastic-plastic monocrystal is now given in terms of stress and strain rates as

σ̇ij = Cijkl
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kl

)
(Needleman, 2000).
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i
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(4)

It is assumed that the shear rate γ̇(α) depends on the stress only via the Schmid resolved shear
stress, τ(α), Eq. (5) and Eq. (6). This is a reasonable approximation at room temperature and
for ordinary strain rates and pressures (Needleman, 2000). Yielding is then assumed to take
place when the Schmid resolved shear stress exceeds the critical shear stress τ0.
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τ(α)

g(α)
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(5)

τ(α) = s(α)i σijm
(α)
j (6)

ȧ(α) represents the reference strain rate, n the strain-rate-sensitivity parameter and g(α) the
current strain-hardened state of the crystal. In the limit, as n approaches infinity, this power
law approaches that of a rate-independent material. The current strain-hardened state g(α)

can be derived from Eq. (7), where hαβ are the slip-hardening moduli defined by the adopted
hardening law.

ġ(α) = ∑
β

hαβ γ̇(β) (7)
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{
(h0 − hs) sech2

[
(h0 − hs) γ(α)

τs − τ0

]
+ hs

}
G
(

γ(β); β �= α
)

(8)

hαβ = qhαα, (α �= β), (9)

G
(

γ(β); β �= α
)
= 1 + ∑

β �=α

fαβ tanh

(
γ(β)

γ0

)
(10)

In this work the Bassani (Bassani & Wu, 1991) hardening law is used with the hardening
moduli defined with Eqs. (8, 9, 10). Here h0 stands for the initial hardening modulus, τ0 the
yield stress (equal to the initial value of the current strength g(α)(0)) and τs a reference stress
where large plastic flow initiates (Huang, 1991). hs is hardening modulus during easy glide
within stage I hardening and q is a hardening factor. The function G is associated with cross
hardening where γ0 is the amount of slip after which the interaction between slip systems
reaches the peak strength, and each component fαβ represents the magnitude of the strength
of a particular slip interaction. This model was implemented as a user-subroutine into the
finite element code ABAQUS. Further details on the applicable theory and implementation
can be found in (Huang, 1991).
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Typical traction-separation response is given by Fig. 12. Damage evolution D(δ) is defined by
Eq. (13) for the normal direction (and both shear directions).
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The actual load-carrying capability of the cohesive element in the normal direction would
then be [1 − D(δ)] Knn and correspondingly for the two shear directions.
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5.2.1 Cohesive elements issues

In this section we explore the response of the cohesive elements in their normal direction.
Let us have a cuboid, divided into three grains as depicted in the Fig. 13 by the three colors.
Let us put 100 MPa of tensile stress on the top and the bottom surface and 200 MPa of tensile
stress on the left and right surface. Let us constrain the front and the back surface in the Z
direction, resulting in �33=0. Furthermore, let us assume that we are dealing with isotropic
elastic material with Young modulus E=200 000 MPa and Poisson ratio of ν=0.3. For isotropic
elastic material the Eqs. (14,15,16) are valid.

X

Y

Z

100 MPa

200 MPa

Grain 1

Grain 2

Grain 3

Fig. 13. A simple Y model.

σ11 =
E

1 + ν
�11 +

Eν

(1 + ν)(1 − 2ν)
(�11 + �22 + �33) (14)

σ22 =
E

1 + ν
�22 +

Eν

(1 + ν)(1 − 2ν)
(�11 + �22 + �33) (15)

σ33 =
E

1 + ν
�33 +

Eν

(1 + ν)(1 − 2ν)
(�11 + �22 + �33) (16)

From Eqs. (14,15), expressions Eq. (17,18) can be derived as �33=0 due to the boundary
conditions. Using σ11=200 MPa and σ22=100 MPa we obtain values �22 = 6.5 · 10−5 and
�11 = 7.15 · 10−4. Using these two values in Eq. (16) we obtain σ33=90 MPa.

�22 =
σ11(1 + ν)(1 − 2ν)− σ22

(1+ν)(1−2ν)(1−ν)
ν

Eν − E (1−ν)2

ν

(17)

�11 =
σ22(1 + ν)(1 − 2ν)− �22E(1 − ν)

Eν
(18)
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The resulting stress tensor is given by Eq. (19).

σij =

⎡
⎣

200 0 0
0 100 0
0 0 90

⎤
⎦ MPa (19)

The boundaries between the grain are defined with the vectors, normal to the planes of the
grain boundaries.

nGrain1Grain2 =

⎡
⎣

1
1
0

⎤
⎦ · 1√

2
(20)

nGrain2Grain3 =

⎡
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-1
1
0

⎤
⎦ · 1√

2
(21)

nGrain1Grain3 =

⎡
⎣

1
0
0

⎤
⎦ · 1√

2
(22)

Since we know the stress tensor and the normals for these three planes, we can compute the
stresses in the normal direction for each of them. For the plane between the Grain1 and Grain2

(Avg: 75%)
S, S33

+1.340e+02
+1.422e+02
+1.503e+02
+1.585e+02
+1.667e+02
+1.748e+02
+1.830e+02
+1.912e+02
+1.994e+02
+2.075e+02
+2.157e+02
+2.239e+02
+2.320e+02

(Avg: 75%)
S, S33

+1.500e+02
+1.542e+02
+1.583e+02
+1.625e+02
+1.667e+02
+1.708e+02
+1.750e+02
+1.792e+02
+1.833e+02
+1.875e+02
+1.917e+02
+1.958e+02
+2.000e+02

(Avg: 75%)
S, S33

+1.339e+02
+1.421e+02
+1.503e+02
+1.585e+02
+1.667e+02
+1.749e+02
+1.831e+02
+1.913e+02
+1.995e+02
+2.077e+02
+2.159e+02
+2.241e+02
+2.323e+02

(Avg: 75%)
S, S33

+1.500e+02
+1.542e+02
+1.583e+02
+1.625e+02
+1.667e+02
+1.708e+02
+1.750e+02
+1.792e+02
+1.833e+02
+1.875e+02
+1.917e+02
+1.958e+02
+2.000e+02

Fig. 14. Normal stresses in the cohesive elements. Triangular prisms (left) and rectangular
prisms (right) cohesive elements. Variation in stress at the Y triple points can be observed for
the triangular prism cohesive elements.
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direction, resulting in �33=0. Furthermore, let us assume that we are dealing with isotropic
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the triangular prism cohesive elements.
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the stress vector on the plane, p, and the normal stress, σn, are given by Eq. (23) and Eq. (24).

Grain1Grain2 : p =

⎡
⎣

200 0 0
0 100 0
0 0 90

⎤
⎦

� �� �
σij

·
⎡
⎣

1
1
0

⎤
⎦ · 1√

2
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nGrain1Grain2

=

⎡
⎣

200
100
0

⎤
⎦ · 1√

2
MPa (23)

Grain1Grain2 : σn = pi · ni = 150 MPa (24)

Similarly, we obtain the following normal stress values for the other two planes:

Grain2Grain3 : σn = 150 MPa (25)

Grain1Grain3 : σn = 200 MPa (26)

Fig. 14 displays the normal stresses in the cohesive elements as calculated from the ABAQUS
finite element models. On the left hand side triangular prism cohesive elements are used,
whereas on the right hand side rectangular prism cohesive elements are used. One can see
that in the case of triangular prisms there is a variation in the normal stress for a given plane,
in particular at the Y triple points. For the rectangular prism cohesive elements no such
variations are observed and the values from the FE model match exactly with the theoretically
computed values. Rectangular prism cohesive elements should therefore be preferentially
used.

Unfortunately, meshing complicated shapes with rectangular prism cohesive elements also
requires that the grains need to be meshed with rectangular prisms-hexahedral elements.
With shapes as complicated as seen in Fig. 5 this is extremely difficult and one therefore
uses triangular prisms-tetrahedral elements. This then requires the use of triangular prism
cohesive elements if one is to obtain a conformal mesh between the structural and cohesive
elements. One therefore automatically introduces a degree of discrepancy.

Fig. 15 displays the computed versus the theoretical normal stresses for the cohesive elements
for the 3D Voronoi tessellation with 100 grains with external load of 70 MPa. Isotropic
elastic constitutive law is used for the grains with the wire loaded in tension. The solid line
represents the ideal response. One can observe a significant scatter from the ideal response.
Fig. 16 displays the cohesive elements with red color indicating elements with more than
50 % difference between the theoretical and computed normal stresses. One can see that a
significant scatter exists. Similar scatter has been reported on the grain structure simulated
using 3D Voronoi tessellations (Kamaya & Itakura, 2009). Vast majority of the problematic
cohesive elements are located on the triple lines between the grains. The scatter of the normal
stresses of the cohesive elements not lying on the triple lines is significantly smaller, with
most values within the ±20 % deviation. Increasing mesh density helps to alleviate the issue
to some degree by reducing the area of the problematic elements. Other factors such as
the stiffness of the cohesive element and its thickness have negligible effect on the scatter
(Simonovski & Cizelj, 2011c).

6. Examples

In this section we look at the some results for the wire model with initialization and
propagation of intergranular stress corrosion cracks. The grain boundaries are modeled using
the above described cohesive zone approach and classified into resistant and susceptible grain
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Fig. 15. Theoretical and computed normal stresses at integration points of the cohesive
elements. 3D Voronoi, 100 grains, element size=0.025.

Fig. 16. Cohesive elements with more than 50 % difference between the theoretical and
computed normal stresses (in red). 3D Voronoi, 100 grains. Left: element size=0.025. Right:
element size=0.0125.

boundaries, depending upon the crystallographic orientation of the neighboring grains. In
this work a simplification is used where resistant grain boundaries are defined as coincidence
site lattice (Grimmer et al., 1974) (Σ3 through Σ29) grain boundaries and low angle grain
boundaries with misorientation angle between the neighboring grains below 15 o, following
(Marrow et al., 2006). Σ value is computed as the ratio enclosed by a unit cell of the
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the stress vector on the plane, p, and the normal stress, σn, are given by Eq. (23) and Eq. (24).
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using 3D Voronoi tessellations (Kamaya & Itakura, 2009). Vast majority of the problematic
cohesive elements are located on the triple lines between the grains. The scatter of the normal
stresses of the cohesive elements not lying on the triple lines is significantly smaller, with
most values within the ±20 % deviation. Increasing mesh density helps to alleviate the issue
to some degree by reducing the area of the problematic elements. Other factors such as
the stiffness of the cohesive element and its thickness have negligible effect on the scatter
(Simonovski & Cizelj, 2011c).

6. Examples

In this section we look at the some results for the wire model with initialization and
propagation of intergranular stress corrosion cracks. The grain boundaries are modeled using
the above described cohesive zone approach and classified into resistant and susceptible grain
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Fig. 15. Theoretical and computed normal stresses at integration points of the cohesive
elements. 3D Voronoi, 100 grains, element size=0.025.

Fig. 16. Cohesive elements with more than 50 % difference between the theoretical and
computed normal stresses (in red). 3D Voronoi, 100 grains. Left: element size=0.025. Right:
element size=0.0125.

boundaries, depending upon the crystallographic orientation of the neighboring grains. In
this work a simplification is used where resistant grain boundaries are defined as coincidence
site lattice (Grimmer et al., 1974) (Σ3 through Σ29) grain boundaries and low angle grain
boundaries with misorientation angle between the neighboring grains below 15 o, following
(Marrow et al., 2006). Σ value is computed as the ratio enclosed by a unit cell of the
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coincidence sites and the standard unit cell (Bollman, 1982) from the Rodrigues vectors of the
two neighboring grains. Brandon (Brandon, 1996) criterion for a proximity to a coincidence
site lattice structure with proportionality constant of 10 o is used. All other grain boundaries
are defined as susceptible grain boundaries.

First, we constrain the nodes on the back surface in all three directions. Next, we apply tensile
stress of 60 MPa to the wire’s front surface. This load is equal to the one in the experiment
(King et al., 2008a;b). After the application of the load we assume that the wire is exposed
to an acidified solution of potassium tetrathionate (K2S4O6) that penetrates into the wire
and degrades the susceptible grain boundaries. This is done to mimic the experiment and
is accomplished by employing a user-defined field variable of a cylindrical shape with it’s
axis aligned with the wire’s axis.

The radius of the user-defined field variable cylinder is progressively decreased. Once a
cohesive element of a susceptible grain boundary lies outside the user-defined field variable
cylinder’s radius, its δ0

n and δδ
f
n values are decreased, resulting in practically instantaneous

full degradation.

Damage of a cohesive element of a susceptible grain boundary that is inside the user-defined
field variable cylinder’s radius is caused only by mechanical overload, as depicted in Fig. 12.
The described approach is purely mechanical. To improve convergence, the decrease of δ0

n

and δδ
f
n values is not done abruptly. Additionally, a viscous damping of 0.01 is applied to the

damage function to improve the convergence during the cohesive elements damage evolution.
Susceptible grain boundaries at initial and end 10 % of the wire’s length are not allowed to be
affected by the user-variable to reduce the edge effect and improve the numerical stability.

The rate at which the radius of the user-defined field variable decreases (i.e. degradation
rate) is linked to the stability of the computation. If a large value is selected, then within one
computational time increment the separation of the opposite faces in a cohesive element can
reach the critical value of δ

f
n at which the element completely degrades. If this degradation

process occurs within one computational time increment, the convergence is degraded,
even more so when this occurs simultaneously in several cohesive elements. Small enough
degradation rates therefore need to be used, so that the process of degradation of cohesive
elements is captured within the computational time increments. Alternatively, one can select
very small computational time increments or increase the step time. Similarly, the δ0

n and δδ
f
n

values should not be very small since at already small load increment the resulting separation
of the cohesive element faces could be high enough to instantaneously completely damage
the element, again causing convergence issues.

Fig. 17 shows the Mises stresses in bulk grains (left part) and damage evolution on the
grain boundaries (right part) for the three constitutive models for grains. 30K case with
10.0 μm element size is presented. The first two rows (with the exception of the legend)
display the results at an early time increment where the damage due to the corrosion is
very limited. For the Mises stress significant differences can be observed between the IE
(isotropic elasticity) and AE (anisotropic elasticity) constitutive laws. This is to be expected
since the crystallographic orientations are disregarded in IE approach. Due to the low applied
load (less than 1/3rd of the yield stress) almost no difference can be observed between the
Mises stresses for the AE and AE+CP (anisotropic elasticity+crystal plasticity) constitutive
models. This was true even at the end of the simulation where the damage of the grain
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Fig. 17. Mises stress (left) and damage (right) development. Isotropic elastic (top),
anisotropic elastic (middle) and anisotropic elastic + crystal plasticity model (bottom).
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and degrades the susceptible grain boundaries. This is done to mimic the experiment and
is accomplished by employing a user-defined field variable of a cylindrical shape with it’s
axis aligned with the wire’s axis.

The radius of the user-defined field variable cylinder is progressively decreased. Once a
cohesive element of a susceptible grain boundary lies outside the user-defined field variable
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affected by the user-variable to reduce the edge effect and improve the numerical stability.

The rate at which the radius of the user-defined field variable decreases (i.e. degradation
rate) is linked to the stability of the computation. If a large value is selected, then within one
computational time increment the separation of the opposite faces in a cohesive element can
reach the critical value of δ
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n at which the element completely degrades. If this degradation

process occurs within one computational time increment, the convergence is degraded,
even more so when this occurs simultaneously in several cohesive elements. Small enough
degradation rates therefore need to be used, so that the process of degradation of cohesive
elements is captured within the computational time increments. Alternatively, one can select
very small computational time increments or increase the step time. Similarly, the δ0

n and δδ
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values should not be very small since at already small load increment the resulting separation
of the cohesive element faces could be high enough to instantaneously completely damage
the element, again causing convergence issues.

Fig. 17 shows the Mises stresses in bulk grains (left part) and damage evolution on the
grain boundaries (right part) for the three constitutive models for grains. 30K case with
10.0 μm element size is presented. The first two rows (with the exception of the legend)
display the results at an early time increment where the damage due to the corrosion is
very limited. For the Mises stress significant differences can be observed between the IE
(isotropic elasticity) and AE (anisotropic elasticity) constitutive laws. This is to be expected
since the crystallographic orientations are disregarded in IE approach. Due to the low applied
load (less than 1/3rd of the yield stress) almost no difference can be observed between the
Mises stresses for the AE and AE+CP (anisotropic elasticity+crystal plasticity) constitutive
models. This was true even at the end of the simulation where the damage of the grain
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boundaries was at its highest, resulting in stress redistribution from the failed areas of grain
boundaries to the neighboring areas of grains. The last row therefore displays only the Mises
stress for the AE+CP model. Redestribution of the Mises stress can be observed due to the
degradation of the susceptible, tensile-loaded grain boundaries which decreases the amount
of stress transferred from one side of the boundary to the other. Stress is redistributed in the
neighboring areas of grain boundaries and grains, increasing the compressive loading. This
can be seen as dark patches in the last row.

The presented approach is, however, not without its deficiencies. First, all tensile-loaded
grain boundaries degrade at the same rate. In reality, higher degradation rates might be
expected for the susceptible grain boundaries with higher tensile load. Also, the initial
grain boundary stiffness is taken to be uniform whereas stiffness distribution based upon
the properties of adjacent grains is expected (Coffman & Sethna, 2008). Lastly, the selected
corrosive environment penetration approach does not account for the topology of the grain
boundary network. These issues will therefore need to be addressed in future work. Slightly
better convergence of the AE+CP model was observed. However, the computational times for
the AE+CP model were more than twice those for the AE model, see Table 3.

AE AE+crystal plasticity
30K case, 60 processor cores used
Wallclock time [s] 252 005 531 133
Memory for min I/O ≈40 GB ≈80 GB
Number of elements 903 199 903 199

Table 3. Model performance data. 10.0 μm element size.

7. Conclusion

With the rapid development of computational capabilities and new experimental techniques
we are moving closer to understanding the full role of microstructure on the materials
performance. Not only are advanced approaches for simulating microstructures being used
but also models of as-measured structures are actively being developed. Among the former,
tools such as the presented 2D and 3D Voronoi tessellations can be used whereas for the latter,
experimental techniques such as the X-ray diffraction contrast tomography which enable 3D
characterization of grains are indispensable. Basics of these approaches are covered here. Both
approaches share a common difficult task of creating a finite element model in terms of both
appropriate meshes and model sizes. Surface reconstruction issues and complex geometry
make the process more difficult. The presented approach effectively deals with some of these
issues. The others, however, remain and are subject to further work and research.

The demonstration of the approach is presented on several cases of 3D Voronoi tessellations
and two cases of a 400 μm diameter stainless steel wire. In all cases the grain boundaries
are explicitly modeled using the cohesive zone approach with zero physical thickness finite
elements. Grain boundaries are classified into resistant and susceptible grain boundaries,
depending upon the crystallographic orientation of the neighboring grains. Grain boundary
damage initialization and early development is then computed for a stainless steel case for
several constitutive laws, ranging from isotropic elasticity up to crystal plasticity for the bulk
grain material. Since isotropic elasticity approach disregards the crystallographic orientations
it should not be used in these cases. Little differences were observed between the anisotropic
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elasticity and anisotropic elasticity+crystal plasticity approaches, with the latter resulting in
more than twice as long computation times.

In all cases almost uniform degradation of the grain boundaries is observed. This is attributed
to a) a missing link between the grain boundary load and rate at which the corrosion
penetrates the grain boundaries, b) uniform grain boundary stiffnesses whereas stiffness
distribution based upon the properties of adjacent grains is expected (Coffman & Sethna,
2008) and c) the selected corrosive environment penetration approach does not account for
the topology of the grain boundary network. These issues are the subject of further work.

The numerical stability of the simulation including damage is reasonable, with slightly better
convergence for the anisotropic elasticity+crystal plasticity approach. The degradation of a
cohesive element is linked to the stability of a simulation. If this degradation process occurs
within one computational time increment, the convergence is degraded, even more so when
this occurs simultaneously in several cohesive elements. Small computational time increments
should therefore be used. Similarly, the δ0

n and δδ
f
n values should not be very small since at

already small load increment the resulting separation of the cohesive element faces could be
high enough to instantaneously completely damage the element, again causing convergence
issues.
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1. Introduction 
Solid electrolytes are one of the functional materials, practically applied in industries 
because of its high ion conducting property. It provides scientific support for wide variety of 
advanced electrochemical devices such as fuel cells, batteries, gas separation membranes, 
chemical sensors and in the last few years, ionic switches. NASICON type ion conductors 
have been tested widely in energy applications for instance in electric vehicles. High ion 
conductivity and stability of phosphate units are advantages of NASICON over other 
electrolyte materials (Hong, 1976). Among the batteries those based on lithium show the 
best performance.  

In NASICON frame-work, AxBy(PO4)3, A is an alkali metal ion and B is a multivalent metal 
ion. The charge compensating A cations occupy two types of sites, M1 and M2 (1:3 
multiplicity), in the interconnected channels formed by corner sharing PO4 tetrahedra and 
BO6 octahedra. M1 sites are surrounded by six oxygens and located at an inversion center 
and M2 sites are symmetrically distributed around three-fold axis of the structure with ten-
fold oxygen coordination. In three-dimensional frame-work of NASICON, numerous ionic 
substitutions are allowed at various lattice sites. Generally, NASICON structures crystallize 
in thermally stable rhombohedral symmetry. But, members of A3M2(PO4)3 family (where 
A=Li, Na and M=Cr, Fe) crystallize in monoclinic modification of Fe2(SO4)3-type structure 
and show reversible structural phase transitions at high temperatures (d'Yvoire et al.,1983).  

NASICON based phosphates are widely studied in past decades. But LiTi2(PO4)3 is an 
interesting system because of its high ion conductivity at room temperature. The 
Na3Cr2(PO4)3 and Li3Fe2(PO4)3 are intriguing due to its structural peculiarity. These 
materials crystallize in structurally unstable phase by conventional synthesis technique. 
Since, Na3Cr2(PO4)3 and Li3Fe2(PO4) systems are not stable at the room temperature phase, a 
chemical synthesis technique of solution combustion is explored. In the present work we 
have achieved a stable phase through solution combustion technique and electrical 
properties are investigated and results are reported. The LiTi2(PO4)3 and Li3Fe2(PO4)3 
systems used as electrolytes in solid state batteries and Na3Cr2(PO4)3  system used in is 
sodium sensors. High energy ball milling technique can control the crystallite size through 
milling duration. In LiTi2(PO4)3 system, milling is performed for various duration to study 
the effect of crystallite size on electrical conductivity.  
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To overcome the shortcomings in the conventional synthesis of NASICON, high-energy ball 
milling and solution combustion technique are explored. Correlation between mobile ion 
conduction and phase symmetry in NASICONs is explored in this study. Present chapter 
deals with the structure and electrical properties of important family of NASICONs like: 

i. LiTi2(PO4)3 and Li1.3Al0.3Ti1.7(PO4)2.9(VO4)0.1 synthesized by high energy ball-milling. 
ii. A3M2(PO4)3 (A=Li, Na and M=Cr, Fe) synthesised by solution combustion technique. 

Characterization techniques like X-ray powder diffraction (XRD), Fourier-transform infrared 
spectroscopy (FT-IR), thermogravimetry and differential thermal analysis (TG-DTA) etc are 
exploited for structural confirmation of the synthesized material. Microscopy of the surface 
is analyzed using scanning electron microscope (SEM) and transmission electron microscope 
(TEM). UV-vis spectroscopy is used for confirmation of the electronic state of the transition 
elements and Kramers-Kronig test is performed for confirming the quality of measured 
electrical parameters. Transport number is measured by Wagner polarization technique. The 
electrical relaxation parameters are investigated in the frequency range 10Hz-25MHz at 
different temperatures using broadband dielectric spectrometer. Magnetic behavior of the 
material is investigated by vibrating sample magnetometer (VSM). In general, complex 
impedance, admittance, permittivity and modulus forms are used for representation of 
different electrical parameters. Present chapter uses impedance/dielectric spectroscopy 
technique for the electrical characterization of mobile ions. 

2. Experimental details 
Microcrystalline material is prepared by the conventional solid-state reaction of the 
stoichiometric mixture of Li2CO3 (Himedia, 99.0%), NH4H2PO4 (Himedia, 99.0%), TiO2 (LR 
grade, 98.0%), Al2O3 (Himedia, 99.0%) and V2O5 (Himedia, 99.0%). Overall reaction for the 
formation of LiTi2(PO4)3 and Li1.3Ti1.7Al0.3(PO4)2.9(VO4)0.1 [LATPV0.1] are given as: 

0.5Li2CO3+2TiO2+3NH4H2PO4        ∆        LiTi2(PO4)3+3NH3 +0.5CO2+4.5H2O      

0.65Li2CO3+1.7TiO2+0.15Al2O3+2.9NH4H2PO4+0.05V2O5        ∆         

Li1.3Ti1.7Al0.3(PO4)2.9(VO4)0.1 + 0.65CO2 + 2.9NH3 + 4.35H2O 

Various steps involved in the synthesis of microcrystalline materials are:  

i. Stoichiometric amounts of starting reagents were ground in an agate mortar for 
45minutes. 

ii. The mixture is placed in a silica crucible and slowly heated in an electric furnace up to 
523K. Further, the temperature is increased to 623K and held at this temperature for 6h 
in order to ensure the total decomposition of the initial reagents. 

iii. After cooling the mixture to room temperature, it is again ground for 45min in an agate 
mortar and pellets of 10mm diameter and 1-1.5mm thickness was formed. Further 
pellets were heat treated at 923K for 6h. Heating procedure remains the same for both 
the systems till this stage. 

iv. Further, LiTi2(PO4)3 pellets were calcined at 1073K for 36h followed by sintering at 
1223K for 2h. In the meanwhile, the pellets of Li1.3Ti1.7Al0.3(PO4)2.9(VO4)0.1 is calcined at 
1073K for 48h followed by sintering at 1323K for 4h. 
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Crystallites of smaller size materials are prepared through conventional solid-state reaction 
of the ball-milled stoichiometric mixture. The mixture is heated at 623K before ball-milling 
to remove the gases and water content. This minimizes sticking property of the mixture to 
the vial and balls. The tungsten carbide vial and balls were used for high energy milling; the 
typical ball to powder mass ratio is kept at 5:1 throughout the milling. The rotation speed is 
kept at 300rpm, each cycle comprised of 2h run followed by 30minutes pause, and these 
cycles were repeated. Milling is carried out in an ethanol medium in case of 
Li1.3Ti1.7Al0.3(PO4)2.9(VO4)0.1, which acts as a surfactant to decrease the agglomeration and 
helps to reduce the heat produced while milling. The powder obtained after milling was 
made into pellets and further heat treatments were applied from 923K to 1223K for 
LiTi2(PO4)3, and 923K to 1323K for Li1.3Ti1.7Al0.3(PO4)2.9(VO4)0.1 with the same duration as the 
microcrystalline sample. In this study, material is sintered at a temperature lower than the 
conventional ceramic route. Even though, the sintering temperature is low, long hours of 
sintering are performed to obtain the required density for samples. Low temperature 
sintering is applied to maintain the nanocrystalline nature of the samples.  

Self propagating solution combustion synthesis is a rapid and energy saving technique 
that works on the principle of decomposition of an oxidizer, metal nitrate, in the presence 
of fuel/complexing agent . The Na3Cr2(PO4)3 using glycine in 1:1fuel ratio (Na3Cr2(PO4)3-
G1:1) is prepared from NaNO3 and Cr(NO3)3.9H2O. Stoichiometric amount of the metal 
nitrates and glycine (NH2-CH2COOH) were mixed with distilled water in 1:1 molar ratio. 
The NH4H2PO4 dissolved in distilled water is added to this mixture to form homogenous 
solution. Slow evaporation of the homogenous solution produced thick viscous gel. 
Further heating resulted in flame, producing voluminous powder named as-prepared 
material. Over all reaction for the formation of Na3Cr2(PO4)3-G1:1 is calculated as: 

3NaNO3+ 2Cr(NO3)3.9H2O+3NH4H2PO4+8NH2-CH2COOH+5O2   Δ              

           Na3Cr2(PO4)3+10N2+16CO2+47H2O 

In the case of glycine-nitrate combustion, primarily N2, CO2, and H2O were evolved as 
gaseous products. As-prepared material is in amorphous phase and further heating at 800C 
produced the pure Na3Cr2(PO4)3 phase. To understand the effect of fuel molar ratio on 
physical and electrical properties; glycine, urea and citric acid were used in 1:1, 1:2 and 1:3 
molar ratios for the synthesis of Na3Cr2(PO4)3.  

The Fe3+ based NASICON materials were synthesized using citric acid: ethylene glycol 
mixture (CA:EG). The metal cations were complexed by citric acid (C6H8O7) and pH of the 
resultant solution is adjusted in the range 7-8 using ammonia solution. This solution is kept 
under constant stirring and NH4H2PO4 is added to it. After proper stirring, ethylene glycol 
is added to this solution by maintaining the molar ratio with citric acid at 1:1. The 
homogenous solution is heated further and the as-prepared material is formed. Further 
calcination at 800◦C resulted in pure phase. Objective of the present investigation is to 
synthesize nanocrystalline materials by a unique combination of citric acid (as complexing 
agent) and ethylene glycol (as polymerizing agent). In the presence of ethylene glycol, 
esterification (reaction between alcohol and acid) resulted in the formation of gel. The 
Li3Fe2(PO4)3 is also prepared using glycine in 1:2 molar ratio. 
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sintering is applied to maintain the nanocrystalline nature of the samples.  

Self propagating solution combustion synthesis is a rapid and energy saving technique 
that works on the principle of decomposition of an oxidizer, metal nitrate, in the presence 
of fuel/complexing agent . The Na3Cr2(PO4)3 using glycine in 1:1fuel ratio (Na3Cr2(PO4)3-
G1:1) is prepared from NaNO3 and Cr(NO3)3.9H2O. Stoichiometric amount of the metal 
nitrates and glycine (NH2-CH2COOH) were mixed with distilled water in 1:1 molar ratio. 
The NH4H2PO4 dissolved in distilled water is added to this mixture to form homogenous 
solution. Slow evaporation of the homogenous solution produced thick viscous gel. 
Further heating resulted in flame, producing voluminous powder named as-prepared 
material. Over all reaction for the formation of Na3Cr2(PO4)3-G1:1 is calculated as: 

3NaNO3+ 2Cr(NO3)3.9H2O+3NH4H2PO4+8NH2-CH2COOH+5O2   Δ              

           Na3Cr2(PO4)3+10N2+16CO2+47H2O 

In the case of glycine-nitrate combustion, primarily N2, CO2, and H2O were evolved as 
gaseous products. As-prepared material is in amorphous phase and further heating at 800C 
produced the pure Na3Cr2(PO4)3 phase. To understand the effect of fuel molar ratio on 
physical and electrical properties; glycine, urea and citric acid were used in 1:1, 1:2 and 1:3 
molar ratios for the synthesis of Na3Cr2(PO4)3.  

The Fe3+ based NASICON materials were synthesized using citric acid: ethylene glycol 
mixture (CA:EG). The metal cations were complexed by citric acid (C6H8O7) and pH of the 
resultant solution is adjusted in the range 7-8 using ammonia solution. This solution is kept 
under constant stirring and NH4H2PO4 is added to it. After proper stirring, ethylene glycol 
is added to this solution by maintaining the molar ratio with citric acid at 1:1. The 
homogenous solution is heated further and the as-prepared material is formed. Further 
calcination at 800◦C resulted in pure phase. Objective of the present investigation is to 
synthesize nanocrystalline materials by a unique combination of citric acid (as complexing 
agent) and ethylene glycol (as polymerizing agent). In the presence of ethylene glycol, 
esterification (reaction between alcohol and acid) resulted in the formation of gel. The 
Li3Fe2(PO4)3 is also prepared using glycine in 1:2 molar ratio. 
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3. Results and discussion 
3.1 X-ray powder diffraction analysis 

X-ray patterns are not recorded in very low quality; it is collected using Philips X’pert pro-
diffractometer with Bragg-Brentano geometry in  configuration. The monochromatic Cu-
K radiation of wavelength, λ = 1.5406Å is used. The pattern is recorded in the 2 range 5º-
75º with step size of 0.02º and the step scan of 0.50 seconds. Figs. 1(a)-(b) show XRD patterns 
of the microcrystalline and 40h ball-milled LiTi2(PO4)3 sintered at 1073K. Peaks in the 
diffraction pattern correspond to the rhombohedral phase but, minor phase of TiP2O7 are 
observed due to Li loss in high temperature sintered material [Aono et al.,19984 & Wong et 
al., 1998]. Fig.1(c) shows XRD pattern of microcrystalline, 22h and 55h ball-milled 
Li1.3Ti1.7Al0.3(PO4)2.9(VO4)0.1 material. Lattice parameters are calculated using UNITCELL 
software (Unit-Cell software,1995), ball-milling decreases lattice parameters and unit cell 
volume of LiTi2(PO4)3 (Delshad et al., 2009 & Hamzaoui et al., 2003). But, lattice parameters 
increase for Li1.3Ti1.7Al0.3(PO4)2.9(VO4)0.1 with ball-milling (Prithu et al., 2009) as given in 
Table 1. The line broadening in XRD pattern occurs due to the simultaneous change in 
crystallite size and strain effects (Savosta et al., 2004), because high energy ball-milling 
introduces considerable strain in the material. The strain resulted in broadening the XRD 
peak and shifting the peak positions towards the higher 2 values. 

 
 

Fig. 1. X-ray powder diffraction patterns of (a) microcrystalline LiTi2(PO4)3 (b) 
nanocrystalline LiTi2(PO4)3 (c) Li1.3Ti1.7Al0.3(PO4)2.9(VO4)0.1 microcrystalline, 22h and 55h ball-
milled material and (d) Full width at half maximum of maximum intensity peak of 
microcrystalline, 22h and 55h ball-milled  Li1.3Ti1.7Al0.3(PO4)2.9(VO4)0.1. 

Williamson and Hall (Williamson & Hall, 1953) developed a model to separate the size and 
strain effects in broadening the XRD peaks and the model is given by:   
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where, B is the full width at half maximum (FWHM) of XRD peaks, K is the Scherrer 
constant, D is the crystallite size, is the wavelength of X-ray, is the micro-strain in the 
lattice and is the Bragg angle. For Gaussian X-ray profiles, B can be calculated as: 

 B2=Bm2-Bs2 (2) 

where, Bm is the FWHM of the material and Bs is the FWHM of a standard sample; silicon is 
chosen as the standard for calculation of instrumental parameters. Linear extrapolation of 
the plot of Bcos vs 4sin gives average crystallite size from the intercept, K/D and the 
slope gives micro-strain. The strain contribution in Eq. (1) is negligible for the crystallite size 
calculation of microcrystalline materials. Micro-strain and average crystallite size of 
LiTi2(PO4)3 and Li1.3Ti1.7Al0.3(PO4)2.9(VO4)0.1 are listed in Table 1. 

Ball-milling induces strain in the crystal lattice and decreases the average crystallite size to 
70nm for 40h ball-milled LiTi2(PO4)3 material. Milling reduces the average size of crystallites 
to nanometer range and long hours of ball-milling lead to the formation of an amorphous 
state (Yamamoto et al., 2004 & Nobuya et al., 2005). Hence, sintering at high temperature 
after ball-milling resulted in the formation of nanocrystallites instead of microcrystalline 
material. XRD pattern gradually broadens and the particle size decreases with milling 
duration, which is clear from the FWHM of highest intensity peaks of ball-milled 
Li1.3Ti1.7Al0.3(PO4)2.9(VO4)0.1 as given in Fig. 1(d). The nanocrystalline nature of the ball-
milled materials is evident from the broadened XRD peak and there is decrease in peak 
intensity as compared to the microcrystalline material.  
 

LiTi2(PO4)3 

 Average 
crystallite size Micro-strain 

Unit cell parameters 
a[A] c[A] V[A]3 

 Micro-crystalline   (0.23±0.01)m  (0.05±0.001)%  8.514(9)   20.857(2)  1309.633(0) 
 Nano-crystalline  (70.14±0.07)nm   (0.36±0.05)%  8.495(9)   20.719(5)  1295.156(6) 

Li1.3Ti1.7Al0.3(PO4)2.9(VO4)0.1 
 Micro-crystalline  (1.60 ±0.49)m  (0.02±0.003)%  8.500(9)  20.819(6)  1302.958(1) 
 22h ball-milled   (86.62±0.27)nm  (0.29±0.04)%   8.504(1)  20.825(2)  1304.303(6) 
 55h ball-milled  (60.86±0.34)nm  (0.62±0.06)%   8.512(9) 20.845(0)  1308.254(0) 

Table 1. Average crystallite size, micro-strain and unit cell parameters of microcrystalline 
and nanocrystalline LiTi2(PO4)3 and Li1.3Ti1.7Al0.3(PO4)2.9(VO4)0.1 materials. 

The Na3Cr2(PO4)3 is synthesised using glycine, urea and citric acid in 1:1,1:2 and 1:3 molar 
ratios by solution combustion technique. The Na3Cr2(PO4)3 synthesized through 
conventional ceramic route is reported to exhibit two main structural phase transitions at 
138ºC and 166ºC, before the stable rhombohedral symmetry is attained at high temperature 
(d'Yvoire et al.,1983). Fig. 2(a) shows the powder XRD patterns of Na3Cr2(PO4)3-G1:1, 
Na3Cr2(PO4)3-G1:2 and Na3Cr2(PO4)3-G1:3 pellets sintered at 900ºC. The Na3Cr2(PO4)3, that 
are synthesised using citric acid in all molar ratios and urea in 1:3 molar ratio, are 
crystallized in mixed phase. Hence, further studies related to these compositions are not 
discussed in this chapter.  
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where, B is the full width at half maximum (FWHM) of XRD peaks, K is the Scherrer 
constant, D is the crystallite size, is the wavelength of X-ray, is the micro-strain in the 
lattice and is the Bragg angle. For Gaussian X-ray profiles, B can be calculated as: 

 B2=Bm2-Bs2 (2) 

where, Bm is the FWHM of the material and Bs is the FWHM of a standard sample; silicon is 
chosen as the standard for calculation of instrumental parameters. Linear extrapolation of 
the plot of Bcos vs 4sin gives average crystallite size from the intercept, K/D and the 
slope gives micro-strain. The strain contribution in Eq. (1) is negligible for the crystallite size 
calculation of microcrystalline materials. Micro-strain and average crystallite size of 
LiTi2(PO4)3 and Li1.3Ti1.7Al0.3(PO4)2.9(VO4)0.1 are listed in Table 1. 

Ball-milling induces strain in the crystal lattice and decreases the average crystallite size to 
70nm for 40h ball-milled LiTi2(PO4)3 material. Milling reduces the average size of crystallites 
to nanometer range and long hours of ball-milling lead to the formation of an amorphous 
state (Yamamoto et al., 2004 & Nobuya et al., 2005). Hence, sintering at high temperature 
after ball-milling resulted in the formation of nanocrystallites instead of microcrystalline 
material. XRD pattern gradually broadens and the particle size decreases with milling 
duration, which is clear from the FWHM of highest intensity peaks of ball-milled 
Li1.3Ti1.7Al0.3(PO4)2.9(VO4)0.1 as given in Fig. 1(d). The nanocrystalline nature of the ball-
milled materials is evident from the broadened XRD peak and there is decrease in peak 
intensity as compared to the microcrystalline material.  
 

LiTi2(PO4)3 

 Average 
crystallite size Micro-strain 

Unit cell parameters 
a[A] c[A] V[A]3 

 Micro-crystalline   (0.23±0.01)m  (0.05±0.001)%  8.514(9)   20.857(2)  1309.633(0) 
 Nano-crystalline  (70.14±0.07)nm   (0.36±0.05)%  8.495(9)   20.719(5)  1295.156(6) 

Li1.3Ti1.7Al0.3(PO4)2.9(VO4)0.1 
 Micro-crystalline  (1.60 ±0.49)m  (0.02±0.003)%  8.500(9)  20.819(6)  1302.958(1) 
 22h ball-milled   (86.62±0.27)nm  (0.29±0.04)%   8.504(1)  20.825(2)  1304.303(6) 
 55h ball-milled  (60.86±0.34)nm  (0.62±0.06)%   8.512(9) 20.845(0)  1308.254(0) 

Table 1. Average crystallite size, micro-strain and unit cell parameters of microcrystalline 
and nanocrystalline LiTi2(PO4)3 and Li1.3Ti1.7Al0.3(PO4)2.9(VO4)0.1 materials. 

The Na3Cr2(PO4)3 is synthesised using glycine, urea and citric acid in 1:1,1:2 and 1:3 molar 
ratios by solution combustion technique. The Na3Cr2(PO4)3 synthesized through 
conventional ceramic route is reported to exhibit two main structural phase transitions at 
138ºC and 166ºC, before the stable rhombohedral symmetry is attained at high temperature 
(d'Yvoire et al.,1983). Fig. 2(a) shows the powder XRD patterns of Na3Cr2(PO4)3-G1:1, 
Na3Cr2(PO4)3-G1:2 and Na3Cr2(PO4)3-G1:3 pellets sintered at 900ºC. The Na3Cr2(PO4)3, that 
are synthesised using citric acid in all molar ratios and urea in 1:3 molar ratio, are 
crystallized in mixed phase. Hence, further studies related to these compositions are not 
discussed in this chapter.  
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d’Yvoire et al., reported the monoclinic symmetry (-form) of Na3Cr2(PO4)3, at the room 
temperature, where, Na+ ions are ordered at M1 site (d'Yvoire et al.,1983). The reversible 
phase transitions in conventionally synthesized Na3Cr2(PO4)3 are: ↔' at 75C; '→at 
138C and ↔at166C. In the high temperature -form of rhombohedral symmetry, Na+ 
ions are distributed in M1 and M2 sites in the disordered manner. The temperature 
dependent XRD studies showed that →phase transitions are associated with slight 
changes in the crystal lattice. Peaks in the DTA curve are not completely separable for '↔ 
and ↔ transitions, but it forms relatively broad endo or exothermic effect from 120C to 
178C with two maxima. Change of slope in the Arrhenius plot around 75C and increase in 
conductivity about 140C are attributed to ↔' and '↔ transitions respectively. The ↔ 
transition is associated with the decrease in activation energy (d'Yvoire et al., 1983).  

 
Fig. 2. (a) XRD pattern of Na3Cr2(PO4)3 in three glycine molar ratios sintered at 900C (b) 
XRD patterns of Na3Cr2(PO4)3-G1:1 at 30C, 85C,150C and 200C (c) Rietveld refinement of 
Na3Cr2(PO4)3-G1:1 with observed, calculated and difference patterns.  

While, nanocrystalline Na3Cr2(PO4)3 synthesized in the present study, is crystallized in 
thermally stable rhombohedral symmetry (JCPDS reference code: 01-084-1203). The XRD 
patterns are indexed and all reflections are from the rhombohedral phase. This type of 
structural modification is common in materials synthesized by the various chemical routes. In 
order to confirm the structural stability of Na3Cr2(PO4)3, XRD patterns are recorded at 30C, 
85C, 150C and 200C. High temperature XRD patterns match well with the room temperature 
pattern and do not show any structural change with the temperature as shown in Fig. 2(b) for 
Na3Cr2(PO4)3-G1:1. The Rietveld refinement of room temperature XRD pattern of 
Na3Cr2(PO4)3-G1:1, is performed using GSAS computer package (Toby, 2001 & Larson, 1994) 
to confirm the crystal system. The Fig. 2(c) shows the Rietveld refinement, where symbol 
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shows the experimental data collected in the slow scan mode, calculated and difference 
patterns are in solid lines with different colours. Refinement is performed based on 
rhombohedral crystal system in R3c  space group. Initially, the parameters like zero shift, 
FWHM, background, scale factor and pseudo-Voigt coefficient are refined. Then lattice 
parameters, atomic positions of Cr, P and O are refined in 12c(0,0,z), 18e(x,0,1/4), and 
36f(x,y,z) wyckoff positions respectively. Na+ ions are assumed to occupy M1 and M2 sites 
partially; whose wyckoff positions are 6b(0,0,0) and 18e(x,0,1/4) respectively. The results of 
Rietveld refinement are given in Table 2. From these results, it is confirmed that in solution 
combustion synthesised Na3Cr2(PO4)3, Na+ ions are distributed in M1 and M2 sites at the room 
temperature itself. Hence, this material does not show structural changes with temperature. 
 

Atom Site Wyckoff position Biso 
[A°]2 Occupancy x y z 

Na(1) 6b 0.0000 0.0000 0.0000 1.448 0.84(1) 
Na(2) 18e 0.655(3) 0.0000 0.2500 1.409 0.65(2) 

Cr 12c 0.0000 0.0000 0.147(2) 1.551 1.000 
P 18e 0.291(9) 0.0000 0.2500 2.224 1.000 

O (1) 36f 0.181(5) -0.039(7) 0.193(5) 3.479 1.000 
O (2) 36f 0.199(3) 0.166(1) 0.0894 1.453 1.000 

Table 2. Results of Rietveld refinement of Na3Cr2(PO4)3-G1:1. Atomic and isotropic 
displacement factors obtained from the refinement are provided below. 

Rp =30.51(%), Rwp = 42.33(%), 2 = 3.258 

Another member of the NASICON family, that shows structural phase transition is 
Li3Fe2(PO4)3. The Li3Fe2(PO4)3 synthesised by ceramic route is crystallized in Fe2(SO4)3-type 
monoclinic symmetry and exhibited reversible structural phase transitions below 350C, that 
are not completely separated (d'Yvoire et al.,1983). Its XRD patterns do not show any 
modifications due to structural phase transitions, implying the Li+ ion distribution or ordering, 
rather than ordering of the networks. d’Yvoire et al., and Bykov et al., (Bykov,1990) showed 
that the monoclinic Li3Fe2(PO4)3 transforms reversibly to the orthorhombic phase upon heating 
above 270C, due to progressive breaking of long-range ordering of Li+ ions in the interstitial 
space. The Fe2(SO4)3-type phase generally crystallize in two symmetries: (i) orthorhombic 
(Pcan) of highest symmetry and (ii) primitive monoclinic (P21/n) symmetry (Mineo, 2002).  

In the present study, Li3Fe2(PO4)3 is synthesized by solution combustion technique using 
different fuels i.e., glycine in 1:2 molar ratio and citric acid: ethylene glycol mixture in 1:1 molar 
ratio. Both of these Li3Fe2(PO4)3 is crystallized as mixture of monoclinic (P21/n) and 
orthorhombic (Pcan) symmetry. Due to sintering in air, XRD patterns showed presence of 
minor phases of LiFeP2O7 that crystallized in monoclinic symmetry. Fig. 3(a) shows XRD 
patterns of Li3Fe2(PO4)3, sintered at 900C, synthesized using glycine. In the Figs. 3(a)-(c), black 
and red colour indexes are reflections from monoclinic and orthorhombic symmetry 
respectively. The violet colour index shows reflections due to LiFeP2O7 phase. In contradiction 
with the conventional synthesis process, solution combustion technique crystallized the 
material as a mixture of room temperature and high temperature phases. In the high 
temperature orthorhombic phase, alkali ions distribute disorderly in the available sites; hence 
the structural phase transitions are absent in the investigated Li3Fe2(PO4)3 material.  
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shows the experimental data collected in the slow scan mode, calculated and difference 
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parameters, atomic positions of Cr, P and O are refined in 12c(0,0,z), 18e(x,0,1/4), and 
36f(x,y,z) wyckoff positions respectively. Na+ ions are assumed to occupy M1 and M2 sites 
partially; whose wyckoff positions are 6b(0,0,0) and 18e(x,0,1/4) respectively. The results of 
Rietveld refinement are given in Table 2. From these results, it is confirmed that in solution 
combustion synthesised Na3Cr2(PO4)3, Na+ ions are distributed in M1 and M2 sites at the room 
temperature itself. Hence, this material does not show structural changes with temperature. 
 

Atom Site Wyckoff position Biso 
[A°]2 Occupancy x y z 

Na(1) 6b 0.0000 0.0000 0.0000 1.448 0.84(1) 
Na(2) 18e 0.655(3) 0.0000 0.2500 1.409 0.65(2) 

Cr 12c 0.0000 0.0000 0.147(2) 1.551 1.000 
P 18e 0.291(9) 0.0000 0.2500 2.224 1.000 

O (1) 36f 0.181(5) -0.039(7) 0.193(5) 3.479 1.000 
O (2) 36f 0.199(3) 0.166(1) 0.0894 1.453 1.000 

Table 2. Results of Rietveld refinement of Na3Cr2(PO4)3-G1:1. Atomic and isotropic 
displacement factors obtained from the refinement are provided below. 

Rp =30.51(%), Rwp = 42.33(%), 2 = 3.258 

Another member of the NASICON family, that shows structural phase transition is 
Li3Fe2(PO4)3. The Li3Fe2(PO4)3 synthesised by ceramic route is crystallized in Fe2(SO4)3-type 
monoclinic symmetry and exhibited reversible structural phase transitions below 350C, that 
are not completely separated (d'Yvoire et al.,1983). Its XRD patterns do not show any 
modifications due to structural phase transitions, implying the Li+ ion distribution or ordering, 
rather than ordering of the networks. d’Yvoire et al., and Bykov et al., (Bykov,1990) showed 
that the monoclinic Li3Fe2(PO4)3 transforms reversibly to the orthorhombic phase upon heating 
above 270C, due to progressive breaking of long-range ordering of Li+ ions in the interstitial 
space. The Fe2(SO4)3-type phase generally crystallize in two symmetries: (i) orthorhombic 
(Pcan) of highest symmetry and (ii) primitive monoclinic (P21/n) symmetry (Mineo, 2002).  

In the present study, Li3Fe2(PO4)3 is synthesized by solution combustion technique using 
different fuels i.e., glycine in 1:2 molar ratio and citric acid: ethylene glycol mixture in 1:1 molar 
ratio. Both of these Li3Fe2(PO4)3 is crystallized as mixture of monoclinic (P21/n) and 
orthorhombic (Pcan) symmetry. Due to sintering in air, XRD patterns showed presence of 
minor phases of LiFeP2O7 that crystallized in monoclinic symmetry. Fig. 3(a) shows XRD 
patterns of Li3Fe2(PO4)3, sintered at 900C, synthesized using glycine. In the Figs. 3(a)-(c), black 
and red colour indexes are reflections from monoclinic and orthorhombic symmetry 
respectively. The violet colour index shows reflections due to LiFeP2O7 phase. In contradiction 
with the conventional synthesis process, solution combustion technique crystallized the 
material as a mixture of room temperature and high temperature phases. In the high 
temperature orthorhombic phase, alkali ions distribute disorderly in the available sites; hence 
the structural phase transitions are absent in the investigated Li3Fe2(PO4)3 material.  
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Fig. 3. XRD patterns of (a) Li3Fe2(PO4)3-G  and (b) Na3Fe2(PO4)3 sintered at 900.  

The conventionally synthesised Na3Fe2(PO4)3 (d'Yvoire et al.,1983) showed two reversible 
phase transitions: (i) transition from monoclinic (C2/c) symmetry, ↔ below 368K and (ii) 
monoclinic to rhombohedral, ↔  at 418K, where, -phase (R3c)  is the stable symmetry. 
The monoclinic symmetry contains two formula units, i.e., Z=2 and in this frame-work, Na+ 
ions occupy three different sites. 

In the present study, Na3Fe2(PO4)3 is synthesized by solution combustion technique using 
citric acid: ethylene glycol mixture in 1:1 molar ratio. The material is crystallized in 
monoclinic symmetry of Cc space group without an impurity phase. Fig. 3 shows the room 
temperature XRD pattern of Na3Fe2(PO4)3 sintered at 910C. The high temperature XRD and  

DTA studies confirmed the structural stability of solution combustion synthesised 
Na3Fe2(PO4)3. XRD patterns of Na3Fe2(PO4)3 is recorded at 30C, 110C, 300C and 500C. The 
high temperature XRD patterns match well with the room temperature pattern and do not 
show any structural change with temperature. Table 3 provides the crystal system and 
physical parameters of NASICON materials investigated in the present study. 

 
Table 3. The crystal system and physical parameters of NASICON materials 
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3.2 FT-IR analysis 

FT-IR is one of the most general spectroscopic techniques used to identify the functional 
groups in materials. It is an important and popular tool for structural exposition and 
compound identification. The FT-IR spectra of NASICON materials are dominated by intense, 
overlapping intramolecular PO43- stretching modes (ν1 and ν3) that range from 1300 to 700cm−1 

(Corbridge and Lowe, 1954) . In most of the cases, experimentally measured vibrations are 
divided into internal and external modes. The internal vibrations consist predominantly of 
intramolecular stretching and bending motions of the PO43- anions and are usually described 
in terms of the fundamental vibrations of the free anion (i.e., ν1–ν4). Bands between 650 and 
400cm−1 are attributed to the harmonics of deformation of O–P–O angle (ν2 and ν4 modes) 
(Rao, 2001). Bands in the region 580cm−1 are attributed to the asymmetric bending vibrational 
modes of O–P–O units (Sayer & Mansingh, 1972). The region 931–870cm-1 is assigned to PO43- 

ionic group vibration (Rulmont, 1991). The entire region down to 400cm-1 is dominated by 
vibrations of PO4 tetrahedra group. Stretching vibrations of P–O–P bond are identified in the 
region 700-758cm-1 (Alamo & Roy, 1998; Kravchenko et al. 1992; Rougier, 1997). Further, FT-IR 
spectra show weak peak of carbonates in the region 1400-1600cm-1.  

The FT-IR absorption bands of ball-milled Li1.3Ti1.7Al0.3(PO4)2.9(VO4)0.1 in the range 1600cm-1-
400cm-1 are shown in Fig. 4. The asymmetric stretching vibration of VO4 tetrahedra is 
observed at 810-850cm-1 as broad band (Benmokhtar, 2007). In addition, oxygen atom in the 
VO4 tetrahedra can form bond with Al atom which can lead to some asymmetry. The 
stretching modes of VO4 in the IR spectra confirm the substitution of vanadium for 
phosphorus in PO4 tetrahedra.  

 
Fig. 4. FT-IR spectra of WBM and 55h ball-milled Li1.3Ti1.7Al0.3(PO4)2.9(VO4)0.1,  Li3Fe2(PO4)3 

and Na3Fe2(PO4)3. 

The external modes are composed of Li+/Na+, Fe3+, Cr3+, Mg2+, PO43- translations and pseudo-
rotations. Separation of internal and external modes is justified as because the intramolecular 
PO43- vibrations have much larger force constants than the external modes. The Li+ translatory 
vibrations (Li+ ion “cage modes”) often occur at relatively high frequencies and mix with PO43- 

bending modes of identical symmetry (Rulmont, et al. ,1997). In these vibrations, Li+ ions 
undergo translatory motions in a potential energy environment, that is determined by the 
nearest neighbour oxygen atoms. Bands in the region 1227-185cm-1 of Na3Cr2(PO4)3 correspond 
to the interaction of P-O bond and adjacent Cr-O bond (Alamo & Roy, 1986). 
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Fig. 3. XRD patterns of (a) Li3Fe2(PO4)3-G  and (b) Na3Fe2(PO4)3 sintered at 900.  
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3.2 FT-IR analysis 
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The FT-IR absorption bands of ball-milled Li1.3Ti1.7Al0.3(PO4)2.9(VO4)0.1 in the range 1600cm-1-
400cm-1 are shown in Fig. 4. The asymmetric stretching vibration of VO4 tetrahedra is 
observed at 810-850cm-1 as broad band (Benmokhtar, 2007). In addition, oxygen atom in the 
VO4 tetrahedra can form bond with Al atom which can lead to some asymmetry. The 
stretching modes of VO4 in the IR spectra confirm the substitution of vanadium for 
phosphorus in PO4 tetrahedra.  

 
Fig. 4. FT-IR spectra of WBM and 55h ball-milled Li1.3Ti1.7Al0.3(PO4)2.9(VO4)0.1,  Li3Fe2(PO4)3 

and Na3Fe2(PO4)3. 

The external modes are composed of Li+/Na+, Fe3+, Cr3+, Mg2+, PO43- translations and pseudo-
rotations. Separation of internal and external modes is justified as because the intramolecular 
PO43- vibrations have much larger force constants than the external modes. The Li+ translatory 
vibrations (Li+ ion “cage modes”) often occur at relatively high frequencies and mix with PO43- 

bending modes of identical symmetry (Rulmont, et al. ,1997). In these vibrations, Li+ ions 
undergo translatory motions in a potential energy environment, that is determined by the 
nearest neighbour oxygen atoms. Bands in the region 1227-185cm-1 of Na3Cr2(PO4)3 correspond 
to the interaction of P-O bond and adjacent Cr-O bond (Alamo & Roy, 1986). 
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3.3 SEM-EDS and TEM analysis 

The crystallites in nanocrystalline LiTi2(PO4)3 are agglomerated and its size distribution is 
not uniform due to dry milling (Puclin,1995). The quantitative chemical analysis is 
performed through EDS, but it cannot detect elements with atomic number less than four 
and hence Li metal cannot be detected by this technique. Surface morphology of 
Li3Ti1.7Al0.3(PO4)2.9(VO4)0.1 material also shows agglomeration of crystallites in the ball-
milled samples and the particle size decreases with milling duration as shown in Figs. 5(a)-
(c). X-ray mapping is an imaging technique performed using X-ray. This analytical 
technique provides a high magnification image related to the distribution and relative 
abundance of elements within a given specimen. This technique is useful for: (i) identifying 
the location of individual elements and (ii) mapping the spatial distribution of specific 
elements and phases in the material surface. Figs. 5(d(ii)-(vi)) show X-ray dot mapping of 
the SEM image of the 55h ball-milled Li1.3Ti1.7Al0.3(PO4)2.9(VO4)0.1 material shown in d(i). 
Elemental analysis shows peaks corresponding to Ti, Al, P and O elements present in the 
material. The inset table in Fig. 6(e) give weight and atomic percentage of elements present 
in 55h ball-milled Li1.3Ti1.7Al0.3(PO4)2.9(VO4)0.1 material. The percentages of elements that are 
detected by instrument and calculated from molecular formula fall within the error. 

 

 
Fig. 5. SEMs image of (a) microcrystalline (b) 22h ball-milled and (c) 55h ball-milled 
Li1.3Ti1.7Al0.3(PO4)2.9(VO4)0.1 d(i) SEM image of 55h ball-milled material and (d(ii)-(vi)) show 
X-ray mapping of d(i) image and (e) EDS spectrum shows peaks corresponding to the 
elements present in 55hball-milled material and the inset table give atomic and weight 
percentage of the elements.  
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Figs. 6(a)-(c) are SEM images of sintered pellets of Na3Cr2(PO4)3, synthesized using glycine 
in different fuel/complexing agent molar ratios. The molar ratios affect product 
morphology and sinterability. It is evident from SEM images that, the crystallite’s density 
decreases and agglomeration increases with the molar ratios. The surface morphology 
reveals that the particles are of submicron size.  

       
Fig. 6. The SEM images of sintered pellet of (a) Na3Cr2(PO4)3-G1:1 (b) Na3Cr2(PO4)3-G1:2 and 
(c) Na3Cr2(PO4)3-G1:3. 

The nanocrystalline nature of the samples is confirmed from TEM images. The Figs. 7(a)-(b) 
show TEM images of sintered Na3Cr2(PO4)3-G1:1 and Na3Cr2(PO4)3-G1:3 materials. The 
agglomeration of nanometer sized crystallites is seen in TEM images. Fig. 7(c) is the 
diffraction pattern of the selected area from the microscopic image of Na3Cr2(PO4)3-G1:3 in 
Fig. 7(b). Due to strong association, the individually well separated microcrystals are not 
observable in the TEM images. 

    

 
Fig. 7. TEM images of 900C sintered (a) Na3Cr2(PO4)3-G1:1 (b) Na3Cr2(PO4)3-G1:3 and (c) 
Diffraction pattern of Na3Cr2(PO4)3-G1:3. 
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Fig. 7. TEM images of 900C sintered (a) Na3Cr2(PO4)3-G1:1 (b) Na3Cr2(PO4)3-G1:3 and (c) 
Diffraction pattern of Na3Cr2(PO4)3-G1:3. 



 
Polycrystalline Materials – Theoretical and Practical Aspects 

 

88

    

 
Fig. 8. (a) Lattice fringes of Li3Fe2(PO4)3-G in different orientations (b) and (c) show 
diffraction patterns from different (hkl) planes of Li3Fe2(PO4)3-G.  

TEM image of Li3Fe2(PO4)3-G in Fig. 8(a) shows lattice fringes with different orientation. The 
lattice fringes with d-spacing of 1.98Aº are identified in the images. In comparison with the 
XRD pattern, these fringes correspond to (-1, 2, 4) plane. Figs. 8(b)-(c) show the diffraction 
patterns from different planes of Li3Fe2(PO4)3-G. TEM image in Fig. 8(c) corresponds to 
800°C sintered Li3Fe2(PO4)3 and the material is not well sintered at this temperature. The 
amorphous regions in the TEM image are due to less sintering.  

3.4 Thermal analysis 

Thermal studies include measurement of time dependence of material’s temperature, while 
it is subjected to temperature-time variation. DSC measurements are also carried out for the 
phase transition analysis. But, DSC measurements are performed up to 500°C due to 
instrument limitation. In this range of temperature, investigated systems of Na3Cr2(PO4)3 
and Li3Fe2(PO4)3 are stable at room temperature phase. To confirm the phase stability at 
higher temperature, DTA measurement is carried out.  

Thermal and gravimetric analyses of as-prepared materials are carried out in the 
temperature range 40C to 1000C. Thermal study confirms the structural phase transition in 
the material and change in enthalpy of the products is calculated from the area of 
crystallization peak. TG-DTA curves of as-prepared Na3Cr2(PO4)3 in different fuel molar 
ratios are shown in Figs. 9(a)-(c). Out of the two exothermic peaks observed in DTA, the 
broad peak around 200-400C corresponds to the decomposition of organic fuel/complexing 
agent and nitrates. The sharp peak between 740-780C represents the crystallization process. 
The gravimetric plot shows significant weight loss in the temperature range 300◦C to 740◦C, 
that is due to the decomposition of organic intermediate and the crystallization process. 
Further weight loss between 740◦C and 800◦C is due to the formation of NASICON phase 

 
NASICON Materials: Structure and Electrical Properties 

 

89 

that is articulated in the DTA plot as sharp exothermic peak. The weight loss curve follows 
the same path for all materials, but the percentage of weight loss is more for higher molar 
ratios, due to the presence of more amount of carbonaceous residue. Absence of any 
additional peaks, in the DTA plot of the as-prepared material, ruled out the possibility of 
thermodynamical changes due to structural transition.  
 

 
Fig. 9. Thermal and gravimetric plots of as-prepared (a) Na3Cr2(PO4)3-G1:1 (b) Na3Cr2(PO4)3-
G1:2 and (c) Na3Cr2(PO4)3-G1:3. 

The surface area and crystallite size are primarily decided by enthalpy or flame temperature 
of combustion process. The flame temperature depends on the nature of fuel/complexing 
agent and its molar ratio. Rapid evolution of large volume of gaseous products during 
combustion process dissipates heat, whereby limits the increase of temperature. This 
reduces the possibility of premature local partial sintering among the primary particles and 
helps in limiting the inter-particle contact. The crystallite size is decided mainly by two 
factors i.e., adiabatic flame temperature and number of moles of gases released during 
combustion process. These two factors are more for higher fuel/complexing agent molar 
ratios. Higher values of flame temperature result in the formation of dense agglomerates 
that are disintegrated by the release of more amounts of gases (Hahn, 1990). The 
competition between flame temperature and number of moles of gases released decides the 
crystallite size. Crystallites of Na3Cr2(PO4)3-G1:1 are the smallest among the three fuel/ 
complexing agent ratios. Table 3 gives variation of crystallite size with molar ratios. In the 
present study, flame temperature has a major role than the number of moles of gases 
released, on controlling the crystallite size. DTA curves of Li3Fe2(PO4)3 prepared using 
different fuels/complexing agents are different due to the difference in the chemical 
decomposition of organic components. Table 4 provides crystallization temperature of 
investigated NASICONs obtained from the DTA plot. The crystallization temperature 
depends on nature of the fuel/complexing agent and its molar ratio.  

DTA has been used to confirm the possible reversible structural phase transition in 
NASICON type materials. Fig. 10 shows the typical heating and cooling curve of 
Na3Cr2(PO4)3-G1:3 in the temperature range 40C to 900C (at the rate of 10ºC/minute for 
both heating and cooling). The heating/cooling curves did not show 
exothermic/endothermic effect corresponding to phase transitions. This ruled out the 
possibility of structural phase transitions in Na3Cr2(PO4)3 and Li3Fe2(PO4)3 materials 
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Fig. 8. (a) Lattice fringes of Li3Fe2(PO4)3-G in different orientations (b) and (c) show 
diffraction patterns from different (hkl) planes of Li3Fe2(PO4)3-G.  
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lattice fringes with d-spacing of 1.98Aº are identified in the images. In comparison with the 
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800°C sintered Li3Fe2(PO4)3 and the material is not well sintered at this temperature. The 
amorphous regions in the TEM image are due to less sintering.  
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and Li3Fe2(PO4)3 are stable at room temperature phase. To confirm the phase stability at 
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Thermal and gravimetric analyses of as-prepared materials are carried out in the 
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the material and change in enthalpy of the products is calculated from the area of 
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Further weight loss between 740◦C and 800◦C is due to the formation of NASICON phase 
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that is articulated in the DTA plot as sharp exothermic peak. The weight loss curve follows 
the same path for all materials, but the percentage of weight loss is more for higher molar 
ratios, due to the presence of more amount of carbonaceous residue. Absence of any 
additional peaks, in the DTA plot of the as-prepared material, ruled out the possibility of 
thermodynamical changes due to structural transition.  
 

 
Fig. 9. Thermal and gravimetric plots of as-prepared (a) Na3Cr2(PO4)3-G1:1 (b) Na3Cr2(PO4)3-
G1:2 and (c) Na3Cr2(PO4)3-G1:3. 
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Material 
Crystallization 
Temperature, 

[ºC] 
Na3Cr2(PO4)3-G1:1 743 
Na3Cr2(PO4)3-G1:2 746 
Na3Cr2(PO4)3-G1:3 771 
Na3Cr2(PO4)3-U1:1 752 
Na3Cr2(PO4)3-U1:2 805 

Li3Fe2(PO4)3-G 864 
Li3Fe2(PO4)3-

CA:EG 885 

Na3Fe2(PO4)3 819 

Table 4. Crystallization temperatures obtained from the DTA plot. 

 
Fig. 10. Thermal analysis of as-prepared Na3Cr2(PO4)3-G1:3 (both heating and cooling curve). 

3.5 Ultraviolet and visible absorption spectroscopy analysis 

UV-vis spectroscopy is a tool for identifying valency (electronic) state of transition metals. 
The transition metals like Fe and Cr show variable valencies and can co-ordinate 
tetrahedrally and octahedrally. Each co-ordination state produces its own set of 
characteristic absorption bands in the visible and near UV range. These characteristic 
absorption bands are used to find skeleton co-valency of the material, which is related to the 
electronic contribution.  

The UV-vis spectra of Na3Cr2(PO4)3 in three different glycine molar ratios has two absorption 
peaks as shown in Fig. 11(a). The 3d3 configuration of Cr3+ has a 4F fundamental state with 4P 
as the first excited state. The spin allowed transitions appeared at 670, 468 and 300nm are: 
1:4A2g(F)→4T2g(F), 2:4A2g(F)→4T1g(F), 3:4A2g(F)→4T1g(P). Out of these three bands,3 band 
appears occasionally [Stalhandske, 2000]. In Na3Cr2(PO4)3 material, Cr3+ does not show 
variable valency state and its contribution to the electronic part is negligible. The Fe3+ ions 
reveal absorption bands in the visible and near UV range. Both Fe2+ and Fe3+ ions can exist in 
tetrahedral and octahedral sites, and majority of Fe3+ ions are believed to occupy the 
tetrahedral network. The double absorption band at 340 and 380nm may be attributed to 4D5 
for ferric ion in tetrahedral state and absorption at 440nm is due to 4G5 for ferric ion mostly in 
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tetrahedral form. In addition to that, the absorption band at 560-580nm may be due to the 
presence of ferric ion in octahedral site (ElBatal et al., 1988; Bates & Mackenzie, 1962; Kurkjian 
& Sigety, 1968; Steele & Douglas, 1965; Edwards & Paul, 1972). The absorption band at 410-
420nm of transition, 3F2→3P4, is related to the ferric ion in octahedral symmetry. Li3Fe2(PO4)3-
CA:EG, Li3Fe2(PO4)3-G and Na3Fe2(PO4)3-CA:EG show absorption bands in the region of 
420nm, 550nm and 720nm as in Fig. 11(b). These absorption peaks correspond to Fe3+ ions in 
octahedral state, this ruled out the presence of Fe2+ ions in the material. The present study 
concluded that, the dominating contribution to the total conductivity is from ions and the 
electronic part is negligible. The broad band in the region 200–400nm is due to the phosphate 
group and its location is independent of the nature of the cation.  

 
Fig. 11. UV-vis spectrum of (a) Na3Cr2(PO4)3-G1:1, G1:2 and G1:3 and (b) Li3Fe2(PO4)3-G, 
Li3Fe2(PO4)3-CA:EG and Na3Fe2(PO4)3. 

3.6 Wagner polarization technique 

The NASICON materials investigated in the present study contain transition elements like 
Cr and Fe. Due to the presence of variable valency states, these elements may contribute to 
the electronic part in the total conductivity. The electronic contribution is determined 
quantitatively by transport number measurement through Wagner polarization technique. 
The transport number is calculated from the instantaneous and steady state values of 
current obtained by dc polarization technique. The transport number of investigated 
materials in the present study is found to be approximately equal to one. Hence, the 
contribution of electronic part to total conductivity is negligibly small and this corroborates 
the results from VSM data.    

3.7 K-K transformations  

To validate the electrical microstructure of the material, like grain, grain-boundary and other 
external parameters such as electrode polarization, ac electrical parameters are plotted in the 
complex impedance formalism. Kramers–Kronig (K–K) relation is used to evaluate the quality 
of the measured impedance data. The K-K relations are true for complex impedance 
spectroscopic data that are linear, causal, and stable. Fig. 12(a) shows K-K fit to Na3Cr2(PO4)3-
G1:3 at different temperatures and (b) shows K-K fit to Na3Cr2(PO4)3 in different glycine molar 
ratios at 393K. All these fits match well with the experimental data, implying good quality of 
the measured data. Kramers-Kronig fit to the complex impedance data is achieved through the 
software K-K test. Solid line shows K-K fit to the experimental data at different temperatures. 
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Cr and Fe. Due to the presence of variable valency states, these elements may contribute to 
the electronic part in the total conductivity. The electronic contribution is determined 
quantitatively by transport number measurement through Wagner polarization technique. 
The transport number is calculated from the instantaneous and steady state values of 
current obtained by dc polarization technique. The transport number of investigated 
materials in the present study is found to be approximately equal to one. Hence, the 
contribution of electronic part to total conductivity is negligibly small and this corroborates 
the results from VSM data.    

3.7 K-K transformations  

To validate the electrical microstructure of the material, like grain, grain-boundary and other 
external parameters such as electrode polarization, ac electrical parameters are plotted in the 
complex impedance formalism. Kramers–Kronig (K–K) relation is used to evaluate the quality 
of the measured impedance data. The K-K relations are true for complex impedance 
spectroscopic data that are linear, causal, and stable. Fig. 12(a) shows K-K fit to Na3Cr2(PO4)3-
G1:3 at different temperatures and (b) shows K-K fit to Na3Cr2(PO4)3 in different glycine molar 
ratios at 393K. All these fits match well with the experimental data, implying good quality of 
the measured data. Kramers-Kronig fit to the complex impedance data is achieved through the 
software K-K test. Solid line shows K-K fit to the experimental data at different temperatures. 
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Fig. 12. (a) K-K fit to Na3Cr2(PO4)3-G1:3 at different temperatures and (b) K-K fit to 
Na3Cr2(PO4)3 in three glycine molar ratios at 393K.  

3.8 Vibrating sample magnetometer analysis 

In the present study, magnetization of NASICON materials are recorded over a range of 
field, using VSM at room temperature. Electronic contribution to the total conducivity is 
related to the co-existence of different electronic states. Generally, exchange interaction 
between equal valence ions is antiferromagnetic and interaction between ions with different 
valence states like Fe3+ (3d5) and Fe2+ (3d6) is ferromagnetic (Takano, 1981; Li, 1997). VSM 
measurement of the investigated NASICON materials as in Fig.13 show antiferromagnetic 
behaviour. This indicates that, the contribution to  electronic conductivity is negligible in 
these materials. 

 
Fig. 13. Magnetization versus applied magnetic field at room temperature for 
Na3Cr2(PO4)3,Na3Fe2(PO4)3,  Li3Fe2(PO4)3- EG:CA and Li3Fe2(PO4)3- G. 
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4. Impedance spectroscopy analysis 
The real part, Z’() and the imaginary part,  Z”() of the complex impedance, Z*()= Z’()-
iZ”() are calculated from the measured G and C values as: 

 Z’()= G/(G2+C22) (3) 

 Z”()=C/(G2+C22)    (4) 

where, f, f being the frequency in Hertz.  

 
Fig. 14. The complex impedance spectra of (a) microcrystalline LiTi2(PO4)3 at 368K and (b) 
nanocrystalline LiTi2(PO4)3 at 348K. Inset of Fig. 14(a) and (b) shows grain part of the 
corresponding equivalent circuit and the continuous line is the simulation result.  

The elements of an equivalent circuit model represent various (macroscopic) processes 
involved in the transport of mass and charge. Using NLLS techniques, all the parameters in 
the equivalent circuit are adjusted simultaneously, thus obtaining the optimum fit to the 
measured dispersion data. A more general NLLS-fit program based on the Marquardt 
algorithm has been used. The impedance parameters are obtained by fitting the data to an 
equivalent circuit using NLLS fitting procedure due to Boukamp [Boukamp, 1989; 
Mariappan & G. Govindaraj, 2004 & 2006).  

Figs. 14 (a) and (b) show the complex impedance plane plot of microcrystalline LiTi2(PO4)3 
material at 368K and nanocrystalline LiTi2(PO4)3 material at 348K. For both of these 
materials equivalent circuit model is the same throughout the temperature range from 309K 
to 388K. Equivalent circuit model consists of two depressed semi-circles, where the high 
frequency semi-circle is displaced from the origin. Since, the high frequency semi-circle is 
impeded by the low frequency one and effectively only one semi-circle can be visible in the 
complex impedance plane plot. The ratio of grain capacitance to the grain-boundary 
capacitance should be less than 10-3 for the appearance of two separate semi-circles in the 
complex impedance plane plot (Barsoukov & Macdonald, 2005; Mariappan & Govindaraj, 
2005). Inset of Figs. 14(a) and (b) show the high frequency part in the complex impedance 
plane plot, where continuous line is the simulation result. Simulation clearly shows the 
grain semi-circle, which is not seen explicitly in the complex impedance representation of 
the equivalent circuit. 
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Fig. 12. (a) K-K fit to Na3Cr2(PO4)3-G1:3 at different temperatures and (b) K-K fit to 
Na3Cr2(PO4)3 in three glycine molar ratios at 393K.  
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related to the co-existence of different electronic states. Generally, exchange interaction 
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valence states like Fe3+ (3d5) and Fe2+ (3d6) is ferromagnetic (Takano, 1981; Li, 1997). VSM 
measurement of the investigated NASICON materials as in Fig.13 show antiferromagnetic 
behaviour. This indicates that, the contribution to  electronic conductivity is negligible in 
these materials. 
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The impedance plane plots are depressed due to the distribution of relaxation times; a non-
ideal capacitor or the CPE, Q, is used to explain the depressed semi-circle (Lakshmi et al., 
2011,2011) Equivalent circuit of the impedance plane plots obtained using the Boukamp 
equivalent circuit analysis is found to be Rc(RgQg)(RgbQgb). Resistance of the electrolyte-
electrode contact is Rc, which is characterized by the shift of the impedance arc from the 
origin. Constant phase elements,  Qg and Qgb represent the grain and grain-boundary 
property of the sample. Grain resistance,  Rg and the grain-boundary resistance,  Rgb of the 
sample are obtained by right and left intercepts of the semi-circles with the real axis. Rg and 
Rgb are used to calculate the corresponding grain conductivity, dcg and grain-boundary 
conductivity, dcgb. The obtained equivalent circuit is the same for both the LiTi2(PO4)3 
samples, but with the different magnitudes of circuit parameters.  

For both the samples, Rc variation is not consistent with temperature,  Rg and Rgb of both the 
samples decrease with increase in temperature, Qgb values increases with temperature, 
while,  Qg decreases. The grain conductivity at 309K (dcg309K1.82x10-6Scm-1) of the 
microcrystalline material is consistent with the reported room temperature value of 10-7Scm-

1 (Palani Balaya, 2006). At 388K, grain conductivity (dcg388K=8.57x10-4Scm-1) of 
nanocrystalline material shows an order of magnitude jump (Lakshmi et al, 2009, 2011) 
compared to the microcrystalline material (dcg388K=7.74x10-5Scm-1). This significant increase 
in the grain conduction resulted from the reduced crystallite size. High energy ball-milling 
introduces grain-boundaries in the material and its volume fraction is more in 
nanocrystalline material. The diffusion through grain-boundaries is much faster than the 
grain diffusion; hence large volume fractions of grain-boundaries play a dominant role in 
the ion conduction (Schoonman, 2003). 

Figs. 15(a) and (b) show Arrhenius plot of grain and grain-boundary conductivity of the 
microcrystalline and nanocrystalline LiTi2(PO4)3 material. The Arrhenius equation is given 
by:  

dc0exp/k(5) 

where, dcis the dc conductivity, 0 is the pre-exponential factor, T is the temperature in 
Kelvin,  is the activation energy for dc conduction and k is the Boltzmann’s constant.  

 
Fig. 15. Arrhenius plot of (a) grain and (b) grain-boundary conductivity of microcrystalline 
and nanocrystalline LiTi2(PO4)3 material. Solid line represents best fit to the Eq. (5). 
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From the slope of the Arrhenius plots, grain and grain-boundary activation energies g and 
gb are calculated and are shown in Table 5. Increase in the grain conductivity of 
nanocrystalline material is due to the feasible conduction through grain-boundaries as its 
activation energy for grain-boundary conduction is less compared to the grain conduction 
(Mouahid, 2001). Even though the ball-milling decreases the crystallite size, its distribution 
is not uniform due to dry milling. The non-uniform size distribution and agglomeration are 
the causes of higher activation energy in nanocrystalline LiTi2(PO4)3 material, in spite of its 
higher conductivity (Lakshmi et. al, 2009, 2011). These agglomerated crystallites are seen 
clearly in SEM images. Table 6 provides the charge carrier concentration, nc, of 
microcrystalline and nanocrystalline LiTi2(PO4)3 material, which authenticate that the ball-
milling does not increase the carrier concentration.  
 

LiTi2(PO4)3 
Activation energy for  

conduction through [eV] Grain conductivity,[Scm-1] 

Grain, Eg Grain-boundary, Egb dcg at  dcgb at  
Microcrystalline (0.54±0.02) (0.34±0.02) 2.34x10-6 7.74x10-5 
Nano-crystalline (0.76±0.03) (0.42±0.02) 1.28x10-6 8.57x10-4 

Table 5. Activation energies and dc conductivity values of microcrystalline and 
nanocrystalline LiTi2(PO4)3 materials. 

 
Fig. 16. Complex impedance spectra of (a) microcrystalline (b) 22h and (c) 55h ball-milled 
Li1.3Ti1.7Al0.3(PO4)2.9(VO4)0.1 material at 95ºC. In Fig. 16(c) inset shows simulation to the grain 
semi-circle.  

The impedance plane plots of Li1.3Ti1.7Al0.3(PO4)2.9(VO4)0.1 material shows obvious indication 
of blocking effect at the grain-boundaries and at the electrode-sample interface. Figs. 15(a)-
(c) show impedance plots of microcrystalline and ball-milled materials. Equivalent circuit 
consists of series combination of a semi-circle associated to grain-boundary contribution and 
spike characterizing the electrode disparity at the low frequency part. The equivalent circuit 
representation is (RgbQgbCgb) up to 85°C and at higher temperatures it becomes   
(RgbQgb)(QeCe) for the microcrystalline material. In the case of 22h ball-milled material, the 
equivalent circuit representation is (RgbQgb)(QeCe) in the whole temperature range. 
Impedance plane plots of 55h ball-milled material show overlapped semicircles; in which 
the high frequency arc is attributed to the grain contribution. 

Inset of Fig. 16(c) shows the high frequency part in the complex impedance plane plot where 
continuous line is the simulation result. Simulation clearly shows the grain semi-circle, 
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The impedance plane plots are depressed due to the distribution of relaxation times; a non-
ideal capacitor or the CPE, Q, is used to explain the depressed semi-circle (Lakshmi et al., 
2011,2011) Equivalent circuit of the impedance plane plots obtained using the Boukamp 
equivalent circuit analysis is found to be Rc(RgQg)(RgbQgb). Resistance of the electrolyte-
electrode contact is Rc, which is characterized by the shift of the impedance arc from the 
origin. Constant phase elements,  Qg and Qgb represent the grain and grain-boundary 
property of the sample. Grain resistance,  Rg and the grain-boundary resistance,  Rgb of the 
sample are obtained by right and left intercepts of the semi-circles with the real axis. Rg and 
Rgb are used to calculate the corresponding grain conductivity, dcg and grain-boundary 
conductivity, dcgb. The obtained equivalent circuit is the same for both the LiTi2(PO4)3 
samples, but with the different magnitudes of circuit parameters.  

For both the samples, Rc variation is not consistent with temperature,  Rg and Rgb of both the 
samples decrease with increase in temperature, Qgb values increases with temperature, 
while,  Qg decreases. The grain conductivity at 309K (dcg309K1.82x10-6Scm-1) of the 
microcrystalline material is consistent with the reported room temperature value of 10-7Scm-

1 (Palani Balaya, 2006). At 388K, grain conductivity (dcg388K=8.57x10-4Scm-1) of 
nanocrystalline material shows an order of magnitude jump (Lakshmi et al, 2009, 2011) 
compared to the microcrystalline material (dcg388K=7.74x10-5Scm-1). This significant increase 
in the grain conduction resulted from the reduced crystallite size. High energy ball-milling 
introduces grain-boundaries in the material and its volume fraction is more in 
nanocrystalline material. The diffusion through grain-boundaries is much faster than the 
grain diffusion; hence large volume fractions of grain-boundaries play a dominant role in 
the ion conduction (Schoonman, 2003). 

Figs. 15(a) and (b) show Arrhenius plot of grain and grain-boundary conductivity of the 
microcrystalline and nanocrystalline LiTi2(PO4)3 material. The Arrhenius equation is given 
by:  

dc0exp/k(5) 

where, dcis the dc conductivity, 0 is the pre-exponential factor, T is the temperature in 
Kelvin,  is the activation energy for dc conduction and k is the Boltzmann’s constant.  

 
Fig. 15. Arrhenius plot of (a) grain and (b) grain-boundary conductivity of microcrystalline 
and nanocrystalline LiTi2(PO4)3 material. Solid line represents best fit to the Eq. (5). 
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From the slope of the Arrhenius plots, grain and grain-boundary activation energies g and 
gb are calculated and are shown in Table 5. Increase in the grain conductivity of 
nanocrystalline material is due to the feasible conduction through grain-boundaries as its 
activation energy for grain-boundary conduction is less compared to the grain conduction 
(Mouahid, 2001). Even though the ball-milling decreases the crystallite size, its distribution 
is not uniform due to dry milling. The non-uniform size distribution and agglomeration are 
the causes of higher activation energy in nanocrystalline LiTi2(PO4)3 material, in spite of its 
higher conductivity (Lakshmi et. al, 2009, 2011). These agglomerated crystallites are seen 
clearly in SEM images. Table 6 provides the charge carrier concentration, nc, of 
microcrystalline and nanocrystalline LiTi2(PO4)3 material, which authenticate that the ball-
milling does not increase the carrier concentration.  
 

LiTi2(PO4)3 
Activation energy for  

conduction through [eV] Grain conductivity,[Scm-1] 

Grain, Eg Grain-boundary, Egb dcg at  dcgb at  
Microcrystalline (0.54±0.02) (0.34±0.02) 2.34x10-6 7.74x10-5 
Nano-crystalline (0.76±0.03) (0.42±0.02) 1.28x10-6 8.57x10-4 

Table 5. Activation energies and dc conductivity values of microcrystalline and 
nanocrystalline LiTi2(PO4)3 materials. 

 
Fig. 16. Complex impedance spectra of (a) microcrystalline (b) 22h and (c) 55h ball-milled 
Li1.3Ti1.7Al0.3(PO4)2.9(VO4)0.1 material at 95ºC. In Fig. 16(c) inset shows simulation to the grain 
semi-circle.  

The impedance plane plots of Li1.3Ti1.7Al0.3(PO4)2.9(VO4)0.1 material shows obvious indication 
of blocking effect at the grain-boundaries and at the electrode-sample interface. Figs. 15(a)-
(c) show impedance plots of microcrystalline and ball-milled materials. Equivalent circuit 
consists of series combination of a semi-circle associated to grain-boundary contribution and 
spike characterizing the electrode disparity at the low frequency part. The equivalent circuit 
representation is (RgbQgbCgb) up to 85°C and at higher temperatures it becomes   
(RgbQgb)(QeCe) for the microcrystalline material. In the case of 22h ball-milled material, the 
equivalent circuit representation is (RgbQgb)(QeCe) in the whole temperature range. 
Impedance plane plots of 55h ball-milled material show overlapped semicircles; in which 
the high frequency arc is attributed to the grain contribution. 

Inset of Fig. 16(c) shows the high frequency part in the complex impedance plane plot where 
continuous line is the simulation result. Simulation clearly shows the grain semi-circle, 
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which is not seen explicitly in the complex impedance plane representation. The high 
frequency studies are requisite to obtain the grain contribution of microcrystalline and 22h 
ball-milled material. Mechanical milling changes the capacitive contribution in such a way 
that in 55h ball-milled material, grain contribution is substantial within the frequency 
window (Lakshmi et al, 2009, 2011). Mechanical milling decreases the difference between 
the grain and grain-boundary capacitance values; which indicates relatively good 
connectivity between the grains.  
 

Temperature 
[K]   

 Carrier concentration, nc  [cm-3] 
 Microcrystalline nanocrystalline

308 2.01x1020   1.09x1020 
318 2.36x1020 7.77x1020 
328 2.16x1020 1.05x1020 
338 2.12x1020 7.41x1020 
348 2.13x1020 7.56x1020 
358 1.98x1020 5.27x1020 
368 1.95x1020 3.59x1020 
378 2.17x1020 4.65x1020 
388 1.84x1020 5.12x1020 
398 1.76x1020 3.75x1020 

Table 6. Carrier concentartion of microcrystalline and nanocrystalline LiTi2(PO4)3 materials 
over the temperature range 308K to 398K. 

Table 7 provides the dc conductivity values and activation energies of microcrystalline and 
ball-milled Li1.3Ti1.7Al0.3(PO4)2.9(VO4)0.1 materials. Grain-boundary conductivity of 55h ball-
milled material at 65ºC illustrates an order of magnitude increase in comparison to the 
microcrystalline counterpart. High frequency investigation is needed to explore the grain 
characteristics of the microcrystalline and 22h ball-milled material. Micro-strain induced by 
the milling creates defects like grain-boundaries and its volume fraction is much more in 
ball-milled samples. Ions can diffuse faster through grain-boundaries and it is reflected in 
the observed jump in the conductivity in the 55h ball-milled material (Lakshmi et al, 2009, 
2011).The ease of ion diffusion through grain-boundary is reflected in the values of 
activation energy as given in Table 7. With the milling duration activation energy decreases 
since the ion diffusion become easier as the volume fraction of the grain-boundaries 
increases. 
 

 Grain-boundary Grain 

LATPV0.1 
Conductivity at 

65°C, dcgb [Scm-1]
Activation energy

Egb [eV] 
Conductivity at  
65°C, dcg [Scm-1]

Activation energy 
Eg [eV] 

Microcrystalline 3.75x10-8 (0.73±0.090) --- ---- 
22h ball-milled 1.28x10-7 (0.65±0.007) --- ---- 
55h ball-milled 3.13x10-7 (0.26±0.040) 5.32x10-5 (0.300.01) 

Table 7. Conductivity and activation energy of the grain-boundary and grain conduction in 
microcrystalline and ball-milled Li1.3Ti1.7Al0.3(PO4)2.9(VO4)0.1 materials. 
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The spectroscopic plot of real part of the complex permittivity, *() of 
Li1.3Ti1.7Al0.3(PO4)2.9(VO4)0.1 shows relaxation at the high frequency. This results from the 
constriction effect at the grain-boundaries (Mouahid et al., 2001) and is explicit in the 
impedance representation. This relaxation is prominent in the samples milled for longer 
times since the grain-boundaries are more significant in those samples (Martin et al., 2006). 
The ' of Li1.3Ti1.7Al0.3(PO4)2.9(VO4)0.1 material shows a prominent increase at low frequency 
which is associated with charges accumulating at the blocking electrode. Permittivity loss in 
the 55h ball-milled material shows an order of magnitude increase in comparison to the 
microcrystalline material and the augmented permittivity loss may be due to the ease of 
diffusion through the grain-boundaries that is reflected in the total conductivity hike of the 
55h ball-milled material. 

The complex impedance plane plots of Na3Cr2(PO4)3-G1:3 at 373K and 323K are given in Fig. 
17(a). The equivalent circuit, (RgQg)(ReQe), at 373K consists of a depressed semi-circle and 
part of a semi-circle. The impedance plane plots are depressed due to the distribution of 
relaxation times; a non-ideal capacitor or constant phase element, Q, is used to explain the 
depression (Barsoukov & Macdonald, 2005; Mariappan & Govindaraj, 2005). The high 
frequency part, (RgQg), corresponds to grain contribution and the part of a semi-circle, 
(ReQe) in the low frequency represents the electrode polarization [32]. Exponent 
ng=(0.93±0.01), Re=(3.92±0.42)x105, Qe=(6.34±0.82)x10-7S.sn and ne=(0.69±0.02). The 
magnitude of chi-square is found to be 9.02x10-3. The magnitude of Qg confirms that the 
high frequency contribution is from grain and not from the grain-boundary.  

 

Fig. 17. (a) Complex impedance plane plot for Na3Cr2(PO4)3-G1:3 at 373K and 323K and the 
solid line represents NLLS fit to equivalent circuit (b) Complex impedance plane plot for 
G1:1 and G1:2 molar ratios at 323K and the solid line represents NLLS fit (c) Arrhenius plot 
of dc conductivity values, dcg and dcgb, of the  three fuel molar ratios. 

The Na3Cr2(PO4)3 with other glycine molar ratios contain contributions from both grain and 
grain-boundary, as evident from the two semi-circles in the complex impedance plane 
representation. The equivalent circuit representation of Na3Cr2(PO4)3-G1:1 is 
(RgQg)(RgbQgb)(QeCe), at 323K, where, Rg=(2.30±0.06)x104, Qg=(3.46±0.24)x10-11S.sn, 
ng=(0.95±0.06), Rgb=(7.69±0.18)x104, Qgb=(1.36±0.20)x10-10S.sn, ngb=(0.91±0.02), 
Qe=(1.81±0.50)x10-7S.sn and ne=(0.46±0.06). The magnitude of chi-square is found to be 
9.52x10-3. The equivalent circuit representation of Na3Cr2(PO4)3-G1:2 is (RgQg)(RgbQgb), at 
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which is not seen explicitly in the complex impedance plane representation. The high 
frequency studies are requisite to obtain the grain contribution of microcrystalline and 22h 
ball-milled material. Mechanical milling changes the capacitive contribution in such a way 
that in 55h ball-milled material, grain contribution is substantial within the frequency 
window (Lakshmi et al, 2009, 2011). Mechanical milling decreases the difference between 
the grain and grain-boundary capacitance values; which indicates relatively good 
connectivity between the grains.  
 

Temperature 
[K]   

 Carrier concentration, nc  [cm-3] 
 Microcrystalline nanocrystalline

308 2.01x1020   1.09x1020 
318 2.36x1020 7.77x1020 
328 2.16x1020 1.05x1020 
338 2.12x1020 7.41x1020 
348 2.13x1020 7.56x1020 
358 1.98x1020 5.27x1020 
368 1.95x1020 3.59x1020 
378 2.17x1020 4.65x1020 
388 1.84x1020 5.12x1020 
398 1.76x1020 3.75x1020 

Table 6. Carrier concentartion of microcrystalline and nanocrystalline LiTi2(PO4)3 materials 
over the temperature range 308K to 398K. 

Table 7 provides the dc conductivity values and activation energies of microcrystalline and 
ball-milled Li1.3Ti1.7Al0.3(PO4)2.9(VO4)0.1 materials. Grain-boundary conductivity of 55h ball-
milled material at 65ºC illustrates an order of magnitude increase in comparison to the 
microcrystalline counterpart. High frequency investigation is needed to explore the grain 
characteristics of the microcrystalline and 22h ball-milled material. Micro-strain induced by 
the milling creates defects like grain-boundaries and its volume fraction is much more in 
ball-milled samples. Ions can diffuse faster through grain-boundaries and it is reflected in 
the observed jump in the conductivity in the 55h ball-milled material (Lakshmi et al, 2009, 
2011).The ease of ion diffusion through grain-boundary is reflected in the values of 
activation energy as given in Table 7. With the milling duration activation energy decreases 
since the ion diffusion become easier as the volume fraction of the grain-boundaries 
increases. 
 

 Grain-boundary Grain 

LATPV0.1 
Conductivity at 

65°C, dcgb [Scm-1]
Activation energy

Egb [eV] 
Conductivity at  
65°C, dcg [Scm-1]

Activation energy 
Eg [eV] 

Microcrystalline 3.75x10-8 (0.73±0.090) --- ---- 
22h ball-milled 1.28x10-7 (0.65±0.007) --- ---- 
55h ball-milled 3.13x10-7 (0.26±0.040) 5.32x10-5 (0.300.01) 

Table 7. Conductivity and activation energy of the grain-boundary and grain conduction in 
microcrystalline and ball-milled Li1.3Ti1.7Al0.3(PO4)2.9(VO4)0.1 materials. 
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The spectroscopic plot of real part of the complex permittivity, *() of 
Li1.3Ti1.7Al0.3(PO4)2.9(VO4)0.1 shows relaxation at the high frequency. This results from the 
constriction effect at the grain-boundaries (Mouahid et al., 2001) and is explicit in the 
impedance representation. This relaxation is prominent in the samples milled for longer 
times since the grain-boundaries are more significant in those samples (Martin et al., 2006). 
The ' of Li1.3Ti1.7Al0.3(PO4)2.9(VO4)0.1 material shows a prominent increase at low frequency 
which is associated with charges accumulating at the blocking electrode. Permittivity loss in 
the 55h ball-milled material shows an order of magnitude increase in comparison to the 
microcrystalline material and the augmented permittivity loss may be due to the ease of 
diffusion through the grain-boundaries that is reflected in the total conductivity hike of the 
55h ball-milled material. 

The complex impedance plane plots of Na3Cr2(PO4)3-G1:3 at 373K and 323K are given in Fig. 
17(a). The equivalent circuit, (RgQg)(ReQe), at 373K consists of a depressed semi-circle and 
part of a semi-circle. The impedance plane plots are depressed due to the distribution of 
relaxation times; a non-ideal capacitor or constant phase element, Q, is used to explain the 
depression (Barsoukov & Macdonald, 2005; Mariappan & Govindaraj, 2005). The high 
frequency part, (RgQg), corresponds to grain contribution and the part of a semi-circle, 
(ReQe) in the low frequency represents the electrode polarization [32]. Exponent 
ng=(0.93±0.01), Re=(3.92±0.42)x105, Qe=(6.34±0.82)x10-7S.sn and ne=(0.69±0.02). The 
magnitude of chi-square is found to be 9.02x10-3. The magnitude of Qg confirms that the 
high frequency contribution is from grain and not from the grain-boundary.  

 

Fig. 17. (a) Complex impedance plane plot for Na3Cr2(PO4)3-G1:3 at 373K and 323K and the 
solid line represents NLLS fit to equivalent circuit (b) Complex impedance plane plot for 
G1:1 and G1:2 molar ratios at 323K and the solid line represents NLLS fit (c) Arrhenius plot 
of dc conductivity values, dcg and dcgb, of the  three fuel molar ratios. 
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323K where, Rg=(2.16±0.05)x104, Qg=(3.39±0.10)x10-11S.sn, ng=(0.95±0.05), 
Rgb=(1.12±0.53)x105, Qgb=(5.26±0.18)x10-10S.sn  and ngb=(0.82±0.03). The magnitude of chi-
square is found to be 9.78x10-3. In these cases, grain and grain-boundary contributions are 
distinguished by the magnitude of constant phase element; for grain contribution, Qg, value 
is in the range 10-12-10-11S.sn, for grain-boundary, Qgb, value is around 10-10-10-9S.sn. For 
electrode contribution, Qe, takes the value in the range of 10-7-10-6S.sn.  

The Rg and Rgb values are obtained by intercept of high frequency and low frequency semi-
circles with the real axis and are used to calculate the dc conductivity values, dcg and dcgb 
using the cell constant. The parameters, dcg and dcgb are thermally activated and show 
Arrhenius dependence on temperature. The dc conductivity values and the activation energy, 
obtained from the slope of Arrhenius plot, are given in Table 8. Complex impedance plane 
plots for 1:1 and 1:2 glycine fuel molar ratios at 323K are shown in Fig. 17(b) and the solid line 
represents NLLS fit to the equivalent circuit. The highest dc conductivity value,  (2.35±0.25)x10-

6Scm-1 at 323K, is obtained for Na3Cr2(PO4)3-G1:1 among the different glycine molar  ratios. 
This magnitude is one order higher than the reported value, 1.1x10-7Scm-1, for conventionally 
synthesized Na3Cr2(PO4)3  (d'Yvoire et al.,1983.) The increase in the conductivity of 
Na3Cr2(PO4)3-G1:1 is explained through its dense sintering (Lakshmi et al., 2011,2011) (93.25% 
of theoretical density) and the smallest crystallite size, (31.29±3.91)nm, among the series 
(Lakshmi et al., 2011,2011). The present study evidenced that the grain and grain-boundary 
conductivity values decreases with fuel/complexing agent ratio in glycine assisted synthesis. 
Arrhenius plot of dc conductivity values, dcg and dcgb, for three glycine molar ratios are 
shown in Fig. 17(c). Agglomeration increases with fuel molar ratio, due to hike in the flame 
temperature. Agglomeration decreases the density owing to less packing of larger crystallites, 
which affects the electrical properties adversely. This study concluded that, the fuel molar ratio 
play a major role in deciding the physical and electrical properties and 1:1 fuel molar ratio is 
found to be the optimized value to obtain the highest electrical conductivity. 
 

Na3Cr2(PO4)3 
dc [Scm-1] Activation energy [eV] 

Conduction Relaxation 
Grain Grain-boundary Grain Grain-boundary Grain 

G1:1# (2.35±0.25)x10-6 (5.57±0.69)x10-7 (0.82±0.07) (0.81±0.02) (0.69±0.02) 
G1:2# (2.13±0.25)x10-6 (2.10±0.32)x10-7 (0.97±0.08) (0.87±0.03) (0.72±0.01) 
G1:3# (1.75±0.15)x10-7 ----- (0.71±0.02) ----- (0.70±0.01) 
U1:1* (8.06±0.15)x10-7 (2.95±0.10)x10-7 (1.12±0.06) (0.85±0.06) (0.67±0.02) 
U1:2* (2.79±0.23)x10-6 (1.29±0.24)x10-6 (0.92±0.03) (0.73±0.02) (0.59±0.02) 

*at 80C and   # at 50C 

Table 8. The dc conductivity values and activation energy of Na3Cr2(PO4)3 synthesized using 
different fuels/complexing agents. 

Fig. 18(a) shows the complex impedance plot of Na3Cr2(PO4)3-U1:1 and Na3Cr2(PO4)3-U1:2 at 
383K. In urea assisted Na3Cr2(PO4)3 series, 1:2 molar ratio showed improved conductivity 
due to less activation energy compared to 1:1 molar ratio, as shown in Fig. 18(b). Among the 
different fuels used, Na3Cr2(PO4)3-U1:2 showed the highest conductivity due to lower grain-
boundary activation energy of (0.73±0.02)eV. The volume fraction of grain-boundary is more 
in nanocrystalline materials and it enhances the diffusion of ions. Table 8 gives dc 
conductivity and activation energy values of Na3Cr2(PO4)3 synthesized using different fuels. 
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The rhombohedral symmetry of combustion synthesised Na3Cr2(PO4)3 is a disordered phase. 
It shows higher conductivity compared to the conventionally synthesised material, may be 
due to the enhanced mobility owing to increase in unit cell volume compared to the 
microcrystalline material. 

 
Fig. 18. (a) Complex impedance plane plot at 383K for Na3Cr2(PO4)3-U1:1 and Na3Cr2(PO4)3-
U1:2. The solid line represents NLLS fit to equivalent circuit Rc(RgQg)(RgbQgb) (b) Arrhenius 
plots of grain dc conductivity values of Na3Cr2(PO4)3-U1:1 and Na3Cr2(PO4)3-U1:2. 

The characteristic frequency of electrical relaxation in grain is obtained from the maximum 
of imaginary part of electric modulus or impedance spectrum. Characteristic relaxation 
frequencies (R) obtained from ″() curve shift towards high frequency with increase in 
temperature. Figs. 19(a) and (b) show the spectroscopic plot of imaginary part of impedance. 
The Na3Cr2(PO4)3-G1:1 contains both grain and grain-boundary contributions at high 
temperatures, while Na3Cr2(PO4)3-G1:3 contains only grain contribution. The characteristic 
relaxation frequencies for grain are obtained by NLLS fitting of ″() plot. Relaxation 
frequency exponentially increases with temperature and its activation energy, Eh, is 
obtained from the Arrhenius plot, as shown in Fig. 19(c). The activation energy for electrical 
relaxation is given in Table 8 for Na3Cr2(PO4)3 material synthesized using different fuels. 
Such ion transport peculiarities are dominant in compounds with lithium or sodium as well 
as in oxygen solid electrolytes. The hopping polarization loss is responsible for the peak in 
the dispersive plot of Z″() (Losila et al., 1998; Elliot, 1994)]. This illustrates that, while 
relaxing ions have to overcome less energy barrier compared to the conduction process. 

 
Fig. 19. Dispersion of Z"() at different temperatures of (a) Na3Cr2(PO4)3-G1:1 (b) 
Na3Cr2(PO4)3-G1:3 and (c) Arrhenius plot of dispersion peak frequency (p) of Na3Cr2(PO4)3-
G1:1, Na3Cr2(PO4)3-G1:2 and Na3Cr2(PO4)3-G1:3.  
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323K where, Rg=(2.16±0.05)x104, Qg=(3.39±0.10)x10-11S.sn, ng=(0.95±0.05), 
Rgb=(1.12±0.53)x105, Qgb=(5.26±0.18)x10-10S.sn  and ngb=(0.82±0.03). The magnitude of chi-
square is found to be 9.78x10-3. In these cases, grain and grain-boundary contributions are 
distinguished by the magnitude of constant phase element; for grain contribution, Qg, value 
is in the range 10-12-10-11S.sn, for grain-boundary, Qgb, value is around 10-10-10-9S.sn. For 
electrode contribution, Qe, takes the value in the range of 10-7-10-6S.sn.  

The Rg and Rgb values are obtained by intercept of high frequency and low frequency semi-
circles with the real axis and are used to calculate the dc conductivity values, dcg and dcgb 
using the cell constant. The parameters, dcg and dcgb are thermally activated and show 
Arrhenius dependence on temperature. The dc conductivity values and the activation energy, 
obtained from the slope of Arrhenius plot, are given in Table 8. Complex impedance plane 
plots for 1:1 and 1:2 glycine fuel molar ratios at 323K are shown in Fig. 17(b) and the solid line 
represents NLLS fit to the equivalent circuit. The highest dc conductivity value,  (2.35±0.25)x10-

6Scm-1 at 323K, is obtained for Na3Cr2(PO4)3-G1:1 among the different glycine molar  ratios. 
This magnitude is one order higher than the reported value, 1.1x10-7Scm-1, for conventionally 
synthesized Na3Cr2(PO4)3  (d'Yvoire et al.,1983.) The increase in the conductivity of 
Na3Cr2(PO4)3-G1:1 is explained through its dense sintering (Lakshmi et al., 2011,2011) (93.25% 
of theoretical density) and the smallest crystallite size, (31.29±3.91)nm, among the series 
(Lakshmi et al., 2011,2011). The present study evidenced that the grain and grain-boundary 
conductivity values decreases with fuel/complexing agent ratio in glycine assisted synthesis. 
Arrhenius plot of dc conductivity values, dcg and dcgb, for three glycine molar ratios are 
shown in Fig. 17(c). Agglomeration increases with fuel molar ratio, due to hike in the flame 
temperature. Agglomeration decreases the density owing to less packing of larger crystallites, 
which affects the electrical properties adversely. This study concluded that, the fuel molar ratio 
play a major role in deciding the physical and electrical properties and 1:1 fuel molar ratio is 
found to be the optimized value to obtain the highest electrical conductivity. 
 

Na3Cr2(PO4)3 
dc [Scm-1] Activation energy [eV] 

Conduction Relaxation 
Grain Grain-boundary Grain Grain-boundary Grain 

G1:1# (2.35±0.25)x10-6 (5.57±0.69)x10-7 (0.82±0.07) (0.81±0.02) (0.69±0.02) 
G1:2# (2.13±0.25)x10-6 (2.10±0.32)x10-7 (0.97±0.08) (0.87±0.03) (0.72±0.01) 
G1:3# (1.75±0.15)x10-7 ----- (0.71±0.02) ----- (0.70±0.01) 
U1:1* (8.06±0.15)x10-7 (2.95±0.10)x10-7 (1.12±0.06) (0.85±0.06) (0.67±0.02) 
U1:2* (2.79±0.23)x10-6 (1.29±0.24)x10-6 (0.92±0.03) (0.73±0.02) (0.59±0.02) 

*at 80C and   # at 50C 

Table 8. The dc conductivity values and activation energy of Na3Cr2(PO4)3 synthesized using 
different fuels/complexing agents. 

Fig. 18(a) shows the complex impedance plot of Na3Cr2(PO4)3-U1:1 and Na3Cr2(PO4)3-U1:2 at 
383K. In urea assisted Na3Cr2(PO4)3 series, 1:2 molar ratio showed improved conductivity 
due to less activation energy compared to 1:1 molar ratio, as shown in Fig. 18(b). Among the 
different fuels used, Na3Cr2(PO4)3-U1:2 showed the highest conductivity due to lower grain-
boundary activation energy of (0.73±0.02)eV. The volume fraction of grain-boundary is more 
in nanocrystalline materials and it enhances the diffusion of ions. Table 8 gives dc 
conductivity and activation energy values of Na3Cr2(PO4)3 synthesized using different fuels. 
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The rhombohedral symmetry of combustion synthesised Na3Cr2(PO4)3 is a disordered phase. 
It shows higher conductivity compared to the conventionally synthesised material, may be 
due to the enhanced mobility owing to increase in unit cell volume compared to the 
microcrystalline material. 

 
Fig. 18. (a) Complex impedance plane plot at 383K for Na3Cr2(PO4)3-U1:1 and Na3Cr2(PO4)3-
U1:2. The solid line represents NLLS fit to equivalent circuit Rc(RgQg)(RgbQgb) (b) Arrhenius 
plots of grain dc conductivity values of Na3Cr2(PO4)3-U1:1 and Na3Cr2(PO4)3-U1:2. 

The characteristic frequency of electrical relaxation in grain is obtained from the maximum 
of imaginary part of electric modulus or impedance spectrum. Characteristic relaxation 
frequencies (R) obtained from ″() curve shift towards high frequency with increase in 
temperature. Figs. 19(a) and (b) show the spectroscopic plot of imaginary part of impedance. 
The Na3Cr2(PO4)3-G1:1 contains both grain and grain-boundary contributions at high 
temperatures, while Na3Cr2(PO4)3-G1:3 contains only grain contribution. The characteristic 
relaxation frequencies for grain are obtained by NLLS fitting of ″() plot. Relaxation 
frequency exponentially increases with temperature and its activation energy, Eh, is 
obtained from the Arrhenius plot, as shown in Fig. 19(c). The activation energy for electrical 
relaxation is given in Table 8 for Na3Cr2(PO4)3 material synthesized using different fuels. 
Such ion transport peculiarities are dominant in compounds with lithium or sodium as well 
as in oxygen solid electrolytes. The hopping polarization loss is responsible for the peak in 
the dispersive plot of Z″() (Losila et al., 1998; Elliot, 1994)]. This illustrates that, while 
relaxing ions have to overcome less energy barrier compared to the conduction process. 

 
Fig. 19. Dispersion of Z"() at different temperatures of (a) Na3Cr2(PO4)3-G1:1 (b) 
Na3Cr2(PO4)3-G1:3 and (c) Arrhenius plot of dispersion peak frequency (p) of Na3Cr2(PO4)3-
G1:1, Na3Cr2(PO4)3-G1:2 and Na3Cr2(PO4)3-G1:3.  
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The Li3Fe2(PO4)3 is synthesized using different fuels i.e.,  glycine (Li3Fe2(PO4)3-G) in 1:2 
molar ratio and citric acid: ethylene glycol mixture in 1:1 molar ratio (Li3Fe2(PO4)3-CA:EG). 
The complex impedance spectra of Li3Fe2(PO4)3-CA:EG at 373K is shown in Fig. 20(a). The 
equivalent circuit consists of a depressed semi-circle, Rc(RgQg)(Qe), corresponding to the 
grain contribution and the spike, (Qe), represents the electrode polarization at the low 
frequency region. Rc is the resistance of electrolyte–electrode contact, that is characterized by 
the shift of impedance arc from the origin. Grain-boundary contribution is observed at 
higher temperatures in addition to the grain contribution in this material. Fig. 20(b), shows 
Arrhenius temperature dependence of dc conductivity and hopping frequency of 
Li3Fe2(PO4)3 materials. Li3Fe2(PO4)3-G shows higher conductivity values  and its  dc 
conductivity value at 323K is (1.14±0.05)x10-7Scm-1. This value is around one order higher 
than the reported value, 5.6x10-8Scm-1, for the microcrystalline Li3Fe2(PO4)3.  

 
Fig. 20. (a) Complex impedance plane plot of Li3Fe2(PO4)3-CA:EG at 373K (b) Arrhenius 
plots of  grain and grain-boundary dc conductivity and dispersion peak frequency.  

The dc conductivity in ion conducting materials mainly depends on charge carrier density 
and mobility; but the carrier density is almost same for both Li3Fe2(PO4)3 materials (CA:EG 
and G) as shown in Fig. 21(a). The hopping rate and unit cell volume of Li3Fe2(PO4)3-G is 
higher than Li3Fe2(PO4)3-CA:EG. The improved conduction in Li3Fe2(PO4)3-G is resulted 
from the enhanced mobility and the frame-work volume (Miyajima et al., 1996). The 
spectroscopic plot of ″() for Li3Fe2(PO4)3-G is shown in Fig. 21(b). The relaxation 
frequencies show Arrhenius dependence on temperature and its activation energy, Eh, for 
investigated samples are given in Table 9. The activation energy for electrical relaxation is 
almost same for both Li3Fe2(PO4)3 prepared using different fuels/complexing agents. While 
relaxing, ions have to overcome less energy barrier compared to the conduction process. 

 
Fig. 21. (a) Chrage carrier concentration, nc, of Li3Fe2(PO4)3 over the range of temperature 
300K-420K and (b)  Frequency dependence of imaginary part of impedance of Li3Fe2(PO4)3-
G showing grain contribution to relaxation. 
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Complex impedance plot of Na3Fe2(PO4)3 contains depressed semi-circle and the low 
frequency electrode effect is as shown in Fig. 22(a). The circuit description is Rc(RgQg)(QeCe), 
where Rc is the contact resistance, that is characterized by the shift of impedance arc from 
the origin. The (RgQg) and (QeCe) correspond to grain and electrode contribution. Typical 
value of Qe and Qg are of the order of 10-7 and 10-12S.sn respectively. Arrhenius plot of grain 
dc conductivity is shown in Fig. 22(b) and the activation energies for conduction and 
relaxation are given in Table 9. The dc conductivity value of Na3Fe2(PO4)3 is higher than 
Li3Fe2(PO4)3 due to the rattling of Li+ ions within the large interstitial space available 
(Shannon et al. ,1977). Na3Fe2(PO4)3 synthesized by the present technique show one order 
increase in conductivity compared to the conventional microcrystalline material. Solution 
combustion synthesized Li3Fe2(PO4)3 and Na3Fe2(PO4)3 are crystallized in monoclinic 
symmetry i.e., -Fe2(SO4)3 type structure. In this structure, mobile ion occupies a four co-
ordination site in contradiction with the NASICON structure, where it occupies six co-
ordination sites. The four co-ordination site of monoclinic structure is preferable to the six 
co-ordination site of NASICON for ion conduction (Nomura et al., 1993).  

 
Fig. 22. (a) Complex impedance plane plot of Na3Fe2(PO4)3 at different temperatures (b) 
Arrhenius plot of grain dc conductivity. 
 

Material dcg  at 323K 
[Scm-1] 

Activation energy [eV] 
Conduction Relaxation, p 

Li3Fe2(PO4)3-CA:EG (1.34±0.01)x10-8 (0.88±0.03) (0.81±0.02) 
Li3Fe2(PO4)3-Glycine (1.14±0.05)x10-7 (0.79±0.02) (0.81±0.01) 
Na3Fe2(PO4)3 (1.52±0.03)x10-6 (0.63±0.04) ---- 

Table 9. The grain dc conductivity values at 323K and grain activation energies for dc 
conduction and electrical relaxation of Li3Fe2(PO4)3 and Na3Fe2(PO4)3.  
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The Li3Fe2(PO4)3 is synthesized using different fuels i.e.,  glycine (Li3Fe2(PO4)3-G) in 1:2 
molar ratio and citric acid: ethylene glycol mixture in 1:1 molar ratio (Li3Fe2(PO4)3-CA:EG). 
The complex impedance spectra of Li3Fe2(PO4)3-CA:EG at 373K is shown in Fig. 20(a). The 
equivalent circuit consists of a depressed semi-circle, Rc(RgQg)(Qe), corresponding to the 
grain contribution and the spike, (Qe), represents the electrode polarization at the low 
frequency region. Rc is the resistance of electrolyte–electrode contact, that is characterized by 
the shift of impedance arc from the origin. Grain-boundary contribution is observed at 
higher temperatures in addition to the grain contribution in this material. Fig. 20(b), shows 
Arrhenius temperature dependence of dc conductivity and hopping frequency of 
Li3Fe2(PO4)3 materials. Li3Fe2(PO4)3-G shows higher conductivity values  and its  dc 
conductivity value at 323K is (1.14±0.05)x10-7Scm-1. This value is around one order higher 
than the reported value, 5.6x10-8Scm-1, for the microcrystalline Li3Fe2(PO4)3.  

 
Fig. 20. (a) Complex impedance plane plot of Li3Fe2(PO4)3-CA:EG at 373K (b) Arrhenius 
plots of  grain and grain-boundary dc conductivity and dispersion peak frequency.  

The dc conductivity in ion conducting materials mainly depends on charge carrier density 
and mobility; but the carrier density is almost same for both Li3Fe2(PO4)3 materials (CA:EG 
and G) as shown in Fig. 21(a). The hopping rate and unit cell volume of Li3Fe2(PO4)3-G is 
higher than Li3Fe2(PO4)3-CA:EG. The improved conduction in Li3Fe2(PO4)3-G is resulted 
from the enhanced mobility and the frame-work volume (Miyajima et al., 1996). The 
spectroscopic plot of ″() for Li3Fe2(PO4)3-G is shown in Fig. 21(b). The relaxation 
frequencies show Arrhenius dependence on temperature and its activation energy, Eh, for 
investigated samples are given in Table 9. The activation energy for electrical relaxation is 
almost same for both Li3Fe2(PO4)3 prepared using different fuels/complexing agents. While 
relaxing, ions have to overcome less energy barrier compared to the conduction process. 

 
Fig. 21. (a) Chrage carrier concentration, nc, of Li3Fe2(PO4)3 over the range of temperature 
300K-420K and (b)  Frequency dependence of imaginary part of impedance of Li3Fe2(PO4)3-
G showing grain contribution to relaxation. 
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Complex impedance plot of Na3Fe2(PO4)3 contains depressed semi-circle and the low 
frequency electrode effect is as shown in Fig. 22(a). The circuit description is Rc(RgQg)(QeCe), 
where Rc is the contact resistance, that is characterized by the shift of impedance arc from 
the origin. The (RgQg) and (QeCe) correspond to grain and electrode contribution. Typical 
value of Qe and Qg are of the order of 10-7 and 10-12S.sn respectively. Arrhenius plot of grain 
dc conductivity is shown in Fig. 22(b) and the activation energies for conduction and 
relaxation are given in Table 9. The dc conductivity value of Na3Fe2(PO4)3 is higher than 
Li3Fe2(PO4)3 due to the rattling of Li+ ions within the large interstitial space available 
(Shannon et al. ,1977). Na3Fe2(PO4)3 synthesized by the present technique show one order 
increase in conductivity compared to the conventional microcrystalline material. Solution 
combustion synthesized Li3Fe2(PO4)3 and Na3Fe2(PO4)3 are crystallized in monoclinic 
symmetry i.e., -Fe2(SO4)3 type structure. In this structure, mobile ion occupies a four co-
ordination site in contradiction with the NASICON structure, where it occupies six co-
ordination sites. The four co-ordination site of monoclinic structure is preferable to the six 
co-ordination site of NASICON for ion conduction (Nomura et al., 1993).  

 
Fig. 22. (a) Complex impedance plane plot of Na3Fe2(PO4)3 at different temperatures (b) 
Arrhenius plot of grain dc conductivity. 
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Table 9. The grain dc conductivity values at 323K and grain activation energies for dc 
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extracted. The maximum value of Mp″ is found at p=1/p and p shifts to higher 
frequencies with increase in temperature.  

The charge carriers are mobile over long distances in the region left to peak; while right to 
the peak ions are spatially confined to the potential wells. The frequency of relaxation, p, 
where Mp″() is an indicative of transition from short-range to long-range mobility at the 
decreasing frequency. The p exponentially increases with temperature and the activation 
energy for relaxation is calculated from the Arrhenius behaviour. The scaling of modulus 
spectra is shown in Fig. 23(a), for Na3Cr2(PO4)3-G1:3 and inset shows the Arrhenius plot of 
p. Grain contribution is dominant in Na3Cr2(PO4)3-G1:3, over the frequency and 
temperature range of the experiment. 

 
Fig. 23. (a) The modulus scaling in Na3Cr2(PO4)3-G1:3 at different temperatures and (b) 
Frequency dependence of  Z"() and M"() at 413K.  

Further, in Fig. 23(b), Z) and Mpeaks are almost coincident and there is no 
additional peak in these representations. The single relaxation peak in the modulus 
representation of Na3Cr2(PO4)3-G1:3 is contributed from the grain part since the electrode 
contribution is suppressed. The Z) and Mpeaks are almost coincident, which implies 
that the grain contributes for impedance relaxation. The small separation in the modulus 
and impedance peak positions points to the good grain connectivity. 
 

Material Activation energy for  
relaxation,  Eh[eV]  

Na3Cr2(PO4)3-G1:3 (0.66±0.01) 
Na3Cr2(PO4)3-U1:1 (0.93±0.04) 
Na3Cr2(PO4)3-U1:2 (0.89±0.04) 
Li3Fe2(PO4)3-CA:EG (0.71±0.02) 

Table 10. The activation energy for electrical relaxation obtained from Modulus 
representation 

Conductivity spectra at different temperatures collapsed to a single curve at higher 
frequencies on appropriate scaling, which implies that the relaxation mechanism at the 
higher frequency is independent of temperature. But in some cases, as shown in Figs. 24(a)-
(b), low frequency part of the plot is not scaled due to contribution from electrode 
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polarization. The present study explored Ghosh (’()/dc=F(/dcT)) and Summerfield 
methods (’()/dc=F(Ts)) for scaling analysis. The Na3Cr2(PO4)3-G1:3 scaled better for 
Summerfield method than Ghosh’s formalism (Ghosh & Pan, 2000; Summerfield, 1985), 
since it uses directly available parameters for scaling. Thus, scaling of conductivity and 
modulus spectra provided the time-temperature superposition principle of ion dynamics in 
the material. 

 
Fig. 24. The conductivity scaling of Na3Cr2(PO4)3-G1:3 using (a) Ghosh formalism and (b) 
Summerfield formalism. 

5. Conclusion 
In the present study, NASICON materials of two different symmetry, i.e. rhombohedral 
(NASICON type) and modifications of monoclinic (Fe2(SO4)3-type), are investigated. Different 
characterization techniques are used for the confirmation of structural, magnetic and 
electrical properties. The main initiative of the present study is to correlate the ion mobility 
with the symmetry.  

Out of these, LiTi2(PO4)3 family based on rhombohedral symmetry is synthesized by high 
energy ball-milling. Due to strain effect, defects like grain-boundaries are introduced in 
these materials. These grain-boundaries are less activation energy path for mobile ions and 
thus enhancing the electrical conductivity. The A3M2(PO4)3 (where A=Li, Na and M=Fe, Cr) 

family is prepared by solution combustion technique. By solution combustion synthesis 
technique, thermal stability is achieved for room temperature phase of Na3Cr2(PO4)3 and 
Li3Fe2(PO4)3 materials. The fuels/complexing agents played a major role in controlling the 
physical and electrical properties in these materials. This study concluded that, the fuel 
molar ratio play a major role in deciding the physical and electrical properties and 1:1 
glycine molar ratio is found to be the optimized value to obtain the highest electrical 
conductivity in Na3Cr2(PO4)3 materials. While, the charge carrier density in Na3Cr2(PO4)3 
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ionic conduction of Fe2(SO4)3-type structure is a little lower than that of the NASICON. This 
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extracted. The maximum value of Mp″ is found at p=1/p and p shifts to higher 
frequencies with increase in temperature.  

The charge carriers are mobile over long distances in the region left to peak; while right to 
the peak ions are spatially confined to the potential wells. The frequency of relaxation, p, 
where Mp″() is an indicative of transition from short-range to long-range mobility at the 
decreasing frequency. The p exponentially increases with temperature and the activation 
energy for relaxation is calculated from the Arrhenius behaviour. The scaling of modulus 
spectra is shown in Fig. 23(a), for Na3Cr2(PO4)3-G1:3 and inset shows the Arrhenius plot of 
p. Grain contribution is dominant in Na3Cr2(PO4)3-G1:3, over the frequency and 
temperature range of the experiment. 

 
Fig. 23. (a) The modulus scaling in Na3Cr2(PO4)3-G1:3 at different temperatures and (b) 
Frequency dependence of  Z"() and M"() at 413K.  

Further, in Fig. 23(b), Z) and Mpeaks are almost coincident and there is no 
additional peak in these representations. The single relaxation peak in the modulus 
representation of Na3Cr2(PO4)3-G1:3 is contributed from the grain part since the electrode 
contribution is suppressed. The Z) and Mpeaks are almost coincident, which implies 
that the grain contributes for impedance relaxation. The small separation in the modulus 
and impedance peak positions points to the good grain connectivity. 
 

Material Activation energy for  
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Na3Cr2(PO4)3-G1:3 (0.66±0.01) 
Na3Cr2(PO4)3-U1:1 (0.93±0.04) 
Na3Cr2(PO4)3-U1:2 (0.89±0.04) 
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Table 10. The activation energy for electrical relaxation obtained from Modulus 
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polarization. The present study explored Ghosh (’()/dc=F(/dcT)) and Summerfield 
methods (’()/dc=F(Ts)) for scaling analysis. The Na3Cr2(PO4)3-G1:3 scaled better for 
Summerfield method than Ghosh’s formalism (Ghosh & Pan, 2000; Summerfield, 1985), 
since it uses directly available parameters for scaling. Thus, scaling of conductivity and 
modulus spectra provided the time-temperature superposition principle of ion dynamics in 
the material. 

 
Fig. 24. The conductivity scaling of Na3Cr2(PO4)3-G1:3 using (a) Ghosh formalism and (b) 
Summerfield formalism. 

5. Conclusion 
In the present study, NASICON materials of two different symmetry, i.e. rhombohedral 
(NASICON type) and modifications of monoclinic (Fe2(SO4)3-type), are investigated. Different 
characterization techniques are used for the confirmation of structural, magnetic and 
electrical properties. The main initiative of the present study is to correlate the ion mobility 
with the symmetry.  

Out of these, LiTi2(PO4)3 family based on rhombohedral symmetry is synthesized by high 
energy ball-milling. Due to strain effect, defects like grain-boundaries are introduced in 
these materials. These grain-boundaries are less activation energy path for mobile ions and 
thus enhancing the electrical conductivity. The A3M2(PO4)3 (where A=Li, Na and M=Fe, Cr) 

family is prepared by solution combustion technique. By solution combustion synthesis 
technique, thermal stability is achieved for room temperature phase of Na3Cr2(PO4)3 and 
Li3Fe2(PO4)3 materials. The fuels/complexing agents played a major role in controlling the 
physical and electrical properties in these materials. This study concluded that, the fuel 
molar ratio play a major role in deciding the physical and electrical properties and 1:1 
glycine molar ratio is found to be the optimized value to obtain the highest electrical 
conductivity in Na3Cr2(PO4)3 materials. While, the charge carrier density in Na3Cr2(PO4)3 

and Li3Fe2(PO4)3 was independent of the fuels/complexing agents. 

Structural distortions, involving a symmetry lowering to orthorhombic, monoclinic or 
triclinic, are possible and that may affect the disorder state and mobility of lithium/sodium 
substantially. Mobile cation occupies a six coordination site in the NASICON-type structure 
and a four coordination site in the Fe2(SO4)3-type compounds. The activation energies for 
ionic conduction of Fe2(SO4)3-type structure is a little lower than that of the NASICON. This 

10-7 10-5 10-3 10-1 101

1

10

T [K]

(a)

electrode effect
 

Na3Cr2(PO4)3-G1:3 


'(

)/
dc

 /p

373
383
393
403
413
423
433
443
453
463
473
483
493

101 103 105 107 109 1011

100

101 Na3Cr2(PO4)3-G1:3 

T [K]

(b)

493
483
473
463
453
443
433
423
413
403
393
373

 

 


'(

)/
dc

/(dcT) [HzcmK-1]



 
Polycrystalline Materials – Theoretical and Practical Aspects 

 

104 

indicates that the four coordination site of the Fe2(SO4)3-type structure is preferable to the six 
coordination of the NASICON-type structure for ionic conduction. This is the reason behind 
the enhanced conduction in combustion synthesized Li3Fe2(PO4)3 and Na3Fe2(PO4)3 

materials. 

The scaling of ac conductivity and modulus spectra provided time-temperature 
superposition principle of ion dynamics in these materials. The ability to scale different data 
sets to one common curve indicated that the common physical mechanism in a process can 
be separated by thermodynamic scales. These materials find application in sensors, 
rechargeable batteries etc. 
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indicates that the four coordination site of the Fe2(SO4)3-type structure is preferable to the six 
coordination of the NASICON-type structure for ionic conduction. This is the reason behind 
the enhanced conduction in combustion synthesized Li3Fe2(PO4)3 and Na3Fe2(PO4)3 

materials. 

The scaling of ac conductivity and modulus spectra provided time-temperature 
superposition principle of ion dynamics in these materials. The ability to scale different data 
sets to one common curve indicated that the common physical mechanism in a process can 
be separated by thermodynamic scales. These materials find application in sensors, 
rechargeable batteries etc. 
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1. Introduction 
The perovskite is a calcium titanium oxide mineral species composed of calcium titanate, 
with the chemical formula CaTiO3. The mineral was discovered in the Ural mountains 
(Russia) by Gustav Rose in 1839 and is named after Russian mineralogist L. A. Perovski 
(1792-1856). 

The perovskite crystal structure was published in 1945 from X-ray diffraction data on 
barium titanate by the Irish crystallographer H. D. Megaw (1907-2002). It is a true 
engineering ceramic material with a plethora of applications spanning energy production 
(SOFC technology), environmental containment and communications. 

The general stoichiometry of the perovskite structure is ABX3, where A and B are cations 
and X is an anion. The A and B cations can have a variety of charges and in the original 
perovskite mineral (CaTiO3) the A cation is divalent and the B cation is tetravalent. CaTiO3 
exhibits an orthorhombic structure with space group Pnma. 

The traditional view of the perovskite lattice is that it consists of small B cations within 
oxygen octahedra, and larger A cations which are XII fold coordinated by oxygen. 

Figure 1 shows a picture of the mineral perovskite which, as it was mentioned above, is 
composed by calcium titanate.  

 
Fig. 1. Perovskite mineral species (CaTiO3). 
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2. Methods of synthesis 
There are different methods of synthesis used in the field of Solid State Chemistry. 
Among them, one of the most used is that known as ceramic method. The ceramic method 
consists  

of the grinding of the stoichiometric quantities of the corresponding starting compounds 
and subsequent heating by using furnaces at relatively high temperatures. However, it is not 
the most efficient method many times. 

The sol-gel method and, used more and more every day, the freeze-drying method, seem to 
offer purer materials by reducing the heating time and working at not so high temperatures. 
Besides, other methods complete the list of synthesis processes of solid materials. 

2.1 Ceramic method 

The well known as ceramic method consists of the mixing and grinding of the starting 
compounds in stoichiometric quantities, being afterwards heated in furnaces at relatively 
high temperatures for relatively long dwelling times. Eventually, the desired material will 
be obtained, with a smaller or higher grade of impurities. 

The main disadvantage of this method is the low homogeneity of the obtained product, 
which demands repeated procedures of intermediate homogenization and thermal 
treatment at high temperature. Thus, the method requires the grinding (intermittently) of 
the material during the heating treatment in order to minimize the drawback created by the 
interface (Figure 2) resulting of the reaction between the starting reagents. Figure 2 shows 
how that interface would be formed by A and B chemically combined. That interface 
increases its size as a function of the time of reaction, giving rise to a slower and less 
efficient transfer of A and B in opposite direction to meet and react. Thus, by grinding the 
grain formed by A, B, and AB, one will be able to increase the contact surface between A 
and B and therefore to make more efficient the reaction. We should just take into account 
that the solid state reactions are extremely slow, and that is why the high temperature and 
high dwelling times are required, but besides, a high contact surface between the reagents is 
desired to increase the velocity of the reaction. As a result, high crystalline materials are 
obtained, which are not acceptable for catalytic applications. 

 
Fig. 2. Reaction between grains corresponding to An+ and Bm+. The cross-lined area 
corresponds to the interface created between them. 

   

 Bm+

  An+
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2.2 Sol-gel method 

The sol-gel method is a wet-chemical process widely used in the field of materials science. 
The starting point is the colloidal solution (sol) that acts as the precursor for an integrated 
network (gel) of either discrete particles or network polymers. 

Perovskites can be synthesized starting from the oxides or salts of the different metals 
wanted to be part of the final structure by dissolving them in a solution containing a 
complexing agent (citric acid, e.g.) and heating it up to form gel. Immediately after, a drastic 
heating leads to the decomposition of the organic part and therefore to the formation of a 
fine and intimate distribution of the different metals in the resulting precursor, meaning this 
a high contact surface between them that allows a more efficient reaction at a relatively high 
temperature and a prudent dwelling time. 

2.3 Freeze-drying method 

The freeze-drying method, also known as lyophilisation, is a process consisting of the 
freezing of the solution of the starting reagents and the subsequent reducing of the 
surrounding pressure to allow the frozen solvent to sublime directly from the solid phase to 
the gas phase. 

In the lab, the process is carried out by placing the solution in a decantation funnel and 
dropping it slowly in a container with liquid nitrogen in order to freeze it in small rounded 
“grains”. Right after the dropping ends, the frozen ‘grains’ of solution are placed in an 
Erlenmeyer flask which is immediately connected to a freeze-dryer (Figure 3). Now the 

 

 
Fig. 3. Freeze-dryer with several Erlenmeyer flasks connected containing different frozen 
solutions. 
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freeze-dryer will carry out its function: to provoke the sublimation of the solvent. For that, 
the frozen solution undergoes an important vacuum created by a pump, allowing the 
solvent to sublimate and being the latter frozen once again into a big drum at a very low 
temperature inside the device. 

After one/two day(s) the dried solution – called now precursor – is disconnected from the 
freeze-dryer and treated at certain temperature in order to allow the reaction between the 
different reagents which are mixed in extremely fine and close way. This method allows 
much lower both dwelling times and heating temperatures, at the time that makes easier the 
way to get pure phases. 

2.4 Melt method 

One method often employed is to melt the reagents together and then later anneal the 
solidified melt. If volatile reagents are involved these are usually put in an ampoule that is 
evacuated (the reagent mixture is kept cold – by keeping the bottom of the ampoule in 
liquid nitrogen, e.g.) and then sealed. The sealed ampoule is then put in an oven/furnace 
and given a certain heat treatment. 

2.5 Pechini method 

Pechini method is a widely used method consisting of the mix of metal nitrate solution of 
the starting materials with a stoichiometric amount of citric acid. The resulting solution is 
stirred on a hot plate and the temperature stabilized at about 90ºC, at which point ethylene 
glycol is added at a mass ratio of 40:60 with respect to citric acid. The temperature is 
maintained constant up to the resin formation, which polymerizes at about 300ºC. The 
precursor powders are heated for several hours at various temperatures. 

This method, as a soft-chemistry one, leads to homogeneous and low crystalline products at 
relatively low temperatures, but they usually require expensive initial compounds and/or 
complicated synthesis procedures. 

2.6 Other methods 

Some relative new methods are worth being mentioned, like the solution combustion 
method, the sonochemical method, and the microwave assisted synthesis. 

2.6.1 Solution combustion method 

Combustion synthesis is an effective, low-cost method for production of various useful 
materials. Today, it has become a very popular approach for preparation of 
nanomaterials. 

Solution combustion synthesis (SCS) is a versatile, simple and rapid process, which allows 
effective synthesis of variety of nanosize materials. This process involves a self-sustained 
reaction in homogeneous solution of different oxidizers (e.g., metal nitrates) and fuels (e.g., 
urea, glycine, hydrazides). Depending on the type of the precursors, as well as on conditions 
used for the process organization, the SCS may occur as either volume or layer-by-layer 
propagating combustion modes. This process not only yields nanosize oxide materials but 
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also allows uniform (homogeneous) doping of trace amounts of rare-earth impurity ions in a 
single step. 

2.6.2 Microwave assisted method 

Microwave heating allows a rapid heating rate, however, the final yield decreases compared 
with the conventional methods. It leads to the synthesis of materials by consumption of less 
energy. 

2.6.3 Sonochemical method 

The sonochemical method is that in which the molecules undergo a chemical reaction due to 
the application of powerful ultrasound radiation (20 kHz–10 MHz). 

Ultrasonic irradiation differs from traditional energy sources (such as heat, light, or ionizing 
radiation) in duration, pressure, and energy per molecule. 

3. Perovskite-type structures 
Many transition metal oxides show the very versatile perovskite structure. The rich variety 
of physical properties such as high-temperature superconductivity and colossal 
magnetoresistance observed in these compounds makes them very attractive from both 
fundamental and applied perspectives. 

The general chemical formula for perovskite compounds is ABX3, where A and B are two 
cations of very different sizes, and X is an anion that bonds to both. The A atoms are larger 
than the B atoms, and besides, its ionic radii close to that on the anion X, thus they can form 
together a cubic close packing. The smaller B cation is usually a 3d-transition metal ion 
which occupies the octahedral interstices of the close packing. X is oxygen or a halide ion. 
The ideal cubic-symmetry structure has the B cation in 6-fold coordination, surrounded by 
an octahedron of anions, and the A cation in 12-fold cuboctahedral coordination. In short, in 
can be also described as a network of edge sharing octahedra BX6. The relative ion size 
requirements for stability of the cubic structure are quite stringent, so slight buckling and 
distortion can produce several lower-symmetry distorted versions, in which the 
coordination numbers of A cations, B cations or both are reduced. The orthorhombic and 
tetragonal phases are the most common non-cubic variants. 

For the stoichiometric oxide perovskites, the sum of the oxidation states of A and B cations 
should be equal to six. The occupancy of A and B positions of different ions with 
appropriate ionic radii as well as for mixed occupancy of both cation positions leaded to the 
preparation of numerous compounds with wide spectrum of physical and chemical 
properties. Among the most famous representatives of perovskite class are the dielectric 
BaTiO3, high-temperature superconductor YBa2Cu3O7-x, materials exhibiting colossal 
magnetoresistance R1-xAxMnO3, where R = La3+, Pr3+ or other rare earth ion, A = Ca2+, Sr2+, 
Ba2+, multiferroic materials, etc. 

The structure of an ideal cubic perovskite is shown in Figure 4, where the A cations are 
shown at the corners of the cube, and the B cation in the centre with oxygen ions in the face-
centred positions. The space group for cubic perovskites is Pm3m (221); the equivalent 
positions of the atoms are detailed in Table 1. 



 
Polycrystalline Materials – Theoretical and Practical Aspects 110 

freeze-dryer will carry out its function: to provoke the sublimation of the solvent. For that, 
the frozen solution undergoes an important vacuum created by a pump, allowing the 
solvent to sublimate and being the latter frozen once again into a big drum at a very low 
temperature inside the device. 

After one/two day(s) the dried solution – called now precursor – is disconnected from the 
freeze-dryer and treated at certain temperature in order to allow the reaction between the 
different reagents which are mixed in extremely fine and close way. This method allows 
much lower both dwelling times and heating temperatures, at the time that makes easier the 
way to get pure phases. 

2.4 Melt method 

One method often employed is to melt the reagents together and then later anneal the 
solidified melt. If volatile reagents are involved these are usually put in an ampoule that is 
evacuated (the reagent mixture is kept cold – by keeping the bottom of the ampoule in 
liquid nitrogen, e.g.) and then sealed. The sealed ampoule is then put in an oven/furnace 
and given a certain heat treatment. 

2.5 Pechini method 

Pechini method is a widely used method consisting of the mix of metal nitrate solution of 
the starting materials with a stoichiometric amount of citric acid. The resulting solution is 
stirred on a hot plate and the temperature stabilized at about 90ºC, at which point ethylene 
glycol is added at a mass ratio of 40:60 with respect to citric acid. The temperature is 
maintained constant up to the resin formation, which polymerizes at about 300ºC. The 
precursor powders are heated for several hours at various temperatures. 

This method, as a soft-chemistry one, leads to homogeneous and low crystalline products at 
relatively low temperatures, but they usually require expensive initial compounds and/or 
complicated synthesis procedures. 

2.6 Other methods 

Some relative new methods are worth being mentioned, like the solution combustion 
method, the sonochemical method, and the microwave assisted synthesis. 

2.6.1 Solution combustion method 

Combustion synthesis is an effective, low-cost method for production of various useful 
materials. Today, it has become a very popular approach for preparation of 
nanomaterials. 

Solution combustion synthesis (SCS) is a versatile, simple and rapid process, which allows 
effective synthesis of variety of nanosize materials. This process involves a self-sustained 
reaction in homogeneous solution of different oxidizers (e.g., metal nitrates) and fuels (e.g., 
urea, glycine, hydrazides). Depending on the type of the precursors, as well as on conditions 
used for the process organization, the SCS may occur as either volume or layer-by-layer 
propagating combustion modes. This process not only yields nanosize oxide materials but 

 
Structural Characterization of New Perovskites 111 

also allows uniform (homogeneous) doping of trace amounts of rare-earth impurity ions in a 
single step. 

2.6.2 Microwave assisted method 

Microwave heating allows a rapid heating rate, however, the final yield decreases compared 
with the conventional methods. It leads to the synthesis of materials by consumption of less 
energy. 

2.6.3 Sonochemical method 

The sonochemical method is that in which the molecules undergo a chemical reaction due to 
the application of powerful ultrasound radiation (20 kHz–10 MHz). 

Ultrasonic irradiation differs from traditional energy sources (such as heat, light, or ionizing 
radiation) in duration, pressure, and energy per molecule. 

3. Perovskite-type structures 
Many transition metal oxides show the very versatile perovskite structure. The rich variety 
of physical properties such as high-temperature superconductivity and colossal 
magnetoresistance observed in these compounds makes them very attractive from both 
fundamental and applied perspectives. 

The general chemical formula for perovskite compounds is ABX3, where A and B are two 
cations of very different sizes, and X is an anion that bonds to both. The A atoms are larger 
than the B atoms, and besides, its ionic radii close to that on the anion X, thus they can form 
together a cubic close packing. The smaller B cation is usually a 3d-transition metal ion 
which occupies the octahedral interstices of the close packing. X is oxygen or a halide ion. 
The ideal cubic-symmetry structure has the B cation in 6-fold coordination, surrounded by 
an octahedron of anions, and the A cation in 12-fold cuboctahedral coordination. In short, in 
can be also described as a network of edge sharing octahedra BX6. The relative ion size 
requirements for stability of the cubic structure are quite stringent, so slight buckling and 
distortion can produce several lower-symmetry distorted versions, in which the 
coordination numbers of A cations, B cations or both are reduced. The orthorhombic and 
tetragonal phases are the most common non-cubic variants. 

For the stoichiometric oxide perovskites, the sum of the oxidation states of A and B cations 
should be equal to six. The occupancy of A and B positions of different ions with 
appropriate ionic radii as well as for mixed occupancy of both cation positions leaded to the 
preparation of numerous compounds with wide spectrum of physical and chemical 
properties. Among the most famous representatives of perovskite class are the dielectric 
BaTiO3, high-temperature superconductor YBa2Cu3O7-x, materials exhibiting colossal 
magnetoresistance R1-xAxMnO3, where R = La3+, Pr3+ or other rare earth ion, A = Ca2+, Sr2+, 
Ba2+, multiferroic materials, etc. 
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Fig. 4. Structure of the ideal cubic perovskite, ABO3 (A: big stripped circle, B: small grey 
circles, O: empty circles). 

Perovskite materials exhibit many interesting and intriguing properties from both the 
theoretical and the application point of view. Colossal magnetoresistance, ferroelectricity, 
superconductivity, charge ordering, spin dependent transport, high thermopower and the 
interplay of structural, magnetic and transport properties are commonly observed features 
in this family. These compounds are used as sensors and catalyst electrodes in certain types 
of fuel cells and are candidates for memory devices and spintronics applications.  
 

Site Location Coordinates 
A cation 2a (0,0,0) 
B cation 2a (1/2,1/2,1/2) 
O anion 6b (1/2,1/2,0)(1/2,0,1/2)(0,1/2,1/2) 

Table 1. Atomic positions in cubic perovskites 

Many superconducting ceramic materials (the high temperature superconductors) have 
perovskite-like structures, often with 3 or more metals including copper, and some oxygen 
positions left vacant. One prime example is yttrium barium copper oxide which can be 
insulating or superconducting depending on the oxygen content. 

Chemical engineers are considering this material as a replacement for platinum in catalytic 
converters in diesel vehicles. 

Figures 4 and 5 show different ways to represent the perovskite structure. Figure 5 
represents the undistorted cubic structure; the symmetry is lowered to orthorhombic, 
tetragonal or trigonal in many perovskites. 
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Fig. 5. Perovskite structure (ABX3). The small spheres are X atoms (usually oxygens), the 
medium spheres are B-atoms (a smaller metal cation, such as Ti(IV)), and the big spheres are 
the A-atoms (a larger metal cation, such as Ca(II)). 

4. Structural characterization of perovskites 
The synthetic methodology and the characterization of the perovskite often go hand in hand 
in the sense that not one but a series of reaction mixtures are prepared and subjected to heat 
treatment. The stoichiometry is typically varied in a systematic way to find which ones will 
lead to new solid compounds or to solid solutions between known ones. A prime method to 
characterize the reaction products is X-ray powder diffraction (XRD), because many solid 
state reactions will produce polycristalline powders. Thus, powder diffraction will facilitate 
the identification of known phases in the mixture. If a pattern is found that is not known in 
the diffraction data libraries an attempt can be made to index the pattern, i.e. to identify the 
symmetry and the size of the unit cell. Obviously, if the product is not crystalline enough 
the characterization is typically much more difficult. 

Once the unit cell of a new phase is known, the next step is to establish the stoichiometry of 
the phase. This can be done in a number of ways. Sometimes the composition of the original 
mixture will give a clue, if one finds only one product -a single powder pattern- or if one 
was trying to make a phase of a certain composition by analogy to known materials but this 
is rare. Often considerable effort in refining the synthetic methodology is required to obtain 
a pure sample of the new material. If it is possible to separate the product from the rest of 
the reaction mixture elemental analysis can be used. Another ways involves SEM and the 
generation of characteristic X-rays in the electron beam. 

The easiest way to solve the structure is by using single crystal X-ray diffraction. The latter 
often requires revisiting and refining the preparative procedures and that is linked to the 
question which phases are stable at what composition and what stoichiometry. In other words 
what does the phase diagram looks like. An important tool in establishing this is thermal 
analysis techniques like DSC or DTA and, increasingly also, the synchrotron temperature-
dependent powder diffraction. Increased knowledge of the phase relations often leads to 
further refinement in synthetic procedures in an iterative way. New phases are thus 
characterized by their melting points and their stoichiometric domains. The latter is important 
for the many solids that are non-stoichiometric compounds. The cell parameters obtained from 
XRD are particularly helpful to characterize the homogeneity ranges of the latter. 
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In order to analyse the different morphological and surface characteristics of particles in the 
perovskites, SEM (scanning electron microscopy) can be used. Figure 6 shows a micrograph 
obtained for La0.75Sr0.25Cr0.2Fe0.8O3 (the figure shows the texture and relief created by the 
elimination of volatile substances produced in the combustion of organic compounds 
during thermal treatment). 

 
Fig. 6. SEM for La0.75Sr0.25Cr0.2Fe0.8O3. 

4.1 Further characterization 

In many -but certainly not all- cases new solid compounds are further characterized by a 
variety of techniques that straddle the fine line that (hardly) separates solid-state chemistry 
from solid-state physics. 

4.1.1 Optical properties 

For non-metallic materials it is often possible to obtain UV/VIS spectra. In the case of 
semiconductors that will give an idea of the band gap. Surfaces of ABO3 perovskites and 
defects therein are extremely relevant for such important fields of technology as 
photocatalysis, gas-sensors and for applications as materials for ferroelectric memories, and 
the optical properties of them can be proved to be extremely interesting. 

4.1.2 Electrical properties 

Four-point (or five-point) probe methods are often applied either to ingots, crystals or 
pressed pellets to measure resistivity and the size of the Hall effect. This gives information 
on whether the compound is an insulator, semiconductor, semimetal or metal and upon the 
type of doping and the mobility in the delocalized bands (if present). Thus, important 
information is obtained on the chemical bonding in the material. 

The impedance spectroscopy is also a very useful method used for electrical properties 
characterization of perovskite-type materials, especially for bulk ceramic samples. 
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4.1.3 Magnetic properties 

Magnetic susceptibility can be measured as a function of temperature to establish whether 
the material is a para-, ferro-, ferri- or antiferro- magnet, among others. Again the information 
obtained pertains to the bonding in the material. This is particularly important for transition 
metal compounds. In the case of magnetic order neutron diffraction can be used to 
determine the magnetic structure. 

Magnetic measurements are usually carried out with a SQUID magnetometer under 
different applied magnetic field. Figure 7 shows a picture of one of those SQUID 
magnetometers. 

 
Fig. 7. SQUID magnetometer. 

As an example, Figure 8 shows the magnetic susceptibility versus temperature data for the 
perovskite Sr2Ru0.5Co1.5O6. 

 
Fig. 8. Magnetic susceptibility versus temperature for Sr2Ru0.5Co1.5O6. 
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5. X-ray diffraction 
About 95% of all solid materials can be described as crystalline. In 1919 A. W. Hull 
published a paper titled “A New Method of Chemical Analysis”. Here he pointed out that 
“… every crystalline substance gives a pattern; the same substance always gives the same 
pattern; and in a mixture of substances each produces its pattern independently of the 
others. “ 

The X-ray diffraction pattern of a pure substance is, therefore, like a fingerprint of the 
substance. The powder diffraction method is thus ideally suited for characterization and 
identification of polycrystalline phases. It is a versatile, non-destructive technique that 
reveals detailed information about the chemical composition and crystallographic structure 
of natural and manufactured materials. 

Today about 50,000 inorganic and 25,000 organic single components, crystalline phases, 
diffraction patterns have been collected and stored on different databases. The main use of 
powder XRD is to identify components in a sample by a search/match procedure. 
Furthermore, the areas under the peak are related to the amount of each phase present in the 
sample. 

Many solid state reactions produce polycristalline powders, therefore, for a high percentage 
of perovskites, the powder XRD is one of the main tools to characterize the material. Thus, it 
is indispensable to have a diffractometer in the laboratory. 

Typically, a diffractometer consists of a tube of X-ray (source of radiation), a 
monochromator to choose the wavelength (for example, in the case of an anode of copper, 
the K2 component could be eliminated by using a primary monochromator), slits to adjust 
the shape of the beam, a sample and a detector. In a more complicated apparatus also a 
goniometer can be used for fine adjustment of the sample and the detector positions. When 
an area detector is used to monitor the diffracted radiation a beamstop is usually needed to 
stop the intense primary beam that has not been diffracted by the sample. Otherwise the 
detector might be damaged. Usually the beamstop can be completely impenetrable to the X-
ray or it may be semitransparent. The use of semitransparent beamstop allows the 
possibility to determine how much the sample absorbs the radiation using the intensity 
observed through the beamstop. Figure 9a) shows an X-ray powder diffractometer 
commonly seen in laboratories. Figure 9b) shows a detail of its geometry. 

Ideally, every possible crystalline orientation is represented very equally in a powdered 
sample. The resulting orientational averaging causes the three-dimensional reciprocal space 
that is studied in single crystal diffraction to be projected onto a single dimension. 

Bragg's law gives the angles for coherent and incoherent scattering from a crystal lattice. 
When X-rays are incident on an atom, they make the electronic cloud move as does any 
electromagnetic wave. The movement of these charges re-radiates waves with the same 
frequency (blurred slightly due to a variety of effects); this phenomenon is known as 
Rayleigh scattering (or elastic scattering). The scattered waves can themselves be scattered 
but this secondary scattering is assumed to be negligible. A similar process occurs upon 
scattering neutron waves from the nuclei or by a coherent spin interaction with an unpaired 
electron. These re-emitted wave fields interfere with each other either constructively or 
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destructively (overlapping waves either add together to produce stronger peaks or subtract 
from each other to some degree), producing a diffraction pattern on a detector or film. The 
resulting wave interference pattern is the basis of diffraction analysis. This analysis is called 
Bragg diffraction. 

 
a) 

 
b) 

Fig. 9. X-ray powder diffractometer. 
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Bragg diffraction (also referred to as the Bragg formulation of X-ray diffraction) was first 
proposed by William Lawrence Bragg and William Henry Bragg in 1913 in response to their 
discovery that crystalline solids produced surprising patterns of reflected X-rays (in contrast 
to that of, say, a liquid). They found that these crystals, at certain specific wavelengths and 
incident angles, produced intense peaks of reflected radiation (known as Bragg peaks). The 
concept of Bragg diffraction applies equally to neutron diffraction and electron diffraction 
processes. Both neutron and X-ray wavelengths are comparable with inter-atomic distances 
(~150 pm) and thus are an excellent probe for this length scale. 

W. L. Bragg explained this result by modeling the crystal as a set of discrete parallel planes 
separated by a constant parameter d. It was proposed that the incident X-ray radiation 
would produce a Bragg peak if their reflections off the various planes interfered 
constructively. 

The interference is constructive when the phase shift is a multiple of 2π; this condition can 
be expressed by Bragg's law (Equation 1), 

 n=2dsen (1) 

where n is an integer, λ is the wavelength of the incident wave, d is the spacing between the 
planes in the atomic lattice, and θ is the angle between the incident ray and the scattering 
planes (Figure 10). 

 
Fig. 10. Bragg diffraction. 

The Rietveld method allows us to characterize the polycrystalline materials by a least 
squares approach to refine a theoretical line profile until it matches the measured profile 
shown in the pattern. The introduction of this technique was a significant step forward in 
the diffraction analysis of powder samples as, unlike other techniques at that time, it was 
able to deal reliably with strongly overlapping reflections. 

The Rietveld refinement considers the fitting of a series of parameters linked, most of them, 
to the structure of the perovskite (or material in general). Some of them are the unit cell 
parameters, and the profile ones. It is important to reach a certain grade of reliability during 
the fitting process, and this can be followed by checking the so-called agreement factors (or 
reliability factors). Table 2 shows an example of lattice parameters and agreement factors 
obtained after the Rietveld refinement of the cubic perovskite-type solid solution Ba2In2-

xCoxO5 (0.50≤x≤1.70). In Figure 11 an example of a Rietveld refined pattern, exactly for 
Ba2In0.3Co1.7O5, can be observed. 
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Compound a (Å) 2 Rp Rwp Rexp 

Ba2In1.50Co0.50O5 4.2277(2) 5.02 13.2 18.1 8.07 

Ba2In1.30Co0.70O5 4.1751(1) 3.58 16.5 21.0 11.1 

Ba2InCoO5 4.1623(2) 3.67 12.4 15.3 8.01 

Ba2In0.30Co1.70O5 4.1191(2) 2.28 9.93 13.1 8.65 

Table 2. Cell parameters and reliability factors obtained from the Rietveld refinement. 

In order to carry out a Rietveld refinement to fit the corresponding theoretical profile – 
model – a statistically acceptable pattern is necessary. The goodness of the pattern depends 
on the sample and the measurement parameters. There are several programs suitable to do 
Rietveld fittings, e.g. Fulprof and GSAS, among others. 

  
Fig. 11. X-ray diffraction pattern refined by Rietveld method for Ba2In0.3Co1.7O5, showing the 
observed intensities (circles), the calculated ones (continuous line), the Bragg positions 
allowed by the space group (vertical lines) and the difference pattern between the observed 
and calculated ones (bottom of the figure). 

5.1 Synchrotron 

A synchrotron is a particular type of cyclic particle accelerator in which the magnetic field 
(to turn the particles so they circulate) and the electric field (to accelerate the particles) 
arecarefully synchronized with the travelling particle beam. In essence, it is a X-ray source 
with variable wavelength. Thus, it allows going deeper in the X-ray diffraction analysis of 
the perovskites or any other material. There is a good number of synchrotron facilities all 
over the world. ESRF in France and Diamond Light Source in the UK constitute two 
examples (Figure 12). 
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Fig. 12. Diamond Light Source (UK). 

6. Neutron diffraction 
Neutron diffraction or elastic neutron scattering is the application of neutron scattering to 
the determination of the atomic and/or magnetic structure of a material. The sample is 
placed in a beam of thermal or cold neutrons to obtain a diffraction pattern that provides 
information of the structure of the material. The technique is similar to XRD but due to the 
different scattering properties of neutrons versus X-rays complementary information can be 
obtained. 

A neutron diffraction measurement requires a neutron source (e.g. a nuclear reactor or 
spallation source), a sample (the perovskite to be studied or in general any material), and a 
detector. Sample sizes are large compared to those used in XRD. The technique is therefore 
mostly performed as powder diffraction. At a research reactor other components such as 
crystal monochromators or filters may be needed to select the desired neutron wavelength. 
Some parts of the setup may also be movable. At a spallation source the time of flight 
technique is used to sort the energies of the incident neutrons (higher energy neutrons are 
faster), so no monochromator is needed, but rather a series of aperture elements 
synchronized to filter neutron pulses with the desired wavelength. 

Neutron diffraction is closely related to XRD. In fact the single crystal version of the 
technique is less commonly used because currently available neutron sources require 
relatively large samples and large single crystals are hard or impossible to come by for most 
materials. Future developments, however, may well change this picture. Because the data is 
typically a 1D powder pattern they are usually processed using Rietveld refinement. In fact 
the latter found its origin in neutron diffraction (at Petten in the Netherlands) and was later 
extended for use in XRD. 

One practical application of elastic neutron scattering/diffraction is that the lattice constant 
of perovskites and other crystalline materials can be very accurately measured. Together 
with an accurately aligned micropositioner a map of the lattice parameters through the 
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material can be derived. This can easily be converted to the stress field experienced by the 
compound. This has been used to analyze stresses in aerospace and automotive components 
to give just two examples. There is a good number of facilities all over the world offering a 
neutron source. Among them, we could mention, for instance, ISIS in the UK, and ILL in 
France. 

Figure 13 shows a picture of the reactor hall at ILL in Grenoble, France. ILL (Institut Laue-
Langevin) is one the most important centres in the world to carry out neutron experiments.  

 
Fig. 13. Inside the reactor hall at ILL in Grenoble (France). 

7. High-resolution transmission electron diffraction 
The original form of electron microscope, the transmission electron microscope (TEM) uses a 
high voltage electron beam to create an image. The electron beam is accelerated by an anode 
with respect to the cathode, focused by electrostatic and electromagnetic lenses, and 
transmitted through the sample that is in part transparent to the electrons and in part 
scatters them out of the beam. When it emerges from the sample, the electron beam carries 
information about the structure of the sample that is magnified by the objective lens system 
of the microscope. Hardware correction of spherical aberration for the high-resolution 
transmission electron microscopy (HRTEM) has allowed the production of images with 
resolution below 0.5 Å at magnifications above 50 million times. This possibility of having 
direct images of the atomic arrangement in the structure has made the HRTEM an important 
tool for nano-technologies research and development. 

8. Conclusion 
The perovskite is a mineral series composed of calcium titanate. Many transition metal 
oxides show that very versatile perovskite structure. The rich variety of physical properties 
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such as high-temperature superconductivity and colossal magnetoresistance observed in 
these compounds makes them very attractive from both fundamental and applied 
perspectives. 

There are different methods of synthesis. Among them, one of the most used is that 
known as ceramic method, although not the most efficient one. The freeze-drying method 
offers purer materials by reducing the heating time and working at not so high 
temperatures. 

The general chemical formula for perovskite compounds is ABX3, where A and B are two 
cations of very different sizes, and X is an anion that bonds to both. The A atoms are larger 
than the B atoms. The ideal cubic-symmetry structure has the B atoms in 6-fold 
coordination, surrounded by an octahedron of anions, and the A atoms in 12-fold 
cuboctahedral coordination. The relative ion size requirements for stability of the cubic 
structure are quite stringent, so slight buckling and distortion can produce several lower-
symmetry distorted versions, in which the coordination numbers of A cations, B cations or 
both are reduced. The orthorhombic and tetragonal phases are the most common non-cubic 
variants. 

The X-ray diffraction pattern of a pure substance is like a fingerprint of the substance. The 
powder diffraction method is thus ideally suited for characterization and identification of 
polycrystalline phases, and therefore of perovskites. 

The Rietveld method allows us to characterize the polycrystalline materials by a least 
squares approach to refine a theoretical line profile until it matches the measured profile 
shown in the pattern. 

It is possible to go further in the study of the structure of the perovskites by means of 
neutron diffraction, although it is true to say that large facilities are needed to carry out such 
study. 
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1. Introduction 

Isotactic polypropylene (iPP) is one of the most important thermoplastic polymers owing to 
its low manufacturing cost and versatile properties. Moreover, iPP exhibits a very 
interesting polymorphic behavior (Awaya, 1988; Busse et al., 2000; Lotz et al., 1996; Vagar, 
1992). At least five modifications: monoclinic α form, trigonal β form, orthorhombic γ form, 
δ and smectic phase have been reported. The α form is the best known and most stable in 
commercial grades of iPP being found in most melt crystallized specimens, especially those 
being added α Nucleating agents (NA) (Labour et al., 1999; Vagar, 1986). The β form is 
metastable thermodynamically and is obtained under some special conditions such as a high 
degree of supercooling, temperature gradient, shear-induced crystallization or addition of β-
nucleating agents (Fillon et al., 1993; Ismail & Al-Raheil, 1998). The γ form occurs in low-
molecular-weight iPP or under high pressure and the mesomorphic form results from 
quenching (Meille et al., 1990; Lotz et al., 1986). Different crystalline form of iPP leads 
different properties like optical and mechanical properties. 

NA as one of the additives presents a role of increasing the nucleation density of polymer 
greatly and enhancing the nucleation rate dramatically so as to have a great impact on the 
mechanical properties of polymer (Kristiansen et al., 2003; Romankiewicz et al., 2004; Tenma 
& Yamaguchi, 2007). So far, two kinds of NAs, α phase and β phase NAs discriminated by 
the form of iPP they induce have been widely put into use in modifying iPP. The α phase 
NA can improve the stiffness and optical properties of iPP while decrease its toughness (Gui 
et al., 2003; Zhang G.P. et al., 2003; Zhang Y.F. & Xin, 2006). The β phase NA will induce β-
iPP during crystallization, which can improve toughness and heat distortion temperature of 
iPP while decrease its stiffness (Tordjeman et al., 2001; Zhao et al., 2008). Thereby, it is well 
expected to balance the iPP’s stiffness and toughness. Xin’s research group firstly proposed 
the idea of compounding α/β NAs. However, whether compounding α, β NAs will enhance 
stiffness and toughness simultaneously or not and what influence will α/β compounded 
NAs take on the crystallization kinetics, crystallization morphologies, and mechanical 
proprieties of iPP call our eye.  
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In this work, three kinds of well studied α/β compounded NAs, Phosphate/Amide, 
Sorbitol/Amide, and Phosphate/Carboxylate were selected to review. This short review 
aims to present some conclusions of α/β compounded NAs and to lay the foundation for 
compounding α and β NAs afterwards. 

2. Crystallization kinetics of iPP nucleated with α/β compounded NAs 
Crystallization process of semi crystalline polymers such as polypropylene can have a 
dramatic impact on the mechanical properties. Thus, we studied the crystallization kinetics 
of iPP nucleated by α/β compounded NAs first. 

Isothermal crystallization kinetics of iPP nucleated with Phosphate/Amide compounded 
NA, NA40/NABW was studied by Zhang et al. (Zhang & Xin, 2007). The results showed 
that Avrami equation, as shown below, was quite successful for analyzing the experimental 
data of the isothermal crystallization kinetics.  

 1 exp( )n
t tX Z t     (1) 

where Xt is the relative crystallinity at time t, n is Avrami exponent, a constant whose value 
depends on the mechanism of nucleation and on the form of crystal growth, and Zt is a 
constant containing the nucleation and growth parameters. The addition of NA40/NABW 
could shorten crystallization half-time (t1/2) and increase crystallization rate of iPP greatly. 
Consequently the molding cycle time of iPP would be reduced obviously, which has great 
importance for polymer processing. The Avrami exponents of iPP and nucleated iPP were 
close to 3, indicating that the addition of nucleating agents did not change the crystallization 
growth patterns of iPP under isothermal conditions and the crystal growth was 
heterogeneous three-dimensional spherulitic growth. The Caze method was applied to 
study on the non-isothermal crystallization kinetics of nucleated iPP by Phosphate/Amide 
compounded NA, NA11/DCHT (Zhao & Xin, 2010). It can be seen from the results that the 
addition of the α/β compounded NAs can obviously shorten t1/2 of iPP, especially at lower 
cooling rates. When the cooling rate Φ is 2.5℃/min, t1/2 of nucleated iPP was 104.9s, while 
that of pure iPP was 135.4 s. The Avrami exponent n for nucleated iPP indicated that the 
α/β compounded NA acted as heterogeneous nuclei followed by three-dimensional 
spherical growth during non-isothermal crystallization. Therefore, the type of nucleation of 
iPP was significantly changed in the presence of the α/β compounded NAs while the 
geometry of crystal growth of iPP did not change. 

Bai et al. investigated the isothermal crystallization kinetics of nucleated by Sorbitol/ Amide 
compounded NA, DMDBS/TMB-5 (Bai & Wang, 2009). The crystallization kinetics 
parameters suggested that compounded NA accelerated the crystallization process of iPP 
greatly. t1/2 of iPP/DMDBS/TMB-5 was much smaller than iPP, indicating the faster 
crystallization process by the addition of compounded NA. For all the samples, the Avrami 
exponent value n ranges from 2 to 3, which means spherulite development arose from an 
athermal heterogeneous nucleation. The fold surface free energy of virgin iPP and nucleated 
iPP was also calculated from the crystallization kinetics. Samples with addition of 
compounded NA resulted in smaller values. That means interfacial surface free energy of 
iPP was reduced with the presence of compounded NA. Similar results were obtained by 
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the study on the non-isothermal crystallization kinetics of iPP nucleated by Sorbitol/Amide 
compounded NA, 3988/DCHT (Zhao & Xin, 2010). 

Except for Amide NA, Carboxylate NA is proved to be another highly effective β NA for 
iPP. Xu gave us the picture of non-isothermal crystallization kinetics of iPP nucleated by 
Phosphate/Carboxylate compounded NA, NA40/H-Ba (Xu, 2010). From the point view of 
crystallization temperature, the addition of NA40/H-Ba enhanced the crystallization rate of 
iPP. Judging from the Avrami exponent, the spherulite of iPP grew in the way of three-
dimensional during non-isothermal crystallization with the presence of NA40/H-Ba, which 
was in accordance with the other two α/β compounded NAs. 
 

 Compounded NAs TC/℃ t1/2/s n n  

Phosphate/Amide 

iPP 

123 42 2.70 

2.85 

125 66 2.58 

127 108 2.84 

129 197 3.10 

131 428 3.04 

NA40/NABW 

133 24 2.76 

2.77 
135 47 2.61 

137 78 2.77 

149 141 2.99 

141 252 2.72 

Sorbitol/Amide 

iPP 

124 180 2.44 

2.54 

126 306 2.43 

128 516 2.6 

130 840 2.63 

132 1356 2.58 

DMDBS/TMB-5 

134 30 2.65 

2.96 
136 54 2.90 

138 102 3.00 

140 204 3.30 

Table 1. Isothermal crystallization kinetics parameters of pure iPP and nucleated iPP (Bai & 
Wang, 2009; Zhang & Xin, 2007) 
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the study on the non-isothermal crystallization kinetics of iPP nucleated by Sorbitol/Amide 
compounded NA, 3988/DCHT (Zhao & Xin, 2010). 

Except for Amide NA, Carboxylate NA is proved to be another highly effective β NA for 
iPP. Xu gave us the picture of non-isothermal crystallization kinetics of iPP nucleated by 
Phosphate/Carboxylate compounded NA, NA40/H-Ba (Xu, 2010). From the point view of 
crystallization temperature, the addition of NA40/H-Ba enhanced the crystallization rate of 
iPP. Judging from the Avrami exponent, the spherulite of iPP grew in the way of three-
dimensional during non-isothermal crystallization with the presence of NA40/H-Ba, which 
was in accordance with the other two α/β compounded NAs. 
 

 Compounded NAs TC/℃ t1/2/s n n  

Phosphate/Amide 

iPP 

123 42 2.70 

2.85 

125 66 2.58 

127 108 2.84 

129 197 3.10 

131 428 3.04 

NA40/NABW 

133 24 2.76 

2.77 
135 47 2.61 

137 78 2.77 

149 141 2.99 

141 252 2.72 

Sorbitol/Amide 

iPP 

124 180 2.44 

2.54 

126 306 2.43 

128 516 2.6 

130 840 2.63 

132 1356 2.58 

DMDBS/TMB-5 

134 30 2.65 

2.96 
136 54 2.90 

138 102 3.00 

140 204 3.30 

Table 1. Isothermal crystallization kinetics parameters of pure iPP and nucleated iPP (Bai & 
Wang, 2009; Zhang & Xin, 2007) 
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 Compounded 
NAs 

Cooling rate 
Φ/(℃/min) TC/℃ t1/2/s n 

Phosphate/Amide 

iPP 

2.5 121.4 135 

3.75±0.03 
5 118.8 78 
10 115.9 44 
20 112.7 23 
40 108.9 14 

NA11/DCHT

2.5 133.7 104 

3.66±0.11 

5 131.2 60 
10 128.5 25 
20 125.6 16 

40 121.7 8 

Sorbitol/Amide 

iPP 

2.5 121.4 135 

3.75±0.03 
5 118.8 78 
10 115.9 44 
20 112.7 23 
40 108.9 14 

3988/DCHT 

2.5 128.7 121 

2.88±0.25 

5 124.6 69 
10 120.2 43 
20 115.4 27 
40 111.9 17 

Phosphate/Carboxylate

iPP 

2.5 127.8 127 

3.67±0.09 
5 124.7 124 
10 121.6 121 
15 119.8 119 
20 118.4 118 

NA40/H-Ba 

2.5 137.9 115 

4.52±0.04 
5 135.3 60 
10 132.6 33 
15 130.8 23 
20 129.7 18 

Table 2. Non-isothermal crystallization kinetics parameters of pure iPP and nucleated iPP 

(Xu, 2010; Zhao & Xin, 2010) 

Isothermal and non-isothermal crystallization kinetics of iPP nucleated by three kinds of 
α/β compounded NAs were reviewed in this section. It can be concluded that compounded 
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NAs will increase the crystallization temperature of iPP, shorten the crystallization half-
time. Consequently the molding cycle time of iPP will be reduced obviously, which has 
great importance for polymer processing. The obtained Avrami exponents indicated that the 
type of nucleation of iPP is changed from homogeneous to heterogeneous in the presence of 
the α/β compounded NAs while the geometry of crystal growth of iPP remains three-
dimension spherical growth. 

3. Crystallization morphologies of iPP nucleated with α/β compounded NAs 
The spherulite size of iPP can be decreased by cooperation with any kinds of NAs. But the 
morphology of nucleated iPP largely depends on the types of NA. The α NA will only 
induce α form iPP while β form iPP can be obtained by incorporating with β NA. Then what 
about the morphologies of iPP nucleated by α/β compounded NAs? 

Polarized optical microscope was used to investigate the crystallization morphologies of iPP 
nucleated with Phosphate/Carboxylate compounded NA, NA40/H-Ba by Xu et al. (Xu et 
al., 2011). As shown in Fig.1, in nucleated iPP, a large number of nuclei would be produced 
due to the existence of NAs. Therefore the spherulites cannot grow large enough to overlap, 
the size of spherulites in nucleated iPP would be much smaller than those in pure iPP. But 
as to the morphologies of the samples, iPP nucleated with NA40/H-Ba showed no sign of 
bright and colorful β crystals, appeared much close to the morphology of iPP induced by 
NA40 individually.  

 
Fig. 1. Polarized light microphotographs for pure iPP and nucleated iPP samples 
crystallized at 135 °C (Xu et al., 2011) 

The crystallization morphologies of pure iPP and iPP induced by Sorbitol/Amide 
compounded NA, 3988/DCHT were shown in Fig.2 (Zhao & Xin, 2010). From figure, it can 
be seen that with the addition of the α/β compounded NA, the spherulite size decreased 
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al., 2011). As shown in Fig.1, in nucleated iPP, a large number of nuclei would be produced 
due to the existence of NAs. Therefore the spherulites cannot grow large enough to overlap, 
the size of spherulites in nucleated iPP would be much smaller than those in pure iPP. But 
as to the morphologies of the samples, iPP nucleated with NA40/H-Ba showed no sign of 
bright and colorful β crystals, appeared much close to the morphology of iPP induced by 
NA40 individually.  

 
Fig. 1. Polarized light microphotographs for pure iPP and nucleated iPP samples 
crystallized at 135 °C (Xu et al., 2011) 

The crystallization morphologies of pure iPP and iPP induced by Sorbitol/Amide 
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be seen that with the addition of the α/β compounded NA, the spherulite size decreased 
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significantly. Different from iPP with NA40/H-Ba, β form iPP became the majority in the 
morphology of iPP nucleated with 3988/DCHT. It can be considered that DCHT played a 
leading role during crystallization. The same conclusion was drew by investigating of iPP 
cooperation with 3988/NABW (Xu, 2010). The morphology of nucleated iPP was close to 
that incorporation with NABW individually. In addition, Bai et al. directly observed the 
crystallization morphologies of iPP nucleated with Sorbitol/Amide compounded NA, 
DMDBS/TMB-5 by SEM (Bai et al., 2008). Pure iPP showed the growth of well developed α 
spherulites with 30~50um in diameter. The size of iPP spherulites was also reduced with 
addition compounded NA. Similarly β form iPP dominated in the morphology of 
PP/0.1DM/0.1TM.  

 
Fig. 2. Polarized light microphotographs for pure iPP and nucleated iPP samples 
crystallized at 140 °C (Zhao & Xin, 2010) (a) pure iPP, (b) iPP/ (3988/DCHT) 
 

 
Fig. 3. Polarized light microphotographs for pure iPP and nucleated iPP samples 
crystallized at 135 °C (Xu, 2010) 
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Fig. 4. SEM for pure iPP and nucleated iPP samples (Bai et al., 2008) 

However, it was interesting that totally different results could be gained when the DCHT 
compounded with different α NAs. Zhao et al. found the nucleation effect of 
NA11/DCHT compounded NA was between that of iPP/NA11 and iPP/DCHT. It can be 
seen from Fig.5, the spherulites of pure iPP showed the typical characteristic of α crystal, 
which had a large size and clear boundaries (Zhao & Xin, 2010). By adding compounded 
NA, the spherulite size greatly reduced, indicating that compounded NA played a role of 
heterogeneous nuclei during crystallization. The content of bright and colorful β form iPP 
was less than that of iPP/DCHT, but was higher than iPP/NA40, which means at this 
condition the crystallization morphology of iPP was affected by both NAs within the 
compounded NA. The same result was got through the study on crystallization 
morphologies of iPP nucleated with Phosphate/Amide compounded NA, NA40/NABW 
by Xu, as shown in Fig.6 (Xu, 2010). 
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Fig. 5. Polarized light microphotographs for pure iPP and nucleated iPP samples 
crystallized at 140 °C (Zhao & Xin, 2010) (a) iPP, (c) iPP/ (NA11/DCHT) 

 
Fig. 6. Polarized light microphotographs for pure iPP and nucleated iPP samples 
crystallized at 135 °C (Xu, 2010) 

All studies showed that the size of spherulites in nucleated iPP appeared much smaller than 
that of in pure iPP. However, iPP nucleated by different α/β compounded NAs showed 
different crystallization morphologies. The morphology of iPP nucleated 
Phosphate/Carboxylate compounded NA, NA40/H-Ba was close to iPP nucleated by NA40 
individually, while iPP nucleated by Sorbitol/Amide compounded NA, 3988/DCHT 
showed the similar morphology of iPP/DCHT. IPP nucleated with Phosphate/Amide 
NA40/NABW compounded NA presented a crystallization morphology that combined 
both NAs’ within the compound system. 
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4. Mechanical properties of iPP nucleated with α/β compounded NAs 
The effects of different NAs on the crystallization process of polymer reflect on its 
mechanical properties finally, which determines on the use value of the polymer. Mentioned 
in the introduction, the α NA can improve the stiffness and optical properties of iPP while 
decrease its toughness. The β NA will induce β-iPP during crystallization, which can 
improve toughness and heat distortion temperature of iPP while decrease its stiffness. Will 
it come true that we can balance the iPP’s stiffness and toughness by compounding two 
kinds of nucleating agents?  

Xu et al. investigate the effect of Phosphate/Carboxylate α/β compounded NA, NA40/HB 
on the mechanical properties of iPP (Xu et al., 2011). As shown in Tab.3, tensile strength 
(ASTM D-638) and flexural modulus (ASTM D-790) of iPP were improved with the presence 
of NA40 while the impact strength (ASTM D-256) decreased. On the contrary, the impact 
strength of iPP could increase to 3.4 times to that of pure iPP but tensile strength and 
flexural modulus was reduced as always by adding HB. Numerically the mechanical 
properties of iPP nucleated with NA40/HB were close to that iPP/NA40, which showed no 
sign of enhancing the toughness of iPP.  
 

 Compounded NA Tensile 
strength /MPa

Flexural 
modulus /MPa

Impact strength 
/(J/m) 

Phosphate/Amide 

iPP 29.8 1223 33.8 

NA11 (0.1 wt %) 34.5 1770 30.2 

DCHT (0.1 wt %) 27.9 1143 74.0 

NA11/DCHT (1:1) 34.2 1669 49.7 

Sorbitol/Amide 

iPP 29.8 1223 33.8 

3988 (0.1 wt %) 31.5 1297 30.9 

DCHT (0.1 wt %) 27.9 1143 74.0 

3988/DCHT (1:1) 27.6 1108 73.4 

Phosphate/Carboxylate

iPP 33.1 1052 35.6 

NA40 (0.1 wt %) 36.2 1562 33.2 

HB (0.1 wt %) 28.8 1025 158.2 

NA40/HB (1:1) 36.3 1521 34.2 

Table 3. Mechanical Properties of Pure iPP and iPP Nucleated with Individual α, β and α/β 
Compounded NAs (Xu et al., 2011; Zhao & Xin, 2010) 

Similar to the effect on crystallization morphologies, different mechanical properties of iPP 
would be reached when the DCHT compounded with different α NAs. Incorporation with 
Sorbitol/Amide compounded NA, 3988/DCHT can significantly improve the impact 
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strength of iPP, but was not benefit to the stiffness like tensile strength, flexural modulus 
(Zhao & Xin, 2010). It is exciting that the goal of enhancing the stiffness and toughness of 
iPP simultaneously can be reached by compounding DCHT with another α NA, NA11. The 
tensile strength, flexural modulus and impact strength of iPP nucleated with NA11/DCHT 
was higher than those of pure iPP.  

Mechanical properties such as tensile strength, flexural modulus and impact strength of iPP 
nucleated with three kinds of α/β compounded NAs were investigated. The similar results 
to the study on crystallization morphologies were obtained. Incorporation with 
Phosphate/Carboxylate compounded NA, NA40/H-Ba only enhanced the stiffness of iPP, 
while with Sorbitol/Amide compounded NA, 3988/DCHT increased the toughness of iPP, 
which was close to iPP nucleated by DCHT individually. Compounding NA40 and DCHT 
could reach a good balance between stiffness and toughness of iPP. Then, what factor plays 
a dominant role when compounding α, β two kinds of nucleating agents? 

5. Optimization method for compounding α, β NAs 
Through reviewing on the crystallization kinetics, crystallization morphologies, and 
mechanical proprieties of iPP nucleated by α/β compounded NAs, it can be noticed that 
some α, β NAs can induce iPP during crystallization respectively when they are 
compounded, hence improve the stiffness and toughness simultaneously. While some α or β 
NA will play a leading role when it compounds with another NA. Thus the nucleating effect 
of the compounded NA appears close to the leading one, which goes against original 
intention of compounding α and β NA. So find out the key factor of affecting the effect of 
α/β compounded NAs is the precondition of successfully compounding α and β NA. 

From the traditional crystallization point of view, the overall crystallization rate depends on 
two stages: nucleation and growth. In the nucleation process, the formation of nucleus relies 
on the molecular movement in the molten spontaneously. Once the nucleus came into 
existence, the crystal grows in the form what nucleus is. So nucleation is the precondition for 
crystallization. The role of NA is to provide a large number of nuclei before the self-nuclei 
formed, which results in changing the homogeneous nucleation into a heterogeneous one. 
Furthermore, several studies on crystallization kinetics show that the NA has little impact 
on the growth stage of crystallization (Cai et al., 2010; Huang et al., 2005; Zhao & Xin, 2010). 
Accordingly, we believe that the crystallization form of polypropylene depends on the NA 
which comes into effect first in the nucleation stage. This sequence can be judged by the 
crystallization temperature (Tc) of polypropylene nucleated with NA individually. The NA 
with higher Tc means earlier the NA nuclei could be “accepted” by polypropylene and 
consequently comes into effect first in compounded system. So Tc is considered as the key 
factor of affecting the effect of α/β compounded NAs.  

Zhao et al. confirmed that the effect of compounded NA depends on which NA come into 
effect first during the nucleation stage (Zhao & Xin, 2010). The Tc of iPP induced by different 
NA individually was illustrated in Fig.7. It can be seen that Tc of iPP induced by DCHT was 
much higher than that of 3988. According to the mentioned assumption, when DCHT 
compounds with 3988, DCHT would play a leading role. Refers to the results in section 3 
and section 4, it is clear that the nucleating effect such as crystallization morphologies and 
mechanical properties of Sorbitol/Amide compounded NA, 3988/DCHT appeared close to 
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that of DCHT. It can be noticed from Fig.7 that Tc of NA11 showed little difference to that of 
DCHT. During crystallization competitive nucleation takes place between two NAs, which 
results in the combined crystallization morphology and simultaneously increasing tensile 
strength, flexural modulus and impact strength of iPP. Xu et al. came to the same result by 
investigating Phosphate/Carboxylate compounded NA, NA40/H-Ba (Xu et al., 2011). 
NA40, the one with higher Tc plays a leading role in the crystallization while H-Ba showed 
no effect on inducing iPP. Therefore Tc is proved to be the key factor of affecting the effect of 
α/β compounded NAs.  

 
Fig. 7. DSC melting curves of iPP nucleated with individual α or β NAs (Zhao & Xin, 2010) 

 

Sample TC /℃ 

iPP 121.6 

NA40/iPP 130.2 

HB-a/iPP 125.1 

Table 4. Crystallization temperature of iPP nucleated with different NAs (Xu et al., 2011) 

The key factor of affecting the α/β compounded NAs was summarized in this part. That is 
the crystallization temperature of polypropylene nucleated with NA individually. The NA 
with higher Tc plays a leading role in the crystallization process. Consequently the 
mechanical properties, crystallization properties and crystallization morphologies of iPP 
appear close to it. Competitive nucleation will occur when the difference of Tc between the 
two NAs is not significant.  

According to this, Tc becomes the one we can adjust that controls the crystallization 
behaviors of iPP based on α/β compounded NA. It can be easily conclude that the principle 
of compounding α and β NA is to make Tc of two NAs as close as possible, so as to let 
competitive nucleation happen. As known to all, the Tc of a NA depends on not only the 
species but the content of it as well. That is to say various addition amount of the same NA 
leads different Tc. Then, method for compounding α and β NAs can be developed according 
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strength of iPP, but was not benefit to the stiffness like tensile strength, flexural modulus 
(Zhao & Xin, 2010). It is exciting that the goal of enhancing the stiffness and toughness of 
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compounds with 3988, DCHT would play a leading role. Refers to the results in section 3 
and section 4, it is clear that the nucleating effect such as crystallization morphologies and 
mechanical properties of Sorbitol/Amide compounded NA, 3988/DCHT appeared close to 
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that of DCHT. It can be noticed from Fig.7 that Tc of NA11 showed little difference to that of 
DCHT. During crystallization competitive nucleation takes place between two NAs, which 
results in the combined crystallization morphology and simultaneously increasing tensile 
strength, flexural modulus and impact strength of iPP. Xu et al. came to the same result by 
investigating Phosphate/Carboxylate compounded NA, NA40/H-Ba (Xu et al., 2011). 
NA40, the one with higher Tc plays a leading role in the crystallization while H-Ba showed 
no effect on inducing iPP. Therefore Tc is proved to be the key factor of affecting the effect of 
α/β compounded NAs.  

 
Fig. 7. DSC melting curves of iPP nucleated with individual α or β NAs (Zhao & Xin, 2010) 

 

Sample TC /℃ 

iPP 121.6 

NA40/iPP 130.2 

HB-a/iPP 125.1 

Table 4. Crystallization temperature of iPP nucleated with different NAs (Xu et al., 2011) 

The key factor of affecting the α/β compounded NAs was summarized in this part. That is 
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with higher Tc plays a leading role in the crystallization process. Consequently the 
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two NAs is not significant.  
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competitive nucleation happen. As known to all, the Tc of a NA depends on not only the 
species but the content of it as well. That is to say various addition amount of the same NA 
leads different Tc. Then, method for compounding α and β NAs can be developed according 
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to this: First, we shall obtain Tc of iPP nucleated with different addition amounts of α and β 
NAs individually by DSC. Then list TC α and TC β at each ratio of compounded α/β with a 
fixed concentration. The ratio which contains TC α = TC β will be the optimal compounded 
ratio of these two α and β NAs at this concentration. In this context, competitive nucleation 
will occur during crystallization.  

6. Practice of adjusting the stiffness and toughness of iPP based on α/β 
compound NAs 
Here an example of adjusting the stiffness and toughness of isotactic polypropylene based 
on different of α/β compound NAs was employed. Shi et al. studied the different ratios α/β 
compounded NAs on mechanical properties of iPP (Shi & Xin, 2011). It was found that 
stiffness and toughness of iPP could be adjusted and enhanced simultaneously by changing 
the ratio of α and β nucleating agents, as shown in Fig.8. Comparing to the others, the 
absolute value of difference of crystallization peak temperature between two kinds of NAs 
at optimal compounded ratio was the smallest. It verifies that the key factor summarized 
before can also be applied to different ratios α/β compounded NAs. Then relying on the 
established method, the optimal compounded ratios of NA40/H-Ba and NA40/PA-03 (PA-
03, Carboxylate β NA for iPP) were obtained, at which there appeared TC α = TC β as shown 
in Fig.9. Refer to Fig.10, the calculated results were proved to be valid by the investigation of 
the effect of NA40/H-Ba and NA40/PA-03 with different ratio on mechanical properties of 
iPP, which means the method is applicable for compounding any NAs. Furthermore 
compounded NAs could enhance stiffness and toughness of iPP simultaneously with these 
ratios, as can be seen from Tab.5. 

 

 
 

Fig. 8. Effect of NA40/NABW compounded NAs with different ratio on mechanical 
properties of iPP (addition amount 0.2wt %) (Shi & Xin, 2011) 
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Fig. 9. TC α and TC β at different ratio of NA40/H-Ba and NA40/PA-03 compounded NAs 
(addition amount 0.2 wt %) 

 

 

     
 

Fig. 10. Effect of NA40/H-BA and NA40/PA-03 compounded NAs with different ratio on 
mechanical properties of iPP (addition amount 0.2wt %) (Shi & Xin, 2011) 
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Nucleating 
agents 

Compound 
ratio 

Tensile 
strength (MPa) 

Flexural 
modulus (MPa) 

Impact 
strength (J/m) 

iPP - 29.9 1171 31.7 

NA40 - 32.9 1616 27.1 

NABW - 25.4 1031 98.2 

NA40/NABW 1:3 31.1 1443 58.0 

H-Ba - 26.9 1018 93.6 

NA40/H-Ba 1:9 30.8 1309 79.0 

PA-03 - 27.1 1022 103.7 

NA40/PA-03 3:7 31.0 1344 64.0 

Table 5. Mechanical Properties of iPP Nucleated with different NAs (addition amount 0.2 wt 
%) (Shi & Xin, 2011) 

7. Conclusions 
Nowadays α/β compounded NAs for polypropylene have attracted more and more 
attention. This short review summarized the research on α/β compounded NAs in recent 
years. Three kinds of well studied α/β compounded nucleating agents (NAs), 
Phosphate/Amide, Sorbitol/Amide, and Phosphate/Carboxylate were selected to review 
their influence on the crystallization kinetics, crystallization morphologies, and mechanical 
proprieties of isotactic polypropylene (iPP). The results showed that α/β compounded NAs 
could not only increase the crystallization temperature of iPP but also shorten the 
crystallization half-time, consequently reduce molding cycle time of iPP more obviously. 
The obtained Avrami exponent indicated that the type of nucleation of iPP could be 
changed while the geometry of crystal growth of iPP remains. The size of spherulites in 
nucleated iPP appeared much smaller than that in pure iPP. However, iPP nucleated by 
different α/β compounded NAs showed different morphologies. The same result was 
obtained by the investigation of the mechanical properties of iPP. Some α/β compounded 
NAs were able to enhance stiffness and toughness of iPP simultaneously while the other 
α/β compounded NAs could only devote to one aspect. It was summarized that the key 
factor of affecting the α/β compounded NAs is the crystallization temperature of iPP 
nucleated with NA individually (TC). The NA with higher Tc plays a leading role in the 
crystallization process. Consequently the mechanical properties, crystallization properties 
and crystalline microstructure of iPP appear close to it. Competitive nucleation will occur 
when the difference of Tc between two NAs is not pronounced. According to this rule, the 
optimization method for compounding α and β NAs was developed. That is to find out the 
ratio of α and β NAs with TC α = TC β so as to let competitive nucleation occur during 
crystallization. Then the method was applied to an example of adjusting the stiffness and 
toughness of iPP based on different of α/β compound NAs. Rely on it the optimal ratios of 
α/β compounded NAs can be easily determined by calculation TC at different ratios instead 
of testing them on mechanical properties. Sequentially it makes more effective to enhance 
stiffness and toughness of iPP based on α/β compounded NAs. 
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1. Introduction 
The one of actual problems of radiation material science is to reveal plastic deformation 
laws, hardening and fracture ones of materials under intense external action, particularly 
irradiation. Herein we imply different kinds of irradiation, for instance, such a (e, ) beam 
irradiation, ion or neutron irradiation and so on. Evolution of a construction material 
microstructure at a high temperature trial operation is substantially conditioned by free 
migrating defects [1]. The processes of interaction of point defects with each other, with 
dislocations and interface underlie all of metal radiation hardening mechanisms [2]. In the 
section 1, the nonlinear model of dose dependence saturation of the yield strength is 
proposed on the base of the vacancy and interstitial barrier interaction. Processes of mutual 
recombination of vacancy and interstitial barriers and formation of vacancy and interstitial 
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1. Introduction 
The one of actual problems of radiation material science is to reveal plastic deformation 
laws, hardening and fracture ones of materials under intense external action, particularly 
irradiation. Herein we imply different kinds of irradiation, for instance, such a (e, ) beam 
irradiation, ion or neutron irradiation and so on. Evolution of a construction material 
microstructure at a high temperature trial operation is substantially conditioned by free 
migrating defects [1]. The processes of interaction of point defects with each other, with 
dislocations and interface underlie all of metal radiation hardening mechanisms [2]. In the 
section 1, the nonlinear model of dose dependence saturation of the yield strength is 
proposed on the base of the vacancy and interstitial barrier interaction. Processes of mutual 
recombination of vacancy and interstitial barriers and formation of vacancy and interstitial 
clusters are taken into consideration. 

A series of different radiation defects (retardation barriers of dislocations), and their sizes, 
and a form of their volume distribution contribute into a yield strength increment for all of 
sorts of irradiation. The contribution of a barrier type is determined by conditions of 
irradiation and tests. At the low temperature irradiation (at the test temperatures up to 0.3 Tm, 
Tm is melting temperature), interstitial atoms, and vacancies, and their clusters contribute 
mainly into the hardening. In the section 2, evolution of radiation barrier (vacancies and 
interstitials) clusters is analyzed under low temperature radiation in the presence of the most 
important secondary effectes: recombination and formation of divacancy complexes. It is 
proposed a barrier hardening model in that mechanisms of mutual annihilation of the vacancy 
and interstitial barriers and their clusterization play a main role. 

In the section 3 unlike two preceding sections where the dose dependences are considered, 
the phenomenological model is formulated to describe a yield strength temperature 
dependence of polycrystalline materials that have undergone irradiation and mechanical 
experiences in a wide temperature interval including structure levels of plastic deformation. 
In this section, a new phenomenological model is proposed to give a suitable description of 
yield strength temperature dependence of some of irradiated materials in a temperature 
interval including plastic deformation structure levels. 
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2. Mutual recombination and clusterization effect of the vacancy and 
interstitial barriers on radiation hardening materials 
2.1 Formulation of the model 

In initial stages of low temperature irradiation (up to 0.3Tm where Tm is melting 
temperature) at small doses, inhibiting processes of initial dislocations and their sources 
dominate. The point defects are connect with a dislocation and form dislocation jogs and 
steps but interacting with each other form interstitial – vacancy – impurity clusters. As a 
result, energy and geometry dislocation characteristics change substantially. A 
phenomenological description of these mechanisms is within the usual Granato – Lukke 
theory. 

At large irradiation doses of metals, the processes of an elastic and contact interaction of 
sliding dislocations with different potential barriers begin to play a main role. Besides the 
separated point defects in irradiated material, the dislocations are to surmount interstitial 
and vacancy clusters and dislocation loops, the interstitial – vacancy – impurity clusters, 
precipitates, voids. The dislocation can cut a barrier, can be bent by the barrier and can go 
round an obstacle by a dislocation climb subject to barrier intensity and a distance between 
barriers. These mechanisms of barrier hardening are described by the Orowan model of 
athermic surmounting obstacles by dislocations [3]. 

At the large irradiation doses, a yield strength increment can be represented by the sum of 
barrier contributions of different types [3]: 
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   , (2.1) 

where index i is a barrier type, N is a number of barrier types affecting the yield strength, 
i is the yield strength increment of i’ barrier type. 

Up to now, there is many of experimental data and numerical theoretical models are 
developed to describe a dependence of barrier concentration of different types on radiation 
hardening power and behavior pattern of point defect clusters [4]. It is known that on earlier 
stage at small irradiation doses (by neutron radiation up to 21016 n/cm2), the hardening 
occurs due to forming the slowly increasing interstitial clusters. The vacancy clusters begin 
to contribute to the hardening in increasing dose. 

In these stages, the yield strength increment is described with sufficient approximation of 
the dependence of the form 

 ( )na t   , (2.2) 

where а is a parameter depending on irradiation conditions and the research material type, 
Ф is density of particle flux, t is irradiation time, exponent n changes against the material 
type and the irradiation condition from 0.25 to 0.75 [3]. 

A saturation nature of the hardening is still not clear finally. Probable causes of the yield 
strength increment saturation can be such as overlapping stresses field created by radiation 
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defects of certain their concentration, creation round the volume defects of defect-free zones, 
the beginning of the dislocation channeling and surmounting obstacles processes and so on. 

In the Ref [5], the model is proposed to describe the dose dependence of the copper yield 
strength increment where the saturation is explained by a decreasing velocity of the forming 
clusters with increasing irradiate dose due to interaction between the available clusters and 
newly forming ones. 

Here the model is proposed to describe the dose dependence of the yield strength increment 
taking into account of vacancy and interstitial barrier interaction.  

We consider that vacancies and interstitial atoms make a main contribution to the yield 
strength increment of a certain material at some of irradiation conditions. They are barriers 
to play the main role in the hardening at the low temperature irradiation. Therefore, in the 
proposed model N=2; the index values of i=1 and 2 correspond to the vacancies and 
interstitial atoms (and their clusters). Then in this model Eq (2.1) takes the form: 

 1 2       . (2.3) 

For all of the obstacle types, the metal yield strength increment conditioned by dislocation 
deceleration is described as [2]: 

 1/2( )i i i ib C d    , i = 1, 2, (2.4) 

where i is the parameters characterizing i’ barrier intensity (a fixed quantity for some of 
barrier types, material and irradiation condition),  is the shear modulus, b the Burgers 
vector length, Сi the volume density of i’ barrier type, di their average size. For instance, the 
vacancy and interstitial have the average size ~ 10 nm, and the parameters characterizing 
barrier intensity has the value about 0.2 [2]. 

The present model is based on the system equations for the volume densities of the 
radiation- induced nonequilibrium vacancies and interstitial barriers C1, C2: 
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where  = Фt, Ф is density of particle flux, t irradiation time, Ki, i = 1, 2, the intensities of 
forming the radiation - induced vacancy and interstitial barriers, i are the coefficients of 
barrier recombination and characterize forming the clusters of acceptable barrier type (it can 
be named as clusterization coefficients), 12 the coefficient of mutual recombination of the 
annihilating vacancy and interstitial barriers, the coefficients 1

i
  can be represented by the 

form: 1
i
 = KiVi, where Vi are the effective volumes of interaction of the certain barriers with 

each other.  

The first terms of the equation system (2.5) describe the intensity of increasing the volume 
barrier densities of the acceptable type, the second ones correspond to decreasing the 
volume barrier densities due to absorbing the barriers on natural sinks: voids, dislocations, 
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dislocation network, grain boundaries and so on. In the proposed model, the mechanisms of 
the mutual annihilation of vacancy and interstitial barriers and their clusterization are 
assigned. The third terms of the system (2.5) describe decreasing the barrier densities due to 
of the mutual annihilation of two different type barriers, and the fourth ones do due to 
forming the clusters of two barriers of the same type. 

To find the volume densities of the radiation - induced nonequilibrium vacancies and 
interstitial atoms it is necessary to set up their the initial values: 

 (0)(0)i iC C ,  i = 1, 2.  (2.6) 

Thus, the mathematical formulation of the present model is the Cauchy problem for the 
system of nonlinear differential equations (2.5). The volume barrier densities found as a 
result of solution of the Cauchy problem (2.5), (2.6) determine the yield strength increment 
according to Eqs (2.3), (2.4). 

2.2 Dose saturation features of the yield strength subject to annihilation effects of the 
vacancy and interstitial barriers 

At the beginning, we consider the yield strength behavior against the material irradiation 
dose taking into account of only the mutual recombination of the vacancy and interstitial 
barriers that is their annihilation. Upon that, the effects of forming the barrier clusters of the 
same type are not considered. The barrier annihilation effects but no their clusterization play 
the main role in the radiation hardening. Therefore 12 >> i, i = 1, 2, and it is possible to 
neglect the last terms of 2

i iC  in every equation of the system (2.5). 

In this approximation the system (2.5) takes the form: 
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As Eqs (2.7) has not an analytic solution, we illustrate a dependence pattern of the barrier 
density by a numerical analysis example of the Cauchy problem solution in which the 
parameter simulating values and the initial defect densities (0)

iC   51013cm-3 (they are 
pointed out in the figure captures following then) are used. The numerical solution results 
of the Cauchy problem (2.6), (2.7) reduced to the dimensionless form attached to the 
parameter simulating values are shown in Fig.2.1.  

Here it is shown the dependence typical behavior of the barrier relative densities of the 
vacancy 1 0/C C  and interstitial 2 0/C C  types on the relative irradiate dose 0  where С0 is a 
measure scale of the defect densities (here it is equal 1015 cm-3). The measure units are 
accepted relative to the selected scale τ0 (fluence) the numerical value of which is 
determined by a specific problem (it is convenient to select a minimal fluence of the specific 
problem as the dose measure scale; for instance, in the ion irradiation the value of τ0 can be 
equal 1014 ion/cm2 or 1022 n/m2 as the contemporary neutron fluence). This dependence 
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pattern is universal and independent of the selected measure scales of the specific physics 
parameters. In increasing dose it is happened the saturation of the material by the radiation 
- induced barriers (their densities do not increased far more). 

 

     
 

Fig. 2.1. Dependences of relative barrier densities of vacancy type (the curve 1) and 
interstitial type (the curve 2) on irradiate dose at fixed values of the dimensionless 
parameters 1 0 0( )K C  = 2.5, 0 1   = 1.1, 2 0 0( )K C  = 1, 0 2   = 1.5, and different values of 
the recombination coefficient: (a) – 12 0 0С   = 0.9, (b) – 12 0 0С  = 0.1 where 0С , 0  are the 
measure scales of barriers and dose (fluence) respectively the concrete selection of that is 
conditioned by the concrete problem. 

The numerical analysis shows that at K1 > K2 and small doses, the barrier density of the 
vacancy type exceeds the one of the interstitial type. At opposite inequality, a situation 
becomes reverse that is natural as it physically means that increasing the irradiation 
intensity leads to enlarging a number both the vacancy and the interstitial barriers. Upon 
that the higher the velocity of forming the radiation barriers of any type is the larger their 
volume density. It is necessary to mark that the vacancy barrier density usually is higher 
than the interstitial barrier density in the real materials near a sample surface irradiated. 

The numerical analysis also shows that increasing the mutual recombination coefficient 12 
leads to decreasing the saturation values of the barrier densities. It leads as well to changing 
the dose dependence pattern of the barrier density of the corresponding type that becomes 
the monotonic quantity (see Fig.2.1, a) and b)). 

Substitution of the found numerical solution of the system (2.7) to Eq (2.3) allows getting the 
dose dependences of the material yield strength increment. For plotting these dependence 
figures, it is convenient to represent Eq (2.3) as follows  

 0 1/2 1/2
1 1 0 2 2 0{( / ) ( / ) }d C dC d C dC     , (2.8) 

 0 1/2
0( )b C d    (2.9) 

where d is an average size of the barrier clusters of all types (here it can be determined as 
half-sum of d1 and d2). 
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The results of numerical modeling the behavior of the yield strength are represented in Fig. 
2.2. where the typical dose dependences of the yield strength increment are shown on the 
base of the obtained Eqs (2.8) and (2.9) (in relative units) at the model parameter values. The 
corresponding numerical analysis shows that the yield strength gets the saturation quickly 
enough. The typical monotonic form of the dose saturation plots of the yield strength does 
not change virtually in a broad enough interval of the model parameter values satisfying to 
the existence condition of the Cauchy problem (2.5), (2.6) solution. 

 

 

Fig. 2.2. Dependences of the relative yield strength increment on irradiate dose at fixed the 
nondimensional parameters 1 0 0( )K C  = 2.5, 0 1   = 1.1, 2 0 0( )K C  = 1, 0 2   = 1.5, and 
different values of the recombination coefficient: (1) 12 0 0С  = 0.9, (2) 12 0 0С  = 0.1 in relative 
units. 

 
Fig. 2.3. Dependences of the relative yield strength increment on the recombination 
coefficient at fixed irradiate dose 0   = 4 and the rest parameter values as in Fig. 2.2. 

Besides, on the base of the numerical analysis, it is obtained that a growth of the mutual 
recombination coefficient 12 leads to decreasing the saturation value of the yield strength. It 
is shown in Fig.2.3. where the dependence of the relative yield strength increment 0/    
on the mutual recombination coefficient at fixed dose is shown (here 0 is the yield 
strength  increment value at 12 = 0 that is under the condition of total neglecting interaction 
between the vacancy and interstitial barriers). It is well seen that the relative yield strength 
increment decreases with the growth of the mutual recombination coefficient, this 
dependence being nonlinear and monotonic. 

A stationary point of the systems (2.7) determines the saturation values of the barrier density: 
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The saturation values of the barrier density (2.10) and (2.11) are achieved quickly enough 
(see Fig.2.1.). 

In the case when the recombination of the vacancy and interstitial barriers is negligibly 
small the equations of the system (2.7) become independent at 12  = 0. If to suppose in 
addition that the radiation barriers are virtually absent at the initial time (0) 0iC  , (i = 1, 2) 
then as a result the known expression of the volume barrier density is obtained [3]: 
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where i = (KiVi)-1. Substitution of Eq (2.12) to Eq (3) gives the expression of the yield 
strength increment at 12 = 0: 
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It should be noted that at small doses it is followed the well known law of Eq (2.2) at n = ½: 
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In the absence of the mutual recombination of the vacancy and interstitial barriers but at the 
arbitrary initial barrier densities and the initial conditions (2.6) and at 12 = 0, the solution of 
the equation system (2.7) leads to the expression 
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Substituting Eq (2.15) into (2.3) it can be obtained the expression for the yield strength 
increment at 12=0 and the arbitrary initial barrier densities: 
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The results of numerical modeling the behavior of the yield strength are represented in Fig. 
2.2. where the typical dose dependences of the yield strength increment are shown on the 
base of the obtained Eqs (2.8) and (2.9) (in relative units) at the model parameter values. The 
corresponding numerical analysis shows that the yield strength gets the saturation quickly 
enough. The typical monotonic form of the dose saturation plots of the yield strength does 
not change virtually in a broad enough interval of the model parameter values satisfying to 
the existence condition of the Cauchy problem (2.5), (2.6) solution. 

 

 

Fig. 2.2. Dependences of the relative yield strength increment on irradiate dose at fixed the 
nondimensional parameters 1 0 0( )K C  = 2.5, 0 1   = 1.1, 2 0 0( )K C  = 1, 0 2   = 1.5, and 
different values of the recombination coefficient: (1) 12 0 0С  = 0.9, (2) 12 0 0С  = 0.1 in relative 
units. 

 
Fig. 2.3. Dependences of the relative yield strength increment on the recombination 
coefficient at fixed irradiate dose 0   = 4 and the rest parameter values as in Fig. 2.2. 
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Eq (2.16) is used to plot the yield strength dependence on the intensity quantity of the 
vacancy and interstitial barrier recombination at fixed dose in Fig. 2.3. 

2.3 Dose saturation features of the yield strength subject to the effects of clustering 
barriers 

Let us consider now the main contribution to the radiation hardening is given by the effects 
of forming the clusters of two barriers of the same type and the mutual recombination of the 
vacancy and interstitial barriers is negligibly small. Therefore, 12 << i, i = 1, 2, and in every 
equation of the system (2.5) it can be neglected by the last terms of 12 1 2C C . After this, the 
system equations become independent and therefore in what follows the indexes 1 and 2 of 
notations can be omitted. 

Further we consider the contribution to the radiation hardening only from the barriers of the 
same type (either vacancy or interstitial) and then instead Eqs (2.3) and (2.4) the next 
expression is used 

 1/2( )b Cd   , (2.17) 

where  is the parameter characterizing the barrier intensity (a fixed quantity for some of 
barrier types), С the volume barrier density of the same type, d their average size. 

In this case it is convenient to go to single equation of the system (2.5): 

 2(1 )dC K VC C
d



   , (2.18) 

where i of Eqs (2.5) is changed by the new notation according to the relationship i = K and 
all of the indexes are omitted. 

The solution of Eq (2.18) with the initial condition C (0) = 0 at  > 0 takes the form 
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. The found expression (2.19) 

describes the dependence of the volume radiation-induced barrier density on irradiate dose 
(fluence)  = Фt. The typical plot of the dependence (2.19) is shown in Fig.2.4. at the different 
values of barrier clusterization intensity and the fixed rest parameters in the relative units 
(as stated above). 

Substituting Eqs (2.19) into Eqs (2.17) we obtain the dose dependence of the yield strength 
increment: 
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Fig. 2.4. Dose dependences of the volume barrier density (2.19) at the fixed parameter values 

0 0( )K C  = 1, С0V = 1 and the different values of clusterization intensity: (1) 2
0С  = 0, (2) 

2
0С  = 1, (3) 2

0С = 5 in relative units. 

In the present model, it is supposed that the average barrier size is a weakly changing 
function of irradiate dose. The typical plot of the dependence (2.20) is shown in Fig. 2.5 at 
the different values of barrier clusterization intensity and the fixed rest parameters. 

 
Fig. 2.5. Dose dependences of the relative yield strength increment (2.20) at the fixed 
parameter values 0 0( )K C  = 1, С0V = 1, and the different values of clusterization intensity: 
(1) 2

0С  = 0, (2) 2
0С  = 1, (3) 2

0С  = 5 in relative units. 

It follows from (2.19) that at low irradiate doses that is when  <<    (accordingly (2.19) it 
corresponds to low density of radiation defects) the dependence of the volume density of 
the radiation-induced barriers on irradiate dose is linear: ( )C q V qK t   . Substituting this 
expression into (2.17) we obtain the dependence of 1/2( )a t    where 

1/2{( ) }a b q V qKd  . 

At high irradiate doses that is when  >>    the volume density of the radiation-induced 
barriers is saturated and tends to the constant ( ) / 2C q V    . This value of the volume 
density is the stationary point of Eq (2.18). Substituting this expression into Eqs (2.17) we 
obtain the saturation value of the yield strength: 
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Eq (2.16) is used to plot the yield strength dependence on the intensity quantity of the 
vacancy and interstitial barrier recombination at fixed dose in Fig. 2.3. 

2.3 Dose saturation features of the yield strength subject to the effects of clustering 
barriers 

Let us consider now the main contribution to the radiation hardening is given by the effects 
of forming the clusters of two barriers of the same type and the mutual recombination of the 
vacancy and interstitial barriers is negligibly small. Therefore, 12 << i, i = 1, 2, and in every 
equation of the system (2.5) it can be neglected by the last terms of 12 1 2C C . After this, the 
system equations become independent and therefore in what follows the indexes 1 and 2 of 
notations can be omitted. 

Further we consider the contribution to the radiation hardening only from the barriers of the 
same type (either vacancy or interstitial) and then instead Eqs (2.3) and (2.4) the next 
expression is used 
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describes the dependence of the volume radiation-induced barrier density on irradiate dose 
(fluence)  = Фt. The typical plot of the dependence (2.19) is shown in Fig.2.4. at the different 
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Substituting Eqs (2.19) into Eqs (2.17) we obtain the dose dependence of the yield strength 
increment: 
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Fig. 2.4. Dose dependences of the volume barrier density (2.19) at the fixed parameter values 

0 0( )K C  = 1, С0V = 1 and the different values of clusterization intensity: (1) 2
0С  = 0, (2) 

2
0С  = 1, (3) 2
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where 0  is determined by Eq (2.9). 

If the clusterization effects can be neglected (as well as the mutual annihilation of the barrier 
of the different types has been already neglected too) then it can be obtained from Eq (2.19) 
the known expression of the volume barrier density as Eq (2.12). This dependence 
corresponds to the curve 1 in Fig.2.4. 

After substituting such volume density into Eq (2.17) it is obtained the dose dependence of 
the yield strength in the case when the barrier clusterization makes negligibly small 
contribution to the velocity of forming the radiation – induced barriers [3]: 
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, (2.22) 

where 1( )KV  . This dependence corresponds to the curve 1 in Fig.2.5. Hence it follows at 

small irradiate doses the well known law as 1/2( )a t    where now 1/2( )a b Kd . 

  
                 (a)               (b) 

Fig. 2.6. Dependences of the relative yield strength increment saturation (2.21) at the fixed 
parameter values 0 0( )K C  = 1:  
(a) dependence on nondimensional intensity of the barrier clusterization 2

0С  at different 
values of their volumes: (1) С0V = 0.4, (2) С0V = 1, (3) С0V = 2 in relative units. 
(b) dependence on V at different values of the clusterization intensity: (1) 2

0С  = 0.1, (2) 
2
0С  = 1, (3) 2

0С  = 5 in relative units. 

On the base of the obtained dependence of the yield strength saturation by Eq (2.21) on the 
barrier recombination intensity, it can be drawn the next conclusion. The saturation quantity 
of the material yield strength at fixed dose decreases monotonically with increasing the 
intensity of radiation – induced barrier clusterization. This behavior is shown in Fig.2.6. 
where the plots of Eq (2.21) are presented. 

2.4 Discussion of experiment data 

As known, since 1988 the EU, USA, Japan and Russia joint works have been fulfilled within 
the intergovernmental agreement approved by IAEA (International Atomic Energy 
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Agency). According to technological design of the thermonuclear reactor ITER, one of main 
constructional material is austenitic steel 316(N)-IG [6]. 

In the Ref [9], it is developed the model of the radiation hardening of the concrete 
irradiation material, 316(N)-IG steel. This model is based on the equation to be equivalent to 
Eq (2.18) for the potential barrier density C the role of which plays the stacking fault 
tetrahedral observed by electron microscopy as black dots. Experiment reveals that the 
concentration of these barriers grows with increasing irradiation dose.  

Authors of the work [9] make a comparison with experimental data for 316(N)-IG steel on 
the base of the equation analogous to above Eq (2.22) to be the particular case of Eq (2.18) 
that is not taking into account of the barrier annihilation. They receive relatively good fit 
with the experimental data in temperature ranges 20 – 150 and 230 - 300C. For the higher 
temperatures (330 - 400C) this equation does not obey an adequate description of the yield 
strength and ultimate stress increment. To describe the experimental data the authors of Ref 
[7] fit an exponent in the dependence of the form (2.17) pointing out this exponent to be 
varied approximately in the interval 1.4 – 2.7 for the best agreement with the experimental 
data. It is possible that accounting the barrier recombination of the different types leads to 
invariability of the exponent ½ in Eq (2.17). 

In the work [8], the equation analogous to Eq (2.22) it is used for fitting the experimental 
data for strength and ductility of corrosion – resisting austenitic 06Х18Н10Т steel irradiated 
by the WWER – 440 reactor up to damaging dose ~ 21 d.p.a. at different testing 
temperatures. Authors of Ref [8] find out that the radiation hardening saturation of 
06Х18Н10Т steel irradiated in WWER-440 reactors takes place at the damage dose of ~ 10  
15 d.p.a. (11,51026 n/cm2). 

3. Effect of secondary processes on material hardening under low 
temperature radiation 
3.1 Formulation of the secondary process contribution model 

The base of the model is a barrier mechanism of the radiation hardening [2] according to 
that the yield strength increment can be represented by the sum of barrier contributions of 
different types (see Eq (2.1) of the preceding section). 

We consider that the barriers of vacancy and interstitial types make a main contribution to 
the yield strength increment of a certain material. These barriers play the main role in the 
hardening at the low temperature irradiation. Therefore, in the proposed model N=3; the 
index values of i=1 correspond to the vacancy barriers, i = 2 do to interstitial ones and i = 3 
do to more large vacancy complexes. Then in this model Eq (2.1) takes the form: 

 1 2 3          . (3.1) 

For all of the obstacle types, the metal yield strength increment conditioned by dislocation 
deceleration is described by the Eq (2.4) (see the preceding section). 

Under irradiation, development of radiation defect clusters (barriers) of different types 
occurs in a region of a primary knocked-on atom. It is proposed that the interstitial barriers 
have considerably smaller sizes and leave the damage region of a sample sooner than the 
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where 0  is determined by Eq (2.9). 
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corresponds to the curve 1 in Fig.2.4. 
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On the base of the obtained dependence of the yield strength saturation by Eq (2.21) on the 
barrier recombination intensity, it can be drawn the next conclusion. The saturation quantity 
of the material yield strength at fixed dose decreases monotonically with increasing the 
intensity of radiation – induced barrier clusterization. This behavior is shown in Fig.2.6. 
where the plots of Eq (2.21) are presented. 

2.4 Discussion of experiment data 

As known, since 1988 the EU, USA, Japan and Russia joint works have been fulfilled within 
the intergovernmental agreement approved by IAEA (International Atomic Energy 

2
0C 0VC

1

2

3
3

1
2

0









 
Influence of Irradiation on Mechanical Properties of Materials 

 

151 

Agency). According to technological design of the thermonuclear reactor ITER, one of main 
constructional material is austenitic steel 316(N)-IG [6]. 

In the Ref [9], it is developed the model of the radiation hardening of the concrete 
irradiation material, 316(N)-IG steel. This model is based on the equation to be equivalent to 
Eq (2.18) for the potential barrier density C the role of which plays the stacking fault 
tetrahedral observed by electron microscopy as black dots. Experiment reveals that the 
concentration of these barriers grows with increasing irradiation dose.  

Authors of the work [9] make a comparison with experimental data for 316(N)-IG steel on 
the base of the equation analogous to above Eq (2.22) to be the particular case of Eq (2.18) 
that is not taking into account of the barrier annihilation. They receive relatively good fit 
with the experimental data in temperature ranges 20 – 150 and 230 - 300C. For the higher 
temperatures (330 - 400C) this equation does not obey an adequate description of the yield 
strength and ultimate stress increment. To describe the experimental data the authors of Ref 
[7] fit an exponent in the dependence of the form (2.17) pointing out this exponent to be 
varied approximately in the interval 1.4 – 2.7 for the best agreement with the experimental 
data. It is possible that accounting the barrier recombination of the different types leads to 
invariability of the exponent ½ in Eq (2.17). 

In the work [8], the equation analogous to Eq (2.22) it is used for fitting the experimental 
data for strength and ductility of corrosion – resisting austenitic 06Х18Н10Т steel irradiated 
by the WWER – 440 reactor up to damaging dose ~ 21 d.p.a. at different testing 
temperatures. Authors of Ref [8] find out that the radiation hardening saturation of 
06Х18Н10Т steel irradiated in WWER-440 reactors takes place at the damage dose of ~ 10  
15 d.p.a. (11,51026 n/cm2). 

3. Effect of secondary processes on material hardening under low 
temperature radiation 
3.1 Formulation of the secondary process contribution model 

The base of the model is a barrier mechanism of the radiation hardening [2] according to 
that the yield strength increment can be represented by the sum of barrier contributions of 
different types (see Eq (2.1) of the preceding section). 

We consider that the barriers of vacancy and interstitial types make a main contribution to 
the yield strength increment of a certain material. These barriers play the main role in the 
hardening at the low temperature irradiation. Therefore, in the proposed model N=3; the 
index values of i=1 correspond to the vacancy barriers, i = 2 do to interstitial ones and i = 3 
do to more large vacancy complexes. Then in this model Eq (2.1) takes the form: 
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For all of the obstacle types, the metal yield strength increment conditioned by dislocation 
deceleration is described by the Eq (2.4) (see the preceding section). 

Under irradiation, development of radiation defect clusters (barriers) of different types 
occurs in a region of a primary knocked-on atom. It is proposed that the interstitial barriers 
have considerably smaller sizes and leave the damage region of a sample sooner than the 
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vacancy barriers do. In connection with this, we formulate the phenomenological model that 
is based on the equation system for volume densities of the radiation-induced non-
equilibrium vacancy C1 and interstitial barriers C2 and more large complexes C3 developed 
by bimolecular mechanism of the vacancy barriers: 
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Here  = Фt, Ф is the particle flux, t irradiation time, Ki, i = 1, 2, the intensities of forming the 
radiation - induced vacancy and interstitial barriers, i are the coefficients of barrier 
recombination and characterize forming the clusters of acceptable barrier type (it can be 
named as clusterization coefficients), the coefficients 1

i
  can be represented by the form: 

1
i
 = KiVi, where Vi are the effective volumes of interaction of the certain barriers with each 

other, 12 the coefficient of mutual recombination of the annihilating vacancy and interstitial 
barriers. It can be valued as follows: 
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, 

where  atom volume, Er  activation energy of recombination of vacancy and interstitial 
barriers, r recombination radius, T test temperature, kB Boltzmann constant, Di diffusion 
coefficients of the non-equilibrium barriers of the given types: 0 exp( / )i i i BD D E k T  , 
i = 1, 2, where Ei energy of activation and migration of respective barriers, Di0 = a2, а and  
are length and barrier jumping frequency for migration, respectively. 

As material structure changes go under irradiation for times large in comparison with 
relaxation time of point defects then only diffusion barrier processes are considered to be 
very slow and therefore we neglect diffusion terms in the equations of the system (3.2). In 
addition, we study evolution of barrier volume densities in time considering their 
distributions are spatially homogeneous. In this case, the system (3.2) takes the form: 
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 (3.3) 

In this equation system, the first two equations coincide with the system (2.5) completely 
(see the preceding section). 
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The third equation of the system (3.3) describes redistribution of divacancy barrier 
complexes. Contribution to the hardening due to divacancy barriers is determined by only 
vacancy barrier density. The kinetic coefficients 1

3
  and 1 characterize intensities of 

breakdown of vacancy clusters and development of divacancy clusters. Effect of these 
contributions are appreciable if intensity of secondary processes of developing divacancy 
complexes predominates over their breakdown. 

To find the volume densities of the nonequilibrium barriers it is necessary to set up their 
initial values: 

 (0)(0)i iC C ,  i = 1, 2, 3 (3.4) 

Thus, the mathematical formulation of the model proposed in this section is the Cauchy 
problem for the system of nonlinear differential equations (3.3) with initial conditions (3.4). 
The volume barrier densities found as a result of solution of the Cauchy problem (3.3), (3.4) 
are to be inserted into Eq (2.4) that determines the total yield strength increment (3.1). 

3.2 Numerical analysis of the model results 

The model values of parameters (are given in captures of Figures) and the initial conditions 
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dimensionless form) are represented on Fig.3.1. at the indicated parameter values. 
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vacancy complexes (3) and their total density (4) on dose at fixed values of dimensionless 
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Here is shown the specified form of dose dependences of relative densities for vacancy 
barriers 1 0/C C , and interstitial barriers 2 0/C C , and more large vacancy complexes 3 0/C C  
where С0 is a measure scale of barrier density taken to be equal 1015 3cm  in this case on 
dose 0   in units measured by the scale τ0 (it is convenient to select a minimal fluence of 
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vacancy barriers do. In connection with this, we formulate the phenomenological model that 
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In this equation system, the first two equations coincide with the system (2.5) completely 
(see the preceding section). 
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the specific problem as the dose measure scale; for instance, in the ion irradiation the value of 
τ0 can be equal 1014 ion/cm2 or 1022 n/m2 in the neutron irradiation and so on, for the specific 
problem, respectively). These dependence patterns are universal and independent of the 
selected measure scales of the specific physics parameters. It is shown that the saturation of the 
material by the radiation - induced barriers takes place with increasing dose. 

The numerical solution of the Cauchy problem (3.3), (3.4) permits to obtain the dose 
dependences of the total increment of material yield strength which is convenient to 
represent for construction of graph as follows 
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where 0  is determined by Eq (2.9) (see the preceding section), d average size of barrier 
cluster over all of types. The results of numerical modeling the behavior of the yield 
strength increment are represented in Fig. 3.2. 

 
 
 

 
 

 

Fig. 3.2. Dose dependences of barrier contributions of vacancy type (1), interstitial type (2), 
vacancy complexes (3) and their total density (4) to yield strength increment at fixed values 
of parameters the same as in Fig.3.1. and d1/d = 0.016, d2/d = 0.035, d3/d = 0.097. 

The numerical analysis shows that the yield strength increment gets the saturation quickly 
enough. The typical monotonic form of the dose saturation plots of the yield strength 
increment does not change virtually in a broad enough interval of the model parameter 
values satisfying to the existence condition of the Cauchy problem (3.3), (3.4) solution. 

It is should be noted though the vacancy complexes have lower concentration in comparison 
with vacancies and interstitial atoms they, due to their larger sizes, contribute more 
considerably to yield strength increment at dose build-up. 
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3.3 Secondary reaction contribution analysis 

Let us consider the case when secondary reactions play a main role that is barrier 
recombination goes less intensively than developing barrier clusters. In this extreme case, 
we consider 12<<1 and 12<<2. Then the second equation of the system (3.3) becomes 
independent and coinciding formally with the first equation. In the result, the system (3.3) 
consists of two equations: 
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The first equation of the system (3.6) doesn’t contain С3. Therefore, it is independent. Its 
solution with zero initial condition takes the form: 
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, (3.7) 

where с = 21/, Сa=/211, Сb=Сa/, 2
1 1 11 4K    , Artanh(1 / )  . The obtained 

expression (3.7) describes the dependence of vacancy barrier volume density on dose  = Фt. 

When the processes of vacancy barrier clusterization are absent overall (1=0) it results from 
(3.6) 1/

1 1 1( ) (1 )C K e       whence the well known contribution to yield strength 
increment follows in the case of hardening by the barrier of a single type: 

 1/0 1/2
1 1 1 1 0{ (1 ) / }d K e dC    

    . (3.8) 

Substituting Eq (3.7) into the second equation of the system (3.6) its solution can be written 
as 

 3( )/ 2
3 1 1

0

( ) ( )sC e C ds


     . (3.9) 

Further, this expression is used to analysis the vacancy complex contribution to yield 
strength increment: 

 0 1/2
3 3 3 0( / )d C dC    . (3.10) 

The increasing of saturation quantity of yield strength increment goes with increasing 
intensity of the clusterization processes that is with increasing parameter 1 (Fig.3.3a).  

This increasing is nonlinear, enlargement of yield strength increment saturation going less 
and less considerably with increasing intensity of the clusterization processes. 

Growth of saturation quantity of yield strength increment goes with increasing specific 
times 1 and 3 as well (Fig.3.3. b and c). 
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Fig. 3.3. a. Dose dependences of vacancy complex contribution to yield strength increment at 
fixed values of parameters 1 0 0( )K C  = 1, d3/d = 0.097, 1 0   = 1, 3 0   = 0.4, (1) – 

2
0 1C  =5; (2) – 2

0 1C  =1.5; (3) – 2
0 1C  =0.5. 

     

 
Fig. 3.3. b and c. Dose dependences of vacancy complex contribution to yield strength 
increment at fixed values of parameters 1 0 0( )K C  = 1, d3/d = 0.097, 

b) 3 0   = 0.4, 2
0 1C  =3, (1) – 1 0   = 2; (2) – 1 0   = 1; (3) – 1 0   = 0.5;  

c) 1 0   = 1, 2
0 1C  =3, (1) – 3 0   = 0.8; (2) – 3 0   = 0.6; (3) – 3 0   = 0.4. 
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4. Phenomenological model of yield strength dependence on the temperature 
of irradiated materials 
4.1 Temperature intervals of radiation embrittlement with taking into account two 
components of material flow stress 

The results of experimental studying radiation embrittlement effects and the temperature 
dependences of such durable material characteristics as specific elongation and yield 
strength have been given in a series of the works [10-15]. In Refs [12, 15], it is shown that a 
deformation process connected with dislocation collective behavior in irradiated deformed 
materials is characterized by availability of the different structure deformation levels. 

As known under irradiation material plastic properties undergo strong changes. In 
particular a radiation embrittlement phenomenon takes place [11]. Upon that plastic 
properties of irradiated materials depend essentially on temperature. It is interesting to 
analyze phenomena of radiation embrittlement and radiation hardening of reactor materials 
with taking into account their durable characteristics on temperature. 

To analyze radiation embrittlement it is necessary to take into account availability of two 
components of material flow stress ( ): the thermal (thermo activated) component 

* created by short – rang forces and the athermal one   determined by long – range 
forces of slowing – down dislocations and no experiencing influence of temperature. These 
components are shown on the plot of a temperature dependence of material flow stress 
(Fig.4.1.).  

 
Fig. 4.1. Generalized scheme of temperature dependence of flow stress in polycrystalline 
materials. Area 1 corresponds to low temperature range T<0,15 Tm; area 2 is characterized 
by athermal component   up to ~0,45 Tm; area 3 corresponds to thermo activated 
component of flow stress; area 4 corresponds to second athermal plateau  ~G. 

The first activated area (1) on Fig. 4.1. covers a low temperature interval Т ≤ 0,15Тm in which 
a activative volume quantity of plastic deformation is as b3 where b is the Burgers vector 
modulus. This corresponds to a microscale level of dislocation interactions that is realized 
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Fig. 3.3. b and c. Dose dependences of vacancy complex contribution to yield strength 
increment at fixed values of parameters 1 0 0( )K C  = 1, d3/d = 0.097, 

b) 3 0   = 0.4, 2
0 1C  =3, (1) – 1 0   = 2; (2) – 1 0   = 1; (3) – 1 0   = 0.5;  

c) 1 0   = 1, 2
0 1C  =3, (1) – 3 0   = 0.8; (2) – 3 0   = 0.6; (3) – 3 0   = 0.4. 
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by point kinetics processes of dislocations. The area (2) on Fig. 4.1. is characterized by 
availability of athermal component  which is mainly determined by long – range elastic 
internal stresses forming due to interaction of dislocations moving in parallel or crossing 
sliding planes. At temperatures of Т ≥ 0,45Тm (the area (3) of Fig. 4.1.), edge dislocation 
creeping conditioned by diffusion processes and forming crew dislocation jogs are 
determined by the thermo activated flow stress component. In the area (4) of Fig. 4.1., 
intensification of grain boundary processes of plastic deformation takes place and forms a 
second athermal plateau   G. 

Connection of * and  changes with temperature dependence of radiation embrittlement 
in a wide enough experience temperature interval including certain areas shown on Fig. 4.1. 
can be studied by a method of modeling neutron irradiation action by relativistic electron 
beams with energies exceeding nuclear reaction threshold (so called ((e, ) – beams). Such 
irradiation as well as reactor one leads to forming different radiation defects ( for instance, 
defects of diclocation loop type) besides nuclear reaction products) [3, 16]. 

Main preference of such beams is a possibility to create for short time (for some of hours) 
radiation damages equivalent to ones obtained for some of years of irradiation in reactors. 
Besides modeling experiments can be fulfilled under severely controlled conditions that has 
paramount importance to clear up mechanisms of phenomena in nuclear and thermonuclear 
reactor materials under exploitation. 

The beams of electrons and  - quanta having a large track length in materials make it 
possible to create homogeneous radiation damages in samples assigned for investigating 
mechanical properties. Investigations of mechanical prosperities of materials irradiated by 
(е,) – beams showed availability of their employment for modeling reactor damages and 
selection of construction material [17]. 

When high energy electrons get through substance an electromagnetic avalanche develops. 
In increasing electron penetration depth in to a material sample a number of avalanche 
particles increases, energy of electron decreases and the X-ray bremsstrahlung increases.  

Irradiation of materials by high energy electrons leads to accumulation of large amount of 
helium due to secondary (,) – reactions, which is accountable for high temperature 
radiation embrittlement. The unique feature of (е,) – beams is a possible to receive samples 
with distinct ratio of helium accumulation rate to rate of forming displacements at the same 
experiment. 

Changing elastic and inelastic properties of polycrystalline materials are caused by lattice 
damages under irradiation and their next interaction with dislocations. Diffusion of point 
defects plays important role in process of pinning dislocations in connection with that it can 
be obtained significant information about radiation defects investigating influence of 
experience temperature on a quantity of radiation damage. 

4.2 Formulation of the model 

We consider the model in which the temperature dependence can be interpreted as a result 
the of phase transition between two plastic deformation structure levels that is characterized 
by specific values of the athermal stress component. 
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Changing yield strength   in dependence on temperature T is characterized by derivative 
d/dT. As the phase transition is considered between two plastic deformation structure 
levels then this function must take the form that can be approximated by a parabolic 
dependence on  . Such dependence has to be equal zero when yield strength coincides 
with theoretical quantities of the first (high temperature) 1

th
  and the second (low 

temperature) 2
th
  athermal plateau. As a result, it can be written a phenomenological 

equation of the structure phase transition in question as follows 
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where T0 – the specific temperature interval in that yield strength increases occur on the 
magnitude of the thermo activated component of flow stress. 

Solution of Eq. (4.1) takes the form: 
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where Тс is temperature corresponding to the average value of athermal stresses of the high 
temperature and low temperature plateau. 

To describe the yield strength experiment dependences of the irradiated materials on 
temperature it is convenient to rewrite Eq. (4.2) as follows 
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where 1 2( ) / 2th th
c      , 1 2( ) / 2th th

m      . 

Empirical parameters с, m, T0, Tс of the model have next phenomenological meaning. 
Temperature T0 is connected with activation energy Qe of the plastic deformation transition 
on a higher structure level after that the material goes to a stage of radiation embrittlement: 
Qe = T0kB/2 where kB is Boltzmann constant. Parameters с and Тс are stress and 
temperature of the transition, respectively, between the structure levels of plastic 
deformation of irradiated materials, characterized by the known experimental values of 
athremal stress. 

From Eq (4.3) follows at (TTc)/2T0 >> 1 that an equality m = 1
th
  с is valid if T < Tc 

and the equality m = с  2
th
  is fulfilled if T > Tc where 1

th
  and 2

th
  are the theoretical 

magnitudes of the first (low temperature) and the second (high temperature) athermal 
plateau, respectively (see Fig.4.1.). This implies that parameter m is connected with the 
thermo activated component of irradiated materials stress by * /2m th  . 

4.3 Discussion of model results and experimental data 

The values of empirical parameters с, m, T0, Tс are fit by the best coinciding the values of 
the function (4.3) for corresponding experience temperatures with experimental values of 
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athremal stress. 

From Eq (4.3) follows at (TTc)/2T0 >> 1 that an equality m = 1
th
  с is valid if T < Tc 

and the equality m = с  2
th
  is fulfilled if T > Tc where 1

th
  and 2

th
  are the theoretical 

magnitudes of the first (low temperature) and the second (high temperature) athermal 
plateau, respectively (see Fig.4.1.). This implies that parameter m is connected with the 
thermo activated component of irradiated materials stress by * /2m th  . 

4.3 Discussion of model results and experimental data 

The values of empirical parameters с, m, T0, Tс are fit by the best coinciding the values of 
the function (4.3) for corresponding experience temperatures with experimental values of 
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the material yield strength. Criterion of fitting the empirical parameter values has been 
minimization of a quadratic deviation sum of the yield strength experiment values from 
ones calculated by Eq (4.3) at corresponding experience temperatures for all of the specific 
materials. 

0Х18Н10Т steel samples have been irradiated by (е,) – beams with energy of 225 MeV up to 
dose of 1025 el/cm2 at temperatures of 170-190С. For mechanical experiences, the planar 
samples of test portion sizes of 1020.3 mm have been experienced in vacuum at temperatures 
of 20-1200С with deformation velocity of 0.003 c−1[15]. The copper samples of vacuum – 
induced remelting (purity of 99.98) have been irradiated by -beams with energy of 225 MeV 
up to fluence of 0.1 dpa [15]. The nickel samples have been irradiated by electrons with 
energy of 225 MeV up to dose of 1019 el/cm2 [11]. The 15Х2MФА steel samples have been 
irradiated by neutrons up to fluence of 31020 neutron/cm2 [11, 12]. The vanadium samples 
(purity of 99.9) have been irradiated by high energy (of 225 MeV) (е,) – beams up to fluence 
of 0.01 dpa [12, 15]. Chromium single crystals have been irradiated by (е,) – beams up to 
fluence of 1025 el/cm2 [15] 

The summary experimental results for the yield strength temperature dependence of the 
irradiated materials are shown with Fig.4.2. (fcc lattice materials) and Fig.4.3. (bcc lattice 
materials) where experimental points are marked by corresponding labels. 

 
 

 
 

Fig. 4.2. Yield strength temperature dependences of irradiated fcc-materials (point label – 
experiment, solid lines – theoretical plots calculated by Eq (4.3)). 1 – X18H10T steel; 2 – 
nickel; 3 – copper. 
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Fig. 4.3. Yield strength temperature dependences of irradiated bcc-materials: 1 – vanadium; 
2 – chromium; 3 - 15Х2MФА steel. 

There are the approximating function (4.3) values of empirical parameters for the different 
materials, relative error  of approximation and confidence quantity R2 of approximation 
(determination coefficient) for all of the dependences in the table. The determination 
coefficient is close to unit. It means good agreement the proposed theoretical dependences 
with experimental data for all of the considered materials in the wide experience 
temperature interval. It should be noted that the relative errors for experimental data to be 
approximated by the function (4.3) in the case of main fcc-materials (X18H10T steel, copper) 
are lower than in the case of main bcc-materials (vanadium, chromium). 
 

Material с, MPa m, MPa T0, С Тс, С , % R2 

0Х18Н10Т steel 197.71 171.99 61.7284 634.87 1.457 0.9997 
copper 87.76 35.48 58.1395 376.70 1.799 0.9965 
nickel 132.35 113.78 116.2791 357.74 4.100 0.9972 
15Х2МФА steel 148.78 135.35 12.9534 196.45 1.083 0.9996 
vanadium 241 0.9295 243.9024 505 9.158 0.9638 
chromium 277 0.5812 91.4077 251 2.848 0.9810 

Table 1. Empirical parameters of the dependence (4.3). 

Also the yield strength temperature dependences of no irradiated materials can be 
approximated by Eq. (4.3) reasonably enough. For instance, the empirical parameters of no 
irradiated X18H10T steel are с = 59.45MPa, m = 26.1 MPa, Tс = 771.65 С,  =4.405 %, 
R2 = 0.9814. Further, it is given the results of comparison of increments for thermo activated 
*, and athermal high temperature 1 and low temperature 2 of stress components 
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obtained experimentally (A) and by a theoretical calculation (B) under radiation up to dose 
of 1025 el/cm2 for X18H10T steel. 
 

  A B 
1 MPa ……………….. 285 284.149 
2 MPa ……………….. 10 7.631 
*  MPa ……………….. 295 291.78 

According to the data shown at Fig. 4.4., the essential yield strength increment of X18H10T 
steel is observed after radiarion. 

 
Fig. 4.4. Yield strength temperature dependence of  austenic X18H10T steel: 1 – no 
irradiated, 2 – irradiated by (е,) – beams up to dose of 1025 el/cm2. Point labels are 
experimental; the lines are plots of theoretical dependence calculated by Eq. (4.3). 

5. Conclusion 
In this chapter, three models are proposed to describe the properties of irradiated deformed 
polycrystalline materials. 

The first model (see section 2) describes the dose dependence of the yield strength of the 
irradiated material. It is generalization of the model known earlier (see for instance [5]), as 
the recombination effects of the radiation – induced vacancy and interstitial barriers and 
their clusterization are taken into account in it. Within the framework of the model 
formulated, it is found that the saturation quantity of the yield strength decreases with 
increasing both the intensity of the mutual barrier recombination and the clusterization 
intensity. It follows to note that in spite of model’s assumption for the mean sizes of the 
radiation-induced barriers di and the shear modulus  to be independent the shear modulus 
increases practically owing to the radiation point defects come on the dislocation and reduce 
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the mean segment length of the dislocation and enhance a degree of the dislocation 
anchorage. Because of this it can be expected for the obtained dose dependence of the yield 
strength of the irradiated material to be modified. 

The second model describes barrier hardening polycrystalline materials. It is constructed 
with taking into account interaction of vacancy and interstitial barrier types. In the frame of 
the proposed model, it can be estimated both contributions to yield strength increment from 
different type barriers and its total value in dependence on dose.  

The third model gives possibility to describe the yield strength dependence of the irradiated 
materials on experience temperature on a quantitative level. It is based on mechanism of 
yield strength change as the phase transition between two plastic deformation structure 
levels characterized by certain values of the athermal stress component. The calculations 
show radiation promotes the transition of plastic deformation on the higher structure level 
after that the material undergoes radiation embrittlement. General features found permit to 
forecast embrittlement temperature intervals of reactor materials in dependence on their 
mechanical properties. 
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